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ABSTRACT
Micro-aerial vehicle (MAV) swarms are emerging as a new
class of mobile sensor networks with many potential appli-
cations such as urban surveillance, disaster response, ra-
diation monitoring, etc., where the swarm is tasked with
collaboratively covering a hazardous unknown environment.
However, e�cient collaborative coverage is challenging due
to limited individual sensing, computing and communica-
tion resources of MAV sensor nodes, and lack of location
infrastructure in the unknown application environment.

We present SugarMap, a novel system that enables such
resource-constrained MAV nodes to achieve e�cient sensing
coverage. The self-establishing system uses approximate
motion models of mobile nodes in conjunction with radio
signatures from self-deployed stationary anchor nodes to
create a common coverage map. Consequently, the system
coordinates node movements to reduce sensing overlap and
increase the speed and e�ciency of coverage. The system
uses particle filters to account for uncertainty in sensors and
actuation of MAV nodes, and incorporates redundancy to
guarantee coverage. Through large-scale simulations and
a real implementation on the SensorFly MAV sensing plat-
form, we show that SugarMap provides better coverage than
the existing coverage approaches for MAV swarms.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Distributed
Systems—Distributed applications; I.2 [Artificial Intelli-
gence]: Distributed Artificial Intelligence—Multiagent sys-
tems

Keywords
Mobile Sensor Networks, Micro-Aerial Vehicle, Swarm

1. INTRODUCTION
Micro-aerial vehicle (MAV) swarms are an emerging class

of mobile sensor networking systems with many potential
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applications such as urban surveillance, disaster response
and crop pollination. These swarms comprise of miniature
aerial sensor nodes capable of autonomous movement but
with limited sensing, computing and communication re-
sources on each node [25, 19]. In a majority of the proposed
applications, such as surveillance or survivor search, the
sensor network is tasked with moving and covering a target
space. These networks must rely on collaboration to quickly
and e�ciently achieve their system-wide sensing objectives
despite the limitations of individual nodes.

The collaborative swarm approach provides the advantage
of greater resilience, adaptability and speed of sensing as
compared to a monolithic robot. However, the limited indi-
vidual capabilities of MAV’s present many unique challenges
in enabling collaboration between a swarm of nodes. A
fundamental primitive for collaborative algorithms, espe-
cially for spatial sensing coverage, is a common frame of
reference for location. Indeed, the knowledge of the relative
locations of sensor nodes is assumed or computed in most
prior work on multi-robot spatial coverage [7, 9, 11, 14, 22,
24]. However, these existing techniques are unsuitable for
MAV swarms due to the following challenges:

• Lack of Infrastructure – Many multi-robot systems
rely on existing infrastructure for inferring the relative
location of nodes such as GPS, Wi-Fi access points,
motion-tracking camera systems etc. This infrastruc-
ture is unavailable in many of the intended operating
environments for MAV swarms such as indoor build-
ings (GPS denied) or disaster scenarios (infrastructure
denied).

• Limited Sensors – Robots routinely use range sen-
sors such as LIDARs, laser-range finders or multiple
ultrasonic rangers to compute relative positions [2, 5,
6, 16]. MAV platforms have severe weight constraints
and cannot accommodate most of these sensors that
weigh in the hundreds of grams.

• Limited Computing Power – Many robotic systems
employ computer vision with computation intensive
feature detection algorithms to generate maps and
compute their relative location. MAV swarms do not
have the local processing ability to employ these algo-
rithms.

• Low-bandwidth Communication – Robots have
the ability to relay bandwidth intensive images and
data to a base station for processing. The MAV
swarms are limited in the available bandwidth and



connectivity due to the their low-power and low-range
radio’s.

In this paper, we present SugarMap – a system that en-
ables resource-constrained MAV sensor swarms to collabora-
tively cover an area. SugarMap coordinates node movements
to reduce the amount of sensing overlap between swarm
nodes and increase the e�ciency and speed of coverage.
Most importantly, the system does not rely on external loca-
tion infrastructure, bulky or sophisticated sensors, computa-
tion intensive algorithms or high-bandwidth communication.

The main contribution of this paper is threefold:

• a multi-node location-less coverage algorithm that
uses self-dispersed anchor nodes to obtain radio RF-
signatures and provides a common spatial frame of
reference for MAV swarm nodes.

• a particle filter framework to estimate coverage taking
into account the uncertainties and inaccuracies intro-
duced by semi-controlled motion in MAV systems.

• a coverage algorithm that inherently provides redun-
dancy as per the uncertainty of node motion.

In the SugarMap system, radio RF-signatures are ob-
tained by explorer sensor nodes through querying a set
of anchor nodes. The anchor nodes are MAV nodes that
SugarMap deploys (lands) in the area, through a dispersion
algorithm, at initialization. The system does not require a
location information for deploying anchor nodes and is thus
self-establishing. Consequently, SugarMap uses the radio
measurements from the anchors as a common spatial frame
of reference to coordinate node motion and collaboratively
cover an unknown area. The algorithm uses particle filters to
account for the actuation uncertainty of low-cost MAV nodes
and uses redundancy in node paths to guarantee coverage
with the desired degree of confidence.

We evaluate the performance of SugarMap through large-
scale simulation and validate through a real-system imple-
mentation on the SensorFly [19] MAV sensor platform. We
compare the performance of SugarMap to the state-of-the-
art in existing online coverage algorithms for swarms. We
show that SugarMap provides faster coverage than existing
approaches in absence of location information.

The rest of the paper is organized as follows. Section 2
gives an overview of the SugarMap system. Section 3 de-
scribes the di↵erent components and algorithms of Sug-
arMap in detail. Section 4 describes our implementation,
experimental setup, results and provides comparisons with
other approaches. Section 6 describes the state-of-the-art in
multi-agent coverage algorithms in context of MAV swarms.
Finally, Section 7 summarizes our conclusions.

2. SYSTEM OVERVIEW
This section gives an overview of the di↵erent aspects of

the SugarMap system, including the capabilities of nodes
and the typical operating scenario.

Figure 1 gives a flow diagram of data and commands
between the major components of the SugarMap system.
At system initialization, nodes are sent into the environ-
ment and landed in a constrained dispersion manner. The
SugarMap system has a base station brain running the
SugarMap algorithm. The base station gives commands
to the mobile nodes (explorers) to move in a coordinated
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Figure 1: An overview of the SugarMap system.

fashion. The explorers collect RF-signatures from station-
ary nodes (anchors) and relay it to the base station. The
base station uses particle filters and RF-signatures obtained
from the explorer nodes to update a global coverage map
for the swarm. The global coverage map in turn helps the
base station recursively plan the next movement of explorer
nodes.

2.1 MAV Sensor Nodes
We assume the MAV nodes to be weight-limited resource-

constrained platforms. They have limited on-board com-
putation capability and light-weight components such as
MEMS-based inertial motion sensors, an altitude measure-
ment sensor, a sensor to estimate velocity, and a radio for
communication and RF-signature estimation.

For our prototype evaluation, we implement SugarMap
on the SensorFly [19] MAV swarm platform. The SensorFly
is a MAV platform with a 8-bit AVR AtMega128 micro-
controller, inertial motion sensors – 3-axis accelerometer
and 3-axis gyro, an ultrasonic ranger for altitude estima-
tion, an optical flow sensor for velocity estimation, and a
802.15.4a compatible radio with Round-trip time-of-flight
(RToF) measurement capability. The entire platform is un-
der 30g in weight striking a careful balance between weight
and sensing capability as is typical of MAV sensing plat-
forms.

2.2 Operating Environment
The predominant application of proposed MAV swarms

is in attaining sensing coverage of unknown environments
that are inaccessible or hazardous for humans to enter. For
example, in applications such as urban surveillance, survivor
search after disasters, or nuclear radiation monitoring.

Figure 2 gives an illustration of the operating environ-
ment. The anchors are deployed by dispersion at the bound-
aries, explorers move and sense the area, and the base sta-
tion received data from explorers and transmits commands.
We make the following assumptions about the operating
environment from the application scenario:

• The initial position and pose of swarm nodes is known.
The swarm nodes are introduced into the operating
environment manually. For example, a firefighter in-
troduces nodes into an indoor structure damaged by
an earthquake through an accessible opening.
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Figure 2: An illustration of the SugarMap system
operating environment.

• The search space for a single group of swarm nodes
is continuous. The swarm nodes do not have the
capability to break through obstructing structures.

2.3 System Components
The SugarMap system has 3 major components:

• Anchors – Anchors are MAV nodes that the system
lands at initialization in the environment. The nodes
land using a simple dispersion algorithm where they
seek to approximately spread out from each other but
at the same time maintain radio connectivity with
all other anchors. The dispersion does not use any
location information but relies on the approximate
proximity information provided by the radio time-of-
flight measurements.

• Explorers – Explorers are MAV nodes that move
and sense the environment. The nodes collect radio
signatures from the anchor nodes, execute commanded
motion with feedback from their motion sensors, sense
the environment using application specific sensors and
relay this data to a coordinating base station. The
nodes receive high-level commands from the base sta-
tion to follow a movement path.

• Base Station – The base station is a node at a safer
location with access to higher computing power than
the swarm nodes. The nodes relay information to the
base station. The base station computes the proba-
bilistic coverage from obtained data and directs the
motion of all the explorer nodes as per the coverage
algorithm. The base station provides a real-time cov-
erage status to the users of the swarm.

2.4 SugarMap Coverage Algorithm
The base station runs the SugarMap online coverage algo-

rithm. Every node in SugarMap starts with an empty grid
map of the world with a known initial position. The size
of a grid cell is equal to the sensing radius of each sensor.
As explorer nodes move, they approximately measure their
motion using sensors (optical flow and inertial), and collect
RToF signatures from landed anchor nodes, and relay this
data to the base station.

The SugarMap algorithm directs explorer nodes to per-
form a depth first search (spanning tree coverage [7]) of the
environment but to avoid areas already covered by other
nodes. This minimizes sensing overlap and speeds up cov-
erage. To achieve this, the algorithm constructs a common
grid map for areas covered by all nodes.

However, the motion estimation of MAV nodes is ap-
proximate and exact coverage area is hard to determine.
The algorithm uses a particle filter to model the coverage
uncertainty (due to motion and sensing uncertainty) of each
SensorFly node. Every node is represented by n particles
that track the coverage path of the SensorFly on the grid,
where the weight of each particle gives the probability of
each cell on its path being covered. The algorithm detects
revisits in node paths by matching RToF signatures and uses
this to update particle weights. The algorithm combines
the probabilistic coverage map of all particles by summing
and normalizing the cell coverage probabilities to arrive at
a coverage map for each SensorFly.

Thus, the SugarMap algorithm constructs a probabilistic
spanning tree for each node’s coverage. Each node of the
spanning tree corresponds to a unique RToF signature of a
covered area, while the edges are defined through the relative
motion estimates. Using the common initial position of all
nodes, individual maps are overlaid on a common grid map
by again combining the probabilities of individual cells to
arrive at a global coverage map of the swarm. The algorithm
uses this global coverage map to direct nodes to cells with a
lower probability of having been covered.

3. SYSTEM DESCRIPTION
In this section, we describe the details of the di↵erent

components and algorithms used in SugarMap. We discuss
the deployment of anchors, the path planner that commands
explorer nodes, and the particle filter based probabilistic
coverage map estimation.

3.1 Deployment of Anchors
The SugarMap system initializes by deploying a subset of

MAV nodes in the environment to act as radio anchors. The
absolute position of the anchor nodes is not critical. How-
ever, it is desirable for the anchors to be dispersed over the
search space to provide robust RToF signatures. Dispersion
algorithms for constrained robots have been studied in prior
work [17, 13, 15] and many potential approaches can be
employed. In SugarMap, the anchors deploy using a fiducial
dispersion algorithm [17] based on the nodes’ ability to
obtain RToF measurements from other nodes. The objective
of the dispersion algorithm is for nodes to spread away from
each other till they encounter obstacles or lose radio range
with other anchors.

Figure 3 shows a flowchart of the algorithm used to deploy
anchor nodes. The base station commands a sub-set of MAV
nodes (designated as anchors) to move in randomly chosen
directions. Every node periodically attempts to obtain radio
RToF measurements from other anchors and relay it to the
base station. If any anchor node is out of radio range and
does not respond, the node attempts to retrace its path
by turning 180�. Conversely, if all nodes are in range,
each RToF measurement (d

i

) is compared to a proximity
threshold (T

p

). If no other anchor is within the proximity
threshold, the node lands and deploys. Otherwise, the node
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Figure 3: Figure shows a flowchart of the con-
strained dispersion algorithm used to deploy anchor
nodes at initialization of SugarMap.

moves in a random direction and recursively repeats the
above sequence of operations.

In addition, a maximum cuto↵ time for anchor deployment
(InitCutoff) is defined. If an equilibrium is not reached
within the cuto↵ time, the nodes still land and deploy.

It must be noted that the explorer nodes use RToF mea-
surements from the anchor nodes as a signature and not
as a measure of distance. The uniqueness of the signature
is a feature of the position of the anchors and multi-path
radio propagation characteristics of the physical environ-
ment. The system relies on measurements from a relatively
large number of anchor nodes (at least greater than 4) to
improve signature uniqueness. The system does not assume
any particular anchor node topology, such as non-linear, as
would be the case for computing location coordinates from
deployed anchors.

3.2 Coverage Path Planner
The central idea of the SugarMap coverage algorithm is

to coordinate explorer node movements so as to cover the
environment with a certain measure of confidence.

In the application scenario, the explorer MAV nodes have
no a priori knowledge of the search space. However, due
to manual placement, the relative pose and position of the
explorer nodes is known. SugarMap approximates the world
with a grid with a cell size of D, where D is determined
by the e↵ective radius of the application specific sensor
deployed on the MAV node.

A MAV node is commanded to move along 4 basic direc-
tion relative to itself – N, S, W and E, and must be located
to within the D-size cell. For simplicity, we first describe the
algorithm assuming nodes can be localized to the D-size cell
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previous cells 

Xp, Xp'

If not-covered 
neighboring cell 

exists

1. Find neighboring cell not 
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Figure 4: The figure shows a flow chart of the
SugarMap coverage path planner algorithm. The
distributed algorithm runs on every node and builds
a spanning tree of covered nodes using a depth first
exploration approach.

with a certain probability. In section 3.3, we explain how
this is achieved by the SugarMap system in practice.

Each MAV node builds a local spanning tree of cells that
it discovers, while tracking the portion of the map covered
by other nodes through a global map. The global map
is obtained by aggregating the local maps from all nodes
in the swarm. The spanning tree is built using a depth-
first approach – 1) find a neighboring cell that hasn’t been
covered(by itself or by any node in the swarm); 2) create
a tree edge to the neighboring cell; 3) move to the cell
and mark it as covered in its local map; recursively repeat
steps 1,2,3 with this cell; 4) if all the neighbors are covered
or blocked (obstacles), the node backtracks along its local
spanning tree to the previously covered cell.

To account for the uncertainty in sensing and position of
MAV’s, the coverage of a cell is not designated by a binary
value but a real number between 0 and 1, representing the
probability that a cell is covered. The algorithm considers
a cell as not covered if the coverage probability of a cell
(P

cell

) is less than a desired coverage confidence threshold
(COVER TH ). The algorithm chooses the next cell from
neighboring non-visited cells randomly, where the probabil-
ity of picking a cell is inverse of its confidence of coverage.
When all neighboring cells are above the coverage confi-
dence threshold, the algorithm increments the probability
of picking the last covered cell biasing the node towards
backtracking on its traversed path.

Figure 4 shows a flowchart of the coverage path planner
algorithm. The algorithm is distributed and runs on every



node. The nodes are coordinated using the global map that
is aggregated from each node’s local coverage estimates.

3.3 Probabilistic Coverage Maps
The path planner requires each node to mark coverage in

a grid map of the search space. In addition, the planner re-
quires a global coverage map that is obtained by aggregating
the coverage maps of individual swarm nodes.

As the initial location of all nodes is known, the system
can potentially track the cells covered by nodes keeping track
of the commanded motion of the MAV nodes. However,
MAV nodes have low-quality inertial sensors and imperfect
actuators. This makes it impossible for MAV nodes to
accurately execute the commanded path. SugarMap uses
a particle filter based probabilistic approach that combines
approximate motion noise models of the explorer nodes with
radio round-trip time-of-flight (RToF) position signatures,
to create a common probabilistic coverage map for the
swarm.

3.3.1 Particle Filter (PF)

A particle filter (PF) [12] is a Bayesian estimation method
used to estimate a system’s state based on noisy sensor
information. In a particle filter, a probability distribution
p(x) is represented by a number of N weighted samples or
particles x[i], i = 1..N , with weights w[i] as:

p(x) =
X

i

w[i]�(x[i] � x) (1)

With a initial probability p(x0), which is represented as
equally distributed samples with equal weights, a recursive
update at time t

k

to estimate system state x
k

is performed
in 3 steps:

1. Prediction – Every particle (x[i]
k�1, w

[i]
k�1) of the a pos-

teriori distribution p(x
k�1|z0, . . . , zk�1), where z0, . . . , zk

are measurements about the system up to time t
k

, is
replaced according to a process model p(x

k

|x
k�1). The

process model incorporates knowledge of the evolution
of the system over time. In coverage estimation, we
use an empirically obtained actuation noise profile
from the MAV nodes’ motion sensors to construct
this model. Thus a new set of particles (x̃[i]

k

, w̃[i]) is
obtained representing the a priori distribution.

2. Correction – The weight w[i] of every sample of the
a priori distribution, is updated according to a mea-
surement model as:

w[i] = w̃[i] · p(z
k

|x̃[i]
k

),
X

i

w[i] = 1 (2)

With the weight update, the prior particles now ap-
proximate the a posteriori probability. In coverage
estimation, we use the radio RToF signatures obtained
by the explorer nodes from the anchor nodes to com-
pute the term p(z

k

|x̃[i]
k

), which relates the coverage
state of the system to its observation.

3. Resampling – A new set of particles is drawn with
replacement from the prior set with probability of a
particle being drawn given by its weight. The samples
are weighted equally. The resampling step prunes the
less likely state estimates.

3.3.2 Applying PF To Coverage Estimation

In this section, we describe the application of a particle
filter to estimate coverage in SugarMap. We first consider
a single MAV node. Each MAV node is represented by N
particles. Each particle holds an array (LocalMap) repre-
senting the particle’s coverage on a local grid map of the
search space. Cells not covered are set to 0 in the array,
while covered cells are set to 1. The state of a particle x[i]

k

at time t
k

is given by this LocalMap[i]
k

.

Prediction: In the prediction step, the LocalMap[i]
k

is
updated according to the commanded motion of the MAV
node and a actuation noise model. The MAV node executes
a motion command – turn and velocity, using feedback from
its inertial sensor (gyro) and optical flow velocity sensor.
Therefore, if c

x

and c
y

are coordinates of the last cell covered
by a particle, v

k

is the velocity, �
k

is the change in pose, the
LocalMap[i]

k

is calculated as:

✓

c
x

c
y

◆[i]

k

=

✓

c
x

c
y

◆[i]

k�1

+ (v[i]
k

· �t)
 

sin(�[i]
k

)

cos(�[i]
k

)

!

(3)

LocalMap[i]
k

h

c[i]
xk

i h

c[i]
yk

i

= 1 (4)

Noise is added to the velocity and turn commands as per
the empirically obtained actuation noise models p(n

v

) and
p(n

�

). This is based on the actuation mechanism of the

MAV platform used. Thus, v[i]
k

and �[i]
k

are obtained as:

v[i]
k

= v
k

+ n[i]
v

, n[i]
v

is drawn from p(n
v

) (5)

�[i]
k

= �
k

+ n[i]
�

, n[i]
�

is drawn from p(n
�

) (6)

Correction: In the correction step, the weight of the
particles is updated using the radio RToF area signatures
obtained by the MAV node. A detailed explanation of the
radio RToF area signatures is given in Section 4.4.

The central idea of the correction step is to compare the
radio RToF signature sk obtained at time t

k

to a set of
known area signatures S :

�

s1, . . . , sj
 

. The set S is empty

at initialization. A list of location estimates (c[i]
x

, c[i]
y

) from
every particle is stored for every signature in set S.

A distance function f(sk, sj) gives the distance between
the currently obtained signature and previously known sig-
natures in set S. If distance given by f(sk, si) is more than
a threshold (SIG TH) for all signatures in set S i.e. the
obtained signature is of an unexplored area, signature sk

is added to S. Conversely, if the distance is less than the
threshold, the signatures are considered similar and the area
is designated as a previously covered area.

On identifying a matching previously visited signature
sj , the corresponding distance in location estimates for the
current signature sk and known signature sj for each particle
is computed as:

d[i]
s

j
,s

k = EuclideanDist
n

(c
x

, c
y

)[i]
s

j , (cx, cy)
[i]

s

k

o

(7)

Consequently, the weights of the particles are updated as
a function of the distance between the two estimates as:
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s
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N

P

i
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s

j
,s
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(8)

Resampling: In the resampling step, a new set of par-
ticles is drawn with replacement using the weights as the
probability of drawing. The weights are reset to their ini-
tialization values.

Merging: Finally, the local maps of each particle are
combined to compute a node coverage map at time t

k

as:

NodeMapj
k

=

N

P

i=1
LocalMap[i]

k

N
(9)

Similarly, the central base station combines the NodeMaps
from all MAV nodes to arrive at the GlobalMap for the
swarm:

GlobalMap
k

= 1�
n

Y

j=1

⇣

1�NodeMapj
k

⌘

(10)

where n is the number of nodes in the swarm.

4. EVALUATION
In this section we evaluate the capability of SugarMap to

command a swarm of MAV’s collaboratively cover a search
space in realistic large-scale simulations and in a real MAV
testbed. We characterize the performance of our system
with respect to the percentage of coverage achieved by a
fixed number of nodes as a function of time. Percentage
coverage as a function of time is an essential metric in
applications such as disaster response, where the speed of
covering an area and identifying survivors is critical to the
success of the operation. Even random walk algorithms
eventually attain complete coverage of an area, however we
seek to minimize the time for coverage through coordinated
node movement approaching that of an algorithm with ac-
curate location measurements.

Due to the limited suitable MAV coverage algorithms
available in literature, we compare SugarMap to currently
available online coverage algorithms for MAV nodes namely
random walk coverage [8], and Online Multi-robot Spanning
Tree Coverage (OMSTC) [9] that assumes accurate node
location is available.

4.1 Simulation Setup
We have developed a simulation environment for the Sen-

sorFly MAV indoor sensor swarm to evaluate our coverage
algorithm at scale in a realistic scenario. The simulator
incorporates a realistic physical arena, MAV node virtual
sensors and sensor noise models, MAV node mobility mod-
els, wireless communication and radio path loss model, and
application specific sensing models. These models are gen-
erated through data collected from MAV nodes in indoor
environments. In addition, the simulator allows users to
program the logic for actuation of MAV’s and implement
coverage algorithms such as SugarMap or Random Walk.
The simulator, now ported to Python, extends previous
work [20] to include additional application scenarios and

adds the ability to interface with actual hardware and run
hardware-in-loop simulations.

To simulate SugarMap we configure the di↵erent aspects
of the simulator as follows:

• Arena – We assume an indoor search and rescue sce-
nario, where nodes are required to move and cover a
continuous indoor space such as a room. The simula-
tion arena constitutes the search space and we evaluate
SugarMap in a 20m⇥20m square arena, but with mul-
tiple configurations of boundary walls and obstacles.

• Node Sensors – We model the MAV node based on
the SensorFly [19] MAV platform used for our real
implementation. The node is equipped with 3 vir-
tual sensors: an inertial gyroscope sensor, an optical
flow velocity sensor, an ultrasonic altitude measure-
ment sensor, and a radio with round-trip time-of-flight
measurement capability. The application sensor has a
sensing footprint equal to a square cell of 0.5m⇥0.5m.
This corresponds to the cell size of the grid map used
by SugarMap to compute coverage.

• Node Mobility – Like the SensorFly nodes, the sim-
ulated nodes can be commanded to turn by a desired
angle and move forward for a designated time. The
nodes execute the commands with feedback from their
virtual sensors, incorporating the errors from their
associated noise models. The nodes operate at speeds
of 0.25m/s to 0.45m/s.

• Anchor Nodes – We model the deployment of anchor
nodes as described in Section 3.1. The simulation clock
starts after initialization of the system and anchor
node deployment.

• Radio Model – Shadowing with a path loss expo-
nent of 3 is used as the radio link model, which is
an estimate for an indoor single-floor scenario [21].
The movement algorithm ensures that nodes maintain
connectivity.

• Simulation Time-steps – The simulation time-step
is configurable and determines the resolution of node
movement that can be recorded by the simulator. The
nodes execute their movement based on their velocity,
specified in meters per simulation-seconds. Therefore,
the minimum distance that can be achieved by the
node in one command is determined by the duration
of the simulation time-step. For the purpose of the
evaluation, we selected a time step of 1sec that enables
nodes to cover a distance of 0.25m to 0.45m in a
single simulation tick. In terms, of sensing footprint
(0.5m⇥ 0.5m), a node can travel from one sensing cell
to another in a single tick.

The coverage algorithm or the base-station brain of the
swarm does not receive the real physical locations of the
nodes but only their presumed locations based on movement
commands. The nodes are also not aware of the map and
are assumed to be at the center of an infinite space at
initialization. However, nodes are aware of their relative
initial positions with respect to each other in accordance
with the manual deployment at the entrance to the search
space.
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Figure 5: The figure shows the percentage coverage
of two nodes as a function of time for the SugarMap
algorithm, Random-Walk, and a spanning tree cov-
erage algorithm – OMSTC that assumes locations of
nodes are known. The error bars show the standard
deviation over 10 runs.

4.2 Comparing Coverage
We evaluate the performance of SugarMap by comparing

the percentage coverage achieved as a function of time to
state-of-the-art existing online coverage approaches applica-
ble to MAV swarms.

We implement two approaches – random walk and online
multi-robot spanning tree coverage (OMSTC) (assumes lo-
cations of nodes is known with high accuracy and precision).
Random walk [8] is the most popular approach used by
resource-constrained nodes when no location information
or prior knowledge of the environment is available. This
provides us a baseline for comparison. On the other hand,
OMSTC [9] is a guaranteed multi-node coverage algorithm
that assumes that nodes can locate themselves in the space.
Although, perfect location is unattainable, this presents us
with an ideal system for comparison.

Figure 5 shows the percentage coverage as a function of
time for SugarMap, Random-Walk (baseline) and OMSTC
(ideal). The simulation uses 4 explorer nodes for all algo-
rithms and runs for 3000 simulation seconds. SugarMap
performs better than random walk achieving a faster rate of
coverage in the simulation scenarios.

4.3 Analyzing SugarMap
In addition to comparing coverage with other approaches,

we analyze the trade-o↵s involved in selecting parameters
for a SugarMap deployment.

4.3.1 Impact of Number of Anchors

The SugarMap system uses anchor nodes to obtain a radio
signature for various covered areas. Individual radio mea-
surements (round-trip time-of-flight) are subject to variabil-
ity as shown in Figure 14. However, a signature combining
measurements from multiple anchors is more stable.

Figure 6 shows the coverage achieved as a function of
time while the increasing number of anchors deployed by the
system. The number of explorers is set at 4 and the number
of particles used for each SugarMap node is 10. A stable area
signature enables SugarMap to determine visited locations
better and compute better trajectories for the swarm nodes.
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Figure 6: The figure shows the evolution of coverage
for a varying number of deployed anchor nodes with
4 explorer nodes. The error bars show the standard
deviation over 10 runs.
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Figure 7: The figure shows the evolution of coverage
for varying number of explorer nodes with 6 anchor
nodes.The error bars show the standard deviation
over 10 runs.

Therefore, coverage improves with an increase in the number
of anchors. However, depending on the variance in individ-
ual measurements, the benefit of increasing the number of
anchors diminishes after a point. The number of anchors
also depends on the size of the area.

With fewer anchor nodes (2 nodes in Figure 6), the radio
location signatures are not su�ciently unique and the ac-
curacy of coverage estimation su↵ers. Without estimation
of coverage, the path planning algorithm cannot e�ciently
compute motion and coverage achieved shows high variance
similar to a random walk algorithm.

4.3.2 Impact of Number of Explorers

Figure 7 shows the coverage achieved as a function of time
for a varying number of explorer nodes. 6 anchor nodes are
used for the simulation. As nodes explore the environment in
parallel, the larger the number of explorer nodes the greater
is the coverage. Moreover, unlike heuristic algorithms, Sug-
arMap coordinates node movements to reduce the overlap in
area coverage. Thus, increasing the number of nodes shows
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Figure 8: The figure shows the percentage cover-
age for fixed size 10-node deployment with varying
number of anchors and explorers.

an almost linear increase in speed of coverage. However, due
to noise in sensor and actuation, some overlap in individual
node coverage exists in SugarMap. Therefore, the benefit of
increasing explorer nodes diminishes after a point.

4.3.3 Anchor-Explorer Trade-off

Figure 8 shows the rate of coverage for varying ratio of
anchor nodes to explorer nodes for a fixed-size (10-node)
deployment in a 20m ⇥ 20m arena. The plot shows the
trade-o↵ between anchor nodes and explorer nodes. It is
evident that for a given size deployment, the coverage rate
is determined largely by the number of explorer nodes. The
larger the number of explorer nodes the faster the coverage
attained. However, the incremental performance gain of
introducing additional explorer nodes diminishes when the
number of anchors is reduced below 4. With a small num-
ber of anchor nodes, the radio location signatures are not
su�ciently unique and the accuracy of SugarMap coverage
estimation decreases with time. Consequently, the nodes
cannot coordinate e�ciently and performance drops.

4.3.4 Impact of Number of Particles

SugarMap uses a particle filter to model the uncertainty
in actuation of MAV nodes. Each node is represented by
a number of particles, each of which holds an estimate of
the node’s coverage map. Figure 9 shows the percentage
coverage achieved by a deployment of 2 explorer nodes and
6 anchor nodes in 400 ticks of the simulation, while the
number of particles used is varied. The greater the number
of particles, the better is the estimation of the area cov-
ered by SensorFly’s. This translates to a lower overlap in
sensed area and a higher speed of coverage. As a trade-o↵,
the larger number of particles require higher memory and
computation at the base station. In addition, the choice of
particles depends on the sensor and actuation noise of the
MAV node. Larger sensor noise requires higher number of
particles.

4.3.5 Impact of Search Space Geometry

We evaluate the performance of SugarMap in multiple
space configurations. The simulation environment enables
the programmer to specify walls (red cells), open navigable
area (blue cells) and obstacles (green cells) by providing a
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Figure 9: The figure shows the coverage achieved
in 400 simulation ticks as a function of the number
of particles used in the SugarMap algorithm. The
number of explorer nodes is fixed at 2 and number
of anchors nodes is 6. The error bars show the
standard deviation over 10 runs.
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Figure 11: Figure shows the coverage as a function
of time for the SugarMap algorithm in 3 di↵erent
geometries (Figure 10) of the simulation arena. The
error bars show the standard deviation over 10 runs.

bitmap image. Figure 10 shows 3 di↵erent geometries used
to evaluate SugarMap. Geometry (a) is an almost circular
open space with a few obstacles. Geometry (b) is a U-shaped
region with a narrow leg similar to a room with a connecting
hallway. While, geometry (c) models a narrow corridor.

Figure 11 shows the coverage as a function of time for the
3 di↵erent arena geometries. The curves for the 3 spaces
follow each other closely showing that SugarMap is robust
to variations in space configuration.

4.3.6 Algorithm Parameters

The SugarMap algorithm has two principal parameters –
(1) a threshold to match radio signatures (SIG TH), for
determining if an observed signature is similar to a previ-
ously observed one; and (2) a threshold to select the next
location for movement (COV ER TH), for determining the
confidence of coverage for a neighboring location as per the
global coverage map.
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Figure 10: The figure shows 3 geometries of the simulation arena with di↵erent obstacle configurations used
to evaluate the robustness of the SugarMap algorithm. The red cells are walls, the blue cells represent
navigable space, and the green cells designate obstacles.

The SIG TH is determined empirically based on the ra-
dio feature and metric used to compute the similarity of
signatures. The SugarMap system implementation uses a
vector of RToF (Round-trip Time-of-Flight) measurements
from a set of anchor nodes as the radio signature. Purohit
et. al. [19] provide a more detailed evaluation of RToF
measurements and their correlation with distance. We use
Euclidean distance as a metric to measure similarity between
N -dimensional RToF signatures, given by,

d
i,j

=

k
�!
si �

�!
sjk

# of visible common anchors

(11)

For the purpose of our evaluation, we selected a SIG TH
of 1.2, obtained by measuring the average RToF signature
distance for 20 signatures in a 2-meter radius circle, over 5
distinct locations in our lab.

The COV ER TH is defined as an exit condition for the
path planning algorithm. Since, the coverage map repre-
sents confidence probabilistically it does not achieve 100%
coverage confidence for a location in finite time. The pa-
rameter determines the coverage confidence that is desired
by the application for the path planner to avoid revisiting
a location. We chose 95% as the coverage threshold for our
evaluation signifying a high degree of certainty that the area
is covered.

4.3.7 Actuation Noise Model

The SugarMap algorithm uses particle filters to account
for the uncertainty in the movement actually executed by
MAV nodes on a given command. A model of the actuation
noise is required in the prediction step of the particle filter
as described in Section 3.3.2. The actuation uncertainty
depends on the sensors and control algorithm for the spe-
cific MAV platform. For the purposes of the evaluation,
we use the SensorFly platform to empirically determine an
approximate noise model. The SensorFly platform uses PID
control with feedback from an optical flow sensor (velocity)
and a gyro (turn) to execute the commanded motion. We
measured the standard deviation in turn executed by the
platform using a vision-based ground truth measurement
relative to the commanded turn value to derive a model.
For the evaluation, we used a normal distribution with a
standard deviation of 20% of the commanded turn value to
predict turn noise. Similarly, a normal distribution with a

Figure 12: The figure shows a SensorFly node used
to implement SugarMap on the prototype testbed.

standard deviation of 15% of the commanded velocity value
was used as the velocity noise model.

4.4 MAV Testbed
In addition to the simulation experiments, we evaluate

SugarMap in our MAV swarm testbed. We implement Sug-
arMap on the SensorFly [19] MAV platform.

The SensorFly platform is equipped with a 8-bit 16Mhz
AVR AtMega128rfa1 micro-controller, inertial motion sen-
sors – 3-axis accelerometer and 3-axis gyro, an ultrasonic
ranger for altitude estimation, an optical flow sensor for
velocity estimation, and a 802.15.4a compatible radio with
Round-trip time-of-flight (RToF) measurement capability.
The entire platform is under 30g in weight and has a flight
time of 6-8 minutes. The SensorFly nodes are capable of
receiving high-level movement commands such as “Turn X
degrees” and “Move forward X seconds”. The nodes execute
the movement in accordance with on-board PID control
algorithms utilizing angular and translational velocity feed-
back from the nodes’ gyro and optical-flow sensors. Fig-
ure 12 shows a SensorFly node with the battery and basic
set of sensors.

The testbed consists of a 5m⇥3m arena where the Sensor-
Fly nodes move. A grid is painted on the arena dividing it
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Figure 13: The figure shows the arena for the MAV
swarm testbed with deployed SensorFly nodes.
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Figure 14: Figure shows the normalized variance
in RToF measurements from a explorer node and
10 individual anchors (bars) over a 3 day period.
The variance of the signature (combined set of 10
individual measurements) is shown by the horizontal
line. The low variance of the combined vector makes
it suitable as an area signature.

into cells of 0.5m⇥0.5m. A camera is deployed on the ceiling
to capture the entire arena in its field of view. A workstation
running a color blob detection algorithm uses the feed from
the camera to compute the ground-truth location of all MAV
nodes on the grid. The cell size of the grid is chosen to
reflect the sensing radius of the MAV node. The blades of
the SensorFly nodes are a�xed with red-tape so as to be
easily detectable by the vision-based ground-truth tracking
system. Figure 13 shows the arena of the testbed with
deployed SensorFly anchors and explorers.

RToF Area Signature Stability

The explorer SensorFly nodes use a set of round-trip time-of-
flight (RToF) measurements from stationary anchor nodes as
a signature of area covered. The signature enables explorer
nodes to determine if a covered area is being revisited. This
information is used for by the coverage path planner for
coordination and by the probabilistic coverage estimation
algorithm for updating particle weights.

The round-trip time-of-flight method measures the elapsed
time between the host node sending a data signal to the
remote node, and receiving an acknowledgment from it.
Our implementation, based on the SensorFly platform, uses
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Figure 15: The figure shows the evolution of cov-
erage for the 7-node MAV swarm testbed experi-
ment (solid-line). The result is in agreement with
our simulation (dotted-line) using similar arena-size,
number of anchors, number of explorers, and the
actuation noise model.

physical layer timestamps and hardware-generated acknowl-
edgments to compute a RToF measurements [19, 18].

We perform an experiment to measure the repeatability
of a set of RToF measurements and hence validate its suit-
ability as a area signature. RToF measurements from 10
nearby anchors were collected at a mobile node location
over a 3 day period, in a lab environment. The lab is
subject to frequent environment changes due to movement
and activity of people. Figure 14 shows the variance in
RToF measurements from each anchor. We observe a large
variation in individual RToF measurements over the 3-day
period. However, despite these environmental variations,
we observe that the overall ten-dimension signature vector
of the RToF measurements remains consistent (red-line),
showing very low variance over the entire test period.

Testbed Results

In our testbed experiment, we use a swarm of 7 MAV nodes
running the SugarMap algorithm. 5 nodes are allowed to
disperse and deploy as anchors at initialization. 2 nodes
are used as explorers. The two explorer nodes start at
grid locations [1,1] and [2,1], respectively, and move as per
commands given by the base-station. The explorer nodes
obtain RToF readings from anchor nodes and relay it to the
base-station at every step. The actual coverage achieved
is computed for evaluation purposes using the ground-truth
vision-based tracking system of the testbed. The testbed
experiment runs for 3-minutes of node flying time which
enables us to execute multiple runs on a single charge.

Figure 15 shows the evolution of coverage attained by the
7-node swarm running SugarMap (solid-line). The swarm is
able to cover 85% of the arena in the 3-minute experiment
time. For comparison, we also plot a simulation result
(dotted-line) using a similar size arena, 5 anchor nodes, 2
explorer nodes, and the actuation noise model for SensorFly
nodes. The results from the simulation and real experiment
closely follow each other as time progresses, validating the
simulation setup and methodology.



5. DISCUSSION
Having presented the SugarMap coverage algorithm, we

note that several aspects warrant further discussion and
could result in possible extensions to this work.

5.1 Multi-hop Communication
The explorer nodes obtain RToF measurements from the

deployed anchor nodes as a location signature. This requires
explorer nodes to be in single-hop communication range with
a large enough sub-set of anchor nodes to obtain a unique
radio location signatures. In this paper, we limit our ap-
plication and evaluation to a single-space coverage scenario
where all nodes are within radio range. The explorer nodes
stop exploring if they lose radio range with deployed anchor
nodes. Thus explorer nodes employ a single-hop communi-
cation scheme to relay data back to the base station. We
continue to explore large-space or multi-room scenarios in
our ongoing work, where the network can extend its reach
by progressively deploying exploring nodes as new anchors
and requires support for multi-hop communication schemes.

5.2 Distributed Operation
The current SugarMap implementation has a central base

station that aggregates the coverage estimates of individual
nodes to arrive at a global coverage map. The global cover-
age map is utilized by the explorer nodes to decide their
next movement. For a single-space scenario with single-
hop communication range this simple mechanism reduces
communication and computation on the nodes. For large-
space and multi-room scenarios, it is desirable for nodes
to broadcast their local coverage maps and for each node
to itself aggregate neighboring nodes’ maps to determine
global coverage. Such distributed operation would remove
the single point of failure at the base station and also provide
latency advantages as nodes would not have to communi-
cate with the base station over multiple hops. However, a
distributed scheme would require consideration for lack of
consensus on coverage maps due to lossy wireless links. We
seek to explore this in our future work.

6. RELATED WORK
The coverage problem has been addressed in the past by

research in multi-robot coverage algorithms that focus on
the space swept by the robot’s sensor. Choset [3] provides a
survey of early coverage algorithms and classifies them into
o↵-line, in which a map of the area is known beforehand, and
on-line algorithms, in which the area is unknown. The MAV
swarm applications demand an on-line multi-node coverage
approach. In this section, we discuss some of the existing
work in online coverage that is applicable to MAV swarms.

Gage [8] analyzes randomized robot coverage for robots
without costly localization sensors or valuable computa-
tional resources for calculating their position. A random
search does not guarantee coverage but may be the only
approach with very low capability sensor nodes in absence
of motion sensing.

Wagner et al. [24] propose a pheromone based stigmer-
gic algorithm, where nodes coordinate by leaving markers
in the environment. The algorithm is heuristic in nature
and requires nodes to be capable of leaving and detecting
physical markers in the environment. This is not practical
for lightweight MAV nodes.

A series of simultaneous localization and mapping (SLAM)
approaches [22] exist for multi-robot systems that use laser
range-finders or computer vision algorithms (to extract vi-
sual features) in conjunction with noisy odometry to con-
struct maps of the area and obtain coverage. This approach
is very promising for ground-based robots or larger aerial
nodes. Currently available laser rangers tend to be too bulky
for deployment on MAV’s, while vision-based approaches
require better computation and communication capabilities.

Howard et al. [1] considers the problem of deploying a
mobile sensor network in an unknown environment. The
approach assumes that each node is equipped with a sensor
that allows it to determine the range and bearing of both
nearby nodes and obstacles, such as scanning laser range-
finders or omni-cameras. Using these, the system constructs
fields such that each node is repelled by both obstacles and
by other nodes, thereby forcing the network to spread itself
throughout the environment. The algorithm has the advan-
tage of requiring no communication between nodes but does
not guarantee completeness. In Spreading-Out [14], Batalin
et al. present an algorithm for robot teams without access to
maps or a Global Positioning System (location). The robots
are assumed to be equipped with planar laser range-finders,
color camera and vision beacons, and robots select a direc-
tion away from all their immediate sensed neighbors and
move in that direction. The approach is heuristic with the
premise that robots must ‘spread out’ over the environment
in order to achieve good coverage.

Hazon et al. [9] present a guaranteed robust multi-robot
coverage algorithm based on spanning tree coverage paths.
Each robot works within an assigned portion of the work
area, constructing a local spanning-tree covering this por-
tion, as it moves. It coordinates movement with other
robots to minimize overlap in coverage. However, the al-
gorithm assumes the robots have access to relative location
of all nodes in the area. SugarMap employs the concept
of spanning trees to guarantee completeness of coverage
but further extends it to remove the requirement for node
location. Moreover, SugarMap introduces probabilities into
the coverage map to account for and overcome the sensor
and actuation uncertainty of MAV nodes.

Related work in robotics and sensor networks [4, 10, 23]
uses particle filters for monitoring robot or human position
in indoor environments. Their primary focus is to localize
nodes using measurement from motion sensors and observed
environmental landmarks. Our approach seeks to guarantee
coverage of an unknown space by a swarm of nodes based
on the coordinated motion commands, using particle filters
to account for the uncertainty in MAV actuation.

7. CONCLUSION
This paper presents SugarMap, a location-less coverage

system that allows a swarm to collaboratively and e�ciently
attain sensing coverage of a target area with an MAV swarm.
SugarMap does not require sophisticated or bulky sensors,
advanced on-device processing abilities, or a pre-existing
location infrastructure as do many state-of-the-art prior ap-
proaches. We provide a comprehensive evaluation of the
SugarMap system through large-scale simulations and a real
implementation on the SensorFly [19] platform. Our exper-
imental evaluations show that SugarMap performs signifi-
cantly better than existing coverage approaches for resource-
limited (in terms of sensors, energy, location, processing



power) mobile sensing nodes such as random-walk especially
in larger locations with fewer nodes. This algorithm will en-
able swarms of the new class of realistic resource constrained
micro-aerial vehicles in new applications.
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