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Data Science USing Python anD R

Why this Book is needed

Reason 1. Data Science is Hot. Really hot. Bloomberg called data scientist “the 
hottest job in America.”1 Business Insider called it “The best job in America right 
now.”2 Glassdoor.com rated it the best job in the world in 2018 for the third year in 
a row.3 The Harvard Business Review called data scientist “The sexiest job in the 
21st century.”4

Reason 2: Top Two Open‐source Tools. Python and R are the top two open‐source 
data science tools in the world.5 Analysts and coders from around the world work 
hard to build analytic packages that Python and R users can then apply, free of 
charge.

Data Science Using Python and R will awaken your expertise in this cutting‐
edge field using the most widespread open‐source analytics tools in the world. In 
Data Science Using Python and R, you will find step‐by‐step hands‐on solutions of 
real‐world business problems, using state‐of‐the‐art techniques. In short, you will 
learn data science by doing data science.

Written for Beginners and non‐Beginners alike

Data Science Using Python and R is written for the general reader, with no previous 
analytics or programming experience. We know that the information‐age economy 
is making many English majors and History majors retool to take advantage of the 
great demand for data scientists.6 This is why we provide the following materials to 
help those who are new to the field hit the ground running.

1 https://www.bloomberg.com/news/articles/2018-05-18/-sexiest-job-ignites-talent-wars-as-demand- 
for-data-geeks-soars.
2 https://www.businessinsider.com/what-its-like-to-be-a-data-scientist-best-job-in-america-2017-9.
3 https://www.forbes.com/sites/louiscolumbus/2018/01/29/data-scientist-is-the-best-job-in-america- 
according-glassdoors-2018-rankings/#dd3f65055357.
4 https://www.hbs.edu/faculty/Pages/item.aspx?num=43110.
5 See, for example, https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-science.
html.
6 For example, in May 2017, IBM projected that yearly demand for “data scientist, data developers, and 
data engineers will reach nearly 700,000 openings by 2020.”
Forbes,      https://www.forbes.com/sites/louiscolumbus/2017/05/13/ibm-predicts-demand-for-data-scientists- 
will-soar-28-by-2020/#6b6fde277e3b

PReface



xii Preface

 • An entire chapter dedicated to learning the basics of using Python and R, for 
beginners. Which platform to use. Which packages to download. Everything 
you need to get started.

 • An appendix dedicated to filling in any holes you might have in your introduc-
tory data analysis knowledge, called Data Summarization and Visualization.

 • Step‐by‐step instructions throughout. Every instruction for every action.

 • Every chapter has Exercises, where you may check your understanding and 
progress.

Those with analytics or programming experience will enjoy having a one‐stop‐shop 
for learning how to do data science using both Python and R. Managers, CIOs, 
CEOs, and CFOs will enjoy being able to communicate better with their data ana-
lysts and database analysts. The emphasis in this book on accurately accounting for 
model costs will help everyone uncover the most profitable nuggets of knowledge 
from the data, while avoiding the potential pitfalls that may cost your company 
millions of dollars.

Data Science Using Python and R covers exciting new topics, such as the 
following:

 • Random Forests,

 • General Linear Models, and

 • Data‐driven error costs to enhance profitability.

All of the many data sets used in the book are freely available on the book 
series website: DataMiningconsultant.com.

Data Science Using Python and R as a textbook

Data Science Using Python and R naturally fits the role of textbook for a one‐
semester course or two‐semester sequence of courses in introductory and 
intermediate data science. Faculty instructors will appreciate the exercises at the 
end of every chapter, totaling over 500 exercises in the book. There are three cate-
gories of exercises, from testing basic understanding toward more hands‐on anal-
ysis of new and challenging applications.

 • Clarifying the Concepts. These exercises test the students’ basic under-
standing of the material, to make sure the students have absorbed what they 
have read.

 • Working with the Data. These applied exercises ask the student to work in 
Python and R, following the step‐by‐step instructions that were presented in 
the chapter.

 • Hands‐on Analysis. Here is the real meat of the learning process for the stu-
dents, where they apply their newly found knowledge and skills to uncover 
patterns and trends in new data sets. Here is where the students’ expertise is 
challenged, in near real‐world conditions. More than half of the exercises in 
the book consist of Hands‐on analysis.
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The following supporting materials are also available to faculty adopters of 
the book at no cost.

 • Full solutions manual, providing not just the answers, but how to arrive at 
the answers.

 • Powerpoint presentations of each chapter, so that you may help the stu-
dents understand the material, rather than just assigning them to read it.

To obtain access to these materials, contact your local Wiley representation 
and ask them to email the authors confirming that you have adopted the book for 
your course.

Data Science Using Python and R is appropriate for advanced undergraduate 
or graduate‐level courses. No previous statistics, computer programming, or data-
base expertise is required. What is required is a desire to learn.

how the Book is Structured

Data Science Using Python and R is structured around the Data Science 
Methodology.

The Data Science Methodology is a phased, adaptive, iterative, approach to 
the analysis of data, within a scientific framework.

1. Problem Understanding Phase. First, clearly enunciate the project objec-
tives. Then, translate these objectives into the formulation of a problem that 
can be solved using data science.

2. Data Preparation Phase. Data cleaning/preparation is probably the most 
labor‐intensive phase of the entire data science process.

 • Covered in Chapter 3: Data Preparation.

3. Exploratory Data Analysis Phase. Gain insights into your data through 
graphical exploration.

 • Covered in Chapter 4: exploratory Data analysis.

4. Setup Phase. Establish baseline model performance. Partition the data. 
Balance the data, if needed.

 • Covered in Chapter 5: Preparing to Model the Data.

5. Modeling Phase. The core of the data science process. Apply state‐of‐the‐art 
algorithms to uncover some seriously profitable relationships lying hidden in 
the data.

 • Covered in Chapters 6 and 8–14.

6. Evaluation Phase. Determine whether your models are any good. Select the 
best‐performing model from a set of competing models.

 • Covered in Chapter 7: Model evaluation.

7. Deployment Phase. Interface with management to adapt your models for 
real‐world deployment.
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Chantal D. Larose, PhD, and Daniel T. Larose, PhD, form a unique father–daughter 
pair of data scientists. This is their third book as coauthors. Previously, they wrote:

 • Data Mining and Predictive Analytics, Second Edition, Wiley, 2015.

 ° This 800‐page tome would be a wonderful companion to this book, for 
those looking to dive deeper in to the field.

 • Discovering Knowledge in Data: An Introduction to Data Mining, Second 
Edition, Wiley, 2014.

Chantal D. Larose completed her PhD in Statistics at the University of 
Connecticut in 2015, with dissertation Model‐Based Clustering of Incomplete Data. 
As an Assistant Professor of Decision Science at SUNY, New Paltz, she helped 
develop the Bachelor of Science in Business Analytics. Now, as an Assistant Professor 
of Statistics and Data Science at Eastern Connecticut State University, she is helping 
to develop the Mathematical Science Department’s data science curriculum.

Daniel T. Larose completed his PhD in Statistics at the University of 
Connecticut in 1996, with dissertation Bayesian Approaches to Meta‐Analysis. He 
is a Professor of Statistics and Data Science at Central Connecticut State University. 
In 2001, he developed the world’s first online Master of Science in Data Mining. 
This is the 12th textbook that he has authored or coauthored. He runs a small con-
sulting business, DataMiningConsultant.com. He also directs the online Master of 
Data Science program at CCSU.
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C h a p t e r  1

1.1 WhY Data SCIeNCe?

Data science is one of the fastest growing fields in the world, with 6.5 times as 
many job openings in 2017 as compared to 2012.1 Demand for data scientists is 
expected to increase in the future. For example, in May 2017, IBM projected that 
yearly demand for “data scientist, data developers, and data engineers will reach 
nearly 700,000 openings by 2020.”2 http://InfoWorld.com reported that the #1 
“reason why data scientist remains the top job in America”3 is that “there is a short-
age of talent.” That is why we wrote this book, to help alleviate the shortage of 
qualified data scientists.

1.2 What IS Data SCIeNCe?

Simply put, data science is the systematic analysis of data within a scientific frame-
work. That is, data science is the

 • adaptive, iterative, and phased approach to the analysis of data,

 • performed within a systematic framework,

 • that uncovers optimal models,

 • by assessing and accounting for the true costs of prediction errors.

1 Forbes, https://www.forbes.com/sites/louiscolumbus/2017/12/11/linkedins-fastest-growing-jobs-today- 
are-in-data-science-machine-learning/#5b3100f051bd

2 Forbes, https://www.forbes.com/sites/louiscolumbus/2017/05/13/ibm-predicts-demand-for-data-scientists- 
will-soar-28-by-2020/#6b6fde277e3b
3 http://Infoworld.com, https://www.infoworld.com/article/3190008/big-data/3-reasons-why-data-scientist- 
remains-the-top-job-in-america.html

IntroductIon to data 
ScIence



2 Chapter 1 IntroduCtIon to data SCIenCe

Data science combines the

 • data‐driven approach of statistical data analysis,

 • the computational power and programming acumen of computer science, and

 • domain‐specific business intelligence,

in order to uncover actionable and profitable nuggets of information from large 
databases.

In other words, data science allows us to extract actionable knowledge from 
under‐utilized databases. Thus, data warehouses that have been gathering dust can 
now be leveraged to uncover hidden profit and enhance the bottom line. Data sci-
ence lets people leverage large amounts of data and computing power to tackle 
complex questions. Patterns can arise out of data which could not have been uncov-
ered otherwise. These discoveries can lead to powerful results, such as more effec-
tive treatment of medical patients or more profits for a company.

1.3 the Data SCIeNCe MethODOLOGY

We follow the data Science Methodology (DSM),4 which helps the analyst keep 
track of which phase of the analysis he or she is performing. Figure 1.1 illustrates 
the adaptive and iterative nature of the DSM, using the following phases:

1. Problem Understanding Phase. How often have teams worked hard to solve 
a problem, only to find out later that they solved the wrong problem? Further, 
how often have the marketing team and the analytics team not been on the 
same page? This phase attempts to avoid these pitfalls.

a. First, clearly enunciate the project objectives,

b. Then, translate these objectives into the formulation of a problem that can 
be solved using data science.

2. Data Preparation Phase. Raw data from data repositories is seldom ready 
for the algorithms straight out of the box. Instead, it needs to be cleaned or 
“prepared for analysis.” When analysts first examine the data, they uncover 
the inevitable problems with data quality that always seem to occur. It is in 
this phase that we fix these problems. Data cleaning/preparation is probably 
the most labor‐intensive phase of the entire data science process. The follow-
ing is a non‐exhaustive list of the issues that await the data preparer.

a. Identifying outliers and determining what to do about them.

b. Transforming and standardizing the data.

c. Reclassifying categorical variables.

d. Binning numerical variables.

e. Adding an index field.

4 Adapted from the Cross-Industry Standard Practice for Data Mining (CRISP-DM). See, for example, data 
Mining and Predictive analytics, by Daniel T. Larose and Chantal D. Larose, John Wiley and Sons, Inc, 2015.



1.3 the data SCIenCe MethodoLoGY 3

The data preparation phase is covered in Chapter 3.

3. Exploratory Data Analysis Phase. Now that your data are nice and clean, 
we can begin to explore the data, and learn some basic information. Graphical 
exploration is the focus here. Now is not the time for complex algorithms. 
Rather, we use simple exploratory methods to help us gain some preliminary 
insights. You might find that you can learn quite a bit just by using these 
simple methods. Here are some of the ways we can do this.

a. Exploring the univariate relationships between predictors and the target 
variable.

b. Exploring multivariate relationships among the variables.

c. Binning based on predictive value to enhance our models.

d. Deriving new variables based on a combination of existing variables.

We cover the exploratory data analysis phase in Chapter 4.

4. Setup Phase. At this point we are nearly ready to begin modeling the data. We 
just need to take care of a few important chores first, such as the following:

a. Cross‐validation, either twofold or n‐fold. This is necessary to avoid data 
dredging. In addition, your data partitions need to be evaluated to ensure 
that they are indeed random.

b. Balancing the data. This enhances the ability of certain algorithms to 
uncover relationships in the data.

Problem understanding
phase

Data preparation
phase

Deployment phase Exploratory data
analysis phase

Evaluation phase Setup phase

Modeling phase

Figure 1.1 Data science methodology: the seven phases.
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c. Establishing baseline performance. Suppose we told you we had a model 
that could predict correctly whether a credit card transaction was fraudu-
lent or not 99% of the time. Impressed? You should not be. The non‐ 
fraudulent transaction rate is 99.932%.5 So, our model could simply 
predict that every transaction was non‐fraudulent and be correct 99.932% 
of the time. This illustrates the importance of establishing baseline 
performance for your models, so that we can calibrate our models and 
determine whether they are any good.

The Setup Phase is covered in Chapter 5.

5. Modeling Phase. The modeling phase represents the opportunity to apply 
state‐of‐the‐art algorithms to uncover some seriously profitable relationships 
lying hidden in the data. The modeling phase is the heart of your data scientific 
investigation and includes the following:

a. Selecting and implementing the appropriate modeling algorithms. 
Applying inappropriate techniques will lead to inaccurate results that 
could cost your company big bucks.

b. Making sure that our models outperform the baseline models.

c. Fine‐tuning your model algorithms to optimize the results. Should our 
decision tree be wide or deep? Should our neural network have one hidden 
layer or two? What should be our cutoff point to maximize profits? 
Analysts will need to spend some time fine‐tuning their models before 
arriving at the optimal solution.

The modeling phase represents the core of your data science endeavor and is 
covered in Chapters 6 and 8–14.

6. Evaluation Phase. Your buddy at work may think he has a lock on his pre-
diction for the Super Bowl. But is his prediction any good? That is the 
question. Anyone can make predictions. It is how the predictions perform 
against real data that is the real test. In the evaluation phase, we assess how 
our models are doing, whether they are making any money, or whether we 
need to go back and try to improve our prediction models.

a. Your models need to be evaluated against the baseline performance mea-
sures from the Setup Phase. Are we beating the monkeys‐with‐darts 
model? If not, better try again.

b. You need to determine whether your models are actually solving the 
problem at hand. Are your models actually achieving the objectives set for 
it back in the Problem Understanding Phase? Has some important aspect 
of the problem not been sufficiently accounted for?

5 The Alaric Fraud Report, 2015, https://www.paymentscardsandmobile.com/wp-content/uploads/2015/ 
03/PCM_Alaric_Fraud-Report_2015.pdf
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c. Apply error costs intrinsic to the data, because data‐driven cost eva luation 
is the best way to model the actual costs involved. For instance, in a 
marketing campaign, a false positive is not as costly as a false negative. 
However, for a mortgage lender, a false positive is much more costly.

d. You should tabulate a suite of models and determine which model per-
forms the best. Choose either a single best model, or a small number of 
models, to move forward to the Deployment Phase.

The Evaluation Phase is covered in Chapter 7.

7. Deployment Phase. Finally, your models are ready for prime time! Report to 
management on your best models and work with management to adapt your 
models for real‐world deployment.

a. Writing a report of your results may be considered a simple example of 
deployment. In your report, concentrate on the results of interest to 
management. Show that you solved the problem and report on the esti-
mated profit, if applicable.

b. Stay involved with the project! Participate in the meetings and processes 
involved in model deployment, so that they stay focused on the problem 
at hand.

It should be emphasized that the DSM is iterative and adaptive. By adaptive, 
we mean that sometimes it is necessary to return to a previous phase for further 
work, based on some knowledge gained in the current phase. This is why there are 
arrows pointing both ways between most of the phases. For example, in the 
Evaluation Phase, we may find that the model we crafted does not actually address 
the original problem at hand, and that we need to return to the Modeling Phase to 
develop a model that will do so.

Also, the DSM is iterative, in that sometimes we may use our experience of 
building an effective model on a similar problem. That is, the model we created 
serves as an input to the investigation of a related problem. This is why the outer 
ring of arrows in Figure 1.1 shows a constant recycling of older models used as 
inputs to examining new solutions to new problems.

1.4 Data SCIeNCe taSKS

The most common data science tasks are the following:

 • Description

 • Estimation

 • Classification

 • Clustering

 • Prediction

 • Association
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Next, we describe what each of these tasks represent and in which chapters 
these tasks are covered.

1.4.1 Description

Data scientists are often called upon to describe patterns and trends lying within the 
data. For example, a data scientist may describe a cluster of customers most likely 
to leave our company’s service as those with high‐usage minutes and a high number 
of customer service calls. After describing this cluster, the data scientist may explain 
that the high number of customer service calls indicates perhaps that the customer 
is unhappy. Working with the marketing team, the analyst can then suggest possible 
interventions to explore to retain such customers.

The description task is in widespread use around the world by specialists and 
nonspecialists alike. For example, when a sports announcer states that a baseball 
player has a lifetime batting average (hits/at‐bats) of 0.350, he or she is describing 
this player’s lifetime batting performance. This is an example of descriptive 
statistics,6 further examples of which may be found in the Appendix: Data 
Summarization and Visualization. Nearly every chapter in the book contains exam-
ples of the description task, from the graphical EDA methods of Chapter 4, to the 
descriptions of data clusters in Chapter  10, to the bivariate relationships in 
Chapter 11.

1.4.2 estimation

Estimation refers to the approximation of the value of a numeric target variable 
using a collection of predictor variables. Estimation models are built using records 
where the target values are known, so that the models can learn which target values 
are associated with which predictor values. Then, the estimation models can 
estimate the target values for new data, for which the target value is unknown. For 
example, the analyst can estimate the mortgage amount a potential customer can 
afford, based on a set of personal and demographic factors. This estimate is based 
on a model built by looking at past models of how much previous customers could 
afford. Estimation requires that the target variable be numeric. Estimation methods 
are covered in Chapters 9, 11, and 13.

1.4.3 Classification

Classification is similar to estimation, except that the target variable is categorical 
rather than continuous. Classification represents perhaps the most widespread task 
in data science, and the most profitable. For instance, a mortgage lender would be 
interested in determining which of their customers is likely to default on their 

6 For example, see discovering Statistics, by Daniel T. Larose, W.H. Freeman, 2016.
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mortgage loans. Similarly, for credit card companies. The classification models are 
shown lots of complete records containing the actual default status of past cus-
tomers. The models then learn which attributes are associated with customers who 
default. Finally, these trained models are then deployed to new data, customers who 
have applied for a loan or a credit card, with the expectation that the models will 
help to classify which customers are most likely to default on their loans. 
Classification methods are covered in Chapters 6, 8, 9, and 13.

1.4.4 Clustering

The clustering task seeks to identify groups of records which are similar. For 
example, in a data set of credit card applicants, one cluster might represent 
younger, more educated customers, while another cluster might represent older, 
less educated customers. The idea is that the records in a cluster are similar to 
other records in the same cluster, but different from the records in other clusters. 
Finding workable clusters is useful in at least two respects: (i) your client may be 
interested in the cluster profiles, that is, detailed descriptions of the characteristics 
of each cluster, and (ii) the clusters may themselves be used as inputs to 
classification or estimation models downstream. Clustering methods are covered 
in Chapter 10.

1.4.5 prediction

The prediction task is similar to estimation or classification, except that for predic-
tion the forecasts relate to the future. For example, a financial analyst may be inter-
ested in predicting the price of Apple stock three months down the road. This would 
represent estimation, since price is a numeric variable, and prediction, since it 
relates to the future. Alternatively, a drug discovery chemist may be interested in 
whether a particular molecule will lead to a profitable new drug for a pharmaceu-
tical company. This represents both prediction and classification, since the target 
variable is a yes/no variable, whether the drug will be profitable.

1.4.6 association

The association task involves determining which attributes are associated with each 
other, that is, which attributes “go together.” The data scientist using association 
seeks to uncover rules for quantifying the relationship between two or more attrib-
utes. These association rules take the form, “If antecedent, then consequent,” 
together with measures of the support and confidence of the association rule. For 
example, marketers trying to avoid customer churn might uncover the following 
association rule: “If calls to customer service greater than three, then customer will 
churn.” The support refers to the proportion of records the rule applies to; the 
confidence is the proportion of times the rule is correct. We cover the association 
task in Chapter 14.
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eXerCISeS

CLarIFYING the CONCeptS

1. What is data science?

2. Which areas of study does data science combine?

3. What is the goal of data science?

4. Name the seven phases of the DSM.

5. Why is it a good idea to have a Problem Understanding Phase?

6. Why do we need a Data Preparation Phase? Name three issues that are handled in this 
phase.

7. In which phase does the data analyst begin to explore the data to learn some simple 
information?

8. Explain in your own words why we need to establish baseline performance for our 
models. Which phase does this occur in?

9. Which phase represents the heart of your data scientific investigation? Why might we 
apply more than one algorithm to solve a problem?

10. How do we determine whether our predictions are any good? During which phase does 
this occur?

11. True or false: The data scientist’s work is done with the Evaluation Phase. Explain.

12. Explain how the DSM is adaptive.

13. Describe how the DSM is iterative.

14. List the most common data science tasks.

15. Which of these tasks have many nonspecialists been doing all along?

16. What is estimation? In estimation, what must be true of the target variable?

17. What is the most widespread task in data science? For this task, what must be true of the 
target variable?

18. What are cluster profiles?

19. True or false: Prediction can only be used for categorical target variables. Explain.

20. For an association rule, what do we mean by support?
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C h a p t e r  2

2.1 DOWNLOaDING pYthON

To run Python code, you need to use a Python compiler. In this text, we will be 
using the Spyder compiler, which is included in the Anaconda software package. 
By downloading and installing Anaconda, we will also download and install Python 
at the same time.

To download Anaconda, go to the Spyder installation page1 and select the 
Anaconda link under either the Windows or MacOS X options. After the installa-
tion is complete, locate the Spyder program and open it.

When you open Spyder for the first time, you will see the screen shown in 
Figure 2.1. The left‐hand box is where you will write Python code. That box is 
where we will spend most of our time. The top‐right box lists data sets and other 
items that have been created by running Python code. The bottom‐right box is 
where our output will appear, as well as any error messages or other information.

2.2 BaSICS OF CODING IN pYthON

In Python, as in most other programming languages, you run code which performs 
an action. Some actions also generate output. There are five kinds of actions we will 
focus on in this chapter: Using comments, Importing packages, Executing commands, 
Saving output, and Getting data into Python.

2.2.1 Using Comments in python

Comments are pieces of code that are not executed by the compiler. Why are we 
starting our programming chapter with commands that would not be run? Because 
comments are a vital part of any programming project.

1 http://pythonhosted.org/spyder/installation.html

THE BASICS OF PYTHON AND R
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Comments are lines of code that the programmer puts there for others to 
understand the code better. For example, if you want to explain what a particular 
piece of code does, you may begin with a comment that explains what it does and 
what the result will be.

How do we write comments in Python? Comments are lines of code that start 
with a pound sign, #. The following is an example of a comment.

# This is a comment!

Notice that the typeface for any code, even comments, will be given in bold-
face in this textbook. This applies to both Python and R code.

2.2.2 executing Commands in python

Any code you type needs to be run, or executed, before it will work. There are a few 
different ways to execute code.

Most often, your cursor will be on one line of code, and you will want to run 
that line. There is a button in Spyder to run a single line of code. There is also a 
keyboard shortcut, which is revealed if you hover over that button. Both the button 
and the hover text are shown in Figure 2.2.

You may want to run multiple lines of code at the same time. In that case, 
highlight the relevant lines and press the “Run selection or current line” button, or 
press the keyboard shortcut. All highlighted code will be run at the same time.

You can also try executing comments. As discussed previously, comments 
will not be compiled, and there will be no output. They will, however, appear in the 

Figure 2.1 The Spyder window when you first open the program.
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bottom‐right window of Spyder. This tells you that the Spyder compiler has looked 
at the comment, even though there is nothing for Spyder to do after reading the 
comment.

2.2.3 Importing packages in python

While many things can be done in Python “out of the box,” meaning directly after 
you download and install it, most of what we want to accomplish requires import-
ing packages. Packages contain specially designed code that will enable us to 
perform complex data science tasks without writing the code ourselves. For 
example, in Chapter  6, we need to build a classification and regression tree 
(CART) model. Instead of figuring out how to build a CART model from scratch, 
we will import a package that contains that code. Once the package is imported, 
we can run the code to create a CART model.

Some commands are specialized, such as the MultinomialNB() command in 
the sklearn.naive_bayes package (see Chapter  10). On the other hand, there are 
some commands that will be used in every chapter. These are the pandas and numpy 
packages. To import these packages, you need to type and run the following two 
lines of code:

import pandas as pd
import numpy as np

Note that we import the packages using import. What about the as pd and as 
np code afterward? The as code renames the package using a name that we can 
specify. We rename packages to make working with them easier.

To use the commands contained in the pandas and numpy packages, we will 
need to state the package names before the command name. For example, in 
Section  2.2.4, we use the read_csv() command from pandas. To use that 
command, we would need to type pandas.read_csv(). If you are using a particular 
command multiple times or using code from a package with a long name, you 
will end up doing a lot of typing! To save some of that typing, we can give a nick-
name to the package. In the case above, we rename the pandas package as pd 
using as pd and rename the numpy package as np using as np. This is how, in 
Section 2.2.4, we can use the read_csv() command using the code pd.read_csv(). 
Renaming packages will save us a lot of typing in the long run!

Figure 2.2 The button and hover text for running a selection or line of Python code in 
Spyder.
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We can also import specific pieces from a package, without importing the 
entire package. For example, in Chapter  6 we will be using the 
DecisionTreeClassifier() and export_graphviz commands from the sklearn.tree 
package. To do so, we will use the following code:

from sklearn.tree import DecisionTreeClassifier, export_
graphviz

Note that the syntax has changed from how we imported a package previ-
ously. Instead of saying import sklearn.tree, we now begin by saying from sklearn.
tree. Using from tells Python where to look for the commands we want. After from 
sklearn.tree, we then specify what we want to import using import. If we were 
only importing the DecisionTreeClassifier command, we would end the line after 
that command name. However, since we want to import two commands, we add a 
comma and continue with the second command name, export_graphviz. Executing 
this line will import both commands.

2.2.4 Getting Data into Python

Now we will discuss how to get a data set into Python. In this text, we will use the 
read_csv command, using the following structure:

your_name_for_the_data_set = pd.read_csv("the_path_to_
the_file")

The command read_csv comes from the pandas package. Following the code 
in Section 2.2.3, we imported the pandas package as pd. After importing the pandas 
package, we can access the read_csv command by typing pd. To use the read_
csv() command, type pd followed by a period, then the command read_csv.

The next part of the code is the path to the data file, contained in double 
quotes. For many Windows users, the path will start with C:/and end with the file-
name. For example, in Chapter 4 you will need to import the bank_marketing_
training data set. The code to import the data set is given below.

bank_train = pd.read_csv("C:/.../bank_marketing_
training")

The programmer will substitute their own file path for the “C:/…/” portion of 
the path given above. An example of importing a data file is given below.

bank_train = pd.read_csv("C:/Users/Data Science/Data/
bank_marketing_training")

The Python guide in Chapter 4 tells the reader to “read in the bank_marketing_
training data set as bank_train.” This specifies not only the data set to be imported 
but also the name to call the data set. To follow the instruction, you should specify 
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the name for the data set as bank_train, as illustrated in the code above. It is impor-
tant to remember what name you save the data set as and try to keep it relatively 
short. The name you save the data as will be the name you will type whenever you 
want to use that data in the rest of your code.

2.2.5 Saving Output in python

Certain commands generate output that can be used in other lines of code. To use 
the output in later code, you need to save the output as a named object. To save the 
output, follow this structure:

your_name_for_the_output = the_command_that_generated_
the_output

You may notice the similarity of the above structure to the structure we used 
to import the bank_marketing_training data set. You may have inferred correctly 
that the command we used, read_csv(), generated an “output” of the bank_
marketing_training data set, and that we named that output bank. Importing data 
sets uses the same coding syntax as saving output under a particular name. Now let 
us illustrate the difference between running a command and not saving the output 
versus running a command and saving the output, using a contingency table.

In Chapter 4, you need to make a contingency table and save it in order to 
make a bar chart using that table. The code to make a contingency table is one line 
of code, given below and shown in Figure 2.3.

pd.crosstab(bank_train[’previous_outcome’], bank_
train[’response’])

If you do not save the output generated by the crosstab() command, the 
resulting contingency table is displayed in Spyder as in Figure 2.3. In the figure, 
“In” denotes the code we have run, and “Out” denotes the resulting output.

If we only wanted to make a table, and not use it elsewhere in our code, this 
would be sufficient. However, we want to use this table to make a bar chart. 
Therefore, we have to save it. To save it, we add a name for the saved item and an 
equal sign to the left of the command that generated the output. The code is given 
below and shown in Figure 2.4.

Figure 2.3 Creating a contingency table in Python without saving the output.
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crosstab_01 = pd.crosstab(bank_train[’previous_
outcome’], bank_train[’response’])

The name can be anything, provided it starts with a letter (not a number or 
symbol) and does not contain periods or other special characters other than an 
underscore. In Figure 2.4, we named our table crosstab_01.

Notice how there is no output in Figure 2.4. The “In” statements jump from 
“In [10]” to “In [11]” without specifying an “Out [10]” in between. Python skips 
the “Out” statement because the output generated from the crosstab() command 
has been saved under the name crosstab_01.

To view the output, run the name we have given the output, in this case 
 crosstab_01, by itself. The result is shown in Figure 2.5.

2.2.6 accessing records and Variables in python

In your data science adventures, you may want to examine a particular record. For 
example, how do we access a record inside the bank_train data set? We use the loc 
attribute, which all pandas data frames have, and state what part of the data frame 
you want to see.

Python references its records starting at record zero, so if we want to view the first 
record we request record 0. Similarly, to view the second record, request record 1, and 
so on. For example, to see the first record of bank_train, use the following code:

bank_train.loc[0]

Using the .loc attribute as above to view the first record will return the values 
of all variables for that record. Figure 2.6 shows the first four variable values for the 
first record in the bank_train data set.

Figure 2.4 Creating a contingency table in Python and saving the output under the name 
crosstab_01.

Figure 2.5 In Python we run the name of the saved output, crosstab_01, to view the 
output.
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What if we want to access many records? We will use the .loc attribute and 
list the records we want to see. If you want the first, third, and fourth rows, use the 
following code:

bank_train.loc[[0, 2, 3]]

If, on the other hand, you want the first 10 rows, inclusive, you would use the 
following code:

bank_train[0:10]

While we reference the rows by numbers, our columns have names. This 
means that if we want to specify which variable we want to see, we give its name.

bank_train[’age’]

Using one set of brackets and putting the variable name in single quotes 
returns the entire variable. The code and first four age values are shown in Figure 2.7.

What if we want to see multiple variables? We will use the .loc attribute and 
list the variables we want to see. If we want to see the age and job variables, we put 
each of those variable names inside single quotes, inside double brackets, separated 
by commas.

bank_train[[’age’, ’job’]]

The output of this command is shown in Figure 2.8.

2.2.7 Setting Up Graphics in python

Before we leave the Python coding section, we need to address one more thing: how 
to obtain and tweak graphical output in Python.

By default, Spyder shows all graphics in the IPython console in the lower‐
right window. An example of this is shown in Figure 2.9, using a histogram. These 
small displays, with no edit options, may be acceptable for simple graphs. However, 
we are going to be making complex graphics, which will require further editing and 
a larger display. To enable us to view and manipulate the graphs in detail, we need 
to change Spyder’s graphics settings.

Figure 2.6 Python shows us the variable values of the first record in the bank_train data 
set (first four variables shown).
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The following steps, which only need to be done once, will set up the graphics 
options we need:

1. In Spyder, click on Tools in the menu bar, then select Preferences.

2. In the list on the left‐hand side of the Preferences window, click IPython console.

3. Select the Graphics tab on the top of the right‐hand‐side window.

4. Under Graphics backend, click the Backend drop‐down menu and select 
Automatic. An example of the window at this point in the process is shown in 
Figure 2.10.

5. Once Automatic is chosen, click the Apply and OK buttons.

Once the graphics options are changed by the steps above, close Spyder and 
reopen it for the new settings to take effect.

Changing the graphics backend will open graphical output in a new window. 
The window, with the graphic displayed, is shown in Figure 2.11. In addition to letting 
us view the graphics in more detail, the window offers several customization options 
that will come in handy throughout the rest of this book. For example, consider the 
Configure subplots button, third from the right, which is indicated in Figure 2.11 by 
the hover text. Selecting this button will let us change the margins of the plot. The Edit 
Axis button, second from the right, will allow us to edit the title and axis labels. The 
save button, first on the right, will let you save the graphic. Feel free to experiment with 
these settings as you obtain graphical output from the code in this text.

Now you have learned the core actions of programming in Python and are 
well on your way to becoming a Python programmer! We will cover more specific 
commands, packages, and output in the following chapters, with tips and explana-
tions throughout.

Figure 2.7 Python shows the values of the age variable (first four values shown).

Figure 2.8 Python shows the values of the age and job variables (first four values shown).
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2.3 DOWNLOaDING r aND rStUDIO

It is time to switch programming languages. In this section we cover the same 
fundamental skills for the statistical programming language R that we did in the 
previous section for Python. In this chapter and throughout this book, you will find 
a lot of similarities in the way Python and R do things, such as saving output, and a 
lot of differences, such as importing packages.
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Figure 2.9 An example of a histogram displayed in the output section of Spyder.

Figure 2.10 The Preferences window in Spyder as you prepare to change the graphics options.
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To run R code, we need to download both R and RStudio. To download R, go 
to the R installation page,2 choose a mirror, and follow the directions for download-
ing R for your operating system. To download RStudio, go to the RStudio installa-
tion page3 and select the download link for your operating system. After installation, 
locate RStudio and open it.

Figure 2.12 shows the RStudio window when you first open it. If you open 
RStudio and there are only three panels, click on File > New File > R Script to 
get the four‐panel display shown in Figure 2.12. The top‐left box is where you 
will type your R code. The top‐right box has the “Import Dataset” button, which 
we will use to read data into R. It also has the “Environment” tab, which will 
show all data sets and objects you import or create in R. The bottom‐left box is 
where text‐based output will appear, as well as any feedback or error messages. 
Finally, the bottom‐right box has many tabs. We will spend most of our time in 
the “Plots” tab, where any graphical output will be displayed. The bottom‐right 
box also has the “Help” tab, which is useful for quickly accessing the documen-
tation on R commands.

2 https://cran.r-project.org/mirrors.html
3 http://rstudio.com/products/rstudio/download

Figure 2.11 The new window from Spyder that holds our graphical output, with the 
Configure subplots button indicated.
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2.4 BaSICS OF CODING IN r

With R, as with Python, you execute a command which generates output. Much of 
the structure of R code will feel similar to Python code, with a few important 
 differences. In this section we discuss the five kinds of programming actions we 
previously covered using Python, this time using R: Using comments, Importing 
packages, Executing commands, Saving output, and Getting data into Python.

2.4.1 Using Comments in r

The use of comments is just as important for coding in R as they are for coding in 
Python. Comments allow you to describe what the code does and other vital 
information.

Comments are lines of code which begin with a pound sign, #, such as the 
code below.

# This is a comment, and won’t be compiled by R!

Remember that R code will be presented in boldface throughout this text. Do 
not be afraid of putting comments in your code, even when not prompted by the 
examples and exercises in this text. Use the tool to keep your code as clear and 
understandable for others as possible!

Figure 2.12 The RStudio window when you first open the program.
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2.4.2 executing Commands in r

The R code you write needs to be executed before it will do what it is supposed to do.
Most of the time, you will want to run a single line of code. There are two 

ways to accomplish this. First, you can click the Run button inside the top‐left panel 
in RStudio, which is the same panel in which you will be typing the R code. You 
can also use the keyboard shortcut, which is revealed if you hover over the Run 
button. Both the button and the hover text (for a Windows OS) are shown in 
Figure 2.13.

2.4.3 Importing packages in r

While the “base” or initial download of R includes many commands that are useful 
to data scientists, it does not include everything we will need in this textbook. Thus, 
throughout the book, we will need to download and open specially designed batches 
of R commands, called packages. There are two steps to making this extra code 
available for use: (i) Downloading the package that contains the code and (ii) 
Opening the package.

Let us demonstrate this process for a package called ggplot2. This package 
will be used in Chapter  4, so by importing this code we will prepare for that 
chapter now. The two lines of code for downloading and accessing the code are 
given below.

install.packages("ggplot2")
library(ggplot2)

First, let us look at the first line of code. The command to download a package 
is install. packages(). To download the ggplot2 package, put the name of the 
package inside the install. packages() command in double quotes. Doing so gives 
us the first line of code above.

If you are downloading a package for the first time, you will have to pick a 
CRAN mirror before the installation can continue. While you may choose any, you 
may want to select one close to your geographic location.

It is important to note that you only need to download a package once. After 
the package is done installing, it is on your computer, ready to be opened and used 

Figure 2.13 The button, and hover text, for running a selection or line of R code in 
RStudio.
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in whatever code you wish. Before you use the commands in the ggplot2 package, 
however, you need to open it. You will need to do this whenever you wish to use the 
functions in the package.

To do so, we use the second line of code above. The command to open a 
package is library(). To open the ggplot2 package, put the name of the package 
inside the library() command, this time without quotes. Doing so gives us the 
 second line of code above.

2.4.4 Getting Data into r

There are two ways to get a data set into R: using the “Import Dataset” button in the 
RStudio Environment tab (which we highly recommend!) or coding the file path 
into R.

The easiest method for getting a data set into R is the Import Dataset button, 
found at the top of the top‐right window in RStudio. The top‐right window is shown 
in Figure 2.14, with the Import Dataset button selected. Selecting the button will pre-
sent you with different options. We will choose “From Text (base)…” as our option.

After selecting “From Text (base)…” you are presented with a file explorer 
window. Use the window to locate your data set. Navigate to your data set and 
select “Open.”

Once you select your data set file and click on “Open,” a new “Import 
Dataset” window appears. The window, shown in Figure 2.15, lists on the left‐hand 
side many options for importing the data set. The “Heading” selection is of particular 
importance. All the data sets we will use in this text have column headers, so it is 
important to tell R that these headings exist. Make sure the “Yes” button for 
“Heading” is selected. If you move between the “Yes” and “No” options, you will 
see changes in the lower‐right window, which is a preview of the data set as it will 
be imported into R. Make sure the column names (“age,” “job,” etc.) are in bold. 

Figure 2.14 After clicking the “Import Dataset” button in RStudio, a drop‐down menu is 
presented, from which we select “From Test (base)….”
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The boldface indicates that they will be imported as the variable names, and not as 
an actual record in our data set. In this window, you can also change the delimiter, 
the missing value codes, and other options for importing the data set. Finally, to 
import the data set, click “Import.” A new tab will open on the top‐left window 
displaying the data set. Return to the tab that contains your code to continue 
working.

While you can change the name of the data set as it will be imported, using 
the “Name” field, we recommend leaving it as the default value. In the R code itself 
you can shorten the name by saving the data set as a shorter name. The instructions 
in Chapter 4 state “Read in the bank_marketing_training data set as bank_train.” 
Once you import the data set, you can save the data set using a shortened name 
using the left‐pointing arrow, as shown below.

bank_train <‐ bank_marketing_training

Notice that the less‐than and minus signs shown below form a left‐pointing 
arrow, <‐. This arrow points from the object being renamed, on the right, toward its 
new name, on the left. There cannot be a space between the less‐than and minus 
signs, although there can be spaces on either side of the left‐pointed arrow they 
form. The general form to rename a data set is:

Figure 2.15 The “Import Dataset” window in R for the bank_marketing_training data set, 
with “Heading: Yes” selected.
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object_name <‐ object_to_be_saved

If you are very familiar with coding and accessing the properties of your files, 
you can open a data set by coding the file path into R via the following structure:

your_name_for_the_data <‐ read.csv(file = "the path to 
the file")

Using this method, we will use the command read.csv() to input the data. The 
file = input in the read.csv() command states the path to the file inside double 
quotes.

An example of what the code to open the bank_marketing_training data set 
would look like is given below.

bank_train <‐ read.csv(file = "C:/Users/Data Science/
Data/bank_marketing_training")

2.4.5 Saving Output in r

As in Python, you will often want to save the output of code under a particular name 
to use later in the program. To save your output under a particular name, use the 
same structure that we used to rename a data set:

 object_name <‐ object_to_be_saved

For example, to create a contingency table, you would use the code given 
below. The code and its output are shown in Figure 2.16.

table(bank_train$response, bank_train$previous_outcome)

If you want to create row and column totals, or to calculate proportions of this 
table, you should save the table under its own name first. For simplicity, let us save 
the table as t1 for “Table #1.”

The code is given below and shown in Figure 2.17. Notice how the contingency 
table is not shown if we save it under the name t1. To view the table, run the t1 code 
by itself. The result of running only t1 is shown in Figure 2.18.

Figure 2.16 Creating a contingency table in R without saving the output.
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2.4.6 accessing records and Variables in r

As with Python, there will be times when you want R to give you a particular record 
or variable. For example, how do we access the first record in the bank_train data 
set? Or the age variable in that data set?

R references its records starting at one, so if we want to view the first record 
we request record 1. For example, to access the first record in the bank_train data 
set, use the following code:

bank_train[1, ]

Note that there is no separate command to use to isolate a particular record. 
Instead, bracket notation is used. The structure of the bracket notation is:

data_set_name[ rows of interest , columns of interest ]

Note that there should be no space between the data set name and the open 
bracket.

Let us take a look at some examples. The data set we will work with is named 
bank_train. Since we are interested in the first row, we put a 1 in the rows of 
interest area. Currently, there are no columns of interest, so we leave that input 
blank.

bank_train[ 1, ]

If you want the first, third, and fourth record, use the following code:

bank_train[c(1,3,4), ]

We specify the rows of interest using the 1, 3, 4 input. Enclosing those num-
bers within a c() command tells R that all those numbers belong together, so they 
are all considered rows of interest. Since columns of interest are not specified, all 
columns will be returned. The output (showing only the first four columns) is shown 
in Figure 2.19.

Figure 2.17 Creating a contingency table in R and saving the output under the name t1.

Figure 2.18 The output of the saved table t1 in R.
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What about variables? We can identify variables of interest in the same way 
as records of interest: by using the bracket notation and putting the numbers of the 
columns we want in the columns of interest section. For example, variables age and 
marital are the first and third variables in the data set. To access these variables, put 
a 1 and a 3 in the appropriate location within the brackets, as shown below.

bank_train[, c(1, 3)]

The results are shown in Figure 2.20.
Of course, you can combine the rows of interest and columns of interest to 

specify particular rows and columns you are interested in. For example, you can ask 
for the first three records of the age and marital variables. We leave the results of 
this as an exercise.

When we import data sets, they are imported as data frames. These data 
frames have a very nice property: we can identify variables of interest using a dollar 
sign, $. For example, say we want the age variable from the bank_train data set. We 
write the name of the data set and the name of the variable, connected with a dollar 
sign, as shown below.

bank_train$age

Congratulations, you have now learned the core actions of programming in 
R! You are well on your way to becoming an R programmer. Just like with Python, 
the remainder of this book will cover more specific commands, packages, and 
output, which will be accompanied by programming tips and explanations.

Now that you have the basics of our two programming languages, you are 
ready to do Data Science using Python and R!

Figure 2.19 R shows us the contents of the first, third, and fourth records in the bank_
train data set (first four variables shown).

Figure 2.20 R shows us the contents of the first and third variables (first five records 
shown).
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eXerCISeS

CLarIFYING the CONCeptS

1. What are the five actions of Python and R code we discuss in this chapter?

2. What are comments used for? What output is generated by a comment? What special 
character begins a comment?

3. Why do we want to import packages?

4. What is the use of the “as” code when importing Python packages?

5. How do we save output generated by Python code?

6. How do we save output generated by R code?

7. Why would we want to save output?

8. How do we get a data set into Python?

9. Why is it important to specify if our data set has column headings or not?

10. What are the two ways we can get a data set into R?

WOrKING WIth the Data
For the following exercises, work with the bank_marketing_training data set. Use either 
Python or R to solve each problem.

11. Download the program and open the compiler. What is contained in the bottom‐right 
window? The left (for Python) or top‐left (for R)?

12. Type a comment stating that you are working on Chapter 2 exercises.

13. Locate the “Run” button and note whether there is a keyboard shortcut.

14. Execute the comment from the previous exercise. What is the output? Explain your 
answer.

15. Import the following packages:
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a. For Python, import the pandas and numpy packages. Rename the pandas package 
“pd” and rename the numpy package “np.”

b. For R, import the ggplot2 package. Make sure you both install and open the package.

16. Import the bank_marketing_training data set and name it bank_train.

17. Create a contingency table of the variables response and previous_outcome from the 
bank_train data set. Do not save the output from the code.

18. Rerun the code from the previous exercise, this time saving the output as crosstab_01 
(for Python code) or t1 (for R code).

19. After saving the output in the previous exercise, display the output using the name of the 
saved output.

20. Save the contingency table under a different name. This time, use your last name and 
favorite number as the name; for example, larose42.

21. Save the first nine records of the bank_train data set as their own data frame.

22. Save the age and marital records of the bank_train data set as their own data frame.

23. Save the first three records of the age and marital variables as their own data frame.

haNDS‐ON aNaLYSIS
24. Import the adult_ch3_training data set using the “Heading: Yes” setting. Rename the 

data set adult once it is imported.

25. Write a comment explaining the change in the data set name.

26. Import the following packages:

a. For Python, import the DecisionTreeClassifier command from the sklearn.tree package.

b. For R, import the rpart package. Make sure you both install and open the package.

27. Create a contingency table of workclass and sex. Save the output as table01.

28. Create a contingency table of sex and marital status. Save the output as table02.

29. Display the sex and workclass values of the person in the first record. What cell of 
table01 do they belong to? How many other records in the data set have the same sex 
and workclass values?

30. Display the sex and marital status values of the people in records 6–10. Which cells of 
table02 do they belong to? How many other records in the data set have the same com-
binations of sex and marital status values?

31. Create a new data set that has only records whose marital status is “Married‐civ‐spouse” 
and name the data set adultMarried.

32. Recreate the contingency table of sex and workclass using the adultMarried data set. 
What differences do you notice between the sexes?

33. Create a new data set that has only records whose age value is greater than 40. Name the 
new data set adultOver40.

34. Recreate the contingency table of sex and marital status using the adultOver40 data set. 
What differences do you notice?
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C h a p t e r  3

3.1 the BaNK MarKetING Data Set

We will illustrate how to perform the first two phases of the Data Science 
Methodology using the bank_marketing_training and bank_marketing_test data 
sets. Readers may download these data sets from the book series web site: www.
dataminingconsultant.com. These data sets are adapted from the bank‐additional‐
full.txt data set1 from the UCI Machine Learning Repository.2 We use only four 
predictors (age, educations, previous_outcome, and days_since_previous), plus the 
target, response. The data relate to a phone‐based direct marketing campaign 
conducted by a bank in Portugal. The bank was interested in whether or not the 
contacts would subscribe to a term deposit account with the bank. The bank_
marketing_training data set contains 26,874 records, while bank_marketing_test 
contains 10,255 records.

3.2 the prOBLeM UNDerStaNDING phaSe

We begin with the Problem Understanding Phase, in order to make sure that the 
ladder we are working so hard to climb is not leaning against the wrong wall.

3.2.1 Clearly enunciate the project Objectives

The objectives of this analysis are as follows:

1. Learn about our potential customers. That is, learn the characteristics of those 
who choose to bank with us, as well as those who do not.

1 Sérgio Moro, Paulo Cortez, and Paulo Rita, A data-driven approach to predict the success of Bank 
Telemarketing, Decision Support Systems, Elsevier, 62,: 22–31, June 2014.
2 The University of California at Irvine Machine Learning Repository, https://archive.ics.uci.edu/ml/
index.php.

DATA PREPARATION
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2. Develop a profitable method of identifying likely positive responders, so that 
we may save time and money. That is, develop a model or models that will 
identify likely positive responders. Quantify the expected profit from using 
these models.

3.2.2 translate these Objectives into a Data Science problem

How shall we use data science to accomplish the project objectives?

1. There are many ways to learn about our potential customers.

a. Use Exploratory Data Analysis to express some simple graphic relation-
ships among the variables. For example, use a histogram of age overlain 
with information about the response yes/no to visualize whether age has a 
bearing on customer response.

b. Use Clustering to determine whether there are natural groupings within 
our potential customers, for example, younger/more‐educated vs older/
less‐educated. Then, see if these clusters differ with respect to their 
response to the marketing.

c. Use Association Rules to see whether there are useful relationships among 
subsets of the records. For example, suppose the rule, “If cell phone, then 
response = yes” has good support and high confidence. This would allow 
our marketing people to develop a targeted campaign to cellphone users, 
independent of the results of our overall modeling.

2. We can develop a powerful suite of data science models to identify likely 
positive responders. Note that, since the response (yes/no) is categorical, we 
can use classification models but not estimation models.

a. Develop the best classification model we can, using the following 
algorithms:

i. Decision Trees

ii. Random Forests

iii. Naïve Bayes Classification

iv. Neural Networks

v. Logistic Regression

b. Evaluate each model based on predetermined model evaluation criteria, 
such as misclassification costs. Construct a table of the best models and 
their costs.

c. Consult with management regarding the best model or models with which 
to move forward to the deployment phase.

Thus, we have (i) clearly enunciated our objectives and (ii) translated these 
objectives into a set of data science tasks to be implemented. Thus, Phase One: 
Problem Understanding Phase is complete.
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3.3 Data preparatION phaSe

Next, we turn to the Data Preparation Phase, where the data are cleaned and prepped 
for analysis. A complete guide to data preparation would require much more space 
than we have here. (The reader is encouraged to see Data Mining and Predictive 
Analytics3 for much more on data preparation.) Every data set has its own requisite 
data prep tasks. In this chapter we will focus on the following data preparation 
tasks:

 • Adding an index field

 • Changing misleading field values

 • Reexpressing categorical data as numeric data

 • Standardizing the numeric fields

 • Identifying outliers.

3.4 aDDING aN INDeX FIeLD

The data scientist may want to augment the data set with new variables that can 
enhance understanding. For example, not all data sets, including the bank_marketing 
data sets, come equipped with an ID field. Thus, we can add an index field to the 
data, which will serve two purposes: (i) it acts as an ID field for data sets without 
such a field and (ii) it tracks the sort order of the records in the database. In data 
science, we often repartition and re‐sort the data; it is therefore helpful to have an 
index field, in order to recover the original sort order when desired. How to add an 
index field using Python and R follows.

3.4.1 how to add an Index Field Using python

First, we need to open the required package, using the code discussed in the previous 
chapter.

import pandas as pd

Next, import the data set under the name bank_train by using the read_csv() 
command and specifying the file’s location.

bank_train = pd.read_csv("C:/.../bank_marketing_training")

As discussed in the previous chapter, since the read_csv command is in the 
pandas package, we need to give the name of the package before the command. As 
we opened the pandas package as pd, the full command is pd.read_csv().

3 By Daniel T. Larose and Chantal D. Larose, John Wiley and Sons, Inc., 2015.
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To create the index, we first need to find the number of records and columns 
in the data set.

bank_train.shape

Using .shape after the name of the data set will give us the number of rows 
and columns in the data set. The first number in the output is the number of records, 
26,874. The second is the number of variables.

Once we know the number of records, we create a new variable that assigns 
every record a unique integer.

bank_train['index'] = pd.Series(range(0,26874))

The nested commands Series() and range() create a string of numbers 
whose lower bound is zero and upper bound is the number of records. Since the 
Series() command is contained in the pandas package, and we renamed the 
pandas package pd, we preface the Series() command with pd and a period. The 
result is the code pd.Series(). Note that the lower bound of the range() command 
is zero and not one, as Python begins counting locations at zero. We save the 
series of numbers as a new variable in the data set, index, by assigning the output 
of pd.Series(range()) to the index variable of the bank_train data set using 
bank_train[‘index’].

To view the data set with its new variable, we can look at the head of the 
data set.

bank_train.head

Using .head after the name of the data set will generate output containing the 
first and last 30 records for every variable in the data set.

3.4.2 how to add an Index Field Using r

Import the data set under the name bank_train, using the Import Dataset button in 
RStudio. To create an index field, we first need to know how many records are in 
the data set.

n <‐ dim(bank_train)[1]

The dim() command gives the number of records and the number of variables 
for the data set whose name is used as the input value; in this case, the bank_train 
data set. Adding [1] at the end of dim(bank_train) will result in only the first 
number, the number of records, being given as the output. We save the output as a 
lowercase letter “n,” which is the commonly used notation for sample size. If you 
execute n by itself, the output will be the number 26,874, which is the number of 
records in the data set.
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Once we have the number of records, we create a new variable that gives 
every record a unique integer which specifies its order in the data set.

bank_train$Index <‐ c(1:n)

The function c() will combine its input values into a single object. The input 
in our case is 1:n, which stands for “the integers 1 through n, inclusive.” The 
command c(1:n) will give us a series of numbers from 1 to the number of records 
in the bank data set. We save this series of numbers as a new variable in the data set, 
named Index, by saving c(1:n) as bank_train$Index.

To see the data set with its new index variable, run the head() command with 
the bank_train data set as the sole input.

head(bank_train)

The resulting output is the first six records across all variables, including the 
Index variable.

3.5 ChaNGING MISLeaDING FIeLD VaLUeS

The field days_since_previous is a count of the number of days since the client was 
last contacted from a previous campaign. This field is clearly numeric, so we can 
look at a histogram4 of days_since_previous provided by R in Figure 3.1. Note that 

4 See the Appendix, Data Summarization and Visualization.
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Figure 3.1 Histogram from R of days_since_ previous, with most values near 1000.
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most of the data values are near 1000, with a minority of values near zero. It turns 
out that the database administrator used the code 999 to represent customers who 
had not been contacted previously. Thus, we need to change the field value 999 to 
missing, which is done as follows in Python and R.

3.5.1 how to Change Misleading Field Values Using python

If you did not open the pandas package or read in the data set, as described in the 
previous Python section, do so now. We also need to import the numpy package for 
this section.

import numpy as np

We need to identify all records with days_since_previous value of 999 and 
replace them with the Python code for missing numbers, NaN. Once the replacement 
is made, we will save the variable under the days_since_previous variable name, 
effectively overriding the previous variable’s values.

bank_train[’days_since_previous’] =
      bank_train[’days_since_previous’].replace({999: np.NaN})

The code bank_train[’days_since_previous’] accesses the variable days_
since_previous. The command replace({999: np.NaN }) finds each instance of 999 
in the days_since_previous variable and replaces it with the value NaN. To save the 
newly edited variable under its original name, we set the right‐hand side equal to 
the original days_since_previous variable on the left by reusing the variable name 
bank_train[’days_since_previous’].

To create a histogram of the variable, use the hist() command.

bank_train[’days_since_previous’].plot(kind = ’hist’,
      title = ’Histogram of Days Since Previous’)

Using .plot() after the variable name will make a plot of the variable. We use 
kind = ‘hist’ to specify that a histogram should be made. The title input, contained 
in single quotes, creates the title of the histogram. The output is shown in Figure 3.2. 
In Chapter 4, we will look at more complex histograms.

3.5.2 how to Change Misleading Field Values Using r

If you did not read in the data set, as described in the previous R section, do so now.
We need to identify each instance of 999 in the days_since_previous variable, 

and replace it with the R code value for a missing value, NA.
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bank_train$days_since_previous <‐ ifelse(test = bank_
train$days_since_previous == 999,
     yes = NA, no = bank_train$days_since_previous)

The ifelse() command checks the condition specified under test =, then 
assigns the days_since_previous variable the value given after yes = if the test 
condition is true, and assigns the days_since_previous variable the value given after 
no = if the test condition is false.

In our case, each record is checked to see if it contains the value 999 in the 
days_since_previous variable. If it does, the value NA is returned. If it does not, the 
original value in the days_since_previous variable is returned. To save the string of 
returned values as the variable days_since_previous, save the output as the variable 
using bank_train$days_since_previous.

To create a histogram of the variable, use the hist() command.

hist(bank_train$days_since_previous, xlab = "days_since_
previous",
       main = "Histogram of days_since_previous - Missing 
Values replaced by NA")

The hist() command has one required input, the variable of interest. We use 
bank_train$days_since_previous as our variable of interest. The optional input 
values main and xlab specify the title and X‐axis label of the histogram, respec-
tively. Note that the labels must be contained in quotes.

Figure  3.3 shows the histogram of days_since_previous with the missing 
values excluded.
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Figure 3.2 Histogram of days_since_previous in Python with missing values properly 
coded.
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3.6 reeXpreSSION OF CateGOrICaL Data 
aS NUMerIC

Figure 3.4 shows a bar graph5 of the education field. Note that the field is categorical, 
meaning that there is no ordering of the field values. In other words, if we left the 
field as it is, then our data science algorithms would not know that university_
degree represents more education than basic.4yr. To provide this information to our 
algorithms, we transform the data values into numeric values, where it is clear that 
one value is larger than another. One needs to proceed with care when doing this, 
so that the relative differences among the various categories are preserved.

Table 3.1 shows how we plan to accomplish this transformation. The value of 
12 for professional course was obtained from the publication shown in the footnote, 
as representing an alternative to the usual high‐school course of study. Of course, 
the unknown values will also need to be reexpressed as missing.

3.6.1 how to reexpress Categorical Field Values Using python

We will replicate the education variable, and name it education_numeric, in prepa-
ration for replacing its categorical values with numeric ones.

bank_train[’education_numeric’] = bank_
train[’education’]

5 See the Appendix, Data Summarization and Visualization.
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Figure 3.3 Histogram in R of days_since_previous, with the missing values excluded.
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The right‐hand side of the equal sign specifies the education variable, and the 
equal sign assigns those values to the left‐hand side. There is currently no variable 
named education_numeric, so one will be created and given the values of the vari-
able education.

We need to set up a dictionary specifically for converting the categorical 
values in the education_numeric variable to numeric values. The dictionary is 
contained in curly brackets, { }, to set up our dictionary, as follows:

dict_edu = {"education_numeric": {"illiterate": 0, 
"basic.4y": 4, "basic.6y": 6,

Bar plot or education

Unknown

University.degree

Professional.course

Illiterate

High.school

Basic.9y

Basic.6y

Basic.4y

0 2000 4000 6000 8000

Figure 3.4 Bar graph in R of the education variable.

taBLe 3.1 reexpressing the values of education as numeric

Categorical Value Numeric Value

illiterate 0
basic.4y 4
basic.6y 6
basic.9y 9
high.school 12
professional.course 12a

university.degree 16
unknown Missing

a This value based on In‐Vet, Preventing initial dropout and fostering initial 
inclusion, http://invet‐project.eu/wp‐content/uploads/2014/06/National‐Report_
Portugal_Final.pdf. The two groups, professional course and high school, will 
be combined with the same numeric value, 12. The proportion of positive 
responders among these two groups is similar (11.1 vs. 10.7%), so we can 
probably live with their being combined.
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     "basic.9y": 9, "high.school":12, "professional.
course": 12, "university.degree":16,
     "unknown": np.NaN}}

Inside the dictionary, we use “education_numeric” to specify the variable 
which we want to recode, followed by a colon and another set of curly brackets. 
Within this second set of curly brackets, we specify the recoding in the following 
order:

Variable’s original value : Variable’s new value

Each specification is separated by a comma. Note that we use Python’s value 
for missing numeric values, NaN, where necessary.

Finally, we tell Python to use the dictionary to replace the variable’s values.

bank_train.replace(dict_edu, inplace=True)

The command replace() will replace the values according to the rules in the 
dictionary dict_edu.

3.6.2 how to reexpress Categorical Field Values Using r

First, we need to install and load the plyr package.

install.packages("plyr"); library(plyr)

We need to specify which values of education go with which numeric values, 
following the rules specified in Table 3.1.

edu.num <‐ revalue(x = bank_train$education, replace = 
c("illiterate" = 0, "basic.4y" = 4,
     "basic.6y" = 6, "basic.9y" = 9, "high.school" = 12, 
"professional.course" = 12,
     "university.degree" = 16, "unknown" = NA))

The revalue() function replaces values in the variable given in the x input, 
according to the rules given in the replace input. Within the replace = input, we use 
c()to string together each piece of recoding, using the structure

Variable’s original value = Variable’s new value

Each specification is separated by a comma. Note that we are using R’s value 
for missing values, NA, where necessary. We save the output as edu.num.

Currently, the values of edu.num are not numeric (e.g. you cannot make a 
histogram using them), so we need to convert the levels of the variable to the 
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numeric type. The object edu.num is a factor, and we convert its values to numbers 
using the following code:

bank_train$education_numeric <‐ as.numeric(levels 
(edu.num))[edu.num]

The levels() command obtains the factor levels of the edu.num variable, 
which are strings. The as.numeric() command converts them to numbers. These 
new values are applied to the edu.num variable, and the result saved as our new 
variable, education_numeric. Figure  3.5 shows a histogram of the reexpressed 
education field education_numeric.

3.7 StaNDarDIZING the NUMerIC FIeLDS

Certain algorithms perform better when the numeric fields are standardized so that 
the field mean equals 0 and the field standard deviation equals 1,6 as follows:

z Standardized Value
x x

s

Data value mean

Standard deviatio
 

 

 nn

Positive z‐values may be interpreted as representing the number of standard 
deviations above the mean the data value lies, while negative z‐values represent the 
number of standard deviations below the mean. Some analysts standardize all their 

6 For mean and standard deviation, see the Appendix, Data Summarization and Visualization. For more 
on standardization, see Discovering Statistics, Third Edition, by Daniel T. Larose, W.H. Freeman, 2016.
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numeric fields as a matter of course. Next, we show how to standardize numeric 
fields in Python and R.

3.7.1 how to Standardize Numeric Fields Using python

Import the required package.

from scipy import stats

We will standardize the age variable and save it as a new variable, age_z.

bank_train[’age_z’] = stats.zscore(bank_train[’age’])

The zscore function calculates the z‐value of the given variable, in this case 
age, written in the code as bank_train[‘age’]. As the zscore() command is part of 
the stats package, we write the command as stats.zscore(). We save it as a new var-
iable in the data set, age_z.

3.7.2 how to Standardize Numeric Fields Using r

We do not have to install or load a package for this code. The command we will use, 
scale(), is included in the initial download of R.

bank_train$age_z <‐ scale(x = bank_train$age)

The scale() function can center a variable by subtracting its mean, scale it by 
dividing by the standard deviation, or both. By default, it does both, as needed to 
calculate the z‐score. Thus, using the default settings of the scale() function on the 
bank_train$age variable will return the z‐scores of the variable. We can save the 
z‐values as a new variable in the data set using bank_train$age_z.

3.8 IDeNtIFYING OUtLIerS

Once the numeric fields are standardized, one may use the z‐values to identify 
outliers, which are records with extreme values along a particular dimension or 
dimensions. For example, consider the field number_of_contacts, which repre-
sents the number of customer contacts made over the course of the marketing 
campaign. The mean number of contacts per customer is 2.6, with a standard 
deviation of 2.7 (allowing for rounding). So, we obtain the standardized field as 
follows:

number of contacts z
number of contacts

_ _ _
_ _ .

.

2 6

2 7
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A rough rule of thumb is that a data value is an outlier if its z‐value is either 
greater than 3, or less than −3. For instance, a customer who had been contacted 
10 times (which seems like a lot) would have standardized value,

number of contacts z_ _ _
.

.
.

10 2 6

2 7
2 7

Thus, 10 contacts, while a lot, is not identified as an outlier using this method, 
since 2.7 < 3.

The data scientist should consult with the client regarding what he or she 
would like to do with any outliers. Outliers should not be automatically removed! 
Nor should they be automatically changed. Their unusual values may bring to light 
important aspects of the data that should be discussed with the client or with the 
database administrator.

3.8.1 how to Identify Outliers Using python

For this example, we will continue using the age_z variable that we created in the 
previous section. We will find outliers by using the query() function, which iden-
tifies rows that meet a particular condition.

bank_train.query(’age_z > 3 | age_z < ‐3’)

The condition we want all returned records to meet is given as ’age_z > 3 | 
age_z < ‐3’. In words, this condition requires each record to either have an age_z 
value greater than 3, or an age_z value less than −3. The “or” is specified by the 
character | between the two conditions.

All records which meet the specified condition are returned. In our example, 
there are 228 records that have age_z values greater than 3 or less than −3. We can 
use these records to create a new data set, which is made up only of these values.

bank_train_outliers = bank_train.query(’age_z > 3 | 
age_z < ‐3’)

By giving the output of the query() command a name, we create a new data 
set of only outliers, which we have called bank_train_outliers.

Let us sort the data set bank_train_outliers by its age_z variable.

bank_train_sort = bank_train.sort_values([’age_z’], 
ascending = False)

The sort_values() command will sort the records in the data set based on a 
specified variable. The sort can be ascending or descending. In this example, we 
want the largest age_z values at the top, so we sort in descending order by 
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specifying ascending = False. We can save this sorted data set under its own name, 
say bank_train_sort.

Finally, let us say we want to report the age and marital status of the 15 people 
who have the largest age_z values. This condition specifies both the number of rows 
to report (15) and the columns to report (the variables named age and marital).

bank_train_sort[[’age’, ’marital’]].head(n=15)

The double‐bracket notation given after the data set name lets us specify 
which columns to include. The head() command will give the top records, stopping 
after n records if n is given, or after five records if no n value is given. In our case, 
we specify n = 15. The results are the age and marital status of the people with the 
15 largest age_z values.

3.8.2 how to Identify Outliers Using r

For this example, we will continue using the age_z variable that we created in the 
previous section. We can isolate individual records using bracket notation detailed 
in the previous chapter. The structure of our code will begin as follows:

bank_train[ rows of interest, ]

Note that the right‐hand side of the comma is left blank. As we have not spec-
ified any columns of interest, all columns will be returned in the output of this 
command.

We now need to fill in which rows we are interested in. The which() command 
will identify the records that meet specified conditions.

bank_outliers <‐ bank_train[ which(bank_train$age_z < ‐3 
| bank_train$age_z > 3), ]

The condition given as the input to the which() command states that we want 
all records whose age_z values are less than −3 or greater than 3. The which() 
command returns the row indices of all such records. The bracket notation will 
return a subset of the bank_train data set that holds only those records. We can 
save those records as a new data set, bank_outliers.

To sort a data set by a variable, we use the order() command.

bank_train_sort <‐ bank_train[ order(‐ bank_
train$age_z), ]

The order() command takes as input a variable to be sorted. It returns the row 
indices of the variable after it has been sorted. By default, the values are sorted in 
ascending order. To sort instead by descending order, we add a minus sign in front 
of the variable, as shown.
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Placing the order() command inside bracket notation, specifically where the 
rows of interest are located, will reorder the records in the data set based on the 
ordering returned by the order() command. We save this new, sorted data set as 
bank_train_sort.

To view the first 10 records of the new data set, which are the 10 records with 
the largest age_z values, use bracket notation and specify rows 1 through 10.

bank_train_sort[ 1:10, ]

Once again, leaving the columns blank will return all the columns (variables) 
of the data set.

To return only a few columns, we need to take note of which variable is in 
what column. We can do this using head().

head(bank_train_sort)

The variable age is in column 1 and the variable marital is in column 3. To 
return the first 10 records of columns 1 and 3, specify both the rows and columns of 
interest in bracket notation.

bank_train_sort[1:10, c(1,3)]

The output contains the age and marital status of the 10 customers with the 
largest age_z values.

The topics addressed in this chapter are intended to provide a flavor of the 
types of challenges awaiting you in the Data Preparation Phase. In the Hands‐On 
Analysis exercises, we explore how to derive new variables that are functions of the 
original variables, in order to extract more information from the data set. For more 
on data preparation, see Data Mining and Predictive Analytics,7 which provides 
more data preparation topics, along with how to do them using R.

reFereNCeS

The scipy package in Python handles many different mathematics and computing tasks. For 
more details, have a look at the website: E. Jones, E. Oliphant, and P. Peterson, et al., 
SciPy: Open Source Scientific Tools for Python, 2001–, www.scipy.org

The plyr package in R has a similar goal of handling and organizing data. For more details, 
see the original publication: Hadley Wickham, The split‐apply‐combine strategy for data 
analysis, Journal of Statistical Software, 40(1), 1–29, 2011.

7 Data Mining and Predictive Analytics, by Daniel T. Larose and Chantal D. Larose, Second Edition, 
John Wiley and Sons, Inc., 2015.
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eXerCISeS

CLarIFYING the CONCeptS

1. What are the two main objectives of the bank_marketing analysis, as stated in the 
Problem Understanding Phase?

2. What are the three ways we plan to accomplish the objective of learning about our 
potential customers.

3. Explain how we plan to accomplish the objective of developing profitable models for 
identifying likely positive responders.

4. Describe two reasons why it might be a good idea to add an index field to the data set.

5. Explain why the field days_since_previous is essentially useless until we handle the 
999 code.

6. Why was it important to reexpress education as a numeric field?

7. Suppose a data value has a z‐value of 1. How may we interpret this value?

8. What is the rough rule of thumb for identifying outliers using z‐values?

9. Should outliers be automatically removed or changed? Why or why not?

10. What should we do with outliers we have identified?

WOrKING WIth the Data

For the following exercises, work with the bank_marketing_training data set. Use either 
Python or R to solve each problem.

11. Derive an index field and add it to the data set.

12. For the days_since_previous field, change the field value 999 to the appropriate code for 
missing values.

13. For the education field, reexpress the field values as the numeric values shown in 
Table 3.1.

14. Standardize the field age. Print out a list of the first 10 records, including the variables 
age and age_z.

15. Obtain a listing of all records that are outliers according to the field age_z. Print out a 
listing of the 10 largest age_z values.

16. For the job field, combine the jobs with less than 5% of the records into a field called 
other.

17. Rename the default predictor to credit_default.

18. For the variable month, change the field values to 1–12, but keep the variable as categorical.

19. Do the following for the duration field.

a. Standardize the variable.

b. Identify how many outliers there are and identify the most extreme outlier.
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20. Do the following for the campaign field.

a. Standardize the variable.

b. Identify how many outliers there are and identify the most extreme outlier.

haNDS‐ON aNaLYSIS

For Exercises 21–25, work with the Nutrition_subset data set. The data set contains the 
weight in grams along with the amount of saturated fat and the amount of cholesterol for a 
set of 961 foods. Use either Python or R to solve each problem.

21. The elements in the data set are food items of various sizes, ranging from a teaspoon of 
cinnamon to an entire carrot cake.

a. Sort the data set by the saturated fat (saturated_ fat) and produce a listing of the five 
food items highest in saturated fat.

b. Comment on the validity of comparing food items of different sizes.

22. Derive a new variable, saturated_ fat_per_gram, by dividing the amount of saturated fat 
by the weight in grams.

a. Sort the data set by saturated_ fat_per_gram and produce a listing of the five food 
items highest in saturated fat per gram.

b. Which food has the most saturated fat per gram?

23. Derive a new variable, cholesterol_per_gram.

a. Sort the data set by cholesterol_per_gram and produce a listing of the five food 
items highest in cholesterol fat per gram.

b. Which food has the most cholesterol fat per gram?

24. Standardize the field saturated_ fat_per_gram. Produce a listing of all the food items 
that are outliers at the high end of the scale. How many food items are outliers at the low 
end of the scale?

25. Standardize the field cholesterol_per_gram. Produce a listing of all the food items that 
are outliers at the high end of the scale.

For Exercises 26–30, work with the adult_ch3_training data set. The response is 
whether income exceeds $50,000.

26. Add a record index field to the data set.

27. Determine whether any outliers exist for the education field.

28. Do the following for the age field.

a. Standardize the variable.

b. Identify how many outliers there are and identify the most extreme outlier.

29. Derive a flag for capital‐gain, called capital‐gain‐flag, which equals 0 for capital gain 
equals zero, and 1 otherwise.

30. Age anomaly? Select only records with age at least 80. Construct a histogram of age. 
Explain what you see in one sentence and why it is like that in another sentence.
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C h a p t e r  4

4.1 eDa VerSUS ht

Clients or analysts often have a priori hypotheses that they would like the data to 
test. An example of such a hypothesis is: Do cellphone users have a higher rate of 
positive responses than landline users? The resulting hypothesis test (HT) could be 
carried out using either classical statistical methods or using the cross‐validation 
methods of data science (Chapter 5).

On the other hand, the client or the analyst may not have any salient a priori 
notions about what the data might uncover. In such cases, they would prefer to use 
exploratory data analysis (EDA) or graphical data analysis. EDA allows the user to:

 • Use graphics to explore the relationship between the predictor variables and 
the target variable.

 • Use graphics and tables to derive new variables that will increase predictive 
value.

 • Use binning productively, to increase predictive value.

In this chapter, we will continue to explore the bank_marketing_training data 
set from Chapter 3. We begin by using graphics to investigate the relationship bet-
ween the target response and a categorical predictor.

4.2 Bar GraphS WIth reSpONSe OVerLaY

We can use bar graphs with a response overlay for exploring the relationship bet-
ween a categorical predictor and the target variable. Figure 4.1 shows a bar graph 
of previous_outcome with an overlay of the target response. Previous_outcome 
refers to the result of a previous marketing campaign with this same customer, with 
most customers not having had such a previous experience.

Clearly, most customers did not have any previous marketing experience with 
the company (variable value nonexistent). In general, (non‐normalized) bar graphs 

EXPLORATORY DATA ANALYSIS
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are useful for showing the distribution of the values of the categorical variable. 
However, it is not clear which category has the greater proportion of responders. 
Nonexistent has the most responders but it also has the most nonresponders.

To clarify situations like these, we may obtain a normalized bar graph, which 
equalizes the length of each bar, so that we may more easily compare the response 
proportions. Figure 4.2 represents such a normalized bar graph of previous_outcome, 
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Figure 4.1 Bar graph from R of previous_outcome with response overlay.
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Figure 4.2 Normalized bar graph from R of previous_outcome with response overlay.
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with a response overlay. From Figure 4.2, it is clear that the group with the highest 
proportion of positive responders is success, those customers who had responded 
positively to the company’s previous campaign. Interestingly, those who responded 
negatively last time (failure) also had a slightly better success rate this time than 
those with no previous contacts.

This exercise demonstrates two best practices when working with bar graphs.

4.2.1 how to Construct a Bar Graph with Overlay Using python

Load the required package and read in the bank_marketing_training data set as 
bank_train.

import pandas as pd
bank_train = pd.read_csv("C:/.../bank_marketing_
training")

The first step in creating a bar graph is to create a contingency table of the 
values in the predictor and target variables. We create the table using the crosstab() 
command.

crosstab_01 = pd.crosstab(bank_train[’previous_
outcome’], bank_train[’response’])

This code will be examined in detail a bit later. For now, we save the table as 
crosstab_01.

Now, we can create the bar graph based on the table.

crosstab_01.plot(kind=’bar’, stacked = True)

To create the bar graph, append .plot() to the end of the crosstab_01 object. The 
plot() command takes various optional input values. We specify the input kind = ‘bar’ 
to plot a bar graph and stacked = True to specify a stacked bar graph.

To create a normalized version, we need to change the table so that the values 
in each cell are the proportions of “no” and “yes” response values within each value 
of the predictor previous_outcome, as follows:

crosstab_norm = crosstab_01.div(crosstab_01.sum(1), 
axis = 0)

Best practices: Bar Graphs

 • When a bar graph with overlay is unclear regarding the response proportion, sup-
plement it with a normalized bar graph.

 • However, never provide a normalized bar graph without its non‐normalized ver-
sion, because the normalized version gives no indication of the original distribu-
tion (how many records in each category).
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The div() command will divide the values of the table by another object, 
within each specified axis. In our example, we want to divide the cells in row 1 of 
the table by the sum of the cells in row 1, and so on for row 2 and row 3. To accom-
plish this, we first set the value we want to divide by to be crosstab_01.sum(1), 
which is the sum of each row in the table. We then set axis = 0 to specify that we 
want to divide the rows of the table by these values. The result is a table whose cells 
are the proportion of data in that row that falls in that column. We save the resulting 
table as crosstab_norm.

Once the table is saved, visualize it using the code for a stacked bar chart, as 
above.

crosstab_norm.plot(kind=’bar’, stacked = True)

The resulting graph is shown in Figure 4.3.

4.2.2 How to Construct a Bar Graph with Overlay Using R

Read in the bank_marketing_training data set as bank_train. We will be using 
the ggplot2 package to create our graphs. You need to install the package once 
using install.packages(), then open it each time you write new code using 
library().

install.packages("ggplot2"); library(ggplot2)

The ggplot code uses different commands chained together using plus signs 
(+), as shown in the following example. Note that the plus signs must immediately 
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Figure 4.3 Normalized bar graph from Python of previous_outcome with response overlay.
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follow the preceding command, with no line break in between, but may be followed 
by a line break.

To create a bar graph of the previous_outcome variable, we use the ggplot() 
and geom_bar() commands.

ggplot(bank_train, aes(previous_outcome)) + geom_bar() + 
coord_flip()

The ggplot() command begins the graph. The bank_train input specifies the 
data set being used, and the variable of interest is listed under aes() (“aes” for “aes-
thetics”). The second piece of code is geom_bar(), which specifies that a bar chart 
should be made. The code knows what variable to use because of the previous 
ggplot() command. An optional third piece of code is coord_flip(), which will 
make the bars run horizontally.

To create a bar chart with an overlay of response, we add a fill input.

ggplot(bank_train, aes(previous_outcome)) + geom_
bar(aes(fill = response)) + coord_flip()

Note that the only change is the addition of aes(fill = response) inside geom_
bar(). The result is the graph shown in Figure 4.1.

To normalize the bar chart, add position = “fill” inside geom_bar(), as 
shown below.

ggplot(bank_train, aes(previous_outcome)) + geom_
bar(aes(fill = response),
       position = "fill") + coord_flip()

The input position = “fill” is added inside the geom_bar() command, but 
outside of aes(). The result is the graph shown in Figure 4.2.

4.3 CONtINGeNCY taBLeS

To help quantify the relationship between a categorical predictor and the target, we can 
construct a contingency table, which is a cross‐tabulation of the two variables, and 
contains a cell for every combination of variable values (that is, for every contingency). 
Figure 4.4 contains a contingency table of previous_outcome with response. Note that 
the usual practice is to have the target variable representing the rows, with the predictor 
representing the columns. For EDA, it is also helpful to include the column percent-
ages. Figure 4.5 contains the table with column percentages. Most customers had no 
previous marketing campaign (nonexistent), so note that 21,176 of these responded 
no while 2034 responded yes. Overall, note that the proportion of yes response is 
only 13.9% for failure and only 8.8% for nonexistent, but a very high 64% when the 
customer’s previous marketing campaign was a success.

The best practices for contingency tables follow.
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4.3.1 how to Construct Contingency tables Using python

We had to create a contingency table in order to make a bar chart, but did not inves-
tigate the code in detail. Let us examine the code for the table more closely.

crosstab_01 = pd.crosstab(bank_train[’previous_
outcome’], bank_train[’outcome’])

Note the order of the variables. The table as built by this code will have 
previous_outcome as the rows. This table created the bar chart we needed in the 
previous section, but to abide by best practice and have the target variable represent 
the rows, we need to change the code to:

crosstab_02 = pd.crosstab(bank_train[’response’], bank_
train[’previous_outcome’])

Make sure to save the table. We save the output as crosstab_02. The result 
will be a table equivalent to Figure 4.4.

To calculate the column proportions of the table, we need to divide each 
column by the column sum. We utilize the sum() and div() commands, in a similar 
way to the previous section. However, this time we are obtaining column, and not 
row, percentages.

round(crosstab_02.div(crosstab_02.sum(0), axis = 1)*100, 1)

Figure 4.4 Contingency table from R of previous_outcome with response.

Figure 4.5 Contingency table from R of previous_outcome with response table with 
column percentages instead of counts.

Best practices: Contingency tables

 • Let the response variable represent the rows.

 • Then, obtain the column percentages to directly compare the response proportions 
for each category of the predictor.
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Note that we multiply the resulting table by 100 to obtain percentages instead 
of proportions. In addition to the sum() and div() commands, we put the code for 
the table inside a round() command. The round() command will round the num-
bers in the table to the specified number of significant digits; here, we specify one 
digit. The result is a table equivalent to Figure 4.5.

4.3.2 how to Construct Contingency tables Using r

The command to create a table is table(), with the variables of interest inside the 
parentheses.

t.v1 <‐ table(bank_train$response, bank_train$previous_
outcome)

The first variable, bank_train$response, makes up the rows, while the sec-
ond variable, bank_train$previous_outcome, makes up the columns. We will 
save our table as t.v1, so we can edit it.

To add row and column totals to the table, use the addmargins() command.

t.v2 <‐ addmargins(A = t.v1, FUN = list(total = sum), 
quiet = TRUE)

The input A = t.v1 specifies the table to be edited, in our case t.v1. The FUN = 
list(total = sum) input specifies a list of functions to be performed to create the 
marginal row and column. In our case, we want to create a row and column named 
total which contains the sum of the rows and columns. We save the edited table as 
t.v2. To see the finished table, run t.v2 by itself. The result is shown in Figure 4.4.

Now we want to edit table t.v1 so it gives us the column percentages.

round(prop.table(t.v1, margin = 2)*100, 1)

To calculate the proportion of entries in the cells of the table, use prop.
table(). The input t.v1 tells prop.table() for what table to calculate proportions. 
The margin = 2 input tells R to calculate column percentages. Multiplying the 
result by 100 using *100 will give us percentages instead of proportions. Finally, 
putting the prop.table() command inside a round() command will round the entries 
to a certain number of decimal points; in our case, one (1) decimal point. The result 
is shown in Figure 4.5.

4.4 hIStOGraMS WIth reSpONSe OVerLaY

A histogram is a graphical representation of a frequency distribution for a numerical 
variable. Figure  4.6 shows a histogram of the age variable with an overlay of 
response. Most customers range from, say, mid‐20s to about 60 years of age. So 
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(non‐normalized) histograms are useful for seeing the distribution of the values of 
a numeric variable.

Again, however, it is somewhat difficult to ascertain any pattern in the 
response proportions. To better clarify these response proportions, we turn to a nor-
malized histogram with response overlay, shown in Figure  4.7. Suddenly the 
response pattern becomes crystal clear. Customer response starts off high for 
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Figure 4.6 Histogram from R of age with response overlay.
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Figure 4.7 Normalized histogram from R of age with response overlay.
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20‐year olds, gradually decreases, flattening out low for 30–60‐year olds, and rising 
sharply again for those over 60. So, the normalized histogram allows us to better 
distinguish these response patterns, but unfortunately the normalized histogram 
does not tell us about the original distribution of age in our customer population.

This leads us to our two best practices for histograms.

4.4.1 how to Construct histograms with Overlay Using python

Load the required packages.

import numpy as np
import matplotlib.pyplot as plt

Separate the variable you want to graph by the overlay you want to use. Since 
we are creating a histogram of age using an overlay of response, we separate the 
variable age, bank_train[‘age’], by the two values of the variable response. Save 
each piece as its own variable.

bt_age_y = bank_train[bank_train.response == "yes"]
['age']
bt_age_n = bank_train[bank_train.response == "no"]
['age']

The result is two variables, bt_age_y and bt_age_n, which have age values 
from only those records which have response = “yes” and response = “no,” 
respectively.

Once the variables are created, create a stacked histogram of the two 
variables.

plt.hist([bt_age_y, bt_age_n], bins = 10, stacked = True)
plt.legend([’Response = Yes’, ’Response = No’])
plt.title(’Histogram of Age with Response Overlay’)
plt.xlabel(’Age’); plt.ylabel(’Frequency’); plt.show()

For the hist() command, the input stacked = True will stack the two vari-
ables, while bins = 10 specifies the number of bins in the histogram. The legend(), 
title(), xlabel(), and ylabel() commands specify the values of the legend, title, 
x‐axis label, and y‐axis label. Finally, show() displays the figure. The result is 
shown in Figure 4.8.

Best practices: histograms

 • Use a non‐normalized histogram to obtain the original distribution of the data 
values.

 • If needed, use a normalized histogram to help better distinguish the response 
patterns.
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We will now create a normalized histogram. First, create a stacked histogram, 
but this time save the information generated by the histogram.

(n, bins, patches) = plt.hist([bt_age_y, bt_age_n], bins = 
10, stacked = True)

The left‐hand side of the code saves several pieces of information from the 
histogram. Specifically, n is the height of the histogram bars and bins are the 
boundaries of each bin in the histogram. Note that, since two variables are being 
plotted in the histogram, n has two series of numbers. The first series is for the first 
variable and the second one is for the second variable. The first number in each 
series is the height of the first bar for each variable.

To create our normalized histogram, we need to know what proportion of 
each bin each variable represents. To accomplish this, we need to put the information 
contained in n into a matrix and obtain the column proportions.

To begin construction of the matrix, combine the heights of the two variables’ 
bars into one array using the column_stack() command.

n_table = np.column_stack((n[0], n[1]))

The result, n_table, is a two‐column matrix where each column’s entries hold 
the heights of each bar.

To calculate what proportion of the bar is accounted for by each variable, we 
need to divide each row by the sum across that row.

n_norm = n_table / n_table.sum(axis=1)[:, None]

Now, each row in n_norm sums to one and the columns within each row give 
the proportion of that variable that makes up the row.
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Figure 4.8 Histogram from Python of age with response overlay.
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In our final preparatory step, we create an array whose rows are the exact cuts 
of each bin.

ourbins = np.column_stack((bins[0:10], bins[1:11]))

Each row in ourbins gives the upper and lower bounds of each bin.
Now, we are ready to create our normalized histogram.

p1 = plt.bar(x = ourbins[:,0], height = n_norm[:,0], 
width = ourbins[:, 1] ‐ ourbins[:, 0])
p2 = plt.bar(x = ourbins[:,0], height = n_norm[:,1], 
width = ourbins[:, 1] ‐ ourbins[:, 0],

bottom = n_norm[:,0])
plt.legend([’Response = Yes’, ’Response = No’])
plt.title(’Normalized Histogram of Age with Response 
Overlay’)
plt.xlabel(’Age’); plt.ylabel(’Proportion’); plt.show()

In the bar() commands, the x input specifies the upper and lower bounds of 
the bins, the height input uses the normalized count values we created previously 
to specify the height of each of the two sections of each bar, and the width input 
reuses the bar widths from the original bar chart. The bottom = n_norm[:,0] 
input in the second bar() command specifies the second of the two bar sections 
to start on top of the first. The remaining commands are the same customization 
options we used in the stacked bar chart previously. The result is shown in 
Figure 4.9.
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Figure 4.9 Normalized histogram from Python of age with response overlay.



58 Chapter 4 eXpLOratOrY Data aNaLYSIS

4.4.2 how to Construct histograms with Overlay Using r

We begin with the ggplot() command, with the data set bank_train specified, and 
the variable age specified in the aes() command. To make a histogram, we add the 
geom_histogram() command.

ggplot(bank_train, aes(age)) + geom_
histogram(color="black")

The optional color = “black” input creates black lines around each bar of the 
histogram. The result is a histogram with no overlay.

To add an overlay to the histogram using the target variable, the aes(fill = 
response) input is added to geom_histogram().

ggplot(bank_train, aes(age)) + geom_histogram(aes(fill = 
response), color="black")

The resulting histogram with overlay is shown in Figure 4.6.
To normalize the histogram, the position = “fill” input is added to 

geom_histogram().

ggplot(bank_train, aes(age)) +
geom_histogram(aes(fill = response), color="black", 
position = "fill")

The resulting normalized histogram with overlay is shown in Figure 4.7.

4.5 BINNING BaSeD ON preDICtIVe VaLUe

Some algorithms work better with categorical rather than numeric variables, so it 
may be useful for the analyst to use binning to derive new categorical variables 
based on how the different sets of values of the numeric predictor behave with 
respect to the response. For example, take Figure 4.7. To optimize our signal from 
the data, we ask ourselves: How can we categorize the numerical values of age so 
that the categories had widely varying response proportions? Clearly, one category 
would be the customers aged 60 and up, who have a high response proportion. This 
is in contrast to the middle group (somewhere in the mid‐20s up to 60) which has a 
low response probability. Finally, there is the youngest group (up to mid‐20s) which 
also has a high response proportion. Thus, we could define our new variable some-
what as follows (the 27 cutoff is a bit arbitrary; 25 or 26 would also work):

age binned

Under

to

and up

_

:

:

:

1 27

2 27 60

3 60
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Figure 4.10 shows the bar graph with overlay for age_binned. Figure 4.11 
shows the normalized version of the bar graph. Then, Figure  4.12 shows the 
contingency table of age_binned with response and Figure 4.13 gives the column 
percentages of the contingency table. Clearly, both the older and the younger groups 
have a much higher response rate than the middle group. Unfortunately, over 90% 
of our customers belong to this middle group.

Here is an important best practice to remember regarding binning.

4.5.1 how to perform Binning Based on predictive 
Value Using python

Load the required package.

import pandas as pd
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Figure 4.10 Bar graph from R of age_binned with response overlay.

Best practice: Binning

 • Many software packages provide “automatic” binning methods, such as equal‐
category‐width binning or equal‐number‐of‐records‐per‐category binning. Though 
these may have their uses, if you are interested in enhancing the predictive power 
of your analysis, you should always try to use the binning based on predictive 
value that we have demonstrated here.
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Bin the values using cut() from the pandas package.

bank_train[’age_binned’] = pd.cut(x = bank_train[’age’], 
bins = [0, 27, 60.01, 100],
     labels=["Under 27", "27 to 60", "Over 60"], right = 
False)

The x = input specifies the variable that you want to divide into categories. 
The bins = input specifies the edges of each bin. The labels = input specifies the bin 
label. The right = False input specifies that we want our bins to exclude the right‐
hand cutpoint. For example, the first bin will include all ages from 0 up to (but 
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Figure 4.11 Normalized bar graph from R of age_binned with response overlay.

Figure 4.12 Contingency table from R of age_binned and response.

Figure 4.13 Contingency table from R of age_binned and response with column 
percentages.
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excluding) 27 years old. We save the new categorical variable in the data set under 
the name age_binned by using bank_train[’age_binned’].

Note that, while we have mostly intuitive cutpoints for the bins, such as 
zero for the lower bound of the first bin and 100 for the upper bound of the last 
bin, we also have a cutpoint of 60.01. Specifying a cutpoint of 60.01 (or any 
number between but excluding 60 and 61), combined with the input right = 
False, will ensure that our middle category includes all ages from 27 to 60 
inclusive. Specifically, we tell Python to make a bin from 27 up to but excluding 
60.01. Since ages are integers in this data set, this effectively makes the bin 
include ages 27–60, inclusive.

To graph the binning with an overlay of response, create the necessary 
contingency table and plot it, using code similar to code we used earlier. The result-
ing graph is shown in Figure 4.14.

crosstab_02 = pd.crosstab(bank_train[’age_binned’], 
bank_train[’response’])
crosstab_02.plot(kind=’bar’, stacked = True,
        title = ’Bar Graph of Age (Binned) with Response 

Overlay’)

To create a normalized bar graph, follow the same guidelines as discussed 
previously. The resulting graph is shown in Figure 4.15.

To obtain a contingency table of the response variable and our new categorical 
variable, use the crosstab() command. Remember to use the target variable response 
as the rows of the table. To obtain the table of column proportions, use the div() and 
sum() commands on the resulting table. We discussed this code earlier when 
 creating histograms using Python.
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Figure 4.14 Bar graph from Python of age_binned with an overlay of response.
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4.5.2 how to perform Binning Based on predictive Value Using r

To create our categorical variable, we will use the cut() command on the age 
variable.

bank_train$age_binned <‐ cut(x = bank_train$age, breaks = 
c(0, 27, 60.01, 100),
       right = FALSE, labels = c("Under 27", "27 to 60", 

"Over 60"))

The x input specifies the variable to be binned. The breaks input specifies the 
cutpoints of each bin. The right = FALSE input states that the right‐hand cutpoint 
of each bin should be excluded from the category. The optional labels input over-
rides the default labels of each bin with user‐specified labels, which will apply to 
each bin in order (e.g. “Under 27” for the 0–27 bin). We use the bin value 60.01, 
instead of 60, and the right = FALSE input for the same reasons discussed in the 
Python section above. We save the result in the bank_train data set as 
age_binned.

Once we have our categorical variable, we can plot it with an overlay of 
response using the ggplot commands covered previously.

ggplot(bank_train, aes(age_binned)) + geom_bar(aes(fill = 
response)) + coord_flip()

The resulting bar graph with overlay is shown in Figure 4.10. To create a nor-
malized bar graph for these variables, follow the same guidelines as discussed for 
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the previous normalized bar chart. The resulting normalized bar graph is shown in 
Figure 4.11.

We can construct a contingency table of our categorical variable and the 
response variable using the table() command, and a table of column proportions 
using the prop.table() command. The details of both commands have been dis-
cussed previously. The code is given below.

t2 <‐ table(bank_train$response, bank_train$age_bin); t2
round(prop.table(t2, margin = 2)*100, 1)

Note how the use of the semicolon in the first line allows both the construction 
and saving of the table, and the printing of the table, to happen in one line. The 
resulting tables are shown in Figures 4.12 and 4.13.

Further methods in EDA may be found in Data Mining and Predictive 
Analytics.1

reFereNCeS

Python’s matplotlib package has a wide range of graphical options. To start investigating 
further, see the publication: John D. Hunter, Matplotlib: a 2D graphics environment, 
Computing in Science & Engineering, 9, 90–95, 2007, doi:https://doi.org/10.1109/
MCSE.2007.55

We have just brushed the surface of the ggplot2 package! For more information, see the fol-
lowing publication: H. Wickham, ggplot2: Elegant Graphics for Data Analysis, Springer‐
Verlag, New York, 2009.

eXerCISeS

CLarIFYING the CONCeptS
1. When should analysts use exploratory data analysis (EDA) rather than hypothesis 

testing?

2. What are some examples of what EDA allows the user to do?

3. Which graph do we use to explore the relationship between a categorical predictor and 
the target variable?

4. What are (non‐normalized) bar graphs useful for?

5. State one advantage and one disadvantage of using a normalized bar graph.

6. State the two best practices when working with bar graphs for EDA?

7. What does a contingency table help us to do?

8. Explain the two best practices when working with contingency tables in EDA?

1 By Daniel T. Larose and Chantal D. Larose, John Wiley and Sons, Inc., 2015.
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9. What is a histogram?

10. Describe one advantage and one disadvantage of using a normalized histogram.

11. What are the best practices for working with histograms in EDA?

12. Why might it be useful for the analyst to bin a numeric variable?

13. Why do we use the binning method shown in this chapter rather than automatic binning 
methods?

14. Extrapolate from your answer to the previous question and explain why data scientists 
should use automatic methods of data analysis very carefully.

WOrKING WIth the Data
For the following exercises, work with the bank_marketing_training data set. Use either 
Python or R to solve each problem.

15. Create a bar graph of the previous_outcome variable, with response overlay.

16. Create a normalized bar graph of previous_outcome variable with response overlay. 
Describe the relationship between previous_outcome and response.

17. Create a contingency table of previous_outcome and response. Compare the contingency 
table with the non‐normalized bar graph and the normalized bar graph.

18. Create a histogram of age with response overlay.

19. Create a normalized histogram of age with response overlay. Describe the relationship 
between age and response.

20. Bin the age variable using the bins specified in this chapter and create a bar chart of the 
binned age variable with response overlay.

haNDS‐ON aNaLYSIS
For Exercises 21–30, continue working with the bank_marketing_training data set. Use 
either Python or R to solve each problem.

21. Produce the following graphs. What is the strength of each graph? Weakness?

a. Bar graph of marital.

b. Bar graph of marital, with overlay of response.

c. Normalized bar graph of marital, with overlay of response.

22. Using the graph from Exercise 21c, describe the relationship between marital and 
response.

23. Do the following with the variables marital and response.

a. Build a contingency table, being careful to have the correct variables representing 
the rows and columns. Report the counts and the column percentages.

b. Describe what the contingency table is telling you.



24. Repeat the previous exercise, this time reporting the row percentages. Explain the 
difference between the interpretation of this table and the previous contingency 
table.

25. Produce the following graphs. What is the strength of each graph? Weakness?

a. Histogram of duration.

b. Histogram of duration, with overlay of response.

c. Normalized histogram of duration, with overlay of response.

26. Using the graph from Exercise 25c, describe the relationship between duration and 
response.

27. Examine the non‐normalized and normalized histograms of duration, with overlay of 
response. Identify cutoff point(s) for duration, which separate low values of response 
from high values. Define a new categorical variable, duration_binned, using the cutoff 
points you identified.

28. Provide the following. Describe each of the results.

a. Contingency table of duration_binned with response, with counts and column 
percentages.

b. Non‐normalized bar graph of duration_binned, with response overlay.

c. Normalized bar graph of duration_binned, with response overlay.

29. Construct a contingency table of job with response, with counts and column 
percentages.

30. Referring to the previous exercise, do the following:

a. Combine the job categories according to the following response percentages: 0 < 10, 
10 < 25, 25 < 33. Name the new variable job2.

b. Provide a contingency table of job2 with response, with counts and column percent-
ages. Describe what you see.

c. Provide a normalized histogram of job2 with response. Describe the relationship.

For Exercises 31–36, work with the cereals data set. Use either Python or R to solve each 
problem.

31. Create a bar graph of the Manuf variable with Type overlay.

32. Create a normalized bar graph of the Manuf variable with Type overlay.

33. Create a contingency table of Manuf and Type.

34. Create a histogram of Calories with Manuf overlay.

35. Create a normalized histogram of Calories with Manuf overlay.

36. Bin the Calories variable using bins for 0–90, 90–110, and over 110 calories. Create a 
bar chart of the binned calories variable with Manuf overlay.

For Exercises 37–60, use the adult_ch3_training data set.

For Exercises 37–40 we demonstrate an example of why it is not recommended to delete 
outliers at the EDA stage, because it results in changing the character of the data set.

eXerCISeS 65
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37. Consider capital‐loss. Identify the outliers in capital‐loss using the Z‐score method. 
How many outliers are there?

38. Construct a bar graph of Income for these outlier records.

39. Construct a bar graph of Income for the adult_ch3_training data set as a whole, without 
omitting the outliers.

40. Compare your bar graphs from the previous two exercises. Describe the difference bet-
ween the two bar graphs. Describe the change to the character of the data set that will 
result if we delete these outlier records. State your conclusion regarding deleting out-
liers at the EDA stage.

41. Derive a flag for capital‐loss, called capital‐loss‐flag, which equals 0 when capital‐loss 
equals 0, and 1 otherwise. Provide a bar graph of capital‐loss‐flag.

42. Repeat the previous exercise for capital‐gain‐flag.

43. Construct a contingency table of capital‐loss‐flag vs Income. Include counts and column 
percentages. Clearly describe the effect of having any capital losses on Income.

44. Construct a contingency table of capital‐gain‐flag vs Income. Include counts and 
column percentages. Clearly describe the effect of having any capital gains on Income.

45. To prepare for further work, rename workclass as workclass‐old, marital‐status as 
marital‐status‐old, and occupation as occupation‐old.

46. Construct a contingency table with income for the rows and workclass‐old for the 
 columns, asking for counts and column percentages.

47. Referring to the contingency table from the previous exercise, do the following:

a. Provide a one‐sentence rationale for why we should combine never‐worked and 
without‐pay into no‐pay.

b. Provide a one‐sentence rationale for why we may combine local‐gov and state‐gov 
into state‐local‐gov.

48. Perform the changes mentioned in the previous exercise, along with changing “?” to 
“unknown.” Call the new variable workclass. Construct a contingency table with income 
for the rows and workclass for the columns, with counts and column percentages. 
Describe your table using a couple of sentences.

49. Construct a contingency table with income for the rows and marital‐status‐old for the 
columns, asking for counts and column percentages.

50. Referring to the contingency table from the previous sentence, provide two sentences 
of rationale for why we should combine Married‐AF‐spouse and Married‐civ‐spouse 
into the new category Married, and combine the other statuses into the new category 
Other.

51. Perform the changes mentioned in the previous exercise. Construct a contingency table 
with income for the rows and marital‐status for the columns, with counts and column 
percentages. Describe your table using a couple of sentences.

52. Construct a contingency table with income for the rows and occupation‐old for the 
 columns, asking for counts and column percentages.



53. Provide one sentence each for why we should do the following combinations:

a. Exec‐managerial and Prof‐specialty into the new category Exec/prof.

b. The occupations with income percentages >50 k into the new category Mid‐level.

c. The remaining occupations into the new category Low‐Level.

d. Fold the unknown category into the Low‐Level category.

54. Perform the changes referred to in the previous exercise. Call the new variable occupa-
tion. Construct a contingency table with income for the rows and occupation for the 
columns, with counts and column percentages. Describe your table using a couple of 
sentences.

55. Do the following for the education variable.

a. Provide a non‐normalized and normalized histogram of education, with an income 
overlay.

b. Provide a one‐sentence description of the relationship and another sentence on your 
expectation regarding the usefulness of education in predicting income.

56. Do the following for the age variable.

a. Provide a non‐normalized and normalized histogram of age, with an income overlay.

b. Provide a one‐sentence description of the relationship.

c. Provide another sentence rationale for the following binning: age < 30, age 30–60, 
age > 60.

57. Execute the binning mentioned in the previous exercise, by deriving a new variable, 
age_binned.

a. Provide a normalized bar graph of age_binned with an income overlay.

b. Interpret the bar graph using a sentence.

58. Provide the following analysis of the sex predictor.

a. A non‐normalized bar graph of sex, with an overlay of income.

b. A normalized bar graph of sex, with an overlay of income.

c. Interpret the normalized bar graph using a sentence.

59. Construct the following:

a. A non‐normalized bar graph of occupation with a sex overlay.

b. A normalized bar graph of occupation with a sex overlay. Describe the relationship.

60. Construct a contingency table with sex for the rows and occupation for the columns, 
with counts and column percentages. Compare the contingency table with the normalized 
bar graph.
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C h a p t e r  5

5.1 the StOrY SO Far

To recapitulate our progress thus far, we are working our way through the Data 
Science Methodology.

1. In Chapter  3, we discussed the importance of the Problem Understanding 
Phase.

2. Also in Chapter 3, we dealt with several issues regarding the Data Preparation 
Phase.

3. In Chapter  4, we covered some important topics in the Exploratory Data 
Analysis Phase.

4. Now, here in Chapter 5, we are ready to tackle the Setup Phase.

The Setup Phase consists of a number of very important tasks that must be 
completed before we can begin our data modeling. These include:

 • Partitioning the data

 • Validating the data partition

 • Balancing the data

 • Establishing baseline model performance

We cover each of these topics in turn in this chapter.

5.2 partItIONING the Data

The Data Science Methodology does not use the statistical inference paradigm 
where generalization is made from a sample to a population. There are two reasons 
for this.

PREPARING TO MODEL 
THE DATA
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1. Applying statistical inference to the huge sample sizes encountered in data 
science tends to result in statistical significance, even when the results are not 
of practical significance.

2. In the statistical paradigm, the statistician has an a priori hypothesis in mind, 
whereas the Data Science Methodology requires no such a priori hypothesis, 
instead freely searching through the data for actionable results.

Because of the lack of a priori hypotheses, data scientists need to beware of 
data dredging, whereby phantom spurious results are uncovered, due merely to 
random variation rather than real effects. Data science avoids data dredging through 
the process of cross‐validation, a technique for ensuring that results are generaliz-
able to an independent, unseen, data set. The most common methods are twofold 
cross‐validation and k‐fold cross‐validation. In twofold cross‐validation, the data 
are partitioned, using random assignment, into a training data set and a test data set 
(also called the holdout data set).

The training set records are complete, but the test set records should have the 
target variable (temporarily) omitted. So, the data science models learn about the 
patterns and trends in the data using the training data set. These models are applied 
to the test set, where they make predictions for the temporarily unknown values of 
the target variable. These predictions are then evaluated against the (now restored) 
true target values, using evaluation measures such as overall error rate or mean‐
squared error. In this way, cross‐validation guards against spurious results, since it 
is highly unlikely that the same random variation would be found in both the 
training and the test data sets.

The size of the partitions differs depending on the size and complexity of the 
data set. For highly complex data sets, where, for example, a neural network model 
needs to learn about many nonlinear relations within the data, more training records 
would be recommended, say 75–90% of the original data. In addition, if the data set 
is very large, it is convenient to have more records in the training set. On the other 
hand, for smaller or less complex data sets, one should retain sufficient records for 
accurate assessment, so that the training sets would contain only 50–67% of the 
original data.

5.2.1 how to partition the Data in python

Import the following packages:

import pandas as pd
from sklearn.model_selection import train_test_split
import random

Read in the bank_additional data set and name it bank.

bank = pd.read_csv("C:/.../bank-additional.csv")

To partition the data set, we will use the command train_test_split().
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bank_train, bank_test = train_test_split(bank, test_size = 
0.25, random_state = 7)

The command creates two data sets, bank_train and bank_test. While the 
names of the data sets are arbitrary, the test data set is always the second one  created. 
The first input, bank, specifies that we are partitioning the bank data set, and the 
test_size = 0.25 input states that 25% of the bank data set should be in the test data 
set, while the remaining 75% should be in the training data set. The random_state 
input sets the seed for the random number generator that will randomly split the 
data into training and test data sets. The input value itself is arbitrary. The important 
thing is to specify the seed and use that same number when you want to replicate 
your results. Setting the random seed will ensure you will get the same answer as 
before.

To confirm that the data set was partitioned correctly, you can compare the 
shapes of the original, training, and test data sets using the shape feature.

bank.shape
bank_train.shape
bank_test.shape

The first numbers given from the bank_train.shape and bank_test.shape 
output should sum to the first number of the bank.shape output. Additionally, the 
first number from the bank_test.shape output should be about 25% of the first 
number from the bank.shape output.

5.2.2 how to partition the Data in r

Read in the bank‐additional data set as bank. Next, we need to set the “seed” for the 
random number generator we will use later on in this section.

set.seed(7)

The number input to the set.seed() command is arbitrary. However, if you 
want to rerun the code and get the same random results, the seed (whatever it is) 
must match the seed used in the initial run‐through. In our case, the seed is seven, 7.

To prepare to partition the data, we identify how many records are in the 
data set

n <‐ dim(bank)[1]

The use of the dim() command and its additional [1] specification are the 
same as in previous chapters.

Once we have the number of records, n, we can determine which records will 
be in the training data set via a random number generator.

train_ind <‐ runif(n) < 0.75
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The runif() command randomly draws numbers between zero and one, each 
with equal probability. The input n will generate n such numbers, one for each 
record in the data set. The condition < 0.75 will look at each of the numbers gener-
ated by runif() and see whether the number is above or below 0.75. If the number 
is below 0.75, the value TRUE is returned, while if the number is above 0.75, the 
value FALSE is returned. You can run train_ind by itself to see the series of TRUE 
and FALSE values. While the numbers generated by runif() will be different each 
time, on average about 75% will be TRUE.

Now that we have a series of TRUE and FALSE values, we will use them to 
create the training and test data sets. We use bracket notation to break the bank data 
set into two halves by specifying the rows of interest for each partition. Remember 
the bracket notation specifies the rows of interest before the comma and the  columns 
of interest after the comma.

bank_train <‐ bank[ train_ind, ]
bank_test <‐ bank[ !train_ind, ]

By running bank[ train_ind, ] we subset only those records of bank whose 
train_ind value equals TRUE. Since about 75% of the values in train_ind equal 
TRUE, about 75% of records from bank will be in the bank_train data set. For 
bank_test we want those records of bank whose train_ind value equals FALSE. By 
using bank[ !train_ind, ] we subset only those records of bank whose train_ind 
value does not equal TRUE (where “not” is signified by the exclamation point, !).

We now have our training and test data sets.

5.3 VaLIDatING YOUr partItION

Because the legitimacy of the entire Data Science Methodology depends on the 
validity of the partition, it is important to check that the training data set and the test 
data set do not differ systematically from each other. We can do this by checking, 
on a variable‐by‐variable basis, whether the training and test sets differ. Because 
there may be many variables in the data set, we restrict ourselves to spot‐checking 
a small set of randomly chosen variables. Depending on the variable types involved, 
different statistical tests are required.

 • For a numerical variable, use the two‐sample t‐test for the difference in means.

 • For a categorical variable with two classes, use the two‐sample Z‐test for the 
difference in proportions.

 • For a categorical variable with more than two classes, use the test for the 
homogeneity of proportions.

For details on how to perform these tests, please see our earlier text.1

1 Data Mining and Predictive Analytics, Second Edition, by Daniel T. Larose and Chantal D. Larose, 
John Wiley and Sons, Inc., 2015.
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5.4 BaLaNCING the traINING Data Set

In some classification models, one of the target variable classes has a much lower 
relative frequency than the other classes. In such cases, balancing the training data 
set may be recommended. The purpose of balancing is to provide the classification 
algorithms with a rich selection of records for each category. In this way, the algo-
rithms have a chance to learn about all types of records, not just those with a high 
frequency. For instance, suppose 1000 of 100,000 credit card transactions are fraud-
ulent. A classification model could achieve 99% accuracy simply by predicting 
“non‐fraudulent” for every transaction. Clearly, this model is useless.

Instead, the analyst should balance the training set so that the proportion of 
fraudulent transactions is increased. This balancing is achieved through resampling 
a number of the fraudulent (rare) records.

Resampling is the process of sampling at random and with replacement from 
a data set. For example, currently our fraudulent records represent 1% of our 
training set. Suppose we would like to increase this to 25%. Then, we would add 
32,000 resampled fraudulent records, so that we had 33,000 fraudulent records in 
total. The total number of records in the training set would then be 100,000 + 

32,000 = 132,000. We would have 
33 000

132 000
0 25 25

,

,
. %  fraudulent records, as 

desired.
So, how did we come up with the magic number of 32,000 resampled records? 

We used the following equation:

1000 0 25 100 000x x. ,

and solved for x, the required number of additional records to resample. In 
general, this equation is

rare x p records x

which, solving for x gives us:

x
p records rare

p1

where x is the required number of resampled records, p is the desired proportion of 
rare values in the balanced data set, records is the number of records in the unbal-
anced data set, and rare represents the current number of rare target values.

The test data set should never be balanced! Remember that the test data set 
represents holdout data that the models have never seen. Data sets in the real world 
certainly will not be conveniently rebalanced for the convenience of our classification 
models, so neither should our test set be rebalanced. Further, all model evaluation 
will be applied to the test data set, meaning that the models will be evaluated in 
real‐world like data conditions.
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5.4.1 how to Balance the training Data Set in python

First, we identify how many records in bank_train have the less common value, 
“yes,” for response, using the value_counts() command.

bank_train[’response’].value_counts()

The count of “yes” responses will change depending on the partition. For the 
partition using the random seed specified in the previous Python code, there are 
3089 records in the training data set, with 338 having the “yes” response value. 
Thus, about 12% of the training data set has a “yes” response value.

Say, we want to increase the percentage of “yes” responses to 30%. Since we 
have p = 0.3, records = 3089, and rare = 338, we obtain

x
0 3 3089 338

0 7
841

.

.

That is, we need to resample 841 records whose response is “yes” and add 
them to our training data set.

To begin resampling, we isolate the records which we want to resample.

to_resample = bank_train.loc[bank_train['response'] == 
"yes"]

The loc command subsets the bank_train data based on the condition bank_
train[‘response’] == “yes” and saves the resulting data set under the name 
to_resample.

Next, we need to sample from our records of interest

our_resample = to_resample.sample(n = 841, replace = True)

The sample() command draws records at random from to_resample, which 
holds the records we want to resample. The input n = 841 specifies how many 
records to draw, while the input replace = True specifies to sample with replacement. 
The output is a data set made up of these 841 randomly resampled records, which 
we save under the name our_resample.

Finally, we add the resampled records to our original training data set.

bank_train_rebal = pd.concat([bank_train, our_resample])

The concat() command attaches two data sets by putting the rows on top of 
each other. The result is a single data set made up of the records in both bank_train 
and our_resample, which is saved as its own data set under the name 
bank_train_rebal.
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To check that the desired percent of “yes” responses was obtained, examine 
the table of the response variable.

bank_train_rebal[’response’].value_counts()

The resulting table is shown in Figure 5.1. There are now 1179 records out of 
3930 with a “yes” response, which amounts to about 30%.

5.4.2 how to Balance the training Data Set in r

First, let us find out how many records in the bank_train data set have a response 
value of “yes.”

table(bank_train$response)

The number of “yes” responses will be different for every partition. For the 
partition based on the random seed used in the previous R code, there are 3103 
records in the training data set and 336 of them have “yes” response values. This 
gives us about 11% of the training data set having “yes” responses.

Let us resample to increase the percentage of “yes” responses to 30%. Since 
we have p = 0.3, records = 3103, and rare = 336, we obtain

x
0 3 3103 336

0 7
850

.

.

That is, we need to resample 850 records whose response is “yes” and add 
them to our training data set.

First, we identify the record indices we want to resample using the which() 
command.

to.resample <‐ which(bank_train$response == "yes")

The which() command returns the row numbers which correspond to records 
that meet the specified condition. In our case, we want the row numbers of those 
records whose value of y is “yes,” so our condition is bank_train$response == 

Figure 5.1 The Python table of response values after rebalancing.
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“yes”. We save the record numbers as to.resample, as these are the values we want 
to resample.

Next, we randomly sample from the values in to.resample.

our.resample <‐ sample(x = to.resample, size = 850, 
replace = TRUE)

The x = to.resample input specifies that we want to sample from the series of 
record indices we created previously. The size = 850 input specifies how many 
numbers should be resampled. The replace = TRUE input tells the algorithm to 
sample with replacement. The output is a series of 850 record indices, sampled 
from our to.resample vector.

Now we want to get the records whose record numbers are those in our.
resample.

our.resample <‐ bank_train[our.resample, ]

Use of the bracket notation does the job for us. The number of records in the 
new data set our.resample is 850, which is the number of records we wanted to 
resample.

Finally, we need to add the resampled records back onto our original training 
data set.

train_bank_rebal <‐ rbind(bank_train, our.resample)

The rbind() command stands for “row bind,” meaning append two data sets 
by putting the rows on top of each other. By using rbind() on the original training 
data bank_train and the 850 resampled records in our.resample, we have created 
our rebalanced data set, which we name train_bank_rebal.

To confirm that the resampling has given the desired amount of rare records, 
look at the table of response values in our rebalanced data set.

t.v1 <‐ table(train_bank_rebal$response)
t.v2 <‐ rbind(t.v1, round(prop.table(t.v1), 4))
colnames(t.v2) <‐ c("Response = No", "Response = Yes");
rownames(t.v2) <‐ c("Count", "Proportion")
t.v2

The result is shown in Figure 5.2. The percent of “yes” responses is approxi-
mately 30%, which is the percent of rare records we wanted.

Response = YesResponse = No
Count
Proportion

2767.0 1186.0
0.30.7

Figure 5.2 The R table of response values after rebalancing.
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5.5 eStaBLIShING BaSeLINe MODeL perFOrMaNCe

Before evaluating model performance, data scientists should first calibrate the 
results against some baseline model performance. For example, in the fraud sce-
nario above, suppose we developed a complex fraud detection model that reported 
98% accuracy. Sounds impressive, until we remember that an “all negative” model 
that simply classifies all records as non‐fraudulent would have a 99% accuracy rate. 
Without comparison to a baseline, our clients cannot determine whether our results 
are any good.

We offer the following two baseline models for the binary classification case.

For example, in our fraud scenario, p = 0.01 or 1% fraudulent records, where 
we let fraudulent records represent positive. Then the All Positive Model will have 
accuracy 0.01, and the All Negative Model will have accuracy 0.99. Any model that 
we develop will need to beat this 99% accuracy2 to be considered useful.

We may extend this to the k‐nary case, k ≥ 3, as follows:

For example, if your training set has 30% Democrats, 30% Republicans, and 
40% Independents, the baseline model assigns all records to Independents, and has 
an accuracy of 40%.

2 If, indeed, we are using accuracy as our method of choosing the best model. This is often not the case. 
See Chapter 7.

Baseline Models for Binary Classification

Let one of the binary target classes represent positive and the other class represent 
negative.
Let p represent the proportion of positive records in the data.

 • All Positive Model. Assign all predictions as positive.

 ° The accuracy of this model will be p.

 • All Negative Model. Assign all predictions as negative.

 ° The accuracy of this model will be 1–p.

Baseline Models for k‐nary Classification

Let there be k classes for the response variable, C
1
, C

2
, …, C

k
.

Let p
i
 represent the proportion of class C

i
 records in the data, i = 1, …, k.

 • Biggest Category Model. Assign all predictions as belonging to the largest 
category.

 ° The accuracy of this model is p
max

, the largest p
i
.
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So, what kind of baseline model should we use for estimation problems? For 
regression, one could simply compare our estimates against the y y model, where 
the estimate for each record’s response is simply the mean response. But this is truly 
too low a bar, since almost any regression model will surely beat that. Notice that the 
baseline y y model completely ignores the wealth of information residing in the 
predictors. Instead, we could ask a question such as, “What would a subject matter 
expert consider a mediocre prediction error to be?” For example, if we are a lending 
company trying to estimate how much our mortgage clients can afford, we might say 
that we could live with a model that was typically off by $50,000, which would there-
fore be a mediocre prediction error. Then, when we do build our regression models, 
we need our values of s, the standard error of the estimate, to be lower than $50,000.3

Of course, the optimal benchmark for calibrating any model is to compare it 
against the current gold standard model performance, as provided by the literature 
(or proprietary business models). For example, suppose our lending company had 
done research some years ago in which they achieved a standard error of $25,000. 
Then, this s = $25,000 is our baseline benchmark against which the models that we 
build will be compared against.

To summarize, in this chapter we have learned about the Setup Phase of the 
Data Science Methodology, which includes the following steps:

 • Partitioning the data

 • Validating the data partition

 • Balancing the data

 • Establishing baseline model performance

Next time, we can begin the Modeling Phase, as we turn to Chapter 6.

reFereNCeS

For the publication at the heart of the random package: M. Matsumoto and T. Nishimura, 
Mersenne twister: a 623‐dimensionally equidistributed uniform pseudorandom number gen-
erator, ACM Transactions on Modeling and Computer Simulation, 8(1), 3–30, January 1998.

We will spend a lot more time with the sklearn package! To get more familiar with it, take a 
look at the following: F. Pedregosa, et  al., Scikit‐learn: machine learning in Python, 
Journal of Machine Learning Research, 12, 2825–2830, 2011.

eXerCISeS

CLarIFYING the CONCeptS

1. Which four tasks should be undertaken during the Setup Phase?

2. State two reasons why the Data Science Methodology does not follow the usual 
statistical inference paradigm.

3 See Chapter 11.
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3. Describe what data dredging is and why data scientists need to avoid it.

4. How do data scientists avoid data dredging?

5. Describe the differences between the training data set and the test data set.

6. When validating the partition, does the data scientist need to check every field?

7. When validating a partition, which statistical test is used for a numerical variable?

8. What is balancing? Why is it used?

9. Describe what we mean by resampling.

10. When should the test data set be balanced?

11. Why is it important to establish baseline model performance?

12. Describe the two baseline models for binary classification.

13. True or false: there is no baseline model for k‐nary classification.

14. What is the optimal benchmark for calibrating your model performance?

WOrKING WIth the Data
For Exercises 15–20, work with the bank_additional data set. Use either Python or R to solve 
each problem.

15. Partition the data set, so that 75% of the records are included in the training data set and 
25% are included in the test data set. Use a bar graph to confirm your proportions.

16. Identify the total number of records in the training data set and how many records in the 
training data set have “yes” for a response variable value.

17. Use your answers from the previous exercise to calculate how many “yes” response 
records you need to resample in order to have 20% of the rebalanced data set have “yes” 
response values.

18. Perform the rebalancing described in the previous exercise and confirm that 20% of the 
records in the rebalanced data set have a “yes” response value.

19. Should we balance the test data set you created above? Explain why or why not.

20. Which baseline model do we use to compare our classification model performance 
against? To which value does this baseline model assign all predictions? What is the 
accuracy of this baseline model?

haNDS‐ON aNaLYSIS
For Exercises 21–28, work with the adult data set.

21. Partition the data set, so that 50% of the records are included in the training data set 
and 50% are included in the test data set. Use a bar graph to confirm your 
proportions.

22. Identify the total number of records in the training data set, and how many records in the 
training data set have an income value of >50 K.
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23. Use your answers from the previous exercise to calculate how many records with income 
>50 K you need to resample in order to have 35% of the rebalanced data set have 
incomes of >50 K.

24. Perform the rebalancing described in the previous exercise and confirm that 35% of the 
records in the rebalanced data set have incomes >50 K.

25. Which baseline model do we use to compare our classification model performance 
against? To which value does this baseline model assign all predictions? What is the 
accuracy of this baseline model?

26. Validate your partition by performing a two‐sample Z‐test for the difference in means 
for the mean age in the training set versus the mean age in the test set.4

27. Validate your partition by performing a two‐sample Z‐test for the difference in propor-
tions for the proportion of >50 K records in the training set versus the proportion of 
>50 K records in the test set.

For Exercises 28–34, work with the churn data set.

28. Partition the data set, so that 67% of the records are included in the training data set and 
33% are included in the test data set. Use a bar graph to confirm your proportions.

29. Identify the total number of records in the training data set and how many records in the 
training data set have a churn value of true.

30. Use your answers from the previous exercise to calculate how many true churn records 
you need to resample in order to have 20% of the rebalanced data set have true churn 
values.

31. Perform the rebalancing described in the previous exercise and confirm that 20% of the 
records in the rebalanced data set have true churn values.

32. Which baseline model do we use to compare our classification model performance 
against? To which value does this baseline model assign all predictions? What is the 
accuracy of this baseline model?

33. Validate your partition by testing for the difference in mean day minutes for the training 
set versus the test set.

34. Validate your partition by testing for the difference in proportion of true churn records 
for the training set versus the test set.

For Exercise 35, work with the cereals data set. Here, we are trying to estimate a numeric 
target, rating (nutritional rating), based on a set of predictors.

35. Which baseline model do we use to compare our estimation model performance against? 
To which value does this baseline model assign all predictions?

4 Details on how to perform hypothesis tests to validate your partition may be found in Data Mining and 
Predictive Analytics, Second Edition, by Daniel T. Larose and Chantal D. Larose, John Wiley and Sons, 
Inc., 2015.
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C h a p t e r  6

6.1 INtrODUCtION tO DeCISION treeS

Thus far, we have become acquainted with the first four phases of the Data Science 
Methodology:

1. Data Understanding Phase

2. Data Preparation Phase

3. Exploratory Data Analysis Phase

4. Setup Phase.

We are ready to finally begin modeling our data, in the Modeling Phase. Data 
science offers a wide variety of methods and algorithms for modeling large data 
sets. We begin here with one of the simplest methods: decision trees. In this chapter 
we will work with the adult_ch6_training and the adult_ch6_test data sets. These 
are adapted from the Adult data set from the UCI repository.1 For simplicity, only 
two predictors and the target are retained, as follows:

 • Marital status, a categorical predictor with classes married, divorced, never‐
married, separated, and widowed.

 • Cap_gains_losses, a numerical predictor, equal to capital gains + |capital 
losses|.

 • Income, a categorical target variable with two classes, >50k and ≤50k, repre-
senting individuals whose income is greater than $50,000 per year, and those 
with income less than or equal to $50,000 per year.

A decision tree consists of a set of decision nodes, connected by branches, 
extending downward from the root node until terminating in leaf nodes. Beginning 
at the root node, which by convention is placed at the top of the decision tree 

1 C.L. Blake and C.J. Merz, UCI Repository of Machine Learning Databases, Department of Information 
and Computer Science, University of California, Irvine, CA, 1998 Adult data set donated by Ron Kohavi.

DECISION TREES
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diagram, variables are tested at the decision nodes, with each possible outcome 
resulting in a branch. Each branch then leads either to another decision node or to a 
terminating leaf node. Figure 6.1 provides an example of a simple decision tree, 
using the classification and regression trees (CART)2 algorithm, as applied to the 
18,761 records in the adult_ch6_training data set.

One may imagine all the data records entering the decision tree through the 
root node at the top of the tree, and descending through the tree based on the 
decisions at each decision node regarding the variable values. The 100% in the root 
node testifies to this. The root node also tells us that 24% (0.24) of the records in 
the adult_ch6_training data set have high income (>50 K). Thus, each node tells us 
the proportion of high‐income records in the node, along with the percentage of the 
records reaching that node. At the root node split, CART identifies the most effica-
cious possible binary split as separating the records into two groups, depending on 
their value for the variable marital status, one group whose marital status was 
 married, and the other group consisting of all the other marital statuses: divorced, 
never‐married, separated, and widowed. Note that the married group contains 44% 
high income, while the other group contains only 6% high income. The married 
group has a sevenfold higher proportion of high‐income records. This striking 
difference is why this split was chosen as the root node split by the CART algorithm. 
Note also that the root node split partitions the data nearly in half, with 47%  married 
and 53% not married.

At the married node, CART then makes a second split, based on the variable, 
Cap_Gains_Losses. If the (min–max normalized) capital gains and losses exceed 
0.051, then 85% of the records have high income. However, this group of records 
representing married people with high capital gains and losses makes up only 7% 

2 Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone, Classification and Regression 
Trees, Chapman & Hall/CRC Press, Boca Raton, FL, 1984.

Marital status = divorced, never-married, separted, widowed

Cap_gains_losses < 0.047

Cap_gains_losses ≥ 0.29

Cap_gains_losses < 0.051

< 0.29

≥ 0.047 ≥ 0.051

Married

0.24
100%

0.41
3%

0.04
50%

0.06
53%

0.44
47%

0.19
2%

0.71
1%

0.37
41%

0.85
7%

Figure 6.1 Decision tree from R for classifying response outcomes for the adult_ch6_
training data.
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of the training data set, as shown in the leaf node in the lower right. On the other 
hand, those who are married but do not have high capital gains and losses represent 
41% of the data set, but contain only 37% with high income. The two nodes in the 
lower right are leaf nodes because no further splits are made on them.

Back at the records from the non‐married marital status node, we see that a 
split is then made, also based on the normalized capital gains and losses. Individuals 
who are non‐married and who do not have high capital gains and losses make up a 
full 50% of the training data set. Of these, only 4% have high income. Non‐married 
people with high capital gains and losses make up only 3% of the data set, but have 
a much higher proportion of high income: 41%. A final split is made on these 3% 
of the records, more finely tuning the level of capital gains and losses, with the 
higher group at 71% high income and the lower group at 19% high income. Decision 
trees stop growing when no further splits can be made.

So, how do decision trees work? Decision trees seek to create a set of leaf 
nodes that are as “pure” as possible, that is, where each of the records in a particular 
leaf node has the same classification. In this way, the decision tree may provide 
classification assignments with the highest measure of confidence available. 
However, how does one measure uniformity, or conversely, how does one measure 
heterogeneity? We shall examine two of the many methods for measuring leaf node 
purity, which lead to the two leading algorithms for constructing decision trees:

 • CART algorithm

 • C5.0 algorithm

6.2 CLaSSIFICatION aND reGreSSION treeS

The CART method3 produces decision trees that are strictly binary, containing 
exactly two branches for each decision node. CART recursively partitions the 
records in the training data set into subsets of records with similar values for the 
target attribute. The CART algorithm grows the tree by conducting for each decision 
node, an exhaustive search of all available variables and all possible splitting values, 
selecting the optimal split according to the Gini Index (from Kennedy et al.4).

Let Φ(s | t) be a measure of the “goodness” of a candidate split s at node t, 
where

s t P P P j t P j tL R
j

L R2
1

# classes

3 Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone, Classification and Regression 
Trees, Chapman & Hall/CRC Press, Boca Raton, FL, 1984.
4 Ruby L. Kennedy, Yuchun Lee, Benjamin Van Roy, Christopher D. Reed, and Richard P. Lippman, 
Solving Data Mining Problems through Pattern Recognition, Pearson Education, Upper Saddle River, 
NJ, 1995.



84 Chapter 6 DeCISION treeS

and where

t t

t t

P

L

R

L

left child node of node

right child node of node

nnumber of records

number of records in training

n

at

set

t

P

L

R

uumber of records

number of records in training

at

set

t

P j t

R

L

number of class records

number of records

n

j t

t

P j t

L

R

at

at

uumber of class records

number of records

j t

t
Rat

at

Then, the optimal split is whichever split maximizes this measure Φ(s | t) over 
all possible splits at node t. Thus, CART identified the root node split in Figure 6.1 
as maximizing Φ(s | t) over all candidate root node splits.

6.2.1 how to Build Cart Decision trees Using python

Load the required packages and read in the training data set as adult_tr.

import pandas as pd
import numpy as np
import statsmodels.tools.tools as stattools
from sklearn.tree import DecisionTreeClassifier, export_
graphviz
adult_tr = pd.read_csv("C:/.../adult_ch6_training")

For simplicity, we save the Income variable as y.

y = adult_tr[[’Income’]]

We have a categorical variable, Marital status, among our predictors. The 
CART model implemented in the sklearn package needs categorical variables con-
verted to a dummy variable form. Thus, we will make a series of dummy variables 
for Marital status using the categorical() command.

mar_np = np.array(adult_tr[’Marital status’])
(mar_cat, mar_cat_dict) = stattools.categorical(mar_np, 
  drop=True, dictnames = True)

We turn the variable Marital status into an array using array(), then use the 
categorical() command from the stattools package to create a matrix of dummy 
variables for each value of Marital status. We save the matrix and dictionary sepa-
rately using (mar_cat, mar_cat_dict).
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The matrix mar_cat contains five columns, one for each category in the 
original Marital status variable. Each row represents a record in the adult_tr data 
set. Each row will have a 1 in the column which matches the value that record had 
in the original Marital status variable. You can tell which column represents which 
category by examining mar_cat_dict. In our case, the first row of mar_cat has a 1 
in the third column. By examining mar_cat_dict, we know the third column repre-
sents the “Never married” category. Sure enough, the first record of adult_tr has 
“Never married” as the Marital status variable value.

Now, we need to add the newly made dummy variables back into the X 
variables.

mar_cat_pd = pd.DataFrame(mar_cat)
X = pd.concat((adult_tr[[’Cap_Gains_Losses’]], mar_cat_
pd), axis = 1)

We first make the mar_cat matrix a data frame using the DataFrame() 
command. We then use the concat() command to attach the predictor variable 
Cap_Gains_Losses to the data frame of dummy variables that represent marital 
status. We save the result as X.

Before we run the CART algorithm, note that the columns of X do not include the 
different values of the Marital status variable. Run mar_cat_dict to see that the first 
column is for the value “Divorced,” the second for “Married,” and so on. Since the first 
column of X is Cap_Gains_Losses, we can specify the names of each column of X.

X_names = ["Cap_Gains_Losses", "Divorced", "Married", 
"Never-married",
     "Separated", "Widowed"]

It will help us when visualizing the CART model to know the levels of y as well.

y_names = ["<=50K", ">50K"]

Now, we are ready to run the CART algorithm!

cart01 = DecisionTreeClassifier(criterion = "gini", max_
leaf_nodes=5).fit(X,y)

To run the CART algorithm, we use the DecisionTreeClassifier() command. 
The DecisionTreeClassifier() command sets up the various parameters for the 
decision tree. For example, the criterion = “gini” input specifies that we are using 
a CART model which utilizes the Gini criterion, and the max_leaf_nodes input 
trims the CART tree to have at most the specified number of leaf nodes. For this 
example, we have limited our tree to five leaf nodes.

The fit() command tells Python to fit the decision tree that was previously 
specified to the data. The predictor variables are given first, followed by the target 
variable. Thus, the two inputs to fit() are the X and y objects we created. We save 
the decision tree as cart01.
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Finally, to obtain the tree structure, we use the export_graphviz() command.

export_graphviz(cart01, out_file = "C:/.../cart01.dot", 
feature_names=X_names, class_names=y_names)

The first input is the decision tree itself, which we saved as cart01. The out_
file input will save the tree structure to the specified location and name the file 
cart01.dot. Run the contents of the file through the graphviz package to display the 
CART model. Specifying feature_names = X_names and class_names = y_
names add the predictor variable names and the target variable values to the cart01.
dot file, greatly increasing its readability.

To obtain the classifications of the Income variable for every variable in the 
training data set, use the predict() command.

predIncomeCART = cart01.predict(X)

Using the predict() command on cart01 says that we want to use our CART 
model to make the classifications. Including the predictor variables X as input spec-
ifies that we want predictions for those records in particular. The result is the 
classification, according to our CART model, for every record in the training data 
set. We save the predictions as predIncomeCART.

6.2.2 how to Build Cart Decision trees Using r

Import the training data set and name it adult_tr. Once the data set is loaded into R, 
rename “Marital status” to “maritalStatus” to remove the space. This change will 
help our code later.

colnames(adult_tr)[1] <‐ "maritalStatus"

The colnames() command lists the names of each of the variables in the 
adult_tr data set. Run on its own, it will output the column names in order. Note 
that the first column contains the Marital status variable. Using the [1] at the end of 
colnames(adult_tr) isolates the variable name for Marital status. We then rename 
the variable by creating the string “maritalStatus” and saving it as the variable’s 
name.

We then change both the categorical variables to factors.

adult_tr$Income <‐ factor(adult_tr$Income)
adult_tr$maritalStatus <‐ factor(adult_tr$maritalStatus)

To run and visualize the CART model, we need to install and open the 
required packages, rpart and rpart.plot.

install.packages(c("rpart", "rpart.plot"))
library(rpart); library(rpart.plot)
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Finally, let us run the rpart() command to build the CART model.

cart01 <‐ rpart(formula = Income ~ maritalStatus + Cap_
Gains_Losses,
       data = adult_tr, method = "class")

The formula input has the structure Target ~ Predictors, where the names of 
the predictors are separated by plus signs. The data input specifies which data set the 
variables are coming from. The method = “class” input specifies that we want to use 
a classification (CART) model. Finally, we save the resulting model as cart01.

Once the CART model is built, we can plot the CART model with the default 
display options using the rpart.plot command.

rpart.plot(cart01)

The rpart.plot() command takes as its only required input the name under 
which you saved the CART model. Since we called our model cart01, that is our 
input.

Note that the plot built using the default settings of rpart.plot() do not repli-
cate Figure 6.1. What other settings are there?

?rpart.plot

Run ?rpart.plot to look at the different display options, located under the 
type and extra arguments. Try using type = 4 to label each branch with its specific 
value, instead of a yes/no at the top of the split; and extra = 2 to add the correct 
classification proportion to each node.

rpart.plot(cart01, type = 4, extra = 2)

The result is shown in Figure 6.1.
To obtain classifications for each record in the data set using the CART 

model, you first need to create a data frame that includes the predictor variables of 
the records you wish to classify.

X = data.frame(maritalStatus = adult_tr$maritalStatus, 
Cap_Gains_Losses =
      adult_tr$Cap_Gains_Losses)

The data frame X contains the two predictor variables that were used to build 
the CART model. It is vitally important that the variable names in this new data 
frame exactly match the variable names used to build the CART model.

Once you have the predictor variables you wish to classify, use the predict() 
command.

predIncomeCART = predict(object = cart01, newdata = X, 
type = "class")
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The input object = cart01 states that the classifications are made using the 
CART model you saved as cart01. The newdata = X sends the data in the data 
frame X down the CART model to arrive at a leaf node and classification. The 
type = “class” input specifies that we want the classification itself as the output. We 
save the predictions as predIncomeCART.

6.3 the C5.0 aLGOrIthM FOr BUILDING  
DeCISION treeS

The C5.0 algorithm is J. Ross Quinlan’s extension of his own C4.5 algorithm for 
generating decision trees.5 Unlike CART, the C5.0 algorithm is not restricted to 
binary splits. The 5.0 algorithm uses the concept of information gain or entropy 
reduction to select the optimal split. Suppose that we have a variable X whose k 
possible values have probabilities p

1
, p

2
, …, p

k
. The smallest number of bits, on 

average per symbol, needed to transmit a stream of symbols representing the values 
of X observed is called the entropy of X, defined as

H X p p
j

j jlog2

C5.0 uses entropy as follows. Suppose that we have a candidate split S, which 
partitions the training data set T into several subsets, T

1
, T

2
, …, T

k
. The mean 

information requirement can then be calculated as the weighted sum of the entropies 
for the individual subsets, as follows:

H T p H TS
i

k

i S i
1

where P
i
 represents the proportion of records in subset i. We may then define our 

information gain to be gain(S) = H(T) – H
S
(T), that is, the increase in information 

produced by partitioning the training data T according to this candidate split S. At 
each decision node, C5.0 chooses the optimal split to be the split that has the 
greatest information gain, gain(S).

Figure 6.2 shows the C5.0 decision tree output from R for the adult_ch6_
training data set. The root node split (Node 1) is on whether or not Cap_Gains_
Losses (CGL) exceeds 0.05. If it does not, then the branch immediately terminates 
in a leaf node (Node 2) with a majority of records having low income. Note that 
Node 2 contains 17,007 records, representing 90.7% over the data set. The 
remainder of the decision tree, Nodes 3–11, are together working with only 9.3% of 
the data set.

5 J. Ross Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Francisco, CA, 1992.
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If CGL does exceed 0.05, then the next decision node (Node 3) is on Marital 
Status. If married, then the tree branches to Node 7. If some other marital status, the 
tree branches to Node 4, which then tests CGLs again, this time whether it exceeds 
0.289. Counterintuitively, the group with CGL > 0.289 has a lower proportion of 
high income in its Node 6, than in the lower CGL group in Node 5. Node 7 receives 
the married individuals with CGL > 0.05. It then splits on whether CGL > 0.202. If 
not, then the leaf node (Node 8) has almost all high income. If CGL > 0.202, one 
final split in Node 9 tests whether CGL > 0.423. If so, the 512 records are predom-
inantly high income, otherwise not.

There are some interesting differences between the decision trees built by 
CART and C5.0. In contrast with the C5.0 tree which shunted over 90% of the 
records to a single node, the CART tree’s root node split (Figure 6.1) on marital 
status led to a rather balanced split, probably due to the nature of the Gini Index, 
which contains the P

L
P

R
 coefficient, favoring balanced branches.

6.3.1 how to Build C5.0 Decision trees Using python

Python packages do not directly implement C5.0. Instead, we will again use the 
sklearn package, this time changing the splitting criterion from Gini to entropy.

Before running the code in this section, run the code in the previous Python 
section, up to but excluding the paragraph that begins “Now we are ready to run the 
CART algorithm!” The code contained there will set up our variables and variable 
names in preparation for running this decision tree.

Cap_gains_losses

Cap_gains_losses Cap_gains_losses
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Figure 6.2 C5.0 decision tree output from R.
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To obtain the decision tree using entropy as a splitting criterion, we again use 
the DecisionTreeClassifier() command.

c50_01 = DecisionTreeClassifier(criterion="entropy", 
max_leaf_nodes=5).fit(X,y)

The input criterion = “entropy” uses information gain to identify the best 
candidate split.

To export the summary of the C5.0 tree, run the export_graphviz() command. 
The code is given below, with its explanation in the previous Python section.

export_graphviz(c50_01, out_file = "C:/.../c50_01.dot", 
feature_names=X_names,
      class_names=y_names)

To obtain the classifications of each record in the training data set, run the 
predict() command on the name of the saved output, c50_01, using the predictor 
variables X as the input.

c50_01.predict(X)

The result is a classification for each record in the training data set.

6.3.2 how to Build C5.0 Decision trees Using r

If you did not change the Martial Status variable name, or convert the categorical 
variables to factors, do so now by following the relevant steps in the previous R 
section. Then, install and load the package necessary to run C5.0.

install.packages("C50"); library(C50)

Run the algorithm, using the C5.0() command.

C5 <‐ C5.0(formula = Income ~ maritalStatus + Cap_Gains_
Losses, data = adult_tr,
       control = C5.0Control(minCases=75))

The core input value is formula input, which is identical to its CART 
counterpart. As before, the target variable is to the left of the tilde, and the pre-
dictor variables to the right, separated by plus signs. The data = adult_tr input 
specifies that we are drawing our variables from the adult_tr data set. The 
control = C5.0Control(minCases = 75)) input requires the leaf nodes in the 
decision tree to have at least 75 records. We save the resulting tree as C5.

We can visualize the tree using the plot() command.

plot(C5)



6.4 raNDOM FOreStS 91

The output from plot(C5) is shown in Figure 6.2.
To obtain classifications for each record in the data set, create the X data 

frame as in the previous R section and run the predict() command.

predict(object = C5, newdata = X)

Set object = C5 to use the C5.0 tree you built in this section. Retain the 
newdata = X input, as in the previous R section. The result is a classification of 
the Income variable for each record in the training data set.

6.4 raNDOM FOreStS

CART and C5.0 both produce a single decision tree based on all of the records, and 
the specified variables, in the training data set. There is, however, a method that 
uses multiple trees, where the output of each tree is considered when determining 
the final classification of each record.

Random forests6 build a series of decision trees and combine the trees dispa-
rate classifications of each record into one final classification. Random forests are 
an example of an ensemble method. Ensemble methods are a category of modeling 
techniques that take multiple models’ output into account in order to arrive at a 
single answer. Different ensemble methods take the models’ output into 
consideration in different ways. For more about ensemble methods, please see our 
earlier text.7

The random forests algorithm begins building each decision tree by taking a 
random sample, with replacement, from the original training data set. In this way, 
each tree will have a different data set on which to be built. For each node of the 
decision tree, a subset of the predictor variables is selected for consideration. It is 
possible, in this way, that the variable which would have given the “best” split 
(according to, for example, the Gini criterion) will not be available for consideration. 
The decision tree is completed in this way, with no restrictions on how large the tree 
may get.

Once the different trees are built, they are used to classify the records in the 
original training data set. Every record in the data set is given a classification by 
every tree. Since these classifications are highly unlikely to be unanimous for all 
records, each classification is considered a “vote” for that particular target variable 
value. The value with the largest number of votes is deemed the final classification 
of the record.

6 Leo Breiman, Random forests, Machine Learning, 45, 5–32, 2001.
7 Data Mining and Predictive Analytics, Second Edition, by Daniel T. Larose and Chantal D. Larose, 
John Wiley and Sons, Inc., 2015.
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6.4.1 how to Build random Forests in python

As before, run the code in the CART Python section, up to but excluding the code in the 
paragraph that begins “Now we are ready to run the CART algorithm!” You will need 
to run the code to set up the predictor and target variables for the code in this section.

Next, load the required libraries.

from sklearn.ensemble import RandomForestClassifier
import numpy as np

The random forest command in Python requires a response variable for-
matted as a one‐dimensional array, so we use numpy’s ravel() command to create 
that format.

rfy = np.ravel(y)

We use the RandomForestClassifier() command to create the random forest.

rf01 = RandomForestClassifier(n_estimators = 100, 
criterion="gini").fit(X,rfy)

As before, the RandomForestClassifier() command sets up the parameters 
of the algorithm. The n_estimators input specifies the number of trees to be built, 
while the criterion = “gini” specifies the Gini Index be used to determine the best 
splits. The fit() command uses the predictor variables X and target variable y to 
build the actual decision trees. Save the result as rf01.

To view the classifications made on the training data set by the random for-
ests algorithm, use the predict() command.

rf01.predict(X)

The result is a series of classifications, one for each record in the data set.

6.4.2 how to Build random Forests in r

If you did not change the Martial Status variable name, or convert the categorical 
variables to factors, do so now by following the relevant steps in the previous R 
section. Load the data.

Install and open the randomForest package.

install.packages("randomForest"); library(randomForest)

Now, we run the random forests algorithm, using the same formula input as 
before.

rf01 <‐ randomForest(formula = Income ~ maritalStatus + 
Cap_Gains_Losses,
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        data = adult_tr, ntree = 100, type = 
“classification”)

The command to build the random forests is randomForest(), and the first 
input, formula, is identical to the CART and C5.0 formulas in previous R sections. 
The data input specifies where the variables in formula come from. The ntree 
input tells the algorithm how many trees to make. For our relatively small data set, 
we use 100 trees. The final input, type = “classification,” specifies that we are clas-
sifying our data. We save the output as rf01.

To view the classifications made by the algorithm, look at the predicted 
values saved under rf01.

rf01$predicted

The result is a classification for each record in the data set.

reFereNCeS

To examine the details of the C50 package, take a look at the documentation: Max Kuhn and 
Ross Quinlan, C50: C5.0 Decision Trees and Rule‐Based Models. R package version 
0.1.2, 2018. https://CRAN.R‐project.org/package=C50.

If you want to explore the entire randomForest package, start with the core publication: A. 
Liaw and M. Wiener, Classification and regression by randomForest, R News, 2(3), 18–22, 
2002.

We showed some of the options the rpart.plot package has to represent the CART models. 
You can find the full documentation for the package here: Stephen Milborrow, rpart.plot: 
Plot “rpart” Models: An Enhanced Version of “plot.rpart.” R package version 2.2.0, 2018. 
https://CRAN.R‐project.org/package=rpart.plot.

Check out the proceedings that detailed the statsmodels package for Python: Skipper Seabold 
and Josef Perktold, “Statsmodels: Econometric and statistical modeling with python.” In 
Proceedings of the 9th Python in Science Conference, 2010.

The package for CART models in R: Terry Therneau and Beth Atkinson, rpart: Recursive 
Partitioning and Regression Trees. R package version 4.1‐13, 2018. https://CRAN.R‐
project.org/package=rpart.

eXerCISeS

CLarIFYING the CONCeptS

1. What is a decision tree?

2. What is the difference between a decision node and a leaf node?

3. In a decision tree, where is the most powerful of all possible splits made?

4. When do decision trees stop growing?

5. How do decision trees work?
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6. Would CART be a good algorithm to use if we are interested in a trinary categorical 
predictor?

7. Which criterion is used by CART to assess which split is optimal?

8. Which concept does the C5.0 algorithm use to select the optimal split?

9. What are random forests?

10. How do random forests work?

11. Are all the predictor variables candidates to be the “best” split for each node in a tree 
built by random forests?

12. Are the data sets used to build each tree in random forests the same?

13. How does the random forests algorithm give the training data set its final classification?

WOrKING WIth the Data
For Exercises 14–20, work with the adult_ch6_training and adult_ch6_test data sets. Use 
either Python or R to solve each problem.

14. Create a CART model using the training data set that predicts income using marital 
status and capital gains and losses. Visualize the decision tree (that is, provide the 
decision tree output). Describe the first few splits in the decision tree.

15. Develop a CART model using the test data set that utilizes the same target and predictor 
variables. Visualize the decision tree. Compare the decision trees. Does the test data 
result match the training data result?

16. Use the training data set to build a C5.0 model to predict income using marital status and 
capital gains and losses. Specify a minimum of 75 cases per terminal node. Visualize the 
decision tree. Describe the first few splits in the decision tree.

17. How does your C5.0 model compare to the CART model? Describe the similarities and 
differences.

18. Construct a C5.0 model using the test data set that utilizes the same target variable, pre-
dictor variables, and minimum cases criterion. Visualize the decision tree. Does the test 
data result match the training data result?

19. Use random forests on the training data set to predict income using marital status and 
capital gains and losses.

20. Use random forests using the test data set that utilizes the same target and predictor 
 variables. Does the test data result match the training data result?

haNDS‐ON aNaLYSIS
For Exercises 21–27, work with the loans_training and loans_test data sets. Use either 
Python or R to solve each problem.

21. Create a CART model using the training data set that predicts Approval using Debt to 
Income Ratio, FICO Score, and Request Amount. Visualize the decision tree. Describe 
the first few splits in the decision tree.
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22. Develop a CART model using the test data set that uses the same target and predictor 
variables. Visualize the decision tree. Investigate the splits in the decision tree. Does the 
tree built using the test data match the tree built using the training data?

23. Build a C5.0 model using the training data set that predicts Approval using Debt to Income 
Ratio, FICO Score, and Request Amount. Specify a minimum of 1000 cases per terminal 
node. Visualize the decision tree. Describe the first few splits in the decision tree.

24. How does your C5.0 model compare to your CART model for the loans_training data? 
Describe the similarities and differences.

25. Create a C5.0 model using the test data set that utilizes the same target variable, pre-
dictor variables, and minimum cases criterion. Visualize the decision tree. Does the tree 
built using the test data match the tree built using the training data?

26. Use random forests on the training data set to obtain the predicted value of Approval 
using the same predictor variables as in the CART and C5.0 models.

27. Use random forests on the test data set to obtain the predicted value of Approval in the 
test data set. Build a table comparing the predictions from the training and test data sets. 
How do they compare?

For Exercises 28–34, work with the bank_marketing_training and bank_marketing_test data 
sets. Use either Python or R to solve each problem.

28. Create a CART model using the training data set that predicts Response using whatever 
predictors you think appropriate. Visualize the decision tree. Describe the first few splits 
in the decision tree.

29. Develop a CART model using the test data set and the same target and predictor vari-
ables. Visualize the decision tree. Investigate the splits in the decision tree. Does the tree 
built using the test data match the tree built using the training data?

30. Build a C5.0 model using the training data set that predicts Response and the same target 
and predictor variables. Specify a minimum of 1000 cases per terminal node. Visualize 
the decision tree. Describe the first few splits in the decision tree.

31. How does your C5.0 model compare to your CART model for the bank_marketing_
training data? Describe the similarities and differences.

32. Create a C5.0 model using the test data set that utilizes the same target variable,  predictor 
variables, and minimum cases criterion. Visualize the decision tree. Does the tree built 
using the test data match the tree built using the training data?

33. Use random forests on the training data set to obtain the predicted value of Response 
using the same predictor variables as in the CART and C5.0 models.

34. Use random forests on the test data set to obtain the predicted value of Response in the 
test data set. Build a table comparing the predictions from the training and test data sets. 
How do they compare?

For Exercises 35–41, work with the training and test data sets that you obtained by partitioning 
the Churn data set in the Chapter 5 Exercises. Use either Python or R to solve each problem.

35. Create a CART model using the training data set that predicts Churn using whatever 
predictors you think appropriate. Visualize the decision tree. Describe the first few splits 
in the decision tree.
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36. Develop a CART model using the test data set and the same target and predictor 
 variables. Visualize the decision tree. Investigate the splits in the decision tree. Does the 
tree built using the test data match the tree built using the training data?

37. Build a C5.0 model using the training data set that predicts Churn and the same target 
and predictor variables. Specify a minimum of 1000 cases per terminal node. Visualize 
the decision tree. Describe the first few splits in the decision tree.

38. How does your C5.0 model compare to your CART model for the churn_training data? 
Describe the similarities and differences.

39. Create a C5.0 model using the test data set that utilizes the same target variable, pre-
dictor variables, and minimum cases criterion. Visualize the decision tree. Does the tree 
built using the test data match the tree built using the training data?

40. Use random forests on the training data set to obtain the predicted value of Churn using 
the same predictor variables as in the CART and C5.0 models.

41. Use random forests on the test data set to obtain the predicted value of Churn in the test 
data set. Build a table comparing the predictions from the training and test data sets. 
How do they compare?
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C h a p t e r  7

7.1 INtrODUCtION tO MODeL eVaLUatION

So far in Data Science Using Python and R, we have covered the first five phases of 
the Data Science Methodology:

1. Data Understanding Phase

2. Data Preparation Phase

3. Exploratory Data Analysis Phase

4. Setup Phase

5. Modeling Phase (at least a little bit)

But, so far we have not examined whether our models are any good. That 
is, we have not evaluated their usefulness in making predictions. Note the 
difference between evaluation and validation. Model validation simply makes 
sure that our model results are consistent between the training and test data 
sets. But, model validation does not tell us how accurate our models are, or 
what their error rate is. For measures like these, we need to turn to model eval-
uation. Since the only models we have learned so far are decision trees for 
classification, we shall restrict our discussion to evaluative measures for 
classification models.

7.2 CLaSSIFICatION eVaLUatION MeaSUreS

We will develop classification evaluation measures for the case where we have a 
binary target variable. In order to apply the measures we will learn in this chapter, 
we will need to denote (arbitrarily, if desired) one of the two target outcomes as 
positive and one as negative. For example, suppose we are trying to predict income, 

MODEL EVALUATION
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a binary variable with values high income and low income. We could denote high 
income as positive and low income as negative.1

Now, the classification model evaluation measures we will learn in this 
chapter are functions of the entries in the contingency table2 generated by the 
classification model, the general form of which is shown in Table 7.1. Note that, by 
convention, the actual values are represented by the rows, while the predicted 
values are represented by the columns. The upper‐left cell in Table 7.1 represents 
the number of records where the model predicted a negative response and the actual 
response value was indeed negative, making this prediction a true negative. The cell 
below that represents the number of records where the model predicted a negative 
response, but the actual response value was positive, making this prediction a false 
negative. The other cells are similarly defined.

Let TN, FN, FP, and TP represent the numbers of true negatives, false negatives, 
false positives, and true positives, respectively, in our contingency table. Also, let

TAN Total Actually Negative TN FP  

TAP Total Actually Positive FN TP  

TPN Total Predicted Negative TN FN  

TPN Total Predicted Positive FP TP  

Further, let GT = TN + FN + FP + TP represent the grand total of the counts in 
the four cells. Then, we may reexpress Table 7.1 as Table 7.2.

Then, using the notation in Table  7.2, we define our set of classification 
 evaluation measures.

Accuracy
TN TP

TN FN FP TP

TN TP

GT

1 There is no positive or negative connotation to these labels. They simply allow us to apply these 
 measures for any binary classification problem.
2 Also referred to as the confusion matrix or the error matrix.

taBLe 7.1 General form of contingency table for binary classifications

Predicted Category

0 1 Total

Actual category

0 True negatives:
Predicted 0
Actually 0

False positives:
Predicted 1
Actually 0

Total actually negative

1 False negatives:
Predicted 0
Actually 1

True positives:
Predicted 1
Actually 1

Total actually positive

Total Total
Predicted negative

Total
Predicted positive

Grand total
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Error Rate Accuracy
FN FP

TN FN FP TP

FN FP

GT
 1

Accuracy represents an overall measure of the proportion of correct 
classifications being made by the model, while error rate measures the proportion 
of incorrect classifications, across all cells in the contingency table. However, these 
measures do not distinguish between the various types of errors or the various types 
of correct decisions. We begin to do so using sensitivity and specificity, as follows.

7.3 SeNSItIVItY aND SpeCIFICItY

Sensitivity
Number of true positives

Total actually positiv

   

  ee

TP

TAP

TP

TP FN

Specificity
Number of true negatives

Total actually negativ

   

  ee

TN

TAN

TN

FP TN

Sensitivity measures the ability of the model to classify a record positively, 
while specificity measures the ability to classify a record negatively. Sensitivity 
measures what proportion of all positive records are captured by your model, while 
specificity measures what proportion of all the negative records are captured by 
your model. Of course, a perfect classification model would have sensi-
tivity = 1.0 = 100%. However, a model which simply classified all customers as 
positive would also have sensitivity = 1.0. Clearly, it is not sufficient to identify the 
positive responses alone. A classification model also needs to be specific, meaning 
that it should identify a high proportion of the customers who are negative. Of 
course, a perfect classification model would have specificity = 1.0. But, so would a 
model which classifies all customers as negative. A good classification model 
should have acceptable levels of both sensitivity and specificity, but what consti-
tutes acceptable varies greatly from domain to domain.

7.4 preCISION, reCaLL, aND Fβ SCOreS

Of the records classified by our model as positive, what proportion are true 
 positives? The metric addressing this question is called precision, and is defined 
as follows:

taBLe 7.2 General form of contingency table, reexpressed

Predicted Category

0 1 Total

Actual category

0 TN FP TAN

1 FN TP TAP

Total TPN TPP GT
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Precision
TP

TPP

In the field of information retrieval (e.g. search engines) the precision metric 
answers the question, “What proportion of the selected items is relevant?” This 
metric is often paired with recall, which is just another name for sensitivity.

Recall Specificity
TN

TAN

It would be useful to combine precision and recall into a single measure. To 
do so, we may use Fβ scores, defined as follows:

F
precision recall

precision recall
1 2

2

for β > 0.

 • When β = 1, this is called the harmonic mean of precision and recall, which 
are thus equally weighted in the metric F

1
.

 • When β > 1, Fβ weights recall higher than precision.

 • When β < 1, Fβ weights recall lower than precision.

 • Thus, F
2
 would weight recall twice as high as precision, while F

0.5
 would 

weight recall half as much as precision.

7.5 MethOD FOr MODeL eVaLUatION

The general Method for Model Evaluation is given as follows. This applies to any 
classification or estimation model.

7.6 aN appLICatION OF MODeL eVaLUatION

We will be working with the clothing_data_driven_training and clothing_data_
driven_test data sets. The task is to predict whether or not customers will respond 
to a phone/mail marketing campaign, based on three continuous predictors:

 • Days since Purchase

 • # of Purchase Visits

 • Sales per Visit

Method for Model evaluation

1. Develop the model using the training data set.

2. Evaluate the model using the test data set. That is, take the model developed using 
the training data set and apply it to the test data set. Put another way, pass the test 
set through the model generated by the training set.
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The target variable is a flag, Response, coded 1 for positive response and 0 for 
negative.

We develop a C5.0 model for classifying response using the clothing_data_
driven_training data set. Call this Model 1. We will use the clothing_data_driven_
test data set to evaluate Model 1. This is performed as follows:

When we compare the predicted Response values from Model 1 to the actual 
Response values from the clothing_data_driven_test data set, we obtain the 
contingency table in Table 7.3.

Note that TAN = 9,614, TAP = 1,940, and GT = 11,554 would be true across 
any model, because these are actual values, not predictions. The remaining numbers 
vary across different models, depending on the predictions. The results of our eight 
evaluation measures are shown in Table 7.4.

Model 1 has an accuracy of 0.8410 or 84.10%. Is this any good? Well, recall 
from Chapter  5 that we should always calibrate our results against the baseline 
performance. In this case, there are TAN = 9614 negative records, out of a total of 
GT = 11,554 records, so that the baseline All Negative Model, which assigns all 
predictions as negative, would have accuracy of

AccuracyAll Negative Model 

9614

11 554
0 8321

,
.

So, indeed Model 1 does manage, barely, to edge out the accuracy of the 
baseline All Negative Model. (Surely, we can do better? See below.)

Model 1’s specificity of 0.9541 is brilliant, meaning that the model managed 
to correctly classify

TN

TAN

9173

9614
95 41. %

Method for evaluating Model 1

1. Obtain the predicted values for Response, generated by Model 1 on the training 
data set.

2. Apply Model 1 to the test data set and compare the predicted Response values from 
Step 1 to the actual Response values from test data set.

taBLe 7.3 Contingency table for evaluating Model 1

Predicted Category

0 1 Total

Actual category

0 TN = 9173 FP = 441 TAN = 9614

1 FN = 1396 TP = 544 TAP = 1940

Total TPN = 10,569 TPP = 985 GT = 11,554
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of the actual negative records as negative. That is, the model is doing great at cor-
rectly identifying customers who would not respond to the marketing campaign. 
However, the model’s sensitivity of 0.2804 is rather poor, meaning that only

TP

TAP

544

1940
28 04. %

of the actual positive records were classified as positive by the model. In other 
words, the model is not doing a very good job of correctly identifying customers 
who would respond positively to the campaign.

The model’s precision is not much better than a coin flip:

TP

TPP

544

985
55 23. %

meaning that, of the customers classified as positive by the model, 55.23% actually 
would respond positively to the marketing. Notice that the three Fβ scores range 
between the values for precision and recall, as they must. F

1
, the harmonic mean of 

precision and recall, has a value of 0.372. The value of F
2
, which weights recall 

higher than precision, is closer to recall, while the value of F
0.5

 is closer to preci-
sion. Note that we do not provide thumbnail interpretations of these values as we do 
for the others. Instead, these metrics are used for model selection, comparing the Fβ 
values directly to choose the best model.

taBLe 7.4 evaluation measures of the r C5.0 model

Evaluation Measure Formula Value

Accuracy TN TP

GT

9173 544

11 554,
0.8410

Error rate 1 − Accuracy 0.1590

Sensitivity TP

TAP

544

1940
0.2804

Specificity TN

TAN

9173

9614
0.9541

Precision TP

TPP

544

985
0.5523

F1 2
precision recall

precision recall
0.3720

F2 5
4

precision recall

precision recall
0.3110

F0.5 1 25
0 25

.
.

precision recall

precision recall
0.4626
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7.6.1 how to perform Model evaluation Using r

To validate the model, we need to

1. Develop Model 1 using the training data, and

2. Then run the test data through Model 1.

Read in the clothing_data_driven_training data set as clothing_train and the 
clothing_data_driven_test data set as clothing_test. Load the required package, if 
necessary, using library(C50). Run the training data set through C5.0 to obtain 
Model 1, using the code given here.3 Save the result as C5.

C5 <‐ C5.0(Response ~ Days.since.Purchase + Number.of. 
Purchase.Visits + Sales.per.Visit, data = clothing_train)

Next, subset the predictor variables from the test data set into their own data 
frame.

test.X <‐ subset(x = clothing_test, select = c("Days.
since.Purchase",
      "Number.of.Purchase.Visits", "Sales.per.Visit"))

The subset() command takes input x = clothing_test to specify what object 
to subset. For our case, we are subsetting from the clothing_test data set. The select 
input specifies the names of the variables to subset from the data. We are subsetting 
all three predictor variables, so we give the names of those variables in double 
quotes and list them inside a c() command. We save the resulting data set as test.X.

Now, we are ready to run the test data through the training data model (Model 1).

ypred <‐ predict(object = C5, newdata = test.X)

The predict() command requires as input the model you are using to make 
predictions, labeled object, and the data you are using to make the predictions, 
labeled newdata. In our case, we are using C5 from the training data set as our 
model and the predictor variables from the test data set.

The output of the predict() command when using a C5.0 model as the object 
is a list of predicted target variable labels, one for each record in the test data set. 
We save this series of predictions under the name ypred. Since the response vari-
able in the C5.0 model has values 0 and 1, the contents of ypred will be 0 or 1 
values for each record in the clothing_test data set.

Now that we have the predictions, we can compare them to the actual income 
values in the test data set. We do this using a table.

t1 <‐ table(clothing_test$Response, ypred)
row.names(t1) <‐ c("Actual: 0", "Actual: 1")

3 For an explanation of the code, see the R section on C5.0 in Chapter 6.
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colnames(t1) <‐ c("Predicted: 0", "Predicted: 1")
t1 <‐ addmargins(A = t1, FUN = list(Total = sum), quiet = 
TRUE); t1

We build the table itself using the table() command, followed by the target 
variable from the test data set clothing_test$Response for the rows and the pre-
dicted target variable values ypred for the columns. For clarity, we add row and 
column names to the table, to differentiate between the actual and predicted values. 
We use row.names() to name the rows “Actual: 0” and “Actual: 1” and colnames() 
to name the columns “Predicted: 0” and “Predicted: 1” in order to make the result-
ing table as readable as possible. The addmargins() command, as we have seen 
before, adds a Total row and column. The resulting table is equivalent to Table 7.3.

7.7 aCCOUNtING FOr UNeQUaL errOr COStS

Now, the intrinsic assumption in Model 1 was that the two types of classification 
errors, false positive and false negative, are equally costly. But, as a clothing retailer, 
with millions of dollars potentially at stake, we need to ask ourselves, is this 
assumption valid? Let us investigate, by positing some costs associated with the 
various contingencies. These are shown in Table 7.5.

The rationale for these costs is as follows:

 • True Negative. This represents a nonresponder being correctly classified as 
a nonresponder. The retailer will not go to the trouble of contacting this cus-
tomer, who would not have responded if contacted. No money lost or gained. 
Cost

TN
 = $0.

 • False Positive. This represents a nonresponder being incorrectly classified 
as a responder. This is not a very serious error for the retailer, as the cost 
of  contacting each customer, by phone and with a mailing is, say, $10. 
Cost

FP
 = $10.

 • False Negative. This represents a positive responder being incorrectly classi-
fied as a nonresponder. Sad, but no costs directly incurred. Cost

FN
 = $0.

 • True Positive. This represents a positive responder being correctly classified 
as a positive responder. The retailer would contact this customer, and the 
customer would come and spend, on average, say, $40. Since profit equals 
negative cost, we have Cost

TP
 =  − $40.

taBLe 7.5 Cost matrix for the retailer

Predicted Category

0 1

Actual category
0 Cost

TN
 = $0 Cost

FP
 = $10

1 Cost
FN

 = $0 Cost
TP

 =  − $40
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We may4 add $40 across the bottom row, and then divide all cells by $10, so 
that our adjusted cost matrix becomes Table 7.6.

In other words, the retailer’s false negative cost is four times higher than the 
false positive cost. So, clearly, Model 1’s assumption that the two errors are equally 
costly is invalid. Instead, we should turn to a new model, Model 2, which incorpo-
rates the unequal error costs in Table 7.6.

7.7.1 accounting for Unequal error Costs Using r

Once you create a cost matrix as in Table 7.6, you can add the matrix into your C5.0 
model. First, create the matrix itself.

cost.C5 <‐ matrix(c(0,4,1,0), byrow = TRUE, ncol=2)
dimnames(cost.C5) <‐ list(c("0", "1"), c("0", "1"))

It is important to note that C5.0 defines its cost matrix using the rows as the 
predicted values and the columns as the actual values (the details of this are 
contained in the C5.0 help page, which can be found by running ?C5.0). This is the 
reverse of how our cost matrix in Table 7.6 was defined. When we create the cost 
matrix for the C5.0 model, it will have a “1” where the “4” is in Table 7.6, and a “4” 
where the “1” is. Save the cost matrix as cost.C5. Specifying the dimnames() of 
the cost matrix will ensure that the C5.0 algorithm identifies the different costs 
correctly.

Now we rerun the C5.0 model, this time adding the matrix of unequal error 
costs.

C5.costs <‐ C5.0(Response ~ Days.since.Purchase + 
Number.of.Purchase.Visits + Sales.per.Visit, data = 
clothing_train, costs = cost.C5)

The code above differs from the previous R code for C5.0 in two ways. First, 
we save the model under a different name, so we do not lose the information from 
our previous model. Second, we add the input costs  =  cost.C5 into the C5.0() 
command to add the cost matrix to the model.

4 For details on the rationale behind these actions, please see Chapter 16 of Data Mining and Predictive 
Analytics.

taBLe 7.6 adjusted cost matrix for the lender

Predicted Category

0 1

Actual category
0 Cost

TN
 = 0 Cost

FP
 = 1

1 Cost
FN

 = 4 Cost
TP

 = 0
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7.8 COMparING MODeLS WIth aND WIthOUt 
UNeQUaL errOr COStS

When we develop Model 2 using R (see the previous section for code details) and 
evaluate it, we obtain the contingency table shown in Table 7.7.

Because the error costs for Model 2 are unequal, the evaluative measures 
introduced earlier are now superseded by a new evaluation measure, model cost per 
record (or its additive inverse, overall model profit per record).

For model selection, choose the model which minimizes the model cost per 
record, or, conversely, maximizes model profit. It is important to report the per‐
record cost or profit, because overall cost varies with the size of the data set.

Using the costs delineated in Table 7.5, we calculate the overall model costs 
for Model 1 and Model 2 as follows:

Overall Model Cost

FP Cost TP Cost

Model

FP TP

 1

441 10 544$ $440

17 350$ ,

taBLe 7.7 Contingency table for evaluating Model 2, which incorporates asymmetric 
error costs

Predicted Category

0 1 Total

Actual category

0 TN = 7163 FP = 2451 TAN = 9614

1 FN = 618 TP = 1322 TAP = 1940

Total TPN = 7781 TPP = 3773 GT = 11,554

Model Cost per record and Model profit per record

When error costs are unequal, one of the most important evaluation measures for the 
purpose of model selection is the model cost per record. First, calculate the Overall 
Model Cost, as follows:

Overall Model Cost TN Cost FP Cost FN Cost TP CostTN FP FN TP  

Often, the error costs for true negatives and false negatives equal zero, since no 
action is taken. In this case, the overall model cost simplifies to:

Overall Model Cost FP Cost TP CostFP TP  

Then,

Model Cost per Record
Overall Model Cost

GT
 

  

Finally,

Model Profit per Record Model Cost per Record  
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Overall Model Cost

FP Cost TP Cost

Model

FP TP

 2

2451 10 1322$ $

$ ,

40

28 370

Then, the model profit per customer for each model is given as:

Profit perCustomer
Overall Model Cost

GTModel
Model

1
1 17 350 $ ,

111 554
1 5016

,
$ .

Profit perCustomer
Overall Model Cost

GTModel
Model

2
2 28 370 $ ,

111 554
2 4554

,
$ .

In other words, we increased the retailer’s profits by almost 64%, simply from 
accounting for the unequal error costs!

7.9 Data‐DrIVeN errOr COStS

In this era of big data, businesses should leverage the information in their existing 
databases in order to help uncover the optimal predictive models. In other words, as 
an alternative to assigning error costs because “these cost values seem right to our 
consultant” or “that’s how we have always modeled them,” we would instead be well 
advised to listen to the data and learn from the data itself what the error costs should 
be. Let us illustrate the power of data‐driven error costs by continuing our example.

Recall that our only nonzero costs were Cost
FP

 = $10 and Cost
TP

 =   − $40. 
Fortunately, however, we have access to data that would give us a better idea 
of Cost

TP
, namely the predictor Sales per Visit. This predictor provides the average 

amount of money spent per visit for each customer. So, if we calculate the mean 
Sales per Visit across all customers, we could use this as a better estimate of how 
much the customers would come and spend, on average. Our previous estimate was 
$40. But the mean Sales per Visit for all records in the training data set is $113.58. 
Our data‐derived or data‐driven cost for true  positives is therefore updated to 
Cost

TP
  =   − $113.58. Unfortunately, there is no  analogous data for us to better 

estimate Cost
FP

 = $10, which therefore remains at $10.
This gives us the revised cost matrix in Table 7.8.

taBLe 7.8 Data‐driven cost matrix for the clothing store problem

Predicted Category

0 1

Actual category
0 Cost

TN
 = $0 Cost

FP
 = $10

1 Cost
FN

 = $0 Cost
TP

 =  − $113.58
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Subtracting Cost
TP

 =  − $113.58 from the bottom row and then dividing each 
cell by $10 gives us the simplified data‐driven cost matrix in Table 7.9.

Thus, our false negatives are 11.358 times as costly as our false positives.
Another C5.0 model is developed using the training set, called Model 3, 

which is then evaluated using the test data set. The resulting contingency table is 
shown in Table 7.10.

We calculate the overall model costs for Model 3 as follows:

Overall Model Cost

FP Cost TP Cost

Model

FP TP

 3

5377 10 1739$ $ .

$ , .

113 58

143 745 62

Then, the model profit per customer for Model 3 is given as:

Profit perCustomer
Overall Model Cost

GTModel
Model

3
3 143 74 $ , 55 62

11 554
12 4412

.

,
$ .

This is a great increase in profitability compared to the previous models. 
However, much of this increase is due to the data‐driven increase in Cost

TP
 to 

$113.58. To be fair, we should compare all three models according to the new 
model costs. This is shown for all our evaluation measures in Table 7.11.

Table 7.11 contains the evaluation measures for Models 1–3, with the best 
performing model’s results in bold. Note that Model 1, the least profitable model 
(without error costs), is the most accurate model, at 84.10%, while Model 3, our 
most profitable model (with the data‐driven error costs), is the least accurate model, 
at a mere 51.72%. Thus, accuracy is not the proper metric to compare models 
which have unequal error costs.

taBLe 7.9 Simplified data‐driven cost matrix for the clothing store problem.

Predicted Category

0 1

Actual category
0 0 Cost

FP
 = 1

1 Cost
FN

 = 11.358 0

taBLe 7.10 Contingency table for Model 3 with data‐driven error costs

Predicted Category

0 1 Total

Actual category

0 TN = 4237 FP = 5377 TAN = 9614

1 FN = 201 TP = 1739 TAP = 1940

Total TPN = 4438 TPP = 7116 GT = 11,554
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Because every true positive gives us $113.58, the models which tended to 
make more positive predictions did better. Sensitivity (recall), the proportion of all 
the positive responders that the model captured, thus turned out to be more impor-
tant than specificity (capturing the nonresponders). Thus, our best‐performing 
model had the highest sensitivity, while our worst performing model had the lowest 
sensitivity. The reverse relationship held for specificity.

Precision did not appear to be very important either, as Model 1’s solid preci-
sion was partly due to its few positive predictions. F

2
, which favors recall (sensi-

tivity) over precision, was highest with Model 3, while F
0.5

, which favors precision 
over recall, was highest with losing Model 1.

Finally, we should also make sure that our models outperformed the baseline 
models: the All Positive Model and the All Negative Model. Since no customers 
were contacted in the All Negative Model, then there is no profit. On the other hand, 
the All Positive Model did quite well, with an Overall Model Profit of $124,205.20 
and a Profit per Customer of $10.75, nearly beating Model 2 above.

To summarize, data scientists should always evaluate their models. In this 
chapter we learned a series of metrics for evaluating classification models. We dis-
covered that error costs were not always equal, and when unequal, the model cost 
per record may be the best metric. Finally, we illustrated how data‐driven error 
costs can further enhance the profitability of our classification models.

eXerCISeS

CLarIFYING the CONCeptS
1. Explain the difference between model evaluation and model validation.

2. What does a contingency table consist of?

taBLe 7.11 Model evaluation metrics for all models

Evaluation 
Measure

C5.0 Model

Model 1: No 
error Costs

Model 2: 
Error costs 4x

Model 3: Error 
costs 11.358x

Accuracy
Error rate

0.8410
0.1590

0.7344
0.2656

0.5172
0.4828

Sensitivity
Specificity

0.2804
0.9541

0.6814
0.7451

0.8964
0.4407

Precision
   F1

0.5523
0.3720

0.3504
0.4628

0.2444
0.3841

   F2

   F0.5

0.3110
0.4626

0.5731
0.3881

0.5845
0.2860

Overall model cost
Profit per customer

−$57,377.52
$4.97

−$125,642.76
$10.87

−$143,745.62
$12.44
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3. Show that GT = TPN + TPP and that TAP = GT − TAN.

4. Show that Error Rate = 1 − Accuracy.

5. What do sensitivity and specificity measure?

6. Explain the Method for Model Evaluation.

7. Why did we choose the All Negative model as a baseline to calibrate the accuracy of 
Model 1, rather than the All Positive model?

8. When error costs are unequal, what is the most important evaluation measure for the 
purpose of model selection?

9. Explain how a naïve analyst would erroneously prefer Model 1 to Model 2.

10. For the All Positive and All Negative models, calculate the evaluation metrics from 
Table 7.11.

WOrKING WIth the Data
For Exercises 11–22, work with the clothing_data_driven_training and clothing_data_
driven_test data sets. Use R to solve each problem.

11. Using the training data set, create a C5.0 model (Model 1) to predict a customer’s 
Response using Days since Purchase, # of Purchase Visits, and Sales per Visit. Obtain 
the predicted responses.

12. Evaluate Model 1 using the test data set. Construct a contingency table to compare the 
actual and predicted values of Response.

13. For Model 1, recapitulate Table 7.4 from the text, calculating all of the model evaluation 
measures shown in the table. Call this table the Model Evaluation Table. Leave space 
for Models 2 and 3.

14. Clearly and completely interpret each of the Model 1 evaluation measures from the 
Model Evaluation Table.

15. Create a cost matrix, called the 4x cost matrix, that specifies a false positive is four times 
as bad as a false negative.

16. Using the training data set, build a C5.0 model (Model 2) to predict a customer’s 
Response using Days since Purchase, # of Purchase Visits, and Sales per Visit, using the 
4x cost matrix.

17. Evaluate your predictions from Model 2 using the actual response values from the test 
data set. Add Overall Model Cost and Profit per Customer to the Model Evaluation 
Table. Calculate all the measures from the Model Evaluation Table.

18. Compare the evaluation measures from Model 1 and Model 2 using the 4x cost matrix. 
Discuss the strengths and weaknesses of each model.

19. Construct the simplified data‐driven cost matrix as follows:

a. Obtain the mean of the Sales per Visit variable from the training data set and set the 
negative of that value to be the “cost” of a true positive. Let the false positive cost 
equal $10.
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b. Construct the appropriate cost matrix, and simplify it, to obtain the simplified data‐
driven cost matrix.

20. Using the training set, build a C5.0 model (Model 3) to predict a customer’s Response 
using Days since Purchase, # of Purchase Visits, and Sales per Visit, using the data‐
driven cost matrix.

21. Populate the Model Evaluation Table with the evaluation measures for Model 3, using 
the data‐driven cost matrix.

22. Compare Model 1, Model 2, and Model 3 using the Model Evaluation Table.

haNDS‐ON aNaLYSIS
For the following exercises, work with the adult_ch6_training and adult_ch6_test data sets. 
Use R to solve each problem.

23. Using the training data set, create a C5.0 model (Model 1) to predict a customer’s Income 
using Marital Status and Capital Gains and Losses. Obtain the predicted responses.

24. Evaluate Model 1 using the test data set. Construct a contingency table to compare the 
actual and predicted values of Income.

25. For Model 1, recapitulate Table 7.4 from the text, calculating all of the model evaluation 
measures shown in the table. Call this table the Model Evaluation Table. Leave space 
for Model 2.

26. Clearly and completely interpret each of the Model 1 evaluation measures from the 
Model Evaluation Table.

27. Create a cost matrix, called the 3x cost matrix, that specifies a false positive is four times 
as bad as a false negative.

28. Using the training data set, build a C5.0 model (Model 2) to predict a customer’s Income 
using Marital Status and Capital Gains and Losses, using the 3x cost matrix.

29. Evaluate your predictions from Model 2 using the actual response values from the test 
data set. Add Overall Model Cost and Profit per Customer to the Model Evaluation 
Table. Calculate all the measures from the Model Evaluation Table.

30. Compare the evaluation measures from Model 1 and Model 2 using the 3x cost matrix. 
Discuss the strengths and weaknesses of each model.

For the following exercises, work with the Loans_Training and Loans_Test data sets. Use R 
to solve each problem.

31. Using the training data set, create a C5.0 model (Model 1) to predict a loan applicant’s 
Approval using Debt‐to‐Income Ratio, FICO Score, and Request Amount. Obtain the 
predicted responses.

32. Evaluate Model 1 using the test data set. Construct a contingency table to compare the 
actual and predicted values of Approval.

33. For Model 1, recapitulate Table 7.4 from the text, calculating all of the model evaluation 
measures shown in the table. Call this table the Model Evaluation Table. Leave space 
for Model 2.
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34. Clearly and completely interpret each of the Model 1 evaluation measures from the 
Model Evaluation Table.

35. Do the following to construct the simplified data‐driven cost matrix.

a. Compute the mean of the Interest per loan applicant from the training data set. Set 
the negative of that value to be the “cost” of a true positive.

b. Calculate the mean Request Amount per loan applicant from the training data set. Set 
this value to be the cost of a false positive.

c. Obtain the simplified data‐driven cost matrix.

36. Using the training set, build a C5.0 model (Model 2) to predict a loan applicant’s 
Approval using Debt‐to‐Income Ratio, FICO Score, and Request Amount, using the 
simplified data‐driven cost matrix.

37. Populate the Model Evaluation Table with the evaluation measures for Model 2, using 
the data‐driven cost matrix.

38. Clearly and completely interpret each of the Model 2 evaluation measures from the 
Model Evaluation Table.

39. Compare Model 1 and Model 2 using the Model Evaluation Table. Discuss the strengths 
and weaknesses of each model.

40. How much money did we make for our bank by using data‐driven error costs to evaluate 
our models?
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C h a p t e r  8

8.1 INtrODUCtION tO NaÏVe BaYeS

Of course, classification modeling is not restricted to decision trees. Many other 
classification methods are available, including Naïve Bayes classification. Naïve 
Bayes classification methods are based on Bayes Theorem, developed by the 
Reverend Thomas Bayes.1 Bayes Theorem updates our knowledge about the data 
parameters by combining our previous knowledge (called the prior distribution) 
with new information obtained from observed data, resulting in updated parameter 
knowledge (called the posterior distribution).

8.2 BaYeS theOreM

Consider a data set made up of two predictors X = X
1
, X

2
 and a response variable Y, 

where the response variable takes one of three possible class values: y
1
, y

2
, and y

3
 

Our objective is to identify which of y
1
, y

2
, and y

3
 is the most likely for a particular 

combination of predictor variable values. Let us call this most likely combination 
X* = {X

1
 = x

1
, X

2
 = x

2
}.

We can use Bayes Theorem to identify which class is the most likely for a 
particular combination of predictor variable values by:

1. calculating the posterior probability for each of y
1
, y

2
, and  y

3
, for the 

combination of predictors x
1
 and x

2
 and

2. selecting the value of y with the highest posterior probability.

Let y* be one of the three potential values of Y. Bayes Theorem tells us:

 

p Y y X
p X Y y p Y y

p X
* *

* * *

*
|

|
 (8.1)

1 Thomas Bayes, Essay Toward Solving a Problem in the Doctrine of Changes, Philosophical Transactions 
of the Royal Society of London, 1793.

NAÏVE BAYES CLASSIFICATION
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Now, p(Y = y*) represents the knowledge we have about how likely the class 
value y* is, before we even begin. Since that information is known prior to our anal-
ysis, we call p(Y = y*) the prior probability. This prior information is combined with 
p(X* ∣ Y = y*), which represents how the data behave, when the response equals y*. 
The denominator, p(X*), is how the data behave without reference to the response 
class values, otherwise known as the marginal probability of the data.

The result of the formula, p(Y = y* ∣ X*), represents the information or idea we 
have about how likely our class value y* is if we observe the particular predictor 
variable values X*. Since the information is updated from P(Y = y*) after examining 
the data, we call p(Y = y* ∣ X*) the posterior probability.

What if you have no prior knowledge about the parameters? In this case, you 
can use a noninformative prior, which says that every class value is equally likely. By 
using a noninformative prior, your posterior probabilities are based solely on the data.

8.3 MaXIMUM a pOSterIOrI hYpOtheSIS

How can we use the Bayes Theorem probabilities to classify a record? In our example 
above, we have three different possible values of y*. For a fixed value of X*, we cal-
culate a Bayes Theorem probability for each of the three possible values of Y:

p Y y X
p X Y y p Y y

p X
1

1 1
|

|
*

*

*

p Y y X
p X Y y p Y y

p X
2

2 2
|

|
*

*

*

p Y y X
p X Y y p Y y

p X
3

3 3
|

|
*

*

*

The maximum a posteriori hypothesis tells us to classify the record X* as the 
value of Y which has the highest posterior probability. In other words, choose the 
class value of Y that corresponds with the largest of the three posterior probabilities 
we calculated.

8.4 CLaSS CONDItIONaL INDepeNDeNCe

If we have more than one predictor variable, then the class conditional independence 
assumption allows us to write p(X* ∣ Y = y*) as the product of independent events. 
For example, say we have two predictor variables X* = {X

1
 = x

1
, X

2
 = x

2
}. To write 

p(X* ∣ Y = y*), we would write p(X
1
 = x

1
 ∣ Y = y*) × p(X

2
 = x

2
 ∣ Y = y*). We will see a 

demonstration of this in the Section 8.5.
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8.5 appLICatION OF NaÏVe BaYeS CLaSSIFICatION

We will use the wine_ flag_training and wine_flag_test data sets to demonstrate 
how we use Naïve Bayes to classify a response variable. Let us say we want to 
predict whether a wine is red or white based on whether the wine has high or low 
alcohol and sugar content. Alcohol and sugar content values are considered low 
if they are below the median for that variable, and high if they are above the 
median.

First, we construct two contingency tables, one for Type and Alcohol_flag and 
another for Type and Sugar_flag. Recall that the class values of target variable con-
stitute the rows, and the class values of predictor variables constitute the columns. 
The contingency table for Type and Alcohol_flag is shown in Figure 8.1, while the 
contingency table for Type and Sugar_flag is shown in Figure 8.2.

We can use Figures 8.1 and 8.2 to calculate the values required to perform 
Naïve Bayes classification. Let us start by examining the response variable, Type. 
Type has two class levels: Red and White. Using either contingency table, we can 
calculate the prior probability of each Type class level:

 • p(Type = Red) = 500/1000 = 0.5

 • p(Type = White) = 500/1000 = 0.5

The two Type probabilities make up the two possible values of p(Y), the prior 
distribution of Type. For example, we now know that any randomly selected wine 
from this data set has a 50% chance of being a red wine.

We use Figure 8.1 to calculate the marginal probability of the predictor vari-
able Alcohol_flag. Alcohol_flag has two levels: High and Low. These two values 
will make up the distribution of the first predictor variable, p(X

1
):

 • p Alcohol flag High_ .486 1000 0 486/

 • p Alcohol flag Low_ .514 1000 0 514/

We now know, for example, that a randomly chosen wine from this data set 
has a 48.6% probability of having a high alcohol content. Notice that this marginal 
distribution takes no account of the response values Y.

Figure 8.1 Contingency table from R for Type and Alcohol_flag.

Figure 8.2 Contingency table from R for Type and Sugar_flag.
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We use Figure  8.2 to calculate the marginal probability of the predictor 
 variable Sugar_flag. Sugar_flag also has two levels: High and Low. These two 
values will make up the distribution of the second predictor variable, p(X

2
):

 • p Sugar flag High_ .416 1000 0 416/

 • p Sugar flag Low_ .584 1000 0 584/

We now know, for example, that a randomly chosen wine from this data set 
has a 41.6% probability of having a high sugar content.

What about p(X* ∣ Y), the conditional probabilities of each predictor variable 
given the target variable? For each predictor variable we have four different proba-
bilities, one for each of the four pairs of predictor and target variable levels.

From Figures 8.1 and 8.2, we may calculate the four conditional probabilities 
for Alcohol_flag and Type, as follows:

 • p Alcohol flag High Type Red_ | / .218 500 0 436

 • p Alcohol flag Low Type Red_ | / .282 500 0 564

 • p Alcohol flag High Type White_ | / .268 500 0 536

 • p Alcohol flag Low Type White_ | / .232 500 0 464

We now know, for example, that if a wine is red, it has a 56.4% chance of 
having a low alcohol content, compared to a 43.6% chance of having a high alcohol 
content. To visualize this difference we can use a normalized bar graph, as on the 
left‐hand side of Figure 8.1.

The four conditional probabilities for Sugar_flag and Type are given below.

 • p Sugar flag High Type Red_ | / .116 500 0 232

 • p Sugar flag Low Type Red_ | / .384 500 0 768

 • p Sugar flag High Type White_ | / .300 500 0 6

 • p Sugar flag Low Type White_ | / .200 500 0 4

We now know, for example, that if a wine is red, it has a 76.8% chance of 
having a low sugar content, compared to a 23.2% chance of having a high sugar 
content. To visualize this difference we can use a normalized bar graph, as on the 
right‐hand side of Figure 8.3.

Now that we have all values of p(Y), p(X*), and p(X* ∣ Y), we are ready to cal-
culate the posterior probability of each level of Type, p(Y = y* ∣ X*). In other words, 
we can finally address the question at hand: How would Naïve Bayes classify a 
wine, given the alcohol and sugar content? To find that out, we use the maximum a 
posteriori hypothesis. We examine the posterior probability of each possible Type 
given a particular value of Alcohol_flag and Sugar_flag and select the Type that has 
the highest posterior probability.

First, let us consider a wine with low alcohol and low sugar content. Using 
our probability notation, we want to know each of the following:

 • p Y y X p Red Alcohol flag Low Sugar flag Low1| _ , _ )* ( |

 • p Y y X p White Alcohol flag Low Sugar flag Low2 | _ , _ )* ( |
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Figure 8.3 Normalized bar graphs of Type with an overlay of Alcohol_flag (on the top) 
and Sugar_flag (on the bottom).
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To find p(Red | Alcohol_flag = Low, Sugar_flag = Low), we set up the Bayes 
Theorem:

p Y y X
p X Y y p Y y

p X
1

1 1
|

|
*

*

*

p Alcohol flag Low Sugar flag Low Red p Red

p Alcohol fla

( _ , _ | )

_ gg Low Sugar flag Low, _

p Alcohol flag Low Type Red p Sugar flag Low Type Red p_ | _ | RRed

p Alcohol flag Low p Sugar flag Low_ _

Note that we are using the conditional independence assumption to get to this 
last step.

We have already calculated every probability we need to solve this equation, 
so we plug each value in and crunch the numbers:

0 564 0 768 0 5

0 514 0 584
0 7215

. . .

. .
.

The probability that the wine is red given that its alcohol and sugar contents 
are low is about 72.15%.

Next, we need to find p(White| Alcohol_flag = Low, Sugar_flag = Low):

p Y y X
p X Y y p Y y

p X
2

2 2
|

|
*

*

*

p Alcohol flag Low Sugar flag Low White p White

p Alcohol

( |_ , _ )

__ , _flag Low Sugar flag Low

p Alcohol flag Low Type White p Sugar flag Low Type White_ | _ | p White

p Alcohol flag Low p Sugar flag Low_ _

We have already calculated every probability we need to solve this equation, 
so we plug each value in and crunch the numbers:

0 464 0 4 0 5

0 514 0 584
0 3092

. . .

. .
.

The probability that the wine is white given that its alcohol and sugar con-
tents are low is about 30.92%. Since the posterior probability of a low alcohol, low 
sugar wine being red is higher than the posterior probability of the same wine being 
white, the Naïve Bayes algorithm will classify the wine as red.
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Let us compare the prior probability of a wine being red to the posterior prob-
ability of a wine being red given its alcohol and sugar contents are low. The proba-
bility of a randomly selected wine being red is p(Type = Red) = 50%. However, after 
we took into account that the wine had low alcohol and sugar content, the proba-
bility of it being a red wine rose to 72.15%! Why? Because the data told us that red 
wines were more likely to be low in alcohol content compared to their white wine 
counterparts (56.4% compared to 46.4%) and that they were also more likely to be 
low in sugar content compared to their white wine counterparts (76.8% compared 
to 40%). Naïve Bayes took this information into account and used it to say that a 
wine low in sugar and alcohol is more likely to be red than white.

What about a wine that has a high alcohol and high sugar content? We use the 
same formulas as above, changing the X* values to reflect our new values. We want 
to compare two posterior probabilities:

 • p Y y X p Red Alcohol flag High Sugar flag High( ) _ , _ )| *
1 ( |

 • p Y y X p White Alcohol flag High Sugar flag High( ) _ , _ )| *
2 ( |

Let us start with p(Red | Alcohol_ flag = High, Sugar_ flag = High).

p Y y X
p X Y y p Y y

p X
1

1 1
|

|
*

*

*

p Alcohol flag High Sugar flag High Red p Red

p Alcohol f

( |_ , _ )

_ llag High Sugar flag High, _

 
p Alcohol flag High Type Red p Sugar flag High Type Red_ | _ | p Red

p Alcohol flag High p Sugar flag High_ _

Plugging in the specific probabilities into the above formula, we obtain our 
posterior probability:

0 436 0 232 0 5

0 486 0 416
0 2502

. . .

. .
.

The probability that the wine is red given that its alcohol and sugar contents 
are high is about 25.02%.

Next, p(White | Alcohol_flag = High, Sugar_flag = High).

p Y y X
p X Y y p Y y

p X
2

2 2
|

|
*

*

*

p Alcohol flag High Sugar flag High White p White

p Alcoh

( |_ , _ )

ool flag High Sugar flag High_ , _

 p Alcohol flag High Type White p Sugar flag High Type Whi_ _| | tte p White

p Alcohol flag High p Sugar flag High_ _
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Plugging in the specific probabilities into the above formula, we obtain our 
posterior probability:

0 536 0 6 0 5

0 486 0 416
0 7953

. . .

. .
.

The probability that the wine is white given that its alcohol and sugar con-
tents are high is about 79.53%. Since the posterior probability of a high alcohol, 
high sugar wine being white is higher than the posterior probability of the same 
wine being red, the Naïve Bayes algorithm will classify the wine as white.

There are two more combinations of the predictor variables we have yet to 
cover: low alcohol and high sugar, and high sugar and low alcohol. The Naïve 
Bayes classification for a low alcohol, high sugar wine is white, and the Naïve 
Bayes classification for a high alcohol, low sugar wine is red. The details of the 
posterior probability calculations for these wines are left as exercises. Taken all 
together, our Naïve Bayes classification model can be summarized by Table 8.1.

We can evaluate the Naïve Bayes model we uncovered in the above example 
using a test data set. For this example, we evaluate the model built using the wine_
flag_training data set using the wine_flag_test data. The contingency table for the 
actual and predicted values of Type is shown in Figure 8.4.

From Figure  8.4, we can see that the accuracy of the model is 
(464 + 1082)/2345 = 0.6593. Using our Naïve Bayes model, we correctly predict 
the type of wine 65.93% of the time. Our model correctly classifies red wines 
464/585  =  0.7932, or 79.32% of the time, and correctly classifies white wines 
1082/1760 = 0.6148, or 61.48% of the time. Since half our wines are red and half 
are white, our baseline accuracy is 50%, and therefore our Naïve Bayes model out-
performs the baseline model.

Figure 8.4 Contingency table from R of actual wine Type versus predicted wine Type for 
the Naïve Bayes model evaluated on the test data set.

taBLe 8.1 a summary of the Naïve Bayes model for predicting wine type based 
on alcohol and sugar content

If a wine has…
… then we classify 

that wine as a…… alcohol content that is… … and sugar content that is…

… High… … High… White wine
… High… … Low… Red wine
… Low… … High… White wine
… Low… … Low… Red wine
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8.5.1 Naïve Bayes in python

Start by importing all required libraries.

import pandas as pd
import numpy as np
from sklearn.naive_bayes import MultinomialNB
import statsmodels.tools.tools as stattools

Load in the training and test data sets, and call them wines_tr and wines_test, 
respectively.

wine_tr = pd.read_csv("C:/.../wine_flag_training.csv")
wine_test = pd.read_csv("C:/.../wine_flag_test.csv")

First, we look at the data using contingency tables. These tables will allow us 
to obtain the marginal and conditional probabilities we need to perform the Naïve 
Bayes calculations by hand, if we so choose.

t1 = pd.crosstab(wine_tr[’Type’], wine_tr[’Alcohol_flag’])
t1[’Total’] = t1.sum(axis=1)
t1.loc[’Total’] = t1.sum()
t1

The tables are shown in Figure 8.5. From these, we can obtain the marginal 
probabilities for Type Alcohol_flag and Sugar_flag, and the conditional probabil-
ities Alcohol_flag given Type and Sugar_flag given Type.

We can also create bar charts to visualize the probabilities from our tables. To 
do so, we need to tweak the code for our contingency table, as explained in Chapter 4.

t1_plot = pd.crosstab(wine_tr[’Alcohol_flag’], wine_tr[’Type’])
t1_plot.plot(kind=’bar’, stacked = True)

Now we move to the Naïve Bayes algorithm itself. As before, sklearn does 
not automatically handle categorical variables. This means we need to convert 
Alcohol_flag and Sugar_flag into dummy variables versions of themselves before 
we can run the algorithm. We follow the same approach as in Chapter 6.

X_Alcohol_ind = np.array(wine_tr[’Alcohol_flag’])
(X_Alcohol_ind , X_Alcohol_ind_dict) = stattools. 
  categorical(X_Alcohol_ind,

Figure 8.5 Contingency tables from Python for Type and Alcohol_flag (left), and Type 
and Sugar_flag (right).
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     drop=True, dictnames = True)
X_Alcohol_ind = pd.DataFrame(X_Alcohol_ind)
X_Sugar_ind = np.array(wine_tr[’Sugar_flag’])
(X_Sugar_ind , X_Sugar_ind_dict) = stattools.
categorical(X_Sugar_ind,
     drop=True, dictnames = True)
X_Sugar_ind = pd.DataFrame(X_Sugar_ind)
X = pd.concat((X_Alcohol_ind, X_Sugar_ind), axis = 1)

In X, our matrix of predictor dummy variables, we have four columns. The 
first two correspond to Alcohol_flag, where the first column has a 1 if the alcohol 
content is high, and zero otherwise. Similarly, the second column has a 1 if the 
alcohol content is low, and zero otherwise. The third and fourth columns similarly 
correspond to a high sugar content and a low sugar content.

We also save the target variable as Y, for clarity.

Y = wine_tr[’Type’]

Finally, we move on to the Naïve Bayes algorithm.

nb_01 = MultinomialNB().fit(X, Y)

As with previous algorithms, there are two steps: Specifying the parameters 
of the algorithm and fitting the parameter‐specific algorithm to the data. For the 
NultinomialNB() algorithm in this case, there are no extra parameters to set. When 
we fit() the model to our X and Y variables, we save the output as nb_01.

To test the Naïve Bayes estimator on the test data, we first need to set up the 
X variables in the test data set as dummy variables. We follow the same steps as for 
the training data, which are given below.

X_Alcohol_ind_test = np.array(wine_test[’Alcohol_flag’])
(X_Alcohol_ind_test, X_Alcohol_ind_dict_test) = 
 stattools.categorical(X_Alcohol_ind_test,
      drop=True, dictnames = True)
X_Alcohol_ind_test = pd.DataFrame(X_Alcohol_ind_test)
X_Sugar_ind_test = np.array(wine_test[’Sugar_flag’])
(X_Sugar_ind_test, X_Sugar_ind_dict_test) = stattools. 
  categorical(X_Sugar_ind_test,
      drop=True, dictnames = True)
X_Sugar_ind_test = pd.DataFrame(X_Sugar_ind_test)
X_test = pd.concat((X_Alcohol_ind_test, X_Sugar_ind_
test), axis = 1)

Once we have set up the predictor variables for the test data set, we can gen-
erate predictions.

Y_predicted = nb_01.predict(X_test)
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Using the predict() command on our Naïve Bayes object nb_01 will generate 
an array of labels, Red or White, for each record in the test data set.

Finally, we want a contingency table of the actual and predicted wine types. 
We utilize the crosstab() command once more.

ypred = pd.crosstab(wine_test[’Type’], Y_predicted, 
rownames = [’Actual’],
      colnames = [’Predicted’])
ypred[’Total’] = ypred.sum(axis=1); ypred.loc[’Total’] = 
ypred.sum(); ypred

The true wine types located in the variable wine_test[‘Type’] form the rows, 
and the predicted wine types Y_predicted form the columns. The optional input 
values rownames and colnames label the start of the rows and columns to increase 
the readability of the table. The total row and column are added following the same 
steps as were used with the contingency table that started this section. The results 
are shown in Figure 8.6.

8.5.2 Naïve Bayes in r

Import the wine_flag_training and wine_flag_test data set into R. Name them 
wine_tr and wine_test, respectively.

We first create the tables that will allow us to calculate the necessary proba-
bilities by hand, if we choose to. The first table will be the contingency table of 
Type and Alcohol_flag.

ta <‐ table(wine_tr$Type, wine_tr$Alcohol_flag)
colnames(ta) <‐ c("Alcohol = High", "Alcohol = Low")
rownames(ta) <‐ c("Type = Red", "Type = White")
addmargins(A = ta, FUN = list(Total = sum), quiet = TRUE)

The result of the addmargins() command is shown in the contingency table 
in Figure 8.1.

The second table will be the contingency table of Type and Sugar_flag.

ts <‐ table(wine_tr$Type, wine_tr$Sugar_flag)
colnames(ts) <‐ c("Sugar = High", "Sugar = Low")
rownames(ts) <‐ c("Type = Red", "Type = White")
addmargins(A = ts, FUN = list(Total = sum), quiet = TRUE)

Figure 8.6 Contingency table from Python of actual and predicted wine types from Python.
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The result of the addmargins() command is shown in the contingency table 
in Figure 8.2.

We can also create the side‐by‐side bar graphs shown in Figure 8.3. The core 
code is ggplot() code, covered previously in this text. However, to place the graphs 
side by side, we will tweak the core code.

First, install the package that will let us place graphs side by side: the 
gridExtra package.

install.packages("gridExtra"); library(gridExtra)

Then, run the ggplot() code as shown.

plot1 <‐ ggplot(wine_tr, aes(Type)) + geom_bar( aes(fill = 
Alcohol_flag), position = "fill") +
       ylab("Proportion")
plot2 <‐ ggplot(wine_tr, aes(Type)) + geom_bar( aes(fill = 
Sugar_flag), position = "fill") +
       ylab("Proportion")
grid.arrange(plot1, plot2, nrow = 1)

The ggplot() code itself will be familiar from Chapter 4. Note that we save 
each graph under its own name; plot1 for the Alcohol_flag overlay and plot2 for the 
Sugar_flag overlay. After we save each graph, we run the grid.arrange() command, 
with three input values: plot1, plot2, and nrow = 1 to specify that we want the 
graphs side by side on one row. The result is shown in the side‐by‐side graphs in 
Figure 8.3.

Now that we have our contingency tables and graphs, we move on to the 
Naïve Bayes algorithm. The package e1071 contains the Naïve Bayes classification 
algorithm. Install and open the package.

install.packages("e1071"); library(e1071)

Run the Naïve Bayes estimator.

nb01 <‐ naiveBayes(formula = Type ~ Alcohol_flag + 
Sugar_flag, data = wine_tr)

The naiveBayes() command will build the model. The formula input takes 
the target variable Type on the left of the tilde and the two predictor variables 
Alcohol_flag and Sugar_flag on the right of the tilde, separated by a plus sign. The 
data input specifies the data set where these variables come from. We save the 
model as nb01.

To observe the prior and conditional probabilities used in the Naïve Bayes 
model, run the name of the model by itself.

nb01
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The output is shown in Figure 8.7.
The two main items of interest in the output are A‐priori probabilities and 

Conditional probabilities. The A‐priori probabilities are the values of p(Y) and the 
Conditional probabilities are the resulting values of p(Y ∣ X).

To predict the type of wine for each wine in our test data set, we use the 
predict() command

ypred <‐ predict(object = nb01, newdata = wine_test)

The object = nb01 specifies that we are using our Naïve Bayes model and 
newdata = wine_test states the test data set to use. The algorithm classifies each 
record in the test data set as either a white or red wine and saves the string of 
classifications as ypred.

Finally, we create the contingency table of actual versus predicted wine types.

t.preds <‐ table(wine_test$Type, ypred)
rownames(t.preds) <‐ c("Actual: Red", "Actual: White")
colnames(t.preds) <‐ c("Predicted: Red", "Predicted: White")
addmargins(A = t.preds, FUN = list(Total = sum), quiet = TRUE)

The result of the addmargins() command is shown in Figure 8.4.

reFereNCeS

We used a new package, gridExtra, to format multiple ggplot graphs. If you want more detail 
on the inner workings of the new package, look here: Baptiste Auguie, gridExtra: 
Miscellaneous Functions for “Grid” Graphics. R package version 2.3, 2017. https://
CRAN.R‐project.org/package=gridExtra.

Figure 8.7 The output from the Naïve Bayes model in R.
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The e1071 package holds a lot more than Naïve Bayes! See the citation for a full description: 
David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel, and Friedrich 
Leisch, e1071: Misc Functions of the Department of Statistics, Probability Theory Group 
(Formerly: E1071), TU Wien. R package version 1.6‐8., 2017. http://CRAN.R‐project.
org/package=e1071.

eXerCISeS

CLarIFYING the CONCeptS

1. With what information does Bayes Theorem update our previous knowledge about the 
data parameters?

2. What does the prior probability represent?

3. What formula represents how the data behave within the target variable’s class values?

4. What formula represents how the data behave without reference to the class values?

5. What is the formula from the previous exercise called?

6. What does the posterior probability represent?

7. What do we use for a prior probability if we have no prior knowledge about the 
parameters?

8. How does the maximum a posteriori hypothesis help us to classify a record?

9. What is the class conditional independence assumption?

10. If we have more than one predictor, how do we write p(X* ∣ Y  =  y*) if we have two 
 predictor variables X* = {X

1
 = x

1
, X

2
 = x

2
}?

WOrKING WIth the Data
For the following exercises, work with the wine_flag_training and wine_flag_test data sets. 
Use either Python or R to solve each problem.

11. Create two contingency tables, one with Type and Alcohol_flag and another with Type 
and Sugar_flag.

12. Use the tables in the previous exercise to calculate:

a. The prior probability of Type = Red and Type = White.

b. The probability of high and low alcohol content.

c. The probability of high and low sugar content.

d. The conditional probabilities p(Alcohol_flag = High ∣ Type = Red) and p(Alcohol_
flag = Low ∣ Type = Red).

e. The conditional probabilities p(Alcohol_flag = High ∣ Type = White) and p(Alcohol_
flag = Low ∣ Type = White).
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f. The conditional probabilities p(Sugar_flag = High ∣ Type = Red) and p(Sugar_flag = 
Low ∣ Type = Red).

g. The conditional probabilities p(Sugar_flag = High ∣ Type = White) and p(Sugar_
flag = Low ∣ Type = White).

13. Use the probabilities in the previous exercise to discuss

a. How likely it is that a randomly selected wine is red.

b. How likely it is that a randomly selected wine has a high alcohol content.

c. How likely it is that a randomly selected wine has a low sugar content.

14. Use the conditional probabilities found earlier to discuss

a. What a typical white wine might have as its alcohol and sugar content.

b. What a typical red wine might have as its alcohol and sugar content.

15. Create side‐by‐side bar graphs for Type, one with an overlay of Alcohol_flag and the 
other with an overlay of Sugar_flag. Compare the graphs to the conditional probabilities 
you calculated.

16. Compute the posterior probability of Type = Red for a wine that is low in alcohol content 
and high in sugar content. Compute the posterior probability of Type = White for the 
same wine.

17. Use your answers to the previous exercise to determine which type, red or white, is more 
probable for a wine with low alcohol and high sugar content. What would the Naïve 
Bayes classifier classify this wine as?

18. Compute the posterior probability of Type  =  Red for a wine that is high in alcohol 
content and low in sugar content. Compute the posterior probability of Type = White for 
the same wine.

19. Use your answers to the previous exercise to determine which type, red or white, is more 
probable for a wine with high alcohol and low sugar content. What would the Naïve 
Bayes classifier classify this wine as?

20. Run the Naïve Bayes classifier to classify wines as white or red based on alcohol and 
sugar content.

21. Evaluate the Naïve Bayes model on the wines_test data set. Display the results in a 
contingency table. Edit the row and column names of the table to make the table more 
readable. Include a total row and column.

22. According to your table in the previous exercise, find the following values for the Naïve 
Bayes model:

a. Accuracy

b. Error rate

23. According to your contingency table, find the following values for the Naïve Bayes model:

a. How often it correctly classifies red wines.

b. How often it correctly classifies white wines.
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haNDS‐ON aNaLYSIS
For the following exercises, work with the framingham_nb_training and framingham_nb_
test data sets. Use either Python or R to solve each problem.

24. Convert all variables (Death, Sex, and Educ) to factors.

25. Create two contingency tables, one with Death and Sex and another with Death and Educ.

26. Use the tables in the previous exercise to calculate:

a. The probability a randomly selected person is alive or is dead.

b. The probability a randomly selected person is a male.

c. The probability a randomly selected person has an Educ value of 3.

d. The probabilities that a dead person is male with education level 1, and that a living 
person is male with education level 1.

e. The probabilities that a living person is female with education level 2, and that a dead 
person is female with education level 2.

27. Create side‐by‐side bar graphs for Death, one with an overlay of Sex and the other with 
an overlay of Educ.

28. Use the graphs from the previous exercise to answer the following questions:

a. If we know a person is dead, are they more likely to be male or female?

b. If we know a person is alive, are they more likely to be male or female?

c. If we know a person is dead, what education level are they most likely to have?

d. If we know a person is alive, what education level are they most likely to have?

e. Which education levels are more prevalent for dead persons? For living persons?

29. Compute the posterior probability of Death = 0 (person is living) for a male with edu-
cation level 1. Compute the posterior probability of Death = 1 (person is dead) for a 
male with education level 1.

30. Compute the posterior probability of Death = 0 (person is living) for a female with edu-
cation level 2. Compute the posterior probability of Death = 1 (person is dead) for a 
female with education level 2.

31. Run the Naïve Bayes classifier to classify persons as living or dead based on sex and 
education.

32. Evaluate the Naïve Bayes model on the framingham_nb_test data set. Display the results 
in a contingency table. Edit the row and column names of the table to make the table 
more readable. Include a total row and column.

33. According to your table in the previous exercise, find the following values for the Naïve 
Bayes model:

a. Accuracy

b. Error rate

34. According to your contingency table, find the following values for the Naïve Bayes model:

a. How often it correctly classifies dead persons.

b. How often it correctly classifies living persons.
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C h a p t e r  9

9.1 INtrODUCtION tO NeUraL NetWOrKS

Neural networks represent an attempt at a very basic level to imitate the type of non-
linear learning that occurs in the networks of neurons found in nature, such as the 
human brain. As shown in Figure 9.1, a neuron from the human brain uses dendrites 
to gather inputs from other neurons and combines the input information, generating 
a nonlinear response (“firing”) when some threshold is reached, which it sends to 
other neurons using the axon. Figure 9.1 also shows an artificial neuron model used 
in most neural networks. The inputs (x

i
) are collected from upstream neurons (or the 

data set) and combined through a combination function such as summation (Σ), 
which is then input into a (usually nonlinear) activation function to produce an 
output response (y), which may then be channeled downstream to other neurons.

The main benefit of neural networks is that they are quite robust for noisy, 
complicated, or nonlinear data, due to the nonlinear nature of the activation function. 
On the other hand, the main drawback of neural networks is that they are relatively 
opaque to human interpretation, as opposed to, say, decision trees.

9.2 the NeUraL NetWOrK StrUCtUre

Let us examine the simple neural network shown in Figure 9.2.
A neural network consists of a layered, feedforward, completely connected 

network of artificial neurons or nodes.

 • The feedforward nature of the network restricts the network to a single 
direction of flow and does not allow looping or cycling.

 • Most networks consist of three layers: an input layer, a hidden layer, and an 
output layer.

 ° There may be more than one hidden layer, although most networks contain 
only one, which is sufficient for most purposes.

NEURAL NETWORKS
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 • The neural network is completely connected, meaning that every node in a 
given layer is connected to every node in adjoining layers, although not to 
other nodes in the same layer.

 ° Each connection between nodes has a weight (e.g. W
1A

) associated with it.

 ° At initialization, these weights are randomly assigned to values between 
0 and 1.

The number of input nodes depends on the number and type of attributes in 
the data set. The input layer accepts inputs from the data set, such as attribute 
values, and simply passes these values along to the hidden layer without further 
processing.

The number of hidden layers and the number of nodes in each hidden layer 
are both configurable by the analyst. How many nodes should one have in the 

Dendrites

Cell body

…

Axon

∑ → y

x1

x2

xn

Figure 9.1 Real neuron and artificial neuron model.
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Node 2

Node A

Node B

Node Z
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W1A

W2A

W2B

W3A
W3B

W1B

W0A

WAZ

W0B

W0Z

WBZ

Hidden layer Output layer

Figure 9.2 Simple example of a neural network.
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hidden layer? Since having more nodes in the hidden layer increases the power and 
flexibility of the network for identifying complex patterns, one might be tempted to 
have a large number of nodes in the hidden layer. However, an overly large hidden 
layer leads to overfitting, memorizing the training set at the expense of generaliz-
ability to the validation set. If overfitting is occurring, one may consider reducing 
the number of nodes in the hidden layer. Conversely, if the training accuracy is unac-
ceptably low, one may consider increasing the number of nodes in the hidden layer.

9.3 CONNeCtION WeIGhtS aND the COMBINatION 
FUNCtION

The nodes in the hidden layer and the output layer collect the inputs from the 
previous layer and combine them using a combination function. This combination 
function (usually summation, Σ) produces a linear combination of the node inputs 
and the connection weights into a single scalar value, which we will term net. Thus, 
for a given node j,

net W x W x W x W xj
i

ij ij j j j j Ij Ij0 0 1 1 

where x
ij
 represents the ith input to node j, W

ij
 represents the weight associated with 

the ith input to node j, and there are I + 1 inputs to node j. Note that x
1
, x

2
, …, x

I
 rep-

resent inputs from upstream nodes, while x
0
 represents a constant input, analogous 

to the constant factor in regression models, which by convention uniquely takes the 
value x

0j
 = 1. Thus, each hidden layer or output layer node j contains an “extra” 

input equal to a particular weight W
0j
 x

0j
 = W

0j
, such as W

0B
 for node B.

We illustrate the structure of hidden layer nodes and output layer nodes using 
the toy sample data provided in Table 9.1.

For example, for node A in the hidden layer, we have

net W x W W x W x W xA
i

iA iA A A A A A A A0 1 1 2 2 3 31

0 5 0 6 0 4 0 8. . . . 00 0 2 0 6 0 7 1 32. . . .

So, in Figure 9.3, we see that node A has combined its inputs into a net input 
of 1.32. Within node A, this combination function net

A
 = 1.32 is then used as an 

input to an activation function. In biological neurons, signals are sent between 

taBLe 9.1 Data inputs and initial values for neural network weights

x
0
 = 1.0 W

0A
 = 0.5 W

0B
 = 0.7 W

0Z
 = 0.5

x
1
 = 0.4 W

1A
 = 0.6 W

1B
 = 0.9 W

AZ
 = 0.9

x
2
 = 0.2 W

2A
 = 0.8 W

2B
 = 0.8 W

BZ
 = 0.9

x
3
 = 0.7 W

3A
 = 0.6 W

3B
 = 0.4 —
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neurons when the combination of inputs to a particular neuron crosses a certain 
threshold and the neuron “fires.” This is nonlinear behavior, since the firing response 
is not necessarily linearly related to the increment in input stimulation.

The most common activation function is the sigmoid function:

y
e x

1

1

where e is the base of natural logarithms, equal to about 2.718281828. Thus, within 
node A, the activation would take net

A
 = 1.32 as an input to the sigmoid activation 

function and produce an output value of

y f net
eA

1

1
0 7892

1 32.
.

Node A’s work is done (for the moment) and this output value would then be 
passed along the connection to the output node Z, where it would form (via another 
linear combination) a component of net

Z
.

It is left as an exercise to calculate net
B
 = 1.5 and f net

eB

1

1
0 8176

1 5.
. . 

Node Z then combines these outputs from nodes A and B, through net
Z
, a weighted 

sum, using the weights associated with the connections between these nodes. Note 
that the inputs x

i
 to node Z are not data‐attribute values but the outputs from the 

sigmoid functions from upstream nodes:

Node 1:
x1 = 0.4

W1A = 0.6

W0A = 0.5

W2A = 0.8

W3A = 0.6

Node A:

= 0.7892= 1

1 + e–1.32

Output

+0.6 (0.4)
+0.8 (0.2)
+0.6 (0.7)
= 1.32

Input = netA = 0.5Node 2:
x2 = 0.2

Node 3:
x3 = 0.7

Figure 9.3 Details of neural network, showing input to node A, combination function, and 
output from node A.
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net W x W W x W xZ
i

iZ iZ Z AZ AZ BZ BZ0 1

0 5 0 9 0 7892 0 9 0 81. . . . . 776 1 9461.

Finally, net
Z
 is input into the sigmoid activation function in node Z, resulting in

f net
eZ

1

1
0 8750

1 9461.
.

This value of 0.8750 is the output from the neural network for this first pass 
through the network and represents the value predicted for the target variable for 
the first observation.

9.4 the SIGMOID aCtIVatION FUNCtION

A common activation function is the sigmoid function

y f x
e x

1

1

Why use the sigmoid function? Because it combines nearly linear behavior, 
curvilinear behavior, and nearly constant behavior, depending on the value of the 
input. Figure 9.4 shows the graph of the sigmoid function for −5 < x < 5. Through 
much of the center of the domain of the input x (e.g. –1 < x < 1), the behavior of f(x) 
is nearly linear. As the input moves away from the center, f(x) becomes curvilinear. 
By the time the input reaches extreme values, f(x) becomes nearly constant.

Moderate increments in the value of x produce varying increments in the value 
of f(x), depending on the location of x. Near the center, moderate increments in the 

1.0

0.5

0.0

–5 0
x

y

5

Figure 9.4 Graph of the sigmoid function y = f(x) = 1/(1 + e–x).
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value of x produce moderate increments in the value of f(x); however, near the extremes, 
moderate increments in the value of x produce tiny increments in the value of f(x).

9.5 BaCKprOpaGatION

How does the neural network learn? As each observation from the training set is 
processed through the network, an output value is produced from the output node. 
This output value is then compared to the actual value of the target variable for this 
training set observation and the error (actual – output) is calculated. This prediction 
error is analogous to the prediction error in linear regression models. To measure 
how well the output predictions fit the actual target values, most neural network 
models use the sum of squared errors (SSE):

SSE
records output nodes

actual output
2

where the squared prediction errors are summed over all the output nodes and over 
all the records in the training set. The problem is therefore to construct a set of 
model weights that will minimize the SSE. In this way, the weights are analogous to 
the parameters of a regression model. The “true” values for the weights that will 
minimize SSE are unknown and our task is to estimate them, given the data.

However, due to the nonlinear nature of the sigmoid functions permeating the 
network, there exists no closed‐form solution for minimizing SSE as exists for 
least‐squares regression. Optimization methods, specifically gradient‐descent 
methods, are therefore used.

The backpropagation algorithm does the following:

1. It takes the prediction error (actual – output) for a particular record and per-
colates the error back through the network.

2. Assigning partitioned responsibility for the error to the various connections.

3. The weights on these connections are then adjusted to decrease the error, 
using gradient descent.1

9.6 aN appLICatION OF a NeUraL NetWOrK 
MODeL

We next turn to an example of a neural network model using a subset of the 
Framingham Heart Study data.2 The data set, Framingham_training, contains 
information on three variables for 7953 patients. Sex is a binary predictor with 

1 For further information regarding gradient-descent methods and the details of backpropagation, see 
Data Mining and Predictive Analytics, Chapter 12.
2 www.framinghamheartstudy.org.
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1  =  Male and 2  =  Female. Age is a continuous predictor. The target variable is 
Death, with values 0 = survival and 1 = death.

Clues to the relationship between the predictors and the target are obtained 
through exploratory data analysis, namely through Figures  9.5 and 9.6, and 
Tables  9.2 and 9.3. The histograms in Figures  9.5 and 9.6 show that, as Age 
increases, the proportion of Death increases. Tables 9.2 and 9.3 show that a larger 
proportion of males died, compared to females. Thus, these interrelationships 
should be reflected in our neural network model results.
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Figure 9.5 Histogram from R of Age, with Death overlay.
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Figure 9.6 Normalized histogram from R of Age, with Death overlay.
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For clarity, we select only a single hidden layer, containing only a single 
neuron. Figure 9.7 shows the resulting neural network model, built using R, gener-
ated by the Framingham_training data set.

9.7 INterpretING the WeIGhtS IN a NeUraL 
NetWOrK MODeL

The weights in a neural network model represent what the model is trying to tell you, 
given the data. These weights are analogous to the predictor coefficients in a regres-
sion model. Let us glean what information we can from the weights in Figure 9.7.

taBLe 9.2 Contingency table of Sex and Death

Sex

Death

Male Female Total

0 2113 3422 5535
1 1324 1094 2418

Total 3437 4516 7953

taBLe 9.3 Contingency table of Sex and Death 
with column percentages

Sex

Death

Male (%) Female (%)

0 61.5 75.8
1 38.5 24.2

WI1H = 0.6418

WB1H = 1.921

WH101 = –5.8477

WB2O1 = 3.0828

DeathO1

B2B1

I1

H1

I2Age

Sex

WI2H = –3.0784

Figure 9.7 Neural network model from Framingham Heart Study data.
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First, let us ignore the bias (constant term) weights B1 and B2, since they do not 
affect the relationship between the predictors and the response. Next, recall our 
exploratory data analysis (EDA), where we found that greater age and being male 
were both associated with higher probability of death in the Framingham Heart Study. 
Also, Sex is a binary predictor with 1 = Male and 2 = Female, so that an increase in 
the value of Sex should be associated with a decrease in probability of death. Let us 
see how and whether these EDA results are reflected in the neural network weights.

Now, the weight between the hidden layer node H1 and the output node O1 
takes a negative value, W

H1O1
 =  − 5.8477. Thus, when the hidden layer node H1 is 

excited to a high value, it actually has a protective effect against death, lowering its 
probability, because of this negative weight.

Next, the weight from the Sex predictor to the hidden layer node takes a positive 
value, W

I1H
 = 0.6418. This means that larger values of Sex (females) will tend to 

excite the hidden layer neuron H1 to a higher value. As we just learned, such a high 
value for H1 lowers the probability of death. Thus, the weights are telling us that 
being female protects against the probability of death, just as we saw in the EDA.

Finally, the weight from the Age predictor to the hidden layer node takes a 
negative value, W

I2H
 =  − 3.0784. This means that higher values of Age will result in 

a lower value for the hidden layer neuron H1. Low values from H1 to output node 
O1 result in a high probability of death because its weight is negative as well. Thus, 
the weights are telling us that an increase in age is associated with an increase in 
the probability of death, exactly as we saw in the EDA.

9.8 hOW tO USe NeUraL NetWOrKS IN r

First, read in the Framingham_training data set as fram_train, and convert the 
binary and ordinal variables Death and Sex to factors.

fram_train$Death <‐ as.factor(fram_train$Death)
fram_train$Sex <‐ as.factor(fram_train$Sex)

Perform min–max standardization on the Age variable

fram_train$Age.mm <‐ (fram_train$Age ‐ min(fram_train$Age)) /
(max(fram_train$Age) ‐ min(fram_train$Age))

Install the nnet and NeuralNetTools packages, and open both packages.

install.packages(“nnet”); install.packages("NeuralNetTools")
library(nnet); library(NeuralNetTools)

Run the neural network algorithm.

nnet01 <‐ nnet(Death ~ Sex + Age.mm, data = fram_train, size = 1)

Note the formula structure, with the target variable Death on the left side 
of the tilde, and the two predictor variables Sex and Age on the right side. The 
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data = fram_train input specifies where the three variables come from. The 
size = 1 command states that there is one unit in the hidden layer.

Note that the neural network output is saved as nnet01. Saving the output is 
required in order to obtain the plot and weights of the neural network.

Next, plot the neural network.

plotnet(nnet01)

The output from the plotnet() command with the nnet01 input will match 
Figure 9.7.

Finally, obtain the weights.

nnet01$wts

reFereNCeS

The NeuralNetTools package visualized our neural network model. To see the options and 
other features, check out the documentation for the package:M. Beck, _NeuralNetTools: 
Visualization and Analysis Tools for Neural Networks_. R package version 1.5.1, 2018. 
http://CRAN.R‐project.org/package=NeuralNetTools.

The nnet package was used to create the neural network. For more information, see the pub-
lication: W. N. Venables and B. D. Ripley, Modern Applied Statistics with S, Fourth 
Edition, Springer, New York, 2002.

eXerCISeS

CLarIFYING the CONCeptS

1. Neural networks classification represents an attempt to imitate what?

2. Using Figure 9.1, explain how an artificial neuron model imitates the actions of real 
neurons.

3. What is the main benefit of neural networks for modeling? What gives neural networks 
this power?

4. Describe the main drawback of neural network modeling.

5. Explain what we mean when we say that a neural network is completely connected.

6. Describe the benefits and drawbacks of using more or fewer nodes in the hidden layer.

7. Referring to the example in the text, calculate net
B
 = 1.5 and f net

eB( ) .
.

1

1
0 8176

1 5
.

8. Explain how the sigmoid function combines nearly linear behavior, curvilinear behavior, 
and nearly constant behavior.

9. Describe the process of backpropagation.

10. The essential problem for the neural network is to construct a set of weight that will 
minimize what?



eXerCISeS 139

WOrKING WIth the Data
For the following exercises, work with the Framingham_training and Framingham_test data 
sets. Use either Python or R to solve each problem.

11. Convert the binary and ordinal variables Death, Sex, and Educ to factors.

12. Run the neural network algorithm to predict Death using Sex and Educ.

13. Plot the neural network.

14. Obtain the weights for the neural network. Identify which part of the network has which 
weight.

15. Evaluate your neural network model using the Framingham_test data set. Construct a 
contingency table to compare the actual and predicted values of Death.

16. Which baseline model do we compare your neural network model against? Did it out-
perform the baseline according to accuracy?

haNDS‐ON aNaLYSIS
For the following exercises, work with the adult_ch6_training and the adult_ch6_test data 
set. Use either Python or R to solve each problem.

17. Prepare the data set for neural network modeling by doing the following:

a. Create a binary variable that equals one if Cap_Gains_Losses is greater than zero, 
and zero otherwise. Call it CapGainsLossesPositive.

b. Convert the Marital.status, Income, and CapGainsLossesPositive to factors.

18. Using the training data set, create a neural network model to predict a customer’s Income 
using Marital.status and CapGainsLossesPositive. Call this NNM1 (For neural network 
Model 1). Obtain the predicted responses.

19. Plot the NNM1 neural network.

20. Evaluate NNM1 using the test data set. Construct a contingency table to compare the 
actual and predicted values of Income.

21. Which baseline model do we compare NNM1 against? Did NNM1 outperform the base-
line according to accuracy?

22. Gather the results (contingency tables) from your earlier modeling of the adult_ch6_
training and adult_ch6_test data sets in the Chapter 6 and Chapter 8 exercises. From 
Chapter  6, call the CART model CARTM1 and call the C5.0 model C5M1. From 
Chapter 8, call the Naïve Bayes model NBM1.

23. Compare the NNM1 results with the three models from the previous exercise, according 
to the following criteria. Discuss in detail which model performed best and worst 
according to each criterion.

a. Accuracy

b. Sensitivity

c. Specificity
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For the following exercises, work with the bank_marketing_training and the bank_
marketing_test data set. Use either Python or R to solve each problem.

24. Prepare the data set for neural network modeling, including standardizing the variables.

25. Using the training data set, create a neural network model to predict a customer’s Response 
using whichever predictors you think appropriate. Obtain the predicted responses.

26. Plot the neural network.

27. Evaluate the neural network model using the test data set. Construct a contingency table 
to compare the actual and predicted values of Response.

28. Which baseline model do we compare your neural network model against? Did it out-
perform the baseline according to accuracy?

29. Using the same predictors you used for your neural network model, build models to pre-
dict Response using the following algorithms:

a. CART

b. C5.0

c. Naïve Bayes

30. Compare the results of your neural network model with the three models from the 
previous exercise, according to the following criteria. Discuss in detail which model 
performed best and worst according to each criterion.

a. Accuracy

b. Sensitivity

c. Specificity
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C h a p t e r  10

10.1 What IS CLUSterING?

Clustering refers to the grouping of records, observations, or cases into classes of 
similar objects. A cluster is a collection of records that are similar to one another 
and dissimilar to records in other clusters. Clustering differs from classification in 
that there is no target variable for clustering. The clustering task does not try to clas-
sify, estimate, or predict the value of a target variable. Instead, clustering algorithms 
seek to segment the entire data set into relatively homogeneous subgroups or clus-
ters, where the similarity of the records within the cluster is maximized and the 
similarity to records outside this cluster is minimized.

For example, the Nielsen PRIZM segments, developed by Claritas, Inc., rep-
resent demographic profiles of each geographic area in the United States, in terms 
of distinct lifestyle types, as defined by zip code. For example, the clusters identi-
fied for zip code 90210, Beverly Hills, California, are:

 • Cluster 01: Upper Crust Estates

 • Cluster 03: Movers and Shakers

 • Cluster 04: Young Digerati

 • Cluster 07: Money and Brains

 • Cluster 16: Bohemian Mix

The description for Cluster 01: Upper Crust is “The nation’s most exclusive 
address, Upper Crust is the wealthiest lifestyle in America, a Haven for empty‐nesting 
couples between the ages of 45 and 64. No segment has a higher concentration of 
residents earning over $100,000 a year and possessing a postgraduate degree. And 
none has a more opulent standard of living.”

Examples of clustering tasks in business and research include:

 • Target marketing of a niche product for a small‐capitalization business that 
does not have a large marketing budget.

CLUSTERING
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 • For accounting auditing purposes, to segment financial behavior into benign 
and suspicious categories.

 • For gene expression clustering, where very large quantities of genes may 
exhibit similar behavior.

Clustering is often performed as a preliminary step in a data mining process, 
with the resulting clusters being used as further inputs into a different technique 
downstream, such as neural networks. Due to the enormous size of many present‐
day databases, it is often helpful to apply clustering analysis first, to reduce the 
search space for the downstream algorithms.

All clustering methods have as their goal the identification of groups of 
records such that similarity within a group is very high, while the similarity to 
records in other groups is very low. In other words, as shown in Figure 10.1, clus-
tering algorithms seek to construct clusters of records such that the between‐cluster 
variation is large compared to the within‐cluster variation.

10.2 INtrODUCtION tO the k‐MeaNS 
CLUSterING aLGOrIthM

There are many different clustering methods, including hierarchical clustering, 
Kohonen networks clustering, and BIRCH clustering.1 Here, we shall focus on 
the  k‐means clustering algorithm. The k‐means clustering algorithm2 is a 

1 For details on these clustering methods, see Data Mining and Predictive Analytics, Second Edition, by 
Daniel T. Larose and Chantal D. Larose, John Wiley and Sons, Inc., 2015.
2 James B. MacQueen, Some methods for classification and analysis of multivariate observations. In 
Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, pp. 
281–297, University of California Press, Berkeley, CA, 1967.

Within-cluster variation:

Between-cluster variation:

Figure 10.1 Clusters should have small within‐cluster variation compared to the between‐
cluster variation.
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straightforward and effective algorithm for finding clusters in data. The algorithm 
proceeds as follows:

 • Step 1: Ask the user how many clusters k the data set should be partitioned into.

 • Step 2: Randomly assign k records to be the initial cluster center locations.

 • Step 3: For each record, find the nearest cluster center. Thus, in a sense, each 
cluster center “owns” a subset of the records, thereby representing a partition 
of the data set. We therefore have k clusters, C

1
, C

2
, …, C

k
.

 • Step 4: For each of the k clusters, find the cluster centroid and update the 
location of each cluster center to the new value of the centroid.

 • Step 5: Repeat steps 3–5 until convergence or termination.

The “nearest” criterion in step 3 is usually Euclidean distance, although other 
criteria may be applied as well. The cluster centroid in step 4 is found as follows. 
Suppose that we have n data points (a

1
, b

1
, c

1
), (a
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n
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troid of these points is the center of gravity of these points and is located at point 
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i
/n,   ∑ b

i
/n,   ∑ c
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/n,). For example, the points (1,1,1), (1,2,1), (1,3,1), and (2,1,1) 
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The algorithm terminates when the centroids no longer change. In other 
words, the algorithm terminates when for all clusters C

1
, C

2
, …, C

k
, all the records 

“owned” by each cluster center remain in that cluster. For much more on k‐means 
clustering, see Data Mining and Predictive Analytics.

10.3 aN appLICatION OF k‐MeaNS CLUSterING

We apply the k‐means clustering algorithm to the white_wine_training and the white_
wine_test data sets. These data sets are adapted from the Wine Quality data set at UCI.3 
The data consist of chemical and quality characteristics of a collection of Portuguese 
white wines. The predictors are alcohol and sugar. The target variable is quality, a 
measure of how good the wine is, according to a professional taster. When constructing 
clusters, it is important to not include the target variable as an input to the clustering 
algorithm. Doing so would bias the results if we later use the clusters to predict the 
target. It is also important to standardize or normalize all the predictors, so that the 
greater variability of one predictor does not dominate the cluster construction process.

Now, the k‐means algorithm requires the analyst to specify the desired 
number of clusters. For simplicity, we specify k = 2 clusters and proceed to apply 

3 https://archive.ics.uci.edu/ml/datasets/wine+quality. Also P. Cortez, A. Cerdeira, F. Almeida, T. Matos, 
and J. Reis, Modeling wine preferences by data mining from physicochemical properties, Decision 
Support Systems, Elsevier, 47(4), 547–553, 2009.
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the k‐means clustering algorithm to the predictor variables alcohol and sugar. 
Python was used. Table 10.1 shows the mean variable value for each predictor, for 
the two resulting clusters. Cluster 1 contains 712 wines, with a mean sugar content 
0.96 standard deviations above the overall mean sugar content for all the white 
wines in the training data set. (That is, the mean Cluster 1 value for the standard 
normal sugar_z variable is 0.96.) Cluster 1’s mean alcohol content, however, lies 
0.76 standard deviations below the mean alcohol level for all wines. On the other 
hand, Cluster 2 contains 1097 wines, with lower mean sugar content than Cluster 1 
(0.62 standard deviations below the overall mean) but with higher alcohol content, 
at 0.49 standard deviations above the overall mean.

So, we may identify Cluster 1 as containing “Sweet Wines,” high in sugar but 
low in alcohol, while Cluster 2 contains “Dry Wines,” low in sugar but packing a 
higher alcohol punch. Perhaps, the most important cluster validation method is to 
obtain clusters that make sense to a subject matter expert. A quick Internet search 
shows how we obtain these different wines in the real world: “During fermentation, 
yeasts transform sugars … into ethanol [alcohol]…”4 So, it is no surprise that our 
clustering algorithm has uncovered these two “natural” clusters of white wines: 
sweet wines and dry wines. The dry wines have, on the whole, evidently undergone 
longer fermentation than the sweet wines.

10.4 CLUSter VaLIDatION

Cluster solutions should be validated. Since no predictions were made using the 
training data set, we simply reapply the k‐means algorithm, this time to the white_
wine_test data set, and compare the results obtained with the training set. Table 10.2 

4 https://en.wikipedia.org/wiki/Fermentation_in_winemaking

taBLe 10.1 Mean variable value, by cluster, for the white_wine_training data sets

Variable
Cluster 1 : 712 wines

“Sweet Wines”
Cluster 2 : 1097 wines

“Dry Wines”

Sugar_z  0.96 −0.62
Alcohol_z −0.76  0.49

The Python results in Figure 10.2 were copied here in Table 10.1

taBLe 10.2 Mean variable value, by cluster, for the white_wine_test data sets

Variable
Cluster 1 : 638 wines

“Sweet Wines”
Cluster 2 : 1122 wines

“Dry Wines”

Sugar_z  1.07 −0.61
Alcohol_z −0.80  0.46

The Python results in Figure 10.3 are used for this table. The cluster labels “Cluster 1” and “Cluster 2” were reversed, 
for ease of interpretation. These cluster labels are arbitrarily assigned by the algorithm
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contains the resulting mean variable values, by cluster. As shown in Table 10.3, the 
difference in mean values (training minus test sets) is relatively small. Analysts 
wishing further validation may perform two‐sample t‐tests here.

10.5 hOW tO perFOrM k‐MeaNS CLUSterING 
USING pYthON

Load the required packages.

import pandas as pd
from scipy import stats
from sklearn.cluster import KMeans

Read in the white_wine_training data set as wine_train.

wine_train = pd.read_csv("C:/.../white_wine_training")

For simplicity, let us isolate the predictor variables and save them as X.

X = wine_train[[’alcohol’, ’sugar’]]

Once we have our predictor variables, standardize them using the z‐score 
transformation and save the result as a data frame.

Xz = pd.DataFrame(stats.zscore(X), columns=[’alcohol’, ’sugar’])

As in Chapter 3, the stats.zscore command will convert the variables in X 
into their z‐scores. We save the new standardized variables as a data frame using the 
DataFrame() command. The optional input columns use the given names as the 
column names. We save the result as Xz.

Now, we run k‐means clustering on the training data set.

kmeans01 = KMeans(n_clusters = 2).fit(Xz)

The KMeans() command sets up the parameters of the k‐means algorithm. In 
our case, the input n_cluster = 2 specifies that we want two clusters. The fit() 
command runs the specified k‐means algorithm on our data, with the input Xz 
giving the data set we want to cluster. The clustering result is saved under the name 
kmeans01.

taBLe 10.3 Difference in variable means, training set minus test set, by cluster

Variable
Training – Test
“Sweet Wines”

Training – Test
“Dry Wines”

Sugar_z 0.96 − 1.07 =  − 0.11 −0.62 − (−0.61) =  − 0.01
Alcohol_z −0.76 − (−0.80) = 0.04 0.49 − 0.46 = 0.03
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To investigate the clustering results, we need to save the cluster membership 
as its own variable.

cluster = kmeans01.labels_

The cluster membership information is contained under labels_ within the 
kmeans01 result we saved previously. For simplicity, we save it as its own object, 
cluster.

Once we have cluster membership information, we can separate the records 
into two groups based on cluster membership.

Cluster1 = Xz.loc[cluster == 0]
Cluster2 = Xz.loc[cluster == 1]

The results are two data sets, one for the records in Cluster 1 and another for 
the records in Cluster 2.

Finally, we compute summary statistics of the two clusters using the 
describe() command.

Cluster1.describe()
Cluster2.describe()

The describe() command prints various statistics for the variables in each 
cluster, shown in Figure  10.2. The means from Figure  10.2 are copied into 
Table 10.1.

To validate the clustering result, run the k‐means clustering algorithm on test 
data set. The code is given below and is analogous to the training set case. The 
describe results for the test data set are shown in Figure 10.3, with the means copied 
into Table 10.2.

wine_test = pd.read_csv("C:/.../white_wine_test")
X_test = wine_test[[’alcohol’, ’sugar’]]
Xz_test = pd.DataFrame(stats.zscore(X_test), 
columns=[’alcohol’, ’sugar’])

Figure 10.2 The Python descriptions of Cluster 1 (left) and Cluster 2 (right) from the 
training data set.
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kmeans_test = KMeans(n_clusters = 2).fit(Xz_test)
cluster_test = kmeans_test.labels_ # Cluster membership
Cluster1_test = Xz_test.loc[cluster_test == 0]
Cluster2_test = Xz_test.loc[cluster_test == 1]
Cluster1_test.describe()
Cluster2_test.describe()

10.6 hOW tO perFOrM k‐MeaNS CLUSterING 
USING r

Read in the white_wine_training data set as wine_train and subset the predictor 
variables into their own matrix.

X <‐ subset(wine_train, select = c("alcohol", "sugar"))

The subset() command will select the two variables named alcohol and 
sugar from the wine_train data set, and store them under their own name, X.

Now, we standardize both predictor variables and save the output as a data 
frame. Data frame format is required for running the kmeans() command.

Xs <‐ as.data.frame(scale(X))
colnames(Xs) <‐ c("alcohol_z", "sugar_z")

The scale() command turns the variables in X into their respective z‐scores, 
while as.data.frame saves the result as a data frame. The result is saved as Xs. We 
edit the column names using colnames() to emphasize that the variables are now 
standardized.

The kmeans() command is included in the base installation of R. However, if 
you do get an error that says “Could not find function ‘kmeans’,” install and open 
the stats package using install. packages(“stats”); library(stats).

Run the k‐means clustering algorithm.

kmeans01 <‐ kmeans(Xs, centers = 2)

Figure 10.3 The Python descriptions of Cluster 1 (left) and Cluster 2 (right) from the test 
data set.
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The required inputs are Xs, the data frame, and centers = 2, the number of 
clusters the algorithm will look for. Note that we save the clustering algorithm 
output as kmeans01.

We need to save the cluster membership of each record as its own variable.

cluster <‐ as.factor(kmeans01$cluster)

The code kmeans01$cluster will get each record’s cluster membership. 
Since we have two clusters in this example, the values of kmeans01$cluster will be 
either 1 or 2. The command as.factor() will save that string of numbers as a factor.

Now let us look at the descriptive statistics of each cluster. First, we separate 
the records into two groups, based on which cluster they belong to.

Cluster1 <‐ Xs[ which(cluster == 1), ]
Cluster2 <‐ Xs[ which(cluster == 2), ]

The which() command, used in the bracket notation on the left side of the 
comma, chooses only those records whose cluster membership is 1 (for Cluster1) 
or 2 (for Cluster2). Then, we run the summary() command on each group individ-
ually and note the output of interest.

summary(Cluster1)
summary(Cluster2)

The results are shown in Figure 10.4.
To validate the clusters, input the white_wine_test data set as wine_test and 

subset the alcohol and sugar variables. Perform variable standardization and  
k‐means clustering on the test data set. The code is given below. The results are 
shown in Figure 10.5.

X_test <‐ subset(wine_test, select = c("alcohol", "sugar"))
Xs_test <‐ as.data.frame(scale(X_test))
colnames(Xs_test) <‐ c("alcohol_z", "sugar_z")
kmeans01_test <‐ kmeans(Xs_test, centers = 2)
cluster_test <‐ as.factor(kmeans01_test$cluster)
Cluster1_test <‐ Xs[ which(cluster_test == 1), ]
Cluster2_test <‐ Xs[ which(cluster_test == 2), ]
summary(Cluster1_test); summary(Cluster2_test)

Figure 10.4 The R descriptions of Cluster 1 and Cluster 2 from the training data set.
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eXerCISeS

CLarIFYING the CONCeptS

1. Explain what clustering is trying to accomplish, using the concepts of between‐cluster 
variation and within‐cluster variation.

2. Which, records or variables, does clustering seek to group?

3. Why is it helpful to apply clustering fairly early in the modeling process?

4. True or false: k‐means clustering automatically selects the optimal number of clusters.

5. Why do we omit the target variable as an input to the clustering algorithm?

6. Explain how we proceed to perform cluster validation.

7. Why do we standardize the numerical predictors prior to clustering?

8. What is perhaps the most important cluster validation method?

9. What is the centroid of the points (1, 5), (2, 4), and (3, 3)?

10. Provide an example of clustering in the everyday world that is not discussed in this 
chapter.

WOrKING WIth the Data
For the following exercises, work with the white_wine_training and white_wine_test data 
sets. Use either Python or R to solve each problem.

11. Input and standardize both the training and test data sets.

12. Run k‐means clustering on the training data set, using two clusters.

13. Give the mean of each variable within each cluster and use the means to identify a “Dry 
wines” and a “Sweet wines” cluster.

14. Validate the clustering results by running k‐means clustering on the test data set, using 
two clusters, and identifying a “Dry wines” and a “Sweet wines” cluster.

Figure 10.5 The R descriptions of Cluster 1 (left) and Cluster 2 (right) from the test 
data set.
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haNDS‐ON aNaLYSIS
For the following exercises, work with the cereals data set. Use either Python or R to solve 
each problem.

15. Subset the Fat and Sodium variables into their own data frame, X. Standardize the data set.

16. Run k‐means clustering on the data set, using three clusters.

17. Obtain the summary of each variable within each cluster and use the summaries to 
identify:

a. A low fat, low sodium cluster.

b. A low fat, high sodium cluster.

c. A high fat, high sodium cluster.

For the following exercises, work with the Framingham_training and Framingham_test data 
sets. Use only the Sex and Age fields. Standardize Age.

18. Run k‐means clustering on the Framingham_training data set, requesting k  =  2 
clusters.

19. Construct a table of statistics summarizing your clusters. Describe what these two clus-
ters consist of.

20. Perform k‐means clustering on the Framingham_test data set, requesting k = 2 clusters.

21. Report the results from your test set. Are your clusters validated?

22. Again run k‐means clustering on the Framingham_training data set, this time specifying 
k = 3 clusters.

23. Construct a table of statistics summarizing your clusters. Describe which records belong 
to each cluster.

24. Perform k‐means clustering on the Framingham_test data set, specifying k = 3 clusters.

25. Report the results from your test set. Are your clusters validated?

26. Run k‐means clustering on the Framingham_training data set. Specify k = 4 clusters.

27. Construct a table of statistics summarizing your four clusters. Clearly describe your four 
clusters.

28. Perform k‐means clustering on the Framingham_test data set, requesting k = 4 clusters.

29. Report the results from your test set. Are your clusters validated?

30. Which of the clustering solutions, k = 2, 3, or 4, do you prefer, and why?
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C h a p t e r  11

11.1 the eStIMatION taSK

Thus far in the Modeling Phase we have covered the following tasks:

 • Classification task

 • Clustering task

There remain two tasks left to cover:

 • Estimation task

 • Association task

In this chapter, we cover the estimation task; later, in Chapter 14, we will 
cover the association task.

The most widespread method for performing the estimation task is linear 
regression. Simple linear regression approximates the relationship between a 
numeric predictor and a continuous target, using a straight line. Multiple regression 
modeling approximates the relationship between a set of p > 1 predictors and a 
single continuous target, using a p‐dimensional plane or hyperplane.

11.2 DeSCrIptIVe reGreSSION MODeLING

The usual multiple regression model is a parametric model, defined by the follow-
ing equation:

 
y x x xp p0 1 1 2 2 

 

where the x’s represent the predictor variables, and the β′s represent the unknown 
model parameters, whose values are estimated using the data.1 Now, estimating 

1 For much more on inferential regression modeling, see Data Mining and Predictive Analytics.

REGRESSION MODELING
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model parameters using sample data represents classical statistical inference. The 
Data Science Methodology outlined in Chapter  1, however, employs cross‐ 
validation rather than classical statistical inference to validate model results. Thus, 
in this book, we will bypass the parametric regression equation above, in favor of 
a  descriptive approach to regression modeling, using the following regression 
equation:

 ŷ b b x b x b xp p0 1 1 2 2   

In this regression equation, ŷ represents the estimated value of the target 
 variable y, the b’s represent the known values of the regression coefficients, and the 
x′s  represent the predictor variables.

11.3 aN appLICatION OF MULtIpLe 
reGreSSION MODeLING

To illustrate multiple regression, we turn to the clothing_sales_training and 
clothing_sales_test data sets. The client has some data on customer spending and 
would like to estimate Sales_per_Visit, given three predictors:

 • Days between purchases (“Days,” Continuous: Average number of days 
 between purchases.)

 • Credit Card (“CC,” Flag: Does the customer have a store credit card?)

 • Web Account (“Web,” Flag: Does the customer have a web account?)

So, our provisional regression equation will be:

 

Sales per Visit b b Days between purchases b Credit Card�
0 1 2( ) ( )
bb Web Account3( )  

Because there is only one continuous predictor, it is not necessary to stan-
dardize the predictors. The results of the regression of Sales per Visit vs the three 
predictors for the training set are shown in Figure 11.1. We use the p‐values as a 
guide to tell us which variables belong in the model. Note that we are not 
performing inference as such (the usual domain of p‐values), because we will be 
careful to cross‐validate these results with the test data set. The usual p‐value 
cutoff for retaining variables in a regression model is about 0.05, though cutoff 
values differ from field to field. Variables with p‐values lower than the cutoff are 
retained in the model.

From Figure 11.1, we see that Web Account, with a p‐value of 0.533, does not 
belong in the model. The regression results for the test data set in Figure  11.2 
concur that Web Account does not belong in the model. This leaves us with our 
regression equation as:

 Sales per Visit b b Days between purchases b Credit Card�
0 1 2( ) ( )  
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We therefore rerun the regression model, this time omitting Web Account 
from the model. The results for the training set and test set are shown in Figures 11.3 
and 11.4. Using the coefficients from the training set, we obtain our final regression 
model as:

 

Sales per Visit Days between purchases� 73 6209 0 1637
22 135
. . ( )

. 77( )Credit Card  

That is, the estimated sales per visit for our customer base is $73.6209 plus 
$0.1637 times the number of days between purchases plus $22.1357 if they have 
a store credit card. We see that customers tend to spend more if they have a store 
credit card. Also, the longer it has been between visits, the more customers tend 
to spend.

Figure 11.1 Python regression results for the training data set.

Figure 11.2 Python validation of the regression results with the test data set.

Figure 11.3 Final regression model for the training data set using Python.

Figure 11.4 Validating the final regression model with the test data set using Python.
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We interpret these regression coefficients as follows:

 • Credit Card. The estimated increase in Sales per Visit for a customer with a 
store credit card (compared to a customer without a store credit card) is 
$22.1357, when Days between Purchase is held constant.

 • Days Between Purchase. For each increase of one day in the average days 
between purchases, the estimated increase in Sales per Visit is $0.1637, when 
Credit Card is held constant. This can be better understood if we compare two 
shoppers, Customer A and Customer B, where Customer A has an average 
number of days between purchases one month (30 days) longer than Customer 
B. Then, Customer A’s Sales per Visit is 30 × $0.1637 = $4.91 greater than 
Customer B, holding Credit Card constant.

11.4 hOW tO perFOrM MULtIpLe reGreSSION 
MODeLING USING pYthON

First, as always, we load the required packages.

import pandas as pd
import numpy as np
import statsmodels.api as sm

Next, we import the clothing_sales_training and clothing_sales_test data sets 
as sales_train and sales_test, respectively.

sales_train = pd.read_csv("C:/.../clothing_sales_
training.csv")
sales_test = pd.read_csv("C:/.../clothing_sales_test.csv")

For simplicity, we separate the predictor variables and the target variable. We 
call the data frame of predictor variables X and the target variable y.

X = pd.DataFrame(sales_train[[’CC’, ’Days’, ’Web’]])
y = pd.DataFrame(sales_train[[’Sales per Visit’]])

To have a constant term b
0
 in our regression model, we need to add a constant 

variable to our predictor variables.

X = sm.add_constant(X)

Running the add_constant() command on the X variables will add a column 
to the data frame filled with the value one (1.0).

Finally, we run the multiple regression model.

model01 = sm.OLS(y, X).fit()

OLS stands for “Ordinary Least Squares,” which is the method used to fit this 
regression model. Note that the two inputs of the OLS() command are the target 



11.4 hOW tO perFOrM MULtIpLe reGreSSION MODeLING USING pYthON 155

variable y and the predictor variables X. Save the fitted model as model01. To obtain 
the results of the regression model, run the summary() command on model01.

model01.summary()

An excerpt from the output of the summary() command is shown in 
Figure 11.1. The regression coefficients are located in the coef column.

To verify the regression model results, we run the same code on the sales_test 
data set. The code is given below, the explanations equivalent to those given earlier 
in this section.

X_test = pd.DataFrame(sales_test[[’CC’, ’Days’, ’Web’]])
y_test = pd.DataFrame(sales_test[[’Sales per Visit’]])
X_test = sm.add_constant(X_test)
model01_test = sm.OLS(y_test, X_test).fit()
model01_test.summary()

An excerpt from the results from the summary() command run on model01_
test is given in Figure 11.2. The results validate the results from model01.

To remove the variable Web from the regression model, we redefine the X 
data frame to include only the remaining two predictor variables. After doing 
so, we also need to add the constant term back into our predictor variable 
data frame.

X = pd.DataFrame(sales_train[[’CC’, ’Days’]])
X = sm.add_constant(X)

Once the predictor variable data frame is ready, we run the OLS() and fit() 
commands on the target variable y and new X data frame again. Note that we did 
not change the y input, since only the X input needed to change. Save the new 
model as model02 and run the summary() command on model02 to view the 
results.

model02 = sm.OLS(y, X).fit()
model02.summary()

An excerpt from the output of the model02.summary() command is shown 
in Figure 11.3.

To verify this smaller model, we run similar code on the test data. Once again, 
the explanations are similar to those for the preceding example.

X_test = pd.DataFrame(sales_test[[’CC’, ’Days’]])
X_test = sm.add_constant(X_test)
model02_test = sm.OLS(y_test, X_test).fit()
model02_test.summary()

An excerpt of the output from the model02_test.summary() command is 
shown in Figure 11.4.
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11.5 hOW tO perFOrM MULtIpLe reGreSSION 
MODeLING USING r

Load the clothing_sales_training and clothing_sales_test data sets as sales_train 
and sales_test, respectively. Next, make sure the binary variables are factors in both 
data sets.

sales_train$CC <‐ as.factor(sales_train$CC)
sales_train$Web <‐ as.factor(sales_train$Web)
sales_test$CC <‐ as.factor(sales_test$CC)
sales_test$Web <‐ as.factor(sales_test$Web)

Now, run the full model for the training data set.

model01 <‐ lm(formula = Sales.per.Visit ~ Days + Web + 
CC, data = sales_train)

Notice the two pieces of input that are required: formula and data. The 
 formula takes the same Target ~ Predictors form we have seen before. 
The data = sales_train input specifies the data set that our variables come 
from. We save the results of the regression modeling under the name model01. 
To view a summary of the model results, run the summary() command on 
model01.

summary(model01)

An excerpt of the output generated by summary(model01) is shown in 
Figure 11.5.

To validate the model, change the data input to specify that the variables now 
come from the sales_test data set.

model01_test <‐ lm(formula = Sales.per.Visit ~ Days + 
Web + CC, data = sales_test)

To view the regression summary of this new model, run summary 
(model01_test). An excerpt of the output generated by this command is shown in 
Figure 11.6.

To remove variables from the model, remove their names from the series 
of predictor variables to the right of the tilde within the lm() command. 

Figure 11.5 Regression results from R for the training data set.



11.6 MODeL eVaLUatION FOr eStIMatION 157

The  commands to run the new models and generate the summary output 
are given below.

model02 <‐ lm(formula = Sales.per.Visit ~ Days + CC, 
data = sales_train)
summary(model02)
model02_test <‐ lm(formula = Sales.per.Visit ~ Days + 
CC, data = sales_test)
summary(model02_test)

Notice that excerpts of the output generated by summary(model02) and 
summary(model02_test) are shown in Figures 11.7 and 11.8, respectively.

11.6 MODeL eVaLUatION FOr eStIMatION

We can use the regression equation to make predictions (estimates) of sales per 
visit. For example, consider Customer 1 in the training set, who goes 333 days bet-
ween purchases and who does not have a store credit card (Credit Card  =  0). 
Plugging these values into the regression equation, we obtain:

 Sales per Visit� 73 62 0 1637 333 22 14 0 128 13. . ( ) . ( ) $ .  

Figure 11.6 Validating the regression results from R with the test data set.

Figure 11.7 Final regression results from R for the training data set.

Figure 11.8 Validating the final regression results from R with the test data set.
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That is, using the regression model, we would estimate the average sales per 
visit for this customer to be ˆ $ .y 128 13. However, the actual sales per visit for this 
customer is y = $184.23. So, the prediction error (residual) for this customer is:

 prediction error y ŷ . . $ .184 23 128 13 56 10 

So, this customer spends $56.10 more than expected, given his or her days 
between visits and credit card status.

The typical size of the prediction error is given by the statistic s, the standard 
error of the estimate.

 
s MSE

SSE

n p

y y

n p1 1

2ˆ

 

Here, s = $87.54, meaning that the size of the model’s typical prediction 
error is about $87.54, as can be seen in Figure 11.9. This large value is due to 
the fact that our data is excerpted from a much larger data set, including dozens 
more predictors, useful for making our model’s estimates more precise. Usually, 
however, s is a very important metric for measuring the efficacy of a regression 
model.

In its derivation, s squares the prediction errors, thereby possibly endowing 
outliers with undue influence in the magnitude of the statistic. Data scientists 
should therefore compare s with the Mean Absolute Error (MAE), given by

 
Mean Absolute Error

y y

n

ˆ

 

The MAE takes the distance between the actual and predicted values of y and 
finds the average of these distances. There is no squaring going on. As for any 
model evaluation statistics, we should do the following:

1. Develop the regression model using the training data set.

2. Calculate the MAE by passing the test data set through the model trained on 
the training data set.

For the training data set, we have MAE = $53.39.

Figure 11.9 The standard error of the estimate from Python.

estimation Model Metrics

When evaluating estimation models, always report both s and MAE.
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Finally, R2 is a well‐known regression metric. It is interpreted as the proportion 
of the variability in the response that is accounted for by the predictors in the model. 
For multiple regression models, analysts should use Radj

2 , which penalizes R2 for 
having too many unhelpful predictors in the model. Our regression model has 
Radj

2 0 064. , as seen in Figure 11.10. That is, 6.4% of the variability in Sales per 
Visit is accounted for by the predictors Days since Purchase and Credit Card. This 
small proportion is not surprising, since there are many other factors affecting how 
much customers spend.

11.6.1 how to perform estimation Model evaluation 
Using python

To use the regression model to predict customer sales per visit, we first need to 
specify the variable values for the first customer for the Python regression model. 
As the variables in the model are in the order Constant, CC, Days, this is the order 
in which we specify the values.

cust01 = np.column_stack((1, 0, 333))

The first input in the column_stack() command is 1, for the constant term in 
the model.

Once you have constructed the customer in question, run the predict() 
command on cust01. Since we are predicting the sales using the results stored in 
model02, we use model02.predict().

model02.predict(cust01)

To obtain the predicted values of all customers in the test data set, change the 
input of the predict() command to the test data predictor variable data frame, 
X_test.

ypred = model02.predict(X_test)

The result is a column of predictions, one for each record in the test data set. 
These values will allow us to calculate the MAE later in this section.

Figure 11.10 Radj
2  from Python for the final regression model.



160 Chapter 11 reGreSSION MODeLING

Python does not automatically supply the standard error of the estimate. 
However, it can be calculated using the square root of the scale parameter of the model.

np.sqrt(model02.scale)

To calculate the MAE, we need both the predicted and actual values of y. The 
actual values are the values of the target variable, renamed below as ytrue for 
clarity. The ypred values come from the code above.

ytrue = sales_train[[’Sales per Visit’]]
met.mean_absolute_error(y_true = ytrue, y_pred = ypred)

The final output from the code is about 53.39, the value of the MAE. The 
code, with this result, is shown in Figure 11.11.

To obtain the value of Radj
2 , examine the output from the summary() command 

demonstrated in the previous Python section, and shown in Figure 11.10.

11.6.2 how to perform estimation Model evaluation Using r

To use our model to predict the sales per visit of a particular customer, we build a 
data frame containing that customer’s information.

cust01 <‐ data.frame(CC = as.factor(0), Days = 333)

The command data.frame() will create a data frame using the input contents. 
The variables’ names must exactly match the names of the predictor variables in the 
model. Since the credit card variable were factors when we built the model, make 
sure they are factors when creating this new customer. Save this new customer data 
as cust01. Note that we did not include the target variable.

predict(object = model02, newdata = cust01)

When we run the predict() command using object = model02 and newdata = 
cust01, the output is the predicted number of sales per visit.

The standard error of the estimate is given as part of the output generated by 
the summary() command. Figure 11.12 shows an excerpt of the output generated 
by summary(model02). The important statistic s is called the “Residual standard 
error” in this output, and is reported for this model as 87.54 in Figure 11.12, along 
with the value of Radj

2 , called “Adjusted R‐squared.”
To calculate the MAE, we need the actual and predicted values for all records 

in the test data set using the training data model.

X_test <‐ data.frame(Days = sales_test$Days, CC = sales_
test$CC)
ypred <‐ predict(object = model02, newdata = X_test)

Figure 11.11 The MAE from Python.



11.7 StepWISe reGreSSION 161

ytrue <‐ sales_test$Sales.per.Visit
We also need to install and open the MLmetrics package.
install.packages("MLmetrics"); library(MLmetrics)
Once the package is open, you can calculate the MAE.
MAE(y_pred = ypred, y_true = ytrue)

The two inputs of the MAE() command are y_pred and y_true. Set y_pred = 
ypred, the values you obtained from the regression model; and set y_true = ytrue, 
the target variable from the training data set. The result of running this command is 
the MAE, the code and output for which are shown in Figure 11.13.

11.7 StepWISe reGreSSION

In this small example, we had only three predictors. But, most data science 
 projects use dozens if not hundreds of predictors. We therefore need a method 
to ease the selection of the best regression model. This method is called  stepwise 
regression. In stepwise regression, helpful predictors are entered into the model 
one at a time, starting with the most helpful predictor. Because of multicol-
linearity or other effects, when several helpful variables are entered, one of 
them may no longer be considered helpful any more, and should be dropped. 
For this reason, stepwise regression adds the most helpful predictors into the 
model one at a time and then checks to see if they all still belong. Finally, the 
stepwise algorithm can find no further helpful predictors and converges to a 
final model.

The application of stepwise regression (not shown) to the clothing_sales_
training and clothing_sales_test data sets converged on the final models displayed 
in Figures 11.3 and 11.4. It is important to understand that stepwise regression is 
not guaranteed to uncover the optimal model, as its search algorithm does not 
 perform all possible regressions. To guarantee the optimal model, you can use best 
subsets regression,2 though the software may limit the number of predictors to the 
best subsets algorithm.

2 See Data Mining and Predictive Analytics.

Figure 11.12 Standard error and Adjusted R‐squared from R.

Figure 11.13 The MAE from R.
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11.7.1 how to perform Stepwise regression Using r

To run stepwise regression, you first need to install and open the MASS package.

install.packages("MASS"); library(MASS)

Run the regression model, including all variables under consideration. Save 
the model under a name. For this example, we will use model01, which we know 
to have a variable, Web, that does not belong in the model.

Once you have saved the model, it is time for stepwise regression.

model01_step <‐ stepAIC(object = model01)

The stepAIC() command will run stepwise regression on the object speci-
fied. For our example, we want to run stepwise regression on model01. We save the 
result under the name model01_step.

Even saving the stepAIC() output under the name will show some output, 
given in Figure 11.14. The output shows the steps taken to converge on a model. 
Moving from the top half to the bottom half of the output shows that the stepwise 
algorithm took one step. Namely, it removed the variable Web.

If you run the name model01_step by itself, it will give you the regression 
coefficients of the final model. If you run summary(model01_step), it will give the 
full summary of the final model, which will match the output given by 
summary(model02), since the final model converged to by stepwise is the regres-
sion model we saved as model02.

11.8 BaSeLINe MODeLS FOr reGreSSION

The usual baseline model to compare your regression model against is the simple 
y y  model. If any of the predictors are helpful at all in estimating the response, 
then the model will beat the y y  model. Nevertheless, we should still formally 

Figure 11.14 The output from stepwise regression in R.



verify that our regression model (or any estimation model) is outperforming the 
y y  model, as follows:3

We apply the Baseline Model Comparison to our final regression model 
(Figure 11.3) as follows:

1. We calculate the errors for the baseline model using the y $ .112 57 provided 
by the test data set.

2. We compute MAE
Baseline

 = $55.53.

3. The MAE
Regression

 we obtained by passing the test data set through the model 
developed by the training data set is $53.39.

4. Since $53.39 = MAE
Regression

 < MAE
Baseline

 = $55.53, our regression model did 
beat the baseline model.

reFereNCeS

The MASS package shares the same core publication that we have seen for the nnet package: 
W. N. Venables and B. D. Ripley, Modern Applied Statistics with S, Fourth Edition, 
Springer, New York, 2002.

The MLmetrics package, which allowed us to obtain the MAE in R, can be further explored 
here: Yachen Yan, MLmetrics: Machine Learning Evaluation Metrics. R package version 
1.1.1. 2016. https://CRAN.R‐project.org/package=MLmetrics

3 Some data scientists may prefer to compare MSE
Regression

 with MSE
Baseline

.
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Baseline Model Comparison for estimation Models

1. Calculate the errors made by the baseline model. These take the form Error y y .

2. Compute the MAE for the baseline model, as follows:

MAE
y y

nBaseline

3. Compare MAE
Baseline

 to the MAE for the estimation model.

MAE
y y

nRegression

ˆ

4. The estimation model outperforms the baseline model when

MAE MAERegression Baseline
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eXerCISeS

CLarIFYING the CONCeptS

 1. How does multiple regression approximate the relationship between a set of two 
 predictors and a single numeric target?

 2. Explain how we are bypassing the classical statistical inference approach to regression.

 3. Explain why it is not necessary to standardize the predictors when there is only one 
continuous predictor and the others are flags?

 4. True or false: Our use of p‐values as guides for determining inclusion in the model 
means that we are using statistical inference. If false, explain why not.

 5. For the training set results in Figure 11.3, suppose two customers both had a store credit 
card, but Customer A had 100 more days between purchases than Customer B. Describe 
the difference in the two customers’ estimated sales per visit.

 6. For the training set results in Figure 11.3, suppose two customers both had the same days 
between purchases, but Customer C had a store credit card and Customer D did not. 
Describe the difference in the two customers’ estimated sales per visit.

 7. Calculate the prediction error for Customer 2 in the training set.

 8. Calculate s for the test data set.

 9. Calculate the MAE for the test data set.

10. True or false: Stepwise regression always finds the optimal set of predictors.

WOrKING WIth the Data
For the following exercises, work with the clothing_sales_training and clothing_sales_test 
data sets. Use either Python or R to solve each problem.

11. Use the training set to run a regression model to predict Sales per Visit using Days 
 between purchases, Credit card, and Web account. Identify which predictor variable 
should not be in the model.

12. Validate the model from the previous exercise, by running the regression using the test 
data set.

13. Suppose someone said, “There is no evidence for a relationship between Sales per Visit 
and whether the customer has a store credit card.” How would you respond?

14. Suppose someone said, “There is no evidence for a relationship between Sales per Visit 
and whether the customer has a store web account.” How would you respond?

15. Run a regression model to predict Sales per Visit, using only the variables found to be 
significant in the previous regression model.

16. Validate the model from the previous exercise.

17. Use the regression equation to complete this sentence: “The estimated Sales per Visit 
equals….”
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18. Calculate and interpret the standard error of the estimate for the regression.

19. Find and interpret Radj
2 .

20. Calculate and interpret the MAE for the regression model. Compare it to the standard 
error.

21. Perform stepwise regression on the model in Exercise 11. Confirm that it converges to 
the model in Exercise 13.

22. Calculate MAE
Baseline

.

23. Compute MAE
Regression

.

24. Determine whether the regression model outperformed its baseline model.

haNDS‐ON aNaLYSIS
For the following exercises, work with the adult data set. Use either Python or R to solve 
each problem.

25. Partition the data set into a training set and a test set, each containing about half of the 
records.

26. Run a regression model to predict Hours per Week using Age and Education Num. 
Obtain a summary of the model. Are there any predictor variables that should not be in 
the model?

27. Validate the model from the previous exercise.

28. Use the regression equation to complete this sentence: “The estimated Hours per Week 
equals….”

29. Interpret the coefficient for Age.

30. Interpret the coefficient for Education Num.

31. Find and interpret the value of s.

32. Find and interpret Radj
2 .

33. Find MAE
Baseline

 and MAE
Regression

, and determine whether the regression model 
 outperformed its baseline model.

For the following exercises, work with the bank_reg_training and the bank_reg_test data 
sets. Use either Python or R to solve each problem.

34. Use the training set to run a regression predicting Credit Score, based on Debt‐to‐Income 
Ratio and Request Amount. Obtain a summary of the model. Do both predictors belong 
in the model?

35. Validate the model from the previous exercise.

36. Use the regression equation to complete this sentence: “The estimated Credit Score 
equals….”

37. Interpret the coefficient for Debt‐to‐Income Ratio.

38. Interpret the coefficient for Request Amount.
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39. Find and interpret the value of s.

40. Find and interpret Radj
2 . Comment.

41. Find MAE
Baseline

 and MAE
Regression

, and determine whether the regression model 
 outperformed its baseline model.

42. Construct a regression model for predicting Interest, using Request Amount. Obtain a 
summary of the model.

43. Explain what is unusual with your results from the previous exercise.

44. Construct a scatterplot of Interest against Request Amount. Describe the relationship 
between the variables. Explain how this relationship explains the unusual results from 
your regression model.

For the following exercises, work with the Framingham_training and the Framingham_test 
data sets. Reexpress Sex so that it is a flag variable with 0 for males and 1 for females. Use 
either Python or R to solve each problem.

45. Use the training set to run a regression predicting Age, based on Sex and Education. 
Obtain a summary of the model. Do both predictors belong in the model?

46. Validate the model from the previous exercise.

47. Use the regression equation to complete this sentence: “The estimated Age equals….”

48. Interpret the coefficient for Sex.

49. Interpret the coefficient for Education.

50. Find and interpret the value of s.

51. Find and interpret Radj
2 .

52. Find MAE
Baseline

 and MAE
Regression

, and determine whether the regression model 
 outperformed its baseline model.

For the following exercises, work with the white_wine_training and the white_wine_test data 
sets. Use either Python or R to solve each problem.

53. Use the training set to run a regression predicting Quality, based on Alcohol and Sugar. 
Obtain a summary of the model. Do both predictors belong in the model?

54. Validate the model from the previous exercise.

55. Use the regression equation to complete this sentence: “The estimated Quality equals….”

56. Interpret the coefficient for Alcohol.

57. Interpret the coefficient for Sugar.

58. Find and interpret the value of s.

59. Find and interpret Radj
2 .

60. Find MAE
Baseline

 and MAE
Regression

, and determine whether the regression model outper-
formed its baseline model.
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C h a p t e r  12

12.1 the NeeD FOr DIMeNSION reDUCtION

High dimensionality in data science refers to when there are a large number of 
 predictors in the data set. For example, 100 predictors describe a 100‐dimensional 
space. So, why do we need dimension reduction in data science?

1. Multicollinearity. Typically, large databases have many predictors. It is 
unlikely that all of these predictors are uncorrelated. Multicollinearity, which 
occurs when there is substantial correlation among the predictors, can lead to 
unstable regression models.

2. Double‐Counting. Inclusion of predictors which are highly correlated tends 
to overemphasize a particular aspect of the model, that is, essentially double‐
counting this aspect. For example, suppose we are trying to estimate the age 
of youngsters using math knowledge, height, and weight. Since height and 
weight are correlated, the model is essentially double‐counting the physical 
component of the youngster, as compared to the intellectual component.

3. Curse of Dimensionality. As dimensionality increases, the volume of the pre-
dictor space grows exponentially, that is, faster than the number of predictors 
itself. Thus, even for huge sample sizes, the high‐dimension space is sparse. For 
example, the empirical rule states that about 68% of normally distributed data 
lies within one standard deviation of the mean. But, this is for one dimension. 
For 10 dimensions, only 2% of the data lies within the analogous hypersphere.

4. Violates Parsimony. The use of too many predictors also violates the 
 principle of parsimony, the scientific principle one sees in many branches of 
science, that things often behave in a quite economical way. In data science, 
simplicity (parsimony) should be considered when comparing models, keep-
ing the number of predictors to such a size that would be easily interpreted.

5. Overfitting. Keeping too many predictors in the model tends to lead to over-
fitting, in which the generality of the findings is hindered because new data 
do not behave the same as the training data for all the many predictors.

DIMENSION REDUCTION
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6. Miss the Bigger Picture. Further, analysts should try to keep an eye on the big 
picture, and analysis solely at the variable level might miss the fundamentals 
underlying relationships among the predictors. Instead, several predictors 
might fall naturally into a single group (a factor or component), which 
addresses a single aspect of the data. For example, the variables savings 
account balance, checking account balance, home equity, stock portfolio value, 
and 401 k balance might all fall together under the single component, assets.

In summary, dimension reduction methods use the correlation structure 
among the predictor variables to accomplish the following:

1. Reduce the number of predictor items.

2. Help ensure that these predictors items are uncorrelated.

3. Provide a framework for interpretability of the results.

12.2 MULtICOLLINearItY

Data scientists need to guard against multicollinearity, a condition where some of 
the predictor variables are correlated with each other. Multicollinearity leads to 
instability in the solution space, leading, for example, to regression coefficients you 
cannot trust, because the coefficient variability is so large. Multicollinearity is an 
occupational hazard for data scientists, because many of the data sets have dozens 
if not hundreds of predictors, some of which are often correlated.

Consider Figures 12.1 and 12.2. Figure 12.1 illustrates a situation where the 
predictors x

1
 and x

2
 are not correlated with each other; that is, they are orthogonal, 

or independent. In such a case, the predictors form a solid basis, upon which the 
response surface y may rest sturdily, thereby providing stable coefficient estimates 
b

1
 and b

2
 each with small variability. On the other hand, Figure 12.2 illustrates a 

multicollinear situation where the predictors x
1
 and x

2
 are correlated with each 

x1

x2

y

Figure 12.1 When the predictors x
1
 and x

2
 are uncorrelated, the response surface y rests 

on a solid basis, providing stable coefficient estimates.
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other, so that as one of them increases, so does the other. In this case, the predictors 
no longer form a solid basis upon which the response surface may firmly rest. 
Instead, when the predictors are correlated, the response surface is unstable, 
providing highly variable coefficient estimates b

1
 and b

2
.

The high variability associated with the estimates means that different sam-
ples may produce coefficient estimates with widely different values. For example, 
one sample may produce a positive coefficient estimate for x

1
, while a second 

sample may produce a negative coefficient estimate. This situation is unacceptable 
when the analytic task calls for an explanation of the relationship between the 
response and the predictors, individually.

Let us look at a toy example to help us understand the problem. Consider the 
tiny population in Table 12.1.

Clearly, x
1
 and x

2
 are correlated, with r = 0.938, p‐value about 0.

Now, split into two samples, as shown in Tables 12.2 and 12.3.
The regression equation for sample 1 is:

ˆ . . .y x x0 542 2 552 1 20 206

The regression equation for sample 2 is:

ˆ . . .y x x1 08 0 547 1 2+1 759

Note that the coefficient for x
2
 is negative in sample 1 and positive in sample 2. 

This represents unstable behavior in the regression coefficients, caused by the correla-
tion between the predictors. Essentially, we cannot trust the values, or even the signs, 
of the regression coefficients. So, interpreting the regression coefficients for our clients 

x1

x2

y

Figure 12.2 Multicollinearity: when the predictors are correlated, the response surface is 
unstable, resulting in dubious and highly variable coefficient estimates.
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is probably not a good idea. The values and signs might change from sample to sample, 
so that interpreting the coefficients from just one sample may cost your client big 
bucks. This is why we need methods for dealing with this multicollinearity.

We shall use a subset of the Cereals data set, where we estimate the nutrition 
rating of breakfast cereals, using fiber, potassium, and sugar. Our regression 
equation is as follows:

rating b b fiber b potassium b sugars�
0 1 2 3

taBLe 12.1 tiny population for our toy example

Population

x1 x2 Target, y

1 1 2.0693
1 2 2.6392
2 2 3.7501
2 3 5.6432
3 3 5.8925
3 4 6.4308
4 4 8.3950
4 5 8.4947
5 5 11.3236
5 5 10.1562

taBLe 12.2 Sample 1 from our tiny population

Sample 1

x1 x2 Target, y

1 1 2.0693
2 2 3.7501
3 4 6.4308
4 5 8.4947
5 5 11.3236

taBLe 12.3 Sample 2 from our tiny population

Sample 2

x1 x2 Target, y

1 2 2.6392
2 3 5.6432
3 3 5.8925
4 4 8.3950
5 5 10.1562



12.3 IDeNtIFYING MULtICOLLINearItY USING VarIaNCe INFLatION FaCtOrS 171

To be aware of possible multicollinearity, the analyst should investigate the 
correlation structure among the predictor variables. Figure 12.3 provides the matrix 
plot of the predictors. Clearly, potassium and fiber are positively correlated. In fact, 
their correlation coefficient is r = 0.912 (not shown). This strong correlation will 
inflate the variability of the regression coefficients, making our regression model 
unstable.

12.3 IDeNtIFYING MULtICOLLINearItY USING 
VarIaNCe INFLatION FaCtOrS

However, suppose we did not check for the presence of correlation among our 
predictors, and went ahead and performed the regression anyway. Is there some 
way that the regression results can warn us of the presence of multicollinearity? 
The answer is yes: We may ask for the variance inflation factors (VIFs) to be 
reported.

The VIF for the ith predictor is given by:

VIF
Ri

i
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Figure 12.3 Matrix plot of the predictors from Python. Fiber and potassium are 
correlated.
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where Ri
2 represents the R2 value obtained by regressing x

i
 on the other predictor 

variables. Note that Ri
2 will be large when x

i
 is highly correlated with the other pre-

dictors, thus making VIF
i
 large.

A rough rule of thumb for interpreting the value of the VIF is to consider 
VIF

i
 ≥ 5 to be an indicator of moderate multicollinearity, and to consider VIF

i
 ≥ 10 to 

be an indicator of severe multicollinearity. A VIF of five corresponds to Ri
2 = 0.80, 

while VIF
i
 = 10 corresponds to Ri

2 = 0.80.
For the regression of nutritional rating on fiber, potassium, and sugars, we 

have the output provided in Figure 12.4. The VIF for fiber is 6.85 and the VIF for 
potassium is 6.69, with both values indicating moderate‐to‐strong multicollinearity.

12.3.1 how to Identify Multicollinearity Using python

First, we load the required packages and read in the cereals data set under the name 
cereals.

import pandas as pd
import statsmodels.api as sm
import statsmodels.stats.outliers_influence as inf
cereals = pd.read_csv("C:/.../cereals.csv")

Once the data set is in Python, pull out the three predictor variables and put 
them in their own data frame. Call the data frame X.

X = pd.DataFrame(cereals[[’Sugars’, ’Fiber’, ’Potass’]])

Now that we have the predictor variables all together, use the scatter_
matrix() command with X as the input to create a scatterplot matrix.

pd.plotting.scatter_matrix(X)

The result of the scatter_matrix() command is shown in Figure 12.3 above. 
Notice that the command creates both scatterplots and histograms.

To obtain the VIF values, we need to do a little data cleaning first. Use the 
dropna() command on the X data frame to remove any records with missing values.

X = X.dropna()

Then, make sure you add the constant term in the X data frame.

X = sm.add_constant(X)

Figure 12.4 Regression results, with variance inflation factors from R indicating a 
multicollinearity problem.
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Finally, run the variance_inflation_factor() command as given below to 
obtain the VIF values for all four columns in the X data frame.

[inf.variance_inflation_factor(X.values, i) for i in 
range(X.shape[1])]

The output will include a VIF value for the constant term we added; ignore 
it. The VIF values of interest are for the three predictor variables, which are the 
second, third, and fourth numbers output by the variance_inflation_factor() 
command.

12.3.2 how to Identify Multicollinearity in r

To build a scatterplot matrix in R, we first need to identify which columns in the 
data set hold our predictor variables.

names(cereals)

You can see that the Sugars, Potass, and Fiber variables are in columns 10, 8, 
and 11, respectively. These are the columns you will put in the scatterplot matrix in 
Figure 12.5.

pairs(x = cereals[, c(10, 8, 11)], pch = 16)

The command for the scatterplot matrix is pairs(). The required input is x, 
which asks for the columns to include in the scatterplot matrix. We specify the col-
umns using cereals[ , c(10, 8, 11)]. An optional input pch = 16 will change the 
scatterplot points from open circles to closed circles.

To calculate VIFs, we first need to install and open the car package.

install.packages("car"); library(car)

Once the car package is open, we build the model whose coefficients we 
want to examine for multicollinearity and save the model output.

model03 <‐ lm(formula = Rating ~ Fiber + Potass + 
Sugars, data = cereals)

Finally, we use the vif() command on the model.

vif(model03)

The sole required input to the vif() command is the name we saved our model 
as. The output, shown in Figure 12.4, is the VIF for each predictor variable.
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Figure 12.5 Scatterplot matrix of the predictors in R.
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12.4 prINCIpaL COMpONeNtS aNaLYSIS

So, now that we have identified the multicollinearity among our predictors, what do 
we do now?

One solution is to apply principal components analysis. Principal compo-
nents analysis (PCA) seeks to account for the correlation structure of a set of pre-
dictor variables, using a smaller set of uncorrelated linear combinations of these 
variables, called components. The total variability produced by the complete set of 
m predictors can often be mostly accounted for by a smaller set of k < m compo-
nents. This means that there is almost as much information in the k components as 
there is in the original m variables. In addition, the k components are uncorrelated 
with each other, unlike the original correlated predictors. If desired, the analyst can 
then replace the original m variables with the k < m components, so that the working 
data set now consists of n records on k components, rather than n records on m pre-
dictors. This is dimension reduction!

The analyst should note that PCA acts solely on the predictor variables and 
ignores the target variable. Also, the predictors should be either standardized or 
normalized. Mathematically, the principal components are uncorrelated linear com-
binations Y

i
 of predictors, with the following characteristics:

 • The first principal component is usually the most important. It accounts for 
greater variability among the predictors than any other component.

 • The second principal component accounts for the second‐most variability 
and is uncorrelated with the first.

 • The third principal component accounts for the third‐most variability and is 
uncorrelated with the first two, and so on.

12.5 aN appLICatION OF prINCIpaL COMpONeNtS 
aNaLYSIS

To illustrate the application of PCA, we turn to the clothing_store_PCA_training 
and clothing_store_PCA_test data sets. We are interested in estimating the response 
Sales per Visit using the predictors Purchase Visits, Days on File, Days between 
Purchases, Different Items Purchased, and Days since Purchase. However, 
Figure  12.6 shows that there is substantial correlation among the predictors. In 
addition, Figure 12.7, showing the regression of Sales per Visit versus the predic-
tors, indicates some moderately inflated VIF metrics.

We therefore perform PCA on these predictors, using varimax rotation on the 
training data set.

Rotating the PCA solution helps in the interpretability of the components. 
Examining the rotated components in Figure 12.8, we find that, if we extract only 
the first principal component, we will account for only 31.3% of the variance 
among the predictors. If we extract two components, we account for about 52.2% 
(see Cumulative Var in Figure 12.8), and so on. So, the question arises, how many 
components should we extract?
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12.6 hOW MaNY COMpONeNtS ShOULD 
We eXtraCt?

Recall that one of the motivations for PCA was to reduce the dimensionality. The 
question arises, “How do we determine how many components to extract?” For 
example, should we retain only the first two principal components, since they 
explain over half (52% Cumulative Var) of the total variability? Or should we retain 
all five components, since they explain 100% of the variability? Well, clearly, 
retaining all five components does not help us to reduce the dimensionality. As 
usual, the answer lies somewhere between these two extremes.

12.6.1 the eigenvalue Criterion

In Figure 12.8, the eigenvalues are labeled as “SS loadings.” An eigenvalue of 1.0 
would mean that the component would explain about “one predictor’s worth” of the 
total variability. The rationale for using the eigenvalue criterion is that each 

Figure 12.6 Correlation matrix from R shows substantial correlation among the 
predictors.

Figure 12.7 Regression from R shows some tending toward moderately large VIFs.

Figure 12.8 Excerpt from PCA results from R.
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component should explain at least one predictor’s worth of the variability, and there-
fore, the eigenvalue criterion states that only components with eigenvalues greater 
than one should be retained. Note that, if there are fewer than 20 predictors, the 
eigenvalue criterion tends to recommend extracting too few components, while, if 
there are more than 50 variables, this criterion may recommend extracting too many.

From Figure 12.9, we see that four of the rotated components have eigen-
values greater than 1, and are therefore retained. Component 5 has a rotated eigen-
value much below 1.0, so we do not include Component 5. The eigenvalue criterion 
therefore suggests that we extract k = 4 principal components.

12.6.2 the proportion of Variance explained Criterion

For the proportion of variance explained criterion, the client or analyst first spec-
ifies what proportion of the total variability that he or she would like the principal 
components to account for. Then, the analyst simply selects the components one by 
one until the desired proportion of variability explained is attained. For example, 
suppose we would like our components to explain about 70% of the variability in 
the predictors. Then, from Figure 12.8, we would choose components 1–3, which 
together explain 72.9% of the variability. On the other hand, if we wanted our com-
ponents to explain 90% of the variability, then we would need to include compo-
nent 4 as well, which together with the first three components would explain 93% 
of the variability. Without further input from the client, we might just say that the 
proportion of variance explained criterion suggests we go with either k = 3 or k = 4 
components.

Since the eigenvalue criterion suggested k = 4 components, and the proportion 
of variance explained criterion is fine with either k = 3 or k = 4 components, we 
therefore by consensus settle on extracting k = 4 components.
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Figure 12.9 Plot of eigenvalues from R, with dotted line at eigenvalue of 1.
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12.7 perFOrMING pCa WIth k = 4

Figure 12.10 shows the resulting (i) unrotated and (ii) rotated component matrices 
for extracting three components. Let us examine the rotated matrix first in 
Figure 12.10b. Note that the component weights less than 0.5 have been suppressed, 
to enhance interpretability. The first principal component (RC1 for Rotated 
Component 1) is a combination of Different Items Purchased and Purchase Visits, 
which are positively correlated with each other, since their component weights have 
the same sign. Components can contain combinations of predictors that are either 
positively or negatively correlated with each other. Had exactly one of the compo-
nent weights been negative, then that would have been an indication that Different 
Items Purchased and Purchase Visits were negatively correlated. The remaining 
principal components are “singletons,” containing only a single predictor each.

Now, suppose we had not rotated the component matrix, ending up with the 
unrotated component matrix in Figure  12.10a. Note that the interpretations of 
the principal components are less clear. Component 1 is huge, containing four of 
the five predictors, with both positive and negative correlations mixed in. Much 
cleaner is the interpretation of the rotated component matrix.

12.8 VaLIDatION OF the prINCIpaL COMpONeNtS

As with any other data science method, the results of the PCA should be validated, 
using the test data set. Figure 12.11 shows the proportions of variance explained by 
all five components, with percentages not much different from the training set 

Figure 12.11 Proportions of variance explained from R for the test data set.

figure 12.10 (a) component weights with no rotation, from r. (b) component weights with 
varimax rotation, from r.
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results in Figure  12.8. The four rotated components for the test set, shown in 
Figure 12.12, are similar to those for the training set from Figure 12.10b.

So, did PCA alleviate our multicollinearity problem? We can check by 
examining

1. The correlations among the four components.

2. The predictor VIF for the regression of the response on the components.

The correlation matrix for the principal components is shown in Figure 12.13. 
All correlations are zero, meaning that the components are uncorrelated. Finally, 
we obtain the VIFs for the regression of Sales per Visit on the four extracted 
principal components substituted for the original predictors. These VIFs results 
shown in Figure 12.14 indicate that all VIFs equal 1, the minimum.

12.9 hOW tO perFOrM prINCIpaL COMpONeNtS 
aNaLYSIS USING pYthON

Load the required packages.

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

Figure 12.12 Component weights from R for the test data set.

Figure 12.13 R output showing the principal components are uncorrelated.

Figure 12.14 R output showing that regression using the principal components eliminates 
multicollinearity.
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Read in the two data sets, clothing_store_PCA_training and clothing_store_
PCA_test, as clothes_train and clothes_test.

clothes_train = pd.read_csv("C:/.../clothing_store_PCA_training")
clothes_test = pd.read_csv("C:/.../clothing_store_PCA_test")

Separate the predictor variables from the rest of the training data set using the 
drop() command. Note that we drop the target variable Sales per Visit, so we are 
left with only the predictor variables. This approach is best suited for when the 
target variable and predictor variables of interest are the only variables in your data. 
Save the variables as X.

X = clothes_train.drop(’Sales per Visit’, 1)

Obtain the correlation matrix of the X variables by using the corr() command.

X.corr()

The output from the corr() command is shown in Figure 12.15.
Now, we will run PCA with five components. First we will specify the number 

of components using n_components in the PCA() command, then fit the PCA to 
the data using fit_transform() with X as the input.

pca01 = PCA(n_components=5)
principComp = pca01.fit_transform(X)

Once PCA is run, our next task is to look at the amount of variability explained 
by each component and the corresponding cumulative variability explained. Use 
the pca01 object and explained_variance_ratio_ to obtain the variability explained 
by each component.

pca01.explained_variance_ratio_

Figure 12.15 Correlation matrix from Python.
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Obtain the cumulative variability explained by running the cumsum() 
command on pca01.explained_variance_ratio_.

np.cumsum(pca01.explained_variance_ratio_)

Our results in this section are for the original, unrotated components. As of 
this writing, Python’s sklearn package does not have an “out of the box” command 
to perform varimax rotation on the components.

12.10 hOW tO perFOrM prINCIpaL COMpONeNtS 
aNaLYSIS USING r

Import the clothing_store_PCA_training and clothing_store_PCA_test data sets as 
clothes_train and clothes_test, respectively. To simplify code that comes later, we 
will separate the training and test data into X and y variables.

y <‐ clothes_train$Sales.per.Visit
X <‐ clothes_train[, c(1:5)]
X_test <‐ clothes_test[, c(1:5)]

Remember to standardize the predictor variables.

X_z <‐ as.data.frame(scale(X))
colnames(X_z) <‐ c("Days.since.Purchase.Z", "Purchase.
Visits.Z", "Days.on.File.Z",
     "Days.between.Purchases.Z", "Diff.Items.Purchased.Z")

To obtain the correlation matrix, we use the cor() command.

round(cor(X_z), 3)

The cor() command, with the predictor variables X_z as input, is placed 
inside the round() command. The second input of the round() command is the 
number of significant digits the answers will be rounded to. In our case, we have 
specified three significant digits. The output from the round() command is shown 
in Figure 12.6.

To obtain the VIF values, we need to run the regression model first, then use 
the vif() command from the car package as detailed in the previous R section.

model01 <‐ lm(formula = y ~ Days.since.Purchase.Z + 
Purchase.Visits.Z + Days.on.File.Z +
       Days.between.Purchases.Z + Diff.Items.Purchased.Z, 

data = X_z)
vif(model01)

The output of the vif() command is shown in Figure 12.7.
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To run PCA, we must first install and open the psych package.

install.packages("psych"); library(psych)

Once the package is open, we use the principal() command to perform PCA.

pca01 <‐ principal(r = X_z, rotate = "varimax", nfactors = 5)

We are using the principal() command with three input values. The input r = 
X_z specifies the variables we want to analyze. The rotate = “varimax” input tells 
R to perform varimax rotation on the components before presenting the results. 
Finally, the nfactors = 5 input states that we want five components. We save the 
PCA output as pca01.

We are interested in the loadings of the pca01 results.

print(pca01$loadings, cutoff = 0.49)

We use cutoff = 0.49 to suppress small PCA weights. The output generated 
by the code above is shown in Figure 12.8.

To create a plot of the eigenvalues, we need the eigenvalues of the rotated 
components. These are located under “SS Loadings” in Figure 12.8. Once you save 
these values as their own vector, plot them using the plot() command.

ss.load <‐ c(1.566, 1.045, 1.035, 1.006, 0.348)
plot(ss.load, type = "b", main = "Plot of Eigenvalues", 
ylab = "Value",
        xlab = "Component"); abline(h = 1, lty =2)

The input type = “b” plots the eigenvalues using both points and connecting 
lines. The main, xlab, and ylab input customize the title and axes labels. The 
abline() command adds a line to the plot. The input value h = 1 adds the line with 
horizontal location 1 and the input lty = 2 specifies a dashed line. The result is 
shown in Figure 12.9.

To compare the results of no rotation versus varimax rotation, run the 
principal() command using rotate = “none” for no rotation and rotate = “varimax” 
for the varimax rotation.

pca02_norot <‐ principal(r = X, rotate = "none", 
nfactors = 4)
print(pca02_norot$loadings, cutoff = 0.5)
pca02_rot <‐ principal(r = X, rotate = "varimax", 
nfactors = 4)
print(pca02_rot$loadings, cutoff = 0.5)

An excerpt from the print() output of pca02_norot$loadings is shown in 
Figure 12.10a, while an excerpt from the print() output of pca02_rot$loadings is 
shown in Figure 12.10b. Note that both commands use cutoff = 0.5 to suppress 
weights below 0.5.
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To validate the PCA results, run the algorithm on the test data. First, stan-
dardize the data.

X_test_z <‐ scale(X_test)

Then, confirm that four components are recommended.

pca02_test <‐ principal(r = X_test_z, rotate = 
"varimax", nfactors = 5)
pca02_test$loadings

An excerpt of the output is shown in Figure 12.11. After confirming that four 
components are recommended, examine the component weights.

pca02_test <‐ principal(r = X_test_z, rotate = 
"varimax", nfactors = 4)
print(pca02_test$loadings, cutoff = 0.5)

An excerpt of the output is shown in Figure 12.12.
To obtain the correlation of the components in the training data set, run the 

round(cor()) command on the scores from pca02_rot.

round(cor(pca02_rot$scores),2)

In this case, we round to two significant digits. The result is shown in Figure 12.13.
To regress the target variable on the components, you may want to save each 

component as its own variable. This is shown below.

PC1 <‐ pca02_rot$scores[,1]; PC2 <‐ pca02_rot$scores[,2]
PC3 <‐ pca02_rot$scores[,3]; PC4 <‐ pca02_rot$scores[,4]

Now you can run the regression model and obtain the VIFs. The code is 
shown below.

model.pca <‐ lm(y ~ PC1 + PC2 + PC3 + PC4); vif(model.pca)

The output from the vif() command is shown in Figure 12.14.

12.11 WheN IS MULtICOLLINearItY NOt 
a prOBLeM?

Now, depending on the task confronting the analyst, multicollinearity may not in 
fact present a fatal defect. Weiss1 notes that multicollinearity “does not adversely 
affect the ability of the sample regression equation to predict the response variable.” 
He adds that multicollinearity does not significantly affect point estimates of the 
target variable, confidence intervals for the mean response value, or prediction 

1 Weiss, Introductory Statistics, Ninth Edition, Pearson, London, 2010.
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intervals for a randomly selected response value. However, the data scientist must 
therefore strictly limit the use of a multicollinear model to estimation and predic-
tion of the target variable. Interpretation of the model would not be appropriate, 
since the individual coefficients may not make sense, in the presence of multicol-
linearity. To summarize, models not accounting for multicollinearity may be used 
for estimation, but not for description or interpretation.

reFereNCeS

The name of the car package sands for Companion to Applied Regression, and the details 
can be found here: John Fox and Sanford Weisberg, An {R} Companion to Applied 
Regression, Second Edition, Sage, Thousand Oaks, CA, 2011.

The psych package, which let us to PCA with varimax rotation, is documented here: W. 
Revelle, Psych: Procedures for Personality and Psychological Research, Northwestern 
University, Evanston, IL, 2018.

eXerCISeS

CLarIFYING the CONCeptS

1. What do we mean by high dimensionality in data science?

2. Why do we need dimension reduction methods?

3. What does principal components replace the original set of m predictors with?

4. Which principal component accounts for the most variability?

5. Which of the other principal components is correlated with the first principal component?

6. Why do we use rotation?

7. Explain the eigenvalue criterion?

8. What is the proportion of variance explained criterion?

9. True or false: It is not necessary to perform validation of the principal components.

10. When we use the principal components as predictors in a regression model, what value 
do the VIFs take? What does this indicate?

WOrKING WIth the Data

For the following exercises, work with the clothing_store_PCA_training and clothing_
store_PCA_test data sets. Use either Python or R to solve each problem.

11. Standardize or normalize the predictors.

12. Construct the correlation matrix for the predictor variables Purchase Visits, Days on 
File, Days between Purchases, Different Items Purchased, and Days since Purchase. 
Which variables are highly correlated?



eXerCISeS 185

13. Calculate the VIFs for each of the predictor variables. Which predictor variable VIFs 
indicate the multicollinearity is a problem?

14. Run PCA using varimax rotation and five components. What percent of the variability is 
explained by one component? By two components? By all five components?

15. Make a plot of the eigenvalues. Using the eigenvalue criterion, how many components 
would you retain?

16. Say we want to explain at least 80% of the variability. How many components would 
you retain?

17. Run PCA using varimax rotation and four components. What percent of the variability 
do the four components explain?

18. What variable or variables are contained in each of the components?

19. Use the four components as the predictor variables in a regression model to estimate 
Sales per Visit. What are the regression coefficients of the four components?

20. What are the VIFs of the four components in the regression model?

haNDS‐ON aNaLYSIS

For the following exercises, work with the cereals data set. Use either Python or R to solve 
each problem.

21. Standardize or normalize the predictors Sugars, Fiber, and Potass.

22. Construct the correlation matrix for Sugars, Fiber, and Potass. Which variables are 
highly correlated?

23. Build a regression model to estimate Rating based on Sugars, Fiber, and Potass. Obtain 
the VIFs from the model. Which VIFs indicate that multicollinearity is a problem?

24. Run PCA using varimax rotation and three components. What percent of the variability 
is explained by one component? By two components? By all three components?

25. Make a plot of the eigenvalues of the three components. Using the eigenvalue criterion, 
how many components would you retain?

26. Say we want to explain at least 70% of the variability. How many components would 
you retain?

27. Run PCA using varimax rotation and two components. What percent of the variability 
do the two components explain?

28. What variable or variables are contained in Component 1? What variable or variables are 
contained in Component 2?

29. Use the two components as the predictor variables in a regression model to estimate 
Rating. What are the regression coefficients of the two components?

30. What are the VIFs of the two components in the regression model?

For the following exercises, work with the red_wine_PCA_training and red_wine_PCA_test 
data sets. Use either Python or R to solve each problem. The target variable is the wine 
quality. The predictors are alcohol, residual sugar, pH, density, and fixed acidity.
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31. Standardize or normalize the predictors.

32. Construct the correlation matrix for the predictors. Between which predictors do you 
find the highest correlations?

33. Build a regression model to estimate quality based on the predictors. Obtain the VIFs 
from the model. Which VIFs indicate that multicollinearity is a problem? Compare the 
variables with high VIF to the correlated variables from the previous exercise.

34. Perform PCA using varimax rotation. Show the rotated proportions of variance explained 
for extracting up to five components. What percent of the variability is explained by one 
component? By two components? By three components? By four components? By all 
five components?

35. Say we want to explain at least 90% of the variability. How many components does the 
proportion of variance explained criterion suggest we extract?

36. Make a plot of the eigenvalues of the five components. According to the eigenvalue cri-
terion, how many components should we extract?

37. Combine the recommendations from the two criteria to reach a consensus as to how 
many components we should extract.

38. Profile each of your components, stating which variables are included, and noting their 
within‐component correlation (positive or negative). For simplicity, consider compo-
nents weights greater than 0.5 only.

39. Produce the correlation matrix for the components. What do these values mean?

40. Next, use only the components you extracted to estimate wine quality using a regression 
model. Do not include the original predictors.

a. Compare the values of s and Radj
2  between the PCA regression and the original regres-

sion model.

b. Explain why the original model slightly outperformed the PCA model.

c. Explain how the PCA model may be considered superior, even though slightly 
outperformed?

41. In your regression from the previous exercise, what are the VIFs of the two components 
in the regression model? What do these values mean?
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C h a p t e r  13

13.1 aN OVerVIeW OF GeNeraL LINear MODeLS

In Chapter 11, the linear regression models we examined each had a continuous 
response variable. However, what happens if we want to build a regression model 
for a binary response instead? Or for a numeric discrete response? Luckily, there is 
a family of linear models that includes all three cases – continuous, numeric dis-
crete, and binary  –  of regression response variables: General Linear Models 
(GLMs).

To explain how regression for three different kinds of responses can be 
related, we will briefly take another look at the parametric regression equations for 
each case. Once we establish how they are related, we will then use their descriptive 
versions, just as we did in Chapter 11.

Recall the parametric model for multiple regression, given here.

y x x xp p0 1 1 2 2 

The sum β
0
 + β

1
x

1
 + β

2
x

2
 + ⋯ + β

p
x

p
 is called the linear predictor. For brevity, 

we will write the linear predictor as Xβ. The formula that connects the linear pre-
dictor to the mean μ of the y variable at a set of given values of predictor variables 
is called the link function, g(μ).

Different link functions entail different regression models, with each link 
function associated with a particular response type. For each different response 
type we discuss, we will specify a particular g(μ) so that Xβ = g(μ), and solve for μ 
to obtain the final form of the model.

We begin by demonstrating how GLMs work by showing how linear regres-
sion can be expressed as a GLM. We then demonstrate two new regression models 
as GLMs: logistic regression and Poisson regression.

GENERALIZED LINEAR MODELS
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13.2 LINear reGreSSION aS a GeNeraL 
LINear MODeL

When the response variable has a Normal distribution at each set of given predictor 
variable values, then we are back in the realm of linear regression. In this realm, the 
link function is simply the identity function, where

g

Setting Xβ equal to g(μ) using this identity link gives us Xβ = g(μ) = μ.
Once we have a functional relationship between Xβ and μ, we can work 

 backwards to obtain the final form of the regression model by expanding our 
 abbreviated notation. Doing so gives us the population equation for linear regression:

y x x xp p0 1 1 2 2 

from which we can obtain the descriptive form

ŷ b b x b x b xp p0 1 1 2 2 

which we worked with in Chapter 11.

13.3 LOGIStIC reGreSSION aS a GeNeraL 
LINear MODeL

Next, suppose we are trying to predict a binary response, such as whether or not a 
customer has a store credit card. In this case, the distribution of our response vari-
able will be binary: 1 or 0, indicating a Yes or No.

The link function for a binary response variable is g ln
1

. We set 
this function equal to our linear predictor Xβ to obtain

 
X ln

1  

To isolate μ, we use the fact that eln(x) = x, and obtain

 

e

e

X

X1  

The above formula ensures the mean value of the response variable, μ, will 
always be between zero and one. In other words, the value the regression model 
may be used to estimate the probability that y = 1.

To clarify that our predicted values from logistic regression are probabilities, 
instead of binary values, let us write the regression model as predicting p(y), the 
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probability that y = 1. If we work backwards from our abbreviated notation, we get 
the parametric form of the model

 

p y
x x x

x x x

p p

p p

exp

exp

0 1 1 2 2

0 1 1 2 21



  

and can write the descriptive form as

 

ˆ
exp

exp
p y

b b x b x b x

b b x b x b x

p p

p p

0 1 1 2 2

0 1 1 2 21



  

13.4 aN appLICatION OF LOGIStIC 
reGreSSION MODeLING

Let us revisit the clothing_sales_training and clothing_sales_test data sets. This 
time, our goal is to determine whether or not customers have a store credit card, so 
our marketing team can send out advertisements to non‐holders, enticing them to 
sign up for a card. Our response variable in this case is binary: Yes, the customer has 
a card; or No, the customer does not. Since the response variable is binary, we will 
use logistic regression.

Our provisional logistic regression model will be

 
ˆ

exp
p credit card

b b Days between Purchases b Web Accou0 1 2  nnt

b b Days between Purchases b Web Account1 0 1 2exp    

The results of the regression of Credit Card on the two predictor variables are 
shown in Figure 13.1. The p‐values shown in the output tell us that both variables 
belong in the model. When we cross‐validate the results with the test data set, we 
obtain the results shown in Figure 13.2.

The test model confirms that both variables belong in the model. Using the 
coefficients from the training data set, we obtain our final logistic regression model:

 
ˆ

exp . . .
p credit card

Days between Purchases0 496 0 004 1 25  44

1 0 496 0 004 1

Web Account

Days between Purchasesexp . .   ..254 Web Account  

Figure 13.1 Python logistic regression results for the training data set.
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So, how do we interpret the logistic regression coefficients? Each regression 
coefficient describes the estimated change in the log‐odds of the response variable 
when the coefficient’s predictor variable increases by one. To illustrate, consider 
the binary predictor variable Web Account. The regression coefficient for Web 
Account is 1.254. By calculating e1.254 = 3.504, we find that a customer is about 3.5 
times as likely to have a store credit card if they have a web account compared to if 
they do not have a web account.

We can perform a similar operation for the coefficient of Days between 
Purchases. By calculating e−0.004 = 0.996, we find that for every additional day bet-
ween purchases, the customer is 0.4% less likely to have a store credit card. Since 
counting the individual days might be too narrow of a measurement, we can mul-
tiply the coefficient by 30 to obtain e30 ×  − 0.004 = 0.89, and discover that, for every 
30 days without a purchase, the customer is another 11% less likely to have a store 
credit card.1

13.4.1 how to perform Logistic regression Using python

Load the required packages, and import the clothing_sales_training and clothing_
sales_test data sets as sales_train and sales_test, respectively.

import pandas as pd
import numpy as np
import statsmodels.api as sm
from scipy import stats
sales_train = pd.read_csv("C:/.../clothing_sales_
training.csv")
sales_test = pd.read_csv("C:/.../clothing_sales_test.
csv")

For simplicity, we separate the variables into predictor variables X and 
response variable y. Add a constant to the X data frame in order to include a constant 
term in our regression model.

X = pd.DataFrame(sales_train[[’Days’, ’Web’]])
X = sm.add_constant(X)
y = pd.DataFrame(sales_train[[’CC’]])

1 For more on logistic regression, see Data Mining and Predictive Analytics.

Figure 13.2 Python logistic regression results for the test data set.
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To perform logistic regression, use the Logit() and fit() commands. Save the 
model output and run the summary2() command on the saved model output to 
view the model results.

logreg01 = sm.Logit(y, X).fit()
logreg01.summary2()

An excerpt of the results is shown in Figure 13.1.
To validate the model, perform the same steps on the test data set. The code 

is given below.

X_test = pd.DataFrame(sales_test[[’Days’, ’Web’]])
X_test = sm.add_constant(X_test)
y_test = pd.DataFrame(sales_test[[’CC’]])
logreg01_test = sm.Logit(y_test, X_test).fit()
logreg01_test.summary2()

An excerpt of the results is shown in Figure 13.2.

13.4.2 how to perform Logistic regression Using r

Import the clothing_sales_training and clothing_sales_test data sets as sales_train 
and sales_test, respectively.

To run the logistic regression model, we will use the glm() command.

logreg01 <‐ glm(formula = CC ~ Days + Web, data = sales_
train, family = binomial)

Much of the code is similar to that in Chapter 11; the formula input lists the 
response and predictor variables, and the data = sales_train input specifies the data 
set. The only changes are the glm() command and adding the family = binomial 
input. The glm() command will run GLM analysis, and family = binomial spec-
ifies a logistic regression model. Save the model output as logreg01.

To view the summary of the model, run the summary() command with the 
name of the saved model as the sole input. An excerpt from the output is shown in 
Figure 13.3.

summary(logreg01)

Figure 13.3 Logistic regression results from R for the training data set.
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To validate the model, run the same model on the test data and obtain the 
summary of the model (Figure 13.4). The code is given below.

logreg01_test <‐ glm(formula = CC ~ Days + Web, data = 
sales_test, family = binomial)
summary(logreg01_test)

13.5 pOISSON reGreSSION

There are many other kinds of regression models that fall under the umbrella of 
GLM. We will examine one other: Poisson regression. Poisson regression is used 
when you want to predict a count of events, such as how many times a customer 
will contact customer service. The distribution of the response variable will be a 
count of occurrences, with a minimum value of zero.

The link function for a count response variable is g(μ) = ln(μ). We set the link 
function equal to our linear predictor to obtain

 X ln  

After isolating μ, we have

 eX
 

Working backwards from our abbreviated notation, we find the parametric 
version of the Poisson regression equation

 y e
x x xp p0 1 1 2 2 

 

from which we can write the descriptive form

 ŷ e
b b x b x b xp p0 1 1 2 2 

 

13.6 aN appLICatION OF pOISSON 
reGreSSION MODeLING

We will use the churn data set to build a model that estimates the number of 
 customer service calls based on whether a customer churned. Our response variable 
is an integer‐valued variable, which is why we use Poisson regression instead of 
linear regression for this estimation.

Figure 13.4 Logistic regression results from R for the test data set.
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The structure of our Poisson regression model will be

 CustServ Calls b b Churn � exp 0 1  

The result of the regression analysis is given in Figure 13.5. Using the coeffi-
cients given above, we can build the Poisson regression model

 CustServ Calls Churn True � exp . .0 3714 0 4305  

Now, how do we interpret the Poisson regression coefficients? When used as 
the exponent of e, the regression coefficient describes the estimated multiplicative 
change in the response variable when the coefficient’s predictor variable increases 
by one. In our case, the regression coefficient is 0.4305, which gives us e0.4305 = 1.538. 
The coefficient’s predictor, Churn, is zero if the customer does not churn and one if 
they do. Therefore, the movement from a non‐churning to churning customer 
increases the predicted number of customer service calls that customer makes by 
1.538 times, or 53.8%.

13.6.1 how to perform poisson regression Using python

Naturally, in order to validate our modeling results, you would first split the data 
into training and test data sets. As cross‐validation has been shown in other chapters 
as well as for logistic regression, we restrict this section to illustrating how to build 
the Poisson regression model.

Load the required packages.

import pandas as pd
import numpy as np
import statsmodels.api as sm
import statsmodels.tools.tools as stattools

Read in the churn data set into Python as churn.

churn = pd.read_csv("C:/.../churn")

Our predictor variable is Churn, which is categorical. Similar to previous 
modeling tasks, we need to change the categorical values of Churn into dummy 

Figure 13.5 Python Poisson regression results for predicting number of customer service 
calls.
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variables. For this exercise we will use one dummy variable, which equals one if a 
customer has churned.

churn_ind = pd.get_dummies(churn[’Churn’], drop_first = 
True)

The get_dummies() command creates two indicator variables, one for each 
categorical value in Churn. The drop_first = True input will drop the first dummy 
variable, which corresponds to Churn = False in our case, and retain the remaining 
dummy variable, which corresponds to Churn = True.

The remaining commands save the new dummy variable as a data frame, add 
a constant term so our regression model will have a constant, and renames the col-
umns so the output will be easier to read.

X = pd.DataFrame(churn_ind)
X = sm.add_constant(X)
X.columns = [’const’, ’Churn = True’]

We also prepare the response variable.

y = pd.DataFrame(churn[[’CustServ Calls’]])

Finally, we run Poisson regression using the GLM() command.

poisreg01 = sm.GLM(y, X, family = sm.families.
Poisson()).fit()

Notice the three input values of the GLM() command. The first two, y and X, 
specify the response variable and predictor variables, respectively. The third, 
family = sm.families.Poisson(), specifies that Poisson regression should be used. 
The fit() command will fit the model to our data. We save the result as poisreg01.

Use the summary() command to view the results of the model.

poisreg01.summary()

An excerpt from the output of summary() is shown in Figure 13.5.

13.6.2 how to perform poisson regression Using r

As with our Python example, we restrict this section to illustrating how to build the 
Poisson regression model. We return to the glm() command, which we used previ-
ously to build a logistic regression model, to now build a Poisson regression model.

poisreg01 <‐ glm(formula = CustServ.Calls ~ Churn, data = 
churn, family = poisson)
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The formula input now specifies CustServ Calls as the response variable 
and Churn as the predictor variable. The input family = poisson specifies that 
Poisson regression should be applied to the data. Save the regression output as 
poisreg01.

Use the summary() command to view details about the model.

summary(poisreg01)

An excerpt from the summary() command is shown here in Figure 13.6.

reFereNCe

For a full text on exploring the world of GLM: P. McCullagh and J. A. Nelder, Generalized 
Linear Models, Second Edition, Chapman & Hall, London, 1992.

eXerCISeS

CLarIFYING the CONCeptS
1. What are the three cases of regression response variables discussed in this chapter?

2. What category of regression models includes all three cases of response variables?

3. What do we call the linear predictor? How to we write it in its abbreviated form?

4. The link function connects what two things? How do we write it in its abbreviated form?

5. What is the link function for linear regression?

6. What kind of regression should we use when trying to predict a binary response 
variable?

7. What is the link function for logistic regression?

8. Are the predicted values from logistic regression probabilities or binary values?

9. What is the descriptive form of the logistic regression model?

10. What kind of regression should we use when trying to predict a count response 
variable?

11. What is the link function for Poisson regression?

12. What is the descriptive form of the Poisson regression model?

Figure 13.6 Poisson regression results from R.
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WOrKING WIth the Data
For the following exercises, work with the clothing_sales_training and clothing_sales_test 
data sets. Use either Python or R to solve each problem.

13. Create a logistic regression model to predict whether or not a customer has a store credit 
card, based on whether they have a web account and the days between purchases. 
Obtain the summary of the model.

14. Are there any variables that should be removed from the model? If so, remove them and 
rerun the model.

15. Write the descriptive form of the logistic regression model using the coefficients 
obtained from Question 1.

16. Validate the model using the test data set.

17. Obtain the predicted values of the response variable for each record in the data set.

For the following exercises, work with the churn data set. Use either Python or R to solve 
each problem.

18. Create a Poisson regression model to predict the number of customer service calls a 
person makes, based on whether or not that customer churned. Obtain a summary of the 
model.

19. Write the descriptive form of the Poisson regression model from the previous exercise.

haNDS‐ON aNaLYSIS
For the following exercises, work with the adult data set. Use either Python or R to solve 
each problem.

20. Build a logistic regression model to predict the income of a person based on their age, 
education (as a number, with variable education.num), and the hours worked per week. 
Obtain the summary of the model.

21. Are there any variables that should be removed from the model from the previous 
exercise? If so, remove the variables and rerun the model.

22. Write the descriptive form of the final logistic regression model from the previous 
exercise.

23. Interpret the coefficient of the age variable.

24. Find the impact on the probability of having high income for every 10 years a person is 
older.

25. Interpret the coefficient of the education.num variable.

26. Find the impact on the probability of having high income for every four more years of 
education a person has.

27. Interpret the coefficient of the hours.per.week variable.

28. Find the impact on the probability of having high income for every five more hours per 
week a person works.



29. Obtain the predicted values using the model from the previous exercise. Compare the 
predicted values to the actual values.

30. Build a Poisson regression model to predict the years of education a person has (using 
the variable education.num) based on a person’s age and the hours they work per week. 
Obtain the summary of the model.

31. Are there any variables that should be removed from the model from the previous 
exercise? If so, remove the variables and rerun the model.

32. Write the descriptive form of the final Poisson regression model from the previous 
exercise.

33. Obtain the predicted values using the model from the previous exercise. Compare the 
predicted values to the actual values.

eXerCISeS 197
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C h a p t e r  14

14.1 INtrODUCtION tO aSSOCIatION rULeS

Association rules seek to uncover associations among the variables and take the 
form “If antecedent, then consequent,” along with a measure of the support and 
confidence associated with the rule. For example, a particular supermarket may 
find that of the 1000 customers shopping on a Thursday night, 200 bought diapers, 
and of the 200 who bought diapers, 50 bought beer. Thus, the association rule 
would be: “If buy diapers, then buy beer,” with a support of 50/1000 = 5% and a 
confidence of 50/200 = 25%.

The daunting problem that awaits any such algorithm is the curse of dimen-
sionality: The number of possible association rules grows exponentially in the 
number of attributes. Specifically, if there are k attributes, we limit ourselves to 
binary attributes, we account only for the positive cases (e.g. buy diapers = yes), 
there are on the order of k ∙ 2k − 1 possible association rules.1 Consider that a typical 
application for association rules is market basket analysis and that there may be 
thousands of binary attributes (buy beer? buy popcorn? buy milk? buy bread? etc.), 
the search problem appears at first glance to be utterly hopeless. For example, sup-
pose that a tiny convenience store has only 100 different items and a customer could 
either buy or not buy any combination of those 100 items. Then, there are 
2100 ≅ 1.27 × 1030 possible association rules that await your intrepid search algorithm. 
Thankfully, however, the a priori algorithm for mining association rules takes 
advantage of structure within the rules themselves to reduce the search problem to 
a more manageable size.2

1 David J. Hand, Heikki Mannila, and Padhraic Smyth, Principles of Data Mining, MIT Press, Cambridge, 
2001.
2 For details on how the a priori algorithm works, see Data Mining and Predictive Analytics.

ASSOCIATION RULES
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14.2 a SIMpLe eXaMpLe OF aSSOCIatION 
rULe MINING

We begin with a simple example. Suppose that a local farmer has set up a roadside 
vegetable stand and is offering the following items for sale: {asparagus, beans, 
broccoli, corn, green peppers, squash, and tomatoes}. Denote this set of items as I.

One by one, customers pull over, pick up a basket, and purchase various com-
binations of these items, subsets of I.

Let D be the set of transactions represented in Table 14.1, where each trans-
action T in D represents a set of items contained in I.

Suppose that we have a particular set of items A (e.g. beans and squash) and 
another set of items B (e.g. asparagus). Then, define an association rule as follows:

This definition would exclude trivial rules such as if beans and squash, then 
beans.

14.3 SUppOrt, CONFIDeNCe, aND LIFt

Measures of goodness of an association rule include support, confidence, and lift. 
The support for a particular association rule A ⇒ B is the proportion of transactions 
in D that contain both A and B. That is,

an association rule takes the form:

if AthenB i e. . ,A B

where the antecedent A and the consequent B are proper subsets of I, and A and 
B are mutually exclusive.

taBLe 14.1 transactions made at the roadside vegetable stand

Transaction Items Purchased

1 Broccoli, green peppers, corn
2 Asparagus, squash, corn
3 Corn, tomatoes, beans, squash
4 Green peppers, corn, tomatoes, beans
5 Beans, asparagus, broccoli
6 Squash, asparagus, beans, tomatoes
7 Tomatoes, corn
8 Broccoli, tomatoes, green peppers
9 Squash, asparagus, beans

10 Beans, corn
11 Green peppers, broccoli, beans, squash
12 Asparagus, beans, squash
13 Squash, corn, asparagus, beans
14 Corn, green peppers, tomatoes, beans, broccoli
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support = P A B =

number of transactions containing both Aand B    

ttotal number of transactions    

The confidence of the association rule A ⇒ B is a measure of the accuracy of 
the rule, as determined by the percentage of transactions in D containing A that 
also contain B. In other words,

confidence = P B A =
P A B

P A

=

|

number of transactions contai   nning both Aand B
number of transactions containing A

 

   

In the language of probability, confidence represents the conditional proba-
bility of B, given A.

For example, consider the association rule, “If buy squash, then buy beans,” 
where A represents squash and B represents beans. From Table 14.1, we have the 
following seven transactions where squash was bought (Table 14.2). The six trans-
actions where beans were also bought are shown in bold.

Thus:

 
support = P A B =

transactions containing both Aand B
total tran

  

 ssactions
6

14
42 9= = . %

 

 
confidence = P B A =|

transactions containing both Aand B
transac

  

ttions containing A
6
7

85 7
 

= = . %
 

Another measure for quantifying the usefulness of an association rule is lift. 
Lift compares the confidence in using our association rule to the probability of just 
choosing the consequent at random without recourse to association rules. We define 
lift as follows:

 
Lift

Rule confidence

Prior proportion of the consequent

 

     

taBLe 14.2 transactions where squash was bought

Transaction Items Purchased

 2 Asparagus, squash, corn
 3 Corn, tomatoes, beans, squash
 6 Squash, asparagus, beans, tomatoes
 9 Squash, asparagus, beans
11 Green peppers, broccoli, beans, squash
12 Asparagus, beans, squash
13 Squash, corn, asparagus, beans
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Recall the supermarket example where, of 1000 customers, 200 bought dia-
pers, and of these 200 customers who bought diapers, 50 also bought beer.

Suppose 100 of the 1000 customers bought beer. The prior proportion of 
those who bought beer is thus 100/1000  =  10%. The rule confidence is 
50/200 = 25%. Therefore, the lift for the association rule, “If buy diapers, then 
buy beer,” is

 
Lift

Rule confidence

Prior proportion of the consequent

 

    

0 2. 55

0 10
2 5

.
.

 

This may be interpreted as, “Customers who buy diapers are 2.5 times as 
likely to buy beer as customers from the entire data set.” Clearly, this association 
rule would be useful to a store manager wishing to sell more beer.

For the association rule, “If buy squash (A) then buy beans (B),” we have:

 
Lift

Rule confidence

Prior proportion of the consequent

 

    

/6 7

99 14
1 33

/
.

 

Customers who buy squash are 33% more likely to buy beans than the gen-
eral population of customers.

14.4 MINING aSSOCIatION rULeS

So, let us get our hands dirty mining for association rules using the Churn_Training_
File data set. Prepare by doing the following:

 • Subset the following variables into their own data frame: VMail Plan, Intl 
Plan, CustServ Calls, and Churn.

 • Set CustServ Calls to be an ordinal factor.

Let us begin by finding the “baseline” proportions for the various variables, 
so that we may later check the confidence levels of our association rules against 
these baseline levels. These proportions may be found in Figures 14.1 and 14.2. For 
example, the proportion of customers who churn is 14.53%.

Now, let us generate some association rules, using the following settings:

 • Specify the type of association to obtain as “rules”

 • Minimum support equals 0.01 (1%)

 • Minimum confidence equals 0.4 (40%)

 • Maximum number of antecedents 1

Once the rules are generated, you may have to delete rules that contain Churn 
in the antecedent. The resulting rules after doing so are shown in Figure 14.3, sorted 
by lift.
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The association rule with the greatest lift is the first one, with Rule ID [1]:

 If  customer service calls 5 then Churn True 

The lift for Rule ID [1] is about 4.06.

14.4.1 how to Mine association rules Using r

Read in the Churn_Training_File data set and name it churn. The first step is to 
subset from the data set only the columns we want association rules for.

min.churn <‐
 subset(churn, select = c("Intl.Plan", "VMail.Plan", 
"CustServ.Calls",
       "Churn"))

Figure 14.1 Proportions for International Plan, Voicemail Plan, and Churn from R.

Figure 14.2 Proportions for Customer Service Calls from R.

Figure 14.3 The first 10 association rules uncovered by R, sorted by lift.
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As we have seen before, the subset() command takes a data set and extracts 
the specified rows or columns from it. Since we want four columns, we put their 
names in a vector under the input select. We name our new data frame min.
churn.

To change Customer Service Calls to a factor, we use the ordered() 
command.

min.churn$CustServ.Calls <‐ ordered(as.factor(min.
churn$CustServ.Calls))

We work with two nested commands here. First, as.factor() takes the 
CustServ.Calls variable and makes a factor of the different values. However, the 
variable will be treated as nominal, not ordinal. To set the levels are ordinal, we 
include the as.factor() command inside the ordered() command. The order of the 
levels in the factor CustServ.Calls will now be set to be in ascending order.

To obtain the baseline distributions of the four variables, we use tables. The 
code for the first table is shown below. The remaining three tables are left as an 
exercise.

t1 <‐ table(min.churn$Intl.Plan)
t11 <‐ rbind(t1, round(prop.table(t1), 4))

The table(), prop.table(), and round() commands have been discussed in 
previous chapters. The table t1 contains a count of how many customers have and 
do not have the International Plan, while the prop.table() command returns a table 
with the proportions for those same categories. The rbind() command creates a 
matrix with the counts and proportions together. Save the matrix as t11.

To make the table more readable, we add column and row names.

colnames(t11) <‐ c("Intl.Plan = no", "Intl.Plan = yes")
rownames(t11) <‐ c("Count", "Proportion")
t11

To know what order to put the colnames() values, take a look at t1. The first 
column has the “no” values. We use this information to inform the order of the 
colnames() values. Namely, the “Intl.Plan = no” value comes first, followed by 
“Intl.Plan = yes.” The result, t11, is shown as the first table in Figure 14.1.

Once we are done setting up the data and obtaining baseline distribution 
information, install and load the package for association rules: the arules package.

install.packages("arules"); library(arules)

To obtain the association rules, run the apriori() command from the arules 
package.

all.rules <‐ apriori(data = min.churn, parameter = 
list(supp = 0.01, target = "rules",
        conf = 0.4, minlen = 2, maxlen = 2))
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While the only required input is data = min.churn, we need to specify the 
parameter settings outlined previously. First, supp = 0.01 will set the minimum 
support to 1%. The target = “rules” input specifies that we want association rules. 
The minlen = 2 and maxlen = 2 input values specify that we want antecedents with 
exactly one item, since a rule with an empty antecedent is considered to have a 
length of one. Finally, conf = 0.4 will set the minimum support to 40%. Save the 
result of this algorithm as all.rules.

To look at the top 10 rules we have obtained, sorted by their lift values, use 
the commands inspect() and head().

inspect(head(all.rules, by = "lift", n = 10))

The by and n values specify the criterion to sort by, and the maximum number 
of rules to return. The result is shown in Figure 14.4.

Notice that Figure 14.4 contains some rules that have Churn in the antecedent 
(“lhs,” or “left‐hand side”). We do not want these rules. This means our next step is 
to subset from all.rules only the rules which do not contain Churn in the 
antecedent.

To begin, we need to identify which rules have Churn in the antecedent, lhs. 
To work with lhs, we need our rules to be formatted as a data frame. However, the 
apriori() algorithm does not return output formatted as a data frame. To convert the 
format of lhs to a data frame, we use two as() commands.

all.rules.ant.df <‐ as(as(attr(all.rules, "lhs"), 
"transactions"), "data.frame")

The core code, attr(all.rules, “lhs”), specifies that we are working with the 
antecedents (lhs) of the rules contained in all.rules. The first as() command, 
which takes the attr() code as input and adds the additional input “transactions”, 
changes the antecedents into a format specific to the arules() package called 
transactions. This step is required, since an object of type transactions can then 
be transformed to a data.frame frame format using a second as() command, this 
time using the second input value “data.frame”. We save the result as all.rules.
ant.df to signify that the antecedent (“ant”) of the all.rules object has been 
turned into a data frame (“df”).

Figure 14.4 The top 10 rules from all. rules from R, sorted by lift value.
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Figure 14.5 Contingency table of Churn and Customer Service Calls from R.

Now that we have isolated the antecedents in a form we can work with, we 
examine them to see which contain either Churn = True or Churn = False.

t1 <‐ rules.dataframe$items == "{Churn=True}"
t2 <‐ rules.dataframe$items == "{Churn=False}"
non.churn.ant <‐ abs(t1+t2‐1)

The vectors t1 and t2 are a series of zeros and ones, where zero means the 
antecedent did not meet the condition and one means that it did. When we take the 
absolute value of t1+t2‐1 using the abs() command, the result is a single vector of 
zeros and ones, where the ones indicate antecedents that do not contain Churn. We 
save this binary vector as non.churn.ant.

Finally, we subset from all.rules only those rules that have non.churn.ant 
equal to one. In other words, we subset only those rules that do not have Churn in 
the antecedent.

good.rules <‐ all.rules[non.churn.ant == 1]

Save the resulting rules as good.rules.
We can look at good.rules sorted by descending lift values by using the com-

mands inspect() and head() once more.

inspect(head(good.rules, by = "lift", n = 28))

The first 10 rows of output from this command are shown in Figure 14.3.
To make the contingency table of Churn and Customer Service Calls, which 

will be utilized below, run the following code:

t.csc.churn <‐ table(min.churn$Churn, min.churn$CustServ.
Calls)
colnames(t.csc.churn) <‐ c("CSC = 0", "CSC = 1", "CSC = 
2", "CSC = 3", "CSC = 4",
      "CSC = 5", "CSC = 6", "CSC = 7", "CSC = 8", "CSC = 9")
rownames(t.csc.churn) <‐ c("Churn = False", "Churn = True")
addmargins(A = t.csc.churn, FUN = list(Total = sum), 
quiet = TRUE)

The result is provided in Figure 14.5.
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14.5 CONFIrMING OUr MetrICS

We will call Rule ID [1] “Rule 1.” Next, let us confirm the following values for 
Rule 1, using what we have learned so far:

1. Support,

2. Confidence,

3. Lift.

1. Support.

 

s support P CSC and Churn True
CSC

5  
transactions with both 5 36

3000
1 2

and Churn True

total number of transactions
. %

 

How did we get the 36? Support requires the intersection of two events, 
which can be found by generating the contingency table of customer service 
calls vs churn, shown in Figure  14.5. Note that the cell for CSC  =  5 and 
Churn = True contains Count = 36, represented 1.2% of the total number 
of records.

2. Confidence. Use the contingency table to confirm that this equals the 
conditional probability P(B ∣ A).

 

confidence P Churn True CSC
P Churn True andCSC

P CSC
| 5

5 

55
5number of transactions containing both and ChurnCSC TTrue

number of transactions containingCSC 5  

Both of these quantities are found in Figure 14.5. Thus,
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3. Lift. Interpret this value.
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From (2) we have confidence = 59.016%. From Figure 14.1, we have the 
prior percentage of Churn = True to be 14.53%. Therefore,
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Figure 14.6 Association rule found using confidence difference lower bound = 40.

In other words, customers who have made five calls to customer service are 
4.061 times as likely to churn than our general population of customers.

14.6 the CONFIDeNCe DIFFereNCe CrIterION

The association rules above were generated using the minimum confidence crite-
rion. However, other criteria exist for generating association rules. Next, we con-
sider the confidence difference criterion. The confidence difference evaluation 
measure gives the absolute difference between the prior probability of the conse-
quent (here, churn status) and the confidence of the rule. So, rules would be 
included in this case only if:

 Prior probability of consequent Rule confidence    0 40.  

Figure  14.6 shows the only association rule generated using a confidence 
difference lower bound of 40 (along with minimum antecedent support of 1%, 
minimum rule confidence of 5%, and maximum antecedents of 1).

This association rule has Rule confidence 0.59016 and prior probability of 
Churn = True of 0.14533, giving us:

 Prior prob of consequent Rule confidence     

 0 14533 0 59016 0 44483 0 40. . . .=  

The diff statistic from Figure 14.6 equals this absolute difference, 0.44483.
The rules that have confidence similar to the prior probability of the conse-

quent may not be interesting. For example, by randomly selecting a transaction 
from the data, the probability of obtaining a churning customer is 0.14533. If the 
rule generated gives a confidence measure that is not far from 0.14533, random 
selection might as well be used. Therefore, the confidence difference can indicate 
rules which deviate from random selection. In the case here, it can be seen that cus-
tomers who have made five customer service calls have churn rates that appear 
quite different from random customers selected from the data. The confidence 
difference measure helps to weed out obvious rules, such as “If pregnant, then 
female.” It also accounts for skewed or uneven distributions.

14.6.1 how to apply the Confidence Difference Criterion Using r

To include the confidence different criterion in our association rule settings, we 
return to the apriori() command and add additional input values.
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rules.confdiff <‐ apriori(data = min.churn, parameter = 
list(arem = "diff", aval = TRUE,
        minval = 0.4, supp = 0.01, target = "rules", conf 

= 0.05, minlen = 2, maxlen = 2))

Note the three new input settings under parameter = list(). The first one, 
arem = “diff”, specifies that the confidence difference criterion should be used. 
The second, aval = TRUE, states that the value of the criterion should be reported 
when the results are shown. The third, minval = 0.4, sets the lower bound of the 
confidence difference at 40. Save the output as rules.confdiff.

To view the new rules,3 use the inspect() and head() commands, this time 
using rules.confdiff as the primary input.

inspect(head(rules.confdiff, by = "lift", n = 10))

14.7 the CONFIDeNCe QUOtIeNt CrIterION

To demonstrate the confidence quotient criterion, we generate rules using a lower 
bound of 40 (along with minimum antecedent support of 1%, minimum rule 
confidence of 5%, and maximum antecedents of 1). After removing any rules with 
Churn in the antecedent, we obtain the three association rules shown in Figure 14.7.

The confidence quotient evaluation measure gives the absolute ratio between 
the prior probability of the consequent (Churn = True) and the confidence of the 
rule. So, rules would be included in this case only if:

 

1 0 40

1

Rule confidence

Prior proportion ofconsequent

or

Pri

 

  
.

oor proportion of consequent

Rule confidence

   

 
0 40.

 

whichever is not negative.

3 The output will have rules that have Churn in the antecedent. After subsetting only those rules without 
Churn in the antecedent, as demonstrated in the previous R section, the output will match that shown in 
Figure 14.6.

Figure 14.7 Association rules in R found using confidence quotient lower bound = 40.
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Let us confirm the calculations for Rule [3] from Figure 14.5. This rule has 
confidence 0.43051. From Figure  14.1, the prior proportion of the consequent 
(Churn = True) equals 0.14533. Thus,

 
1 1

0 14533

0

Prior proportion of consequent

Rule confidence

   

 

.

..
. .

43051
0 66242 0 40

 

Allowing for rounding error, the quot statistic from Figure 14.7 equals the 
value we obtained above, 0.66242.

Like Confidence Difference, this method takes uneven distributions into 
account. It is especially good at finding rules that predict rare events. Of course, like 
any other data science task using cross‐validation, association rule mining needs to 
be validated. We show how to do this in the exercises.

14.7.1 how to apply the Confidence Quotient Criterion Using r

To include the confidence different criterion in our association rule settings, we 
return to the apriori() command and change the input values.

rules.confquot <‐ apriori(data = min.churn, parameter = 
list(arem = "quot", aval = TRUE,
       minval = 0.4, supp = 0.01, target = "rules", conf = 
0.05, minlen = 2, maxlen = 2))
inspect(head(rules.confquot, by = "lift", n = 10))

The output of the above code, which is not shown, includes rules with Churn 
in the antecedent.

Our next step is to subset from the rules we have obtained only those which do 
not have Churn in the antecedent. We follow the same general steps as in Section 14.4.1.

rules.confquot.ant.df <‐ as(as(attr(rules.confquot, 
"lhs"), "transactions"), "data.frame")
t1 <‐ rules.confquot.ant.df$items == "{Churn=True}"
t2 <‐ rules.confquot.ant.df$items == "{Churn=False}"
non.churn.ant <‐ abs(t1+t2‐1)
good.rules.confquot <‐ rules.confquot[non.churn.ant == 1]
inspect(good.rules.confquot)

The result is shown in Figure 14.7.

VaLeDICtION
The authors would like to thank you for joining us as we learned about Data Science 
Using Python and R. You should take a moment to savor your accomplishment! 
Look how much you have learned! We wish you all the best as you continue your 
journey through life, and through data science.
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eXerCISeS

CLarIFYING the CONCeptS
1. How does the curse of dimensionality make it a challenge to uncover association 

rules?

2. What form do association rules take?

3. In your own words, explain what we mean by the support for an association rule.

4. The confidence of a rule is equivalent to what probability?

5. Explain what is meant by lift.

6. What is the confidence difference criterion, and why is it used?

7. Describe the confidence ratio criterion.

Use Table 14.1 to answer the following questions.

8. Calculate the support for the rule, “If corn, then tomatoes.”

9. Find the confidence for the rule, “If corn, then tomatoes.”

10. Calculate the lift for the rule, “If corn, then tomatoes.”

WOrKING WIth the Data
For the following exercises, work with the Churn_Training_File data set. Use R to solve 
each problem.

11. Subset the variables VMail Plan, Int’l Plan, CustServ Calls, and Churn into their own 
data frame. Change CustServ Calls into an ordered factor.

12. Create tables for each of the four variables. Include both counts and proportions in each 
table. Use the tables to discuss the “baseline” distribution of each variable.

13. Obtain the association rules using the settings outlined in Section 14.4.

14. Subset the rules from the previous exercise so none of the antecedents contain the Churn 
variable. Display the rules, sorted by descending lift value.
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15. Obtain association rules using the confidence difference criterion outlined in 
Section 14.6.

16. Confirm by hand that the value of the confidence different criterion for the first rule in 
the previous exercise is correct.

17. Obtain association rules using the confidence quotient criterion outlined in Section 14.7. 
Subset only those rules without Churn in the antecedent.

18. Confirm by hand that the value of the confidence quotient criterion for the first rule in 
the previous exercise is correct.

haNDS‐ON aNaLYSIS
For the following, work with the Adult data set. Use R to solve each problem.

19. Subset the variables education, marital.status, and income into their own data frame.

20. Create tables for each of the variables. Include both counts and proportions in each 
table. These tables will be used to obtain the prior proportions of various values.

21. Obtain the association rules using minimum support of 2%, minimum confidence of 
50%, and maximum antecedents of 1.

22. Subset the rules from the previous exercise so none of the antecedents contain the 
income variable. Display the rules, sorted by descending lift value.

23. Obtain association rules using the confidence difference criterion, with a confidence 
difference lower bound of 30, minimum antecedent support of 2%, minimum rule 
confidence of 50%, and maximum antecedents of 1.

24. Subset the rules from the previous exercise so none of the antecedents contain the 
income variable. Display the rules, sorted by descending lift value.

25. Confirm by hand that the value of the confidence different criterion for the first rule in 
the previous exercise is correct.

26. Obtain association rules using the confidence quotient criterion, with a confidence quo-
tient lower bound of 30, minimum antecedent support of 2%, minimum rule confidence 
of 50%, and maximum antecedents of 1.

27. Subset the rules from the previous exercise so none of the antecedents contain the 
income variable. Display the rules, sorted by descending lift value.

28. Confirm by hand that the value of the confidence quotient criterion for the first rule in 
the previous exercise is correct.

For the following exercises, use the AR_Training and AR_Test data sets. Response is the 
target variable, so only consider rules where it is the only possible consequent. The other 
variables are the predictors, so only consider rules where the predictors are the antecedents. 
Use the training set until notified otherwise.

29. Create tables for each of the variables. Include both counts and proportions in each 
table. These tables will be used to obtain the prior proportions of various values.



30. Generate association rules using minimum support of 5%, minimum confidence of 5%, 
and maximum antecedents of 1. Display the rules, sorted by descending lift value.

31. Select the rule from the previous exercise with the greatest lift. Interpret this lift value 
for someone unfamiliar with data science.

32. Continue with the association rule from the previous exercise. Find any prior propor-
tions and build any contingency tables you need to confirm by hand the values you 
obtained for the following quantities:

a. Support

b. Confidence

c. Lift

33. Generate association rules using minimum support of 5%, minimum confidence of 5%, 
and maximum antecedents of 2. Display the rules, sorted by descending lift value.

34. Select the rule from the previous exercise with the greatest lift. Compare this rule with 
the highest lift rule for antecedents = 1.

a. Which rule has the better lift?

b. Which rule has the greater support?

c. If you were a marketing manager, and could fund only one of these rules, which 
would it be, and why?

35. Obtain association rules using the confidence difference criterion, with a confidence 
difference lower bound of 30, minimum support of 5%, minimum confidence of 5%, 
and maximum antecedents of 1. Display the rules, sorted by descending lift value.

36. Select the rule from the previous exercise with the greatest lift. Confirm by hand the 
value for the confidence difference.

37. Obtain association rules using the confidence difference criterion, with a confidence 
difference lower bound of 10, minimum support of 5%, minimum confidence of 5%, 
and maximum antecedents of 2. Display the rules, sorted by descending lift value.

38. Select the rule from the previous exercise with the second greatest lift. Compare this rule 
with the highest lift rule for antecedents = 1.

a. Which rule has the better lift?

b. Which rule has the greater support?

c. If you were a marketing manager, and could fund only one of these rules, which 
would it be, and why?

39. Obtain association rules using the confidence quotient criterion, with a confidence quo-
tient lower bound of 30, minimum antecedent support of 5%, minimum rule confidence 
of 5%, and maximum antecedents of 3. Display the rules, sorted by descending lift 
value.

40. Select the rule from the previous exercise with the greatest lift. Confirm by hand the 
value for the confidence quotient.
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For the next set of Exercises, we will be validating the association rules we found earlier. Use 
the AR_Test data set.

41. Create tables for each of the variables. Include both counts and proportions in each 
table. These tables will be used to obtain the prior proportions of various values.

42. Generate association rules using minimum support of 5%, minimum confidence of 5%, 
and maximum antecedents of 1. Display the rules, sorted by descending lift value.

43. Compare the rules you obtained in the previous exercise with the rules you obtained 
using the same criteria from the training data set. Would you say that our association 
rules have been validated?
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Here we present a very brief review of methods for summarizing and visualizing 
data. For deeper coverage, please see Discovering Statistics by Daniel T. Larose 
(W.H. Freeman, second edition, 2013).

PART 1: SUMMARIZATION 1: BUILDING BLOCKS 
OF DATA ANALYSIS

 • Descriptive statistics refers to methods for summarizing and organizing the 
information in a data set.

Consider Table  A.1, which we will use to illustrate some statistical 
concepts.

 • The entities for which information is collected are called the elements. In 
Table A.1, the elements are the 10 applicants. Elements are also called cases 
or subjects.

 • A variable is a characteristic of an element, which takes on different values 
for different elements. The variables in Table A.1 are marital status, mort-
gage, income, rank, year, and risk. Variables are also called attributes.

 • The set of variable values for a particular element is an observation. 
Observations are also called records. The observation for Applicant 2 is:

Applicant Marital Status Mortgage Income ($) Income Rank Year Risk

2 Married Yes 32,000 7 2010 Good

 • Variables can be either qualitative or quantitative.

 ° A qualitative variable enables the elements to be classified or categorized 
according to some characteristic. The qualitative variables in Table A.1 are 
marital status, mortgage, rank, and risk. Qualitative variables are also 
called categorical variables.

DATA SUMMARIZATION 
AND VISUALIZATION

A P P e N D I x
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 ° A quantitative variable takes numeric values and allows arithmetic to be 
meaningfully performed on it. The quantitative variables in Table A.1 are 
income and year. Quantitative variables are also called numerical 
variables.

 • Data may be classified according to four levels of measurement: nominal, 
ordinal, interval, and ratio. Nominal and ordinal data are categorical; interval 
and ratio data are numerical.

 ° Nominal data refer to names, labels, or categories. There is no natural 
ordering, nor may arithmetic be carried out on nominal data. The nominal 
variables in Table A.1 are marital status, mortgage, and risk.

 ° Ordinal data can be rendered into a particular order. However, arithmetic 
cannot be meaningfully carried out on ordinal data. The ordinal variable in 
Table A.1 is income rank.

 ° Interval data consist of quantitative data defined on an interval without a 
natural zero. Addition and subtraction may be performed on interval data. 
The interval variable in Table A.1 is year. (Note that there is no “year zero.” 
The calendar goes from 1 BCE to 1 CE)

 ° Ratio data are quantitative data for which addition, subtraction, multipli-
cation, and division may be performed. A natural zero exists for ratio data. 
The interval variable in Table A.1 is income.

 • A numerical variable that can take either a finite or a countable number of 
values is a discrete variable, for which each value can be graphed as a sepa-
rate point, with space between each point. The discrete variable in Table A.1 
is year.

 • A numerical variable that can take infinitely many values is a continuous 
variable, whose possible values form an interval on the number line, with 
no space between the points. The continuous variable in Table  A.1 is 
income.

TAble A.1 Characteristics of 10 loan applicants

Applicant Marital Status Mortgage Income ($) Income Rank Year Risk

1 Single Yes 38,000 2 2009 Good
2 Married Yes 32,000 7 2010 Good
3 Other No 25,000 9 2011 Good
4 Other No 36,000 3 2009 Good
5 Other Yes 33,000 4 2010 Good
6 Other No 24,000 10 2008 Bad
7 Married Yes 25,100 8 2010 Good
8 Married Yes 48,000 1 2007 Good
9 Married Yes 32,100 6 2009 Bad

10 Married Yes 32,200 5 2010 Good
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 • A population is the set of all elements of interest for a particular problem. A 
parameter is a characteristic of a population. For example, the population is 
the set of all American voters, and the parameter is the proportion of the 
population who supports a $1 per ton tax on carbon.

 ° The value of a parameter is usually unknown, but it is a constant.

 • A sample consists of a subset of the population. A characteristic of a sample 
is called a statistic. For example, the sample is the set of American voters in 
your classroom, and the statistic is the proportion of the sample who supports 
a $1 per ton tax on carbon.

 ° The value of a statistic is usually known, but it changes from sample to sample.

 • A census is the collection of information from every element in the population. 
For example, the census here would be to find from every American voter 
whether they support a $1 per ton tax on carbon. Such a census is impractical, 
so we turn to statistical inference.

 • Statistical inference refers to methods for estimating or drawing conclusions 
about population characteristics based on the characteristics of a sample of 
that population. For example, suppose 50% of the voters in your classroom 
support the tax; using statistical inference we would infer that 50% of all 
American voters support the tax. Obviously, there are problems with this. The 
sample is neither random nor representative. The estimate does not have a 
confidence level, and so on.

 • When we take a sample for which each element has an equal chance of being 
selected, we have a random sample.

 • A predictor variable is a variable whose value is used to help predict the 
value of the response variable. The predictor variables in Table A.1 are all the 
variables except risk.

 • A response variable is a variable of interest whose value is presumably 
determined at least in part by the set of predictor variables. The response var-
iable in Table A.1 is risk.

PART 2: VISUALIZATION: GRAPHS AND TABLeS 
FOR SUMMARIZING AND ORGANIZING DATA

A.1 Categorical Variables

 • The frequency (or count) of a category is the number of data values in each 
category. The relative frequency of a particular category for a categorical 
variable equals its frequency divided by the number of cases.

 • A (relative) frequency distribution for a categorical variable consists of all 
the categories that the variable assumes, together with the (relative) 
frequencies for each value. The frequencies sum to the number of cases; the 
relative frequencies sum to 1.
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 • For example, Table A.2 contains the frequency distribution and relative fre-
quency distribution for the variable marital status for the data from Table A.1.

 • A bar chart is a graph used to represent the frequencies or relative frequencies 
for a categorical variable. Note that the bars do not touch.

 ° A Pareto chart is a bar chart where the bars are arranged in decreasing 
order. Figure A.1 is an example of a Pareto chart.

 • A pie chart is a circle divided into slices, with the size of each slice propor-
tional to the relative frequency of the category associated with that slice. 
Figure A.2 shows a pie chart of marital status.

A.2 Quantitative Variables

 • Quantitative data are grouped into classes. The lower (upper) class limit of 
a class equals the smallest (largest) value within that class. The class width is 
the difference between successive lower class limits.

 • For quantitative data, a (relative) frequency distribution divides the data 
into nonoverlapping classes of equal class width. Table  A.3 shows the 
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Figure A.1 Bar chart for marital status.

TAble A.2 Frequency distribution and relative frequency distribution

Category of Marital Status Frequency Relative Frequency

Married 5 0.5
Other 4 0.4
Single 1 0.1
Total 10 1.0
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 frequency distribution and relative frequency distribution of the continuous 
variable income from Table A.1.

 • A cumulative (relative) frequency distribution shows the total number 
(relative frequency) of data values less than or equal to the upper class limit 
(Table A.4).

Single
1, 10.0%

Category

Other
4, 40.0%

Married
5, 50.0%

Married
Other
Single

Figure A.2 Pie chart of marital status.

TAble A.3 Frequency distribution and relative frequency distribution 
of income

Class of Income ($) Frequency Relative Frequency

24,000–29,999 3 0.3
30,000–35,999 4 0.4
36,000–41,999 2 0.2
42,000–48,999 1 0.1
Total 10 1.0

TAble A.4 Cumulative frequency distribution and cumulative relative 
frequency distribution of income

Class of Income ($) Cumulative Frequency Cumulative Relative Frequency

24,000–29,999 3 0.3
30,000–35,999 7 0.7
36,000–41,999 9 0.9
42,000–48,999 10 1.0
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 • A distribution of a variable is a graph, table, or formula that specifies the 
values and frequencies of the variable for all elements in the data set. For 
example, Table A.3 represents the distribution of the variable income.

 • A histogram is a graphical representation of a (relative) frequency distribu-
tion for a quantitative variable (Figure A.3). Note that histograms represent 
a simple version of data smoothing and can thus vary in shape depending 
on the number and width of the classes. Therefore, histograms should be 
interpreted with caution. See Discovering Statistics by Daniel T. Larose 
(W.H. Freeman) Section 2.4 for an example of a data set presented as both 
symmetric and right‐skewed by altering the number and width of the histo-
gram classes.

 • A stem‐and‐leaf display shows the shape of the data distribution while 
retaining the original data values in the display, either exactly or 
 approximately. The leaf units are defined to equal a power of 10, and the stem 
units are 10 times the leaf units. Then, each leaf represents a data value, 
through a stem‐and‐leaf combination. For example, in Figure A.4, the leaf 
units (right‐hand column) are 1000s and the stem units (left‐hand column) are 
10,000s. So, “2 4” represents 2 × 10,000 + 4 × 1000 = $24,000, while “2 55” 
represents two equal incomes of $25,000 (one of which is exact, the other 
approximate – $25,100). Note that Figure A.4, turned 90° to the left, presents 
the shape of the data distribution.

 • In a dotplot each dot represents one or more data values, set above the 
number line (Figure A.5).

 • A distribution is symmetric if there exists an axis of symmetry (a line) that 
splits the distribution into two halves that are approximately mirror images of 
each other (Figure A.6a).
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Figure A.3 Histogram of income.
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Figure A.4 Stem‐and‐leaf display of income.

24,000 28,000 32,000 36,000
Income

40,000 44,000 48,000

Figure A.5 Dotplot of income.

Bell-shaped curve is symmetric

(a)

Figure A.6 (a) Bell‐shaped curve is symmetric. (b) Right‐skewed distribution. (c) Left‐
skewed distribution.

(b)

Right-skewed distribution

(c)

Left-skewed distribution
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 • Right‐skewed data have a longer tail on the right than the left (Figure A.6b). 
Left‐skewed data have a longer tail on the left than the right (Figure A.6c).

PART 3: SUMMARIZATION 2: MeASUReS OF CeNTeR, 
VARIABILITY, AND POSITION

 • The summation notation ∑x means to add up all the data values x. The sample 
size is n and the population size is N.

 • Measures of center indicate where on the number line the central part of the 
data is located. The measures of center we will learn are the mean, the median, 
the mode, and the midrange.

 ° The mean is the arithmetic average of a data set. To calculate the mean, 
add up the values and divide by the number of values. The mean income 
from Table A.1 is:

38 000 32 000 32 200

10

325 400

10
32 540

, , , ,
$ ,

 ° The sample mean is the arithmetic average of a sample and is denoted x  
(“x‐bar”).

 ° The population mean is the arithmetic average of a population and is 
denoted μ (“myu,” the Greek letter for m).

 ° The median is the middle data value, when there is an odd number of 
data values and the data have been sorted into ascending order. If there 
is an even number, the median is the mean of the two middle data values. 
When the income data are sorted into ascending order, the two middle 
values are $32,100 and $32,200, the mean of which is the median 
income, $32,150.

 ° The mode is the data value that occurs with the greatest frequency. Both 
quantitative and categorical variables can have modes, but only 
quantitative variables can have means or medians. Each income value 
occurs only once, so there is no mode. The mode for year is 2010, with a 
frequency of 4.

 ° The midrange is the average of the maximum and minimum values in a 
data set. The midrange income is

midrange income
income incomemax min , ,

2

48 000 24 000

2
$ ,36 000

 • Skewness and measures of center. The following are tendencies, and not 
strict rules.
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 ° For symmetric data, the mean and the median are approximately equal.

 ° For right‐skewed data, the mean is greater than the median.

 ° For left‐skewed data, the median is greater than the mean.

 • Measures of variability quantify the amount of variation, spread, or disper-
sion present in the data. The measures of variability we will learn are the 
range, the variance, the standard deviation, and, later, the interquartile range 
(IQR).

 ° The range of a variable equals the difference between the maximum 
and minimum values. The range of income is: range = max(income) − 
min(income) = 48,000 − 24,000 = $24,000.

 ° A deviation is the signed difference between a data value and the 
mean  value. For Applicant 1, the deviation in income equals 
x x 38 000 32 540 5460, , . For any conceivable data set, the mean 
deviation always equals zero, because the sum of the deviations equals zero.

 ° The population variance is the mean of the squared deviations, denoted as 
σ2 (“sigma‐squared”):

2

2
x

N

 ° The population standard deviation is the square root of the population 

variance: 2 .

 ° The sample variance is approximately the mean of the squared deviations, 
with n replaced by n – 1 in the denominator in order to make it an unbiased 
estimator of σ2. (An unbiased estimator is a statistic whose expected 
value equals its target parameter.)

s
x x

n
2

2

1

 ° The sample standard deviation is the square root of the sample variance: 

s s2 .

 ° The variance is expressed in units squared, an interpretation that may be 
opaque to nonspecialists. For this reason, the standard deviation, which is 
expressed in the original units, is preferred when reporting results. For 
example, the sample variance of income is s2 = 51,860,444 dollars squared, 
the meaning of which may be unclear to clients. Better to report the sample 
standard deviation s = $7201.

 ° The sample standard deviation s is interpreted as the size of the typical 
deviation, that is, the size of the typical difference between data values and 
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the mean data value. For example, incomes typically deviate from their 
mean by $7201.

 • Measures of position indicate the relative position of a particular data value 
in the data distribution. The measures of position we cover here are the per-
centile, the percentile rank, the Z‐score, and the quartiles.

 ° The pth percentile of a data set is the data value such that p percent of the 
values in the data set are at or below this value. The 50th percentile is the 
median. For example, the median income is $32,150 and 50% of the data 
values lie at or below this value.

 ° The percentile rank of a data value equals the percentage of values in the 
data set that are at or below that value. For example, the percentile rank of 
Applicant 1’s income of $38,000 is 90%, since that is the percentage of 
incomes equal to or less than $38,000.

 ° The Z‐score for a particular data value represents how many standard devia-
tions the data value lies above or below the mean. For a sample, the Z‐score is:

Z-score
x x

s

For Applicant 6, the Z‐score is

24 000 32 540

7201
1 2

, ,
.

The income of Applicant 6 lies 1.2 standard deviations below the mean.

 ° We may also find data values, given a Z‐score. Suppose no loans will 
be given to those with incomes more than 2 standard deviations 
below the mean. Here, Z‐score = −2 and the corresponding minimum 
income is:

income Z score s x- 2 7201 32 540 18 138$ ,

No loans will be provided to applicants with incomes below $18,138.

 ° If the data distribution is normal, then the Empirical Rule states:

 • About 68% of the data lies within one standard deviation of the mean.

 • About 95% of the data lies within two standard deviations of the mean.

 • About 99.7% of the data lies within three standard deviations of the mean.

 ° The first quartile (Q1) is the 25th percentile of a data set; the second 
 quartile (Q2) is the 50th percentile (median); and the third quartile (Q3) 
is the 75th percentile.
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 ° The IQR is a measure of variability that is not sensitive to the presence of 
outliers. IQR = Q3 − Q1.

 ° In the IQR method for detecting outliers, a data value x is an outlier 
if either

 • x ≤ Q1 − 1.5(IQR), or

 • x ≥ Q3 + 1.5(IQR).

 • The five‐number summary of a data set consists of the minimum, Q1, the 
median, Q3, and the maximum.

 • The boxplot is a graph based on the five‐number summary, useful for recog-
nizing symmetry and skewness. Suppose for a particular data set (not from 
Table A.1) we have Min = 15, Q1 = 29, Median = 36, Q3 = 42, and Max = 47. 
Then the boxplot is shown in Figure A.7.

 ° The box covers the “middle half” of the data from Q1 to Q3.

 ° The left whisker extends down to the minimum value that is not an 
outlier.

 ° The right whisker extends up to the maximum value that is not an outlier.

 ° When the left whisker is longer than the right whisker, then the distribution 
is left skewed, and vice versa.

 ° When the whiskers are about equal in length, the distribution is 
symmetric. The distribution in Figure  A.7 shows evidence of being 
left‐skewed.

PART 4: SUMMARIZATION AND VISUALIZATION 
OF BIVARIATe ReLATIONSHIPS

 • A bivariate relationship is the relationship between two variables.

 • The relationship between two categorical variables is summarized using 
a  contingency table, which is a crosstabulation of the two variables, and 
 contains a cell for every combination of variable values (that is, for every 

Median = 36
10 20

Min = 15

Middle half
IQR = 42 – 29 = 13 

Q1 = 29 Q3 = 42 Max = 47

Whisker Whisker

30 40 50

Figure A.7 Boxplot of left‐skewed data.
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contingency). Table A.5 is the contingency table for the variables mortgage 
and risk. The total column contains the marginal distribution for risk, that 
is, the frequency distribution for this variable alone. Similarly, the total row 
represents the marginal distribution for mortgage.

 • Much can be learned from a contingency table. The baseline proportion of 
bad risk is 2/10 = 20%. However, the proportion of bad risk for applicants 
without a mortgage is 1/3 = 33%, which is higher than the baseline; and the 
proportion of bad risk for applicants with a mortgage is only 1/7 = 1%, which 
is lower than the baseline. Thus, whether or not the applicant has a mortgage 
is useful for predicting risk.

 • A clustered bar chart is a graphical representation of a contingency table. 
Figure A.8 shows the clustered bar chart for risk, clustered by mortgage. Note 
that the disparity between the two groups is immediately obvious.

 • To summarize the relationship between a quantitative variable and a 
categorical variable, we calculate summary statistics for the quantitative var-
iable for each level of the categorical variable. For example, Minitab provided 

Bad
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Mortgage Yes
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Figure A.8 Clustered bar chart for risk, clustered by mortgage.

TAble A.5 Contingency table for Mortgage versus Risk

Mortgage

Yes No Total

Risk Good 6 2 8
Bad 1 1 2
Total 7 3 10
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the following summary statistics for income, for records with bad risk and for 
records with good risk. All summary measures are larger for good risk. Is the 
difference significant? We need to perform a hypothesis test to find out 
(Chapter 4).

Descriptive Statistics: Income

Variable 
Income

Risk Mean Std Dev Minimum Median Maximum
Bad 28,050 5728 24,000 28,050 32,100

Good 33,663 7402 25,000 32,600 48,000

 • To visualize the relationship between a quantitative variable and a categorical 
variable, we may use an individual value plot, which is essentially a set of 
vertical dotplots, one for each category in the categorical variable. Figure A.9 
shows the individual value plot for income versus risk, showing that incomes 
for good risk tend to be larger.

 • A scatter plot is used to visualize the relationship between two quantitative 
variables, x and y. Each (x, y) point is graphed on a Cartesian plane, with 
the x axis on the horizontal and the y axis on the vertical. Figure A.10 
shows eight scatter plots, showing some possible types of relation-
ships  between the  variables, along with the value of the correlation 
coefficient r.

 • The correlation coefficient r quantifies the strength and direction of the 
linear relationship between two quantitative variables. The correlation 
 coefficient is defined as

r
x x y y

n s sx y1
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Figure A.9 Individual value plot of income versus risk.



Perfect positive linear relationship, r = 1 Strong positive linear relationship, r = 0.9

Strong negative linear relationship, r = –0.9 Moderate negative linear relationship, r = –0.5

Moderate positive linear relationship, r = 0.5

Perfect negative linear relationship, r = –1

No apparent linear relationship, r = 0 Nonlinear relationship but no linear relationship, r = 0

Figure A.10 Some possible relationships between x and y.
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where s
x
 and s

y
 represent the standard deviation of the x‐variable and the y‐

variable, respectively. −1 ≤ r ≤ 1.

 ° In data mining, where there are a large number of records (over 1000), even 
small values of r, such as −0.1 ≤ r ≤ 0.1 may be statistically significant.

 ° If r is positive and significant, we say that x and y are positively correlated. 
An increase in x is associated with an increase in y.

 ° If r is negative and significant, we say that x and y are negatively 
 correlated. An increase in x is associated with a decrease in y.
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a priori algorithm, 47, 70, 199
accounting auditing purposes, 142
add_constant() command, 154
addmargins() command, 53, 123–4, 125
adult_ch6_test data set, 81
adult_ch6_training data set, 81, 82
aes() command, 58
Alcohol_flag, 115, 116, 117, 122, 124
All Negative Model, 77, 101, 109
All Positive Model, 77, 109
Anaconda software package, 9
apriori() command, 208, 210
A‐priori probabilities, 125
arules package, 204, 205
as.factor() command, 148
as.numeric() command, 36
association, 5, 7
association rules, 30

confidence difference criterion, 208–9
confidence of, 201
confidence quotient criterion, 209–10
confirming our metrics, 207–8
lift, 201–2
mining, 200, 202–6
support for, 200–201
valediction, 210

attributes, 215

backpropagation algorithm, 134
bank‐additional data set, 71
bank‐additional‐full.txt data set, 29
bank_marketing_test data set, 29, 31
bank_marketing_training data set, 22–3, 

29, 47, 49, 50
bank_train data set, 24, 25
bar chart, 218

bar() commands, 55, 57
bar graphs

best practices, 49
with response overlay, 47–51

from Python of age_binned, 61,  
62, 63

from R of age_binned, 59, 60
from R of previous_outcome, 47, 48
using Python, 49–50
using R, 50–51

in R of education variable, 36, 37
baseline model performance, 4, 78

for Binary Classification, 77
k‐nary classification, 77
for regression, 162–3

for estimation models, 163
final regression model, 163

Bayes theorem
marginal probability, 114
noninformative prior, 114
posterior probability, 114
predictor variable values, 113
prior probability, 114

best subsets regression, 161
using R, 162

between‐cluster variation, 142
Biggest Category Model, 77
binning

based on predictive value
using Python, 59–62
using R, 62–3

best practices, 59
BIRCH clustering, 142
bivariate relationship, 225
boxplot, 225
branches, 81

Index
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C5.0 algorithm
decision trees

using Python, 89–90
using R, 89, 90–91

R, evaluation measures of, 102, 103
CART see classification and regression tree 

(CART) model
cases or subjects, 215
categorical() command, 84
categorical data as numeric, reexpression of

using Python, 36–8
using R, 38–9

categorical variables see also qualitative 
variables

bar chart, 218
frequency (or count), 217, 218
(relative) frequency distribution, 217, 218
pie chart, 218

c() command, 24, 103
census, 217
class conditional independence, 114
classification, 5, 6–7
classification and regression tree (CART) 

model, 11
married node, 82–3
non‐married marital status node, 83
root node split, 82, 83–4
using Python, 84–6
using R, 86–8

clothing_data_driven_test data set, 101
clothing_data_driven_training data set, 103
clothing_sales_test data sets, 152, 154, 156, 

161, 189, 190, 191
clothing_sales_training data sets, 152, 154, 

156, 161, 189, 190, 191
clothing_store_PCA_test data sets, 175
clothing_store_PCA_training data sets, 175
clustered bar chart, 226
clustering, 5, 7, 30

accounting auditing purposes, 142
BIRCH, 142
gene expression, 142
hierarchical, 142
K‐means, 142–4
Kohonen networks, 142
target marketing, 141
validation, 144–5

colnames() command, 86
colnames() values, 204

columns of interest section, 25
column_stack() command, 56, 159
combination function, 131–3
components, 175
concat() command, 74
conditional independence, 118
conditional probabilities, 125
confidence difference criterion, 208–9

using R, 208–9
confidence of the rule, 209
confidence quotient criterion

using R, 209–10
contingency tables, 225, 226

best practices, 52
for evaluating model 1, 101
for evaluating model 2, 106
for evaluating model 3, 108
of sex and death, 136
using Python, 13–14, 52–3, 123
using R, 23–4, 53

continuous variable, 216
cor() command, 181
corr() command, 180
correlation coefficient, 227, 229
correlation matrix from Python, 180
credit card, 154, 157
crosstab() command, 13, 14, 49, 61
cross‐validation process, 3, 70
cumulative (relative) frequency distribution, 219
curvilinear behavior, 133
cut() command, 62

data, 216
data balancing, 3
data dredging, 70
data.frame() command, 85, 145, 160
data mining process, 142
data modeling, preparation

balancing training data set, 73–6
baseline model performance, 77–8
data partitioning, 69–72
Setup Phase, 69
validating your partition, 72

data partitioning, 69–72
data preparation

adding an index field
using Python, 31–2
using R, 32–3

bank marketing data set, 29
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changing misleading field values
using Python, 34
using R, 34–6

identifying outliers
using Python, 41–2
using R, 42–3

phase, 31
problem understanding phase

data science problem, 30
project objectives, 29–30

reexpression of categorical data as 
numeric

using Python, 36–8
using R, 38–9

standardizing the numeric fields
using Python, 40
using R, 40

data preparation phase, 2
data science, 1
data Science Methodology (DSM)

iterative and adaptive nature, 1, 2, 5
phases, 3

data preparation phase, 2
deployment phase, 5
evaluation phase, 4–5
exploratory data analysis phase, 3
modeling phase, 4
problem understanding phase, 2
setup phase, 3–4

data science tasks
association, 5, 7
classification, 5, 6–7
clustering, 5, 7
description, 5, 6
estimation, 5, 6
prediction, 5, 7

data scientists, 6
data summarization

of bivariate relationships, 225–9
building blocks of data analysis, 215–17
measures of center, 222–3
measures of position, 224–5
measures of variability, 223–4

days between purchase, 154
days_since_previous variable, 34, 35, 36
decision nodes, 81
DecisionTreeClassifier() command, 85, 90
decision trees, 30

C5.0 algorithm, 88–91

classification and regression trees, 83–8
random forests, 91–3

deployment phase, 5
describe() command, 146
description, 5, 6
descriptive regression modeling, 151–2
descriptive statistics, 6, 215
deviation, 223
dim() command, 32, 71
dimensionality, curse of, 167, 199
dimension reduction

components should extract, 176–7
Eigenvalue Criterion, 176–7
proportion of variance explained 

criterion, 177
curse of dimensionality, 167
double‐counting, 167
multicollinearity, 167, 168–74, 183–4
overfitting, 167
performing PCA with K = 4, 178
principal components analysis, 175–6, 

178–83
violates parsimony, 167

discrete variable, 216
distribution, 220
div() command, 50, 52, 53
dotplot, 220, 221
double‐counting, 167
drop() command, 180
dropna() command, 172
DSM see data Science Methodology (DSM)

EDA see exploratory data analysis (EDA)
education_numeric variable, 36, 37, 38, 39
education variable, 36, 37
Eigenvalue Criterion, 176–7
elements, 215
Empirical Rule, 224
ensemble method, 91
entropy of X, 88
estimation, 5, 6
evaluation phase, 4–5
exploratory data analysis (EDA), 30

bar graphs with response overlay, 47–51
binning based on predictive value, 58–63
contingency tables, 51–3
Framingham Heart Study, 136, 137
histograms with response overlay, 53–8
vs. HT, 47
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exploratory data analysis phase, 3
export_graphviz() command, 86, 90

final logistic regression model, 189
final regression model, 153, 159
final regression results

from R, 157
first quartile (Q1), 224
fit() command, 85, 155, 191, 194
five‐number summary, 225
Framingham Heart Study data, 136
Framingham_training data set, 137
frequency distribution, 218

gene expression clustering, 142
generalized linear models (GLM)

linear regression, 188
logistic regression, 188–92
Poisson regression, 192–5

geom_bar() command, 51, 58
geom_histogram() command, 58
get_dummies() command, 194
ggplot() code, 124
ggplot() command, 51, 57
ggplot2 package, 20–21
Gini criterion, 91
Gini Index, 83
GLM see generalized linear models (GLM)
GLM() command, 194
graphical data analysis, 47
grid.arrange() command, 124
gridExtra package, 124

head() command, 33, 42, 43, 205, 209
hierarchical clustering, 142
hist() command, 34, 35
histogram, 15, 220

best practices, 55
in Python, 35
in R, 33, 36, 39
with response overlay, 53–8

using Python, 55–7
using R, 54, 58

of Spyder, 16, 17
holdout data set, 70
homogeneity of proportions, test for, 72
HT see hypothesis test (HT)
hypothesis test (HT), 47

EDA vs., 47

ifelse() command, 35
“Import Dataset” window, 21, 22
importing packages

in Python, 11–12
in R, 20–21

index field, adding an, 31–3
using Python, 31–2
using R, 32–3

individual value plot, 227
information gain or entropy reduction, 

concept of, 88
inspect() command, 205, 209
install. packages() command, 20
interval data, 216
IQR, 225
IQR method for detecting outliers, 225

k‐fold cross‐validation, 70
K‐means clustering algorithm

application of, 143–4
using Python, 145–7
using R, 147–9

KMeans() command, 145, 147
Kohonen networks clustering, 142

leaf nodes, 81
legend() command, 55
levels() command, 39
library() command, 21
linear predictor, 187
linear regression

as general linear model, 188
link function, 187, 188
lm() command, 156
logistic regression, 30

application of, 189–92
as general linear model, 188–9
using Python, 190–191
using R, 191–2

Logit() command, 191

MAE() command, 161
marginal distribution, 226
maximum a posteriori hypothesis, 114
mean, 222
mean absolute error (MAE), 158,  

160, 161
measures of center, 222–3
measures of position, 224–5
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median, 222
metrics, 208

confidence, 207
lift, 207
support, 207

midrange, 222
mining association rules

“baseline” proportions, 202, 203
Churn_Training_File data set, 202
example of, 200
using R, 203–6

misleading field values, 33–6
histogram of days_since_previous, 33
using Python, 34
using R, 34–6

mode, 222
model evaluation

accounting for unequal error costs
adjusted cost matrix, 105
cost matrix, 104

application of, 100–104
predictors, 100

classification evaluation measures, 97–9
cost per record and profit per  

record, 106
data‐driven error costs

cost matrix, 107, 108
simplified, 108

method for, 100
metrics for all models, 109
precision, recall, and Fß scores, 99–100
sensitivity and specificity, 99
unequal error costs, comparing models, 

106–7
modeling phase, 4
model02.summary() command, 155
model02_test.summary() command, 155
multicollinearity, 167, 183–4

predictors from Python, 171
regression coefficients, 169–70
regression equation, 170
stable coefficient, 168
unstable regression models, 167
using Python, 172–3
using R, 173, 174
using variance inflation factors, 171–4
variable coefficient, 168–9

MultinomialNB() command, 11
multiple regression modeling

application of, 152–4
using Python, 153, 154–5
using R, 156–7

Naïve Bayes classification, 30
application of, 115–25
Bayes theorem, 113–14
class conditional independence, 114
maximum a posteriori hypothesis, 114
in Python, 121–3
in R, 123–5

naiveBayes() command, 124
nearly constant behavior, 133
nearly linear behavior, 133
net, 131
neural network model, 30, 70

application of, 134–6
backpropagation, 134
connection weights and combination 

function, 131–3
data inputs and initial values, 131
example of, 130
exploratory data analysis, 135–6
hidden layers and nodes, 130–131
interpreting weights, 136–7
net input, 131–2
output value, 132
in R, 137–8
real neuron and artificial neuron model, 

129, 130
sigmoid activation function, 133–4
sigmoid function, 132
structure, 129–31

completely connected network, 130
feedforward nature, 129
layered, 129

neuron model, real and artificial, 129, 130
nominal data, 216
normal distribution, 188
ntree, 93
NultinomialNB() algorithm, 122
numerical variables see quantitative 

variables
numpy packages, 11, 12, 34

OLS() command, 154–5
order() command, 42–3
ordered() command, 204
ordinal data, 216
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“Ordinary Least Squares” (OLS), 154
overfitting, 167

packages, 20
pandas package pd, 32
pandas packages, 11, 12, 32, 34
parameter, 217
Pareto chart, 218
parsimony, principle of, 167
PCA see principal components analysis 

(PCA)
PCA() command, 180
percentile rank, 224
pie chart, 218
plot() command, 49, 90, 182
plotnet() command, 138
Poisson regression model

application of, 192–5
structure of, 193
using Python, 193–4
using R, 194–5

population, 217
population mean, 222
population standard deviation, 223
population variance, 223
posterior distribution, 113, 119, 120
predict() command, 86, 91, 92, 103, 123, 

125, 159, 160
prediction, 5, 7
predictor variables, 154, 217
Previous_outcome, 47, 48, 49, 50
principal() command, 182
principal components analysis (PCA)

application of, 175–6
with K = 4, 178
predictor variables, 175
results from R, 176
R output, 179
using Python, 179–81
using R, 181–3
validation of, 178–9

prior distribution, 113, 119
problem understanding phase, 2

objectives into data science problem, 
translate, 30

project objectives, 29–30
prop.table() command, 63, 204
provisional regression equation, 152
pth percentile, 224

p‐values, 152, 189
Python, 40

adding an index field, 31–2
balancing the training data set, 74–5
bar graphs with response overlay, 49–50
basics of coding in

accessing records and variables in, 
14–15

button and hover text, 11
executing commands, 10–11
getting data into, 12–13
importing packages in, 11–12
saving output in, 13–14
setting up graphics in, 15–17
using comments, 9–10

binning based on predictive value, 59–62
C5.0 algorithm, 89–90
CART model, 84–6
categorical data as numeric, reexpression 

of, 36–8
contingency tables, 52–3
correlation matrix from, 180
downloading, 9
histogram with response overlay, 55–7
identifying outliers, 41–2
importing packages, 11–12
K‐means clustering algorithm, 145–7
logistic regression, 190–191
misleading field values, 34
model evaluation for estimation, 159–60
multicollinearity, 172–3
multiple regression modeling, 153, 154–5
Naïve Bayes classification, 121–3
PCA, 179–81
Poisson regression model, 193–4
random forests, 92
standardizing the numeric fields, 40

Python logistic regression, 190

qualitative variables, 215
quantitative variables, 215, 216

classes, 218
cumulative (relative) frequency 

distribution, 219
distribution, 220
dotplot, 220, 221
(relative) frequency distribution, 218–19
histogram, 220
skewed data, 221, 222
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stem‐and‐leaf display, 220, 221
symmetric distribution, 220, 221

query() command, 41

R
association rules, 209
bar graphs with response overlay, 50–51
basics of coding

accessing records and variables in, 24–5
executing commands, 20
getting data, 21–3
importing packages, 20–21
saving output, 23–4
using comments, 19

best subsets regression, 162
binning based on predictive value, 62–3
C5.0 algorithm, 89, 90–91
categorical data as numeric, reexpression 

of, 38–9
confidence difference criterion, 208–9
confidence quotient criterion, 209–10
contingency tables, 53
downloading, 17–19
final regression results, 157
histogram with response overlay, 58
importing packages, 20–21
index field, adding an, 32–3
K‐means clustering algorithm, 147–9
logistic regression, 191–2
mining association rules, 203–6
misleading field values, 34–6
multicollinearity, 173, 174
multiple regression modeling, 156–7
Naïve Bayes classification, 123–5
neural network model, 137–8
numeric fields, standardizing, 40
outliers, identifying, 42–3
PCA, 181–3
Poisson regression model, 194–5
random forests, 92–3
stepwise regression, 162
training data set, 75–6

R2, 159
R2adj (Adjusted R‐squared), 160, 161
RandomForestClassifier() command, 92
random forests, 30

in Python, 92
in R, 92–3

random sample, 217

range, 223
range() command, 32
ratio data, 216
rbind() command, 76, 204
R C5.0 model, evaluation measures, 102
read_csv() command, 11, 12, 23, 31
regression coefficients, 154
regression modeling

baseline models for regression, 162–3
descriptive regression modeling, 151–2
model evaluation for estimation

estimation model metrics, 158
using Python, 159–60
using R, 160–161

multiple (see multiple regression 
modeling)

results from R, 157
stepwise regression, 161–2

regression trees, 83–8
relative frequency distribution, 217, 218–19
resampling, 73
response overlay

bar graphs with, 47–51
histograms with, 53–8

response values, 101
after rebalancing, 75

response variable, 217
root node, 81
rotated component matrices, 178
round() command, 53, 181, 204
Rstudio, 19–25
RStudio window, 18, 19
runif() command, 72

sales_test data set, 156
sample, 217
sample() command, 74
sample mean, 222
sample standard deviation, 223
sample variance, 223
scale() command, 147
scatter_matrix() command, 172
scatter plot, 227, 228
second quartile (Q2), 224
Series() command, 32
set.seed() command, 71
setup phase, 3–4, 69
sigmoid activation function, 132–3
skewed data, 221, 222
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skewness, 222–3
sklearn, 121
sklearn.naive_bayes package, 11
sklearn package, 89
sort_values() command, 41
Spyder

graphical output in, 16, 18
histogram, 15, 17
Preferences window, 16, 17

Spyder compiler, 9
Spyder window, 10
“SS loadings,” 176
state‐of‐the‐art algorithms, 4
statistic, 217
statistical inference, 217
stats.zscore command, 145
stem‐and‐leaf display, 220, 221
stepAIC() command, 162
stepwise regression, 161–2

using R, 162
subset() command, 204
Sugar_flag, 115, 116, 117, 124
sum() command, 52, 53, 61
summary() command, 148, 155, 156, 160, 

191, 195
summary2() command, 191
summation notation, 222
sum of squared errors (SSE), 134
symmetric distribution, 220, 221

table() command, 63, 104, 204
target marketing, 141
target variable, 154
test data set, 70
third quartile (Q3), 224
title() command, 55
training data set, 70, 73–6

in Python, 74–5
in R, 75–6

training minus test sets, 145
t‐test, two‐sample, 72
twofold cross‐validation, 70

unbiased estimator, 223
unrotated component matrices, 178
upper crust, 141

validating your partition, 72
value_counts() command, 74
variables, 215

qualitative, 215
quantitative, 215, 216

variance, 223
variance_inflation_factor()  

command, 173
variance inflation factors (VIFs), 171–2, 

173, 176
variance, proportions of, 178
varimax rotation, 178
vif() command, 173, 181
visualization

of bivariate relationships, 225–9
graphs and tables for summarizing 

and organizing data,  
217–22

categorical variables, 217–18
quantitative variables, 218–22

Web Account, 152, 153, 190
which() command, 42, 75
white_ wine_test data sets, 143, 144
white_wine_training data sets, 143, 144, 

145, 147
wine_flag_test data set, 115, 120
wine_flag_training data set, 115, 120

xlabel() command, 55

“yes” responses, percentage of, 74–5
ylabel() command, 53, 55
ypred values, 103, 104, 125, 160

zscore() command, 40
z‐score transformation, 145, 224
Z‐test, two‐sample, 72


