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ABSTRACT

We propose a novel approach for joint denoising and interpolation of noisy Bayer-patterned data acquired from
a digital imaging sensor (e.g., CMOS, CCD). The aim is to obtain a full-resolution RGB noiseless image. The
proposed technique is speciÞcally targeted to Þlter signal-dependant, e.g. Poissonian, or heteroscedastic noise,
and effectively exploits the correlation between the different color channels. The joint technique for denoising
and interpolation is based on the concept of local polynomial approximation (LPA) and intersection of conÞdence
intervals (ICI). These directional Þlters utilize simultaneously the green, red, and blue color channels. This is
achieved by a linear combination of complementary-supported smoothing and derivative kernels designed for the
Bayer data grid. With these Þlters, the denoised and the interpolated estimates are obtained by convolutions over
the Bayer data. The ICI rule is used for data-adaptive selection of the length of the designed cross-color directional
Þlter. Fusing estimates from multiple directions provides the Þnal anisotropic denoised and interpolated values.
The full-size RGB image is obtained by placing these values into the corresponding positions in the image grid.
The efficiency of the proposed approach is demonstrated by experimental results with simulated and real camera
data.
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1. INTRODUCTION

In digital imaging systems, the image formation is a complex process. The light passes through the optical system
of the camera and is focused on the digital sensor (e.g., a CCD or CMOS sensor). The sensor is composed of
photon-collection pixels covered with a color Þlter array (CFA). Each pixel works as a photon-counter to measure
the amount of light coming to it. The color Þlter array is used to sample different spectral components, thus
each pixel measures the amount of light at a particular spectral range. For example, the Bayer CFA samples the
coming light into red, green, and blue components1 according to a checkerboard rectangular sampling grid. It is
the most widespread CFA nowadays and therefore in this paper we focus mainly on it. The sensor produces a
digital value for each pixel which corresponds to the intensity of the light at that position. This digital output
of the sensor is called �raw data�. The raw data from the sensor is always corrupted by random noise, which is
predominantly signal-dependent, following the Poissonian distribution2,3,4,5.

The problem is to restore the true full-color and full-resolution image from the noisy subsampled data. The
conventional approach used in image reconstruction chains for raw sensor data applies successively denoising
and demosaicing steps. Usually, the denoising step comes Þrst. This choice was supported by experimental
analysis6 and motivated by the fact that knowledge about the noise model is of great importance in denoising
and this knowledge is more accurate and precise at the raw-data level. Demosaicing algorithms are then used
to reconstruct missing red, green, and blue values to produce an RGB image. It is essentially an interpolation
problem, thus demosaicing is also known as color Þlter array interpolation (CFAI). Most CFAI techniques are
designed for noiseless data7,8,9.

The latest works10,11,12,13, have shown that performing the demosaicing and interpolation jointly is more
efficient than treating them as independent procedures.

In particular, noting that image interpolation and image denoising are both estimation problems, the pa-
pers10,11 propose a uniÞed approach to perform demosaicing and denoising simultaneously. The multi-color



demosaicing/denoising problem is simpliÞed as a single-color denoising problem and a total least-squares algo-
rithm is designed to solve this problem.

In12,13, we proposed to perform denoising and demosaicing jointly by Þltering the initial directional inter-
polated estimates of noisy color intensities. These estimates are Þrst decorrelated by a color transformation
operator and then denoised by directional anisotropic adaptive Þlters. This approach is found to be efficient in
attenuating both noise and interpolation errors. The exploited denoising technique is based on the local poly-
nomial approximation (LPA) where the adaptivity to data is provided by multiple hypothesis-testing exploiting
the intersection of conÞdence intervals (ICI) rule, which is applied for the adaptive selection of varying scales
(window sizes) of the LPA14.

The technique proposed in the present paper is essentially different from our previous contributions12,13, as
here we do not require some initial directional estimates of the decorrelated color channels. Instead, we design
directional varying-scale joint denoising/interpolation Þltering kernels, which are applied directly on the Bayer
data. These kernels work simultaneously on the different color channels, thus they automatically and effectively
exploit the high correlation between the channels. We call these kernels LPA cross-color Þlters. SpeciÞcally,
the LPA cross-color Þlters are a linear combination of LPA smoothing kernels and LPA derivative kernels with
complementary supports. For example, noise-free (denoised) estimates of the green at green positions (i.e., on
the green subdomain of the pattern) are obtained with cross-color kernels which combine a smoothing kernel for
the green, supported on the green subdomain, and a derivative estimation kernel for the red/blue, supported
on the red/blue subdomain. Analogously, noise-free (interpolated) estimates of the green at red/blue positions
(i.e., where the green is missing) are also obtained with cross-color kernels which combine a smoothing kernel
for the green, supported on the green subdomain, and a derivative estimation kernel for the red/blue, supported
on the red/blue subdomain. However, the resulting cross-color kernels for these two cases are different, because
the subdomains are displaced with respect to the estimation point. The estimates are obtained by convolutions
of the cross-color kernels over the Bayer data. The ICI rule is used for data-adaptive selection of the length of
the designed cross-color directional kernel. Fusing estimates obtained from multiple directions provides us with
higher-quality estimates that correspond to denoised and interpolated values. Finally, the full-size RGB image
is obtained by placing the estimated values into the corresponding positions in the image grid.

We remark that contrary to conventional Þltering techniques, which are designed for stationary Gaussian
noise, our technique is speciÞcally designed for treating signal-dependent noise such as the Poissonian one,
characteristic of the raw data from CCD and CMOS digital image sensors.

This new approach based on cross-color Þlters leads to reduced computational complexity and memory load.
We show by experiments that the proposed joint denoising and demosaicing technique performs, at a lower
computational cost, better or comparable than combination of successive state-of-the-art techniques targeted
denoising and demosaicing, and achieves comparable performance to the best joint denoising and demosaicing
techniques known to the authors. We support the experiments with real data simulations taken from a camera
phone equipped with CMOS sensor, showing the feasibility of the proposed technique for commercial applications.

2. IMAGE FORMATION MODEL

2.1. Bayer Mask Sampling

The CFA is a crucial element in design of single-sensor digital cameras. Different characteristics in design of CFA
affect both performance and computational efficiency of the demosaicing solution15,16. The Bayer CFA1 (Fig.1a)
samples red (R), green (G), and blue (B) colors arranged in a checkerboard pattern. Study on a variety of R, G,
and B sampling patterns may be found in15. Alternative approaches include the complementary mosaic pattern,
which contains cyan, yellow, magenta, and green photosites17, and the recently proposed CFA with transparent
elements18, which is supposed to improve the signal-to-noise ratio (SNR) of the acquired data.

However, the Bayer CFA is still the most widely used and therefore our technique is developed for this



Figure 1. Bayer color Þlter array.

particular CFA. The general Bayer sampling operator B is deÞned as

B{yRGB}(x) =


G(x), if x ∈ XG1

G(x), if x ∈ XG2

R(x), if x ∈ XR
B(x), if x ∈ XB

, x ∈ X, (1)

where yRGB = (R,G,B) is a full-color RGB image, R (red), G (green), and B (blue) are the color channels,

XG1
= {(x1, x2) : x1 = 1, 3, . . . , 2N − 1, x2 = 1, 3, . . . , 2M − 1}

XG2
= {(x1, x2) : x1 = 2, 4, . . . , 2N, x2 = 2, 4, . . . , 2M}

XR = {(x1, x2) : x1 = 1, 3, . . . , 2N − 1, x2 = 2, 4, . . . , 2M}
XB = {(x1, x2) : x1 = 2, 4, . . . , 2N, x2 = 1, 3, . . . , 2M − 1}

are the spatial subdomains of the available R, G, and B samples, and

X = XG1 ∪XG2 ∪XR ∪XB = {x = (x1, x2) : x1 = 1, . . . , 2N, x2 = 1, . . . , 2M} ⊂ N2

is the 2N × 2M domain of the image. Note that the green channel is sampled on two subdomains G1 and G2.

Demosaicing aims at inverting B, in order to reconstruct R (x) , G(x), and B(x) intensities at every x ∈ X
from the mosaic B{yRGB}.

2.2. Additive Noise Models

Any image recorded by a digital camera sensor is noisy. We consider the generic heteroscedastic additive noise
model

z(x) = B{yRGB}(x) + σ(x)η(x), x ∈ X, (2)

where z is the recorded noisy signal, B{yRGB} is the noise-free Bayer data, σ : X → R+ is a deterministic
function, η is an independent zero-mean random noise with variance equal to one at every point x ∈ X. Thus,
σ(x) is the standard deviation of z(x) at x. Our problem is to reconstruct the full-resolution RGB image
yRGB from the noisy subsampled data z.

For instance, as a trivial example, if σ(x) = const and η(x) ∼ N (0, 1), ∀x ∈ X, then (2) is the conventional
additive white Gaussian noise model.

However, in practice, σ (x) is not necessarily constant with respect to the spatial variable x. The following
noise models are particular instances of (2), which are more relevant to the CFAI problem:

a) The signal-dependent Poissonian model of the form χz(x) ∼ P(χB{yRGB}(x)), χ > 0, is considered in this
work. This noise can be written explicitly in the additive form (2) where the standard deviation depends on the
image intensity as

σ(x) = std{z(x)} =
p
(B{yRGB}(x)) /χ. (3)



Figure 2. Directional linear Þlter designed for Bayer pattern: a) Linear combination of zero and Þrst orders subsampled
LPA Þlters (1− α)g(0)0,s,θ + αg

(0)
1,s,θ; b) Differentiation LPA Þlter g(1)1,s,θ; c) Linear Þlter as a combination of smoothing (a)

and differentiation (b) designed for Bayer pattern.

Here χ is a parameter that controls the noisiness of the observed data z. It is shown in2,3 that such a model can
be used for generic CCD/CMOS digital imaging sensors.

b) The nonstationary Gaussian noise with the signal-dependant standard deviation10,11

σ(x) = k0 + k1y(x), η(x) ∼ N (0, 1), (4)

where, k0 and k1 are the parameters that control the noisiness of the observed data z(x).

A more sophisticated model for CCD/CMOS sensor noise as a combination of Poissonian and Gaussian noises,
where effects of under- and over-exposure (e.g., saturation or clipping) are taken into account, is proposed in4.
The authors also propose a technique to determine the noise model parameters from any single observation.

3. DESIGN OF DIRECTIONAL LINEAR FILTERS AND INTERPOLATORS IN
POLYNOMIAL BASIS

For the Þltering, a bank of linear Þlters with directional non-symmetrical kernels gs,θ is obtained by LPA.

A rotated directional non-symmetric kernel gs,θ is used with the angle θ which deÞnes the directionality of
the Þlter, and s is a length of the kernel support (or a scale parameter of the kernel) in this direction. The
directionality of the kernel is deÞned by the non-symmetric window-function used in the LPA. The technical
details about generating the LPA kernels on the subsampled grid can be found in13, where notations are the
same as in this paper.

Different kernels gs,θ should be used for denoising of given subsampled data and for interpolation of missing
data. In practice, we use rotated line-wise non-symmetrical 1D kernels gs,θ(x) of width equal to one.

Further, for denoising we use eight directional estimates for θ ∈ �Θ = {kπ/4 : k = 0, . . . , 7}, while for
interpolation we use only four directions θ ∈ Θ̄ = {kπ/2 : k = 0, . . . , 3}.

3.1. Design of Interpolation Kernels

Let us denote the convolutional 1D kernel as g(k)m,s,θ, where we use m to indicate the LPA polynomial order, k as
an index of the estimated derivative, and θ ∈ Θ̄. Then, the designed kernel is given as a linear combination

ḡs,θ = (1− α)g(0)0,s,θ + αg(0)1,s,θ + βg(1)1,s,θ, (5)

where g(0)0,s,θ and g
(0)
1,s,θ are smoothing kernels of zero and Þrst order deÞned on Z2, respectively, and g

(1)
1,s,θ is

a differentiating kernel of Þrst order. The parameter α ∈ [0, 1] deÞnes proportions of the zero and Þrst order



a) b) c)
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Figure 3. Directional LPA kernels designed for Bayer pattern. Horizontal and vertical directions: a) Interpolation of
Green color at Red position; b) Denoising kernel for Green; c) Denoising kernel for Red; d) Denoising at diagonals is
performed differently for Green and Red/Blue.

smoothing estimates. The parameter β is a weight of the derivative estimates. The kernels g(0)0,s,θ, g
(0)
1,s,θ and g

(1)
1,s,θ

have different supports (non-zero elements) and work with different color components.

The LPA Þlter is realized by the convolution of z against the kernel:

(ḡs,θ ~ z) (x) =
X
v

z (x) ḡs,θ (x− v) . (6)

In Fig.2, we illustrate an interpolation kernel of green G at a position x ∈ XR. The kernels are colored to
the respective colors. The smoothing kernels g(0)0,s,θ(x− ·) and g(0)1,s,θ(x− ·) are supported on the grid of green XG
while the differentiating kernel g(1)1,s,θ(x− ·) is supported on the grid of red XR. Fig.2a shows a smoothing kernel
(1− α)g(0)0,s,θ + αg(0)1,s,θ for G at R positions, while Fig.2b shows a scaled differentiation kernel βg(1)1,s,θ at R (at R
positions). Their combination ḡs,θ as in (5) is shown in (Fig.2c). After the translation∗, all these kernels have
their origin at x ∈ XR.
Fig.3 provides further illustration of these kernels (particularly Fig.3a), where the origin is marked by "g(0)".

3.2. Design of Denoising Kernels

In order to perform the denoising of the Bayer pattern data, we design the kernel as a linear combination of
smoothing and differentiating kernels, similarly to (5),

�gs,θ = (1− α)g(0)0,s,θ + αg(0)1,s,θ + βg(1)1,s,θ, (7)

where θ ∈ �Θ. However, here the supports are different from those used for interpolation. For instance (see
Fig.3b), for denoising of green the smoothing kernels g(0)0,s,θ(x− ·) and g(0)1,s,θ(x− ·) are supported at XG and equal
to zero for the complementary grid X \XG. At the same time the differentiating kernel g(1)1,s,θ(x− ·) is supported

∗Translation is embedded in the convolution (6).



Figure 4. Denoising at R position with directional Þltering.

on XR for using the red channel for green data Þltering and equal to zero for the complementary grid X \XR.
After the translation, all these kernels have their origin at x ∈ XG.
Similarly, we consider denoising of red in Fig.3c. The smoothing kernels g(0)0,s,θ(x−·), g(0)1,s,θ(x−·) are supported

on XR while the differentiating kernel g
(1)
1,s,θ(x − ·) is supported on XG. After the translation, all these kernels

have their origin at x ∈ XR. Other color combinations can be illustrated in a similar way.
Diagonal directions require different consideration. In Fig.3d the denoising for the diagonal is illustrated for

green and red channels. There is no downsampling for the green G color channel at diagonal directions. As a
result we use only smoothing kernels

�gs,θ = (1− α)g(0)0,s,θ + αg(0)1,s,θ. (8)

For denoising the red R and blue B channels (Fig.3d), we use full combined kernels using the smoothing and
differentiating kernels (7).

4. DIRECTIONAL DENOISING AND INTERPOLATION WITH ADAPTIVE
WINDOW-SIZE

We exploit the ICI criterion14 in order to adaptively select the length of the cross-color kernels for both denoising
and interpolation. For a Þxed direction θ and at a Þxed pixel position x, the procedure is implemented as follows.
The denoising and interpolation estimates �ys,θ(x), ȳs,θ(x) are calculated for an ordered set S = {s1, s2, . . . , sJ}
of window sizes, s1 < s2 < · · · < sJ , as the convolution of the corresponding cross-color kernels against the noisy
Bayer data:

�yh,θ(x) = (�gs,θ ~ z)(x), ȳs,θ(x) = (ḡs,θ ~ z)(x).
The standard-deviations σ�ys,θ (x) and σȳs,θ (x) of the above estimates are computed, respectively, as

σ�ys,θ (x)=

r³
�g2s,θ ~ σ2

´
(x), σȳs,θ (x)=

r³
ḡ2s,θ ~ σ2

´
(x), (9)

where σ is the standard deviation of the noise in (2).

For the set of denoising estimates {�ys,θ(x)}s∈S , let us consider the sequence of conÞdence intervals
�Di =

£
�ys,θ (x)− Γσ�ys,θ(x), �ys,θ(x) + Γσ�ys,θ(x)

¤
, (10)

where i is the index of the scale s, i = 1, . . . , J, and Γ > 0 is a threshold parameter. The ICI rule is stated as
follows: consider the intersection of the conÞdence intervals Ii =

Ti
j=1

�Dj , and let i+ be the largest of the indices
i for which Ii is non-empty. Then, the adaptive scale s

+
θ is deÞned as s

+
θ = si+ and, as result, the adaptive-scale



Figure 5. Block diagram of the proposed restoration technique.

denoising estimate is �ys+θ ,θ (x). The parameter Γ is a key element of the algorithm as it controls the balance

between bias and variance in the adaptive estimates14. Too large value of this parameter leads to oversmoothing,
whereas too small value leaves the noise unÞltered. We treat Γ as a Þxed design parameter of the algorithm.

Analogously, for the interpolation estimates ȳs+θ ,θ (x) we can deÞne the conÞdence intervals

D̄i =
£
ȳs,θ (x)− Γσȳs,θ(x), ȳs,θ(x) + Γσȳs,θ(x)

¤
(11)

and the same criterion as above selects an adaptive-scale interpolation estimate ȳs+θ ,θ (x).

The standard deviations of these adaptive estimates are denoted as �σs+θ ,θ(x) and σ̄s+θ ,θ(x).

5. ANISOTROPIC DENOISING AND INTERPOLATION
For each point x ∈ X, the ICI rule yields the adaptive-scale estimates for each direction θ. The Þnal anisotropic
denoised and interpolated estimates are deÞned as a combination (aggregation) of the adaptive-scale estimates
obtained for the different directions. The union of the supports of �gs+θ ,θ can be treated as an approximation of
the best local vicinity of x in which the estimation model Þts the data (see Fig.4).

To simplify notation, in what follows we drop the subscript s+θ and denote the adaptive scale estimates and
their standard-deviations as �yθ (x), �σθ(x) (instead of �ys+θ ,θ (x), �σs+θ ,θ(x)) and ȳθ (x), σ̄θ(x) (instead of ȳs+θ ,θ (x),
σ̄s+θ ,θ

(x)).

5.1. Anisotropic Denoising of R, G, and B
The anisotropic denoised estimate �y (x) at the point x ∈ X is combined (aggregated) from the directional
estimates �yθ (x) obtained by ICI for θ ∈ �Θ. SpeciÞcally, we use the convex combination

�y (x) =
X
θ∈�Θ

�σ−2θ (x)�yθ(x)P
θ∈�Θ �σ

−2
θ (x)

, (12)

where �y (x) is an estimate �R(x) of red R(x) for x ∈ XR (see example in Fig.4), an estimate �B(x) of blue B(x)
for x ∈ XB , and estimate �G(x) of green G(x) for x ∈ XG1

∪XG2
.



Figure 6. Scales selected by ICI in the horizontal direction (θ=0) for: denoising of Bayer pattern (left); interpolation of
Bayer pattern (right).

5.2. Anisotropic Interpolation of G at R and B positions

By aggregating four adaptive directional interpolation estimates we obtain

ȳ (x) =
X
θ∈Θ̄

σ̄−2θ (x)ȳθ(x)P
θ∈Θ̄ σ̄

−2
θ (x)

, (13)

where ȳ (x) is an estimate �G(x) of G(x) at x ∈ XR, and is an estimate �G(x) of G(x) at x ∈ XB.
Finally, (12) and (13) yield the fully reconstructed green color channel �G(x), ∀x ∈ X.

5.3. Interpolation of R and B at B and R positions

It is clear that ȳ (x) for x ∈ XG1 is an estimate �R(x) of red color, and for x ∈ XG2 is an estimate �B(x) of blue
color. However, in practice, we found that using the green color estimate �G(x) for interpolation of R and B
at B and R positions, respectively, provides better results than using the red and blue estimates. As a result,
interpolation at the mentioned positions is done as follows:

ȳRB(x) = (�y ~ gRB) (x) + ( �G~ g0G) (x) , (14)



Figure 7. A part of the restored noisy Lighthouse image from the observation subsampled according to the Bayer CFA
corrupted by the Poissonian noise. The order is from left to right and from top to bottom: LPA-ICI preÞltering19 and
"Linear interpolation"8 CFAI performed as two successive steps, PSNR = (27.88, 29.36, 28.39); LPA-ICI preÞltering19

and DLMMSE9 CFAI performed as two successive steps, PSNR = (28.68, 29.52, 29.59); Integrated Denoising and CFAI
based on LPA-ICI13, PSNR = (29.39, 30.14, 30.15); Proposed denoising/interpolation, PSNR = (28.70, 29.90, 29.35).

where x ∈ X and the Þxed-size kernels gRB and g0G are

gRB =

 1/4 0 1/4
0 0 0
1/4 0 1/4

 ,
and

g0G =
1

4 + 4/
√
2

 −1/√2 −1 −1/√2
−1 4 + 4/

√
2 −1

−1/√2 −1 −1/√2

 .
The red color estimate is �R(x) = ȳRB(x) for x ∈ XB, and the estimate of blue color �B(x) at red positions

x ∈ XR is �B(x) = ȳRB(x).

5.4. Interpolation of R and B at G positions
Let us deÞne ȳR as ȳR(x) = �R(x) for x ∈ XR ∪XB and ȳR(x) = 0 for x ∈ XG1

∪XG2
. Similarly, for the blue

channel ȳB(x) = �B(x) for x ∈ XR ∪XB and ȳB(x) = 0 for x ∈ XG1 ∪XG2 . The interpolation of R/B colors at
G positions is performed in a way similar to (14):

�R(x) = (ȳR ~ gG) (x) + ( �G~ g0G) (x) , x ∈ XG1
∪XG2

,
�B(x) = (ȳB ~ gG) (x) + ( �G~ g0G) (x) , x ∈ XG1

∪XG2
,
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0 7

R e d

G re e n

B lu e

30.07
31.01
29.87

30.44
30.87
30.68

30.42
31.13
30.77

30.51
31.61
31.08

30.62
31.30
31.15

30.75
31.63
31.15

30.76
31.43
31.07

30.79
31.51
31.39

30.75
31.53
31.29

32.04
31.75
32.36

0 8

R ed

G re e n

B lu e

25.72
26.61
25.42

26.63
27.14
26.85

26.49
27.16
26.56

24.98
26.99
24.88

26.60
27.29
26.82

25.91
27.32
26.00

26.18
27.24
26.21

26.42
27.27
26.57

26.67
27.45
26.81

27.17
27.94
27.28

1 3

R ed

G re e n

B lu e

25.00
25.60
24.93

26.45
26.59
26.53

26.07
26.55
26.26

25.05
26.38
25.12

26.43
26.69
26.61

25.64
26.06
25.83

26.33
26.81
26.47

26.25
26.62
26.45

26.34
26.66
26.52

27.20
27.30
27.11

1 9

R ed

G re e n

B lu e

28.17
29.07
28.61

28.57
29.26
29.50

28.53
29.33
29.30

27.88
29.36
28.39

28.58
29.38
29.46

28.70
29.90
29.35

28.48
29.45
29.23

28.55
29.38
29.35

28.68
29.52
29.59

29.39
30.14
30.15

2 3

R ed

G re e n

B lu e

31.59
32.57
30.79

31.68
32.40
31.96

31.85
32.56
31.85

31.87
33.10
32.07

31.81
32.80
32.32

31.65
32.71
31.96

32.15
32.87
32.21

32.13
33.01
32.50

32.11
33.02
32.49

32.59
33.43
32.83

M ea n P SN R

R ed

G re e n

B lu e

28.11
28.96
27.92

28.75
29.25
29.10

28.67
29.34
28.94

28.05
29.48
28.30

28.80
29.49
29.27

28.52
29.53
28.85

28.77
29.55
29.03

28.82
29.55
29.25

28.91
29.63
29.33

29.68
30.11
29.95

Table 1. PSNR comparison of demosaicing methods for noisy images corrupted by Poissonian noise. With a pre-
processing noise reduction step19: HA7, SA20, AP21, Linear8, CCA+PP is a demosaicing approach proposed in23 with
postprocessing22, HD10, CCA is a demosaicing approach proposed in23, DLMMSE9. No pre-processing: Sp. Adapt.13,
the Cross-Color is proposed in this paper.

where

gG =

 0 1/4 0
1/4 0 1/4
0 1/4 0

 .
Finally, the all three R, G, and B color channels are reconstructed. The block diagram of the proposed

technique is shown in Fig.5.

6. RESULTS

We have used the standard test images from the Kodak database with the intensities in the range [0,255]. We
performed simulations for the noise models (3) and (4). For the presented experiments, we have used χ = 0.5447
for the Poissonian model (3), and k0 = 10, k1 = 0.1 for the model (4).

The use of ICI requires the knowledge of σ. However, it depends on the unknown signal. Therefore, we used
rough estimates of the standard deviation σ for (3) as �σ =

p
z/χ, and for (4) as �σ = |k0 + k1z|.

For the LPA-ICI Þltering, the threshold parameter Γ is different for denoising and interpolation: Γ = 1 in
(10) for denoising, and Γ = 0.9 in (11) for interpolation. The scales used for denoising are S = {2, 4, 8, 14} and
for interpolation are S = {3, 5, 9, 15}. The parameter α for LPA kernels is equal to 0.15. The parameter β = 1,
but in (7) β = 0.7 for diagonal directions.

The result of the ICI rule is illustrated in Fig.6 for the Lighthouse test image corrupted by Poissonian noise
as in (3). The two Þgures show the values of adaptive scales selected by the ICI in the horizontal direction
θ = 0. These are two full-size images with dimensions 2N × 2M . Fig.6(left) and Fig.6(right) correspond to the
adaptive scales selected by the ICI at this direction for the denoising and for the interpolation, respectively. It
is clearly visible that structures of details, edges, are accurately delineated. Note also that no inßuence of the
Bayer pattern can be seen in the adaptive scales. This is important because it corresponds to suppression of
potential color distortions.
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signal dependant noise (k0, k1) = (10, 0.1)

Joint demosaicing
and denoising10,11

R

G

B

28.02
28.39
28.08

22.68
23.91
23.00

22.98
23.31
23.26

25.20
26.48
26.53

29.82
31.34
30.27

proposed
R

G

B

28.26
29.01
28.69

23.91
24.76
24.14

23.68
23.79
23.99

26.51
27.54
27.40

29.14
30.37
29.55

Table 2. PSNR values for CFA interpolation of images corrupted by noise with σ = k0 + k1B{yRGB}10,11.

Fig.7 illustrates a part of the Lighthouse image restored by "Linear interpolation"8, DLMMSE9, integrated
denoising and CFAI based on LPA-ICI13, and the technique proposed in this work. The CFAI techniques
"Linear interpolation"8 and DLMMSE9 are designed for noiseless data. Therefore, we used denoising designed
particularly for Poissonian data19 as preÞltering. It is an iterative technique and 4 iterations were performed.

The PSNR values in Fig.7 were calculated for the full-size images after borders of width 15 pixels were elimi-
nated, in order to avoid inßuence of the boundary effect on the PSNR. Here, the integrated denoising and CFAI
based on LPA-ICI13 shows the best performance among the reviewed methods. However, the technique proposed
in this paper is signiÞcantly less computationally demanding than13 and shows the second best numerical results.

The PSNR values for different CFAI are summarized in Table 1 in the ascending order of Mean PSNR (for
5 images) values. The results for the technique proposed in this paper are highlighted with the italic type.
Denoising for Poissonian data19 was used as preÞltering for all of them with exception of the LPA-ICI based
joint demosaicing and denoising (the proposed "Cross-Color" and "Sp. Adapt." given in13). It is seen that the
proposed technique shows comparable results to more sophisticated CFAI with preÞltering19 with signiÞcantly
lower computational complexity. The technique proposed by us in13 performs best, but its computational costs
are also higher. Comparison for computational complexity is given later.

The simulations Fig.7(top left) and Fig.7(top right) aim at illustrating the performance of the conventional
approach of successive denoising and demosaicing. It is seen that results for combination of two very sophisticated
techniques (e.g., as in Fig.7(top right)) can be improved with signiÞcantly less computational costs as it is shown
for the proposed technique.

The comparison for the nonstationary Gaussian noise (4) is given in Table 2. The numerical results (PSNR)
are presented for each color R, G, and B channels for 5 test images from standard image testing set. The best
results are highlighted with bold face. The superiority of the proposed technique is seen for the most of images.

The evaluation of the computational complexity in terms of processing time shows the efficiency of the pro-
posed technique. In particular�, the average time for processing a 512×768 image by HA7 CFAI with preÞltering19
(computationally, preÞltering is the most expensive part here, as HA is one of the least expensive adaptive CFAI
algorithms) is 220 sec. approximately, for the proposed technique 70 sec., for13 150 sec., and for the joint demo-
saicing and denoising10,11 1870 sec. The efficiency of the proposed cross-color Þlters is demonstrated by these
times and from the good results shown in the tables and Þgures.

The restoration of real noisy Bayer raw data from the sensor of a cameraphone is illustrated in Fig.8. The
noise model and its parameters were identiÞed exactly in the same way how it is done in2,3. The images at the
Þrst row were interpolated by Hamilton-Adams CFAI7 and the second row by the proposed CFAI for noisy data.
The Hamilton-Adams CFAI7 is used only to illustrate the noisiness of the images. The histograms for all images
were equalized in order to improve visual perception in the printout. No other color correction steps, or pre- and
post-Þltering were applied in these experiments.

�The simulations were performed in the Matlab environment (ver. 7.1 SP3) on a PC equipped with a Pentium 4 HT
3.2GHz CPU and 2GB of RAM, and running the Windows XP SP2 operating system.



Figure 8. Fragments of images that illustrate the restoration of real noisy Bayer data measured directly from the sensor
of a camera phone: (Þrst row) Hamilton-Adams CFAI7; (second row) proposed technique.

The natural question is how the proposed technique performs if there is no noise, i.e. σ(x) = 0, ∀x ∈ X. If
σ = 0 then the ICI selects the smallest scales, which is an isotropic analogue of gradient-based (e.g., as in7,8)
CFAI.

7. CONCLUSIONS

In this paper, we developed a novel spatially adaptive interpolation for noisy Bayer-patterned Poissonian data
and even more general types of heteroscedastic noises, i.e. noises whose variance is deÞned as an arbitrary
function deÞned on the image domain (image-dependent as well as image-independent). This technique is based
on the novel Þltering and interpolating kernels essentially exploiting the color correlation of signals. The ICI
algorithms is used for spatially adaptive selection of the window sizes for these kernels. The LPA kernels were
designed in such a way, that they simultaneously exploit two color channels for each direction. This approach
results in higher efficiency of data utilization and in better suppression of distortions at edges.
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