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Preface

We have taken the opportunity to refresh both the content and presentation of this
text while—as for all its editions—keeping it flexible to use, accessible to students,
broad in scope, and authoritative. The bulk of textbooks is a perennial concern: we
have sought to tighten the presentation in this edition. However, it should always be
borne in mind that much of the bulk arises from the numerous pedagogical features
that we include (such as Worked examples and the Data section), not necessarily from
density of information.

The most striking change in presentation is the use of colour. We have made every
effort to use colour systematically and pedagogically, not gratuitously, seeing as a
medium for making the text more attractive but using it to convey concepts and data
more clearly. The text is still divided into three parts, but material has been moved
between chapters and the chapters have been reorganized. We have responded to the
shift in emphasis away from classical thermodynamics by combining several chapters
in Part 1 (Equilibrium), bearing in mind that some of the material will already have
been covered in earlier courses. We no longer make a distinction between ‘concepts’
and ‘machinery’, and as a result have provided a more compact presentation of ther-
modynamics with less artificial divisions between the approaches. Similarly, equilib-
rium electrochemistry now finds a home within the chapter on chemical equilibrium,
where space has been made by reducing the discussion of acids and bases.

In Part 2 (Structure) the principal changes are within the chapters, where we have
sought to bring into the discussion contemporary techniques of spectroscopy and
approaches to computational chemistry. In recognition of the major role that phys-
ical chemistry plays in materials science, we have a short sequence of chapters on
materials, which deal respectively with hard and soft matter. Moreover, we have
introduced concepts of nanoscience throughout much of Part 2.

Part 3 has lost its chapter on dynamic electrochemistry, but not the material. We
regard this material as highly important in a contemporary context, but as a final
chapter it rarely received the attention it deserves. To make it more readily accessible
within the context of courses and to acknowledge that the material it covers is at home
intellectually with other material in the book, the description of electron transfer
reactions is now a part of the sequence on chemical kinetics and the description of
processes at electrodes is now a part of the general discussion of solid surfaces.

We have discarded the Boxes of earlier editions. They have been replaced by more
fully integrated and extensive Impact sections, which show how physical chemistry is
applied to biology, materials, and the environment. By liberating these topics from
their boxes, we believe they are more likely to be used and read; there are end-of-
chapter problems on most of the material in these sections.

In the preface to the seventh edition we wrote that there was vigorous discussion in
the physical chemistry community about the choice of a ‘quantum first’ or a ‘thermo-
dynamics first’ approach. That discussion continues. In response we have paid particu-
lar attention to making the organization flexible. The strategic aim of this revision
is to make it possible to work through the text in a variety of orders and at the end of
this Preface we once again include two suggested road maps.

The concern expressed in the seventh edition about the level of mathematical
ability has not evaporated, of course, and we have developed further our strategies
for showing the absolute centrality of mathematics to physical chemistry and to make
it accessible. Thus, we give more help with the development of equations, motivate
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them, justify them, and comment on the steps. We have kept in mind the struggling
student, and have tried to provide help at every turn.

We are, of course, alert to the developments in electronic resources and have made
a special effort in this edition to encourage the use of the resources on our Web site (at
www.whfreeman.com/pchem8) where you can also access the eBook. In particular,
we think it important to encourage students to use the Living graphs and their con-
siderable extension as Explorations in Physical Chemistry. To do so, wherever we
call out a Living graph (by an icon attached to a graph in the text), we include an
Exploration in the figure legend, suggesting how to explore the consequences of
changing parameters.

Opverall, we have taken this opportunity to refresh the text thoroughly, to integrate
applications, to encourage the use of electronic resources, and to make the text even
more flexible and up to date.

Oxford P.W.A.
Portland J.de P.
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About the book

There are numerous features in this edition that are designed to make learning phys-
ical chemistry more effective and more enjoyable. One of the problems that make the
subject daunting is the sheer amount of information: we have introduced several
devices for organizing the material: see Organizing the information. We appreciate
that mathematics is often troublesome, and therefore have taken care to give help with
this enormously important aspect of physical chemistry: see Mathematics and Physics
support. Problem solving—especially, ‘where do I start?’—is often a challenge, and
we have done our best to help overcome this first hurdle: see Problem solving. Finally,
the web is an extraordinary resource, but it is necessary to know where to start, or
where to go for a particular piece of information; we have tried to indicate the right
direction: see About the Web site. The following paragraphs explain the features in
more detail.

Organizing the information

Checklist of key ideas Checklist of key ideas
Here we collect together the major concepts introduced in the
[J 1. Agasisaform of matter that fills any container it occupies. [[]12. The partial pressure of any gas .
[] 2. Anequation of state interrelates pressure, volume, x= m/n s its mole fraction in o Chapter' We SuggeSt CheCklng Off the bOX tha‘t precedes eaCh
> P ance: b=f(T. ressure. .
temperature, and amount of substance: p = f{T,V,n). P . entl’y When you feel Conﬁdent about the tOplC.
[ 3. The pressure is the force divided by the area to which the force ~ []13. In real gases, molecular interac
is applied. The standard pressure is p°= 1 bar (10° Pa). state; the true equation of state
[ 4. Mechanical equilibrium is the condition of equality of coefficients B, C, ... : pVy, =R
pressure on either side of a movable wall. [[]14. The vapour pressure is the pres|
[] 5. Temperature is the property that indicates the direction of the with its condensed phase.
flow of energy through a thermally conducting, rigid wall. [J15. The critical point is the point af
[ 6. Adiathermic boundary is a boundary that permits the passage end of the horizontal part of th
of energy as heat. An adiabatic boundary is a boundary that asingle point. The critical cons|
prevents the passage of energy as heat. pressure, molar volume, and te
[[] 7. Thermal equilibrium is a condition in which no change of critical point.

state occurs when two objects A and B are in contact through [[]16. A supercritical fluid is a dense

a diathermic boundary. temperature and pressure.

[] 8. The Zeroth Law of thermodynamics states that, if A is in [[J17. The van der Waals equation of
thermal equilibrium with B, and B is in thermal equilibrium the true equation of state in wh
with C, then Cis also in thermal equilibrium with A. by a parameter a and repulsion|

[[] 9. The Celsius and thermodynamic temperature scales are parameter b: p=nRT/(V —nb)
related by T/K = 6/°C +273.15. [[]18. A reduced variable is the actuall

[[]10. A perfect gas obeys the perfect gas equation, pV = nRT, exactly corresponding critical constant]

W IMPACT ON NANOSCIENCE Impact sections

& /20.2 Nanowires

We have already remarked (Impacts 19.1, 19.2, and 119.3) that research on nano- Where approprlate) we haVe Separated the prlnCIPIes from

metre-sized materials is motivated by the possibility that they will form the basis for their applications: the principles are constant and Straightfor-
cheaper and smaller electronic devices. The synthesis of nanowires, nanometre-sized . . .
atomic assemblies that conduct electricity, is a major step in the fabrication of Ward; the apphcatlons come and g0 as the subJeCt progresses.
nanodevices. An important type of nanowire is based on carbon nanotubes, which, The Impact sections show how the principles developed in
like graphite, can conduct electrons through delocalized 7 molecular orbitals that . . . .
form from unhybridized 2p orbitals on carbon. Recent studies have shown a cor- the chapter are Currently belng apphed ma Varlety of modern

relation between structure and conductivity in single-walled nanotubes (SWNTs)
that does not occur in graphite. The SWNT in Fig. 20.45 is a semiconductor. If the
hexagons are rotated by 60° about their sixfold axis, the resulting SWNT is a metallic
conductor.

Carbon nanotubes are promising building blocks not only because they have useful
electrical properties but also because they have unusual mechanical properties. For
example, an SWNT has a Young’s modulus that is approximately five times larger and
a tensile strength that is approximately 375 times larger than that of steel.

Silicon nanowires can be made by focusing a pulsed laser beam on to a solid target
composed of silicon and iron. The laser ejects Fe and Si atoms from the surface of the

contexts.




A note on good practice We write T = 0, not T'= 0 K for the zero temperature
on the thermodynamic temperature scale. This scale is absolute, and the lowest
temperature is 0 regardless of the size of the divisions on the scale (just as we write
p =0 for zero pressure, regardless of the size of the units we adopt, such as bar or

pascal). However, we write 0°C because the Celsius scale is not absolute.

5.8 The activities of regular solutions

The material on regular solutions presented in Section 5.4 gives further insight into
the origin of deviations from Raoult’s law and its relation to activity coefficients. The
starting point is the expression for the Gibbs energy of mixing for a regular solution
(eqn 5.31). We show in the following Justification that eqn 5.31 implies that the activ-
ity coefficients are given by expressions of the form

Iny,=fx} In %= fx3 (5.57)

These relations are called the Margules equations.

Justification 5.4 The Margules equations
The Gibbs energy of mixing to form a nonideal solution is

ALixG=nRT{x,Ina, +x;Inag}

mix
This relation follows from the derivation of eqn 5.31 with activities in place of mole
fractions. If each activity is replaced by yx, this expression becomes

ALixG=nRT{x, Inx, +x Inx; +x, In 7, + x5 In %}

mix
Now we introduce the two expressions in eqn 5.57, and use x, + x = 1, which gives

ApixG=nRT{x, Inx, +xp Inx + Byxed + Pt}
=nRT{x, In x, + x5 In x5 + Py (x, +x5)}
=nRT{x, In x, + x5 In x5+ P, xp}
as required by eqn 5.31. Note, moreover, that the activity coefficients behave cor-
rectly for dilute solutions: 7, — 1 as x; — 0 and % — 1asx, — 0.

Molecular interpretation 5.2 The lowering of vapour pressure of a solvent in a mixture

The molecular origin of the lowering of the chemical potential is not the energy of
interaction of the solute and solvent particles, because the lowering occurs even in
an ideal solution (for which the enthalpy of mixing is zero). If it is not an enthalpy
effect, it must be an entropy effect.

The pure liquid solvent has an entropy that reflects the number of microstates
available to its molecules. Its vapour pressure reflects the tendency of the solu-
tion towards greater entropy, which can be achieved if the liquid vaporizes to
form a gas. When a solute is present, there is an additional contribution to the
entropy of the liquid, even in an ideal solution. Because the entropy of the liquid is
already higher than that of the pure liquid, there is a weaker tendency to form the
gas (Fig. 5.22). The effect of the solute appears as a lowered vapour pressure, and
hence a higher boiling point.

Similarly, the enhanced molecular randomness of the solution opposes the
tendency to freeze. Consequently, a lower temperature must be reached before
equilibrium between solid and solution is achieved. Hence, the freezing point is
lowered.

ABOUT THE BOOK ix

Notes on good practice

Science is a precise activity and its language should be used
accurately. We have used this feature to help encourage the use
of the language and procedures of science in conformity to
international practice and to help avoid common mistakes.

Justifications

On first reading it might be sufficient to appreciate the ‘bottom
line’ rather than work through detailed development of a
mathematical expression. However, mathematical develop-
ment is an intrinsic part of physical chemistry, and it is
important to see how a particular expression is obtained. The
Justifications let you adjust the level of detail that you require to
your current needs, and make it easier to review material.

Molecular interpretation sections

Historically, much of the material in the first part of the text
was developed before the emergence of detailed models of
atoms, molecules, and molecular assemblies. The Molecular
interpretation sections enhance and enrich coverage of that
material by explaining how it can be understood in terms of
the behaviour of atoms and molecules.
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Further information

Further information 5.1 The Debye—H(ickel theory of ionic
solutions

Imagine a solution in which all the ions have their actual positions,
but in which their Coulombic interactions have been turned off. The
difference in molar Gibbs energy between the ideal and real solutions
is equal to w,, the electrical work of charging the system in this

arrangement. For a salt M X, we write

G Gideal
—

P S
W= (pi, +qu_) — (puides + g ideal)
=P, — ) + qlu— pie)

From eqn 5.64 we write

I~ el = g~ el S RT Iy,

So it follows that

1 e (5.73)
ny,=—0> s=p+ A
Y RT pta
This equation tells us that we must first find the final distribution of
the ions and then the work of charging them in that distribution.
The Coulomb potential at a distance r from an isolated ion of

charge ze in a medium of permittivity £is

o=— Z e (5.74)
Yo " dme .

The ionic atmosphere causes the potential to decay with distance
more sharply than this expression implies. Such shielding is a familiar
problem in electrostatics, and its effect is taken into account by
replacing the Coulomb potential by the shielded Coulomb potential,
an expression of the form

i

Z
G=—term

= (5.75)
B

where r, is called the Debye length. W
potential is virtually the same as the un|
small, the shielded potential is much srj
potential, even for short distances (Fig,|

1.0
0.8
@
N 0.6
=
k]
§ 0.4
: \
0.2
Ny
00 0.

Dista

Fig.5.36 The variation of the shielded (
distance for different values of the Deb;
Debye length, the more sharply the pot|
case, a is an arbitrary unit of length.
Exploration Write an expression

< unshielded and shielded Coulo:
Then plot this expression against rp, an,
interpretation for the shape of the plot.

966 Appendix 2 MATHEMATICAL TECHNIQUES

A2.6 Partial derivatives

A partial derivative of a function of more than one variabl
of the function with respect to one of the variables, all th:
constant (see Fig. 2.%). Although a partial derivative sho
when one variable changes, it may be used to determine
when more than one variable changes by an infinitesimal
tion of x and y, then when x and y change by dx and dy, re|

i] "

_(¥
o= [aldﬁ [ d

where the symbol 0 is used (instead of d) to denote a part
dfis also called the differential of f. For example, if f= ax”

o)
[—f] =3axYy [Ej =ax®+2by
ox , ),

1000 DATA SECTION

Table 2.8 Expansion coefficients, o, and isothermal
compressibilities, 1

Table 2.9 Inversion temperatures, n
points, and Joule-Thomson coefficien|

‘The values refer to 20°C.
Data: AIP(a), KL(k;).

/(107K ) K7 /(10 atm1) T/K  TUK
Liquids Air 603
Benzene 12.4 92.1 Argon 723 83.8
Carbon tetrachloride 124 90.5 Carbondioxide 1500 19475
Ethanol 12 76.8 Helium 40
Mercury 182 38.7 Hydrogen 202 140
Water 2.1 496 Krypton 109 1166
Methane 968 90.6
Cot Neon 231 245
Copper 0.501 0.735 )
Nitrogen 621 633
Diamond 0.030 0.187
Oxygen 764 54.8
Iron 0.354 0.589
Lead 0.861 221

s: sublimes.
Data: AIP, JL, and M.W. Zemansky, Heat and}
New York (1957).

Further information

In some cases, we have judged that a derivation is too long,
too detailed, or too different in level for it to be included
in the text. In these cases, the derivations will be found less
obtrusively at the end of the chapter.

Appendices

Physical chemistry draws on a lot of background material, espe-
cially in mathematics and physics. We have included a set of
Appendices to provide a quick survey of some of the informa-
tion relating to units, physics, and mathematics that we draw
on in the text.

Synoptic tables and the Data section

Long tables of data are helpful for assembling and solving
exercises and problems, but can break up the flow of the text.
We provide a lot of data in the Data section at the end of the
text and short extracts in the Synoptic tables in the text itself to
give an idea of the typical values of the physical quantities we
are introducing.



Mathematics and Physics support

Comment 1.2
A hyperbola is a curve obtained by
plotting y against x with xy = constant.

Comment 2.5

The partial-differential operation
(az/ax)y consists of taking the first
derivative of z(x,y) with respect to x,
treating y as a constant. For example,
if z(x,y) = x?y, then

dz d[x?y] dx? 5
dx },7 dx )viydx ==

Partial derivatives are reviewed in
Appendix 2.

978 Appendix 3 ESSENTIAL CONCEPTS OF PHYSICS

by

Py

A3.1 The linear momentum of a particle is
a vector property and points in the
direction of motion.

Classical mechanics

Classical mechanics describes the behaviour of objects in
expresses the fact that the total energy is constant in the a
other expresses the response of particles to the forces acti

A3.3 The trajectory in terms of the energy
The velocity, v, of a particle is the rate of change of its pq
dr
v=—r
dr
The velocity is a vector, with both direction and magni

velocity is the speed, v. The linear momentum, p, of a p
its velocity, v, by

p=mv

Like the velocity vector, the linear momentum vector po
of the particle (Fig. A3.1). In terms of the linear moment
ticle is

Problem solving

lllustration 5.2 Using Henry's law

To estimate the molar solubility of oxygen in water at 25°C and a partial pressure
of 21 kPa, its partial pressure in the atmosphere at sea level, we write
by, :&:217]%: 2.9x 10~ mol kg™!
P K, 79% 10" kPa kg mol ™!

The molality of the saturated solution is therefore 0.29 mmol kg~". To convert this
quantity to a molar concentration, we assume that the mass density of this dilute
solution is essentially that of pure water at 25°C, or py; = 0.99709 kg dm™. It fol-
lows that the molar concentration of oxygen is

[0,] = b6, X iy 0= 0.29 mmol kg™ % 0.99709 kg dm™ = 0.29 mmol dm™>

A note on good practice The number of significant figures in the result of a calcu-
lation should not exceed the number in the data (only two in this case).

Self-test 5.5 Calculate the molar solubility of nitrogen in water exposed to air at
25°C; partial pressures were calculated in Example 1.3. [0.51 mmol dm™]

Comments

ABOUT THE BOOK

X1

A topic often needs to draw on a mathematical procedure or a
concept of physics; a Comment is a quick reminder of the pro-

cedure or concept.

Appendices

There is further information on mathematics and physics in
Appendices 2 and 3, respectively. These appendices do not go
into great detail, but should be enough to act as reminders of

topics learned in other courses.

lllustrations

An Illustration (don’t confuse this with a diagram!) is a short
example of how to use an equation that has just been intro-
duced in the text. In particular, we show how to use data and

how to manipulate units correctly.
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Example 8.1 Calculating the number of photons

Calculate the number of photons emitted by a 100 W yellow lamp in 1.0 s. Take the
wavelength of yellow light as 560 nm and assume 100 per cent efficiency.

Method Each photon has an energy hV, so the total number of photons needed to
produce an energy E is E/hv. To use this equation, we need to know the frequency
of the radiation (from v=¢/A) and the total energy emitted by the lamp. The latter
is given by the product of the power (P, in watts) and the time interval for which
the lamp is turned on (E = PAt).

Answer The number of photons is
E  PAt APAt
v h(/A) ke

Substitution of the data gives

5.60% 107 m) X (100]s™!) x (1.0's
N=( )X (1007 57") x ( >=2.8><102°
(6.626 X107 J 5) x (2.998 x 108 m s™")

Note that it would take nearly 40 min to produce 1 mol of these photons.

A note on good practice To avoid rounding and other numerical errors, it is best
to carry out algebraic mainpulations first, and to substitute numerical values into
a single, final formula. Moreover, an analytical result may be used for other data
without having to repeat the entire calculation.

Self-test 8.1 How many photons does a monochromatic (single frequency)
infrared rangefinder of power 1 mW and wavelength 1000 nm emit in 0.1 s?
[5x10™]

Self-test 3.12 Calculate the change in G, for ice at —10°C, with density 917 kg m~>,
when the pressure is increased from 1.0 bar to 2.0 bar. [+2.0 J mol™]

Discussion questions

1.1 Explain how the perfect gas equation of state arises by combination of
Boyle’s law, Charles’s law, and Avogadro’s principle.

1.2 Explain the term ‘partial pressure’ and explain why Dalton’s law is a
limiting law.

1.4 What is the significance of the critical

1.5 Describe the formulation of the van de
rationale for one other equation of state in

1.6 Explain how the van der Waals equati
1.3 Explain how the compression factor varies with pressure and temperature  behaviour.
and describe how it reveals information about intermolecular interactions in

real gases.

Worked examples

A Worked example is a much more structured form of
Illustration, often involving a more elaborate procedure. Every
Worked example has a Method section to suggest how to set up
the problem (another way might seem more natural: setting up
problems is a highly personal business). Then there is the
worked-out Answer.

Self-tests

Each Worked example, and many of the Illustrations, has a Self-
test, with the answer provided as a check that the procedure has
been mastered. There are also free-standing Self-tests where we
thought it a good idea to provide a question to check under-
standing. Think of Self-fests as in-chapter Exercises designed to
help monitor your progress.

Discussion questions

The end-of-chapter material starts with a short set of questions
that are intended to encourage reflection on the material and
to view it in a broader context than is obtained by solving nu-
merical problems.



Exercises

14.1a The term symbol for the ground state of N is °Z,. What is the total
spin and total orbital angular momentum of the molecule? Show that the term
symbol agrees with the electron configuration that would be predicted using
the building-up principle.

14.1b One of the excited states of the C, molecule has the valence electron
configuration 16;10;17;17,. Give the multiplicity and parity of the term.

14.2a The molar absorption coefficient of a substance dissolved in hexane is
known to be 855 dm? mol™! cm™" at 270 nm. Calculate the percentage
reduction in intensity when light of that wavelength passes through 2.5 mm of
a solution of concentration 3.25 mmol dm™.

14.2b The molar absorption coefficient of a substance dissolved in hexane is
known to be 327 dm? mol™' cm™ at 300 nm. Calculate the percentage
reduction in intensity when light of that wavelength passes through 1.50 mm
of a solution of concentration 2.22 mmol dm™>.

14.3a A solution of an unknown component of a biological sample when
placed in an absorption cell of path length 1.00 cm transmits 20.1 per cent of
light of 340 nm incident upon it. If the concentration of the component is
0.111 mmol dm™, what is the molar absorption coefficient?

14.3b When light of wavelength 400 nm passes through 3.5 mm of a solution
of an absorbing substance at a concentration 0.667 mmol dm™, the
transmission is 65.5 per cent. Calculate the molar absorption coefficient of the
solute at this wavelength and express the answer in cm” mol ™.

&(V) = &,.{1

Emax

v,

Molar absorption coefficient, &

Wavenum

Fig. 14.49

14.7b The following data were obtained for (]
in methylbenzene using a 2.50 mm cell. Calc
coefficient of the dye at the wavelength empl;
[dye]/(moldm™)  0.0010  0.0050 0.
T/(per cent) 73 21 4.

Problems

Assume all gases are perfect unless stated otherwise. Note that 1 atm =
1.013 25 bar. Unless otherwise stated, thermochemical data are for 298.15 K.

Numerical problems

2.1 A sample consisting of 1 mol of perfect gas atoms (for which

Cyn==2R) is taken through the cycle shown in Fig. 2.34. (a) Determine the
temperature at the points 1, 2, and 3. (b) Calculate g, w, AU, and AH for each
step and for the overall cycle. If a numerical answer cannot be obtained from
the information given, then write in +, -, 0, or ? as appropriate.

1 2

o
S

Isotherm

Pressure, p/atm

3

22.44 44.88
Volume, V/dm?®

o
12
=]

Fig. 2.34

2.2 A sample consisting of 1.0 mol CaCO(s) was heated to 800°C, when it
decomposed. The heating was carried out in a container fitted with a piston
that was initially resting on the solid. Calculate the work done during
complete decomposition at 1.0 atm. What work would be done if instead of
having a piston the container was open to the atmosphere?

Table 2.2. Calculate the standard enthalpy of
from its value at 298 K.

2.8 A sample of the sugar p-ribose (C5H, ¢
in a calorimeter and then ignited in the presf
temperature rose by 0.910 K. In a separate e:
the combustion of 0.825 g of benzoic acid, f
combustion is —3251 kJ mol™!, gave a tempe|
the internal energy of combustion of p-ribo
2.9 The standard enthalpy of formation of
bis(benzene)chromium was measured in a
reaction Cr(CgHy),(s) — Cr(s) +2 CgHy(g)
Find the corresponding reaction enthalpy a
of formation of the compound at 583 K. Th,
heat capacity of benzene is 136.1 ] K™ mol|
81.67 ] K™ mol™ as a gas.

2.10f From the enthalpy of combustion dat
alkanes methane through octane, test the ex|
AH®=k{(M/(g mol™")}" holds and find the
Predict A H® for decane and compare to the]

2.11 Itis possible to investigate the thermo
hydrocarbons with molecular modelling m¢
software to predict A_H® values for the alkas
calculate A_H® values, estimate the standard|
C,H,,11)(g) by performing semi-empirical
or PM3 methods) and use experimental sta
values for CO,(g) and H,O(1). (b) Compare]
experimental values of A_H® (Table 2.5) an
the molecular modelling method. (c) Test t

AH®=k{(M/(g mol™)}" holds and find the|

ABOUT THE BOOK X111

Exercises and Problems

The real core of testing understanding is the collection of end-
of-chapter Exercises and Problems. The Exercises are straight-
forward numerical tests that give practice with manipulating
numerical data. The Problems are more searching. They are di-
vided into ‘numerical’, where the emphasis is on the manipu-
lation of data, and ‘theoretical’, where the emphasis is on the
manipulation of equations before (in some cases) using nu-
merical data. At the end of the Problems are collections of
problems that focus on practical applications of various kinds,
including the material covered in the Impact sections.
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The Web site to accompany Physical Chemistry is available at:

www.whfreeman.com/pchem8
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It includes the following features:
Living graphs

A Living graph is indicated in the text by the icon @ attached
to a graph. This feature can be used to explore how a property
changes as a variety of parameters are changed. To encourage
the use of this resource (and the more extensive Explorations in
Physical Chemistry) we have added a question to each figure
where a Living graph is called out.

10.16 The boundary surfaces of d orbitals.
Two nodal planes in each orbital intersect
at the nucleus and separate the lobes of
each orbital. The dark and light areas
denote regions of opposite sign of the
wavefunction.

Exploration To gain insight into the
< shapes of the forbitals, use
mathematical software to plot the
boundary surfaces of the spherical
harmonics Ys.m,( 0,0).
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Artwork

An instructor may wish to use the illustrations from this text
in a lecture. Almost all the illustrations are available and can
be used for lectures without charge (but not for commercial
purposes without specific permission). This edition is in full
colour: we have aimed to use colour systematically and help-
fully, not just to make the page prettier.

Tables of data

All the tables of data that appear in the chapter text are avail-
able and may be used under the same conditions as the figures.

Web links

There is a huge network of information available about phys-
ical chemistry, and it can be bewildering to find your way to it.
Also, a piece of information may be needed that we have not
included in the text. The web site might suggest where to find
the specific data or indicate where additional data can be found.

Tools

Interactive calculators, plotters and a periodic table for the
study of chemistry.

Group theory tables

Comprehensive group theory tables are available for down-
loading.

Explorations in Physical Chemistry

Now from W.H. Freeman & Company, the new edition of the
popular Explorations in Physical Chemistry is available on-line
at www.whfreeman.com/explorations, using the activation
code card included with Physical Chemistry 8e. The new
edition consists of interactive Mathcad® worksheets and, for
the first time, interactive Excel® workbooks. They motivate
students to simulate physical, chemical, and biochemical
phenomena with their personal computers. Harnessing the
computational power of Mathcad® by Mathsoft, Inc. and
Excel® by Microsoft Corporation, students can manipulate
over 75 graphics, alter simulation parameters, and solve equa-
tions to gain deeper insight into physical chemistry. Complete
with thought-stimulating exercises, Explorations in Physical
Chemistry is a perfect addition to any physical chemistry
course, using any physical chemistry text book.

The Physical Chemistry, Eighth Edition eBook

A complete online version of the textbook. The eBook offers
students substantial savings and provides a rich learning
experience by taking full advantage of the electronic medium

ABOUT THE WEB SITE XV

integrating all student media resources and adds features uni-
que to the eBook. The eBook also offers instructors unparalleled
flexibility and customization options not previously possible
with any printed textbook. Access to the eBook is included
with purchase of the special package of the text (0-7167-8586-
2), through use of an activation code card. Individual eBook
copies can be purchased on-line at www.whfreeman.com.
Key features of the eBook include:

+ Easy access from any Internet-connected computer via a
standard Web browser.

* Quick, intuitive navigation to any section or subsection,
as well as any printed book page number.

Integration of all Living Graph animations.

Text highlighting, down to the level of individual phrases.

+ A book marking feature that allows for quick reference to
any page.

+ A powerful Notes feature that allows students or instruc-

tors to add notes to any page.

A full index.

+ Full-text search, including an option to also search the
glossary and index.

+ Automatic saving of all notes, highlighting, and bookmarks.
Additional features for lecturers:

+ Custom chapter selection: Lecturers can choose the chap-
ters that correspond with their syllabus, and students will
get a custom version of the eBook with the selected chap-
ters only.

Instructor notes: Lecturers can choose to create an anno-
tated version of the eBook with their notes on any page.
When students in their course log in, they will see the lec-
turer’s version.

« Custom content: Lecturer notes can include text, web
links, and even images, allowing lecturers to place any
content they choose exactly where they want it.

Physical Chemistry is now available in two
volumes!

For maximum flexibility in your physical chemistry course,
this text is now offered as a traditional, full text or in two vol-
umes. The chapters from Physical Chemistry, 8e that appear in
each volume are as follows:

Volume 1: Thermodynamics and Kinetics
(0-7167-8567-6)

1. The properties of gases
2. The first law
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. The second law

. Physical transformations of pure substances
. Simple mixtures

. Phase diagrams

. Chemical equilibrium
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21. Molecules in motion

22. The rates of chemical reactions
23. The kinetics of complex reactions
24. Molecular reaction dynamics

Data section
Answers to exercises
Answers to problems
Index

Volume 2: Quantum Chemistry, Spectroscopy,
and Statistical Thermodynamics
(0-7167-8569-2)

8. Quantum theory: introduction and principles
9. Quantum theory: techniques and applications

10. Atomic structure and atomic spectra

11. Molecular structure

12. Molecular symmetry

13. Spectroscopy 1: rotational and vibrational spectra
14. Spectroscopy 2: electronic transitions

15. Spectroscopy 3: magnetic resonance

16. Statistical thermodynamics: the concepts

17. Statistical thermodynamics: the machinery

Data section
Answers to exercises
Answers to problems
Index

Solutions manuals

As with previous editions Charles Trapp, Carmen Giunta,
and Marshall Cady have produced the solutions manuals to
accompany this book. A Student’s Solutions Manual (0-7167-
6206-4) provides full solutions to the ‘@’ exercises and the
odd-numbered problems. An Instructor’s Solutions Manual
(0-7167-2566-5) provides full solutions to the ‘b’ exercises and
the even-numbered problems.
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PART 1 Equilibrium

Part 1 of the text develops the concepts that are needed for the discussion of
equilibria in chemistry. Equilibria include physical change, such as fusion and
vaporization, and chemical change, including electrochemistry. The discussion is
in terms of thermodynamics, and particularly in terms of enthalpy and entropy.
We see that we can obtain a unified view of equilibrium and the direction of
spontaneous change in terms of the chemical potentials of substances. The
chapters in Part 1 deal with the bulk properties of matter; those of Part 2 will
show how these properties stem from the behaviour of individual atoms.

The properties of gases

The First Law

The Second Law

Physical transformations of pure substances
Simple mixtures

Phase diagrams

N O oA ON =

Chemical equilibrium
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The properties
of gases

This chapter establishes the properties of gases that will be used throughout the text. It
begins with an account of an idealized version of a gas, a perfect gas, and shows how its
equation of state may be assembled experimentally. We then see how the properties of real
gases differ from those of a perfect gas, and construct an equation of state that describes
their properties.

The simplest state of matter is a gas, a form of matter that fills any container it
occupies. Initially we consider only pure gases, but later in the chapter we see that the
same ideas and equations apply to mixtures of gases too.

The perfect gas

We shall find it helpful to picture a gas as a collection of molecules (or atoms) in con-
tinuous random motion, with average speeds that increase as the temperature is raised.
A gas differs from a liquid in that, except during collisions, the molecules of a gas are
widely separated from one another and move in paths that are largely unaffected by
intermolecular forces.

1.1 The states of gases

The physical state of a sample of a substance, its physical condition, is defined by its
physical properties. Two samples of a substance that have the same physical proper-
ties are in the same state. The state of a pure gas, for example, is specified by giving its
volume, V, amount of substance (number of moles), n, pressure, p, and temperature,
T. However, it has been established experimentally that it is sufficient to specify only
three of these variables, for then the fourth variable is fixed. That is, it is an experi-
mental fact that each substance is described by an equation of state, an equation that
interrelates these four variables.
The general form of an equation of state is

p=fT,V,n) (1.1)

This equation tells us that, if we know the values of T, V, and # for a particular sub-
stance, then the pressure has a fixed value. Each substance is described by its own
equation of state, but we know the explicit form of the equation in only a few special
cases. One very important example is the equation of state of a ‘perfect gas’, which has
the form p = nRT/V, where R is a constant. Much of the rest of this chapter will exam-
ine the origin of this equation of state and its applications.

The perfect gas

1.1 The states of gases
1.2 The gas laws

11.1 Impact on environmental
science: The gas laws and the
weather

Real gases

1.3 Molecular interactions
1.4 The van der Waals equation

1.5 The principle of corresponding
states

Checklist of key ideas
Further reading
Discussion questions
Exercises

Problems
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Comment 1.1

The International System of units (SI,
from the French Systéme International
d’Unités) is discussed in Appendix 1.

Movable
wall
High Low
pressure pressure
(a) I |
Motion

Equal pressures

]
" .
Low High
pressure pressure
]
(c) !

Fig. 1.1 When a region of high pressure is
separated from a region of low pressure by
a movable wall, the wall will be pushed into
one region or the other, as in (a) and (c).
However, if the two pressures are identical,
the wall will not move (b). The latter
condition is one of mechanical equilibrium
between the two regions.

Table 1.1 Pressure units

Name Symbol Value

pascal 1Pa INm2 1kgm's?

bar 1 bar 10° Pa

atmosphere 1 atm 101.325 kPa

torr 1 Torr (101 325/760) Pa=133.32...Pa
millimetres of mercury 1 mmHg 133.322...Pa

pound per square inch 1 psi 6.894 757 ... kPa

(a) Pressure

Pressure is defined as force divided by the area to which the force is applied. The
greater the force acting on a given area, the greater the pressure. The origin of the force
exerted by a gas is the incessant battering of the molecules on the walls of its container.
The collisions are so numerous that they exert an effectively steady force, which is
experienced as a steady pressure.

The SI unit of pressure, the pascal (Pa), is defined as 1 newton per metre-squared:

1Pa=1Nm™> [1.2a]
In terms of base units,
1Pa=1kgm™ s [1.2b]

Several other units are still widely used (Table 1.1); of these units, the most commonly
used are atmosphere (1 atm = 1.013 25 x 10° Pa exactly) and bar (1 bar = 10° Pa). A
pressure of 1 bar is the standard pressure for reporting data; we denote it p°.

Self-test 1.1 Calculate the pressure (in pascals and atmospheres) exerted by a mass
of 1.0 kg pressing through the point of a pin of area 1.0 X 107> mm? at the surface
of the Earth. Hint. The force exerted by a mass m due to gravity at the surface of the
Earth is mg, where g is the acceleration of free fall (see endpaper 2 for its standard
value). [0.98 GPa, 9.7 x 10% atm]

If two gases are in separate containers that share a common movable wall (Fig. 1.1),
the gas that has the higher pressure will tend to compress (reduce the volume of) the
gas that has lower pressure. The pressure of the high-pressure gas will fall as it expands
and that of the low-pressure gas will rise as it is compressed. There will come a stage
when the two pressures are equal and the wall has no further tendency to move. This
condition of equality of pressure on either side of a movable wall (a ‘piston’) is a state
of mechanical equilibrium between the two gases. The pressure of a gas is therefore
an indication of whether a container that contains the gas will be in mechanical equi-
librium with another gas with which it shares a movable wall.

(b) The measurement of pressure

The pressure exerted by the atmosphere is measured with a barometer. The original
version of a barometer (which was invented by Torricelli, a student of Galileo) was an
inverted tube of mercury sealed at the upper end. When the column of mercury is in
mechanical equilibrium with the atmosphere, the pressure at its base is equal to that



exerted by the atmosphere. It follows that the height of the mercury column is pro-
portional to the external pressure.

Example 1.1 Calculating the pressure exerted by a column of liquid

Derive an equation for the pressure at the base of a column of liquid of mass
density p (rtho) and height h at the surface of the Earth.

Method Pressure is defined as p = F/A where F is the force applied to the area A,
and F = mg. To calculate F we need to know the mass m of the column of liquid,
which is its mass density, p, multiplied by its volume, V: m = pV. The first step,
therefore, is to calculate the volume of a cylindrical column of liquid.

Answer Let the column have cross-sectional area A; then its volume is Ah and its
mass is m = pAh. The force the column of this mass exerts at its base is

F=mg=pAhg
The pressure at the base of the column is therefore
F  pAhg
A 4 %8 (1.3)

Note that the pressure is independent of the shape and cross-sectional area of the
column. The mass of the column of a given height increases as the area, but so does
the area on which the force acts, so the two cancel.

Self-test 1.2 Derive an expression for the pressure at the base of a column ofliquid
of length I held at an angle 6 (theta) to the vertical (1). [p=pgl cos 6]

The pressure of a sample of gas inside a container is measured by using a pressure
gauge, which is a device with electrical properties that depend on the pressure. For
instance, a Bayard—Alpert pressure gauge is based on the ionization of the molecules
present in the gas and the resulting current of ions is interpreted in terms of the pres-
sure. In a capacitance manometer, the deflection of a diaphragm relative to a fixed elec-
trode is monitored through its effect on the capacitance of the arrangement. Certain
semiconductors also respond to pressure and are used as transducers in solid-state
pressure gauges.

(c) Temperature

The concept of temperature springs from the observation that a change in physical
state (for example, a change of volume) can occur when two objects are in contact
with one another, as when a red-hot metal is plunged into water. Later (Section 2.1)
we shall see that the change in state can be interpreted as arising from a flow of energy
as heat from one object to another. The temperature, T, is the property that indicates
the direction of the flow of energy through a thermally conducting, rigid wall. If
energy flows from A to B when they are in contact, then we say that A has a higher
temperature than B (Fig. 1.2).

It will prove useful to distinguish between two types of boundary that can separate
the objects. A boundary is diathermic (thermally conducting) if a change of state is
observed when two objects at different temperatures are brought into contact.! A

! The word dia is from the Greek for ‘through’.

1.1 THE STATES OF GASES

0
/
1
Diathermic
wall
High Low
temperature temperature

I

(a)
Energy as heat
Equal temperatures
(b)
Low High
temperature temperature
(c)

Fig. 1.2 Energy flows as heat from a region
at a higher temperature to one at a lower
temperature if the two are in contact
through a diathermic wall, as in (a) and
(c). However, if the two regions have
identical temperatures, there is no net
transfer of energy as heat even though the
two regions are separated by a diathermic
wall (b). The latter condition corresponds
to the two regions being at thermal
equilibrium.
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Equilibriu% %uinbrium

Equilibrium

Fig. 1.3 The experience summarized by the
Zeroth Law of thermodynamics is that, if
an object A is in thermal equilibrium with
B and B is in thermal equilibrium with C,
then C is in thermal equilibrium with A.

metal container has diathermic walls. A boundary is adiabatic (thermally insulating)
if no change occurs even though the two objects have different temperatures. A
vacuum flask is an approximation to an adiabatic container.

The temperature is a property that indicates whether two objects would be in
‘thermal equilibrium’ if they were in contact through a diathermic boundary. Thermal
equilibrium is established if no change of state occurs when two objects A to B are in
contact through a diathermic boundary. Suppose an object A (which we can think of
as a block of iron) is in thermal equilibrium with an object B (a block of copper), and
that B is also in thermal equilibrium with another object C (a flask of water). Then it
has been found experimentally that A and C will also be in thermal equilibrium when
they are put in contact (Fig. 1.3). This observation is summarized by the Zeroth Law
of thermodynamics:

If A is in thermal equilibrium with B, and B is in thermal equilibrium with C, then
Cis also in thermal equilibrium with A.

The Zeroth Law justifies the concept of temperature and the use of a thermometer,
a device for measuring the temperature. Thus, suppose that B is a glass capillary con-
taining a liquid, such as mercury, that expands significantly as the temperature
increases. Then, when A is in contact with B, the mercury column in the latter has a
certain length. According to the Zeroth Law, if the mercury column in B has the same
length when it is placed in thermal contact with another object C, then we can predict
that no change of state of A and C will occur when they are in thermal contact. More-
over, we can use the length of the mercury column as a measure of the temperatures
of Aand C.

In the early days of thermometry (and still in laboratory practice today), tempera-
tures were related to the length of a column of liquid, and the difference in lengths
shown when the thermometer was first in contact with melting ice and then with
boiling water was divided into 100 steps called ‘degrees’, the lower point being labelled
0. This procedure led to the Celsius scale of temperature. In this text, temperatures
on the Celsius scale are denoted 0 and expressed in degrees Celsius (°C). However,
because different liquids expand to different extents, and do not always expand
uniformly over a given range, thermometers constructed from different materials
showed different numerical values of the temperature between their fixed points. The
pressure of a gas, however, can be used to construct a perfect-gas temperature scale
that is independent of the identity of the gas. The perfect-gas scale turns out to be
identical to the thermodynamic temperature scale to be introduced in Section 3.2¢,
so we shall use the latter term from now on to avoid a proliferation of names. On
the thermodynamic temperature scale, temperatures are denoted T and are normally
reported in kelvins, K (not °K). Thermodynamic and Celsius temperatures are related
by the exact expression

T/K=6/°C +273.15 (1.4)

This relation, in the form 6/°C = T/K — 273.15, is the current definition of the Celsius
scale in terms of the more fundamental Kelvin scale. It implies that a difference in
temperature of 1°C is equivalent to a difference of 1 K.

A note 