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Preface

Operations research has been adapted by management science scholars to manage
realistic problems for a long time. Among these methods, mathematical program-
ming models play a key role in optimizing systems. However, traditional mathemati-
cal programming focuses on single objective optimization rather than multi-objective
optimization as we encounter real situations. Hence, the concept of multi-objective
programming was proposed by Kuhn, Tucker, and Koopmans in 1951 and since then
has served as the mainstream technique of mathematical programming.

Multi-objective programming (MOP) can be considered a natural extension of
single objective programming by simultaneously optimizing multi-objectives in
mathematical programming models. However, the optimization of multi-objectives
triggers the issue of Pareto solutions and complicates the derived answers. In addi-
tion, more scholars incorporate the concepts of fuzzy sets and evolutionary algo-
rithms to multi-objective programming models and enrich the field of multi-objective
decision making (MODM).

The contents of this book are divided into two parts methodologies and applica-
tions. In the first part, we introduce the most popular methods that are used to calcu-
late the solution of MOP in the field of MODM. Furthermore, we included three new
topics of MODM: multi-objective evolutionary algorithms (MOEAs), expanding De
Novo programming to changeable spaces including decision spaces and objective
spaces, and network data envelopment analysis (NDEA). In Part II covering applica-
tions, we propose different kinds of practical applications of MODM. These applica-
tions can provide readers the insights for better understanding of MODM in depth.
This book may be useful for the following groups based on their specific objectives:

* Undergraduate and graduate students who wish to extend their knowl-
edge of the methods of MODM or publish papers in journals of operations
research and management science

* Practitioners who seek to make effective decisions by using MODM methods

Finally, we hope all our readers will be satisfied with this book and reap great
rewards from it. Suggestions and corrections are very welcome and appreciated.

Gwo-Hshiung Tzeng and Jih-Jeng Huang

xi
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'I Introduction

1.1 PROFILE OF MULTIPLE CRITERION DECISION MAKING

The decision-making process involves a series of steps: identifying the problem,
constructing the preferences, evaluating the alternatives, and determining the
best alternative (Simon, 1977; Keeney and Raiffa, 1993; Kleindorfer et al., 1993).
Generally speaking, three kinds of formal analysis can be employed to solve
decision-making problems (Bell et al., 1988; Kleindorfer et al., 1993): (1) descriptive
analysis focuses on the problems that decision makers actually face; (2) prescriptive
analysis considers the methods used by decision makers to improve their decisions;
and (3) normative analysis is concerned with the ideal resolution of problems.

In this book, we limit our topics to normative analysis and prescriptive analysis
since descriptive analysis (or behavior decision research) falls within the fields of
psychology, marketing, and consumer research (Kahneman and Tversky, 2000). On
the other hand, normative analysis and prescriptive analysis are concentration areas
in the decision science, economics, and operations research (OR) fields.

Decision making is extremely intuitive for solving a single criterion problem
because we need to choose only the alternative with the highest preference rating.
However, when decision makers evaluate the alternatives based on multiple criteria,
many problems such as weights of criteria, preference dependence, and conflicts
among criteria seem to complicate the decision problems and should be overcome by
more sophisticated methods.

In order to deal with multiple criteria decision making (MCDM) problems, the
first steps are identifying the problems and determining how many attributes or
criteria exist in the problems. Next, we must collect the appropriate data or infor-
mation in which the preferences of decision makers can be correctly reflected and
considered. This step is known as constructing the preferences. The next step is
building a set of possible alternatives or strategies to guarantee that the goal will be
reached—evaluate the alternatives. After that, we can select an appropriate method
that helps us evaluate, rank, and improve the possible alternatives or strategies. This
step involves finding and determining the best alternative.

To facilitate systematic research in the field of MCDM, Hwang and Yoon (1981)
suggested that the MCDM problems can be classified into two main categories:
multiple attribute decision making (MADM) and multiple objective decision mak-
ing (MODM) based on different purposes and data types. MADM is applied in
the evaluation phase, which is usually associated with a limited number of prede-
termined alternatives and discrete preference ratings. MODM is especially suit-
able for the design and planning steps and allows a user to achieve the optimal
or aspired goals by considering the various interactions of the given constraints.



2 Fuzzy Multiple Objective Decision Making

However, conventional MCDM considers only discrete decision problems and
lacks a general paradigm for specific real-world problems such as group decisions
and uncertain preferences.

Most of the MCDM problems in the real world, therefore, should be regarded
naturally as fuzzy problems (Zadeh, 1965; Bellman and Zadeh, 1970) consisting of
goals, aspects (or dimensions), attributes (or criteria), and possible alternatives (or
strategies). More precisely, we can classify MCDM problems within the fuzzy envi-
ronment into two categories: fuzzy multiple attribute decision making (FMADM)
and fuzzy multiple objective decision making (FMODM) problems based on the
concepts of MADM and MODM. Figures 1.1 and 1.2 illustrate the profiles of
MCDM.

Data Processing, Statistical and MODM MADM
Multivariate Analysis, Data Mining Planning/Designing Evaluating/Choosing
Normative Models

--SM, Fuzzy ISM
--DEMATEL, Fuzzy DEMATEL

--Fuzzy Cognitive Map (FCM)
External Environment --Formal Concept Analysis
MODM --Linear Structure Equation Model
(LISEM, or called “SEM”)
1 ,—‘—\ --Input-Output Analysis
Obrect x GP MOP
jects esponse
Features or or ;I;
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(Internal real # Single Level ﬁ |
situations) . + ’ a .G c.
I ¢ uzzy Strategies Wi W o Wa
Mul * or 77
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Dynimlcs best choice /E (crisp/fuzzy)
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+Fuzzy
De Novo Programming ANP
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Data Collecting Processing Prospecting SWA
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Programming PROMETHEE
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(including Fuzzy) Objective Space) MAUT:
Data Sets Changeable Spaces n ’
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Fuzzy Sets (Decision Space and Ul ) 2 wit; (x;)
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n
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, Wisdom =
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FIGURE 1.1 Profile of multiple criteria decision making.
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1.2 HISTORICAL DEVELOPMENT OF MULTIPLE
ATTRIBUTE DECISION MAKING

The historical origination of MADM can be traced back to a correspondence between
Nicolas Bernoulli (1687-1759) and Pierre Rémond de Montmort (1678-1719) dis-

cussing the St. Petersburg paradox:

A game is played by flipping a fair coin until it comes up tails, and the total number
of flips, n, determines the prize, which equals $2 X n. If the coin comes up heads in
the first time, it is flipped again, and so on. The problem arises that how much are you
willing to pay for this game?

According to the expected value theory, the result can be calculated that
EV =X.,(1/2)" x 2" and shows that the expected value will go to infinity. However,
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the result is obviously against our intuition since no one is willing to pay more
than $1,000 for this game. The answer of the St. Petersburg paradox was unavail-
able until Daniel Bernoulli (1700-1782) published his influential research on util-
ity theory in 1738. We ignore the concrete discussions for describing the solution
of the St. Petersburg paradox in detail but focus on the conclusion that a human
makes decisions based on utility value, not on expected value. The implication is
that a human chooses the alternative with the highest utility value while confront-
ing the MADM problems.

In 1947, von Neumann and Morgenstern published a famous book on the the-
ory of games and economic behavior and devised a detailed mathematical theory
of economic and social organization based on the game theory. It is no doubt that
their great work opened the door to MADM. In brief, the methods for dealing with
MADM problems can be divided into multiple attribute utility theory (MAUT) and
outranking methods, particularly the ELECTRE (Benayoun et al., 1966; Roy, 1968)
and PROMETHEE (Brans et al., 1984) methods.

On the basis of Bernoulli’s utility theory, MAUT determines the decision mak-
er’s preferences that may be represented as a hierarchical structure by using an
appropriate utility function. By evaluating the utility function, a decision maker
(DM) can easily determine the best alternative with the highest utility value.
Although many papers have been proposed for determining the appropriate utility
function of MAUT (Fishburn, 1970), the main criticism of MAUT concentrates
on the unrealistic assumption-preferential independence (Grabisch, 1995; Hillier,
2000).

Preferential independence means that the preference outcome of one criterion
over another criterion is not influenced by the remaining criteria. However, it should
be highlighted that the criteria are usually interactive in practical MCDM problems.
In order to overcome the non-additive issue, the Choquet integral was proposed
(Choquet, 1953; Sugeno, 1974). The Choquet integral can represent a certain kind
of interaction among criteria using the concept of redundancy and support/synergy.
However, another critical problem of the Choquet integral concerns correct determi-
nation of fuzzy measures.

Conversely, instead of building complex utility functions, outranking methods
compare the preference relations among alternatives to acquire the information for
choosing the best alternative. Although outranking methods were proposed to over-
come the empirical difficulties experienced with the utility function in handling
practical problems, the main criticisms of outranking methods noted the absence of
axiomatic foundations such as the classical aggregate problems, the structural prob-
lems, and the non-compensatory problems (Bouyssou and Vansnick, 1986).

In 1965, fuzzy sets (Zadeh, 1965; Bellman and Zadeh, 1970) were proposed to
confront the problems of linguistic or uncertain information and act as a generaliza-
tion of conventional set theory. After successful applications in the field of automatic
control, fuzzy sets were incorporated into MADM recently for dealing with the
MADM problems involving subjective uncertainty. Figure 1.3 illustrates the holistic
development of MADM.
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1.3 HISTORICAL DEVELOPMENT OF MULTIPLE
OBJECTIVE DECISION MAKING

Multiple objective decision making (MODM) aims to resolve optimal design prob-
lems in which several (conflicting) objectives must be achieved simultaneously.
MODM is characterized by a set of conflicting objectives and a set of well-defined
constraints. Therefore, it is naturally associated with mathematical programming
methods for dealing with optimization problems. However, two main difficulties
involving the trade-off and scale issues complicate MODM problems through the
mathematical programming model.

The trade-off problem arises because a final optimal solution is reached usually
through mathematical programming and multiple objectives must transform into a
weighted single objective. Therefore, a process of obtaining the trade-off informa-
tion between the considered objectives should be identified first. Note that if trade-off
information is unavailable, Pareto solutions should be derived. The scaling prob-
lem, on the other hand, arises when the number of dimensions increases beyond
capacity and summons the “curse of dimensionality,” i.e., the computational cost
increases tremendously. Recently, many evolution algorithms, such as genetic algo-
rithms (Holland, 1975), genetic programming (Koza, 1992), and evolution strategy
(Rechenberg, 1973), have been suggested to handle this problem.

Since Kuhn and Tucker (1951) published multiple objectives using the vector
optimization concept, and Yu (1973) proposed the compromise solution method to
cope with MODM problems, considerable work has been done on various applica-
tions such as transportation investment and planning, econometric and develop-
ment planning, financial planning, business management, investment portfolio
selection, land use planning, water resource management, public policy, and envi-
ronmental issues. The theoretical work is extended from simple multiple objec-
tive programming to multi-level, multi-objective programming and multi-stage
multi-objective programming to confront very complicated real-world problems.

On the other hand, conventional MODM seems to ignore the problem of subjec-
tive uncertainty. Since the objectives and constraints may involve linguistic and fuzzy
variables, the fuzzy numbers should be incorporated into MODM for dealing with
more extensive problems. After Bellman and Zadeh (1970) proposed the concept of
decision making under fuzzy environments, many distinguished works such as Hwang
and Yoon (1981), Zimmermann (1978), Sakawa (1983, 1984a, and 1984b), and Lee and
Li (1993) led to studies of fuzzy multiple objective linear programming (FMOLP).

FMOLP formulates the objectives and the constraints as fuzzy sets based on their
individual linear membership functions. The decision set is defined by the intersec-
tion of all fuzzy sets and the relevant hard constraints. A crisp solution is generated by
selecting the optimal solution, such that it has the highest degree of membership in the
decision set. For further discussions, readers can refer to Zimmermann (1978), Werners
(1987), and Martinson (1993). Figure 1.4 depicts the holistic development of MADM.

In addition, the trend of MODM has changed gradually from the win—lose strat-
egy to the win—win strategy. Under the win—lose strategy, a firm can optimize its
system only via its given resources and restricted capabilities. That is, the firm faces
the traditional optimal problems. However, more firms are interested in creating
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FIGURE 1.5 Concept of win—win strategy.

added value and achieving better parameters through flexible resources and expand-
ing competence sets. Hence, the win—win strategy is another area of focus for this
chapter. The win—-win strategy is shown in Figure 1.5.

1.4 INTRODUCTION TO FUZZY SETS

In this section, we concentrate on the basic concepts of fuzzy sets and the arithmetic
operations of fuzzy numbers in decision making rather than introduce all related
topics in detail.

1.4.1 Basic CONCEPTS

In contrast to classical set theory for coping with Boolean logic problems, fuzzy sets
were proposed to represent the influences of the elements belonging to specific sets.
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Instead of using the characteristic function for mapping purposes, a fuzzy subset A
of a universal set X can be defined by its membership function W ;(x) as
A={(x,u;(x)xeX}, (L.1)
where x € X denotes the elements belonging to the universal set, and
wi(x): X —[0,1]. (1.2)

Given a discrete finite set X = {x;,x,,...,x,}, a fuzzy subset A of X can also be rep-
resented as

A:Zug(m/xi. (1.3)
i=1
For a continuous case, a fuzzy set A of X can be represented as

A=Iuﬂﬂﬁm (1.4)
X
Next, we present some definitions that will be used in the FMADM models as follows.

Definition 1.1. Consider a fuzzy subset A of a set X; the support of Aisa crisp set
of X defined by

supp(A) = {x € X I ; (x) > 0}. (1.5)
Definition 1.2. The o-cut of a fuzzy subset A of X can be defined by
Alo)={xeXIu;(x)=al, Yo e[0,1]. (1.6)

Definition 1.3. Let A represent a fuzzy subset of a set X; the height of A is the least
upper bound (sup) of U ;(x) and is defined by

h(A) =suppt ;(x). (1.7)

xeX

Definition 1.4. A fuzzy subset A of a set X is said to be normal if and only if its
height is unity and called subnormal if and only if its height is not unity.

Fuzzy sets were originally proposed to deal with the problems of subjective
uncertainty that arise from using linguistic variables to represent a problem or the
event. Note that a linguistic variable is a variable that is expressed by words or sen-
tences in a natural or artificial language. For example, linguistic variables with tri-
angular fuzzy numbers may take on effect values such as very high (very good), high
(good), fair, low (poor), and very low (very poor) as shown in Figure 1.6 to indicate
the membership functions of the expression values [ z(x)].
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FIGURE 1.6 Membership function of five levels of linguistic variables.

The adoption of linguistic variables has become more widespread recently.
These variables are used to assess the linguistic ratings given by the evaluators.
Furthermore, linguistic variables are also employed to measure the achievement of
the performance for each criterion. Since the linguistic variables can be defined by
the corresponding membership function and fuzzy interval, we can naturally manip-
ulate the fuzzy numbers to deal with the FMADM problems.

1.4.2 Fuzzy ARITHMETIC OPERATIONS

Fuzzy arithmetic operations involve adding, subtracting, multiplying, and dividing
fuzzy numbers. Generally, these fuzzy arithmetic operations are based on the exten-
sion principle and o-cut arithmetic. For more detailed discussions of fuzzy arithmetic
operations, readers can refer to Dubois et al. (2000); Dubois and Prade (1987); Dubois
et al. (1993); Dubois and Prade (1988); Kaufmann and Gupta (1985, 1988); and Mares
(1994). In this section, we briefly introduce the fuzzy arithmetic operations according
to the extension principle and o.-cut arithmetic, respectively.

1.4.2.1 Extension Principle

Let m and n be two fuzzy numbers and z denote a specific event. The membership
functions of the four basic arithmetic operations for m and n can be defined by

Wi (2) = silf{min(ﬁl(x),ﬁ(y)) Ix+y=z}; (1.8)
Wi-i(2) = s:;yp{min(n?(x),ﬁ(y)) lx—y=2z} (1.9)
Wi (2) = Sllyp{ min(m(x),n(y)) | xXy=z}; (1.10)
Wi (2) = S;Jyp{min(nﬁ(x),ﬁ(y)) lx+y=2z}. (L.11)

The procedures of calculating two fuzzy numbers, m and 7, based on the extension
principle can be illustrated by the following example:

X 1 3 5 7 9
Y 1 3 5 7 9
i (x) 0.2 0.4 0.6 1.0 0.8

wi(y) 0.1 03 1.0 0.7 0.5
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W17 (10) = sup{0.2,0.4,0.6,0.3,0.1} = 0.6
Wi (=2) = sup{0.2,0.4,0.6,0.5} = 0.6
Wiaxi (9) = sup {0.2,0.3,0.1} =0.3

W7 (3) =sup{0.1,0.3} =0.3

Next, we provide another method to derive the fuzzy arithmetic operations based on
the concept of o-cut.

1.4.2.2 o-Cut Arithmetic

Let m=[m', m", m" and 7ii=[n',n™, n"] be two fuzzy numbers in which the super-
scripts /, m, and u denote the infimum, the mode, and the supremum, respectively. The
standard fuzzy arithmetic operations can be defined using the concepts of o-cut as
follows:

(o) + i) = [m' (o) + n' (o), m" (o) + n* (a)]; (1.12)
m(o) (o) = [m' (o) — " (o), m" (o) — n' ()]; (1.13)
(o) + (o) = [m' (o), m" ()] X [1/n" (e0),1/n' (e0)]; (1.14)
(o) X (o) = [M,N] (1.15)

where (o) denotes the o.-cut operation, = is the approximation operation, and
M = min{m'(o)n' (o), m' (0)n" (ov),m" (o)n' (o), m" (e)n" (01)};
N =max{m'(o)n' (o), m' (o)n" (o), m" (o)’ (or),m" (0)n" ()}

An example is also given to illustrate the computation of fuzzy numbers. Let two
fuzzy numbers m =[3,5,8] and n =[2,4,6]. Then

m(o)+n(o)=[3+20) + (2+ 2a),(8 = 30a) + (6 — 20)];
m(o) —n(o) =[3+20)—(2+2n),(8-30)— (6 —201)];

b

(3+20) (8—3&)]

() + 1) = [(6 “20)" (2+20)

m(o) X n(o) =[(3+20)(2+2a),(8 = 30)(6 —20)].

1.4.3 RANKING Fuzzy NUMBERS

Since the fuzzy arithmetic operations based on the a-cut arithmetic result in a fuzzy
interval, determining the optimal alternative is not always obvious and involves the
problem of ranking fuzzy numbers or defuzzification. In previous works, the proce-
dure of defuzzification has been proposed to locate the best non-fuzzy performance
(BNP) value. Defuzzified fuzzy ranking methods generally can be divided into four
categories: (1) preference relation, (2) fuzzy mean and spread, (3) fuzzy scoring, and
(4) linguistic methods (Chen and Hwang, 1992).
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Although more than 30 defuzzified methods have been proposed over the past
20 years, only the center of area (CoA) is described in this book because of its
simplicity and usefulness. Consider the preference ratings of an alternative with
n attributes represented using fuzzy numbers. The BNP values of the alternative
using CoA can be formulated as:

Zi_lxiu(xi)

S="=
D n@) (L.16)

where x; denotes the preference ratings of the ith attribute and p(x,) is the correspond-
ing membership function.

1.5 OUTLINE OF THE BOOK

This book is divided into two parts. Part I discusses concepts and theories of multiple
objective decision making. In Chapter 2, we introduce multi-objective evolutionary algo-
rithms (MOEAs) that are used widely for solving all kinds of MODM problems. Next, we

| Outline of the book
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I

|

I

I

I

: Compromise
I
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Solutions
Multi-stage Multi-level De Novo
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MODM
Applications

FIGURE 1.7 Book outline.
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propose goal programming and compromise solutions in Chapter 3 and Chapter 4, respec-
tively; these are the most popular methods used in MODM. In Chapter 5, we introduce
the concept of de novo programming used to reallocate or reshape available resources for
eliminating trade-offs between objectives. In Chapters 6 and 7, we introduce multi-stage
and multi-level programming for solving network and hierarchical MODM problems,
respectively. In Chapter 8, we propose data envelopment analysis (DEA) for evaluating
the efficiency of decision-making units (DMUs) based on input and output data.

Part II (Chapters 9 through 16) covers applications of MODM such as stra-
tegic alliances, supply chain management, portfolio selection, optimal planning
and design of systems, and production efficiency. The outline is depicted in
Figure 1.7.
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9 Multi-Objective
Evolutionary Algorithms

In this chapter, we will introduce the use of genetic algorithms for solving multi-
objective programming (MOP) problems and the concrete contents of genetic algo-
rithms (GAs).

2.1 CONCEPTS OF GENETIC ALGORITHMS

In traditional optimization methods, gradients and derivatives are usually used to
guide the search for an optimal solution. However, when the objective function is
not differentiable or the dimensionality of the search space is quite large, these
techniques usually perform poorly. GAs are now considered alternative meth-
ods to solve such optimization problems. GAs were pioneered by Holland (1975)
and the concept is to mimic the natural evolution of a population by allowing
solutions to reproduce, creating new solutions that then compete for survival in
the next iteration. The fitness improves over generations and the best solution is
finally achieved.

Holland (1975) tested the ability of GAs for dealing with different kinds of objec-
tive functions. These experimental results indicate that GAs are very robust and
perform better than traditional optimization methods. In addition, Bosworth et al.
(1972) performed one of the earlier studies of GAs to conclude that GAs are not sen-
sitive to increasing dimensionality and noise. These results were consistent with the
experimental results of De Jong’s study (1975). GAs were widely used later for vari-
ous optimization problems, and many revised GAs have been proposed to improve
their capabilities, such as GENOCOP (Michalewicz, 1992) or increase their applica-
tions, such as genetic programming (Koza, 1992).

Let us consider the following notations for describing the procedures of GAs.
The initial population P(0) is encoded randomly by strings. In each generation ¢, the
more fit elements are selected for the mating pool and then processed by three basic
genetic operators (reproduction, crossover, and mutation) to generate new offspring.
On the basis of the principle of survival of the fittest, the best chromosome of a
candidate solution is obtained. The pseudo code of GAs illustrates the computation
procedures as shown in Figure 2.1.

The power of the GA lies in its ability of simultaneous searching a population of
points in parallel instead of a single point. Therefore, a GA can find the approximate
optimum quickly without falling into a local optimum. In addition GAs do not have
the limitation of differentiability, as do other optimization techniques.

17
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procedure
GA
begin
t-o
initialize P(0)
evaluate P(t)
while not satisfy stopping rule do

begin
t—t+1
select Pt) from P(t-1)
alter P(t)
evaluate P(t)
end
end

FIGURE 2.1 Genetic algorithm procedures.

2.2 GA PROCEDURES

In order to illustrate how GAs can be used to find optimal decision variables, we first
consider the following multi-objective programming (MOP) problem.

2.2.1 STRING REPRESENTATION

To represent the solutions of a MOP problem in GAs, we should encode these solu-
tions as chromosomes. Usually, each element of a chromosome consists of a binary
string (bit) or real-number string. For binary encoding, the precision of a solution
depends on the number of bits used. However, the binary encoding for a function
optimization problem may suffer critical drawbacks because of the existence of
Hamming cliffs (Ludvig et al., 1997). For example, the 1000000 and 0111111 pair
belong to neighboring points in phenotype space but have maximum Hamming dis-
tance in genotype space. Hence, the binary strings do not preserve the locality of
points in the phenotype space.

In contrast, real-number strings code possible solutions as a vector of real num-
bers of the same length as the solution vector, and are more suitable for dealing with
function optimization problems (Eshelman and Schaffer, 1993; Walters and Smith,
1995; Michalewicz, 1996). This is because the topological structure of the genotype
space for real-number encoding is identical to that of the phenotype space. Hence,
it is easy to form effective genetic operators by borrowing useful techniques from
conventional methods (Gen and Cheng, 2000). In addition, compared with binary
encoding, real-number encoding is capable of representing very large domains or
unknown domains (Michalewicz, 1996).

2.2.2 PoPULATION INITIALIZATION

Usually, the initial population P(0) is selected at random. Each genotype in the
population can be initialized to present the degree of variance from the uniform
distribution. Note that there is no standard to determine the size P(0) of the initial
population. Bhandari et al. (1996) showed that as the number of iterations extends
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to infinity, the elitist model of GAs will provide the optimal string for any popula-
tion size.

2.2.3  FiiNess COMPUTATION

The fitness function can be considered as the link between the GAs and the problem
to be solved. For MOP problems, the fitness function of GAs is clearly identical to
the objective functions of a model. Therefore, we can easily use the values of chro-
mosomes to calculate the fitness of each offspring. However, in MOP problems, the
ideal solution (best value) of each objective is usually unavailable due to the trade-
offs among objectives. Therefore, the best offspring of a MOP problem is a Pareto
set rather than a unique solution.

2.2.4 GEeNETIC OPERATORS

In most kinds of different GAs, three common genetic operators (selection, cross-
over, and mutation) are used to generate offspring, i.e., solutions. Next, we will dis-
cuss the content of each genetic operator.

2.2.4.1 Selection

The selection operator chooses chromosomes from the mating pool using the con-
cept of “survival of the fittest” applicable to natural genetic systems. Thus, the
best chromosomes receive more copies and the worst die off. The first method of
the selection operator is called wheel selection. The probability of variable selec-
tion is proportional to its fitness value in the population, according to the formula
given by

P(.x,') — Nf(xi)

Z £(x)) 2.1)

where f(x;) represents the fitness value of the ith chromosome and N is the popula-
tion size. Hence, each offspring’s chance of being selected is directly proportional
to its fitness. However, this method cannot ensure that the worst offspring will not
be selected.

In contrast, we can use tournament selection to retain better solutions and cast
off worse solutions in a population. In the tournament selection, chromosomes are
selected to compete according to their fitness values and the better ones are chosen
and placed in the mating pool. Tournament selection has been shown to provide bet-
ter convergence and computational time complexity properties when compared to
other selection operators (Goldberg and Deb, 1991).

In sum, the purpose of selection is to replace the worst chromosomes with the
selected chromosomes. Therefore, we can guarantee survival of the best solution in
each generation via this elitist strategy procedure.
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2.2.4.2 Crossover

The goal of crossover, also called recombination, is to exchange information
between two parent chromosomes to produce two new offspring for the next
population. The common forms of crossover are one-point, two-point, n-point,
and uniform (Syswerda, 1989). One-point and two-point crossovers are the spe-
cific forms of n-point crossovers when crossover points are equal to one and two,
respectively.

We can use the example of two-point crossover, probably the most popular of
different crossover operators, to demonstrate how the technique performs. Let a
crossover probability be P.. The proceeding in two-point crossover occurs when
two parent chromosomes are swapped after two randomly selected points between
[1, N—1], creating two children. If the parent chromosomes are selected by

parentl=1 0 O |1 1 O 1|1 0 O

parent2=0 1 1 | 0 0 O 1 1 0
two offspring will be produced as

offspringl=1 0 0 0 1 0 1 0 O

offspring2=0 1 1 1 0 0 1 1 0

On the other hand, uniform crossover randomly selects n» number of points, which is
less than the chromosome length and then each selected point is swapped over. The
greatest advantage of uniform crossover is the capability to combine any schemata
that do not disagree at any single position, i.e., uniform crossover allows any pattern
to be swapped. Note that a schema is a template that identifies a subset of chromo-
somes with similarities at certain genes. This characteristic can solve the problems
of n-point crossovers, including one-point or two-point crossovers that cannot gener-
ate specific schemata.

2.2.4.3 Mutation

Mutation is a random process by which one genotype is replaced by another to gener-
ate a new chromosome. Each genotype has the probability of changing mutation P,,
from O to 1 or vice versa in a binary string. If real-number strings are considered, the
selected valued can be replaced by a random value between 0 and 9. These mutations
can be considered the errors of duplicating DNA. Sometimes these errors can result
in good features and better offspring.

In conclusion, GAs differ from traditional optimal techniques in several ways
(Buckles and Petry, 1992). First, GAs optimize the trade-off between exploring new
points in the search space and exploiting the information discovered thus far. GAs
also have the property of implicit parallelism in that their effect is equivalent to an
extensive search of hyperplanes of the given space without directly searching all
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hyperplane values. Furthermore, GAs operate on several solutions simultaneously,
gathering information from current search points to direct subsequent searches and
try to avoid the problems of local optimization.

2.3 MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS (MOEAys)

Several disadvantages of classical MOP algorithms have been proposed (Deb, 2001;
Coello et al., 2002) to support the requirements of genetic algorithms:

1. The convergence to a classical optimal solution depends on the chosen ini-
tial solution.

2. Most classical algorithms tend to get stuck to suboptimal solutions.

3. An algorithm efficient in solving one optimization problem may not be effi-
cient in solving a different optimization problem.

4. Classical algorithms usually can deal only with MOP problems with convex sets.

5. Classical algorithms are not efficient in handling problems involving dis-
crete search spaces.

The concept of genetic algorithms was first used by Schaffer (1984, 1985) and
Schaffer and Grefenstette (1985) to solve MOP problems in the mid-1980s. They
developed the vector evaluation genetic algorithm (VEGA) to solve two-objective
optimization problems of machine learning. Later, more and more GA-based mod-
els were proposed, for example, the vector-optimized evolution strategy (VOES;
Kursawe, 1990), weight-based genetic algorithms (WBGAs; Hajela and Lin, 1993),
random weighted genetic algorithms (RWGAs; Murata and Ishibuchi, 1995), multi-
objective genetic algorithms (MOGAs; Fonseca and Fleming, 1993), non-dominated
sorting genetic algorithms (NSGAs; Deb, 1994), and niched Pareto genetic algo-
rithms (NPGAs; Horn et al., 1994).

Here we introduce the concept of elitist non-dominated sorting genetic algorithms
(NSGA-II; Deb et al., 2000a and b) for MOP used. The NSGA-II uses an explicit
diversity-preserving mechanism to derive the Pareto solutions of MOP problems.
The offspring and parent populations are combined to sort a set of non-dominated
items instead of using only offspring populations. Although the procedure may
require more time to deal with the problem, it allows a global non-domination check
among the offspring and parent solutions.

The NSGA-II utilizes crowded tournament selection, recombination, and muta-
tion operators to create an offspring population, just like other genetic-based algo-
rithms. The crowded tournament selection operator assumes every solution i has two
attributes, i.e., a non-domination rank (r;) and local crowding distance (d,), in the
population. Next, we may say that solution i wins a tournament with another solution
Jif r;<r;or r;=r;and d, > d,. This procedure ensures that the chosen solution comes
from a selection of better non-dominated solutions. In addition, the calculation of
the crowding distance (d,) can be derived from the estimate of the perimeter of the
cuboid formed by using the nearest neighbors as the vertices.
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The NSGA-II has a number of pros and cons. First, compared with some
genetic-based algorithms such as MOGA, NSGA, and NPGA, no extra nich-
ing parameter is needed. Second, the NSGA-II exhibits a convergence proof
to the Pareto optimal solutions. On the other hand, the procedure of the non-
dominated sorting requires more time than other methods. From the viewpoint
of the computational complexity, the non-dominated sorting of a population
requires at most O(MN?), if M denotes the number of objectives and N is the
size of the population.

2.3.1 NuMEeRricAL EXAMPLE

In this section, we demonstrate how MOEA can be used for dealing with MOP prob-
lems. Let us consider the following two-objective programming problem:

max 3xi—5x,

max  2x; +3x3
st x1+x, <50,

X2,X2 >0.

We can depict the decision space (left side) and outcome space (right side) of the
above problem as shown in Figure 2.2. The outcome space indicates the trade-offs
between the objectives and forms the Pareto solutions. Therefore, the optimal solu-
tions of the problem lie on the specific point of the frontier line, according to the
preference of the decision maker.

If the goal of the decision maker is to obtain the Pareto solutions of a problem,
MOEA is a good choice. In this section, we employ the NSGA-II to derive the fron-
tier set of the problem as follows.

Let the variable coding be real-number strings; population size equals 200, num-
ber of generation is 2000, crossover rate is 0.8, and mutation rate is 0.1. We can then
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FIGURE 2.2 Decision space and corresponding outcome space.
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FIGURE 2.3 Optimal decision variable solutions and corresponding objective values by
NSGA-IL

run the NSGA-II to derive the optimal solutions of decision variables and the cor-
responding values of the objective functions, as shown in Figure 2.3.

Comparing Figures 2.1 and 2.2, we can see that the NSGA-II simply derives the
Pareto solutions of the objective fucntions and shows the usefulness of MOEA for
dealing with MOP problems, especially large-scale MOP problems.






3 Goal Programming

The purpose of multiple objective decision making (MODM) is to achieve the effi-
cient frontier of multiple objective programming (MOP). Traditionally, the weight-
ing method and e-constraint method have been used widely. The weighting method
transforms a set of objectives into a single objective by multiplying each objective
with a user-supplied weight. On the other hand, the e-constraint method keeps only
one of the objectives and restricts the rest of the objectives within some user-specified
values to derive the efficient frontier. Cohon (1978) developed an algorithm to gen-
erate the efficient set systematically. However, goal programming (GP) is the best
known method for dealing with MODM problems.

GP is an analytical approach devised to address decision making problems in
which targets have been assigned to all the attributes and the decision maker is inter-
ested in minimizing the non-achievements of the corresponding goals (Romero,
2001). Generally, goal programming deals with the following MOP problems:

max fi(x), i=1,...,n
s.t. gx)<0,
x>0,

where f;(x) denotes the ith objective function.

3.1 GOAL SETTING

Three kinds of goal settings are utilized in multi-objective optimization problems:
(1) minimize all the objective functions; (2) maximize all the objective functions;
and (3) minimize some and maximize others. However, we can use duality principle
(Reklaitis et al., 1983; Rao, 1984) to convert a minimization problem into a maximiza-
tion problem by multiplying the objective function by —1. Hence, we can simplify mixed
types of objectives and include all types of objectives into maximization problems.

Unlike single-objective problems, multi-objective programming problems do not
usually allow all objectives to be optimized due to trade-offs or conflicts among
objectives. Hence, there exists a set of non-dominated solutions (the efficient set)
such that all points belonging to non-dominated solutions are regarded as indifferent.
If we want to determine an optimal solution from the set of non-dominated solutions,
we must measure which point is nearest to the ideal. Assume a two-objective pro-
gramming maximization problem:

max  fi(x), f2(x)
s.t. g(x)<0 (orwrite Ax <b), (3.1
x20.

Figure 3.1 illustrates these concepts in detail.

25
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The ideal point is composed of individual optimal objective values. In this exam-
ple, ¥y =(f, f»). However, the ideal point vector usually corresponds to a non-existent
solution because of the trade-off between objectives. Therefore, the problem of opti-
mization in multi-objective programming is transformed into finding a feasible solu-
tion (location on the non-dominated set) that is nearest to the ideal points.

Three kinds of targets or goal settings (the one-lower upper goal, one-sided
upper goal, and two-sided goal) can be consider in goal programming. A one-sided
lower goal sets a lower limit that decision makers do not want to fall under, that is,
fi(x)+d; =T, where d; is the underachievement derivational variable of the ith
objective and T; denotes the target of the ith objective. A one-sided upper goal sets
an upper limit that decision makers do not want to exceed, that is, fi(x)—d; =T;,
where, where d; is the overachievement derivational variable of the ith objective. A
two-sided goal sets an exact target that decision makers do not want to miss on either
side, that is, f;(x)+d; —df =T,.

Initially conceived as an application of single objective linear programming by
Charnes and Cooper (1955, 1961), goal programming gained popularity in the 1960s
and 1970s based on the works of Ljiri (1965), Lee (1972), and Ignizio (1976). A key
element of a GP model is the achievement function that represents a mathematical
expression of the unwanted deviation variables. Each type of achievement function
leads to a different GP variant.

Tamiz and others (1995) show that around 65% of GP applications reported used
lexicographic achievement functions, 21% utilized weighted achievement functions,
and the remaining applications involved other types of achievement functions such
as a min—max structure in which maximum deviation is minimized.

The next section introduces three kinds of goal programming: weighted goal pro-
gramming, lexicographic goal programming, and min—max goal programming, to
deal with multi-objective programming problems.

3.2 WEIGHTED GOAL PROGRAMMING

Goal programming was proposed by Charnes and Cooper (1961) to deal with linear
multi-objective programming problems. The idea of goal programming is to seek a solu-
tion that is nearest to the ideal point by considering the relative weights of importance
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of objectives. That is why this method is called weighted goal programming. Thus, a
decision maker should first assign the targets or goals to each objective and then mini-
mize the “distance” from the targets to the objectives. Usually we can use L,-norm to
define the distance between the targets and the objectives to find the solution.

To achieve various kinds of goal programming, the normalization issue should be
considered first. It is obvious that different goals may have different scales or measures
and the differences will cause the problem of incommensurability. Therefore, these
measures should be normalized as a common unit so that deviational variables can be
summed up directly. Several normalization methods can be used (Tamiz et al., 1998):

Percentage normalization — Each target value is divided by 100 to ensure
that all deviations are measured on a percentage scale. Clearly, this method
1s not suitable if the target value is equal to zero.

Euclidean normalization — The normalization constant uses the Euclidean
norm i.e., L, , as the denominator of objectives.

Summation normalization — This method uses the absolute value of the
objective coefficients, i.e., L, to normalize objectives.

Zero—one normalization — The normalization constant in this method is equal
to the distance of the target value minus the worst value of an objective.

Another issue we should consider in goal programming is the selection of prefer-
ential weights to express the decision maker’s preferences with respect to each goal.
First, we can directly integrate the analytic hierarchy and network processes (AHP
and ANP) into goal programming to obtain the preferential weights of the objectives
(Gass, 1986 and 1987). Second, we can use the interactive MCDM method to elicit
the weight data for the objectives (Lara and Romero, 1992). In this chapter, we focus
on the issue of goal programming. Readers interested in AHP and ANP may refer
to the authors” 2011 book titled Multiple Attribute Decision Making: Methods and
Applications.

A generalization of weighted goal programming can be described as:

1/p

—(wd +w'd g
min e , >1
Y[

i=1

st.  g(x)<0 (or write Ax < b)

fix)+di —di =1, i=1,..n,

L (3.2)
dt_dl =y,
dr, di 20,
x>0,

where w; and w; denote the weight factors for positive and negative deviations of
the ith objective, respectively, d; and d; denote the positive deviation representing
overachievement of the ith goal and negative deviation representing underachieve-
ment of the ith goal, respectively, k; = b;/100 (or k; = x; — x;, x; is positive ideal point
or set aspiration level, x; is negative ideal point or set the worst value) denotes the
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normalization constant, and ¢, denotes the target value of the ith goal set by the deci-
sion maker.

Example 3.1 Consider the following two-objective programming problem:
max  fi(x)=3x;+ 5x,
max  f(x)=6x;+ 4x,
st xi+ X, £30,
2x:+3x, £60

X1,X2 >0.

If we setp =2 and fi(x) to be two times more important than f,(x), we can formu-
late the following weighted goal programming:

w ()]
15 18

st. 3x;+5x,+dy —df =150,
6x,+4x, +d; —d; =180,
X+ x, £30,
2x;1+ 3x, £60
di -di =0,d; -d; =0,
dr,dy,xi,x, 2 0.

Solving the above problem, we can obtain di =58.38, d; =16.22, x;=25.14 and
X, =3.24 . Then, we can calculate fi(x)=91.62 and f,(x)=163.78, respectively.

3.3 LEXICOGRAPHY GOAL PROGRAMMING

The second model, known as the lexicography achievement model, consists of an
ordered vector whose dimension coincides with the Q number of priority levels estab-
lished in the model. Each component in this vector represents the unwanted deviation
variables of the goals placed in the corresponding priority level (Ignizio, 1976).

? 1/p
lexmin ZpJIZ(Wd I:Wd )] , p21

s.t. g(x) <0 (or writing Ax < b)
fix)+d; —df =t;, i=1,...,n, (3.3)
d; -di =0,
d;,df 20,
x 20,

p1>-p2>-...>'p17 lSl’l,



Goal Programming 29

where > denotes the priority operator. If p; > pj, the ith objective should be achieved
before the jth objective is considered. Lexicographic achievement functions imply a
non-compensatory structure of preferences. In other words, there are no finite trade-
offs among goals placed in different priority levels (Romero, 1991).

Example 3.2 Consider the following two-objective programming problem:

First priority: max f(x)=3x; + 5x;
HL(x)=7x1+ 3x,
Second priority: max  f(x) =6x; + 4x,
f4(x)=—=3x;+ 5x,
st x;+x2, <30,
2x;+ 3x, £60,
X1, X, 20

where all objectives have equal importance and fi(x) and f,(x) are prior to f(x)
and f,(x). We can then formulate the first age of lexicography goal programming:

di d;

—+

15 13.5

st. 3x+5x;+di —di =150,
7X1+3X2+d2_—d3—=135,
X1+ X, £ 30,

2X1+3X2 S60,

d]_,dr,X],Xz =>0.

min

We can solve the above problem to obtain the solution as di =22.5 and d; =0.
The explanation is that fi(x) is short by 22.5 to achieve its goal and f(x) can
achieve its goal. The next stage is to consider the second priority level and formu-
late the second stage of programming:

min  z,=d; +d;

st. 3x,+5x,+22.5-d; =150,
7%+ 3x; —d3 =135,
6x1+4x, +d; —di =130,
=3x,+5x, +d; —di =100,
X1+ X, £ 30,
2x1+ 3x, £ 60,

d1_,d1+,X‘],X2 > 0.
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Solving the above programming, we obtain x,=9.2, x, =20, d; =0, and
d;y =27.5. From the results, we can see that the goals of f(x) and f(x)
can be achieved but fi(x) and f,(x) are short of the goals by 22.5 and 27.5,
respectively.

3.4 MIN-MAX (TCHEBYCHEFF) GOAL PROGRAMMING

The third model of goal programming, i.e., the min—max goal programming model,
is similar to the weighted goal method, but instead of minimizing the weighted sum
of the deviations from the targets, the maximum deviation of any goal from the tar-
get is minimized. The goal programming of a min—max model can be described as
the following mathematical system (Flavell, 1976):

min d
= + g+
S.t. M+Mﬁd,
ki ki
ﬁ(x)'i'dl__d:—:tl, i=1,...,l’l, (3.4)
g(x) <0 (or writing Ax < b),
d; ,di =0,
x=0.

This model implies the optimization of a utility function where the maximum devia-
tion is minimized. It provides the most balanced solution among the achievements of
different goals. Thus, it is the solution of maximum equity among the achievements
of the different goals.

Example 3.3 Consider the following two-objective programming problem:

max f(x)=3x; + 5%,

max f(x)=6x;+ 4x,

s.t. X1+ x, <30,
2x1+ 3x, <60,

X1, X2 =0.
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If fi(x) is equally important as f,(x), we can formulate the following min—-max goal
programming:

min d

s.t. iSd,
15
b g
18

3x,+ 5x, + di —df =150,
6x,+4x, +d; —d; =180,
X1+ x5, £ 30,
2x;+ 3x, £60,

di-dif =0,d;-d; =0,
dy,dy,x;,x; 20.

Solving the above problem, we can obtain di =53.57, d; =64.29, x,=10.71, and
X, =12.86. We can then calculate fi(x)=96.43 and f,(x)=115.71, respectively.

3.5 FUZZY GOAL PROGRAMMING

Sometimes decision makers have difficulty determining precise targets and goals
of objectives. Hence, the linguistically vague statement is more suitable for dealing
with this situation and fuzzy goal programming may be considered. A fuzzy goal
programming problem starts with finding x:

1/p
widi +wid
E E >
lexmin P[ ( L J] , p=21

st. fi(x)=T, i=1,...,n,
g(x)<0 (or writing Ax < b) (3.5)

x>0,

where T, denotes the ith linguistic goal. To solve the above problem, we should first
define the membership functions of these linguistic statements. For the sake of sim-
plicity, let all membership functions be symmetrically triangular functions. Then the
membership functions of objectives can be represented as:

find x
st. ilx)=T, i=1,..,n, (3.6)

g(x)<0 (or writing Ax < b),
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Lfi(x)= (i —s))/si, if ti—s: < fi(x) <1y,
W (x) = (i +s)— fi())/si, if < fi(x)<t+s;, 37)
0, otherwise,

where s; denotes the spread or the maximum acceptable deviations of the ith fuzzy
target or goal. We next formulate the fuzzy goal programming based on the max—min
operation of fuzzy functions as follows:

max o
skt [fi(x)=(t;—s)]/s; 2o, forsomei,
ti—s; < filx)<t;,
[(t; +s:)— fi(x)]/s; 2, forotheri, (3.8)
< fi(x)St+s;,

o e[0,1], x20.

Let fi(x)/s; =t;/s; —d; . Then, the first two constraints can be expressed as:

oa+d <1, (3.9
and
S e b (3.10)
S; §;

Similarly, let fi(x)/s; =t;/s; +d; . We can rewrite the next two constraints as:

o+d <1, (3.11)
and
fi(x) +d; _h (3.12)
S §;

Then, we can transform fuzzy goal programming into the following linear goal pro-
gramming model:

max o

st fi(x)+sdi —sdi =t;,
o+d —df <1, (3.13)
di,df 20, di -df =0,
aecl0,1], x=20, i=1,...,n.
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Example 3.4 Consider the following fuzzy two-objective goal programming
problem. To find x:

st. f(x)=3x +5x, =100
f,(x)=6x;+4x, =110,
X1+ X, £30,
2x;+ 3x, £60,

X1,X2 20,

4

where goal 1 is about 150 with a maximum allowable deviation of 10, goal 2 is
about 180 with a maximum allowable deviation of 8, constraint 1 is about 30 with
a maximum allowable deviation of 3, and constraint 2 is about 60 with a maxi-
mum allowable deviation of 5.

max o
s.t. 3x;+5x,+10d7 —10d{ =100,
6x1+ 4x, +8d; —8d; =110,
X1+ x5, <30,
2x;+ 3x, £60,
o+dy +df £1,
oa+d; +d; <1,
dr-df =20, di-df=0, i=12,

X1, X2 > 0.

Solving the above problem, we can obtain the overall satisfactory degree of o =
0.7222 and x;,=8.33, x, =14.44, di =0.28, and d; =0.28. Finally, we can cal-
culate fi(x)=97.22 and fi(x) =107.77, respectively.

In addition, fuzzy preemptive goal programming can be formulated in a simi-
lar way. For simplicity, we assume only two-priority levels and the f(x) goal has
higher priority than the f;(x) goal. We then solve the first sub-problem using the
following mathematical programming:

max o
s.t. f;'(X)'{' 5,~d,~“—5,-d,-+ =,
- +
OC+d, _d,‘ S1, (3"]4)
d7,d* >0, di-d=0,

aec[0,1, x=20,i=1...,n
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Solving the above problem, we can obtain the values of derivation variables, i.e.,
d7 and df. Next, we can consider the second priority level under the condition
that achievement of the solution from the first sub-problem is satisfied. Here we
assume d; and d; are both 0, i.e. the f;(x) goal is fully achieved. Then, the second
priority level of f;(x) can be formulated as:

max

s.t.

o
fj(X)'I‘dej_ —5/d7 =tj,

f;‘(X):tj,

R (3.15)
o+d; —dj <1,

d;,df 20, di-df =0,

ael01, x=20,i=1..nj=1,....m

When the priority levels are extended to r levels, we can repeat the above proce-
dures until all priority levels are exhausted.

Example 3.5 Consider the following fuzzy two-objective goal programming
problem. We start by finding x:

s.t.

f(x) = 3x; + 5x, = 100, (second priority level)

f,(x) = 6x;+ 4x, =110, (first priority level)

X1+ Xy S?)O,

2X1 + 3X2 < 60,

X1, X2 20,

where f,(x) is more important than f(x).

First-priority level: max o

st. 6x;+4x,+8d; —8d; =110,
X1+ x, <30,

2x;+ 3x, <60,

oa+d; +d; <1,

d;-d; 20, d;-d;=0,

X1, X2 >0.
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At the first priority level, we obtain the first priority satisfaction o= 1, i.e., d; =0
and d; =0. We can then deal with the second priority level:

Second-priority level: max o
st. 6x+4x,=110,
3x; + 5%, + 10dy = 10d{ =100,
X1+ X, £ 30,
2x;+ 3x, £60,
o+d +dif <1,
di-df 20, di-di =0,
X1, X2 20.
Solving the above problem, we obtain the overall satisfaction oo = 0.7, di =0.3

x1=9, and x, =14. Hence, based on the above information, we can calculate
fitx)=97 and fi(x) =110, respectively.






4 Compromise Solution
and TOPSIS

In this chapter, the compromise solutions and TOPSIS (technique for order prefer-
ence by similarity to ideal solution) for MODM are introduced. Both methods involve
the concept of the Lp-norm and find the optimal solutions based on reference points.

4.1 COMPROMISE SOLUTION

In a multiple objective programming (MOP) problem, an ideal (or utopian) point is
usually not attainable if trade-offs between objectives exist. Hence, Yu (1973) pro-
posed the compromise solutions to determine the optimal solution closest to the ideal
point among Pareto solutions based on the L ,-norm distance. Figure 4.1 depicts the
concept. The L -norm distance between a point and an ideal point can be defined as:

f=1l,s p=lieo @.1)

In a generalized optimal problem, the distance measured by the L ,-norm between
a point and the ideal point can be presented as shown in Figure 4.2. The lower left
square belongs to the maximized problems (maximize all the objective functions) and
is the case covered in this chapter. From Figure 4.2, it can be seen that the shape of
p = 11isasquare diamond, p =2 is a circle, and p = « is a square. The different shapes
of the L,-norm may result in a different result due to the optimal solution. Other kinds
of the L -norm are less discussed because they have no concrete meanings in practice.

The procedures of the compromise solutions can be demonstrated by considering
a multiple objective programming (MOP) problem as follows:

d,=|

max  z(x) =[z;(x),22(x),...,2,(x)] 4.2)
st.  g(x)<b (or writing Ax < b),
x=>0.

The first step of the compromise solution is to determine the ideal point of each
objective. This can be done by optimizing each objective as follows:

max z;(x) “3)
st. (x)<b
x2>0.

Then we can obtain the ideal point as 2" =(z1,22,...,2). Next, we want to determine
which point located on the Pareto solutions is closest to the ideal point as the optimal

37
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FIGURE 4.1 Concept of compromise solutions.
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solution. We can use the concept of the L -norm to measure the distance between objec-
tive values and the ideal point and formulate a compromise solution method (Yu, 1973):

I/p

min d, = wa’[zf(x)—zi(x)]p . p=1,...00 (4.4)
i=1

s.t. g(x)<b (orwriting Ax <b
x=0.

where w; denotes the importance of the ith objective. Besides using the traditional
L,-norm, Duckstein (1984) proposed the normalized L,-norm and formulated the
compromise solutions as:

l/p

min d, = Zw;[“")‘zm] . p=lie (4.5)

< g (-2 ()
s.t.  g(x)<b (or writing Ax < b)
x=0.

where z;(x) and z; (x) denote the maximal value (or aspiration level, or positive
ideal point) and the minimum value (or the worst value, or negative ideal point) of
the ith goal respectively.

_/ p:oo
|« p=2

p=1
f —

»
|

A

v

FIGURE 4.2 Concept of L,-norm distance.
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Next, we depict a two-objective case, as shown in Figure 4.3, to illustrate the

concepts of the PIS and the NIS. If ‘max’ is better and/or ‘min’ is better in each
objective, we can first define the PIS and the NIS, respectively, as:

Vector f* = PIS

= {max f(x), Vi, and/or min f(x), Vj; or setting the aspiration level of each objective}

and

Vector f~ = NIS

= {min f; (x), V;, and/or max f(x), Vj; or setting the worst value of each objective}

Example 4.1 Consider a two-objective programming problem as follows:

max —3x;+5x,

max 7x;—4x,

s.t. 2x1+ 3x, <30,
5x;+ 3x, £45,
2X1+ X, 26,

X1, X2 > 0.

The first step of the compromise solution is to determine an ideal point. This can
be done by optimizing each objective separately. Hence, the ideal point of the
above problem can be calculated as z* =(50,63) and z~ =(-27,-40). Then, if
we set p =2, we can formulate the following compromise solution programming:

172
min  d,-, =0.5% {[ 50 ;(;—_3:1124-7?&)]2 +[63€:3(31_;§)X2)T}
st 2x1+3x, £30,

5x;+3x, £ 45,

2x1+ %, 26,

X1, X2 > 0.

Finally, we can obtain x;=5.25, x,=6.25, and d,_, =0.6696. The objective

values are fi(x)=15.48 and fy(x)=11.78, respectively. On the other hand, if we

set p = «, we can also formulate the min—max compromise solution programming:
min v

st 50— (—3X1 + 5X2) < v,
50—(=27)

[63—(7x1—4x2):|<v
63—-(-=40) |’

2X1 + 3X2 < 30,
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5X1 + 3X2 < 45,
2X] + Xy > 6,

X1, X2 > 0.

We obtain x;=5.43, X2 =5.96 and v = 0.4741. The corresponding objective val-
ues are fi(x)=13.49 and f(x)=14.17.

Comparing the results of the compromise solutions with p =2 and p = «, we
can see that the optimal solution is different due to the different definition of
distance. Usually, p =1, p =2 and p = « are widely used in dealing with MOP
problems. Other distances are less used because they lack practical meanings.

4.2 TOPSIS FOR MODM

In addition to compromise solutions, the technique for order preference by similar-
ity to ideal solution (TOPSIS; Huang and Yoon, 1981) is another multiple objective
programming (MOP) method using the concept of L,-norm. TOPSIS considers both the
positive ideal solution (PIS) and the negative ideal solution (NIS) to determine the
optimal solution of a MODM problem that should be the closest to the PIS and
the farthest from the NIS.

Next, we depict a two-objective case, as shown in Figure 4.3, to illustrate the
concepts of the PIS and the NIS. We first define the PIS and the NIS, respectively, as:

f7 =PIS ={max /f;(x),V}j, and/or min f;(x),Vi}
and

f~ =NIS ={min f;(x),V}, and/ormax f;(x), Vi}

where i € Jandj e I.1is a set of benefit attribute, and J is a set of cost attribute. A
optimal solution should belong to the Pareto solutions and be closest of NIS and far-
thest to NIS. Surely, we can use L -norm to measure the distance between objective
values, the PIS and the NIS as follows:

1/p
f=fw] -
dy”(x)= Rl R e 4.6
) {Zw[ﬁ—ﬁ]zw[ﬁ—ﬁ” o

iel jeJ

f2 4 E E *
g f = —
E Flexible |
Solutions Pareto
' Solutions
A I
£ £ £

FIGURE 4.3 Concepts of PIS and NIS.
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and

1/p
rlg e g

iel jeJ
We can then transform the concept of TOPSIS to solve the following two-
objective programming:
max a’;” (x)
min  d?"*(x)
sit. Ax<b, 4.8)

x>0

or the following fractional single-objective programming:

. d[[;is (x)
min nis
d," (x)
st. Ax<b, “4.9)
x20.

Example 4.2 Let us reconsider the problem of Example 4.1 as follows:

max fi(x) = =3x; + 5%,
max hH{x)=7x—4x,
s.t. 2x;+ 3x, £30,
5x;4 3x, £45,
2X1+ X, 26,
X1, X, 2 0.

By solving the above objective separately, we obtain PIS = (50,63) and NIS =
(-27,~40). We then set p = 2 and formulate TOPSIS for the above problem by
calculating the following fractional programming problem:

12
. 2 2

pis 3x1+5xz)) (63—(7x1—4xz) 63—(7x1—4xz))
dp 2(x) = OSX[( 77 + 103 103

72
. 2 2
nis _ (=3x1+5x2)+27 (7x1—4x2)+40
p:z(x)—O.SX[( = ) +( 103 ) ]

min

s.t. 2X1 + 3X2 < 30,
5X1 + 3X2 < 45,
2x1+ X2 26,

X1, X2 > 0.
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Finally, we can obtain the optimal solution of the above problem as x; =5.00 and
X, = 6.67. Then, we can derive fi(x)=18.35 and f,(x)=8.32.

4.3 FUZZY COMPROMISE SOLUTION AND TOPSIS

In this section, the compromise solutions and TOPSIS are extended to fuzzy envi-
ronments. All parameters of the models are considered fuzzy numbers and we deal
with the following situation:

max Z(x)= [Zl (x)722(x)”2n(x)]
s.t. g(x)< b (or writing Ax < I;), (4.10)
x=>0.

To solve the above fuzzy MOP, we first introduce the concept of possibilistic distri-
bution of fuzzy numbers. Let xg be a solution of Equation (4.10), where a € [0,1]
denotes the level of possibility and B € [0,1] denotes the grade of compromise to
which the solution satisfies all of the fuzzy goals. Next, let m, be the a-cut of a
triangular fuzzy number m, defined as

my = {m € supp(m) |l W;(m) = o}, 4.11)

where supp(ii) is the support of 7. If we define m/, and m¢ as the lower and upper
bounds of the a-cut of m, respectively, we can obtain

mé, < g <. 4.12)

For a specific value of a-cut, we can replace fuzzy objectives by the upper bound and
the lower bound such that

Zi(x)ﬁ=2(5,-j aXj, i=1,...,n. @.13)
j=1
If objectives are to be minimized, we can rewrite Equation (4.13) as
L= Y @hxye i=len (4.14)
j=1

In addition, we can use the above technique to deal with fuzzy constraints. Therefore,
for constraints g(x)<b or g(x)=b, we can formulate

2(%)&@ < (b, k=1,..r 4.15)
Jj=1
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or

Y @i <o, k=l (4.16)
j=1

Then, the original fuzzy MOP problems can be rewritten as the following crisp
MOP problems:

max  L(0h= Y @x,  i=lon 4.17)
j=1

st Y @ex; SBOL, k=L,
j=1

x=>0.

Solving the above objective function independently, we can obtain the positive ideal
point z; and negative ideal point z;, respectively. We then formulate the following
linear programming to solve the grade of compromise of the solution:

min B

(27 = X7(C)ax;]
E-2)

<B, @.18)

2(55)3%3(5/()5;, k=1,...,r,
j=1
x20.

For the above fuzzy compromise solution problems in which the value of o is
decreased gradually, the value of B increases steadily. Therefore, the best solution is
obtained at o = 3 while objectives are equally important.

Example 4.3 Let us reconsider the following fuzzy two-objective mathematical
problem:

max ﬂ(x) =-3x;+ 5)(2

max fz(x) = 7x1 —4x,

s.t. 2%+ §x2 < §6,
§x1 +3x, < éﬁ,
§X1 + Xy 2 é,

X1, X, 2 0.
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Note that 5=(4,5,6), 7=(6,7,8), 3=(2,3,4), 30 =(25,30,35), 45=(40,45,50),
2=(1,2,3) and 6=(5,6,7) . Here, we assume two objectives are equally important.
Then, we can transform the above fuzzy numbers into the possibilistic form and
formulate the following deterministic linear programming:

max ﬁ(x) =-3x;+(6—0)x,
max  h(x)=(8-o)x —4x
s.t. 2x;+ 2+ a)x, £(35-5a),

(4 + OL)X1 + 3X2 < (50 - 5&),
(3 - (X)X1 + Xy > (8+ O(),
(X],XZ >0.

Next, we should set a specific a-cut and derive the positive and negative ideal
points of the two objectives by optimizing each objective independently. Then,
we can obtain the degree of the compromise coefficient B. For example, if we set
o-cut = 0.5, we can obtain the positive ideal points as (71.5, 79.17) and the nega-
tive ideal points as (-31.68, —52). We then derive the compromise coefficient by
solving max B:

max 8
. [z + 3x1*+ (67— o)X, ] <,
(zi —z1)
[z, — (8= 0)x; — 4x;] <p

(z-73)
2x1+ (2+ o)x, £(35-50),
(44 a)x;+ 3x, £(50-50),
B=o)x;+x, 28+ ),

X1, X2 >0

and derive B = 0.4855. Table 4.1 shows the different a-cuts and corresponding
compromise coefficients. The table indicates the optimal solution at oo = § =
0.4860 with x, = 5.85 and x, = 7.11. The corresponding goals are fi(x)=21.67
and f>(x)=15.49.

Conversely, we can derive fuzzy TOPSIS for fuzzy MOP using the similar method
above. First, we derive the PIS and the NIS of each objective, respectively, according
to Equation (4.17). Then we can choose the following mathematical programming to
obtain the result of fuzzy TOPSIS:

min 3
. 4.1
s.t.dh(x) 2B, (4.19)
d;"(x)<1-B
2(&U)lotxjg(l;k)z’ k=1’-~-,rs
j=1
x20.
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TABLE 4.1
Optimal Solutions for Various a-Cuts

a—cut fi fi f; fy i} X, X, f,(x) f,(x)
1.0 50.00 -27.00 63.00 -40.00 0.4741 5.43 5.96 13.49 14.17
0.9 53.64 -27.86 65.93 -42.07 0.4759 5.52 6.16 14.85 14.53
0.8 57.57 -28.75 69.00 —44.29 0.4779 5.60 6.37 16.32 14.86
0.7 61.83 -29.68 72.22 —46.67 0.4811 5.69 6.58 17.80 15.23
0.6 66.46 -30.65 75.61 -49.23 0.4828 5.76 6.83 19.58 15.34
0.5 71.50 -31.68 79.17 -52.00 0.4855 5.84 7.08 21.40 15.48
0.4860* 72.23 -31.81 79.67 -52.40 0.4860* 5.85 7.11 21.67 15.49
0.4 77.00 -32.73 82.91 -55.00 0.4886 5.91 7.34 23.38 15.52
0.3 83.02 -33.84 86.85 -58.26 0.4920 5.96 7.62 25.53 15.46
0.2 86.61 -35.00 91.00 -61.82 0.4895 6.08 7.82 27.08 16.19
0.1 89.29 -36.22 95.38 -65.71 0.4849 6.23 7.99 28.43 17.27
0 92.00 -37.50 100.00  -66.67 0.4850 6.44 8.08 29.19 19.16

Note: 0.4860* denotes the optimal solution at o = 3 = 0.4860 with x, = 5.85 and x, = 7.11.

The optimal solution of fuzzy TOPSIS at o = B. To illustrate fuzzy TOPSIS, we can
reformulate Example 4.3 to solve the following mathematical programming:

min 3
o [z + 3x1*— (6_— oxa] 5.
(z1 —21)
[~ (-0 +4n] g
(z2 - 22) o
[-3x + (6 —0)x; —z1 ] <1-B
(z1 —z7) S
[(8—0)x; —4x; — 25 ] <1-B

(z2-23)
2x1+(2+0)x;, £(35-5m),
(44 a)x; +3x, £(50-50),
B-)x; +x;, 28+ ),
X1,x, 20
If we set oo = 0.5, we can derive the PIS = (71.50, 79.17) and the NIS = (-31.68, -52).

Then the compromise coefficient B = 0.4855. In addition, we can obtain x; =5.84
and x, =7.08. The corresponding goals are f;(x)=21.40 and f,(x)=15.48.






5 De Novo Programming
and Changeable
Parameters

When dealing with MODM problems, we usually confront a situation in which it is
almost impossible to optimize all criteria in a given system. This property requires
so-called trade-offs—we cannot increase the level of satisfaction for a criterion with-
out decreasing the level for another criterion. Zeleny (1981, 1986) proposed De Novo
programming to re-design or re-shape given systems to achieve aspirations or desired
levels. He suggested that trade-offs are properties of an inadequately designed sys-
tem and thus can be eliminated by re-designing a better, preferably optimal, system.

5.1 DE NOVO PROGRAMMING

The usefulness of De Novo programming can be illustrated by the following MODM
problem (Zeleny, 1982). Assume a factory makes two products (suits and dresses) in
quantities x and y. Each of them requires five resources (nylon, velvet, silver thread,
silk, and golden thread) according to technologically determined requirements. The
unit prices of these resources are shown in Table 5.1.

Two objectives, namely profit (f,) and quality (f,), are considered by the company.
We can formulate the following two-objective mathematical programming:

max f; =400x; +300x,
max f, =6x; +8x;
st 4x, £20,
2x,+6x, <24,
12x; + 4x, <60,
3x, £0.5,
dx, +4x, £26,
X1,%, 2 0.
where f; and f, denote the profit and quality objectives, respectively. Let the two

objectives be equally important. Then, if we employ the compromise solutions
and set p = 2, we can obtain the optimal solution as x; =3.9837, x, =2.5163,

47
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TABLE 5.1
Resource Allocation in Zeleny’s Example

Technological Coefficients

Unit Price  Resource x=1 y=1 No. of Units
30 Nylon 4 0 20
40 Velvet 2 6 24
9.5 Silver thread 12 4 60
20 Silk 0 3 10.5
10 Golden thread 4 4 26

f1=2348.37, and f, = 44.03. However, the solution may be unsatisfactory for decision
makers because of the inappropriate resource portfolio.

Therefore, Zeleny (1995) proposed the concept of optimal portfolio of resources
based on a design integrating system resources to eliminate trade-offs in a new sys-
tem. The original idea of de novo programming was that productive resources should
not be engaged individually because they are not independent.

For example, when the design budget of a new optimal system exceeds the total
available budget, Zeleny (1995) suggested an optimum path ratio to contract the
new design budget to the size of the available budget along an optimal path. Later,
additional concepts such as fuzzy coefficients (Li and Lee, 1990), optimum-path
ratios (Shi, 1995), and 0-1 programming (Kim et al., 1993), were proposed to
cover more complicated situations. By releasing the constraint of fixed resources,
de novo programming attempts to eliminate or minimize limitations to achieve a
desired solution.

Zeleny (2005) provided eight major optimality concepts according to dual clas-
sification: single versus multiple criteria versus the extent of the given, ranging from
all but to none except, as shown in Table 5.2. The classification clearly distinguishes
de novo programming from traditional optimal methods. Instead of optimizing
objective functions for fixed resources, de novo programming seeks to resolve opti-
mal design problems with changeable resources. Traditionally, resource allocation

TABLE 5.2
Eight Concepts of Optimality
Criteria Given Single Multiple
Criteria and alternatives Traditional optimality Multi-criteria decision making
Criteria only Optimal design Optimal design

(de novo programming) (de novo programming)
Alternatives only Optimal valuation Optimal valuation (limited

(limited equilibrium) equilibrium)

Value complex only Cognitive equilibrium (matching)  Cognitive equilibrium (matching)
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problems (Hackman and Platzman, 1990) can be considered by maximizing the fol-
lowing multi-objective knapsack problem:

max z=0Cx
st. Ax<b,
x20.

.1)

where matrix C and vector x denote given resource parameters, matrix A denotes the
technological coefficient, and b denotes the maximum limited resource portfolio.
Because the components of b are determined in advance, an ideal point usually is not
attainable for the properties of trade-offs among multiple criteria. Therefore, the key
to optimizing objective functions depends on the appropriate resource parameters
and portfolio. In practice, however, it may be hard to achieve aspiration levels due to
inappropriate resource allocation.

In addition, although it is rational to allocate resources using the above equation
in a hierarchical system, when resource allocation problems are subject to market-
based systems, the factor of unit price must be considered and the traditional methods
are no longer suitable. To achieve optimal resource allocation, de novo programming
is proposed. The procedures of de novo programming can be described as follows:

1. Find the aspiration level vector (z“) by solving each objective function of a
system separately as

max zp=c¢x, k=1,...,m

s.it. Vx<B, (5.2)
x20.
where z" =[z{ z5 -+ zn] denotes the aspiration level vector, V = pA

denotes the unit cost vector, p is the resource’s unit price vector, and B
denotes the total budget.

2. Identify the minimum budget B* and its corresponding resource allocation
(x" and b" = Ax") with the aspiration level, such as

min B =Vx"

st. Cx=17", (5-3)
x20.
3. Use the optimum-path ratio (r) to obtain the final solution (z, x and b).
Z2=rxz, (5.4)

xX=rxx (5.5)
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and
b=rxb", (5.6)
where
r=B/B". 5.7)
Example 5.1

We can give a numerical example to demonstrate de novo programming proce-
dures. If a company wants to optimize the objectives of profit (;) and customer sat-
isfaction (f,) with limited resources, we can formulate the following programming:

max f,=12x;+ 25x,
max f, =5x; + 2x;
s.t. 3x+5x, < by,
6x1+ 4x, < b,,
X1, X2 20,
where profit and customer satisfaction are equally important. For the sake of sim-
plicity, the unit price of b, is equal to 0.8, the unit price of b, is 0.7, and the

company budget equals 300. We can reformulate the above mathematical pro-
gramming as:

max f=12x;+ 25x,
max £, =5x;+ 2x,
s.it. 0.8x(3x;+5x,)+ 0.7 x(6x;+ 4x,) £300,

X1, X2 > 0.

To optimize two objectives separately, we can obtain zi' =1102.940 when the
decision variable (x1x2)=(0,44.11765) and z¥ = 227.273 when the decision vari-
able (x; x,) = (45.45455,0), respectively. We can then calculate the minimum bud-
get B” and the corresponding resource allocation (x* and b") as B'= 414.8091,
x" =[34.41530 27.59826)', and b"=[241.2372 316.88484). Next, we can
derive the optimum-path ratio (r) to obtain the final solution of resource allocation:

z=[797.646 164.364],
x =[24.889 19.959f
b=[174.463 229.171f,

where r = 0.7232. Based on the calculated results, we should buy b, =174.463
and b, =229.171 under the total budget B = 300 to produce x;=24.889
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and x,=19.959 for obtaining profit f,=797.646 and customer satisfaction
f,=164.364.

In addition, readers can reconsider the beginning example to solve the de novo
programming problem and obtain the optimal portfolio as x = 4.03 and y = 2.54,
by =16.12, by =23.3, b; =58.52, b, =7.62, and bs = 26.28 under the total budget
B =300 to generate f; = 2375 and f, = 44.5.

5.2 DE NOVO PROGRAMMING BY GENETIC ALGORITHMS

In the previous section, we assumed the two objectives of profit and customer sat-
isfaction were equal. However, the importance levels of two objectives may vary
because of different preferences of decision makers. If we reconsider the steps of
de novo programming, we can see that only one solution of the efficient frontier
is derived. Although Shi (1995) provided six types of optimum ratios to consider
other possibilities of resource allocation, decision makers like to consider efficient
whole solutions and then pick one based on utility. Therefore, we can reconsider
Example 5.1 and depict its decision and objective spaces as shown in Figure 5.1.

We can see that the solution of de novo programming proposed by Zenley is
only one point of the efficient frontier. Although Shi (1995) provided six types of
optimum ratios for decision makers to consider in other situations, they are also the
special points of the efficient frontier. Hence, it is effective to derive all efficient solu-
tions via de novo programming.

Here we adopt genetic algorithms to derive possible solutions of Example 5.1.
The parameters of genetic algorithms are arranged as follows: populations = 100,
generations = 1000, crossover rate = 0.8, mutation rate = 0.01, and crossover type
= uniform. We picked five solutions of the result and calculated the corresponding
resouce portfolio and objective functions, as shown in Table 5.3.

From the results of Table 5.3, we can consider other conditions when determin-
ing the solution of de novo programming For example, if a decision maker hopes
company profit will exceed 900, Ratio 5 should be the optimization. On the other
hand, if he or she wants customer satisfaction to be larger than 180, Ratio 1 should
be the choice. However, Zenley’s method cannot meet additional conditions or many
practical applications.

Genetic algorithms also provide operational convenience when calculating de
novo programming. That is, genetic algorithms do not need to derive the optimal

401X, 200 fz
180

160
140
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40
20 75 .
cf
0

/.

0 200 400 600 800 1000

FIGURE 5.1 Decision space and objective space of Example 5.1.
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TABLE 5.3

Various Ratios of De Novo Programming Derived by Genetic Algorithms
Type X, X, b, b, Budget f, f,
Ratio | 33.021 12023 159.179  246.217 300 696.833  189.150
Ratio2  27.869  17.067  168.944 235484 300 761.114  173.480
Ratio3  23.084  21.701  177.757  225.308 300 819.531  158.822
Ratio 4 16.686 27918  189.648  211.789 300 898.182  139.267
Ratio 5 13.514 30968 195381  204.956 300 936.364  129.506
Zenley 24.889  19.959 174463  229.171 300 797.646  164.364

solution of each objective function separately and set up only related parameters to
obtain all possible solutions simultaneously.

5.3 DE NOVO PROGRAMMING BY COMPROMISE SOLUTION

Genetic algorithms provide an efficient method to derive Pareto solutions of de novo
programming when a decision maker’s preference is uncertain. However, these
Pareto solutions may be cumbersome if the preference of the decision maker is pre-
cise. In this situation, conventional MODM methods can be used to deal with de
novo programming.

In this section, we adopt the compromise solutions proposed by Yu (1973) and
Zeleny (1972,1973,1975), to derive the solution of de novo programming when the
importance of objective functions are known. The concepts of the compromise solu-
tions are described below.

Assume the outcome space of a trade-off of two objectives (f; and f) is presented
as shown in Figure 5.2. Generally, when each objective is characterized as “more is
better,” ¥ should be a unique and desired target or called the ideal point. However,
y" is usually not attainable due to the trade-off among objectives.

Therefore, the problem of calculating the ideal point is transformed into finding a
point that is attainable and closest to the ideal. This problem triggers another issue:

f

FIGURE 5.2 Outcome space of bi-objective programming problem.
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how to define the distance between two vectors. Generally, the distance from vector
y to y* can be defined as the following L,-norm:

I/p
r(y;p) =||y—y*“p=(2yi —yi”] (5.8)

where p 2 1. The r(y;p) provides the measurement of distance (or regret) from y to
y* according to the L,-norm. Then, the compromise solutions can be formulated as:

min r(y; p)=ly—-yll,

(5.9)
st.X={xeXlg(x)<0, k=1,...,m}.

Let us reconsider Example 5.1 by using compromise solutions. First, we should cal-
culate the ideal point y* by optimizing each objective function separately as y* =
(1102.940, 227.273). Second, if the objective profit f; is twice as important as the
objective customer satisfaction f,, the compromise solution of Example 5.1 can be
formulated as:

min r(y;eo)=v

gx 1102.940 - (12, +25x,) _
3 1102.940 -

1 227.273 - (le + 2.X2)
—X <v,
3 227.273

0.8 X (3x; +5x,)+ 0.7 % (6x; +4x,) <300,

S.t.

X1,X2 >0.

p = . By calculating the above mathematical programming, we obtain x; = 24.890,
X, =19.960, and v = 0.277, where v can be viewed as the measurement of regret.
When the value of v increases, the more regret or trade-off among objective func-
tions occurs. Then we derive the corresponding resource portfolio as b, =174.470,
b, =229.180, B =300, f; =797.680, and f, =164.370.

The compromise solutions provide a better way than searching all Pareto solu-
tions to determine the final resource portfolio if the preference of a decision maker
is clear. In addition, it is more efficient and flexible than Zeleny’s or Shi’s methods to
derive an optimal solution. Although the compromise solution method is used here
to solve de novo programming, other MCDM methods such as goal programming
can also be used similarly.
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5.4 EXTENSIONS OF DE NOVO PROGRAMMING

Several extensions of de novo programming have been proposed. Zeleny (1989) con-

sidered one kind of extension of a de novo programming formulation to approximate
the real concerns of free-market producers:

max chj(xj)xj _(Zieh pibi )nl —"'_(Zidr pibi )nr

S.t. 2 aijxj—b,-SO, iel,
J

(Zidpibi )B <B,

(5.10)

where
I=Lvu..ul, I,ul,=0, 0<n,<1, s=1,...,r, B21
and
Cj, Xj=SX;j
2
Cj, xj<ijx]
Cj<x]):
kj kj—1
¢’y X; <xj,
where

cihzcf, h=1,..k;.
In addition, Liand Lee (1993) proposed de novo programming with fuzzy parameters:

max ZzZy=¢x k=1,....m

NG

st. Ax<b, 5.11)

'b< B,

=
5

2
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To solve the above fuzzy mathematical programming, we can consider the concept
of the membership function and reformulate Equation (5.11):

max (%), = Ui [olx, k=1...,m

st pFloluz [olx < pg'ol, (5.12)

ae[0,1],

x20,

where [0] denotes the o.—cut operator.

Example 5.2 To demonstrate de novo programming with fuzzy parameters, we
modify Example 5.1:

max 7;1 = C11X; + C12X2

max 172 = Cy1X1 + C22X5
St X+ anXx, < 51,
X1+ anXy < 52/

X1, X2 ZO,

where ¢;;=(11,11,13), Ci, =(24,24,26), C;1=(4,4,6), C»n=(113), &a1=(2,4,4),
G2 =(4,6,6), & =(5,7,7), d» =(3,5,5), pr=1(0.7,0.9,0.9), p, =(0.6,0.8,0.8), and
B =300. Here, the total budget is a crisp value since company budgets are usually
determined in advance and fixed. Assume ¢; is monotonically decreasing and
a; and p; are monotonically increasing. The membership function of each fuzzy
parameter can be defined, respectively, as:

uz lal=13- 20, uzLlol=26-2a,
uenlal=6-2a, uznlal=3-2a,
us lo] =2+ 20, wiblol =4+ 20,
uz [o] =5+ 20, uz [o]=3+ 20,

unlal=0.7+0.20,  uzlal=0.6+0.20.
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We then transform the above fuzzy two-objective mathematical programming
into the following crisp two-objective mathematical programming:

max f; = Ci1x1 + CaXo

max f, = Cy1Xq + Ca2Xy
st pilanxs + annxa) + palanxs + anx,) < B,
cj ecjlal, a; eajlal, p;jep;lal,

X1, X2 20,

where [0] denotes the a—cut operator.

We assume the objective profit (f,) is twice as important as the objective cus-
tomer satisfaction f,. Then we use the compromise solutions and set p = « and [a] =
0.5 to derive two-objective fuzzy de novo programming so that we can compare the
result with the previous example. The final solution can be obtained as x; = 20.633,
X, =24.091, v = 0.023, b;=182.356, b, =220.164, B = 300, f, =849.882, and
f, =151.348.

Although the compromise solution method is used to deal with the above
fuzzy de novo programming, other kinds of MODM methods such as goal pro-
gramming and multi-objective genetic algorithms can be used easily to derive
optimal solutions.

5.5 MOP WITH CHANGEABLE PARAMETERS

Although previous models extended traditional mathematical programming to
deal with more practical problems, they cannot satisfy the purpose of this paper.
Figure 5.3 highlights the purpose of this paper.

The original idea of de novo programming is to reallocate production resources
so that system trade-offs can be eliminated and the ideal point achieved. However, a
question arises: What if the ideal point still cannot be satisfied by a decision maker?
While Chiang Lin et al. (2007) proposed another model to resolve the problem, their
model still cannot ensure that the level desired by a decision maker can be achieved.
This might be true if adding the effects of y and z still cannot achieve the desired point.

A
b ¥y =(f", f5) (desired point or called
aspiration level)

|
|
I: B ._J’:_‘—,L_(j_q*,f;) (ideal point)
2 &

FIGURE 5.3 Basic concept of desired point.
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In addition, what if a company cannot consider the effects of y or z? Maybe the
above questions should be transformed into another question: If a decision maker
wants to reach a desired point, how can the system be adjusted or redesigned to achieve
that point? A decision makers may prefer to know how to achieve the desired point
(aspiration level) via a redesigned system instead of optimizing an existing system.

It is obvious that if the parameters of a system remain constant, the best solution
is the ideal point if no trade-off among objective functions happens. However, the
desired point (aspiration level) that is better than the ideal point can never be achieved.
Hence, if we want to achieve the desired point, we must upgrade the parameters of a
system. Usually, a company may improve its objective or technological coefficients
by importing new equipment and methods, expanding its fixed resources, promoting
human resources by innovating technology, increasing the total budget, or both, or
implementing other ideas.

We now develop possible models to redesign or reshape a system to achieve the
desired point (aspiration level) according to the concept of changeable space, includ-
ing decision space and objective (outcome) space. Assume a company has n objec-
tives to be achieved and m products are produced. We can incorporate the concepts
of financing decisions into MOP and formulate the following model:

MopEeL 5.1: MOP witH CHANGEABLE BUDGETS

min B
m

s.t. Zcijxij > f7(x), i=1,...,n,
j=1

P’Ax< B+B, G139

< extra conditions for B >

x20,

where c;; denotes the jth coefficient of the ith objective function, f;(x) denotes the
desired value of the ith objective, p denotes the unit price vector of resources, B is the
original budget, and B denotes the extra budget obtained from financing decisions.

Example 5.3

Let us reconsider the beginning example of producing suits and dresses. If the
objective functions and constraints are constant, we can obtain the optimal solu-
tion from de novo programming as f; = 2375 and f, = 44.5. However, the decision
maker feels unsatisfied with the results and hopes to increase f; (profit) from 2375
to 2600 and f, (quality) from 44.5 to 60. One way to achieve the desired solution
is to borrow money from capital markets based on financing decisions. Table 5.4
lists relevant information.



58

Fuzzy Multiple Objective Decision Making

TABLE 5.4
Information Table for Example 5.3

Technological Coefficients

Unit Price  Resource x=1 y=1 No. of Units
30 Nylon 4 0 b,
40 Velvet 2 6 b,
9.5 Silver thread 12 4 b
20 Silk 0 3 by
10 Golden thread 4 4 bs

The problem of Example 5.3 is to derive the minimum extra budget that can
achieve the desired point and determine the corresponding resource allocation.
Next, we formulate the following linear programming scheme to solve the prob-
lem of Example 5.3:

min B
s.t.  400x; +300x, 2 2600,
6x;+ 8x, =260,
30X 4x,+ 40 X (2x1 4+ 6X9)+ 9.5 % (12x; + 4x,)+ 20 X 3x,

+10% (4x, + 4x,) < 2600 + B,

X1, X2 > 0.

Solving the above problem, we can obtain the extra budget need B =376 and
production factors x; = 2 and x, = 6. The corresponding resource allocation can
be calculated as by =8, b, = 40, b; =48, b, =18, and bs = 32. The corresponding
profit and quality indices equal 2600 and 60, respectively.

Comparing the results from de novo programming and the proposed mod-
els, we note that the proposed method can find a way to achieve the desired
point that cannot be reached with de novo programming. It is clear that the
only way to proceed beyond the ideal point is to utilize outside help. Therefore,
if the system hopes to achieve the desired point, it needs an additional $376
(or other monetary units). However, if the extra budget need is equal to zero,
the original system is sufficient to achieve the desired point and the proposed
model reduces to de novo programming.

Besides borrowing money from capital markets, a company can also achieve
its desired goal by improving the objective coefficients of a system, e.g., by uti-
lizing economics of scale, electronic commerce, and total quality management
(TQM) and eliminating third parties. In this situation, a company should con-
sider the unit-improving cost of each objective coefficient and determine the
optimal budget allocation between improving costs and improving production
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resources. It can then develop a relevant MOP model with changeable objective
coefficients.

MopEeL 5.2:  MOP witH CHANGEABLE OBJECTIVE COEFFICIENTS

min B

m
St (e tany 2 @), i=lon,
j=1

p'Ax+ 22 pic; <B+B, (5.14)

=1 j=1
< extra conditions for p;; and c; >
x20,

where pj; denotes the unit upgrade cost with respect to the jth product coefficient
of the ith objective function and c; is the jth upgrade product coefficient of the ith
objective function.

Example 5.4

We again utilize the previous example of producing suits and dresses. If the com-
pany cannot borrow money from capital markets but still hopes to increase f,
(profit) from 2375 to 2600 and f, (quality) from 44.5 to 60, another method is to
improve its objective coefficients through strategies or technologies. Therefore,
we assume the unit-improving costs of the objective coefficients are $0.200,
$0.289, $2.225, and $2.487, respectively, as shown in Table 5.5.

We can formulate the following mathematical programming for achieving the
desired points by improving objective coefficients:

min B
s.it. (400 + ciq)x; + (300 + Cy2)x, = 2600,
(64 C21)x1 + (8 + C2)x2 260,
30X 4x;+ 40 X (2x, 4+ 6X2) + 9.5 % (12x;+ 4x,)+ 20 X 3x,
+10X (4x; + 4x;) + (0.200C;; + 0.289C,, + 2.225C, + 2.487C5,) < 2600 + B

X1, X2 =>0.

Solving the above problem, we determine the extra budget as B = 0. This result means
that no extra budget is needed for achieving the desired point. Then, we can derive
X;=4.43, x,=2.70, ¢;;=3.51 C;»=0.18, C21=1.44, and C,, = 2.00. In addition,
the corresponding resource allocation can be assigned as b;=17.72, b, =25.06,
by =17.72, by =8.10, bs = 28.52, profit= 2600, and quality index = 60.
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TABLE 5.5
Information Table for Example 5.4
Objective Coefficients Technological Coefficients
x=1 y=1 Unit Price  Resource x=1 y=1 No. of Units
400 300 30 Nylon 4 0 b,
($0.200) ($0.289)
6 8 40 Velvet 2 6 b,
($2.225) ($2.487)
9.5 Silver thread 12 4 b
20 Silk 0 3 b,
10 Golden thread 4 4 bs

We should highlight that B # 0 means that we still cannot achieve the desired
point via improving objective coefficients. Therefore, it indicates an extra budget
allocation is needed for the system to achieve the desired point. Otherwise, we
should consider another possibility.

The last situation discussed here is that a company may expand its outcome
space by upgrading technology coefficients of a system. For example, it can pursue
the upgrade by adopting business process reengineering (BPR), new information
technologies, or enterprise resource management (ERP) to increase production effi-
ciency. Hence, we can use the above description to formulate the following model:

MopEL 5.3:  MOP witH CHANGEABLE TECHNOLOGICAL COEFFICIENTS

min B
m

s.t. Zcijxij > 7 (x), i=1,...,n,

Jj=1

p'(A—A)x-i—ZZp,Z&kJ <B+ E,

k=1 j=1

(5.15)

< extra condition for pj and a; >

x20,

where A = [aly is the upgrading technological coefficient matrix and pj; is the unit
upgrading cost with respect to the jth technology coefficient of the kth constraint.

Example 5.5

We can follow the previous example of producing suits and dresses to address the
following problem. If the company still cannot achieve the desired point by adding
extra budget or improving objective coefficients, one more technique is updating
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TABLE 5.6
Information Table for Example 5.5
Objective Coefficients Technological Coefficients
x=1 y=1 Unit Price  Resource x=1 y=1 No. of Units
400 300 30 Nylon 4(30.5) 0 b,
6 8 40 Velvet 2 (50.5) 6 ($0.27) b,
9.5 Silver thread 12 ($0.27) 4 ($0.26) b,
20 Silk 0 3 (50.25) b,
10 Golden thread 4 ($0.25) 4 ($0.25) bs

the technological coefficients of the system. We assume that each unit updating cost

of a technological coefficient can be defined and presented as shown in Table 5.6.
Incorporating the information of the unit updating cost of the technological

coefficients, we can formulate the following mathematical programming model:

min B
s.t.  400x,+ 300x, = 2600,
6X1 + 8X2 > 60,

30 x (4 - 511)X1 + 40 x ((2— 52]))(1 + (6— 522)X2)+ 9.5x%x ((12 - 531)X1

+(4 = a)x2)+ 20X (3= ap)xy + 10X (4 — as1)x; + (4 — asy)x,)

+0.53;1 + 0.52,1 + 0.272y, + 1223 + 425, + 324, + 425, + 425, < 2600 + B

X1, X2 > 0.

The B = 0 extra budget result means that no extra budget is needed for achieving
the desired point. Then we can derive x;=2.42, x,=5.69, a,;=2.03, a,;=1.27,
a, =030, a3 =027, a»=0.25 ap=0.26, a5;=0.25 and a5 =0.26. The
corresponding resource allocation can be assigned as b;=4.76, b, =34.20,
by =49.72, b, =15.59, bs =30.36, profit = 2600, and quality index = 60.

Based on the previous models, we can use one of three methods to try to
achieve the desired point. In practice, the three situations may exist simultane-
ously. Therefore, a more general model of changeable parameters can be consid-

ered to incorporate the previous three situations:
min B
St (GHE ), =T,
nom nom

pA-Ax+ Y pic;+
i=1

j=1 i=1

p,-,aﬁ,-j < B+B,
=1

< extra conditions for B, pj, c;, pj and a; >

x 20,

(5.16)
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If B=0, the desired point can be achieved without increasing the budget. The deci-
sion maker can improve objective coefficients when ¢; # 0, update technological
coefficients when a; # 0, or both results are present (c; # 0 and a; # 0) to achieve
the desired point. On the other hand, if B# 0, the original system cannot be achieved
by updating objective or technological coefficients. The only alternative is to increase
the budget by borrowing money from capital markets.

According to the above example, we can illustrate how to expand the changeable
spaces for achieving desired point (aspiration level), as shown in Figure 5.4.

The decision spaces of the example are expanded gradually through resource real-
location or changeable parameters. Therefore, the corresponding objective spaces

7.31
x2 A
Example 5.
Decision Space
10.96
x
Changeable
parameters
)
A
a Desired
(2192,58) Joint
6.88 \, 4383,65)
(2064,55)
LT 2936,44
4
De Novo (1650 )
o 5,43.5) De Novo
Decision Space 10597 Trade-off
> (#00/30) Pareto
Trade-off
Objectiiv
Resource —— >
Reallocation h

X9 4

3.51

Original
Decision
Space
(Example 5.1)

FIGURE 5.4 Changeable spaces for achieving desired point.
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are changeable and create the possibility of achieving better solutions. As we know,
the original decision space will cause a Pareto solution due to the trade-off between
objectives. Although de novo programming enables the possibility of resource real-
location to obtain a better result, it still causes de novo trade-off because of the
fixation of system parameters. Therefore, the only way to achieve the desired point
is to expand the decision space via changeable parameters to reach the desired point
without trade-off between objectives.

The concept of habitual domains (HDs) has been proposed to support the flexible
or changeable parameters of decision spaces. Habitual domains (Yu, 1980, 1984,
1985, 1990, 1991) consist of the set of human thinking, judging, responding, expe-
rience, and knowledge. Therefore, it is clear that HDs play a key role in affecting
human behavior. To improve the quality of decision making, people should review
two major possibilities: (1) how to polish existing HDs and (2) how to expand exist-
ing HDs.

Many papers contain proposals for efficiently expanding HDs via a method
known as competence set analysis (Yu and Zhang, 1989, 1990, 1992; Li and Yu,
1994). These methods can be used to significantly improve the quality of decision
making. The four elements within a habitual domain are:

1. The potential domain (PD) is a collection of ideas and actions that can
potentially be activated.

2. The actual domain (AD) is a set of ideas and actions that are actually
activated.

3. The activation probabilities (AP) are the probabilities that ideas and actions
in PD also belong to AD.

4. The reachable domain (RD) is a set of ideas and actions that can be attained
from a given set in an HD.

Since decision processes depend on the evolution of HDs, an expanding HD can
result in effective decision and preferred solutions. Hence, the expanding HD can be
considered as a changeable parameter of a system.

Next, we compare the differences between goal programming and the proposed
method as follows. Goal programming was proposed by Charnes and Cooper (1961)
to deal with linear MOP problems. The idea behind goal programming is to seek a
solution nearest the ideal point. Thus, a decision maker should first assign a target or
goal to each objective and then minimize the distance between targets and objectives
(usually we use L,-norm to define the distance between the targets and objectives)
to find the solution.

A number of differences between goal programming and the proposed methods
can be described. First, the purpose of goal programming is to find a solution based
on Pareto solutions that is closest to the ideal point. However, the purpose of the
proposed models is to find out a way to reach the desired point by possible changes.
Hence, the optimal solution of goal programming is usually worse than the ideal
point because of trade-offs among objective functions. On the other hand, the pro-
posed models can achieve a desired point, which is better than the ideal point. In
sum, goal programming optimizes objective functions with a system and is also
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known as inside optimization. However, the proposed models minimize extra budget
with a flexible system; this is known as outside optimization.

Second, goal programming optimizes the objective functions of a system with
fixed parameters. That is, goal programming determines what to do to obtain the
optimal solution of a system. On the other hand, the proposed models tolerate para-
meters of a system are changeable so that the desired point can be achieved through
adjustments. Hence, goal programming is more suitable for dealing with “what to
do” problems and the proposed models try to answer “how to do” problems.

Finally, the essence of goal programming is to determine optimal solutions to
MOPs. Therefore, like other traditional MOP methods such as compromise solu-
tions, goal programming is an optimization method. However, the essence of the
proposed models seeks to change or modify an original system so that a desired
point can be achieved. Hence, the proposed method can be regarded as an optimal
system design method rather than an optimization method.

We highlighted the differences between de novo programming and the proposed
models. De novo programming incorporates unit price data for resources into tradi-
tional mathematical programming to design a better system. The proposed method
considers resource unit prices and relaxes other parameters such as objective and
technological coefficients to achieve changeability. The optimal solution of de novo
programming 1s the ideal point. The proposed method seeks ways to achieve the
desired point.

Finally, we highlight the philosophical difference between the proposed method
and other MOP methods, including de novo programming, from the perspective of for-
mal analysis (Tzeng and Huang, 2011). All traditional MOP models can be considered
normative models that focus on the problems that decision makers ideally encounter.
However, the proposed method should be regarded as a prescriptive model that con-
siders the methods that decision makers should apply to improve their decisions.



6 Multi-Stage Programming

Multi-stage programming can be considered a special network problem that finds the
shortest path joining two points in a given network. However, unlike other shortest
path problems that focus on finding the shortest path from the source node to any
other node in a network, multi-stage programming seeks the shortest path from the
source to each sequential stage. In this chapter, we will introduce dynamic program-
ming, which is widely used for multi-stage network problems and the related applica-
tion of this programming technique.

6.1 DYNAMIC PROGRAMMING

The concept of dynamic programming comes from the principle of optimality
(Bellman, 1952, 1953) as a solution for sequential optimization problems. That is, an
optimal solution has the property that whatever the initial state and the initial deci-
sions are, the remaining decisions must constitute an optimal solution with regard
to the state resulting from the first decision. The network problems of multi-stage
programming are shown in Figure 6.1.

To model the illustrated problem, we first define the notations. Let the distance
between node i and node j be ¢; and fi(j) be the node in stage z. If we want to find
the shortest distance from node 0 to node 9, we can begin by finding f,(6), f4(6),
f4 (6), and ]‘;1(6), 1e., ﬁndlng min{Cég, C79, ng}.

Next, we can find f;(4) and f;(5). Using f;(4) for an example, we apply the
following equation:

@)= mjin{cz;,j + (D), V=678 ©.D

Then, we can use the procedure until f,(0) results to obtain the shortest distance
from node 0 to node 9. This method is called dynamic programming with backward
recursion. However, if we start from node O to find the shortest distance, the process
is called forward recursion. We can generalize a k-stage problem as the following
dynamic programming equation:

ﬁ(j)=mjin{cij +(D) Vi=1k, (6.2)

where c; denotes the distance between node i and node j and fi(j) is the node j in
stage 1.

65
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Stagel Stage2 Stage3 Stage4 Stage5

FIGURE 6.1 Example of a multi-stage programming problem.

It is easy to understand that if a multi-stage problem is too complicated, dynamic
programming is far superior for achieving explicit enumeration. We can summarize
the characteristics of a multi-stage problem as follows (Winston, 1994):

1. A multi-stage problem can be divided into stages with a decision required
at each stage.

2. Each stage has a number of associated stages.

3. The decision chosen at any stage describes how the current stage is trans-
formed into the next stage.

4. Given the current stage, the optimal decision for each of the remaining
stages must not depend on previously reached stages or previously chosen
decisions (principle of optimality).

Example 6.1

We can reconsider the above five-stage programming problem as the following
shortest route problem. Assume you live in Taipei and plan to see a friend in
Shanghai and want to take this opportunity to travel in China. If your funds are
limited, you must determine the most economical way to enjoy each day of your
trip. Figure 6.2 displays the possible cities to visit and the corresponding costs for
each day.

We will employ backward recursion to determine the optimal path of the trip.
We can use dynamic programming to deal with this five-stage programming prob-
lem. First, we calculate the trip costs from Day 3 to Day 4 separately, as shown
in Table 6.1. Next, we consider the trip costs from Day 2 to Day 4 as shown in
Table 6.2. The solution of Table 6.2 can be explained as follows. The trip cost
from Jinjiang to Ningbo is equal to 7. Hence, if we decide to arrive at Jinjiang in
Day 2 and at Ningbo in Day 3, we should cost 12 units to Shanghai after Day 1.
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Day0 Day 1

Day 2

Day4

FIGURE 6.2 Multi-stage problem for trip planning.

However, if we decide to stay in Zhoushan or Hangzhou on Day 3, we must cost
12 or 10 units to Shanghai after Day 1. If we stay in Jinjiang on Day 2, we should
go to Hangzhou to minimize the trip cost on Day 3. We can then calculate the trip

costs from Day 1 to Day 4 in a similar way, as shown in Table 6.3.

67

The explanation of Table 6.3 is similar to that for Table 6.2. That is, if we stay
in Hong Kong and/or Macau, we should go to Jinjiang on Day 2. Otherwise, we
should arrive in Fuzhou to minimize trip cost. The total cost from Day 0 to Day 4
is relatively easy to calculate by adding the cost from Taipei to Hong Kong, Macau,
and Xiamen and the optimal solution derived from Table 6.3, as shown in Table 6.4.

TABLE 6.1

Trip Costs for Day 3 to Day 4

Stage 4 (c;) Day 4 Optimal Solution

Day 3 Shanghai yAQ) x§

Ningbo 5 5 Shanghai

Zhoushan 6 6 Shanghai

Hangzhou 3 3 Shanghai
TABLE 6.2
Trip Costs for Day 2 to Day 4
Stage 3 (c;; + £;())) Day 3 Day 3 Day 3 Optimal Solution
Day 2 Ningbo Zhoushan Hangzhou  f£,(-) X%
Fuzhou 5+5=10 6+4+6=12 7+3=10 10 Ningbo/Hangzhou
Jinjiang 7+5=12 9+46=12 8+3=10 10 Hangzhou
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TABLE 6.3
Trip Costs for Day 1 to Day 4
Stage 2 (c;; + £;() Day 2 Day 2 Optimal Solution
Day 1 Fuzhou Jinjiang H) X%
Hong Kong 7+10=17 4+10=14 14 Jinjiang
Macau 7+10=17 5+4+10=15 15 Jinjiang
Xiamen 3+410=13 5+15=13 13 Fuzhou
TABLE 6.4
Trip Costs for Day 0 to Day 4
Stage 1 (c;; + £,())) Day 1 Day 1 Day 1 Optimal Solution
Day 0 Hong Kong ~ Macau Xiamen L) X%
Taipei (x%) 6+14=20 7+15=22 9+13=22 20 Hong Kong

From the above results, we can determine the optimal path of the 4-day trip as
Taipei - Hong Kong — Jinjiang — Hangzhou — Shanghai at a total cost of 20
units. Readers can use the forward recursion approach to derive the same solution.

The applications of multi-stage programming include multi-stage process plan-
ning (MPP) problems (Jensen and Barnes, 1980; Sancho, 1986), cargo-loading or
knapsack problems (McLeod, 1983), job shop scheduling (Shah, 1998), and opera-
tions issues. In addition to deterministic dynamic programming, if the path from
the former stage to the latter stage depends on some probability, the dynamic pro-
gramming process is called probabilistic dynamic programming. Readers can refer
to Bertsekas (1987), Cooper and Cooper (1981), and Smith (1991) to compare the
differences between deterministic and probabilistic dynamic programming.

6.2 APPLICATION OF MULTI-STAGE
PROBLEM: COMPETENCE SETS

The concept of the competence set was proposed by Yu (1990a and b) to resolve a
specific decision problem by acquiring the necessary ideas, information, skills, and
knowledge. Competence set analysis involves identification of the true competence
set and the decision maker’s competence set and following the efficient expansion
path to good decisions.

Among these issues, the method of expanding the existing competence set opti-
mally is highlighted. Several methods such as the minimum spanning tree (Yu and
Zhang, 1992), the mathematical programming method (Shi and Yu, 1996), and the
deduction graphs (Grefenstette, 1991), have been proposed to obtain the optimal
path. The optimal expansion path from the existing competence set to the true com-
petence set can be described as follows.



Multi-Stage Programming 69

SK

%i c(x;,x,)

FIGURE 6.3 Cost functions of competence sets.

Let HD = SKUT, where HD (habitual domain) includes all the relevant skills
needed to solve a particular problem, SK denotes the already acquired competence
set and T denotes the true required competence set. Therefore, the optimal expansion
path can be obtained by minimizing the following equation:

min{c(x;,x;), where x;eSK and x;eT}, (6.3)

where c(x;,x;) denotes the cost and/or time of acquiring x; from x,. Figure 6.3 rep-
resents the corresponding graph.

We can use an example to illustrate the optimal expansion path using the mini-
mum spanning tree. Let the SK = {a}, T = {a, b, ¢, d}. The cost function is shown in
the following matrix:

Cost | a B c d
A 0o 2 6 8
B 8 0 1 4
C 8 2 0 1
D 1 2 30

In order to determine the first step of the expansion path, we must consider the cost
information as follows:

Process b c d

C (a, process) 2 6 8
The first step is a — b. Next, consider the following cost to determine the second
step:

Process C d
c({a — b}, process) 1 4

Therefore, the optimal second expansion path is b — ¢, and the optimal expansion
pathisa —> b —> ¢ —d.

The optimal expansion path of competence sets can be viewed as a special case of
the multi-stage programming problem. Figure 6.4 illustrates the concept.

The main difference between the problems in Sections 6.1 and 6.2 is that tradi-
tional multi-stage programming seeks an optimal node in each stage to minimize the
cost. On the other hand, competence sets search the optimal path to link all neces-
sary nodes (including inner and intra stages) in a multi-stage situation.
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FIGURE 6.4 Concept of competence set.

We can employ the routing method (Shi and Yu, 1996) to select the optimal
expansion path based on the following mathematical programming model:

min z = zcijxij (6.4)
s.t.Zx,»j =1, j=12,...,n,
i=0
w—u;+(n+1)x; <n, 1<i,j<n, i#j, Yy,

ui,u; €{0,1,...,n}.

where c¢; =c(x;,x;) denotes the cost of acquiring x; from x; and u; denotes the
subsidiary variable.

Although many scholars extend competence sets to consider further situations
such as asymmetric acquiring cost (Shi and Yu, 1996) and group decisions (Li and
Yu, 1994), these papers address only one-stage, one-objective situations. However,
we can extend competence sets to consider multi-stage, multi-objective problems or
fuzzy environments for more complicated applications.

6.3 FUZZY MULTI-STAGE MULTI-OBJECTIVE COMPETENCE SETS

In order to formulate the fuzzy multi-objective competence set, the fuzzy math-
ematical programming model is employed here. The fuzzy programming problem
(Carlsson and Korhonen, 1986) can be represented as follows:

max Z= ZE,JE,- (6.5)

i

st X ={(x,ux)(Ax); < b;,Vi,x 20,u(x)[0,1]}
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where [L(x) denotes the membership function of x. By setting the adequate member-
ship function and o-cut, we can transform Equation (6.5) into the following equation
to derive the optimal solution of the fuzzy programming problem.

n

max = Zugjl (0)x; (6.6)

j=1

s.t. Zugj (o)x; < Zu;jl(oc), Vi=1,...,m,
= =1

XjZO, Vj=1,,n
Now, based on the concepts above, we can formulate the optimal fuzzy multi-criteria

expansion process as the following mathematical programming model:
min/max  Z = ) Wi (@ ©.7)

. ~ -1
min/max 2= E Hay,; (00X

min/max  Z, = 2 M7 (00,5

n

s.t. inj =1, j=12,...,n,

i=0
u—uj+(n+1x; <n, 1<i,j<n, i # ],

Vx,:/-,u,- (S {0,1,...71}.

where c¢; =c(x;,x;) denotes the cost of acquiring x; from x; and u; denotes the sub-
sidiary variable. As mentioned previously, because some criteria are intangible and
conflict with each other, Pareto solutions can be derived by using MOEA. Then, decision-
makers can select the final optimal expansion process based on their preferences.

Example 6.2

We will demonstrate a fuzzy two-objective (i.e., cost and benefit) expansion of
competence sets. Let SK = {x,}, T\SK = {xi, X2, X3, X4, X5, Xs, X7}. The fuzzy cost and
the fuzzy benefit functions that represent interval values are shown in Tables 6.5
and 6.6. Note that the M symbol denotes the infeasible route and will be treated
as a minimum number in our fuzzy mathematical programming model. In addi-
tion, the membership of the cost and benefit functions is assumed to be triangular
in form.
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TABLE 6.5
Cost Function of Fuzzy Competence Set
Cost Xo X X, X X, X Xe X5

X M (49,59) (6.1,7.1) (2.7,3.7) (2.6,3.6) (3.2,42) (55,6.5) (3.4,44)
X M M (3.9,49) (4.7,57) (39,49) (4.0,5.00 (43,53) (3.5,4.5)
X, M (4.4,5.4) M (3.7,47) (64,74) (5.7,6.7) (59,69) (4.5,5.5)
X5 M (6.3,7.3) (2.7,3.7) M (5.8,6.8) (64,7.4) (64,74 (39,49
X, M (5.5,7.5) (3.9,49) (5.6,6.6) M (3.3,43) (2.8,3.8) (2.8,3.8)
Xs M (44,54) (45,55) (4.0,5.0) (6.4,74) M (6.3,7.3) (2.8,3.8)
Xg M (4.0,5.0) (29,39) (49,59 (6.1,7.1) (6.0,7.0) M (4.7,5.7)
X5 M (6.3,7.3) (2.6,3.6) (4.1,5.1) (6.0,7.0) (3.1,4.1) (2.8,3.8) M

By using Equation (6.7) and letting the o-cut equal 0.8 (other results that set o
at 0.2 and 0.5 are shown in the appendix at the end of this chapter), we can for-
mulate the optimal fuzzy multi-criteria expansion model based on the data from
Tables 6.5 and 6.6. To obtain Pareto solutions, we next set the adequate parameters
of MOEA as shown in Table 6.7. After generating and calculating the optimal

TABLE 6.6
Benefit Function of Fuzzy Competence Set
Benefit  x, X, X, X3 X, X5 X X5

Xy M (4555) (4.6,56) (51,6.1) (2.8,38) (29,39 (49,59) (3.6,4.6)
xx  0M M (53,63) (29,39) (3.6,46) (28,3.8) (3.5,45) (49,59
X, M (58,68) M (37,47) (49,59) (56,66) (59,69) (3.5,4.5)
X3 M (52,62) (58,68) M (6575 (38,48) (52,62) (5.0,6.0)
x, M (32,42 (59,69) (4.0,5.0) M (34,44) (35,45 (57,67
Xxs M (47,57) (6.0,7.0) (64,7.4) (4.6,5.6) M (6.4,7.4) (4.8,5.8)
Xg M (54,64) (28,38) (56,6.6) (57,6.7) (6.0,7.0) M (2.6,3.6)
X, M (64,74) (3.0,40) (49,59 (55,65 (43,53) (27,3.7) M

TABLE 6.7

Parameter Settings of MOEA
Parameter Value
Population size 100
Selection strategy Tournament

Maximum number of generations 1000
Crossover rate 0.9
Mutation rate 0.01
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TABLE 6.8
Pareto Solutions of Competence Set

o=0.8 Optimal Expansion Process Cost  Benefit

Model 1 0—1 0-3 152 1-4 156 37 6—5 31.0 38.6
Model2  0—1 04 05 07 452 553 556 30.0 38.1
Model 3 0—1 0-3 04 16 42 457 7155 25.7 374
Model 4 0—1 0-3 0—4 1-6 352 47 T4 24.5 37.3
Model 5 0—1 0—-3 0—-4 05 057 354 756 24.0 33.0
Model6 0—3 04 05 07 51 72 7-6 234 30.4

generations, we obtain six optimal expansion processes, i.e., Pareto solutions, as
shown in Table 6.8. For example, Model 1 depicts the optimal expansion process
as shown in Figure 6.5 to obtain the optimal costs equal to 31.0 and the optimal
benefits equal to 38.6.

On the basis of the results, a decision maker can select one of the six paths based
on his or her preferences or subjective judgments to determine the final optimal
expansion process.

Competence set analysis has been used for many applications such as learning
sequences for decision makers (Hu et al., 2002) and for consumer decision problems
(Chen, 2001 and 2002). However, these papers consider only situations involving
one criterion and the crisp function. In practice, decision makers usually determine
the optimal expansion process based on multiple criteria that may conflict with each
other. Therefore, Pareto solutions should be derived to determine the final expansion
process based on the decision maker’s preferences. In addition, due to uncertainties
and subjective judgment, the concept of fuzzy sets should be incorporated into com-
petence set analysis.

In this chapter, the fuzzy multi-criteria expansion model is proposed to deal
with the above problems. In order to obtain Pareto solutions efficiently and cor-
rectly, MOEA is employed. A numerical example is used to demonstrate the

x2
%
x4
xO
S —
x6 ‘x5
x?)
x7

FIGURE 6.5 Optimal expansion process for Model 1.
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proposed method. On the basis of the simulated results, we can obtain six non-
dominated solutions. For those who are risk averse, Model 6 may be the optimal
expansion process. However, Model 1 may be the optimal expansion process for
a risk taker.

APPENDIX

By setting o0 = 0.2 and o = 0.5, we can obtain two other Pareto solutions as shown
in Tables A.1 and A.2.

TABLE A.1
Pareto Solutions of Competence Set a = 0.2

o=0.2 Optimal Expansion Process Cost  Benefit

Model 1 0-3 05 057 452 556 T-1 7T—-4 377 37.2
Model 2 0—>3 0-7 1-4 552 556 6->1 7T-55 335 35.8
Model 3 0-3 0-6 057 651 752 71754 17155 329 33.2
Model 4 0->3 0-7 456 T-51 T7-2 T1-54 17155 32.5 32.8
Model 5 0—->3 0-7 1-4 556 651 6—>2 755 31.9 32.6
Model 6 0—-3 057 251 455 752 T-4 7155 30.6 32.2
Model 7 0—-3 057 651 72 7154 75 7T7-6 302 31.0

TABLE A.2
Pareto Solutions of Competence Set a = 0.5

a=05 Optimal Expansion Process Cost  Benefit

Model 1 03 06 1-7 2->1 352 354 355 34.5 40.3
Model2 0—53 056 057 2-1 352 354 355 34.4 39.0
Model 3 0—1 0-3 0-5 152 457 554 556 34.0 38.0
Model4 053 07 2-—1 352 354 355 456 31.7 37.6
Model5 0—>1 0—-3 05 152 154 457 556 31.5 37.0
Model 6 0—>1 0—-3 0-5 1—-2 154 256 457 31.1 36.5
Model7 053 056 2-—1 352 455 456 T1-4 28.8 36.2
Model8 0—1 053 054 452 455 457 T1-56 26.5 33.6
Model9 0—1 0-3 054 455 457 T-52 17156 25.2 30.7




7 Multi-Level Multi-
Objective Programming

Multi-level programming is a special kind of mathematical programming that has
different objectives with respect to various levels. In addition, one level of the hier-
archy may have its objective function determined by decision variables controlled at
other levels. Multi-level multi-objective programming can be considered an exten-
sion of multi-level programming because each level has multi-objective functions. In
this chapter, we introduce bi-level programming as the beginning step of multi-level
multi-objective programming.

7.1  BI-LEVEL PROGRAMMING

The original formulation for bi-level programming can be traced to Bracken and McGill
(1973). Then, Candler and Norton (1977) used the bi-level and multi-level programming
designations in their technical report. Although their algorithm for solving multi-level
programming is incorrect (it can deal only with convex sets and the higher levels are
non-convex sets), the basic premise of their problem has received much attention. Later,
the problem of bi-level or multi-level programming was widely used for dealing with
special issues of the game theory (Stackelberg, 1952). This static game has fixed leaders
and a continuous decision space may be defined to encompass multi-level optimization
problems. In addition, other contributors for multi-level programming were made by
Aiyoshi and Shimizu (1981a and b, 1982), Bard (1982), Bard and Falk (1982), Bialas and
Karwan (1978, 1982), and Candler and Norton (1977a and b, 1981).

The structure of bi-level or multi-level programming facilitates the formulation
of the problems that involve hierarchical decision processes. Traditionally, bi-level
programming is defined as:

max F(x,y)
X,y

(7.1)
sit. gx,y)<0,
where y for each value of x is the solution of the lower level problem:
max f(x,y)
’ (7.2)
sit. h(x,y)<0

where x € R™ is the upper level variable, yeR™ is the lower level variable,
F,f iR SR, g R 5 R™, and h: R — R, Note that g(x,y) < 0 is the
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upper level constraint, 4(x,y) < 0 is the lower level constraint, F(x,y) is the upper level
objective function, and A(x,y) is the lower level objective function.

In addition, the relaxed problem associated with bi-level programming problems
can be described as:

max F(x,y)
X,y

(7.3)
sit. gx,y)<0, h(x,y)<0

The result of Equation (7.3) is the lower bound for the optimal value of the bi-level
programming problem. Next, we give some important definitions and notions of bi-
level programming as follows:

1. The constraint region:

Q={(x,y):g(x,y) =0, h(x,y) <0} (7.4)
2. For each upper variable, the lower level feasible set:
Q(x) = {y: h(x.y) <O}, (7.5)

3. For each upper variable, the lower level reaction set:

M(x) = {y: yeargmin{f(x,y): ye Q(x)}}. (7.6)

4. For each upper variable and any value of the lower variable in M(x), the
lower level optimal value:

v(x) = fix.y). (7.7)

5. The induced region:

IR = {(x,y): (x,y) € Q, ye M(x)}. (7.8)

The induced region is the feasible set of bi-level programming and usually non-
convex. If fx,y) and h(x,y) are convex functions in y for all values of x, the bi-level
programming is convex. Surely convex bi-level programming has received most of
the attention because the lower level problem can be replaced by its Karush-Kuhn-
Tucker (KKT) conditions to obtain equivalent one-level mathematical programming
under an appropriate constraint qualification.

However, as Dempe et al. (2006) pointed out, the presence of many lower
level Lagrange multipliers and an abstract term involving co-derivatives makes
the procedure difficult to apply in practice. Hence, Fliege and Vicente (2006)
proposed a mapping concept in which a bi-level programming problem can be
converted to an equivalent four-objective optimization problem with a special
cone dominance concept.
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7.2  MULTIPLE LEVEL PROGRAMMING

Although bi-level programming is a special case of multiple level programming when
the level is equal to two, the complexity of multiple level programming increases
significantly when the number of levels exceeds two (Blair, 1992). Let us illustrate a
case for the application of multiple level programming.

Assume a firm plans a multiple level resource allocation program. First, an
upper-level decision maker determines the specific tolerance levels and a lower-level
decision maker optimizes the maximum objective values under the upper-level con-
straints. If a final solution does not exist, the upper-level decision maker negotiates
with the lower-level decision maker to determine a level that both can accept.

The procedures of multiple level resource allocation problems are illustrated in
Figure 7.1. Based on the above concepts, multiple level resource allocation problems
can be considered to maximize the following knapsack equation:

Level 1: max z;=c¢;x+cpx,+--+¢,x,

Level 2: max 2z, =¢yX; +¢pXx+--+6,X,

Level m: max 2z, =€,X; +CpXy ++ 4 CppX), (7.9)

S.f. a;x; Sbl,

ax; < b,
Ay Xy < bm ’
x20,
@
v .
Optimize .
Level 1 »  Objectives
. el Negotiation
Remainder R
A4 S~
Optimize
Level 2 »  Objectives
. Remainder
. - -
' "~~~ __Negotiation
Optimize i .
Level m »  Objectives

FIGURE 7.1 Multiple level resource problems.
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where ¢; and x; denote given resource parameters at the ith level, which usually are
represented as technological coefficients and products, respectively, and b; denotes
the maximum limited resource portfolios on the ith level.

Similar to bi-level programming, one of the important characteristics of multiple-
level programming is that a decision maker at a certain level of hierarchy has his
or her own objective function and may affect (or be affected by) other levels. That
means that a decision maker can introduce the instruments to adjust the objective
functions of each level. Note that these instruments may include the allocation and
use of resources at lower levels and the advantages obtained from other levels (Gaur
and Arora, 2008).

7.3 FUZZY PROGRAMMING FOR MULTI-LEVEL
MULTI-OBJECTIVE PROGRAMMING

In previous situations involving bi-level or multi-level programming, each level
considers only one objective function. In practice, multi-objective functions may
appear in a level. Hence, if we relax the condition of the objective function, we can
formulate multi-level multi-objective programming. When levels are equal to two,
multi-level multi-objective programming is reduced to bi-level multi-objective
programming.

For a vector maximization p-level hierarchical system that has a maximization
type objective function, we can formulate the following programming:

max  fi(x)=c¢;x;+cpxy ++epXxp

X1

max f2(x)=¢nXx; +CpnXx, +--+ CpXp

X2

(7.10)
max  f,(X)=¢,% +CpXs+ -+ CppXp

xp
S.1. A,‘]xl+AiQXQ+"‘+AipxP Sbl', i=1,2,...,m,

X1 20,x2 20,...,xp >0.

Note that we assume the system above includes one decision maker on each
level, n decision variables, and m constraints. Let x=x, Ux, U...uUxp and
n=n; +n, +---+n, where decision vector xp, p=1,2,...,P is under the control of
the pth level decision maker and has n, decision variables. The decision maker on the
pthlevel (p = 1,2,...,P) individually solves the maximization problem:

max fp (x)= Cp1X) +CppXy + -+ CppXp (7.11)
xp

S.1. A,‘]xl+Ai2x2+"‘+AipxP Sbl‘, i=l,2,...,m,

x20,x,20,...,xp 20.
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Solving the above programming, we calculate the individual optimal solution x,
p=12,..P

Sinha (2003) proposed a fuzzy approach for dealing with multi-level program-
ming problems. First we set the minimum acceptable degree of satisfaction for objec-
tive function f,, B,,ie., ULf,(x)]=B,. Then we calculate the membership function
for any maximization type objective function as:

0, L)<
Wif,(01=3 [f,(0)= fE1/ LY = fEL fr<f,(x)<fY (7.12)
1, LS 1)

where f, and f, are the upper and lower bounds of the pth level programming,
respectively.

Next, we set o; as the minimum acceptable degree of satisfaction for xi, i.e.,
Ky, (x1) 2 0y, and incorporate the concept of the tolerance interval that enlarges the
flexible solution of the lower level. Consider the bi-level situation for example. The first
level decision maker can set up the negative tolerance value e;_ on x; and the positive
tolerance value e, on x;. Then the first-level decision maker can assign the member-
ship function for x; as:

[x) —(x{ —e)] /e, (x{—e_)<x <xi,
e () =9 [(xF+e)—x]1/e., xi<x <(x{—e.), (7.13)

0, otherwise,

where x| denotes the optimal solution of the first level. For simplicity, we assume the
membership function in this chapter is linear. However, other types of membership
functions such as trapezoidal, exponential, or logarithmic can be used in a similar
way. We then use the above concept to set the minimum acceptable degree of sat-
isfaction for objective f, and the corresponding membership function. Finally, we
try to maximize B;,c;,B, simultaneously. Let A = min{B;,c;,$,}. We can solve the
second-level auxiliary problem as formulating the following programming:

max A

st Agx +Anx,+-+Apxp <b;,, i=1,...,m,
R (x)2A0, LalAGOIZA, Wplf(0)]2A, (7.14)
x,20,x,20,...,x, 20, Ae]0,1],

where i is a column vector, which has n;P components of value 1. Next, we consider
the following different multi-level programming as follows.
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Example 7.1 Consider a bi-level programming problem as follows:

max f=4x;+ 3Xy+ 2X3 + X4

X1,X2

max f, =x;+ 2x,+3x3+4xy

X3,%4

st. X3+ X+ x3+x4 210,
X1+ x4 <5,
X, + X354,

X1, X2, X3, Xa 2 0.

Solving the above objective individually, we obtain the optimal solution f; =32
at (5,4,0,0) and f, =32 at (0,0,4,5), respectively. Then we can calculate £’ = 32;
ft =13 and f;’ =32; f; =13 from the pay-off matrix. Let the first-level decision
maker decide x;=5 with 2 negative and 2 positive tolerances and x, =4 with
1.5 negative and 1.5 positive tolerance. Finally, we can solve the second-level
problem as:

max A
st. X3+ X+ Xx3+x4 <10
X1+ x4 £5,
X, + X3 <4,
(h—=13)/(32-13) 24,
(L —=13)/(32-13) 24,
X;—=5=-21/22A; [+2)-x]/22A,
[X,—(5-1.51/1.52N;, [5+1.5)=x,]1/22)

X1,X2,X3,X4 20

Then, we can obtain the satisfactory solution as x;=3.57, x,=2.92, x; =1.08,

x4 =1.43, and A = 0.283. We can calculate the two objective values as f; = 26.63
and f, =18.37.

We now consider the extension from bi-level programming to multi-level pro-
gramming. We can define A as the minimum of all the minimum acceptable levels
of satisfaction of the pth-level system. The pth-level programming problems can
be presented as:

max A

st. Axit+Anxy+--+Apxp <b;, i=1...,m,
Wy (X)) AL, wy, ()2 A, W, (Xp) 2 A,
WilhOOIZ A, wplHOOIZ AL, 1y [0 22,

x120,x,20,...,x, 20, A €[0,1].
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Example 7.2 Let us extend the previous example as a multi-level
programming sequence as follows:

max fi=4x;+3x,+ 2x3+ X4

X1

max f, =x;+ 2x,+ 3x3+4x4

X4

max f,=x;+4x,+3x3+ X4

X2,%3

st X3+ X+ x3+ x4 £10,
X;+ x4 <5,
X+ X354,

X1, X2, X3, Xa 2 0.

The optimal solutions of the objectives are f; =32 at (5,4,0,0); f, =32 at (0,0,4,5);
and f; = 21 at (0,4,0,5). Obviously, there is no satisfactory solution. Let us consider
the second-level situation. From the pay-off matrix, we obtain £/ =32; £ =13,
and fy’ =32; f; =13. If we consider x; =5 with 2 negative and 2 positive toler-
ances, we can solve the satisfactory solution as x;=3.8, x, =0, x3=4, x4 =1.2,
and A =0.4.

From the satisfactory solution of the second level, we can re-calculate f” =32;
fit=24.4, Y =32, ff=20.6, and £y =21, ff =17. Next, if we decide x;=3.8
with 1 negative and 1 positive tolerance and x, =1.2 with 1 negative and 1 posi-
tive tolerance, the satisfactory solution of the problem is x;,=2.8, x,=3, x3=1,
X4 = 2.2, and A = 0. The corresponding objectives are f,=24.4, f,=20.6, and
f; = 20. Next, we consider multi-level multi-objective programming problems as
follows.

Example 7.3 Let us consider the following bi-level bi-objective programming:

max  fy=4x,+ 3x0+ 2X3 + X4

X1,X2

max  fp = 2x+ 4x, + X3 + 3x4

X1,X2

max f21 =X;+ 2X2 + 3X3 + 4X4

X3,X4

max fzz = 3X1 + X, + 4X3 + 2X4

X3,%4
st X3+ X3+ x3+ x4 <10,
X1+ x4 £5,
X, + X354,

X1, X2, X3, X4 2 0

The optimal solution of each objective can be calculated as f;; =32 at (5,4,0,0);
fi»=31at(0,4,0,5); f,,=32 at(0,0,4,5); and f,, =31 at (5,0,4,0).
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Next, from the pay-off matrix, we obtain fi =32; f=13, f3=31; £5=14,
fi=32; =13 and f5 =31; and f5, = 26. Then, the first-level decision maker
sets x; =5 with 1 negative and 1 positive tolerance and x, =4 with 2.5 nega-
tive and 2.5 positive tolerances. We obtain the final optimal solution as x; =5,
X,=1.6, x3=2.4, x4, =0, and A = 0.04. We can calculate the objective values as
fi1=29.6, f,=18.8, f,;=15.4, and f,; = 26.2. Multi-level multi-objective prob-
lems can be easily considered as extensions of Example 7.3.

Many methods have been proposed to solve multi-level multi-objective program-
ming. For example, Baky (2010) used the fuzzy goal programming approach; Wang
et al. (1996) adopted the decomposition method; Yano (2007) employed interactive
fuzzy decision making. Readers can also consider the nonlinear and fuzzy situa-
tions of multi-level multi-objective programming. Since solving multi-level multi-
objective programming is normally a complex process, globally optimal solutions
are achieved rarely. Hence, evolutionary algorithms are very suitable for dealing
with complex problems.



8 Data Envelopment
Analysis

Traditionally, data envelopment analysis (DEA) and regression-based methods such
as deterministic and stochastic models were widely used to measure the technical
efficiency of decision-making units (DMUs). The main difference between DEA and
regression-based methods is that DEA is a non-parametric approach while regression-
based methods are parametric. Several papers compared DEA with regression-based
methods with respect to efficiency, flexibility, robust, assumptions, and sample sizes
(Cooper and Tone, 1997; Ruggiero, 1998; Chen, 2002).

The abandonment of DEA for measuring technical efficiency has been suggested due
to the disadvantages of sensitivity to outliers and failure to reveal measurement errors
(Schmidt, 1985; Greene, 1993). However, the most critical problem of using regres-
sion-based methods is mis-specification (Giannakas et al., 2003; Gonzalez and Castro,
2001). It is necessary to specify a particular production function (e.g., Cobb-Douglas
or translog form) before measuring the frontiers of DMUs, and different production
functions may yield different results. However, it is hard to specify a correct production
function in advance because of the complex relations of input and output variables.

This chapter attempts to provide a flexible and robust method for finding the pro-
duction function automatically so that the linear and nonlinear relations between input
and output variables can be considered. Section 8.1 introduces the concepts of DEA
and regression-based frontier models for evaluating the technical efficiency of DMUs.

8.1 TRADITIONAL DEA

DEA is a mathematical programming technique that can calculate the relative effi-
ciencies of DMUs according to multiple inputs and outputs. Thus, when facing topics
that involve investigating the efficiency of converting multiple inputs into multiple
outputs, DEA can be an appropriate and useful technique. Furthermore, DEA makes
it possible to benchmark the best practice DMU and provides estimates of the poten-
tial improvements for DMUs that are considered inefficient.

DEA has been applied extensively in the managerial and economics fields to solve
multi-criterion problems. Weber (1996) and Liu et al. (2000) applied DEA in evalu-
ation of suppliers for an individual product. DEA has been applied to evaluate the
performance of private sector facilities such as banks and power plants (Berg et al.,
1991; Golany et al., 1994). Instead of investigating the operation efficiency of cor-
porations in various industries, DEA is also considered a good technique to provide
the performance indicators when outputs are not defined clearly, for example, the
productivity of public sectors such as universities, hospitals, and government institu-
tions (Bedard, 1985).
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The origin of DEA can be traced to the simplex algorithm used to estimate pro-
duction possibility frontiers and access technical efficiency proposed by Dantzig
(1951). Farrell (1957) developed a measure of technical efficiency calculated from
sample data. Charnes et al. (1978) reintroduced and developed the mathematical
method as DEA. Some comprehensive reviews are provided by Boussofiane et al.
(1991), Seiford (1996), and Charnes et al. (1989).

The first DEA model discussed here is the CCR (Charnes, Cooper and Rhodes)
model introduced in 1978. The input-oriented CCR form of a DEA mathematical
programming model is:

t
2r=1 uryrjo

max hy = -
2 ViXijo

(8.1)

t
2}":1 uryrj < 1’

s.t. j=1,...,n,
i ViXii
u, 2¢e>0, r=1,...1,
v, 2e€>0, i=1,..,m,

where u, is the weight of output r, v; is the weight of input i, y,; is the output r of DMU
J»> X;; 1s the amount of input i of DMU j, 7 is the number of outputs, m is the number
of inputs, n is the number of DMUs, and € is a small positive number (in general, €
is taking € = 10-°.

To maximize the efficiency score of a DMU j,,, the objective function, we choose a
set of weights for all inputs and outputs. The constraint set ensures that the efficiency
scores of all DMUs will not exceed 1.0. The last two constraint sets ensure that all
inputs and outputs are included in the model, that is, no weights are set at 0. A score
of 1 represents an efficient DMU j,; other values are considered inefficient.

Equation (8.1) is the ratio form of DEA that has an infinite number of solutions.
To find a solution, the formula can be converted into a linear programming problem
by moving the denominator in the first constraint set in Equation (8.1) and setting

the denominator to 1:
t

max hy = 2”’ Vrio (8.2)

r=1

t

s.t. z Vi.xijo = 1,

i=1

t m
E Uy Yy — E vix; <0, j=1...,n,
r=1 i=1

u,2€>0, r=1,...,t,

vize>0, i=1,....m
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where u, is the weight of output r, v; is the weight of input i, y,; is the amount of output
r of DMU j, x;; is the amount of input i of DMU j, 7 is the number of outputs, m is the
number of inputs, 7 is the number of DMUs, and € is a small positive number. The
dual model of Equation (8.2) is:

max 20 = Sli 5T+ zs;] (8.3)
i=1 =1

n

St ZoXj, — E xihi —si =0, i=1,.,m,

J=1

n
+
E yr]7\‘j -5 = Yijo» r=1,...,t,
J=1
+ -
Aj,si.s, 20,

where zg,s;, s, are the dual variables. Based on Equation (8.3), a DMU j, is effi-
cient in the dual optimal solution, that is, when zo =1 and s; =s; =0 for all i and
r. Conversely, for an inefficient DMU, appropriate adjustments of the inputs and
outputs can be proposed according to the difference in performance to the efficient
level.

Example 8.1

Assume five DMUs are to be evaluated by their input and output information
shown in Table 8.1. We can use the input-oriented CCR to obtain the results of
each DMU as shown in Table 8.2. The results from the CCR model indicate that
the DMUs B and C are both efficient. However, DMU B outperforms DMU C in
the criterion of time as a benchmark for another DMU. Hence, we can consider
DMU B as the best followed by DMU C, DMU E, DMU D, and DMU A. We next
utilize the BCC model to reconsider the above problem and obtain the efficient
scores of DMUs shown in Table 8.3. The results from the BCC model show that
DMU B Is the best unit; DMUs C and D perform equally; and DMUs A and E are
inefficient.

Several kinds of DEA models have been proposed more recently. For example,
interval DEA models (Cooper et al., 1999) and fuzzy DEA models (Kuo et al., 2006;
Guo and Tanaka, 2001; Entani et al., 2002) are proposed to deal with imprecise
input and output data. Network DEA models (Fare and Grosskopf, 1996, 2000) are
used for evaluating network divisions of DMUs and multi-objective programming
approaches for DEA (Yu et al., 2004; Chiang and Tzeng, 2000). Here, we introduce
network DEA models based on their popularity in recent years and discuss multi-
objective programming for DEA because of its relevance.
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TABLE 8.1
Input and Output Data for Example 8.1
Input Output
DMU X1 X3 Vi Y2
A 16 10 4 2
B 10 8 6
C 12 14 8 4
D 18 16 10 8
E 14 14 8 6
TABLE 8.2
CCR Model for Example 8.1
Times as
Benchmark Benchmark for
DMU Score (Lambda) Other DMU
A 0.533333 B (0.666667) 0
B 1 B (1.000000) 3
C 1 C (1.000000) 2
D 0.901639 B (1.229508); 0
C (0.327869)
E 0.904762 B (0.666667); 0
C (0.500000)
TABLE 8.3
BCC Model for Example 8.1
Times as
Benchmark Benchmark for
DMU Score (Lambda) Other DMU
A 0.8 B (1.000000) 0
B 1 B (1.000000) 2
C 1 C (1.000000) 1
D 1 D (1.000000) 1
E 0.952381 B (0.333333); 0

C (0.333333);
D (0.333333)
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8.2 NETWORK DEA

Network DEA was proposed by Fare and Grosskopf (1996, 2000) as a general form of
the traditional DEA model. In traditional DEA, a DMU is the basic unit of analysis,
and we can only evaluate the performance of each DMU from input and output val-
ues. Therefore, the processes of DMUs that transform inputs to outputs, are viewed
as a black box. However, network DEA considers sub-units or sub-technologies of
DMUs as basic units of DEA. Thus, we can determine network efficiency by calculat-
ing the interrelated production frontiers.

We now describe the notations of network. Let x € R} be the inputs of DMUs;
0x is the network exogenous vector and indicates the input vector from source 0
used in activity i; P/ represents the jth sub-technologies; 5y is the output produced
by P’;and P/(-) denotes the jth output set. Figure 8.1 illustrates the network DEA
concept. Based on the figure, the network model can be represented as:

P ={(iy+iy+iy):
(1y+y)eP' (bx)
(fy+y)eP'(5x) (8.4)
yeP' (3x,iy+3y)

5x+%x+8x£x}

The network DEA model can utilize radial measures of efficiency such as the CCR
(Charnes et al., 1978) or BBC (Banker et al., 1984) models as the basic DEA meth-
odology and the production possibility set.

Tone and Tsutsui (2009) proposed the slack-based measure (SBM) approach for
evaluating the efficiency of DMUs. The major difference between the SBM approach
and previous method is that SBM is a non-radial method and is suitable for measuring
efficiencies when inputs and outputs may change non-proportionally. Therefore, this

1 Ty
P
0% y l
— N N
X 0 3 " PP 4))
0X 3 A [/
3
2)

FIGURE 8.1 Example of network DEA.
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method can decompose the overall efficiency into divisional units. In addition, the
SBM approach can rank the divisions (Cooper et al., 2007; Tsutsui and Goto, 2009).

In this section, we introduce the SBM approach (Tone and Tsutsui, 2009). Assume
n DMUs (j = 1,...,n) consist of K divisions (k = 1,...,K). Let m, and r, be the num-
bers of inputs and outputs to Division &, respectively. A link leads from Division k
to Division & by (k,h) and the set of links by L. Then, the input resources to DMU,
are defined as {x} e RV, j=1,...,n;k =1,...,K}; the output products from DMU,
are defined as {yf eRY¥, j=1,...,m;k=1,...,K}; and the linking intermediate prod-
ucts from Division k to Division 4 are defined as {z}k"‘) e R, j=1,...,n;(k,h) e L}
where #,, is the number of items in Link (k,h). The production possibility set
{x*,y*,2"} can be defined by:

n

x"szfk’;, k=1,...K, (8.5)
j=1
Y2 Y k=1K, (8.6)
j=1
MUDES 2 2K, (8.7)
j=1
MUDES 2 2L, (8.8)
j=1
Y Ah=1 2l zo0, (8.9)
j=1

where A* e R} is the intensity vector corresponding to the kth division. Note that if
we delete the Equation (8.9) from the above model, we can deal with the CRS instead
of VRS case. DMU, (0 = 1,...,n) can be represented by

2N+, k=1K, (8.10)

y(/f >y A s, k=1,.. K,

where x* = (xf,...,x*) e R, y* =(yf,...,yr) e R, and s (s"") are the input
(output) slack vectors. Note that the SBM approach claims all observed data are posi-
tive. If negative or zero data are considered, we should transform them to positive
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data first (Tone, 2004). In order to define the linking constraints, two possible cases
can be considered:

Free link value case — The linking activities are freely determined while main-
taining continuity between input and output:

6N = ZEONK (), (8.11)
where

2 =, L) e R, (8.12)

Fixed link value case — The linking activities are kept unchanged:

250 = 76N 7 (ke h), (8.13)

28" = 2N Y (k).

The first case indicates that the link flow may increase or decrease in the optimal
solution of the linear programming. On the other hand, the latter case indicates that
intermediate products are beyond the control of DMUs. Finally, we can define the
efficiency scores of each DMU corresponding to the selected orientation, i.e., input,
output, or non-oriented.

8.2.1 INPUT-ORIENTED EFFICIENCY

The input-oriented efficiency of DMU, can be calculated as:

K 1 Mg S-k_
0/ = min zwk P 2 L 8.14)
Mt P my Xio

i=1

5.t. (8.10) and (8.11) or (8.13),

where wk is the importance of the kth division such that X5, w* =1. Hence, if
0, =1, the DMU, is called overall input-efficient. Furthermore, we can define the
input-oriented divisional efficiency score as:

1 [ <& sk
0, _1—mk[z " ] Vk=1...K (8.15)

where s/~ is the optimal input slack s/~ of Equation (8.14). The DMU, is called
input-efficient for the kth division if 6, =1. In addition, the overall input-efficient
score is the weighted arithmetic mean of the divisional scores.
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8.2.2 OutpPuT-ORIENTED EFFICIENCY

The output-oriented efficiency of DMU, can be calculated as solving the follow-
ing programming:

U, = max Zw [1+{2 yh H (8.16)

5.t. (8.10) and (8.11) or (8.13)

where wk is the importance of the kth division such that Y& wk =1 Therefore, if
T, =1, the DMU, is called overall output efficient. We can also define the output-
oriented divisional efficiency score for the kth division as:

1
kooskt)
1+Vk( r=1 syk)

ro

T = Vk=1,...,.K (8.17)

where s, is the optimal output slack s of Equation (8.16). The output-oriented
overall efficiency score is the weighted harmonic mean of the divisional scores.

8.2.3 NON-ORIENTED EFFICIENCY

The non-oriented efficiency of DMU, can be defined as the following fractional
programming:

k_
K mi S
leW[l_W( i=1 k)]

10

pz = k kink+ k+
AN st s K k 1 % Sr
k=1 W |:1 + 7( =1 _y'k ):I

ro

(8.18)

s.t. (8.10) and (8.11) or (8.13),

where w* is the importance of the kth division such that Y, w* =1. When p; =1,
the DMU, is called overall efficient. Then, the non-oriented divisional efficiency
score for the kth division can be defined as:

1—L( i k)

my i=1 L,k

Py = S Vk=looK (8.19)
1+rk( ;;(0 )
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Node 1

Node 2 Node 3

l
(oo

FIGURE 8.2 Network DEA model.

where sf~ and s are the optimal input and output slacks of Equation (8.18). The
other properties of network SBM models are discussed in Tone and Tsutsui (2009).

Example 8.2

Consider a network DEA model as shown in Figure 8.2. Assume the data of the
model are listed in Table 8.4. That is, there are three nodes (or divisions) with
two intermediates in the system. In addition, we assume all divisions are equally
important. We want use the network SBM model to evaluate the DMU:s.

First, we employ the input-oriented SBM model with CRS and VRS to evalu-
ate the efficiency scores of the DMUs. Then, we can obtain the results as shown in
Tables 8.5 and 8.6.

TABLE 8.4
Network DEA Data
Node 1 Node 2 Node 3 Intermediates

DMU Input1 Input2 Output1 Input3 Output2 Intermediate 1 Intermediate 2
A 5 4 7 6 9 6 6
B 3 3 5 9 6 8 9
C 10 4 8 7 6 6 3
D 7 3 3 7 7 7 8
E 6 7 6 8 6 7 9
F 8 5 6 8 4 2 6
G 3 2 6 2 5 4 5
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The explanation of tables is similar to that for traditional DEA models. However,
we can understand the performance of each division via the network DEA models.
Readers can use output-oriented or non-oriented network models to compare the
results with Example 8.2.

8.3 FUZZY MULTI-OBJECTIVE PROGRAMMING (FMOP) TO DEA

FMOP to DEA provides a unitary weight (u",0") for all DMUs evaluated by an
equal standard (Chiang and Tzeng 2000, 2003). By this approach, we can obtain the
efficiency rating of each DMU more fairly. Moreover, all DMUs can be treated simul-
taneously, which makes the method effective for handling large numbers of DM Us.

8.3.1 MopbeL 1

max z, = w (8.20)
20X,

max z, = 727 Hryra
2L WX
Zizl “vrym

max z, = ——————
2L X,

Zizl Mryrk <1 k

1,2,..,n
DL ;X

S.t.

w,o; 2e>0

where x;, denotes the value of the ith input for the kth DMU, y, is the value of jth out-
put for the kth DMU, and ¢ is a small positive number called the non-Archimedean
quantity that denotes the unitary weight for all DMUs in fuzzy multiple objective
programming to DEA.

By considering the efficiencies of all DMUs, we can establish a multiple objective
linear programming (MOLP) model. This model can be solved by the fuzzy multiple
objective linear programming (FMOLP) approach, as proposed by Zimmermann (1978).
FMOP to DEA adopts this approach to obtain common weights that can maximize all
DMU efficiencies. FMOLP utilizes membership function transfers of multiple objective
functions into a single objective function. The membership function is as follows:

0, % S 2k
Z —ZL
k k L R
“’k(zk) = R JR Zk S Zk S Zk (8.21)
Tk — Zk
R
17 Zk 2 Tk
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ﬂ/(zj)

1.0

z; Z oz zi(u, w)

FIGURE 8.3 Linear membership function of z,.

where z{ and Z are the negative ideal solution and the positive ideal solution,
respectively, for the value of the objective function Zx, such that the degree of mem-
bership function is [0, 1]. The geometric view of the linear membership function is
shown in Figure 8.3.

The degree of membership function of zx in 1(zx ) refers to the achievement level
of the efficiency ratio for DMU,. The problem of obtaining the maximum decision is
to choose (W*, ®*), such that:

maxmin{u,((zk)‘k=1,2, ooy 11} (8.22)
H,® k
o Ll
20Xy
W(zx) 2o

Ur,®;, 2€>0,Vr,i.

Let the achievement level of the objective functions for Model 1 be at a larger level:

L

_ Tk — 2k
~ _R L
Zk — 2k

(8.23)

Equation (8.24), via variable transformatlon has transformed Zj =0 X i td-o)- zF ;
where z;is a convex combination of zy ; and zF 7> Equation (8.22) can be rewritten
as Equatlon (8.24). According to the concept of multiple objective linear program-
ming, we can determine a weight that satisfies all DMU restrictions. W, o) js
the common weight of all DMUs evaluated on a consistent standard of ranking.

maxmin{Zj = ZMM} (8.24)

wo ;il 0)l-x,-j

m<l k=12, ...n

S.t.
20Xy

ZS: . .
%Zazf_f_(l_a)zf’ ]:1,2,...,”
i=1 ;X
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By rewriting Model 1, Model 2 can be obtained. Model 2 is a nonlinear programming
that may be solved by the bisection method, as proposed by Sakawa and Yumine
(1983). By employing Model 2, a common weight (L*, ® ) can be determined for
all DMUs by directly ranking them.

8.3.2 MODEL 2
max o (8.25)

S.1. Zu,y,k—Zw,-xik SO, k=1,2, e n,
r=1 i=1

Zu,yrj—(xzw,x,j 20, j:1,2, ey N,

r=1 i=1

K., ®=2e>0

Next, we give an example of supplier rating to illustrate the procedures of FOMP to DEA.

Example 8.3

Assume that the efficiency levels of five firms designated A, B, C, D, and E, are to
be evaluated according to their input and output data as shown in Table 8.7. In
addition, assume that the target values of ideals are the best values for each attri-
bute across the five firms. Adding a set of target values can be viewed as an ideal
alternative for management, as these values contain exactly what management
requires. First, we use raw data (without information on the ideal) to calculate the
efficiency of each DMU as shown in Table 8.8. The results in Table 8.8 indicate
that firm A is efficient and the best DMU. The rank of all five firms is A > D >
C > B > E. On the other hand, if we consider the ideal as the benchmark of the
DMUs, we can obtain the efficiency of each DMU as shown in Table 8.9.

Table 8.9 demonstrates that firm A is still the best DMU even though it is not
efficient. The DMU ranking is A > C > B > D > E. Comparing with the results of

TABLE 8.7
Raw Data for Example 8.3

Ideal A B C D E
Input 52 52 82 64 100 84
Output 1 97 57.5 77.25 62.5 97 57
Output 2 76 70 76 76 76 58
Output 3 95 90 95 80 70 60

Output 4 100 70 70 70 100 40
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Tables 8.8 and 8.9, we can see that the introduction of an ideal may change the rank
of the DMUs and affect the final decision making.

Next, we propose the improving directions to allow firms to achieve efficiency as
shown in Table 8.10. The results shown in Table 8.10 can be explained as follows.
Firms D and E must decrease their Inputs to achieve a better rank. The ideal point
will become adjustable after upper management needs are met. Therefore, adding an
ideal list can indicate areas in which the firm should improve.

TABLE 8.8
Efficiency of DMU without
Ideal Information

DMU Efficiency Rank
A 1 1
B 0.85 4
C 0.88 3
D 0.87 2
E 0.61 5
TABLE 8.9
Efficiency of DMU with Ideal Information
DMU Efficiency Rank
Ideal 1 Benchmark
A 0.92 1
B 0.63 3
C 0.81 2
D 0.52 4
E 0.47 5
TABLE 8.10
Improving Directions for Firms
Ideal A B C D E
Input 52 M D D D D
Output 1 97 I I I M I
Output 2 76 I M M M I
Output 3 95 I M I I I
Output 4 100 I | I M I

1 = increase. D = decrease. M = maintain.
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Motivation and
Resource Allocation
for Strategic Alliances
through the De

Novo Perspective

In the past two decades, strategic alliances have become important business issues.
One aspect of these alliances is their formation. Although many theories and mod-
els such as strategic perspective, organization learning, and other explanations have
been proposed to explain alliance formation, their perspectives are usually limited
(Tsang, 1998; Borys and Jemison, 1989). Additionally, the problem of resource allo-
cation is another crucial issue and previous papers seem to discuss only why stra-
tegic alliances should be formed but fail to cover what to do next. In contrast, this
chapter proposes a holistic perspective to explain the formation of strategic alliances
and provides a method for optimal resource allocation among alliances.

In recent years, mainstream research can be summarized as the use of transaction
cost theory and a resource-based view to explain the formation of strategic alliances.
Of these two, transaction cost theory focuses on cost aspects (including transaction
and product costs), whereas the resource-based view emphasizes the combination
of resources among alliances. In our view, both theories represent reasons to form
strategic alliances and so should be considered together.

Neither transaction cost theory nor the resource-based view will provide a method
to resolve the problem of resource allocation. Traditional mathematical systems such
as linear programming and dynamic programming are valid tools for providing opti-
mal solutions in operations research areas. However, when these tools are used to allo-
cate the combined resources of alliances, synergies cannot be explained or displayed.
The reason lies in the assumption of additivity. The assumption of resource indepen-
dence does not allow a synergy effect, and so is not suitable for strategic alliances.

In this chapter, transaction cost theory and the resource-based view are combined
into what we call the de novo perspective and used to explain the formation of stra-
tegic alliances. In addition, the problem of optimal resource allocation between alli-
ances is proposed using de novo programming. We present a numerical example to
demonstrate the criteria of strategic alliances and assign optimal resource allocation.

Based on numerical results, we show that the motivation for strategic alliances
is determined by both transaction cost and firm resources. However, whether firms

101
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enter into alliances depends on the presence of necessary and sufficient conditions.
When the necessary condition is satisfied, a firm has the motivation to form stra-
tegic alliances, but only when sufficient conditions are met will a firm enter into
alliances. In addition, the results also show the optimal resource allocation of firms’
resources.

9.1 MOTIVATIONS FOR STRATEGIC ALLIANCES

A strategic alliance may be defined as a cooperative arrangement between two or
more independent firms that exchange or share resources to gain a competitive advan-
tage. Many studies discuss the formation of strategic alliances using various theories
and models such as transaction cost theory (Anderson and Gatignon, 1986), the per-
spective of strategy (Porter, 1980; Hagedoorn, 1993), resource dependence theory
(Preffer and Nowak, 1976; Preffer and Salancik, 1978), organizational knowledge
and learning (Nelson and Winter, 1982; Kogut, 1988). and the resource-based view
(Barney, 1991; Das and Teng, 2000). However, previous studies have not approached
the problem from a holistic perspective.

To summarize these theories, the perspective of the strategy is seeking appropri-
ate alliances that can improve a firm’s competitive position or increase its competitive
advantage. In contrast, in the resource dependence theory, the motivations for strategic
alliances focus on a firm’s lack of valuable resources. Organizational knowledge and
learning focus on the desire of a firm to acquire or other firms’ organizational knowledge.

Recently, transaction cost theory and the resource-based view have been used to
explain the formation of strategic alliances and comparison of both theories were
proposed (Chan and Chen, 2003; Tsang, 1998). This chapter discusses both transac-
tion cost theory and the resource-based view along with perspectives, techniques,
and examples.

9.1.1 TrRANSAcCTION CosT THEORY

Based on an economics approach, transaction cost theory was proposed by Coase
(1937) to explain the decisions made by firms regarding marketing and hierarchy
issues. In brief, when the transaction cost of an exchange is high, the form of inter-
nalization will predominate and vice versa. However, one restriction is that transac-
tion cost theory explains only extreme conditions. This limitation was extended by
Williamson to explain strategic alliances (Williamson, 1975, 1985, 1991a and b).

This extension can describe how transaction cost theory uses transaction cost
(determining or enforcing contract cost) and production cost (through internal coor-
dination or managing) to determine markets or hierarchies. However, when the opti-
mal total cost involves neither markets nor hierarchy, strategic alliances should be
the best choice (Gulati, 1998; Ramanathan et al., 1997).

Williamson suggests that transaction costs should include the direct costs of
managing relationships and the possible impact costs of making inferior governance
decisions. These concepts can be described as bounded rationality, opportunism,
asset specificity, and uncertainty (Rindfleisch and Heide, 1997; Parkhe, 1993; Dyer
and Singh, 1998).
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Although transaction cost theory provides a useful explanation for the forma-
tion of strategic alliances, it has a major weakness in that the analysis focuses on
single-party cost minimization rather than global cost minimization (Zajac and
Olsen, 1993). Furthermore, it does not assign a significant role to partner firms’
resources in theorizing (Das and Teng, 2000) that led to the emergence of the
resource-based view.

9.1.2 REesOURCE-BASED ViEw

A resource-based view (Barney, 1991; Grant, 1991; Wernerfelt, 1984; Barney et al.,
2001; Barney, 2001) proposes another perspective on strategic alliances, and states
that the valuable resources that firms do not own serve as motives for strategic alli-
ances. The literature provides many classifications of such resources (Barney, 1991;
Das and Teng, 2000; Grant, 1991; Miller and Shamsie, 1996) but resources are gen-
erally classified as tangible (e.g., financial and technological) and intangible
(e.g., knowledge-based and managerial).

Additionally, heterogeneity is the reason why firms are distinctive and acts as
the basis of the resource-based view (Penrose, 1959). In order to acquire competi-
tive advantage and the ability to respond quickly to a dynamic environment, a firm
should consider how to construct and extend limited resources to develop a capabil-
ity to gain a sustainable competitive advantage (Teece et al., 1997).

The three ways for a firm to build and extend its resources are through hierarchy,
markets, or alliances. However, the assumption of heterogeneity across firms causes
the cost of hierarchy and markets to be high. In the resource-based view, firms seek
complementary resources to create synergies and acquire sustainable competitive
advantages (Harrison et al., 1991; Lockett and Thompson, 2001). When the degree
of heterogeneity among firms increases, the higher probability of forming alliances
creates rents (Barney, 1991). In short, by way of strategic alliances, firms can gain
their partners’ complementary resources to enhance or reshape their internal pro-
cessing to create synergies and competitive advantages within the market (Nohria
and Garcia-Pont, 1991; Porter and Fuller, 1986).

Although the resource-based view imposes a reliable perspective on a firm’s
resources, some notable questions must be answered to explain the formation of stra-
tegic alliances. For example, what are the criteria for forming alliances when a firm
lacks desired complementary resources? Obviously, not every firm with or without
complementary resources enters alliances in the real world. In addition, a firm may
even acquire a partner firm’s resources. What should the firm do after entering an
alliance? Firms cannot gain anything unless they use their newly acquired resources
well. In other words, the optimization of resource allocation is the key to whether a
firm can create synergies and achieve a competitive advantage.

9.2 PROBLEMS OF RESOURCE ALLOCATION

Based on the above discussions, we know that resources play a central role in the
formation of strategic alliances. However, neither transaction cost theory nor the
resource-based view provides a method to solve the problem of resource allocation.
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In operations research, optimal resource allocation has been a popular issue and one
of the notable methods for seeking a solution is mathematic programming.

Mathematical programming is a technique that distributes limited resources to
competing activities in an optimal way. Of the several mathematic programming
techniques, linear programming is the most popular. Linear programming was
developed by Kantorovich and Koopmans (1976), and the general matrix formula-
tion of linear programming can be described as follows.

max Cx
s.t. Ax < b, 9.1)
x20

where both C=C,, and A=A,,, are matrices, b= (b,,....b,)" €R", and x =
(XiseeesXjseresX,)€R". Let the k™ row of C be denoted by ¢* = (cf,...,c},...,c, ) eR",
so that ¢“x, k =1,...,4, is the k' criterion or objective function. There are several ways
to solve this question, such as the simplex method or the interior point algorithm, and
the solutions indicate the optimal way to distribute limited resources.

Although mathematical programming provides a way to resolve the problem of
resource allocation, the basic assumption of additivity seems irrational when we
extend this method to managing the resource of an alliance. This is because additiv-
ity presumes that all productive elements are independent and the total effects equal
the summation of each individual effect. The most critical problem arises because
this assumption makes it impossible for firms to create synergies.

The famous case typifying the problem of element independence is the emer-
gence of mass customization. Traditionally, a firm has two ways to gain profit. One
is to reduce unit cost by economic scaling while earning the same unit revenue. The
other way is to increase unit revenue by customization at higher unit cost. When
element independence exists, it is impossible to reduce unit cost and increase unit
revenue simultaneously. However since the concept of mass customization has been
proposed and is used in practice, the restriction of element independence should be
released.

Based on Figure 9.1, we assume that an alliance in a market has two members
(A and B) and m,, and mp denote the profits of A and B, respectively. The goal
of both firms is to optimize profit maximization and the feasible solutions have
circular shapes. Usually, compromise solutions are the best decisions in traditional
mathematic programming and they fall into the AB formula. Options with points
A, B, and C (C is the ideal point) are unavailable because of the assumption of
additivity.

Additivity (the combination of alliance resources) allows only 1 + 1 = 2 solutions
rather than 1 + 1 > 2 answers. However, synergies are usually the results of strategic
alliances. In other words, if a firm has resource constraints that cannot be changed,
the traditional methodology of mathematical programming is rational and available
(Babic and Pavic, 1996). However, if we redesign or reshape a system, the traditional
methods are no longer suitable and this usually happens in strategic alliances.
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FIGURE 9.1 Feasible options using linear programming.

9.3 DE NOVO PERSPECTIVE OF STRATEGIC ALLIANCES

De novo programming may be extended. The extension is called the de novo per-
spective and it is useful for explaining the formation of strategic alliances. The de
novo perspective combines transaction cost theory and the resource-based view to
provide a holistic perspective for achieving an aspiration or desired level.

Based on transaction cost theory, if the minimum cost lies between the transac-
tion cost and the production cost, a firm should seek strategic alliances. Here we add
alliance cost (shared operation, negotiating, and risk costs) to explain the formation
of strategic alliances. The rule of transaction cost theory can be modified. For exam-
ple, if alliance cost < >, the individual firm’s cost, the firm should seek alliances.

From the resource-based view, firms seek strategic capabilities by linking to part-
ner resources to create synergies in a market. The rule of the resource-based view
can be modified to reflect the situation. If alliance revenue > i the individual
firm’s revenue, the firm should seek alliances.

We now combine transaction cost theory and the resource-based view to form
the de novo perspective. If a firm only chooses hierarchy or alliances, for exam-
ple, between two firms (S and 7), the rule of strategic alliances can be utilized. If
VISUT)-U(Csr)>V(S)+V(T)-U(C,)—U(Cy), the firm seeks alliances. If we
extend this to a general form, the expression is:

N
If V(Sl USZ---USN)_U(Calliance cost) ZZ[V(SZ)_U(Sz)] = 1, 2,---, N (92)

i=1

where V() denotes the revenue function, U(-) denotes the cost function, Cg and C;
denote the total product cost in S and 7, respectively, and Cy, denotes the alliance
cost between S and 7. The probability of firms, S and T seeking alliances can be
expressed, respectively, as:

1 AWV(SUT)-8U(Csr)>V(S)-U(Cs)

P(S)=
0 AV(SUT)—8U(Cs)<V(S)-U(Cs) ©.32)
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and

1 (1-MV(SUT)=(1=8)U(Csp)>V(T)=U(Cy)
P(T)= (9.3b)

0 1-MV(SUT)-(1-0)U(Csy)<V(T)-U(Cy)

where A denotes the percentage of increasing alliance revenue in S and 6 denotes
the percentage of reducing alliance cost in S. Now we can shift our discussions to de
novo programming. The problem of resource allocation can be expressed as:

max V(SUT)-U(Cs)

9.4)
st. wx<B, x20

wherew = pA = (w,,...,w,)€ R" andp = (p,,...,p,,) € R" and B € R represent the unit
price of resources and the total available budget, respectively. Then the knapsack
solution is

x*=]0,...,BIC,,...,0]"

9.5)
where
cile; = max(clc;)
J 9.6)
and the optimal solution to (9.4) is given by (9.5) and
b* = Ax* (9.7)
The final alliance profit (W(S”)) in S is
Y(S*) =i'b* - U(Cyy) 9.8)

where i is the identity column vector. Based on Equation (9.8), we can judge whether
or a firm should seek alliances by Equation (9.2) and Equation (9.3). Furthermore,
using de novo programming, we can easily allocate the optimal resources and create
synergies between alliances.

9.4 NUMERICAL EXAMPLE

In this section, we use a numerical example modified from Zeleny (1995) to demon-
strate the profit difference between hierarchy and alliances and propose criteria to
determine whether a firm should enter strategic alliances.

For simplicity, we assume two firms designated S and T produce the same two prod-
ucts and have the same two production elements and total product costs denoted U(Cy)
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and U(C;), respectively. Firm S can determine its optimal resource allocation by using
mathematical programming:

max 1 =400x, +300x,

max f, =6x; +8x,
s.t. 4x, <10
2.X1 + 6.XQ < 12

12x,+ 4x, <30
3x,<5.25
4x,+ 4x,< 13

X, X, 20

where p, =30, p,=40, p;=9.5, p,= 20, and p5s= 10 are market prices (dollars per unit)
of the resources b, through b5, respectively. Functions f; and f, denote the revenues of
product 1 and product 2, respectively, and B = 1300 denotes the firm’s total budget.

Using traditional mathematical programming, we can easily solve the optimal
distribution of a resource portfolio at x, = 2.125 and x, = 1.125. Firm S can achieve
total revenue by the summation function f; and f, equal 1187.5 + 21.75 = 1209.25.
Then the profit of firm S can be expressed as 1209.25 — U(Cs). Using the same pro-
cedure, the profit of firm 7' is 1209.25 — U(Cr).

On the other hand, if the two firms enter an alliance, the problem of resource
allocation can be solved by de novo programming as follows.

max fi =400x, +300x,

max > =6x;+8x,
S.t 4x1 <20
2x,+6x, <24

12x,+4x, £60
3x, <10.5
4x1 + 4X2 < 26

X,x, 20

Let B = 2600 denote the total alliance budget. First, we use traditional mathematical
programming to solve the knapsack problem.
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(1) For the max f;, we solve
max 1 =400x; +300x,
s.t. 354x,+378x, <2600

X,x, 20

and the answer can be formed as x{ = 2600/354 =7.34, x; =0, f,=2937.85, and
B' =2600.

(i1) For the max f,, we solve

max f=6x;+8x,
s.t. 354x,+378x, <2600
X1,x, 20

and the solutions are x! =0, x) =2600/378 = 6.88, f, = 55.03, and B> = 2600.

After solving the above problems, we can find the ideal point /= (2937.85, 55.03),
the synthetic solution x™* = (7.34, 6.88), and the synthetic budget B**= 5200. The ratio
r** must be calculated to contract the synthetic solution to an optimal designed solu-
tion x*. The results can be shown as follows:

r* = B/B* = 2600/5200 = 0.5

x¥=r1r xx =(0.5x7.34, 0.5% 6.88) = (3.67, 3.44)

Then, the alliance revenue can sum functions f; and f, as (400 x 3.67 + 300 x 3.44)
+ (6 x 3.67 + 8 x 3.44) = 2549.54. The alliance profit can be expressed as W(S)
= 2549.54 — U(Cyr). Although the alliance revenue is more than the total of the
individual firm’s profit, it does not necessarily go to strategic alliances because the
necessary condition of strategic alliances is:

2549.54 — U(Cgy) > 1209.25 — U(Cy) + 1209.25 — U(C,) 9.9)

When the formulation
U(Csr)<131.044+ (U(Cs)+U(Cy)) (9.10)

is satisfied, the firm has stimulus to seek strategic alliances. However, Equation
(9.10) does not ensure that the individual firm will enter strategic alliances, and the
criterion depends on sufficient conditions. For firm S, the sufficient condition for
strategic alliances is

A-2549.54— OU(Csy) > 1209.25—U(Cs) (9.11)

and when Equation (9.11) is satisfied, firm S enters alliances.
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Note that Shi (1995) provided six kinds of optimum path ratios to find the optimal
solution in de novo programming, whereas we demonstrate only one of the six. Other
kinds of optimum path ratios can also be calculated for alternatives in strategic alliances.

Extending our concept to a real-world case involves far more complex calcula-
tions than our example and may involve a large-scale alliance situation or multiple
criteria and multiple constraint (MC?) problems. In a large-scale alliances situation,
we can adopt the large-scale MC? algorithms proposed by Hao and Shi (1996) or
other heuristic methods such as multi-objective evolution algorithms (MOEAs) to
overcome the problem. On the other hand, de novo can be extended to incorporate
problems involving multiple criteria and multiple constraints:

max 0’Cx
s.t. Ax <Dy, (9.12)
x2>0

where d and v denote the unknown relative and constraint level weight vector, respec-
tively, and satisfy ||§[=1 and |[y|=1.

While several MC? programming methods have been proposed to solve the above
problem (Shi, 1999), de novo programming can be widely used to analyze various
strategic alliances. Furthermore, if strategic alliances must consider debt situations,
the contingency plan should be used (Shi, 2001).

9.5 DISCUSSION

As we know, reducing costs and enhancing revenues are the usual motives for seek-
ing strategic alliances. However, no literature has provided a concrete equation that
will help firms to determine whether to pursue alliances. In addition, resource allo-
cation between alliance members is also a difficult issue and traditional mathemati-
cal programming seems to be unable to provide a sound solution.

In Section 9.4, we demonstrate a numerical example to solve questions regard-
ing the criteria for forming strategic alliances and ensuring optimal resource allo-
cations in alliances. Neither transaction cost theory nor the resource-based view
provides criteria for firms to enter alliances. As we demonstrate, the criteria can be
classified as necessary and sufficient conditions. If increasing profit is a necessary
condition, the alliance must satisfy it. Businesses have various motives for forming
strategic alliances but only when their sufficient conditions are satisfied should alli-
ances be formed.

Based on the numerical example, Equation (9.10) can answer whether a firm should
consider strategic alliances. It indicates that only when the alliance cost U(Csy) 1is
lower than 131.04 + U(Cy) + U(C,) should a firm consider seeking strategic alliances.
Equation (9.11) provides a concrete answer to the question of whether a firm should
enter an alliance. That is, if A-2549.54— 0U(Cg;) >1209.25-U(Cy) is satisfied,
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TABLE 9.1

Comparisons of Various Perspectives

Dimensions

Level of analysis
Unit of analysis

Premise

Resource allocation
method

Motive for strategic
alliances

Transaction Cost Theory

Firm
Transaction

Minimum transactions

determine optimal

governance structures

NA

Minimum cost

Resource-Based
View
Firm

Resource

Heterogeneity of
resources among
firms

NA

Maximum value
creation

De Novo

Perspective

Firm

Transaction and
resource

Both

De Novo
programming
Both

NA = not applicable.

the firm will have economic benefit when it enters a strategic alliance. Table 9.1 com-
pares transaction cost theory, the resource-based view, and the de novo perspective.

For the second problem, traditional mathematical programming appears
unable to create synergies in alliances. In contrast, through de novo program-
ming an optimal resource allocation is planned and the results show the effects
of synergy.

To summarize, the de novo perspective provides a complete explanation for stra-
tegic alliances and the alliance criteria are offered by mathematic equations included
in this chapter. Businesses can easily make the calculations for determining actions to
take regarding strategic alliances, and the optimal distribution for alliance resources
also can be determined.

9.6 CONCLUSIONS

Transaction cost theory uses minimum cost data to analyze the results of forma-
tion of strategic alliances. The resource-based view focuses on seeking valuable
resources to achieve a global optimal result. This chapter proposes the use of the de
novo perspective to evaluate the formation of strategic alliances and provide syner-
gistic solutions for resource allocation in order to achieve the aspiration result.
Clearly, a strategic alliance is a multi-criteria optimal system design (MCOSD)
problem rather than a multi-criteria optimal system analysis (MCOSA) problem.
Productive resources should not be engaged individually because they do not con-
tribute individually according to their marginal productivities. In alliance situations,
the de novo approach is more suitable than traditional mathematical programming.
The most critical problem with the de novo approach is that the required budget
will exceed the subject budget calculated via de novo programming in some situa-
tions. This may be a serious problem for individual firms, but the financial leverage
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available in alliances can overcome this difficulty. In addition, the profit from econo-
mies of scale can also be seen with De Novo programming.

In short, the De Novo perspective provides another view of strategic alliances
and determines the optimal resource allocation. Unlike traditional mathematical
programming, the De Novo approach does not have the limitation of element inde-
pendence. This characteristic allows this operations research technique to extend to
analysis of synergies, economies of scale, and other spill over effects.






’I O Choosing Best Alliance
Partners and Allocating
Optimal Alliance
Resources Using Fuzzy
Multi-Objective Dummy
Programming Model

A strategic alliance may be defined as a cooperative arrangement between two
or more independent firms that exchange or share resources to gain a competitive
advantage. Since the 1980s, strategic alliances have been widely discussed (Porter
and Fuller, 1986; Harrigan and Newman, 1990; Auster 1994) and hundreds of papers
have been published about this issue. The essential motives of strategic alliances are
“synergy effects” as represented in the following equation:

V(kkJSk)>;V(Sk); k=1,..K (10.1)

where V(-) denotes the satisfaction (or value) function and S, denotes the kth alliance
firm. When Equation (10.1) is satisfied, firms can share better satisfaction levels than
their original states through strategic alliances.

Since some firms rush into strategic alliances without appropriate preparation
or planning to choose appropriate partners and resource allocations, their alliances
often fail (Dacin et al., 1997). Questions surrounding alliances and related criteria
and complex and diversified, i.e., alliance firms have different goals, cultures, and
resources. The best alliance partners and resource allocations may be incompatible.
This chapter proposes a model for determining the best partner choices and optimal
resource allocation for strategic alliances.

Although the criteria for choosing correct partners are widely known, for example,
complementary strengths, commitment, coordination, and compatible goals (Brouthers
et al. 1995; Arino and Abramov, 1997; Yoshino and Rangan, 1995; Gerlinger, 1991),
these papers seem to ignore resource allocation. Clearly, only by using these alli-
ance resources effectively can synergy effects ensue. The issue of resource allo-
cation in operations research (Bretthauer and Shetty, 1995, 1997; Lai and Li, 1999;

113
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Robinson et al., 1992) has been discussed extensively. Resource allocation is intended
to produce maximum profits for an enterprise and satisfaction and/or utility for cus-
tomers using limited resources. It is reasonable to incorporate both concepts to over-
come the problems surrounding choices of alliance partners and resource allocation.

In order to overcome these problems and derive a useful model, several issues
should be considered. First, since the problem of choosing alliance partners is part
of a combinatorial problem, the scaling problem should be considered. Second, the
objectives of a firm and the satisfaction expected from an alliance should be mea-
sured and calculated precisely. Third, based on market mechanisms, the unit prices
of resources should be incorporated into the selected model. It is clear that opti-
mal resource allocation varies with fluctuations in unit prices of resources. Finally,
because real-world problems usually impose restrictions, resource allocation solu-
tions should be carefully planned and supported.

This chapter proposes the fuzzy multi-objective dummy programming model to
satisfy these issues and provide the best alliance cluster and optimal resource alloca-
tion combinations. In addition, two types of strategic alliances—joint ventures and
mergers and acquisitions (M&A)—are demonstrated to allow a firm to choose the
best alliance partners and allocate optimal alliance resources. We present a numeri-
cal example using the proposed method. On the basis of the results, we can conclude
that the proposed method can provide an optimal alliance cluster and satisfaction for
alliance partners.

10.1 REVIEW OF STRATEGIC ALLIANCES

A strategic alliance may be defined as a cooperative arrangement between two or
more independent firms that exchange or share resources for competitive advantage.
From the resource-based view (Barney, 1991; Grant, 1991; Wernerfelt, 1984; Barney
et al., 2001; Barney, 2001), valuable resources that firms require but do not own
act as the motive for entering strategic alliances. Many classifications for valuable
resources have been proposed (Miller and Shamsie, 1996), and these resources are
generally classified as tangible (financial and technological) and intangible (knowl-
edge-based and managerial) resources.

In order to acquire competitive advantage and the ability to respond quickly in
a dynamic environment, firms should consider how to construct and extend limited
resources to develop the capability for sustainable competitive advantages (Teece
et al., 1997). Through strategic alliances, firms can gain their partners’ complemen-
tary resources to enhance or reshape their internal activities to create synergies and
competitive advantage within a market (Nohria and Garcia-Pont, 1991). Based on
varying degrees of vertical integration or independence (Lorange and Roos, 1992),
Figure 10.1 depicts common forms of strategic alliances.

Two questions arise. First, how can we choose the correct partners? Second, how
can we allocate the valuable resources? Clearly, choosing the correct partner is the
first step of entering a successful strategic alliance. Correct selection requires care-
ful screening and may be a time-consuming process. Furthermore, a successful
alliance requires that firms can gain nothing unless they use their newly acquired
resources effectively. In other words, the optimization of resource allocation is the
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FIGURE 10.1 Spectrum of strategic alliances.

key to whether firms can create synergies and obtain competitive advantage. In this
chapter, we demonstrate two types of strategic alliance: (1) joint ventures and
(2) mergers and acquisitions (M&A) that can provide the best partners and deter-
mine the optimal resource allocation for the alliance.

A joint venture can be defined as the sharing of assets, risks, profits, or invest-
ment projects by more than one firm or an alliance cluster (Kough, 1988, 1991;
Harrigan, 1985). Joint ventures are mechanisms for reducing the transaction costs
incurred when acquiring other firms (Hennart and Reddy, 1997). Over the time
that joint ventures have been used in practice, the number in the United States
grew by 423% between 1986 and 1995 (Hitt et al., 1997). If a strategic alliance
is a joint venture, a firm can share the surplus resources with alliance partners to
increase total alliance satisfaction. Figure 10.2 depicts the joint venture processes.

Note that based on the concepts above, it is obvious that the equilibrium of a joint
venture requires all alliance partners to achieve the same satisfaction.

Mergers and acquisitions represent an extreme strategic alliance in which two or
more firms form a single enterprise that uses all partners’ resources to optimize the
goals of the organization (Whitelock and Rees, 1993). This means that the enterprise
may eliminate products in an effort to optimize overall alliance satisfaction. A firm
will favor the M&A choice over a joint venture when the assets it needs are not
commingled with unneeded assets by the firm that holds them. The assets may be

Optimize
Alliance member 1 » Self-satisfaction
Surplus Optimize
resource - ‘ ‘
sharing Alliance member 2 "| Self-satisfaction
Optimize

A 4

Alliance memberm Self-satisfaction

FIGURE 10.2 Joint venture concept.
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FIGURE 10.3 Concept of mergers and acquisitions.

acquired by buying the firm or a part of it (Hennart and Reddy, 1997). Figure 10.3
presents the processes of M&A for optimizing alliance satisfaction.

The main difference between joint ventures and M&A is that joint ventures
emphasize the sharing of surplus resources to optimize alliance satisfaction
(i.e., alliance members still develop their own products). M&A are concerned only
with optimizing overall alliance satisfaction. To determine the way to allocate opti-
mal alliance resources in a market mechanism, de novo programming is proposed.

10.2 FUZZY MULTIPLE OBJECTIVE DUMMY PROGRAMMING

In this section, we first describe the concepts of fuzzy sets so that the readers can
better understand the method. However, we do not present all the issues concerning
fuzzy sets and restrict the discussion to relevant issues of this chapter. The concepts
of fuzzy sets were proposed to extend the classical crisp set to consider the certainty
in the interval [0,1]. Since real-world problems usually are partly true and partly
false, fuzzy sets are widely employed to deal with uncertainties, especially subjec-
tive uncertainties.

In order to determine the degree of uncertainty, the degree of membership is
developed. Given a fuzzy set A of a universe Y, the membership function of set A
can be defined as:

Li(y): Y —[0,1]
where
W;(y):1ify is totally in A (10.2)

w;(y):0ifyisnotinA (10.3)

0<u;(y)<1ify is partly in A (10.4)
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FIGURE 10.4 Fuzzy set concept.

Usually, the fuzzy set A can be represented using a triangular or trapezoidal fuzzy
number. Consider the following example in Figure 10.4. Three fuzzy sets (short,
average, and tall) represent degrees of height. The fuzzy sets of short and tall can be
represented by trapezoidal fuzzy numbers (140, 140, 150, 165) and (175, 190, 190,
190), respectively. The fuzzy set of average can be represented by triangular num-
bers 160, 170, 180.

To measure the satisfaction of strategic alliances, the concept of fuzzy sets is
used. The conventional fuzzy programming problem (Zimmermann, 1978) can be
represented as follows:

max Cx>z

- 10.5
sit. Ax<b. ( )

where > and < are the fuzzification of > and <, respectively. Then the satisfaction for
each objective aspiration level can be represented using the following linear mem-
bership function:

0 , ¢x<z,
Wz)=3 (zf—¢x)/d,, zg<ex<z (10.6)
1 s CX 227,

where zj and z; are the aspiration level and the minimum level, respectively and d,,
denotes the, subjective perception of the minimum tolerant constants that usually
assumes d, = zj — z,, and the corresponding relation can also be depicted as shown
in Figure 10.5.

Note that the minimum (maximum) level Z(li (z4) can be obtained by solving each
single objective mathematical programming model. To illustrate the two-objective
mathematical programming problem, the first minimum (maximum) level z{(z{)
can be obtained by solving the following model:

min (max) z;=c¢x

10.7
st. Ax<b. ( )
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FIGURE 10.5 Membership function for z,.

W(z)=minf{u(z,)lg=1,...,0} denotes the overall satisfaction level while u =1 — u(z)
denotes the overall regret level. We can model the joint venture and M&A strategic alli-
ance types as follows. Without loss of generalization in the maximum problem, assume /
firms form an alliance cluster and J firms are candidates to be chosen to enter the alliance.
Then, according to the concept of joint ventures, we can propose a model as follows:

10.2.1  JoINT VENTURE MODEL
min u+e
st Aix; <b;, (10.8)
S;-(A;x;)<b; where S; €{0,1},
Cx;+n—p =z,
S;j(Cix;)+n;—p; =S;(z)),
wn; /(z' = z),

. indicate the equilibrium of joint ventures,
u ZSJ ’I’l]' /(Zj _Zj)’

> consider market mechanisms,

j=1 j=1

x20;b20,where x =[x;,x;1;b=[b;,b;],i=1,....I; j=1,...,J,
x,b € Integer (where products and resources are undividable conditions),
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and where n;,n; and pi,p; denote slack and surplus variables in alliance cluster and
candidate partners, respectively, S; denotes the dummy variable in the jth firm where
1 indicates entry into the strategic alliance, e denotes the unused budget that can be
ignored in resource dividable systems but cannot be ignored in resource undividable
systems. Note that in the minimum problem we can substitute u >n; / (z —z/) and
uzS;-n;/(zj —zj-) with u>p; /(z!' —=z) and uzS;-p; 1 —zj), i.e.,, we can
ignore p; and p; when dealing with the maximum problem.

On the other hand, the M&A model can also be derived based on Figure 10.3 to
obtain the optimal alliance satisfaction as shown in the next section.

10.2.2 M&A MoDEL

min u+e
S.tr. A,»x,» < bi’ (109)
S;-(Ajx;)<b; where S; €{0,1},

Cix; + 2 Si(Cixp)+nm—pi =z + 2 5z,
=1

j=1

m
uzn (' —z)+ 2 S;-(zf — zj-) ,maximizes M&A satisfaction,

j=1

j=1 j=1

j=1 j=1

n; 20;p; 20;n; - p; =0,

> consider market mechanisms,

x20;b20, where x=[x;,x;1;b=[b;,b;],i=1,....;j=1,....J,

x,b € Integer (where products and resources are undividable conditions).

On the basis of the two models above, we can conclude the advantages of the pro-
posed method. First, we can easily choose the correct alliance partners by setting a
dummy variable S using conventional mathematical programming methods or other
heuristic algorithms such as genetic algorithms or simulated annealing. Second,
using the concept of fuzzy sets, we can easily measure alliance satisfaction. Next, by
incorporating the concept of de novo programming, the unit prices of the resources
can be considered in the proposed models.
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If both the technological coefficients and resource portfolio are undividable, the
programming can be easily rewritten as an integer programming problem. Since
several algorithms such as the branch and bound algorithms (Bretthauer and Shetty,
1995), linear knapsack method (Mathur et al., 1986; Hochbaum, 1995), and dynamic
programming algorithm (Glover, 1975), can be used to solve this integer fuzzy multi-
objective dummy programming problem, it is more suitable for dealing with real-
world alliance problems. In order to demonstrate the advantages of the proposed
method, a numerical example is employed to display the satisfaction results for both
joint ventures and M&A cases.

10.3 NUMERICAL EXAMPLE

Strategic alliances are widely adopted by firms to increase their competitive advan-
tages. By exchanging or sharing alliance resources, all alliance members can obtain
better satisfaction levels than their original levels. However, since every firm has its
own products, objective functions, constraints, and capital, it is hard for firms to find
the best alliance partners. In this section, the joint venture and M&A strategies are
considered so that we can determine sound solutions.

Assume an enterprise considers entering strategic alliances with five candidate
firms. For simplicity, these six firms all produce two products (x and y) and have
the same objectives of revenue R, quality Q, and satisfaction S, and face the same
production constraints of material M, channel C, promotion P, and expertise E.
Table 10.1 provides additional information about all six firms including technology
coefficients and capital.

TABLE 10.1
Obijective and Production Data for Six Firms
Objectives Constraints
Products R Q S M C P E  Capital
Enterprise X 78 425 352 7 2 7 2 4,800
125 274  4.86 6 8 5 3

Firm 1 X, 165 578 228 3 6 7 2 3,600
¥, 100 303 28 5 4 5 3

Firm 2 X, 85 497 421 2 3 7 2 6,400
¥, 140 277 742 5 2 5 3

Firm 3 X3 70 599 7.54 8 6 7 2 5,200
V3 120 393 344 6 6 5 3

Firm 4 X4 75 557 498 8 2 7 2 4,200
Vs 125 236 748 8 6 5 3

Firm 5 Xs 80 438 324 4 8 7 2 5,400
Y5 130 369 287 6 6 5 3

Unit price 20 15 30 10
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The aspiration level of the enterprise can be determined by solving the follow-
ing equations:

max 78x+125y
max 4.25x+2.74y
max 3.52x +4.86y

st. Tx+6y<b,,
2x+8y<b,,,
Tx+5y<b,,
2x+3y<b,4,

x,y20,
bel ,be2 ,be3 ’be4 2 Os
B, = 4800.

In order to increase the enterprise’s objective values, the joint venture strategy is
considered for choosing the best alliance partners. In addition, the corresponding
resource allocation should be determined. Using Equation (10.8), we can obtain the
best alliance cluster and optimal resource allocation for the case of joint ventures as
shown in Table 10.2.

By removing certain alliance partners, we can obtain the optimal resource alloca-
tion for the enterprise and firm 3 using the fuzzy multi-objective dummy program-
ming model as shown in Tables 10.3 and 10.4.

TABLE 10.2

Alliance Partners and Resource Allocation in Joint Venture

Resource Allocation Alliance Enterprise Firm 3
X 11.93 6.15 5.78
Y 11.74 6.21 5.53
b, 159.74 80.33 79.41
b, 129.85 61.99 67.86
b, 142.22 74.12 68.10
b, 59.09 30.94 28.15
Revenue 2324.57 1256.20 1068.37
Quality index 99.51 43.17 56.34
Satisfaction index 114.42 51.84 62.58
) 0.570 0.570 0.570

B 10,000 5,069.45 4,930.55
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TABLE 10.3

Optimal Resource Allocation in Enterprise

Resource allocation X Y b, b, b, b,y
Value 5.73 5.97 75.94 59.23 69.97 29.34
Resource allocation ~ Revenue  Quality index  Satisfaction index — u(Z,) B,

Value 1,193.39 40.71 49.19 0.43 4,800
TABLE 10.4

Optimal Resource Allocation for Firm 3

Resource allocation X Y by, by, by, by,
Value 6.24 5.65 83.84 7136 7195 2943
Resource allocation ~ Revenue  Quality index  Satisfaction index  W(Z;) B,

Value 1,114.99 59.60 66.51 0.65 5,200

By comparing Tables 10.2 through 10.4, we see that firm 3 shares redundant resources
with the enterprise, thus increasing alliance satisfaction. It is clear that the alliance satis-
faction is larger than the average satisfaction, i.e., it satisfies the following equation:

n(z) > ;[u(ze) +U(z3)] (i.e. 0.57 > ;(0.43 +0.65)=0.54)

The result indicates that due to the emergence of synergy effects, the firms have
motives to enter joint ventures. Next, we use the integer M&A model (Equation 10.9)
to determine the best alliance partners and optimal resource allocation for potential
M&A as shown in Table 10.5.

TABLE 10.5

Alliance Partners and Resource Allocation in M&A
Resource Allocation  Alliances  Enterprise Firm 2 Firm 3
X 26 12 8 6

Y 20 0 20 0

b, 248 84 116 48

b, 124 24 64 36

by 282 84 156 42
b, 112 24 76 12
Revenue 4836 936 3480 420
Quality index 182.1 51 95.16 35.94
Satisfaction index 269.56 42.24 182.08 45.24
) 0.60 0.60 0.60 0.60

B 16,400 4,800 8,720 2,880
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On the basis of Table 10.5, the best alliance cluster in M&A is different from the
result for joint ventures. However, the synergy effects can also be found using the
same method to analyze the development of an M&A strategy. The next section dis-
cusses costs and other implementation issues.

10.4 DISCUSSION

Strategic alliances are widely used in business to obtain synergy effects. These
synergy effects may come from economies of scale, economies of scope, learning
effects, or other tangible and intangible assets. However, many firms fail in strate-
gic alliances because of the lack of sound planning or screening to choose correct
partners and devise resource allocations. This chapter discusses a new method to
overcome these problems.

Two types of strategic alliances, joint ventures and M&A, are demonstrated here
to allow a comparison of the proposed methods. From the numerical example, we can
see that in a joint venture the surplus resources of firm 3 (5,200 — 4,930.55 = 269.45)
are shared with the enterprise to increase the alliance satisfaction from 0.54 to 0.57.
This is why the enterprise has motives for considering a joint venture strategy. The
same situation can be found for the M&A strategy.

From our implementation, the M&A strategy seems to provide a better satisfac-
tion level than the joint venture. However, this may not be true in practice. Since we
have not considered alliance costs for coordination, control, and risk avoidance, an
optimal alliance strategy cannot be determined. The alliance costs of joint venture
and M&A plans are depicted in Figure 10.6.

Since the alliance costs for joint ventures and for M&A are very different, we
cannot ignore their effects on alliance costs. It is clear that considering the different
cost functions may result in a different optimum alliance strategy.

In addition, the most important issue in facilitating strategic alliances may be
the determination of fair sharing criteria. For the joint ventures case, the satis-
faction of firm 3 decreased from 0.65 to 0.57. It is impossible for firm 3 to enter
alliances if its satisfaction level in an alliance is lower than its original level.
Therefore, the rational way to assign synergy effects in our joint ventures case
can be restricted such that and where and denote the true satisfaction level for
the enterprise and firm 3, respectively, after a joint venture. The same method can
be used to set the appropriate sharing mechanism for M&A arrangements. More

M & A ]oirlt
Low « Coordination cost Ventures> High
High « Control cost > Low
High « Risk cost > Low

FIGURE 10.6 Alliance costs in joint ventures and mergers and acquisitions.
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discussions about setting fair-sharing criteria can be found in one of our earlier
papers (Huang et al., 2005).

10.5 CONCLUSIONS

The goal of a strategic alliance is to create and share maximum synergy effects
among alliance partners. In order to achieve this goal, the correct alliance partners
and the appropriate resource allocations are critical. In this chapter, we propose the
fuzzy multi-objective dummy programming model to overcome these problems. On
the basis of the numerical results, we can conclude that both the joint venture and the
M&A model can provide the best alliance cluster, the maximum synergy effects, and
optimal alliance satisfaction.



’I ’I Multiple Objective
Planning for Supply
Chain Production and
Distribution Model:
Bicycle Manufacturer

Because of globalization, the supply chain has become increasingly important for
many enterprises because it involves flow process controls and levels of manage-
ment integration. Components of the supply chain include raw materials, produc-
tion, distribution, retail sales, and after-sales service to consumers. The related
primary objectives are to (1) lower the total costs of production along the sup-
ply chain and (2) increase production efficiency. Through the efforts of both gov-
ernment and industry, Taiwan was admitted into the World Trade Organization
(WTO) on January 1, 2001. Within the context of the WTO, manufacturers face
global competition and thus must accelerate the flows of materials and informa-
tion. As a result, the development of an effective supply chain is essential for an
industry to become successful.

Bicycle manufacturing, generally considered a conventional industry, demands
massive labor and capital investments. Within the past 50 years, the industry sup-
ply chain has expanded to include up-, middle-, and down-stream manufacturers,
making Taiwan one of the significant bicycle manufacturing centers of the world.
In 1980, Taiwan was the world’s largest exporter of bicycles, surpassing even Japan.
Even though bicycles are not a high technology product, they follow trends of fash-
ion, creativity, and diversity so speed of supply is a critical factor for remaining
competitive in the face of changing demands of consumers.

Because Taiwan’s bicycle industry is affected by international competition, man-
ufacturers must develop global management abilities to confront changing situations.
This chapter considers multiple objective production and distribution, focusing on
Taiwan’s conventional bicycle manufacturing industry. It discusses enterprise profit
and customer service levels for multi-objective programming to develop a produc-
tion-and-distribution model for bicycle manufacturers in Taiwan.

Five methods have been adopted for comparison: multi-objective compromise
programming, fuzzy multi-objective programming, weighted multi-objective
compromise programming, weighted fuzzy multi-objective programming, and

125
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two-phase fuzzy multi-objective programming for analyzing vector-valued optimi-
zation (Salukvadze, 1971a and b, 1979) through various methods. Finally, weighted
multi-objective programming is used to conduct sensitivity analysis to obtain out-
comes that manufacturers can use for reference in developing their supply chains.

The results show that increases of per-unit production costs decrease total profits
in real empirical studies. If the unit inventory cost increases in an effort to improve
customer service levels, total profit may increase, but not significantly. Furthermore,
shortage cost has an interactive effect on an enterprise and increased inventory cost
will lower the shortage cost for achieving satisfaction levels.

11.1 LITERATURE ON SUPPLY CHAIN AND MULTI-OBJECTIVE
PROGRAMMING FOR PRODUCTION AND DISTRIBUTION

Since this study explores the issues of production and distribution of bicycles that
relate to management operations and the industrial supply chain, we first review the
literature discussing supply chain management. We then present studies on multi-
objective programming, compromise programming, fuzzy multi-objective program-
ming, weighted multi-objective programming, and two-phase fuzzy multi-objective
programming because they concern the production and distribution of bicycles.

11.1.1 ReLevanT SuppLy CHAIN LITERATURE

Chandra and Fisher (1994) dealt with the production and delivery processes of a
single factory with a single product over multiple periods. Comparing the separation
and integration models of production and transportation problems, they found that
the integration model of production and delivery could help lower total costs.

Nagata et al. (1995) examined the production and transportation problems of
multiple products and multiple factories over multiple periods, using multi-objective
and fuzzy multi-objective models for programming. Their programming problem
for multiple periods included utilizing uncertain information when considering a
management plan so as to construct a reasonable multi-objective production and
transportation model.

Tzeng et al. (1996) addressed practical issues, using fuzzy bi-criteria multi-index
linear programming to deal with uncertain supply and demand environments related
to coal procurement and delivery schedules for the Taiwan Power Company (TPC).
The company had to deal with multiple destinations, varied goals, and several types
of shipping vessels.

Petrovic et al. (1998, 1999) used fuzzy models and simulation for a supply chain
and developed a decision-making system for an uncertain environment. They deter-
mined the inventory level and the order amounts using a supply chain model that
considered time and cost constraints to simulate operation control.

Van der Vorst et al. (1998) considered that supply chain management should con-
sider decreasing or limiting uncertainty so that the integral benefits of the chain
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could be improved. Sources of uncertainty include vertical order prediction, infor-
mation input, administration management, decision-making procedures, and innate
uncertainties. Their study used the food chain as an example to improve allocation
and operation management structures.

Although many uncertainty factors were eliminated in that illustration, results indi-
cate that a reasonable benefit from supply chain management occurred. Dhaenens-
Flipo (2000) proposed clustering problems of production and transportation of multiple
products from multiple factories for integrated planning. To deal with sophisticated
problems involving spatial decomposition, he converted them into sub-problems and
employed the resolution for the vehicle routing problem (VRP). This helped simplify
the problem and lower total costs.

In summary, when the current study of the bicycle manufacturer considers the
maximization of both enterprise profit and customer service levels, the resolution can
also be obtained from developing a multi-objective programming model in view of the
global supply chain system. The proposed model is described in the following section.

11.1.2 MuLti-OBjecTiVE AND Fuzzy MuLTI-OBJECTIVE PROGRAMMING

Zeleny (1982) pointed out that programming has nothing to do with decision mak-
ing when there is only a single objective, as decision making is already endowed in
the estimation of the objective function value coefficient. Thus, when the objective
function coefficient is determined, the decision maker can only accept or discard the
outcome resolved by the model, and no other information can ever be obtained from
the model. In contrast, the main aim of multi-objective programming is to find a
feasible non-inferior solution set or compromise solution so that the decision maker
can effectively focus on the trade-offs when several objectives are in conflict. This is
generally indicated as follows:

max S =0, LX), fi(%)] (11.1)
st. Ax<b
x20

where b=[b,,br,....b,, 1", x =[x1,X2,..., %, 1", A=Auxn.

11.1.2.1 Multi-Objective Compromise Programming

The ideal solution in multi-objective space was first introduced by Salukvadze (1971a
and b) and has come to be known as Salukvadze’s solution (Yu and Leitmann, 1974).
The ideal solution is defined as indicating the optimal value fi in the feasible solution
domain xeX of every single objective, fi(x),i=1,2,...,k. Then, based on the con-
cept of compromise programming, and according to the aforementioned definition
of distance scale d,, we have to locate a point that has the shortest distance to the
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ideal solution from the non-inferior solution set (i.e., the minimal gap that ensures the
achieving level and criteria are equally weighted), which can be written as:

mind,

11.2
st.xeX ( )

* —

p = oo; the above expression (Yu, 1973, 1974, 1985; Salukvadze, 1971a, 1971b)
becomes dpoi = Xisy (fi — (S = f7) and dpe. = max[(f; — fCON(S = fi)]
i=12,...k]. ’

In the above equation, the distance scale d, varies with different values of p and has
diverse meanings (Yu, 1973, 1985). Hwang and Yoon (1981) claimed that it is neces-
sary to consider the shortest (closest) positive ideal solution (PIS) and the farthest nega-
tive ideal solution (NIS), so that the greatest profit can be obtained and the greatest risk
avoided during decision making. To find a compromise solution, we must know the target
(positive ideal) point and the parameter for the regret function r( f{(x);p). Then a general-
ized family of normalized distance measure dependent on power p can be expressed:

o 1
where d, = (2{;(%)1’);’, 1 < p<eo and p ranges from 1 to . For p = 1 and

min d

st L7 A® g0k (113)
fi =i
Ax<b
x20

11.1.2.2 Weighted Multi-Objective Programming

According to the multi-objective linear programming problem put forward by
Martinson (1993), two distinct models of fuzzy multi-objective and multi-objective
compromise programming can be used. The easiest way to deal with this issue is to
settle the weight values of each objective by the preferences of the decision makers
(i.e., using the concept of the minimal gap for achieving level and assigning different
weights to the criteria).

If the weighted value of each objective is wg,, the resolution for the compromise
programming of the multi-objective programming can be found as follows:

min d
[W]Sd, i=1.2.....k (11.4)
fi ()= f (x)
Ax<b

x>0
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11.1.2.3 Fuzzy Multi-Objective Programming

Bellman and Zadeh (1970) applied the notion of fuzzy sets for decision-making
theory by considering conflicts between the constraint equation and the objective
equation of general programming. They proposed the max—min operation method to
determine the optimal decision from the two solutions. Tanaka et al. (1974) advanced
fuzzy mathematics programming (FMP), which resulted in the widespread applica-
tion of the technique on several practical levels.

Zimmermann introduced fuzzy set theory into the conventional linear pro-
gramming problem in 1976 and combined the fuzzy linear programming model
with multi-objective programming into fuzzy multi-objective linear programming
(Zimmermann, 1978). The fuzzy linear programming employed in the study used the
max—min-operation that turns multiple objectives into a single one (see Appendix A
at the end of this chapter). First, the upper and lower bound limits of each objective
and constraint equation are determined, and multiple objectives are turned into a
single objective for solving the maximal achievement level A.

max A (11.5)
s.t. xs% i=1,2,....k

Ax<b

x>0

11.1.2.4 Weighted Fuzzy Multi-Objective Programming

The membership function of the weighted fuzzy linear programming can be indi-
cated as follows:

HD(x*)=ml?1Xfflxin{Wc,~MG,~(x*), i=1,2,---,k} (11.6)

Converting multiple objectives into a single objective for resolution transformed
this problem into the following exact LP problem for resolution (Martinson, 1993;
Appendix B at the end of this chapter):

min A

s.t. [ ! (ﬁ(f)_fi_nzx, i=1.2... .k
wo \ £~ f (11.7)
Ax=>b

x>0
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11.1.2.5 Two-Phase Fuzzy Multi-Objective Programming

Lee and Li (1993) proposed two-phase fuzzy multi-objective programming to deal
with the defects of non-compensatory solutions in the linear fuzzy objective pro-
gramming of Zimmermann (1978). They used Zimmermann’s linear programming
method to determine a non-compensatory solution (Phase I), and then employ the
greatest average fuzzy membership function (Phase II) of an individual objective
among objectives once the non-compensatory solution is found. It has been shown
that the multi-objective solution obtained from the two-phase fuzzy multi-objective
programming is a compensatory solution for raising the achieved level. The steps
of resolution (basing the second phase on the first-phase solutions of fuzzy multi-
objective programming) are explained below.

Phase I — Locate the non-compensatory solution A", x") of Zimmermann’s
fuzzy linear programming.

Phase IT —

s.t. M”Skis[M], i=1,2.....k (11.8)
i (X)— [i (X
Ax>b
x>0

This study uses the five kinds of multi-objective programming methods mentioned
earlier to resolve and compare the supply-chain model constructed below. It also
compares and analyzes these results and conducts sensitivity analysis using one of
the models for a real case.

11.2 ESTABLISHING MODEL FOR BICYCLE SUPPLY CHAIN

The research on supply chains in this study mainly investigates the production and
distribution problems confronted by a bicycle manufacturer competing in a global
market. The production and distribution of bicycles are explored in an effort to estab-
lish a model for achieving two win—win objectives: (1) maximize profits and compet-
itiveness and (2) maximize utility (such as service quality) by satisfying customers
and maintaining appropriate prices.

11.2.1 Basic AssumPTIONS, DEFINITIONS, AND ESTABLISHMENT OF MODEL

Generally, the goal of enterprise management is to obtain maximum profit. The
manufacturing and retail service industries, however, have both gradually turned
toward consumer service to develop stability and maintain competitiveness. This
model incorporates the idea of improved consumer service into its design and allows
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FIGURE 11.1  Supply chain concepts.

for flexible adjustments in order to consolidate marketing sources and respond to
demand rather than following rigid production schedules. Ultimately, favorable con-
sumer service for a stable clientele can be achieved with such a design. This real
study based on conditions in the bicycle industry uses the following assumptions
(see Figure 11.1):

1. To determine and control the key factors in a simplified manner, the mate-
rial flow processes of bicycle manufacture are set as: (1) input of raw mate-
rials, (2) inventory of raw materials, (3) production, (4) product inventory,
and (5) distribution. This study focuses only on the model structures of
production, product inventory, and distribution.

2. For a bicycle manufacturer, this real study considers the problems of
production and distribution for multiple products over multiple periods
as demands vary from many factors such as the international economy
and weather.

3. Since product demand will vary based on factors such as weather, seasons,
and holidays, one year within the research period is designated the planning
period and divided into four parts corresponding to annual seasons.

4. The strategy of the industry already is to build to order (BTO) when an order
1s received. Therefore, we assume that product demand is already known.

5. Only land—sea transportation is considered.

Table 11.1 defines the symbols used in the model. Table 11.2 lists the relevant
decision-making variables.

11.2.2 MoDEL CONSTRUCTION

11.2.2.1 Objective 1: Maximize Total Profit and Competitiveness

Achieving maximum profit and competitiveness is one of the business objectives.
Equation (11.13) demonstrates the maximization formula. Profits and competitive-
ness involve factors such as revenues and costs. Cost factors include production (for
regular and overtime working hours), transportation, inventory, shortages, main-
taining market advantage, management, research and development, innovation,
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TABLE 11.1
Definitions of Model Symbols

Selling price of product & at period ¢

Estimated demand of product k at period ¢ in locality j

Unit delivering cost of product & at period ¢ from factory i to point of demand j

Unit production cost of product k at period ¢ in factory i during ordinary working hours
Unit production cost of product k at period ¢ in factory i during overtime working hours
Unit inventory cost of product k at period 7 in factory i

Unit shortage cost of product k during period ¢ at locality of demand j

Consumption of needed material r for production per product k at period ¢ in factory i
Upper bound value of useable material r at period ¢ in factory i

Production time needed for production per product k at period ¢ in factory i

Upper bound value of ordinary working hours at period ¢ in factory i

Upper bound value of overtime working hours at period 7 in factory i

Minimal safety inventory for product k at period ¢ in factory i

Upper bound value of safety inventory at period ¢ in factory i

knowledge competency, and other tangible and intangible items. In the real case
portrayed in this chapter, the model is constructed for maximizing total profits from
manufacturing over a short time as described below.

Maximum total profits = [total revenues — total costs (production cost during ordinary
working hours + production cost during overtime working hours + transportation cost
for product + inventory cost of product + shortage cost of product)].

T K m n
Max = > Ape D, D i
i=l j=1

t=1 k=1

m m m n m n
E BikeXite + E Yike Wit T E E Olijie Yijkr T E EikCirr T E O S jur
i=1 i=1 =1 j=1 i=1 j=1

(11.9)

TABLE 11.2
Decision-Making Variables

KXike
Oy
Yijkt
Cike

S

Jkt

Amount of product k made in period ¢ at factory i during ordinary working hours
Amount of product k made in period ¢ at factory i during overtime working hours
Amount of product k delivered in period ¢ at factory i to locality of demand j
Inventory of product k at period ¢ in factory i

Shortage of product k during period 7 at locality of demand j
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11.2.2.2 Objective 2: Maximize Level of Customer
Service Quality per Period

In a real case, bicycle products must be of high quality and properly serve custo-
mers of the company. Therefore, under the assumption that both production time
and transportation time per unit of product are fixed in this real case, a portion of
production time is designated as flexible so that it can be adjusted to meet demand
changes and satisfy the needs of global customers. By treating this flexible time
(extra production time per period/total amount time available for production per
period) as a crucial factor affecting the level of service quality, the assumption of
a relationship between time and service level can be indicated by the following
formula.

Level of service at period 7 = f (spare production time at period #/total time

available for production at period f)

max S, = f(W,), t=1,2,..T (11.10)

spare production time at period ¢

where W, = and W, can

total amount of time available for production at period ¢
be estimated as follows.

m K K
W, =1- Z(Z Dig Xige + zbikthkz}/(nit +Cir). (11.11)
k=1

i=1 k=1

If a manufacturer is confronted with problems such as unstable supply and demand
or mismanagement, the result could be delayed product delivery. If the value of W, is
high, many factory facilities are idle instead of meeting the urgent needs of custom-
ers. The manufacturer faces low turnover even though it produces quality products.
Collecting real data is required to fit the relationship of service level and production
feasibility. The result is shown in Figure 11.2.

As a result, a trade-off relationship is created between the objective Equations
(11.14) and (11.15).

11.2.3 MoODEL CONSTRAINTS

11.2.3.1 Raw Material Constraint

The amount of raw material needed for production should be less than or equal to the
amount of raw material available:

K

Za,.k,,(x,»k,ﬁuw,-k,)sm i=l...m; r=1...R t=1,...T (1.12)

k=1
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FIGURE 11.2 Relationship between service level and production feasibility in ¢ period.

11.2.3.2 Productivity Constraint

Since a manufacturer must use plants and equipment, its production is limited to a
certain maximum capability. This study uses base production time as its unit: nor-
mal working hours multiplied by time needed for production with per-unit normal
working hours less than or equal to maximal productivity during normal working
hours. Overtime hours are multiplied by the time needed for production with per-unit
overtime less than or equal to maximal productivity during overtime working hours.

K
Ebik,xik,sni, i=1emyt=1,.T (11.13)
k=1
K
Zbik,w,»klgc,-[ i=loomt=1,.T (11.14)
k=1

11.2.3.3 Inventory Constraint

Due to the constraint of inventory space, the total amount of product inventory in
every period must be smaller than maximum inventory capacity. Furthermore, the
product inventory for a period should be equal to the total inventory for the last
period and amount for the current period less the inventory distributed.

Amount of inventory product < maximal capacity of inventory

Amount of inventory this period = inventory capacity of last period

+ production amount of current period
—amount of product distributed
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K
Zeikt <0, i=1l..mt=1..,T (11.15)

k=1

€t = Cixg—1y) + (Xig + wikz)_zyijkz i=1...mk=1..K1t=1..T (11.16)

Jj=1

11.2.3.4 Relationship of Product Distribution and Demand

The actual amount of product distributed must be less than or equivalent to demand,
as predicted in each locality. The difference between demand and the amount dis-
tributed represents the shortage.

Amount of product distributed < = Estimated amount of demand

Shortage product = Amount of Product needed — Amount of Product distributed

Zy,-jkt <dy j=l...m k=1l..K t=1..T (11.17)
=1
Sjklzdjkt_zyijkt j=1,...,n;k:1,...,K; l=1,...,T (1118)

11.2.3.5 Non-Negative Constraint
X 20 i=1..mk=1. K t=1..T (11.19)
020 i=1..mk=1.. Kt=1..T (11.20)
Yiur 20 i=1,...mj=1,...mk=1,.. K, t=1..T (11.21)
6w =0 i=1..mk=1...Kt=1..T (11.22)

11.3 REAL EMPIRICAL CASE OF A BICYCLE MANUFACTURER

In this section, the real empirical case of a bicycle manufacturer in Taiwan is used
to demonstrate that this model can effectively provide good ideas and approaches to
supply chain problems. The latest data for the management scenarios were obtained
from manufacturers and incorporated into the model. Some information was modi-
fied from actual data to avoid revealing business secrets.

11.3.1 PRrROBLEM DESCRIPTION AND DEFINITIONS

The operation problem of this practical example is designed to cover three points
of supply and seven points of demand. The duration of production programming is
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divided into four periods per year. As learned from case interviews, the demand for
bicycle products varies seasonally. Thus, marketing strategy must compensate for
the uneven supply and demand.

Unlike manufacturers in other industries, bicycle makers produce according to
the season. In our study, we assigned the four seasons as (1) July to September,
(2) October to December, (3) January to March of the next year, and (4) April to
June. Our study concerns only bicycles without heavy engines. The seven types of
products considered for programming are mountain bikes, aluminum alloy bikes,
lightweight bikes, children’s bikes, sport bikes, racing bikes, and carbon fiber bikes.

The working hours of the manufacturing plant are designated as the 5 usual work
days per week, with x hours worked 24 hours per day. Based on the known productiv-
ity of three manufacturers in different countries, it takes an average of 30 to 40 hours
to assemble a bicycle, and the productivity constraint applies during the ordinary
working hours in every season. The overtime hours are incurred during holidays.

11.3.2 REesuULTS AND ANALYSIS

The operation in this subsection includes a (1) multi-objective compromise pro-
gramming solution (MOCP); (2) weighted multi-objective programming solution
(WMOP); (3) fuzzy multi-objective programming solution (FMOP); (4) weighted
fuzzy multi-objective programming solution (WFMOP); and (5) two-phase fuzzy
multi-objective programming solution (TPFMOP). The results appear in Tables 11.3
and 11.4.

As can be seen from Table 11.3, the value of the total profits by the weighted
multi-objective model is far larger than the profit calculated by the multi-objective
compromise model. It is the same for the service levels for all four periods. The
magnitude of value change of the service level in the fourth period as programmed
in the fifth model is rather limited, indicating more stable service quality. It is thus
understood that the multi-objective weight obtained depends largely on the impor-
tance with which decision makers endow objectives. Furthermore, the size of the
weighted value will have to be adjusted according the nature of the specific problem.

TABLE 11.3
Solutions from Multi-Objective Programming

Model
Outcome MOcCP WMOP- FMOP WFMOP2 TPFMOP

Total profit

(100 NTS) 310387 456411 311336 493296 310925
Ist period 0.93 0.92 0.93 0.89 0.93
2nd period 0.95 0.93 0.95 0.89 0.95
3rd period 0.79 0.68 0.79 0.58 0.79
4th period 0.88 0.87 0.88 0.76 0.88

2 Weights = 4:1:1:1:1 according to decision makers.
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Comparing the results of fuzzy multi-objective, weighted fuzzy multi-objective,
and two-phase fuzzy multi-objective programming, the maximum of the total profit
value is from weighted multi-objective compromise programming. Comparing the
result to a single objective, the maximization of profit will be about the same. The
objective values of the service level in each programming period in the weighted
fuzzy multi-objective model are similar to the programmed results of the profit max-
imization of a single objective. It can thus be said that the model has almost lost its
multiple-objective significance.

Since the programmed results of fuzzy multi-objective and two-phase fuzzy
multi-objective are close, the total achieved value in the two-phase multi-objective
programming is larger by only 0.001. If individual objectives are analyzed—the
objective of the two-phase fuzzy multi-objective programming—its resultant value
would be somewhat smaller than that of fuzzy multi-objective programming, while
the achievement of the service level in each period is enhanced by 0.001, with an
insignificant level of improvement.

Comparing the model results in Table 11.4, we can see that material represents the
highest manufacturing cost (70%) for bicycles in terms of total production cost. The
next highest item is manufacturing cost, which amounts to 11% of production cost.
Thus, the production cost amounts to 81% of total cost. This indicates that bicycle pro-
duction is a labor-intensive industry involving high material costs. Despite the fact that
the bicycle production, distribution, and selling activities have already been interna-
tionalized, analysis of its cost factors indicates that bicycles are not high-tech products
that require immediate delivery. Therefore, they are usually distributed by inexpen-
sive sea freight so the ratio of transportation cost to total cost is almost negligible.

Customers’ costs, however, can reach 10% of the total and constitute the third
highest cost. In summary, the most important factors for bicycle production are in-
plant manufacturing and material costs, followed by export costs from the country
of manufacture and import taxes at the site of demand. Of these three cost items,
material cost is beyond the control of the manufacturer, so manufacturing cost as are
import and export taxes where the manufacturing plant is located.

After comparison of the multi-objective compromise model to two-phase fuzzy
multi-objective programming, we note large differences in objectives of multi-
objective compromise model and weighted multi-objective model programming
although the objective value of profit in multi-objective compromise is low. Even
though the service level in each period of the weighted multi-objective model is not
as high as that for the multi-objective compromise model, the programmed results of
service level from the first to fourth periods of the weighted multi-objective model
(except for the third period when the level was about 0.7), are all well over 0.8.

In addition, the programmed results of the fuzzy multi-objective model and two-
phase fuzzy multi-objective model are much the same. The outcome of the weighted
fuzzy multi-objective programmed model, however, does not differ significantly
from the programmed resolution of a single objective. Consequently, if the deci-
sion makers who analyzed the results of each model wish to achieve programmed
results of multi-objective production and distribution with maximum profit and high-
est quality service, the weighted multi-objective model would be more compatible
with the results.
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TABLE 11.5
Results of Changes to Unit Manufacturing Cost

Total Profit Service Level
Objective (100 NT$) 1st Period 2nd Period 3rd Period 4th Period
Present situation 425453 0.90 0.92 0.69 0.82
Increase 20% 387295 0.90 0.91 0.70 0.83
Variation -0.090 0.00 -0.01 0.01 0.01
Increase 40% 347342 0.90 0.91 0.69 0.82
Variation -0.184 0.00 -0.01 0.00 0.00
Increase 60% 307922 0.89 0.90 0.69 0.82
Variation -0.276 -0.01 -0.02 0.00 0.00
Increase 80% 269729 0.89 0.90 0.68 0.82
Variation -0.366 -0.01 -0.02 -0.01 0.00
Increase 100% 233360 0.89 0.90 0.68 0.81
Variation -0.452 -0.01 -0.02 -0.01 -0.01

11.3.3 SENSITIVITY ANALYSES AND DiscussiONs

Based on the conclusions above, the weighted multi-objective programming model is
useful for sensitivity analysis for the following situation that has three separate parts:
(1) changes of unit production cost (manufacturing cost increases of 20, 40, 60, 80,
and 100%); (2) changes of unit inventory cost (increases of 20, 40, and 60%); and
(3) changes of unit shortage cost (decreased by 20%, then increased by 20 and 40%).

Changes of production cost — As can be seen from Table 11.5, an increase
of production cost can impact the value of each objective. With every increment
of 20% added to the manufacturing cost, total profit decreases approximately 9%.
Production cost, however, has much less impact on the service level for each period.

Changes of inventory cost — As indicated from Table 11.6, after inventory cost
is increased by 20, 40, and 60%, it will conversely increase both total profits and
service levels in the third and fourth periods.

TABLE 11.6
Results of Changes to Unit Inventory Cost

Total Profit Service Level
Objective (100 NT$) 1st Period 2nd Period 3rd Period 4th Period
Present situation 425453 0.90 0.92 0.69 0.82
Increase 20% 426902 0.90 0.91 0.70 0.83
Variation 0.003 0.00 -0.01 0.01 0.01
Increase 40% 426919 0.90 0.91 0.70 0.83
Variation 0.003 0.00 -0.01 0.01 0.01
Increase 60% 427384 0.90 0.91 0.70 0.83

Variation 0.005 0.00 -0.01 0.01 0.01
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TABLE 11.7
Results of Changes to Unit Shortage Cost

Total Profit Service Level
Objective (100 NT$) 1st Period 2nd Period 3rd Period 4th Period
Present situation 425453 0.90 0.92 0.69 0.82
Increase 20% 430538 0.90 0.91 0.71 0.84
Variation 0.012 0.00 -0.01 0.02 0.02
Increase 40% 424601 0.89 0.91 0.69 0.82
Variation —-0.002 -0.01 -0.01 0.00 0.00
Increase 60% 424562 0.89 0.90 0.69 0.82
Variation -0.002 -0.01 -0.02 0.00 0.00

Changes of shortage cost — As seen in Table 11.7, the changes to shortage cost
will have insignificant impacts on the five objectives studied because we considered
the feasible time and space issues for adjusting the demand change.

To summarize the analyses above, if the unit production cost increases, total
profit will be reduced. In contrast, an increase of unit inventory cost will cause total
profit to rise, although unit shortage cost has no impact on total profit. On the other
hand, the increase of these three unit cost items will lead to a decrease of shortage
cost and increase of partial inventory cost. This indicates that shortage cost will be
reduced because inventory will be increased to meet demand. This result shows that
the inventory cost and shortage cost seem to exert interactive behaviors whereas the
enhancement of inventory cost reduces shortage cost.

11.4 CONCLUSIONS AND RECOMMENDATIONS

Currently, most Taiwan bicycle manufacturers are original equipment manufactur-
ing (OEM) plants known for high quality. Enhancement of service level has been one
of their goals for keeping their customers. In addition, both the manufacturing and
service industries are gradually becoming customer-service oriented because stable
customer service helps enterprise survival. As a result, this study uses the notion
that production elasticity based on demand is more favorable than full production.
This allocates demand space for adjustment to customer elasticity and increases the
quality of customer service. Although such practice would lower enterprise profit
because of the trade-off relationship between these two objectives, this study uses
multi-objective programming to model this system.

This study uses five kinds of multi-objective programming methods for resolu-
tions: multi-objective compromise programming, fuzzy multi-objective program-
ming, weighted multi-objective programming, weighted multi-objective fuzzy
programming, and two-phase fuzzy multi-objective programming. A comparison of
these five kinds of programming reveals that the result from weighted multi-objective
programming would be well received by decision makers.
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The results of the study indicate that production cost is the highest (81%) of all the
total cost items for bicycle production and that bicycle production is a labor-intensive
and high material cost industry. Although bicycle manufacturing involves multi-
national production, distribution, and sales, its cost of time is relatively unimportant
in comparison with the costs for high-tech industries.

Distribution is achieved by sea freight and transportation in terms of total cost is
almost insignificant. Export and import taxes, however, represent the third-highest
cost. Therefore, the factors exerting the greatest effects on production and distribu-
tion for the bicycle industry are material costs of the product and manufacturing
costs of the plant, followed by export taxes imposed by the country where the plant
is located and import taxes at the distribution site.

Total profit will decrease when unit production cost, unit inventory cost, and unit
shortage cost are increased. An increase of inventory cost, however, will increase
total profit, while shortage costs impact total profits insignificantly. If all three of
these unit cost items are increased, the shortage cost will decrease and the partial
inventory cost will increase, indicating that shortage quantities will decrease because
of cost; thus, inventory quantity should be increased to meet demand. Results show
that inventory cost and shortage cost interact and the result of an increase of inven-
tory cost is reduced shortage cost.

This study offers several recommendations for subsequent research:

1. Although this study considered the service level of the manufacturer,
assumptions were used for the function relationship between service
level and production elasticity. Nevertheless, many other factors affect
the service level of manufacturer. Subsequent studies could investigate
them further.

2. Planning a model for study, it is necessary to consider the weight relation-
ships among each of the objectives. The preferences of the decision maker
are extremely important.

3. For practical management, transaction price and manufacturing cost are
not linear. Transaction behavior allows discounts and differential pricing;
manufacturing cost requires a factor such as economic scale to ensure the
model is realistic. In this study, we investigated the problems of import and
export, whose influences are widespread and constitute important issues in
enterprise management.

4. The fuzzy multi-objective programming employed in this study is simply a
fuzzy objective equation; fuzzy constraint equations can be added in subse-
quent studies.

5. This model considered only the issues of production and distribution
because the upper stream part supply is already well known and was
not included. Thus, considering relevant variables created by changes of
upper stream manufacturing suppliers would make the model even more
comprehensive.
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APPENDIX A: MAX-MIN OPERATION

A.1 DETERMINATION OF CEILING AND BoTTOM LIMITS OF
OBJeCTIVES AND CONSTRAINT EQUATIONS

If we assume that the decision maker has the most satisfactory and ideal ceiling
limit value f;(X) and the bottom limit value f; (x) toward the ith objective £ (x),
he or she can decide the values of the ceiling and bottom limit according to prefer-
ence. Or the decision maker can take such objective as the function of the feasible
solution space and determine the values through calculation of the pay-off table.

A.2 ESTABLISHMENT OF MEMBERSHIP FUNCTION

The membership function toward the ith fuzzy objective is as follows:

0 F®<f(x)
_JE®-f0
Mo (=15 FRSAS
1 F®2f ®)

as shown in Figure A.1.

A.3 SETTING MEMBERSHIP FUNCTION FOR DECISION MAKING SET L1, (X)
upx)= rEl%n{uGi x),i=1,..,k}

From the max—min operation equation, the feasible fuzzy set can be found at the
intersection of the objective and constraint equations. Since the decision maker needs
precise recommendations, the maximum value of the membership in this decision
making set is required. As a result, the maximum is utilized, and the corresponding
membership function is thus obtained.

Up(x)=maxmin{ug (X ),i=1,...,k}

> max min{lg, (x),i =1,...,k}
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A.4 TurRNING MuLTIPLE OBJECTIVES INTO SINGLE OBJECTIVE FOR RESOLUTION

Finally, this problem can be transformed into a precise LP problem for resolution:

max A\

S.t.

[fU—f()]x =1k
fo-frm]=

Ax<b

x20
Thus, general linear programming can be used for resolution.

APPENDIX B: CONCEPT OF WEIGHTED FUZZY MULTI-OBJECTIVE
PROGRAMMING

This method differs from weighted multi-objective programming for compromise solu-
tions of practical problems. In general, the larger the gap for achieving a level, the greater
the weight (relative importance). On the other hand, where the achievement level A is
higher, the weight (relative importance) is lower. We worked on a real empirical study to
improve the environmental quality for metropolitan Taipei. We found that if the indicator
of environmental quality was low (high), the residents of the area would be dissatisfied
(satisfied) and the weight of the indicator would be low (high). See Equation (11.7). When
we compared three cities—Taipei, Tokyo, and Seoul— the results were all the same.

U, (x)

i £

FIGURE A.1 Membership function of objective.






12 Fuzzy Interdependent
Multi-Objective
Programming

Since Bellman and Zadeh (1970) originally proposed the concepts of decision mak-
ing in a fuzzy environment, much research has been proposed to guide study in
the field of fuzzy multi-objective programming (FMOP). The first step of FMOP
is to view objectives and constraints as fuzzy sets and characterize them by their
individual membership functions. Then, a crisp (non-fuzzy) solution is generated
by transforming FMOP into multi-objective programming (MOP) and determining
the optimal solution to achieve the highest degree of satisfaction in the decision set.
For further discussions, readers can refer to Zimmermann (1978); Verners (1987);
Martinson (1993); and Lee and Li (1993). As with MOP, the problem of FMOP can
be defined by calculating the following model:

max/ min {i(X), /(). fu (%)}

st. X={xeXlg(x)<0, k=1,...,m}.

(12.1)

Much effort has been directed to this problem, both in theory and in practice (Sakawa,
1993; Sakawa et al., 1995; Shibano et al., 1996; Shih et al., 1996; Ida and Gen, 1997,
Shih and Lee, 1999). What seems lacking, however, is considering the problem of
interdependence between objectives. As we know, the supportive and the conflict-
ing objectives usually occur in realistic decision-making problems. From the view
of optimization, because the optimal solution may be different while objectives are
interdependent, the problem of interdependence between objectives in FMOP prob-
lems should not be overlooked.

Carlsson and Fullér (1994, 1996) proposed two methods to reshape the membership
function to deal with the problem of FMOP with interdependence. Ostermark (1997)
extended their method to consider temporal interdependence between objectives.
However, several shortcomings of their methods should be overcome before employ-
ing fuzzy interdependent multi-objective programming (FIMOP) in practice.

First, one method proposed by Carlsson and Fullér (1995) does not precisely mea-
sure the supportive or the conflicting grade between the objectives and can deal
only with one-dimensional decision space. In contrast, a later method (Carlsson
and Fullér (2002) can be employed only in linear fuzzy independent multi-objective
programming (LFIMOP). Since real-life problems are usually complex, a general
method should be devised for dealing with all kinds of FIMOP problems.

145
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In this chapter, we propose another FIMOP to overcome these problems. First, a
new index is developed to measure the interdependent grade between fuzzy objec-
tives precisely. This method is suitable not only for the many-dimensional decision
spaces but also for nonlinear FIMOP problems. A numerical example is used to
demonstrate the method and compared with conventional FMOP. On the basis of
the numerical results, we concluded that the proposed method can extend FMOP for
considering the issue of interdependences between fuzzy objectives.

The problem of interdependence with objectives in multi-objective programming
is discussed in Section 12.2. Fuzzy interdependent multi-objective programming
is proposed in Section 12.3. In Section 12.4, we present a numerical example to
demonstrate the proposed method and compare the results with the conventional
FMOP model. Discussions are presented in Section 12.5 and conclusions are in the
final section.

12.1 INTERDEPENDENCE WITH OBJECTIVES

The main problem of the conventional MOP model is the impractical assumption
of independence of objectives. To demonstrate the impact, we can transform the
MOP model into a single-objective programming (SOP) model by using the follow-
ing compromise programming (Yu, 1985):

min r(y;p)=lly-y"ll,
(12.2)
st. X={xeXlg(x)<0, k=1,...,m},
where r(y;p) is a measurement of regret from y to y" according to the /,-norm, y
denotes the objective vector, and y* denotes the ideal point vector.

Assume a two-objective problem and let p = . Consider a case depicted in
Figure 12.1. The optimal solution should be y= if and only if fi(x) is independent
of f,(x). However, if f,(x) supports f2(x), the optimal solution should transfer from
¥y~ to Y. Therefore, if we want to extend MOP to interdependent multi-objective
programming (IMOP), we should consider the interdependence between objectives,

. JE AT )
/ y* /”/
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FIGURE 12.1 Optimal solution between independent and interdependent objectives.
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Objective 2 Objective 1

Objective 4

FIGURE 12.2 Interdependence with multiple objectives.

as shown in Figure 12.2. On the basis of the figure, we can see that the objectives in
MOP should be modified as:

A = £+ Y oL@ AL AL Y 1Sij<n (123

j=1,j#i

where o; denotes the grade of interdependence from the jth objective to the ith
objective. Based on Equation (12.3), MOP is a special case while o; =0 in IMOP.
Therefore, the MOP problem should be reformulated as:

max/ min - {f,(x), fo(x),.... f, ()

(12.4)
st. X={xeXlg((x)<0, k=1,...,m}.

To solve this IMOP problem, the grade of interdependence should be derived first
(Carlsson and Fullér, 1994, 1995, and 1996; Ostermark, 1997). The grade of interde-
pendence of the ith objective is defined using the following equation:

n

Af)= )Y sign(ay), (12.5)

j=1,j#i

where A(f;) is the number of objectives supported by the ith objective minus the
number of objectives hindered by the ith objective.

Using Equation (12.5), we can reformulate the conventional MOP model into the
IMOP model. However, according to Equation (12.5), two main shortcomings should
be overcome so that we can solve the IMOP problem more precisely. First, it can
be seen that Equation (12.5) does not precisely reflect the supportive or conflicting
degree of the objectives due to the sign operation. Furthermore, that method can deal
only with one-dimensional decision space.
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To overcome this problem, Carlsson and Fullér (1996) proposed another index
to measure the interdependent grade between objectives in the many-dimensional
decision space. Assume two linear objectives, fi(x)=<¢;,x > and f;(x)=<c;,x>

where li¢;ll, lle;II=1, and the grade of interdependence between f; and f; can be
defined by:
I-<cj,c; >

where < > denotes the dot product and II-Il denotes the length of the specific vector.

According to Equation (12.6), however, it can be seen that this index can deal
only with the linear case. In addition, o; is not always equal to o in real-world
problems. To overcome these problems and extend the method to FIMOP, we pro-
pose another approach to measure the grade of interdependence between (fuzzy)
objectives. In addition, two models are proposed to deal with the FIMOP problems
in the next section.

12.2 FUZZY INTERDEPENDENT MULTI-OBJECTIVE
PROGRAMMING

To propose the FIMOP model, we should first consider the crisp case so that the
fuzzy case can be extended naturally. As mentioned above, the critical point of deal-
ing with IMOP is to obtain the grade of interdependence between objectives so that
we can reformulate the MOP model. Therefore, to overcome the problem of inter-
dependence between objectives in MOP, we first define the notations. Let f;(x) and
fi(x) be two objectives. We say that:

1. fi(x) supports f;(x) on X (denoted by f;(x) T fi(x)if fi(x”) = f;(x) entails
fi(x") 2 fi(x), forall x’,x e X; df;(x)/dfi(x)>0,VxeR";

2. fi(x)isinconflictwith f;(x)onX (denotedby f;(x) i«fj(x))iff,-(x’)ij(x)
entails fj(x") < fi(x), forall x",x € X; df;(x)/dfi(x)<0,Vx e R";

3. fi(x) is independent with f;(x) on X (denoted by f;(x) L f;(x)), otherwise.

If X eR", we say that f;(x) supports (or is in conflict with) f;(x) globally. If the
objective functions are differentiable on X, we may define:

L ()T fi(x)onX & 9, fi(x)/ 9. f(x)>0,VeeR" ,xe X ,
2. i) fi(x) nX & 9, f(x)/9,fj(x)<0,VeeR" ,xe X,

where 9, f;(x) denotes the derivative of f;(x) with respect to the direction e € R" at
x € R". If for a given direction e R", 9, fi(x)d, fj(x) =0 holds for all x € X, then
we say that f;(x) supports f;(x) with respect to the direction e on X.

Clearly, it is hard to calculate the interdependence between objectives because it

may vary at different decision points. To calculate o ;;, a compromise is to ask the



Fuzzy Interdependent Multi-Objective Programming 149

A(f, (%)) 4
Af)=1

>

A (fi(%)) =0

v

minf(x)  maxfi(x)  fi(x)
AT T i

A (fo(%))

A (£ (%))

A 4

fr(%)

A(f;(%))4
A (f3(%))

A (f3(%)

v

f5(x)

FIGURE 12.3  Concept of oy;.

question: If the satisfaction level of f;(x) moves from worst to best, how does the
average satisfaction level of f;(x) vary?

To explain the above concept, consider three objectives: ( fi(x), f2(x), and f3(x)).
Figure 12.3 illustrates the concept. If we want to measure o, and ot3;, we first cal-
culate the maximal and minimal values of fi(x) and the corresponding values of
f2(x) and f;(x). Note that f,-(x) (fy(x)) and f5 (x) (f; (x)) in Figure 12.3 denote
the corresponding value of f;(x) ( f3(x)) while maximizing and minimizing f(x),
respectively.

In addition, A™(f£(x)) (A-(f3(x))) and A-(f5(x)) (A" (f3(x))) are the satisfaction
levels of f2(x) (f3(x)) corresponding to f,-(x) (fy(x)), and f (x) (f5 (x)), respec-
tively. In theory, the satisfaction level from f,-(x) (fy(x)) to f> (x) (f5 (x)) may be
nonlinear, such as the S-curve in our example, and result in a calculation problem.

Therefore, as long as the satisfaction level from f,-(x) (fy(x)) to fo(x) (f5 (%))
is close to an average value, we can calculate oy = [A"(f2(x) = A (H(x)]/ [A(fi(x))
A (fite] and o = A" (f () = e (f N/ A (i (x) = A (fi ()] for simplicity.
Figure 12.3 shows that o; > 0 indicates fi(x) supports f,(x), and o3, <0 indicates
fi(x) is in conflict with f;(x).

Next, we provide two examples to show the corresponding conditions and explain
why the proposed method is justified.
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Example 12.1 Consider the following two-objective mathematical programming:

max{fi(x), f(x)},

where fi(x)=2x? =3x? and f(x)=-=3x;+ x5.

s.t. X1+X> < 20,

X1, X2 2 0.

Then, we use Monte Carlo simulation and generate 5,000 samples to derive the fea-
sible solution of the problem, as shown in Figure 12.3. We can see from the figure
that Objective 1 and Objective 2 are in conflict with each other and the block line
of the feasible solution indicates the efficient set that represents the grade of inter-
dependence between the objectives. Since the interdependent grade is a non-linear

curve, we can estimate the approximate interdependent grade between the objec-
tives by a straight line using the proposed method (dashed line in Figure 12.4).

Example 12.2 Consider the following two-objective mathematical programming:

max{fi(x), £(x)},
where fi(x)=x? +3x5 and  £(x) = 2x; + 3x1X,.

s.t. OSX1,X2S2.
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FIGURE 12.4 Interdependent grade between objectives.
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Using a procedure like Example 12.1, we devised Figure 12.5 to represent the inter-
dependent relationship of Objectives 1 and 2. Based on the figure, the objectives are
supportive of each other.

According to Figures 12.4 and 12.5, if the interdependent grade function is mono-
tonic and slightly non-linear, the proposed method (comparing the slope of the inter-
dependent grade) is acceptable. In addition, since Carlsson and Fullér’s method cannot
deal with the above problems, the proposed method provides a satisfactory solution.

According to these concepts, the procedures to calculate the grade of interde-
pendence between objectives can be developed. First, we employ SOP to obtain the
maximal and minimal values of each objective and the corresponding values of other
objectives. For example, to derive the maximal and minimal values of the jth objec-
tive and the corresponding values of other objectives, we solve:

max(min) f;(x)

st. X={xeXlg(x)<0, k=L..m}, (12.7)

then calculate
fix) (fu(x)), V i#j; 1<i,j<n,

where f"(x) denotes the corresponding value while maximizing f;(x) and f.(x) is
the corresponding value while minimizing f;(x). Note that if multiple optimal solu-
tions exist, two methods can be considered. First, the optimal solution can always be
obtained by incorporating the preference of the decision maker, such as the “more
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FIGURE 12.5 Interdependent grade between objectives.
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average, the more preferred.” Therefore, f;"(x) and f;.(x) can be calculated. Second,
if r multiple optimal solutions exist for both maximizing and minimizing f;(x), we
can determine £ (x) and f..(x) using:

£ () =max{fi(x), o (x),.... fiy (¥)}; (12.8)
Fro () = Min{ f12 (X), (%), fre (X)), (12.9)

where f; (x) denotes the kth corresponding value while maximizing fi(x) has r mul-
tiple optimal solutions, and f;.(x) denotes the kth corresponding value while mini-
mizing f;(x) has r multiple optimal solutions. We can then calculate the approximate
grade of interdependence between the objectives using the following equation:

o; =dfi(x)/dfi(x)
=[A(fi(0) = A (fi D]/ IV (f; () = A (f;(x))] (12.10)
where f; (x) denotes the corresponding value while maximizing f;(x), fi.(x) is the

corresponding value while minimizing f;(x), and A() denotes the satisfaction level
and can be calculated by:

1 if fi(x)2M;,
fix)—m; . (12.11)
A(f(x)) = Mo—m. if m;<fi(x)<M;,
0 if  fi(x)<m;,

where M; and m; are the maximum and the minimum values of the corresponding
objective, respectively.

Next, on the basis of Equations (12.7) through (12.11), we can extend the concepts
above to consider the following fuzzy situation. First, with the specific a-cut, the
maximum and minimum values of the jth fuzzy objective and corresponding values
of the ith fuzzy objectives can be derived:

max(min) f;(x,0)

st. X={xeXlgFw)<0, k=l..m}, (12.12)

then calculate

fi(xo) (fiu(x,0), V i#j 1<i,j<n,

where f;(x,a) denotes the corresponding value while maximizing f;(x, )
and fi.(x,0) is the corresponding value while minimizing fj(x,0). Then the



Fuzzy Interdependent Multi-Objective Programming 153

(approximate) grade of interdependence between the fuzzy objectives can be derived
as:

oy =[H(f (¥,0)) = H(fi- (X, o))/ [H(f; (X,00) = H(fj.(X,00)]  (12.13)

where f;"(x,0) denotes the corresponding value while maximizing f;(¥,o), fi.(X,0)
is the corresponding value while minimizing f;(x,c), and H() denotes the satisfac-
tion level under the fuzzy situation that can be calculated by:

1 lf f(i’(X)ZMl’

H(fi(x,0)) = MM_f(xa) if m; < f(x o) <M, (12.14)
i~ m;
0 if  f(xo)<m,.

Then the FIMOP problem can be considered to deal with the following FMOP problem:

max/ min (A0, f(F,Q),..., f(%,0))

. (12.15)
st. X={xeXlgi(x,0)<0, k=1,...,m}

where

ﬁ(i,a)=ﬁ(£,oc)+2 0y Lfi (%, 0, (%, 00, fo(Fo0)], ¥ 1<i,j<n (12.16)

Jj=Lj#i

Now, two approaches are proposed to deal with the FIMOP problem as follows. The
first approach is to convert the grade of interdependence into the degree of satisfac-
tion. Since the degree of satisfaction of the specific fuzzy objective can be measured
by Equation (12.12), the degree of satisfaction of the ith modified fuzzy objective
(incorporating the grade of interdependence caused by other fuzzy objectives) can
be defined by H(fi(x,0))+ X ;0 [H(f; (x,0))]. Then the interdependent relation-
ships between the ith fuzzy objective and other fuzzy objectives can be defined by:

H(f;(x,0))+ 2 ocij[H(fj (x,0))] > H(f;(x,)),if f; (x,0) is supported by other fuzzy objectives;

=Lz

H(f;(x,0))+ Z (xij[H(fj(i,oc))] < H(f;(x,0),if f;(x,0) is hindered by other fuzzy objectives;

=L

H(f;(x,0))+ Z Ocij[H(fj (x,0))] = H(f;(x,00), if f; (x,0) is independent with other fuzzy objectives.

=L

(12.17)

The corresponding concepts above can be depicted as shown in Figure 12.6.
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FIGURE 12.6 Degree of satisfaction by incorporating grade of interdependence.

The second approach adopts the ideas of Carlsson and Fullér (1994, 1995,
and 1996) to reshape the degree of satisfaction by incorporating the grade of
interdependence. The grade of interdependence of the ith fuzzy objective can
be defined as A(f;) =X}« ;. Then, the degree of satisfaction can be refor-
mulated as:

1 if  fi(x,o)2M;
- - ~ U(A(fi)+D)
ForA(f)20, GE,A(f)0)= (ﬂ;ﬂ] i om < fE 0 < M,
i —m;

0 if  fi(x,0)<m;
(12.18)

1 if  fi(F o) M,
~ - ~ IACS)+1
ForA(£)<0, G(&,A(f),) = (f(];‘)‘)‘m} iF o< f(E0)< M,
i—m
0 lf ﬁ(i‘,(l) < m;
(12.19)

The concepts above for reshaping the degree of satisfaction can also be depicted as
shown in Figure 12.7. Now, with the specific a.-cut, we can incorporate these two
approaches to extend the conventional FMOP model to the following two FIMOP
models as:
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FIGURE 12.7 Reshaping degree of satisfaction.

Model 1
max Vv
st. X={xeXlgxa)<0, k=1,...,m};
n (12.20)
H(fi(i,(x))+Eocl-j[H(fj(JE,oc))]Zv, V 1<i,j<n
j=1j#i
Model 2
max Vv
= X < = :
st. X={xeXlg(x,a)<0, k=1,...,m}; (12.21)

G, A(f)o)zv, V 1<i,j<n.

Note that the main difference between Models 1 and 2 is that Model 1 changes the
degree of satisfaction and Model 2 changes the shape of the satisfaction function.
Both models, however, can reflect the interdependence between fuzzy objectives in
FMOP. Next, we give a numerical example to demonstrate the proposed method and
then discuss the results in Section 12.4.

12.3 NUMERICAL EXAMPLE

In this section, we use a numerical example to demonstrate the proposed method
to deal with the FIMOP problem. Note that the fuzzy sets used in our paper
are normal, convex, continuous, and bounded. In addition, only triangular fuzzy
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numbers are used. The membership function of each fuzzy number can be
defined by:

0 , x<a,
Y74 u<x<h,
wan=4 274
€T p<x<e,
c—b
, c<Xx,

where A = (a,b,c) denotes the triangular fuzzy number and a, b, and ¢ are the lower,
center, and upper values, respectively. In addition, to concentrate on the problem
of interdependence between fuzzy objectives, only crisp constraints are utilized.
Consider a fuzzy three-objective programming problem as follows:

fi(x)=(4,6,7)x,x, + (3,6,8)x;, — (6,7,8)x3,
£(x)==(1,3,5)xf +(9,10,12)x3* +(7,8,10)x3,
f:(%)=—(2,3,4)x, — (1,2,5)x, — (3,5, 7)x3"°.
st xt+x3+x3 <100,
X+ X, +x3 210,

X1,X2,%3 2 0.

In order to consider the problem of interdependence between fuzzy objectives, we
should first derive the maximum and minimum values of the ith fuzzy objective
and the corresponding values of other fuzzy objectives that are subject to con-
straints, as shown in Equation (12.12). While many fuzzy mathematical program-
ming methods can be used to deal with this fuzzy single-objective optimization
problem, we adopt Carlsson and Korhonen’s method (1986) because of its simplic-
ity and generality. The procedures of their method are explained in the appendix
at the end of this chapter.

The membership function of each fuzzy variable in this chapter relates to Equations
(A.3) through (A.5) in the appendix. According to Equation (A.1), we can derive the
grade of interdependence between fuzzy objectives and the special case with o-cut =0
and L =0.5 and 1 as shown in Tables 12.1 and 12.2. Note that other situations can also
be considered with different a-cut and p values using the same procedures.

Next, by employing Model 1 (M1) and Model 2 (M2) as expressed in Equations
(12.20) and (12.21), respectively, we can derive the optimal solutions of FIMOP with
p=0.5and 1 as shown in Table 12.3. A comparison of FMOP and FIMOP appears
in Table 12.3.
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TABLE 12.1
Grade of Interdependence between Fuzzy Objectives (x-cut = 0, p = 0.5)
max f,(x) = 314.56 fo(x) =—-133.61 fr(x) =-42.40
min f;(x) = ~50.00 f(x) = 85.00 f(x) =—15.81 O =049 ay=-0.80
max f,(x)=99.31 fi(x) =-29.09 fi(x) =-25.02
o= —0.08 0= 0.15
min £ (x) = -350.00 fi(x)=0.00 f5(x) =-30.00
max f;(x) =—15.81 fi(x) =-50.00 fo(x) = 85.00
min f;(x) = —49.14 £(x) = 268.86 A =-10365 =087 0,,=042
TABLE 12.2
Grade of Interdependence between Fuzzy Objectives (x-cut = 0, p = 1)
max f;(x) = 221.49 falx) ==70.60 f(x) =-21.02  0,=-050  oy=-0.68
min £, (x) = —40.00 fa(x) =70.00 fa(x) =-9.49
max fi(x) = 82.43 fi(x) =-27.74 fx)=-12.54  ap,=-0.11  oy=0.44
min £ (x) = -200 £i(x) =0.00 fa(x) =-20.00
max f;(x) =-9.49 fi(x) =—40.00 fr(x) =70.00 0=—0.69  0,y=0.60
min f3(x) = —26.56 fi(x) = 140.32 fa(x) ==99.02
TABLE 12.3
Comparison of FMOP and FIMOP
Method X, X, X3 fi(x) [ (x) f:(x)
EMOP (i = 0.5) 5630 4370  0.000 15935  -8899  —30
MI: FIMOP (u=0.5) 3.658 6926  0.000 177.44  -1920  -31.75
M2: FIMOP (1 =0.5) 4.851 5851 0000 18829  -5696  -32.16
FMOP (u=1) 3383 8265  0.000 136.637 2985  -15.031
MI:FIMOP (u=1)  3.825 9240  0.000 169.092  -1.904 —16.890

M2: FIMOP (u=1) 3739 8978 0.000  161.209 -0.993  -16.465

On the basis of Table 12.3, we can conclude that the optimal decision variables
and objectives of FIMOP are obviously different from those of the FMOP model.
Furthermore, the significant differences between FIMOP and FMOP result from the
interdependence between the objectives. Next, we present further discussions based
on this numerical example to clarify the rationality of FIMOP.

12.4 DISCUSSION

FMOP approaches have been widely applied in various areas to deal with multi-
objective decision-making problems. However, the problem of interdependence
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between objectives has not been considered in FMOP for effectively dealing with
real-life problems. If we ignore the problem of interdependence between objectives,
the result may differ greatly from the optimal solution. Many algorithms have been
proposed to consider optimization in MOP and FMOP, for example, the evolutionary
algorithms of Coello et al. (2002) and Deb (2001). We should not ignore the impact
of interdependence between objectives.

Although Carlsson and Fullér discussed the problem of MOP with interdepen-
dence with objectives and proposed two methods to deal with the problems, their
method can deal only with simple FIMOP problems including the one-dimensional
decision space and linear cases, and cannot measure the grade of interdependence
between objectives precisely in more realistic problems.

In this chapter, we propose two models for dealing with the above problems
so that the proposed method may be suitable for both many-dimensional decision
spaces and nonlinear cases. Furthermore, according to the results of the numerical
example, we can see that although the two models yield different results, the direc-
tions of the decision variables and objectives are the same. The results also indicate
the consistency of the two models.

The differences between Model 1 and Model 2 can be described. In Model 1,
the interdependent grade between objectives is reflected by modifying the degree
of satisfaction. Conversely, Model 2 incorporates the information of the interdepen-
dent grade between objectives to alter the shape of satisfaction function. Both mod-
els, however, can reflect the interdependence between fuzzy objectives in FMOP. In
addition, from the view of numerical results, Model 1 reflects the influence of the
interdependent grade between objectives more sharply than Model 2. Therefore, a
decision maker can select one of the models according to his or her assessment of the
interdependent grade between objectives.

The proposed method has a number of advantages. First, instead of being used
only in one-dimensional decision spaces, the proposed method can also be used in
many-dimensional decision spaces. Second, the grade of interdependence between
the fuzzy objectives can be measured precisely. Finally, the proposed method can
deal with nonlinear cases. However, it should be noted that the proposed index mea-
sures only the average grade of interdependence between the fuzzy objectives since
it should vary based on the positions of decision variables. Therefore, a more accu-
rate index to measure the grade of interdependence between objectives should be
explored in future research.

12.5 CONCLUSIONS

This chapter considers the problem of FMOP with interdependent objectives. A
novel index is proposed to measure the precise fuzzy grade of interdependence
between fuzzy objectives, and two models are developed to solve FIMOP problems.
The numerical results show that the problem of interdependence between (fuzzy)
objectives is significant and the proposed method can provide a satisfactory solution
for optimizing FIMOP solutions.
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APPENDIX

According to Carlsson and Korhonen’s method (1986), a fuzzy single-objective pro-
gramming model can be defined by:

max f(x)=¢'x,

- - Al
st. X={xeX|Ax <b}. @A

By setting the specific a-cut and membership function of each fuzzy variable, the
problem above can be reformulated as the following crisp mathematical program-
ming model:

n
-1
max Y u (o),
j=1

(A2)
s.t. Zugi}(oc)xjﬁubfil(oc), Vi=1,..mj=1,..,n,
j=1

where o denotes the a-cut operation and p™' denotes the inverse membership func-
tion. The membership function of each fuzzy number can be defined by:

Moy = (ay — aip)/(a = ajp); (A.3)
Wy, =(b; = b )/(bil =b); (A.4)
Re; = (¢ =c})/(cj=cf) (A.5)

where aj, bi',cj, ajj, b, and ¢j denote the upper and the lower values corresponding
to the fuzzy numbers a;,b;,and,c;, respectively. Note that the membership function
should be monotonic in order to avoid the problem that the inverse function may be
unavailable. Other membership functions can also be employed using the same concepts.






13 Novel Algorithm
for Uncertain
Portfolio Selection

The mean-variance approach was proposed by Markowitz (1952) to deal with the port-
folio selection problem. A decision maker can determine the optimal investing ratio for
each security based on the historical return rate. The formulation of the mean-variance
method can be described as follows (Markowitz, 1952, 1959, and 1987):

min ii"v‘xi’% (13.1)

i=1  j=1
n

s.t. ZuixiZE,
i=1
n

Zx,- =1,

i=1

x,-ZO Vi=1,...,n.

where [; denotes the expected return rate of the ith security, 6; denotes the covari-
ance coefficient between the ith security and the jth security, and E denotes the
acceptable least rate of the expected return.

It is clear that the accuracy of the mean-variance approach depends on the accu-
rate values of the expected return rate and the covariance matrix. Several methods
have been proposed to forecast the appropriate acceptable return rate and variance
matrix such as the arithmetic mean method (Markowitz, 1952, 1959, and 1987) and
the regression-based method (Elton and Gruber, 1995). However, these methods
derive only the precise expected return rate and covariance matrix and do not con-
sider the problem of uncertainty.

Since the decision maker wants to determine the optimal portfolio strategy to
gain maximum profits, how can we ignore future uncertainty? We should note that
the possible area of the return rate and the covariance matrix should be derived to
allow the decision maker to determine the future optimal portfolio selection strategy.
In addition, these methods are based on the large sample theory and cannot provide
satisfactory solutions in small sample situations (Elton et al., 1978).

In this chapter, the possible area of the return rate and the covariance matrix are
derived using asymmetrical possibilistic regression. Then, the Mellin transformation is

161
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employed to calculate the uncertain return rate and the variance with specific distribu-
tion. Finally, the optimal portfolio selection model can be reformulated based on these
concepts. In addition, a numerical example is used to illustrate the proposed method and
compared with the conventional mean-variance method. On the basis of the simulated
results, we can conclude that the proposed method can provide a better portfolio selec-
tion strategy than the conventional mean-variance method by considering uncertainty.

13.1  POSSIBILISTIC REGRESSION

The possibilistic regression model was first proposed by Tanaka and Guo (2001) to
reflect the fuzzy relationship between the dependent and the independent variables.
The upper and the lower regression boundaries are used in possibilistic regression
to reflect the possibilistic distribution of the output values. By solving the linear
programming (LP) problem, the coefficients of the possibilistic regression can be
obtained easily.

Next, we describe the use of the possibilistic regression model (Tanaka and Guo,
2001) to obtain the uncertain return rate and the variance. To obtain accurate results,
we extend the symmetrical fuzzy numbers to the asymmetrical fuzzy numbers. The
general form of a possibilistic regression can be expressed as:

y = A() + A1x1 +---+ A,,x,, = A’x (132)

where A, is an asymmetrical possibilistic regression coefficient denoted as
(a; —cir,a;,a; + cg). To achieve minimum uncertainty, the fitness function of the
possibilistic regression can be defined as:

min J= Y (¢} Ix;l+ck lx;l) (13.3)

Jj=l...m

In addition, the dependent variable should be restricted to satisfy the following
two equations:

Yj 2= a'xj - Ci |x]'|, (134)
y;<a'x;+cglx;l. (13.5)

On the basis of the concepts above, we can obtain the formulation of a possibilistic
regression model:

min J= 2 (c1 |x;1+ ¢k Ix;1) (13.6)

j=1...m

sty za'x;—cylx;l,
y; <a'x;+cglx;l, j=1...,m

Cr,Cgr >0.
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FIGURE 13.1 Possibilistic area of return rate and variance.

By solving the mathematical programming model above, we can obtain the uncertain
return rate and the variance of the security with specific distribution in the future.
Next, we devise a graph (Figure 13.1) to describe the concept of the proposed
method. Suppose we have six period return rates of stocks and we want to determine
the optimal investing rate for each stock in period 7. Let the broken line denote the trend
of the return rate of a stock. We can then perform the upper, lower, and center possibil-
istic regressions using Equation (13.6) to derive the possibilistic area of the return rate
of period 7. Note that the triangular possibilistic distribution is used in this example.
However, other possibilistic distributions can be employed using the same concepts.
We should highlight that the triangular area in period 7 denotes the distribution of
the possible return rate and variance of the stock. That is, the decision maker should
incorporate the information above to determine the optimal investing rate for each stock.
However, since the possibilistic area may be a triangular, uniform, or other form of distri-
bution, the problem is how to efficiently and effectively calculate the possible return rate
and variance. We now describe the Mellin transformation for overcoming this problem.

13.2 MELLIN TRANSFORMATION

Given a random variable x € R", the Mellin transformation M(s) of a probability
density function (pdf) designated (f(x)) can be defined as:

M{f(x);s) = M(s) = j : e (137)

Let 7 be a measurable function on R into R and Y = h(x) act as a transformed
random variable. Some properties of the Mellin transformation can be described
as shown in Table 13. 1. For example, if Y = ax, then the scaling property can be
expressed as:

M{f(ax);s)= j:ﬂax)xH dr=a* j: Flax)an)™ =a~M(s)
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Next, let X represent a continuous non-negative random variable. The nth moment of
X can be defined as:

E(X")= J:x”f(x)dx (13.8)
Then, by setting n = 1, the mean of X can be expressed as:
E(X)= J:o xf(x)dx (13.9)
and the variance of X can be calculated:

6l=EX*-[EX)J (13.10)

Since the relationship between the nth moment and the Mellin transformation of X
can be linked using the equation:

EX") = '[wa("”)_] f(x)dx = M{f(x);n+1} (13.11)
the mean and the variance of X can be calculated by:
EX) = M{f(x); 2} (13.12)
0% = M{f(x); 3} = {M{f(x); 2}} (13.13)
From Equations (13.12) and (13.13), we can efficiently calculate the mean and vari-

ance of any distribution using the Mellin transformation. In practice, the uniform,
triangular, and trapezoidal distributions are usually used and their corresponding

TABLE 13.1
Properties of Mellin Transformation
Property Y = h(x) M(s)
Scaling ax a” M(s)
Multiplication by x¢ X f(x) M(s+a)
Rising to real power a
S a"lM(i),a>0
a
Inverse Y M —s)
Multiplication by /n x In x fix) d Ms)
ds
Derivative d* T'(s
4 f@ ©
ds I'(s—k)
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TABLE 13.2
Mellin Transformation of Three Probability Density Functions
Distribution Parameter M(s)
Uniform UNI(a,b) b g

s(b—a)
Triangular TRI(l,m,u) ) [u(us —m*) ' - lj)}

w="Ds(s+ D[ (w—m) (m=1)
Trapezoidal TRA(a,b,c,d) 2 [(d““ - - a”l)]
(ctd=b-a)s(s+1)| (d-c) (b—a)

Mellin transformations can be summarized as shown in Table 13.2. More Mellin
transformations for other probability density functions can be found in Yoon (1996).
On the basis of Table 13.2, we can efficiently derive the values of the mean and
variance respect to the specific distribution by calculating M(2) and M(3). Next, we
can reformulate the conventional mean-variance method as shown in the following
mathematical programming model to consider the impact of uncertainty:

minzn:xixi M (3) - Mi(2)° ]+ zn: zn‘,xixjcij

i=1 i=1 j=1

(13.14)

st Zx,.M,-(z) >E,
i=1
i=1
%20  Vi=l..n

The first part of the objective function denotes the next risk period of the security
and the second part represents the unsystematic risk considered in the mean-variance
model. Next, we use a numerical example to illustrate the proposed method and
compare it with the conventional method.

13.3 NUMERICAL EXAMPLE

For simplicity, the possibilistic area of the return rate is represented as the triangular
form in this example. Suppose the historical return rates of the five securities from
periods #-6 to 7-1 are represented as shown in Table 13.3. The corresponding time
chart for the five securities is shown in Figure 13.2. Our concern here is to obtain the
optimal portfolio selection strategy in the next period .

First, we use the conventional mean-variance model to obtain the optimal portfo-
lio selection strategy. To do this, the arithmetic mean and the covariance matrix can
be calculated as shown in Tables 13.4 and 13.5.
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TABLE 13.3
Historical Return Rates of Five Securities
Return Rate t-6 t-5 t-4 t-3 t-2 t-1
Security 1 0.1686 0.1117 0.1149 0.1293 0.1397 0.1406
Security 2 0.1330 0.1466 0.1741 0.1131 0.1022 0.1552
Security 3 0.1698 0.1528 0.1302 0.1471 0.1139 0.1177
Security 4 0.1750 0.1026 0.1543 0.1475 0.1158 0.1148
Security 5 0.1291 0.1192 0.1491 0.1318 0.1377 0.1450
0.1800
01700 F 4
0.1600 |
01500 K —&— Security 1
‘°§ 0.1400 | —e— Sccurity 2
E 01300 | —a— Security 3
S on00 F —— Security 4
0.1100 —— Security 5
0.1000 |
0.0900
0.0800 L L L L L ]
t-6 t-5 t-4 t-3 t-2 t-1
Period

FIGURE 13.2 Time chart for five securities.

TABLE 13.4
Arithmetic Means of Expected Returns

Security 1 2 3 4 5 Average
Arithmetic mean  0.1341  0.1374  0.1386  0.1350 0.1353 0.136

TABLE 13.5
Covariance Matrix

Security 1 Security 2 Security 3 Security 4 Security 5

Security 1 0.00036

Security 2 -0.00017 0.00060

Security 3 0.00010 0.00000 0.00039

Security 4 0.00024 0.00004 0.00027 0.00066

Security 5 0.00000 0.00009 —-0.00014 0.00004 0.00010
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By letting the acceptable least rate of the expected return equal its average return
rate, we can obtain the optimal portfolio selection using Equation (13.1) as shown in
Table 13.8.

Next, we use the proposed method to obtain the optimal portfolio selection. In
order to obtain the possibilistic area of the five securities, possibilistic regression
is employed. Then, using the Mellin transformation we can forecast the means
and risks of the securities by considering the situation of uncertainty as shown in
Table 13.6.

Furthermore, we incorporate the information of the forecasting mean to derive
the second part of the objective function in Equation (13.14), i.e., the covariance
matrix, as shown in Table 13.7.

Finally, with the same acceptable least rate of expected return we can obtain the
optimal portfolio selection under the uncertain situation using Equation (13.14). The
comparison of the conventional and proposed methods can be described as shown
in Table 13.8.

Table 13.8 indicates that the main difference is the portfolio selection for Securities
1 and 4. In the next section, we will discuss the irrational reasoning using the con-
ventional method in our numerical example.

13.4 DISCUSSION

The mean-variance method is widely used in the finance area to deal with the port-
folio selection problem. However, the conventional method does not consider future
uncertainty and usually fails n small sample situations. We now describe the short-
comings of the purpose and theory of conventional method.

The purpose of the mean-variance approach is to determine the 7 period optimal
investing rate for a security based on the historical return rate. The key is to fore-
cast the ¢ period return rate as accurately as possible. However, it is clear that the
arithmetic mean reflects only the average states of the past return rate instead of the
future. Although many regression-based methods have been proposed to overcome
the problem, they obey the assumptions of the large sample theory and cannot be
used in theoretical small sample situations.

In addition, the regression-based methods cannot reflect degrees of uncertainty.
Since we want to determine a future optimal portfolio selection, information about
future uncertainties should not be ignored in models. In this chapter, we employ
the possibilistic regression model to derive the possible mean and variance in the
future. Then the Mellin transformation is used to determine the mean and the risk
in the future by considering uncertain situations. Finally, we can use the informa-
tion obtained to reformulate the mean-variance method to obtain optimal uncertain
portfolio selection.

To highlight the shortcomings of the conventional method and compare it with
the proposed method, we used a numerical example in Section 13.3. We can now
prepare a time chart for Securities 1 and 4 to describe the irrational results using the
conventional method as shown in Figure 13.3.

From the time chart, we can see for Security 1 an increase in period -4 to ¢-1. It
is rational to suppose Security 1 also has a positive return rate in period ¢. On the
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TABLE 13.7
New Covariance Matrix

Security 1 Security 2 Security 3 Security 4  Security 5
Security 1 0.00031

Security 2 -0.00015 0.00052
Security 3 0.00010 0.00001 0.00051
Security 4 0.00023 0.00006 0.00046 0.00086
Security 5 -0.00001 0.00007 -0.00022 -0.00010 0.00015
TABLE 13.8
Comparisons of Portfolio Selections
Portfolio Return Portfolio
Strategy 1 2 3 4 5 Rate Risk
Conventional 0.000 0.069 0.195 0.303 0.433 0.136 0.000056
Proposed 0.136 0.070  0.141 0.118 0.535 0.136 0.000073
01800
01700 |
0.1600 |
01500 |
g 01400 | ——Sccurity 1
g 0.1300 F +Security4
5 01200 |
0.1100 |
0.1000 |
0.0900 |
0.0800 - - - - - :
t-6 t-5 t-4 t-3 t-2 t-1
Period

FIGURE 13.3 Time chart for Securities 1 and 4.
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other hand, Security 4 shows a decrease since period ¢-4; optimal portfolio selection
should eliminate the investing ratio for Security 4. On the basis of the numerical
results, we can conclude that it is irrational to determine uncertain portfolio selec-
tion using the conventional method. However, the proposed method can accurately
reflect the deductions above and can also provide more flexible portfolio alternatives.
A decision maker can determine the optimal possibilistic distribution based on his
or her domain knowledge or the empirical results to obtain an effective portfolio
selection strategy.

13.5 CONCLUSIONS

Portfolio selection has been a continuing problem in the finance area since the 1950s.
The conventional mean-variance method cannot provide satisfactory solutions
involving uncertainties and small sample situations. In this chapter, the possibilistic
regression model is employed to derive the possibilistic area of a future return rate.
The Mellin transformation is then used to obtain the mean and risk by considering
uncertainty. Using this information, we propose a revised mean-variance model that
incorporates a degree of uncertainty to deal with portfolio selection. A numerical
example is used to demonstrate the proposed method. On the basis of the results, we
can conclude that the proposed method can provide more flexible and accurate results
than the conventional method under conditions of uncertainty in portfolio selection.



14 Multi-Objective Optimal
Planning for Designing
Relief Delivery Systems

Although minor earthquakes occur nearly every day, the effects of a strong earth-
quake are devastating. The Shaanxi earthquake, the deadliest in history, killed
830,000 in rural China in 1556. Recent fatal earthquakes took place in Taiwan
in September 1999, India in January 2001, Southeastern Iran in December 2003,
Sumatra in December 2004, and Pakistan in October 2005. Earthquakes have been
some of humankind’s major enemies in the battle against natural disasters.

The United Nations and the public and private sectors established many disaster-
prevention and disaster-recovery agencies and programs. The difficulty with natural
disasters like earthquakes is that even though thousands of networked seismograph
stations are installed around the world and powerful computers continuously analyze
collected data, we are still unable to predict when and where an earthquake will
strike. Therefore, the most effective method to reduce the damage of a disaster is
prevention through research, monitoring, dissemination of information, and educa-
tion. Information coordination among related organizations is valuable and available
but more is required.

After an earthquake occurs, effective disaster recovery efforts can reduce
the death toll and damage and bring relief to surviving victims. These efforts
include the establishment of a rescue command center; collection of information
about the disaster area; identification of appropriate sites for shelters; determi-
nation of the best evacuation routes; arranging transportation for evacuation and
delivery of relief materials; and installation of medical, fire prevention, and emer-
gency construction facilities. This study focuses on fair and effective distribution
of relief materials—making best efforts to ensure that required relief is distributed
to all demand points.

Sato and Ichii (1996) investigated the efficiency of evacuations. Li et al. (1997)
investigated crisis management procedures such as traffic control on highways.
Tzeng and Chen (1999) conducted a study on scheduling programming for restora-
tion construction and salvaging for road networks. Although these studies provide
insights to various disaster recovery efforts, they make no mention of distribution of
emergency relief.

This chapter will concentrate on the effectiveness and fairness of the overall
distribution system to avoid the oversight of critical but difficult-to-reach areas
of the real world. A fuzzy multiple objective model was used for this study and

171
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applied to a case study. Based on this case study, the corresponding measures
needed for implementing the model can be put forward and allow additional sce-
nario simulation. The model can be used to create local operational procedures and
serve as part of a larger integrated relief distribution application. Finally, further
study can be conducted to integrate this model into a comprehensive decision sup-
port system for disaster relief.

14.1 CHARACTERISTICS OF RELIEF DISTRIBUTION SYSTEMS

General physical distribution systems for businesses consider required materials,
costs of materials, numbers and types of vehicles, modes of transportation, depots
and locations, demands for materials, transportation networks, travel times, and
other operational issues. One objective of a physical distribution system is finding
a combination of those variables that minimizes travel time and size of required
vehicle fleet, maximizes service capacity, and minimizes fixed and variable costs.

Similar to general physical distribution systems, relief distribution systems also
involve three factors: demand, supply, and transportation. The collection points of
commodities in non-devastated areas play the role of supply. The demand points
are the devastated areas where relief is provided to victims who play the role of
customers. Additionally, large-scale commodity distribution depots near demand
points or devastated areas act as distribution centers. One difference between busi-
ness and relief distribution systems is that relief systems provide temporary storage
instead of permanent distribution warehouses maintained by businesses.

The two systems differ in one more characteristic. Instead of driving for business
profits, the operators of disaster recovery operations are often government agencies
or nonprofit organizations pursuing efficiency and fairness for disaster victims.

In the event of a disaster, decisions must be made in a very short time and are
based on limited and often incomplete information. Since a relief distribution system
may involve rapid changes of circumstances, an operator may have to take immediate
emergency measures to minimize further damage and calm those affected through
the issue of emergency orders, confiscation of civilian vehicles for emergency use,
and closing of unsafe roads and structures. Table 14.1 presents a comparison of the
features of relief distribution and regular distribution systems.

14.2 RELIEF DISTRIBUTION MODEL

A mathematical model of the disaster recovery distribution systems will be pre-
sented in this section.

14.2.1 ASSUMPTIONS
A relief system should be based on the five assumptions listed below:
1. We consider only devastated areas that still are accessible through the current

road network and disregard devastated areas that are completely isolated and
would require helicopters or other extraordinary means of relief distribution.
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TABLE 14.1
Comparison of General Distribution and Relief Distribution Systems

General Distribution

Comparison Items Systems Relief Distribution Systems
System objectives Maximize profit Fairness and efficiency
Dimensional role Factories Commodity collection points
Distribution centers Commodity transfer depots
Customers Commodity demand points
Facility characteristics Regular facilities Temporary facilities
Substantial/tangible existing
Scheduling plan Long term: location
Medium term: vehicle and
fleet size
Short term: scheduling Urgent decisions based on
available information
Trade-offs between algorithm Paying attention to Emphasis on algorithm
efficiency and optimization optimization efficiency
Delivery models Round trip Round trip
Circulating

2. Relief distribution considered in this system consists only of regular daily
commodities and not materials that must be kept cold or require special
transportation equipment.

3. We assume the availability and accessibility of information such as the
quantities of materials needed, number of the people in each devastated
area, plans for relief distribution, and road condition data and schedule for
restoration if damaged.

4. Changing characteristics of disaster recovery such as the needs of the
affected people and the availability of roads are considered constants
within a discrete time slot. The time slot defined will be sufficient to allow
distribution and allocation of all relief supplies in a given shipment but not
so extended that delays and procrastination can occur.

5. The operator has the authority to mobilize enough military or civilian vehi-
cles to assist relief distribution. Thus, no limit is imposed on the scale of the
vehicle fleet.

14.2.2 MoDEL ESTABLISHMENT

The design of the relief distribution systems is shown in Figure 14.1, and the relief
transfer depots are treated as bridges between the upper-stream and lower-stream
distribution systems. The model encompasses T planning periods, K items of relief
commodities, / collection points, and J demand points. The purpose of the design is
to resolve locations such as transfer depots for each of L candidates so that we can
identify optimal distribution systems and investigate their efficiency.
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Relief Transfer Relief
collection candidate demand
points depot point

FIGURE 14.1 Relief distribution systems.

14.2.3 SymBoL EXPLANATION

Most of the parameters and variables employed in this model are time-related. The
exceptions are the set-up costs FC of the candidate points for relief transfer depots,
the weights of the relief items W, and the binary variable z that indicates whether a
relief candidate location is selected to be a transfer depot.

14.2.3.1 Parameters and Variables

c(t): Available truck capacity in period ¢ at relief collection point i (capacity/car)

c/): Available truck capacity in period ¢ at transfer point / (capacity/car)

C,(H):  Unit transportation cost in period ¢ from collection point i to transfer point
[ (dollars/car)

C,;®:  Unit transportation cost in period ¢ from transfer point / to demand point j

D, (n):  Amount of commodity k needed for demand point j in period 7 (unit of cal-
culation for k material)

FC; Set-up cost (dollars) of relief transfer depot /

R,(H):  Travel time in period ¢ from collection point i to transfer point / (hours)

R(r):  Travel time in period ¢ from transfer depot / to demand point j (hours)

S.i®:  Amount of item k collected in period ¢ at collection point i

W, Package size (volume) of each package of commodity &

14.2.3.2 Variables Used

AD, (0): In period 7, amount of item k actually required by each demand point j

AS, (0): In period ¢, amount of item k actually available at collection point i

ms,(¢): In period ¢, least satisfaction score among demand points with regard to
item k after relief distribution
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sy, (0):  In period ¢, satisfaction score for commodity k at demand point j

TC; (1): In period t, total transportation cost (dollars) from collection point i to
transfer candidate depot /

TCy(»: In period ¢, total transportation cost (dollars) from transfer candidate point
[ to demand point j

T,: Inperiod ¢, travel time from collection point i to transfer candidate depot / (If
actual commodity is sent from collection point i to transfer candidate depot
I, T,(t) = R, (t); otherwise value is 0.)

T;®:  Inperiodt, travel time from transfer candidate depot / actually sent to demand
point (If transfer depot / has material to be sent to demand point j, T}(7) =
R(1); otherwise its value is 0.)

X, ;0 In period £, amount of item k transported from transfer candidate depot / to
demand point j

Yeu®: Inperiod ¢, amount of relief k at collection point i sent to transfer candidate
depot [

Z Whether candidate point / is chosen as transfer depot, with O indicating not
to be chosen and 1 indicating fo be chosen

14.2.4 DistrIBUTION MODEL

The model is constructed to achieve three objectives: least total cost f;, minimum
travel time f,, and finally maximum satisfaction or fairness f;.

min fi= Y FCxz+ 3 ¥ N TCO+Y, ¥ D TC0 (141
! t i [ t i J

min f, = 222 T (1) + ZZZE 0 (14.2)

max f; = szsk (1) (14.3)
t k

S.t.
szk,,, (1) < Z AD, (1) and szk,,j (1) < ZAS,W»(I) Yk (14.4)

D =Y 5y Ykl (145)
i J

D X OSAD () Y Lk, (14.6)
!

Veu()SMxz YV tk,i,l (14.7)

Xy SMXz YV tklj (14.8)
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Y <A@ ¥k (14.9)
l
Yeir () €{0,1,2,...} V' t,k,i,l (14.10)
X (1) €{0,1,2,...} Vt,k,l,j (14.11)
7z, €10,1 V1

, €10,1} (14.12)

The three objectives in the proposed relief distribution model are indicated by
Equations (14.1) to (14.3), respectively, and are explained in detail in the following
paragraphs.

Objective 1: Minimizing total cost (economy objective f;) — Costs include set-
up and operating costs of transfer depots and transportation of relief commodities
among the supply and demand points. Given that the sizes of relief shipments vary,
their actual size must be known so that the calculation units of relief materials can
be standardized. The transportation cost could be determined after calculating the
frequency of shipments. The upper-stream transportation cost 7C;, is computed as
found in Equation (14.13), so the lower-stream transportation cost is 7Cj,.

sz X Y, (1)

TC;(t)=Cy(t)x k Y t,i,l (14.13)
ci(t)

where [ x| indicates upper-bound (ceiling) function, the smallest integer larger than
or equal to x, such as [4.8]=5.

Objective 2: Minimizing total travel time (effectiveness of distribution f,)
— Since travel times among collection, transfer, and demand points are already
known, the calculation of travel time is required only if shipments move between
collection points and transfer points. The total time for movements between those
points represents actual travel time used. The calculation of the transportation time
T, upper-stream is found in Equation (14.14); the T}, of the lower stream can be found
in a similar fashion.

) ZWkX)’k,il(f)=0
0 if

o ‘ (14.14)
Ry (@), if ZWk X Y >0
k

T ()=

Objective 3: Maximizing satisfaction ( f;) — The primary purpose of this
objective is to maximize satisfaction of fairness and minimize unfair distribution.
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In this model, no limit is set for the satisfaction score because “if there is higher sat-
isfaction in certain relief distribution, there must be some concession in other relief
items,” and we will treat each relief item independently. Thus, the weighting method
is employed to sum the least satisfaction value of each relief item in every period of
time to reduce the number of objective equations. The calculation of satisfaction and
least satisfaction is as follows.

Z Xiyi (1)

=l ik (14.15)
Sk,/( ) ADk,j(l‘) J

ms (t) = mjin {se ;D) Vik (14.16)

Now we will explain the constraints. Equation (14.4) means scarce goods are not
allowed to lie idle and an agency cannot ship what it does not have. The equation
can be written as

szk,,,(z)Smin ZAD,W-(t),ZASkJ(t) Y1k
T j i

Equation (14.5) deals with all goods shipped to and from transfer depots in the same
period. Equation (14.6) prevents over-shipping of any one item. Equations (14.7) and
(14.8) determine the selection of transfer depots among candidate locations. Equation
(14.9) means only available goods are shipped to collection points; Equations (14.10)
and (14.11) mean quantities are predetermined for each item.

In a relief system, the top priority is meeting the needs of victims. Although
cost remains a consideration, it is unacceptable to have relief supplies remain idle
in a system in an effort to save transportation costs or travel time. Therefore, dur-
ing every period ¢, the total amount received at every relief demand point should
be equal to the total amount shipped from the collection points for every item as
indicated in Equation (14.5). In planning, we assume that the only items the victims
need are relief supplies. If the provisions are not delivered in that period, however,
the shortage can be made up in the next period as there would not be any so-called
giving up time validity. Equations (14.17) and (14.18) explain in every period ¢ the
supply capability at each commodity supply point i and the calculation of the actual
demand at each relief demand point ;.

ASyi(t) =S8, (1) Vk,i when t=1
ASLi (=S (O+AS (=D = Y yat=D]  Viki when 122
!

(14.17)



178 Fuzzy Multiple Objective Decision Making

AD, ;(t) = Dy (1) Vk,j  when t=1

AD, (1) = Doy (0) +[AD, (1= D)= Y xey(t=D]  Ve.k,j when 122
l

(14.18)

14.2.5 MoODEL MODIFICATION AND RESOLUTION

After the model was constructed based on real behavior, we needed an efficient
method to reach a solution in the new era of evolutionary computation. Fuzzy pro-
gramming combines the idea of fuzzy logic and provides a new method for uncer-
tainty analysis in mathematical formulae. Although the importance of Objective 3
is known to be higher than those of the other two objectives, the weight relation-
ship among these three objectives cannot be clearly defined. As a result, this study
employed fuzzy multi-objective linear programming (Chen and Tzeng, 1999;
Tzeng and Chen, 1998 and 1999) of a max—min operation to rewrite the math-
ematical equation for resolution. Thus, after the resolution for a single objective
has been conducted to establish a multi-objective pay-off table, the membership
function of the optimal (best) value (f;") and the worst value (f") of each objec-
tive can be found.

Since Objective 3 is the maximization of the least satisfaction, its ideal value must
be the even distribution of relief to each demand point regardless of cost. Therefore,
should the value of the ceiling limit (upper boundary) of Objective 3 determined,
every kind of relief item among all of the relief demand points in every period will
suffice. Its value will be KT, where K is the total amount of relief items and T repre-
sented the number of planned periods.

Within relief distribution systems, the most important goals are satisfying the
current needs of surviving victims as much as possible and reducing the dam-
age following devastation. Clearly, time and money are not the ultimate aims;
they are merely soft constraints for ensuring that resources are utilized effectively.
Hence, f5 is designated for KT so that Objective 3 will become the critical path
for system resolution, making the system achieve its optimal result. As follows,
the objective Equations (14.1) to (14.3) of the distribution model in the previous
section can be rewritten as Equations (14.19) to (14.22) for achieving the maximal
satisfaction level, while the original constraints remain intact as Equations (14.4)
to (14.12):

Max A (14.19)

S.1.

fl__i"fi > (14.20)
fi—h
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ﬁ__i_fi > (14.21)
fr-f

Simh sy 14.22
s (14.22)

14.3 RELIEF DISTRIBUTION OPERATION: CASE ANALYSIS

Disaster recovery is like field combat: the final outcome of s strategy depends on
whether it can be carried out effectively. Thus, this section will make use of scenario
simulation to demonstrate how to utilize the constructed model for integral relief
distribution, so that the operation procedures and related issues can be established
for further studies.

14.3.1 INFORMATION CONTENT AND DATA COLLECTION

The values of parameters of the model must be established before planning. Data
collection can be performed as a routine matter before a disaster; feedback gathered
during the disaster, and need analysis based on feedback afterward. The work items
are classified in Table 14.2.

14.3.2 PRe-OPERATION STAGE

Data collection in the pre-operation stage involves data collected during routine non-
disaster days concerning commodity measurements, travel and alternative routes,
coordination capability, and truck capacities.

1. Calculate each relief commodity size volume equivalent. Among the daily
commodities, choose the size of one to be used as the basic unit for measur-
ing volume (the size of a sleeping bag is used as the criterion for measuring
volume equivalents in this study). The volume size equivalents of common
commodities can found in Table 14.3.

2. Establish an electronic map. Electronic maps made of Taiwan’s entire high-
way network identify the shortest routes and alternative routes quickly and
easily. This study employs the “Taiwan Island 1/25/2000 Transportation
Network Numerical Value Map” prepared by the Taiwanese Transportation
Institute of the Ministry of Transportation and Communications.

3. Investigate the coordination capability for emergency relief in all affected
areas. Coordination capability for emergency relief is one criterion for pre-
dicting supply and demand for each area after a disaster. Asking questions
about daily commodities is one place to start. What is the area’s primary
staple crop? Are any warehouses available for storage? Does the area have
warehouses or factories that produce daily necessities?
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TABLE 14.2

Information Classification

Stage

Pre-operation

Disaster
information
transmission

Planning and
analysis

No.

la

1b
1c

1d
2a

2b

2¢c
2d

3a

3b
3¢

3d

3e

3f

3g

3h

3i

3

3k

3l

3m

3n

30

Work Content

Calculate each relief commodity size volume
equivalent (W))

Establish electronic map

Investigate coordination capability for emergency
relief of whole area

Calculate capacity equivalent for each kind of truck

Estimate road destruction and the time needed for
restoration

Survey degree of damage in each area

Forward location of each commodity demand point ()

Identify number of victims who need care at each
demand point

Predict commodity demands for each demand point
(D)

Select location for each commodity demand point (i)

Determine commodity supply capability for each
commodity collection point (S, (7))

Determine best support vehicle category for delivering
relief commodities to each collection point

Determine support truck capacity required to deliver
relief commodities to each commodity collection
point (c/1))

Select locations for candidates for commodity transfer
depots (/)

Analyze shortest routes from commodity transfer
candidate points to relief demand points

Find shortest route from relief collection points to
commodity transfer candidate points

Analyze set-up costs of relief transfer depot
candidates (FC))

Determine support vehicle category for delivering
commodities to commodity transfer depot candidates

Determine support vehicle capacity for delivering
commodities to commodity transfer depot candidates
(1)

Calculate travel times from commodity transfer depot
candidates to each relief demand point (R,(7))

Calculate unit transportation costs from commodity
transfer depot candidates to each relief demand point
(Cy0)

Calculate travel time from each relief collection point to
commodity transfer depot candidates (R,(t))

Calculate unit transportation costs from relief demand
points to commodity transfer depot candidates (C,(t) )

Dependencies

No

No
No

No
No

No

2b
2¢c

lc, 2d

2b
lc, 3b

3b

1d, 3d

2c, 3b

1b, 2a, 2c¢, 3f
1b, 2a, 3b, 3f
3f

3f

1d, 3j

3g

3g

3h

3h
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TABLE 14.3
Commodity Size and Volume Equivalents

Volume
Item Calculation Unit Volume (cm?3) Equivalent
Sleeping bag Each (nylon sleeping bag) 45x25%x11=12,375 1.00
Tent Each (yurt for 6-8 people) 70 x 26 x 15 =27,300 2.21
Mineral water Box (1410 ml,12 bottles) 36 x 26 x 30 = 28,080 2.27
Rice Pack (5 kg) 38 x 25 x5.5=5,225 0.42
Instant noodles Box (12 bowls) 43 x 29 x 17 =21,199 1.71
Dry food Box (30 packs nutrition biscuits) 38 x 27 x 18 = 18,468 1.49
Canned food Box (12 cans) 20 x 21 x 5.8 =3,532 0.29

4. Calculate truck capacity equivalents. The carrying capacity of a vehicle is
affected by more than its tonnage. Whether a truck has a canvas cover is one
of many issues to consider. The primary military vehicles for distribution
are Hummers and 10.5-ton trucks (both with covers).

Measurements of the maximum distribution capacities for these vehicles are pro-
vided by the government. Vehicles provided by civilians, however, are usually small
trucks without covers. Their maximum heights for carrying are dictated by Article 4
of Regulation 79 of the “Traffic Safety Regulations of the Thoroughfare” stating
that the height of carried goods “should not exceed 4 meters, or 2.5 meters for small
vehicles, as measured from ground level” (see Table 14.4).

14.3.3 DISASTER INFORMATION TRANSMISSION

The second type of information needed varies with the development of the disaster,
and includes the work contents and the data collection types. The following steps
are suggested:

1. Estimate the extent of road destruction and the time required for restora-
tion. In addition to investigative reports from the damaged areas, a bird’s
eye view can be obtained by helicopter immediately after the disaster to

TABLE 14.4

Truck Capacity Equivalents

Vehicle Carry Space (cm?) Carry Equivalent
Hummer 280 x 200 x 140 = 7,840,000 634
Military truck, 10.5 tons 600 x 250 x 175 = 26,250,000 2,121
Civilian truck, 1.5 tons 231 x 150 x 130 = 4,504,500 364

Note: 1 sleeping bag volume = 1 equivalent.
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determine the state of the traffic network in advance of deploying ground
vehicles. Furthermore, time needed for road restoration for important areas
can then be estimated based on the manpower and equipment dispatched
and the degree of damage.

2. Survey each area. This establishes a feedback system for assessing dev-
astation. A survey of all areas should be conducted and information from
villages and towns transmitted to the central command unit to determine
needs for relief. The numbers of men, women, elderly, children, and the
victims who need care should be reported also.

14.3.4 Route PLANNING AND NETWORK ANALYSIS

The third level of information is obtained by planning and analysis using a database
previously established from data forwarded by devastated areas. The primary work
contents are as follows:

1. Predict commodity demands. Estimates of possible demand for all daily
necessities over specific periods should be made based on emergency
coordination capability, the extent of devastation, and the age and sex data
for victims who need care at the relief demand points. For example, it is
important to determine how much food and water an average adult needs to
survive.

2. Plan commodity collection depots. After the extent of disaster is known,
affected and non-affected areas can be delineated. Suitable locations such
as village or township offices and county or city administration centers
that area residents know well can serve as relief collection points in non-
devastated areas. The private sector and members of the public can be
encouraged to donate relevant daily necessities. In addition, once the loca-
tion is chosen, the supply capacity of the area could be estimated based
on emergency coordination data for each area and allocation of support
vehicles can be determined.

3. Set up transfer depots. After locations of demand points are set and collec-
tion points are chosen, several large-scale transfer depots can be established
based on the extent of road damage and time required for restoration. The
two principles for establishing a transfer depot are (a) the location should
be prominent and be accessible via alternative roads and (b) the location
should have enough space to store, coordinate, and package relief com-
modities. After transfer depots are selected, establishment costs can be esti-
mated and vehicle allocations can be planned.

4. Select the quickest route. Based on the distribution of commodity demand,
collection, and transfer points after analysis of data about road destruction and
estimated restoration time, GIS software (Maplnfo, TransCad, ARC/INFO)
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can be used on the electronic map to find the quickest distribution route.
Because relief distribution is often an emergency, the government could enact
stringent traffic control measures. The advantage of stringent control is that
better time and speed estimates may be made. In normal traffic, volumes and
speeds are variable and times are unpredictable. Also, vehicle specifications
(size, mode, etc.) should be considered when estimating unit transportation
costs between two points.

14.4 CASE ILLUSTRATION AND DATA ANALYSIS

14.4.1 CASE ILLUSTRATION

The case analysis focuses on Taichung, Nantou City, and Nantou County, Taiwan,
that experienced a major earthquake on September 21, 1999. The demand and supply
points are shown in Table 14.5. The commodities were gathered at Fongyuan for the
northern areas (Taipei, Taoyuan, and Hsinchu) and at Douliou, Yunlin County, for
the southern areas (Kaohsiung and Pingdong).

The study covers five collection points, eight demand points, and four transfer
depots. Some areas performed multiple duties. For example, Fongyuan served

TABLE 14.5

Research Case Locations

Demand Point

Taichung city

Taiping city

Dali city

Nantou city

Puli township

Kuoshin
township

Chungliou
township

Chushan
township

Baseball field

Fire department

City government

County stadium

Fire department

Kuoshin Street

Township
government

Township
government

Supply Point
Fongyuan Fongyuan
city stadium
Dongshih Dongshih
township elementary
school
Chunghua Chunghua
city county
government
Yuanlin Yuanlin
township township
government
Douliou city ~ Chung Shiou
Temple

Transfer Depot

Fongyuan
city

Caotun
township

Nantou city

Mingjian
township

Fongyuan
stadium

Farmer
association
warehouse

Nantou county
stadium

Mingjian
elementary
school
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as both a supply point and a transfer depot, while Nantou was a transfer station
and a demand point. Relief supplies for distribution included sleeping bags, tents,
mineral water, and four kinds of instant noodles distributed over four planned
periods.

The case study considered the highway network of county and provincial roads
and each road section was assigned a designated travel time. The quickest route
was determined by using TransCAD software. The study simplified restoration
work on damaged roads by dividing the work into three categories. As a result,
the quickest travel time between two places was subject to change. Data showing
quickest travel times, travel distances, numbers of victims in need of care in each
area, demand modes for every item of relief, and supply information are shown in
Tables 14.6 and 14.7.

14.4.2 DATtA ANALYSIS AND DiscussioN

Using LINGO for analysis, Fongyuan and Nantou decided the sites for transfer
depots based on low set-up costs and geographic locations. The results indicated
unit transportation costs and travel times from most demand and supply points, such
as from Taichung, Taiping, Dali, and Dongshih to Fongyuan, and from Yuanlin to
Nantou were minimal. In addition, since Fongyuan also acted as a collection point
and Nantou as a demand point, the choice of these two places enhanced the integral
performance of the system.

Note the disparity of supply sources in Table 14.7. The Fongyuan transfer depot
had to move some of its relief supplies to the Nantou transfer depot to meet the
demands of Nantou and collect more supplies. Considering travel time and trans-
portation cost, the Fongyuan transfer depot mainly collected and distributed relief
to Taichung, Taiping, Dali, and Dongshih, while Nantou was responsible for Puli,
Kuoshin, Chungliou, Chushan, and Yuanlin. Chunghwa was not selected for trans-
port because it sits between Taichung and Nantou and would not have affected the
system significantly.

The respective rankings of satisfaction of the three objective values were 0.93,
0.82, and 0.65, while the minimal satisfaction applied to Objective 3. Therefore,
Objective 3 was the bottleneck of the system in line based on the premise that the
model will not compromise the equity of relief distribution because of cost and time
constraints.

Table 14.7 indicates that for Objective 3 the result shows even distribution
when supply is over demand. In other words, the relief given to all of demand
points in every period revealed a certain fixed ratio to actual demand. Thus, the
satisfaction of all of the demand points in each period for a kind of commod-
ity will be integral. Although the satisfaction of Objective 3 was only 0.6527,
it was modified (fi" = TK =16) and the fuzzy multi-objective programming was
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changed into a single objective for resolution. Consequently, Objective 3 reached
its optimal state.

As a whole, the final resolution allowed Objective 3 to reach its optimum level
and Objectives 1 and 2 reached certain levels of satisfaction despite the constraints.
Therefore, the results derived are reasonable and could be used by decision makers.
If the ideal value of the objective to maximize minimal satisfaction is adjusted to
(total planning period) X (total items for distribution), even when supply is below
demand, the result would still follow the same ratio of distribution to each of the
demand points. After this, a suitable distribution route would be located.

The resulting analysis of the objective is in line with the results we have seen in
reality. The decision maker can, based on need, select an optimal value of Objective 3
and split it between the evenly distributed result and (total period of planning) x
(total items of distribution). In doing so, the importance of Objective 3 is greater
than those of the other two, yet neither of the two is dominant. The actual satisfaction
level of Objective 3 will not reach 100%, while the achievement values of the other
two objectives can be improved.

14.5 CONCLUSIONS AND RECOMMENDATIONS

Relief distribution is one of the most important aspects of disaster recovery. The
features inherent in relief distribution systems found in this study are based on the
assumption that the government has the authority to expropriate enough military or
civilian vehicles to help with relief distribution and control traffic during the period
of relief distribution. We used fuzzy multi-objective programming to create an emer-
gency relief distribution model for the reference of decision makers. As a part of a
disaster recovery system, sufficient correct data as specified above must be collected
and available before a model starts to operate.

The data content needed to be processed for each of the parameters is listed in
Table 14.2, and Figure 14.2 elaborates on the priority and relationship of each pro-
cedure related to implementation. Data collection was divided into the pre-operation
stage, post-disaster stage, analysis of the information compiled, and final results of
relief distribution. To test the feasibility and effectiveness of the study method, a case
study was used to illustrate the concepts described.

Compatible measures needed for the execution of this model were put forward for
use in emergency relief distribution during and after a natural disaster. Further in-
depth study is needed to provide steps and recommendations for each of the proce-
dures and develop a more representative method of estimation. This study provided
some insights for the decision support system that must include a database contain-
ing pre-operation plans and geographic information.
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5 Comparative
Productivity Efficiency
for Global Telecoms

Greater efficiency of an enterprise is the equivalent of being more competitive in
the market and more profitable. It is interesting to study the differences between the
Forbes Global 2000 rankings of leading companies” and the productivity efficiency
ratings for leading global telecom operators. This chapter is the first attempt to com-
pare the operating performances of global telecom operators in the Forbes Global
2000 rankings with the CCR ratings, particularly EBITDA margins, ROA levels,
total asset turnover, and net profit ratios.

In recent years, telecommunication industries have encountered fierce competi-
tion, the bursting dot.com bubble, 3G high auction license pricing, and rapid overseas
development. In response to pressures from technical changes and market compe-
tition, telecom operators have worked hard to cut costs to maintain their bottom
lines (net incomes). The data envelopment approach (DEA) can combine multiple
output and input variables to assess an enterprise’s operating performance. One of
the incentives for the current study is to understand which geographical areas exhibit
better productivity efficiency.

This is the first study to compare relative performance efficiencies of the leading
telecom operators by combining the three methods of traditional radical DEA mea-
sure, the Andersen and Petersen (A&P) efficiency measure, and the new DEA mea-
sure. Critical research focusing on the productivity efficiencies of telecom operators
has attracted the attention of academicians, policy regulators, and decision makers
the world over.

Several studies have applied DEA methodologies to solve practical problems
in the telecom industry. Saunders et al. (1995) discuss some questions about the
economics of telecommunications, arranging them around such themes as whether
the economic value of the benefits derived from investments in telecommunications
can be demonstrated and quantified and which segments of the population derive
these benefits. Majumdar (1995) investigates the impact of the adoption of new
switching technology on the performances of firms in the United States, telecom-
munications industry by computing both input-conserving and output-augmenting
measures of performance.

* On March 25, 2004, Forbes issued a comprehensive rating of the world’s biggest and most powerful
companies during year 2003 measured by a composite ranking of sales, profits, assets, and market
value. The rating spanned 51 countries and 27 industries (http://www.forbes.com).
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Sueyohsi (1998) examines economic effects empirically by comparing the
performance of Nippon Telephone & Telegraph (NTT) before and after its priva-
tization in 1985. The move made NTT managerially ineffective under its public—
private joint ownership arrangement. Giokas and Pentzaropoulos (2000) studied
the technical efficiency and economic benefit of the Hellenic telecommunications
organization from 1971 to 1993.

Koskie and Majumdar (2000) examined the efficiency with which countries have
been able to develop and provide their telecom infrastructures, and whether dispari-
ties in efficiency have diminished or increased over time among different countries.
Lien and Peng (2001) explores the production efficiency of telecommunications in
24 Organization for Economic Cooperation and Development (OECD) countries.
Pentzaropoulos (2000) compares the operational efficiencies of the main European
telecommunications organizations.

Uri (2000) explores whether incentive regulation in the telecommunications indus-
try in the United States resulted in increases of productive efficiency. Thereafter, Uri
(2001) consistently implements the DEA approach to measure the changing pro-
ductive efficiencies arising from incentive regulations for some telecommunications
issues. Zhu (2000) develops a multi-factor performance measure model to measure
profitability and marketability for Fortune 500 companies. He indicates that the top-
ranked companies by revenue do not necessarily exhibit top-ranked performance,
and also that reductions in current levels of employees, assets, and equity may actu-
ally increase revenue and profit levels.

Karlaftis (2004) measures the efficiency and effectiveness of urban transit sys-
tems via the DEA approach over a 5-year period. Luo (2003) evaluates the profit-
ability and management of large banks and shows that profitability and marketability
efficiency play key roles in determining a bank’s survival. He also indicates that
overall technical efficiency (OTE) of profitability performance can predict the likeli-
hood of bank failures.

15.1 GLOBAL TELECOMMUNICATION TRENDS

In the late 20th century, the almost simultaneous arrival of two major innovations—
mobile phones and the Internet—changed the face of communications and also gave
impetus to dramatic economic growth. Modern communication technologies have
been instrumental in reshaping the world’s telecommunications market.

The development of the Internet and the progress of information and communica-
tion technology (ICT) accelerated the transmission of knowledge and the exchange
of information, thereby propelling people all over the world toward an information
society. The development of the knowledge economy promoted broadband network
construction—a major factor leading to the information society.

15.1.1  Fixep-MosiLe SussTiTUTION (FMS)

The utilization of mobile instead of fixed-line telephones for calls or access is called
fixed-to-mobile substitution. It created a massive threat to fixed-line voice reve-
nues for incumbent telecom carriers. Mobile telephone connections in developing
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FIGURE 15.1 Trend for mobile substitution fixed ratio (1993-2003). (Source: United
Nations’ International Telecommunications Union).

countries have increased considerably because cellular networks can be built faster
than fixed-line networks.

Wireless technology makes it unnecessary to run a wire line into every subscrib-
er’s home and can also cover geographically challenging areas. During 2003, the
number of mobile calls (mobile to mobile and mobile to fixed) comprised 51.70% of
total traffic calls, surpassing the number of fixed calls (fixed to fixed, fixed to mobile)
that represented 48.30% of all calls. International Telecommunications Union (ITU)
data showing the FMS trend from 1993 to 2003 appear in Figure 15.1.

15.1.2 INTERNET BROADBAND

Internet broadband now has become fully integrated into a multi-faceted but consoli-
dated information, communications, and entertainment (ICE) marketplace. Along
with the diversification of content applications and the increase in broadband pen-
etration, the Internet has become the most common tool creating and exchanging
information and also for offering broadcast TV, TV on demand, and videophone
platforms worldwide.

Content providers and equipment manufacturers continue to develop new services
and products that will allow users to make the most of their broadband connection to
facilitate Internet consumer behavior. The telecom industry is looking for value-added
services to diversify content and thereby drive innovations to deliver further growth.

15.1.2.1 Broadband Access

Incumbent telecom operators quickly move into Internet broadband fields to stimu-
late revenue growth and further offset fixed voice revenue losses. Incumbent opera-
tors have the resources to dominate the Internet, primarily through ownership of
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most local and long distance transmission conduits. They also control most of the
broadband backbone facilities providing Internet data transport by owning the larg-
est Tier 1 Internet service providers (ISPs) in their local data markets.

According to ITU (2003), Internet broadband utilizes several advanced technolo-
gies to provide access, for example, digital subscriber lines (DSLs, copper phone
lines), cable modems (copper coaxial), fiber optics (FTTH, FTTB), cable, wireless
local area networks (WLAN:S), satellites, and fixed broadband wireless (IEEE 802.16).

15.1.2.2 Broadband Penetration

Network infrastructure, per capita income, and the degree of openness in a society
are the most important determinants for Internet diffusion. External conditions such
as legal, economic, political, and social conditions that surround Internet users also
affect the level of adoption in a country (Beilock and Dimitrova, 2003).

Among the global broadband penetration rankings as of December 31, 2003, KT
Corporation (formerly Korea Telecom) pushed South Korea into having the most high-
speed Internet access and greatest broadband penetration. Yoon (1999) examined
factors affecting efficiency and demonstrated how the South Korean government’s
commitment to a market liberalization schedule created a credible competitive threat
to the incumbent carriers and enhanced the dynamic efficiency of the telecom industry.

15.1.2.3 Convergence of 4C Services

The convergence of communication, computing, consumer appliance, and content
(4C) technologies provides integrated voice, high-speed data, video, and other con-
sumer services. Multimedia services via a broadband network are becoming routine
in daily life, and information networks have become essential elements of communi-
cation in the information society.

Telecom operators have increasingly bundled various services as a new marketing
strategy. This could allow incumbent operators to provide more than plain old tele-
phony service (POTS) and narrowband Internet access, differentiating themselves
from their main rivals by offering me-too-but-cheaper service.

As for cable TV operators, broadband access enables them to provide a larger slice
of consumer entertainment along with less expensive telephone service. Fastweb
Italy deploys 10 Mbps triple-play services including broadcast TV, broadband, and
telephony and has become profitable after 3 years of operation. The incumbent
Telecom Italia followed by launching video on demand through its Rosso Alice por-
tal and introduced fixed-line videophones to the market in June 2004 according to
its annual report.

15.1.3 MOBILE MARKET

Mobile arming is the most important revenue resource when the lack of wireless
operation income decreases an incumbent’s competitive power. Most developed
countries have the greatest levels of mobile penetration. Taiwan has the highest
mobile penetration in the world. Mainland China has 17% penetration in a growing
market. In 2003, China’s mobile phone subscribers overtook fixed-line subscribers
as shown in Figure 15.2.
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FIGURE 15.2 Growth of mobile and fixed subscribers in China. Source: www.mii.gov.cn

The strategy of mobile operators is to get closer to their high-spending customers
to build loyalties and grow their average revenue per user (ARPU). The operating
focus is to retain and develop high-value customers while cutting the costs of sup-
porting low-value customers. With the convergence of mobility and the Internet, the
industry is witnessing a growing trend from geographic to strategic advantages for
the globalization of a wireless value system (Steinbock, 2003).

15.2 DATA AND METHODS

DEA is a non-parametric technique for measuring and evaluating the relative effi-
ciencies of a set of entities with common crisp inputs and outputs (Guo and Tanaka,
2001). The advantages of DEA in this context are its multiple output and input
viewpoints and its wide acceptance for performance evaluation. In this study, the
application of the traditional radial DEA, A&P efficiency measures, and achieve-
ment efficiency measure are used to explore relative productivity efficiency as a way
to compare operating performances of 39 leading global telecom operators listed
among the Forbes Global 2000 as decision-making units (DMUs). Figure 15.3 illus-
trates the DEA procedure.

15.2.1 DATA COLLECTION

The first step was selecting the top telecom companies from the Forbes global 2000
rankings. Next, data from 40 DMUs were retrieved from the telecom operators’
annual reports on their websites” and the related features were checked against the

* Financial data for most operators covered year ending March 31, 2004 and included NTT Corporation,
NTT DoCoMo, BT Group, KDDI Group, Singapore Telecommunications, MM2, and Cable and
Wireless. Telstra data ended June 30, 2004; data for other telecoms ended December 31, 2003. Data
were obtained from company annual reports.
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Input Variables Output Variables
Total Assets Productivity Efficiency Revenue
CAPEX > EBITDA
Employee no. Operating Profit (EBIT)

DEA measure method:
1.Traditional radial DEA;

2. A&P efficiency;

3. Efficiency achievement measure.

FIGURE 15.3 DEA assessment procedure.

UBS Investment Bank database.” The Vodafone Group ranking 355th among the
Forbes 2000 was excluded as an observation DMU to avoid statistical distortion
because in fiscal year 2003 it showed a significantly large negative value of —$17,426
million (U.S.) in operating profit (earnings before interest and taxes [EBIT]).

15.2.2 DEA MEeTHODS

Three types of efficiency measures can be adopted to assess the relative operational
performances of an enterprise: the classical radial efficiency measure, the A&P effi-
ciency measure, and the efficiency achievement measure.

15.2.2.1 Classical Efficiency Measure

The traditional radial DEA method of Charnes, Cooper, and Rhodes (1978) known
as the CCR method is based on the pioneering efficiency relative efficiency measure-
ment work of Farrell (1957). The radial system generalizes a multiple output—input
performance measure in which the ratio of the weighted outputs to weighted inputs
for each observation is maximized.

Two versions of DEA efficiency measures are the CCR measure and the later
BCC measure named for Banker, Charnes, and Cooper (1984). The CCR measure
is calculated with the constant returns to scale (CRS) assumption whereas the BCC
method allows for variable returns to scale (VRS; Lien and Peng, 2001). Every
DMU’s efficiency evaluation is viewed as one objective function to be maximized
(relative efficiency). There are n units or n decision-making units (DMUs) and each
has m inputs for producing s outputs.

15.2.2.2 Andersen & Petersen (A&P) Efficiency Measure

The traditional radial DEA measure evaluates the relative efficiency of DMUs but
does not allow for a ranking of the units themselves. A modified version of DEA
based on a comparison of DMUs is the A&P efficiency measure. Efficient observa-
tions are assigned an index value of 1 in the CCR efficiency model and an index

“ UBS Investment Bank Research covers more than 3000 companies worldwide and provides data on
valuation, strategy, and economics (www.ubs.com: Equity/Research/Sectors/Telecommunication).
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equal to or larger than 1 in the A&P model (Andersen and Petersen, 1993). The A&P
function is described in Appendix C.

15.2.2.3 Efficiency Achievement Measure

The conventional approach of DEA analysis considers individual DMUs separately,
and then employs Equation (15.2) to calculate a set of weights that brings maximal
relative efficiency to each group. Such an approach enables most DMUs to be used in
efficiency measures. DEA models of efficiency achievement measure can be applied
in multi-criteria decision making.

A revised DEA multiple-objective programming approach proposed by Chiang
and Tzeng (2000) tries to find a set of common weights by calculating the efficiency
ratios of all DMUs. This approach considers the efficiency ratios of all DMUs to
calculate and find a set of common identity-based weights so that the efficiency ratios
of all DMUs calculated accordingly improve as the ratio gets larger. To achieve this
goal, multiple-objective programming can be employed to find a set of consistent
weight combinations so that the optimized efficiency value can be calculated for
each DMU to determine an overall relative efficiency achievement.

15.2.3 DEA ASSESSMENT PROCEDURES

DEA is a linear programming-based technique that converts multiple output and
input measures into a single comprehensive measure of operator level performance.
The DEA assessment procedure for the input variables associated with output vari-
ables to measure productivity efficiency is illustrated in Figure 15.3.

For the DEA, selected telecom companies were chosen from the Forbes global
2000 list rankings. We excluded Vodafone Group and America Telecom because
of Vodafone’s significant negative operating profit and because America Telecom
annual report data are not available on the Internet.

The three types of DEA programming were adopted to capture performance
based on output variables of revenue, EBITDA, and operating profit (EBIT). The
input variables utilized were total assets, capital expenditures, and total num-
ber of employees’ (Karlaftis, 2004). The DEA input-oriented models were cho-
sen because cost minimization or reduction is used in this method (Golany and
Roll, 1989). It is now popular to rely on non-GAAP financial measures such as
the EBITDA and EBITDA margin (%) to assess the operating performance of a
company against that of its counterparts. Finally, the CCR efficiency rankings
of the selected companies from the Forbes list were analyzed based on the three
performance indicators.

“ EBITDA represents operating income plus interest, taxes, depreciation, and amortization. It is a good
measure for reconciling free cash flow to investment capital cash earnings distributed to shareholders.

7 Employee numbers are added to one of the output variables because all the sample telecom compa-
nies cited on the Forbes list are publicly traded in open stock markets. Human resource allocations
are assumed to be aligned appropriately to induce better operating performance for facing market
challenges.
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TABLE 15.1

Descriptive Statistics

Items Mean Minimum Maximum Std. Dev. Valid N
Total Assets 38615 4450 186200 42946 39
Capex 3204 636 17900 3443 39
Employee 59848 11717 248153 59608 39
Revenue 21666 2930 100200 21537 39
EBITDA 7868 833 33783 7781 39
EBIT 3838 189 14100 3850 39

15.2.4 ProbpucTivity EFFicIENCY MEASURE

A multiple-objective programming method was applied to improve the discriminat-
ing power of the classical DEA method that often results in many relatively efficient
DMUs. The efficiency achievement approach achieves more discriminating power
than the classical efficiency measure. The descriptive statistics are described below.

15.2.4.1 Descriptive Statistics

The collected observations covered 39 leading global telecom companies as ranked
on the Forbes 2000 list to be our DEA programming DMUs. The descriptive statis-
tics cover valid numbers, minimums, maximums, means, and standard deviations as
shown in Table 15.1.

15.2.4.2 Isotonicity Test

The variables of input and output for the correlation coefficient matrix should comply
with the isotonicity premise. In other words, the increase of an input will not cause a
decreasing output of another item. We excluded the net income output variable item
because the negative values for Sprint PCS and Cable and Wireless (U.K) revealed
a negative correlation with input variables and thus failed to meet the requirements
of the DEA isotonicity premise. The test for the Pearson correlation matrix among
the input and output variables is isotonicity, i.e., the p-value of 0.0001 (p < 0.05)
matches the basic assumption of the DEA approach. The correlation coefficients
among inputs and outputs are listed in Table 15.2.

15.2.4.3 Common Weight for Efficiency Achievement Measure

The efficiency achievement measure is established by using a common multiplier
based on the multiple-objective programming approach. Fuzzy multiple-objective
programming utilizes the membership function to convert multiple-objective pro-
gramming to one-objective programming. Unlike classical DEA, the new approach
locates one linear frontier as a common reference to calculate the efficiency measure.
By using a common frontier, reducing the number of DMUs to improve the discrimi-
nating power of the DEA model is relatively efficient. The common weight employed
by efficiency achievement measure is shown in Table 15.3.
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TABLE 15.2
Correlation Coefficients among Inputs and Outputs
Items Revenue EBITDA Operating Profit
Total Assets 0.9598 0.9561 0.8907
p=0.0001  p=0.0001 p=0.0001
Capex 0.9312 0.9379 0.8744
p=00001  p=0.0001 p =0.0001
Employee 0.6500 0.6971 0.6998
p=0.0001  p=0.0001 p=0.0001
TABLE 15.3
Common Weights Employed by Efficiency Achievement Measure
Efficiency
Achievement Input Weight Output Weight

Common Weight  0.00000488 0.00015368 0.00000074 0.00000001 0.00005360 0.00000001

15.3 EMPIRICAL RESULTS AND DISCUSSIONS

The empirical results have five efficiency measures: CCR, BCC, scale, A&P, and
efficiency achievement. A comparison of the differences of the best practice fron-
tiers of efficient DMUs was performed for the three DEA methods. Figure 15.4 is a
scatter graph of CCR efficiency scores (between 0 and 1) and associated EBITDA

EBITDA Margin (%)
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60.0
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40.0 o
30.0
20.0 ¥
10.0

0.0 1 1 1 1 J CCR
0.000 0.200 0.400 0.600 0.800 1.000
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FIGURE 15.4 China telecom performance. Comparison of CCR efficiency scores and
EBITDA margins.
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margins (%) that displays the efficiency distribution. The efficiency comparison was
performed for Asia, Europe, and America. In addition, we discuss representative
characteristics of efficient operators and a case study for Chunghwa Telecom to
explore operating strategies.

15.3.1 ProbucTiviTYy EFFICIENCY

This study uses the traditional radial DEA measure, A&P efficiency measure, and
efficiency achievement measure to compute the various productivity ratings for lead-
ing global telecom operators. The efficiency assessment conducted was based on the
input and output variables of each DMU.

The CCR model for each DMU is the overall technical efficiency that can be
condensed into a measure of pure technical efficiency (BCC) and scale efficiency
(Coelli, 1998). All of the efficiency scores are bounded between 0 and 1 (CCR =
BCC x scale).

A score equal to 1 indicates relative productivity efficiency while a value less than
1 is regarded as relatively inefficient. The various productivity efficiency estima-
tions by CCR, BCC, scale, A&P, and efficiency achievement measures are listed in
Table 15.4. Certain public telecommunications organizations (PTOs) with full effi-
ciency ratings are considered models or benchmarks for less efficient organizations
(Pentzaropoulos and Giokas, 2002).

15.3.2 Erricient DMUs

DEA is a mathematical programming technique for identifying efficient frontiers
for peer DMUs (Chen and Ali, 2002). Empirical results indicate that the A&P and
the efficiency achievement measure can provide clearer DEA efficiency ratings.
Efficiency observations for CCR involve observations of eight companies: NTT
DoCoMo, Swisscom, KDDI Group, Telstra Corporation, NTT Corporation, Carso
Global Telecom, Telkom Indonesia, and China Mobile. NTT DoCoMo shows the
best-practice frontier (1.861) for A&P efficiency. The findings of the efficiency
achievement measure provide stricter efficiency indicators; the only DMUs that
matched them were Swisscom, Telstra. and Carso.

Table 15.5 compares results for the CCR, A&P, and efficiency achievement mea-
sures. Telecom companies other than NTT DoCoMo and KDDI are not in identifi-
able local markets and are thus excluded from a comparison of market share. The
market share of NTT DoCoMo (56.3%) surpasses KDDI (20.8%) in the mobile mar-
ket of Japan and these percentages are therefore consistent with the A&P efficiency
values for DoCoMo (1.861) and KDDI (1.543) shown in Table 15.5.

15.3.3 CCR versus EBITDA MARGIN (%)

Higher EBITDA margin percentages mean that enterprises have free cash flows for
making investments and paying returns on shareholders’ investments. Generally, an
EBITDA margin over 40% implies that an enterprise is in healthy financial condition,
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TABLE 15.4
Various Productivity Efficiency Models

Efficiency Model
DMUs CCR BCC Scale A&P Achievement Measure
Verizon Communications 0.612 1.000 0.612 0.612 0.525
NTT Corp. 1.000 1.000 1.000 1.185 0.491
NTT DoCoMo 1.000 1.000 1.000 1.861 0.622
SBC Communication 0.662 0.752 0.880 0.662 0.544
BellSouth Corp. 0.727 0.867 0.839 0.727 0.698
BT Group 0.682 1.000 0.682 0.682 0.574
China Mobile 1.000 1.000 1.000 1.021 0.551
AT&T Corp. 0.912 1.000 0.912 0.912 0.619
Telstra Corp. 1.000 1.000 1.000 1.501 1.000
BCE 0.510 0.536 0.951 0.510 0.510
AT&T Wireless 0.564 0.565 0.998 0.564 0.355
Nextel Communications 0.784 0.950 0.826 0.784 0.575
China Telecom 0.458 0.584 0.785 0.458 0.410
Sprint FON 0.704 0.721 0.977 0.704 0.356
KDDI 1.000 1.000 1.000 1.543 0.657
Qwest Communication 0.569 0.582 0.977 0.569 0.372
KT Corp. 0.504 0.539 0.936 0.504 0.461
Alltel 0.661 0.801 0.825 0.661 0.618
Singapore Telecom 0.693 1.000 0.693 0.693 0.588
Swisscom 1.000 1.000 1.000 1.575 1.000
Telenor 0.703 0.968 0.726 0.703 0.703
Chunghwa Telecom 0.735 0.877 0.839 0.735 0.725
Deutsche Telekom 0.746 1.000 0.746 0.746 0.606
France Telecom 0.875 1.000 0.875 0.875 0.774
China Unicom 0.461 0.533 0.865 0.461 0.341
Telefonica 0.836 1.000 0.836 0.836 0.836
Telecom Italia 0.789 0.974 0.811 0.789 0.678
TDC Group 0.625 0.944 0.662 0.625 0.486
Portugal Telecom 0.896 1.000 0.896 0.896 0.861
Carso Global Telecom 1.000 1.000 1.000 1.118 1.000
Royal KPN 0.896 0.896 1.000 0.896 0.799
Hellenic Telecom 0.305 0.878 0.347 0.305 0.295
TeliaSonera Group 0.775 0.797 0.972 0.775 0.694
Sprint PCS 0.746 0.746 1.000 0.746 0.618
mmO?2 0.571 1.000 0.571 0.571 0.309
Telkom Indonesia 1.000 1.000 1.000 1.058 0.542
Telkom (S. Africa) 0.804 1.000 0.804 0.804 0.728
Telekom Malaysia 0.489 0.991 0.494 0.489 0.488
Cable & Wireless 0.892 1.000 0.892 0.892 0.309

Mean 0.748 0.885 0.852 0.822 0.598
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TABLE 15.5
DMU Efficiency Comparison

Efficiency
Efficient DMU CCR A&P Achievement
NTT DoCoMo 1.000 1.861 —
Swisscom 1.000 1.575 1.000
KDDI 1.000 1.543 —
Telstra Corp. 1.000 1.501 1.000
NTT Corp. 1.000 1.185 —
Carso Global Telecom 1.000 1.118 1.000
Telkom Indonesia 1.000 1.058 —
China Mobile (HK) 1.000 1.021 —

and these enterprises comprise 35.9% of all companies studied. DMUs having EBITDA
margins between 30 and 40%, represent 41% of the companies studied.

Although KDDI reveals a best-practice frontier, its EBITDA margin of 23.1%
is somewhat lower than those of other efficient DMUs. Conversely, China Telecom
performs at a higher EBITDA margin of 55.2% but a lower CCR efficiency value of
0.458, revealing its relative non-scale efficiency. The details are shown in Figure 15.4.

15.3.4 ErriciENcY RANKING COMPARISON

The construction of alternative objectives can aid our understanding of the complex-
ity of analyzing the performances of telecommunications operations (Giokas and
Pentzaropoulos, 2000). Such analyses may have significant implications for foreign
investors when they decide whether to invest in certain telecom companies. The
establishment of CCR efficiency rankings for a number of DMUs demonstrates the
relative advantages of EBITDA margins, returns on assets (ROAs), total asset turn-
over, and profitability“as analytical tools when compared with the Forbes 2000 rank-
ings of telecom companies. The quantitative performance indicators obtained from
four separate measures are significantly different from the Forbes rankings and CCR
efficiency ratings. The Forbes rankings along with CCR, EBITDA margin, ROA,
total assets turnover, and profitability ratings are listed in Table 15.6.

The profitability rankings and net profit ratios (%) have been added to Table 15.6 to
show their relationships to the efficiency measures. The correlation matrix, however,
was based on various efficiency rankings. The CCR ranking reveals a high correla-
tion with turnover ranking (0.61478), while the profitability ranking displays a higher
correlation with ROA (0.91316) and EBITDA margins (0.56579). Interestingly, the
Forbes ranking shows a lower correlation with ROA level (0.20911), profitability
(0.19514), and CCR ranking (0.03462) as described in Table 15.7 and Figure 15.5.

* Performance indicator formulae: EBITDA margin (%) = EBITDA/revenue. Return on assets (ROA,
%) = net income/total assets. Total asset turnover (%) = revenue/total assets. Profitability (%) = net
income/revenue.



203

Comparative Productivity Efficiency for Global Telecoms

(panuijuod)

6°6C 4 8'8¢S 0¢ [ 3 ges 14 SeL0 1T Wodd[RL, emy3uny) (44
[ 9¢ ¥'es LT [ 9¢ 8'C¢ 8¢C L0 0C WO, Aydsinaq €C
[ 8¢ '8¢ 1T 0'¢— 8¢ 9’1y Cl L0 61 SOd wudg 14
¢ll Sl 6'CS 8¢ 09 SI €LE 0¢ SLLO SI dnoip erouoSeIRL (%3
9¢l Cl Y 6¢ 'L 91 0'6¢ L1 ¥8L°0 L1 MUWWO)) [IXIN Cl
|3 €e 6'vS 144 L1 143 v 0r1 68L°0 91 BI[BJ] WO, LT
I'TT LT 6 S €01 8 0'0% 4! 708°0 Sl (ed1JV °S) WON[QL LE
8L (44 8'SS €2 €y ST vy 6 9¢8°0 4! (uredg) eotuoja[aL, 9T
(5 9C 1'09 L1 (%7 9¢ ['LE 1T SL80 el WOJI[Q], MUBL] 144
SO 6¢ gell 4 €L 6¢ 'l 6¢ 2680 Cl SSA[IIM 29 9[qED 6¢
1S 0¢ €69 IT S'e 6C €6¢ 91 968°0 1T WodR[aY, [e3nIoq 6¢
[N S 999 Cl I'vl S L'ey 1T 9680 01 NdI [eAoy 1€
9°¢ 8¢ 6'CL 6 I'v 8¢C (Y4 143 cl6’0 6 'd10D) 191V 8

T 14 778 L S8l [ 9'9¢ 4 1201 8 S[IqON BUIYD L

Sy#¢ € 8¢9 el SVl 14 S¥9 I 8601 L elSouopuy WoM[3L 9¢
'S 6¢ 709 91 1'e 1€ L'1S S 8111 9 WOI9[AL [6qO[D 0sIe)) 0¢
8¢ LT 8¢S 9C I'e 0¢ 6'¢ce LT SSI'l S "d10) LIN 4

861 8 779 Sl 7Tl L [ 9 10S°1 14 "d10D ens[RL 6

'y (43 ['101 € (%7 LT 1'eC LE (4! € 1adax Sl
801 81 6'chl I S¢Cl 4 8'1¢ 0¢ GLS'T 4 WOISSIMS 0¢
67C1 el 09L 8 86 6 1°9¢ C 198°1 I ONODOd LIN €

(%) ones Supjuer  (9,) Jonrouiny  Sunjuel vOu Supjuer (o,) uiSieyy  Supjues DD  Supjues  siojerdado woddp)  Sunjues
woud 1N Aypiqeiyoid |elol 1aA0uan] vOu valigl valigl anyv 40D s9q-04

s}assy
adUBWLI0}Idd ADUdIdIY] Jo sSunjuey JaYy}O pue saqlo4 Jo Atewwng
991 319V1L




Fuzzy Multiple Objective Decision Making

204

6°¢l
8°0¢
8L
8'TI
L
L6
LT
eIl
6C
LoT1
8V
L9l
6°0¢
S'L
6'¢e
68
Ic
€Ll

(%) ones

wodad 1aN - Ayjiqeyold

Il
L
€C
14!
S¢
0¢
33
91
123
61
I€
0l
9
T
I
Ic
LE
6
Sunjues

s}assy

g'ee
8'8¢
€LS
6’1y
9CL
'Ly
0¢ce
9v¢
009
8°0¥
009
6Ly
0'lv
7’86
Sy
¥'68
679
9°Sy
(%) 4d2A0uInj
|ejol

8¢ LY 1T
LE '8 11
C vy €C
€e 6v 0¢C
(021 (2 61
[€ 9Y [44
6¢ 60 LE
194 9 L1
61 8’1 €c
9¢ vy ¥C
81 6C [43
0¢ 08 4!
133 98 01
4 V'L Sl
122 I'vl 9
9 9L 4!
14! el ce
[43 6'L €l
Supjuel vOY Sunjues
Janrouang voOu

¢'ce
'ss
9°LE
9
0'ce
L'LE
€9¢C
¢el
YT
[N0)4
0'8¢C
L6E
1°6¢
vle
L'S¢E
9'v¢
9'81
S'Sy
(%) uBrew
vdligl

¥C
€

61
L

6¢
81
€€
9¢
S¢
€l
[43
Sl
4
Ie
€C
9¢
8¢
8

Sunjues
vaiigai

S0€0
8510
19%°0
68¥°0
¥0S°0
01S°0
9570
6950
ILS0
2190
§29°0
1990
2990
890
€690
€0L0
¥0L°0
LTL0
420

a8V

6¢
8¢
LE
9¢
S¢
123
€€
[43
Ie
0¢
6¢
8¢
LT
9C
S¢
¥C
€
C
Sunjues
420

WO, ITUS[[QH €
WO, euly) €l
wodtu) Bulyy 4

BISAR[RIAl WOYQ[QL 8¢
"d1o) LY L1
404 0l
SSO[IIM 12 IV 11
nwwoy) 1somQ) 91
couw 3
‘TUnWuo)) UOZIIA 1
dno1n DAL 8¢
(V'S PV 81
uoneITUNWWo)) HYS ¥
dnoin 1.g 9
wod9[aY, 210de3ulg 61
I0UQ[], 1T
NOA yundg 4!
"d1o) yinogyreg S
siojesddo wodsd)  Sunjued
$9q.04

(panunuo)) aduew.I0LIdd A2udidiy] Jo sSunjuey YO pue saqlo4 Jo Alewwng

9°¢1 319V1L




Comparative Productivity Efficiency for Global Telecoms 205

TABLE 15.7
Correlations of Various Rankings
EBITDA

Ranking Forbes CCR Margin ROA Turnover  Profitability
Forbes 1 0.03462  -0.10891 0.20911  -0.15243 0.19514
CCR 0.03462 1 0.11761 0.13482 0.61478 —0.02733
EBITDA Margin  —0.10891 0.11761 1 0.44717  -0.21984 0.56579
ROA 0.20911 0.13482 0.44717 1 0.10466 091316
Turnover —-0.15243 0.61478  -0.21984  0.10466 1 -0.23603
Profitability 0.19514 -0.02733 0.56579 091316 -0.23603 1

15.3.5 ErriciENcY COMPARISON

The application of the Mann-Whitney rank order statistic (Conover, 1980) uti-
lized SPSS software to compare the relative efficiencies of companies operating
in the Asia-Pacific, Europe, and Americas regions and the two operating pat-
terns (state-owned and privatized) based on CCR efficiency scores as shown in
Table 15.8.

15.3.5.1 Regions

The area mean test proves that the operating performances of Asia-Pacific operations
(0.77833) are superior to those of Europe (0.75967), while European performances
are superior to those of the Americas (0.70425). However, the differences between
regions are not significant because the sig. value is 0.611 (p > 0.05). The description
of region efficiency comparison is shown in Table 15.9. The results of the F test and
significance are listed in Table 15.10.

ROA 0.91316 Profitability 056579 | EBITDA Margin (%)
Ranking Ranking Ranking

0.20911 0.19514

Forbes
Ranking

0.03462

0.61478
Turnover

Ranking

FIGURE 15.5 Correlation comparisons for various rankings.
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TABLE 15.8

Operating Patterns and Region Distributions of Telecommunication
Companies

Pattern Region Companies

State-owned Asia-Pacific China Mobile, China Telecom, China Unicom, Telstra,
Singapore Telecom, CHT, Telkom Indonesia, Telekom

Europe Malaysia
Americas Swisscom, Telenor, France Telecom
NA
Privatized Asia-Pacific NTT, DoCoMo, KDDI, KT, Telkom SA,
Europe BT, Deutsche Telekom, Telefonica, Telecom Italia,

Portugal Telecom, Royal KPN, TDC, Hellenic Telecom,
Telia Sonera Group, MMO?2, Cable & Wireless

Americas AT&T, AT&T Wireless, Nextel, Verizon, SBC, BellSouth,
Qwest (now Century Link), Alltel, BCE, Carso Global
Telecom, Sprint PCS, Sprint FON

Notes: NA = not applicable. France Telecom was privatized at the end of 2005.

15.3.5.2 State-Owned and Privatized Patterns

The operating pattern mean test proved that business performance for the state-
owned group (0.76491) was superior to performance of the privatized group
(0.74186). However, the differences between operating patterns are not significant
because the sigma value is 0.734 (p > 0.05). Most of the state-controlled telecom
companies (Telstra, Singapore Telecom, Chunghwa Telecom, Telkom Indonesia,
Telekom Malaysia, Telenor, and others) are full-service operators and maintain
mobile and Internet growth segments to offset the revenue declines from fixed-line
telephony.

In addition, the state-controlled operations in Chinese markets (China Mobile,
China Telecom, and China Union) are all protected by government regulations. The

TABLE 15.9

Area Mean Test Results

Area Mean Maximun  Minimum  Std. Deviation Median N
Asia-Pacific 0.77833 1.000 0.458 0.24611 0.86750 12
Europe 0.75967 1.000 0.305 0.16998 0.78900 15
America 0.70425 1.000 0.510 0.14369 0.68300 12

Total 0.74836 1.000 0.305 0.18736 0.74600 39
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TABLE 15.10
Results of F Test between and within Groups (CRS versus

Area)

Sum of Mean
CRS * Area Squares df Square F Sig.
Between Groups (Combined)  0.036 2 0.018 0.500 0.611
Within Groups 1.298 36 0.036
Total 1.334 38

Significance level o. = 0.05.

comparison of pattern efficiency is shown in Table 15.11. The results of the F test and
significance are listed in Table 15.12.

15.3.6 ErricieENt DMUs

The empirical results reveal that Swisscom, Telstra, and Carso attained the best-
practice frontier for CCR efficiency and the efficiency achievement measure.
They also indicate that NTT DoCoMo, KDDI Group, NTT Corporation, Telkom
Indonesia, and China Mobile (Hong Kong) had the best-practice frontiers for CCR
efficiency but were not efficient based on the efficiency achievement measure.
In particular, Carso Global Telecom” revealed a relatively better CCR efficiency
score and EBITDA margin rating, but ranked 30th among telecom operators on
the Forbes 2000 list. Overviews of business strategies of the efficient DMUSs are
described below.

Swisscom AG — The Swiss government owns 62.7% of the state-controlled
incumbent operators. Swisscom’s mobile communications business was spun off into
a joint venture known as Swisscom Mobile in January 2001. Swisscom owns 75%
of Swisscom Mobile and Vodafone owns the remaining 25%. Swisscom controls an
extensive network of European mobile communications service providers and resell-
ers, and operates international fixed-line networks in several key European popula-
tion and business centers.

Telstra — Telstra is 50.1%-owned by the Australian government and provides
a full range of telecom services in Australia. Telstra joined forces with PCCW in
2001 to form a Pan-Asia Internet Protocol (IP) backbone network. Telstra has a
strong presence in New Zealand through TelstraClear, is a 50:50 partner in a joint

* Carso Global Telecom (CGT) is a Mexican fixed-line communication operator wholly owned by Carlos
Slim. CGT controls Telmex with 27% of ownership. It also owns 60% of Prodigy, a U.S. Internet ser-
vice provider and a small stake in Mcleod USA. Telmex is the incumbent and remains the market
leader in Mexico.
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TABLE 15.11

Results of Mean Test of Operating Patterns

Operating patterns Mean Maximum  Minimum Std.  Deviation = Median N
State-owned telcos 0.76491 1.000 0.458 0.22489 0.73500 11
Privatized telcos 0.74186 1.000 0.305 0.17469 0.74600 28
Total 0.74836 1.000 0.305 0.18736 0.74600 39

venture with PCCW, and has full ownership of CSL, a mobile operator in Hong
Kong. Telstra’s market share in Australia continues to erode because of increasing
niche competition from companies such as Optus SingTel.

NTT DoCoMo — NTT Corporation owns 61.5% of NTT DoCoMo. NTT
DoCoMo is Japan’s leading mobile company and the second largest global mobile
operator. NTT DoCoMo steadily promotes globalization of both its i-mode services
and its 3G systems based on WCDMA technology, as well as promoting overseas
operations of mobile multimedia services. NTT DoCoMo had a negative value of
net income during the financial year 2002 (2001.3~2002.3) because of its losses in
overseas investments and the dot.com bubble effect, but thereafter rapidly recovered
financial health in fiscal year 2003.

Telkom Indonesia — The Republic of Indonesia owns 51.19% of this national
company. More than a fixed-line telephone provider, Telkom offers a full range of
integrated multimedia network services in one package. Telkom has built a hybrid
fiber coaxial (HFC) network called Broadband Access Network 2000 to deliver
high-speed Internet, video-on-demand, and voice services. Its vision is to become a
leading information and communications player in Asia.

15.3.7 OPERATING STRATEGY CASE STUDY

In the 1990s some incumbent telecom operators such as NTT, KT, BT, Italia
Telecom, and PCCW split their mobile arms from their parent bodies as independent
companies for initial public offerings (IPOs) as part of their privatization processes.
Nevertheless, CHT, Singapore Telecom, Telstra, and Deutsche Telekom still retain
full-service telecom operations.

TABLE 15.12
F Test Results between and within Groups (CRS versus Operating Patterns)

CRS * Operating patterns Sum of Squares  df  Mean Square F Sig.
Between Groups (Combined) 0.004 1 0.004 0.117 0.734
Within Groups 1.330 37 0.036

Significance level o = 0.05.
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FIGURE 15.6 CHT’s fast move to mobile and Internet markets.

CHT in particular has excellent rankings (fourth for EBITDA margin, third
for ROA, and second for profitability in comparison to other leading operators.
What key factors led to this striking success in the face of strong market competi-
tion? Although CHT is 22nd in the Forbes global ranking, consistent with its 21st
place in the CCR ranking, it is not as large in economic scale as Forbes measured
because its revenue resources are limited to Taiwan. Nevertheless, exploration
of the key factors leading to this success is worth exploring. CHT’s four strate-
gies created to cope with changes in the telecom industries and the entrance of
competitors are: (1) defending the fixed-line market, (2) preempting the mobile
market, (3) being the leading broadband supplier, and (4) driving value-added
services (VAS).

CHT moved fast to develop Internet broadband subscribers and regain the big-
gest market share in mobile services. Its dominance in DSL access has made it
difficult for competitors to gain scale efficiency and generate enough margin to
compete profitably. Although CHT has become more efficient in an intensely com-
petitive market, the slow progress of its privatization has limited its opportunities
for international expansion. During 2001, the company widely reduced fixed-
line tariffs to cope with competition and quickly moved to mobile markets and
Internet broadband segments, with the resulting revenue structure change shown
in Figure 15.6.

15.4 CONCLUSIONS

This study produced interesting findings concerning performance ratings and com-
parisons of productivity efficiency for the leading global telecom operators ranked on
the Forbes global 2000 list. The operating performance indicators of EBITDA mar-
gin, ROA, total asset turnover, and net profit ratio were assessed by mass investors
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and relate significantly to market success. However, the Forbes rankings display a
low correlation with CCR, ROA, and profitability rankings. The empirical results are
summarized below:

1. About 20.5% of the Forbes 2000 telecoms are operating on the best-
practice frontier for CCR efficiency measure and only 7.7% match the
efficiency achievement measure criteria. Therefore, the efficiency achieve-
ment measure provides stricter and clearer DEA efficiency indicators.

2. Although Asia-Pacific telecom operators show relatively higher scoring
than area counterparts by the Mann-Whitney test, the differences are insig-
nificant. In sum, 8 of the 39 telecom operators on the Forbes list achieved
higher best-practice frontier efficiencies using the CCR model and 6 of
those are in the Asia-Pacific region (NTT DoCoMo, NTT Corporation,
KDDI, Telkom Indonesia, Telstra, and China Mobile).

3. The state-owned telecoms show somewhat higher scoring than the priva-
tized group although the differences are not significant in light of the
present move toward more liberalization in telecommunications. Most
state-controlled telecoms are still full-service operators with mobile, fixed-
line, and Internet segments that achieve integrated economic efficiency.
Privatization also enables a government to sell less than 50% of telecom
share holdings to acquire additional income. The privatized operators face
more fierce competition in the market. Local government policy protection
as a key factor deserves further research efforts.

4. The current focus for incumbent telecom operators is finding new growth
opportunities in broadband via DSL or FTTX (FTTB, FTTH) access
and mobile data markets. Fixed mobile substitution (FMS) and voiceover
Internet (VoIP) caused declines in voice revenue for most of the incum-
bents. They are now offering fixed networks of SMS, MMS, and other
value-added services, but revenue growth from such services cannot easily
offset losses in legacy services.

Competition continues to increase in a liberalized market and arises from global and
regional alliances formed by telecom operators in fixed-line, Internet, and wireless
markets. Telecom operators introduce value-added services to develop value-added
content hoping to persuade customers to spend more, allowing the companies to take
full advantage of revenue streams from Internet and wireless broadband to stimulate
increased use of fixed-line and wireless networks. This chapter’s assessment of the
relative operational performances of the leading global telecom operators applying
traditional radial, A&P, and efficiency achievement measures is useful, and effi-
ciency approaches should be studied further.

APPENDIX A: GLOBAL BROADBAND PENETRATION RANKINGS

Table 15A.1 lists global broadband penetration rankings for 29 countries as of
December 31, 2003.
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TABLE 15A.1
Broadband Penetration Rankings for 29 Countries

Broadband Broadband
lines/100 lines/100

Ranking Countries population Ranking Countries population
1 S. Korea 23.48 16 Israel 6.63
2 H.K. 18.18 17 France 5.76
3 Canada 14.81 18 Germany 5.53
4 Switzerland 14.42 19 U.K 5.39
5 Taiwan 13.42 20 Spain 5.30
6 Denmark 12.43 21 Portugal 4.86
7 Belgium 12.35 22 Italy 4.41
8 Netherlands 11.61 23 Australia 3.80
9 Japan 10.70 24 New Zealand 1.74
10 Sweden 10.68 25 China 1.05
11 Singapore 8.98 26 Ireland 0.77
12 U.S.A. 8.71 27 Poland 0.45
13 Finland 8.02 28 Mexico 0.20
14 Norway 7.81 29 Malaysia 0.09

15 Austria 7.20

Source: International Telecommunicatoins Union World Indicators, 2004.

APPENDIX B: GLOBAL MOBILE PENETRATION RANKINGS

Table 15B.1 lists global mobile penetration rankings for 37 countries as of December
31, 2003.

APPENDIX C: DEA EFFICIENCY MEASURES

C.1  CLASSICAL EFFICIENCY MEASURE

If the a-th DMU uses m-dimension input variables x,, (i = 1,...,m) to produce
s-dimension output variables y,, (r = 1,...,), the efficiency of DMU £, can be found
from the following model:

S
r=1 Uy yra

m
i=1 ViXiq

Max h, = (15C.1)

subject to:

S
Zr:l Uy, yrk

<1, k=1,....,n
2’7:1 ViXik

O<e<u,,0<ey;, i=1,...,m; r=1,...,s
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TABLE 15B.1

Global Penetration Rankings for 37 Countries

Mobile
Countries Penetration (%) Countries
Taiwan, China 110 Australia
Hong Kong 106 France
Italy 102 S. Korea
Iceland 97 Japan
Spain 92 New Zealand
Norway 91 United States
Portugal 90 Poland
Finland 90 Malaysia
Sweden 90 Canada
Denmark 89 South Africa
Israel 88 Philippines
United Kingdom 88 Russia
Austria 88 Mexico
Singapore 85 Brazil
Ireland 84 China
Switzerland 84 Indonesia
Germany 79 Viet Nam
Greece 78 India
Netherlands 77

Mobile
Penetration (%)

72
70
69
68
65
54
45
44
42
36
32
30
29
26
21

Source: International Telecommunication Union World Indicators, 2004.

where x;, denotes the i-th input of the k-th DMU; y,, is the r-th output of the k-th
DMU; u, and v, indicate the weight of the r-th output and the i-th input, respectively,
and £, is the relative efficiency value. Since Equation (15C.1) involves fractional pro-
gramming, it is difficult to solve. Charnes et al. (1978) converted it to a linear pro-
gramming (LP) model to find a solution.

subject to:

S

Max h, = Zur Vra

r=1

m S
E ViXik — Zu,y,k > O, k= 1,
i=1 r=1

m

Z vixi, =1

i=1
u,>2e>0, r=1,...,8

v; 2e€>0, i=1,....m

(15C.2)



Comparative Productivity Efficiency for Global Telecoms

213

When the number of elements in the dual problem in Equation (15C.2) can be
reduced in an effort to find an answer, the dual problem after conversion becomes:

Min {ea —eliS; + ZS}}
i=1 r=1

subject to:

0,Xi, — Zkkxik -S.=0,
k=1

(15C.3)

i=1,..m

n
Vra _Zkk)’rk'f' S:;l=0, I’=1,...,S
k=1

SiasSrshi 20

where S, and S, are slack variables.

C.2 A&P EFFICIENCY MEASURE

The Andersen and Petersen (A&P) efficiency measure function is proposed as shown

below (Chiang and Tzeng, 2000).

Revenue Aspect
max ©,

n
S.t. E Kjx,j Sx,-k
=

Cost Aspect
min 9,

S.t. Zx,jk] Sek.xik

j=1

where @, =revenue efficiency value (k = 1,...,n) and 0, = cost efficiency value (k = 1,...,n).
The ratio OC’/OC defines the efficiency measure for evaluating unit C. An index value
equal to or larger than 1 may be interpreted as a maximum proportional increase in
a vector that contains corresponding input characterization of that observation as an
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Input 2 *

FIGURE 15C.1 Unit isoquant spanned by the A&P model.

» Inputl

efficiency value (Andersen and Petersen, 1993). The unit isoquant spanned by their

model is described in Figure 15C.1.

C.3 EFFICIENCY ACHIEVEMENT MEASURE

Multiple objective programming can be employed to find a set of consistent weight
combinations so that an optimized efficiency value can be calculated for each DMU
to assess relative efficiency achievement (Chiang and Tzeng, 2000). This goal is

formulated in Equation (15C.4).

s
2 -1 u 1
Max i, = rmiryr
2 ViXi
2 1UrYr2
Max hy = =/ 22
i=1 ViXi2
PIRY y
Max h, = ==t2rm
i=1 ViXin

subject to:

MSI, k=1,2,

m .-.,n
2L VX

u, 2¢€>0, r=12,---,8

v; 2€>0, i=12,--,m

(15C.4)
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FIGURE 15C.2 Identity function of efficiency achievement.

Given a linear identity function, A and A in Figure 15C.2 denote the left and
right frontier values of &,, the k-th objective function value, respectively. The span
of hiand h{ lies between 0 and 1 because the outcome of the objective equation of
Equation (15C.4) is the efficiency ratio, that is 4 =0 and h¢ =1, and the identity
value is M(/y ), which is the achieved value of efficiency ratio &, for the DMU. The
efficiency value is between 0 and 1 and is called an identity function. Therefore,
Equation (15C.4) can be converted to the pattern of fuzzy multiple objective pro-
gramming (Chiang and Tzeng, 2000).

Max o

§ m

ZM,y,k - Zv,»xik <0, k=1,...,n (15C.5)

r=1 i=1

s m
E u,y,k—(x E Vi Xik 20, k=1,...,n
1 i=l1

r=

subject to:

O<a<l
u,2€>0, r=1,...,s
vi2e>0, i=1,..,m
A set of (u*, v*) can be calculated according to Equation (15C.5) and the efficiency

value hk of a DMU can be calculated with a value of («*, v¥). The identity function
of efficiency achievement measure is illustrated in Figure 15C.2. Since the efficiency
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value hk of each DMU actually equals its efficiency achievement ok of the efficiency
value hk, it can define the efficiency achievement measure in each DMU as follows:

s m
* *
Oy = E uryrk/E vixi, k=1,...,n
r=1 i=1

APPENDIX D: REFERENCE WEBSITES

Table 15D.1 lists websites for telecom operators cited in the Forbes global 2000 list.

(15C.6)

TABLE 15D.1
Websites of Telecom Operators Named in Forbes Global 2000 List

Telecom
Ranking

1

~

O 0 3 N W

10

12
13
14
15
16
17
18
19
20

21
22

23
24
25

Forbes 2000
Ranking

26

30
30
33

84

93
112
116
164
175
187
193
202
207
211
217
236
291
318
320
355
358
360

364
374
383

Country Telecom
Name Operators
U.S.A. Verizon
Communication
Japan NTT Corp.
Japan NTT DoCoMo
U.S.A. SBC
Communication
U.S.A. BellSouth
U.K. BT Group
China China Mobile(HK)
U.S.A. AT&T Corp.
Australia Telstra
Canada BCE
U.S.A. AT&T Wireless
U.S.A. Nextel Commun.
China China Telecom
U.S.A. Sprint FON
Japan KDDI
US.A. Qwest Commun.
S. Korea KT Corp.
U.S.A. Alltel
Singapore SingTel
Switzerland ~ Swisscom
U.K. Vodafone
Norway Telenor
Taiwan, Chunghwa
R.O.C. Telecom
Germany Deutsche Telekom
France France Telecom
China China Unicom

Websites

http://www.verizon.com

http://www.ntt.co.jp
http://www.nttdocomo.co.jp
http://www.sbc.com

http://www.bellsouth.com
http://www.btplc.com
http://www.chinamobile.com.hk
http://www.att.com
http://www.telstra.com.au
http://www.bce.ca
http://www.attws.com
http://www.nextel.com
http://www.chinatelecom-h.com/chi
http://www.sprint.com
http://www.kddi.co.jp
http://www.qwest.com
http://www.kt.co.kr
http://www.alltel.com
http://www.singtel.com.sg
http://www.swisscom.com
http://www.vodafone.com
http://www.telenor.nl
http://www.cht.com.tw

http://www.telekom3.de
http://www.francetelecom.com

http://www.chinaunicom.com.hk
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TABLE 15D.1
Websites of Telecom Operators Named in Forbes Global 2000 List (Continued)

Telecom Forbes 2000 Country Telecom
Ranking Ranking Name Operators Websites
26 409 Spain Telefonica http://www.telefonica.es
27 412 Italy Telecom Italia http://www.telecomitalia.it
28 422 Denmark TDC Group http://www.teledanmark.dk
29 442 Portugal Portugal Telecom  http://www.telecom.pt
30 509 Mexico Carso Global http://www.cqtelecom.com.mx
Telecom
31 577 Netherlands ~ Royal KPN http://www.kpn.com
32 618 Greece Hellenic Telecom  http://www.ote.gr
33 674 Sweden Telia Sonera http://www.teliasonera.com
Group
34 677 U.S.A. Sprint PCS http://www.sprintpcs.com
35 687 France mmO?2 http://www.02.com
— 757 Mexico Am’erica Telecom http://www.americatelecom.com.mx
36 791 Indonesia Telekom Indonesia http://www.telekom.co.id
37 793 S. Africa Telkom(S. Africa)  http://www.telkom.co.za
38 842 Malaysia Telekom Malaysia  http://www.telekom.com.my

39 896 UK. Cable & Wireless  http://www.cw.com







’I 6 Fuzzy Multiple
Objective Programming

in Interval Piecewise
Regression Model

Tanaka et al. (1982) introduced a fuzzy linear regression model with symmetric trian-
gular fuzzy parameters by using linear programming (LP). Since membership func-
tions of fuzzy sets are often described as possibility distributions, this approach is
usually called possibilistic regression analysis. The properties of possibilistic regres-
sion formulated by Diamond and Tanaka (1998), Tanaka (1987), Tanaka et al. (1982)
and Tanaka and Watada (1988) have been studied further. Kim et al. (1996), Moskowitz
and Kim (1993), and Tedden and Woodal (1994) discussed the degree of fit of the fuzzy
linear model. The effects of outliers were also examined (Diamond and Tanaka, 1998).

Three shortcomings associated with the fuzzy regression model have been observed
(Yu et al., 2005). First, in possibility analysis, Tanaka’s methodologies were extremely
sensitive to outliers or high variabilities of data and they also ignored certain informa-
tion contained in the data (Kim et al., 1996; Tedden and Woodal, 1994). Second, in
necessity analysis, the necessity area cannot be obtained due to large variations in the
data or an inappropriate model (Tanaka et al., 1989; Tanaka and Ishibuchi, 1992).

A necessity model indicates than the assumed model is somewhat reliable.
Therefore, Tanaka and Lee (1998) proposed a measure of fitness, which is the ratio
of necessity spread divided by possibility spread and averaged over the sample size.
However, the approximation model cannot be obtained if the required measure of
fitness is set too high. This model must be analyzed with respect to the data property,
rather than mere addition of the terms of the polynomial. These issues show the diffi-
culty of managing data with large variations by applying a polynomial or non-linear
form. Therefore, the piecewise concept to manage data with large variations was
proposed (Yu et al., 1999 and 2001).

Third, when we use LP in possibilistic regression analysis, some coefficients tend
to become crisp because of the characteristic of LP. This shortcoming can be alle-
viated by quadratic programming (QP) proposed by Tanaka and Lee (1998). They
devised an interval regression analysis based on QP (Best, 1984; Gill and Murray,
1978; Goldfarb and Indani, 1983) to obtain the possibility and necessity models
simultaneously. In their unified approach, they assumed simplicity so that the center
coefficients of the possibility regression and the necessity regression model are the
same. For a data set with crisp inputs and interval outputs, the possibility and the
necessity models can be considered at the same time.

219
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Fuzzy piecewise possibility and necessity regression models (Yu et al., 1999,
2001, and 2005) are employed when a function behaves differently in different parts
of the range of crisp input variables. Yu et al.’s 2001 paper requires the analyst to
set the number of change points so that the positions of change points and the fuzzy
piecewise regression model can be obtained simultaneously. The proper number of
change points is still a problem. Hence, we incorporate the concepts of measure of
fitness (Tanaka and Lee, 1998), interval piecewise regression (Yu et al., 2005), and
multiple-objective technique (Ida and Gen, 1997; Lee and Li, 1993; Li and Lee,
1990; Zimmermann, 1978) to find the measure of fitness and the number of change
points, considering all objectives.

The fitness measure should be as high as possible. However, due to the parsimoni-
ous rule, the number of change points should be as few as possible. Therefore, the
three objectives of minimizing the number of change points, maximizing fitness,
and minimizing the objective of obtaining the regression models (Yu et al., 2005)
are formulated.

16.1 INTRODUCTION TO MEASURE OF FITNESS AND
FUZZY MULTIPLE OBJECTIVE PROGRAMMING

Tanaka and Lee (1998) defined a measure of fitness to gauge the similarities of the
obtained possibility and necessity regression models. The larger the fitness, the bet-
ter the model fits the data. The measure of fitness can be introduced as the overlap of
the possibility and necessity models as explained below.

Assume that the input-output data (x; ¥)) are (x;; ¥)) = (xy;, ..., x5 ¥),j=1,...,n
where x;is the jth input vector and Y; is the corresponding interval output. The pre-
dicted possibility and necessity models are as follows:

q q q
Possibility model: Y (x;)= {ao + Zaixij, o+ zci byl + do + zdil-xijl]

i=1 i=1 i=1

q q
Necessity model: Y:(x;)= [ao + EClixij, Co + Zci Ixijl]

i=1 i=1

ap+ 2L, a;x; represents the center of possibility and necessity models and
co+ 2L cilxyl+do + XLy di 1xyl and ¢ + XL, ¢; |x;l represent the radii of the possi-
bility and necessity models, respectively. The measure of fitness for all data ¢r can
be defined as:

1 i=1
Oy = ;Z q q
J=1 Co +Zci|x,»j|+do +Zd,|x,1|
i=1 i=1
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where n is the sample size and 0 < ¢, < 1. If a necessity model does not exist, ¢,=0,
which implies the assumed model does not fit the data and must be revised. ¢, is the
ratio of necessity spread divided by possibility spread and averaged over the n data.
The larger the value of ¢,, the better the model fits the data.

To obtain the possibility and necessity approximation models with the condition
of ¢, = m, where 0 < o < 1, Tanaka and Lee suggested:

1. Take a linear function as an initial regression model.

2. Solve the unified QP problem and calculate ¢, using the obtained possibility
and necessity approximation models.

3. Repeat step 2 by increasing the number of terms in the regression polyno-
mial until the assigned condition ¢, = ® is satisfied.

The approximation models satisfying ¢, = ® may not be obtained if the tolerance limit
o is set too high. Tanaka and Lee mentioned that the problems of determining the rea-
sonable ® and the termination condition of the above procedure are worthy of further
study because the above procedure is only conceptual—a trial and error process—and
does not help a user decide the number of change points needed in piecewise regres-
sion. Therefore, we propose fuzzy multiple-objective programming in interval piece-
wise regression as a model to determine the fitness and the number of change points.

Max Z= [21’229'--5 Zl]T,
Min W= [W, W,, .., W,T", (16.1)
Subject to constraints

The membership functions for the objective are defined as:

Z.—7;

Z = * s k=l, 27 ’l,
Wi (Zy) 7 -7
W, —W,

K Zf :Y7v*’ S:1, 29---9 n,
wZ)=

where Z;, W, and Z; ,W,” are the ideal and anti-ideal solutions of Equation (16.1).
Max A
Subject to A<(Zy(X)=ZWZi=Z5), k=1,2,..,1,
AW, =WYW, =W,), s=1,2,..., m,

initial constraints

where A is defined as A = nklin (U (2)), Ly (W))).
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Here we adopt this approach to determine the measure of fitness and number of
change points of the piecewise regression model simultaneously.

16.2 FUZZY MULTIPLE OBJECTIVE PROGRAMMING
IN PIECEWISE REGRESSION MODEL

Our approach involves three objectives in an interval piecewise regression model
with automatic change point detection by quadratic programming. As in the fol-
lowing models, the first objective Z, is to maximize ¢,, the measure of fitness for all
data; the second objective W, is to minimize the number of change points; and the
third objective W, is to minimize the width by quadratic programming and obtain
possibility and necessity models (Yu et al., 2005).

In piecewise regression, the initial possibility and necessity models are assumed
as follows:

Y (x; )—[ao +2ax,, +22b,,(lx,l pil +x5 = P2,

i=l t=1

Co +Zc, | x;; I+ZZW,,(I)CU Dl +x; — pi )2+

i=l t=1

n—1

d0+2d|x,,|)+22 i (155 = pil +x5 = p)/2)

i=l t=1

Y (x; )—{ao +2ax,, +22b,,(|xy pil +x; = pi)/2

i=1 t=1

n—1

c0+2c, Ix,j|+22w,,(|xU — pul+x; — pi)l2)

i=l t=1

where p,, is the ordered ith value of the ith variable and ¢ is the number of inde-
pendent variables. All data except the last one in each variable are assumed to be
potential change points. Detecting the proper number of change points can be done
easily by our proposed method.

In the first objective, the measure of fitness ¢, should be as high as possible, so
Z, =1, Z =0 because 0< ¢y <1. The goal to maximize the measure of fitness is:

Zl=¢y =

n co+ E C; |xU| + E E W,‘,(lxij - Pi/l +x,j - p,,)/2
1 i=1_t=1
q_ n-l q n-1

T Zc 10+ 3D willy = pid +x; = po)2-+do + Z dix+ D Y = pl+x, - p)l2

i=1 t=1 i=1 t=1
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In the second objective, the number of change points should be as small as possible, so

W, =0, W, =q(n—1) because all data are potential change points except the point
with highest value in each variable, assuming no repeated value. The third objective is
to obtain the necessity and possibility models by Tanaka and Lee’s concept.

Wz—Z[do-i-Zdlx,szz,,(lxu pil+ x; - p,t)/Z}

i=l t=1

EIBYBILE NN

i=l =1 i=l t=1

The membership functions for the three objectives are defined as below:

-Z

w(Z 1)—Z1 —z
-W
W)=—+

w (Wp) W W
W, - W,
W)=—"——"
Wy (Ws) W — W

where Z;, W,', W, and Z; ,W,”, W5 are the ideal and anti-ideal solutions of the prob-
lem. The proposed model for interval piecewise regression to consider the above

three objectives simultaneously is:
Max A
Subject to
AS(Zy = ZDZ) - Z7)
A< (WT =WolwWr =W))
A< (W5 —Wy)(Ws —Ws)

n—1

q q
av+ Y g+ 3 Y bulxy = pd+x; = pol2

i=1 i=1 t=1

n-1

q q
—{C() + ZC,‘ I.xljl + Z Wl»,(|x,-j - pitl +x,1 - pit) / 2]}

ri (Ix; — pil + X5 — Pyt )/2]} <Yy
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q n—1
do + Zaixl/ 2 szt (l'xl/ pttl +x1/ Dit )/2
i=1

i=l t=1

q q n—1

+ {CQ + ZC,- |XU| + 2 2 Wit (|le — pitl +x,] — Dir )/2]}
i=1 i=1 =1

{do St S -ni >/2]}

i=l t=1

n—1

ao+za,x,, ZZbl,(lx,/ pil +x; = pi)l2

i=l t=1

q q_ n-l
_{CQ + ZC,- |x,1 |+ 22 Wl',(l.xl'j _pitl +x,1 _plt)/2]}2

i=1 i=l t=1

dp + Zalxl/ 2 an (le/ pttl +x1/ Pit )/2

i=l t=1

+{Co+zcz|xy|+22w,,(lxu P+, — p,,)/Z]} j=12...n

i=1 t=1
bit < MI/tit - 26vit + 6 + (I)vi,
by > 28u; — Mv;, — 8 — Guy

ui + vy <1y

ry < MI,

Let M = 1000, 8 = 0.0000000001, ¢ = 0.000000001, and & = 0.00001 for solving this
program by LINGO optimization software. Based on piecewise characteristics, our
methodology is insensitive to larger variations in the data. A compromise solution
(better ¢, and a proper number of change points) can be found automatically.
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16.3 NUMERICAL EXAMPLES

Two examples are demonstrated to show the proposed method. The first is from
Tanaka and Lee (1998) and the second is from Yu et al. (2005).

16.3.1 ExamprLe 1

According to Tanaka and Lee, {(x; ¥)} = {(1; [15, 30)), (2; 120, 37.5)), (3; [15, 35)),
4; [25, 60]), (5; [25, 55]), (65 [40, 65]), (7; [55, 95]), (8; [70, 100])}. The ideal and anti-
ideal solutions are Z; =1 and Z; = 0, which represent the range of fitness measure-
ment; W, =0 and W,” =7, which indicate that the total change points are 7 in the
worst case and 0 in the best case; and W, =29293.03 and W5 =392.01, which are
obtained from W, without considering Z, and W,. The goal achievements are:

Z,=0.5135
W, =0.5714
W, = 0.9874

The proposed method considers a compromising solution for three objectives. The
measure of fitness with different change points is also shown in Table 16.1. As
depicted, the best fitness is 0.5135 with three change points. We also show the mod-
els with 2, 1, and 0 change points.

TABLE 16.1
Measures of Fitness with Different Change Points
Change Y"(x): Possibility model
Points Fitness Measure Y.(x): Necessity model
3 0.5135 Y'(x) = (23.472, 7.4536) + (1.389, 2.407)x + (13.472, 0.417)

(Ix — 314+ x — 3)/+ (=20.778, 0) (Ix — 41+ x — 4)/2
+(21.389, 0) (Ix — 51+ x — 5)/2
Y.(x) = (23.472, 4.028) + (1.389, 1.111)x + (13.472, 0.417)
(I = 31 + x — 3)/+ (=20.778, 0) (Ix — 4l + x — 4)/2
+(21.389,0) (Ix — 51 + x — 5)/2
2 0.4225 Y'(x) = (16.25,7.5) + (6.252, 0.625)x + (7.5, 6.25)
(Ix = 20 +x = 2)/+ (11.25, 0) (Ix = 31 + x — 3)/2
Y.(x) = (16.25,7.5) + (6.252, 0)x + (-7.5, 0)
(b — 214+ x — 2)/+ (11.25, 0) (Ix — 314+ x — 3)/2
1 0.3336 Y'(x) = (21.667, 5.833) + (2.292, 3.958)x
+(7.5,0) (Ix = 31+ x — 3)/2
Y.(x) = (21.667, 5.833) + (2.292, 0.208)x
+(7.5,0) (lx = 31+ x — 3)/2
0 0.1258 Y'(x) = (7.143, 11.607) + (8.571, 2.679)x
Y.(x) = (7.143, 0) + (8.571, 0.714)x
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FIGURE 16.1 Comparison of proposed method and Tanaka and Lee’s method.

Figure 16.1 illustrates the growth trend with increasing numbers of change points.
The solid line represents the fitness by our method and the dotted line represents the
fitness with Tanaka and Lee’s model. The model with O change points is linear. The
fitness by the proposed model is still higher than 0.101, which is the measure of fit-
ness by Tanaka and Lee (1998), because we wanted to find the maximum fitness even
considering the other two objectives.

Tanaka and Lee use a heuristic method to find a higher ¢,, so after adding a qua-
dratic term, ¢, increases only to 0.252. However, by using our method, ¢, increases
to 0.3336 with adding only one change point. Employing Tanaka and Lee’s concep-
tual procedure, the approximation models may not be satisfactory if the tolerance
limit o is set too high. However, by using the fuzzy multiple-objective programming,
a better ¢, can be determined automatically.

16.3.2 ExXAMPLE 2

A multivariate example in Yu et al. (2005) is used to explain how our method han-
dles multivariate data. The data are {(xj; Yj)} = {(1; 2; [22, 32)), (2; 1; [5, 15]), (3; 2;
[12, 22]), (5; 5; [43, 53]), (5; 65 [50, 60]), (5; 4; [21, 31]), (5; 35 [4, 14]), (8; 4; [21, 11])}.

The fitness measure ¢, is 0.0702 with three change points. The following is
the result of the proposed fuzzy multiple objective program. The ideal and anti-
ideal solutions are Z; =0 and Z, =1, which are the range of fitness measurement;
W =14 and W, = 0,= 0, indicating that the total numbers of change points are 14 in
the worst case and 0 in the best case; and W, = 720.681 and W, = 0.0045, which are
obtained from W, without considering Z, and W,. The results are:

Z,= 07143
W, =075
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TABLE 16.2
Comparison of Proposed Method and Yu et al.’s Method
Fitness Possibility Model Necessity Model
0.7143 Model 1 Model 2
(Proposed)  Y'(x)) = (~6.167, 5.832) + (17, 0) x, Y x;) = (=6.167, 4.167) + (17, 0) x,
+(=11.667, 0)(I x, — 2| +x, — 2)/2 +(~11.667, 0)(I x,~ 2| + x, —2)/2
+ (8.056, 0.583)(1 x, — 5l + x, — 5)/2 +(8.056, 0.278)(I x;, — 5l +x, = 5)/2
+(=13.333, 0)(1 x,— 5| + x,— 5)/2 +(=13.333,0)(1 x, — 5l +x, — 5)2
+(3.75,0.417)(1 x,— 4l + x,~4)/2 +(3.75,0.417)(1 x, — 4l + x, — 4)/2
0.0702 Model 3 Model 4
(Yuetal) Y'(x)=(~1.949,3.928) Y.(x;) = (~1.949, 0.459)
+(=2.041,0) x, + (16.082, 1.122) x, +(=2.041, 0) x, + (16.082, 0) x,
+(=8.265,0)(1 x, — 21 +x, —2)/2 +(=8.265,0)(1 x, — 2l +x, —2)/2
+(5.188,0.188)(1x, — 51+ x, — 5)12 +(5.188,0.188)(1x, — 5l +x, —5)/2

As described in Table 16.2, the proposed models (1 and 2) and Yu’s models (3 and 4)
are obtained by considering three objectives via the proposed method. The average
goal is 0.7143 with four change points. Models 3 and 4 are obtained by the method of
Yu et al. with three pre-specified change points. By increasing one change point ¢,
from 0.0702 to 0.7143, we achieve promising results. The fitness difference is 0.6441
by adding only one change point.

16.4 CONCLUSIONS

The proposed method solves the fitness problem of Tanaka and Lee’s method. Our
contribution is to automatically decide the best fitness measurement rather than use
trial and error, and turn Tanaka and Lee’s concept into a multiple objective problem.
This method can obtain better fitness and a proper number of change points by con-
sidering all objectives. An extra objective can be added if required. Fuzzy multiple
objective programming is a good technique to solve compromising problems in
fuzzy regression and meets practical concerns.

Future research is required to solve the nonlinear issue of fitness and accomplish
variable selection in fuzzy regression by employing multiple objective programming.
Besides, the multiple objective problem can be solved by the two-phase method to
avoid unbalanced solutions (Ida and Gen, 1997; Lee and Li, 1993) if needed.
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CHAPTER 1 INTRODUCTION

Basic CoNcerts oF MuLTipLE OBJECTIVE PROGRAMMING (MOP) PROBLEM

Most multi-objective programming (MOP) problems can mathematically be repre-
sented as:

max [ fi(x), fo(X),..., fi (x)]
st. Ax<b (NL1)

x>0

Example: Two objectives and two variables x” = (x,x;)

max f;(x)=x; + x; max f(x)=x; + x; max f(x)=x; + x;
max f>(x) =x, — X max f(x)=x, — X max f(x)=x, — x;
S.t. s.t. S.t.
0<x,x, <3 or 0<x, <3 or [1 0][x 3
S M BN
x;20,x, 20.

Note that the Pareto optimal solution is also called the non-inferior or non-dominated
solution.

Developing the criteria and designing the fuzzy linguistic scale — The first
step is defining the decision goals and developing criteria for the specific research
question. Linguistic variables take on values defined in the term set (set of linguis-
tic terms). Figure N1.1 displays a triangular fuzzy number (TFN). Linguistic terms
are subjective categories for linguistic variables. The values of a linguistic vari-
able are words or sentences in a natural or artificial language. A triangular fuzzy
number x € A and ;\:(l,m,u) on R may be a TFN if its membership function
W;(x): R —[0,1] is equal to the following equation:

x=D/(m=1), [<x<m
Hi(x)=3 (u—-x)/(u-m), m<x<u (N1.2)
0 otherwise

* The contents are a result of Professor Tzeng taking part of his related teaching courses “Research
Methods for Problem-Solving” outline in each part.
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X, f,(x) B (3,3) Pos{iti/ve ideal point
(0,3) (3,3) 3TN T T |
. Parqto Optimal
Decision o Sol qtlons
Space = Objective |
Space :
(0,0) (3,0 X, C (0,0) f1 (x)

Negative ideal point

NN D (3,-3)

-3

FIGURE N1.1 Basic concept of decision space and decision space in MODM.

(Note: “Pareto Optimal Solutions” is also named “Non-inferior Solutions” or Non-
dominated solutions” or called “Efficiency Solutions.”)

From Equation (N1.2), the diagonal / and u denote the lower and upper bounds of
the fuzzy number A, and m is the modal value for A. The TFN can be denoted by

= (I,m,u). The operational laws of TFNs A1 =(l,,my,uy) and Az =(l,,m,,u,) are
dlsplayed as Equations (N1.3) through (N1.7).

Addition of fuzzy number ®:
A ® Ay = (lymy, i) @ (byma,un) = (I + by g+ my iy + 1) (NL3)
Multiplication of fuzzy number &®:
Al ® Az = (b, my, ) ® (l,my,uy)
= (Lly,mumy, ) for 1,1, > 0; my,my > 0; uy,uy >0 (N1.4)
Subtraction of fuzzy number ©:
[\1@;12 = (l,my,u)O(y ,my,uy) = (I — uy,my —my,uy — 1) (NL5)
Division of fuzzy number &:
A1 2 Az = (l,my,u,) D (b,my,uy)
= (bluy,muImy,wfly) for L, 1, > 05 my,my > 05 up,u, >0 (N1.6)
Reciprocal of fuzzy number:
A7 = (L) = (Vg Umy VL) for byl > 05 mymy > 05,1y > 0 (N1.7)

We use this kind of expression to evaluate two shopping websites by nine basic linguistic
terms (natural language) for measuring perceptions and feelings. Examples are beautiful,
good, perfect, very high influence, high influence, low influence, very low influence, and
no influence on a fuzzy level scale as shown in Table N1.1 and Figure N1.2.
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TABLE N1.1
Linguistic Scales for Importance (Example)
Linguistic Influence Linguistic Value
Perfect (1, 1,1
Very high (VH) (0.5,0.75, 1)
High (H) (0.25,0.5,0.75)
Low (L) (0,0.25, 0.5)
Very low (VL) (0,0, 0.25)
None (No) 0,0,0)

MA(x)

A
1.0 p--mmmmmmmmr e S
A
0 l m U x

FIGURE N1.2 Membership function of triangular fuzzy number.
ExTENsION PRINCIPLE FOR Fuzzy ARITHMETIC OPERATIONS

Let m and n be two fuzzy numbers and z denote a specific event. The membership
functions of the four basic arithmetic operations for m and n can be defined by

Wi (2) = SBf{min(ﬂ’t(X),ﬁ(y)) lx+y=z}; (N1.8)
Wi (2) = s;lf{min(nﬁ(xxﬁ(y)) lx—y=z}; (N1.9)
Hiixi (2) = s;lf{min(ﬁi(x),ﬁ(y)) lxxy=z}; (N1.10)
Wisii (2) = silf{min(ﬁz(xxﬁ(y)) lx+y=z}; (N1.11)

Next, we provide another method to derive the fuzzy arithmetic operations based
on the concept of a-cut arithmetic. Let m= [m',m™,m"] and 7i=[n',n™,n"] be two
fuzzy numbers in which the superscripts /, m, and u denote the infimum, mode, and
supremum, respectively. The standard fuzzy arithmetic operations can be defined
using the concepts of a-cut as follows:

m(o) + (o) = [m' (o) + n' (o), m" (o) + n“ (0)]; (N1.12)
m(o) — (o) = [m' (o) — n" (o), m" (o) — n' (V)] (N1.13)
m(o) + (o) = [m' (o), m" ()] x [1/n" (), 1/n' (@)]; (N1.14)

(o) X (o) = [M,N] (N1.15)
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where (o) denotes the o.-cut operation, = is the approximation operation, and
M =min{m' (o)n' (o), m"' (0)n" (o), m" (a)n' (o), m" (o)n" (o) };
N =max{m' (o)n' (o), m' (c)n" (o), m" (ot)n' (o), m" (cW)n" (at)}.
CHAPTER 2: MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

Pseubpo CobDEe OF GENETIC ALGORITHMS

procedure
GA
begin

t=0

initialize P(0)
evaluate P(t)
while not satistfy stopping rule do
bigin
t=t+1
select P(t) from P(t—1)
alter P(t)
evaluate P(t)
end
end

EvoLuTiONARY COMPUTATIONS

Evolutionary Algorithms (EAs)

1. Evolutionary programming (EP)
2. Genetic algorithms (GAs): (a) cluster analysis, classification, identification)
and (b) programming for optimization

3. DNA (Deoxyribonucleic acid) computing (for pattern forecasting, optimi-
zation, and other operations)

. Genetic programming (GP)

. Genetic neural programming (GNP)

. Simulated annealing (SA)

7. Evolutionary strategies (ES)

AN B~

Computational Intelligence (Soft Computing)
1. Artificial neural networks (ANNSs)
2. Fuzzy systems
3. Rough sets

FAmiLY Systems oF COMPUTATIONAL INTELLIGENCE

1. Ant systems (ASs) and ant colony systems (ACSs), 1.e., ant colony optimiza-
tion algorithms (ACOAs)

2. Swarm intelligence (SI)

3. Particle swarm optimization (PSO)

4. Immunological systems (ISs)
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di crossover Ce®
encoding <
Start _cheodme T s —
1 € OP(D)
— - e ———
& mutation
(" )
> Crm ()
offspring
selection
N
new = | 1011101010
0011001001

roulette wheel

Stop

fitness computation
evaluation

FIGURE N2.1 General structure for genetic algorithm.

5. Cat swarm optimization (CSO)

6. Artificial bee colonies (not including cockroaches, bacterial foraging
insects, frogs, flies, stick insects, etc.)

7. Parallel particle swarm optimization (PPSO)

8. Parallel ant colony systems (PACSs)

9. Parallel cat swarm optimization (PCSO)

Basic CoNCEPTS OF GENETIC ALGORITHMS

Figure N2.1 depicts genetic algorithms. Interested readers should consult Gen and
Cheng (1997).

Software of MOEA

. Vector evaluation genetic algorithm (VEGA)

. Vector-optimized evolution strategy (VOES)

. Weight-based genetic algorithm (WBGA)

. Random weighted genetic algorithm (RWGA)

. Multi-objective genetic algorithm (MOGA)

Non-dominated sorting genetic algorithm (NSGA)

. Niched Pareto genetic algorithm (NPGA)

. Elitist non-dominated sorting genetic algorithm (NSGA-II)

. Web sources:

http://www.iitk.ac.in/kangal/codes.shtml
http://www.downloadplex.com/Scripts/Matlab/Development-Tools/
ev-moga-multi-objective-evlutionary-algorithm_444078.html
http://www.downloadplex.com/Scripts/Matlab/Development-Tools/
godlike-a-robust-single-multi-objective-optimizer_342076.html

O 09N AW~
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CHAPTER 3: GOAL PROGRAMMING

Goal programming (GP) is an analytical approach devised to address decision-
making problems in which targets have been assigned to all the attributes and the
decision maker is interested in minimizing the non-achievements of the correspond-
ing goals (Romero, 2004). Initially conceived as an application of single objective
linear programming by Charnes and Cooper (1955 and 1961), GP gained popularity
in the 1960s and 70s from the works of Ijiri (1965), Lee (1972), and Ignizio (1976).
GP is ideal for criteria in which target values of achievement are of significance
(Steurer, 1986). Goal programming is distinguished from linear programming by:

. The conceptualization of objectives as goals

. The assignment of priorities and/or weights to the achievement of the goals

. The presence of deviational variables

. Measurement of overachievement and underachievement from target or
(threshold) levels

5. Minimization of weighted sums of deviational variables to find solutions

that best satisfy the goals

AW N ==

Tamiz and others (1995) show that around 65% of GP applications reported in the
literature use lexicographic achievement functions, 21% use weighted achievement
functions, and the rest use other types of achievement functions such as min—-max
structures that minimize maximum deviation.

MuttipLe OBJECTIVE PROGRAMMING

Most multi-objective programming (MOP) problems can be represented mathemati-
cally as:

max | fi(x), fo(X),.... fi (x)] (N3.1)
st. Ax<b
x>0

Weighted GP (WGP) Model
The mathematical programming of a WGP model (Ignizio, 1976) is the following:

Min Z (oyd; + Bid) (N3.2)

1

st f)+dr—df =g, i=12...k
Ax<b
d7-df =0, d7 =20, d =20

where o; =w; /k; if di is unwanted, otherwise o; =0 and B; =wi /k; if d} is
unwanted, otherwise B; = 0.
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F3

The parameters w;, w; and k; = fi — fi are the weights reflecting preferential
and normalizing purposes attached to achievement of the i-th goal; f;" can be set
as a positive ideal point or as an aspiration level of the i-th goal and f; can act as a
negative ideal point or as the worst value of the i-th goal, respectively. We also can
rewrite Equation (N3.2) into Equation (N3.3) as follows:

q
minZoc,-(d,-‘ +d) (N3.3)
i=1

st fi(x)+d7 —d =g, i=12,....q

Ax<b
d7-df =0
d- =20, d =0

where o; = —"— and w; can be obtained by AHP, ANP, or DANP (DEMATEL-based
ANP).

i i

Lexicographic GP (LGP) Model

The achievement function of the LGP model is an ordered vector whose dimension
coincides with the Q number of priority levels established in the model. Each com-
ponent in this vector represents the unwanted deviation variables of the goals placed
in the corresponding priority level. The mathematical programming of a LGP model
(Ignizio, 1976) is the following:

Lex Mina=| Y (oud; +Bid; ). Y (0ud; +Bid; ). Y (ot +Bidy )| (N3.4)
ieh ieh, iehg
st. fi(x)+di —df =g ie{l,...q} ieh re{l,..0}
xeF, d7 >0, d >0

where h, represents the index set of goals placed in the r-th priority level and xeF
denotes a feasible solution (decision space). Lexicographic achievement functions
imply a non-compensatory structure of preferences. In other words, there are no
finite trade-offs among goals placed at different priority levels (Romero, 1991).

Min—-Max GP (MGP) Model

The achievement function of the MGP model seeks the minimization of the maxi-
mum deviation from any single goal. If we represent this maximum deviation by D,
the mathematical programming of the LGP model (Flavell, 1976) is:

min D (N3.5)

P

fio)+d —df =g ie{l,....q}
xeF, d7 20, df 20
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CHAPTER 4: COMPROMISE SOLUTION AND TOPSIS
COMPROMISE SOLUTION

Multi-objective programming (MOP) problems can be represented mathematically as:

max [ fi(x), fo(x),.... fi (x)] (N4.1)
st. Ax<b
x20

MOP problems can be solved by Pareto optimal solutions using traditional methods
as follows:

Weightings Method

maleli Wi () (N4.2)
st. Ax<b
x>0,
k s =

If k=2 (two objectives), we can assume weights as follows for finding Pareto optimal
solutions (Figure N4.1).

Wy Wy
1.0 0.0
09 0.1

0.5 05
0.1 09
0.0 1.0

e- Constraints
If k =2 (two objectives),

max{fi(x), f2(x)} (N4.3)
sit. Ax<b

x>0
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f,(%)
3 B(3,3)
"Pareto optimal solutions", or called
"Non-dominated solutions", or called
£ "Non-inferior solutions", or called
Objective space "Efficiency solutions”
€(0,0) DAY ()

-3t D(3,-3))

FIGURE N4.1 Objective space and Pareto optimal solutions by €-constraints.

We can find the ideal point of the first objective f;" and set the e-constraint values
e1,€,...,€j,... to the first objectives. Then we can find the Pareto optimal solutions

with respective to fi(x) and f>(x).

max f(x) (N4.4)
st filx)ze;, j=1,2,..
Ax<b

x>0

SURROGATE WORTH TRADE-OFF (SWT) METHOD

Compromise Solution
The compromise solution method originally was proposed by Yu and Zeleny in 1972
(Figure N4.2). The concept of the SWT method is depicted In Figure N4.3).

max/ min{ f;(x),..., f(x)} (N4.5)
sit. Ax<b
x>0

b, (Ax),  bp+

FIGURE N4.2 Basic concept of a compromise solution.
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When larger is better.

"‘* * *
Je (fl ’fz )
fr(x7) Positive ideal point
xeFd
§ )
Negativp ideal point
0 SN ANAC)

FIGURE N4.3 Basic concept of the constraint set.

The basic concept is demonstrated in the following equations.

1/p
I (1 = s
e {2((WJJ } o

i N, [ i1
d _zi=l(w’(|ﬁ*—ﬁ‘ln

e {'f—f(x)'|,= 1,2,...,k}
L=

where

Problem 1:

minA (N4.7)
s.t.wgk,izl,l...,k or minmaxA
A S
Ax<b
x>0
Problem 2:
minA (N4.8)
Lf" = fi(x)l
et (ST T I
lfi = fi'l
Ax). — b
A0i=bi 4 =12, m
Pj
Ax<b

x>0
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Fuzzy GoAL PROGRAMMING

275

In fuzzy goal programming problems, we can refer to the concept of TOPSIS for
MODM with a compromise solution (Lai et al., 1994) to define the membership

function of a fuzzy goal as follows:

max/min { f, (x),..., f; (x)}
st. Ax<b

x=>0

L, fi(x)> [ (x)

g ()= 1-% F®SfE<f @)

» 0, filx) < fi(x)

We can transfer the above equation to the following programming:

max A
s.t.lﬁw,i=l,...,k or maxminA
st. Ax<b

x20

Fuzzy Goal and Fuzzy Constraint Programming

max A

x

s.t. kSl—M i=1,2,...k or maxminA

-1 S

(N4.3)

(N4.9)

(N4.10)
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Fuzzy Multiple Objective Linear Programming (FMOLP): General Form:

max = ) G, k=1 2. ¢ (N4.12)

i=1

n

min Wk=25k,-x,-, k=ql+1,..., q

i=1

S.t. 5,}x,Sb1, j=1, 2,...,m1

The FMOLP problem can be solved by transferring it into a crisp MOLP:

max (z)e= Y ()i, k=124 (N4.13)
j=1
min (wk)a=2(ckj)éxj, k=q+1, ..., q
j=1
st Z(ag)ng <)Y, i=1, 2. my.my 1. m
j=1
Y @ 2k, i=m+, o m,

J=1

where superscripts L and o represent an o-cut in the smaller site; superscripts U
and o represent an o.-cut in the larger site. This problem can be solved interac-
tively by a fuzzy algorithm. See Zimmermann (1978) and Lee and Li (1993) for
details. For applications and extensions, refer to Sakawa (1993), Sakawa et al.
(1995), Shibano et al. (1996), Shih et al. (1996), Ida and Gen (1997), and Shih and

Lee (1999).
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Two-Phase Approach for Solving FMOLP Problem: General Form
max [fi(,2), fo(E.3)..... fu, (€, )] (N4.14)
N [ o1 @1 2): fiys2 Gz X1 o (@ 2)]
st. AxTh
xz20

where T represents a binary relation defined as {1} = {S}v{zIv{<}vi{<}v{=} and v
means or.

Step 1:
Max fi (€, ). fo(@r ) iy (B 0)) (N4.15)
VG N C e N D)
s.t.(A)gx < (b

(A)ox 2 (b);

x20, xeX,

According to Zimmermann (1978), the two important relations between o and 3 are
(1) optimal level of o and B, that is o = 3; and (2) a trade-off relation between o and f.

Step 2:
mleB (N4.14)
St B S Mg (X)
B < Mgy (%)
xe Xy
where

U —
) co.x)— T .
— ﬁ(max)( o ) f;(max)oc for i= 1,2,...,k1

b

Mgi max (x) * _
e fi(maX)ot - fi(max)a
fi(_min)oz - fi(min) (cil(]x ’x)

— - . for i=k1+1,k1+2,...,k
fi(min)oc - fi(min)oc

Mgi(min) (x) =

We can set the positive ideal points ﬁ?max)ot (large is better) and f;‘?min)oc (smaller is
better) to denote the aspiration level and the negative ideal points fimaxo (large is
better) fimin« (smaller is better) as the worst values.
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We can then find the optimal solution. Use of the iteration procedure has proven
a good approach and when o = B, iteration is stopped. The second phase is to find
A such that A = min {a,B}. Lee and Li (1993) proposed the following algorithm for
solving FMOLP problems:

Step 1. Set tolerable error T, step width €, initial o-cut (o0 = 1.0), and iterative
frequency ¢ = 1.

Step 2. Put o. = o — t¢, solve ¢-LP problem, then obtain 3 and x.

Step 3. If lo. — Bl < 1, let A = min{o,B} and go to step 4; otherwise, return to
Step 2. If width € is too large, let € = €/2 and t = 1, and return to step 2.

Step 4. Obtain A, o, B, and x.

Using the first phase o, B, refer to the algorithm of Lee and Li (1993) and solve the

c-LP2 problem based on the following mathematical programming; for more details
refer to Ida and Gen (1997).

max  P= 112 B, (N4.17)
i=1

U —_
ﬁ(max) (ciot 5 x) - ﬁ(max)ot

fz"?max)tx - f;’(—max)oc

St Mg (X) = , for i=1,2,..,k
- U
— ﬁ(min)oc - ﬁ(min) (ci(xax)

= - , fori=k +Lk +2,..k
ﬁ(min)(x - ﬁ(min)oc

I"Lgi(min) (x)

xeX,, B,Bi €[0,1]

TOPSIS

The basic concept of TOPSIS (technique for order preference by similarity to
ideal solution) using multiple-attribute decision making (MADM) criteria is
¢ -+ c¢j-- ¢, The alternatives are:

Criteria
Alternatives Ci e G e G,
w, w; w,
a Jii fi j Jin
ay Ja - fkj v S
am fml fm] fmn
Aspired value i o S

The worst value  f7 .. fi .. fT
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Data matrix [ fy ], normatizatioy [, ] = weighi [yry] ——» [vy]

mxn mxn

r=0fo=fi DIAS=fi D
min 7$"" =\ f7 = g D/ f = f7 D)
max rk}”””’ =l fi—fi h/( fj* -fi )]

The distance from point v,; to the positive ideal point v; and negative ideal point
vj forj=1,2,.,1s:

1/2
di=| Y =t or [Ny (N4.18)
j=1 j=1
. 1/2 -
d-—k= Z(ij vl or fZ(v,q- —v7)? (N4.19)
= =

The ranking index for achieving the appropriate level (large is better) is:

L L (N4.20)

T A+ dy A+ d;

The ranking index for the gap to the positive ideal point (small is better) is:

R, = *d" (N4.21)

dy +dy
The optimal solution of a MODM problem should be nearest the PIS and farthest
from the NIS in the traditional approach. We can use this basic concept of TOPSIS
in MADM to get closest to the aspiration level (in a traditional approach, closest to
the PIS), that is, minimize the gap and be the most distance from the worst value (in
a traditional approach, farthest from the NIS) for each criterion.

min rg"" = (1 f7 = fg D/ f7 = f D (N4.22)

max ;" =( fiy — i DI ST =f7 )

We can let alternative k act as an objective function in objective (criterion) j and
Jj=12,..,n; we can also rewrite fj; into f;(x) and the vector of decision variables
as x =(x;,xz,...,x,); the weight w; of objective (criterion) j can be obtained from
AHP, ANP, or DANP based on the relationship of objectives (criteria). We can use
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the L,-norm to measure the distance between objective values, the aspiration, and
the worst value as follows:

d;spimtion (x) — 2 erqupiration (x) — 2 w; (| f]x _ f](X) |) / (| f]* _ fj_ |) (N423)

J=1 J=1

and
d;vorsz (x) — Z wjrjworxz (x) — 2 wj (I f](x) _ fj_ I) / (l fj* _ fj_ |) (N424)
= =

Then we can transform the concept of TOPSIS for solving the following two-
objective programming:

min d;spiration (x) (N425)
max d,"" (x)
sit. Ax<b,

x2>0.

or the following fractional single objective programming:

daspiration
dp,™" (x)
st. Ax<b
x20.

CHAPTER 5: DE NOVO PROGRAMMING
AND CHANGEABLE PARAMETERS

De Novo PROGRAMMING METHOD

When dealing with a multiple criteria optimization problem, we usually confront a
situation in which it is almost impossible to optimize all criteria in a system. This
property requires trade-offs.

Zeleny (1981 and 1986) suggested that trade-offs are properties of an inad-
equately designed system and thus can be eliminated by designing a better (more
optimal) system. Zeleny (1995) proposed the concept of the optimal portfolio of
resources that is a design of system resources based on integration, i.e., the levels of
individual resources are not determined separately and thus require no trade-offs.
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Zeleny also developed de novo programming for designing optimal systems by
reshaping feasible sets and suggested an optimum-path ratio to contract a budget to
available level.

Shi (1995) discussed budgets from various views and defined six optimum-path
ratios for finding alternatives in designing optimal systems. No matter what opti-
mum-path ratio is used, it can provide only a certain path to locate a solution in the
decision space of the new system. A multi-criteria problem can be described as fol-
lows (Yu, 1985):

Max Cx (N5.1)
s.t Ax<b
x20

where C =C,, and A = A, are matrices and b =(b,,...,b,, )T eR".

We use a graph example to define the maximum objective f, as profit and f, as
quality. We reshape the feasible set to include unavailable good alternatives due to
the trade-offs between profit and quality as shown in Figure N5.1 and in the follow-
ing equations.

A simple production problem involves two products (suits and dresses) in quanti-
ties x; and x,. Each product consumes five different resources (unit market prices
are given). De novo programming by maximizing levels of two products can be
calculated by mathematical programming:

Profit: max f(x;,x,)=400x; +300x, (N5.2)

Quality: max f>(x;,x;) =6x; +8x,

st 4x, <20
< — - — —
2%, +6x, <24 40 20
12x; +4x, <60 2 6 X 24 st. Ax<b
=>| 12 4 sl 60 |,
3XQ <10.5 0 3 X2 10.5 X1,X2 >0
4x, +4x, 226 L 4 4] | 26
X1,X, 20

The cost of the given resources portfolio is calculated as (30 x 20) + (40 x 24) +
(9.5 x 60) + (20 x 10.5) + (10 x 26) = $2600. The unit costs of the two products are
calculated as:

X:(B0x4)+(@40x2)+(9.5%12)+ (20 x 0) + (10 x 4) = $354

X,: (B0x0)+ (40 x 6)+ (9.5 x4)+ (20 x 3) + (10 x 4) = $378
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. Optl?ns . . Good, unavailable
options
» profit
0

max

FIGURE N5.1 Trade-off boundary.

Ideal point:
Maximize profit fi(x;,x;) as:
max fi(x;,x,)=400x; +300x, (N5.3)
st. Ax<b
X1,X2 >0
Answer: x; =4.25,x, =2.25; f; =400x4.25+300 % 2.25 = $2375
Maximize total quality index f>(x;,x;) as:
max f>(x;,x;)=6x; +8x, (N5.4)
st. Ax<b
X1,X2 >0
Answer: x; =3.75,x, =2.75; f; =6Xx3.75+8x2.75=%44.5
TABLE N5.1
Data Summary
Unit Price Resources Technological Coefficients No. of Units
%) (Raw Material) (Resource Requirements) (Resource Portfolio)
X X2
30 Nylon 4 0 20
40 Velvet 2 6 24
9.5 Silver thread 12 4 60
20 Silk 0 3 10.5
10 Golden thread 4 4 26
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Multi-objective programming:

max {f;(x),.... fi(X),.... fi (%)} (N5.5)
st. Ax<b st. p’Ax<p’b st. ¢’x<B
= =
x20 x20 x20

where vector p denotes the unit price of each resource; vector ¢’ = p’A is product unit
cost, and B indicates budget.

De novo programming:

min cx (N5.6)
st fi(x)2f, i=12,....k
x>0

Example:

min ¢x = 354x, +378x,
st fi(x1,x2) =400x, +300x, = 2375
fr(x1,x2) = 6x, +8x, 244.5

X1,X2 >0

Maximum profit fi(x;,x,) = $2375

Answer: x; =4.03,x, =2.54; fi" =400x4.03+ 300 x 2.54 = $2375

Maximum total quality index f>(x;,x;) = $44.5

Answer: x, =4.03,x, =2.54; f; =6x4.03+8x2.54=344.5

Cost of newly designed system = $2386.74 [(30 x 16.12) + (40 x 23.3) + (9.5 x 58.52)
+ (20 x 7.62) + (10 x 26.28) = $2386.74]

Changeable parameters:
Extend to the basic concept of the changeable decision space and aspiration level as
shown in Figure N5.2.



284

Notes

TABLE N5.2
Data Summary

Technological Coefficients

No. of Units
(Resource Portfolio)

Unit Price Resources (Resource Requirements) Relationship of Original and
%) (Raw Material) X, X, New Designs?
30 Nylon 4 0 20 >16.12
40 Velvet 2 6 24>23.3
9.5 Silver thread 12 4 60 > 58.52
20 Silk 0 3 10.5 > 7.62
10 Golden thread 4 4 26 <26.28
@ Bolding indicates new designs.
)
: By

Expanding Deciéion

@mpetgnce Spa}fe-I-H-

innovation 2

/creativity

x
X9 %
Decision
Space II |
Objective X% | Pareto optimal
Space , 1 i
Xy '} solutions
1 N ﬂ
Decision
Spacel

FIGURE N5.2 Change spaces (decision space and objective space) for MODM.
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CHAPTER 6: MULTI-STAGE PROGRAMMING

MuLti-STAGE DEcIsSiIoN MAKING WITH MULTIPLE CRITERIA

Yu and Seiford (1981) proposed a general framework for multi-criteria finite stage
problems as follows:

X; € x1(81) X2 € X2(82) Xy €X,(S,)

8 52 = 82(81,X1) §3=53(52,X%2)  8; = 8, (8u-1,Xn-1)

S =8060L5) > T =500L5)

| Vs =s0ux) !
f11(S1,x1) le(Sz,xz) fnl(sn,xn)

fl(sl’xl)= fz(Sz,X2)= fn(sinxn):

fip(sl’xl) fZP(SZ’-XZ) fnp(sn,xn)

>
>

The decision variable is x = (xy,...,x,) with each x, € x,(s,). The state variables {s, }
are generated by:

S[+] =S,+1(Sf,x,) t=1,...,n_1

where x, € x,(s;) and s, specifies the set of alternatives when the state is reached:
(1) the sequence {s,} generated serially by {x, } is a path in the state space or (2) the
familiar constraints in mathematical programming are reached:

zsj >c, ng(xj) 2¢,
J

J

or max{g;(x;)}2c
J

CHAPTER 7: MULTI-LEVEL MULTI-OBJECTIVE PROGRAMMING
Bi-LEveL PROGRAMMING
Single Objective Bi-Level Programming
max fitx,y)=cix+d,y (N7.1)
where y solves
m;ax H(x,y)=cx+dyy

s.t. Aix+Ay<b
x20,y=0
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Let x be the decision specified by the leader; then the follower solves a linear pro-

gramming operation:

max f>(x,y)=d,y+c,x
y

S.1. Azy Sb—AI.Q
y=0

(N7.2)

We can define the following concepts related to the Stackelberg solution to the

above problem:
Constraint region S:
S={(x,y) | Aix+Ay<b,x=20,y<0}
Feasible region of follower S(x):
Sx)={ylAy<b-Ax,y=0}
Set of follower rational responses R(x):

R(x)={ylyearg max Hx,»)}

The set R(x) is often assumed to be a singleton.

Inducible region IR:
IR = IR={(x,y)|(x,y) €S,y € R(x)}
Stackelberry solution:

{(x,y)(x,y) earg max fi(x,y)}
(x,y)elR

Bi-Level Multi-objective Programming

max fillx,y)=cux+d,y

max fiy, (x,y)= ¢, x+dyy
X
where y solves

myax i, y)=cnx+dyy

max fo, (X,¥)=co, X +di1,y
y

s.t. Aix+Ay<b
x20,y=0

(N7.3)

(N7.4)

(N7.5)

(N7.6)

(N7.7)

(N7.8)



Notes 287
A 4
Optimize
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. el Negotiation
Remainder R
A 4 S~a
Optimize
Level 2 »  Objectives
\ Remainder
0 -
. "~~~ ___Negotiation
Optimize o
Level m »  Objectives
FIGURE N7.1 Basic concept of multiple-level resource allocation problem.

Multi-Level Multi-Objective Programming
We can extend bi-level multi-objective programming into multi-level multi-
objective programming. The procedures of multiple-level resource allocation
problems are depicted in Figure N7.1. Based on these concepts, multiple-level
resource allocation problems can be considered to maximize the following knap-

sack equation:

Level 1: max Z1=C1 X+ Cppxy +-+ CipXp
Level 2: max 2z, =¢uX;+enX, +--+6,X,
Level m: max z, =€,X| + CpaXy + -+ CppX,
N79
s.f. anx < bl, ( )
a)x; <b,,
a1 Xy, S bm’
x>0

where ¢; and x; denote given resource parameters at the i-th level and are usually
represented as technological coefficients and products, respectively, and b; denotes
the maximum limited resource portfolios at the i-th level.
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Total sales

(billion)
6
Comparison fopbusiness units
5 H (8,5)
4 % E (5,4)
frontier
3 xD@3) 1 G(e3)
B(3,3)
2 C@3,2) F (5,2)
1 ®AQ21
0 Employee (hundred)
0 2 4 6 8

FIGURE N8.1 Comparison of MDUs.

CHAPTER 8: DATA ENVELOPMENT ANALYSIS (DEA)

METHODS FOR ASSESSMENT OF EFFICIENCY

Notes

These methods are based on the work of Charnes, Cooper, and Rhodes (CCR; 1978).
Ratio scales for measuring efficiency are depicted in Figures N8.1 through N8.4 and

Tables N8.1 through N8.3. (1978). The equation is:

Output (efficiency)

Input (resource)

Sale area size

Total sale
4.5 X . .
Feasible set in production
4 E (2,4) G (6,4)
3.5
3 ® A@4,3) H B(7,3)
25 H (5.5, 2.5)
: D I(6,2.5)
2 ' P (5,2)
1.5 . .
frontier, basic’concept called C (8, 1)
1| "Pareto optimal solutions" or called ?
05 "Non-inferior solutions" or "Non-dominated solutions"
. No. of employee
0 — Total sale
0 2 4 6 8 10

FIGURE N.8.2 Improving efficiency of Store A.
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Total sales

- Efficiency of A stor
($NThbillion) ciency of A store
4
3 B |
Frontier (3, 3)
3 AW
) Ay2,2)
Using promotion for increasing business
2 income in the same resource (employee)
A
1 A (1,1 4
Y (2,1)
1 Increasing per employee efficiency
by decreasing number of employees
0 Employees (hundred)
0 1 2 3 4
FIGURE N8.3 Case of two inputs and one output.
Sale area size
Total sale OP/OA=0.8571
4.5 i.e., A store, relative effectiveness value, is 0.8571,
denoting it should be to reduce input two criteria,
4 E (2, 4) 0.8571 time simultaneously, then A store can remove
’ to frontier efficiency.
3.5 . . .
Al (3’ 3) If A store, relative effectiveness value, is smaller 1,
3 +—¢ A (4,3)
/
/
2.5 /
/
9 / D (4, 2)
/ ’
/ /,
1.5 // L7
’ e Cc@81)
1 / s
v 7
05 | /.7
/7 No. of employees
0 Total sale
0 2 4 6 8 10

FIGURE N8.4 Improving efficiency of Store A with two inputs.
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TABLE N8.1

Example: One Input and One Output

Business Units (Stores) A B C D E F G H

Number of employees (hundreds) 2 3 3 4 5 5 6 8
3 2 3 2 3 5

Total sales (NT$ millions) 1

Sales per employee (NT$ millions/hundreds) 0.5 1 0667 075 08 04 05 0.625

TABLE N8.2
Improving Efficiency in Non-Efficiency Units (Stores)
Business Units (Stores) A B C D E F G H
Efficiency 05 1 0.667 075 08 04 05 0.625
TABLE N8.3
Example: Two Inputs and One Output
Business Units (Stores)y A B C D E F G H |
Number of employees x;, 4 7 8 4 2 5 6 55 6
Sales area size x, 3 3 1 2 4 2 4 25 25
1 1 1 1 1 1 1 1 1

Total sales y

ExTENsION: MuLTIPLE INPUT AND OUTPUT VARIABLES

The CCR model is the basic model of DEA and can be demonstrated as a linear
programming (LP) problem:

< CCR; > min 6, (N8.1)
st 0, x, —XA>0
Vi —YAL0
A=>0

where 0, shows all reduced 9, time in input; min 0, denotes satisfactory condition
by using minimal improvement. XA and YA show the input and output frontiers,
respectively. Vector A" is an optimal value of vector A.
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SLACK-BASED EFFICIENCY MEASURES

Slack variables are input surpluses (over inputs) or output insufficiencies (outputs
nevertheless). Input surplus (over input) and output insufficiency (output neverthe-
less) can be defined as follows:

<Input surplus> Sy, =0;x, — XA~ (N8.2)

<Output insufficiency> s,, =Y -y, (N8.3)

When a DMU, can satisfy flowing conditions, we consider it efficient.
6, =1

For CCR, all slack variables are optimal solutions when s, =0 and s, =0. If
DMU, can not satisfy these conditions, it is inefficient. Therefore, this DMU, should
face efficient direction to be improved (by an alternative) as follows:

x; =0px; — sy, (N8.4)
Vi =Y+ Sy, (N8.5)

We can build a dual problem in linear programming CCR, and use v and u as variables.

DEA ErriciENCY MEASURE

Classical Efficiency Measure

If the k-th DMU uses m-dimension input variables x; (i = 1,2,...,m) to produce
s-dimension output variables y; (j = 1,2,...,s), the efficiency of DMU #h; (k= 1,...,n)
can be found from the following model:

N
21‘:1 Ltj ka

m
i=1 ViXik

max hy = (N8.6)

s
iUy Yjr <1

- b
i=1 ViXir

s.t. r=12,..n

u2e>0; v2e>0; i=12,..m; j=12,..5 k re{l2,..n}

where x; is the i-th input of the k-th DMU; vy, indicates the j-th output of the k-th
DMU; u;, and v; denote the weights of the j-th output and i-th input respectively;
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h; is a relative efficiency value; € is an Archimedean number equal to 10-6. We next

convert the above equation to the LP model:

s

max hy, = Zijjk

J=1

m s

s.1. E ViXi — E ujyjr > O, r= 1,2,...,]’1
i=1 j=1
m

Z vixy =1

i=l1
I/lj =€ >0, k= 1,2,...,S

v,;2e>0,i=12,...,m

Dual problem:

m s
min{0, — ¢ Zs,-} +2s.,+-k
i=1 j=1

n
st Opxy — E AMxi—sx =0, i=12,...,m
r=1

n
+ .
YVik — E 7\.,yj,+sjk=0, ]=1,2,...,S
r=1
-t
Sikasjk9}\‘r 20
where s; and s}rk are slack variables.

Andersen and Petersen (A&P) Efficiency Measure

(N8.7)

(N8.8)

The A&P efficiency measure function is shown below (Chiang and Tzeng, 2000).

Revenue Aspect (N8.9) Cost Aspect
max @, min 6,

n

n
S.1. Zeri, Sx,-k S.1. inr}\lr < ka,-k
r=1

(N8.10)

A 205i=12,..mr=12,..nj=12,...,8 \, 20;i=12,...m; r=12,..,m;j=12,....8
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Input 2

[

» Inputl

FIGURE N8.5 Unit isoquant spanned by an A&P model.

where @, is the revenue efficiency value (k = 1,2,...,n) and 0, denotes the cost effi-
ciency value (k= 1,2,...,n).

The ratio OC7OC defines the efficiency measure for evaluating unit C. Index
values equal to or larger than 1 may be interpreted as the maximum proportional
increase in a vector that contains the corresponding input characterization of that
observation as an efficiency value (Andersen and Petersen, 1993). The unit isoquant
spanned by the A&P model is described as shown in Figure N8.5.

EFFiciENCY ACHIEVEMENT MEASURE

The overall relative efficiency achievement (Chiang and Tzeng, 2000) calculation is:

Yiou i Vi
max /’ll = W
i=1 ViXi1
Yiou i¥i2
max h, = 42}” o
i=1 ViXi2
N
max h, = == 1Y (N8.11)
2 ViXey,

zfz U:v;
st SR < j=12, 0
2 ViXi

uj28>0, j=1,2,...,s

Vi2€>0, i=1,2,...,m



294 Notes

To convert to the pattern of fuzzy multiple objective programming (Chiang and
Tzeng, 2000):

max o (N8.12)
s.t iu —ivx <0, k=12,...,n orm<l k=1,2,---,n
o = ]y]k - iNik =Y Lt R L) 2:11 ViXie =1 4ty

S

m s
Z”/)’jk _azvixik 20, k=1,2,...,n (oroc SM, k= 1,2,...’,1)
i=1

= L Vi

O<oa<lu,2¢e>0, r=1,.,85v,2e>0, i=1,....m

The efficiency achievement measure in each DMU (Figure N8.6) is as follows:

First phase: Oy = Zujyjk /vaxik, k=1,...,n (N8.13)
j=1 i=1
Efficiency
Achievement
A
1

T > hk (u,v)
hif =0 By h{ =1  Efficiency Value

FIGURE N8.6 Identity function of efficiency achievement.
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Second phase: maxo = loc % (N8.14)
u,v n

s m
S.t. Zujyjr—zvix,-, SO, r:1,2,...,n
=1 i=1

i=1

O<a<liu,2e>0, r=1,...,55v; 2e>0, i=1,....m

Fuzzy Number for DEA Output Variables

A triangular fuzzy number (TFN) is used for measuring DEA output values. If a
triangular fuzzy number is expressed as a = (a',a™,a"), we can show the following
membership function as shown in Figure N8.7.

0, x<d (N8.15)
x—da
——,  d'<x<a"
a" —a
U (X) =9 L, x=a"
u
a" —x
—, a"<x<a"
a" —a
0, x2a"
(%)
1.0 fommmee .
i
0 d a” a' x

FIGURE N8.7 Membership function of triangular fuzzy number.
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Fuzzy operator: Two TEN d = (a',a",a") and b= (b',b",b")
Sum of fuzzy number: a+ b= (@ +b',a" +b",a" +b")

Scalar of fuzzy number: ka = (ka',ka" ,ka"), k=0

Fuzzy DEA

If planning output values are given as fuzzy numbers (for example, a fuzzy number
can be forecast by fuzzy interval regression), we want to find the output optimization
in a DEA model as follows.

max ]’Z‘k = Zujf{,-k (N816)
j=1
S.t. Zl)ixik =1

N m
E I/tjjv)jr - E VX, SO, r=1,2,...,l’l
j=1 i=1

2e>0,v,2¢>0, j=12,...,55i=1,2,...,m

The 0pt1mal trlangular fuzzy objective function value can be shown as:
Fo=(ff7 f), we call this value the FDEA efficiency (see Figure N8.8). We
first calculate fuzzy objective and fuzzy constraint (Figure N8.9). First, let r = k be
fuzzy number DMU,, then max f; = Zjju;yu <1

zs':l u ylk
max hy, = . ¢ p L) S N8.17
- (Zj=1 Uy = 2=t ”j)’§'k ) ( )
u
1 — -
|
|
|
|
|
b |
/hlk ' R
0 1

Suy. Sur S,
() ) (o

\_/\<

) )

FIGURE N8.8 Fuzzy number DMU,.
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Sud  Su
j=1
FIGURE N8.9 The concept of the fuzzy set of DMUK.

s u
2= U Yk

maXth = s u s m
1+ (2‘,’:1 U Vi — 251 Uj Vi )

Let r # k be fuzzy number DMU,.

K} s !
Z,‘=1 Uiy — Z,/=1 Upyir

max h’ = s m s l
e Y = Xjar UjYje
Then

K l
_ 251 UV

max hlk = P " P !

- (2./=1 Vi = 2jer ;Y )
s u
p Uy
max hy, = =S >

T+ (T v = T u i)

Xic1 Uy = Xjai “j)’j'r

5:1 u,-y}’i - ,s,‘=1\ M,/)’j'r
m

s.t. Z vixy =1

i=1

0<hy; <1

0<hy <1

max h, =

0<h <1, r=12,....mr#k

MjZSZO, j=1,2,...,s

V; >€e2 O, = 1,2,...,m

297

(N8.18)

(N8.19)

(N8.20)
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max (N8.21)
S.t. Zvixik =1
i=1
K )
7\‘/( S ; Zj::nu]y]k? ! N k = 1,2,-.-,”
1- (2}:1 UjYi = Xj-r: ”jyjk)
n, < 2otk L k=12

DRI YRR

s s 1
A < 2]':1 Ujyijr _zjzl UjYijr

<o - - > r=12,..n r#k
D5 Uy Y = Ljer Uy

DEA CRross-Periop ErriciENCY ANALYSIS TESTING: MALMQUIST INDEX

Assume F' is the production frontier of the ¢ period and F'*' is the production fron-
tier of the 7 + 1 period. When the production efficiency changes from F'to F'*, the
change is called a relative efficiency variation. According to Fare et al. (1992), the
Malmquist productivity index is a product of technical change (TC) and efficiency
change (EC); see Figure N8.10.

Technical Change (TC) — When 7C > 1, technical progress is indicated. Conversely,
TC < 1 indicates technical regress.

(N8.22)

1/2
t+1 t t t+1 t+1 t+1
oo| DY) DLyt
Dt(XI,Y[) Dt(Xt+l,Yt+l)

Efficiency Change (EC) — This factor compares the efficiency of the production
frontier of the ¢ period and that of the 7 + 1 period. EC > 1 indicates improved effi-
ciency whereas EC < 1 indicates reduced efficiency.

EC=

rAt+1(Xt+1 Yt+1) Dt+1(Xt+1 Yt+1)
b / b
A(X',Y") D'(X',Y")

( Dt+l (Xt,Yt) Az+l (Xz+l ’YI-H) (N8 23)
= Dt(xt+1 Y1‘+1) At(xt Yt) ’
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Y
A
D Ft+1
Zt+1Yt+1 _______________________ G‘ ““““ IDHI(X t+1)Yt+1)
|
]
t+1 t t
D" (X"',Y ):
+ |
Yt S I gt S -QIAHI(XHI,YHI)
|
: Ft
rAD G R, | -  DY(X LY
| D(X,Y") !
: l
[} |
[} ]
Yi[~ /e ¢ A (XYY |
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[} ]
[}
. | > X
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FIGURE N8.10 Measurement of Malmquist productivity index.

Malmquist Productivity Index (M) — The index is product of TC and EC. M > 1
indicates improved productivity, whereas M < 1 indicates decreased productivity.

M, . =TC, 1 XEC,

[ Dt+1(X[ Yl) DI(xl Yl‘) 172 Dt(xt Yt) At+1(x[+1 Yt+1)
= DI+1(xt+1 YH-I) Dt(xH-l YH-I)} x [DH-I(XH-I YH-I)}X[ At(xt Yt) ]

[ DH—I(XI,YI) DI(XI,YI) 172 AH—I(XH-I’YH-l)
= P prsn psry aall Rt toyvi+l v+l o Ty — (N824)
| DXLy || DLy A(X,YY)
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