

�

�

“book” — 2009/6/16 — 16:53 — page 1 — #1
�

�

�

�

�

�

Data Management,
Statistical Analysis,
and Graphics

SAS
andR

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 3 — #3
�

�

�

�

�

�

Data Management,
Statistical Analysis,
and Graphics

Ken Kleinman

Nicholas J. Horton

SAS
andR

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 4 — #4
�

�

�

�

�

�

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2010 by Taylor and Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4200-7057-6 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Kleinman, Ken.
SAS and R : data management, statistical analysis, and graphics / Ken Kleinman and

Nicholas J. Horton.
p. cm.

Includes bibliographical references and index.
ISBN 978-1-4200-7057-6 (hard back : alk. paper)
1. SAS (Computer program language) 2. R (Computer program language) 3. SAS

(Computer file) I. Horton, Nicholas J. II. SAS Institute. III. Title.

QA76.73.S27K54 2010
005.3--dc22 2009020819

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

© 2010 by Taylor and Francis Group, LLC

http://www.copyright.com
http://www.copyright.com
http://www.taylorandfrancis.com
http://www.crcpress.com
http://www.copyright.com

�

�

“book” — 2009/6/16 — 16:53 — page v — #5
�

�

�

�

�

�

Contents

List of Figures xiii

List of Tables xv

Preface xvii

1 Data management 1
1.1 Input . 1

1.1.1 Native dataset . 1
1.1.2 Fixed format text files . 2
1.1.3 Reading more complex text files . 3
1.1.4 Comma separated value (CSV) files 4
1.1.5 Reading datasets in other formats 4
1.1.6 URL . 5
1.1.7 XML (extensible markup language) 6
1.1.8 Data entry . 7

1.2 Output . 7
1.2.1 Save a native dataset . 7
1.2.2 Creating files for use by other packages 8
1.2.3 Creating datasets in text format . 9
1.2.4 Displaying data . 9
1.2.5 Number of digits to display . 10
1.2.6 Creating HTML formatted output 10
1.2.7 Creating XML datasets and output 11

1.3 Structure and meta-data . 11
1.3.1 Access variables from a dataset . 11
1.3.2 Names of variables and their types 12
1.3.3 Values of variables in a dataset . 12
1.3.4 Rename variables in a dataset . 12
1.3.5 Add comment to a dataset or variable 13

1.4 Derived variables and data manipulation . 13
1.4.1 Create string variables from numeric variables 13
1.4.2 Create numeric variables from string variables 14
1.4.3 Extract characters from string variables 14
1.4.4 Length of string variables . 15
1.4.5 Concatenate string variables . 15
1.4.6 Find strings within string variables 15
1.4.7 Remove spaces around string variables 16
1.4.8 Upper to lower case . 16

v

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page vi — #6
�

�

�

�

�

�

vi CONTENTS

1.4.9 Create categorical variables from continuous variables 17
1.4.10 Recode a categorical variable . 17
1.4.11 Create a categorical variable using logic 18
1.4.12 Formatting values of variables . 18
1.4.13 Label variables . 19
1.4.14 Account for missing values . 19
1.4.15 Observation number . 21
1.4.16 Unique values . 22
1.4.17 Lagged variable . 22
1.4.18 SQL . 23
1.4.19 Perl interface . 23

1.5 Merging, combining, and subsetting datasets 23
1.5.1 Subsetting observations . 23
1.5.2 Random sample of a dataset . 24
1.5.3 Convert from wide to long (tall) format 25
1.5.4 Convert from long (tall) to wide format 26
1.5.5 Concatenate datasets . 26
1.5.6 Sort datasets . 27
1.5.7 Merge datasets . 27
1.5.8 Drop variables in a dataset . 29

1.6 Date and time variables . 30
1.6.1 Create date variable . 30
1.6.2 Extract weekday . 30
1.6.3 Extract month . 31
1.6.4 Extract year . 31
1.6.5 Extract quarter . 31
1.6.6 Create time variable . 31

1.7 Interactions with the operating system . 32
1.7.1 Timing commands . 32
1.7.2 Execute command in operating system 32
1.7.3 Find working directory . 33
1.7.4 Change working directory . 33
1.7.5 List and access files . 34

1.8 Mathematical functions . 34
1.8.1 Basic functions . 34
1.8.2 Trigonometric functions . 35
1.8.3 Special functions . 35
1.8.4 Integer functions . 36
1.8.5 Comparisons of floating point variables 36
1.8.6 Derivative . 37
1.8.7 Optimization problems . 37

1.9 Matrix operations . 38
1.9.1 Create matrix . 38
1.9.2 Transpose matrix . 38
1.9.3 Invert matrix . 39
1.9.4 Create submatrix . 39
1.9.5 Create a diagonal matrix . 39
1.9.6 Create vector of diagonal elements 40
1.9.7 Create vector from a matrix . 40
1.9.8 Calculate determinant . 40
1.9.9 Find eigenvalues and eigenvectors . 40

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page vii — #7
�

�

�

�

�

�

CONTENTS vii

1.9.10 Calculate singular value decomposition 41
1.10 Probability distributions and random number generation 41

1.10.1 Probability density function . 41
1.10.2 Quantiles of a probability density function 42
1.10.3 Uniform random variables . 42
1.10.4 Multinomial random variables . 42
1.10.5 Normal random variables . 44
1.10.6 Multivariate normal random variables 44
1.10.7 Exponential random variables . 45
1.10.8 Other random variables . 46
1.10.9 Setting the random number seed . 46

1.11 Control flow, programming, and data generation 47
1.11.1 Looping . 47
1.11.2 Conditional execution . 47
1.11.3 Sequence of values or patterns . 48
1.11.4 Referring to a range of variables . 50
1.11.5 Perform an action repeatedly over a set of variables 50

1.12 Further resources . 51
1.13 HELP examples . 51

1.13.1 Data input and output . 51
1.13.2 Data display . 54
1.13.3 Derived variables and data manipulation 55
1.13.4 Sorting and subsetting datasets . 61
1.13.5 Probability distributions . 63

2 Common statistical procedures 65
2.1 Summary statistics . 65

2.1.1 Means and other summary statistics 65
2.1.2 Means by group . 66
2.1.3 Trimmed mean . 67
2.1.4 Five-number summary . 67
2.1.5 Quantiles . 67
2.1.6 Centering, normalizing, and scaling 68
2.1.7 Mean and 95% confidence interval 68
2.1.8 Bootstrapping a sample statistic . 69
2.1.9 Proportion and 95% confidence interval 70

2.2 Bivariate statistics . 70
2.2.1 Epidemiologic statistics . 70
2.2.2 Test characteristics . 71
2.2.3 Correlation . 72
2.2.4 Kappa (agreement) . 73

2.3 Contingency tables . 73
2.3.1 Display cross-classification table . 73
2.3.2 Pearson chi-square statistic . 74
2.3.3 Cochran–Mantel–Haenszel test . 74
2.3.4 Fisher’s exact test . 75
2.3.5 McNemar’s test . 75

2.4 Two sample tests for continuous variables 75
2.4.1 Student’s t-test . 75
2.4.2 Nonparametric tests . 76
2.4.3 Permutation test . 76

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page viii — #8
�

�

�

�

�

�

viii CONTENTS

2.4.4 Logrank test . 77
2.5 Further resources . 77
2.6 HELP examples . 78

2.6.1 Summary statistics and exploratory data analysis 78
2.6.2 Bivariate relationships . 80
2.6.3 Contingency tables . 82
2.6.4 Two sample tests of continuous variables 85
2.6.5 Survival analysis: logrank test . 90

3 Linear regression and ANOVA 93
3.1 Model fitting . 93

3.1.1 Linear regression . 93
3.1.2 Linear regression with categorical covariates 94
3.1.3 Parameterization of categorical covariates 94
3.1.4 Linear regression with no intercept 96
3.1.5 Linear regression with interactions 96
3.1.6 Linear models stratified by each value of a grouping variable 97
3.1.7 One-way analysis of variance . 97
3.1.8 Two-way (or more) analysis of variance 98

3.2 Model comparison and selection . 98
3.2.1 Compare two models . 98
3.2.2 Log-likelihood . 99
3.2.3 Akaike Information Criterion (AIC) 99
3.2.4 Bayesian Information Criterion (BIC) 99

3.3 Tests, contrasts, and linear functions of parameters 100
3.3.1 Joint null hypotheses: several parameters equal 0 100
3.3.2 Joint null hypotheses: sum of parameters 100
3.3.3 Tests of equality of parameters . 101
3.3.4 Multiple comparisons . 101
3.3.5 Linear combinations of parameters 102

3.4 Model diagnostics . 102
3.4.1 Predicted values . 102
3.4.2 Residuals . 103
3.4.3 Studentized residuals . 103
3.4.4 Leverage . 104
3.4.5 Cook’s D . 104
3.4.6 DFFITS . 105
3.4.7 Diagnostic plots . 106

3.5 Model parameters and results . 106
3.5.1 Prediction limits . 106
3.5.2 Parameter estimates . 107
3.5.3 Standard errors of parameter estimates 107
3.5.4 Confidence limits for the mean . 108
3.5.5 Plot confidence intervals for the mean 108
3.5.6 Plot prediction limits from a simple linear regression 109
3.5.7 Plot predicted lines for each value of a variable 109
3.5.8 Design and information matrix . 110
3.5.9 Covariance matrix . 110

3.6 Further resources . 111
3.7 HELP examples . 111

3.7.1 Scatterplot with smooth fit . 111

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page ix — #9
�

�

�

�

�

�

CONTENTS ix

3.7.2 Linear regression with interaction . 113
3.7.3 Regression diagnostics . 116
3.7.4 Fitting regression model separately for each value of another variable 119
3.7.5 Two way ANOVA . 120
3.7.6 Multiple comparisons . 126
3.7.7 Contrasts . 128

4 Regression generalizations 131
4.1 Generalized linear models . 131

4.1.1 Logistic regression model . 131
4.1.2 Exact logistic regression . 133
4.1.3 Poisson model . 134
4.1.4 Zero-inflated Poisson model . 134
4.1.5 Negative binomial model . 135
4.1.6 Zero-inflated negative binomial model 135
4.1.7 Log-linear model . 136
4.1.8 Ordered multinomial model . 136
4.1.9 Generalized (nominal outcome) multinomial logit 137
4.1.10 Conditional logistic regression model 137

4.2 Models for correlated data . 137
4.2.1 Linear models with correlated outcomes 137
4.2.2 Linear mixed models with random intercepts 138
4.2.3 Linear mixed models with random slopes 139
4.2.4 More complex random coefficient models 140
4.2.5 Multilevel models . 140
4.2.6 Generalized linear mixed models . 141
4.2.7 Generalized estimating equations . 141
4.2.8 Time series model . 142

4.3 Survival analysis . 143
4.3.1 Proportional hazards (Cox) regression model 143
4.3.2 Proportional hazards (Cox) model with frailty 143

4.4 Further generalizations to regression models 143
4.4.1 Nonlinear least squares model . 143
4.4.2 Generalized additive model . 144
4.4.3 Robust regression model . 144
4.4.4 Quantile regression model . 145
4.4.5 Ridge regression model . 145

4.5 Further resources . 146
4.6 HELP examples . 146

4.6.1 Logistic regression . 146
4.6.2 Poisson regression . 150
4.6.3 Zero-inflated Poisson regression . 152
4.6.4 Negative binomial regression . 154
4.6.5 Quantile regression . 155
4.6.6 Ordinal logit . 156
4.6.7 Multinomial logit . 157
4.6.8 Generalized additive model . 159
4.6.9 Reshaping dataset for longitudinal regression 160
4.6.10 Linear model for correlated data . 164
4.6.11 Linear mixed (random slope) model 166
4.6.12 Generalized estimating equations . 171

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page x — #10
�

�

�

�

�

�

x CONTENTS

4.6.13 Generalized linear mixed model . 172
4.6.14 Cox proportional hazards model . 173

5 Graphics 177
5.1 A compendium of useful plots . 178

5.1.1 Scatterplot . 178
5.1.2 Scatterplot with multiple y values 178
5.1.3 Barplot . 179
5.1.4 Histogram . 180
5.1.5 Stem-and-leaf plot . 181
5.1.6 Boxplot . 181
5.1.7 Side-by-side boxplots . 182
5.1.8 Normal quantile-quantile plot . 182
5.1.9 Interaction plots . 183
5.1.10 Plots for categorical data . 183
5.1.11 Conditioning plot . 184
5.1.12 3-D plots . 184
5.1.13 Circular plot . 185
5.1.14 Sunflower plot . 185
5.1.15 Empirical cumulative probability density plot 185
5.1.16 Empirical probability density plot 186
5.1.17 Matrix of scatterplots . 186
5.1.18 Receiver operating characteristic (ROC) curve 187
5.1.19 Kaplan–Meier plot . 187

5.2 Adding elements . 188
5.2.1 Arbitrary straight line . 189
5.2.2 Plot symbols . 189
5.2.3 Add points to an existing graphic . 190
5.2.4 Jitter . 191
5.2.5 OLS line fit to points . 191
5.2.6 Smoothed line . 192
5.2.7 Normal density . 192
5.2.8 Marginal rug plot . 193
5.2.9 Titles . 193
5.2.10 Footnotes . 193
5.2.11 Text . 194
5.2.12 Mathematical symbols . 195
5.2.13 Arrows and shapes . 195
5.2.14 Legend . 196
5.2.15 Identifying and locating points . 196

5.3 Options and parameters . 197
5.3.1 Graph size . 197
5.3.2 Point and text size . 197
5.3.3 Box around plots . 198
5.3.4 Size of margins . 198
5.3.5 Graphical settings . 198
5.3.6 Multiple plots per page . 199
5.3.7 Axis range and style . 199
5.3.8 Axis labels, values, and tick marks 200
5.3.9 Line styles . 200
5.3.10 Line widths . 201

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page xi — #11
�

�

�

�

�

�

CONTENTS xi

5.3.11 Colors . 201
5.3.12 Log scale . 201
5.3.13 Omit axes . 202

5.4 Saving graphs . 202
5.4.1 PDF . 202
5.4.2 Postscript . 203
5.4.3 RTF . 203
5.4.4 JPEG . 204
5.4.5 WMF . 204
5.4.6 BMP . 205
5.4.7 TIFF . 205
5.4.8 PNG . 206
5.4.9 Closing a graphic device . 206

5.5 Further resources . 206
5.6 HELP examples . 206

5.6.1 Scatterplot with multiple axes . 207
5.6.2 Conditioning plot . 208
5.6.3 Kaplan–Meier plot . 209
5.6.4 ROC curve . 211
5.6.5 Pairs plot . 213
5.6.6 Visualize correlation matrix . 214

6 Other topics and extended examples 217
6.1 Power and sample size calculations . 217

6.1.1 Analytic power calculation . 217
6.1.2 Simulation-based power calculations 219

6.2 Generate data from generalized linear random effects model 222
6.3 Generate correlated binary data . 223
6.4 Read variable format files and plot maps . 224

6.4.1 Read input files . 224
6.4.2 Plotting maps . 226

6.5 Missing data: multiple imputation . 228
6.6 Bayesian Poisson regression . 231
6.7 Multivariate statistics and discriminant procedures 233

6.7.1 Cronbach’s α . 233
6.7.2 Factor analysis . 234
6.7.3 Recursive partitioning . 237
6.7.4 Linear discriminant analysis . 238
6.7.5 Hierarchical clustering . 240

6.8 Complex survey design . 241
6.9 Further resources . 242

Appendix A Introduction to SAS 243
A.1 Installation . 243
A.2 Running SAS and a sample session . 243
A.3 Learning SAS and getting help . 247
A.4 Fundamental structures: data step, procedures, and global statements . . . 249
A.5 Work process: the cognitive style of SAS . 251
A.6 Useful SAS background . 251

A.6.1 Data set options . 251
A.6.2 Repeating commands for subgroups 252

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page xii — #12
�

�

�

�

�

�

xii CONTENTS

A.6.3 Subsetting . 252
A.6.4 Formats and informats . 253

A.7 Accessing and controlling SAS output: the Output Delivery System 253
A.7.1 Saving output as datasets and controlling output 254
A.7.2 Output file types and ODS destinations 257
A.7.3 ODS graphics . 257

A.8 The SAS Macro Facility: writing functions and passing values 258
A.8.1 Writing functions . 258
A.8.2 SAS macro variables . 258

A.9 Miscellanea . 259

Appendix B Introduction to R 261
B.1 Installation . 261

B.1.1 Installation under Windows . 262
B.1.2 Installation under Mac OS X . 262
B.1.3 Installation under Linux . 262

B.2 Running R and sample session . 263
B.2.1 Replicating examples from the book and sourcing commands 265
B.2.2 Batch mode . 265

B.3 Learning R and getting help . 265
B.4 Fundamental structures: objects, classes, and related concepts 266

B.4.1 Objects and vectors . 266
B.4.2 Indexing . 268
B.4.3 Operators . 268
B.4.4 Matrices . 268
B.4.5 Dataframes . 269
B.4.6 Attributes and classes . 271

B.5 Built-in and user-defined functions . 271
B.5.1 Calling functions . 271
B.5.2 Writing functions . 272
B.5.3 The apply family of functions . 273

B.6 Add-ons: libraries and packages . 273
B.6.1 Introduction to libraries and packages 273
B.6.2 CRAN task views . 274
B.6.3 Installed libraries and packages . 274
B.6.4 Packages referenced in this book . 275
B.6.5 Datasets available with R . 276

B.7 Support and bugs . 276

Appendix C The HELP study dataset 277
C.1 Background on the HELP study . 277
C.2 Roadmap to analyses of the HELP dataset 277
C.3 Detailed description of the dataset . 278

Appendix D References 283

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page xiii — #13
�

�

�

�

�

�

List of Figures

1.1 Comparison of standard normal and t distribution with 1 df 64

2.1 Density plot of depressive symptom scores (CESD) plus superimposed his-
togram and normal distribution . 80

2.2 Scatterplot of CESD and MCS for women, with primary substance shown as
the plot symbol . 82

2.3 Density plot of age by gender . 90

3.1 Scatterplot of observed values for AGE and I1 (plus smoothers by substance) 112
3.2 Q-Q plot from SAS, default diagnostics from R 118
3.3 Empirical density of residuals, with superimposed normal density 119
3.4 Interaction plot of CESD as a function of substance group and gender . . . 121
3.5 Boxplot of CESD as a function of substance group and gender 122
3.6 Pairwise comparisons . 128

4.1 Scatterplots of smoothed association of PCS with CESD 161
4.2 Side-by-side box plots of CESD by treatment and time 167

5.1 Plot of InDUC and MCS vs. CESD for female alcohol-involved subjects . . 208
5.2 Association of MCS and CESD, stratified by substance and report of suicidal

thoughts . 210
5.3 Kaplan–Meier estimate of time to linkage to primary care by randomization

group . 211
5.4 Receiver operating characteristic curve for the logistical regression model pre-

dicting suicidal thoughts using the CESD as a measure of depressive symp-
toms (sensitivity = true positive rate; 1-specificity = false positive rate) . . 212

5.5 Pairsplot of variables from the HELP dataset 214
5.6 Visual display of correlations and associations 216

6.1 Massachusetts counties . 227
6.2 Recursive partitioning tree . 238
6.3 Graphical display of assignment probabilities or score functions from linear

discriminant analysis by actual homeless status 240
6.4 Results from hierarchical clustering . 241

A.1 SAS Windows interface . 244
A.2 Running a SAS program . 245
A.3 The SAS window after running the sample session code 248
A.4 The SAS Explorer window . 248
A.5 Opening the on-line help . 249
A.6 The SAS Help and Documentation window 250

xiii

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page xiv — #14
�

�

�

�

�

�

xiv LIST OF FIGURES

B.1 R Windows graphical user interface . 262
B.2 R Mac OS X graphical user interface . 263
B.3 Sample session in R . 264
B.4 Documentation on the mean() function . 267

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page xv — #15
�

�

�

�

�

�

List of Tables

1.1 Quantiles, probabilities, and pseudo-random number generation: distribu-
tions available in SAS and R . 43

4.1 Generalized linear model distributions supported by SAS and R 132

C.1 Analyses undertaken using the HELP dataset 277
C.2 Annotated description of variables in the HELP dataset 279

xv

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page xvii — #17
�

�

�

�

�

�

Preface

SAS™ (SAS Institute, 2009) and R (R development core team, 2009) are two statistical
software packages used in many fields of research. SAS is commercial software developed
by SAS Institute; it includes well-validated statistical algorithms. It can be licensed but
not purchased. Paying for a license entitles the licensee to professional customer support.
However, licensing is expensive and SAS sometimes incorporates new statistical methods
only after a significant lag. In contrast, R is free, open-source software, developed by a large
group of people, many of whom are volunteers. It has a large and growing user and developer
base. Methodologists often release applications for general use in R shortly after they have
been introduced into the literature. Professional customer support is not provided, though
there are many resources for users. There are settings in which one of these useful tools is
needed, and users who have spent many hours gaining expertise in the other often find it
frustrating to make the transition.

We have written this book as a reference text for users of SAS and R. Our primary
goal is to provide users with an easy way to learn how to perform an analytic task in both
systems, without having to navigate through the extensive, idiosyncratic, and sometimes
(often?) unwieldy documentation each provides. We expect the book to function in the
same way that an English–French dictionary informs users of both the equivalent nouns
and verbs in the two languages as well as the differences in grammar. We include many
common tasks, including data management, descriptive summaries, inferential procedures,
regression analysis, multivariate methods, and the creation of graphics. We also show some
more complex applications. In toto, we hope that the text will allow easier mobility between
systems for users of any statistical system.

We do not attempt to exhaustively detail all possible ways available to accomplish a given
task in each system. Neither do we claim to provide the most elegant solution. We have tried
to provide a simple approach that is easy to understand for a new user, and have supplied
several solutions when it seems likely to be helpful. Carrying forward the analogy to an
English-French dictionary, we suggest language that will communicate the point effectively,
without listing every synonym or providing guidance on native idiom or eloquence.

Who should use this book

Those with an understanding of statistics at the level of multiple-regression analysis will
find this book helpful. This group includes professional analysts who use statistical packages
almost every day as well as statisticians, epidemiologists, economists, engineers, physicians,
sociologists, and others engaged in research or data analysis. We anticipate that this tool
will be particularly useful for sophisticated users, those with years of experience in only one
system, who need or want to use the other system. However, intermediate-level analysts
should reap the same benefit. In addition, the book will bolster the analytic abilities of a
relatively new user of either system, by providing a concise reference manual and annotated
examples executed in both packages.

xvii

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page xviii — #18
�

�

�

�

�

�

xviii PREFACE

Using the book

The book has three indices, in addition to the comprehensive table of contents. These
include: 1) a detailed topic (subject) index in English; 2) a SAS index, organized by SAS
syntax; and 3) an R index, describing R syntax. SAS users can use the SAS index to look
up a task for which they know the SAS code and turn to a page with that code as well as
the associated R code to carry out that task. R users can use the dictionary in an analogous
fashion using the R index.

Extensive example analyses are presented; see Table C.1 (p. 277) for a comprehensive
list. These employ a single dataset (from the HELP study), described in Appendix C.
Readers are encouraged to download the dataset and code from the book website. The
examples demonstrate the code in action and facilitate exploration by the reader.

Differences between SAS and R

SAS and R are so fundamentally distinct that an enumeration of their differences would
be counter-productive. However, some differences are important for new users to bear in
mind.

SAS includes data management tools that are primarily intended to prepare data for
analysis. After preparation, analysis is performed in a distinct step, the implementation
of which effectively cannot be changed by the user, though often extensive options are
available. R is a programming environment tailored for data analysis. Data management
and analysis are integrated. This means, for example, that calculating the BMI from weight
and height can be treated as a function of the data, and as such is as likely to appear within
a data analysis as in making a “new” piece of data to keep.

SAS Institute makes decisions about how to change the software or expand the scope of
included analyses. These decisions are based on the needs of the user community and on cor-
porate goals for profitability. For example, when changes are made, backwards-compatibility
is almost always maintained, and documentation of exceptions is extensive. SAS Institute’s
corporate conservatism means that techniques are sometimes not included in SAS until
they have been discussed in the peer-reviewed literature for many years. While the R Core
Team controls base functionality, a very large number of users have developed functions
for R. Methodologists often release R functions to implement their work concurrently with
publication. While this provides great flexibility, it comes at some cost. A user-contributed
function may implement a desired methodology, but code quality may be unknown, docu-
mentation scarce, and paid support nonexistent. Sometimes a function which once worked
may become defunct due to a lack of backwards-compatibility and/or the author’s inability
to, or lack of interest in, updating it.

Other differences between SAS and R are worth noting. Data management in SAS is
undertaken using row by row (observation-level) operations. R is inherently a vector-based
language, where columns (variables) are manipulated. R is case-sensitive, while SAS is
generally not.

Where to begin

We do not anticipate that the book will be read cover to cover. Instead, we hope that
the extensive indexing, cross-referencing, and worked examples will make it possible for
readers to directly find and then implement what they need. A user new to either SAS
or R should begin by reading the appropriate Appendix for that software package, which
includes a sample session and overview.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page xix — #19
�

�

�

�

�

�

PREFACE xix

On the web

The book website at http://www.math.smith.edu/sasr includes the table of contents,
the indices, the HELP dataset, example code in SAS and R, and a list of erratum.

Acknowledgments

We would like to thank Rob Calver, Shashi Kumar, and Sarah Morris for their support
and guidance at Informa CRC/Chapman and Hall, the Department of Statistics at the
University of Auckland for graciously hosting NH during a sabbatical leave, and the Office
of the Provost at Smith College. We also thank Allyson Abrams, Tanya Hakim, Ross Ihaka,
Albyn Jones, Russell Lenth, Brian McArdle, Paul Murrell, Alastair Scott, David Schoenfeld,
Duncan Temple Lang, Kristin Tyler, Chris Wild, and Alan Zaslavsky for contributions to
SAS, R, or LATEX programming efforts, comments, guidance and/or helpful suggestions on
drafts of the manuscript.

Above all we greatly appreciate Sara and Julia as well as Abby, Alana, Kinari, and Sam,
for their patience and support.

Amherst, MA and Northampton, MA
March, 2009

© 2010 by Taylor and Francis Group, LLC

http://www.math.smith.edu

�

�

“book” — 2009/6/16 — 16:53 — page 1 — #21
�

�

�

�

�

�

Chapter 1

Data management

This chapter reviews basic data management, beginning with accessing external datasets,
such as those stored in spreadsheets, ASCII files, or foreign formats. Important tasks such
as creating datasets and manipulating variables are discussed in detail. In addition, key
mathematical, statistical, and probability functions are introduced.

1.1 Input

Both SAS and R provide comprehensive support for data input and output. In this section
we address aspects of these tasks.

SAS native datasets are rectangular files with data stored in a special format. They
have the form filename.sas7bdat or something similar, depending on version. In the
following, we assume that files are stored in directories and that the locations of the direc-
tories in the operating system can be labeled using Windows syntax (though SAS allows
UNIX/Linux/Mac OS X-style forward slash as a directory delimiter on Windows). Other
operating systems will use local idioms in describing locations.

R organizes data in dataframes, or connected series of rectangular arrays, which can
be saved as platform independent objects. R also allows UNIX-style directory delimiters
(forward slash) on Windows.

1.1.1 Native dataset
HELP example: see 4.6SAS

libname libref "dir_location";
data ds;

set libref.sasfilename; /* Note: no file extension */
...

run;

or
data ds;

set "dir_location\sasfilename.sas7bdat"; /* Windows only */
set "dir_location/sasfilename.sas7bdat";

/* works on all OS including Windows */
...

run;

1

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 2 — #22
�

�

�

�

�

�

2 CHAPTER 1. DATA MANAGEMENT

Note: The file sasfilename.sas7bdat is created by using a libref in a data statement;
see 1.2.1.

R
load(file="dir_location/savedfile") # works on all OS including Windows
load(file="dir_location\\savedfile") # Windows only

Note: Forward slash is supported as a directory delimiter on all operating systems; a double
backslash is supported under Windows. The file savedfile is created by save() (see 1.2.1).

1.1.2 Fixed format text files

See also 1.1.3 (read more complex fixed files) and 6.4 (read variable format files)

SAS
data ds;

infile 'C:\file_location\filename.ext';
input varname1 ... varnamek;

run;

or
filename filehandle 'file_location/filename.ext';

proc import datafile=filehandle
out=ds dbms=dlm;
getnames=yes;

run;

Note: The infile approach allows the user to limit the number of rows read from the
data file using the obs option. Character variables are noted with a trailing ’$’, e.g., use a
statement such as input varname1 varname2 $ varname3 if the second position contains
a character variable (see 1.1.3 for examples). The input statement allows many options
and can be used to read files with variable format (6.4.1).

In proc import, the getnames=yes statement is used if the first row of the input file
contains variable names (the variable types are detected from the data). If the first row
does not contain variable names then the getnames=no option should be specified. The
guessingrows option (not shown) will base the variable formats on other than the default
20 rows. The proc import statement will accept an explicit file location rather than a file
associated by the filename statement as in section 4.6.

Note that in Windows installations, SAS accepts either slashes or backslashes to de-
note directory structures. For Linux, only forward slashes are allowed. Behavior in other
operating systems may vary.

In addition to these methods, files can be read by selecting the Import Data option on
the file menu in the GUI.

R
ds <- read.table("dir_location\\file.txt", header=TRUE) # Windows only

or
ds <- read.table("dir_location/file.txt", header=TRUE) # all OS (including

Windows)

Note: Forward slash is supported as a directory delimiter on all operating systems; a double
backslash is supported under Windows. If the first row of the file includes the name of the

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 3 — #23
�

�

�

�

�

�

1.1. INPUT 3

variables, these entries will be used to create appropriate names (reserved characters such as
‘$’ or ‘[’ are changed to ’.’) for each of the columns in the dataset. If the first row doesn’t
include the names, the header option can be left off (or set to FALSE), and the variables
will be called V1, V2, . . . Vn. A limit on the number of lines to be read can be specified
through the nrows option. The read.table() function can support reading from an URL
as a filename (see also 1.1.6) or browse files interactively using file.choose() (see 1.7.5).

1.1.3 Reading more complex text files

See also 1.1.2 (read fixed files) and 6.4 (read variable format files)

Text data files often contain data in special formats. One common example is date variables.
Special values can be read in using informats (A.6.4). As an example below we consider the
following data.

1 AGKE 08/03/1999 $10.49
2 SBKE 12/18/2002 $11.00
3 SEKK 10/23/1995 $5.00

SAS
data ds;

infile 'C:\file_location\filename.dat';
input id initials $ datevar mmddyy10. cost dollar7.4;

run;

Note: The SAS informats (A.6.4) denoted by the mmddyy10. and dollar7.4 inform the
input statement that the third and fourth variables have special forms and should not be
treated as numbers or letters, but read and interpreted according to the rules specified. In
the case of datevar, SAS reads the date appropriately and stores a SAS date value (section
A.6.4). For cost, SAS ignores the ‘$’ in the data and would also ignore commas, if they
were present. The input statement allows many options for additional data formats and
can be used to read files with variable format (6.4.1).

Other common features of text data files include very long lines and missing data. These
are addressed through the infile or filename statements. Missing data may require the
missover option to the infile statement as well as listing the columns in which variables
appear in the dataset in the input statement. Long lines (many columns in the data
file) may require the lrecl option to the infile or filename statement. For a thorough
discussion, see the on-line help: Contents; SAS Products; Base SAS; SAS 9.2 Language
Reference: Concepts; DATA Step Concepts; Reading Raw Data; Reading Raw Data with
the INPUT statement.

R
tmpds <- read.table("file_location/filename.dat")
id <- tmpds$V1
initials <- tmpds$V2
datevar <- as.Date(as.character(tmpds$V3), "%m/%d/%y")
cost <- as.numeric(substr(tmpds$V4, 2, 100))
ds <- data.frame(id, initials, datevar, cost)
rm(tmpds, id, initials, datevar, cost)

Note: In R, this task is accomplished by first reading the dataset (with default names
from read.table() denoted V1 through V4). These objects can be manipulated using

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 4 — #24
�

�

�

�

�

�

4 CHAPTER 1. DATA MANAGEMENT

as.character() to undo the default coding as factor variables, and coerced to the appro-
priate data types. For the cost variable, the dollar signs are removed using the substr()
function. Finally, the individual variables are gathered together as a dataframe.

1.1.4 Comma separated value (CSV) files
HELP example: see 1.13.1SAS

data ds;
infile 'dir_location\filename.csv' delimiter=',';
input varname1 ... varnamek;

run;
or

proc import datafile='dir_location\full_filename'
out=ds dbms=dlm;
delimiter=',';
getnames=yes;

run;

Note: Character variables are noted with a trailing ’$’, e.g., use a statement such as
input varname1 varname2 $ varname3 if the second column contains characters. The
proc import syntax allows for the first row of the input file to contain variable names, with
variable types detected from the data. If the first row does not contain variable names then
use getnames=no.

In addition to these methods, files can be read by selecting the Import Data option on
the file menu in the GUI.

R

ds <- read.csv("dir_location/file.csv")

Note: A limit on the number of lines to be read can be specified through the nrows option.
The command read.csv(file.choose()) can be used to browse files interactively (see
section 1.7.5). The comma-separated file can be given as an URL (see 1.1.6).

1.1.5 Reading datasets in other formats
HELP example: see 3.7.1SAS

libname ref spss 'filename.sav'; /* SPSS */
libname ref bmdp 'filename.dat'; /* BMDP */
libname ref v6 'filename.ssd01; /* SAS vers. 6 */
libname ref xport 'filename.xpt'; /* SAS export */
libname ref xml 'filename.xml'; /* XML */

data ds;
set ref.filename;
run;

or

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 5 — #25
�

�

�

�

�

�

1.1. INPUT 5

proc import datafile="filename.ext' out=ds
dbms=excel; /* Excel */

run;

... dbms=access; ... /* Access */

... dbms=dta; ... /* Stata */

Note: The libname statements above refer to files, rather than directories. The extensions
shown above are those typically used for these file types, but in any event the full name
of the file, including the extension, is needed in the libname statement. In contrast, only
the file name (without the extension) is used in the set statement. The data type options
specified above in the libname statement and dbms option are available in Windows. To see
what’s available under other operating systems, check in the on-line help: Contents, Using
SAS in Your Operating Environment, SAS 9.2 Companion for <your OS>, Features of the
SAS language for <your OS>, Statements under <your OS>, Libname statement.

In addition to these methods, files can be read by selecting the Import Data option on
the file menu in the GUI.

R
library(foreign)
ds <- read.dbf("filename.dbf") # DBase
ds <- read.epiinfo("filename.epiinfo") # Epi Info
ds <- read.mtp("filename.mtp") # Minitab portable worksheet
ds <- read.octave("filename.octave") # Octave
ds <- read.ssd("filename.ssd") # SAS version 6
ds <- read.xport("filename.xport") # SAS XPORT file
ds <- read.spss("filename.sav") # SPSS
ds <- read.dta("filename.dta") # Stata
ds <- read.systat("filename.sys") # Systat

Note: The foreign library can read Stata, Epi Info, Minitab, Octave, SPSS, and Systat
files (with the caveat that SAS files may be platform dependent). The read.ssd() function
will only work if SAS is installed on the local machine.

1.1.6 URL
HELP example: see 2.6.1SAS

filename urlhandle url 'http://www.math.smith.edu/sasr/testdata';

filename urlhandle url 'http://www.math.smith.edu/sasr/testdata'
user='your_username' pass='your_password';

proc import datafile=urlhandle out=ds dbms=dlm;
run;

Note: The latter filename statement is needed only if the URL requires a username and
password. The urlhandle used in a filename statement can be no longer than 8 characters.
A urlhandle can be used in an import procedure as shown, or with an infile statement
in a data step (see 6.4). The import procedure supports many file types through the dbms
option; dbms=dlm without the delimiter option (section 1.1.4) is for space-delimited files.

© 2010 by Taylor and Francis Group, LLC

http://www.math.smith.edu
http://www.math.smith.edu

�

�

“book” — 2009/6/16 — 16:53 — page 6 — #26
�

�

�

�

�

�

6 CHAPTER 1. DATA MANAGEMENT

R
urlhandle <- url("http://www.math.smith.edu/sasr/testdata")
ds <- readLines(urlhandle)

or

ds <- read.table("http://www.math.smith.edu/sasr/testdata")
or

ds <- read.csv("http://www.math.smith.edu/sasr/file.csv")

Note: The readLines() function reads arbitrary text, while read.table() can be used to
read a file with cases corresponding to lines and variables to fields in the file (the header
option sets variable names to entries in the first line). The read.csv() function can be
used to read comma separated values. Access through proxy servers as well as specification
of username and passwords is provided by the function download.file(). A limit on the
number of lines to be read can be specified through the nrows option.

1.1.7 XML (extensible markup language)

A sample (flat) XML form of the HELP dataset can be found at http://www.math.smith.
edu/sasr/datasets/help.xml. The first ten lines of the file consist of:

?xml version="1.0" encoding="iso-8859-1" ?>
<TABLE>

<HELP>
<id> 1 </id>
<e2b1 Missing="." />
<g1b1> 0 </g1b1>
<i11 Missing="." />
<pcs1> 54.2258263 </pcs1>
<mcs1> 52.2347984 </mcs1>
<cesd1> 7 </cesd1>

Here we consider reading simple files of this form. While support is available for reading
more complex types of XML files, these typically require considerable additional sophisti-
cation.

SAS
libname ref xml 'dir_location\filename.xml';

data ds;
set ref.filename_without_extension;

run;

Note: The libname statement above refers to a file name, rather than a directory name.
The “xml” extension is typically used for this file type, but in any event the full name of
the file, including the extension, is needed.

R
library(XML)
urlstring <- "http://www.math.smith.edu/sasr/datasets/help.xml"
doc <- xmlRoot(xmlTreeParse(urlstring))
tmp <- xmlSApply(doc, function(x) xmlSApply(x, xmlValue))
ds <- t(tmp)[,-1]

© 2010 by Taylor and Francis Group, LLC

http://www.math.smith.edu
http://www.math.smith.edu
http://www.math.smith.edu
http://www.math.smith.edu
http://www.math.smith.edu
http://www.math.smith.edu

�

�

“book” — 2009/6/16 — 16:53 — page 7 — #27
�

�

�

�

�

�

1.2. OUTPUT 7

Note: The XML library provides support for reading XML files. The xmlRoot() function
opens a connection to the file, while xmlSApply() and xmlValue() are called recursively to
process the file. The returned object is a character matrix with columns corresponding to
observations and rows corresponding to variables, which in this example are then transposed.

1.1.8 Data entry

SAS
data ds;
input x1 x2;
cards;
1 2
1 3
1.4 2
123 4.5
;
run;

Note: The above code demonstrates reading data into a SAS dataset within a SAS program.
The semicolon following the data terminates the data step, meaning that a run statement
is not actually required. The input statement used above employs the syntax discussed in
1.1.2. In addition to this option for entering data within SAS, there is a GUI-based data
entry/editing tool called the Table Editor. It can be accessed using the mouse through the
Tools menu, or by using the viewtable command on the SAS command line.

R
x <- numeric(10)
data.entry(x)

or
x1 <- c(1, 1, 1.4, 123)
x2 <- c(2, 3, 2, 4.5)

Note: The data.entry() function invokes a spreadsheet that can be used to edit or other-
wise change a vector or dataframe. In this example, an empty numeric vector of length 10
is created to be populated. The data.entry() function differs from the edit() function,
which leaves the objects given as argument unchanged, returning a new object with the
desired edits (see also fix()).

1.2 Output

1.2.1 Save a native dataset
HELP example: see 1.13.1SAS

libname libref "dir_location";

data libref.sasfilename;
set ds;
run;

Note: A SAS dataset can be read back into SAS using a set statement with a libref, see
1.1.1.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 8 — #28
�

�

�

�

�

�

8 CHAPTER 1. DATA MANAGEMENT

R
save(robject, file="savedfile")

Note: An object (typically a dataframe, or a list of objects) can be read back into R using
load() (see 1.1.1).

1.2.2 Creating files for use by other packages
HELP example: see 1.13.1See also 1.2.7 (write XML)

SAS
libname ref spss 'filename.sav'; /* SPSS */
libname ref bmdp 'filename.dat'; /* BMDP */
libname ref v6 'filename.ssd01'; /* SAS version 6 */
libname ref xport 'filename.xpt'; /* SAS export */
libname ref xml 'filename.xml'; /* XML */

data ref.filename_without_extension;
set ds;

or
proc export data=ds outfile='file_location_and_name'

dbms=csv; /* comma-separated values */

...dbms=dbf; /* dbase 5,IV,III */

...dbms=excel; /* excel */

...dbms=tab; /* tab-separated values */

...dmbs=access; /* Access table */

...dbms=dlm; /* arbitrary delimiter; default is space,
others with delimiter=char statement */

Note: The libname statements above refer to file names, rather than directory names.
The extensions shown above are those conventionally used but the option specification
determines the file type that is created.

R
library(foreign)
write.dta(ds, "filename.dta")
write.dbf(ds, "filename.dbf")
write.foreign(ds, "filename.dat", "filename.sas", package="SAS")

Note: Support for writing dataframes in R is provided in the foreign library. It is possible
to write files directly in Stata format (see write.dta()) or DBF format (see write.dbf()
or create files with fixed fields as well as the code to read the file from within Stata, SAS,
or SPSS using write.foreign()).

As an example with a dataset with two numeric variables X1 and X2, the call to
write.foreign() creates one file with the data and the SAS command file filename.sas,
with the following contents.

data ds;
infile "file.dat" dsd lrecl=79;
input x1 x2;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 9 — #29
�

�

�

�

�

�

1.2. OUTPUT 9

This code uses proc format (1.4.12) statements in SAS to store string (character) vari-
ables. Similar code is created for SPSS using write.foreign() with appropriate package
option.

1.2.3 Creating datasets in text format

SAS
proc export data=ds outfile='file_location_and_name'

dbms=csv; /* comma-separated values */

...dbms=tab; /* tab-separated values */

...dbms=dlm; /* arbitrary delimiter; default is space,
others with delimiter= statement */

R
library(foreign)
write.csv(ds, file="full_file_location_and_name")

or
library(foreign)
write.table(ds, file="full_file_location_and_name")
Note: The sep option to write.table() can be used to change the default delimiter (space)
to an arbitrary value.

1.2.4 Displaying data
HELP example: see 3.7.2

See also 1.3.3 (values of variables in a dataset)

SAS
title1 'Display of variables';
footnote1 'A footnote';
proc print data=ds;

var x1 x3 xk x2;
format x3 dollar10.2;

run;

Note: For proc print the var statement selects variables to be included. The format
statement, as demonstrated, can alter the appearance of the data; here x3 is displayed as a
dollar amount with 10 total digits, two of them to the right of the decimal. The keyword
numeric can replace the variable name and will cause all of the numerical variables to be
displayed in the same format. See section A.6.4 for further discussion.

See sections A.6.3, A.6.2, and A.6.1 for ways to limit which observations are displayed.
The var statement, as demonstrated, can cause the variables to be displayed in the desired
order. The title and footnote statements and related statements title1, footnote2,
etc. allow headers and footers to be added to each output page. Specifying the command
with no argument will remove the title or footnote from subsequent output.

SAS also provides proc report and proc tabulate to create more customized output.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 10 — #30
�

�

�

�

�

�

10 CHAPTER 1. DATA MANAGEMENT

R
dollarcents <- function(x)

return(paste("$", format(round(x*100, 0)/100, nsmall=2), sep=""))
data.frame(x1, dollarcents(x3), xk, x2)

or

ds[,c("x1", "x3", "xk", "x2"]

Note: A function can be defined to format a vector as U.S. dollar and cents by using the
round() function (see 1.8.4) to control the number of digits (2) to the right of the decimal.
Alternatively, named variables from a dataframe can be printed. The cat() function can be
used to concatenate values and display them on the console (or route them to a file using the
file option). More control on the appearance of printed values is available through use of
format() (control of digits and justification), sprintf() (use of C-style string formatting)
and prettyNum() (another routine to format using C-style specifications).

1.2.5 Number of digits to display
HELP example: see 1.13.1

SAS lacks an option to control how many significant digits are displayed in procedure
output, in general (an exception is proc means). For reporting purposes, one should save
the output as a dataset using ODS, then use the format statement (1.2.4, A.6.4) with proc
print to display the desired precision as demonstrated in section 3.7.2.

R
options(digits=n)

Note: The options(digits=n) command can be used to change the default number of
decimal places to display in subsequent R output. To affect the actual significant digits in
the data, use the round() function (see 1.8.4).

1.2.6 Creating HTML formatted output

SAS
ods html file="filename.html";
...
ods html close;

Note: Any output generated between an ods html statement and an ods hmtl close state-
ment will be included in an HTML (hyper-text markup language) file (A.7.2). By default
this will be displayed in an internal SAS window; the optional file option shown above
will cause the output to be saved as a file.

R
library(prettyR)
htmlize("script.R", title="mytitle", echo=TRUE)

Note: The htmlize() function within library(prettyR) can be used to produce HTML
(hypertext markup language) from a script file (see B.2.1). The cat() function is used
inside the script file (here denoted by script.R) to generate output. The hwriter library
also supports writing R objects in HTML format.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 11 — #31
�

�

�

�

�

�

1.3. STRUCTURE AND META-DATA 11

1.2.7 Creating XML datasets and output

In R, the XML library provides support for writing XML files (see also 1.1.5, write foreign
files and Further resources).

SAS
libname ref xml 'dir_location\filename.xml';

data ref.filename_without_extension;
set ds;

run;

or
ods docbook file='filename.xml';
...
ods close;

Note: The libname statement can be used to write a SAS dataset to an XML-formatted file.
It refers to a file name, rather than a directory name. The file extension xml is conventionally
used but the xml specification, rather than the file extension, determines the file type that
is created.

The ods docbook statement, in contrast, can be used to generate an XML file displaying
procedure output; the file is formatted according to the OASIS DocBook DTD (document
type definition).

1.3 Structure and meta-data

1.3.1 Access variables from a dataset
HELP example: see 1.13.1

In SAS, every data step or procedure refers to a dataset explicitly or implicitly. Any
variable in that dataset is available without further reference. In R, variable references must
contain the name of the object which includes the variable, unless the object is attached,
see below.

R
attach(ds)
detach(ds)
with(ds, mean(x))

Note: The command attach() will make the variables within the named dataset available
in the workspace (otherwise they need to be accessed using the syntax ds$var1 unless they
are in the workspace). The detach() function removes them from the workspace (and is
recommended when the local version is no longer needed, to avoid name conflicts). The
with() and within() functions provide another way to access variables within a dataframe
without having to worry about later detaching the dataframe. Many functions (e.g., lm())
allow specification of a dataset to be accessed using the data option.

The detach() function is also used to remove a package from the workspace: more
information can be found in section B.4.5. This is sometimes needed if a package overrides a
built-in function within R. As an example the command detach("package:packagename")
will detach a package that had been loaded using library(packagename).

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 12 — #32
�

�

�

�

�

�

12 CHAPTER 1. DATA MANAGEMENT

1.3.2 Names of variables and their types
HELP example: see 1.13.1SAS

proc contents data=ds;
run;

R

str(ds)

Note: The command sapply(ds, class) will return the names and classes (e.g., numeric,
integer or character) of each variable within a dataframe, while running summary(ds) will
provide an overview of the distribution of each column.

1.3.3 Values of variables in a dataset
HELP example: see 1.13.2SAS

proc print data=ds (obs=nrows);
var x1 ... xk;

run;

Note: The integer nrows for the obs=nrows option specifies how many rows to display,
while the var statement selects variables to be displayed (A.6.1). Omitting the obs=nrows
option or var statement will cause all rows and all variables in the dataset to be displayed,
respectively.

R
print(ds)

or
View(ds)

or

edit(ds)

or
ds[1:10,]
ds[,2:3]

Note: The print() function lists the contents of the dataframe (or any other object), while
the View() function opens a navigable window with a read-only view. The contents can
be changed using the edit() function. Alternatively, any subset of the dataframe can be
displayed on the screen using indexing, as in the final example. In the first example, the first
10 records are displayed, while in the second, the second and third variables. Variables can
also be specified by name using a character vector index (see B.4.2). The head() function
can be used to display the first (or last) values of a vector, dataset, or other object.

1.3.4 Rename variables in a dataset

SAS
data ds2;
set ds (rename = (old1=new1 old2=new2 ...));
...

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 13 — #33
�

�

�

�

�

�

1.4. DERIVED VARIABLES AND DATA MANIPULATION 13

or
data ds;
...
rename old=new;

R
names(ds)[names(ds)=="old1"] <- "new1"
names(ds)[names(ds)=="old2"] <- "new2"

or

ds <- within(ds, {new1 <- old1; new2 <- old2; rm(old1, old2)})

or
library(reshape)
ds <- rename(ds, c("old1"="new1", "old2"="new2"))

Note: The names() function provides a list of names associated with an object (see B.4.5). It
is an efficient way to undertake this task, as it involves no copying of data (just a remapping
of the names). The edit() function can be used to view names and edit values.

1.3.5 Add comment to a dataset or variable
HELP example: see 1.13.1

To help facilitate proper documentation of datasets, it can be useful to provide some anno-
tation or description.

SAS
data ds (label="This is a comment about the dataset");
...

Note: The label can be viewed using proc contents (1.3.2) and retrieved as data using
ODS (see A.7).

R

comment(ds) <- "This is a comment about the dataset"

Note: The attributes() function (see B.4.6) can be used to list all attributes, including
any comment(), while the comment() function without an argument on the right hand side
will display the comment, if present.

1.4 Derived variables and data manipulation

This section describes the creation of new variables as a function of existing variables in a
dataset.

1.4.1 Create string variables from numeric variables

SAS
data ...;

stringx = input(numericx, $char.);
run;

Note: Applying any string function to a numeric variable will force it to be treated as a
character variable. As an example, concatenating (see 1.4.5) two numeric variables (i.e.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 14 — #34
�

�

�

�

�

�

14 CHAPTER 1. DATA MANAGEMENT

v3 = v1||v2) will result in a string . See A.6.4 for a discussion of informats, which apply
variable types when reading in data.

R
stringx <- as.character(numericx)
typeof(stringx)
typeof(numericx)

Note: The typeof() function can be used to verify the type of an object; possible val-
ues include logical, integer, double, complex, character, raw, list, NULL, closure
(function), special and builtin (see also section B.4.6).

1.4.2 Create numeric variables from string variables

SAS
data ...;

numericx = input(stringx, integer.decimal);
run;

Note: In the argument to the input function, integer is the number of characters in the
string, while decimal is an optional specification of how many characters appear after the
decimal.

Applying any numeric function to a variable will force it to be treated as numeric.
For example: a numericx = stringx * 1.0 statement will also make numericx a numeric
variable.
See also A.6.4 for a discussion of informats, which apply variable types when reading in
data.

R
numericx <- as.numeric(stringx)
typeof(stringx)
typeof(numericx)

Note: The typeof() function can be used to verify the type of an object (see 1.4.1 and
B.4.6).

1.4.3 Extract characters from string variables

SAS
data ...;

get2through4 = substr(x, 2, 3);
run;

Note: The syntax functions as follows: name of the variable, start character place, how
many characters to extract. The last parameter is optional. When omitted, all characters
after the location specified in the second space will be extracted.

R
get2through4 <- substr(x, 2, 4)

Note: The arguments to substr() specify the input vector, start character position and
end character position.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 15 — #35
�

�

�

�

�

�

1.4. DERIVED VARIABLES AND DATA MANIPULATION 15

1.4.4 Length of string variables

SAS
data ...;

len = length(stringx);
run;

Note: In this example, len is a variable containing the number of characters in stringx for
each observation in the dataset, excluding trailing blanks. Trailing blanks can be included
through use of the lengthc function.

R
len <- nchar(stringx)

Note: The nchar() function returns a vector of lengths of each of the elements of the string
vector given as argument, as opposed to the length() function (section 1.4.15) returns the
number of elements in a vector.

1.4.5 Concatenate string variables

SAS
data ...;

newcharvar = x1 || " VAR2 " x2;
run;

Note: The above SAS code creates a character variable newcharvar containing the character
variable X1 (which may be coerced from a numeric variable) followed by the string " VAR2 "
then the character variable X2. By default, no spaces are added.

R
newcharvar <- paste(x1, " VAR2 ", x2, sep="")

Note: The above R code creates a character variable newcharvar containing the character
vector X1 (which may be coerced from a numeric object) followed by the string " VAR2 "
then the character vector X2. The sep="" option leaves no additional separation character
between these three strings.

1.4.6 Find strings within string variables

SAS
data ...;

/* where is the first occurrence of "pat"? */
match = find(stringx, "pat");
/* where is the first occurrence of "pat" after startpos? */
matchafter = find(stringx, "pat", startpos);
/* how many times does "pat" appear? */
howmany = count(stringx, "pat");

run;

Note: Without the option startpos, find returns the start character for the first appearance
of pat. If startpos is positive, the search starts at startpos, if it is negative, the search
is to the left, starting at startpos. If pat is not found or startpos=0, then match=0.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 16 — #36
�

�

�

�

�

�

16 CHAPTER 1. DATA MANAGEMENT

R
matches <- grep("pat", stringx)
positions <- regexpr("pat", stringx)

> x <- c("abc", "def", "abcdef", "defabc")
> grep("abc", x)
[1] 1 3 4
> regexpr("abc", x)
[1] 1 -1 1 4
attr(,"match.length")
[1] 3 -1 3 3
> regexpr("abc", x) < 0
[1] FALSE TRUE FALSE FALSE

Note: The function grep() returns a list of elements in the vector given by stringx that
match the given pattern, while the regexpr() function returns a numeric list of starting
points in each string in the list (with -1 if there was no match). Testing positions < 0
generates a vector of binary indicator of matches (TRUE=no match, FALSE=a match).

The regular expressions supported within grep and other related routines are quite
powerful. For an example, Boolean OR expressions can be specified using the | operator. A
comprehensive description of these can be found using help(regex).

1.4.7 Remove spaces around string variables

SAS
data ...;

noleadortrail = strip(stringx);
run;

Note: Leading blanks only can be removed with left(stringx).

R
noleadortrail <- sub(' +$', '', sub('^ +', '', stringx))

Note: The arguments to sub() consist of a regular expression, a substitution value and a
vector. In the first step, leading spaces are removed, then a separate call to sub() is used to
remove trailing spaces (in both cases replacing the spaces with the null string. If instead of
spaces all trailing whitespaces (e.g., tabs, space characters) should be removed, the regular
expression ’ +$’ should be replaced by ’[[:space:]]+$’.

1.4.8 Upper to lower case

SAS
data ...;

lowercasex = lowcase(x);
run;

or
data ...;

lowercasex = translate(x, "abcdefghijklmnopqrstuvwxzy",
"ABCDEFGHIJKLMNOPQRSTUVWXYZ") ;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 17 — #37
�

�

�

�

�

�

1.4. DERIVED VARIABLES AND DATA MANIPULATION 17

Note: The upcase function makes all characters upper case. Arbitrary translations from
sets of characters can be made using the translate function.

R

lowercasex <- tolower(x)

or

lowercasex <- chartr("ABCDEFGHIJKLMNOPQRSTUVWXYZ",
"abcdefghijklmnopqrstuvwxzy", x)

Note: The toupper() function can be used to convert to upper case. Arbitrary translations
from sets of characters can be made using the chartr() function.

1.4.9 Create categorical variables from continuous variables
HELP example: see 1.13.3 and 4.6.6SAS

data ...;
if x ne . then newcat = (x ge minval) + (x ge cutpoint1) +

... + (x ge cutpointn);
run;

Note: Each expression within parentheses is a logical test returning 1 if the expression is
true, 0 otherwise. If the initial condition is omitted then a missing value for x will return
the value of 0 for newcat. More information about missing value coding can be found in
section 1.4.14 (see 1.11.2 for more about conditional execution).

R
newcat1 <- (x >= minval) + (x >= cutpoint1) + ... + (x >= cutpointn)

Note: Each expression within parentheses is a logical test returning 1 if the expression is
true, 0 if not true, and NA if x is missing. More information about missing value coding
can be found in section 1.4.14.

1.4.10 Recode a categorical variable

A categorical variable may need to be recoded to have fewer levels.

SAS
data ...;

newcat = (oldcat in (val1, val2, ..., valn)) +
(oldcat in (...)) + ...;

run;

Note: The in function can also accept quoted strings as input. It returns a value of 1 if any
of the listed values is equal to the tested value.

R
tmpcat <- oldcat
tmpcat[oldcat==val1] <- newval1
tmpcat[oldcat==val2] <- newval1
...
tmpcat[oldcat==valn] <- newvaln
newcat <- as.factor(tmpcat)

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 18 — #38
�

�

�

�

�

�

18 CHAPTER 1. DATA MANAGEMENT

or
newcat <- cut(x, breaks=c(val2, ..., valn),

labels=c("Cut1", "Cut2", ..., "Cutn"), right=FALSE)

Note: Creating the variable can be undertaken in multiple steps. A copy of the old variable
is first made, then multiple assignments are made for each of the new levels, for observations
matching the condition inside the index (see section B.4.2). In the final step, the categorical
variable is coerced into a factor (class) variable. Alternatively, the cut() function can be
used to create the factor vector in one operation, by specifying the cut-scores and the labels.

1.4.11 Create a categorical variable using logic
HELP example: see 1.13.3

Here we create a trichotomous variable newvar which takes on a missing value if the contin-
uous nonnegative variable oldvar is less than 0, 0 if the continuous variable is 0, value 1 for
subjects in group A with values greater than 0 but less than 50 and for subjects in group B
with values greater than 0 but less than 60, or value 2 with values above those thresholds.

More information about missing value coding can be found in section 1.4.14.

SAS
data ...;

if oldvar le 0 then newvar=.;
else if oldvar eq 0 then newvar=0;
else if (oldvar lt 50 and group eq "A") or

(oldvar lt 60 and group eq "B")
then newvar=1;

else newvar=2;
run;

R
tmpvar <- rep(NA, length(oldvar))
tmpvar[oldvar==0] <- 0
tmpvar[oldvar>0 & oldvar<50 & group=="A"] <- 1
tmpvar[oldvar>0 & oldvar<60 & group=="B"] <- 1
tmpvar[oldvar>=50 & group=="A"] <- 2
tmpvar[oldvar>=60 & group=="B"] <- 2
newvar <- as.factor(tmpvar)

Note: Creating the variable is undertaken in multiple steps in this example. A vector of the
correct length is first created containing missing values. Values are updated if they match
the conditions inside the vector index (see section B.4.2). Care needs to be taken in the
comparison of oldvar==0 if non-integer values are present (see 1.8.5).

1.4.12 Formatting values of variables
HELP example: see 3.7.2

Sometimes it is useful to display category names that are more descriptive than variable
names. In general, we do not recommend using this feature (except potentially for graphical
output), as it tends to complicate communication between data analysts and other readers of
output (see also labeling variables, 1.4.13). In this example, character labels are associated
with a numeric variable (0=Control, 1=Low Dose and 2=High Dose).

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 19 — #39
�

�

�

�

�

�

1.4. DERIVED VARIABLES AND DATA MANIPULATION 19

SAS
proc format;

value dosegroup 0 = 'Control' 1 = 'Low Dose' 2 = 'High Dose';
run;

Note: Many procedures accept a format x dosegroup. statement (note trailing ‘.’); this
syntax will accept formats designed by the user with the proc format statement, as well as
built-in formats (see 1.2.4). Categorizations of a variable can also be imposed using proc
format, but this can be cumbersome. In all cases, a new variable should be created as
described in 1.4.9 or 1.4.10.

R
x <- c(0, 0, 1, 1, 2)
x <- factor(x, 0:2, labels=c("Control", "Low Dose", "High Dose"))

Note: For this example, the command x returns:

Control Control Low Dose Low Dose High Dose

Additionally, the names() function can be used to associate a variable with the identifier
(which is by default the observation number). As an example, this can be used to display
the name of a region with the value taken by a particular variable measured in that region.

1.4.13 Label variables

As with the values of the categories, sometimes it is desirable to have a longer, more descrip-
tive variable name (see also formatting variables, 1.4.12). In general, we do not recommend
using this feature, as it tends to complicate communication between data analysts and other
readers of output (a possible exception is in graphical output).

SAS
data ds;

...
label x="This is the label for the variable 'x'";

run;

Note: The label is displayed instead of the variable name in all procedure output (except
proc print, unless the label option is used) and can also be seen in proc contents
(section 1.3.2).

Some procedures also allow label statements with identical syntax, in which case the
label is used only for that procedure.

R

comment(x) <- "This is the label for the variable 'x'"

Note: The label for the variable can be extracted using comment(x) with no assignment or
via attribute(x)$comment.

1.4.14 Account for missing values
HELP example: see 1.13.3

Missing values are ubiquitous in most real-world investigations. Both SAS and R feature
support for missing value codes, though there are important distinctions which need to be
kept in mind by an analyst, particularly when deriving new variables or fitting models.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 20 — #40
�

�

�

�

�

�

20 CHAPTER 1. DATA MANAGEMENT

In SAS, the default missing value code for numeric data is ‘.’, which has a numeric
value of negative infinity. There are 27 other pre-defined missing value codes (._, .a . . .
.z), which can be used, for example, to record different reasons for missingness. The missing
value code for character data, for assignment, is " " (quote blank quote), displayed as a
blank.

Listwise deletion is the default behavior for most multivariate procedures in SAS. That
is, observations with missing values for any variables named in the procedure are omitted
from all calculations. Data step functions are different: functions defined with mathematical
operators (+ - / * **) will result in a missing value if any operand has a missing value,
but named functions, such as mean(x1, x2) will result in the function as applied to the
non-missing values.

In R, missing values are denoted by NA, a logical constant of length 1 which has no
numeric equivalent. The missing value code is distinct from the character string value
"NA". The default behavior for most R functions is to return NA if any of the input vectors
have any missing values.

SAS
data ds;

missing = (x1 eq .);
x2 = (1 + 2 + .)/3;
x3 = mean(1, 2, .);

if x4 = 999 then x4 = .;

x5 = n(1, 2, 49. 123, .);
x6 = nmiss(x2,x3);

if x1 ne .;
if x1 ne . then output;

run;

Note: The variable missing has a value of 1 if X1 is missing, 0 otherwise. X2 has a missing
value, while x3 = 1.5. Values of x4 that were previously coded 999 are now marked as
missing. The n function returns the number of non-missing values; X5 has a value of 3; the
nmiss function returns the number of missing values and here has a value of 1. The last
two statements have identical meanings. They will remove all observations for which X1

contains missing values.

R
> mean(c(1, 2, NA))
[1] NA
> mean(c(1, 2, NA), na.rm=TRUE)
[1] 1.5
> sum(na.omit(c(1, 2, NA)))
[1] 3
> x <- c(1, 3, NA)
> sum(!is.na(x))
[1] 2
> mean(x)
[1] NA
> mean(x, na.rm=TRUE)
[1] 2

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 21 — #41
�

�

�

�

�

�

1.4. DERIVED VARIABLES AND DATA MANIPULATION 21

The na.rm option is used to override the default behavior and omit missing values and
calculate the result on the complete cases (this or related options are available for many
functions). The ! (not) operator allows counting of the number of observed values (since
is.na() returns a logical set to TRUE if an observation is missing). Values can be recoded
to missing, as well as omitted (see B.3).
remap values of x with missing value code of 999 to missing
x[x==999] <- NA

or
set 999's to missing
is.na(x) <- x==999
returns a vector of logicals
is.na(x)
removes observations that are missing on that variable
na.omit(x)
removes observations that are missing any variable
na.omit(ds)

library(Hmisc)
display patterns of missing variables in a dataframe
na.pattern(ds)

Note: The default of returning NA for functions operating on objects with missing values
can be overridden using options for a particular function by using na.omit(), adding the
na.rm=TRUE option (e.g., for the mean() function) or specifying an na.action() (e.g., for
the lm() function). Common na.action() functions include na.exclude(), na.omit(),
and na.fail(). Arbitrary numeric missing values (999 in this example) can be mapped
to R missing value codes using indexing and assignment. Here all values of x that are 999
are replaced by the missing value code of NA. The is.na() function returns a logical vector
with TRUE corresponding to missing values (code NA in R). Input functions like scan() and
read.table() have the default argument na.strings="NA". This can be used to recode on
input for situations where a numeric missing value code has been used. R has other kinds
of “missing” values, corresponding to floating point standards (see also is.infinite() and
is.nan()).

The na.pattern() function can be used to determine the different patterns of miss-
ing values in a dataset. The na.omit() function returns the dataframe with missing values
omitted (if a value is missing for a given row, all observations are removed, aka listwise dele-
tion). More sophisticated approaches to handling missing data are generally recommended
(see 6.5).

1.4.15 Observation number
HELP example: see 1.13.2SAS

data ...;
x = _n_;

run;

Note: The variable _n_ is created automatically by SAS and counts the number of lines of
data that have been input into the data step. It is a temporary variable that it is not stored
in the dataset unless a new variable is created (as demonstrated in the above code).

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 22 — #42
�

�

�

�

�

�

22 CHAPTER 1. DATA MANAGEMENT

R
> y <- c("abc", "def", "ghi")
> x <- 1:length(y)
> x
[1] 1 2 3

Note: The length() function returns the number of elements in a vector. This can be used
in conjunction with the : operator (section 1.11.3) to create a vector with the integers from
1 to the sample size. Observation numbers might also be set as case labels as opposed to
the row number (see names()).

1.4.16 Unique values
HELP example: see 1.13.2SAS

proc sort data=ds out=newds nodupkey;
by x1 ... xk;

run;

Note: The dataset newds contains all the variables in the dataset ds, but only one row for
each unique value across x1x2 . . . xk.

R
uniquevalues <- unique(x)
uniquevalues <- unique(data.frame(x1, ..., xk))

Note: The unique() function returns each of the unique values represented by the vector
or dataframe denoted by x.

1.4.17 Lagged variable

A lagged variable has the value of that variable in a previous row (typically the immediately
previous one) within that dataset. The value of lag for the first observation will be missing
(see 1.4.14).

SAS
data ...;

xlag1 = lag(x);
run;

or
data ...;

xlagk = lagk(x);
run;

Note: In the latter case, the variable xlagk contains the value of x from the kth preceding
observation. The value of k can be any integer less than 101: the first k observations will
have a missing value.

If executed conditionally, only observations with computed values are included. In other
words, the statement if (condition) then xlag1 = lag(x) results in the variable xlag1
containing the value of x from the most recently processed observation for which condition
was true. This is a common cause of confusion.

R
lag1 <- c(NA, x[1:(length(x)-1)])

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 23 — #43
�

�

�

�

�

�

1.5. MERGING, COMBINING, AND SUBSETTING DATASETS 23

Note: This expression creates a one observation lag, with a missing value in the first position,
and the first through second to last observation for the remaining entries. We can write a
function to create lags of more than one observation.
lagk <- function(x, k) {

len <- length(x)
if (!floor(k)==k) {

cat("k must be an integer")
} else if (k<1 | k>(len-1)) {

cat("k must be between 1 and length(x)-1")
} else {

return(c(rep(NA, k), x[1:(len-k)]))
}

}

> lagk(1:10, 5)
[1] NA NA NA NA NA 1 2 3 4 5

1.4.18 SQL

Structured Query Language (SQL) is a language for querying and modifying databases.
SAS supports access to SQL through proc sql, while in R the RMySQL, RSQLite or sqldf
packages can be used.

1.4.19 Perl interface

Perl is a high-level general purpose programming language [77]. SAS 9.2 supports Perl reg-
ular expressions in the data step via the prxparse, prxmatch, prxchange, prxparen, and
prxposn functions. Details on their use can be found in the on-line help: Contents; SAS
Products; Base SAS; SAS 9.2 Language Reference:Dictionary; Functions and CALL Rou-
tines under the names listed above. The RSPerl package provides a bidirectional interface
between Perl and R.

1.5 Merging, combining, and subsetting datasets

A common task in data analysis involves the combination, collation, and subsetting of
datasets. In this section, we review these techniques for a variety of situations.

1.5.1 Subsetting observations
HELP example: see 1.13.4SAS

data ...;
if x eq 1;

run;

or
data ...;

where x eq 1;
run;

or
data ...;
set ds (where= (x eq 1));
run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 24 — #44
�

�

�

�

�

�

24 CHAPTER 1. DATA MANAGEMENT

Note: These examples create a new dataset consisting of observations where x = 1. The if
statement has an implied “then output.” The where syntax also works within procedures to
limit the included observations to those that meet the condition, without creating a new
dataset; see 4.6.9.

R

smallds <- ds[x==1,]

Note: This example creates a subject of a dataframe consisting of observations where X = 1.
In addition, many functions allow specification of a subset=expression option to carry out
a procedure on observations that match the expression (see 5.6.5).

1.5.2 Random sample of a dataset

See also random number seed (1.10.9)
It is sometimes useful to sample a subset (here quantified as nsamp) of observations

without replacement from a larger dataset.

SAS
data ds2;
set ds;

order = uniform(0);
run;

proc sort data=ds2;
by order;

run;

data ds3;
set ds2;

if _n_ le nsamp;
run;

Note: Note that if the second data step is omitted, the observations have been randomly
reordered.

It is also possible to generate a random sample in a single data step by generating a
uniform random variate for each observation in the original data but using an if statement
to retain only those which meet a criteria which changes with the number retained.

R
permutation of a variable
newx <- sample(x, replace=FALSE)

permutation of a dataset
obs <- sample(1:dim(ds)[1], dim(ds)[1], replace=FALSE)
newds <- ds[obs,]

Note: By default, the sample() function in R takes a sample of all values (determined in
this case by determining the number of observations in ds), without replacement. This is
equivalent to a permutation of the order of values in the vector. The replace=TRUE option
can be used to override this (e.g., when bootstrapping, see section 2.1.8). Fewer values can
be sampled by specifying the size option.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 25 — #45
�

�

�

�

�

�

1.5. MERGING, COMBINING, AND SUBSETTING DATASETS 25

1.5.3 Convert from wide to long (tall) format
HELP example: see 4.6.9

Sometimes data are available in a different shape than that required for analysis. One
example of this is commonly found in repeated longitudinal measures studies. In this
setting it is convenient to store the data in a wide or multivariate format with one line per
subject, containing typically subject invariant factors (e.g., gender), as well as a column for
each repeated outcome. An example would be:

id female inc80 inc81 inc82
1 0 5000 5500 6000
2 1 2000 2200 3300
3 0 3000 2000 1000

where the income for 1980, 1981, and 1982 are included in one row for each id.
In contrast, SAS and R tools for repeated measures analyses (4.2.2) typically require a

row for each repeated outcome, such as

id year female inc
1 80 0 5000
1 81 0 5500
1 82 0 6000
2 80 1 2000
2 81 1 2200
2 82 1 3300
3 80 0 3000
3 81 0 2000
3 82 0 1000

In this section and in section (1.5.4) below, we show how to convert between these two
forms of this example data.

SAS
data long;
set wide;

array incarray [3] inc80 - inc82;
do year = 80 to 82;

inc = incarray[year - 79];
output;

end;
drop inc80 - inc82;

run;

or
data long;
set wide;

year=80; inc=inc80; output;
year=81; inc=inc81; output;
year=82; inc=inc82; output;
drop inc80 - inc82;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 26 — #46
�

�

�

�

�

�

26 CHAPTER 1. DATA MANAGEMENT

or
proc transpose data=wide out=long_i;

var inc80 - inc82;
by id female;

run;

data long;
set long_i;

year=substr(_name_, 4, 2)*1.0;
drop _name_;
rename col1=inc;

run;

Note: The year=substr() statement in the last data step is required if the value of year
must be numeric. The remainder of that step makes the desired variable name appear, and
removes extraneous information.

R
long <- reshape(wide, idvar="id", varying=list(names(wide)[3:5]),

v.names="inc", timevar="year", times=80:82, direction="long")

Note: The list of variables to transpose is provided in the list varying, creating year as the
time variable with values specified by times (see also library(reshape) for more flexible
dataset transformations).

1.5.4 Convert from long (tall) to wide format
HELP example: see 4.6.9

See also section 1.5.3 (reshape from wide to tall)

SAS
proc transpose data=long out=wide (drop=_name_) prefix=inc;

var inc;
id year;
by id female;

run;

Note: The (drop=_name_) option prevents the creation of an unneeded variable in the wide
dataset.

R
wide <- reshape(long, v.names="inc", idvar="id", timevar="year",

direction="wide")

Note: This example assumes that the dataset long has repeated measures on inc for subject
id determined by the variable year. See also library(reshape) for more flexible dataset
transformations.

1.5.5 Concatenate datasets

SAS
data newds;
set ds1 ds2;
run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 27 — #47
�

�

�

�

�

�

1.5. MERGING, COMBINING, AND SUBSETTING DATASETS 27

Note: The datasets ds1 and ds2 are assumed to previously exist. The newly created dataset
newds has as many rows as the sum of rows in ds1 and ds2, and as many columns as unique
variable names across the two input datasets.

R

newds <- rbind(ds1, ds2)

Note: The result of rbind() is a dataframe with as many rows as the sum of rows in ds1
and ds2. Data frames given as arguments to rbind() must have the same column names.
The similar cbind() function makes a dataframe with as many columns as the sum of the
columns in the input objects.

1.5.6 Sort datasets
HELP example: see 1.13.4SAS

proc sort data=ds;
by x1 ... xk;

run;

Note: The keyword descending can be inserted before any variable to sort that variable
from high to low (see also A.6.2).

R

sortds <- ds[order(x1, x2, ..., xk),]

Note: The R command sort() can be used to sort a vector, while order() can be used
to sort dataframes by selecting a new permutation of order for the rows. The decreasing
option can be used to change the default sort order (for all variables). The command
sort(x) is equivalent to x[order(x)]. As an alternative, a numeric variable can be reversed
by specifying -x1 instead of x1.

1.5.7 Merge datasets
HELP example: see 4.6.11

Merging datasets is commonly required when data on single units are stored in multiple
tables or datasets. We consider a simple example where variables id, year, female and
inc are available in one dataset, and variables id and maxval in a second. For this simple
example, with the first dataset given as:

id year female inc
1 80 0 5000
1 81 0 5500
1 82 0 6000
2 80 1 2000
2 81 1 2200
2 82 1 3300
3 80 0 3000
3 81 0 2000
3 82 0 1000

and the second given below.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 28 — #48
�

�

�

�

�

�

28 CHAPTER 1. DATA MANAGEMENT

id maxval
2 2400
1 1800
4 1900

The desired merged dataset would look like:

id year female inc maxval
1 1 81 0 5500 1800
2 1 80 0 5000 1800
3 1 82 0 6000 1800
4 2 82 1 3300 2400
5 2 80 1 2000 2400
6 2 81 1 2200 2400
7 3 82 0 1000 NA
8 3 80 0 3000 NA
9 3 81 0 2000 NA
10 4 NA NA NA 1900

in R, or equivalently, as below in SAS.

id year female inc maxval
1 1 81 0 5500 1800
2 1 80 0 5000 1800
3 1 82 0 6000 1800
4 2 82 1 3300 2400
5 2 80 1 2000 2400
6 2 81 1 2200 2400
7 3 82 0 1000 .
8 3 80 0 3000 .
9 3 81 0 2000 .
10 4 . . . 1900

SAS
proc sort data=ds1; by x1 ... xk;
run;

proc sort data=ds2; by x1 ... xk;
run;

data newds;
merge ds1 ds2;

by x1 ... xk;
run;

For example, the result desired in the note above can be created as follows, assuming
the two datasets are named ds1 and ds2:

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 29 — #49
�

�

�

�

�

�

1.5. MERGING, COMBINING, AND SUBSETTING DATASETS 29

proc sort data=ds1; by id; run;

proc sort data=ds2; by id; run;

data newds;
merge ds1 ds2;

by id;
run;

Note: The by statement in the data step describes the matching criteria, in that every
observation with a unique set of X1 through Xk in ds1 will be matched to every observation
with the same set of X1 through Xk in ds2. The output dataset will have as many columns
as there are uniquely named variables in the input datasets, and as many rows as unique
values across X1 through Xk. The by statement can be omitted, which results in the nth
row of each dataset contributing to the nth row of the output dataset, though this is rarely
desirable. If matched rows have discrepant values for a commonly-named variable, the value
in the later-named dataset is used in the output dataset.

R
newds <- merge(ds1, ds2, by=id, all=TRUE)

Note: The all option specifies that extra rows will be added to the output for any rows
that have no matches in the other dataset. Multiple variables can be specified in the by
option; if this is left out all variables in both datasets are used: see help(merge).

1.5.8 Drop variables in a dataset
HELP example: see 1.13.1

It is often desirable to prune extraneous variables from a dataset to simplify analyses.

SAS
data ds;

...
keep x1 xk;
...

run;

or

data ds;
set old_ds (keep=x1 xk);
...
run;

Note: The complementary syntax drop can also be used, both as a statement in the data
step and as a data statement option.

R

ds[,c("x1", "xk")]

Note: The above example created a new dataframe consisting of the variables x1 and xk.
An alternative is to specify the variables to be excluded (in this case the second):

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 30 — #50
�

�

�

�

�

�

30 CHAPTER 1. DATA MANAGEMENT

ds[,names(ds)[-2]]

or

ds[,-2]

More sophisticated ways of listing the variables to be kept are available. For example, the
command ds[,grep("x1|ˆpat", names(ds))] would keep x1 and all variables starting
with pat (see also 1.4.6).

1.6 Date and time variables

For SAS, variables in the date formats are integers counting the number of days since
January 1, 1960. In R, the date functions return a Date class that represents the number of
days since January 1, 1970. The R function as.numeric() can be used to create a numeric
variable with the number of days since 1/1/1970 (see also the Chron package).

1.6.1 Create date variable

SAS
data ...;

dayvar = input("04/29/2010", mmddyy10.);
todays_date = today();

run;

Note: dayvar is the integer number of days between January 1, 1960 and April 29, 2010.
The value of todays_date is the integer number of days between January 1, 1960 and the
day the current instance of SAS was opened.

R
dayvar <- as.Date("2010-04-29")
todays_date <- as.Date(Sys.time())

Note: The return value of as.Date() is a Date class object. If converted to numeric
dayvar, it represents the number of days between January 1, 1970 and April 29, 2010,
while todays_date is the integer number of days since January 1, 1970.

1.6.2 Extract weekday

SAS
data ...;

wkday = weekday(datevar);
run;

Note: The weekday function returns an integer representing the weekday, 1=Sunday, . . .,
7=Saturday.

R
wkday <- weekdays(datevar)

Note: wkday contains a string with name of the weekday of the Date object.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 31 — #51
�

�

�

�

�

�

1.6. DATE AND TIME VARIABLES 31

1.6.3 Extract month

SAS
data ...;

monthval = month(datevar);
run;

Note: The month function returns an integer representing the month, 1=January, . . .,
12=December.

R

monthval <- months(datevar)

Note: The function months() returns a string with the name of the month of the Date
object.

1.6.4 Extract year

SAS
data ...;

yearval = year(datevar);
run;

Note: The variable yearval is years counted in the Common Era (CE, also called AD).

R
yearval <- substr(as.POSIXct(datevar), 1, 4)

Note: The as.POSIXct() function returns a string representing the date, with the first four
characters corresponding to the year.

1.6.5 Extract quarter

SAS
data ...;

qtrval = qrt(datevar);
run;

Note: The return values for qtrval are 1, 2, 3, or 4.

R
qrtval <- quarters(datevar)

Note: The function quarters() returns a string representing the quarter of the year (e.g.,
"Q1" or "Q2") given by the Date object.

1.6.6 Create time variable

See also 1.7.1 (timing commands)

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 32 — #52
�

�

�

�

�

�

32 CHAPTER 1. DATA MANAGEMENT

SAS
data ...;

timevar_1960 = datetime();
timevar_midnight = time();

run;

Note: The variable timevar_1960 contains the number of seconds since midnight, December
31, 1959. The variable timevar_midnight contains the number of seconds since the most
recent midnight.

R
> arbtime <- as.POSIXlt("2010-04-29 17:15:45 NZDT")
> arbtime
[1] "2010-04-29 17:15:45"
> Sys.time()
[1] "2010-04-01 10:12:11 EST"

Note: The objects arbtime and now can be compared with the subtraction operator to
monitor elapsed time.

1.7 Interactions with the operating system

1.7.1 Timing commands

SAS
options stimer;
options fullstimer;

Note: These options request that a subset (stimer) or all available (fullstimer) statistics
are reported in the SAS log. We are not aware of a simple way to get the statistics except
by reading the log.

R
system.time(expression)

Note: The expression (e.g., call to any user or system defined function, see B.4.1) given
as argument to the system.time() function is evaluated, and the user, system, and total
(elapsed) time is returned.

1.7.2 Execute command in operating system

SAS
x;

or

x 'OS command';

or

data ...;
call system("OS command");

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 33 — #53
�

�

�

�

�

�

1.7. INTERACTIONS WITH THE OPERATING SYSTEM 33

Note: An example command statement would be x ’dir’. The statement consisting of just
x will open a command window. Related statements are x1, x2, . . . , x9, which allow up to
9 separate operating system tasks to be executed simultaneously.

The x command need not be in a data step, and cannot be executed conditionally. In
other words, if it appears as a consequence in an if statement, it will be executed regardless
of whether or not the test in the if statement is true or not. Use the call system statement
as shown to execute conditionally. This syntax to open a command window may not be
available in all operating systems.

R
system("ls")

Note: The command ls lists the files in the current working directory (see 1.7.5 to capture
this information). When R is running under Windows, the shell() command can be used
to start a command window.

1.7.3 Find working directory

SAS
x;

Note: This will open a command window; the current directory in this window is the
working directory. The working directory can also be found using the method shown in
section (1.7.5) using the cd command in Windows or the pwd command in Linux.

The current directory is displayed by default in the status line at the bottom of the SAS
window.

R
getwd()

Note: The command getwd() displays the current working directory.

1.7.4 Change working directory

SAS

x 'cd dir_location';

Note: This can also be done interactively by double-clicking the display of the current
directory in the status line at the bottom of the SAS window (note that this applies for
Windows installations, for other operating systems, see the on-line help: Contents; Using
SAS software in Your Operating Environment; SAS 9.2 companion for <your OS>; Running
SAS under <your OS>).

R

setwd("dir_location")

Note: The command setwd() changes the current working directory to the (absolute or
relative) pathname given as argument. This can also be done interactively under Windows
and Mac OS X by selecting the Change Working Directory option under the Misc menu.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 34 — #54
�

�

�

�

�

�

34 CHAPTER 1. DATA MANAGEMENT

1.7.5 List and access files

SAS
filename filehandle pipe 'dir /b'; /* Windows */
filename filehandle pipe 'ls'; /* Unix or Mac OS X */

data ds;
infile filehandle truncover;
input x $20.;

run;

Note: The pipe is a special file type which passes the characters inside the single quote to
the operating system when read using the infile statement, then reads the result. The
above code lists the contents of the current directory. The dataset ds contains a single
character variable x with the file names. The file handle can be no longer than 8 characters.

R

list.files()

Note: The list.files() command returns a character vector of filenames in the current
directory (by default). Recursive listings are also supported. The function file.choose()
provides an interactive file browser, and can be given as an argument to functions such as
read.table() (section 1.1.2) or read.csv() (section 1.1.4). Related file operation functions
include file.access(), file.info() and files().

1.8 Mathematical functions

1.8.1 Basic functions

SAS
data ...;

minx = min(x1, ..., xk);
maxx = max(x1, ..., xk);
meanx = mean(x1, ..., xk);
stddevx = std(x1, ..., xk);
sumx = sum(x1, ..., xk)
absolutevaluex = abs(x);
etothex = exp(x);
xtothey = x**y;
squareroottx = sqrt(x);
naturallogx = log(x);
logbase10x = log10(x);
logbase2x = log2(x);

run;

Note: The first five functions operate on a row-by-row basis within SAS (the equivalent
within R operates on a column-wise basis).

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 35 — #55
�

�

�

�

�

�

1.8. MATHEMATICAL FUNCTIONS 35

R
minx <- min(x)
maxx <- max(x)
meanx <- mean(x)
stddevx <- sd(x)
absolutevaluex <- abs(x)
squarerootx <- sqrt(x)
etothex <- exp(x)
xtothey <- x^y
naturallogx <- log(x)
logbase10x <- log10(x)
logbase2x <- log2(x)
logbasearbx = log(x, base=42)

Note: The first five functions operate on a column-wise basis in R (the equivalent within
SAS operates on a row-wise basis).

1.8.2 Trigonometric functions

SAS
data ...;

sinx = sin(x);
sinpi = sin(constant('PI'));
cosx = cos(x);
tanx = tan(x);
arccosx = arcos(x);
arcsinx = arsin(x);
arctanx = atan(x);
arctanxy = atan2(x, y);

run;

R
sin(pi)
cos(0)
tan(pi/4)
acos(x)
asin(x)
atan(x)
atan2(x, y)

1.8.3 Special functions

SAS
data ...;

betaxy = beta(x, y);
gammax = gamma(x);
factorialn = fact(n);
nchooser = comb(n, r);
npermr = perm(n, r);

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 36 — #56
�

�

�

�

�

�

36 CHAPTER 1. DATA MANAGEMENT

R
betaxy <- beta(x, y)
gammax <- gamma(x)
factorialn <- factorial(n)
nchooser <- choose(n, r)

library(gtools)
nchooser <- length(combinations(n, r)[,1])
npermr <- length(permutations(n, r)[,1])

Note: The combinations() and permutations() functions return a list of possible combi-
nations and permutations: the count equivalent to the SAS functions above can be calcu-
lated through use of the length() function given the first column of the output.

1.8.4 Integer functions

See also 1.2.5 (rounding and number of digits to display)

SAS
data ...;

nextintx = ceil(x);
justintx = floor(x);
roundx = round(x1, x2);
roundint = round(x, 1);
movetozero = int(x);

run;

Note: The value of roundx is X1, rounded to the nearest X2. The value of movetozero is
the same as justint if x > 0 or nextint if x < 0.

R
nextintx <- ceiling(x)
justintx <- floor(x)
round2dec <- round(x, 2)
roundint <- round(x)
keep4sig <- signif(x, 4)
movetozero <- trunc(x)

Note: The second parameter of the round() function determines how many decimal places
to round. The value of movetozero is the same as justint if x > 0 or nextint if x < 0.

1.8.5 Comparisons of floating point variables

Because certain floating point values of variables do not have exact decimal equivalents,
there may be some error in how they are represented on a computer. For example, if the
true value of a particular variable is 1/7, the approximate decimal is 0.1428571428571428.
For some operations (for example, tests of equality), this approximation can be problematic.

SAS
data ds;

x1 = ((1/7) eq .142857142857);
x2 = (fuzz((1/7) - .142857142857) eq 0);

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 37 — #57
�

�

�

�

�

�

1.8. MATHEMATICAL FUNCTIONS 37

Note: In the above example, x1 = 0, x2 = 1. If the argument to fuzz is less than 10−12

then the result is the nearest integer.

R
> all.equal(0.1428571, 1/7)
[1] "Mean relative difference: 3.000000900364093e-07"
> all.equal(0.1428571, 1/7, tolerance=0.0001)
[1] TRUE

Note: The tolerance option for the all.equal() function determines how many decimal
places to use in the comparison of the vectors or scalars (the default tolerance is set to the
underlying lower level machine precision).

1.8.6 Derivative

Rudimentary support for finding derivatives is available within R. These functions are par-
ticularly useful for high-dimensional optimization problems (see 1.8.7).
R
D(expression(x^3), "x")

Note: Second (or higher order) derivatives can be found by repeatedly applying the D func-
tion with respect to X. This function (as well as deriv()) are useful in numerical opti-
mization (see the nlm(), optim() and optimize() functions).

1.8.7 Optimization problems

SAS and R can be used to solve optimization (maximization) problems. As an extremely
simple example, consider maximizing the area of a rectangle with perimeter equal to 20.
Each of the sides can be represented by x and 10-x, with area of the rectangle equal to
x ∗ (10 − x).

SAS
proc iml;

start f_area(x);
f = x*(10-x);
return (f);
finish f_area;
con = {0, 10};
x = {2} ;
optn = {1, 2};
call nlpcg(rc, xres, "f_area", x, optn, con);

quit;

Note: The above uses conjugate gradient optimization. Several additional optimization
routines are provided in proc iml (see the on-line help: Contents; SAS Products; SAS/IML
User’s Guide; Nonlinear Optimization Examples).

R
f <- function(x) { return(x*(10-x)) }
optimize(f, interval=c(0, 10), maximum=TRUE)

Note: Other optimization functions available within R include nlm(), uniroot(), optim()
and constrOptim() (see also the CRAN Optimization and Mathematical Programming
Task View).

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 38 — #58
�

�

�

�

�

�

38 CHAPTER 1. DATA MANAGEMENT

1.9 Matrix operations

Matrix operations are often needed in statistical analysis. For SAS, proc iml (a separate
product from SAS/STAT), is needed to treat data as a matrix. Within R, matrices can be
created using the matrix() function (see B.4.4): matrix operations are then immediately
available.

Here, we briefly outline the process needed to read a SAS dataset into SAS/IML as a
matrix, perform some function, then make the result available as a SAS native dataset.
Throughout this section, we use capital letters to emphasize that a matrix is described,
though proc iml is not case-sensitive (unlike R).
proc iml;

use ds;
read all var(x1 ... xk) into Matrix_x;
... /* perform a function of some sort */
print Matrix_x; /* print the matrix to the output window */
create newds from Matrix_x;
append from Matrix_x;

quit;

Note: Calls to proc iml end with a quit statement, rather than a run statement.

In addition to the routines described below, the Matrix library in R is particularly useful
for manipulation of large as well as sparse matrices.

1.9.1 Create matrix

In this entry, we demonstrate creating a 2 × 2 matrix consisting of the first four nonzero
integers:

A =
(

1 2
3 4

)
.

SAS
proc iml;

A = {1 2, 3 4};
quit;

R
A <- matrix(c(1, 2, 3, 4), 2, 2, byrow=TRUE)

1.9.2 Transpose matrix

SAS
proc iml;

A = {1 2, 3 4};
transA = A`;
transA_2 = t(A);

quit;

Note: Both transA and transA_2 contain the transpose of A.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 39 — #59
�

�

�

�

�

�

1.9. MATRIX OPERATIONS 39

R
A <- matrix(c(1, 2, 3, 4), 2, 2, byrow=TRUE)
transA <- t(A)

1.9.3 Invert matrix

SAS
proc iml;

A = {1 2, 3 4};
Ainv = inv(A);

quit;

R
A <- matrix(c(1, 2, 3, 4), 2, 2, byrow=TRUE)
Ainv <- solve(A)

1.9.4 Create submatrix

SAS
proc iml;

A = {1 2 3 4, 5 6 7 8, 9 10 11 12};
Asub = a[2:3, 3:4];

quit;

R
A <- matrix(1:12, 3, 4, byrow=TRUE)
Asub <- A[2:3, 3:4]

1.9.5 Create a diagonal matrix

SAS
proc iml;

A = {1 2, 3 4};
diagMat = diag(A);

quit;

Note: For matrix A, this results in a matrix with the same diagonals, but with all off-
diagonals set to 0. For vector argument, the function generates a matrix with the vector
values as the diagonals and all off-diagonals 0.

R
A <- matrix(c(1, 2, 3, 4), 2, 2, byrow=TRUE)
diagMat <- diag(c(1, 4)) # argument is a vector
diagMat <- diag(diag(A)) # A is a matrix

Note: For vector argument, the diag() function generates a matrix with the vector values
as the diagonals and all off-diagonals 0. For matrix A, the diag() function creates a vector
of the diagonal elements (see 1.9.6); a diagonal matrix with these diagonal entries, but all
off-diagonals set to 0 can be created by running the diag() with this vector as argument.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 40 — #60
�

�

�

�

�

�

40 CHAPTER 1. DATA MANAGEMENT

1.9.6 Create vector of diagonal elements

SAS
proc iml;

A = {1 2, 3 4};
diagVals = vecdiag(A);

quit;

Note: The vector diagVals contains the diagonal elements of matrix A.

R
A <- matrix(c(1, 2, 3, 4), 2, 2, byrow=TRUE)
diagVals <- diag(A)

1.9.7 Create vector from a matrix

SAS
proc iml;

A = {1 2, 3 4};
newvec = shape(A, 1);

quit;

Note: This makes a row vector from all the values in the matrix.

R
A <- matrix(c(1, 2, 3, 4), 2, 2, byrow=TRUE)
newvec <- c(A)

1.9.8 Calculate determinant

SAS
proc iml;

A = {1 2, 3 4};
detval = det(A);

quit;

R
A <- matrix(c(1, 2, 3, 4), 2, 2, byrow=TRUE)
detval <- det(A)

1.9.9 Find eigenvalues and eigenvectors

SAS
proc iml;

A = {1 2, 3 4};
Aeval = eigval(A);
Aevec = eigvec(A);

quit;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 41 — #61
�

�

�

�

�

�

1.10. PROBABILITY DISTRIBUTIONS AND RANDOM NUMBER GENERATION 41

R
A <- matrix(c(1, 2, 3, 4), 2, 2, byrow=TRUE)
Aev <- eigen(A)
Aeval <- Aev$values
Aevec <- Aev$vectors

Note: The eigen() function in R returns a list consisting of the eigenvalues and eigenvectors,
respectively, of the matrix given as argument.

1.9.10 Calculate singular value decomposition

The singular value decomposition of a matrix A is given by A = U ∗ diag(Q) ∗ V T where
UT U = V T V = V V T = I and Q contains the singular values of A.

SAS
proc iml;

A = {1 2, 3 4};
call svd(U, Q, V, A);

quit

R
A <- matrix(c(1, 2, 3, 4), 2, 2, byrow=TRUE)
svdres <- svd(A)
U <- svdres$u
Q <- svdres$d
V <- svdres$v

Note: The svd() function returns a list with components corresponding to a vector of
singular values, a matrix with columns corresponding to the left singular values, and a
matrix with columns containing the right singular values.

1.10 Probability distributions and random number
generation

SAS and R can calculate quantiles and cumulative distribution values as well as generate
random numbers for a large number of distributions. Random variables are commonly
needed for simulation and analysis. SAS includes comprehensive random number generation
through the rand function, while R provides a series of r-commands.

Both packages allow specification of a seed for the random number generator. This is
important to allow replication of results (e.g., while testing and debugging). Information
about random number seeds can be found in section 1.10.9.

Table 1.1 summarizes support for quantiles, cumulative distribution functions, and ran-
dom numbers. More information on probability distributions within R can be found in the
CRAN Probability Distributions Task View.

1.10.1 Probability density function

Both R and SAS use similar syntax for a variety of distributions. Here we use the Normal
distribution as an example; others are shown in Table 1.1 (page 43).

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 42 — #62
�

�

�

�

�

�

42 CHAPTER 1. DATA MANAGEMENT

SAS
data ...;

y = cdf('NORMAL', 1.96, 0, 1);
run;

R
y <- pnorm(1.96, 0, 1)

1.10.2 Quantiles of a probability density function

Both R and SAS use similar syntax for a variety of distributions. Here we use the Normal
distribution as an example; others are shown in Table 1.1 (p. 43).

SAS
data ...;

y = quantile('NORMAL', .975, 0, 1);
run;

R
y <- qnorm(.975, 0, 1)

1.10.3 Uniform random variables

SAS
data ...;

x1 = uniform(seed);
x2 = rand('UNIFORM');

run;

Note: The variables x1 and x2 are uniform on the interval (0,1). The ranuni() function is
a synonym for uniform().

R

x <- runif(n, 0, 1)

Note: The arguments specify the number of variables to be created and the range over which
they are distributed.

1.10.4 Multinomial random variables

SAS
data ...;

x1 = rantbl(seed, p1, p2, ..., pk);
x2 = rand('TABLE', p1, p2, ..., pk);

run;

Note: The variables x1 and x2 take the value i with probability pi and value k + 1 with
value 1 − ∑k

i=1 pi.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 43 — #63
�

�

�

�

�

�

1.10. PROBABILITY DISTRIBUTIONS AND RANDOM NUMBER GENERATION 43

Table 1.1: Quantiles, probabilities, and pseudo-random number generation: distributions
available in SAS and R

Distribution R DISTNAME SAS DISTNAME
Beta beta BETA

Beta-binomial betabin∗

binomial binom BINOMIAL
Cauchy cauchy CAUCHY

chi-square chisq CHISQUARE
exponential exp EXPONENTIAL

F f F
gamma gamma GAMMA

geometric geom GEOMETRIC
hypergeometric hyper HYPERGEOMETRIC
inverse Normal inv.gaussian∗ IGAUSS+

Laplace laplace∗ LAPLACE
logistic logis LOGISTIC

lognormal lnorm LOGNORMAL
negative binomial nbinom NEGBINOMIAL

normal norm NORMAL
Poisson pois POISSON

Student’s t t T
Uniform unif UNIFORM
Weibull weibull WEIBULL

Note: For R, prepend d to the command to compute quantiles of a distribution
dDISTNAME(xvalue, parm1, ..., parmn), p for the cumulative distribution function,
pDISTNAME(xvalue, parm1, ..., parmn), q for the quantile function qDISTNAME(prob,
parm1, ..., parmn), and r to generate random variables rDISTNAME(nrand, parm1,
..., parmn) where in the last case a vector of nrand values is the result. For SAS, ran-
dom variates can be generated from the rand function: rand(’DISTNAME’, parm1, ...,
parmn), the areas to the left of a value via the cdf function: cdf(’DISTNAME’, quantile,
parm1, ..., parmn), and the quantile associated with a probability (the inverse CDF)
via the quantile function: quantile(’DISTNAME’, probability, parm1, ..., parmn),
where the number of parms varies by distribution. Details are available through the on-line
help: Contents; SAS Products; Base SAS; SAS 9.2 Language Reference: Dictionary; Dic-
tionary of Language Elements; Functions and CALL Routines; RAND Function. Note that
in this instance SAS is case-sensitive.
∗ The betabin(), inv.gaussian(), and laplace() families of distributions are available
using library(VGAM).
+ The inverse normal is not available in the rand function; inverse Normal variates can be
generated by taking the inverse of Normal random variates.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 44 — #64
�

�

�

�

�

�

44 CHAPTER 1. DATA MANAGEMENT

R
library(Hmisc)
x <- rMultinom(matrix(c(p1, p2, ..., pr), 1, r), n)

Note: The function rMultinom() from the Hmisc library allows the specification of the
desired multinomial probabilities (

∑
r pr = 1) as a 1 × r matrix. The final parameter is the

number of variates to be generated See also rmultinom() in the stats package).

1.10.5 Normal random variables
HELP example: see 1.13.5SAS

data ...;
x1 = normal(seed);
x2 = rand('NORMAL', mu, sigma);

run;

Note: The variable X1 is a standard Normal (μ = 0 and σ = 1), while X2 is Normal with
specified mean and standard deviation. The function rannor() is a synonym for normal().

R
x1 <- rnorm(n)
x2 <- rnorm(n, mu, sigma)

Note: The arguments specify the number of variables to be created and (optionally) the
mean and standard deviation (default μ = 0 and σ = 1).

1.10.6 Multivariate normal random variables

For the following, we first create a 3× 3 covariance matrix. Then we generate 1000 realiza-
tions of a multivariate Normal vector with the appropriate correlation or covariance.

SAS
data Sigma (type=cov);
infile cards;
input _type_ $ _Name_ $ x1 x2 x3;
cards;
cov x1 3 1 2
cov x2 1 4 0
cov x3 2 0 5
;
run;

proc simnormal data=sigma out=outtest2 numreal=1000;
var x1 x2 x3;

run;

Note: The type=cov option to the data step defines Sigma as a special type of SAS dataset
which contains a covariance matrix in the format shown. A similar type=corr dataset can
be used to generate using a correlation matrix instead of a covariance matrix.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 45 — #65
�

�

�

�

�

�

1.10. PROBABILITY DISTRIBUTIONS AND RANDOM NUMBER GENERATION 45

R
library(MASS)
mu <- rep(0, 3)
Sigma <- matrix(c(3, 1, 2,

1, 4, 0,
2, 0, 5), nrow=3)

xvals <- mvrnorm(1000, mu, Sigma)
apply(xvals, 2, mean)

or
rmultnorm <- function(n, mu, vmat, tol=1e-07)
a function to generate random multivariate Gaussians
{

p <- ncol(vmat)
if (length(mu)!=p)

stop("mu vector is the wrong length")
if (max(abs(vmat - t(vmat))) > tol)

stop("vmat not symmetric")
vs <- svd(vmat)
vsqrt <- t(vs$v %*% (t(vs$u) * sqrt(vs$d)))
ans <- matrix(rnorm(n * p), nrow=n) %*% vsqrt
ans <- sweep(ans, 2, mu, "+")
dimnames(ans) <- list(NULL, dimnames(vmat)[[2]])
return(ans)

}
xvals <- rmultnorm(1000, mu, Sigma)
apply(xvals, 2, mean)

Note: The returned object xvals, of dimension 1000 × 3, is generated from the variance
covariance matrix denoted by Sigma, which has first row and column (3,1,2). An arbitrary
mean vector can be specified using the c() function.

Several techniques are illustrated in the definition of the rmultnorm function. The first
lines test for the appropriate arguments, and return an error if the conditions are not satis-
fied. The singular value decomposition (see 1.9.10) is carried out on the variance covariance
matrix, and the sweep function is used to transform the univariate normal random variables
generated by rnorm to the desired mean and covariance. The dimnames() function applies
the existing names (if any) for the variables in vmat, and the result is returned.

1.10.7 Exponential random variables

SAS
data ...;

x1 = ranexp(seed);
x2 = rand('EXPONENTIAL');

run;

Note: The expected value of both X1 and X2 is 1: for exponentials with expected value k,
multiply the generated value by k.

R
x <- rexp(n, lambda)

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 46 — #66
�

�

�

�

�

�

46 CHAPTER 1. DATA MANAGEMENT

Note: The arguments specify the number of variables to be created and (optionally) the
inverse of the mean (default λ = 1).

1.10.8 Other random variables
HELP example: see 1.13.5

The list of probability distributions supported within SAS and R can be found in Table 1.1,
page 43. In addition to these distributions, the inverse probability integral transform can
be used to generate arbitrary random variables with invertible cumulative density function
F (exploiting the fact that F−1 ∼ U(0, 1)). As an example, consider the generation of
random variates from an exponential distribution with rate parameter λ, where F (X) =
1−exp(−λX) = U . Solving for X yields X = − log(1−U)/λ. If we generate a Uniform(0,1)
variable, we can use this relationship to generate an exponential with the desired rate
parameter.

SAS
data ds;

lambda = 2;
uvar = uniform(42);
expvar = -1 * log(1-uvar)/lambda;

run;

R
lambda <- 2
expvar <- -log(1-runif(1))/lambda

1.10.9 Setting the random number seed

SAS includes comprehensive random number generation through the rand function. For
variables created this way, an initial seed is selected automatically by SAS based on the
system clock. Sequential calls use a seed derived from this initial seed. To generate a
replicable series of random variables, use the call streaminit function before the first call
to rand.

SAS

call streaminit(42);

Note: A set of separate SAS functions for random number generation includes normal,
ranbin, rancau, ranexp, rangam, rannor, ranpoi, rantbl, rantri, ranuni, and uniform.
For these functions, calling with an argument of (0) is equivalent to calling the rand function
without first running call streaminit; an initial seed is generated from the system clock.
Calling the same functions with an integer greater than 0 as argument is equivalent to
running call streaminit before an initial use of rand. In other words, this will result
in a series of variates based on the first specified integer. Note that call streaminit or
specifying an integer to one of the specific functions need only be performed once per data
step; all seeds within that data step will be based on that seed.

In R, the default behavior is a seed based on the system clock. To generate a replicable
series of variates, first run set.seed(seedval) where seedval is a single integer for the
default “Mersenne-Twister” random number generator. For example:

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 47 — #67
�

�

�

�

�

�

1.11. CONTROL FLOW, PROGRAMMING, AND DATA GENERATION 47

R
set.seed(42)
set.seed(Sys.time())

Note: More information can be found using help(.Random.seed).

1.11 Control flow, programming, and data generation

Programming is an area where SAS and R are quite different. Here we show some basic
aspects of programming. We include parallel code for each language, while noting that some
actions have no straightforward analogue in the other language.

1.11.1 Looping
HELP example: see 6.1.2SAS

data;
do i = i1 to i2;

x = normal(0);
output;

end;
run;

Note: The above code generates a new dataset with i2 − i1 + 1 standard Normal variates,
with seed based on the system clock (1.10.5). The generic syntax for looping includes three
parts: 1) a do varname = val1 to val2 statement; 2) the statements to be executed
within the loop; 3) an end statement. As with all programming languages, users should be
careful about modifying the index during processing. Other options include do while and
do until. To step values of i by values other than 1, use statements such as do i = i1
to i2 by byval. To step across specified values, use statements like do k1, ... , kn.

R
x <- numeric(i2-i1+1) # create placeholder
for (i in 1:length(x)) {

x[i] <- rnorm(1) # this is slow and inefficient!
}

or (preferably)

x <- rnorm(i2-i1+1) # this is far better

Note: Most tasks in R that could be written as a loop are often dramatically faster if they
are encoded as a vector operation (as in the second and preferred option above). Examples
of situations where loops in R are particularly useful can be found in sections 3.1.6 and
6.1.2. More information on control structures for looping and conditional processing can be
found in help(Control).

1.11.2 Conditional execution
HELP example: see 1.13.3 (SAS), 3.7.5 and 5.6.6 (R)SAS

data ds;
if expression1 then expression2 else expression3;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 48 — #68
�

�

�

�

�

�

48 CHAPTER 1. DATA MANAGEMENT

or
if expression1 then expression2;
else if expression3 then expression4;
...
else expressionk;

or
if expression1 then do;

...;
end;

else if expression2 then expression3;
...

Note: There is no limit on the number of conditions tested in the else statements, which
always refer back to the most recent if statement. Once a condition in this sequence is met,
the remaining conditions are not tested. Listing conditions in decreasing order of occurrence
will therefore result more efficient code.

The then code is executed if the expression following the if has a nonmissing, non-
zero value. So, for example, the statement if 1 then y = x**2 is valid syntax, equivalent
to the statement y=x**2. Good programming style is to make each tested expression be
a logical test, such as x eq 1 returning 1 if the expression is true and 0 otherwise. SAS
includes mnemonics lt, le, eq, ge, gt, and ne for <, ≤, =, ≥, >, and �=, respectively. The
mnemonic syntax cannot be used for assignment, and it is recommended style to reserve =
for assignment and use only the mnemonics for testing.

The do-end block is the equivalent of { } in the R code below. Any group of data
step statements can be included in a do-end block.

R
if (expression1) { expression2 }

or

if (expression1) { expression2 } else { expression3 }

or

ifelse(expression, x, y)

Note: The if statement, with or without else, tests a single logical statement; it is not
an elementwise (vector) function. If expression1 evaluates to TRUE, then expression2 is
evaluated. The ifelse() function operates on vectors and evaluates the expression given
as expression and returns x if it is TRUE and y otherwise (see also comparisons, B.4.2). An
expression can include multi-command blocks of code (in brackets).

1.11.3 Sequence of values or patterns
HELP example: see 1.13.5

It is often useful to generate a variable consisting of a sequence of values (e.g., the integers
from 1 to 100) or a pattern of values (1 1 1 2 2 2 3 3 3). This might be needed to generate
a variable consisting of a set of repeated values for use in a simulation or graphical display.

As an example, we demonstrate generating data from a linear regression model of the
form:

E[Y |X1, X2] = β0 + β1X1 + β2X2, V ar(Y |X) = 3, Corr(X1, X2) = 0.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 49 — #69
�

�

�

�

�

�

1.11. CONTROL FLOW, PROGRAMMING, AND DATA GENERATION 49

SAS
data ds;

do x = 1 to nvals;
...
end;

run;

Note: The following code implements the model described above for n = 200. The value 42
below is an arbitrary seed (1.10.9) [1] used for random number generation. The datasets
ds1 and ds2 will be identical. However such values are generated, it would be wise to use
proc freq (2.3.1) to check whether the intended results were achieved.

data ds1;
beta0 = -1; beta1 = 1.5; beta2 = .5; mse = 3;

/* note multiple statements on previous line */
do x1 = 1 to 2;

do x2 = 1 to 2;
do obs = 1 to 50;

y = beta0 + beta1*x1 + beta2*x2 + normal(42)*mse;
output;

end;
end;

end;
run;

or
data ds2;

beta0 = -1; beta1 = 1.5; beta2 = .5; mse = 3;
do i = 1 to 200;

x1 = (i gt 100) + 1;
x2 = (((i gt 50) and (i le 100)) or (i gt 150)) + 1;
y = beta0 + beta1*x1 + beta2*x2 + normal(42)*mse;
output;

end;
run;

R
generate
seq(from=i1, to=i2, length.out=nvals)
seq(from=i1, to=i2, by=1
seq(i1, i2)
i1:i2

rep(value, times=nvals)

or

rep(value, each=nvals)

Note: The seq function creates a vector of length val if the length.out option is speci-
fied. If the by option is included, the length is approximately (i2-i1)/byval. The i1:i2
operator is equivalent to seq(from=i1, to=i2, by=1). The rep function creates a vector
of length nvals with all values equal to value, which can be a scalar, vector, or list. The
each option repeats each element of value nvals times. The default is times.

The following code implements the model described above for n = 200.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 50 — #70
�

�

�

�

�

�

50 CHAPTER 1. DATA MANAGEMENT

> n <- 200
> x1 <- rep(c(0,1), each=n/2) # x1 resembles 0 0 0 ... 1 1 1
> x2 <- rep(c(0,1), n/2) # x2 resembles 0 1 0 1 ... 0 1
> beta0 <- -1; beta1 <- 1.5; beta2 <- .5;
> mse <- 3
> table(x1, x2)

x2
x1 0 1
0 50 50
1 50 50

> y <- beta0 + beta1*x1 + beta2*x2 + rnorm(n, 0, mse)
> lm(y ~ x1 + x2)

1.11.4 Referring to a range of variables
HELP example: see 1.13.3

For functions such as mean() it is often desirable to list variables to be averaged without
listing them all by name. SAS provides two ways of doing this. First, variables stored
adjacently can be referred to as a range vara - - varb (with two hyphens). Variables with
sequential numerical suffices can be referred to as a range varname1 - varnamek (with a
single hyphen) regardless of the storage location. The key thing to bear in mind is that
the part of the name before the number must be identical for all variables. This shorthand
syntax also works in procedures.

No straightforward equivalent exists in R, though variables stored adjacently in a dataframe
can be referred using indexing by their column number.

SAS
data ...;

meanadjacentx = mean(of x1 -- xk);
meannamedx = mean(of x1 - xk);

run;

Note: The former code will return the mean of all the variables stored between x1 and xk.
The latter will return the mean of x1 . . . xk, if they all exist.

1.11.5 Perform an action repeatedly over a set of variables
HELP example: see 1.13.3, 4.6.9

It is often necessary to perform a given function for a series of variables. Here the square
of each of a list of variables is calculated as an example.

In SAS, this can be accomplished using arrays.

SAS
data ...;

array arrayname1 [arraylen] x1 x2 ... xk;
array arrayname2 [arraylen] z1 ... zk;
do i = 1 to arraylen;

arrayname2[i] = arrayname1[i]**2;
end;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 51 — #71
�

�

�

�

�

�

1.12. FURTHER RESOURCES 51

Note: In the above example, zi = x2
i , i = 1 . . . k, for every observation in the dataset. The

variable arraylen is an integer. It can be replaced by ’*’, which implies that the dimension
of the array is to be calculated automatically by SAS from the number of elements. Elements
(variables in the array) are listed after the brackets. Arrays can also be multidimensional,
when multiple dimensions are specified (separated by commas) within the brackets. This
can be useful, for example, when variables contain a matrix for each observation in the
dataset.

Variables can be created by definition in the array statement, meaning that in the
above code, the variable x2 need not exist prior to the first array statement. The function
dim(arrayname1) returns the number of elements in the array, and can be used in place of
the variable arraylen to loop over arrays declared with the ‘*’ syntax.

R
l1 <- c("x1", "x2", ..., "xk")
l2 <- c("z1", "z2", ..., "zk")
for (i in 1:length(l1)) {

assign(l2[i], eval(as.name(l1[i]))^2)
}

Note: It is not straightforward to refer to objects within R without evaluating those objects.
Assignments to R objects given symbolically can be made using the assign() function. Here
a nonobvious use of the eval() function is used to evaluate an expression after the string
value in l1 is coerced to be a symbol. This allows the values of the character vectors l1
and l2 to be evaluated (see help(assign) and help(eval)).

1.12 Further resources

Comprehensive introductions to data management in SAS can be found in [15] and [9].
Similar developments in R are accessibly presented in [95]. Paul Murrell’s forthcoming
Introduction to Data Technologies text [57] provides a comprehensive introduction to XML,
SQL, and other related technologies and can be found at http://www.stat.auckland.ac.
nz/~paul/ItDT.

1.13 HELP examples

To help illustrate the tools presented in this chapter, we apply many of the entries to the
HELP data. SAS and R code can be downloaded from http://www.math.smith.edu/
sasr/examples.

1.13.1 Data input and output

We begin by reading the dataset (1.1.4), keeping only the variables that are needed (1.5.8).

© 2010 by Taylor and Francis Group, LLC

http://www.stat.auckland.ac
http://www.math.smith.edu
http://www.math.smith.edu
http://www.stat.auckland.ac

�

�

“book” — 2009/6/16 — 16:53 — page 52 — #72
�

�

�

�

�

�

52 CHAPTER 1. DATA MANAGEMENT

proc import

datafile='c:/book/help.csv'
out=dsprelim

dbms=dlm;

delimiter=',';
getnames=yes;

run;

data ds;

set dsprelim;

keep id cesd f1a -- f1t i1 i2 female treat;

run;

> options(digits=3)

> options(width=72) # narrow output

> ds <- read.csv("http://www.math.smith.edu/sasr/datasets/help.csv")

> newds <- ds[,c("cesd","female","i1","i2","id","treat","f1a","f1b",

+ "f1c","f1d","f1e","f1f","f1g","f1h","f1i","f1j","f1k","f1l","f1m",

+ "f1n","f1o","f1p","f1q","f1r","f1s","f1t")]

We can then show a summary of the dataset. In SAS, we use the ODS system (A.7) to
reduce the length of the output.
options ls=74; /* narrows width to stay in grey box */

ods select attributes;

proc contents data=ds;

run;

ods select all;

The CONTENTS Procedure
Data Set Name WORK.DS Observations 453
Member Type DATA Variables 26
Engine V9 Indexes 0
Created Tuesday, March 10, Observation Length 208

2009 04:50:43 PM
Last Modified Tuesday, March 10, Deleted Observations 0

2009 04:50:43 PM
Protection Compressed NO
Data Set Type Sorted NO
Label
Data Representation WINDOWS_32
Encoding wlatin1 Western (Windows)

The default output prints a line for each variable with its name and additional informa-
tion; the short option below limits the output to just the names of the variable.
options ls=74; /* narrows width to stay in grey box */

ods select variablesshort;

proc contents data=ds short;

run;

ods select all;

The CONTENTS Procedure
Alphabetic List of Variables for WORK.DS

cesd f1a f1b f1c f1d f1e f1f f1g f1h f1i f1j f1k f1l f1m f1n f1o f1p f1q
f1r f1s f1t female i1 i2 id treat

© 2010 by Taylor and Francis Group, LLC

http://www.math.smith.edu

�

�

“book” — 2009/6/16 — 16:53 — page 53 — #73
�

�

�

�

�

�

1.13. HELP EXAMPLES 53

> attach(newds)

> names(newds)

[1] "cesd" "female" "i1" "i2" "id" "treat" "f1a"
[8] "f1b" "f1c" "f1d" "f1e" "f1f" "f1g" "f1h"
[15] "f1i" "f1j" "f1k" "f1l" "f1m" "f1n" "f1o"
[22] "f1p" "f1q" "f1r" "f1s" "f1t"

> # structure of the first 10 variables

> str(newds[,1:10])

'data.frame': 453 obs. of 10 variables:
$ cesd : int 49 30 39 15 39 6 52 32 50 46 ...
$ female: int 0 0 0 1 0 1 1 0 1 0 ...
$ i1 : int 13 56 0 5 10 4 13 12 71 20 ...
$ i2 : int 26 62 0 5 13 4 20 24 129 27 ...
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ treat : int 1 1 0 0 0 1 0 1 0 1 ...
$ f1a : int 3 3 3 0 3 1 3 1 3 2 ...
$ f1b : int 2 2 2 0 0 0 1 1 2 3 ...
$ f1c : int 3 0 3 1 3 1 3 2 3 3 ...
$ f1d : int 0 3 0 3 3 3 1 3 1 0 ...

Displaying the first few rows of data can give a more concrete sense of what is in the
dataset:
proc print data=ds (obs=5) width=minimum;

run;

f
t e
r c m

O f e e a
b i 1 i i a s l
s d a b c d e f g h i j k l m n o p q r s t 1 2 t d e
1 1 3 2 3 0 2 3 3 0 2 3 3 0 1 2 2 2 2 3 3 2 13 26 1 49 0
2 2 3 2 0 3 3 2 0 0 3 0 3 0 0 3 0 0 0 2 0 0 56 62 1 30 0
3 3 3 2 3 0 2 2 1 3 2 3 1 0 1 3 2 0 0 3 2 0 0 0 0 39 0
4 4 0 0 1 3 2 2 1 3 0 0 1 2 2 2 0 . 2 0 0 1 5 5 0 15 1
5 5 3 0 3 3 3 3 1 3 3 2 3 2 2 3 0 3 3 3 3 3 10 13 0 39 0

> head(newds, n=5)

cesd female i1 i2 id treat f1a f1b f1c f1d f1e f1f f1g f1h f1i f1j
1 49 0 13 26 1 1 3 2 3 0 2 3 3 0 2 3
2 30 0 56 62 2 1 3 2 0 3 3 2 0 0 3 0
3 39 0 0 0 3 0 3 2 3 0 2 2 1 3 2 3
4 15 1 5 5 4 0 0 0 1 3 2 2 1 3 0 0
5 39 0 10 13 5 0 3 0 3 3 3 3 1 3 3 2
f1k f1l f1m f1n f1o f1p f1q f1r f1s f1t

1 3 0 1 2 2 2 2 3 3 2
2 3 0 0 3 0 0 0 2 0 0
3 1 0 1 3 2 0 0 3 2 0
4 1 2 2 2 0 NA 2 0 0 1
5 3 2 2 3 0 3 3 3 3 3

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 54 — #74
�

�

�

�

�

�

54 CHAPTER 1. DATA MANAGEMENT

Saving the dataset in native format (1.2.1) will ease future access. We also add a
comment (1.3.5) to help later users understand what is in the dataset.
libname book 'c:/temp';
data book.ds (label = "HELP baseline dataset");

set ds;

run;

> comment(newds) <- "HELP baseline dataset"

> comment(newds)

[1] "HELP baseline dataset"

> save(ds, file="savedfile")

Saving it in a foreign format (1.1.5), say Microsoft Excel, will allow access to other tools
for analysis and display:

proc export data=ds replace

outfile="c:/temp/ds.xls"

dbms=excel;

run;

Getting data into SAS format from R is particularly useful; note that the R code below
generates an ASCII dataset and a SAS command file to read it in to SAS.

> library(foreign)

> write.foreign(newds, "file.dat", "file.sas", package="SAS")

1.13.2 Data display

We begin by consideration of the CESD (Center for Epidemiologic Statistics) measure of
depressive symptoms for this sample at baseline.

proc print data=ds (obs=10);

var cesd;

run;

Obs cesd
1 49
2 30
3 39
4 15
5 39
6 6
7 52
8 32
9 50
10 46

The indexing mechanisms in R (see B.4.2) are helpful in extracting subsets of a vector.

> cesd[1:10]

[1] 49 30 39 15 39 6 52 32 50 46

It may be useful to know how many high values there are, and to which observations
they belong:

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 55 — #75
�

�

�

�

�

�

1.13. HELP EXAMPLES 55

proc print data=ds;

where cesd gt 55;

var cesd;

run;

Obs cesd
64 57
116 58
171 57
194 60
231 58
266 56
295 58
305 56
387 57
415 56

> cesd[cesd>55]

[1] 57 58 57 60 58 56 58 56 57 56

> # which rows have values this high?

> which(cesd>55)

[1] 64 116 171 194 231 266 295 305 387 415

Similarly, it may be useful to examine the observations with the lowest values:
proc sort data=ds out=dss1;

by cesd;

run;

proc print data=dss1 (obs=4);

var id cesd i1 treat;

run;

Obs id cesd i1 treat
1 233 1 3 0
2 418 3 13 0
3 139 3 1 0
4 95 4 9 1

> sort(cesd)[1:4]

[1] 1 3 3 4

1.13.3 Derived variables and data manipulation

Suppose the dataset arrived with only the individual CESD questions, and not the sum. We
would need to create the CESD score. In SAS, we’ll do this using an array (1.11.5) to aid
the recoding of the four questions which are asked “backwards,” meaning that high values
of the response are counted for fewer points.1 In R we’ll approach the backwards questions
by reading the CESD items into a new object. To demonstrate other tools, we’ll also see if
there’s any missing data (1.4.14), and how the original creators of the dataset handled it.

1according to the coding instructions at http://patienteducation.stanford.edu/research/cesd.pdf

© 2010 by Taylor and Francis Group, LLC

http://patienteducation.stanford.edu/research/cesd.pdf

�

�

“book” — 2009/6/16 — 16:53 — page 56 — #76
�

�

�

�

�

�

56 CHAPTER 1. DATA MANAGEMENT

data cesd;

set ds;

/* list of backwards questions */

array backwards [*] f1d f1h f1l f1p;

/* for each, subtract the stored value from 3 */

do i = 1 to dim(backwards);

backwards[i] = 3 - backwards[i];

end;

/* this generates the sum of the non-missing questions */

newcesd = sum(of f1a -- f1t);

/* This counts the number of missing values, per person */

nmisscesd = nmiss(of f1a -- f1t);

/* this gives the sum, imputing the mean of non-missing */

imputemeancesd = mean(of f1a -- f1t) * 20;

run;

> table(is.na(f1g))

FALSE TRUE
452 1

> # reverse code f1d, f1h, f1l and f1p

> cesditems <- cbind(f1a, f1b, f1c, (3 - f1d), f1e, f1f, f1g,

+ (3 - f1h), f1i, f1j, f1k, (3 - f1l), f1m, f1n, f1o, (3 - f1p),

+ f1q, f1r, f1s, f1t)

> nmisscesd <- apply(is.na(cesditems), 1, sum)

> ncesditems <- cesditems

> ncesditems[is.na(cesditems)] <- 0

> newcesd <- apply(ncesditems, 1, sum)

> imputemeancesd <- 20/(20-nmisscesd)*newcesd

It is prudent to review the results when deriving variables. We’ll check our recreated
CESD score against the one which came with the dataset. To ensure that missing data has
been correctly coded, we print the subjects with any missing questions.

proc print data=cesd (obs=20);

where nmisscesd gt 0;

var cesd newcesd nmisscesd imputemeancesd;

run;

Obs cesd newcesd nmisscesd imputemeancesd
4 15 15 1 15.7895
17 19 19 1 20.0000
87 44 44 1 46.3158
101 17 17 1 17.8947
154 29 29 1 30.5263
177 44 44 1 46.3158
229 39 39 1 41.0526

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 57 — #77
�

�

�

�

�

�

1.13. HELP EXAMPLES 57

> cbind(newcesd, cesd, nmisscesd, imputemeancesd)[nmisscesd>0,]

newcesd cesd nmisscesd imputemeancesd
[1,] 15 15 1 15.8
[2,] 19 19 1 20.0
[3,] 44 44 1 46.3
[4,] 17 17 1 17.9
[5,] 29 29 1 30.5
[6,] 44 44 1 46.3
[7,] 39 39 1 41.1

The output shows that the original dataset was created with unanswered questions
counted as if they had been answered with a zero. This conforms to the instructions
provided with the CESD, but might be questioned on theoretical grounds.

It is often necessary to create a new variable using logic (1.4.11). In the HELP study,
many subjects reported extreme amounts of drinking (as the baseline measure was taken
while they were in detox). Here, an ordinal measure of alcohol consumption (abstinent,
moderate, high-risk) is created using information about average consumption per day in
past 30 days prior to detox (i1, measured in standard drink units) and maximum number
of drinks per day in past 30 days prior to detox (i2). The number of drinks required for
each category differ for men and women according to NIAAA guidelines for physicians [59].

data ds2;

set ds;

if i1 eq 0 then drinkstat="abstinent";

if (i1 eq 1 and i2 le 3 and female eq 1) or

(((i1 eq 1) or (i1 eq 2)) and i2 le 4 and female eq 0)

then drinkstat="moderate";

if (((i1 gt 1) or (i2 gt 3)) and female eq 1) or

(((i1 gt 2) or (i2 gt 4)) and female eq 0)

then drinkstat="highrisk";

if nmiss(i1,i2,female) ne 0 then drinkstat="";

run;

> # create empty repository for new variable

> drinkstat <- character(length(i1))

> # create abstinent group

> drinkstat[i1==0] <- "abstinent"

> # create moderate group

> drinkstat[(i1>0 & i1<=1 & i2<=3 & female==1) |

+ (i1>0 & i1<=2 & i2<=4 & female==0)] <- "moderate"

> # create highrisk group

> drinkstat[((i1>1 | i2>3) & female==1) |

+ ((i1>2 | i2>4) & female==0)] <- "highrisk"

> # do we need to account for missing values?

> is.na(drinkstat) <- is.na(i1) | is.na(i2) | is.na(female)

> table(is.na(drinkstat))

FALSE
453

It is always prudent to check the results of derived variables. As a demonstration, we
display the observations in the 361st through 370th rows of the data.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 58 — #78
�

�

�

�

�

�

58 CHAPTER 1. DATA MANAGEMENT

proc print data=ds2 (firstobs=361 obs=370);

var i1 i2 female drinkstat;

run;

Obs i1 i2 female drinkstat
361 37 37 0 highrisk
362 25 25 0 highrisk
363 38 38 0 highrisk
364 12 29 0 highrisk
365 6 24 0 highrisk
366 6 6 0 highrisk
367 0 0 0 abstinent
368 0 0 1 abstinent
369 8 8 0 highrisk
370 32 32 0 highrisk

> tmpds <- data.frame(i1, i2, female, drinkstat)

> tmpds[361:370,]

i1 i2 female drinkstat
361 37 37 0 highrisk
362 25 25 0 highrisk
363 38 38 0 highrisk
364 12 29 0 highrisk
365 6 24 0 highrisk
366 6 6 0 highrisk
367 0 0 0 abstinent
368 0 0 1 abstinent
369 8 8 0 highrisk
370 32 32 0 highrisk

It is also useful to focus such checks on a subset of observations. Here we show the
drinking data for moderate female drinkers.

proc print data=ds2;

where drinkstat eq "moderate" and female eq 1;

var i1 i2 female drinkstat;

run;

Obs i1 i2 female drinkstat
116 1 1 1 moderate
137 1 3 1 moderate
225 1 2 1 moderate
230 1 1 1 moderate
264 1 1 1 moderate
266 1 1 1 moderate
394 1 1 1 moderate

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 59 — #79
�

�

�

�

�

�

1.13. HELP EXAMPLES 59

> tmpds[tmpds$drinkstat=="moderate" & tmpds$female==1,]

i1 i2 female drinkstat
116 1 1 1 moderate
137 1 3 1 moderate
225 1 2 1 moderate
230 1 1 1 moderate
264 1 1 1 moderate
266 1 1 1 moderate
394 1 1 1 moderate

Basic data description is an early step in analysis. Here we show some summary statistics
related to drinking and gender.

proc freq data=ds2;

tables drinkstat;

run;

The FREQ Procedure
Cumulative Cumulative

drinkstat Frequency Percent Frequency Percent
--
abstinent 68 15.01 68 15.01
highrisk 357 78.81 425 93.82
moderate 28 6.18 453 100.00

> sum(is.na(drinkstat))

[1] 0

> table(drinkstat, exclude="NULL")

drinkstat
abstinent highrisk moderate

68 357 28

proc freq data=ds2;

tables drinkstat*female;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 60 — #80
�

�

�

�

�

�

60 CHAPTER 1. DATA MANAGEMENT

The FREQ Procedure
Table of drinkstat by female
drinkstat female
Frequency |
Percent |
Row Pct |

Col Pct | 0| 1| Total
----------+--------+--------+
abstinent | 42 | 26 | 68

| 9.27 | 5.74 | 15.01
| 61.76 | 38.24 |
| 12.14 | 24.30 |

----------+--------+--------+
highrisk | 283 | 74 | 357

| 62.47 | 16.34 | 78.81
| 79.27 | 20.73 |
| 81.79 | 69.16 |

----------+--------+--------+
moderate | 21 | 7 | 28

| 4.64 | 1.55 | 6.18
| 75.00 | 25.00 |
| 6.07 | 6.54 |

----------+--------+--------+
Total 346 107 453

76.38 23.62 100.00

> table(drinkstat, female, exclude="NULL")

female
drinkstat 0 1
abstinent 42 26
highrisk 283 74
moderate 21 7

To display gender in a more direct fashion, we create a new character variable. Note
that in these quoted strings, both SAS and R are case sensitive.

data ds3;

set ds;

if female eq 1 then gender="Female";

else if female eq 0 then gender="male";

run;

proc freq data=ds3;

tables female gender;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 61 — #81
�

�

�

�

�

�

1.13. HELP EXAMPLES 61

The FREQ Procedure
Cumulative Cumulative

female Frequency Percent Frequency Percent

0 346 76.38 346 76.38
1 107 23.62 453 100.00

Cumulative Cumulative
gender Frequency Percent Frequency Percent

Female 107 23.62 107 23.62
male 346 76.38 453 100.00

> gender <- factor(female, c(0,1), c("male","Female"))

> table(female)

female
0 1

346 107

> table(gender)

gender
male Female
346 107

1.13.4 Sorting and subsetting datasets

It is often useful to sort datasets (1.5.6) by the order of a particular variable (or variables).
Here we sort by CESD and drinking.

proc sort data=ds;

by cesd i1;

run;

proc print data=ds (obs=5);

var id cesd i1;

run;

Obs id cesd i1
1 233 1 3
2 139 3 1
3 418 3 13
4 251 4 4
5 95 4 9

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 62 — #82
�

�

�

�

�

�

62 CHAPTER 1. DATA MANAGEMENT

> detach(newds)

> ds <- read.csv("help.csv")

> newds <- ds[order(ds$cesd, ds$i1),]

> newds[1:5,c("cesd", "i1", "id")]

cesd i1 id
199 1 3 233
394 3 1 139
349 3 13 418
417 4 4 251
85 4 9 95

It is sometimes necessary to create data that is a subset (1.5.1) of other data. For
example, here we make a dataset which only includes female subjects. First, we create the
subset and calculate a summary value in the resulting dataset.

data females;

set ds;

where female eq 1;

run;

proc means data=females mean maxdec=1;

var cesd;

run;

The MEANS Procedure
Analysis Variable : cesd

Mean

36.9

> females <- ds[ds$female==1,]

> attach(females)

> mean(cesd)

[1] 36.9

To test the subsetting, we then display the mean for both genders.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 63 — #83
�

�

�

�

�

�

1.13. HELP EXAMPLES 63

proc sort data=ds;

by female;

run;

proc means data=ds mean maxdec=2;

by female;

var cesd;

run;

female=0
The MEANS Procedure
Analysis Variable : cesd

Mean

31.60

female=1
Analysis Variable : cesd

Mean

36.89

> ds <- read.csv("help.csv")

> tapply(ds$cesd, ds$female, mean)

0 1
31.6 36.9

1.13.5 Probability distributions

To demonstrate more tools, we leave the HELP dataset and show examples of how data can
be generated within each programming environment. We will generate values (1.10.5) from
the normal and t distribution densities; note that the probability density functions are not
hard-coded into SAS as they are within R.

data dists;

do x = -4 to 4 by .1;

normal_01 = sqrt(2 * constant('PI'))**(-1) * exp(-1 * ((x*x)/2)) ;

dfval = 1;

t_1df = (gamma((dfval +1)/2) / (sqrt(dfval * constant('PI')) *

gamma(dfval/2))) * (1 + (x*x)/dfval)**(-1 * ((dfval + 1)/2));

output;

end;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 64 — #84
�

�

�

�

�

�

64 CHAPTER 1. DATA MANAGEMENT

> x <- seq(from=-4, to=4.2, length=100)

> normval <- dnorm(x, 0, 1)

> dfval <- 1

> tval <- dt(x, df=dfval)

Figure 1.1 displays a plot of these distributions in SAS and R.

legend1 label=none position=(top inside right) frame down=2

value = ("N(0,1)" tick=2 "t with 1 df");

axis1 label=(angle=90 "f(x)") minor=none order=(0 to .4 by .1);

axis2 minor=none order=(-4 to 4 by 2);

symbol1 i=j v=none l=1 c=black w=5;

symbol2 i=j v=none l=21 c=black w=5;

proc gplot data= dists;

plot (normal_01 t_1df) * x / overlay legend=legend1

vaxis=axis1 haxis=axis2;

run; quit;

> plot(x, normval, type="n", ylab="f(x)", las=1)

> lines(x, normval, lty=1, lwd=2)

> lines(x, tval, lty=2, lwd=2)

> legend(1.1, .395, lty=1:2, lwd=2,

+ legend=c(expression(N(mu == 0,sigma == 1)),

+ paste("t with ", dfval," df", sep="")))

f(x
)

0.0

0.1

0.2

0.3

0.4

x

-4 -2 0 2 4

N(0,1)
t with 1 df

(a) SAS

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

x

f(
x)

N 0 1
t with 1 df

(b) R

Figure 1.1: Comparison of standard normal and t distribution with 1 df

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 65 — #85
�

�

�

�

�

�

Chapter 2

Common statistical procedures

This chapter describes how to generate univariate summary statistics for continuous vari-
ables (such as means, variances, and quantiles), display and analyze frequency tables and
cross-tabulations for categorical variables, as well as carry out a variety of one and two
sample procedures.

2.1 Summary statistics

2.1.1 Means and other summary statistics
HELP example: see 2.6.1SAS

proc means data=ds keyword1 ... keywordn;
var x1 ... xk;

run;

or
proc summary data=ds;

var x1 ... xk;
output out=newds keyword1= keyword2(x2)=newname

keyword3(x3 x4)=newnamea newnameb;
run;

proc print data=newds;
run;

or
proc univariate data=ds;

var x1 ... xk;
run;

Note: The univariate procedure generates a number of statistics by default, including
the mean, standard deviation, skewness, and kurtosis. The means and summary procedures
accept a number of keywords, including mean, median, var, stdev, min, max, sum. These
procedures are identical except that proc summary produces no printed output, only an
output dataset, while proc means can produce both printed output and a dataset. The
output statement syntax is keyword= in which case the summary statistic shares the name of
the variable summarized, keyword(varname)=newname in which case the summary statistic
takes the new name, or keyword(varname1 ... varnamek)=newname1 ... newnamek
which allows the naming of many summary statistic variables at once. These options become

65

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 66 — #86
�

�

�

�

�

�

66 CHAPTER 2. COMMON STATISTICAL PROCEDURES

valuable especially when summarizing within subgroups (2.1.2). The maxdec option to the
proc means statement controls the number of decimal places printed.

R

xmean <- mean(x)

Note: The mean() function accepts a numeric vector or a numeric dataframe as arguments
(date objects are also supported). Similar functions in R include median() (see 2.1.5 for
more quantiles), var(), sd(), min(), max(), sum(), prod(), and range() (note that the
latter returns a vector containing the minimum and maximum value).

2.1.2 Means by group
HELP example: see 2.6.4 and 1.13.4SAS

proc sort data=ds;
by y;

run;

proc means data=ds;
by y;
var x;

run;
or

proc sort data=ds;
by y;

run;

proc summary data=ds;
by y;
output out=newds mean=;
var x;

run;
proc print data=newds;
run;

Note: The summary statistics for each by group are included in any printed output and
in any datasets created by the procedure. See section 2.1.1 for a discussion of output
statement syntax.

R
tapply(x, y, mean)

or

ave(x, as.factor(y), FUN=mean)

Note: The tapply() function applies the specified function given as the third argument (in
this case mean()) to the vector y stratified by every unique set of values of the list of factors
specified x. It returns a vector with length equal to the number of unique set of values of
x. Similar functionality is available using the ave() function (see example(ave)), which
returns a vector of the same length as x with each element equal to the mean of the subset
of observations with the factor level specified by y.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 67 — #87
�

�

�

�

�

�

2.1. SUMMARY STATISTICS 67

2.1.3 Trimmed mean

SAS
proc univariate data=ds trimmed=frac;

var x;
run;

Note: The parameter frac is the proportion of observations above and below the mean to
exclude, or a number (greater than 1) in which case number observations will be excluded.
Multiple variables may be specified. This statistic can be saved into a dataset using ODS
(see A.7).

R

mean(x, trim=frac)

Note: The value frac can take on range 0 to 0.5, and specifies the fraction of observations to
be trimmed from each end of x before the mean is computed (frac=0.5 yields the median).

2.1.4 Five-number summary
HELP example: see 2.6.1

The five number summary (minimum, 25th percentile, median, 75th percentile, maximum)
is a useful summary of the distribution of observed values.

SAS
proc means data=ds mean min q1 median q3 max;

var x1 ... xk;
run;

R
quantile(x)
fivenum(x)
summary(ds)

Note: The summary() function calculates the five number summary (plus the mean) for
each of the columns of the vector or dataset given as arguments. The default output of the
quantile() function is the min, 25th percentile, median, 75th percentile and the maximum.
The fivenum() function reports the lower and upper hinges instead of the 25th and 75th
percentiles, respectively.

2.1.5 Quantiles
HELP example: see 2.6.1SAS

proc univariate data=ds;
var x1 ... xk;
output out=newds pctlpts=2.5, 95 to 97.5 by 1.25

pctlpre=p pctlnames=2_5 95 96_125 97_5;
run;

Note: This creates a new dataset with the 2.5, 95, 96.25, 97.5 values stored in variables
named p2 5, p95, p96 125, and p97 5. The first, 5th, 10th, 25th, 50th, 75th, 90th,
95th, and 99th can be obtained more directly from proc means, proc summary, and proc
univariate.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 68 — #88
�

�

�

�

�

�

68 CHAPTER 2. COMMON STATISTICAL PROCEDURES

Details and options regarding calculation of quantiles in proc univariate can be found
in SAS on-line help: Contents; SAS Products; SAS Procedures; UNIVARIATE; Calculating
Percentiles.

R
quantile(x, c(.025, .975))
quantile(x, seq(from=.95, to=.975, by=.0125))

Note: Details regarding the calculation of quantiles in quantile() can be found using
help(quantile).

2.1.6 Centering, normalizing, and scaling

SAS
proc standard data=ds out=ds2 mean=0 std=1;

var x1 ... xk;
run;

Note: The output dataset named in the out option contains all of the data from the original
dataset, with the standardized version of each variable named in the var statement stored
in place of the original. Either the mean or the std option may be omitted.

R

zscoredx <- scale(x)

or

zscoredx <- (x-mean(x))/sd(x)

Note: The default behavior of scale() is to create a Z-score transformation. The scale()
function can operate on matrices and dataframes, and allows the specification of a vector of
the scaling parameters for both center and scale (see also sweep(), a more general function).

2.1.7 Mean and 95% confidence interval

SAS
proc means data=ds lclm mean uclm;

var x;
run;

Note: Calculated statistics can be saved using an output statement or using proc summary
as in 2.1.1 or using ODS.

R
tcrit <- qt(.975, length(x)-1)
ci95 <- c(mean(x) - tcrit*sd(x)/sqrt(length(x)),

mean(x) + tcrit*sd(x)/sqrt(length(x)))

or

t.test(x)$conf.int

Note: While the appropriate 95% confidence interval can be generated in terms of the mean
and standard deviation, it is more straightforward to use the t-test function to calculate the
relevant quantities.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 69 — #89
�

�

�

�

�

�

2.1. SUMMARY STATISTICS 69

2.1.8 Bootstrapping a sample statistic

Bootstrapping is a powerful and elegant approach to estimation of sample statistics that
can be implemented even in many situations where asymptotic results are difficult to find or
otherwise unsatisfactory [18]. Bootstrapping proceeds using three steps: first, resample the
dataset (with replacement) a specified number of times (typically on the order of 10000),
calculate the desired statistic from each resampled dataset, then use the distribution of the
resampled statistics to estimate the standard error of the statistic (normal approximation
method), or construct a confidence interval using quantiles of that distribution (percentile
method).

As an example, we consider estimating the standard error and 95% confidence interval
for the coefficient of variation (COV), defined as σ/μ, for a random variable X. Note that
for both packages, the user must provide code to calculate the statistic of interest; this must
be done in a macro (in SAS), or as a function (in R).

SAS
/* download "jackboot.sas" from http://support.sas.com/kb/24/982.html */
%include 'c:/sasmacros/jackboot.sas';
/* create macro that generates the desired statistic, in this case the

coefficient of variation, just once, from the observed data.
This macro must be named %analyze */

%macro analyze(data=, out=);
proc summary data=&data;

var x;
output out=&out (drop=_freq_ _type_) cv=cv_x;

run;
%mend;

%boot(data=ds, samples=1000);

Note: The %include statement is equivalent to typing the contents of the included file into
the program. The %boot macro requires an existing %analyze macro, which must generate
an output dataset; bootstrap results for all variables in this output dataset are calculated.
The drop data set option removes some character variables from this output dataset so
that statistics are not reported on them. See section A.8 for more information on SAS
macros.

R
library(boot)
covfun <- function(x, i) {sd(x[i])/mean(x[i])}
res <- boot(x, covfun, R=10000)
summary(res)
plot(res)
quantile(res$t, c(.025, .975))
mean(res$t) + c(-1.96, 1.96)*sd(res$t)

Note: The first argument to the boot() function specifies the data to be bootstrapped (in
this case a vector, though a dataframe can be set up if more than one variable is needed
for the calculation of the sample statistic) as well as a function to calculate the statistic for
each resampling iteration. Here the function covfun() takes two arguments: the first is the
original data (as a vector) and the second a set of indices into that vector (that represent a
given bootstrap sample).

© 2010 by Taylor and Francis Group, LLC

http://support.sas.com

�

�

“book” — 2009/6/16 — 16:53 — page 70 — #90
�

�

�

�

�

�

70 CHAPTER 2. COMMON STATISTICAL PROCEDURES

The boot() function returns an object of class boot, with an associated plot() function
that provides a histogram and QQ-plot (see help(plot.boot)). The return value object
(res, above) contains the vector of resampled statistics (res$t), which can be used to
estimate the standard error and 95% confidence interval. The boot.ci() function can be
used to generate bias-corrected and accelerated intervals.

2.1.9 Proportion and 95% confidence interval
HELP example: see 6.1.2SAS

proc freq data=ds;
tables x / binomial;

run;

Note: The binomial option requests the exact Clopper–Pearson confidence interval based on
the F distribution [10], an approximate confidence interval, and a test that the probability of
the first level of the variable = 0.5. If x has more than two levels, the probability estimated
and tested is the probability of the first level vs. all the others combined. Additional
confidence intervals are available as options to the binomial option.

R
binom.test(sum(x), length(x))
prop.test(sum(x), length(x))

Note: The binom.test() function calculates an exact Clopper–Pearson confidence interval
based on the F distribution [10] using the first argument as the number of successes and
the second argument the number of trials, while prop.test() calculates an approximate
confidence interval by inverting the score test. Both allow specification of p for the null
hypothesis. The conf.level option can be used to change the default confidence level.

2.2 Bivariate statistics

2.2.1 Epidemiologic statistics
HELP example: see 2.6.3SAS

proc freq data=ds;
tables x*y / relrisk;

run;

R
sum(x==0&y==0)*sum(x==1&y==1)/(sum(x==0&y==1)*sum(x==1&y==0))

or
tab1 <- table(x, y)
tab1[1,1]*tab1[2,2]/(tab1[1,2]*tab1[2,1])

or
glm1 <- glm(y ~ x, family=binomial)
exp(glm1$coef[2])

or
library(epitools)
oddsratio.fisher(x, y)
oddsratio.wald(x, y)
riskratio(x, y)
riskratio.wald(x, y)

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 71 — #91
�

�

�

�

�

�

2.2. BIVARIATE STATISTICS 71

Note: The epitab() function in library(epitools) provides a general interface to many
epidemiologic statistics, while expand.table() can be used to create individual level data
from a table of counts (see also generalized linear models, 4.1).

2.2.2 Test characteristics

The sensitivity of a test is defined as the probability that someone with the disease (D=1)
tests positive (T=1), while the specificity is the probability that someone without the disease
(D=0) tests negative (T=0). For a dichotomous screening measure, the sensitivity and
specificity can be defined as P (D = 1, T = 1)/P (D = 1) and P (D = 0, T = 0)/P (D = 0),
respectively. (See also receiver operating character curves, 5.1.18.)

SAS
proc freq data=ds;

tables d*t / out=newds;
run;

proc means data=newds nway;
by d;
var count;
output out=newds2 sum=sumdlev;

run;

data newds3;
merge newds newds2;

by d;
retain sens spec;
if D eq 1 and T=1 then sens=count/sumdlev;
if D eq 0 and T=0 then spec=count/sumdlev;
if sens ge 0 and spec ge 0;

run;

Note: The above code creates a dataset with a single line containing the sensitivity, speci-
ficity, and other data, given a test positive indicator t and disease indicator d. Sensitivity
and specificity across all unique cut-points of a continuous measure T can be calculated as
follows.

proc summary data=ds;
var d;
output out=sumdisease sum=totaldisease n=totalobs;

run;

proc sort data=ds; by descending t; run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 72 — #92
�

�

�

�

�

�

72 CHAPTER 2. COMMON STATISTICAL PROCEDURES

data ds2;
set ds;

if _n_ eq 1 then set sumdisease;
retain sumdplus 0 sumdminus 0;
sumdplus = sumdplus + d;
sumdminus = sumdminus + (d eq 0);
sens = sumdplus/totaldisease;
one_m_spec = sumdminus/(totalobs - totaldisease);

run;

In the preceding code, proc summary (section 2.1.1) is used to find the total number
with the disease and in the dataset, and to save this data in a dataset named sumdisease.
The data is then sorted in descending order of the test score t. In the final step, the disease
and total number of observations are read in and the current number of true positives and
negatives accrued as the value of t decreases. The conditional use of the set statement
allows the summary values for disease and subjects to be included for each line of the
output dataset; the retain statement allows values to be kept across entries in the dataset
and optionally allows the initial value to be set. The final dataset contains the sensitivity
sens and 1 minus the specificity one_m_spec. This approach would be more complicated if
tied values of the test score were possible.

R
sens <- sum(D==1&T==1)/sum(D==1)
spec <- sum(D==0&T==0)/sum(D==0)

Note: Sensitivity and specificity for an outcome D can be calculated for each value of a
continuous measure T using the following code.

library(ROCR)
pred <- prediction(T, D)
diagobj <- performance(pred, "sens", "spec")
spec <- slot(diagobj, "y.values")[[1]]
sens <- slot(diagobj, "x.values")[[1]]
cut <- slot(diagobj, "alpha.values")[[1]]
diagmat <- cbind(cut, sens, spec)
head(diagmat, 10)

Note: The ROCR package facilitates the calculation of test characteristics, including sensitiv-
ity and specificity. The prediction() function takes as arguments the continuous measure
and outcome. The returned object can be used to calculate quantities of interest (see
help(performance) for a comprehensive list). The slot() function is used to return the
desired sensitivity and specificity values for each cut score, where [[1]] denotes the first
element of the returned list (see help(list) and help(Extract)).

2.2.3 Correlation
HELP example: see 2.6.2 and 5.6.6SAS

proc corr data=ds;
var x1 ... xk;

run;

Note: Specifying spearman or kendall as an option to proc corr generates the Spearman
or Kendall correlation coefficients, respectively. The with statement can be used to generate

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 73 — #93
�

�

�

�

�

�

2.3. CONTINGENCY TABLES 73

correlations only between the var and with variables, as in 2.6.2, rather than among all the
var variables. This can save space as it avoids replicating correlations above and below the
diagonal of the correlation matrix.

R
pearsoncorr <- cor(x, y)
spearmancorr <- cor(x, y, method="spearman")
kendalltau <- cor(x, y, method="kendall")

or

cormat <- cor(cbind(x1, ..., xk))

Note: Specifying method="spearman" or method="kendall" as an option to cor() gener-
ates the Spearman or Kendall correlation coefficients, respectively. A matrix of variables
(created with cbind()) can be used to generate the correlation between a set of variables.
To emulate the with statement in SAS, subsets of the returned correlation matrix can
be selected, as demonstrated in section 2.6.2. This can save space as it avoids replicat-
ing correlations above and below the diagonal of the correlation matrix. The use option
for cor() specifies how missing values are handled (either "all.obs", "complete.obs" or
"pairwise.complete.obs").

2.2.4 Kappa (agreement)

SAS
proc freq data=ds;

tables x * y / agree;
run;

Note: The agree statement produces κ and weighted κ and their asymptotic standard errors
and confidence interval, as well as McNemar’s test for 2 × 2 tables, and Bowker’s test of
symmetry for tables with more than two levels [7].

R
library(irr)
kappa2(data.frame(x, y))

Note: The kappa2() function takes a dataframe (see B.4.5) as argument. Weights can be
specified as an option.

2.3 Contingency tables

2.3.1 Display cross-classification table
HELP example: see 2.6.3

Contingency tables show the group membership across categorical (grouping) variables.
They are also known as cross-classification tables, cross-tabulations, and two-way tables.

SAS
proc freq data=ds;

tables x * y;
run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 74 — #94
�

�

�

�

�

�

74 CHAPTER 2. COMMON STATISTICAL PROCEDURES

R
mytab <- table(y, x)
addmargins(mytab)
prop.table(mytab, 1)

or
xtabs(~ y + x)

or
library(prettyR)
xtab(y ~ x, data=ds)

Note: The addmargins() function adds (by default) the row and column totals to a table,
while prop.table() can be used to calculate row totals (with option 1) and column totals
(with option 2). The colSums(), colMeans() functions (and their equivalents for rows) can
be used to efficiently calculate sums and means for numeric vectors. The xtabs() function
can be used to create a contingency table from cross-classifying factors. Much of the process
of displaying tables is automated in the prettyR library xtab() function.

2.3.2 Pearson chi-square statistic
HELP example: see 2.6.3SAS

proc freq data=ds;
tables x * y / chisq;

run;

Note: For 2 × 2 tables the output includes both unadjusted and continuity-corrected tests.

R
chisq.test(x, y)

Note: The chisq.test() command can accept either two class vectors or a matrix with
counts. By default a continuity correction is used (the option correct=FALSE turns this
off).

2.3.3 Cochran–Mantel–Haenszel test

The Cochran–Mantel–Haenszel test gives an assessment of the relationship between X2 and
X3, stratified by (or controlling for) X1. The analysis provides a way to adjust for the
possible confounding effects of X1 without having to estimate parameters for them.

SAS
proc freq data=ds;

tables x1 * x2 * x3 / cmh;
run;

Note: The cmh option produces Cochran–Mantel–Haenszel statistics and, when both X2

and X3 have two values, it generates estimates of the common odds ratio, common relative
risks, and the Breslow–Day test for homogeneity of the odds ratios. More complex models
can be fit using the generalized linear model methodology described in Chapter 4.

R

mantelhaen.test(x2, x3, x1)

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 75 — #95
�

�

�

�

�

�

2.4. TWO SAMPLE TESTS FOR CONTINUOUS VARIABLES 75

2.3.4 Fisher’s exact test
HELP example: see 2.6.3SAS

proc freq data=ds;
tables x * y / exact;

run;

or
proc freq data=ds;

tables x * y;
exact fisher / mc n=bnum;

run;

Note: The former requests only the exact p-value; the latter generates a Monte Carlo p-
value, an asymptotically equivalent test based on bnum random tables simulated using the
observed margins.

R
fisher.test(y, x)

or

fisher.test(ymat)

Note: The fisher.test() command can accept either two class vectors or a matrix with
counts (here denoted by ymat). For tables with many rows and/or columns, p-values can
be computed using Monte Carlo simulation using the simulate.p.value option.

2.3.5 McNemar’s test

McNemar’s test tests the null hypothesis that the proportions are equal across matched
pairs, for example, when two raters assess a population.

SAS
proc freq data=ds;

tables x * y / agree;
run;

R
mcnemar.test(y, x)

Note: The mcnemar.test() command can accept either two class vectors or a matrix with
counts.

2.4 Two sample tests for continuous variables

2.4.1 Student’s t-test
HELP example: see 2.6.4SAS

proc ttest data=ds;
class x;
var y;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 76 — #96
�

�

�

�

�

�

76 CHAPTER 2. COMMON STATISTICAL PROCEDURES

Note: The variable X takes on two values. The output contains both equal and unequal-
variance t-tests, as well as a test of the null hypothesis of equal variance.

R
t.test(y1, y2)

or

t.test(y ~ x)

Note: The first example for the t.test() command displays how it can take two vectors
(y1 and y2) as arguments to compare, or in the latter example a single vector corresponding
to the outcome (y), with another vector indicating group membership (x) using a formula
interface (see sections B.4.6 and 3.1.1). By default, the two-sample t-test uses an unequal
variance assumption. The option var.equal=TRUE can be added to specify an equal variance
assumption. The command var.test() can be used to formally test equality of variances.

2.4.2 Nonparametric tests
HELP example: see 2.6.4SAS

proc npar1way data=ds wilcoxon edf median;
class y;
var x;

run;

Note: Many tests can be requested as options to the proc npar1way statement. Here we
show a Wilcoxon test, a Kolmogorov–Smirnov test, and a median test, respectively. Exact
tests can be generated by using an exact statement with these names, e.g., the exact
median statement will generate the exact median test.

R
wilcox.test(y1, y2)
ks.test(y1, y2)

library(coin)
median_test(y ~ x)

Note: By default, the wilcox.test() function uses a continuity correction in the normal
approximation for the p-value. The ks.test() function does not calculate an exact p-
value when there are ties. The median test shown will generate an exact p-value with the
distribution="exact" option.

2.4.3 Permutation test
HELP example: see 2.6.4SAS

proc npar1way data=ds;
class y;
var x;
exact scores=data;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 77 — #97
�

�

�

�

�

�

2.5. FURTHER RESOURCES 77

or
proc npar1way data=ds;

class y;
var x;
exact scores=data / mc n=bnum;

run;
Note: Any test described in 2.4.2 can be named in place of scores=data to get an exact
test based on those statistics. The mc option generates an empirical p-value (asymptotically
equivalent to the exact p-value) based on bnum Monte Carlo replicates.

R
library(coin)
oneway_test(y ~ as.factor(x), distribution=approximate(B=bnum))

Note: The oneway_test function in the coin library implements a variety of permutation
based tests (see also the exactRankTests package). The distribution=approximate syn-
tax generates an empirical p-value (asymptotically equivalent to the exact p-value) based
on bnum Monte Carlo replicates.

2.4.4 Logrank test
HELP example: see 2.6.5

See also 5.1.19 (Kaplan–Meier plot) and 4.3.1 (Cox proportional hazards model)

SAS
proc phreg data=ds;

model timevar*cens(0) = x;
run;

or
proc lifetest data=ds;

time timevar*cens(0);
strata x;

run;

Note: If cens is equal to 0, then proc phreg and proc lifetest treat time as the time of
censoring, otherwise it is the time of the event. The default output from proc lifetest
includes the logrank and Wilcoxon tests. Other tests, corresponding to different weight
functions, can be produced with the test option to the strata statement. These include
test=fleming(ρ1, ρ2), a superset of the G-rho family of Fleming and Harrington [23], which
simplifies to the G-rho family when ρ2 = 0.

R
library(survival)
survdiff(Surv(timevar, cens) ~ x)

Note: Other tests within the G-rho family of Fleming and Harrington [23] are supported by
specifying the rho option.

2.5 Further resources

Comprehensive introductions to using SAS to fit common statistical models can be found
in [9] and [15]. Similar methods in R are accessibly presented in [95]. Efron and Tibshi-

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 78 — #98
�

�

�

�

�

�

78 CHAPTER 2. COMMON STATISTICAL PROCEDURES

rani [18] provides a comprehensive overview of bootstrapping. A readable introduction to
permutation-based inference can be found in [27]. Collett [11] is an accessible introduction
to survival analysis.

2.6 HELP examples

To help illustrate the tools presented in this chapter, we apply many of the entries to the
HELP data. SAS and R code can be downloaded from http://www.math.smith.edu/
sasr/examples.

2.6.1 Summary statistics and exploratory data analysis

We begin by reading the dataset.
filename myurl

url 'http://www.math.smith.edu/sasr/datasets/help.csv' lrecl=704;

proc import

datafile=myurl

out=ds dbms=dlm;

delimiter=',';
getnames=yes;

run;

The lrecl statement is needed due to the long lines in the csv file.
> options(digits=3)

> options(width=72) # narrows output to stay in the grey box

> ds <- read.csv("http://www.math.smith.edu/sasr/datasets/help.csv")

> attach(ds)

A first step would be to examine some univariate statistics (2.1.1) for the baseline CESD
(Center for Epidemiologic Statistics measure of depressive symptoms) score. In SAS, uni-
variate statistics are produced by proc univariate, proc means, and others.
options ls=70; * narrow output to stay in grey box;

proc means data=ds maxdec=2 min p5 q1 median q3 p95 max mean std range;

var cesd;

run;

The MEANS Procedure

Analysis Variable : cesd

Lower Upper
Minimum 5th Pctl Quartile Median Quartile

--
1.00 10.00 25.00 34.00 41.00

--

Analysis Variable : cesd

95th Pctl Maximum Mean Std Dev Range
--

53.00 60.00 32.85 12.51 59.00
--

© 2010 by Taylor and Francis Group, LLC

http://www.math.smith.edu
http://www.math.smith.edu
http://www.math.smith.edu
http://www.math.smith.edu

�

�

“book” — 2009/6/16 — 16:53 — page 79 — #99
�

�

�

�

�

�

2.6. HELP EXAMPLES 79

In R, we can use functions which produce a set of statistics, such as fivenum(), or
request them singly.

> fivenum(cesd)

[1] 1 25 34 41 60

> mean(cesd); median(cesd)

[1] 32.8

[1] 34

> range(cesd)

[1] 1 60

> sd(cesd)

[1] 12.5

> var(cesd)

[1] 157

We can also generate desired statistics. Here, we find the deciles (2.1.5).

ods select none;

proc univariate data=ds;

var cesd;

output out=deciles pctlpts= 0 to 100 by 10 pctlpre=p_;

run;

ods select all;

options ls=74;

proc print data=deciles;

run;

Obs p_0 p_10 p_20 p_30 p_40 p_50 p_60 p_70 p_80 p_90 p_100

1 1 15 22 27 30 34 37 40 44 49 60

> quantile(cesd, seq(from=0, to=1, length=11))

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1.0 15.2 22.0 27.0 30.0 34.0 37.0 40.0 44.0 49.0 60.0

Graphics can allow us to easily review the whole distribution of the data. Here we gen-
erate a histogram (5.1.4) of CESD, overlaid with its empirical PDF (5.1.16) and the closest-
fitting normal distribution (see Figure 2.1). In SAS, the other results of proc univariate

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 80 — #100
�

�

�

�

�

�

80 CHAPTER 2. COMMON STATISTICAL PROCEDURES

have been suppressed by selecting only the graphics output using an ods select state-
ment (note the different y-axes generated).

ods select univar;

proc univariate data=ds;

var cesd;

histogram cesd / normal (color=black l=1) kernel(color=black l=21)

cfill=greyCC;

run; quit;

ods select all;

> hist(cesd, main="", freq=FALSE)

> lines(density(cesd), main="CESD", lty=2, lwd=2)

> xvals <- seq(from=min(cesd), to=max(cesd), length=100)

> lines(xvals, dnorm(xvals, mean(cesd), sd(cesd)), lwd=2)

-10 0 10 20 30 40 50 60 70
0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

P
er

ce
nt

cesd

(a) SAS

cesd

D
e
n
si

ty

0 10 20 30 40 50 60

0
.0

0
0
.0

1
0
.0

2
0
.0

3

(b) R

Figure 2.1: Density plot of depressive symptom scores (CESD) plus superimposed histogram
and normal distribution

2.6.2 Bivariate relationships

We can calculate the correlation (2.2.3) between CESD and MCS and PCS (mental and
physical component scores). First, we show the default correlation matrix.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 81 — #101
�

�

�

�

�

�

2.6. HELP EXAMPLES 81

ods select pearsoncorr;

proc corr data=ds;

var cesd mcs pcs;

run;

The CORR Procedure

cesd mcs pcs

cesd 1.00000 -0.68192 -0.29270
<.0001 <.0001

mcs -0.68192 1.00000 0.11046
<.0001 0.0187

pcs -0.29270 0.11046 1.00000
<.0001 0.0187

> cormat <- cor(cbind(cesd, mcs, pcs))

> cormat

cesd mcs pcs
cesd 1.000 -0.682 -0.293
mcs -0.682 1.000 0.110
pcs -0.293 0.110 1.000

To save space, we can just print a subset of the correlations.

ods select pearsoncorr;

proc corr data=ds;

var mcs pcs;

with cesd;

run;

The CORR Procedure

mcs pcs

cesd -0.68192 -0.29270
<.0001 <.0001

> cormat[c(2, 3), 1]

mcs pcs
-0.682 -0.293

Figure 2.2 displays a scatterplot (5.1.1) of CESD and MCS, for the female subjects. The
plotting character (5.2.2) is the primary substance (Alcohol, Cocaine, or Heroin). For R, a
rug plot (5.2.8) is added to help demonstrate the marginal distributions; this is nontrivial
in SAS.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 82 — #102
�

�

�

�

�

�

82 CHAPTER 2. COMMON STATISTICAL PROCEDURES

symbol1 font=swiss v='A' h=.7 c=black;

symbol2 font=swiss v='C' h=.7 c=black;

symbol3 font=swiss v='H' h=.7 c=black;

proc gplot data=ds;

where female=1;

plot mcs*cesd=substance;

run; quit;

> plot(cesd[female==1], mcs[female==1], xlab="CESD", ylab="MCS",

+ type="n", bty="n")

> text(cesd[female==1&substance=="alcohol"],

+ mcs[female==1&substance=="alcohol"],"A")

> text(cesd[female==1&substance=="cocaine"],

+ mcs[female==1&substance=="cocaine"],"C")

> text(cesd[female==1&substance=="heroin"],

+ mcs[female==1&substance=="heroin"],"H")

> rug(jitter(mcs[female==1]), side=2)

> rug(jitter(cesd[female==1]), side=3)

mcs

 0

 10

 20

 30

 40

 50

 60

 70

cesd

0 10 20 30 40 50 60

substance alcohol cocaine heroin

(a) SAS

10 20 30 40 50 60

1
0

2
0

3
0

4
0

5
0

6
0

CESD

M
C

S

A

A

A

A
A

A

A

A

A

A

A

A
A

A

A

A

A

A
A

A

A
A

A

A
A

A

A

A

A

A
A

A

A

A

A

A

C

CC

C

C
C

C

C

C

C

C

C

C

C

C

C
C

C
C

C
C

C

C

C

C

C
C

C
CC

C
C

C

C

C

C

C

C

C

C

C
H H

H

H

H

H

HH
H

H

H

H

H H

H

H
HH

H

H

H

H

H

H

H

H
H

H

H

H

(b) R

Figure 2.2: Scatterplot of CESD and MCS for women, with primary substance shown as
the plot symbol

2.6.3 Contingency tables

Here we display the cross-classification (contingency) table (2.3.1) of homeless at baseline
by gender, calculate the observed odds ratio (OR, 2.2.1), and assess association using the
Pearson χ2 test (2.3.2) and Fisher’s exact test (2.3.4). In SAS, this can be done with one
call to proc freq.

proc freq data=ds;

tables homeless*female / chisq exact relrisk;

run; quit;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 83 — #103
�

�

�

�

�

�

2.6. HELP EXAMPLES 83

The FREQ Procedure

Table of homeless by female

homeless female

Frequency|
Percent |
Row Pct |
Col Pct | 0| 1| Total
---------+--------+--------+

0 | 177 | 67 | 244
| 39.07 | 14.79 | 53.86
| 72.54 | 27.46 |
| 51.16 | 62.62 |

---------+--------+--------+
1 | 169 | 40 | 209
| 37.31 | 8.83 | 46.14
| 80.86 | 19.14 |
| 48.84 | 37.38 |

---------+--------+--------+
Total 346 107 453

76.38 23.62 100.00

Statistics for Table of homeless by female

Statistic DF Value Prob
--
Chi-Square 1 4.3196 0.0377
Likelihood Ratio Chi-Square 1 4.3654 0.0367
Continuity Adj. Chi-Square 1 3.8708 0.0491
Mantel-Haenszel Chi-Square 1 4.3101 0.0379
Phi Coefficient -0.0977
Contingency Coefficient 0.0972
Cramer's V -0.0977

Fisher’s exact test is provided by default with 2 × 2 tables, so the exact statement is not
required. The exact test result is shown.

Statistics for Table of homeless by female

Cell (1,1) Frequency (F) 177
Left-sided Pr <= F 0.0242
Right-sided Pr >= F 0.9861

Table Probability (P) 0.0102
Two-sided Pr <= P 0.0456

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 84 — #104
�

�

�

�

�

�

84 CHAPTER 2. COMMON STATISTICAL PROCEDURES

Statistics for Table of homeless by female

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits

Case-Control (Odds Ratio) 0.6253 0.4008 0.9755
Cohort (Col1 Risk) 0.8971 0.8105 0.9930
Cohort (Col2 Risk) 1.4347 1.0158 2.0265

In R, the table() function can display contingency tables. The prettyR library provides
a way to display them with additional statistics, similar to SAS.

> table(homeless, female)

female
homeless 0 1

0 177 67
1 169 40

> library(prettyR)

> xtres <- xtab(homeless ~ female, data=ds)

Crosstabulation of homeless by female
female

homeless 0 1
0 177 67 244

72.54 27.46 53.86
51.16 62.62

1 169 40 209
80.86 19.14 46.14
48.84 37.38

346 107 453
76.38 23.62

In R, we can easily calculate the odds ratio directly. If the odds ratio were not available
from a procedure in SAS, it would require several steps to replicate these calculations.

> or <- (sum(homeless==0 & female==0)*

+ sum(homeless==1 & female==1))/

+ (sum(homeless==0 & female==1)*

+ sum(homeless==1 & female==0))

> or

[1] 0.625

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 85 — #105
�

�

�

�

�

�

2.6. HELP EXAMPLES 85

> library(epitools)

> oddsobject <- oddsratio.wald(homeless, female)

> oddsobject$measure

odds ratio with 95% C.I.
Predictor estimate lower upper

0 1.000 NA NA
1 0.625 0.401 0.975

> oddsobject$p.value

two-sided
Predictor midp.exact fisher.exact chi.square

0 NA NA NA
1 0.0381 0.0456 0.0377

The χ2 and Fisher’s exact tests are fit in R using separate commands.

> chisqval <- chisq.test(homeless, female, correct=FALSE)

> chisqval

Pearson's Chi-squared test

data: homeless and female
X-squared = 4.32, df = 1, p-value = 0.03767

> fisher.test(homeless, female)

Fisher's Exact Test for Count Data

data: homeless and female
p-value = 0.04560
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.389 0.997
sample estimates:
odds ratio

0.626

2.6.4 Two sample tests of continuous variables

We can assess gender differences in baseline age using a t-test (2.4.1) and nonparametric
procedures.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 86 — #106
�

�

�

�

�

�

86 CHAPTER 2. COMMON STATISTICAL PROCEDURES

options ls=74; /* narrows output to stay in the grey box */

proc ttest data=ds;

class female;

var age;

run;

Variable: age

female N Mean Std Dev Std Err Minimum Maximum

0 346 35.4682 7.7501 0.4166 19.0000 60.0000
1 107 36.2523 7.5849 0.7333 21.0000 58.0000
Diff (1-2) -0.7841 7.7116 0.8530

female Method Mean 95% CL Mean Std Dev

0 35.4682 34.6487 36.2877 7.7501
1 36.2523 34.7986 37.7061 7.5849
Diff (1-2) Pooled -0.7841 -2.4605 0.8923 7.7116
Diff (1-2) Satterthwaite -0.7841 -2.4483 0.8800

female Method 95% CL Std Dev

0 7.2125 8.3750
1 6.6868 8.7637
Diff (1-2) Pooled 7.2395 8.2500
Diff (1-2) Satterthwaite

Method Variances DF t Value Pr > |t|

Pooled Equal 451 -0.92 0.3585

Satterthwaite Unequal 179.74 -0.93 0.3537

Equality of Variances

Method Num DF Den DF F Value Pr > F

Folded F 345 106 1.04 0.8062

> ttres <- t.test(age ~ female, data=ds)

> print(ttres)

Welch Two Sample t-test

data: age by female
t = -0.93, df = 180, p-value = 0.3537
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-2.45 0.88
sample estimates:
mean in group 0 mean in group 1

35.5 36.3

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 87 — #107
�

�

�

�

�

�

2.6. HELP EXAMPLES 87

The names() function can be used to identify the objects returned by the t.test()
function (not displayed).

A permutation test can be run and used to generate a Monte Carlo p-value (2.4.3).

ods select datascoresmc;

proc npar1way data=ds;

class female;

var age;

exact scores=data / mc n=9999 alpha=.05;

run;

ods exclude none;

One-Sided Pr >= S
Estimate 0.1789
95% Lower Conf Limit 0.1714
95% Upper Conf Limit 0.1864

Two-Sided Pr >= |S - Mean|
Estimate 0.3557
95% Lower Conf Limit 0.3464
95% Upper Conf Limit 0.3651

Number of Samples 9999
Initial Seed 998734001

> library(coin)

> oneway_test(age ~ as.factor(female),

+ distribution=approximate(B=9999), data=ds)

Approximative 2-Sample Permutation Test

data: age by as.factor(female) (0, 1)
Z = -0.92, p-value = 0.3592
alternative hypothesis: true mu is not equal to 0

Both the Wilcoxon test and Kolmogorov–Smirnov test (2.4.2) can be run with a single
call to proc freq. Later, we’ll include the D statistic from the Kolmogorov–Smirnov test
and the associated p-value in a Figure title; to make that possible, we’ll use ODS to create
a dataset containing these values.

ods output kolsmir2stats=age_female_ks_stats;

ods select wilcoxontest kolsmir2stats;

proc npar1way data=ds wilcoxon edf;

class female;

var age;

run;

ods select all;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 88 — #108
�

�

�

�

�

�

88 CHAPTER 2. COMMON STATISTICAL PROCEDURES

Statistic 25288.5000

Normal Approximation
Z 0.8449
One-Sided Pr > Z 0.1991
Two-Sided Pr > |Z| 0.3981

t Approximation
One-Sided Pr > Z 0.1993
Two-Sided Pr > |Z| 0.3986

Z includes a continuity correction of 0.5.

KS 0.026755 D 0.062990
KSa 0.569442 Pr > KSa 0.9020

In R, these tests are obtained in separate function calls (see 2.4.2).

> wilcox.test(age ~ as.factor(female), correct=FALSE)

Wilcoxon rank sum test

data: age by as.factor(female)
W = 17512, p-value = 0.3979
alternative hypothesis: true location shift is not equal to 0

> ksres <- ks.test(age[female==1], age[female==0], data=ds)

> print(ksres)

Two-sample Kolmogorov-Smirnov test

data: age[female == 1] and age[female == 0]
D = 0.063, p-value = 0.902
alternative hypothesis: two-sided

We can also plot estimated density functions (5.1.16) for age for both groups, and shade
some areas (5.2.13) to emphasize how they overlap (Figure 2.3). SAS proc univariate
with a by statement will generate density estimates for each group, but not over-plot them.
To get results similar to those available through R, we first generate the density estimates
using proc kde (5.1.16) (suppressing all printed output).

proc sort data=ds;

by female;

run;

ods select none;

proc kde data=ds;

by female;

univar age / out=kdeout;

run;

ods select all;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 89 — #109
�

�

�

�

�

�

2.6. HELP EXAMPLES 89

Next, we’ll review the proc npar1way output which was saved as a dataset.
proc print data=age_female_ks_stats; run;

V
a c n c n
r L V V L V V
i N a a a N a a a
a a b l l a b l l

O b m e u u m e u u
b l e l e e e l e e
s e 1 1 1 1 2 2 2 2

1 age _KS_ KS 0.026755 0.026755 _D_ D 0.062990 0.062990
2 age _KSA_ KSa 0.569442 0.569442 P_KSA Pr > KSa 0.9020 0.901979

Running proc contents (1.3.2, results not shown) reveals that the variable names
prepended with ‘c’ are character variables. To get these values into a Figure title, we
use SAS Macro variables (A.8.2) created by the call symput function.

data _null_;

set age_female_ks_stats;

if label2 eq 'D' then call symput('dvalue', substr(cvalue2, 1, 5));

/* This makes a macro variable (which is saved outside any dataset)

from a value in a dataset */

if label2 eq 'Pr > KSa' then call symput('pvalue', substr(cvalue2, 1, 4));

run;

Finally, we construct the plot using proc gplot for the data with a title statement to
include the Kolmogorov–Smirnov test results.

symbol1 i=j w=5 l=1 v=none c=black;

symbol2 i=j w=5 l=2 v=none c=black;

title "Test of ages: D=&dvalue p=&pvalue";

pattern1 color=grayBB;

proc gplot data=kdeout;

plot density*value = female / legend areas=1 haxis=18 to 60 by 2;

run; quit;

In this code, the areas option to the plot statement makes SAS fill in the area under
the first curve, while the pattern statement describes what color to fill in with.

In R, we can create a function (see B.5) to automate this task.

> plotdens <- function(x,y, mytitle, mylab) {

+ densx <- density(x)

+ densy <- density(y)

+ plot(densx, main=mytitle, lwd=3, xlab=mylab, bty="l")

+ lines(densy, lty=2, col=2, lwd=3)

+ xvals <- c(densx$x, rev(densy$x))

+ yvals <- c(densx$y, rev(densy$y))

+ polygon(xvals, yvals, col="gray")

+ }

The polygon() function is used to fill in the area between the two curves.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 90 — #110
�

�

�

�

�

�

90 CHAPTER 2. COMMON STATISTICAL PROCEDURES

> mytitle <- paste("Test of ages: D=", round(ksres$statistic, 3),

+ " p=", round(ksres$p.value, 2), sep="")

> plotdens(age[female==1], age[female==0], mytitle=mytitle,

+ mylab="age (in years)")

> legend(50, .05, legend=c("Women", "Men"), col=1:2, lty=1:2, lwd=2)

Density

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Value

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

5
6

5
8

6
0

Test of ages: D=0.062 p=0.90

female 0 1

(a) SAS

20 30 40 50 60

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5
0
.0

6

Test of ages: D=0.063 p=0.9

age (in years)

D
e
n
si

ty

Women
Men

(b) R

Figure 2.3: Density plot of age by gender

2.6.5 Survival analysis: logrank test

The logrank test (2.4.4) can be used to compare estimated survival curves between groups in
the presence of censoring. Here we compare randomization groups with respect to dayslink,
where a value of 0 for linkstatus indicates that the observation was censored, not observed,
at the time recorded in dayslink.

ods select homtests;

proc lifetest data=ds;

time dayslink*linkstatus(0);

strata treat;

run;

ods select all;

Test of Equality over Strata

Pr >
Test Chi-Square DF Chi-Square

Log-Rank 84.7878 1 <.0001
Wilcoxon 87.0714 1 <.0001
-2Log(LR) 107.2920 1 <.0001

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 91 — #111
�

�

�

�

�

�

2.6. HELP EXAMPLES 91

> library(survival)

> survobj <- survdiff(Surv(dayslink, linkstatus) ~ treat,

+ data=ds)

> print(survobj)

Call:
survdiff(formula = Surv(dayslink, linkstatus) ~ treat, data = ds)

n=431, 22 observations deleted due to missingness.

N Observed Expected (O-E)^2/E (O-E)^2/V
treat=0 209 35 92.8 36.0 84.8
treat=1 222 128 70.2 47.6 84.8

Chisq= 84.8 on 1 degrees of freedom, p= 0

> names(survobj)

[1] "n" "obs" "exp" "var" "chisq"
[6] "na.action" "call"

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 93 — #113
�

�

�

�

�

�

Chapter 3

Linear regression and ANOVA

Regression and analysis of variance form the basis of many investigations. In this chapter
we describe how to undertake many common tasks in linear regression (broadly defined),
while chapter 4 discusses many generalizations, including other types of outcome variables,
longitudinal and clustered analysis, and survival methods.

Many SAS procedures and R commands can perform linear regression, as it constitutes
a special case of which many models are generalizations. We present detailed descriptions
for SAS proc reg and proc glm as well as for the R lm() command, as these offer the
most flexibility and best output options tailored to linear regression in particular. While
ANOVA can be viewed as a special case of linear regression, separate routines are available
in SAS (proc anova) and R (aov()) to perform it. In addition, SAS proc mixed is also
useful for some calculations. We address these additional procedures only with respect to
output that is difficult to obtain through the standard linear regression tools.

Many of the routines available within R return or operate on lm class objects, which
includes objects such as coefficients, residuals, fitted values, weights, contrasts, model ma-
trices, and the like (see help(lm)).

The CRAN Task View on Statistics for the Social Sciences provides an excellent overview
of methods described here and in Chapter 4.

3.1 Model fitting

3.1.1 Linear regression
HELP example: see 3.7.2SAS

proc glm data=ds;
model y = x1 ... xk;

run;
or

proc reg data=ds;
model y = x1 ... xk;

run;
Note: Both proc glm and proc reg support linear regression models, while proc reg pro-
vides more regression diagnostics. The glm procedure more easily allows categorical covari-
ates.

R
mod1 <- lm(y ~ x1 + ... + xk, data=ds)
summary(mod1)

93

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 94 — #114
�

�

�

�

�

�

94 CHAPTER 3. LINEAR REGRESSION AND ANOVA

or
form <- as.formula(y ~ x1 + ... + xk)
mod1 <- lm(form, data=ds)
summary(mod1)

Note: The first argument of the lm() function is a formula object, with the outcome specified
followed by the ∼ operator then the predictors. More information about the linear model
summary() command can be found using help(summary.lm). By default, stars are used to
annotate the output of the summary() functions regarding significance levels: these can be
turned off using the command options(show.signif.stars=FALSE).

3.1.2 Linear regression with categorical covariates
HELP example: see 3.7.2

See also 3.1.3 (parameterization of categorical covariates)

SAS
proc glm data=ds;

class x1;
model y = x1 x2 ... xk;

run;

Note: The class statement specifies covariates that should be treated as categorical. The
glm procedure uses reference cell coding; the reference category can be controlled using the
order option to the proc glm statement, as in 4.6.11.

R
x1f <- as.factor(x1)
mod1 <- lm(y ~ x1f + x2 + ... + xk, data=ds)

Note: The as.factor() command in R creates a categorical variable from a variable. By
default, the lowest value (either numerically or lexicographically) is the reference value. The
levels option for the factor() function can be used to select a particular reference value
(see also 1.4.12).

3.1.3 Parameterization of categorical covariates
HELP example: see 3.7.5

SAS and R handle this issue in different ways. In R, as.factor() can be applied within
any model-fitting function. Parameterization of the covariate can be controlled as below.
For SAS, some procedures accept a class statement to declare that a covariate to be
treated as categorical. As of SAS version 9.2, of the model-fitting procedures mentioned
in this book, the following procedures will not accept a class statement: arima, catmod,
countreg, factor, freq, kde, lifetest, nlin, nlmixed, reg, surveyfreq, and varclus.
For these procedures, indicator (or “dummy”) variables must be created in a data step. The
following procedures accept a class statement which applies reference cell or indicator vari-
able coding (described as contr.SAS() in the R note below) to the listed variables: proc
anova, candisc, discrim, gam, glimmix, glm, mi, mianalyze, mixed, quantreg, robustreg,
stepdisc, and surveyreg. The value used as the referent can often be controlled, usually
as an order option to the controlling proc, as in 4.6.11. For these procedures, other pa-
rameterizations must be coded in a data step. The following procedures accept multiple

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 95 — #115
�

�

�

�

�

�

3.1. MODEL FITTING 95

parameterizations, using the syntax shown below for proc logistic: proc genmod (de-
faults to reference cell coding), proc logistic (defaults to effect coding), proc phreg
(defaults to reference cell coding), and proc surveylogistic (defaults to effect coding).

SAS
proc logistic data=ds;

class x1 (param=paramtype) x2 (param=paramtype);
...

run;

or

proc logistic data=ds;
class x1 x2 / param=paramtype;
...

run;

Note: Available paramtypes include: 1) orthpoly, equivalent to contr.poly(); 2) effect
(the default for procs logistic and surveylogistic), equivalent to contr.sum(); and 3)
ref, equivalent to contr.SAS(). In addition, if the same parameterization is desired for all
of the categorical variables in the model, it can be added in a statement such as the second
example. In this case, param=glm can be used to emulate the parameterization found in
the other procedures which accept class statements and in contr.SAS() within R; this is
(the default for procs genmod and phreg).

R
x.factor <- as.factor(x)
mod1 <- lm(y ~ x.factor, contrasts=list(x.factor="contr.SAS"))

Note: The as.factor() function creates a factor object, akin to how SAS treats class
variables in proc glm. The contrasts option for the lm() function specifies how the
levels of that factor object should be used within the function. The levels option to the
factor() function allows specification of the ordering of levels (the default is lexicographic).
An example can be found in section 3.7.

The specification of the design matrix for analysis of variance and regression models
can be controlled using the contrasts option. Examples of options (for a factor with 4
equally-spaced levels) are given below.

> contr.treatment(4) > contr.poly(4)
2 3 4 .L .Q .C

1 0 0 0 [1,] -0.671 0.5 -0.224
2 1 0 0 [2,] -0.224 -0.5 0.671
3 0 1 0 [3,] 0.224 -0.5 -0.671
4 0 0 1 [4,] 0.671 0.5 0.224
> contr.SAS(4) > contr.sum(4)
1 2 3 [,1] [,2] [,3]

1 1 0 0 1 1 0 0
2 0 1 0 2 0 1 0
3 0 0 1 3 0 0 1
4 0 0 0 4 -1 -1 -1

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 96 — #116
�

�

�

�

�

�

96 CHAPTER 3. LINEAR REGRESSION AND ANOVA

> contr.helmert(4)
[,1] [,2] [,3]

1 -1 -1 -1
2 1 -1 -1
3 0 2 -1
4 0 0 3

See options("contrasts") for defaults, and contrasts() or lm() to apply a contrast
function to a factor variable. Support for reordering factors is available within the reshape
library reorder_factor() function.

3.1.4 Linear regression with no intercept

SAS
proc glm data=ds;

model y = x1 ... xk / noint;
run;

Note: The noint option works with many model statements.

R
mod1 <- lm(y ~ 0 + x1 + ... + xk, data=ds)

or
mod1 <- lm(y ~ x1 + ... + xk -1, data=ds)

3.1.5 Linear regression with interactions
HELP example: see 3.7.2SAS

proc glm data=ds;
model y = x1 x2 x1*x2 x3 ... xk;

run;
or

proc glm data=ds;
model y = x1|x2 x3 ... xk;

run;

Note: The | operator includes the product and all lower order terms, while the * operator
includes only the specified interaction. So, for example, model y = x1|x2|x3 and model y
= x1 x2 x3 x1*x2 x1*x3 x2*x3 x1*x2*x3 are equivalent statements. The syntax above
also works with any covariates designated as categorical using the class statement (3.1.2).
The model statement for many procedures accepts this syntax.

R
mod1 <- lm(y ~ x1 + x2 + x1:x2 + x3 + ... + xk, data=ds)
or
lm(y ~ x1*x2 + x3 + ... + xk, data=ds)

Note: The * operator includes all lower order terms (in this case main effects), while
the : operator includes only the specified interaction. So, for example, the commands y
∼ x1*x2*x3 and y ∼ x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3 + x1:x2:x3 have equal
values. The syntax also works with any covariates designated as categorical using the
as.factor() command (see 3.1.2).

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 97 — #117
�

�

�

�

�

�

3.1. MODEL FITTING 97

3.1.6 Linear models stratified by each value of a grouping variable
HELP example: see 3.7.4

It is straightforward in SAS to fit models stratified by each value of a grouping variable. In
R this task is more complicated (see also subsetting, 1.5.1).

SAS
proc sort data=ds;

by z;
run;

ods output parameterestimates=params;
proc reg data=ds;

by z;
model y = x1 ... xk;

run;

Note: Note that if the by variable has many distinct values, output may be voluminous. A
single dataset containing the parameter estimates from each by group (A.6.2) can be created
using ODS by issuing an ods output parameterestimates=ds statement before the proc
reg statement.

R
uniquevals <- unique(z)
numunique <- length(uniquevals)
formula <- as.formula(y ~ x1 + ... + xk)
p <- length(coef(lm(formula)))
params <- matrix(rep(0, numunique*p), p, numunique)
for (i in 1:length(uniquevals)) {

cat(i, "\n")
params[,i] <- coef(lm(formula, subset=(z==uniquevals[i])))

}

Note: In the above code, separate regressions are fit for each value of the grouping variable
be through use of a for loop. This requires the creation of a matrix of results params to
be set up in advance, of the appropriate dimension (number of rows equal to the number of
parameters (p=k+1) for the model, and number of columns equal to the number of levels
for the grouping variable z). Within the loop, the lm() function is called and the coefficients
from each fit are saved in the appropriate column of the params matrix.

3.1.7 One-way analysis of variance
HELP example: see 3.7.5SAS

proc glm data=ds;
class x;
model y = x / solution;

run;

Note: The solution option to the model statement requests that the parameter estimates
be displayed. Other procedures which fit ANOVA models include proc anova and proc
mixed.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 98 — #118
�

�

�

�

�

�

98 CHAPTER 3. LINEAR REGRESSION AND ANOVA

R
xf <- as.factor(x)
mod1 <- aov(y ~ xf, data=ds)
summary(mod1)

Note: The summary() command can be used to provide details of the model fit. More
information can be found using help(summary.aov). Note that summary.lm(mod1) will
display the regression parameters underlying the ANOVA model.

3.1.8 Two-way (or more) analysis of variance
HELP example: see 3.7.5

Interactions can be specified using the syntax introduced in section 3.1.5 (see also interaction
plots, section 5.1.9).

SAS
proc glm data=ds;

class x1 x2;
model y = x1 x2;

run;

Note: Other procedures which fit ANOVA models include proc anova and proc mixed.

R
aov(y ~ as.factor(x1) + as.factor(x2), data=ds)

3.2 Model comparison and selection

3.2.1 Compare two models
HELP example: see 3.7.5

Model comparison marks a key point of divergence for SAS and R. In general, most pro-
cedures in SAS fit a single model. Comparisons between models must be constructed by
hand. An exception is “leave-one-out” models, in which a model identical to the one fit is
considered, except that a single predictor is to be omitted. In this case, SAS offers “Type
III” sums of squares tests, which can be printed by default or request in many modeling
procedures. The R function drop1() computes a table of changes in fit. In addition, R
offers functions which compare nested models using the anova() function. The Wald tests
calculated by SAS and the likelihood ratio tests from anova() are identical in many set-
tings, though they differ in general. In cases in which they differ, likelihood ratio tests are
to be preferred.

R
mod1 <- lm(y ~ x1 + ... + xk, data=ds)
mod2 <- lm(y ~ x3 + ... + xk, data=ds)
anova(mod2, mod1)

or
drop1(mod2)

Note: The anova() command in R computes analysis of variance (or deviance) tables.
When given one model as an argument, it displays the ANOVA table. When two (or more)
nested models are given, it calculates the differences between them.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 99 — #119
�

�

�

�

�

�

3.2. MODEL COMPARISON AND SELECTION 99

3.2.2 Log-likelihood
HELP example: see 3.7.5See also 3.2.3 (AIC)

SAS
proc mixed data=ds;

model y = x1 ... xk;
run;

Note: Log-likelihood values are produced by various SAS procedures, but the means of re-
questing them can be idiosyncratic. The mixed procedure fits a superset of models available
in proc glm, and can be used to generate this quantity.

R
mod1 <- lm(y ~ x1 + ... + xk, data=ds)
logLik(mod1)

Note: As of this writing, the logLik() function supports glm, lm, nls, Arima, gls, lme,
and nlme objects.

3.2.3 Akaike Information Criterion (AIC)
HELP example: see 3.7.5See also 3.2.2 (log-likelihood)

SAS
proc reg data=ds stats=aic;

model y = x1 ... xk;
run;

Note: AIC values are available in various SAS procedures, but the means of requesting them
can be idiosyncratic.

R
mod1 <- lm(y ~ x1 + ... + xk, data=ds)
AIC(mod1)

Note: The AIC() function includes support for glm, lm, nls, Arima, gls, lme, and nlme
objects.

3.2.4 Bayesian Information Criterion (BIC)

See also 3.2.3 (AIC)

SAS
proc mixed data=ds;

model y = x1 ... xk;
run;

Note: BIC values are presented by default in proc mixed.

R
library(nlme)
mod1 <- lm(y ~ x1 + ... + xk, data=ds)
BIC(mod1)

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 100 — #120
�

�

�

�

�

�

100 CHAPTER 3. LINEAR REGRESSION AND ANOVA

3.3 Tests, contrasts, and linear functions of parameters

3.3.1 Joint null hypotheses: several parameters equal 0

SAS
proc reg data=ds;

model ...;
nametest: test varname1=0, varname2=0;

run;

Note: In the above, nametest is an arbitrary label which will appear in the output. Multiple
test statements are permitted.

R
mod1 <- lm(y ~ x1 + ... + xk, data=ds)
mod2 <- lm(y ~ x3 + ... + xk, data=ds)
anova(mod2, mod1)

or

sumvals <- summary(mod1)
covb <- vcov(mod1)
coeff.mod1 <- coef(mod1)[2:3]
covmat <- matrix(c(covb[2,2], covb[2,3], covb[2,3], covb[3,3]), nrow=2)
fval <- t(coeff.mod1) %*% solve(covmat) %*% coeff.mod1
pval <- 1-pf(fval, 2, mod1$df)

Note: The R code for the second option, while somewhat complex, builds on the syntax
introduced in 3.5.3, 3.5.8, and 3.5.9, and is intended to demonstrate ways to interact with
linear model objects.

3.3.2 Joint null hypotheses: sum of parameters

SAS
proc reg data=ds;

model ...;
nametest: test varname1 + varname2=1;

run;

Note: The test statement is prefixed with an arbitrary nametest which will appear in the
output. Multiple test statements are permitted.

R
mod1 <- lm(y ~ x1 + ... + xk, data=ds)
mod2 <- lm(y ~ I(x1+x2-1) + ... + xk, data=ds)
anova(mod2, mod1)

or

mod1 <- lm(y ~ x1 + ... + xk, data=ds)
covb <- vcov(mod1)
coeff.mod1 <- coef(mod1)
t <- (coeff.mod1[2,1]+coeff.mod1[3,1]-1)/

sqrt(covb[2,2]+covb[3,3]+2*covb[2,3])
pvalue <- 2*(1-pt(abs(t), mod1$df))

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 101 — #121
�

�

�

�

�

�

3.3. TESTS, CONTRASTS, AND LINEAR FUNCTIONS OF PARAMETERS 101

Note: The I() function inhibits the interpretation of operators, to allow them to be used
as arithmetic operators. The R code in the lower example utilizes the same approach
introduced in 3.3.1.

3.3.3 Tests of equality of parameters
HELP example: see 3.7.7SAS

proc reg data=ds;
model ...;
nametest: test varname1=varname2;

run;

Note: The test statement is prefixed with an arbitrary nametest which will appear in the
output. Multiple test statements are permitted.

R
mod1 <- lm(y ~ x1 + ... + xk, data=ds)
mod2 <- lm(y ~ I(x1+x2) + ... + xk, data=ds)
anova(mod2, mod1)

or

library(gmodels)
fit.contrast(mod1, "x1", values)

or
mod1 <- lm(y ~ x1 + ... + xk, data=ds)
covb <- vcov(mod1)
coeff.mod1 <- coef(mod1)
t <- (coeff.mod1[2]-coeff.mod1[3])/sqrt(covb[2,2]+covb[3,3]-2*covb[2,3])
pvalue <- 2*(1-pt(abs(t), mod1$df))

Note: The I() function inhibits the interpretation of operators, to allow them to be used
as arithmetic operators. The fit.contrast() function calculates a contrast in terms of
levels of the factor variable x1 using a numeric matrix vector of contrast coefficients (where
each row sums to zero) denoted by values. The more general R code below utilizes the
same approach introduced in 3.3.1 for the specific test of β1 = β2 (different coding would
be needed for other comparisons).

3.3.4 Multiple comparisons
HELP example: see 3.7.6SAS

proc glm data=ds;
class x1;
model y = x1;
lsmeans x1 / pdiff adjust=tukey;

run;

Note: The pdiff option requests p-values for the hypotheses involving the pairwise compar-
ison of means. The adjust option adjusts these p-values for multiple comparisons. Other
options available through adjust include bon (for Bonferroni), and dunnett, among oth-
ers. SAS proc mixed also has an adjust option for its lsmeans statement. A graphical
presentation of significant differences among levels can be obtained with the lines option
to the lsmeans statement, as shown in 3.7.6.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 102 — #122
�

�

�

�

�

�

102 CHAPTER 3. LINEAR REGRESSION AND ANOVA

R
mod1 <- aov(y ~ x))
TukeyHSD(mod1, "x")

Note: The TukeyHSD() function takes an argument an aov object, and calculates the pair-
wise comparisons of all of the combinations of the factor levels of the variable x (see also
library(multcomp)).

3.3.5 Linear combinations of parameters
HELP example: see 3.7.7

It is often useful to calculate predicted values for particular covariate values. Here, we
calculate the predicted value E[Y |X1 = 1, X2 = 3] = β̂0 + β̂1 + 3β̂2.

SAS
proc glm data=ds;

model y = x1 ... xk;
estimate 'label' intercept 1 x1 1 x2 3;

run;

Note: The estimate statement is used to calculate linear combination of parameters (and
associated standard errors). The optional quoted text is a label which will be printed with
the estimated function.

R
newdf <- data.frame(x1=c(1), x2=c(3))
estimates <- predict(mod1, newdf, se.fit=TRUE, interval="confidence")

Note: The predict() command in R can generate estimates at any combination of param-
eter values, as specified as a dataframe that is passed as an argument. More information
on this function can be found using help(predict.lm).

3.4 Model diagnostics

3.4.1 Predicted values
HELP example: see 3.7.2SAS

proc reg data=ds;
model ...;
output out=newds predicted=predicted_varname;

run;

or
proc glm data=ds;

model ...;
output out=newds predicted=predicted_varname;

run;

Note: The output statement creates a new dataset and specifies variables to be included,
of which the predicted values are an example. Others can be found using the on-line help:
Contents; SAS Products; SAS Procedures; REG; Output Statement.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 103 — #123
�

�

�

�

�

�

3.4. MODEL DIAGNOSTICS 103

R
mod1 <- lm(...)
predicted.varname <- predict(mod1)

Note: The command predict() operates on any lm() object, and by default generates a
vector of predicted values. Similar commands retrieve other regression output.

3.4.2 Residuals
HELP example: see 3.7.2SAS

proc glm data=ds;
model ...;
output out=newds residual=residual_varname;

run;

or
proc reg data=ds;

model ...;
output out=newds residual=residual_varname;

run;

Note: The output statement creates a new dataset and specifies variables to be included, of
which the residuals are an example. Others can be found using the on-line help: Contents;
SAS Products; SAS Procedures; Proc REG; Output Statement.

R
mod1 <- lm(...)
residual.varname <- residuals(mod1)

Note: The command residuals() operates on any lm() object, and generates a vector of
residuals. Other functions for analysis of variance objects, GLM or linear mixed effects exist
(see for example help(residuals.glm)).

3.4.3 Studentized residuals
HELP example: see 3.7.2

Standardized residuals are calculated by dividing the ordinary residual (observed minus
expected, yi − ŷi) by an estimate of its standard deviation. Studentized residuals are cal-
culated in a similar manner, where the predicted value and the variance of the residual are
estimated from the model fit while excluding that observation. In SAS proc glm the stan-
dardized residual is requested by the student option, while the rstudent option generates
the studentized residual.

SAS
proc glm data=ds;

model ...;
output out=newds student=standardized_resid_varname;

run;
or

proc reg data=ds;
model ...;
output out=newds rstudent=studentized_resid_varname;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 104 — #124
�

�

�

�

�

�

104 CHAPTER 3. LINEAR REGRESSION AND ANOVA

Note: The output statement creates a new dataset and specifies variables to be included, of
which the studentized residuals are an example. Both proc reg and proc glm include both
types of residuals. Others can be found using the on-line help: Contents; SAS Products;
SAS Procedures; Proc REG; Output Statement.

R
mod1 <- lm(...)
standardized.resid.varname <- stdres(mod1)
studentized.resid.varname <- studres(mod1)

Note: The stdres() and studres() functions operate on any lm() object, and generate
a vector of studentized residuals (the former command includes the observation in the
calculation, while the latter does not). Similar commands retrieve other regression output
(see help(influence.measures)).

3.4.4 Leverage
HELP example: see 3.7.2

Leverage is defined as the diagonal element of the (X(XT X)−1XT) or “hat” matrix.

SAS
proc glm data=ds;

model ...;
output out=newds h=leverage_varname;

run;
or

proc reg data=ds;
model ...;
output out=newds h=leverage_varname;

run;

Note: The output statement creates a new dataset and specifies variables to be included,
of which the leverage values are one example. Others can be found using the on-line help:
Contents; SAS Products; SAS Procedures; Proc REG; Output Statement.

R
mod1 <- lm(...)
leverage.varname <- hatvalues(mod1)

Note: The command hatvalues() operates on any lm() object, and generates a vector of
leverage values. Similar commands can be utilized to retrieve other regression output (see
help(influence.measures)).

3.4.5 Cook’s D
HELP example: see 3.7.2

Cook’s distance (D) is a function of the leverage (see 3.4.4) and the residual. It is used as
a measure of the influence of a data point in a regression model.

SAS
proc glm data=ds;

model ...;
output out=newds cookd=cookd_varname;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 105 — #125
�

�

�

�

�

�

3.4. MODEL DIAGNOSTICS 105

or
proc reg data=ds;

model ...;
output out=newds cookd=cookd_varname;

run;

Note: The output statement creates a new dataset and specifies variables to be included,
of which the Cook’s distance values are an example. Others can be found using the on-line
help: Contents; SAS Products; SAS Procedures; Proc REG; Output Statement.

R
mod1 <- lm(...)
cookd.varname <- cooks.distance(mod1)

Note: The command cooks.distance() operates on any lm() object, and generates a
vector of Cook’s distance values. Similar commands retrieve other regression output.

3.4.6 DFFITS
HELP example: see 3.7.2

DFFITS are a standardized function of the difference between the predicted value for the
observation when it is included in the dataset and when (only) it is excluded from the
dataset. They are used as an indicator of the observation’s influence.

SAS
proc reg data=ds;

model ...;
output out=newds dffits=dffits_varname;

run;

or

proc glm data=ds;
model ...;
output out=newds dffits=dffits_varname;

run;

Note: The output statement creates a new dataset and specifies variables to be included,
of which the dffits values are an example. Others can be found using the on-line help:
Contents; SAS Products; SAS Procedures; Proc REG; Output Statement.

R
mod1 <- lm(...)
dffits.varname <- dffits(mod1)

Note: The command dffits() operates on any lm() object, and generates a vector of dffits
values. Similar commands retrieve other regression output.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 106 — #126
�

�

�

�

�

�

106 CHAPTER 3. LINEAR REGRESSION AND ANOVA

3.4.7 Diagnostic plots
HELP example: see 3.7.3SAS

proc reg data=ds;
model ...
output out=newds predicted=pred_varname residual=resid_varname

h=leverage_varname cookd=cookd_varname;
run;

proc gplot data=ds;
plot resid_varname * pred_varname;
plot resid_varname * leverage_varname;

run;
quit;

Note: To mimic R more closely, use a data step to generate the square root of residuals. QQ
plots of residuals can be generated via proc univariate. It is not straightforward to plot lines
of constant Cook’s D on the residuals vs. leverage plot. The ods graphics on statement
(A.7.3), issued prior to running the reg procedure will produce many diagnostic plots, as
will running ods graphics on and then proc glm with the plots=diagnostics option.

R
mod1 <- lm(...)
par(mfrow=c(2, 2)) # display 2 x 2 matrix of graphs
plot(mod1)

Note: The plot.lm() function (which is invoked when plot() is given a linear regression
model as an argument) can generate six plots: 1) a plot of residuals against fitted values,
2) a Scale-Location plot of

√
(Yi − Ŷi) against fitted values, 3) a Normal Q-Q plot of the

residuals, 4) a plot of Cook’s distances (3.4.5) versus row labels, 5) a plot of residuals
against leverages (3.4.4), and 6) a plot of Cook’s distances against leverage/(1-leverage).
The default is to plot the first three and the fifth. The which option can be used to specify
a different set (see help(plot.lm)).

3.5 Model parameters and results

3.5.1 Prediction limits

These are the lower (and upper) prediction limits for ‘new’ observations with the covariate
values of subjects observed in the dataset, as opposed to confidence limits for the population
mean (see 3.5.4).

SAS
proc glm data=ds;

model ...;
output out=newds lcl=lcl_varname;

run;

or
proc reg data=ds;

model ...;
output out=newds lcl=lcl_varname;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 107 — #127
�

�

�

�

�

�

3.5. MODEL PARAMETERS AND RESULTS 107

Note: The output statement creates a new dataset and specifies variables to be included, of
which the lower prediction limit values are an example. The upper limits can be requested
with the ucl option to the output statement. Other possibilities can be found using the
on-line help: Contents; SAS Products; SAS Procedures; Proc REG; Output Statement.

R
mod1 <- lm(y ~ ..., data=ds)
pred.w.lowlim <- predict(mod1, interval="prediction")[,2]

Note: This code saves the second column of the results from the predict() function into a
vector. To generate the upper confidence limits, the user would access the third column of
the predict() object in R. The command predict() operates on any lm() object, and with
these options generates prediction limit values. By default, the function uses the estimation
dataset, but a separate dataset of values to be used to predict can be specified.

3.5.2 Parameter estimates
HELP example: see 3.7.2SAS

ods output parameterestimates=newds;
proc glm data=ds;

model ... / solution;
run;

or
proc reg data=ds outest=newds;

model ...;
run;

Note: The ods output statement (section A.7.1) can be used to save any piece of SAS
output as a SAS dataset. The outest option is specific to proc reg, though many other
procedures accept similar syntax.

R
mod1 <- lm(...)
coeff.mod1 <- coef(mod1)

Note: The first element of the vector coeff.mod1 is the intercept (assuming that a model
with an intercept was fit).

3.5.3 Standard errors of parameter estimates

See also 3.5.9 (covariance matrix)

SAS
proc reg data=ds outest=newds;

model .../ outseb ...;
run;

or
ods output parameterestimates=newds;
proc glm data=ds;

model .../ solution;
run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 108 — #128
�

�

�

�

�

�

108 CHAPTER 3. LINEAR REGRESSION AND ANOVA

Note: The ods output statement (section A.7.1) can be used to save any piece of SAS
output as a SAS dataset.

R
mod1 <- lm(...)
se.mod1 <- coef(summary(mod1))[,2]

Note: The standard errors are the second column of the results from coef().

3.5.4 Confidence limits for the mean

These are the lower (and upper) confidence limits for the mean of observations with the
given covariate values, as opposed to the prediction limits for individual observations with
those values (see 3.5.1).

SAS
proc glm data=ds;

model ...;
output out=newds lclm=lcl_mean_varname;

run;

or
proc reg data=ds;

model ...;
output out=newds lclm=lcl_mean_varname;

run;

Note: The output statement creates a new dataset and specifies output variables to be
included, of which the lower confidence limit values are one example. The upper confidence
limits can be generated using the uclm option to the output statement. Other possibilities
can be found using the on-line help: Contents; SAS Products; SAS Procedures; Proc REG;
Output Statement.

R
mod1 <- lm(...)
pred <- predict(mod1, interval="confidence")
lcl.varname <- pred[,2]

Note: The lower confidence limits are the second column of the results from coef(). To
generate the upper confidence limits, the user would replace lclm with uclm for SAS and
access the third column of the predict() object in R. The command predict() operates
on any lm() object, and with these options generates confidence limit values. By default,
the function uses the estimation dataset, but a separate dataset of values to be used to
predict can be specified.

3.5.5 Plot confidence intervals for the mean

SAS
symbol1 i=rlclm95 value=none;
proc gplot data=ds;

plot y * x;
run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 109 — #129
�

�

�

�

�

�

3.5. MODEL PARAMETERS AND RESULTS 109

Note: The symbol statement i option (synonym for interpolation) contains many useful
options for adding features to scatterplots. The rlclm95 selection requests a regression
line plot, with 95% confidence limits for the mean. The value=none requests that the
observations themselves not be plotted (see also scatterplots, 5.1.1).

R
pred.w.clim <- predict(lm(y ~ x), interval="confidence")
matplot(new$x, pred.w.clim, lty=c(1, 2, 2), type="l", ylab="predicted y")

Note: This entry produces fit and confidence limits at the original observations in the original
order. If the observations aren’t sorted relative to the explanatory variable x, the resulting
plot will be a jumble. The matplot() function is used to generate lines, with a solid line
(lty=1) for predicted values and dashed line (lty=2) for the confidence bounds.

3.5.6 Plot prediction limits from a simple linear regression

SAS
symbol1 i=rlcli95 l=2 value=none;
proc gplot data=ds;

plot y * x;
run;

Note: The symbol statement i (synonym for interpolation) option contains many useful
options for adding features to scatterplots (see also 5.1.1). The rlcli95 selection requests
a regression line plot, with 95% confidence limits for the values. The value=none requests
that the observations not be plotted.

R
pred.w.plim <- predict(lm(y ~ x), interval="prediction")
matplot(new$x, pred.w.plim, lty=c(1, 2, 2), type="l", ylab="predicted y")

Note: This entry produces fit and confidence limits at the original observations in the original
order. If the observations aren’t sorted relative to the explanatory variable x, the resulting
plot will be a jumble. The matplot() function is used to generate lines, with a solid line
(lty=1) for predicted values and dashed line (lty=2) for the confidence bounds.

3.5.7 Plot predicted lines for each value of a variable

Here we describe how to generate plots for a variable X1 versus Y separately for each value
of the variable X2 (see also conditioning plot, 5.1.11).

SAS
symbol1 i=rl value=none;
symbol2 i=rl value=none;
proc gplot data=ds;

plot y*x1 = x2;
run;

Note: The symbol statement i (synonym for interpolation) option contains many useful
options for adding features to scatterplots. The rl selection requests a regression line plot.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 110 — #130
�

�

�

�

�

�

110 CHAPTER 3. LINEAR REGRESSION AND ANOVA

The value=none requests that the observations not be plotted. The = x2 syntax requests
a different symbol statement be applied for each level of x2 (see also scatterplots, 5.1.1).

R
plot(x, y, pch=" ") # create an empty plot of the correct size
abline(lm(y ~ x1, subset=x2==0), lty=1, lwd=2)
abline(lm(y ~ x1, subset=x2==1), lty=2, lwd=2)
...
abline(lm(y ~ x1, subset=x2==k), lty=k+1, lwd=2)

Note: The abline() function is used to generate lines for each of the subsets, with a solid
line (lty=1) for the first group and dashed line (lty=2) for the second (this assumes that
X2 takes on values 0–k, see 3.1.6).

3.5.8 Design and information matrix

See also 1.9 (matrices)

SAS
proc reg data=ds;

model .../ xpx ...;
run;

or
proc glm data=ds;

model .../ xpx ...;
run;

Note: A dataset containing the information (X ′X) matrix can be created using ODS by
specifying either proc statement or by adding the option outsscp=newds to the proc reg
statement.

R
mod1 <- lm(y ~ x1 + ... + xk, data=ds)
XpX <- t(model.matrix(mod1)) %*% model.matrix(mod1)

or
X <- cbind(rep(1, length(x1)), x1, x2, ..., xk)
XpX <- t(X) %*% X
rm(X)

Note: The model.matrix() function creates the design matrix from a linear model object.
Alternatively, this quantity can be built up using the cbind() function to glue together
the design matrix X. Finally, matrix multiplication and the transpose function are used to
create the information (X ′X) matrix.

3.5.9 Covariance matrix
HELP example: see 3.7.2See also 1.9 (matrices) and 3.5.3 (standard errors)

SAS
proc reg data=ds outest=newds covout;
run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 111 — #131
�

�

�

�

�

�

3.6. FURTHER RESOURCES 111

or
ods output covb=newds;
proc reg data=ds;

model ... / covb ...;

R
mod1 <- lm(...)
varcov <- vcov(mod1)

or
sumvals <- summary(mod1)
covb <- sumvals$cov.unscaled*sumvals$sigma^2

Note: Running help(summary.lm) provides details on return values.

3.6 Further resources

Accessible guides to linear regression in R and SAS can be found in [19] and [49], respectively.
Cook [14] reviews regression diagnostics. The CRAN Task View on Statistics for the Social
Sciences provides an excellent overview of methods described here and in Chapter 4.

3.7 HELP examples

To help illustrate the tools presented in this chapter, we apply many of the entries to the
HELP data. SAS and R code can be downloaded from http://www.math.smith.edu/
sasr/examples.

We begin by reading in the dataset and keeping only the female subjects. In R, we
create a version of the substance variable as a factor (see 3.1.3).

proc import datafile='c:/book/help.dta'
out=help_a dbms=dta;

run;

data help;

set help_a;

if female;

run;

> options(digits=3)

> # read in Stata format

> library(foreign)

> ds <- read.dta("help.dta", convert.underscore=FALSE)

> newds <- ds[ds$female==1,]

> attach(newds)

> sub <- factor(substance, levels=c("heroin", "alcohol", "cocaine"))

3.7.1 Scatterplot with smooth fit

As a first step to help guide fitting a linear regression, we create a scatterplot (5.1.1)
displaying the relationship between age and the number of alcoholic drinks consumed in
the period before entering detox (variable name: i1), as well as primary substance of abuse
(alcohol, cocaine or heroin).

© 2010 by Taylor and Francis Group, LLC

http://www.math.smith.edu
http://www.math.smith.edu

�

�

“book” — 2009/6/16 — 16:53 — page 112 — #132
�

�

�

�

�

�

112 CHAPTER 3. LINEAR REGRESSION AND ANOVA

Figure 3.7.1 displays a scatterplot of observed values for i1 (along with separate smooth
fits by primary substance). To improve legibility, the plotting region is restricted to those
with number of drinks between 0 and 40 (see plotting limits, 5.3.7).

axis1 order = (0 to 40 by 10) minor=none;

axis2 minor=none;

legend1 label=none value=(h=1.5) shape=symbol(10,1.2)

down=3 position=(top right inside) frame mode=protect;

symbol1 v=circle i=sm70s c=black l=1 h=1.1 w=5;

symbol2 v=diamond i=sm70s c=black l=33 h=1.1 w=5;

symbol3 v=square i=sm70s c=black l=8 h=1.1 w=5;

proc gplot data=help;

plot i1*age = substance / vaxis=axis1 haxis=axis2 legend=legend1;

run; quit;

> plot(age, i1, ylim=c(0,40), type="n", cex.lab=1.4, cex.axis=1.4)

> points(age[substance=="alcohol"], i1[substance=="alcohol"], pch="a")

> lines(lowess(age[substance=="alcohol"],

+ i1[substance=="alcohol"]), lty=1, lwd=2)

> points(age[substance=="cocaine"], i1[substance=="cocaine"], pch="c")

> lines(lowess(age[substance=="cocaine"],

+ i1[substance=="cocaine"]), lty=2, lwd=2)

> points(age[substance=="heroin"], i1[substance=="heroin"], pch="h")

> lines(lowess(age[substance=="heroin"],

+ i1[substance=="heroin"]), lty=3, lwd=2)

> legend(44, 38, legend=c("alcohol", "cocaine", "heroin"), lty=1:3,

+ cex=1.4, lwd=2, pch=c("a", "c", "h"))

The pch option to the legend() command can be used to insert plot symbols in R legends
(Figure 3.1 displays the different line-styles).

i1

0

10

20

30

40

age

20 30 40 50 60

alcohol
cocaine
heroin

(a) SAS

20 30 40 50

0
1

0
2

0
3

0
4

0

age

i1

a

a

a

a

a

a
a

a

a

a

aa

a
a

a a

a

a

a

a
a

a a

a

a

a

c

c

cc

c
c

c
c

c

c

c

c

c

c
c

c

c

c

c

c

c

c

c

c
c

c

c

c

c

c

c

c

c

c

c

c

c
c

c

c h

hh

h

h hhh

h

h

h

h h

h

h

h

h

h
h

h
hh

h

hh h

h

h

h

h

a
c
h

alcohol
cocaine
heroin

(b) R

Figure 3.1: Scatterplot of observed values for AGE and I1 (plus smoothers by substance)

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 113 — #133
�

�

�

�

�

�

3.7. HELP EXAMPLES 113

Not surprisingly, Figure 3.1 suggests that there is a dramatic effect of primary substance,
with alcohol users drinking more than others. There is some indication of an interaction
with age. It is important to note that SAS uses only the points displayed (i.e. within the
specified axes) when smoothing, while R uses all points, regardless of whether they appear
in the plot.

3.7.2 Linear regression with interaction

Next we fit a linear regression model (3.1.1) for the number of drinks as a function of age,
substance, and their interaction (3.1.5). To assess the need for the interaction, we use the
F test from the Type III sums of squares in SAS. In R, we additionally fit the model with
no interaction and use the anova() function to compare the models (the drop1() function
could also be used). To save space, some results of proc glm have been suppressed using
the ods select statement (see A.7).

options ls=74; /* reduces width of output to make it fit in gray area */

ods select overallanova modelanova parameterestimates;

proc glm data=help;

class substance;

model i1 = age substance age * substance / solution;

output out=helpout cookd=cookd_ch4 dffits=dffits_ch4

student=sresids_ch4 residual=resid_ch4

predicted=pred_ch4 h=lev_ch4;

run; quit;

ods select all;

The GLM Procedure

Dependent Variable: I1 i1

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 5 12275.17570 2455.03514 9.99 <.0001

Error 101 24815.36635 245.69670

Corrected Total 106 37090.54206

The GLM Procedure

Dependent Variable: I1 i1

Source DF Type I SS Mean Square F Value Pr > F

AGE 1 384.75504 384.75504 1.57 0.2137
SUBSTANCE 2 10509.56444 5254.78222 21.39 <.0001
AGE*SUBSTANCE 2 1380.85622 690.42811 2.81 0.0649

Source DF Type III SS Mean Square F Value Pr > F

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 114 — #134
�

�

�

�

�

�

114 CHAPTER 3. LINEAR REGRESSION AND ANOVA

AGE 1 27.157727 27.157727 0.11 0.7402
SUBSTANCE 2 3318.992822 1659.496411 6.75 0.0018
AGE*SUBSTANCE 2 1380.856222 690.428111 2.81 0.0649

The GLM Procedure

Dependent Variable: I1 i1

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept -7.77045212 B 12.87885672 -0.60 0.5476
AGE 0.39337843 B 0.36221749 1.09 0.2801
SUBSTANCE alcohol 64.88044165 B 18.48733701 3.51 0.0007
SUBSTANCE cocaine 13.02733169 B 19.13852222 0.68 0.4976
SUBSTANCE heroin 0.00000000 B . . .
AGE*SUBSTANCE alcohol -1.11320795 B 0.49135408 -2.27 0.0256
AGE*SUBSTANCE cocaine -0.27758561 B 0.53967749 -0.51 0.6081
AGE*SUBSTANCE heroin 0.00000000 B . . .

> options(show.signif.stars=FALSE)

> lm1 <- lm(i1 ~ sub * age)

> lm2 <- lm(i1 ~ sub + age)

> anova(lm2, lm1)

Analysis of Variance Table

Model 1: i1 ~ sub + age
Model 2: i1 ~ sub * age
Res.Df RSS Df Sum of Sq F Pr(>F)

1 103 26196
2 101 24815 2 1381 2.81 0.065

There is some indication of a borderline significant interaction between age and substance
group (p=0.065).

In SAS, the ods output statement can be used to save any printed result as a SAS
dataset. In the following code, all printed output from proc glm is suppressed, but the pa-
rameter estimates are saved as a SAS dataset, then printed using proc print. In addition,
various diagnostics are saved via the the output statement.

ods select none;

ods output parameterestimates=helpmodelanova;

proc glm data=help;

class substance;

model i1 = age|substance / solution;

output out=helpout cookd=cookd_ch4 dffits=dffits_ch4

student=sresids_ch4 residual=resid_ch4

predicted=pred_ch4 h=lev_ch4;

run; quit;

ods select all;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 115 — #135
�

�

�

�

�

�

3.7. HELP EXAMPLES 115

proc print data=helpmodelanova;

var parameter estimate stderr tvalue probt;

format _numeric_ 6.3;

run;

Obs Parameter Estimate StdErr tValue Probt

1 Intercept -7.770 12.879 -0.603 0.548
2 AGE 0.393 0.362 1.086 0.280
3 SUBSTANCE alcohol 64.880 18.487 3.509 0.001
4 SUBSTANCE cocaine 13.027 19.139 0.681 0.498
5 SUBSTANCE heroin 0.000 . . .
6 AGE*SUBSTANCE alcohol -1.113 0.491 -2.266 0.026
7 AGE*SUBSTANCE cocaine -0.278 0.540 -0.514 0.608
8 AGE*SUBSTANCE heroin 0.000 . . .

In R, we can get similar information with the summary() function.

> summary(lm1)

Call:
lm(formula = i1 ~ sub * age)

Residuals:
Min 1Q Median 3Q Max

-31.92 -8.25 -4.18 3.58 49.88

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.770 12.879 -0.60 0.54763
subalcohol 64.880 18.487 3.51 0.00067
subcocaine 13.027 19.139 0.68 0.49763
age 0.393 0.362 1.09 0.28005
subalcohol:age -1.113 0.491 -2.27 0.02561
subcocaine:age -0.278 0.540 -0.51 0.60813

Residual standard error: 15.7 on 101 degrees of freedom
Multiple R-squared: 0.331, Adjusted R-squared: 0.298
F-statistic: 9.99 on 5 and 101 DF, p-value: 8.67e-08

There are many quantities of interest stored in the linear model object lm1, and these
can be viewed or extracted for further use.

> names(summary(lm1))

[1] "call" "terms" "residuals" "coefficients"
[5] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"

> summary(lm1)$sigma

[1] 15.7

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 116 — #136
�

�

�

�

�

�

116 CHAPTER 3. LINEAR REGRESSION AND ANOVA

> names(lm1)

[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "contrasts" "xlevels" "call" "terms"
[13] "model"

> lm1$coefficients

(Intercept) subalcohol subcocaine age subalcohol:age
-7.770 64.880 13.027 0.393 -1.113

subcocaine:age
-0.278

> coef(lm1)

(Intercept) subalcohol subcocaine age subalcohol:age
-7.770 64.880 13.027 0.393 -1.113

subcocaine:age
-0.278

> vcov(lm1)

(Intercept) subalcohol subcocaine age subalcohol:age
(Intercept) 165.86 -165.86 -165.86 -4.548 4.548
subalcohol -165.86 341.78 165.86 4.548 -8.866
subcocaine -165.86 165.86 366.28 4.548 -4.548
age -4.55 4.55 4.55 0.131 -0.131
subalcohol:age 4.55 -8.87 -4.55 -0.131 0.241
subcocaine:age 4.55 -4.55 -10.13 -0.131 0.131

subcocaine:age
(Intercept) 4.548
subalcohol -4.548
subcocaine -10.127
age -0.131
subalcohol:age 0.131
subcocaine:age 0.291

3.7.3 Regression diagnostics

Assessing the model is an important part of any analysis. We begin by examining the
residuals (3.4.2). First, we calculate the quantiles of their distribution, then display the
smallest residual.

options ls=74;

proc means data=helpout min q1 median q3 max maxdec=2;

var resid_ch4;

run;

The MEANS Procedure

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 117 — #137
�

�

�

�

�

�

3.7. HELP EXAMPLES 117

Analysis Variable : resid_ch4

Lower Upper

Minimum Quartile Median Quartile Maximum

--

-31.92 -8.31 -4.18 3.69 49.88

--

> pred <- fitted(lm1)

> resid <- residuals(lm1)

> quantile(resid)

0% 25% 50% 75% 100%
-31.92 -8.25 -4.18 3.58 49.88

We could examine the output, then condition to find the value of the residual that is
less than -31. Instead the dataset can be sorted so the smallest observation is first and then
print one observation.
proc sort data=helpout;

by resid_ch4;

run;

proc print data=helpout (obs=1);

var id age i1 substance pred_ch4 resid_ch4;

run;

resid_
Obs ID AGE I1 SUBSTANCE pred_ch4 ch4

1 325 35 0 alcohol 31.9160 -31.9160

One way to print the largest value is to sort the dataset in the reverse order, then print
just the first observation.
proc sort data=helpout;

by descending resid_ch4;

run;

proc print data=helpout (obs=1);

var id age i1 substance pred_ch4 resid_ch4;

run;

resid_
Obs ID AGE I1 SUBSTANCE pred_ch4 ch4

1 9 50 71 alcohol 21.1185 49.8815

> tmpds <- data.frame(id, age, i1, sub, pred, resid, rstandard(lm1))

> tmpds[resid==max(resid),]

id age i1 sub pred resid rstandard.lm1.
4 9 50 71 alcohol 21.1 49.9 3.32

> tmpds[resid==min(resid),]

id age i1 sub pred resid rstandard.lm1.
72 325 35 0 alcohol 31.9 -31.9 -2.07

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 118 — #138
�

�

�

�

�

�

118 CHAPTER 3. LINEAR REGRESSION AND ANOVA

The R output includes the row number of the minimum and maximum residual.
Graphical tools are the best way to examine residuals. Figure 3.2 displays the default

diagnostic plots (3.4) from the model (for R) and the Q-Q plot generated from the saved
diagnostics (for SAS).

Sometimes in SAS it is necessary to clear out old graphics settings. This is easiest to do
with the goptions reset=all statement (5.3.5).

goptions reset=all;

ods select univar;

proc univariate data=helpout;

qqplot resid_ch4 / normal(mu=est sigma=est color=black);

run;

ods select all;

> oldpar <- par(mfrow=c(2, 2), mar=c(4, 4, 2, 2)+.1)

> plot(lm1)

> par(oldpar)

-3 -2 -1 0 1 2 3

-40

-20

0

20

40

60

re
si

d_
ch

4

Normal Quantiles

(a) SAS

0 10 20 30 40

−
4
0

−
2
0

0
2
0

4
0

6
0

Fitted values

R
e
si

d
u
a
ls

Residuals vs Fitted

484

77

−2 −1 0 1 2

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
ta

n
d
a
rd

iz
e
d
 r

e
si

d
u
a
ls

Normal Q−Q

4
84

77

0 10 20 30 40

0
.0

0
.5

1
.0

1
.5

Fitted values

S
ta

n
d
a
rd

iz
e
d

re
si

d
u
a
ls

Scale−Location
484

77

0.00 0.10 0.20

−
2

−
1

0
1

2
3

4

Leverage

S
ta

n
d
a
rd

iz
e
d
 r

e
si

d
u
a
ls

Cook's distance

0.5

Residuals vs Leverage

4

57

60

(b) R

Figure 3.2: Q-Q plot from SAS, default diagnostics from R

In SAS, we could use the ods graphics option to get assorted diagnostic plots, but
here we demonstrate a manual approach using the previously saved diagnostics. Figure 3.3
displays the empirical density of the standardized residuals, along with an overlaid normal
density. The assumption that the residuals are approximately Gaussian does not appear to
be tenable.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 119 — #139
�

�

�

�

�

�

3.7. HELP EXAMPLES 119

axis1 label=("Standardized residuals");

ods select "Histogram 1";

proc univariate data=helpout;

var sresids_ch4;

histogram sresids_ch4 / normal(mu=est sigma=est color=black)

kernel(color=black) haxis=axis1;

run;

ods select all;

> library(MASS)

> std.res <- rstandard(lm1)

> hist(std.res, breaks=seq(-2.5, 3.5, by=.5), main="",

+ xlab="standardized residuals", col="gray80", freq=FALSE)

> lines(density(std.res), lwd=2)

> xvals <- seq(from=min(std.res), to=max(std.res), length=100)

> lines(xvals, dnorm(xvals, mean(std.res), sd(std.res)), lty=2)

-2.8 -2.0 -1.2 -0.4 0.4 1.2 2.0 2.8 3.6 4.4
0

10

20

30

40

50

60

70

P
er

ce
nt

Standardized residuals

(a) SAS

standardized residuals

D
e
n
si

ty

−2 −1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

(b) R

Figure 3.3: Empirical density of residuals, with superimposed normal density

The residual plots indicate some potentially important departures from model assump-
tions, and further exploration should be undertaken.

3.7.4 Fitting regression model separately for each value of another
variable

One common task is to perform identical analyses in several groups. Here, as an example,
we consider separate linear regressions for each substance abuse group. In SAS, we show
only the parameter estimates, using ODS.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 120 — #140
�

�

�

�

�

�

120 CHAPTER 3. LINEAR REGRESSION AND ANOVA

ods select none;

proc sort data=help;

by substance;

run;

ods output parameterestimates=helpsubstparams;

proc glm data=help;

by substance;

model i1 = age / solution;

run;

ods select all;

options ls=74;

proc print data=helpsubstparams;

run;

Obs SUBSTANCE Dependent Parameter Estimate StdErr tValue Probt

1 alcohol I1 Intercept 57.10998953 18.00474934 3.17 0.0032
2 alcohol I1 AGE -0.71982952 0.45069028 -1.60 0.1195
3 cocaine I1 Intercept 5.25687957 11.52989056 0.46 0.6510
4 cocaine I1 AGE 0.11579282 0.32582541 0.36 0.7242
5 heroin I1 Intercept -7.77045212 8.59729637 -0.90 0.3738
6 heroin I1 AGE 0.39337843 0.24179872 1.63 0.1150

For R, a matrix of the correct size is created, then a for loop is run for each unique
value of the grouping variable.
> uniquevals <- unique(substance)

> numunique <- length(uniquevals)

> formula <- as.formula(i1 ~ age)

> p <- length(coef(lm(formula)))

> res <- matrix(rep(0, numunique*p), p, numunique)

> for (i in 1:length(uniquevals)) {

+ res[,i] <- coef(lm(formula, subset=substance==uniquevals[i]))

+ }

> rownames(res) <- c("intercept","slope")

> colnames(res) <- uniquevals

> res

heroin cocaine alcohol
intercept -7.770 5.257 57.11
slope 0.393 0.116 -0.72

> detach(newds)

3.7.5 Two way ANOVA

Is there a statistically significant association between gender and substance abuse group
with depressive symptoms? In SAS, we can make an interaction plot (5.1.9) by hand,
as below, or proc glm will make one automatically if the ods graphics on statement is
issued.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 121 — #141
�

�

�

�

�

�

3.7. HELP EXAMPLES 121

libname k 'c:/book';

proc sort data=k.help;

by substance female;

run;

ods select none;

proc means data=k.help;

by substance female;

var cesd;

output out=helpmean mean=;

run;

ods select all;

axis1 minor=none;

symbol1 i=j v=none l=1 c=black w=5;

symbol2 i=j v=none l=2 c=black w=5;

proc gplot data=helpmean;

plot cesd*substance = female / haxis=axis1 vaxis=axis1;

run; quit;

R has a function interaction.plot() to carry out this task. Figure 3.4 displays an
interaction plot for CESD as a function of substance group and gender.
> attach(ds)

> sub <- as.factor(substance)

> genf <- as.factor(ifelse(female, "F", "M"))

> interaction.plot(sub, genf, cesd, xlab="substance", las=1, lwd=2)

CESD

28

29

30

31

32

33

34

35

36

37

38

39

40

41

SUBSTANCE

alcohol cocaine heroin

FEMALE 0 1

(a) SAS

28

30

32

34

36

38

40

substance

m
e
a
n
 o

f
 c

e
sd

alcohol cocaine heroin

 genf

F
M

(b) R

Figure 3.4: Interaction plot of CESD as a function of substance group and gender

There are indications of large effects of gender and substance group, but little suggestion
of interaction between the two. The same conclusion is reached in Figure 3.5, which displays
boxplots by substance group and gender.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 122 — #142
�

�

�

�

�

�

122 CHAPTER 3. LINEAR REGRESSION AND ANOVA

data h2; set k.help;

if female eq 1 then sex='F';
else sex='M';

run;

proc sort data=h2; by sex; run;

symbol1 v='x' c=black;

proc boxplot data=h2;

plot cesd * substance(sex) / notches boxwidthscale=1;

run;

> subs <- character(length(substance))

> subs[substance=="alcohol"] <- "Alc"

> subs[substance=="cocaine"] <- "Coc"

> subs[substance=="heroin"] <- "Her"

> gen <- character(length(female))

> boxout <- boxplot(cesd ~ subs + genf, notch=TRUE, varwidth=TRUE,

+ col="gray80")

> boxmeans <- tapply(cesd, list(subs, genf), mean)

> points(seq(boxout$n), boxmeans, pch=4, cex=2)

alcohol cocaine heroin alcohol cocaine heroin

0

20

40

60

C
E

S
D

SUBSTANCE

F M

(a) SAS

Alc.F Coc.F Her.F Alc.M Coc.M Her.M

0
1
0

2
0

3
0

4
0

5
0

6
0

(b) R

Figure 3.5: Boxplot of CESD as a function of substance group and gender

The width of each box is proportional to the size of the sample, with the notches denoting
confidence intervals for the medians, and X’s marking the observed means.

Next, we proceed to formally test whether there is a significant interaction through a
two-way analysis of variance (3.1.8). In SAS, the Type III sums of squares table can be
used to assess the interaction; we restrict output to this table to save space. In R we fit
models with and without an interaction, and then compare the results. We also construct
the likelihood ratio test manually.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 123 — #143
�

�

�

�

�

�

3.7. HELP EXAMPLES 123

options ls=74;

ods select modelanova;

proc glm data=k.help;

class female substance;

model cesd = female substance female*substance / ss3;

run;

The GLM Procedure

Dependent Variable: CESD

Source DF Type III SS Mean Square F Value Pr > F

FEMALE 1 2463.232928 2463.232928 16.84 <.0001
SUBSTANCE 2 2540.208432 1270.104216 8.69 0.0002
FEMALE*SUBSTANCE 2 145.924987 72.962494 0.50 0.6075

> aov1 <- aov(cesd ~ sub * genf, data=ds)

> aov2 <- aov(cesd ~ sub + genf, data=ds)

> resid <- residuals(aov2)

> anova(aov2, aov1)

Analysis of Variance Table

Model 1: cesd ~ sub + genf
Model 2: cesd ~ sub * genf
Res.Df RSS Df Sum of Sq F Pr(>F)

1 449 65515
2 447 65369 2 146 0.5 0.61

> options(digits=6)

> logLik(aov1)

'log Lik.' -1768.92 (df=7)

> logLik(aov2)

'log Lik.' -1769.42 (df=5)

> lldiff <- logLik(aov1)[1] - logLik(aov2)[1]

> lldiff

[1] 0.505055

> 1 - pchisq(2*lldiff, 2)

[1] 0.603472

> options(digits=3)

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 124 — #144
�

�

�

�

�

�

124 CHAPTER 3. LINEAR REGRESSION AND ANOVA

> summary(aov2)

Df Sum Sq Mean Sq F value Pr(>F)
sub 2 2704 1352 9.27 0.00011
genf 1 2569 2569 17.61 3.3e-05
Residuals 449 65515 146

There is little evidence (p=0.61) of an interaction, so this term can be dropped. For
SAS, this means estimating the reduced model.

options ls=74; /* stay in gray box */

ods select overallanova parameterestimates;

proc glm data=k.help;

class female substance;

model cesd = female substance / ss3 solution;

run;

The GLM Procedure

Dependent Variable: CESD

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 3 5273.13263 1757.71088 12.05 <.0001

Error 449 65515.35744 145.91394

Corrected Total 452 70788.49007

The GLM Procedure

Dependent Variable: CESD

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 39.13070331 B 1.48571047 26.34 <.0001
FEMALE 0 -5.61922564 B 1.33918653 -4.20 <.0001
FEMALE 1 0.00000000 B . . .
SUBSTANCE alcohol -0.28148966 B 1.41554315 -0.20 0.8425
SUBSTANCE cocaine -5.60613722 B 1.46221461 -3.83 0.0001
SUBSTANCE heroin 0.00000000 B . . .

The model was already fit in R to allow assessment of the interaction.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 125 — #145
�

�

�

�

�

�

3.7. HELP EXAMPLES 125

> aov2

Call:
aov(formula = cesd ~ sub + genf, data = ds)

Terms:
sub genf Residuals

Sum of Squares 2704 2569 65515
Deg. of Freedom 2 1 449

Residual standard error: 12.1
Estimated effects may be unbalanced

If results with the same referent categories used by SAS are desired, the default R design
matrix (see 3.1.3) can be changed and the model re-fit.

> contrasts(sub) <- contr.SAS(3)

> aov3 <- lm(cesd ~ sub + genf, data=ds)

> summary(aov3)

Call:
lm(formula = cesd ~ sub + genf, data = ds)

Residuals:
Min 1Q Median 3Q Max

-32.13 -8.85 1.09 8.48 27.09

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 39.131 1.486 26.34 < 2e-16
sub1 -0.281 1.416 -0.20 0.84247
sub2 -5.606 1.462 -3.83 0.00014
genfM -5.619 1.339 -4.20 3.3e-05

Residual standard error: 12.1 on 449 degrees of freedom
Multiple R-squared: 0.0745, Adjusted R-squared: 0.0683
F-statistic: 12 on 3 and 449 DF, p-value: 1.35e-07

The AIC criteria (3.2.3) can also be used to compare models. In SAS it is available in
proc reg and proc mixed. Here we use proc mixed, omitting other output.

ods select fitstatistics;

proc mixed data=k.help method=ml;

class female substance;

model cesd = female|substance;

run; quit;

The Mixed Procedure

Fit Statistics

-2 Log Likelihood 3537.8
AIC (smaller is better) 3551.8
AICC (smaller is better) 3552.1
BIC (smaller is better) 3580.6

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 126 — #146
�

�

�

�

�

�

126 CHAPTER 3. LINEAR REGRESSION AND ANOVA

ods select fitstatistics;

proc mixed data=k.help method=ml;

class female substance;

model cesd = female substance;

run; quit;

ods select all;

The Mixed Procedure

Fit Statistics

-2 Log Likelihood 3538.8
AIC (smaller is better) 3548.8
AICC (smaller is better) 3549.0
BIC (smaller is better) 3569.4

> AIC(aov1)

[1] 3552

> AIC(aov2)

[1] 3549

The AIC criterion also suggests that the model without the interaction is most appro-
priate.

3.7.6 Multiple comparisons

We can also carry out multiple comparison (3.3.4) procedures to test each of the pairwise
differences between substance abuse groups. In SAS this utilizes the lsmeans statement
within proc glm.

ods select diff lsmeandiffcl lsmlines;

proc glm data=k.help;

class substance;

model cesd = substance;

lsmeans substance / pdiff adjust=tukey cl lines;

run; quit;

ods select all;

The GLM Procedure
Least Squares Means
Adjustment for Multiple Comparisons: Tukey-Kramer

i/j 1 2 3

1 0.0009 0.9362
2 0.0009 0.0008
3 0.9362 0.0008

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 127 — #147
�

�

�

�

�

�

3.7. HELP EXAMPLES 127

The GLM Procedure
Least Squares Means
Adjustment for Multiple Comparisons: Tukey-Kramer

Least Squares Means for Effect SUBSTANCE

Difference Simultaneous 95%
Between Confidence Limits for

i j Means LSMean(i)-LSMean(j)

1 2 4.951829 1.753296 8.150361
1 3 -0.498086 -3.885335 2.889162
2 3 -5.449915 -8.950037 -1.949793

The GLM Procedure
Least Squares Means
Adjustment for Multiple Comparisons: Tukey-Kramer

Tukey-Kramer Comparison Lines for Least Squares Means of SUBSTANCE

LS-means with the same letter are not significantly different.

CESD LSMEAN
LSMEAN SUBSTANCE Number

A 34.87097 heroin 3
A
A 34.37288 alcohol 1

B 29.42105 cocaine 2

The above output demonstrates the results of the lines option using the lsmeans state-
ment. The letter A shown on the left connecting the heroin and alcohol substances im-
plies that there is not a statistically significant difference between these two groups. Since
the cocaine substance has the letter B and no other group has one, the cocaine group is
significantly different from each of the other groups. If instead the cocaine and alcohol
substances both had a letter B attached, while the heroin and alcohol substances retained
the letter A they have in the actual output, only the heroin and cocaine groups would differ
significantly, while the alcohol group would differ from neither. This presentation becomes
particularly useful as the number of groups increases.

In R, we use the TukeyHSD() function.

> mult <- TukeyHSD(aov(cesd ~ sub, data=ds), "sub")

> mult

Tukey multiple comparisons of means
95% family-wise confidence level

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 128 — #148
�

�

�

�

�

�

128 CHAPTER 3. LINEAR REGRESSION AND ANOVA

Fit: aov(formula = cesd ~ sub, data = ds)

$sub
diff lwr upr p adj

cocaine-alcohol -4.952 -8.15 -1.75 0.001
heroin-alcohol 0.498 -2.89 3.89 0.936
heroin-cocaine 5.450 1.95 8.95 0.001

The alcohol group and heroin group both have significantly higher CESD scores than
the cocaine group, but the alcohol and heroin groups do not significantly differ from each
other (95% CI ranges from -2.8 to 3.8). Figure 3.7.6 provides a graphical display of the
pairwise comparisons from R.

> plot(mult)

−5 0 5h
e
ro

in
−

co
ca

in
e

h
e
ro

in
−

a
lc

o
h
o
l

co
ca

in
e
−

a
lc

o
h
o
l 95% family−wise confidence level

Differences in mean levels of sub

Figure 3.6: Pairwise comparisons

3.7.7 Contrasts

We can also fit contrasts (3.3.3) to test hypotheses involving multiple parameters. In this
case, we can compare the CESD scores for the alcohol and heroin groups to the cocaine
group. In SAS, to allow checking the contrast, we use the e option to the estimate
statement.

ods select contrastcoef estimates;

proc glm data=k.help;

class female substance;

model cesd = female substance;

output out=outanova residual=resid_ch4anova;

estimate 'A+H = C?' substance 1 -2 1 / e;

run; quit;

ods select all;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 129 — #149
�

�

�

�

�

�

3.7. HELP EXAMPLES 129

The GLM Procedure

Coefficients for Estimate A+H = C?

Row 1

Intercept 0

FEMALE 0 0
FEMALE 1 0

SUBSTANCE alcohol 1
SUBSTANCE cocaine -2
SUBSTANCE heroin 1

The GLM Procedure

Dependent Variable: CESD

Standard
Parameter Estimate Error t Value Pr > |t|

A+H = C? 10.9307848 2.42008987 4.52 <.0001

> library(gmodels)

> fit.contrast(aov2, "sub", c(1,-2,1), conf.int=0.95)

Estimate Std. Error t value Pr(>|t|) lower CI upper CI
sub c=(1 -2 1) 10.9 2.42 4.52 8.04e-06 6.17 15.7

As expected from the interaction plot (Figure 3.4), there is a statistically significant
difference in this one degree of freedom comparison (p<0.0001).

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 131 — #151
�

�

�

�

�

�

Chapter 4

Regression generalizations

This chapter extends the discussion of linear regression introduced in Chapter 3 to include
many commonly used statistical models beyond linear regression and ANOVA. Most SAS
procedures mentioned in this chapter support the class statement for categorical covariates.
The CRAN Task View on Statistics for the Social Sciences provides an excellent overview
of methods described here and in Chapter 3.

4.1 Generalized linear models

Table 4.1 displays the options for SAS and R to specify link functions and family of distri-
butions for generalized linear models [53]. Description of several specific generalized linear
regression models (e.g., logistic and Poisson) can be found in subsequent sections of this
chapter.

SAS
proc genmod data=ds;

model y = x1 ... xk / dist=familyname link=linkname;
run;

Note: The class statement in proc genmod is more flexible than that available in many
other procedures, notably proc glm. However, the default behavior is the same as for proc
glm (see section 3.1.3).

R
glmod1 <- glm(y ~ x1 + ... + xk, family="familyname", link="linkname",

data=ds)

Note: More information on GLM families and links can be found using help(family).

4.1.1 Logistic regression model
HELP example: see 4.6.1SAS

proc logistic data=ds;
model y = x1 ... xk / or cl;

run;

131

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 132 — #152
�

�

�

�

�

�

132 CHAPTER 4. REGRESSION GENERALIZATIONS

Table 4.1: Generalized linear model distributions supported by SAS and R

Distribution SAS PROC GENMOD R glm()

Gaussian dist=normal family="gaussian",
link="identity", "log" or
"inverse"

binomial dist=binomial family="binomial", link="logit",
"probit", "cauchit", "log" or
"cloglog"

gamma dist=gamma family="Gamma", link="inverse",
"identity" or "log"

Poisson dist=poisson family="poisson", link="log",
"identity" or "sqrt"

inverse Gaussian dist=igaussian family="inverse.gaussian",
link="1/muˆ2", "inverse",
"identity" or "sqrt"

Multinomial dist=multinomial See multinom() in nnet library
Negative Binomial dist=negbin See negative.binomial() in MASS li-

brary
overdispersed dist=binomial or

dist=multinomial with
scale=deviance
aggregate, or
dist=poisson
scale=deviance

family="quasi", link="logit",
"probit", "cloglog", "identity",
"inverse", "log", "1/muˆ2" or
"sqrt" (see also glm.binomial.disp()
in the dispmod library)

Note: For the glm() function in R, the available links for each distribution are listed.
The following links are available for all distributions in SAS: identity, log, or power(λ)
(where λ is specified by the user). For dichotomous outcomes, complementary log-log
(link=cloglog), logit (link=logit), or probit (link=probit) are additionally available.
For multinomial distributed outcomes, cumulative complementary log-log (link=cumcll),
cumulative logit (link=cumlogit), or cumulative probit (link=cumprobit) are available.
Once the family and link functions have been specified, the variance function is implied
(with the exception of the quasi family). In SAS, overdispersion is implemented using
the scale option to the model statement. To allow overdispersion in Poisson, binomial or
multinomial models, use the option scale=deviance; the additional aggregate option is
required for the binomial and multinomial. Any valid link listed above may be used.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 133 — #153
�

�

�

�

�

�

4.1. GENERALIZED LINEAR MODELS 133

or
proc logistic data=ds;

model y(event='1') = x1 ... xk;
run;

or
proc logistic data=ds;

model r/n = x1 ... xk / or cl; /* events/trials syntax */
run;

or
proc genmod data=ds;

model y = x1 ... xk / dist=binomial link=logit;
run;

Note: While both procedures will fit logistic regression models, proc logistic is likely
to be more useful for ordinary logistic regression than proc genmod. The former allows
options such as those printed above in the first model statement, which produce the odds
ratios (and their confidence limits) associated with the log-odds estimated by the model. It
also produces the area under the ROC curve (the so-called ‘c’ statistic) by default (see also
5.1.18). Both procedures allow the logit, probit, and complementary log-log links, through
the link option to the model statement; proc genmod must be used if other link functions
are desired.

The events/trials syntax can be used to save storage space for data. In this case,
observations with the same covariate values are stored as a single line of data, with the
number of observations recorded in one variable (trials) and the number with the outcome
in another (events).

The output from proc logistic and proc genmod prominently display the level of y
that is being predicted. The descending option to the proc statement will reverse the order.
Alternatively, the model statement in proc logistic allows you to specify the target level
as shown in the second set of code.

The class statement in proc genmod is more flexible than that available in many other
procedures, notably proc glm. Importantly, the default behavior is different than in proc
glm (see section 3.1.3).

R
glm(y ~ x1 + ... + xk, binomial, data=ds)

or

library(Design)
lrm(y ~ x1 + ... + xk, data=ds)

Note: The lrm() function within the Design package provides the so-called ‘c’ statistic
(area under ROC curve, see also 5.1.18) and the Nagelkerke pseudo-R2 index [58].

4.1.2 Exact logistic regression

SAS
proc logistic data=ds;

model y = x1 ... xk;
exact intercept x1;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 134 — #154
�

�

�

�

�

�

134 CHAPTER 4. REGRESSION GENERALIZATIONS

Note: An exact test is generated for each variable listed in the exact statement, including
if desired the intercept, as shown above. Not all covariates in the model statement need be
included in the exact statement, but all covariates in the exact statement must be included
in the model statement.

R
library(elrm)
elrmres <- elrm(y ~ x1 + ... + xk, iter=10000, burnIn=10000, data=ds)

Note: The elrm() function implements a modified MCMC algorithm to approximate exact
conditional inference for logistic regression models [103].

4.1.3 Poisson model
HELP example: see 4.6.2See also 4.1.4 (zero-inflated Poisson)

SAS
proc genmod data=ds;

model y = x1 ... xk / dist=poisson;
run;

Note: The default output from proc genmod includes useful methods to assess fit.

R
glm(y ~ x1 + ... + xk, poisson, data=ds)

Note: It is always important to check assumptions for models. This is particularly true for
Poisson models, which are quite sensitive to model departures [32]. One way to assess the
fit of the model is by comparing the observed and expected cell counts, and then calculating
Pearson’s chi-square statistic. This can be carried out using the goodfit() function.

library(vcd)
poisfit <- goodfit(x, "poisson")

The goodfit() function carries out a Pearson’s χ2 test of observed vs. expected counts.
Other distributions supported include binomial and nbinomial. R can also create a hang-
ing rootogram [91] to assess the goodness of fit for count models. If the model fits well,
then the bottom of each bar in the rootogram should be near zero.

library(vcd)
rootogram(poisfit)

4.1.4 Zero-inflated Poisson model
HELP example: see 4.6.3

Zero-inflated Poisson models can be used for count outcomes that generally follow a Poisson
distribution but for which there are (many) more observed counts of 0 than would be
expected. These data can be seen as deriving from a mixture distribution of a Poisson
and a degenerate distribution with point mass at zero (see also 4.1.6, zero-inflated negative
binomial).

SAS
proc genmod data=ds;

model y = x1 ... xk / dist=zip;
zeromodel x2 ... xp;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 135 — #155
�

�

�

�

�

�

4.1. GENERALIZED LINEAR MODELS 135

Note: The Poisson rate parameter of the model is specified in the model statement, with a
default log link and alternate link functions available as described in Table 4.1. The zero-
probability is modeled as a logistic regression of the covariates specified in the zeromodel
statement. Support for zero-inflated Poisson models is also available within proc countreg.

R
library(pscl)
mod <- zeroinfl(y ~ x1 + ... + xk | x2 + ... + xp, data=ds)

Note: The Poisson rate parameter of the model is specified in the usual way with a formula
as argument to zeroinfl(). The default link is log. The zero-probability is modeled as
a function of the covariates specified after the ‘|’ character. An intercept-only model can
be fit by including 1 as the second model. Support for zero-inflated negative binomial and
geometric models is available.

4.1.5 Negative binomial model
HELP example: see 4.6.4See also 4.1.6 (zero-inflated negative binomial)

SAS
proc genmod data=ds;

model y = x1 ... xk / dist=negbin;
run;

R
library(MASS)
glm.nb(y ~ x1 + ... + xk, data=ds)

4.1.6 Zero-inflated negative binomial model

Zero-inflated negative binomial models can be used for count outcomes that generally follow
a negative binomial distribution but for which there are (many) more observed counts of 0
than would be expected. These data can be seen as deriving from a mixture distribution
of a negative binomial and a degenerate distribution with point mass at zero (see also
zero-inflated Poisson, 4.1.4).

SAS
proc countreg data=help2;

model y = x1 ... xk / dist=zinb;
zeromodel y ~ x2 ... xp;

run;

Note: The negative binomial rate parameter of the model is specified in the model statement.
The zero-probability is modeled as a function of the covariates specified after the ∼ in the
zeromodel statement.

R
library(pscl)
mod <- zeroinfl(y ~ x1 + ... + xk | x2 + ... + xp, dist="negbin", data=ds)

Note: The negative binomial rate parameter of the model is specified in the usual way with
a formula as argument to zeroinfl(). The default link is log. The zero-probability is
modeled as a function of the covariates specified after the ‘|’ character. A single intercept
for all observations can be fit by including 1 as the model.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 136 — #156
�

�

�

�

�

�

136 CHAPTER 4. REGRESSION GENERALIZATIONS

4.1.7 Log-linear model

Loglinear models are a flexible approach to analysis of categorical data [2]. A loglinear
model of a three-dimensional contingency table denoted by X1, X2, and X3 might assert
that the expected counts depend on a 2 way interaction between the first two variables, but
that X3 is independent of all the others:

log(mijk) = μ + λX1
i + λX2

j + λX1,X2
ij + λX3

k

SAS
proc catmod data=ds;

weight count;
model x1*x2*x3 =_response_ / pred;
loglin x1|x2 x3;

run;

Note: The variables listed in the model statement above describe the n-way table to be
analyzed; the term _response_ is a required keyword indicating a log-linear model. The
loglin statement specifies the dependence assumptions. The weight statement is optional.
If used, the count variable should contain the cell counts and can be used if the analysis is
based on a summary dataset.

R
logres <- loglin(table(x1, x2, x3), margin=list(c(1,2), c(3)), param=TRUE)
pvalue <- 1-pchisq(logres$lrt, logres$df)

Note: The margin option specifies the dependence assumptions. In addition to the loglin()
function, the loglm() function within the MASS library provides an interface for log-linear
modeling.

4.1.8 Ordered multinomial model
HELP example: see 4.6.6SAS

proc genmod data=ds;
model y = x1 ... xk / dist=multinomial;

run;

or
proc logistic data=ds;

model y = x1 ... xk / link=cumlogit;
run;

Note: The genmod procedure utilizes a cumulative logit link when dist=multinomial, is
specified. This compares each level of the outcome with all lower levels. The model im-
plies the proportional odds assumption. The cumulative probit model is available with
the link=cprobit option to the model statement in proc genmod. The proc logistic
implementation provides a score test for the proportional odds assumption.

R
library(MASS)
polr(y ~ x1 + ... + xk, data=ds)

Note: The default link is logistic; this can be changed to probit, complementary log-log or
Cauchy using the method option.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 137 — #157
�

�

�

�

�

�

4.2. MODELS FOR CORRELATED DATA 137

4.1.9 Generalized (nominal outcome) multinomial logit
HELP example: see 4.6.7SAS

proc logistic data=ds;
model y = x1 ... xk / link=glogit;

run;

Note: Each level is compared to a reference level, which can be chosen using the ref option
e.g., model y(ref=’0’) = x1 / link=glogit.

R
library(VGAM)
mlogit <- vglm(y ~ x1 + ... + xk, family=multinomial(), data=ds)

4.1.10 Conditional logistic regression model

SAS
proc logistic data=ds;

strata id;
model y = x1 ... xk;

run;

or
proc logistic data=ds;

strata id;
model y = x1 ... xk;
exact intercept x1;

run;

Note: The variable id identifies strata or matched sets of observations. An exact model can
be fit using the exact statement with list of covariates to be assessed using an exact test,
including the intercept, as shown above.

R
library(survival)
cmod <- clogit(y ~ x1 + ... + xk + strata(id), data=ds)

Note: The variable id identifies strata or matched sets of observations. An exact model is
fit by default.

4.2 Models for correlated data

There is extensive support within SAS and R for correlated data regression models, in-
cluding repeated measures, longitudinal, time series, clustered, and other related methods.
Throughout this section we assume that repeated measurements are taken on a subject or
cluster denoted by variable id.

4.2.1 Linear models with correlated outcomes
HELP example: see 4.6.10SAS

proc mixed data=ds;
class id;
model y = x1 ... xk;
repeated / type=vartype subject=id;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 138 — #158
�

�

�

�

�

�

138 CHAPTER 4. REGRESSION GENERALIZATIONS

or
proc mixed data=ds;

class id;
model y = x1 ... xk / outpm=dsname;
repeated ordervar / type=covtypename subject=id;

run;

Note: The solution option to the model statement can be used to get fixed effects parameter
estimates in addition to ANOVA tables. The repeated ordervar syntax is used when
observations within a cluster are a) ordered (as in repeated measurements) b) the placement
in the order affects the covariance structure (as in most structures other than independence
and compound symmetry) and c) observations may be missing from the beginning or middle
of the order. Predicted values for observations can be found using the outpm option to the
model statement as demonstrated in the second block of code. To add to the outpm dataset
the outcomes and transformed residuals (scaled by the inverse Cholesky root of the marginal
covariance matrix), add the vciry option to the model statement.

The structure of the covariance matrix of the observations is controlled by the type
option to the repeated statement. As of SAS 9.2, there are 36 available structures. Par-
ticularly useful options include un (unstructured), cs (compound symmetry), and ar(1)
(first-order autoregressive). The full list is available through the on-line help: Contents;
SAS Products; SAS Procedures; MIXED; Syntax; REPEATED.

R
glsres <- gls(y ~ x1 + ... + xk,

correlation=corSymm(form = ~ ordervar | id),
weights=varIdent(form = ~1 | ordervar), ds)

Note: The gls() function supports estimation of generalized least squares regression models
with arbitrary specification of the variance covariance matrix. In addition to a formula
interface for the mean model, the analyst specifies a within group correlation structure as
well as a description of the within-group heteroscedasticity structure (using the weights
option). The statement ordervar | id implies that associations are assumed within id.
Other covariance matrix options are available, see help(corClasses).

4.2.2 Linear mixed models with random intercepts

See also 4.2.3 (random slope models), 4.2.4 (random coefficient models), and 6.1.2 (empirical
power calculations)

SAS
proc mixed data=ds;

class id;
model y = x1 ... xk;
random int / subject=id;

run;

Note: The solution option to the model statement may be required to get fixed effects
parameter estimates in addition to ANOVA tables. The random statement describes the
design matrix for the random effects. Unlike the fixed effects design matrix, specified as
usual with the model statement, the random effects design matrix includes a random in-
tercept only if it is specified as above. The predicted random intercepts can be printed
with the solution option to the random statement and saved into a dataset using the ODS

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 139 — #159
�

�

�

�

�

�

4.2. MODELS FOR CORRELATED DATA 139

system, e.g an ods output solutionr=reffs statement. Predicted values for observations
can be found using the outp=datasetname and outpm=datasetname options to the model
statement; the outp dataset includes the predicted random effects in the predicted values
while the outpm predictions include only the fixed effects.

R
library(nlme)
lmeint <- lme(fixed= y ~ x1 + ... + xk, random = ~ 1 | id,

na.action=na.omit, data=ds)

Note: Best linear unbiased predictors (BLUP’s) of the sum of the fixed effects plus cor-
responding random effects can be generated using the coef() function, random effect
estimates using the random.effects() function, and the estimated variance covariance
matrix of the random effects using VarCorr(). Normalized residuals (using a Cholesky
decomposition, see pages 238-241 of Fitzmaurice et al [22]) can be generated using the
type="normalized" option when calling residuals() using an NLME option (more infor-
mation can be found using help(residuals.lme)). A plot of the random effects can be
created using plot(lmeint).

4.2.3 Linear mixed models with random slopes
HELP example: see 4.6.11

See also 4.2.2 (random intercept models) and 4.2.4 (random coefficient models)

SAS
proc mixed data=ds;

class id;
model y = time x1 ... xk;
random int time / subject=id type=covtypename;

run;

Note: The solution option to the model statement can be used to get fixed effects pa-
rameter estimates in addition to ANOVA tables. Random effects may be correlated with
each other (though not with the residual errors for each observation). The structure of the
the covariance matrix of the random effects is controlled by the type option to the random
statement. The option most likely to be useful is type=un (unstructured); by default, proc
mixed uses the variance component (type=vc) structure, in which the random effects are un-
correlated with each other. The predicted random effects can be printed with the solution
option to the random statement and saved into a dataset using the ODS system, e.g an ods
output solutionr=reffs statement. Predicted values for observations can be found us-
ing the outp=datasetname and outpm=datasetname options to the model statement; the
outp dataset includes the predicted random effects in the predicted values while the outpm
predictions include only the fixed effects.

R
library(nlme)
lmeslope <- lme(fixed=y ~ time + x1 + ... + xk, random = ~ time | id,

na.action=na.omit, data=ds)

Note: The default covariance for the random effects is unstructured (see help(reStruct)
for other options). Best linear unbiased predictors (BLUP’s) of the sum of the fixed effects
plus corresponding random effects can be generated using the coef() function, random ef-
fect estimates using the random.effects() function, and the estimated variance covariance
matrix of the random effects using VarCorr(). A plot of the random effects can be created
using plot(lmeint).

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 140 — #160
�

�

�

�

�

�

140 CHAPTER 4. REGRESSION GENERALIZATIONS

4.2.4 More complex random coefficient models

We can extend the random effects models introduced in 4.2.2 and 4.2.3 to 3 or more subject-
specific random parameters (e.g., a quadratic growth curve or spline/“broken stick” model
[22]). We use time1 and time2 to refer to 2 generic functions of time.

SAS
proc mixed data=ds;

class id;
model y = time1 time2 x1 ... xk;
random int time1 time2 / subject=id type=covtypename;

run;

Note: The solution option to the model statement can be used to get fixed effects parameter
estimates in addition to ANOVA tables. Random effects may be correlated with each other,
though not with the residual errors for each observation. The structure of the covariance
matrix of the random effects is controlled by the type option to the random statement.
The option most likely to be useful is type=un (unstructured); by default, proc mixed uses
the variance component (type=vc) structure, in which the random effects are uncorrelated
with each other. The predicted random effects can be printed with the solution option
to the random statement and saved into a dataset using the ODS system, e.g ods output
solutionr=reffs. Predicted values for observations can be found using the outp and outpm
options to the model statement; the outp dataset includes the predicted random effects in
the predicted values while the outpm predictions include only the fixed effects.

R
library(nlme)
lmestick <- lme(fixed= y ~ time1 + time2 + x1 + ... + xk,

random = ~ time1 time2 | id, data=ds, na.action=na.omit)

Note: The default covariance for the random effects is unstructured (see help(reStruct) for
other options). Best linear unbiased predictors (BLUP’s) of the sum of the fixed effects plus
corresponding random effects can be generated using the coef() function, random effect
estimates using the random.effects() function, and the estimated variance covariance
matrix of the random effects using VarCorr(). A plot of the random effects can be created
using plot(lmeint).

4.2.5 Multilevel models

Studies with multiple levels of clustering can be fit in SAS and R. In a typical example, a
study might include schools (as one level of clustering) and classes within schools (a second
level of clustering), with individual students within the classrooms providing a response.
Generically, we refer to levell variables which are identifiers of cluster membership at level l.
Random effects at different levels are assumed to be uncorrelated with each other.

SAS
proc mixed data=ds;

class id;
model y = x1 ... xk;
random int / subject=level1;
random int / subject=level2;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 141 — #161
�

�

�

�

�

�

4.2. MODELS FOR CORRELATED DATA 141

Note: Each random statement uses a subject option to describe a different clustering struc-
ture in the data. There’s no theoretical limit to the complexity of the structure or the num-
ber of random statements, but practical difficulties in fitting the models may be encountered.

R
library(nlme)
lmres <- lme(fixed= y ~ x1 + ... + xk, random= ~ 1 | level1 / level2,

data=ds)

Note: A model with k levels of clustering can be fit using the syntax: level1 / ... /
levelk.

4.2.6 Generalized linear mixed models
HELP example: see 4.6.13 and 6.1.2SAS

proc glimmix data=ds;
model y = time x1 ... xk / dist=familyname link=linkname;
random int time / subject=id type=covtypename;

run;

Note: Observations sharing a value for id are correlated; otherwise, they are assumed
independent. Random effects may be correlated with each other (though not with the
residual errors for each observation). The structure of the covariance matrix of the random
effects is controlled by the type option to the random statement. There are many available
structures. The one most likely to be useful is un (unstructured). The full list is available
through the on-line help: Contents; SAS Products; SAS Procedures; GLIMMIX; Syntax;
RANDOM. As of SAS 9.2, all of the distributions and links shown in Table 4.1 are available,
and additionally dist can be beta, exponential, geometric, lognormal, or tcentral (t
distribution). An additional link is available for nominal categorical outcomes: glogit the
generalized logit. Note that the default fitting method relies on an approximation to an
integral. The method=laplace option to the proc glimmix statement will use a numeric
integration (this is likely to be time-consuming).

For SAS 9.1 users, proc glimmix is available from SAS Institute as a free add-on pack-
age: http://support.sas.com/rnd/app/da/glimmix.html.

R
library(lme4)
glmmres <- lmer(y ~ x1 + ... + xk + (1|id), family=familyval, data=ds)

Note: See help(family) for details regarding specification of distribution families and link
functions.

4.2.7 Generalized estimating equations
HELP example: see 4.6.12SAS

proc genmod data=ds;
model y = x1 ... xk;
repeated subject=id / type=corrtypename;

run;

Note: The repeated ordervar syntax should be used when a) observations within a clus-
ter are a) ordered (as in repeated measurements), b) the placement in the order affects the

© 2010 by Taylor and Francis Group, LLC

http://support.sas.com

�

�

“book” — 2009/6/16 — 16:53 — page 142 — #162
�

�

�

�

�

�

142 CHAPTER 4. REGRESSION GENERALIZATIONS

covariance structure (as in most structures other than independence and compound sym-
metry), and c) observations may be missing from the beginning or middle of the order. The
structure of the working covariance matrix of the observations is controlled by the type
option to the repeated statement. The corrtypes available as of SAS 9.2 include ar (first-
order autoregressive), exch (exchangeable), ind (independent), mdep(m) (m-dependent), un
(unstructured), and user (a fixed, user-defined correlation matrix).

R
library(gee)
geeres <- gee(formula = y ~ x1 + ... + xk, id=id, data=ds,

family=binomial, corstr="independence")

Note: The gee() function requires that the dataframe be sorted by subject identifier. Other
correlation structures include "fixed", "stat_M_dep", "non_stat_M_dep", "AR-M", and
"unstructured". Note that the "unstructured" working correlation will only yield correct
answers when missing data are monotone, since no ordering options are available in the
present release (see help(gee) for more information as well as Vincent Carey’s“Yet Another
GEE solver” yags package).

4.2.8 Time series model

Time-series modeling is an extensive area with a specialized language and notation. We
make only the briefest approach here. We display fitting an ARIMA (autoregressive inte-
grated moving average) model for the first difference, with first-order auto-regression and
moving averages.

In SAS, the procedures to fit time series data are included in the SAS/ETS package.
These provide extensive support for time series analysis. However, it is also possible to fit
simple auto-regressive models using proc mixed. We demonstrate the basic use of proc
arima (from SAS/ETS). The CRAN Task View on Time Series provides an overview of
support available for R.

SAS
proc arima data=ds;

identify var=x(1);
estimate p=1 q=1;

run;

Note: In proc arima, the variable to be analyzed is specified in the identify statement,
with differencing specified in parentheses. The estimate statement specifies the order of
the autoregression (p) and moving average (q). Prediction can be accomplished via the
forecast statement.

R
tsobj <- ts(x, frequency=12, start=c(1992, 2))
arres <- arima(tsobj, order=c(1, 1, 1))

Note: The ts() function creates a time series object, in this case for monthly timeseries
data within the variable x beginning in February 1992 (the default behavior is that the
series starts at time 1 and number of observations per unit of time is 1). The start option
is either a single number or a vector of two integers which specify a natural time unit and
a number of samples into the time unit. The arima() function fits an ARIMA model with
AR, differencing and MA order all equal to 1.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 143 — #163
�

�

�

�

�

�

4.3. SURVIVAL ANALYSIS 143

4.3 Survival analysis

Survival or failure time data, typically consist of the time until the event, as well as an
indicator of whether the event was observed or censored at that time. Throughout, we
denote the time of measurement with the variable time and censoring with a dichotomous
variable cens = 1 if censored, or = 0 if observed. More information on survival (or failure
time, or time-to-event) analysis in R can be found in the CRAN Survival Analysis Task
View (see B.6.2). Other entries related to survival analysis include 2.4.4 (log-rank test) and
5.1.19 (Kaplan-Meier plot).

4.3.1 Proportional hazards (Cox) regression model
HELP example: see 4.6.14SAS

proc phreg data=ds;
model time*cens(1) = x1 ... xk;

run;

Note: SAS supports time varying covariates using programming statements within proc
phreg. The class statement in proc genmod is more flexible than that available in many
other procedures, notably proc glm. However, the default behavior is the same as for proc
glm (see section 3.1.3).

R
library(survival)
coxph(Surv(time, cens) ~ x1 + ... + xk)

Note: The Efron estimator is the default; other choices including exact and Breslow can be
specified using the method option. The cph() function within the Design package supports
time varying covariates, while the cox.zph() function within the survival package allows
testing of the proportionality assumption.

4.3.2 Proportional hazards (Cox) model with frailty

As far as we know, SAS does not incorporate such models as of SAS 9.2. However, an
example of accelerated failure time models with frailty can be found in the on-line manual:
Contents; SAS Procedures; NLMIXED.
R
library(survival)
coxph(Surv(futime, fustat)~ x1 + ... + xk + frailty(id), data=ds)

Note: More information on specification of frailty models can be found using help(frailty);
support is available for t, Gamma and Gaussian distributions.

4.4 Further generalizations to regression models

4.4.1 Nonlinear least squares model

Nonlinear least squares models [78] can be fit flexibly within SAS and R. As an example,
consider the income inequality model described by Sarabia and colleagues [72]:

Y = (1 − (1 − X)p)(1/p)

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 144 — #164
�

�

�

�

�

�

144 CHAPTER 4. REGRESSION GENERALIZATIONS

We provide a starting value (0.5) within the interior of the parameter space.

SAS
proc nlin data=ds;

parms p=0.5;
model y = (1 - ((1-x)**p))**(1/p);

run;

R
nls(y ~ (1- (1-x)^{p})^(1/{p}), start=list(p=0.5), trace=TRUE)

Note: Finding solutions for nonlinear least squares problems is often challenging, see help(nls)
for information on supported algorithms as well as section 1.8.7 (optimization).

4.4.2 Generalized additive model
HELP example: see 4.6.8SAS

proc gam data=ds;
model y = spline(x1, df) loess(x2) spline2(x3, x4) ...

param(x5 ... xk);
run;

Note: Specification of a spline or lowess term for variable x1 is given by spline(x1) or
loess(x1), respectively, while a bivariate spline fit can be included using spline2(x1, x2).
The degrees of freedom can be specified as in spline(x1, df), following a comma in the
variable function description, or estimated from the model using generalized cross-validation
by including the method=gcv option in the model statement. If neither is specified, the
default degrees of freedom of 4 is used. Any variables included in param() are fit as linear
predictors with the usual syntax (3.1.5).

R
library(gam)
gam(y ~ s(x1, df) + lo(x2) + lo(x3, x4) + x5 + ... + xk, data=ds)

Note: Specification of a smooth term for variable x1 is given by s(x1), while a univariate
or bivariate loess fit can be included using lo(x1, x2). See gam.s() and gam.lo() within
library(gam) for details regarding specification of degrees of freedom or span, respectively.
Polynomial regression terms can be fit using the poly() function.

4.4.3 Robust regression model

Robust regression refers to methods for detecting outliers and/or providing stable estimates
when they are present. Outlying variables in the outcome, predictor, or both are considered.

SAS
proc robustreg data=ds;

model y = x1 ... xk / diagnostics leverage;
run;

Note: By default, M estimation is performed; other methods are accessed through the
method=method option to the proc robustreg statement, with valid methods including
lts, s, and mm.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 145 — #165
�

�

�

�

�

�

4.4. FURTHER GENERALIZATIONS TO REGRESSION MODELS 145

R
library(MASS)
rlm(y ~ x1 + ... + xk, data=ds)

Note: The rlm() function fits a robust linear model using M estimation. More information
can be found in the CRAN Robust Statistical Methods Task View.

4.4.4 Quantile regression model
HELP example: see 4.6.5

Quantile regression predicts changes in the specified quantile of the outcome variable per
unit change in the predictor variables; analogous to the change in the mean predicted in
least squares regression. If the quantile so predicted is the median, this is equivalent to
minimum absolute deviation regression (as compared to least squares regression minimizing
the squared deviations).

SAS
proc quantreg data=ds;

model y = x1 ... xk / quantile=0.75;
run;

Note: The quantile option specifies which quantile is to be estimated (here the 75th per-
centile). Median regression (i.e., quantile=0.50) is performed by default. If multiple quan-
tiles are included (separated by commas) then they are estimated simultaneously, however,
standard errors and tests are only carried out when a single quantile is provided.

R
library(quantreg)
quantmod <- rq(y ~ x1 + ... + xk, tau=0.75, data=ds)

Note: The default for tau is 0.5, corresponding to median regression. If a vector is specified,
the return value includes a matrix of results.

4.4.5 Ridge regression model

SAS
proc reg data=ds ridge=a to b by c;

model y = x1 ... xk;
run;

Note: Each of the values a, a+c, a + 2c, . . ., b is added to the diagonal of the cross-
product matrix of X1, . . . , Xk. Ridge regression estimates are the least squares estimates
obtained using this new cross-product matrix.

R
library(MASS)
ridgemod <- lm.ridge(y ~ x1 + ... + xk, lambda=seq(from=a, to=b, by=c),

data=ds)

Note: Post-estimation functions supporting lm.ridge() objects include plot() and select().
A vector of ridge constants can be specified using the lambda option.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 146 — #166
�

�

�

�

�

�

146 CHAPTER 4. REGRESSION GENERALIZATIONS

4.5 Further resources

Many of the topics covered in this chapter are active areas of statistical research and many
foundational articles are still useful. Here we provide references to texts which serve as
accessible references.

Dobson and Barnett [16] is an accessible introduction to generalized linear models, while
[53] remains a classic. Agresti [2] describes the analysis of categorical data.

Fitzmaurice, Laird and Ware [22] is an accessible overview of mixed effects methods
while [98] reviews these methods for a variety of statistical packages. A comprehensive
review of the material in this chapter is incorporated in [20]. The text by Hardin and
Hilbe [28] provides a review of generalized estimating equations. The CRAN Task View on
Analysis of Spatial Data provides a summary of tools to read, visualize, and analyze spatial
data.

Collett [11] is an accessible introduction to survival analysis.

4.6 HELP examples

To help illustrate the tools presented in this chapter, we apply many of the entries to the
HELP data. SAS and R code can be downloaded from http://www.math.smith.edu/
sasr/examples.

In general, SAS output is lengthier than R summary() results. We annotate the full
output with named ODS objects for logistic regression (section 4.6.1), provide the bulk of
results in some examples, and utilize ODS to reduce the output to a few key elements for
the sake of brevity for most entries.

libname k "c:/book";

data help;

set k.help;

run;

> options(digits=3)

> options(show.signif.stars=FALSE)

> load("savedfile")

> attach(ds)

4.6.1 Logistic regression

In this example, we fit a logistic regression (4.1.1) where we model the probability of being
homeless (spending one or more nights in a shelter or on the street in the past six months)
as a function of predictors.

We can specify the param option to make the SAS reference category match the default
in R (see 3.1.3).

options ls=74; /* keep output in grey box */

proc logistic data=help descending;

class substance (param=ref ref='alcohol');
model homeless = female i1 substance sexrisk indtot;

run;

SAS produces a large number of distinct pieces of output by default. Here we reproduce
the ODS name of each piece of output, by running ods trace on / listing before the

© 2010 by Taylor and Francis Group, LLC

http://www.math.smith.edu
http://www.math.smith.edu

�

�

“book” — 2009/6/16 — 16:53 — page 147 — #167
�

�

�

�

�

�

4.6. HELP EXAMPLES 147

procedure, as introduced in A.7. Each ODS object can also be saved as a SAS dataset using
these names with the ods output statement as on page 150.

First, SAS reports basic information about the model and the data in the ODS modelinfo
output.

The LOGISTIC Procedure

Model Information

Data Set WORK.HELP
Response Variable HOMELESS
Number of Response Levels 2
Model binary logit
Optimization Technique Fisher's scoring

Then SAS reports the number of observations read and used, in the ODS nobs output.
Note that missing data will cause these numbers to differ. Subsetting with the where
statement (A.6.3) will cause the number of observations displayed here to differ from the
number in the dataset.

Number of Observations Read 453
Number of Observations Used 453

The ODS responseprofile output tabulates the number of observations with each
outcome, and, importantly, reports which level is being modeled as the event.

Response Profile

Ordered Total
Value HOMELESS Frequency

1 1 209
2 0 244

Probability modeled is HOMELESS=1.

The ODS classlevelinfo output shows the coding for each class variable.

Class Level Information

Design
Class Value Variables

SUBSTANCE alcohol 0 0
cocaine 1 0
heroin 0 1

Whether the model converged is reported in the ODS convergencestatus output.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

AIC and other fit statistics are produced in the ODS fitstatistics output.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 148 — #168
�

�

�

�

�

�

148 CHAPTER 4. REGRESSION GENERALIZATIONS

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 627.284 590.652
SC 631.400 619.463
-2 Log L 625.284 576.652

Tests reported in the ODS globaltests output assess the joint null hypothesis that all
parameters except the intercept equal 0.

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 48.6324 6 <.0001
Score 45.6522 6 <.0001
Wald 40.7207 6 <.0001

The ODS type3 output contains tests for each covariate (including joint tests for class
variables with 2 or more values) conditional on all other covariates being included in the
model.

Type 3 Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

FEMALE 1 1.0831 0.2980
I1 1 7.6866 0.0056
SUBSTANCE 2 4.2560 0.1191
SEXRISK 1 3.4959 0.0615
INDTOT 1 8.2868 0.0040

The ODS parameterestimates output shows the maximum likelihood estimates of the
parameters, their standard errors, and Wald statistics and tests for the null hypothesis that
the parameter value is 0. Note that in this table, as opposed to the previous one, each level
(other than the referent) of any class variable is reported separately.

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -2.1319 0.6335 11.3262 0.0008
FEMALE 1 -0.2617 0.2515 1.0831 0.2980
I1 1 0.0175 0.00631 7.6866 0.0056
SUBSTANCE cocaine 1 -0.5033 0.2645 3.6206 0.0571
SUBSTANCE heroin 1 -0.4431 0.2703 2.6877 0.1011
SEXRISK 1 0.0725 0.0388 3.4959 0.0615
INDTOT 1 0.0467 0.0162 8.2868 0.0040

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 149 — #169
�

�

�

�

�

�

4.6. HELP EXAMPLES 149

The ODS oddsratios output shows the exponentiated parameter estimates and associ-
ated confidence limits.

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

FEMALE 0.770 0.470 1.260
I1 1.018 1.005 1.030
SUBSTANCE cocaine vs alcohol 0.605 0.360 1.015
SUBSTANCE heroin vs alcohol 0.642 0.378 1.091
SEXRISK 1.075 0.997 1.160
INDTOT 1.048 1.015 1.082

The ODS association output shows various other statistics, including the area under
the ROC curve, denoted “c” by SAS.
Association of Predicted Probabilities and Observed Responses

Percent Concordant 67.8 Somers' D 0.360
Percent Discordant 31.8 Gamma 0.361
Percent Tied 0.4 Tau-a 0.179
Pairs 50996 c 0.680

Within R, we use the glm() command to fit the logistic regression model.
> logres <- glm(homeless ~ female + i1 + substance + sexrisk + indtot,

+ binomial)

> summary(logres)

Call:
glm(formula = homeless ~ female + i1 + substance + sexrisk +

indtot, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.75 -1.04 -0.70 1.13 2.03

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.13192 0.63347 -3.37 0.00076
female -0.26170 0.25146 -1.04 0.29800
i1 0.01749 0.00631 2.77 0.00556
substancecocaine -0.50335 0.26453 -1.90 0.05707
substanceheroin -0.44314 0.27030 -1.64 0.10113
sexrisk 0.07251 0.03878 1.87 0.06152
indtot 0.04669 0.01622 2.88 0.00399

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 625.28 on 452 degrees of freedom
Residual deviance: 576.65 on 446 degrees of freedom
AIC: 590.7
Number of Fisher Scoring iterations: 4

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 150 — #170
�

�

�

�

�

�

150 CHAPTER 4. REGRESSION GENERALIZATIONS

If the parameter estimates are desired as a dataset, ODS can be used in SAS.

ods exclude all;

ods output parameterestimates=helplogisticbetas;

proc logistic data=help descending;

class substance (param=ref ref='alcohol');
model homeless = female i1 substance sexrisk indtot;

run;

ods exclude none;

options ls=74;

proc print data=helplogisticbetas;

run;

Class Prob
Obs Variable Val0 DF Estimate StdErr WaldChiSq ChiSq

1 Intercept 1 -2.1319 0.6335 11.3262 0.0008
2 FEMALE 1 -0.2617 0.2515 1.0831 0.2980
3 I1 1 0.0175 0.00631 7.6866 0.0056
4 SUBSTANCE cocaine 1 -0.5033 0.2645 3.6206 0.0571
5 SUBSTANCE heroin 1 -0.4431 0.2703 2.6877 0.1011
6 SEXRISK 1 0.0725 0.0388 3.4959 0.0615
7 INDTOT 1 0.0467 0.0162 8.2868 0.0040

Similar information can be found in the summary() output object in R.

> names(summary(logres))

[1] "call" "terms" "family" "deviance"
[5] "aic" "contrasts" "df.residual" "null.deviance"
[9] "df.null" "iter" "deviance.resid" "coefficients"
[13] "aliased" "dispersion" "df" "cov.unscaled"
[17] "cov.scaled"

> coeff.like.SAS <- summary(logres)$coefficients

> coeff.like.SAS

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.1319 0.63347 -3.37 0.000764
female -0.2617 0.25146 -1.04 0.297998
i1 0.0175 0.00631 2.77 0.005563
substancecocaine -0.5033 0.26453 -1.90 0.057068
substanceheroin -0.4431 0.27030 -1.64 0.101128
sexrisk 0.0725 0.03878 1.87 0.061518
indtot 0.0467 0.01622 2.88 0.003993

4.6.2 Poisson regression

In this example we fit a Poisson regression model (4.1.3) for i1, the average number of
drinks per day in the 30 days prior to entering the detox center.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 151 — #171
�

�

�

�

�

�

4.6. HELP EXAMPLES 151

Because proc genmod lacks an easy way to specify the reference category, the R results
have a different intercept and different effects for the abuse groups.

options ls=74;

ods exclude modelinfo nobs classlevels convergencestatus;

proc genmod data=help;

class substance;

model i1 = female substance age / dist=poisson;

run;

The GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 448 6713.8986 14.9864
Scaled Deviance 448 6713.8986 14.9864
Pearson Chi-Square 448 7933.2027 17.7080
Scaled Pearson X2 448 7933.2027 17.7080
Log Likelihood 16385.3197
Full Log Likelihood -4207.6544
AIC (smaller is better) 8425.3089
AICC (smaller is better) 8425.4431
BIC (smaller is better) 8445.8883

In the following output, the confidence limits for the parameter estimates, which appear
by default in SAS, have been removed.

Analysis Of Maximum Likelihood Parameter Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 1.7767 0.0582 930.73 <.0001
FEMALE 1 -0.1761 0.0280 39.49 <.0001
SUBSTANCE alcohol 1 1.1212 0.0339 1092.72 <.0001
SUBSTANCE cocaine 1 0.3040 0.0381 63.64 <.0001
SUBSTANCE heroin 0 0.0000 0.0000 . .
AGE 1 0.0132 0.0015 82.52 <.0001
Scale 0 1.0000 0.0000

NOTE: The scale parameter was held fixed.

> poisres <- glm(i1 ~ female + substance + age, poisson)

> summary(poisres)

Call:
glm(formula = i1 ~ female + substance + age, family = poisson)

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 152 — #172
�

�

�

�

�

�

152 CHAPTER 4. REGRESSION GENERALIZATIONS

Deviance Residuals:
Min 1Q Median 3Q Max

-7.57 -3.69 -1.40 1.04 15.99

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.89785 0.05827 49.73 < 2e-16
female -0.17605 0.02802 -6.28 3.3e-10
substancecocaine -0.81715 0.02776 -29.43 < 2e-16
substanceheroin -1.12117 0.03392 -33.06 < 2e-16
age 0.01321 0.00145 9.08 < 2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 8898.9 on 452 degrees of freedom
Residual deviance: 6713.9 on 448 degrees of freedom
AIC: 8425

Number of Fisher Scoring iterations: 6

It is always important to check assumptions for models. This is particularly true for
Poisson models, which are quite sensitive to model departures. There is support within R
for a Pearson’s χ2 goodness of fit test.

> library(vcd)

> poisfit <- goodfit(e2b, "poisson")

> summary(poisfit)

Goodness-of-fit test for poisson distribution

X^2 df P(> X^2)
Likelihood Ratio 208 10 3.6e-39

The results indicate that the fit is poor (χ2
10 = 208, p < 0.0001); the Poisson model does

not appear to be tenable. This is also seen in the SAS output, which produces several
assessments of goodness of fit by default. The deviance value per degree of freedom is high
(14.99).

4.6.3 Zero-inflated Poisson regression

A zero-inflated Poisson regression model (4.1.4) might fit better.
options ls=74;

ods select parameterestimates zeroparameterestimates;

proc genmod data=help;

class substance;

model i1 = female substance age / dist=zip;

zeromodel female;

run;

In the following output, the confidence limits for the parameter estimates, which appear
by default in SAS, have been removed.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 153 — #173
�

�

�

�

�

�

4.6. HELP EXAMPLES 153

The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 2.2970 0.0599 1471.50 <.0001
FEMALE 1 -0.0680 0.0280 5.89 0.0153
SUBSTANCE alcohol 1 0.7609 0.0336 512.52 <.0001
SUBSTANCE cocaine 1 0.0362 0.0381 0.90 0.3427
SUBSTANCE heroin 0 0.0000 0.0000 . .
AGE 1 0.0093 0.0015 39.86 <.0001
Scale 0 1.0000 0.0000

NOTE: The scale parameter was held fixed.

Analysis Of Maximum Likelihood Zero Inflation Parameter Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.9794 0.1646 144.57 <.0001
FEMALE 1 0.8430 0.2791 9.12 0.0025

> library(pscl)

pscl 1.03 2008-11-24

> res <- zeroinfl(i1 ~ female + substance + age | female, data=ds)

> res

Call:
zeroinfl(formula = i1 ~ female + substance + age | female, data = ds)

Count model coefficients (poisson with log link):
(Intercept) female substancecocaine substanceheroin

3.05781 -0.06797 -0.72466 -0.76086
age

0.00927

Zero-inflation model coefficients (binomial with logit link):
(Intercept) female

-1.979 0.843

Women are more likely to abstain from alcohol than men (p=0.0025), as well as drink
less when they drink (p=0.015). Other significant predictors include substance and age,
though model assumptions for count models should always be carefully verified [32].

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 154 — #174
�

�

�

�

�

�

154 CHAPTER 4. REGRESSION GENERALIZATIONS

4.6.4 Negative binomial regression

A negative binomial regression model (4.1.5) might improve on the Poisson.

options ls=74;

ods exclude nobs convergencestatus classlevels modelinfo;

proc genmod data=help;

class substance;

model i1 = female substance age / dist=negbin;

run;

The GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 448 539.5954 1.2045
Scaled Deviance 448 539.5954 1.2045
Pearson Chi-Square 448 444.7200 0.9927
Scaled Pearson X2 448 444.7200 0.9927
Log Likelihood 18884.8073
Full Log Likelihood -1708.1668
AIC (smaller is better) 3428.3336
AICC (smaller is better) 3428.5219
BIC (smaller is better) 3453.0290

In the following output, the confidence limits for the parameter estimates, which appear
by default in SAS, have been removed.

Analysis Of Maximum Likelihood Parameter Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 1.8681 0.2735 46.64 <.0001
FEMALE 1 -0.2689 0.1272 4.47 0.0346
SUBSTANCE alcohol 1 1.1488 0.1393 68.03 <.0001
SUBSTANCE cocaine 1 0.3252 0.1400 5.40 0.0202
SUBSTANCE heroin 0 0.0000 0.0000 . .
AGE 1 0.0107 0.0075 2.04 0.1527
Dispersion 1 1.2345 0.0897

NOTE: The negative binomial dispersion parameter was estimated by maximum
likelihood.

> library(MASS)

> nbres <- glm.nb(i1 ~ female + substance + age)

> summary(nbres)

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 155 — #175
�

�

�

�

�

�

4.6. HELP EXAMPLES 155

Call:
glm.nb(formula = i1 ~ female + substance + age,

init.theta = 0.810015138972117, link = log)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.414 -1.032 -0.278 0.241 2.808

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.01693 0.28928 10.43 < 2e-16
female -0.26887 0.12758 -2.11 0.035
substancecocaine -0.82360 0.12904 -6.38 1.7e-10
substanceheroin -1.14879 0.13882 -8.28 < 2e-16
age 0.01072 0.00725 1.48 0.139

(Dispersion parameter for Negative Binomial(0.81) family taken to be 1)

Null deviance: 637.82 on 452 degrees of freedom
Residual deviance: 539.60 on 448 degrees of freedom
AIC: 3428

Number of Fisher Scoring iterations: 1

Theta: 0.8100
Std. Err.: 0.0589

2 x log-likelihood: -3416.3340

The Deviance / DF is close to 1, suggesting a reasonable fit. Note that the R and SAS
dispersion parameters are inverses of each other.

4.6.5 Quantile regression

In this section, we fit a quantile regression model (4.4.4) of the number of drinks (i1) as a
function of predictors, modeling the 75th percentile (Q3).

ods select parameterestimates;

proc quantreg data=help;

class substance;

model i1 = female substance age / quantile=0.75;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 156 — #176
�

�

�

�

�

�

156 CHAPTER 4. REGRESSION GENERALIZATIONS

The QUANTREG Procedure

Parameter Estimates

95% Confidence
Parameter DF Estimate Limits

Intercept 1 7.0000 -4.2965 17.2599
FEMALE 1 -2.9091 -7.5765 5.1838
SUBSTANCE alcohol 1 22.6364 18.1744 29.6974
SUBSTANCE cocaine 1 2.5455 -2.6907 10.0198
SUBSTANCE heroin 0 0.0000 0.0000 0.0000
AGE 1 0.1818 -0.2154 0.5752

> library(quantreg)

Package SparseM (0.79) loaded. To cite, see citation("SparseM")

> quantres <- rq(i1 ~ female + substance + age, tau=0.75, data=ds)

> summary(quantres)

Call: rq(formula = i1 ~ female + substance + age, tau = 0.75, data = ds)

tau: [1] 0.75

Coefficients:
coefficients lower bd upper bd

(Intercept) 29.636 17.274 41.627
female -2.909 -7.116 3.419
substancecocaine -20.091 -28.348 -15.460
substanceheroin -22.636 -28.256 -19.115
age 0.182 -0.250 0.521

> detach("package:quantreg")

Estimating standard errors and confidence limits is nontrivial in these models, and it
is thus unsurprising that the default approaches in R and SAS yield different confidence
limits.

Because the quantreg package overrides needed functionality in other packages, we
detach() it after running the rq() function (see B.4.5).

4.6.6 Ordinal logit

To demonstrate an ordinal logit analysis (4.6.6), we first create an ordinal categorical vari-
able from the sexrisk variable, then model this three level ordinal variable as a function
of cesd and pcs. Note that SAS and R use opposite coding of the reference group for the
intercepts (so the estimates are of opposite sign).

data help3;

set help;

sexriskcat = (sexrisk ge 2) + (sexrisk ge 6);

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 157 — #177
�

�

�

�

�

�

4.6. HELP EXAMPLES 157

ods select parameterestimates;

proc logistic data=help3 descending;

model sexriskcat = cesd pcs;

run;

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 2 1 -0.9436 0.5607 2.8326 0.0924
Intercept 1 1 1.6697 0.5664 8.6909 0.0032
CESD 1 -0.00004 0.00759 0.0000 0.9963
PCS 1 0.00521 0.00881 0.3499 0.5542

> library(MASS)

> sexriskcat <- as.factor(as.numeric(sexrisk>=2) + as.numeric(sexrisk>=6))

> ologit <- polr(sexriskcat ~ cesd + pcs)

> summary(ologit)

Call:
polr(formula = sexriskcat ~ cesd + pcs)

Coefficients:
Value Std. Error t value

cesd -3.72e-05 0.00762 -0.00489
pcs 5.23e-03 0.00876 0.59648

Intercepts:
Value Std. Error t value

0|1 -1.669 0.562 -2.971
1|2 0.944 0.556 1.698

Residual Deviance: 871.76
AIC: 879.76

4.6.7 Multinomial logit

We can fit a multinomial logit (4.6.7) model for the categorized sexrisk variable.

options ls=74; /* keep output in grey box */

ods select responseprofile parameterestimates;

proc logistic data=help3 descending;

model sexriskcat = cesd pcs / link=glogit;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 158 — #178
�

�

�

�

�

�

158 CHAPTER 4. REGRESSION GENERALIZATIONS

The LOGISTIC Procedure

Response Profile

Ordered Total
Value sexriskcat Frequency

1 2 151
2 1 244
3 0 58

Logits modeled use sexriskcat=0 as the reference category.

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter sexriskcat DF Estimate Error Chi-Square Pr > ChiSq

Intercept 2 1 0.6863 0.9477 0.5244 0.4690
Intercept 1 1 1.4775 0.8943 2.7292 0.0985
CESD 2 1 -0.00672 0.0132 0.2610 0.6095
CESD 1 1 -0.0133 0.0125 1.1429 0.2850
PCS 2 1 0.0105 0.0149 0.4983 0.4802
PCS 1 1 0.00851 0.0140 0.3670 0.5446

> library(VGAM)

> mlogit <- vglm(sexriskcat ~ cesd + pcs, family=multinomial())

> summary(mlogit)

Call:
vglm(formula = sexriskcat ~ cesd + pcs, family = multinomial())

Pearson Residuals:

Min 1Q Median 3Q Max

log(mu[,1]/mu[,3]) -0.8 -0.7 -0.2 -0.1 3

log(mu[,2]/mu[,3]) -1.3 -1.2 0.8 0.9 1

Coefficients:

Value Std. Error t value

(Intercept):1 -0.686 0.948 -0.7

(Intercept):2 0.791 0.639 1.2

cesd:1 0.007 0.013 0.5

cesd:2 -0.007 0.009 -0.8

pcs:1 -0.010 0.015 -0.7

pcs:2 -0.002 0.010 -0.2

Number of linear predictors: 2

Names of linear predictors: log(mu[,1]/mu[,3]), log(mu[,2]/mu[,3])

Dispersion Parameter for multinomial family: 1

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 159 — #179
�

�

�

�

�

�

4.6. HELP EXAMPLES 159

Residual Deviance: 870 on 900 degrees of freedom

Log-likelihood: -435 on 900 degrees of freedom

Number of Iterations: 4

> detach("package:VGAM")

Because the VGAM package overrides needed functionality in other packages, we detach()
it after running the vglm() function (see B.4.5).

4.6.8 Generalized additive model

We can fit a generalized additive model (4.4.2), and generate a plot in proc gam using ODS
graphics (Figure 4.1).

ods graphics on;

ods select parameterestimates anodev smoothingcomponentplot;

proc gam data=help plots=components(clm);

class substance;

model cesd = param(female) loess(pcs) param(substance) / method=gcv;

run;

ods graphics off;

The GAM Procedure
Dependent Variable: CESD
Regression Model Component(s): FEMALE SUBSTANCE
Smoothing Model Component(s): loess(PCS)

Regression Model Analysis
Parameter Estimates

Parameter Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 33.06343 1.09076 30.31 <.0001
FEMALE 4.40741 1.29026 3.42 0.0007
SUBSTANCE alcohol 0.12608 1.36382 0.09 0.9264
SUBSTANCE cocaine -3.89240 1.40879 -2.76 0.0060
SUBSTANCE heroin 0 . . .

Smoothing Model Analysis
Analysis of Deviance

Sum of
Source DF Squares Chi-Square Pr > ChiSq

Loess(PCS) 2.51843 5041.036452 37.2179 <.0001

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 160 — #180
�

�

�

�

�

�

160 CHAPTER 4. REGRESSION GENERALIZATIONS

> library(gam)

> gamreg<- gam(cesd ~ female + lo(pcs) + substance)

> summary(gamreg)

Call: gam(formula = cesd ~ female + lo(pcs) + substance)
Deviance Residuals:

Min 1Q Median 3Q Max
-29.16 -8.14 0.81 8.23 29.25

(Dispersion Parameter for gaussian family taken to be 135)

Null Deviance: 70788 on 452 degrees of freedom
Residual Deviance: 60288 on 445 degrees of freedom
AIC: 3519

Number of Local Scoring Iterations: 2

DF for Terms and F-values for Nonparametric Effects

Df Npar Df Npar F Pr(F)
(Intercept) 1.0
female 1.0
lo(pcs) 1.0 3.1 3.77 0.010
substance 2.0

> coefficients(gamreg)

(Intercept) female lo(pcs) substancecocaine
46.524 4.339 -0.277 -3.956

substanceheroin
-0.205

The estimated smoothing function is displayed in Figure 4.1.

> plot(gamreg, terms=c("lo(pcs)"), se=2, lwd=3)

> abline(h=0)

4.6.9 Reshaping dataset for longitudinal regression

A wide (multivariate) dataset can be reshaped (1.5.3) into a tall (longitudinal) dataset. Here
we create time-varying variables (with a suffix tv) as well as keep baseline values (without
the suffix).

In SAS, we do this directly with an output statement, putting four lines in the long
dataset for every line in the original dataset.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 161 — #181
�

�

�

�

�

�

4.6. HELP EXAMPLES 161

(a) SAS

20 30 40 50 60 70

−
5

0
5

1
0

1
5

pcs
lo

(p
cs

)

(b) R

Figure 4.1: Scatterplots of smoothed association of PCS with CESD

data long;

set help;

array cesd_a [4] cesd1 - cesd4;

array mcs_a [4] mcs1 - mcs4;

array i1_a [4] i11 - i14;

array g1b_a [4] g1b1 - g1b4;

do time = 1 to 4;

cesdtv = cesd_a[time];

mcstv = mcs_a[time];

i1tv = i1_a[time];

g1btv = g1b_a[time];

output;

end;

run;

In R we use the reshape() command.

> long <- reshape(ds, idvar="id",

+ varying=list(c("cesd1","cesd2","cesd3","cesd4"),

+ c("mcs1","mcs2","mcs3","mcs4"), c("i11","i12","i13","i14"),

+ c("g1b1","g1b2","g1b3","g1b4")),

+ v.names=c("cesdtv","mcstv","i1tv","g1btv"),

+ timevar="time", times=1:4, direction="long")

> detach(ds)

We can check the resulting dataset by printing tables by time. In the code below, we
use some options to proc freq to reduce the information provided by default.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 162 — #182
�

�

�

�

�

�

162 CHAPTER 4. REGRESSION GENERALIZATIONS

proc freq data=long;

tables g1btv*time / nocum norow nopercent;

run;

The FREQ Procedure

Table of g1btv by time

g1btv time

Frequency|
Col Pct | 1| 2| 3| 4| Total
---------+--------+--------+--------+--------+

0 | 219 | 187 | 225 | 245 | 876
| 89.02 | 89.47 | 91.09 | 92.11 |

---------+--------+--------+--------+--------+
1 | 27 | 22 | 22 | 21 | 92
| 10.98 | 10.53 | 8.91 | 7.89 |

---------+--------+--------+--------+--------+
Total 246 209 247 266 968

Frequency Missing = 844

> table(long$g1btv, long$time)

1 2 3 4
0 219 187 225 245
1 27 22 22 21

or by looking at the observations over time for a given individual:

proc print data=long;

where id eq 1;

var id time cesd cesdtv;

run;

Obs ID time CESD cesdtv

709 1 1 49 7
710 1 2 49 .
711 1 3 49 8
712 1 4 49 5

> attach(long)

> long[id==1, c("id", "time", "cesd", "cesdtv")]

id time cesd cesdtv
1.1 1 1 49 7
1.2 1 2 49 NA
1.3 1 3 49 8
1.4 1 4 49 5

> detach(long)

This process can be reversed, creating a wide dataset from a tall one.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 163 — #183
�

�

�

�

�

�

4.6. HELP EXAMPLES 163

In SAS, we begin by using proc transpose to make a row for each variable with the
four time points in it.

proc transpose data=long out=wide1 prefix=time;

by notsorted id;

var cesdtv mcstv i1tv g1btv;

id time;

run;

Note the notsorted option to the by statement, which allows us to skip an unneeded
proc sort step and can be used because we know that all the observations for each id are
stored adjacent to one another.

This results in the following data.

proc print data=wide1 (obs=6);

run;

Obs ID _NAME_ time1 time2 time3 time4

1 2 cesdtv 11.0000 . . .
2 2 mcstv 41.7270 . . .
3 2 i1tv 8.0000 . . .
4 2 g1btv 0.0000 . . .
5 8 cesdtv 18.0000 . 25.0000 .
6 8 mcstv 36.0636 . 40.6260 .

To put the data for each variable onto one line, we merge the data with itself, taking
the lines separately and renaming them along the way using the where and rename data set
options (A.6.1).

data wide (drop=_name_);

merge

wide1 (where = (_name_="cesdtv")

rename = (time1=cesd1 time2=cesd2 time3=cesd3 time4=cesd4))

wide1 (where = (_name_="mcstv")

rename = (time1=mcs1 time2=mcs2 time3=mcs3 time4=mcs4))

wide1 (where = (_name_="i1tv")

rename = (time1=i11 time2=i12 time3=i13 time4=i14))

wide1 (where = (_name_="g1btv")

rename = (time1=g1b1 time2=g1b2 time3=g1b3 time4=g1b4));

run;

The merge without a by statement simply places the data from sequential lines in each
merged dataset next to each other in the new dataset. Since, here, they are different lines
from the same dataset, we know that this is correct. In general, the ability to merge without
a by variable in SAS can cause unintended consequences.

The final dataset is as desired.
proc print data=wide (obs=2);

var id cesd1 - cesd4;

run;

Obs ID cesd1 cesd2 cesd3 cesd4

1 2 11 . . .
2 8 18 . 25 .

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 164 — #184
�

�

�

�

�

�

164 CHAPTER 4. REGRESSION GENERALIZATIONS

This is a cumbersome process, but is more straightforward than a pure data step
approach.

In contrast, converting to a wide format in R can be done with another call to reshape().

> wide <- reshape(long,

+ v.names=c("cesdtv", "mcstv", "i1tv", "g1btv"),

+ idvar="id", timevar="time", direction="wide")

> wide[c(2,8), c("id", "cesd", "cesdtv.1", "cesdtv.2", "cesdtv.3",

+ "cesdtv.4")]

id cesd cesdtv.1 cesdtv.2 cesdtv.3 cesdtv.4
2.1 2 30 11 NA NA NA
8.1 8 32 18 NA 25 NA

4.6.10 Linear model for correlated data

Here we fit a general linear model for correlated data (modeling the covariance matrix
directly, 4.2.1).

ods select rcorr covparms solutionf tests3;

proc mixed data=long;

class time;

model cesdtv = treat time / solution;

repeated time / subject=id type=un rcorr=7;

run;

In this example, the estimated correlation matrix for the 7th subject is printed (this
subject was selected because all four time points were observed).

The Mixed Procedure

Estimated R Correlation Matrix for Subject 7

Row Col1 Col2 Col3 Col4

1 1.0000 0.5843 0.6386 0.4737
2 0.5843 1.0000 0.7430 0.5851
3 0.6386 0.7430 1.0000 0.7347
4 0.4737 0.5851 0.7347 1.0000

The estimated elements of the variance-covariance matrix are printed row-wise.
Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) ID 207.21
UN(2,1) ID 125.11
UN(2,2) ID 221.29
UN(3,1) ID 131.74
UN(3,2) ID 158.39
UN(3,3) ID 205.36
UN(4,1) ID 97.8055
UN(4,2) ID 124.85
UN(4,3) ID 151.03
UN(4,4) ID 205.75

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 165 — #185
�

�

�

�

�

�

4.6. HELP EXAMPLES 165

Solution for Fixed Effects

Standard
Effect time Estimate Error DF t Value Pr > |t|

Intercept 21.2439 1.0709 381 19.84 <.0001
TREAT -0.4795 1.3196 381 -0.36 0.7165
time 1 2.4140 0.9587 381 2.52 0.0122
time 2 2.6973 0.9150 381 2.95 0.0034
time 3 1.7545 0.6963 381 2.52 0.0121
time 4 0

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

TREAT 1 381 0.13 0.7165
time 3 381 3.53 0.0150

> library(nlme)

> glsres <- gls(cesdtv ~ treat + as.factor(time),

+ correlation=corSymm(form = ~ time | id),

+ weights=varIdent(form = ~ 1 | time), long, na.action=na.omit)

> summary(glsres)

Generalized least squares fit by REML
Model: cesdtv ~ treat + as.factor(time)
Data: long
AIC BIC logLik
7550 7623 -3760

Correlation Structure: General
Formula: ~time | id
Parameter estimate(s):
Correlation:
1 2 3

2 0.584
3 0.639 0.743
4 0.474 0.585 0.735
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | time
Parameter estimates:

1 3 4 2
1.000 0.996 0.996 1.033

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 166 — #186
�

�

�

�

�

�

166 CHAPTER 4. REGRESSION GENERALIZATIONS

Coefficients:
Value Std.Error t-value p-value

(Intercept) 23.66 1.098 21.55 0.000
treat -0.48 1.320 -0.36 0.716
as.factor(time)2 0.28 0.941 0.30 0.763
as.factor(time)3 -0.66 0.841 -0.78 0.433
as.factor(time)4 -2.41 0.959 -2.52 0.012

Correlation:
(Intr) treat as.()2 as.()3

treat -0.627
as.factor(time)2 -0.395 0.016
as.factor(time)3 -0.433 0.014 0.630
as.factor(time)4 -0.464 0.002 0.536 0.708

Standardized residuals:
Min Q1 Med Q3 Max

-1.643 -0.874 -0.115 0.708 2.582

Residual standard error: 14.4
Degrees of freedom: 969 total; 964 residual

> anova(glsres)

Denom. DF: 964
numDF F-value p-value

(Intercept) 1 1168 <.0001
treat 1 0 0.6887
as.factor(time) 3 4 0.0145

A set of parallel boxplots (5.1.7) by time can be generated using the following commands.
Results are displayed in Figure 4.2.

proc sgpanel data=long;

panelby time / columns=4;

vbox cesdtv / category=treat ;

run;

> library(lattice)

> bwplot(cesdtv ~ as.factor(treat)| time, xlab="TREAT",

+ strip=strip.custom(strip.names=TRUE, strip.levels=TRUE),

+ ylab="CESD", layout=c(4,1), col="black", data=long,

+ par.settings=list(box.rectangle=list(col="black"),

+ box.dot=list(col="black"), box.umbrella=list(col="black")))

4.6.11 Linear mixed (random slope) model

Here we fix a mixed effects, or random slope model (4.2.3). Note that in SAS a given variable
can be either a class variable or not, within a procedure. In this example, we specify a
categorical fixed effect of time but a random slope across time treated continuously. We do
this by making a copy of the time variable in a new dataset. We save the estimated random
effects for later examination, but use ODS to suppress their printing.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 167 — #187
�

�

�

�

�

�

4.6. HELP EXAMPLES 167

(a) SAS

Treatment

C
E

S
D

0

10

20

30

40

50

60

0 1

 : time { 1 }

0 1

 : time { 2 }

0 1

 : time { 3 }

0 1

 : time { 4 }

(b) R

Figure 4.2: Side-by-side box plots of CESD by treatment and time

data long2;

set long;

timecopy=time;

run;

To make the first time point the referent, as the R lme() function does by default, we
first sort by time; then we use the order=data option to the proc mixed statement.

proc sort data= long2; by id descending time; run;

options ls=74;

ods output solutionr=reffs;

ods exclude modelinfo classlevels convergencestatus fitstatistics lrt

dimensions nobs iterhistory solutionr;

proc mixed data=long2 order=data;

class timecopy;

model cesdtv = treat timecopy / solution;

random int time / subject=id type=un vcorr=20 solution;

run;

The Mixed Procedure

Estimated V Correlation Matrix for Subject 20

Row Col1 Col2 Col3 Col4

1 1.0000 0.6878 0.6210 0.5293
2 0.6878 1.0000 0.6694 0.6166
3 0.6210 0.6694 1.0000 0.6813
4 0.5293 0.6166 0.6813 1.0000

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 168 — #188
�

�

�

�

�

�

168 CHAPTER 4. REGRESSION GENERALIZATIONS

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) ID 188.43
UN(2,1) ID -21.8938
UN(2,2) ID 9.1731
Residual 61.5856

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect timecopy Estimate Error DF t Value Pr > |t|

Intercept 23.8843 1.1066 381 21.58 <.0001
TREAT -0.4353 1.3333 292 -0.33 0.7443
timecopy 4 -2.5776 0.9438 292 -2.73 0.0067
timecopy 3 -1.0142 0.8689 292 -1.17 0.2441
timecopy 2 -0.06144 0.8371 292 -0.07 0.9415
timecopy 1 0

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

TREAT 1 292 0.11 0.7443
timecopy 3 292 3.35 0.0195

To examine the predicted random effects, or BLUPs, we can look at the reffs dataset
created by the ODS output statement and the solution option to the random statement.
This dataset includes a subject variable created by SAS from the subject option in the
random statement. It contains the same information as the id variable, but is encoded as
a character variable and has some blank spaces in it. In order to easily print the predicted
random effects for the subject with id=1, we condition using the where statement (A.6.3),
removing the blanks using the strip function (1.4.7).

proc print data=reffs;

where strip(subject) eq '1';
run;

StdErr
Obs Effect Subject Estimate Pred DF tValue Probt

1 Intercept 1 -13.4805 7.4764 292 -1.80 0.0724
2 time 1 -0.02392 2.3267 292 -0.01 0.9918

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 169 — #189
�

�

�

�

�

�

4.6. HELP EXAMPLES 169

We can check the predicted values for an individual (incorporating their predicted ran-
dom effect) using the outp option as well as the marginal predicted mean from the outpm
option to the model statement. Here we suppress all output, then print the observed and
predicted values for one subject.

ods exclude all;

proc mixed data=long2 order=data;

class timecopy;

model cesdtv = treat timecopy / outp=lmmp outpm=lmmpm;

random int time / subject=id type=un;

run;

ods select all;

The outp dataset has the predicted mean conditional on each subject. The outpm dataset
has the marginal means. If we want to see them in the same dataset, we can merge them
(1.5.7). Note that because the input dataset (long2) used in proc mixed was sorted, the
output datasets are also sorted. Otherwise, a proc sort step would be needed for each
dataset to be merged. Since both the datasets contain a variable pred, we rename one of
the variables as we merge the datasets.

data lmmout;

merge lmmp lmmpm (rename = (pred=margpred));

by id descending time;

run;

proc print data=lmmout;

where id eq 1;

var id time cesdtv pred margpred;

run;

Obs ID time cesdtv Pred margpred

1 1 4 5 7.29524 20.8714
2 1 3 8 8.88264 22.4349
3 1 2 . 9.85929 23.3876
4 1 1 7 9.94464 23.4490

In R we mimic this process by creating an as.factor() version of time. As an alterna-
tive, we could nest the call to as.factor() within the call to lme().

> attach(long)

> tf <- as.factor(time)

> library(nlme)

> lmeslope <- lme(fixed=cesdtv ~ treat + tf,

+ random=~ time |id, data=long, na.action=na.omit)

> print(lmeslope)

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 170 — #190
�

�

�

�

�

�

170 CHAPTER 4. REGRESSION GENERALIZATIONS

Linear mixed-effects model fit by REML
Data: long
Log-restricted-likelihood: -3772
Fixed: cesdtv ~ treat + tf

(Intercept) treat tf2 tf3 tf4
23.8843 -0.4353 -0.0615 -1.0142 -2.5776

Random effects:
Formula: ~time | id
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
(Intercept) 13.73 (Intr)
time 3.03 -0.527
Residual 7.85

Number of Observations: 969
Number of Groups: 383

> anova(lmeslope)

numDF denDF F-value p-value
(Intercept) 1 583 1163 <.0001
treat 1 381 0 0.7257
tf 3 583 3 0.0189

In R, we use the random.effects and predict() functions to find the predicted random
effects and predicted values, respectively.

> reffs <- random.effects(lmeslope)

> reffs[1,]

(Intercept) time
1 -13.5 -0.0239

> predval <- predict(lmeslope, newdata=long, level=0:1)

> predval[id==1,]

id predict.fixed predict.id
1.1 1 23.4 9.94
1.2 1 23.4 9.86
1.3 1 22.4 8.88
1.4 1 20.9 7.30

> vc <- VarCorr(lmeslope)

> summary(vc)

Variance StdDev Corr
9.17:1 3.03:1 :1
61.58:1 7.85:1 -0.527:1
188.43:1 13.73:1 (Intr):1

> detach(long)

The VarCorr() function calculates the variances, standard deviations, and correlations
between the random effects terms, as well as the within-group error variance and standard
deviation.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 171 — #191
�

�

�

�

�

�

4.6. HELP EXAMPLES 171

4.6.12 Generalized estimating equations

We fit a GEE model (4.2.7), using an exchangeable working correlation matrix and em-
pirical variance [46]. Note that in the current release of the gee package, unstructured
working correlations are not supported with nonmonotone missingness. SAS does support
this model, using the syntax below (results not shown).

proc genmod data=long2 descending;

class timecopy id;

model g1btv = treat time / dist=bin;

repeated subject = id / within=timecopy type=un corrw;

run;

To show equivalence between the two systems, we fit the exchangeable correlation struc-
ture in SAS as well. In this case the within option to the repeated statement is not
needed.

ods select geeemppest geewcorr;

proc genmod data=long2 descending;

class id;

model g1btv = treat time / dist=bin;

repeated subject = id / type=exch corrw;

run;

The GENMOD Procedure

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -1.8517 0.2723 -2.3854 -1.3180 -6.80 <.0001
TREAT -0.0087 0.2683 -0.5347 0.5172 -0.03 0.9740
time -0.1459 0.0872 -0.3168 0.0250 -1.67 0.0942

The corrw option requests the working correlation matrix be printed.

Col1 Col2 Col3 Col4

Row1 1.0000 0.2994 0.2994 0.2994
Row2 0.2994 1.0000 0.2994 0.2994
Row3 0.2994 0.2994 1.0000 0.2994
Row4 0.2994 0.2994 0.2994 1.0000

> library(gee)

> sortlong <- long[order(long$id),]

> attach(sortlong)

> geeres <- gee(formula = g1btv ~ treat + time, id=id, data=sortlong,

+ family=binomial, na.action=na.omit, corstr="exchangeable")

(Intercept) treat time
-1.9649 0.0443 -0.1256

> detach(sortlong)

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 172 — #192
�

�

�

�

�

�

172 CHAPTER 4. REGRESSION GENERALIZATIONS

In addition to returning an object with results, the gee() function displays the coeffi-
cients from a model assuming that all observations are uncorrelated. This is also the default
behavior for proc genmod, though we have suppressed printing these estimates here.

> coef(geeres)

(Intercept) treat time
-1.85169 -0.00874 -0.14593

> sqrt(diag(geeres$robust.variance))

(Intercept) treat time
0.2723 0.2683 0.0872

> geeres$working.correlation

[,1] [,2] [,3] [,4]
[1,] 1.000 0.299 0.299 0.299
[2,] 0.299 1.000 0.299 0.299
[3,] 0.299 0.299 1.000 0.299
[4,] 0.299 0.299 0.299 1.000

4.6.13 Generalized linear mixed model

Here we fit a GLMM (4.2.6), predicting recent suicidal ideation as a function of treatment,
depressive symptoms (CESD), and time. Each subject is assumed to have their own random
intercept.

ods select parameterestimates;

proc glimmix data=long;

model g1btv = treat cesdtv time / dist=bin solution;

random int / subject=id;

run;

The GLIMMIX Procedure

Solutions for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept -4.3572 0.4831 381 -9.02 <.0001
TREAT -0.00749 0.2821 583 -0.03 0.9788
cesdtv 0.07820 0.01027 583 7.62 <.0001
time -0.09253 0.1111 583 -0.83 0.4051

For many generalized linear mixed models, the likelihood has an awkward shape, and
maximizing it can be difficult. In such cases, care should be taken to ensure that results
are correct. In such settings, it is useful to use numeric integration, rather than the default
approximation used by proc glimmix; this can be requested using the method=laplace
option to the proc glimmix statement. When results differ, the maximization based on
numeric integration of the actual likelihood should be preferred to the analytic iterative
maximization of the approximate likelihood.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 173 — #193
�

�

�

�

�

�

4.6. HELP EXAMPLES 173

ods select parameterestimates;

proc glimmix data=long method=laplace;

model g1btv = treat cesdtv time / dist=bin solution;

random int / subject=id;

run;

The GLIMMIX Procedure

Solutions for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept -8.7633 1.2218 381 -7.17 <.0001
TREAT -0.04164 0.6707 583 -0.06 0.9505
cesdtv 0.1018 0.01927 583 5.28 <.0001
time -0.2425 0.1730 583 -1.40 0.1616

> library(lme4)

> glmmres <- lmer(g1btv ~ treat + cesdtv + time + (1|id),

+ family=binomial(link="logit"), data=long)

> summary(glmmres)

Generalized linear mixed model fit by the Laplace approximation
Formula: g1btv ~ treat + cesdtv + time + (1 | id)

Data: long
AIC BIC logLik deviance
480 504 -235 470
Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 32.6 5.71
Number of obs: 968, groups: id, 383

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.7632 1.2802 -6.85 7.6e-12
treat -0.0417 1.2159 -0.03 0.97
cesdtv 0.1018 0.0237 4.30 1.7e-05
time -0.2426 0.1837 -1.32 0.19

Correlation of Fixed Effects:
(Intr) treat cesdtv

treat -0.480
cesdtv -0.641 -0.025
time -0.366 0.009 0.028

4.6.14 Cox proportional hazards model

Here we fit a proportional hazards model (4.3.1) for the time to linkage to primary care,
with randomization group, age, gender, and CESD as predictors.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 174 — #194
�

�

�

�

�

�

174 CHAPTER 4. REGRESSION GENERALIZATIONS

options ls=74;

ods exclude modelinfo nobs classlevelinfo convergencestatus type3;

proc phreg data=help;

class treat female;

model dayslink*linkstatus(0) = treat age female cesd;

run;

The PHREG Procedure

Summary of the Number of Event and Censored Values

Percent
Total Event Censored Censored

431 163 268 62.18

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 1899.982 1805.368
AIC 1899.982 1813.368
SBC 1899.982 1825.743

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 94.6132 4 <.0001
Score 92.3599 4 <.0001
Wald 76.8717 4 <.0001

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Parameter DF Estimate Error Chi-Square Pr > ChiSq Ratio

TREAT 0 1 -1.65185 0.19324 73.0737 <.0001 0.192
AGE 1 0.02467 0.01032 5.7160 0.0168 1.025
FEMALE 0 1 0.32535 0.20379 2.5489 0.1104 1.385
CESD 1 0.00235 0.00638 0.1363 0.7120 1.002

In R we request the Breslow estimator, for compatibility with SAS (the default is the
Efron estimator).

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 175 — #195
�

�

�

�

�

�

4.6. HELP EXAMPLES 175

> library(survival)

> survobj <- coxph(Surv(dayslink, linkstatus) ~ treat + age + female +

+ cesd, method="breslow", data=ds)

> print(survobj)

Call:
coxph(formula = Surv(dayslink, linkstatus) ~ treat + age + female +

cesd, data = ds, method = "breslow")

coef exp(coef) se(coef) z p
treat 1.65186 5.217 0.19324 8.548 0.000
age 0.02467 1.025 0.01032 2.391 0.017
female -0.32535 0.722 0.20379 -1.597 0.110
cesd 0.00235 1.002 0.00638 0.369 0.710

Likelihood ratio test=94.6 on 4 df, p=0 n=431 (22 observations deleted
due to missingness)

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 177 — #197
�

�

�

�

�

�

Chapter 5

Graphics

This chapter describes how to create graphical displays, such as scatterplots, boxplots,
and histograms. We provide a broad overview of the key ideas and techniques that are
available. Additional discussion of ways to annotate displays and change defaults to present
publication quality figures is included, as are details regarding how to output graphics in
a variety of file formats (section 5.4). Because graphics are useful to visualize analyses,
examples appear throughout the HELP sections at the end of most of the chapters of the
book.

Producing graphics for data analysis is simple and direct in both programs. Producing
graphics for publication is more complex and typically requires a great deal of time to achieve
the desired appearance. Our intent is to provide sufficient guidance that most effects can be
achieved, but further investigation of the documentation and experimentation will doubtless
be necessary for specific needs. There are a huge number of options: we aim to provide a
roadmap as well as examples to illustrate the power of both packages.

Base SAS supplies character-based plot procedures, but we focus on procedures to create
higher-resolution output using SAS/GRAPH. With version 9.2, SAS adds several powerful
ways to generate graphics. One is through statements available in existing procedures, as
demonstrated in Figure 2.1 (p. 80). Another is ods graphics (A.7.3), as demonstrated
for example in Figure 4.1 (p. 161). This approach allows graphical output to be produced
easily when generating statistical output. Finally, new procedures are introduced in SAS
9.2 which flexibly generate a variety of graphics especially useful in statistical analysis (for
an example, see 5.6.2).

While many graphics in R can be generated using one command, figures are often built
up element by element. For example, an empty box can be created with a specific set of x
and y axis labels and tick marks, then points can be added with different printing characters.
Text annotations can then be added, along with legends and other additional information
(see 3.7.1). The Graphics Task View (http://cran.r-project.org/web/views) provides
a comprehensive listing of functionality to create graphics in R.

As with SAS, a somewhat intimidating set of options is available, some of which can be
specified using the par() graphics parameters (see section 5.3), while others can be given
as options to plotting commands (such as plot() or lines()).

R provides a number of graphics devices to support different platforms and formats. The
default varies by platform (Windows() under Windows, X11() under Linux and quartz()
under modern Mac OS X distributions). A device is created automatically when a plotting
command is run, or a device can be started in advance to create a file in a particular format
(e.g., the pdf() device).

177

© 2010 by Taylor and Francis Group, LLC

http://cran.r-project.org

�

�

“book” — 2009/6/16 — 16:53 — page 178 — #198
�

�

�

�

�

�

178 CHAPTER 5. GRAPHICS

A series of powerful add-on packages to create sophisticated graphics are available within
R. These include the grid package [56], the lattice library [74], the ggplot2 library and
the ROCR package for receiver operating characteristic curves [80]. Running example() for
a specified function of interest is particularly helpful for commands shown in this chapter,
as is demo(graphics).

5.1 A compendium of useful plots

5.1.1 Scatterplot
HELP example: see 3.7.1

See 5.1.2 (scatterplot with multiple y values) and 5.1.17 (matrix of scatterplots)

SAS
proc gplot data=ds;

plot y*x;
run; quit;

or
proc sgscatter data=ds;

plot y*x;
run;

Note: The sgpanel and sgplot procedures in SAS 9.2 also generate scatter plots; proc
sgscatter is particularly useful for scatterplot matrices (5.1.17).

R
plot(x, y)

Note: Many objects within R have default plotting functions (e.g., for a linear model object,
plot.lm() is called). More information can be found using methods(plot). Specifying
type="n" causes nothing to be plotted (but sets up axes and draws boxes, see 1.13.5). This
technique is often useful if a plot is built up part by part.

5.1.2 Scatterplot with multiple y values
HELP example: see 5.6.1

See also 5.1.17 (matrix of scatterplots)

SAS
proc gplot data=ds; /* create 1 plot with a single y axis */

plot (y1 ... yk)*x / overlay;
run; quit;

or
proc gplot data=ds; /* create 1 plot with 2 separate y axes */

plot y1*x;
plot2 y2*x;

run; quit;

Note: The first code generates a single graphic with all the different Y values plotted. In
this case a simple legend can be added with the legend option to the plot statement,
e.g., plot (y1 y2)*x / overlay legend. A fully-controllable legend can be added with a
legend statement as in Figure 1.1.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 179 — #199
�

�

�

�

�

�

5.1. A COMPENDIUM OF USEFUL PLOTS 179

The second code generates a single graphic with two y-axes. The scale for Y1 appears
on the left and for Y2 appears on the right.

In either case, the symbol statements (see entries in 5.2) can be used to control the
plotted values and add interpolated lines as in 5.6.1. SAS will plot each Y value in a
different color and/or symbol by default. The overlay option and plot2 statements are
not mutually exclusive, so that several variables can be plotted on each Y axis scale.

Using the statement plot (y1 ... yk)*x without the overlay option will create k
separate plots, identical to k separate proc gplot procedures. Adding the uniform option
to the proc gplot statement will create k plots with a common y-axis scale.

R
plot(x, y1, pch=pchval1) # create 1 plot with single y-axis
points(x, y2, pch=pchval2)
...
points(x, yk, pch=pchvalk)

or
create 1 plot with 2 separate y axes
addsecondy <- function(x, y, origy, yname="Y2") {

prevlimits <- range(origy)
axislimits <- range(y)
axis(side=4, at=prevlimits[1] + diff(prevlimits)*c(0:5)/5,

labels=round(axislimits[1] + diff(axislimits)*c(0:5)/5, 1))
mtext(yname, side=4)
newy <- (y-axislimits[1])/(diff(axislimits)/diff(prevlimits)) +

prevlimits[1]
points(x, newy, pch=2)

}
plottwoy <- function(x, y1, y2, xname="X", y1name="Y1", y2name="Y2")
{

plot(x, y1, ylab=y1name, xlab=xname)
addsecondy(x, y2, y1, yname=y2name)

}
plottwoy(x, y1, y2, y1name="Y1", y2name="Y2")

Note: To create a figure with a single y axis value, it is straightforward to repeatedly call
points() or other functions to add elements.

In the second example, two functions addsecondy() and plottwoy() are defined to add
points on a new scale and an appropriate axis on the right. This involves rescaling and
labeling the second axis (side=4) with 6 tick marks, as well as rescaling the y2 variable.

5.1.3 Barplot

While not typically an efficient graphical display, there are times when a barplot is appro-
priate to display counts by groups.

SAS
proc gchart data=ds;

hbar x1 / sumvar=x2 type=mean;
run; quit;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 180 — #200
�

�

�

�

�

�

180 CHAPTER 5. GRAPHICS

or
proc sgplot data=ds;

hbar x1 / response=x2 stat=mean;
run;

Note: The above code produces one bar for each level of X1 with the length determined
by the mean of X2 in each level. Without the type=mean or stat=mean option, the length
would be the sum of x2 in each level. With no options, the length of each bar is measured
in the number of observations in each level of X1. The hbar statement can be replaced
by the vbar statement (with identical syntax) to make vertical bars, while the hbar3d and
vbar3d (in proc gchart only) make bars with a three-dimensional appearance. Options in
proc gchart allow display of reference lines, display of statistics, grouping by an additional
variable, and many other possibilities. The sgplot procedure can also produce similar dot
plots using the dot statement.

R
barplot(table(x1, x2), legend=c("grp1", "grp2"), xlab="X2")

or

library(lattice)
barchart(table(x1, x2, x3))

Note: The input for the barplot() function is given as the output of a one or two-
dimensional contingency table, while the barchart() function within library(lattice)
supports three dimensional tables (see example(barplot) and example(barchart)). A
similar dotchart() function produces a horizontal slot for each group with a dot reflecting
the frequency.

5.1.4 Histogram
HELP example: see 2.6.1

The example in section 2.6.1 demonstrates how to annotate a histogram with an overlaid
normal or kernel density estimates. Similar estimates are available for all other densities sup-
ported within R (see Table 1.1) and for the beta, exponential, gamma, lognormal, Weibull,
and other densities within SAS.

SAS
proc univariate data=ds;

histogram x1 ... xk;
run;

Note: The sgplot and sgpanel procedures also generate histograms, but allow fewer op-
tions.

R

hist(x)

Note: The default behavior for a histogram is to display frequencies on the vertical axis;
probability densities can be displayed using the freq=FALSE option. The default title is
given by paste("Histogram of" , x) where x is the name of the variable being plotted;
this can be changed with the main option.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 181 — #201
�

�

�

�

�

�

5.1. A COMPENDIUM OF USEFUL PLOTS 181

5.1.5 Stem-and-leaf plot
HELP example: see 3.7.3

Stem-and-leaf plots are text-based graphics that are particularly useful to describe the
distribution of small datasets.

SAS
proc univariate plot data=ds;

var x;
run;

Note: The stem-and-leaf plot is accompanied by a box plot; the plot option also generates
a text-based normal Q-Q plot. To produce only these plots, use an ods select plots
statement before the proc univariate statement.

R

stem(x)

Note: The scale option can be used to increase or decrease the number of stems (default
value is 1).

5.1.6 Boxplot
HELP example: see 3.7.5 and 4.6.10See also 5.1.7 (side-by-side boxplots)

SAS
data ds2;
set ds;

int=1;
run;

proc boxplot data=ds;
plot x * int;

run;

or
proc sgplot data=ds;

vbox x;
run;

Note: The boxplot procedure is designed to produce side-by-side boxplots (5.1.7). To
generate a single boxplot with this procedure, create a variable with the same value for all
observations, as above, and make a side-by-side boxplot based on that variable. The sgplot
procedure also allows the hbox statement, which produces a horizontal boxplot.

R
boxplot(x)

Note: The boxplot() function allows sideways orientation using the horizontal=TRUE
option.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 182 — #202
�

�

�

�

�

�

182 CHAPTER 5. GRAPHICS

5.1.7 Side-by-side boxplots

HELP example: see 3.7.5 and 4.6.10See also 5.1.6 (boxplots)

SAS
proc boxplot data=ds;

plot y * x;
run;

or
proc boxplot data=ds;

plot (y1 ... yk) * x (z1 ... zp);
run;

or
proc sgplot data=ds;

vbox x / category=y;
run;

Note: The first, basic proc boxplot code generates a box describing Y for each level of X.
The second, more general proc boxplot code generates a box for each of Y1, Y2, . . . , Yk for
each level of X, further grouped by Z1, Z2, . . . , Zp. The example in Figure 3.5 demonstrates
customization.

The proc sgplot code results in boxes of x for each value of y; the similar hbox state-
ment makes horizontal boxplots. The sgpanel procedure can produce multiple side-by-side
boxplots in one graphic using vbox or hbox statements similar to those shown for proc
sgplot.

R
boxplot(y[x==0], y[x==1], y[x==2], names=c("X=0", "X=1", "X=2")

or
boxplot(y ~ x)

or
library(lattice)
bwplot(y ~ x)

Note: The boxplot() function can be given multiple arguments of vectors to display, or can
use a formula interface (which will generate a boxplot for each level of the variable x). A
number of useful options are available, including varwidth to draw the boxplots with widths
proportional to the square root of the number of observations in that group, horizontal
to reverse the default orientation, notch to display notched boxplots, and names to specify
a vector of labels for the groups. Boxplots can also be created using the bwplot() function
in library(lattice).

5.1.8 Normal quantile-quantile plot
HELP example: see 3.7.3

Quantile-quantile plots are a commonly used graphical technique to assess whether a uni-
variate sample of random variables is consistent with a Gaussian (normal) distribution.

SAS
proc univariate data=ds plot;

var x;
run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 183 — #203
�

�

�

�

�

�

5.1. A COMPENDIUM OF USEFUL PLOTS 183

or
proc univariate data=ds;

var x;
qqplot x;

run;

Note: The normal Q-Q plot from the plot option is a text-based version; it is accompanied
by a stem-and-leaf and a box plot. The plot from the qqplot statement is a graphics version.
Q-Q plots for other distributions are also available as options to the qqplot statement.

R
qqnorm(x)
qqline(x)

Note: The qqline() function adds a straight line which goes through the first and third
quartiles.

5.1.9 Interaction plots
HELP example: see 3.7.5

Interaction plots are used to display means by two variables (as in a two-way analysis of
variance, 3.1.8).

SAS
ods graphics on;
proc glm data=ds;

class x1 x2;
model y = x1|x2;

run;

Note: In the above, the interaction plot is produced as default output when ods graphics
are on (A.7.3); the ods select statement can be used if only the graphic is desired. In
addition, an interaction plot can be generated using the means and gplot procedures (as
shown in 3.7.5).

R
interaction.plot(x1, x2, y)

Note: The default statistic to compute is the mean; other options can be specified using the
fun option.

5.1.10 Plots for categorical data

A variety of less traditional plots can be used to graphically represent categorical data.
While these tend to have a low data to ink ratio, they can be useful in figures with repeated
multiples [88]. It is not straightforward to generate these plots in SAS.

R
mosaicplot(table(x, y, z))
assocplot(table(x, y))

Note: The mosaicplot() function provides a graphical representations of a two dimen-
sional or higher contingency table, with the area of each box representing the number of
observations in that cell. The assocplot() function can be used to display the deviations

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 184 — #204
�

�

�

�

�

�

184 CHAPTER 5. GRAPHICS

from independence for a two dimensional contingency table. Positive deviations of observed
minus expected counts are above the line and colored black, while negative deviations are
below the line and colored red.

5.1.11 Conditioning plot
HELP example: see 5.6.2

A conditioning plot is used to display a scatter plot for each level of one or two classification
variables, as below.

SAS
proc sgpanel data=ds;

panelby x2 x3;
scatter x=x1 y=y;

run;

Note: A similar plot can be generated with a boxplot, histogram, or other contents in each
cell of X2 ∗ X3 using other sgplot statements in place of the scatter statement.

R
library(lattice)
coplot(y ~ x1 | x2*x3)

Note: The coplot() function displays plots of y and x1, stratified by x2 and x3. All
variables may be either numeric or factors.

5.1.12 3-D plots

Perspective or surface plots, needle plots, and contour plots can be used to visualize data
in three dimensions. These are particularly useful when a response is observed over a grid
of two dimensional values.

SAS
proc g3d data=ds;

scatter x*y=z;
run;

proc g3d data=ds;
plot x*y=z;

run;

proc gcontour data=ds;
plot x*y=z;

run;

Note: The scatter statement produces a needle plot, a 3-D scatterplot with lines drawn
from the points down to the z = 0 plane to help visualize the third dimension. The grid op-
tion to the scatter statement may help in clarifying the plot, while the needles can be omit-
ted with the noneedle option. The x and y vars must be a grid for the plot statement in ei-
ther the g3d (where it produces a surface plot) or the gcontour procedure; if not, the g3grid
procedure can be used to smooth values. The rotate and tilt options to the plot and
scatter statements will show the plot from a different perspective for the g3d procedure.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 185 — #205
�

�

�

�

�

�

5.1. A COMPENDIUM OF USEFUL PLOTS 185

R
persp(x, y, z)
contour(x, y, z)
image(x, y, z)

library(scatterplot3d)
scatterplot3d(x, y, z)

Note: The values provided for x and y must be in ascending order.

5.1.13 Circular plot

Circular plots are used to analyse data that wraps (e.g., directions expressed as angles, time
of day on a 24 hour clock) [21, 40]. SAS macros for circular statistics, including a circplot
macro, are available from Dr. Ulric Lund’s webpage at Cal Poly San Luis Obispo.

R
library(circular)
plot.circular(x, stack=TRUE, bins=50)

5.1.14 Sunflower plot

Sunflower plots [17] are designed to display multiple observations (overplotting) at the
same plotting position by adding additional components to the plotting symbol based on
how many are at that position. Another approach to this problem involves jittering data
(see 5.2.4).

The basic proc plot produces text graphics and plots different symbols for overplotting.
Sunflower plots within SAS can be generated using a macro written by Michael Friendly at
York University.

R
sunflowerplot(x, y)

5.1.15 Empirical cumulative probability density plot

SAS
proc univariate data=ds;

var x;
cdfplot x;

run;

Note: The empirical density plot offered in proc univariate is not smoothed, but theoret-
ical distributions can be superimposed as in the histogram plotted in 2.6.1 and using similar
syntax. If a smoothed version is required, it may be necessary to estimate the PDF with
proc kde and save the output (as shown in 2.6.1), then use it to find the corresponding
CDF.

R
plot(ecdf(x))

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 186 — #206
�

�

�

�

�

�

186 CHAPTER 5. GRAPHICS

5.1.16 Empirical probability density plot
HELP example: see 2.6.4,3.7.3

Density plots are non-parametric estimates of the empirical probability density function.

SAS
ods graphics on;
proc kde data=ds;

univar x1 / plots=(density histdensity);
run;

or
proc univariate data=ds;

histogram x / kernel;
run;

Note: The kde procedure includes kernel density estimation using a normal kernel. The
bivar statement for proc kde will generate a joint empirical density estimate. The band-
width can be controlled with the bwm option and the number of grid points by the ngrid
option to the univar or bivar statements. The proc univariate code generates a graphic
(as in 2.1), but no further details.

R
univariate density
plot(density(x))

or
library(GenKern)
bivariate density
op <- KernSur(x, y, na.rm=TRUE)
image(op$xords, op$yords, op$zden, col=gray.colors(100), axes=TRUE,

xlab="x var", ylab="y var"))

Note: The bandwidth for density() can be specified using the bw and adjust options,
while the default smoother can be specified using the kernel option (possible values include
the default gaussian, rectangular, triangular, epanechnikov, biweight, cosine, or optcosine).
Bivariate density support is provided with the GenKern library. Any of the three-dimensional
plotting routines (see 5.1.12) can be used to visualize the results.

5.1.17 Matrix of scatterplots
HELP example: see 5.6.5SAS

proc sgscatter data=ds;
matrix x1 ... xk;

run;

Note: The diagonal option to the matrix statement allows the diagonal cells to show, for
example, histograms with empirical density estimates. A similar effect can be produced
with proc sgpanel as demonstrated in 5.6.5.

R
pairs(data.frame(x1, ..., xk))

Note: The pairs() function is quite flexible, since it calls user specified functions to deter-
mine what to display on the lower triangle, diagonal and upper triangle (see examples(pairs)
for illustration of its capabilities).

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 187 — #207
�

�

�

�

�

�

5.1. A COMPENDIUM OF USEFUL PLOTS 187

5.1.18 Receiver operating characteristic (ROC) curve
HELP example: see 5.6.4

See also 2.2.2 (diagnostic agreement) and 4.1.1 (logistic regression)
Receiver operating characteristic curves can be used to help determine the optimal cut-

score to predict a dichotomous measure. This is particularly useful in assessing diagnostic
accuracy in terms of sensitivity (the probability of detecting the disorder if it is present),
specificity (the probability that a disorder is not detected if it is not present), and the area
under the curve (AUC). The variable x represents a predictor (e.g., individual scores) and y
a dichotomous outcome. There is a close connection between the idea of the ROC curve and
goodness of fit for logistic regression, where the latter allows multiple predictors to be used.
In SAS, ROC curves are embedded in proc logistic; to emulate the functions available
in the R ROCR library [80], just use a single predictor in SAS proc logistic.

SAS
ods graphics on;
proc logistic data=ds plots(only)=roc;

model y = x1 ... xk;
run;
ods graphics off;

Note: The plots(only) option is used to request only the ROC curve be produced, rather
than the default inclusion of several additional plots. The probability cutpoint associated
with each point on the ROC curve can be printed using roc(id=prob) in place of roc above.

R
library(ROCR)
pred <- prediction(x, y)
perf <- performance(pred, "tpr", "fpr")
plot(perf)

Note: The area under the curve (AUC) can be calculated by specifying "auc" as an argument
when calling the performance() function.

5.1.19 Kaplan–Meier plot
HELP example: see 5.6.3See also 2.4.4 (log-rank test)

SAS
ods graphics on;
ods select survivalplot;
proc lifetest data=ds plots=s;

time time*status(1);
strata x;

run;
ods graphics off;

or
proc lifetest data=ds outsurv=survds;

time time*status(1);
strata x;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 188 — #208
�

�

�

�

�

�

188 CHAPTER 5. GRAPHICS

symbol1 i=stepj r=kx;
proc gplot data=survds;

plot survival*survtime = x;
run;

Note: The second approach demonstrates how to manually construct the plot without using
ods graphics (A.7.3). The survival estimates generated by proc lifetest are saved in a
new dataset using the outsurv option to the proc lifetest statement; we suppose there
are kx levels of x, the stratification variable.

For the plot, a step-function to connect the points is specified using the i=stepj option
to the symbol statement. Finally proc gplot with the a*b=c syntax (5.2.2) is called. In
this case, survival*survtime=x will plot lines for each of the kx levels of x. Here, survival
and survtime are variable names created by proc lifetest. Note that the r=kx option
to the symbol statement is shorthand for typing in the same options for symbol1, symbol2,
. . ., symbolkx statements; here we repeat them for the kx strata specified in x.

R
library(survival)
fit <- survfit(Surv(time, status) ~ as.factor(x), data=ds)
plot(fit, conf.int=FALSE, lty=1:length(unique(x)))

Note: The Surv() function is used to combine survival time and status, where time is length
of follow-up (interval censored data can be accommodated via an additional parameter) and
status=1 indicates an event (e.g., death) while status=0 indicated censoring. A stratified
model by each level of the group variable x (see also adding legends, 5.2.14 and different
line styles, 5.3.9). More information can be found in the CRAN Survival Task View.

5.2 Adding elements

In R, it is relatively simple to add features to graphs which have been generated by one of
the functions discussed in section 5.1. For example adding an arbitrary line to a graphic
requires only one function call with the two endpoints as arguments (5.2.1). In SAS, such
additions are made using a specially-formatted dataset called an annotate dataset; see
section 6.4.2 for an example. These datasets contain certain required variable names and
values. Perfecting a graphic for publication can be facilitated by detailed understanding of
annotate datasets, a powerful low-level tool. Their use is made somewhat easier by a suite
of SAS macros, the annotate macros provided with SAS/GRAPH. To use the macros, you
must first enable them in the following way.
%annomac;

You can then call on the macros to draw a line between two points, or plot a circle, and
so forth. You do this by creating an annotate dataset and calling the macros within it.
data annods;

%system(x, y, s);
...

run;
Here the ellipses refer to additional annotate macros. The system macro is useful in

getting the macros to work as desired; it defines how the values of x and y in later annotate
macros are interpreted as well as the size of the plotted values. For example, to measure
in terms of the graphics output area, use the value 3 for the first two parameters in the
system macro. This can be useful for drawing outside the axes. More frequently, we find
that using the coordinate system of the plot itself is most convenient; using the value 2 for
for each parameter will implement this.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 189 — #209
�

�

�

�

�

�

5.2. ADDING ELEMENTS 189

5.2.1 Arbitrary straight line
HELP example: see 3.7.1

SAS
%annomac;
data annods;

%system(2,2,2);
%line(xvalue_1, yvalue_1, xvalue_2, yvalue_2, colorspec, linetype, .01);

run;

proc gplot data=ds;
plot x*y / anno=annods;

run; quit;

Note: See section 5.2 for an overview of annotate datasets. The line macro draws a line
from (xvalue_1, yvalue_1) to (xvalue_2, yvalue_2). The line will have the color (5.3.11)
specified by colorspec and be solid or dashed (5.3.9) as specified in linetype. The final
entry specified the width of the line, here quite narrow. Another approach would be to add
the endpoint values to the original dataset, then use the symbol statement and the a*b=c
syntax of proc gplot (5.2.2).

R
plot(x, y)
lines(point1, point2)

or

abline(intercept, slope)

Note: The lines() function draws a line between the points specified by point1 and
point2, which are each vectors with values for the x and y axes. The abline() func-
tion draws a line based on the slope-intercept form. Vertical or horizontal lines can be
specified using the v or h option to abline().

5.2.2 Plot symbols
HELP example: see 2.6.2SAS

symbol1 value=valuename;
symbol1 value='plottext';
symbol1 font=fontname value=plottext;
proc gplot data=ds;

...
run;

or
proc gplot data=ds;

plot y*x = groupvar;
run; quit;

Note: The specific characters plotted in proc gplot can be controlled using the value
option to a preceding symbol statement as demonstrated in Figure 2.2. The valuenames
available include dot, point, plus, diamond, and triangle. They can also be colored with
the color option and their size changed with the height option. A full list of plot symbols
can be found in the on-line help: Contents; SAS Products; SAS/GRAPH; Procedures and
Statements; Statements; SYMBOL. The list appears approximately two-thirds of the way

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 190 — #210
�

�

�

�

�

�

190 CHAPTER 5. GRAPHICS

through the entry. Additionally, any font character or string can be plotted, if enclosed in
quotes as in the second symbol statement example, or without the quotes if a font option
is specified as in the third example.

In the second set of code, a unique plot symbol or color is printed for each value of the
variable group. If there are many values, for example if groupvar is continuous, the results
can be confusing.

R
plot(x, y, pch=pchval)

or
points(x, y, string, pch=pchval)

or
library(lattice)
xyplot(x ~ y, group=factor(groupvar), data=ds)

or
library(ggplot2)
qplot(x, y, col=factor(groupvar), shape=factor(groupvar), data=ds)

Note: The pch option requires either a single character or an integer code. Some use-
ful values include 20 (dot), 46 (point), 3 (plus), 5 (diamond), and 2 (triangle) (running
example(points) will display more possibilities). The size of the plotting symbol can be
changed using the cex option. The vector function text() adds the value in the variable
string to the plot at the specified location. The examples using xyplot() and qplot()
will also generate scatterplots with different plot symbols for each level of groupvar.

5.2.3 Add points to an existing graphic
HELP example: see 3.7.1

See also 5.2.2 (specifying plotting character)

SAS
%annomac;
data annods;

%system(2, 2, 2);
%circle(xvalue, yvalue, radius);

run;

proc gplot data=ds;
plot x*y / anno=annods;

run; quit;

Note: See section 5.2 for an introduction to annotate datasets. The circle macro draws
a circle with the center at (xvalue,yvalue) and with a radius determined by the last pa-
rameter. A suitably small radius will plot a point. Another approach is to add a value to
the original dataset, then use the symbol statement and the a*b=c syntax of proc gplot
(5.2.2).

R
plot(x, y)
points(x, y)

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 191 — #211
�

�

�

�

�

�

5.2. ADDING ELEMENTS 191

5.2.4 Jitter
HELP example: see 2.6.2

Jittering is the process of adding a negligible amount of noise to each observed value so
that the number of observations sharing a value can be easily discerned. This can be
accomplished in a data step within SAS or using the built-in function within R.

SAS
data ds;
set newds;

jitterx = x + ((uniform(0) * .4) - .2);
run;

Note: The above code replicates the default behavior of R, assuming x has a minimum
distance between values of 1.

R
jitterx <- jitter(x)

Note: The default value for the range of the random uniforms is 40% of the smallest differ-
ence between values.

5.2.5 OLS line fit to points
HELP example: see 2.6.1SAS

symbol1 interpol=rl;
proc gplot data=ds;

plot y*x;
run;

or
proc sgplot data=ds;

reg x=x y=y;
run;

Note: For proc gplot, related interpolations which can be specified in the symbol statement
are rq (quadratic fit) and rc (cubic fit). Note also that confidence limits for the mean or
for individual predicted values can be plotted by appending clm or cli after rx (see 3.5.5
and 3.5.6). The type of line can be modified as described in 5.3.9. For the proc sgplot
approach, confidence limits can be requested with the clm and/or cli options to the reg
statement; polynomial regression curves can be plotted using the degree option. Similar
plots can be generated by proc reg using ods graphics (A.7.3) and by the sgscatter
and sgpanel procedures.

R
plot(x, y)
abline(lm(y ~ x))

Note: The abline() function accepts regression objects with a single predictor as input.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 192 — #212
�

�

�

�

�

�

192 CHAPTER 5. GRAPHICS

5.2.6 Smoothed line
HELP example: see 2.6.2See also 4.6.8 (generalized additive models)

SAS
symbol1 interpol=splines;
proc gplot data=ds;

plot y*x;
run;

or
ods graphics on;
proc loess data=ds;

model y = x;
ods graphics off;

or
ods graphics on;
proc gam data=ds plots=all;

model y = x;
ods graphics off;

or
proc sgplot;

loess x=x y=y;
run;

Note: The spline interpolation in the symbol statement smooths a plot using cubic splines
with continuous second derivatives. Other smoothing interpolation options include sm,
which uses a cubic spline which minimizes a linear combination of the sum of squares of
the residuals and the integral of the square of the second derivative. In that case, an in-
teger between 0 and 99, appended to the sm controls the smoothness. Another option is
interpol=lx, which uses a Lagrange interpolation of degree x, where x = 1, 3, 5. For all
of these smoothers, using the s suffix to the method sorts the data internally. If the data
are previously sorted, this is not needed. The sgplot procedure also offers penalized B-
spline smoothing via the pbspline statement; the sgpanel procedure also includes these
smoothers.

R
plot(...)
lines(lowess(x, y))

Note: The f parameter to lowess() can be specified to control the proportion of points
which influence the local value (larger values give more smoothness). The supsmu() (Fried-
man’s ‘super smoother’) and loess() (local polynomial regression fitting) functions are
alternative smoothers.

5.2.7 Normal density
HELP example: see 3.7.3

A normal density plot can be added as an annotation to a histogram or empirical density.

SAS
proc sgplot data=ds;

density x;
run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 193 — #213
�

�

�

�

�

�

5.2. ADDING ELEMENTS 193

or
proc univariate data=ds;

histogram x / normal;
run;

Note: The sgplot procedure will draw the estimated normal curve without the histogram,
as shown. The histogram can be added using the histogram statement; the order of the
statements determines which element is plotted on top of the other(s). The univariate
procedure allows many more distributional curves to be fit; it will generate copious text
output unless that is suppressed with the ods select statement.

R
hist(x)
xvals <- seq(from=min(x), to=max(x), length=100)
lines(pnorm(xvals, mean(x), sd(x))

5.2.8 Marginal rug plot
HELP example: see 2.6.2

A rug plot displays the marginal distribution on one of the margins of a scatterplot. While
this is possible in SAS, using annotate datasets or proc sgrender, it is non-trivial.
R
rug(x, side=sideval)

Note: The rug() function adds a marginal plot to one of the sides of an existing plot
(sideval=1 for bottom (default), 2 for left, 3 for top and 4 for right side).

5.2.9 Titles
HELP example: see 2.6.4SAS

title 'Title text';

or

title1 "Main title";
title2 "subtitle";

Note: The title statement is not limited to graphics, but will also print titles on text out-
put. To prevent any title from appearing after having specified one, use a title statement
with no quoted title text. Up to 99 numbered title statements are allowed. For graphic
applications, font characteristics can be specified with options to the title statement.

R
title(main="main", sub="sub", xlab="xlab", ylab="ylab")

Note: The title commands refer to the main title, sub-title, x-axis, and y-axis, respectively.
Some plotting commands (e.g., hist()) create titles by default, and the appropriate option
within those routines needs to be specified when calling them.

5.2.10 Footnotes

SAS

footnote 'footnote text';

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 194 — #214
�

�

�

�

�

�

194 CHAPTER 5. GRAPHICS

or
footnote1 "Main footnote";
footnote2 "subtitle";

Note: The footnote statement in SAS is not limited to graphics, but will also print footnotes
on text output. To prevent any title from appearing after having specified one, use a
footnote statement with no quoted footnote text. Up to 10 numbered footnote statements
are allowed. For graphic applications, font characteristics can be specified with options to
the footnote statement.

R

title(sub="sub")

Note: The sub option for the title() function generates a subtitle.

5.2.11 Text
HELP example: see 2.6.2, 6.4.2SAS

%annomac;
data annods;

%system(2,2,3);
%label(xvalue, yvalue, "text", color, angle, rotate, size,

font, position);
run;

proc gplot data=ds;
plot x*y / anno=annods;

run; quit;

Note: See section 5.2 for an introduction to annotate datasets. The label macro draws the
text provided in text (xvalue, yvalue), though a character variable can also be specified, if
the quotes are omitted. The remainder of the parameters which define the text are generally
self-explanatory with the exception of size which is a numeric value measured in terms of
the size of the graphics area, and position which specifies the location of the specified
point relative to the printed text. A value of 5 centers the text on the specified point.
Fonts available include SAS and system fonts; a default typical SAS font is swiss. SAS
font information can be found in the on-line help: Contents; SAS Products; SAS/GRAPH;
Concepts; Fonts.

R
text(x, y, labels)

Note: Each value of the character vector labels is displayed at the specified (X,Y) coordi-
nate. The adj option can be used to change text justification to the left, center (default)
or right of the coordinate. The srt option can be used to rotate text, while cex controls
the size of the text. The font option to par() allows specification of plain, bold, italic, or
bold italic fonts (see the family option to specify the name of a different font family).

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 195 — #215
�

�

�

�

�

�

5.2. ADDING ELEMENTS 195

5.2.12 Mathematical symbols
HELP example: see 1.13.5

In SAS, mathematical symbols can be plotted using the text plotting method described in
5.2.11, specifying a font containing math symbols. These can be found in the documentation:
Contents; SAS Products; SAS/GRAPH; Concepts; Fonts. Useful fonts include the math and
greek fonts. Putting equations with subscripts and superscripts into a plot, or mixing fonts,
can be very time-consuming.
R
plot(x, y)
text(x, y, expression(mathexpression))

Note: The expression() argument can be used to embed mathematical expressions and
symbols (e.g., μ = 0, σ2 = 4) in graphical displays as text, axis labels, legends, or titles. See
help(plotmath) for more details on the form of mathexpression and example(plotmath)
for examples.

5.2.13 Arrows and shapes
HELP example: see 2.6.4, 5.6.5SAS

%annomac;
data annods;

%system(2,2,3);
%arrow(xvalue_1, yvalue_1, xvalue_2, yvalue_2, color,

linetype, size, angle, font);
%rect(xvalue_1, yvalue_1, xvalue_2, yvalue_2, color, linetype,

size);
run;

proc gplot data=ds;
plot x*y / anno=annods;

run; quit;

Note: See section 5.2 for an introduction to annotate datasets. The arrow macro draws
an arrow from (xvalue_1, yvalue_1) to (xvalue_2, yvalue_2). The size is a numeric
value measured in terms of the size of the graphics area. The rect macro draws a rectangle
with opposite corners at (xvalue_1, yvalue_1) and (xvalue_2, yvalue_2). The type of
line drawn is determined by the value of linetype, as discussed in 5.3.9, and the color is
determined by the value of color as discussed in 5.3.11.

R
arrows(x, y)
rect(xleft, ybottom, xright, ytop)
polygon(x, y)

library(plotrix)
draw.circle(x, y, r)

Note: The arrows, rect() and polygon() functions take vectors as arguments and create
the appropriate object with vertices specified by each element of those vectors.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 196 — #216
�

�

�

�

�

�

196 CHAPTER 5. GRAPHICS

5.2.14 Legend
HELP example: see 1.13.5, 2.6.4SAS

legend1 mode=share position=(bottom right inside)
across=ncols frame label=("Legend Title" h=3) value=("Grp1" "Grp2");

proc gplot data=ds;
plot y*x=group / legend=legend1;

run;

Note: The legend statement controls all aspects of how the legend will look and where
it will be placed. Legends can be attached to many graphics in a manner similar to that
demonstrated here for proc gplot. Here we show the most commonly used options. An
example of using the legend statement can be found in Figure 3.1 (p. 112). The mode
option determines whether the legend shares the graphic output region with the graphic
(shown above); other options reserve space or prevent other plot elements from interfering
with the graphic. The position option places the legend within the plot area. The across
option specifies the number of columns in the legend. The frame option draws a box around
the legend. The label option describes the text of the legend title, while the value option
describes the text printed with legend items. Fuller description of the legend statement is
provided in the on-line documentation: Contents; SAS Products; SAS/GRAPH; Procedures
and Statements; Statements; LEGEND.

R
plot(x, y)
legend(xval, yval, legend=c("Grp1","Grp2"), lty=1:2, col=3:4)

Note: The legend() command can be used to add a legend at the location (xval, yval)
to distinguish groups on a display. Line styles (5.3.9) and colors (5.3.11) can be used to
distinguish the groups. A vector of legend labels, line types and colors can be specified
using the legend, lty, and col options, respectively.

5.2.15 Identifying and locating points

SAS
symbol1 pointlabel=("#label");
proc gplot data=ds;

plot y*x;
run;
quit;

data newds;
set ds;

label = 'alt=' || x || "," || y;
run;

ods html;
proc gplot data=newds;

plot y*x / html=label;
run; quit;
ods html close;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 197 — #217
�

�

�

�

�

�

5.3. OPTIONS AND PARAMETERS 197

Note: The former code will print the values of the variable label on the plot. The variable
label must appear in the dataset used in the proc gplot statement. Note that this can
result in messy plots, and it is advisable when there are many observations to choose or
create a label variable with mostly missing values.

The latter code will make the value of X and Y appear when the mouse hovers over a
plotted data point, as long as the HTML output destination is used. Any text or variable
value can be displayed in place of the value of label, which in the above entry specifies the
observed values of x and y.

R

locator(n)

Note: The locator() function identifies the position of the cursor when the mouse button
is pressed. An optional argument n specifies how many values to return. The identify()
function works in the same fashion, but returns the point closest to the cursor.

5.3 Options and parameters

Many options can be given to plots. In many SAS procedures, these are implemented
using goptions, symbol, axis, legend, or other statements. Details on these statements
can be found in the on-line help: Contents; SAS Products; SAS/GRAPH; Procedures and
Statements; Statements.

In R, many options are arguments to plot(), par(), or other high-level functions. Many
of these options are described in the documentation for the par() function.

5.3.1 Graph size

SAS
goptions hsize=Xin vsize=Yin;

or

ods graphics width=Xin height=Yin;

Note: The size in goptions can be specified as above in inches (in) or as centimeters (cm).
The size in ods graphics (A.7.3) can also be specified as (cm), millimeters (mm), standard
typesetting dimensions (em, en), or printer’s points (pt).

R
pdf("filename.pdf", width=Xin, height=Yin)

Note: The graph size is specified as an optional argument when starting a graphics device
(e.g., pdf(), section 5.4.1), with arguments Xin and Yin given in inches.

5.3.2 Point and text size
HELP example: see 3.7.5SAS

goptions htext=Xin;
title 'titletext' h=Xin;
axis label = ('labeltext' h=Xin);
axis value = ('valuetext' h=Yin);

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 198 — #218
�

�

�

�

�

�

198 CHAPTER 5. GRAPHICS

Note: For many graphics statements which produce text, the h option controls the size of
the printed characters. The default metric is graphic cells, but absolute values in inches and
centimeters can also be used as in the axis statements shown. The htext option to the
goptions statement affects all text in graphic output unless changed for a specific graphic
element.

R
plot(x, y, cex=cexval)

Note: The cex options specified how much the plotting text and symbols should be magnified
relative to the default value of 1 (see help(par) for details on how to specify this for axis,
labels and titles, e.g., cex.axis).

5.3.3 Box around plots
HELP example: see 2.6.4

In SAS, some graphics-generating statements accept a frame or a (default) noframe option,
which will draw or prevent drawing a box around the plot.
R
plot(x, y, bty=btyval)

Note: Control for the box around the plot can be specified using btyval, where if the argu-
ment is one of o (the default), l, 7, c, u, or], the resulting box resembles the corresponding
character, while a value of n suppresses the box.

5.3.4 Size of margins
HELP example: see 3.7.3

Within SAS, the margin options define the printable area of the page for graphics and text.
For R, these control how tight plots are to the printable area.

SAS
options bottommargin=3in topmargin=4cm leftmargin=1 rightmargin=1;

Note: The default units are inches; a trailing cm indicates centimeters, while a trailing in
makes inches the explicit metric.

R
par(mar=c(bot, left, top, right), # inner margin

oma=c(bot, left, top, right)) # outer margin

Note: The vector given to mar specifies the number of lines of margin around a plot: the
default is c(5, 4, 4, 2) + 0.1. The oma option specifies additional lines outside the entire
plotting area (the default is c(0,0,0,0)). Other options to control margin spacing include
omd and omi.

5.3.5 Graphical settings
HELP example: see 3.7.3SAS

goptions reset=all;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 199 — #219
�

�

�

�

�

�

5.3. OPTIONS AND PARAMETERS 199

Note: Many graphical settings are specified using the goptions statement. The above usage
will revert all values to the SAS defaults.

R
change values, while saving old
oldvalues <- par(...)

restore old values for graphical settings
par(oldvalues)

5.3.6 Multiple plots per page
HELP example: see 3.7.3

In SAS, putting multiple arbitrary plots onto a page is possible but is non-trivial and is
beyond the scope of the book. Examples can be found in the on-line help for proc greplay:
Contents; SAS Products; SAS Procedures; Proc Greplay. Scatterplot matrices (5.1.17) can
be generated using proc sgscatter and conditioning plots (5.1.11) can be made using proc
sgpanel.

R
par(mfrow=c(a, b))

or

par(mfcol=c(a, b))

Note: The mfrow option specifies that plots will be drawn in an a × b array by row (by
column for mfcol).

5.3.7 Axis range and style
HELP example: see 3.7.1, 5.6.1SAS

axis1 order = (x1, x2 to x3 by x4, x5);
axis2 order = ("value1" "value2" ... "valuen");

Note: Axis statements are associated with vertical or horizontal axes using vaxis or haxis
options in various procedures. For an example, see Figure 5.1 in section 5.6.1. Multiple
options to the axis statement can be listed, as in Figure 3.1. The axis statement does not
apply to most ODS graphics (A.7.3) output.

R
plot(x, y, xlim=c(minx, maxx), ylim=c(miny, maxy), xaxs="i", yaxs="i")

Note: The xaxs and yaxs options control whether tick marks extend beyond the limits of
the plotted observations (default) or are constrained to be internal ("i"). More control is
available through the axis() and mtext() functions.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 200 — #220
�

�

�

�

�

�

200 CHAPTER 5. GRAPHICS

5.3.8 Axis labels, values, and tick marks
HELP example: see 1.13.5SAS

axis1 label=("Text for axis label" angle=90 color=red
font=swiss height=2 justify=right rotate=180);

axis1 value=("label1" "label2")
axis1 major=(color=blue height=1.5cm width=2);
axis1 minor=none;

Note: Axis statements are associated with vertical or horizontal axes using vaxis or haxis
options in various procedures. For example, in proc gplot, one might use a plot y*x
/ vaxis=axis1 haxis=axis2 statement. Multiple options to the axis statement can be
listed, as in Figure 3.1. The axis statement does not apply to most ODS graphics (A.7.3)
output.

In the label option above we show the text options available for graphics which apply
to both legend and axis statements, and to title statements when graphics are produced.
The angle option specifies the angle of the line along which the text is printed; the default
depends on which axis is described. The color and font options are discussed in sections
5.3.11 and 5.2.11, respectfully. The height option specifies the text size; it is measured in
graphic cells, but can be specified with the number of units, for example height=1cm. The
justify option can take values of left, center, or right. The rotate option rotates each
character in place. The value option describes the text which labels the tick marks, and
takes the same parameters described for the label option.

The major and minor options take the same parameters; none will omit either labeled
(major) or unlabeled (minor) tick marks. The width option specifies the thickness of the
tick in multiples of the default.

R
plot(x, y, lab=c(x, y, len), # number of tick marks

las=lasval, # orientation of tick marks
tck=tckval, # length of tick marks
tcl=tclval, # length of tick marks
xaxp=c(x1, x2, n), # coordinates of the extreme tick marks
yaxp=c(x1, x2, n), # coordinates of the extreme tick marks
xlab="X axis label", ylab="Y axis label")

Note: Options for las include 0 for always parallel, 1 for always horizontal, 2 for perpen-
dicular, and 3 for vertical.

5.3.9 Line styles
HELP example: see 3.7.3SAS

symbol1 interpol=itype line=ltyval;

Note: The interpol option to the symbol statement, which can be shortened to simply i,
specifies what kind of line should be plotted through the data. Options include smoothers,
step functions, linear regressions, and more. The line option (which can be shortened to l)
specifies a solid line (by default, ltyval=1) or various dashed or dotted lines (ltyval 2 ...
33). A list of line types with associated code can be found in the on-line documentation:
Contents; SAS Products; SAS/GRAPH; Procedures and Statements; Symbol. The line
types do not have a separate entry, but appear near the end of the long description of the
symbol statement.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 201 — #221
�

�

�

�

�

�

5.3. OPTIONS AND PARAMETERS 201

R
plot(...)
lines(x, y, lty=ltyval)

Note: Supported line type values include 0=blank, 1=solid (default), 2=dashed, 3=dotted,
4=dotdash, 5=longdash, and 6=twodash.

5.3.10 Line widths
HELP example: see 1.13.5SAS

symbol interpol=interpol_type width=lwdval;

Note: When a line through the data is requested using the interpol option, the thickness
of the line, in multiples of the default thickness, can be specified by the width option, for
which w is a synonym. The default thickness depends on display hardware.

R
plot(...)
lines(x, y, lwd=lwdval)

Note: The default for lwd is 1; the value of lwdval must be positive.

5.3.11 Colors
HELP example: see 2.6.4SAS

symbol1 c=colval cl=colval cv=colval;
axis1 label=(color=colval);

Note: Colors in SAS can be specified in a variety of ways. Some typical examples of applying
colors are shown, but many features of plots can be colored. If precise control is required,
colval can be specified using a variety of schemes as described in the on-line documentation:
Contents; SAS Products; SAS/GRAPH; Concepts; Colors. For more casual choice of colors,
color names such as blue, black, red, purple, strongblue, or lightred can be used.

R
plot(...)
lines(x, y, col=colval)

Note: For more information on setting colors, see the Color Specification section within
help(par). The colors() function lists available colors, while colors.plot() function
within the epitools package displays a matrix of colors, and colors.matrix() returns
a matrix of color names. The display.brewer.all() function within the RColorBrewer
package is particularly useful for selecting a set of complementary colors for a palette.

5.3.12 Log scale

SAS
axis1 logbase=base logstyle=expand;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 202 — #222
�

�

�

�

�

�

202 CHAPTER 5. GRAPHICS

Note: The logbase option scales the axis according to the log of the specified base; valid
base values include e, pi, or a number. The logstyle option produces plots with tick
marks labeled with the value of the base (logstyle=power) or the base raised to that value
(logstyle=expand).

R
plot(x, y, log=logval)

Note: A natural log scale can be specified using the log option to plot(), where log="x"
denotes only the x axis, "y" only the y axis, and "xy" for both.

5.3.13 Omit axes
HELP example: see 6.4SAS

axis1 style=0 major=none minor=none label=("") value=none;

Note: To remove an axis entirely in SAS, it is necessary to request each element of the axis
not be drawn, as shown here.

R
plot(x, y, xaxt="n", yaxt="n")

5.4 Saving graphs

It is straightforward to export graphics in a variety of formats. In SAS, this can be done
using the ODS system or via the goptions statement. The former will integrate procedure
output and graphics. The latter is more cumbersome and cannot be used with ODS graphics
or the sgplot, sgpanel, or sgscatter procedures. However, it supports more formats, and
will work with gplot, gchart, and other SAS/GRAPH procedures.

5.4.1 PDF
HELP example: see 6.4.2SAS

ods pdf file="filename.pdf";
proc gplot data=ds;

...
ods pdf close;

or
filename filehandle "filename.pdf";
goptions gsfname=filehandle device=pdf gsfmode=replace;

proc gplot data=ds;
...

run;

Note: In both versions above, the filename can include a directory location as well as
a name. The device option specifies formatting of the graphic; the many valid options
can be viewed using proc gdevice and key options are presented in this section. The
gsfmode=replace option allows SAS to create and/or overwrite the graphic. The
filehandle basename may not be more than 8 characters long.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 203 — #223
�

�

�

�

�

�

5.4. SAVING GRAPHS 203

The ods pdf statement will place graphics and text output from procedures into the
pdf file generated.

R
pdf("file.pdf")
plot(...)
dev.off()

Note: The dev.off() function is used to close a graphics device.

5.4.2 Postscript

SAS
ods ps file="filename.ps";
proc gplot data=ds;

...
run;
ods ps close;

or
filename filehandle "filename.ps";
goptions gsfname=filehandle device=ps gsfmode=replace;

proc gplot data=ds;
...

run;

Note: In both versions above, the filename can include a directory location as well as
a name. The device option specifies formatting of the graphic; the many valid options
can be viewed using proc gdevice and key options are presented in this section. The
gsfmode=replace option allows SAS to create and/or overwrite the graphic. The
filehandle basename may not be more than 8 characters long.

The ods ps statement will place graphics and text output from procedures into the pdf
file generated.

R
postscript("file.ps")
plot(...)
dev.off()

Note: The dev.off() function is used to close a graphics device.

5.4.3 RTF

The Rich Text Format (RTF) is a file format developed for cross-platform document sharing.
Most word processors are able to read and write RTF documents. The following will create a
file in this format containing the graphic; any text generated by procedures will also appear
in the RTF file if they are executed between the ods rtf and ods rtf close statements.
We are not aware of a similar capability in R.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 204 — #224
�

�

�

�

�

�

204 CHAPTER 5. GRAPHICS

SAS
ods rtf file="filename.rtf";
proc gplot data=ds;

...
run;
ods rtf close;

Note: The filename can include a directory location as well as a name.

5.4.4 JPEG

SAS
filename filehandle "filename.jpg";
goptions gsfname=filehandle device=jpeg gsfmode=replace;

proc gplot data=ds;
...

run;

Note: The filename can include a directory location as well as a name. The device
option specifies formatting of the graphic; valid options can be viewed using proc gdevice.
The gsfmode=replace option allows SAS to create and/or overwrite the graphic. The
filehandle basename may not be more than 8 characters long.

R
jpeg("filename.jpg")
plot(...)
dev.off()

Note: The dev.off() function is used to close a graphics device.

5.4.5 WMF

SAS
filename filehandle "filename.wmf";
goptions gsfname=filehandle device=wmf gsfmode=replace;

proc gplot data=ds;
...

run;

Note: The filename can include a directory location as well as a name. The device
option specifies formatting of the graphic; valid options can be viewed using proc gdevice.
The gsfmode=replace option allows SAS to create and/or overwrite the graphic. The
filehandle basename may not be more than 8 characters long.

R
win.metafile("file.wmf")
plot(...)
dev.off()

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 205 — #225
�

�

�

�

�

�

5.4. SAVING GRAPHS 205

Note: The function win.metafile() is only supported under Windows. Functions which
generate multiple plots are not supported. The dev.off() function is used to close a
graphics device.

5.4.6 BMP

SAS
filename filehandle "filename.bmp";
goptions gsfname=filehandle device=bmp gsfmode=replace;

proc gplot data=ds;
...

run;

Note: The filename can include a directory location as well as a name. The device
option specifies formatting of the graphic; valid options can be viewed using proc gdevice.
The gsfmode=replace option allows SAS to create and/or overwrite the graphic. The
filehandle basename may not be more than 8 characters long.

R
bmp("filename.bmp")
plot(...)
dev.off()

Note: The dev.off() function is used to close a graphics device.

5.4.7 TIFF

SAS
filename filehandle "filename.tif";
goptions gsfname=filehandle device=tiffp300 gsfmode=replace;

proc gplot data=ds;
...

run;

Note: The filename can include a directory location as well as a name. The device
option specifies formatting of the graphic; valid options can be viewed using proc gdevice.
The gsfmode=replace option allows SAS to create and/or overwrite the graphic. The
filehandle basename may not be more than 8 characters long. Many types of TIFF can
be generated; the above device specifies a color plot with 300 dpi.

R
tiff("filename.tiff")
plot(...)
dev.off()

Note: The dev.off() function is used to close a graphics device.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 206 — #226
�

�

�

�

�

�

206 CHAPTER 5. GRAPHICS

5.4.8 PNG

SAS
filename filehandle "filename.png";
goptions gsfname=filehandle device=png gsfmode=replace;

proc gplot data=ds;
...

run;

Note: The filename can include a directory location as well as a name. The device
option specifies formatting of the graphic; valid options can be viewed using proc gdevice.
The gsfmode=replace option allows SAS to create and/or overwrite the graphic. The
filehandle basename may not be more than 8 characters long.

The ODS graphics system works by creating a PNG file which is stored in the current
directory or the directory and then creating output in the desired format. So using the ods
output statement for of the formatted output options in this section will also result in a
PNG file.

R
png("filename.png")
plot(...)
dev.off()

Note: The dev.off() function is used to close a graphics device.

5.4.9 Closing a graphic device
HELP example: see 5.6.3

There is no analog in SAS for this concept. In R, the following code closes a graphics
window. This is particularly useful when a graphics file is being created.

R

dev.off()

5.5 Further resources

The books by Tufte [87, 88, 89, 90] provide an excellent framework for graphical displays,
some of which build on the work of Tukey [91]. Comprehensive and accessible books on R
graphics include [56] and [74].

5.6 HELP examples

To help illustrate the tools presented in this chapter, we apply many of the entries to the
HELP data. SAS and R code can be downloaded from http://www.math.smith.edu/
sasr/examples. We begin by reading in the data.

© 2010 by Taylor and Francis Group, LLC

http://www.math.smith.edu
http://www.math.smith.edu

�

�

“book” — 2009/6/16 — 16:53 — page 207 — #227
�

�

�

�

�

�

5.6. HELP EXAMPLES 207

proc import

datafile='c:/book/help.csv'
out=ds

dbms=dlm;

delimiter=',';
getnames=yes;

run;

> options(digits=3)

> ds <- read.csv("help.csv")

> attach(ds)

5.6.1 Scatterplot with multiple axes

The following example creates a single Figure that displays the relationship between CESD
and the variables indtot (Index of Drug Abuse Consequences, InDUC) and mcs (Mental
Component Score), for a subset of female alcohol-involved subjects. We specify two different
y-axes (5.1.2) for the Figure.

axis1 minor=none;

axis2 minor=none order=(5 to 60 by 13.625);

axis3 minor=none order=(20, 40, 60);

symbol1 i=sm65s v=circle color=black l=1 w=5;

symbol2 i=sm65s v=triangle color=black l=2 w=5;

proc gplot data=ds;

where female eq 1 and substance eq 'alcohol';
plot indtot*cesd / vaxis=axis1 haxis=axis3;

plot2 mcs*cesd / vaxis = axis2;

run; quit;

In the SAS code above, the symbol and axis statements are used to control the output
and to add lines through the data. Note that three axes are specified and are associated
with the various axes in the plot in the vaxis and haxis options to the plot and plot2
statements. The axis statements can be omitted for a simpler graphic.

In R, a considerable amount of housekeeping is needed. The second y variable must be
rescaled to the range of the original, and the axis labels and tick marks added on the right.
To accomplish this, we write a function plottwoy() which first makes the plot of the first
(left axis) y against x, adds a lowess curve through that data, then calls a second function,
addsecondy().

> plottwoy <- function(x, y1, y2, xname="X", y1name="Y1", y2name="Y2")

+ {

+ plot(x, y1, ylab=y1name, xlab=xname)

+ lines(lowess(x, y1), lwd=3)

+ addsecondy(x, y2, y1, yname=y2name)

+ }

The function addsecondy() does the work of rescaling the range of the second variable
to that of the first, adds the right axis, and plots a lowess curve through the data for the
rescaled y2 variable.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 208 — #228
�

�

�

�

�

�

208 CHAPTER 5. GRAPHICS

> addsecondy <- function(x, y, origy, yname="Y2") {

+ prevlimits <- range(origy)

+ axislimits <- range(y)

+ axis(side=4, at=prevlimits[1] + diff(prevlimits)*c(0:5)/5,

+ labels=round(axislimits[1] + diff(axislimits)*c(0:5)/5, 1))

+ mtext(yname, side=4)

+ newy <- (y-axislimits[1])/(diff(axislimits)/diff(prevlimits)) +

+ prevlimits[1]

+ points(x, newy, pch=2)

+ lines(lowess(x, newy), lty=2, lwd=3)

+ }

Finally, the newly defined functions can be run and Figure 5.1 generated.

> plottwoy(cesd[female==1&substance=="alcohol"],

+ indtot[female==1&substance=="alcohol"],

+ mcs[female==1&substance=="alcohol"], xname="cesd",

+ y1name="indtot", y2name="mcs")

indtot

 10

 20

 30

 40

 50

cesd

20 40 60

mcs

5

18.625

32.25

45.875

59.5

(a) SAS

20 30 40 50

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

cesd

in
d
to

t

7
.2

1
6
.9

2
6
.5

3
6
.2

4
5
.8

5
5
.5

m
cs

(b) R

Figure 5.1: Plot of InDUC and MCS vs. CESD for female alcohol-involved subjects

Note that the two graphics appear to be different due to different right y-axes. In SAS
it is difficult to select axis ranges exactly conforming to the range of the data, while our R
function uses more of the space for data display.

5.6.2 Conditioning plot

Figure 5.2 displays a conditioning plot (5.1.11) with the association between MCS and
CESD stratified by substance and report of suicidal thoughts (g1b).

Note that SAS version 9.2 is required; the plot is hard to replicate with earlier versions
of SAS.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 209 — #229
�

�

�

�

�

�

5.6. HELP EXAMPLES 209

proc sgpanel data=ds;

panelby g1b substance / layout=lattice;

pbspline x=cesd y=mcs;

run; quit;

For R, ensure that the necessary packages are installed (B.6.1).

> library(lattice)

Then set up and generate the plot.

> suicidal.thoughts <- as.factor(g1b)

> coplot(mcs ~ cesd | suicidal.thoughts*substance,

+ panel=panel.smooth)

There is a similar association between CESD and MCS for each of the substance groups.
Subjects with suicidal thoughts tended to have higher CESD scores, and the association
between CESD and MCS was somewhat less pronounced than for those without suicidal
thoughts.

5.6.3 Kaplan–Meier plot

The main outcome of the HELP study was time to linkage to primary care, as a function
of randomization group. This can be displayed using a Kaplan–Meier plot (see 5.1.19). For
SAS detailed information regarding the Kaplan–Meier estimator at each time point can be
found by omitting the ods select statement; for R by using summary(survobj). Figure
5.3 displays the estimates, with + signs indicating censored observations.

ods graphics on;

ods select censoredsummary survivalplot;

proc lifetest data=ds plots=s(test);

time dayslink*linkstatus(0);

strata treat;

run;

ods graphics off;

The LIFETEST Procedure

Summary of the Number of Censored and Uncensored Values

Percent
Stratum treat Total Failed Censored Censored

1 0 209 35 174 83.25
2 1 222 128 94 42.34

Total 431 163 268 62.18

NOTE: 22 observations with invalid time, censoring, or strata values were
deleted.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 210 — #230
�

�

�

�

�

�

210 CHAPTER 5. GRAPHICS

(a) SAS

1
0

3
0

5
0

0 10 20 30 40 50 60

1
0

3
0

5
0

0 10 20 30 40 50 60

1
0

3
0

5
0

cesd

m
cs

0

1

Given : suicidal.thoughts

a
lc

o
h

o
l

co
ca

in
e

h
e

ro
in

G
iv

e
n
 :
 s

u
b
st

a
n
ce

(b) R

Figure 5.2: Association of MCS and CESD, stratified by substance and report of suicidal
thoughts

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 211 — #231
�

�

�

�

�

�

5.6. HELP EXAMPLES 211

> library(survival)

> survobj <- survfit(Surv(dayslink, linkstatus) ~ treat)

> print(survobj)

Call: survfit(formula = Surv(dayslink, linkstatus) ~ treat)

22 observations deleted due to missingness
n events median 0.95LCL 0.95UCL

treat=0 209 35 Inf Inf Inf
treat=1 222 128 120 79 272

> plot(survobj, lty=1:2, lwd=2, col=c(4,2))

> title("Product-Limit Survival Estimates")

> legend(250, .75, legend=c("Control", "Treatment"), lty=c(1,2), lwd=2,

+ col=c(4,2), cex=1.4)

(a) SAS

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Product−Limit Survival Estimates

Control
Treatment

(b) R

Figure 5.3: Kaplan–Meier estimate of time to linkage to primary care by randomization
group

As reported previously [35, 71], there is a highly statistically significant effect of treat-
ment, with approximately 55% of clinic subjects linking to primary care, as opposed to only
15% of control subjects.

5.6.4 ROC curve

Receiver operating characteristic (ROC) curves are used for diagnostic agreement (2.2.2 and
5.1.18) as well as assessing goodness of fit for logistic regression (4.1.1). In SAS, they can
be created using proc logistic. In R, we use the ROCR library. Figure 5.4 displays the
receiver operating characteristic curve predicting suicidal thoughts using the CESD measure
of depressive symptoms.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 212 — #232
�

�

�

�

�

�

212 CHAPTER 5. GRAPHICS

ods graphics on;

ods select roccurve;

proc logistic data=ds descending plots(only)=roc;

model g1b = cesd;

run;

ods graphics off;

The descending option changes the behavior of proc logistic to model the probability
that the outcome is 1; the default models the probability that the outcome is 0.

Using R, we first load the ROCR library, create a prediction object, and retrieve the area
under the curve (AUC) to use in Figure 5.4.

> library(ROCR)

> pred <- prediction(cesd, g1b)

> auc <- slot(performance(pred, "auc"), "y.values")[[1]]

We can then plot the ROC curve, adding display of cutoffs for particular CESD values
ranging from 20 to 50. These values are offset from the ROC curve using the text.adj
option.

If the continuous variable (in this case cesd) is replaced by the predicted probability
from a logistic regression model, multiple predictors can be included.

> plot(performance(pred, "tpr", "fpr"),

+ print.cutoffs.at=seq(from=20, to=50, by=5),

+ text.adj=c(1, -.5), lwd=2)

> lines(c(0, 1), c(0, 1))

> text(.6, .2, paste("AUC=", round(auc,3), sep=""), cex=1.4)

> title("ROC Curve for Model")

(a) SAS

False positive rate

T
ru

e
 p

o
si

tiv
e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 20

25
30

35

40

45

50 AUC=0.723

ROC Curve for Model

(b) R

Figure 5.4: Receiver operating characteristic curve for the logistical regression model pre-
dicting suicidal thoughts using the CESD as a measure of depressive symptoms (sensitivity
= true positive rate; 1-specificity = false positive rate)

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 213 — #233
�

�

�

�

�

�

5.6. HELP EXAMPLES 213

5.6.5 Pairs plot

We can qualitatively assess the associations between some of the continuous measures of
mental health, physical health, and alcohol consumption using a pairsplot or scatterplot
matrix (5.1.17). To make the results clearer, we display only the female subjects.

For SAS, the new sgscatter procedure provides a simple way to produce this. The
results of the following code are included in Figure 5.5.

proc sgscatter data=ds;

where female eq 1;

matrix cesd mcs pcs i1 / diagonal=(histogram kernel);

run; quit;

If fits in the pairwise scatterplots are required, the following code will produce a similar
matrix, with loess curves in each cell and less helpful graphs in the diagonals (results not
shown).

proc sgscatter data=ds;

where female eq 1;

compare x = (cesd mcs pcs i1)

y = (cesd mcs pcs i1) / loess;

run; quit;

For complete control of the figure, the sgscatter procedure will not suffice and more
complex coding is necessary; we would begin with SAS macros written by Michael Friendly
and available from his web site at York University.

For R, a simple version with only the scatterplots could be generated easily with the
pairs() function (results not shown):

> pairs(c(ds[72:74], ds[67]))

or

> pairs(ds[c("pcs", "mcs", "cesd", "i1")])

Here instead we demonstrate building a figure using several functions. We begin with
a function panel.hist() to display the diagonal entries (in this case, by displaying a
histogram).

> panel.hist <- function(x, ...)

+ {

+ usr <- par("usr"); on.exit(par(usr))

+ par(usr = c(usr[1:2], 0, 1.5))

+ h <- hist(x, plot=FALSE)

+ breaks <- h$breaks; nB <- length(breaks)

+ y <- h$counts; y <- y/max(y)

+ rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...)

+ }

Another function is created to create a scatterplot along with a fitted line.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 214 — #234
�

�

�

�

�

�

214 CHAPTER 5. GRAPHICS

> panel.lm <- function(x, y, col=par("col"), bg=NA, pch=par("pch"),

+ cex=1, col.lm="red", ...)

+ {

+ points(x, y, pch=pch, col=col, bg=bg, cex=cex)

+ ok <- is.finite(x) & is.finite(y)

+ if (any(ok))

+ abline(lm(y[ok] ~ x[ok]))

+ }

These functions are called (along with the built-in panel.smooth() function) to display
the results. Figure 5.5 displays the pairsplot of CESD, MCS, PCS, and I1, with histograms
along the diagonals. For R, smoothing splines are fit on the lower triangle, linear fits on the
upper triangle, using code fragments derived from example(pairs).

> pairs(~ cesd + mcs + pcs + i1, subset=(female==1),

+ lower.panel=panel.smooth, diag.panel=panel.hist,

+ upper.panel=panel.lm)

(a) SAS

cesd

10 30 50 0 20 40 60

1
0

3
0

5
0

1
0

3
0

5
0 mcs

pcs

3
0

4
0

5
0

6
0

7
0

10 30 50

0
2

0
4

0
6

0

30 40 50 60 70

i1

(b) R

Figure 5.5: Pairsplot of variables from the HELP dataset

There is an indication that CESD, MCS, and PCS are interrelated, while I1 appears to have
modest associations with the other variables.

5.6.6 Visualize correlation matrix

One visual analysis which might be helpful to display would be the pairwise correlations.
We approximate this in SAS by plotting a confidence ellipse for the observed data. This
approach allows an assessment of whether the linear correlation is an appropriate statistic
to consider.

In the code below, we demonstrate some options for the sgscatter procedure. The
ellipse option draws confidence ellipses at the requested α-level; here chosen arbitrarily
to mimic R. The start option also mimics R by making the diagonal begin in the lower

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 215 — #235
�

�

�

�

�

�

5.6. HELP EXAMPLES 215

left; the top left is the default. The markerattrs option controls aspects of the appearance
of plots generated with the sgscatter, sgpanel, and sgplot procedures.
proc sgscatter data=ds;

matrix mcs pcs pss_fr drugrisk cesd indtot i1 sexrisk /

ellipse=(alpha=.25) start=bottomleft

markerattrs=(symbol=circlefilled size=2);

run; quit;

In R, we utilize the approach used by Sarkar to recreate Figure 13.5 of the Lattice:
Multivariate data visualization with R book [74]. Other examples in that reference help to
motivate the power of the lattice package far beyond what is provided by demo(lattice).
> cormat <- cor(cbind(mcs, pcs, pss_fr, drugrisk, cesd, indtot, i1,

+ sexrisk), use="pairwise.complete.obs")

> oldopt <- options(digits=2)

> cormat

mcs pcs pss_fr drugrisk cesd indtot i1 sexrisk
mcs 1.000 0.110 0.138 -0.2058 -0.682 -0.38 -0.087 -0.1061
pcs 0.110 1.000 0.077 -0.1411 -0.293 -0.13 -0.196 0.0239
pss_fr 0.138 0.077 1.000 -0.0390 -0.184 -0.20 -0.070 -0.1128
drugrisk -0.206 -0.141 -0.039 1.0000 0.179 0.18 -0.100 -0.0055
cesd -0.682 -0.293 -0.184 0.1789 1.000 0.34 0.176 0.0157
indtot -0.381 -0.135 -0.198 0.1807 0.336 1.00 0.202 0.1132
i1 -0.087 -0.196 -0.070 -0.0999 0.176 0.20 1.000 0.0881
sexrisk -0.106 0.024 -0.113 -0.0055 0.016 0.11 0.088 1.0000

> options(oldopt)

> drugrisk[is.na(drugrisk)] <- 0

> panel.corrgram <- function(x, y, z, at, level=0.9, label=FALSE, ...)

+ {

+ require("ellipse", quietly=TRUE)

+ zcol <- level.colors(z, at=at, col.regions=gray.colors)

+ for (i in seq(along=z)) {

+ ell <- ellipse(z[i], level=level, npoints=50,

+ scale=c(.2, .2), centre=c(x[i], y[i]))

+ panel.polygon(ell, col=zcol[i], border=zcol[i], ...)

+ }

+ if (label)

+ panel.text(x=x, y=y, lab=100*round(z, 2), cex=0.8,

+ col=ifelse(z < 0, "white", "black"))

+ }

> library(ellipse)

> library(lattice)

> print(levelplot(cormat, at=do.breaks(c(-1.01, 1.01), 20),

+ xlab=NULL, ylab=NULL, colorkey=list(space = "top",

+ col=gray.colors), scales=list(x=list(rot = 90)),

+ panel=panel.corrgram,

+ label=TRUE))

The SAS plot suggests that some of these linear correlations might not be useful mea-
sures of association, while the R plot allows a consistent frame of reference for the many
correlations.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 216 — #236
�

�

�

�

�

�

216 CHAPTER 5. GRAPHICS

(a) SAS

mcs

pcs

pss_fr

drugrisk

cesd

indtot

i1

sexrisk

m
cs

p
cs

p
ss

_
fr

d
ru

g
ri
sk

ce
sd

in
d

to
t i1

se
xr

is
k

100 11 14 −21 −68 −38 −9 −11

11 100 8 −14 −29 −13 −20 2

14 8 100 −4 −18 −20 −7 −11

−21 −14 −4 100 18 18 −10 −1

−68 −29 −18 18 100 34 18 2

−38 −13 −20 18 34 100 20 11

−9 −20 −7 −10 18 20 100 9

−11 2 −11 −1 2 11 9 100

−1.0 −0.5 0.0 0.5 1.0

(b) R

Figure 5.6: Visual display of correlations and associations

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 217 — #237
�

�

�

�

�

�

Chapter 6

Other topics and extended
examples

In this chapter, we address several additional topics and extended examples through parallel
implementations that show off the statistical computing strengths and potential of these two
packages. In addition, we briefly describe implementations that facilitate power calculations,
multivariate procedures, handling of missing data, fitting Bayesian models, and accounting
for complex survey design.

6.1 Power and sample size calculations

Many simple settings lend themselves to analytic power calculations, where closed form so-
lutions are available. Other situations may require an empirical calculation, where repeated
simulation is undertaken.

6.1.1 Analytic power calculation

It is straightforward to find power or sample size (given a desired power) for two sample
comparisons of either continuous or categorical outcomes. We show simple examples for
comparing means and proportions in two groups and supply additional information on
analytic power calculation available for more complex methods.

SAS
/* find sample size for two-sample t-test */
proc power;

twosamplemeans groupmeans=(0 0.5) stddev=1 power=0.9 ntotal=.;
run;

/* find power for two-sample t-test */
proc power;

twosamplemeans groupmeans=(0 0.5) stddev=1 power=. ntotal=200;
run;

217

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 218 — #238
�

�

�

�

�

�

218 CHAPTER 6. OTHER TOPICS AND EXTENDED EXAMPLES

The latter call generates the following output:
The POWER Procedure
Two-sample t Test for Mean Difference

Fixed Scenario Elements
Distribution Normal
Method Exact
Group 1 Mean 0
Group 2 Mean 0.5
Standard Deviation 1
Total Sample Size 200
Number of Sides 2
Null Difference 0
Alpha 0.05
Group 1 Weight 1
Group 2 Weight 1

Computed Power
Power 0.940

/* find sample size for two-sample test of proportions */
proc power;

twosamplefreq test=pchi ntotal=. groupproportions=(.1 .2) power=0.9;
run;

/* find power for two-sample test of proportions */
proc power;

twosamplefreq test=pchi ntotal=200 groupproportions=(.1 .2) power=.;
run;

Note: The power procedure also allows power calculations for the Wilcoxon rank-sum test,
the log-rank and related tests for censored data, paired tests of means and proportions,
correlations, and for ANOVA and linear and logistic regression. The syntax is similar with
the desired output of power, total sample size, effect size, alpha level, or variance listed with
a missing value (a period after the equals sign).

R
find sample size for two-sample t-test
power.t.test(delta=0.5, power=0.9)

find power for two-sample t-test
power.t.test(delta=0.5, n=100)

The latter call generates the following output:
Two-sample t test power calculation

n = 100
delta = 0.5

sd = 1
sig.level = 0.05

power = 0.9404272
alternative = two.sided

NOTE: n is number in *each* group

find sample size for two-sample test of proportions
power.prop.test(p1=.1, p2=.2, power=.9)

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 219 — #239
�

�

�

�

�

�

6.1. POWER AND SAMPLE SIZE CALCULATIONS 219

find power for two-sample test of proportions
power.prop.test(p1=.1, p2=.2, n=100)

Note: The power.t.test() function requires exactly four of the five arguments (sample
size in each group, power, difference between groups, standard deviation, and significance
level) to be specified. Default values exist for sd=1 and sig.level=0.05. Other power
calculation functions can be found in the pwr package.

6.1.2 Simulation-based power calculations

In some settings, analytic power calculations may not be readily available. A straightforward
alternative is to estimate power empirically, simulating data from the proposed design under
given assumptions regarding the alternative.

We consider a study of children clustered within families. Each family has 3 children;
in some families all 3 children have an exposure of interest, while in others just 1 child
is exposed. In the simulation, we assume that the outcome is multivariate normal with
higher mean for those with the exposure, and 0 for those without. A compound symmetry
correlation is assumed, with equal variances at all times. We assess the power to detect
an exposure effect where the intended analysis uses a random intercept model (4.2.2) to
account for the clustering within families.

With this simple covariance structure it is trivial to generate correlated errors directly,
as in the SAS code below; an alternative which could be used with more complex structures
in SAS would be proc simnorm (1.10.6).

SAS
data simpower1;

effect = 0.35; /* effect size */
corr = 0.4; /* desired correlation */
covar = (corr)/(1 - corr); /* implied covariance given variance = 1*/
numsim = 1000; /* number of datasets to simulate */
numfams = 100; /* number of families in each dataset */
numkids = 3; /* each family */
do simnum = 1 to numsim; /* make a new dataset for each simnum */

do famid = 1 to numfams; /* make numfams families in each dataset */
inducecorr = normal(42)* sqrt(covar);

/* this is the mechanism to achieve the desired
correlation between kids within family */

do kidnum = 1 to numkids; /* generate each kid */
exposed = ((kidnum eq 1) or (famid le numfams/2)) ;

/* assign kid to be exposed */
x = (exposed * effect) +

(inducecorr + normal(0))/sqrt(1 + covar);
output;

end;
end;

end;
run;

In the code above, the integer provided as an argument in the initial use of the normal
function sets the seed used for all calls to the pseudo-random number generator, so that the
results can be exactly replicated, if necessary (see section 1.10.9.) Next, we run the desired
model on each of the simulated datasets, using the by statement (A.6.2) and saving the
estimated fixed effects parameters using the ODS system (A.7).

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 220 — #240
�

�

�

�

�

�

220 CHAPTER 6. OTHER TOPICS AND EXTENDED EXAMPLES

ods select none;
ods output solutionf=simres;
proc mixed data=simpower1 order=data;
by simnum;

class exposed famid;
model x = exposed / solution;
random int / subject=famid;

run;
ods select all;

Finally, we process the resulting output dataset to generate an indicator of rejecting the
null hypothesis of no exposure effect.

data powerout;
set simres;

where exposed eq 1;
reject=(probt lt 0.05);

run;

Note: The proportion of rejections shown in the results of proc freq is the empirical esti-
mate of power.

proc freq data=powerout;
tables reject / binomial (level='1');

run;

The FREQ Procedure
Cumulative Cumulative

reject Frequency Percent Frequency Percent

0 153 15.30 153 15.30
1 847 84.70 1000 100.00

The binomial option to proc freq provides asymptotic and exact CI for this estimated
power:

Proportion 0.8470
ASE 0.0114
95% Lower Conf Limit 0.8247
95% Upper Conf Limit 0.8693

Exact Conf Limits
95% Lower Conf Limit 0.8232
95% Upper Conf Limit 0.8688

In R, we specify the correlation matrix directly, and simulate the multivariate normal.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 221 — #241
�

�

�

�

�

�

6.1. POWER AND SAMPLE SIZE CALCULATIONS 221

R
library(MASS)
library(nlme)
initialize parameters and building blocks
effect <- 0.35 # effect size
corr <- 0.4 # intrafamilial correlation
numsim <- 1000
n1fam <- 50 # families with 3 exposed
n2fam <- 50 # families with 1 exposed and 2 unexposed
vmat <- matrix(c # 3x3 compound symmetry correlation

(1, corr, corr,
corr, 1 , corr,
corr, corr, 1), 3, 3)

1 1 1 ... 1 0 0 0 ... 0
x <- c(rep(1, n1fam), rep(1, n1fam), rep(1, n1fam),

rep(1, n2fam), rep(0, n2fam), rep(0, n2fam))
1 2 ... n1fam 1 2 ... n1fam ...
id <- c(1:n1fam, 1:n1fam, 1:n1fam,

(n1fam+1:n2fam), (n1fam+1:n2fam), (n1fam+1:n2fam))
power <- rep(0, numsim) # initialize vector for results

The concatenate function (c()) is used to glue together the appropriate elements of the
design matrices and underlying correlation structure.

for (i in 1:numsim) {
cat(i," ")
all three exposed
grp1 <- mvrnorm(n1fam, c(effect, effect, effect), vmat)

only first exposed
grp2 <- mvrnorm(n2fam, c(effect, 0, 0), vmat)

concatenate the output vector
y <- c(grp1[,1], grp1[,2], grp1[,3],

grp2[,1], grp2[,2], grp2[,3])

group <- groupedData(y ~ x | id) # specify dependence structure
res <- lme(group, random = ~ 1) # fit random intercept model
pval <- summary(res)$tTable[2,5] # grab results for main parameter
power[i] <- pval<=0.05 # is it statistically significant?

}

cat("\nEmpirical power for effect size of ", effect,
" is ", round(sum(power)/numsim,3), ".\n", sep="")

cat("95% confidence interval is",
round(prop.test(sum(power), numsim)$conf.int, 3), "\n")

This yields the following estimate.
Empirical power for effect size of 0.35 is 0.855.
95% confidence interval is 0.831 0.876

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 222 — #242
�

�

�

�

�

�

222 CHAPTER 6. OTHER TOPICS AND EXTENDED EXAMPLES

6.2 Generate data from generalized linear random ef-
fects model

In this example, we generate data from clustered data with a dichotomous outcome, an
example of a generalized linear mixed model (4.2.6). In the code below, for 1500 clusters
(denoted by id) there is a cluster invariant predictor (X1), 3 observations within each cluster
(denoted by X2) and a linear effect of order within cluster, and an additional predictor
which varies between clusters (X3). The dichotomous outcome Y is generated from these
predictors using a logistic link incorporating a random intercept for each cluster.

SAS
data sim;

sigbsq=4; beta0=-2; beta1=1.5; beta2=0.5; beta3=-1; n=1500;
do i = 1 to n;

x1 = (i lt (n+1)/2);
randint = normal(0) * sqrt(sigbsq);
do x2 = 1 to 3 by 1;

x3 = uniform(0);
linpred = beta0 + beta1*x1 + beta2*x2 + beta3*x3 + randint;
expit = exp(linpred)/(1 + exp(linpred));
y = (uniform(0) lt expit);
output;

end;
end;

run;

This model can be fit using proc nlmixed or proc glimmix, as shown below. For large
datasets like this one, proc nlmixed (which uses numerical approximation to integration)
can take a prohibitively long time to fit. On the other hand, proc glimmix can have
trouble converging with the default maximization technique. We show options which use a
maximization technique that may be helpful in such cases.

proc nlmixed data=sim qpoints=50;
parms b0=1 b1=1 b2=1 b3=1;
eta = b0 + b1*x1 + b2*x2 + b3*x3 + bi1;
mu = exp(eta)/(1 + exp(eta));
model y ~ binary(mu);
random bi1 ~ normal(0, g11) subject=i;
predict mu out=predmean;

run;
or

proc glimmix data=sim order=data;
nloptions maxiter=100 technique=dbldog;
model y = x1 x2 x3 / solution dist=bin;
random int / subject=i;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 223 — #243
�

�

�

�

�

�

6.3. GENERATE CORRELATED BINARY DATA 223

R
library(lme4)
n <- 1500; p <- 3; sigbsq <- 4
beta <- c(-2, 1.5, 0.5, -1)
id <- rep(1:n, each=p) # 1 1 ... 1 2 2 ... 2 ... n
x1 <- as.numeric(id < (n+1)/2) # 1 1 ... 1 0 0 ... 0
randint <- rep(rnorm(n, 0, sqrt(sigbsq)), each=p)
x2 <- rep(1:p, n) # 1 2 ... p 1 2 ... p ...
x3 <- runif(p*n)
linpred <- beta[1] + beta[2]*x1 + beta[3]*x2 + beta[4]*x3 + randint
expit <- exp(linpred)/(1 + exp(linpred))
y <- runif(p*n) < expit

glmmres <- lmer(y ~ x1 + x2 + x3 + (1|id), family=binomial(link="logit"))

6.3 Generate correlated binary data

Correlated dichotomous outcomes Y1 and Y2 can be generated by finding the probabilities
corresponding to the 2× 2 table as a function of the marginal expectations and correlation
using the methods of Lipsitz and colleagues [48]. Here we generate a sample of 1000 values
where: P (Y1 = 1) = .15, P (Y2 = 1) = .25 and Corr(Y1, Y2) = 0.40.

SAS
data test;

p1=.15; p2=.25; corr=0.4;
p1p2=corr*sqrt(p1*(1-p1)*p2*(1-p2)) + p1*p2;
do i = 1 to 10000;

cat=rand('TABLE', 1-p1-p2+p1p2, p1-p1p2, p2-p1p2);
y1=0;
y2=0;
if cat=2 then y1=1;
else if cat=3 then y2=1;
else if cat=4 then do;

y1=1;
y2=1;

end;
output;

end;
run;

R
p1 <- .15; p2 <- .25; corr <- .4; n <- 10000
p1p2 <- corr*sqrt(p1*(1-p1)*p2*(1-p2)) + p1*p2
library(Hmisc)
vals <- rMultinom(matrix(c(1-p1-p2+p1p2, p1-p1p2, p2-p1p2, p1p2), 1, 4), n)
y1 <- rep(0, n); y2 <- rep(0, n) # put zeroes everywhere
y1[vals==2 | vals==4] <- 1 # and replace them with ones
y2[vals==3 | vals==4] <- 1 # where needed
rm(vals, p1, p2, p1p2, corr, n) # cleanup

The generated data is close to the desired values.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 224 — #244
�

�

�

�

�

�

224 CHAPTER 6. OTHER TOPICS AND EXTENDED EXAMPLES

proc corr data=test;
var y1;
with y2;

run;

The CORR Procedure
1 With Variables: y2
1 Variables: y1

Variable N Mean Std Dev Sum Minimum Maximum
y2 10000 0.25470 0.43571 2547 0 1.00000
y1 10000 0.15290 0.35991 1529 0 1.00000

y1

y2 0.41107
<.0001

> cor(y1, y2)
[1] 0.3918081
> mean(y1)
[1] 0.1507
> mean(y2)
[1] 0.2484

6.4 Read variable format files and plot maps

Sometimes datasets are stored in variable format. For example, U.S. Census boundary
files (available from http://www.census.gov/geo/www/cob/index.html) are available in
both proprietary and ASCII formats. An example ASCII file describing the counties of
Massachusetts is available on the book web site. The first few lines are reproduced here.

1 -0.709816806854972E+02 0.427749187746914E+02
-0.709148990000000E+02 0.428865890000000E+02
-0.709148860000000E+02 0.428865640000000E+02
-0.709148860000000E+02 0.428865640000000E+02
-0.709027680000000E+02 0.428865300000000E+02
-0.708861360000000E+02 0.428826100000000E+02
-0.708837340828846E+02 0.428812223551543E+02

...
-0.709148990000000E+02 0.428865890000000E+02

END

The first line contains an identifier for the county (linked with a county name in an
additional file) and a latitude and longitude centroid within the polygon representing the
county defined by the remaining points. The remaining points on the boundary do not
contain the identifier. After the lines with the points, a line containing the word “END” is
included. In addition, the county boundaries contain different numbers of points.

6.4.1 Read input files

Reading this kind of data requires some care in programming. We begin with SAS.

© 2010 by Taylor and Francis Group, LLC

http://www.census.gov

�

�

“book” — 2009/6/16 — 16:53 — page 225 — #245
�

�

�

�

�

�

6.4. READ VARIABLE FORMAT FILES AND PLOT MAPS 225

SAS
filename census1 url
"http://www.math.smith.edu/sasr/datasets/co25_d00.dat";

data pcts cents;
infile census1;
retain cntyid;
input @1 endind $3. @; /* the trailing '@' means to hold onto this line */
if endind ne 'END' then do;

input @7 neglat $1. @; /* if this line does not say 'END', then
check to see if the 7th character is '-' */

if neglat eq '-' then do; /* if so, it has a boundary point */
input @7 x y;
output pcts; /* write out to boundary dataset */

end;
else if neglat ne '-' then do; /* if not, it must be the centroid */

input @9 cntyid 2. x y ;
output cents; /* write it to the centroid dataset */
end;

end;
run;

Note: Two datasets are defined in the data statement, and explicit output statements are
used to specify which lines are output to which datasets. The @ designates the position on
the line which is to be read, and also “holds” the line for further reading after the end of an
input statement. The county names, which can be associated by the county identifier, are
stored in another dataset.

filename census2 url
"http://www.math.smith.edu/sasr/datasets/co25_d00a.dat";

data cntynames;
infile census2 DSD;

format cntyname $17. ;
input cntyid 2. cntyname $;

run;

To get the names onto the map, we have to merge the centroid location dataset with
the county names dataset. They have to be sorted first.

proc sort data=cntynames; by cntyid; run;
proc sort data=cents; by cntyid; run;

Note that in the preceding code we depart from the convention of requiring a new line
for every statement; simple procedures like these are a convenient place to reduce the line
length of the code.

In R we begin by reading in all of the input lines, keeping track of how many counties
have been observed (based on how many lines include END). This information is needed for
housekeeping purposes when collecting map points for each county.

© 2010 by Taylor and Francis Group, LLC

http://www.math.smith.edu
http://www.math.smith.edu

�

�

“book” — 2009/6/16 — 16:53 — page 226 — #246
�

�

�

�

�

�

226 CHAPTER 6. OTHER TOPICS AND EXTENDED EXAMPLES

R
read in the data
input <- readLines("http://www.math.smith.edu/sasr/datasets/co25_d00.dat",

n=-1)
figure out how many counties, and how many entries
num <- length(grep("END", input))
allvals <- length(input)
numentries <- allvals-num
create vectors to store data
county <- numeric(numentries); lat <- numeric(numentries)
long <- numeric(numentries)

curval <- 0 # number of counties seen so far
loop through each line
for (i in 1:allvals) {

if (input[i]=="END") {
curval <- curval + 1

} else {
remove extraneous spaces
nospace <- gsub("[]+", " ", input[i])
remove space in first column
nospace <- gsub("^ ", "", nospace)
splitstring <- as.numeric(strsplit(nospace, " ")[[1]])
len <- length(splitstring)
if (len==3) { # new county

curcounty <- splitstring[1]; county[i-curval] <- curcounty
lat[i-curval] <- splitstring[2]; long[i-curval] <- splitstring[3]

} else if (len==2) { # continue current county
county[i-curval] <- curcounty; lat[i-curval] <- splitstring[1]
long[i-curval] <- splitstring[2]

}
}

}

Each line of the input file is processed in turn. The strsplit() function is used to
parse the input file. Lines containing END require incrementing the count of counties seen
to date. If the line indicates the start of a new county, the new county number is saved. If
the line contains 2 fields (another set of latitudes and longitudes), then this information is
stored in the appropriate index (i-curval) of the output vectors.

Next we read in a dataset of county names. Later we’ll plot the Massachusetts counties,
and annotate the plot with the names of the counties.

read county names
countynames <-

read.table("http://www.math.smith.edu/sasr/datasets/co25_d00a.dat",
header=FALSE)

names(countynames) <- c("county", "countyname")

6.4.2 Plotting maps

In SAS, we’re ready to merge the two datasets. At the same time, we’ll include the variables
needed by the annotate facility to put data from the dataset onto the map. The variables

© 2010 by Taylor and Francis Group, LLC

http://www.math.smith.edu
http://www.math.smith.edu

�

�

“book” — 2009/6/16 — 16:53 — page 227 — #247
�

�

�

�

�

�

6.4. READ VARIABLE FORMAT FILES AND PLOT MAPS 227

Essex

Berkshire
Franklin MiddlesexWorcester

Hampshire Suffolk

Hampden
Norfolk

Plymouth
Bristol

Barnstable

Dukes
Nantucket

Figure 6.1: Massachusetts counties

function, style, color, position, when, size, and the ?sys variables all describe aspects
of the text to be placed onto the plot.

data nameloc;
length function style color $ 8 position $ 1 text $ 20;
retain xsys ysys "2" hsys "3" when "a";

merge cntynames cents;
by cntyid;

function="label"; style="swiss"; text=cntyname; color="black";
size=3; position="5";
output;

run;

Finally, we can make the map. The annotate option (5.2) tells SAS to use the named
dataset to mark up the map.

ods pdf file="map_plot.pdf";
pattern1 value=empty;
proc gmap map=pcts data=pcts;

choro const / nolegend coutline=black annotate=nameloc;
id cntyid;

run; quit;
ods pdf close;

The pattern statement can be used to control the fill colors when creating choropleth
maps. Here we specify that no fill is needed.

Results are displayed in Figure 6.1.
To create the map in R, we begin by determining the plotting region, creating the plot

of boundaries, then adding the county names at the internal point that was provided.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 228 — #248
�

�

�

�

�

�

228 CHAPTER 6. OTHER TOPICS AND EXTENDED EXAMPLES

xvals <- c(min(lat), max(lat))
yvals <- c(range(long))
pdf("massachusettsmap.pdf")
plot(xvals, yvals, pch=" ", xlab="", ylab="", xaxt="n", yaxt="n")
counties <- unique(county)
for (i in 1:length(counties)) {

first element is an internal point
polygon(lat[county==counties[i]][-1], long[county==counties[i]][-1])
plot name of county using internal point
text(lat[county==counties[i]][1], long[county==counties[i]][1],

countynames$countyname[i])
}
dev.off()

Since the first set of points is in the interior of the county, these are not included in the
values given to the polygon function (see indexing, section B.4.2).

The pdf() function is used to create an external graphics file (see 5.4.1, creating PDF
files). When all plotting commands are complete, the dev.off() function is used to close
the graphics device.

The plots from SAS and R differ only with respect to the default font used, so we
display the results only once, in Figure 6.1. Many other maps as well as more sophisticated
projections are supported with the maps package (see also the CRAN Spatial Statistics Task
View).

6.5 Missing data: multiple imputation

Missing data is ubiquitous in most real-world investigations. Here we demonstrate some
of the capabilities for fitting incomplete data regression models using multiple imputation
[68, 76, 33] implemented with chained equation models [92, 64].

In this example we replicate an analysis from section 4.6.1 in a version of the HELP
dataset that includes missing values for several of the predictors. While not part of the
regression model of interest, the mcs and pcs variables are included in the imputation
models, which may make the missing at random assumption more plausible [13].

SAS
filename myurl url "http://www.math.smith.edu/sasr/datasets/helpmiss.csv"

lrecl=704;

proc import replace datafile=myurl out=help dbms=dlm;
delimiter=',';
getnames=yes;

run;

ods select misspattern;
proc mi data=help nimpute=0;

var homeless female i1 sexrisk indtot mcs pcs;
run;
ods select all;

In the SAS code above, we read the data and print a summary of the missing data
patterns.

© 2010 by Taylor and Francis Group, LLC

http://www.math.smith.edu

�

�

“book” — 2009/6/16 — 16:53 — page 229 — #249
�

�

�

�

�

�

6.5. MISSING DATA: MULTIPLE IMPUTATION 229

Missing Data Patterns

Group homeless female i1 sexrisk indtot mcs pcs Freq

1 X X X X X X X 454
2 X X X X X . . 2
3 X X X X . X X 13
4 X X X . . X X 1

Missing Data Patterns
----------------Group Means---------------

Group Percent homeless female i1

1 96.60 0.462555 0.237885 17.920705
2 0.43 1.000000 0 13.000000
3 2.77 0.461538 0.230769 31.307692
4 0.21 1.000000 0 13.000000

Missing Data Patterns
----------------------Group Means---------------------

Group sexrisk indtot mcs pcs

1 4.638767 35.729075 31.662403 48.018233
2 7.000000 35.500000 . .
3 4.153846 . 27.832265 49.931599
4 . . 28.452675 49.938469

Since the pattern of missingness is non-monotone, our options for imputing within SAS
are somewhat limited. In the code below, we impute using MCMC. This is not strictly
appropriate, since this technique assumes multivariate normal data, which is clearly not the
case here. For a summary of multiple imputation options available in SAS, see [33]. An
alternative would be to use IVEware, a free suite of SAS macros [65].

proc mi data=helpmiss nimpute=20 out=helpmi20 noprint;
mcmc chain=multiple;
var homeless female i1 sexrisk indtot mcs pcs;

run;

The output dataset helpmi20 has 20 completed versions of the original dataset, along
with an additional variable, _imputation_, which identifies the completed versions. We use
the by statement in SAS to fit a logistic regression within each completed dataset.

ods select none;
ods output parameterestimates=helpmipe covb=helpmicovb;
proc logistic data=helpmi20 descending;
by _imputation_;

model homeless=female i1 sexrisk indtot / covb;
run;
ods select all;

Note the use of the ods select none statement to suppress all printed output and
to save the parameter estimates and their estimated covariance matrix for use in multiple
imputation. The multiple imputation inference is performed in proc mianalyze.

proc mianalyze parms = helpmipe covb=helpmicovb;
modeleffects intercept female i1 sexrisk indtot;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 230 — #250
�

�

�

�

�

�

230 CHAPTER 6. OTHER TOPICS AND EXTENDED EXAMPLES

This generates a fair amount of output; we reproduce only the parameter estimates and
their standard errors.

Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits
intercept -2.547100 0.596904 -3.71707 -1.37713
female -0.241332 0.244084 -0.71973 0.23706
i1 0.023101 0.005612 0.01210 0.03410
sexrisk 0.057386 0.035842 -0.01286 0.12763
indtot 0.049641 0.015929 0.01842 0.08086

Within R, the Hmisc package includes many functions to describe missing data pat-
terns as well as fit imputation models. We begin by reading in the data then using the
na.pattern() function from the Hmisc library to characterize the patterns of missing
values.

R
> ds <- read.csv("http://www.math.smith.edu/sasr/datasets/helpmiss.csv")
> smallds <- with(ds, data.frame(homeless, female, i1, sexrisk, indtot,

mcs, pcs))
> summary(smallds)

homeless female i1 sexrisk
Min. :0.000 Min. :0.000 Min. : 0.0 Min. : 0.00
1st Qu.:0.000 1st Qu.:0.000 1st Qu.: 3.0 1st Qu.: 3.00
Median :0.000 Median :0.000 Median : 13.0 Median : 4.00
Mean :0.466 Mean :0.236 Mean : 18.3 Mean : 4.64
3rd Qu.:1.000 3rd Qu.:0.000 3rd Qu.: 26.0 3rd Qu.: 6.00
Max. :1.000 Max. :1.000 Max. :142.0 Max. :14.00

NA's : 1.00
indtot mcs pcs

Min. : 4.0 Min. : 6.76 Min. :14.1
1st Qu.:32.0 1st Qu.:21.66 1st Qu.:40.3
Median :37.5 Median :28.56 Median :48.9
Mean :35.7 Mean :31.55 Mean :48.1
3rd Qu.:41.0 3rd Qu.:40.64 3rd Qu.:57.0
Max. :45.0 Max. :62.18 Max. :74.8
NA's :14.0 NA's : 2.00 NA's : 2.0
> library(Hmisc)
> na.pattern(smallds)
pattern
0000000 0000011 0000100 0001100

454 2 13 1

There are 14 subjects missing indtot, 2 missing mcs and pcs, and 1 missing sexrisk. In
terms of patterns of missingness, there are 454 observations with complete data, 2 missing
both mcs and pcs, 13 missing indtot alone, and 1 missing sexrisk and indtot. Fitting a
logistic regression model using the available data (n=456) yields:

© 2010 by Taylor and Francis Group, LLC

http://www.math.smith.edu

�

�

“book” — 2009/6/16 — 16:53 — page 231 — #251
�

�

�

�

�

�

6.6. BAYESIAN POISSON REGRESSION 231

> glm(homeless ~ female + i1 + sexrisk + indtot, binomial, data=smallds)
Call: glm(formula = homeless ~ female + i1 + sexrisk + indtot,

family = binomial, data = smallds)

Coefficients:
(Intercept) female i1 sexrisk indtot

-2.5278 -0.2401 0.0232 0.0562 0.0493

(14 observations deleted due to missingness)

Next, the mice() function within the mice library is used to impute missing values for
sexrisk, indtot, mcs, and pcs. These results are combined using glm.mids(), and results
are pooled and reported. Note that by default, all variables within the smallds data frame
are included in each of the chained equations (e.g., mcs and pcs are used as predictors in
each of the imputation models).

> library(mice)
> imp <- mice(smallds, m=25, maxit=25, seed=42)

> summary(pool(glm.mids(homeless ~ female + i1 + sexrisk + indtot,
family=binomial, data=imp)))

est se t df Pr(>|t|) lo 95 hi 95
(Intercept) -2.5366 0.59460 -4.266 456 2.42e-05 -3.7050 -1.3681
female -0.2437 0.24393 -0.999 464 3.18e-01 -0.7230 0.2357
i1 0.0231 0.00561 4.114 464 4.61e-05 0.0121 0.0341
sexrisk 0.0590 0.03581 1.647 463 1.00e-01 -0.0114 0.1294
indtot 0.0491 0.01582 3.105 455 2.02e-03 0.0180 0.0802

missing fmi
(Intercept) NA 0.01478
female 0 0.00182
i1 0 0.00143
sexrisk 1 0.00451
indtot 14 0.01728

While the results are qualitatively similar, they do differ, which is not surprising given the
different imputation models used.

6.6 Bayesian Poisson regression

Bayesian methods are increasingly commonly utilized, and implementations of many models
are available within SAS as well as R. For SAS, the on-line documentation is a valuable
resource: Contents; SAS Products; SAS/STAT; SAS/STAT User’s guide, Introduction to
Bayesian Analysis Procedures. For R, the CRAN Bayesian Inference Task View provides an
overview of the packages that incorporate some aspect of Bayesian methodologies. In this
example, we fit a Poisson regression model to the count of alcohol drinks in the HELP study
as fit previously (4.6.2), this time using Markov Chain Monte Carlo methods. Specification
of prior distributions is necessary for Bayesian analysis; diagnosis of convergence is a critical
part of any MCMC model fitting (see Gelman et al., [26] for an accessible introduction).

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 232 — #252
�

�

�

�

�

�

232 CHAPTER 6. OTHER TOPICS AND EXTENDED EXAMPLES

SAS
proc import

datafile='c:/book/help.csv'
out=help dbms=dlm;
delimiter=',';
getnames=yes;

run;

proc genmod data=help;
class substance;
model i1 = female substance age / dist=poisson;
bayes;

run;

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%
Intercept 10000 1.7774 0.0592 1.7366 1.7778 1.8179
female 10000 -0.1760 0.0279 -0.1946 -0.1761 -0.1570
substancealcohol 10000 1.1202 0.0345 1.0968 1.1201 1.1431
substancecocaine 10000 0.3026 0.0387 0.2764 0.3023 0.3283
age 10000 0.0132 0.0015 0.0122 0.0132 0.0142

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval
Intercept 0.050 1.6624 1.8925 1.6669 1.8957
female 0.050 -0.2317 -0.1221 -0.2294 -0.1201
substancealcohol 0.050 1.0531 1.1893 1.0484 1.1840
substancecocaine 0.050 0.2276 0.3795 0.2239 0.3755
age 0.050 0.0104 0.0161 0.0103 0.0161

Note: The bayes statement has options to control many aspects of the MCMC process;
diagnostic graphics will be produced if an ods graphics statement is submitted. The
above code produces the following posterior distribution characteristics for the parameters.

R
> ds <- read.csv("http://www.math.smith.edu/sasr/datasets/help.csv")
> attach(ds)
> library(MCMCpack)
Loading required package: coda
Loading required package: lattice
Loading required package: MASS
##
Markov Chain Monte Carlo Package (MCMCpack)
Copyright (C) 2003-2008 Andrew D. Martin, Kevin M. Quinn,
and Jonh Hee Park
Support provided by the U.S. National Science Foundation
(Grants SES-0350646 and SES-0350613)
##
> posterior <- MCMCpoisson(i1 ~ female + as.factor(substance) + age)
The Metropolis acceptance rate for beta was 0.27891

© 2010 by Taylor and Francis Group, LLC

http://www.math.smith.edu

�

�

“book” — 2009/6/16 — 16:53 — page 233 — #253
�

�

�

�

�

�

6.7. MULTIVARIATE STATISTICS AND DISCRIMINANT PROCEDURES 233

> summary(posterior)
Iterations = 1001:11000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000
1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:
Mean SD Naive SE Time-series SE

(Intercept) 2.8959 0.05963 5.96e-04 0.002858
female -0.1752 0.02778 2.78e-04 0.001085
as.factor(substance)cocaine -0.8176 0.02727 2.73e-04 0.001207
as.factor(substance)heroin -1.1199 0.03430 3.43e-04 0.001333
age 0.0133 0.00148 1.48e-05 0.000071

2. Quantiles for each variable:
2.5% 25% 50% 75% 97.5%

(Intercept) 2.7807 2.8546 2.8952 2.9390 3.0157
female -0.2271 -0.1944 -0.1754 -0.1567 -0.1184
as.factor(substance)cocaine -0.8704 -0.8364 -0.8174 -0.7992 -0.7627
as.factor(substance)heroin -1.1858 -1.1430 -1.1193 -1.0967 -1.0505
age 0.0103 0.0122 0.0133 0.0143 0.0160

Note: Default plots are available for MCMC objects returned by MCMCpack. These can be
displayed using the command plot(posterior). Support for model assessment is provided
in the coda (Convergence Diagnosis and Output Analysis) package.

6.7 Multivariate statistics and discriminant procedures

This section includes a sampling of commonly used multivariate, clustering methods and
discriminant procedures [12, 82].

In SAS, summaries of these topics and how to implement related methods are discussed
in the on-line help: Contents; SAS Products; SAS/STAT; SAS/STAT User’s Guide under
the headings “Introduction to Multivariate Procedures,”“Introduction to Clustering Proce-
dures,” and “Introduction to Discriminant Procedures.”

The Multivariate statistics, Cluster analysis and Psychometrics task views on CRAN
provide additional descriptions of functionality available within R.

6.7.1 Cronbach’s α

We begin by calculating Cronbach’s α for the 20 items comprising the CESD (Center for
Epidemiologic Studies–Depression scale).

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 234 — #254
�

�

�

�

�

�

234 CHAPTER 6. OTHER TOPICS AND EXTENDED EXAMPLES

ods select cronbachalpha;

proc corr data=help alpha nomiss;

var f1a -- f1t;

run;

ods exclude none;

The CORR Procedure

Cronbach Coefficient Alpha

Variables Alpha

Raw 0.760762
Standardized 0.764156

Note that the nomiss option is required in SAS to include only observations with all
variables observed.
> library(multilevel)

> cronbach(cbind(f1a, f1b, f1c, f1d, f1e, f1f, f1g, f1h, f1i, f1j, f1k,

+ f1l, f1m, f1n, f1o, f1p, f1q, f1r, f1s, f1t))

$Alpha
[1] 0.761

$N
[1] 446

The observed α of 0.76 from the HELP study is relatively low: this may be due to ceiling
effects for this sample of subjects recruited in a detoxification unit.

6.7.2 Factor analysis

Factor analysis is used to explain variability of a set of measures in terms of underlying
unobservable factors. The observed measures can be expressed as linear combinations of
the factors, plus random error. Factor analysis is often used as a way to guide the creation
of summary scores from individual items. Here we consider a maximum likelihood factor
analysis with varimax rotation for the individual items of the CESD (Center for Epidemiologic
Studies–Depression) scale. The individual questions can be found in Table C.2, p. 279. We
arbitrarily force three factors.

Before beginning in SAS, we exclude observations with missing values.

data helpcc;

set help;

if n(of f1a--f1t) eq 20;

run;

ods select orthrotfactpat factor.rotatedsolution.finalcommunwgt;

proc factor data=helpcc nfactors=3 method=ml rotate=varimax;

var f1a--f1t;

run;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 235 — #255
�

�

�

�

�

�

6.7. MULTIVARIATE STATISTICS AND DISCRIMINANT PROCEDURES 235

The FACTOR Procedure
Rotation Method: Varimax

Final Communality Estimates and Variable Weights
Total Communality: Weighted = 15.332773 Unweighted = 7.811194

Variable Communality Weight
F1A 0.25549722 1.34316770
F1B 0.23225517 1.30252990
F1C 0.51565766 2.06467779
F1D 0.29270906 1.41401403
F1E 0.29893385 1.42636367
F1F 0.57894420 2.37499121
F1G 0.23471625 1.30675434
F1H 0.39897919 1.66400037
F1I 0.38389849 1.62312753
F1J 0.37453462 1.59881735
F1K 0.29461104 1.41765736
F1L 0.48551624 1.94346054
F1M 0.11832415 1.13419896
F1N 0.37735132 1.60602564
F1O 0.35641841 1.55382997
F1P 0.59280807 2.45558672
F1Q 0.28734113 1.40315708
F1R 0.53318869 2.14218252
F1S 0.72695038 3.66226205
F1T 0.47255864 1.89596701

Rotation Method: Varimax

Factor1 Factor2 Factor3
F1A 0.44823 -0.19780 0.12436
F1B 0.42744 -0.18496 0.12385
F1C 0.61763 -0.29675 0.21479
F1D -0.25073 0.45456 -0.15236
F1E 0.51814 -0.11387 0.13228
F1F 0.66562 -0.33478 0.15433
F1G 0.47079 0.03520 0.10880
F1H -0.07422 0.62158 -0.08435
F1I 0.46243 -0.32461 0.25433
F1J 0.49539 -0.22585 0.27949
F1K 0.52291 -0.11535 0.08873
F1L -0.27558 0.63987 0.01191
F1M 0.28394 -0.03699 0.19061
F1N 0.48453 -0.33040 0.18281
F1O 0.26188 -0.06977 0.53195
F1P -0.07338 0.75511 -0.13125
F1Q 0.45736 -0.07107 0.27039
F1R 0.61412 -0.28168 0.27696
F1S 0.23592 -0.16627 0.80228
F1T 0.48914 -0.26872 0.40136

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 236 — #256
�

�

�

�

�

�

236 CHAPTER 6. OTHER TOPICS AND EXTENDED EXAMPLES

> res <- factanal(~ f1a + f1b + f1c + f1d + f1e + f1f + f1g + f1h +

+ f1i + f1j + f1k + f1l + f1m + f1n + f1o + f1p + f1q + f1r +

+ f1s + f1t, factors=3, rotation="varimax", na.action=na.omit,

+ scores="regression")

> print(res, cutoff=0.45, sort=TRUE)

Call:
factanal(x = ~f1a + f1b + f1c + f1d + f1e + f1f + f1g + f1h +

f1i + f1j + f1k + f1l + f1m + f1n + f1o + f1p + f1q + f1r
+

f1s + f1t, factors = 3, na.action = na.omit,
scores = "regression", rotation = "varimax")

Uniquenesses:
f1a f1b f1c f1d f1e f1f f1g f1h f1i f1j f1k f1l

0.745 0.768 0.484 0.707 0.701 0.421 0.765 0.601 0.616 0.625 0.705 0.514
f1m f1n f1o f1p f1q f1r f1s f1t

0.882 0.623 0.644 0.407 0.713 0.467 0.273 0.527

Loadings:
Factor1 Factor2 Factor3

f1c 0.618
f1e 0.518
f1f 0.666
f1k 0.523
f1r 0.614
f1h -0.621
f1l -0.640
f1p -0.755
f1o 0.532
f1s 0.802
f1a
f1b
f1d -0.454
f1g 0.471
f1i 0.463
f1j 0.495
f1m
f1n 0.485
f1q 0.457
f1t 0.489

Factor1 Factor2 Factor3
SS loadings 3.847 2.329 1.636
Proportion Var 0.192 0.116 0.082
Cumulative Var 0.192 0.309 0.391

Test of the hypothesis that 3 factors are sufficient.
The chi square statistic is 289 on 133 degrees of freedom.
The p-value is 1.56e-13

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 237 — #257
�

�

�

�

�

�

6.7. MULTIVARIATE STATISTICS AND DISCRIMINANT PROCEDURES 237

It is possible to interpret the item scores from the output. We see that the second factor
loads on the reverse coded items (H, L, P, and D, see 1.13.3). Factor 3 loads on items O
and S (people were unfriendly and I felt that people dislike me).

6.7.3 Recursive partitioning

Recursive partitioning is used to create a decision tree to classify observations from a dataset
based on categorical predictors. Recursive partitioning is only available in SAS through SAS
Enterprise Miner, a module not included with the educational license typically purchased
by universities, or through relatively expensive third-party add-ons to SAS. Within R, this
functionality is available within the rpart package. In this example, we attempt to classify
subjects based on their homeless status, using gender, drinking, primary substance, RAB
sexrisk, MCS, and PCS as predictors.

> library(rpart)

> sub <- as.factor(substance)

> homeless.rpart <- rpart(homeless ~ female + i1 + sub + sexrisk + mcs +

+ pcs, method="class", data=ds)

> printcp(homeless.rpart)

Classification tree:
rpart(formula = homeless ~ female + i1 + sub + sexrisk + mcs +

pcs, data = ds, method = "class")

Variables actually used in tree construction:
[1] female i1 mcs pcs sexrisk

Root node error: 209/453 = 0.5

n= 453

CP nsplit rel error xerror xstd
1 0.10 0 1.0 1 0.05
2 0.05 1 0.9 1 0.05
3 0.03 4 0.8 1 0.05
4 0.02 5 0.7 1 0.05
5 0.01 7 0.7 1 0.05
6 0.01 9 0.7 1 0.05

Figure 6.7.3 displays the tree.

> plot(homeless.rpart)

> text(homeless.rpart)

To help interpret this model, we can assess the proportion of homeless among those with
i1 < 3.5 by pcs divided at 31.94.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 238 — #258
�

�

�

�

�

�

238 CHAPTER 6. OTHER TOPICS AND EXTENDED EXAMPLES

|i1< 3.5

pcs>=31.94 i1< 35.5

mcs< 15.61

mcs>=31.05

sexrisk< 6.5 female>=0.5

i1< 22

pcs>=55.050 1

0

0 1
0 1

1

0 1

Figure 6.2: Recursive partitioning tree

> home <- homeless[i1<3.5]

> pcslow <- pcs[i1<3.5]<=31.94

> table(home, pcslow)

pcslow
home FALSE TRUE

0 89 2
1 31 5

> rm(home, pcslow)

Amongst this subset, 71.4% (5 of 7) of those with low PCS scores are homeless, while
only 25.8% (31 of 120) of those with PCS scores above the threshold are homeless.

6.7.4 Linear discriminant analysis

Linear (or Fisher) discriminant analysis is used to find linear combinations of variables that
can separate classes. We use linear discriminant analysis to distinguish between homeless
and non-homeless subjects, with a prior classification that half are in each group (default
in SAS).
ods select lineardiscfunc classifiedresub errorresub;

proc discrim data=help out=ldaout;

class homeless;

var age cesd mcs pcs;

run;

The DISCRIM Procedure

Linear Discriminant Function for HOMELESS

Variable 0 1

Constant -56.61467 -56.81613
AGE 0.76638 0.78563
CESD 0.86492 0.87231
MCS 0.68105 0.67569
PCS 0.74918 0.73750

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 239 — #259
�

�

�

�

�

�

6.7. MULTIVARIATE STATISTICS AND DISCRIMINANT PROCEDURES 239

Classification Summary for Calibration Data: WORK.HELP
Resubstitution Summary using Linear Discriminant Function

From
HOMELESS 0 1 Total

0 142 102 244
58.20 41.80 100.00

1 89 120 209
42.58 57.42 100.00

Total 231 222 453
50.99 49.01 100.00

Priors 0.5 0.5

Classification Summary for Calibration Data: WORK.HELP
Resubstitution Summary using Linear Discriminant Function

Error Count Estimates for HOMELESS

0 1 Total

Rate 0.4180 0.4258 0.4219
Priors 0.5000 0.5000

> library(MASS)

> ngroups <- length(unique(homeless))

> ldamodel <- lda(homeless ~ age + cesd + mcs + pcs,

+ prior=rep(1/ngroups, ngroups))

> print(ldamodel)

Call:
lda(homeless ~ age + cesd + mcs + pcs, prior = rep(1/ngroups,

ngroups))

Prior probabilities of groups:
0 1

0.5 0.5

Group means:
age cesd mcs pcs

0 35.0 31.8 32.5 49.0
1 36.4 34.0 30.7 46.9

Coefficients of linear discriminants:
LD1

age 0.0702
cesd 0.0269
mcs -0.0195
pcs -0.0426

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 240 — #260
�

�

�

�

�

�

240 CHAPTER 6. OTHER TOPICS AND EXTENDED EXAMPLES

The results from SAS and R indicate that homeless subjects tend to be older, have
higher CESD scores, and lower MCS and PCS scores.

Figure 6.3 displays the distribution of linear discriminant function values by homeless
status; the discrimination ability appears to be slight. The distribution of the linear dis-
criminant function values are shifted to the right for the homeless subjects, though there is
considerable overlap between the groups.

axis1 label=("Prob(homeless eq 1)");

ods select "Histogram 1";

proc univariate data=ldaout;

class homeless;

var _1;

histogram _1 / nmidpoints=20 haxis=axis1;

run;

> plot(ldamodel)

Details on display of lda objects can be found using help(plot.lda).

0

2

4

6

8

10

12

14

P
er

ce
nt

0

0.34 0.38 0.42 0.46 0.50 0.54 0.58 0.62 0.66 0.70
0

2

4

6

8

10

12

14

P
er

ce
nt

1

Prob(homeless eq 1)

(a) SAS

−2 −1 0 1 2 3

0
.0

0
.2

0
.4

group 0

−2 −1 0 1 2 3

0
.0

0
.2

0
.4

group 1

(b) R

Figure 6.3: Graphical display of assignment probabilities or score functions from linear
discriminant analysis by actual homeless status

6.7.5 Hierarchical clustering

Many techniques exist for grouping similar variables or similar observations. These groups,
or clusters, can be overlapping or disjoint, and are sometimes placed in a hierarchical struc-
ture so that some disjoint clusters share a higher-level cluster. Within SAS, the procedures
cluster, fastclus, and modeclus can be used to find clusters of observations; the varclus
and factor procedures can be used to find clusters of variables. The tree procedure can
be used to plot tree diagrams from hierarchical clustering results. In R, there are many
packages which perform clustering. Clustering tools included with the R distribution as
part of the stats package include hclust() and kmeans(). The function dendrogram(),

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 241 — #261
�

�

�

�

�

�

6.8. COMPLEX SURVEY DESIGN 241

also in the stats package, plots tree diagrams. The cluster() package, included with the
R distribution, contains functions pam(), clara(), and diana(). The CRAN Clustering
Task View has more details. In this example, we cluster continuous variables from the
HELP dataset.
ods exclude all;

proc varclus data=help outtree=treedisp centroid;

var mcs pcs cesd i1 sexrisk;

run;

ods exclude none;

proc tree data=treedisp nclusters=5;

height _varexp_;

run;

> cormat <- cor(cbind(mcs, pcs, cesd, i1, sexrisk),

+ use="pairwise.complete.obs")

> hclustobj <- hclust(dist(cormat))

Figure 6.4 displays the clustering. Not surprisingly, the MCS and PCS variables clus-
ter together, since they both utilize similar questions and structures. The CESD and I1
variables cluster together, while there is a separate node for SEXRISK.

> plot(hclustobj)

V
a
r
i
a
n
c
e

E
x
p
l
a
i
n
e
d

5

4

3

2

1

0

Name of Variable or Cluster

CESD I1 SEXRISK MCS PCS

(a) SAS

m
cs

p
cs

se
xr

is
k

ce
sd i1

1
.2

1
.4

1
.6

1
.8

2
.0

2
.2

2
.4

Cluster Dendrogram

hclust (*, "complete")
dist(cormat)

H
e
ig

h
t

(b) R

Figure 6.4: Results from hierarchical clustering

6.8 Complex survey design

The appropriate analysis of sample surveys requires incorporation of complex design fea-
tures, including stratification, clustering, weights, and finite population correction. These
can be addressed in SAS and R for many common models. In this example, we assume
that there are variables psuvar (cluster or PSU), stratum (stratification variable), and wt

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 242 — #262
�

�

�

�

�

�

242 CHAPTER 6. OTHER TOPICS AND EXTENDED EXAMPLES

(sampling weight). Code examples are given to estimate the mean of a variable x1 as well
as a linear regression model.

SAS
proc surveymeans data=ds rate=fpcvar;

cluster psuvar;
strata stratum;
weight wt;
var x1 ... xk;

run;

or
proc surveyreg data=ds rate=fpcvar;

cluster psuvar;
strata stratum;
weight wt;
model y = x1 ... xk;

run;

Note: The surveymeans and surveyreg procedures account for complex survey designs with
equivalent functionality to means and reg, respectively. Other survey procedures in SAS
include surveyfreq and surveylogistic, which emulate procedures freq and logistic.
The survey procedures share a strata statement to describe the stratification variables,
a weight statement to describe the sampling weights, a cluster statement to specify the
PSU or cluster, and a rate option (for the proc statement) to specify a finite population
correction as a count or dataset. Additional options allow specification of the the total
number of primary sampling units (PSUs) or a dataset with the number of PSUs in each
stratum.

R
library(survey)
mydesign <- svydesign(id=~psuvar, strata=~stratum, weights=~wt,

fpc=~fpcvar, data=ds)
meanres <- svymean(~ x1, mydesign)
regres <- svyglm(y ~ x1 + ... + xk, design=mydesign)

Note: The survey library includes support for many models. Illustrated above are means
and linear regression models, with specification of PSU’s, stratification, weight, and FPC.

6.9 Further resources

Rizzo’s text [67] provides a comprehensive review of statistical computing tasks implemented
using R, while [31] describes the use of R as a toolbox for mathematical statistics exploration.

Gelman, Carlin, Stern and Rubin [26] is an accessible introduction to Bayesian inference,
while Albert [3] focuses on use of R for Bayesian computations.

Rubin’s review [68] and Schafer’s book [76] provide overviews of multiple imputation,
while [92, 64] describe chained equation models. Review of software implementations of
missing data models can be found in [34, 33].

Manly [12] and Tabachnick and Fidell [82] provide a comprehensive introduction to
multivariate statistics. Särndal, Swensson, and Wretman [75] provides a readable overview
of the analysis of data from complex surveys.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 243 — #263
�

�

�

�

�

�

Appendix A

Introduction to SAS

The SAS™ system is a programming and data analysis package developed and marketed by
SAS Institute, Cary NC. SAS markets many products; when installed together they result
in an integrated environment. In this book we address software available in the Base SAS,
SAS/STAT, SAS/GRAPH, SAS/ETS, and SAS/IML products. Base SAS provides a wide
range of data management and analysis tools, while SAS/STAT and SAS/GRAPH provide
support for more sophisticated statistics and graphics, respectively. We touch briefly on
the IML (interactive matrix language) module, which provides extensive matrix functions
and manipulation, and the ETS module, which supports time series tools and other spe-
cialized procedures. All of these products are typically included in educational institution
installations, for which SAS Institute offers discounts.

SAS Institute also markets some products at reduced prices for individuals as well as
for educational users. The “Learning Edition” lists at $US199 as of March, 2009, but lim-
its use to only 1,500 observations (rows in a dataset). More information can be found at
http://support.sas.com/learn/le/order.html. Another option is SAS “OnDemand for
Academics” (http://www.sas.com/govedu/edu/programs/oda_account.html) currently
free for faculty and $60 for students. This option uses servers at SAS to run code and
has a slightly more complex interface than the standard installation discussed in this book.

A.1 Installation

SAS products are available for a yearly license fee. Once licensed, a set of installation disks
is mailed; this package includes detailed installation instructions tailored to the operating
system for which the license was obtained. Also necessary is a special “setinit” file sent from
SAS which functions as a password allowing installation of licensed products. An updated
setinit file is sent upon purchase of a license renewal.

A.2 Running SAS and a sample session

Once installed, a recommended step for a new user is to start SAS and run a sample session.
Starting SAS in a GUI environment opens a SAS window as displayed in Figure A.1.

The window is divided into two panes. On the left is a navigation pane with Results and
Explorer tabs, while the right is an interactive windowing environment with Editor, Log,
and Output Windows. Effectively, the right-hand pane is like a miniature graphical user
interface (GUI) in itself. There are multiple windows, any one of which may be maximized,
minimized, or closed. Their contents can also be saved to the operating system or printed.

243

© 2010 by Taylor and Francis Group, LLC

http://support.sas.com
http://www.sas.com

�

�

“book” — 2009/6/16 — 16:53 — page 244 — #264
�

�

�

�

�

�

244 APPENDIX A. INTRODUCTION TO SAS

Figure A.1: SAS Windows interface

Depending on the code submitted, additional windows may open in this area. To open a
window, click on its name at the bottom of the right-hand pane; to maximize or minimize
within the SAS GUI, click on the standard icons your operating system uses for these
actions.

On starting SAS, the cursor will appear in the Editor window. Commands such as those
in the sample session which follows are typed there. They can also be read into the window
from previously saved text files using File; Open Program from the menu bar. Typing the
code doesn’t do anything, even if there are carriage returns in it. To run code, it must be
submitted to SAS; this is done by clicking the submit button in the GUI as in Figure A.2 or
using keyboard shortcuts. After code is submitted SAS processes the code. Results are not
displayed in the Editor window, but in the Output window, and comments from SAS on
the commands which were run are displayed in the Log window. If output lines (typically
analytic results) are generated, the Output window will jump to the front.

In the left-hand pane, the Explorer tab can be used to display datasets created within
the current SAS session or found in the operating system. The datasets are displayed in
a spreadsheet-like format. Navigation within the Explorer pane uses idioms familiar to
users of GUI-based operating systems. The Results tab allows users to navigate among the
output generated during the current SAS session. The Explorer and Results panes can each
be helpful in reviewing data and results, respectively.

As a sample session, consider the following SAS code, which generates 100 normal vari-
ates (see 1.10.5) and 100 uniform variates (see 1.10.3), displays the first five of each (see
1.2.4), and calculates series of summary statistics (see 2.1.1). These commands would be
typed directly into the Editor window:

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 245 — #265
�

�

�

�

�

�

A.2. RUNNING SAS AND A SAMPLE SESSION 245

Figure A.2: Running a SAS program

data test;

do i = 1 to 100;

x1 = normal(0);

x2 = uniform(0);

output;

end;

run;

proc print data=test (obs=5);

run;

ods select moments;

proc univariate data=test;

var x1 x2;

run;

A user can run a section of code by selecting it using the mouse and clicking the“running
figure” (submit) icon near the right end of the toolbar as shown in Figure A.2. Clicking
the submit button when no text is selected will run all of the contents of the window. This
code is available for download from the book website: http://www.math.smith.edu/sasr/
examples/sampsess.sas.

We discuss each block of code in the example to highlight what is happening.

© 2010 by Taylor and Francis Group, LLC

http://www.math.smith.edu
http://www.math.smith.edu

�

�

“book” — 2009/6/16 — 16:53 — page 246 — #266
�

�

�

�

�

�

246 APPENDIX A. INTRODUCTION TO SAS

data test;

do i = 1 to 100;

x1 = normal(0);

x2 = uniform(0);

output;

end;

run;

After selecting and submitting the above code the Output window will be empty, since
no output was requested, but the log window will contain some new information:

1 data test;
2 do i = 1 to 100;
3 x1 = normal(0);
4 x2 = uniform(0);
5 output;
6 end;
7 run;

NOTE: The dataset WORK.TEST has 100 observations and 3 variables.
NOTE: DATA statement used (Total process time):

real time 0.01 seconds
cpu time 0.01 seconds

This indicates that the commands ran without incident, creating a dataset called WORK.
TEST with 100 rows and three columns (one for i, one for x1, and one for x2). The line
numbers can be used in debugging code.

Next consider the proc print code.

proc print data=test (obs=5);

run;

When these commands are submitted, SAS will generate the following in the Output
window. Note that only 5 observations are shown because obs=5 was specified (A.6.1).
Omitting it will cause all 100 lines of data to be printed.

Obs i x1 x2

1 1 0.38741 0.72843
2 2 0.73014 0.37995
3 3 1.48292 0.85374
4 4 -1.86685 0.87779
5 5 -0.33795 0.20864

Finally, data are summarized by submitting the lines specifying the univariate proce-
dure.

ods select moments;

proc univariate data=test;

var x1 x2;

run;

ods select all;

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 247 — #267
�

�

�

�

�

�

A.3. LEARNING SAS AND GETTING HELP 247

The UNIVARIATE Procedure
Variable: x1

N 100 Sum Weights 100
Mean 0.01009023 Sum Observations 1.00902341
Std Deviation 0.92945544 Variance 0.86388742
Skewness -0.6296919 Kurtosis -0.0743347
Uncorrected SS 85.5350355 Corrected SS 85.5248542
Coeff Variation 9211.43585 Std Error Mean 0.09294554

Variable: x2

N 100 Sum Weights 100
Mean 0.50565198 Sum Observations 50.565198
Std Deviation 0.29770927 Variance 0.08863081
Skewness -0.0719154 Kurtosis -1.1537095
Uncorrected SS 34.3428424 Corrected SS 8.77444994
Coeff Variation 58.8763178 Std Error Mean 0.02977093

As with the obs=5 specified in the proc print statement above, the ods select
moments statement causes a subset of the default output to be printed. By default, SAS
often generates voluminous output that can be hard for new users to digest and would take
up many pages of a book. We use the ODS system (A.7) to select pieces of the output
throughout the book.

For each of these submissions, additional information is presented in the Log window.
While some users may ignore the Log window unless the code did not work as desired, it is
always a good practice to examine the log carefully, as it contains warnings about unexpected
behavior as well as descriptions of errors which cause the code to execute incorrectly or not
at all.

Note that the contents of the Editor, Log, and Output windows can be saved in typical
GUI fashion by bringing the window to the front and using File; Save through the menus.

Figure A.3 shows the appearance of the SAS window after running the sample program.
The Output window can be scrolled through to find results, or the Results tab shown in
the left-hand pane can be used to find particular pieces of output more quickly. Figure
A.4 shows the view of the dataset found through the Explorer window by clicking through
Libraries; Work; Test. Datasets not assigned to permanent storage in the operating system
(see writing native files, 1.2.1) are kept in a temporary library called the “Work” library.

A.3 Learning SAS and getting help

There are numerous tools available for learning SAS, of which at least two are built into
the program. Under the Help menu in the Menu bar are “Getting Started with SAS Soft-
ware” and “Learning SAS Programming.” In the on-line help, under the Contents tab is
“Learning to Use SAS” with many entries included. For those interested in learning about
SAS but without access to a working version, some internet options include the excellent
UCLA statistics website, which includes the “SAS Starter Kit” (http://www.ats.ucla.
edu/stat/sas/sk/default.htm). While dated, the slide show available from the Ore-
gon State University Statistics department could be useful (see http://oregonstate.edu/
dept/statistics/software/sas/2002seminar/index.htm). SAS Institute offers several
ways to get help. The central place to start is their web site where the front page for sup-
port is http://support.sas.com/techsup, which has links to discussion forums, support
documents, and instructions for submitting an e-mail or phone request for technical support.

© 2010 by Taylor and Francis Group, LLC

http://www.ats.ucla.edu
http://www.ats.ucla.edu
http://oregonstate.edu
http://support.sas.com

�

�

“book” — 2009/6/16 — 16:53 — page 248 — #268
�

�

�

�

�

�

248 APPENDIX A. INTRODUCTION TO SAS

Figure A.3: The SAS window after running the sample session code

Figure A.4: The SAS Explorer window

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 249 — #269
�

�

�

�

�

�

A.4 FUNDAMENTAL STRUCTURES 249

Figure A.5: Opening the on-line help

Complete documentation is included with SAS installation by default. Clicking the icon
of the book with a question mark in the GUI (Figure A.5) will open a new window with
a tool for viewing the documentation (Figure A.6). While there are Contents, Index,
Search, and Favorites tabs in the help tool, we generally use the Contents tab as a
starting point. Expanding the SAS Products folder here will open a list of SAS packages
(i.e. Base SAS, SAS/STAT, etc.). Detailed documentation for the desired procedure can
be found under the package which provides access to that proc or, as of SAS 9.2, in the
alphabetical list of procedures found in: Contents; SAS Products; SAS Procedures. In the
text, we provide occasional pointers to the on-line help, using the folder structure of the
help tool to provide directions to these documents. Our pointers use the SAS 9.2 structure;
earlier versions have a similar structure except that procedures must be located through
their module. For example, to find the proc mixed documentation in SAS 9.2, you can use:
Contents; SAS Products; SAS Procedures; MIXED, while before version 9.2, you would
navigate to: Contents; SAS Products; SAS/STAT; SAS/STAT User’s Guide; The MIXED
Procedure.

A.4 Fundamental structures: data step, procedures, and
global statements

Use of SAS can be broken into three main parts: the data step, procedures, and global
statements. The data step is used to manage and manipulate data. Procedures are generally
ways to do some kind of analysis and get results. Users of SAS refer to procedures as“procs.”
Global statements are generally used to set parameters and make optional choices that apply
to the output of one or more procedures.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 250 — #270
�

�

�

�

�

�

250 APPENDIX A. INTRODUCTION TO SAS

Figure A.6: The SAS Help and Documentation window

A typical data step might read as follows.

data newtest;

set test;

logx = log(x);

run;

In this code a new variable named logx is created by taking the natural log of the variable
x. The data step works by applying the instructions listed, sequentially, to each line of the
dataset named using the set statement, then writing that line of data out to the dataset
named in the data statement. Data steps and procedures are typically multi-statement
collections. Both are terminated with a run statement. As shown above, statements in SAS
are separated by semicolons, meaning that carriage returns and line breaks are ignored.
When SAS reads the run statement in the example (when it reaches the “;” after the word
run), it writes out the processed line of data, then repeats for each line of data until it
reaches the end of the set dataset. In this example, a line of data is read from the test
dataset, the logx variable is generated, and the line of data (including logx, x, and any
other data stored in test) is written to the new dataset newtest.

A typical procedure in SAS might read as follows.

proc glm data=newtest;

model y = logx / solution;

run;

Many procedures require multiple statements to function. For example, the glm proce-
dure requires both a proc glm statement and a model statement.

Here, we show the two ways that options can be specified in SAS. One way is by simply
listing optional syntax after the statement name. In the proc glm (3.1.1) statement above,

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 251 — #271
�

�

�

�

�

�

A.5. WORK PROCESS: THE COGNITIVE STYLE OF SAS 251

we specify, using the data option, that the dataset that should be used is the newtest
dataset. Without this option SAS defaults to using the most recently created dataset. As
a matter of style, we always specify the dataset using the data option, which can be used
with any and all procs. Naming datasets explicitly in each procedure minimizes errors and
makes code clearer.

The model statement shown demonstrates another way that options are specified, namely
after a forward slash. In general, this syntax is used when the main body of the statement
may include separate words. For example, the slash in the model statement above separates
the model specification from the options (here the solution option requests the parameter
estimates in addition to the default ANOVA table).

We refer to any SAS code appearing between semicolons generically as “statements.”
Most statements appear within data steps or procs. Global statements are special state-
ments that need not appear within a data step or a proc. An example would be the following
code.

options ls=78 ps=60 nocenter;

This options statement affects the formatting of output pages, limiting the line length to
78 characters per line for 60 lines per page, while removing the default centering.

A.5 Work process: the cognitive style of SAS

A typical SAS work session involves first writing a data step or loading a saved command
file (conventionally saved with a .sas extension) which might read in or perhaps modify
a saved dataset. Then a proc is written to perform a desired analysis. The output is
examined, and based on the results, the data step is modified to generate new variables,
the proc is edited to choose new options, new procs are written, or some subset of these
steps is repeated. At the end of the session, the dataset might be saved in the native SAS
format, the commands saved in text format, and the results printed onto paper or saved
(conventionally with a .lst extension).

A.6 Useful SAS background

A.6.1 Data set options

In addition to data steps for manipulating data, SAS allows on-the-fly modification of
datasets. This approach, while less than ideal for documentation, can be a useful way to
reduce code length: rather than create a new dataset with a subset of observations, or
with a renamed variable, this can be done simultaneously with specifying the dataset to
be used in a procedure. The syntax for these commands, called “data set options” in SAS
documentation, is to list them in parentheses after naming the dataset. So, for example, to
exclude extraneous variables in a dataset from an analysis dataset, the following code could
be used to save time if the dataset were large.

proc ttest data=test2 (keep=x y);

class x;

var y;

run;

Another useful data set option limits the number of observations used from the named
dataset.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 252 — #272
�

�

�

�

�

�

252 APPENDIX A. INTRODUCTION TO SAS

proc ttest data=test2 (obs=60);

class x;

var y;

run;

A full list of data set options can be found in the on-line documentation: Contents; SAS
Products; Base SAS; SAS 9.2 Language Reference: Dictionary; Dictionary of Language
Elements; SAS Data Set Options.

A.6.2 Repeating commands for subgroups

A common problem in data analysis involves repeating some process for strata defined
by a categorical variable. For example, a model might be needed for males and females
separately, or for several different age groups. SAS provides an easy way to do this via the
sort procedure and the by statement. Here we demonstrate using variables from the HELP
dataset, assuming it has been read in using one of the methods described in section 1.1 and
demonstrated at the outset of each example section.

proc sort data=ds;

by female;

run;

proc glm data=ds;

by female:

model mcs = pcs;

run;

The proc glm code will generate regression output for each value of female. Many
procedures support a by statement in this fashion. If the data have not been sorted
previously, an error is likely.

A.6.3 Subsetting

It is often convenient to restrict the membership in a dataset or run analyses on a subset
of observations. There are three main ways we do this in SAS. One is through the use of a
subsetting if statement in a data step. The syntax for this is simply

data ...;

set ...;

if condition;

run;

where condition is a logical statement such as x eq 2 (see 1.11.2 for a discussion of logical
operators). This includes only observations for which the condition is true, because when
an if statement (1.11.2) does not include a then, the implied then clause is interpreted as
“then output this line to the dataset; otherwise do not output it.”

A second approach is a where statement. This can be used in a data step or in a
procedure, and has a similar syntax.

proc ... data=ds;

where condition;

...

run;

Finally, there is also a where data set option which can be used in a data step or a
procedure; the syntax here is slightly different.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 253 — #273
�

�

�

�

�

�

A.7 ACCESSING AND CONTROLLING SAS OUTPUT 253

proc ... data=ds (where=(condition));

...

run;

The differences between the where statement and the where data set option are subtle
and beyond our scope here. However, it is generally computationally cheaper to use a where
approach than a subsetting if.

A.6.4 Formats and informats

SAS provides special tools for displaying variables or reading them in when they have
complicated or unusual constructions in raw text. A good example for this is dates, for
which June 27, 2009 might be written as, for example, 6-27-09, 27-6-09, 06/27/2009,
and so on. SAS stores dates as the integer number of days since December 31, 1959. To
convert one of the aforementioned expressions to the desired storage value, 17710, you use
an informat to describe the way the data is written. For example, if the data were stored as
the above expressions, you would use the informats mmddyy8., ddmmyy8., and mmddyy10.
respectively to read them correctly as 17710. An example of reading in dates is shown in
section 1.1.2. More information on informats can be found in the on-line documentation:
Contents; SAS Products; Base SAS; SAS 9.2 Language Reference: Dictionary; Informats.

In contrast, displaying data in styles other than that in which it is stored is done using
the informat’s inverse, the format. The format for display can be specified within a proc.
For example, if we plan a time series plot of x*time and want the x-axis labeled in quarters
(i.e., 2010Q3), we could use the following code, where the time variable is the integer-valued
date. Information on formats can be found in the on-line documentation: Contents; SAS
Products; Base SAS; SAS 9.2 Language Reference: Dictionary; Formats.

proc gplot data=ds;

plot x*time;

format time yyq6.;

run;

Another example is deciding how many decimal digits to display. For example, if you
want to display 2 decimal places for variable p and 3 for variable x, you could use the
following code.
proc print data=ds;

var p x;

format p 4.2 x 5.3;

run;

This topic is also discussed in 1.2.4.

A.7 Accessing and controlling SAS output: the Output
Delivery System

Unlike many R commands, SAS does not provide access to most of the internal objects used
in calculating results. Instead, it provides specific access to many objects of interest through
various procedure statements. The ways to find these objects is idiosyncratic, and we have
tried to highlight the most commonly needed objects in the text. This situation is roughly
equivalent to the need in R to know the full name of an object before it can be accessed.

A much more general way to access and control output within SAS is through the output
delivery system or (redundantly, as in “ATM machine”) the ODS system. This is a very

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 254 — #274
�

�

�

�

�

�

254 APPENDIX A. INTRODUCTION TO SAS

powerful and flexible system for accessing procedure results and controlling printed output.
We use the ODS system mainly for two tasks: 1) to save procedure output into explicitly
named datasets and 2) to suppress some printed output from procedures which generate
lengthy output. In addition, we discuss using the ODS system to save output in useful file
formats such as portable document format (PDF), hypertext markup language (HTML) or
rich text format (RTF). Finally, we discuss ODS graphics, which add graphics to procedures’
text output. We note that ODS has other uses beyond the scope of this book, and encourage
readers to spend time familiarizing themselves with it.

A.7.1 Saving output as datasets and controlling output

Using ODS to save output or control the printed results involves two steps; first, find-
ing out the name by which the ODS system refers to the output, and second, requesting
that the dataset be saved as an ordinary SAS dataset or including or excluding it as out-
put. The names used by the ODS system can be most easily found by running an ods
trace / listing statement (later reversed using an ods trace off statement). The ods
outputname thus identified can be saved using an ods output outputname=newname state-
ment. A piece of output can be excluded using an ods exclude outputname1 outputname2
... outputnamek statement or all but desired pieces excluded using the ods select
outputname1 outputname2 ... outputnamek statement. These statements are each in-
cluded before the procedure code which generates the output concerned. The exclude
and select statements can be reversed using an ods exclude none or ods select all
statement.

For example, to save the result of the t-test performed by proc ttest (2.4.1), the
following code would be used. First, generate some data for the test.

data test2;

do i = 1 to 100;

if i lt 51 then x=1;

else x=0;

y = normal(0) + x;

output;

end;

run;

Then, run the t-test, including the ods trace on / listing statement to learn the
names used by the ODS system.

ods trace on / listing;

proc ttest data=test2;

class x;

var y;

run;

ods trace off;

which would result in the following output.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 255 — #275
�

�

�

�

�

�

A.7 ACCESSING AND CONTROLLING SAS OUTPUT 255

Variable: y

Output Added:

Name: Statistics
Label: Statistics
Template: Stat.TTest.Statistics
Path: Ttest.y.Statistics

x N Mean Std Dev Std Err Minimum Maximum

0 50 0.1403 1.0236 0.1448 -2.2392 2.1914
1 50 0.8941 0.9653 0.1365 -1.5910 2.7505
Diff (1-2) -0.7538 0.9949 0.1990

Variable: y

Output Added:

Name: ConfLimits
Label: Confidence Limits
Template: Stat.TTest.ConfLimits
Path: Ttest.y.ConfLimits

x Method Mean 95% CL Mean Std Dev

0 0.1403 -0.1506 0.4312 1.0236
1 0.8941 0.6198 1.1685 0.9653
Diff (1-2) Pooled -0.7538 -1.1487 -0.3590 0.9949
Diff (1-2) Satterthwaite -0.7538 -1.1487 -0.3590

x Method 95% CL Std Dev

0 0.8550 1.2755
1 0.8064 1.2029
Diff (1-2) Pooled 0.8730 1.1567
Diff (1-2) Satterthwaite

Variable: y

Output Added:

Name: TTests
Label: T-Tests
Template: Stat.TTest.TTests
Path: Ttest.y.TTests

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 256 — #276
�

�

�

�

�

�

256 APPENDIX A. INTRODUCTION TO SAS

Method Variances DF t Value Pr > |t|

Pooled Equal 98 -3.79 0.0003
Satterthwaite Unequal 97.665 -3.79 0.0003

Variable: y

Output Added:

Name: Equality
Label: Equality of Variances
Template: Stat.TTest.Equality
Path: Ttest.y.Equality

Equality of Variances

Method Num DF Den DF F Value Pr > F

Folded F 49 49 1.12 0.6833

Note that failing to issue the ods trace off command will result in continued anno-
tation of every piece of output. Similarly, when using the ods exclude and ods select
statements, it is good practice to conclude each procedure with an ods select all or ods
exclude none statement so that later output will be printed.

The previous output shows that the t-test itself (including the tests assuming equal and
unequal variances) appears in output which the ODS system calls ttests, so the following
code demonstrates how the test can be saved into a new dataset. Here we assign the new
dataset the name appendixattest.

ods output ttests=appendixattest;

proc ttest data=test2;

class x;

var y;

run;

proc print data=appendixattest;

run;

and the proc print code results in the following output.

Obs Variable Method Variances tValue DF Probt

1 y Pooled Equal -3.79 98 0.0003
2 y Satterthwaite Unequal -3.79 97.665 0.0003

To run the t-ttest and print only these results, the following code would be used.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 257 — #277
�

�

�

�

�

�

A.7 ACCESSING AND CONTROLLING SAS OUTPUT 257

ods select ttests;

proc ttest data=test2;

class x;

var y;

run;

ods select all;

Variable: y

Method Variances DF t Value Pr > |t|

Pooled Equal 98 -3.79 0.0003
Satterthwaite Unequal 97.665 -3.79 0.0003

This application is especially useful when running simulations, as it allows the results
of procedures to be easily stored for later analysis.

The foregoing barely scratches the surface of what is possible using ODS. For further
information, refer to the on-line help: Contents; SAS Products; Base SAS; SAS 9.2 Output
Delivery System User’s Guide.

A.7.2 Output file types and ODS destinations

The other main use of the ODS system is to generate output in a variety of file types. By
default, SAS output is printed in the output window in the internal GUI. When run in
batch mode, or when saving the contents of the output window using the GUI, this output
is saved as a plain text file with a .lst extension. The ODS system provides a way to save
SAS output in a more attractive form. As discussed in section 5.4, procedure output and
graphics can be saved to named output files by using commands of the following form.
ods destinationname file="filename.ext";

The valid destinationnames include pdf, rtf, latex, and others. SAS refers to these
file types as “destinations.” It is possible to have multiple destinations open at the same
time. For destinations other than listing (the output window), the destination must be
closed before the results can be seen. This is done using the
ods destinationname close;

statement. Note that the default listing destination can also be closed; if there are no
output destinations open, no results can be seen.

A.7.3 ODS graphics

The ODS system also allows users to incorporate text and graphical output from a pro-
cedure in an integrated document. This is done by “turning on” ODS graphics using an
ods graphics on statement (as demonstrated in section 4.6.8), and then accepting default
graphics or requesting particular plots using a plots=plotnames option to the procedure
statement, where the valid plot names vary by procedure.

Special note for UNIX users: To generate ODS Graphics output in UNIX batch jobs,
you must set the DISPLAY system option before creating the output. To set the display,
enter the following command in the shell.

export DISPLAY=<ip_address>:0 (Korn shell)

DISPLAY=<ip_address>:0
export DISPLAY (Bourne shell)

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 258 — #278
�

�

�

�

�

�

258 APPENDIX A. INTRODUCTION TO SAS

setenv DISPLAY=<ip_address>:0 (C shell)

In the above, ip_address is the fully qualified domain name or IP address, or the
name of a display. Usually, the IP address of the UNIX system where SAS is running
would be used. If you do not set the DISPLAY variable, then you get an error message
in the SAS log. Additional information for UNIX users can be found in the on-line help:
Contents; Using SAS Software in Your Operating Environment; SAS 9.2 Companion for
UNIX Environments.

A.8 The SAS Macro Facility: writing functions and
passing values

A.8.1 Writing functions

Unlike R, SAS does not provide a simple means for constructing functions which can be
integrated with other code. However, it does provide a text-replacement capacity called
the SAS Macro Language which can simplify and shorten code. The language also includes
looping capabilities. We demonstrate here a simple macro to change the predictor in a
simple linear regression example.

%macro reg1 (pred=);

proc reg data=ds;

model y = &pred;

run;

%mend reg1;

In this example, we define the new macro by name (reg1) and define a single parameter
which will be passed in the macro call; this will be referred to as pred within the macro.
To replace pred with the submitted value, we use &pred. Thus the macro will run proc
reg (3.1.1) with whatever text is submitted as the predictor of the outcome y. This macro
would be called as follows.
%reg1(pred=x1);

When the %macro statements and the %reg1 statement are run, SAS sees the following.

proc reg data=ds;

model y = x1;

run;

If four separate regressions were required, they could then be run in four statements.

%reg1(pred=x1);

%reg1(pred=x2);

%reg1(pred=x3);

%reg1(pred=x4);

As with the Output Delivery System, SAS macros are a much broader topic than can
be fully explored here. For a full introduction to its uses and capabilities, see the on-line
help: Contents; SAS Products; Base SAS; SAS 9.2 Macro Language: Reference.

A.8.2 SAS macro variables

SAS also includes what are known as macro variables. Unlike SAS macros, macro variables
are values that exist during SAS runs and are not stored within datasets. In general, a
macro variable is defined with a %let statement.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 259 — #279
�

�

�

�

�

�

A.9. MISCELLANEA 259

%let macrovar=chars;

Note that the %let statement need not appear within a data step; it is a global state-
ment. The value is stored as a string of characters, and can be referred to as ¯ovar.
data ds;

newvar=¯ovar;

run;

or
title "This is the ¯ovar";

In the above example, the double quotes in the title statement allow the text within
to be processed for the presence of macro variables. Enclosing the title text in single quotes
will result in ¯ovar appearing in the title, while the code above will replace ¯ovar
with the value of the macrovar macro variable.

While this basic application of macro variables is occasionally useful in coding, a more
powerful application is to generate the macro variables within a SAS data step. This can
be done using a call symput function as shown in 2.6.4.

data _null_;

...

call symput('macrovar', x);

run;

This makes a new macro variable named macrovar which has the value of the variable
x. The _null_ dataset is a special SAS dataset which is not saved. It is efficient to use it
when there is no need for a stored dataset.

A.9 Miscellanea

Official documentation provided by SAS refers to, for example PROC GLM. However, SAS
is not case sensitive, with few exceptions. In this text we use lower case throughout. We
find lower case easier to read, and prefer the ease of typing (both for coding and book
composition) in lower case.

Since statements are separated by semicolons, multiple statements may appear on one
line and statements may span lines. We usually type one statement per line in the text (and
in practice), however. This prevents statements being overlooked among others appearing
in the same line. In addition, we indent statements within a data step or proc, to clarify
the grouping of related commands.

We prefer the fine control available through text-based commands. However, some peo-
ple may prefer a point-and-click interface to the analytic tools available. SAS provides the
SAS/Analyst application for such an approach; more information can be found at http://
support.sas.com/rnd/app/da/analyst/overview.html. Another product is SAS/LAB;
see http://www.sas.com/products/lab for more information on this. A third option is
SAS/INSIGHT (http://support.sas.com/documentation/onlinedoc/insight/ index).
These options may already be available in your installation.

SAS includes both run and quit statements. The run statement tells SAS to act on
the code submitted since the most recent run statement (or since startup, if there has been
no run statement submitted thus far). Some procedures allow multiple steps within the
procedure without having to end it; key procedures which allow this are proc gplot and
proc reg. This might be useful for model fitting and diagnostics with particularly large
datasets in proc reg. In general, we find it a nuisance in graphics procedures, because
the graphics are sometimes not actually drawn until the quit statement is entered. In the

© 2010 by Taylor and Francis Group, LLC

http://support.sas.com
http://support.sas.com
http://www.sas.com
http://support.sas.com

�

�

“book” — 2009/6/16 — 16:53 — page 260 — #280
�

�

�

�

�

�

260 APPENDIX A. INTRODUCTION TO SAS

examples, we use the run statement in general and the quit statement when necessary,
without further comment.

We find the SAS GUI to be a comfortable work environment and an aid to productivity.
However, SAS can be easily run in batch mode. To use SAS this way, compose code in the
text editor of your choice. Save the file (a .sas extension would be appropriate), then find it
in the operating system. In Windows, a right-click on the file will bring up a list of potential
actions, one of which is “Batch Submit with SAS 9.2.” If this option is selected, SAS will
run the file without opening the GUI. The output will be saved in the same directory with
the same name but with a .lst extension; the log will be saved in the same directory with
the same name but with a .log extension. Both output files are plain text files.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 261 — #281
�

�

�

�

�

�

Appendix B

Introduction to R

This chapter provides a (brief) introduction to R, a powerful and extensible free software
environment for statistical computing and graphics [38, 63]. The chapter includes a short
history, installation information, a sample session, background on fundamental structures
and actions, information about help and documentation, and other important topics.

R is a general purpose package that includes support for a wide variety of modern
statistical and graphical methods (many of which are included through user contributed
packages). It is available for most UNIX platforms, Windows and MacOS. R is part of
the GNU project, and is distributed under a free software copyleft (http://www.gnu.org/
copyleft/gpl.html). The R Foundation for Statistical Computing holds and administers
the copyright of R software and documentation.

The first versions of R were written by Ross Ihaka and Robert Gentleman at the Uni-
versity of Auckland, New Zealand, while current development is coordinated by the R
Development Core Team, a committed group of volunteers. As of January 2009 this con-
sisted of Douglas Bates, John Chambers, Peter Dalgaard, Seth Falcon, Robert Gentleman,
Kurt Hornik, Stefano Iacus, Ross Ihaka, Friedrich Leisch, Thomas Lumley, Martin Maech-
ler, Duncan Murdoch, Paul Murrell, Martyn Plummer, Brian Ripley, Deepayan Sarkar,
Duncan Temple Lang, Luke Tierney, and Simon Urbanek. Many hundreds of other people
have contributed to the development of R or developed add-on libraries and packages on a
volunteer basis.

R is similar to the S language, a flexible and extensible statistical environment originally
developed in the 1980’s at AT&T Bell Labs (now Lucent Technologies). Insightful Corpo-
ration has continued the development of S in their commercial software package S-PLUS™.

New users are encouraged to download and install R from the Comprehensive R archive
network (CRAN, section B.1), complete the sample session in the Appendix of the In-
troduction to R document, also available from CRAN (see section B.2), then review this
chapter.

B.1 Installation

The home page for the R project, located at http://r-project.org, is the best starting
place for information about the software. It includes links to CRAN, which features pre-
compiled binaries as well as source code for R, add-on packages, documentation (including
manuals, frequently asked questions, and the R newsletter) as well as general background
information. Mirrored CRAN sites with identical copies of these files exist all around the
world. Updates are regularly posted on CRAN, which must be downloaded and installed.

261

© 2010 by Taylor and Francis Group, LLC

http://www.gnu.org
http://www.gnu.org
http://r-project.org

�

�

“book” — 2009/6/16 — 16:53 — page 262 — #282
�

�

�

�

�

�

262 APPENDIX B. INTRODUCTION TO R

Figure B.1: R Windows graphical user interface

B.1.1 Installation under Windows

Pre-compiled distributions of R for Windows 95, 98, ME, NT4, 2000, XP, 2003 Server
and Vista are available at CRAN. Two versions of the executable are available: Rgui.exe,
which launches a self-contained windowing system that includes a command-line interface,
and Rterm.exe which is suitable for batch or command-line use. A screenshot of the R
graphical user interface (GUI) can be found in Figure B.1. More information on Windows
specific issues can be found in the CRAN R for Windows FAQ (http://cran.r-project.
org/bin/windows/base/rw-FAQ.html).

B.1.2 Installation under Mac OS X

A pre-compiled universal binary for Mac OS X 10.4.4 and higher is available at CRAN. This
is distributed as a disk image containing the installer. In addition to the graphical interface
version, a command line version (particularly useful for batch operations) can be run as the
command R. A screenshot of the graphical interface can be found in Figure B.2. The GUI
includes a mechanism to save and load the history of commands from within an interactive
session. More information on Macintosh specific issues can be found in the CRAN R for
Mac OS X FAQ (http://cran.r-project.org/bin/macosx/RMacOSX-FAQ.html).

B.1.3 Installation under Linux

Pre-compiled distributions of R binaries are available for the Debian, Redhat (Fedora), Suse
and Ubuntu Linux, and detailed information on installation can be found at CRAN. There
is no built-in graphical user interface for Linux (but see the R Commander project [24]).

© 2010 by Taylor and Francis Group, LLC

http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org

�

�

“book” — 2009/6/16 — 16:53 — page 263 — #283
�

�

�

�

�

�

B.2. RUNNING R AND SAMPLE SESSION 263

Figure B.2: R Mac OS X graphical user interface

B.2 Running R and sample session

Once installation is complete, the recommended next step for a new user would be to start
R and run a sample session. An example from the command line interface within Mac OS
X is given in Figure B.2.

The ‘>’ character is the prompt, and commands are executed once the user presses the
RETURN key. R can be used as a calculator (as seen from the first two commands on lines
1-4). New variables can be created (as on lines 5 and 8) using the assignment operator <-.
If a command generates output (as on lines 6-7 and 11-12), then it is printed on the screen,
preceded by a number indicating place in the vector (this is particularly useful if output is
longer than one line, e.g., lines 24-25). A dataframe (akin to a dataset in SAS, here assigned
the name ds) is read into R on line 15, then summary statistics are calculated (lines 22-23)
and individual observations are displayed (lines 23-25). The $ operator allows direct access
to objects within a dataframe. Alternatively the attach() command can be used to make
objects within a dataset available in the global workspace from that point forward.

Unlike SAS, R is case sensitive:
> x <- 1:3
> X <- seq(2, 4)
> x
[1] 1 2 3
> X
[1] 2 3 4

A very comprehensive sample session in R can be found in the Appendix A of An
Introduction to R [94] (http://cran.r-project.org/doc/manuals/R-intro.pdf). New
users to R will find it helpful to run the commands from that sample session .

© 2010 by Taylor and Francis Group, LLC

http://cran.r-project.org

�

�

“book” — 2009/6/16 — 16:53 — page 264 — #284
�

�

�

�

�

�

264 APPENDIX B. INTRODUCTION TO R

% R

R version 2.8.1 (2008-12-22)

Copyright (C) 2008 The R Foundation for Statistical Computing

ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or

'help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

1 > 3+6

2 [1] 9

3 > 2*3

4 [1] 6

5 > x <- c(4, 5, 3, 2)

6 > x

7 [1] 4 5 3 2

8 > y <- seq(1, 4)

9 > y

10 [1] 1 2 3 4

11 > mean(x)

12 [1] 3.5

13 > sd(y)

14 [1] 1.290994

15 > ds <- read.csv("http://www.math.smith.edu/sasr/datasets/help.csv")

16 > mean(ds$age)

17 [1] 35.65342

18 > mean(age)

19 Error in mean(age) : object "age" not found

20 > attach(ds)

21 > mean(age)

22 [1] 35.65342

23 > age[1:30]

24 [1] 37 37 26 39 32 47 49 28 50 39 34 58 53 58 60 36 28 35 29 27 27

25 [22] 41 33 34 31 39 48 34 32 35

26 > detach(ds)

27 > q()

28 Save workspace image? [y/n/c]: n

Figure B.3: Sample session in R

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 265 — #285
�

�

�

�

�

�

B.3. LEARNING R AND GETTING HELP 265

B.2.1 Replicating examples from the book and sourcing commands

To help facilitate reproducibility, R commands can be bundled into a plain text file, called a
“script” file, which can be executed using the source() command. The optional argument
echo=TRUE for the source() command can be set to display each command and its output.
The book website cited above includes the R source code for the examples. The sample
session in Figure B.2 can be executed by running:
> source("http://www.math.smith.edu/sasr/examples/sampsess.R", echo=TRUE)

while most of the examples at the end of each chapter can be executed by running:
> source("http://www.math.smith.edu/sasr/examples/chapterX.R", echo=TRUE)

where X is replaced by the desired chapter number. Many add-on packages need to be
installed prior to running the examples (see B.6.1). To facilitate this process, we have
created a script file to load them in one step:
> source("http://www.math.smith.edu/sasr/examples/install.R", echo=TRUE)

If these libraries are not installed (B.6.1), the example files at the end of the chapters
will generate error messages.

B.2.2 Batch mode

In addition, R can be run in batch (non-interactive) mode from a command line interface:

% R CMD BATCH file.R

This will run the commands contained within file.R and put all output into file.Rout.
Special note for Windows users: to use R in batch mode, you will need to include

R.exe in your path. In Windows XP, this can be accomplished as follows, assuming the
default installation directory set up for R version 2.8.1. For other versions or non-default
installations, the appropriate directory needs to be specified in the last step.

1. Right-click on “My Computer”

2. Click “Properties”

3. Select “Advanced” tab

4. Press “Environment Variables” button

5. Click “Path” (to highlight it)

6. Add c:\program files\R\R-2.8.1\bin

Once this is set up, the previously described R CMD BATCH syntax will work.

B.3 Learning R and getting help

As mentioned previously, an excellent starting point with R can be found in the Introduction
to R, available from CRAN.

The system features extensive on-line documentation, though as with SAS, these can
sometimes be challenging to comprehend. Each command in R has an associated help file
that describes usage, lists arguments, provides details of actions, references, lists other re-
lated functions, and includes examples of its use. The help system is invoked using the
command:

© 2010 by Taylor and Francis Group, LLC

http://www.math.smith.edu
http://www.math.smith.edu
http://www.math.smith.edu

�

�

“book” — 2009/6/16 — 16:53 — page 266 — #286
�

�

�

�

�

�

266 APPENDIX B. INTRODUCTION TO R

> ?function

or

> help(function)

where function is the name of the function of interest. As an example, the help file
for the mean() function is accessed by the command help(mean). The output from this
command is provided in Figure B.3. It describes the mean() function as a generic function
for the (trimmed) arithmetic mean, with arguments x (an R object), trim (the fraction
of observations to trim, default = 0, trim = 0.5 is equivalent to the median), and na.rm
(should missing values be deleted, default is na.rm=F). The function is described as returning
a vector with the appropriate mean applied column by column. Related functions include
weighted.mean() and mean.POSIXct(). Examples of many functions are available using
the example() function:

> example(mean)
mean> x <- c(0:10, 50)
mean> xm <- mean(x)
mean> c(xm, mean(x, trim = 0.10))
[1] 8.75 5.50

mean> mean(USArrests, trim = 0.2)
Murder Assault UrbanPop Rape
7.42 167.60 66.20 20.16

Other useful resources are help.start(), which provides a set of online manuals and
help.search(), which can be used to look up entries by description. The apropos()
command returns any functions in the current search list that match a given pattern (which
facilitates searching for a function based on what it does, as opposed to its name).

Other resources for help available from CRAN include the Introduction to R (described
earlier) and the R-help mailing list (see also section B.7, support). New users are also
encouraged to read the R FAQ (frequently asked questions) list.

B.4 Fundamental structures: objects, classes, and re-
lated concepts

Here we provide a brief introduction to R data structures. The Introduction to R (discussed
in section B.2) provides more comprehensive coverage.

B.4.1 Objects and vectors

Almost everything in R is an object, which may be initially disconcerting to a new user. An
object is simply something that R can operate on. Common objects include vectors, matri-
ces, arrays, factors (see 1.4.12), dataframes (akin to datasets in SAS), lists, and functions.

The basic variable structure is a vector. Vectors can be created using the <- assignment
operator (which assigns the evaluated expression on the right hand side of the operator to
the object on the left hand side). For example:

> x <- c(5, 7, 9, 13, -4, 8)

creates a vector of length 6 using the c() function to concatenate scalars. Another as-
signment operator is =, which is generally recommended for the specification of options for

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 267 — #287
�

�

�

�

�

�

B.4 FUNDAMENTAL STRUCTURES 267

mean package:base R Documentation

Arithmetic Mean

Description:

Generic function for the (trimmed) arithmetic mean.

Usage:

mean(x, ...)

Default S3 method:

mean(x, trim = 0, na.rm = FALSE, ...)

Arguments:

x: An R object. Currently there are methods for numeric data

frames, numeric vectors and dates. A complex vector is

allowed for 'trim = 0', only.

trim: the fraction (0 to 0.5) of observations to be trimmed from

each end of 'x' before the mean is computed. Values of trim

outside that range are taken as the nearest endpoint.

na.rm: a logical value indicating whether 'NA' values should be

stripped before the computation proceeds.

...: further arguments passed to or from other methods.

Value:

For a data frame, a named vector with the appropriate method being

applied column by column.

If 'trim' is zero (the default), the arithmetic mean of the values

in 'x' is computed, as a numeric or complex vector of length one.

If 'x' is not logical (coerced to numeric), integer, numeric or

complex, 'NA' is returned, with a warning.

If 'trim' is non-zero, a symmetrically trimmed mean is computed

with a fraction of 'trim' observations deleted from each end

before the mean is computed.

References:

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S

Language_. Wadsworth & Brooks/Cole.

See Also:

'weighted.mean', 'mean.POSIXct'

Examples:

x <- c(0:10, 50)

xm <- mean(x)

c(xm, mean(x, trim = 0.10))

mean(USArrests, trim = 0.2)

Figure B.4: Documentation on the mean() function

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 268 — #288
�

�

�

�

�

�

268 APPENDIX B. INTRODUCTION TO R

functions rather than assignment. Other assignment operators exist, as well as the assign()
function (see section 1.11.5 or help("<-") for more information).

B.4.2 Indexing

Since vector operations are so common in R, it is important to be able to access (or index)
elements within these vectors. Many different ways of indexing vectors are available. Here,
we introduce several of these, using the above example. The command x[2] would return
the second element of x (the scalar 7), and x[c(2,4)] would return the vector (7,13). The
expressions x[c(T,T,T,T,T,F)], x[1:5] and x[-6] (all elements except the 6th) would all
return a vector consisting of the first five elements in x. Knowledge and basic comfort with
these approaches to vector indexing is important to effective use of R.

Operations should be carried out wherever possible in a vector fashion (this is different
from SAS, where data manipulation operations are typically carried out an observation at
a time). For example, the expression:
> x>8
[1] FALSE FALSE TRUE TRUE FALSE FALSE
demonstrates the use of comparison operators. Only the third and fourth elements of x
are greater than 8. The function returns a logical value of either TRUE or FALSE. A count
of elements meeting the condition can be generated using the sum() function:
sum(x>8)
[1] 2
The code to create a vector of values greater than 8 is given by:
> largerthan8 <- x[x>8]
> largerthan8
[1] 9 13
in which x[x>8] can be interpreted as “the elements of x for which x is greater than 8.”
This is a difficult construction for some new users. Examples of its application in the book
can be found in sections 1.4.14 and 1.13.2.

Other comparison operators include == (equal), >= (greater than or equal), <= (less
than or equal and != (not equal). Care needs to be taken in the comparison using == if
non-integer values are present (see 1.8.5).

B.4.3 Operators

There are many operators defined in R to carry out a variety of tasks. Many of these
were demonstrated in the sample section (assignment, arithmetic) and above examples
(comparison). Arithmetic operations include +, -, *, /, ˆ (exponentiation), %% (modulus),
and &/& (integer division). More information about operators can be found using the help
system (e.g., ?"+"). Background information on other operators and precedence rules can
be found using help(Syntax).

R supports Boolean operations (OR, AND, NOT, and XOR) using the |, &, ! operators
and the xor() function, respectively.

B.4.4 Matrices

Matrices are rectangular objects with two dimensions. We can create a 2×3 matrix, display
it, and test for its type with the commands:

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 269 — #289
�

�

�

�

�

�

B.4 FUNDAMENTAL STRUCTURES 269

> A <- matrix(x, 2, 3)
> A

[,1] [,2] [,3]
[1,] 5 9 -4
[2,] 7 13 8
> # is A a matrix?
> is.matrix(A)
[1] TRUE
> is.vector(A)
[1] FALSE
> is.matrix(x)
[1] FALSE

Note that comments are supported within R (any input given after a # character is
ignored).

Indexing for matrices is done in a similar fashion as for vectors, albeit with a second
dimension (denoted by a comma):

> A[2,3]
[1] 8
> A[,1]
[1] 5 7
> A[1,]
[1] 5 9 -4

B.4.5 Dataframes

The main way to access data with R is through a dataframe, which is more general than
a matrix. This rectangular object, similar to a dataset in SAS, can be thought of as a
matrix with columns of vectors of different types (as opposed to a matrix, which consists of
vectors of the same type). The functions data.frame(), read.csv(), (see section 1.1.4),
and read.table() (see 1.1.2) return dataframe objects. A simple dataframe can be created
using the data.frame() command. Access to sub-elements is achieved using the $ operator
as shown below (see also help(Extract)).

In addition, operations can be performed by column (e.g., calculation of sample
statistics):

> y <- rep(11, length(x))
> y
[1] 11 11 11 11 11 11
> ds <- data.frame(x, y)
> ds

x y
1 5 11
2 7 11
3 9 11
4 13 11
5 -4 11
6 8 11

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 270 — #290
�

�

�

�

�

�

270 APPENDIX B. INTRODUCTION TO R

> is.data.frame(ds)
[1] TRUE
> ds$x[3]
[1] 9
> mean(ds)

x y
6.333333 11.000000
> sd(ds)

x y
5.715476 0.000000

Note that use of data.frame() differs from the use of cbind(), which yields a matrix
object:

> y <- rep(11, length(x))
> y
[1] 11 11 11 11 11 11
> newmat <- cbind(x, y)
> newmat

x y
[1,] 5 11
[2,] 7 11
[3,] 9 11
[4,] 13 11
[5,] -4 11
[6,] 8 11
> is.data.frame(newmat)
[1] FALSE
> is.matrix(newmat)
[1] TRUE

Dataframes can be conceived as the equivalent of datasets in SAS. They can be created from
matrices using as.data.frame(), while matrices can be constructed using as.matrix().

Dataframes can be attached using the attach(ds) command (see 1.3.1). After this
command, individual columns can be referenced directly (i.e. x instead of ds$x). By default,
the dataframe is second in the search path (after the local workspace and any previously
loaded packages or dataframes). Users are cautioned that if there is a variable x in the local
workspace, this will be referenced instead of ds$x, even if attach(ds) has been run. Name
conflicts of this type are a common problem and care should be taken to avoid them.

The search() function lists attached packages and objects. To avoid cluttering the
name-space, the command detach(ds) should be used once the dataframe is no longer
needed. The with() and within() commands (see 1.3.1) can also be used to simplify
reference to an object within a dataframe without attaching.

Sometimes a package (section B.6.1) will define a function (section B.5) with the same
name as an existing function. If this occurs, packages can be detached using the syntax
detach("package:PKGNAME"), where PKGNAME is the name of the package (see 4.6.5).

The names of all variables within a given dataset (or more generally for sub-objects
within an object) are provided by the names() command. The names of all objects defined
within an R session can be generated using the objects() and ls() commands, which
return a vector of character strings.

The print() and summary() functions can be used to display brief or more extensive
descriptions, respectively, of an object. Running print(object) at the command line is
equivalent to just entering the name of the object, i.e. object.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 271 — #291
�

�

�

�

�

�

B.5. BUILT-IN AND USER-DEFINED FUNCTIONS 271

B.4.6 Attributes and classes

Objects have a set of associated attributes (such as names of variables, dimensions, or
classes) which can be displayed or sometimes changed. While a powerful concept, this can
often be initially confusing. For example, we can find the dimension of the matrix defined
earlier:
> attributes(A)
$dim
[1] 2 3

Other types of objects within R include lists (ordered objects that are not necessarily
rectangular), regression models (objects of class lm), and formulas (e.g., y ∼ x1 + x2).
Examples of the use of formulas can be found in sections 2.4.1 and 3.1.1.

Many objects within R have an associated Class attribute, which cause that object to
inherit properties depending on the class. Many functions have special capabilities when
operating on a particular class. For example, when summary() is applied to a lm object,
the summary.lm() function is called, while summary.aov() is called when an aov object is
given as argument. The class() function returns the classes to which an object belongs,
while the methods() function displays all of the classes supported by a function (e.g.,
methods(summary)).

The attributes() command displays the attributes associated with an object, while
the typeof() function provides information about the object (e.g., logical, integer, double,
complex, character, and list).

The options() function in R can be used to change various default behaviors, for
example, the default number of digits to display in output (options(digits=n) where n is
the preferred number). The command help(options) lists all of the other settable options.

B.5 Built-in and user-defined functions

B.5.1 Calling functions

Fundamental actions within R are carried out by calling functions (either built-in or user-
defined), as seen previously. Multiple arguments may be given, separated by commas.
The function carries out operations using these arguments using a series of pre-defined
expressions, then returns values (an object such as a vector or list) that are displayed (by
default) or saved by assignment to an object.

As an example, the quantile() function takes a vector and returns the minimum, 25th
percentile, median, 75th percentile and maximum, though if an optional vector of quantiles
is given, those are calculated instead:

> vals <- rnorm(1000) # generate 1000 standard normals
> quantile(vals)

0% 25% 50% 75% 100%
-3.1180 -0.6682 0.0180 0.6722 2.8629
> quantile(vals, c(.025, .975))
2.5% 97.5%
-2.05 1.92

Return values can be saved for later use.

> res <- quantile(vals, c(.025, .975))
> res[1]
2.5%
-2.05

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 272 — #292
�

�

�

�

�

�

272 APPENDIX B. INTRODUCTION TO R

Options are available for many functions. These are named arguments for the func-
tion, and are generally added after the other arguments, also separated by commas. The
documentation specifies the default action if named arguments (options) are not specified.
For the quantile() function, there is a type() option which allows specification of one of
nine algorithms for calculating quantiles. Setting type=3 specifies the “nearest even order
statistic” option, which is the default for SAS:
res <- quantile(vals, c(.025, .975), type=3)

Some functions allow a variable number of arguments. An example is the paste()
function (see usage in 1.4.5). The calling sequence is described in the documentation as:
paste(..., sep=" ", collapse=NULL)

To override the default behavior of a space being added between elements output by
paste(), the user can specify a different value for sep.

B.5.2 Writing functions

One of the strengths of R is its extensibility, which is facilitated by its programming interface.
A new function is defined by the syntax function(arglist) body. The body is made up
of a series of R commands (or expressions). Here, we demonstrate a function to calculate
the estimated confidence interval for a mean from section 2.1.7.
calculate a t confidence interval for a mean
ci.calc <- function(x, ci.conf=.95) {

sampsize <- length(x)
tcrit <- qt(1-((1-ci.conf)/2), sampsize)
mymean <- mean(x)
mysd <- sd(x)
return(list(civals=c(mymean-tcrit*mysd/sqrt(sampsize),

mymean+tcrit*mysd/sqrt(sampsize)),
ci.conf=ci.conf))

}
Here the appropriate quantile of the T distribution is calculated using the qt() function,

and the appropriate confidence interval is calculated and returned as a list. The function is
stored in the object ci.calc, which can then be run interactively.
> ci.calc(x)
$civals
[1] 0.6238723 12.0427943
$ci.conf
[1] 0.95
If only the lower confidence interval is needed, this can be saved as an object:
> lci <- ci.calc(x)$civals[1]
> lci
[1] 0.6238723
The default confidence level is 95%; this can be changed by specifying a different value:
> ci.calc(x, ci.conf=.90)
$civals
[1] 1.799246 10.867421

$ci.conf
[1] 0.9
This is equivalent to running ci.calc(x, .90). Other sample R programs can be found
in sections 1.4.17 and 2.6.4.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 273 — #293
�

�

�

�

�

�

B.6. ADD-ONS: LIBRARIES AND PACKAGES 273

B.5.3 The apply family of functions

Operations within R are most efficiently carried out using vector or list operations rather
than looping. The apply() function can be used to perform many actions that would be
implemented within a data step (section A.4) within SAS. While somewhat subtle, the
power of the vector language can be seen in this example. The apply() command is used
to calculate column means or row means of the previously defined matrix in one fell swoop:

> A
[,1] [,2] [,3]

[1,] 5 9 -4
[2,] 7 13 8
> apply(A, 2, mean)
[1] 6 11 2
> apply(A, 1, mean)
[1] 3.333333 9.333333

Option 2 specifies that the mean should be calculated for each column, while option 1 cal-
culates the mean of each row. Here we see some of the flexibility of the system, as functions
in R (such as mean()) are also objects that can be passed as arguments to functions.

Other related functions include lapply(), which is helpful in avoiding loops when using
lists, sapply() (see 1.3.2), and mapply() to do the same for dataframes and matrices,
respectively, and tapply() (see 2.1.2) to perform an action on subsets of an object.

B.6 Add-ons: libraries and packages

B.6.1 Introduction to libraries and packages

Additional functionality in R is added through packages, which consist of libraries of bundled
functions, datasets, examples and help files that can be downloaded from CRAN. The
function install.packages() or the windowing interface under Packages and Data must
be used to download and install packages. The library() function can be used to load
a previously installed library (that has been previously made available through use of the
install.packages() function). As an example, to install and load the Hmisc package, two
commands are needed:

install.packages("Hmisc")
library(Hmisc)

Once a package has been installed, it can be loaded whenever a new session of R is run by
executing the function library(libraryname).

If a package is not installed, running the library() command will yield an error. Here
we try to load the Zelig package (which had not yet been installed):

> library(Zelig)
Error in library(Zelig) : there is no package called 'Zelig'

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 274 — #294
�

�

�

�

�

�

274 APPENDIX B. INTRODUCTION TO R

> install.packages("Zelig")
trying URL 'http://cran.stat.auckland.ac.nz/bin/macosx/universal/contrib/

2.8/Zelig_3.3-1.tgz'
Content type 'application/x-tar' length 14634987 bytes (14.0 Mb)
opened URL
==
downloaded 14.0 Mb
The downloaded packages are in
/var/folders/ZI/ZIno+Dwy900va3+TU/-Tmp-//RtmpTaETVO/downloaded_packages
> library(Zelig)
Loading required package: MASS
Loading required package: boot
##
Zelig (Version 3.3-1, built: 2008-06-13)
Please refer to http://gking.harvard.edu/zelig for full documentation
or help.zelig() for help with commands and models supported by Zelig.
##

A user can test whether a package is available by running require(packagename); this
will load the library if it is installed, and generate an error message if it is not. The
update.packages() function should be run periodically to ensure that packages are up-to-
date.

As of March 2009, there were 1,705 packages available from CRAN. While each of these
has met a minimal standard for inclusion, it is important to keep in mind that packages
within R are created by individuals or small groups, and not endorsed by the R core group.
As a result, they do not necessarily undergo the same level of testing and quality assurance
that the core R system does.

B.6.2 CRAN task views

A very useful resource for finding packages are the Task Views on CRAN (http://cran.
r-project.org/web/views). These are listings of notable packages within a particular
application area (such as multivariate statistics, psychometrics, or survival analysis).

B.6.3 Installed libraries and packages

Running the command library(help="libraryname")) will display information about an
installed package. Entries in the book that utilize packages include a line specifying how to
access that library (e.g., library(foreign)).

As of January 2009, the R distribution comes with the following packages:

base Base R functions

datasets Base R datasets

grDevices Graphics devices for base and grid graphics

graphics R functions for base graphics

grid A rewrite of the graphics layout capabilities, plus some support for interaction

methods Formally defined methods and classes for R objects, plus other programming
tools

splines Regression spline functions and classes

© 2010 by Taylor and Francis Group, LLC

http://cran.stat.auckland.ac.nz
http://gking.harvard.edu
http://cran.r-project.org
http://cran.r-project.org

�

�

“book” — 2009/6/16 — 16:53 — page 275 — #295
�

�

�

�

�

�

B.6. ADD-ONS: LIBRARIES AND PACKAGES 275

stats R statistical functions

stats4 Statistical functions using S4 classes

tcltk Interface and language bindings to Tcl/Tk GUI elements

tools Tools for package development and administration

utils R utility functions

These are available without having to run the library() command and are effectively part
of R.

B.6.4 Packages referenced in this book

Other packages utilized in the book include:

boot Bootstrap R (S-Plus) functions (Canty) [8]

circular Circular statistics [51]

coda Output analysis and diagnostics for MCMC [61]

coin Conditional inference procedures in a permutation test framework [37]

ellipse Functions for drawing ellipses and ellipse-like confidence regions [55]

elrm Exact logistic regression via MCMC [103]

epitools Epidemiology tools [4]

foreign Read data stored by Minitab, S, SAS, SPSS, Stata, Systat, dBase, ... [62]

gam Generalized additive models [30]

gee Generalized estimation equation solver [86]

ggplot2 An implementation of the Grammar of Graphics [100]

gmodels Various R programming tools for model fitting [97]

gtools Various R programming tools [96]

Hmisc Harrell miscellaneous [29]

irr Various coefficients of inter-rater reliability and agreement [25]

lattice Lattice graphics [73]

lme4 Linear mixed-effects models using S4 classes [5]

MCMCpack Markov chain Monte Carlo (MCMC) package [52]

mice Multivariate imputation by chained equations [93]

multcomp Simultaneous inference in general parametric models [36]

multilevel Multilevel functions [6]

nlme Linear and nonlinear mixed effects models [60]

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 276 — #296
�

�

�

�

�

�

276 APPENDIX B. INTRODUCTION TO R

plotrix Various plotting functions [44]

prettyR Pretty descriptive stats [45]

pscl Political science computational laboratory, Stanford University [104]

quantreg Quantile regression [42]

reshape Flexibly reshape data [99]

ROCR Visualizing the performance of scoring classifiers [81]

rpart Recursive partitioning [84]

survey Analysis of complex survey samples [50]

survival Survival analysis, including penalised likelihood [85]

vcd Visualizing categorical data [54]

VGAM Vector generalized linear and additive models [102]

XML Tools for parsing and generating XML within R and S-Plus [83]

Zelig Everyone’s statistical software: an easy-to-use program that can estimate, and help
interpret the results of, an enormous range of statistical models [39]

These must be downloaded, installed, and loaded prior to use (see install.packages(),
require() and library()). To facilitate this process, we have created a script file to load
these in one step (see B.2.1).

B.6.5 Datasets available with R

A number of data sets are available within the datasets package. The data() function
lists these, while the optional package option can be used to specify datasets from within
a specific package.

B.7 Support and bugs

Since R is a free software project written by volunteers, there are no paid support options
available directly from the R Foundation. However, extensive resources are available to help
users.

In addition to the manuals, FAQ’s, newsletter, wiki, task views and books listed on
the www.r-project.org web page, there are a number of mailing lists that exist to help
answer questions. Because of the volume of postings, it is important to carefully read the
posting guide at http://www.r-project.org/posting-guide.html prior to submitting
a question. These guidelines are intended to help leverage the value of the list, to avoid
embarrassment, and to optimize the allocation of limited resources to technical issues.

As in any general purpose statistical software package, bugs exist. More information
about the process of determining whether and how to report a problem can be found using
help(bug.report() (please also review the R FAQ).

© 2010 by Taylor and Francis Group, LLC

http://www.r-project.org
http://www.r-project.org

�

�

“book” — 2009/6/16 — 16:53 — page 277 — #297
�

�

�

�

�

�

Appendix C

The HELP study dataset

C.1 Background on the HELP study

Data from the HELP (Health Evaluation and Linkage to Primary Care) study are used to
illustrate many of the entries in R and SAS. The HELP study was a clinical trial for adult
inpatients recruited from a detoxification unit. Patients with no primary care physician were
randomized to receive a multidisciplinary assessment and a brief motivational intervention
or usual care, with the goal of linking them to primary medical care. Funding for the
HELP study was provided by the National Institute on Alcohol Abuse and Alcoholism
(R01-AA10870, Samet PI) and National Institute on Drug Abuse (R01-DA10019, Samet
PI).

Eligible subjects were adults, who spoke Spanish or English, reported alcohol, heroin
or cocaine as their first or second drug of choice, resided in proximity to the primary care
clinic to which they would be referred or were homeless. Patients with established primary
care relationships they planned to continue, significant dementia, specific plans to leave the
Boston area that would prevent research participation, failure to provide contact information
for tracking purposes, or pregnancy were excluded.

Subjects were interviewed at baseline during their detoxification stay and follow-up
interviews were undertaken every 6 months for 2 years. A variety of continuous, count,
discrete, and survival time predictors and outcomes were collected at each of these five
occasions.

The details of the randomized trial along with the results from a series of additional
analyses have been published [71, 66, 35, 47, 41, 70, 69, 79, 43, 101].

C.2 Roadmap to analyses of the HELP dataset

Table C.1 summarizes the analyses illustrated using the HELP dataset. These analyses
are intended to help illustrate the methods described in the book. Interested readers are
encouraged to review the published data from the HELP study for substantive analyses.

Table C.1: Analyses undertaken using the HELP dataset

Description section (page)
Data input and output 1.13.1 (p.51)
Summarize data contents 1.13.1 (p.51)
Data display 1.13.2 (p.54)

277

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 278 — #298
�

�

�

�

�

�

278 APPENDIX C. THE HELP STUDY DATASET

Derived variables and data manipulation 1.13.3 (p.55)
Sorting and subsetting 1.13.4 (p.61)
Summary statistics 2.6.1 (p.78)
Exploratory data analysis 2.6.1 (p.78)
Bivariate relationship 2.6.2 (p.80)
Contingency tables 2.6.3 (p.82)
Two-sample tests 2.6.4 (p.85)
Survival analysis (logrank test) 2.6.5 (p.91)
Scatterplot with smooth fit 3.7.1 (p.111)
Linear regression with interaction 3.7.2 (p.113)
Regression diagnostics 3.7.3 (p.116)
Fitting stratified regression models 3.7.4 (p.119)
Two-way analysis of variance (ANOVA) 3.7.5 (p.120)
Multiple comparisons 3.7.6 (p.126)
Contrasts 3.7.7 (p.128)
Logistic regression 4.6.1 (p.146)
Poisson regression 4.6.2 (p.150)
Zero-inflated Poisson regression 4.6.3 (p.152)
Negative binomial regression 4.6.4 (p.154)
Quantile regression 4.6.5 (p.155)
Ordinal logit 4.6.6 (p.156)
Multinomial logit 4.6.7 (p.157)
Generalized additive model 4.6.8 (p.159)
Reshaping datasets 4.6.9 (p.160)
General linear model for correlated data 4.6.10 (p.164)
Random effects model 4.6.11 (p.166)
Generalized estimating equations model 4.6.12 (p.171)
Generalized linear mixed model 4.6.13 (p.172)
Proportional hazards regression model 4.6.14 (p.173)
Scatterplot with multiple y axes 5.6.1 (p.207)
Conditioning plot 5.6.2 (p.208)
Kaplan–Meier plot 5.6.3 (p.209)
ROC curve 5.6.4 (p.211)
Pairs plot 5.6.5 (p.213)
Visualize correlation matrix 5.6.6 (p.214)
Multiple imputation 6.5 (p.228)
Bayesian Poisson regression 6.6 (p.231)
Cronbach α 6.7.1 (p.233)
Factor analysis 6.7.2 (p.234)
Recursive partitioning 6.7.3 (p.237)
Linear discriminant analysis 6.7.4 (p.238)
Hierarchical clustering 6.7.5 (p.240)

C.3 Detailed description of the dataset

The Institutional Review Board of Boston University Medical Center approved all aspects of
the study, including the creation of the de-identified dataset. Additional privacy protection
was secured by the issuance of a Certificate of Confidentiality by the Department of Health
and Human Services.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 279 — #299
�

�

�

�

�

�

C.3. DETAILED DESCRIPTION OF THE DATASET 279

A de-identified dataset containing the variables utilized in the end of chapter examples
is available for download at the book website:
http://www.math.smith.edu/sasr/datasets/help.csv.

Variables included in the HELP dataset are described in Table C.2. A copy of the study
instruments can be found at: http://www.math.smith.edu/help.

Table C.2: Annotated description of variables in the HELP dataset

VARIABLE DESCRIPTION VALUES NOTE
a15a number of nights in overnight

shelter in past 6 months
0–180 see also homeless

a15b number of nights on the street in
past 6 months

0–180 see also homeless

age age at baseline (in years) 19–60
anysubstatus use of any substance post-detox 0=no,

1=yes
see also daysanysub

cesd∗ Center for Epidemiologic Studies
Depression scale

0–60 see also f1a–f1t

d1 how many times hospitalized for
medical problems (lifetime)

0–100

daysanysub time (in days) to first use of any
substance post-detox

0–268 see also anysubstatus

daysdrink time (in days) to first alcoholic
drink post-detox

0–270 see also drinkstatus

dayslink time (in days) to linkage to pri-
mary care

0–456 see also linkstatus

drinkstatus use of alcohol post-detox 0=no,
1=yes

see also daysdrink

drugrisk∗ Risk-Assessment Battery (RAB)
drug risk score

0–21 see also sexrisk

e2b∗ number of times in past 6 months
entered a detox program

1–21

f1a I was bothered by things that
usually don’t bother me

0–3#

f1b I did not feel like eating; my ap-
petite was poor

0–3#

f1c I felt that I could not shake off
the blues even with help from my
family or friends

0–3#

f1d I felt that I was just as good as
other people

0–3#

f1e I had trouble keeping my mind
on what I was doing

0–3#

f1f I felt depressed 0–3#

f1g I felt that everything I did was
an effort

0–3#

f1h I felt hopeful about the future 0–3#

f1i I thought my life had been a fail-
ure

0–3#

© 2010 by Taylor and Francis Group, LLC

http://www.math.smith.edu
http://www.math.smith.edu

�

�

“book” — 2009/6/16 — 16:53 — page 280 — #300
�

�

�

�

�

�

280 APPENDIX C. THE HELP STUDY DATASET

f1j I felt fearful 0–3#

f1k My sleep was restless 0–3#

f1l I was happy 0–3#

f1m I talked less than usual 0–3#

f1n I felt lonely 0–3#

f1o People were unfriendly 0–3#

f1p I enjoyed life 0–3#

f1q I had crying spells 0–3#

f1r I felt sad 0–3#

f1s I felt that people dislike me 0–3#

f1t I could not get going 0–3#

female gender of respondent 0=male,
1=female

g1b∗ experienced serious thoughts of
suicide (last 30 days)

0=no,
1=yes

homeless∗ 1 or more nights on the street or
shelter in past 6 months

0=no,
1=yes

see also a15a and a15b

i1∗ average number of drinks (stan-
dard units) consumed per day (in
the past 30 days)

0–142 see also i2

i2 maximum number of drinks
(standard units) consumed per
day (in the past 30 days)

0–184 see also i1

id random subject identifier 1–470
indtot∗ Index of Drug Abuse Conse-

quences (InDuc) total score
4–45

linkstatus post-detox linkage to primary
care

0=no,
1=yes

see also dayslink

mcs∗ SF-36 Mental Composite Score 7-62 see also pcs
pcrec∗ number of primary care visits in

past 6 months
0–2 see also linkstatus,

not observed at base-
line

pcs∗ SF-36 Mental Composite Score 14-75 see also mcs
pss_fr perceived social supports

(friends)
0–14 see also dayslink

satreat any BSAS substance abuse treat-
ment at baseline

0=no,
1=yes

sexrisk∗ Risk-Assessment Battery (RAB)
drug risk score

0–21 see also drugrisk

substance primary substance of abuse alcohol,
cocaine
or heroin

treat randomization group 0=usual
care,
1=HELP
clinic

Notes: Observed range is provided (at baseline) for continuous variables.
* denotes variables measured at baseline and followup (e.g., cesd is baseline measure, cesd1
is measure at 6 months, and cesd4 is measure at 24 months).
#: For each of the 20 items in HELP section F1 (CESD), respondents were asked to indicate

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 281 — #301
�

�

�

�

�

�

C.3. DETAILED DESCRIPTION OF THE DATASET 281

how often they behaved this way during the past week (0 = rarely or none of the time, less
than 1 day; 1 = some or a little of the time, 1-2 days; 2 = occasionally or a moderate
amount of time, 3-4 days; or 3 = most or all of the time, 5-7 days); items f1d, f1h, f1l
and f1p were reverse coded.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 283 — #303
�

�

�

�

�

�

Appendix D

References

[1] D. Adams. The Hitchhiker’s Guide to the Galaxy. Pan Books, 1979.

[2] Alan Agresti. Categorical Data Analysis. John Wiley & Sons, 2002.

[3] J. Albert. Bayesian Computation with R. Springer, 2008.

[4] T. Aragon. epitools: Epidemiology Tools, 2008. R package version 0.5-2.

[5] D. Bates, M. Maechler, and B. Dai. lme4: Linear mixed-effects models using S4
classes, 2008. R package version 0.999375-28.

[6] P. Bliese. multilevel: Multilevel Functions, 2006. R package version 2.2.

[7] A. H. Bowker. Bowker’s test for symmetry. Journal of the American Statistical
Association, 43:572–574, 1948.

[8] A. Canty and B. Ripley. boot: Bootstrap R (S-Plus) functions, 2008. R package
version 1.2-35.

[9] R. P. Cody and J. K. Smith. Applied Statistics and the SAS Programming Language.
Prentice Hall, 1997.

[10] D. Collett. Modelling Binary Data. Chapman & Hall, 1991.

[11] D. Collett. Modeling Survival Data in Medical Research (2nd edition). Chapman &
Hall/CRC, 2003.

[12] D. Collett. Multivariate Statistical Methods: A Primer (3rd edition). Chapman &
Hall/CRC, 2004.

[13] L. M. Collins, J. L. Schafer, and C-M. Kam. A comparison of inclusive and restrictive
strategies in modern missing data procedures. Psychological Methods, 6(4):330–351,
2001.

[14] R. D. Cook. Residuals and Influence in Regression. Chapman and Hall, 1982.

[15] L. D. Delwiche and S. J. Slaughter. The Little SAS Book: a Primer (3rd edition).
SAS Publishing, 2003.

[16] A. J. Dobson and A. Barnett. An Introduction to Generalized Linear Models (3rd
edition). Chapman & Hall/CRC, 2008.

283

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 284 — #304
�

�

�

�

�

�

284 REFERENCES

[17] W. D. Dupont and W. D. Plummer. Density distribution sunflower plots. Journal of
Statistical Software, 8:1–11, 2003.

[18] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall,
New York, 1993.

[19] J. J. Faraway. Linear Models With R. Chapman & Hall/CRC, 2004.

[20] J. J. Faraway. Extending the Linear model with R: Generalized Linear, Mixed Effects
and Nonparametric Regression Models. Chapman & Hall/CRC, 2005.

[21] N. I. Fisher. Statistical Analysis of Circular Data. Cambridge University Press, 1996.

[22] G. M. Fitzmaurice, N. M. Laird, and J. H. Ware. Applied Longitudinal Analysis.
Wiley, 2004.

[23] T. R. Fleming and D. P. Harrington. Counting Processes and Survival Analysis. John
Wiley & Sons, 1991.

[24] J. Fox. The R Commander: a basic graphical user interface to R. Journal of Statistical
Software, 14(9), 2005.

[25] M. Gamer, J. Lemon, and I. Fellows. irr: Various Coefficients of Interrater Reliability
and Agreement, 2007. R package version 0.70.

[26] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis (2nd
edition). Chapman and Hall, 2004.

[27] P. I. Good. Permutation Tests: A Practical Guide to Resampling Methods for Testing
Hypotheses. Springer-Verlag, 1994.

[28] J. W. Hardin and J. M. Hilbe. Generalized Estimating Equations. Chapman &
Hall/CRC, 2002.

[29] F. E. Harrell Jr. Hmisc: Harrell Miscellaneous, 2008. R package version 3.5-2.

[30] T. Hastie. gam: Generalized Additive Models, 2008. R package version 1.0.

[31] N. J. Horton, E. R. Brown, and L. Qian. Use of R as a toolbox for mathematical
statistics exploration. The American Statistician, 58(4):343–357, 2004.

[32] N. J. Horton, E. Kim, and R. Saitz. A cautionary note regarding count models of alco-
hol consumption in randomized controlled trials. BMC Medical Research Methodology,
7(9), 2007.

[33] N. J. Horton and K. P. Kleinman. Much ado about nothing: A comparison of missing
data methods and software to fit incomplete data regression models. The American
Statistician, 61:79–90, 2007.

[34] N. J. Horton and S. R. Lipsitz. Multiple imputation in practice: comparison of soft-
ware packages for regression models with missing variables. The American Statistician,
55(3):244–254, 2001.

[35] N. J. Horton, R. Saitz, N. M. Laird, and J. H. Samet. A method for modeling
utilization data from multiple sources: application in a study of linkage to primary
care. Health Services and Outcomes Research Methodology, 3:211–223, 2002.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 285 — #305
�

�

�

�

�

�

REFERENCES 285

[36] T. Hothorn, F. Bretz, and P. Westfall. Simultaneous inference in general parametric
models. Biometrical Journal, 50(3):346–363, 2008.

[37] T. Hothorn, K. Hornik, M. A. van de Wiel, and A. Zeileis. Implementing a class
of permutation tests: The coin package. Journal of Statistical Software, 28(8):1–23,
2008.

[38] R. Ihaka and R. Gentleman. R: A language for data analysis and graphics. Journal
of Computational and Graphical Statistics, 5(3):299–314, 1996.

[39] K. Imai, G. King, and O. Lau. Zelig: Everyone’s Statistical Software, 2008. R package
version 3.3-1.

[40] S. R. Jammalamadaka and A. Sengupta. Topics in Circular Statistics. World Scien-
tific, 2001.

[41] S. G. Kertesz, N. J. Horton, P. D. Friedmann, R. Saitz, and J. H. Samet. Slowing the
revolving door: stabilization programs reduce homeless persons substance use after
detoxification. Journal of Substance Abuse Treatment, 24:197–207, 2003.

[42] R. Koenker. quantreg: Quantile Regression, 2009. R package version 4.26.

[43] M. J. Larson, R. Saitz, N. J. Horton, C. Lloyd-Travaglini, and J. H. Samet. Emergency
department and hospital utilization among alcohol and drug-dependent detoxification
patients without primary medical care. American Journal of Drug and Alcohol Abuse,
32:435–452, 2006.

[44] J. Lemon, B. Bolker, S. Oom, E. Klein, B. Rowlingson, H. Wickham, A. Tyagi,
O. Eterradossi, G. Grothendieck, M. Toews, J. Kane, M. Cheetham, R. Turner,
C. Witthoft, J. Stander, and T. Petzoldt. plotrix: Various plotting functions, 2009.
R package version 2.5-2.

[45] J. Lemon and P. Grosjean. prettyR: Pretty descriptive stats, 2009. R package version
1.4.

[46] K-Y Liang and S L Zeger. Longitudinal data analysis using generalized linear models.
Biometrika, 73:13–22, 1986.

[47] J. Liebschutz, J. B. Savetsky, R. Saitz, N. J. Horton, C. Lloyd-Travaglini, and J. H.
Samet. The relationship between sexual and physical abuse and substance abuse
consequences. Journal of Substance Abuse Treatment, 22(3):121–128, 2002.

[48] S. R. Lipsitz, N. M. Laird, and D. P. Harrington. Maximum likelihood regression
methods for paired binary data. Statistics in Medicine, 9:1517–1525, 1990.

[49] R. Littell, W. W. Stroup, and R. Freund. SAS For Linear Models (4th edition). SAS
Publishing, 2002.

[50] T. Lumley. Analysis of complex survey samples. Journal of Statistical Software, 9(1),
2004.

[51] U. Lund and C. Agostinelli. circular: Circular Statistics, 2007. R package version
0.3-8.

[52] A. D. Martin, K. M. Quinn, and J. H. Park. MCMCpack: Markov chain Monte Carlo
(MCMC) Package, 2008. R package version 0.9-5.

© 2010 by Taylor and Francis Group, LLC

�

�

“book” — 2009/6/16 — 16:53 — page 286 — #306
�

�

�

�

�

�

286 REFERENCES

[53] P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman & Hall, 1989.

[54] D. Meyer, A. Zeileis, and K. Hornik. The strucplot framework: Visualizing multi-way
contingency tables with vcd. Journal of Statistical Software, 17(3), 2006.

[55] D. Murdoch and E. D. Chow (porting to R by J. M. F. Celayeta). ellipse: Functions
for drawing ellipses and ellipse-like confidence regions, 2007. R package version 0.3-5.

[56] P. Murrell. R Graphics. Chapman & Hall, 2005.

[57] P. Murrell. Introduction to Data Technologies. Chapman & Hall, 2009.

[58] N.J.D. Nagelkerke. A note on a general definition of the coefficient of determination.
Biometrika, 78(3):691–692, 1991.

[59] National Institutes of Alcohol Abuse and Alcoholism, Bethesda, Maryland. Helping
Patients who Drink Too Much, 2005.

[60] J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar, and the R Core team. nlme: Linear and
Nonlinear Mixed Effects Models, 2008. R package version 3.1-90.

[61] M. Plummer, N. Best, K. Cowles, and K. Vines. coda: Output analysis and diagnostics
for MCMC, 2009. R package version 0.13-4.

[62] R-core members, S. DebRoy, R. Bivand, et al. foreign: Read Data Stored by Minitab,
S, SAS, SPSS, Stata, Systat, dBase, ..., 2009. R package version 0.8-33.

[63] R Development Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN 3-900051-
07-0.

[64] T. E. Raghunathan, J. M. Lepkowski, J. van Hoewyk, and P. Solenberger. A multi-
variate technique for multiply imputing missing values using a sequence of regression
models. Survey Methodology, 27(1):85–95, 2001.

[65] T E Raghunathan, P W Solenberger, and J V Hoewyk. IVEware: imputation and
variance estimation software. http://www.isr.umich.edu/src/smp/ive, accessed August
10, 2006, 2006.

[66] V. W. Rees, R. Saitz, N. J. Horton, and J. H. Samet. Association of alcohol consump-
tion with HIV sex and drug risk behaviors among drug users. Journal of Substance
Abuse Treatment, 21(3):129–134, 2001.

[67] M. L. Rizzo. Statistical Computing with R. Chapman & Hall/CRC, 2007.

[68] D. B. Rubin. Multiple imputation after 18+ years. Journal of the American Statistical
Association, 91:473–489, 1996.

[69] R. Saitz, N. J. Horton, M. J. Larson, M. Winter, and J. H. Samet. Primary medical
care and reductions in addiction severity: a prospective cohort study. Addiction,
100(1):70–78, 2005.

[70] R. Saitz, M. J. Larson, N. J. Horton, M. Winter, and J. H. Samet. Linkage with
primary medical care in a prospective cohort of adults with addictions in inpatient
detoxification: room for improvement. Health Services Research, 39(3):587–606, 2004.

© 2010 by Taylor and Francis Group, LLC

http://www.isr.umich.edu

�

�

“book” — 2009/6/16 — 16:53 — page 287 — #307
�

�

�

�

�

�

REFERENCES 287

[71] J. H. Samet, M. J. Larson, N. J. Horton, K. Doyle, M. Winter, and R. Saitz. Linking
alcohol and drug dependent adults to primary medical care: A randomized controlled
trial of a multidisciplinary health intervention in a detoxification unit. Addiction,
98(4):509–516, 2003.

[72] J-M. Sarabia, E. Castillo, and D. J. Slottje. An ordered family of Lorenz curves.
Journal of Econometrics, 91:43–60, 1999.

[73] D. Sarkar. lattice: Lattice Graphics, 2008. R package version 0.17-20.

[74] D. Sarkar. Lattice: Multivariate Data Visualization With R. Springer, 2008.

[75] C-E. Särndal, B. Swensson, and J. Wretman. Model Assisted Survey Sampling.
Springer-Verlag, New York, 1992.

[76] J. L. Schafer. Analysis of Incomplete Multivariate Data. Chapman & Hall, 1997.

[77] R. L. Schwart, T. Phoenix, and b. d. foy. Learning Perl (5th edition). O’Reilly and
Associates, 2008.

[78] G. A. F. Seber and C. J. Wild. Nonlinear Regression. Wiley, 1989.

[79] C. W. Shanahan, A. Lincoln, N. J. Horton, R. Saitz, M. J. Larson, and J. H. Samet.
Relationship of depressive symptoms and mental health functioning to repeat detox-
ification. Journal of Substance Abuse Treatment, 29:117–123, 2005.

[80] T. Sing, O. Sander, N. Beerenwinkel, and T. Lengauer. ROCR: visualizing classifier
performance in R. Bioinformatics, 21(20):3940–3941, 2005.

[81] T. Sing, O. Sander, N. Beerenwinkel, and T. Lengauer. ROCR: Visualizing the per-
formance of scoring classifiers, 2007. R package version 1.0-2.

[82] B. G. Tabachnick and L. S. Fidell. Using Multivariate Statistics (5th edition). Allyn
& Bacon, 2007.

[83] D. Temple Lang (duncan@wald.ucdavis.edu). XML: Tools for parsing and generating
XML within R and S-Plus, 2009. R package version 2.3-0.

[84] T. M. Therneau and B. Atkinson (R port by B. Ripley). rpart: Recursive Partitioning,
2008. R package version 3.1-42.

[85] T. M. Therneau (ported by T. Lumley). survival: Survival analysis, including pe-
nalised likelihood, 2008. R package version 2.34-1.

[86] V. J. Carey. Ported to R by T. Lumley (versions 3.13, 4.4), and B. Ripley (version
4.13). gee: Generalized Estimation Equation solver, 2007. R package version 4.13-13.

[87] E. R. Tufte. Envisioning Information. Graphics Press, 1990.

[88] E. R. Tufte. Visual Explanations: Images and Quantities, Evidence and Narrative.
Graphics Press, 1997.

[89] E. R. Tufte. Visual Display of Quantitative Information (second edition). Graphics
Press, 2001.

[90] E. R. Tufte. Beautiful Evidence. Graphics Press, 2006.

[91] J. W. Tukey. Exploratory Data Analysis. Addison Wesley, 1977.

© 2010 by Taylor and Francis Group, LLC

mailto:duncan@wald.ucdavis.edu

�

�

“book” — 2009/6/16 — 16:53 — page 288 — #308
�

�

�

�

�

�

288 REFERENCES

[92] S. van Buuren, H. C. Boshuizen, and D. L. Knook. Multiple imputation of missing
blood pressure covariates in survival analysis. Statistics in Medicine, 18:681–694,
1999.

[93] S. van Buuren and C.G.M. Oudshoorn. mice: Multivariate Imputation by Chained
Equations, 2007. R package version 1.16.

[94] W. N. Venables, D. M. Smith, and the R Development Core Team. An introduction
to R: Notes on R: A programming environment for data analysis and graphics, version
2.8.0. http://cran.r-project.org/doc/manuals/R-intro.pdf, accessed January 1, 2009,
2009.

[95] J. Verzani. Using R For Introductory Statistics. Chapman & Hall/CRC, 2005.

[96] G. R. Warnes (includes R source code and/or documentation contributed by B. Bolker
and T. Lumley). gtools: Various R programming tools, 2008. R package version 2.5.0.

[97] G. R. Warnes (includes R source code and/or documentation contributed by B. Bolker
and T. Lumley and and R. C. Johnson). gmodels: Various R programming tools for
model fitting, 2007. R package version 2.14.1.

[98] B. West, K. B. Welch, and A. T. Galecki. Linear Mixed Models: A Practical Guide
Using Statistical Software. Chapman & Hall/CRC, 2006.

[99] H. Wickham. Reshaping data with the reshape package. Journal of Statistical Soft-
ware, 21(12), 2007.

[100] H. Wickham. ggplot2: An implementation of the Grammar of Graphics, 2009. R
package version 0.8.2.

[101] J. D. Wines, R. Saitz, N. J. Horton, C. Lloyd-Travaglini, and J. H. Samet. Overdose
after detoxification: a prospective study. Drug and Alcohol Dependence, 89:161–169,
2007.

[102] T. W. Yee. VGAM: Vector Generalized Linear and Additive Models, 2009. R package
version 0.7-8.

[103] D. Zamar, B. McNeney, and J. Graham. elrm: Software implementing exact-like
inference for logistic regression models. Journal of Statistical Software, 21(3):1–18, 9
2007.

[104] A. Zeileis, C. Kleiber, and S. Jackman. Regression models for count data in R. Journal
of Statistical Software, 27(8), 2008.

© 2010 by Taylor and Francis Group, LLC

http://cran.r-project.org

	Cover Page
	Title Page
	SAS and R: Data Management, Statistical Analysis, and Graphics
	Contents
	List of Figures
	List of Tables
	Preface
	Who should use this book
	Using the book
	Differences between SAS and R
	Where to begin
	On the web
	Acknowledgments

	Chapter 1: Data management
	1.1 Input
	1.1.1 Native dataset
	1.1.2 Fixed format text files
	1.1.3 Reading more complex text files
	1.1.4 Comma separated value (CSV) files
	1.1.5 Reading datasets in other formats
	1.1.6 URL
	1.1.7 XML (extensible markup language)
	1.1.8 Data entry

	1.2 Output
	1.2.1 Save a native dataset
	1.2.2 Creating files for use by other packages
	1.2.3 Creating datasets in text format
	1.2.4 Displaying data
	1.2.5 Number of digits to display
	1.2.6 Creating HTML formatted output
	1.2.7 Creating XML datasets and output

	1.3 Structure and meta-data
	1.3.1 Access variables from a dataset
	1.3.2 Names of variables and their types
	1.3.3 Values of variables in a dataset
	1.3.4 Rename variables in a dataset
	1.3.5 Add comment to a dataset or variable

	1.4 Derived variables and data manipulation
	1.4.1 Create string variables from numeric variables
	1.4.2 Create numeric variables from string variables
	1.4.3 Extract characters from string variables
	1.4.4 Length of string variables
	1.4.5 Concatenate string variables
	1.4.6 Find strings within string variables
	1.4.7 Remove spaces around string variables
	1.4.8 Upper to lower case
	1.4.9 Create categorical variables from continuous variables
	1.4.10 Recode a categorical variable
	1.4.11 Create a categorical variable using logic
	1.4.12 Formatting values of variables
	1.4.13 Label variables
	1.4.14 Account for missing values
	1.4.15 Observation number
	1.4.16 Unique values
	1.4.17 Lagged variable
	1.4.18 SQL
	1.4.19 Perl interface

	1.5 Merging, combining, and subsetting datasets
	1.5.1 Subsetting observations
	1.5.2 Random sample of a dataset
	1.5.3 Convert from wide to long (tall) format
	1.5.4 Convert from long (tall) to wide format
	1.5.5 Concatenate datasets
	1.5.6 Sort datasets
	1.5.7 Merge datasets
	1.5.8 Drop variables in a dataset

	1.6 Date and time variables
	1.6.1 Create date variable
	1.6.2 Extract weekday
	1.6.3 Extract month
	1.6.4 Extract year
	1.6.5 Extract quarter
	1.6.6 Create time variable

	1.7 Interactions with the operating system
	1.7.1 Timing commands
	1.7.2 Execute command in operating system
	1.7.3 Find working directory
	1.7.4 Change working directory
	1.7.5 List and access files

	1.8 Mathematical functions
	1.8.1 Basic functions
	1.8.2 Trigonometric functions
	1.8.3 Special functions
	1.8.4 Integer functions
	1.8.5 Comparisons of floating point variables
	1.8.6 Derivative
	1.8.7 Optimization problems

	1.9 Matrix operations
	1.9.1 Create matrix
	1.9.2 Transpose matrix
	1.9.3 Invert matrix
	1.9.4 Create submatrix
	1.9.5 Create a diagonal matrix
	1.9.6 Create vector of diagonal elements
	1.9.7 Create vector from a matrix
	1.9.8 Calculate determinant
	1.9.9 Find eigenvalues and eigenvectors
	1.9.10 Calculate singular value decomposition

	1.10 Probability distributions and random number generation
	1.10.1 Probability density function
	1.10.2 Quantiles of a probability density function
	1.10.3 Uniform random variables
	1.10.4 Multinomial random variables
	1.10.5 Normal random variables
	1.10.6 Multivariate normal random variables
	1.10.7 Exponential random variables
	1.10.8 Other random variables
	1.10.9 Setting the random number seed

	1.11 Control flow, programming, and data generation
	1.11.1 Looping
	1.11.2 Conditional execution
	1.11.3 Sequence of values or patterns
	1.11.4 Referring to a range of variables
	1.11.5 Perform an action repeatedly over a set of variables

	1.12 Further resources
	1.13 HELP examples
	1.13.1 Data input and output
	1.13.2 Data display
	1.13.3 Derived variables and data manipulation
	1.13.4 Sorting and subsetting datasets
	1.13.5 Probability distributions

	Chapter 2: Common statistical procedures
	2.1 Summary statistics
	2.1.1 Means and other summary statistics
	2.1.2 Means by group
	2.1.3 Trimmed mean
	2.1.4 Five-number summary
	2.1.5 Quantiles
	2.1.6 Centering, normalizing, and scaling
	2.1.7 Mean and 95% confidence interval
	2.1.8 Bootstrapping a sample statistic
	2.1.9 Proportion and 95% confidence interval

	2.2 Bivariate statistics
	2.2.1 Epidemiologic statistics
	2.2.2 Test characteristics
	2.2.3 Correlation
	2.2.4 Kappa (agreement)

	2.3 Contingency tables
	2.3.1 Display cross-classification table
	2.3.2 Pearson chi-square statistic
	2.3.3 Cochran–Mantel–Haenszel test
	2.3.4 Fisher’s exact test
	2.3.5 McNemar’s test

	2.4 Two sample tests for continuous variables
	2.4.1 Student’s t-test
	2.4.2 Nonparametric tests
	2.4.3 Permutation test
	2.4.4 Logrank test

	2.5 Further resources
	2.6 HELP examples
	2.6.1 Summary statistics and exploratory data analysis
	2.6.2 Bivariate relationships
	2.6.3 Contingency tables
	2.6.4 Two sample tests of continuous variables
	2.6.5 Survival analysis: logrank test

	Chapter 3: Linear regression and ANOVA
	3.1 Model fitting
	3.1.1 Linear regression
	3.1.2 Linear regression with categorical covariates
	3.1.3 Parameterization of categorical covariates
	3.1.4 Linear regression with no intercept
	3.1.5 Linear regression with interactions
	3.1.6 Linear models stratified by each value of a grouping variable
	3.1.7 One-way analysis of variance
	3.1.8 Two-way (or more) analysis of variance

	3.2 Model comparison and selection
	3.2.1 Compare two models
	3.2.2 Log-likelihood
	3.2.3 Akaike Information Criterion (AIC)
	3.2.4 Bayesian Information Criterion (BIC)

	3.3 Tests, contrasts, and linear functions of parameters
	3.3.1 Joint null hypotheses: several parameters equal 0
	3.3.2 Joint null hypotheses: sum of parameters
	3.3.3 Tests of equality of parameters
	3.3.4 Multiple comparisons
	3.3.5 Linear combinations of parameters

	3.4 Model diagnostics
	3.4.1 Predicted values
	3.4.2 Residuals
	3.4.3 Studentized residuals
	3.4.4 Leverage
	3.4.5 Cook’s D
	3.4.6 DFFITS
	3.4.7 Diagnostic plots

	3.5 Model parameters and results
	3.5.1 Prediction limits
	3.5.2 Parameter estimates
	3.5.3 Standard errors of parameter estimates
	3.5.4 Confidence limits for the mean
	3.5.5 Plot confidence intervals for the mean
	3.5.6 Plot prediction limits from a simple linear regression
	3.5.7 Plot predicted lines for each value of a variable
	3.5.8 Design and information matrix
	3.5.9 Covariance matrix

	3.6 Further resources
	3.7 HELP examples
	3.7.1 Scatterplot with smooth fit
	3.7.2 Linear regression with interaction
	3.7.3 Regression diagnostics
	3.7.4 Fitting regression model separately for each value of another variable
	3.7.5 Two way ANOVA
	3.7.6 Multiple comparisons
	3.7.7 Contrasts

	Chapter 4: Regression generalizations
	4.1 Generalized linear models
	4.1.1 Logistic regression model
	4.1.2 Exact logistic regression
	4.1.3 Poisson model
	4.1.4 Zero-inflated Poisson model
	4.1.5 Negative binomial model
	4.1.6 Zero-inflated negative binomial model
	4.1.7 Log-linear model
	4.1.8 Ordered multinomial model
	4.1.9 Generalized (nominal outcome) multinomial logit
	4.1.10 Conditional logistic regression model

	4.2 Models for correlated data
	4.2.1 Linear models with correlated outcomes
	4.2.2 Linear mixed models with random intercepts
	4.2.3 Linear mixed models with random slopes
	4.2.4 More complex random coeffcient models
	4.2.5 Multilevel models
	4.2.6 Generalized linear mixed models
	4.2.7 Generalized estimating equations
	4.2.8 Time series model

	4.3 Survival analysis
	4.3.1 Proportional hazards (Cox) regression model
	4.3.2 Proportional hazards (Cox) model with frailty

	4.4 Further generalizations to regression models
	4.4.1 Nonlinear least squares model
	4.4.2 Generalized additive model
	4.4.3 Robust regression model
	4.4.4 Quantile regression model
	4.4.5 Ridge regression model

	4.5 Further resources
	4.6 HELP examples
	4.6.1 Logistic regression
	4.6.2 Poisson regression
	4.6.3 Zero-inflated Poisson regression
	4.6.4 Negative binomial regression
	4.6.5 Quantile regression
	4.6.6 Ordinal logit
	4.6.7 Multinomial logit
	4.6.8 Generalized additive model
	4.6.9 Reshaping dataset for longitudinal regression
	4.6.10 Linear model for correlated data
	4.6.11 Linear mixed (random slope) model
	4.6.12 Generalized estimating equations
	4.6.13 Generalized linear mixed model
	4.6.14 Cox proportional hazards model

	Chapter 5: Graphics
	5.1 A compendium of useful plots
	5.1.1 Scatterplot
	5.1.2 Scatterplot with multiple y values
	5.1.3 Barplot
	5.1.4 Histogram
	5.1.5 Stem-and-leaf plot
	5.1.6 Boxplot
	5.1.7 Side-by-side boxplots
	5.1.8 Normal quantile-quantile plot
	5.1.9 Interaction plots
	5.1.10 Plots for categorical data
	5.1.11 Conditioning plot
	5.1.12 3-D plots
	5.1.13 Circular plot
	5.1.14 Sunflower plot
	5.1.15 Empirical cumulative probability density plot
	5.1.16 Empirical probability density plot
	5.1.17 Matrix of scatterplots
	5.1.18 Receiver operating characteristic (ROC) curve
	5.1.19 Kaplan–Meier plot

	5.2 Adding elements
	5.2.1 Arbitrary straight line
	5.2.2 Plot symbols
	5.2.3 Add points to an existing graphic
	5.2.4 Jitter
	5.2.5 OLS line fit to points
	5.2.6 Smoothed line
	5.2.7 Normal density
	5.2.8 Marginal rug plot
	5.2.9 Titles
	5.2.10 Footnotes
	5.2.11 Text
	5.2.12 Mathematical symbols
	5.2.13 Arrows and shapes
	5.2.14 Legend
	5.2.15 Identifying and locating points

	5.3 Options and parameters
	5.3.1 Graph size
	5.3.2 Point and text size
	5.3.3 Box around plots
	5.3.4 Size of margins
	5.3.5 Graphical settings
	5.3.6 Multiple plots per page
	5.3.7 Axis range and style
	5.3.8 Axis labels, values, and tick marks
	5.3.9 Line styles
	5.3.10 Line widths
	5.3.11 Colors
	5.3.12 Log scale
	5.3.13 Omit axes

	5.4 Saving graphs
	5.4.1 PDF
	5.4.2 Postscript
	5.4.3 RTF
	5.4.4 JPEG
	5.4.5 WMF
	5.4.6 BMP
	5.4.7 TIFF
	5.4.8 PNG
	5.4.9 Closing a graphic device

	5.5 Further resources
	5.6 HELP examples
	5.6.1 Scatterplot with multiple axes
	5.6.2 Conditioning plot
	5.6.3 Kaplan–Meier plot
	5.6.4 ROC curve
	5.6.5 Pairs plot
	5.6.6 Visualize correlation matrix

	Chapter 6: Other topics and extended examples
	6.1 Power and sample size calculations
	6.1.1 Analytic power calculation
	6.1.2 Simulation-based power calculations

	6.2 Generate data from generalized linear random effects model
	6.3 Generate correlated binary data
	6.4 Read variable format files and plot maps
	6.4.1 Read input files
	6.4.2 Plotting maps

	6.5 Missing data: multiple imputation
	6.6 Bayesian Poisson regression
	6.7 Multivariate statistics and discriminant procedures
	6.7.1 Cronbach’s alpha
	6.7.2 Factor analysis
	6.7.3 Recursive partitioning
	6.7.4 Linear discriminant analysis
	6.7.5 Hierarchical clustering

	6.8 Complex survey design
	6.9 Further resources

	Appendix A: Introduction to SAS
	A.1 Installation
	A.2 Running SAS and a sample session
	A.3 Learning SAS and getting help
	A.4 Fundamental structures: data step, procedures, and global statements
	A.5 Work process: the cognitive style of SAS
	A.6 Useful SAS background
	A.6.1 Data set options
	A.6.2 Repeating commands for subgroups
	A.6.3 Subsetting
	A.6.4 Formats and informats

	A.7 Accessing and controlling SAS output: the Output Delivery System
	A.7.1 Saving output as datasets and controlling output
	A.7.2 Output file types and ODS destinations
	A.7.3 ODS graphics

	A.8 The SAS Macro Facility: writing functions and passing values
	A.8.1 Writing functions
	A.8.2 SAS macro variables

	A.9 Miscellanea

	Appendix B: Introduction to R
	B.1 Installation
	B.1.1 Installation under Windows
	B.1.2 Installation under Mac OS X
	B.1.3 Installation under Linux

	B.2 Running R and sample session
	B.2.1 Replicating examples from the book and sourcing commands
	B.2.2 Batch mode

	B.3 Learning R and getting help
	B.4 Fundamental structures: objects, classes, and related concepts
	B.4.1 Objects and vectors
	B.4.2 Indexing
	B.4.3 Operators
	B.4.4 Matrices
	B.4.5 Dataframes
	B.4.6 Attributes and classes

	B.5 Built-in and user-defined functions
	B.5.1 Calling functions
	B.5.2 Writing functions
	B.5.3 The apply family of functions

	B.6 Add-ons: libraries and packages
	B.6.1 Introduction to libraries and packages
	B.6.2 CRAN task views
	B.6.3 Installed libraries and packages
	B.6.4 Packages referenced in this book
	B.6.5 Datasets available with R

	B.7 Support and bugs

	Appendix C: The HELP study dataset
	C.1 Background on the HELP study
	C.2 Roadmap to analyses of the HELP dataset
	C.3 Detailed description of the dataset

	Appendix D: References

