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April 14, 2013 marked the 10th anniversary of the completion of the 
Human Genome Project. In just 10 years the field of genomics— 
the scientific study of genomes, their complete DNA sequences, and 
the functional interaction of their genes—has flourished as a result 
of high throughput technologies to generate, analyze, and interpret 
genome-derived data efficiently and cost-effectively. A broad aspira-
tion of the Human Genome Project has been the concept of personal-
ized medicine—a rapidly advancing field of health care that is 
informed by a person’s unique clinical, genetic, genomic, and envi-
ronmental information.1 Personalized medicine seeks to couple 
established clinical-pathologic indices with state-of-the-art molecular 
profiling to create diagnostic, prognostic, and therapeutic strategies 
precisely tailored to each patient’s requirements—hence the term 
precision medicine. Although this concept is not entirely new, many 
patients and providers have had great expectations that the genome 
would enable the development of novel diagnostic and predictive 
tests as well as therapies based on an individual’s genetic informa-
tion. This chapter presents a broad overview of the potential of per-
sonalized medicine. Subsequent chapters (Chapters 8 to 10, and 
42) will elaborate specific approaches to various aspects of personal-
ized medicine.

This decade also marks the 50th anniversary of the introduction of 
the term “factor of risk,” coined by William Kannel, principal investi-
gator of the Framingham Heart Study (FHS).2 The risk factors for 
developing coronary artery disease (CAD)—male sex, hypertension, 
diabetes mellitus, increased low-density lipoprotein (LDL) choles-
terol, tobacco use, and family history of heart disease—remain foun-
dational for stratifying individuals to therapeutic strategies based on 
their risk of developing CAD. The FHS was among the first studies to 
illustrate the benefit of data integration to achieve refined risk clas-
sification. The massive and comprehensive collection of clinical and 
biologic data associated with the outcome of coronary disease 
enabled development of the Framingham predictive models3 and the 

resulting Framingham risk score (FRS).4 Today, it is anticipated that 
the inclusion of data that address the subtle distinctions in individuals 
revealed through genomic analyses might greatly enhance this 
prediction—a concept that has stimulated the development of 
genomic risk scores (GRSs) combined with the FRS (see later in this 
chapter) to enhance predictive accuracy. The opportunity for impact 
on clinical decision making offered by genome technologies lies in 
increased resolution: the potential to improve a person’s placement 
on the complex, multidimensional risk spectrum based on detailed, 
individual molecular characteristics on a genomic scale. The FHS 
example emphasizes the value of making use of the full spectrum of 
available clinical and demographic data; the genomic era simply 
expands this view toward integrated approaches that embrace and 
exploit genomic data in conjunction with other data.

ASSESSMENT OF DISEASE RISK: FAMILY 
HEALTH HISTORY AND HEALTH RISK 
ASSESSMENTS

Several approaches to risk assessment for cardiovascular disease 
have emerged that, if routinely used, might impact our ability to tailor 
chronic disease prevention strategies to the individual and promote 
improved cardiovascular public health. These include the FRS,4 the 
Reynolds risk score,5 and the European Society of Cardiology score.6 
My colleague and I proposed a framework that includes family 
history assessment to identify high-risk persons for disease, thus 
enabling preventive and therapeutic interventions.7 Family health 
history (FHH) is a simple yet invaluable tool for the delivery of per-
sonal health risk information. Reflecting the complex combination of 
shared genetic, environmental, and lifestyle factors, a thorough FHH 
can approximate genetic/genomic risk information for integration 
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Whole-Genome Sequencing
Advances in sequencing technologies have reduced costs such that 
a human genome can now be sequenced for less than $5000, and 
may be at the $1000 level in the coming year.12 At this cost, sequencing 
a patient’s genome will fall within the range of DNA-based diagnostic 
tests. More than 30,000 human genomes13 have now been sequenced 
and applied to elucidation of the biology and diagnosis of malignan-
cies, rare genetic diseases, and microbial infections.14-16 Whole-
genome sequencing also has advanced to the clinic, where it permits 
definitive diagnosis and even guides treatment.17-19 Although these 
approaches have yielded success when applied to mendelian disor-
ders and cancer, methods for identifying rare variants for common 
diseases such as CAD are still nascent.20

GENE EXPRESSION

The genome-wide study of RNA expression levels includes a spec-
trum of molecules from mRNA to noncoding RNAs. Microarrays and 
RNA sequencing now can assay the entire complement of RNA 
expressed in a cell, tissue, or biologic fluid. Clustering of co-expressed 
genes using parametric or nonparametric methods provides the foun-
dation for generating a “pattern” or “signature” of gene expression 
that is associated with a phenotype or physiologic state. These 
methods have been applied to classify a disease or to predict future 
disease states; the same data may also serve to generate molecular 
pathway information for the biologic mechanisms underlying disease. 
Two recent reviews nicely summarize the emerging gene expression–
derived biomarkers for clinical applications in cardiovascular 
medicine.21,22

A surprising feature of the transcriptome is the significance of 
noncoding RNAs in the regulation of genes. Of particular interest are 
the expression patterns of small interfering RNAs (siRNAs) and 
microRNAs (miRNAs). Whereas siRNAs interfere with transcription 
through degradation of the message RNA, miRNAs work differently. 
The latter are usually 22 nucleotides in length, and through an 
miRNA-induced silencing complex, they inhibit gene expression on 
a post-transcriptional level by binding to complementary 3′ untrans-
lated regions (UTRs) of target mRNA.23 The miRNAs play a role in 
several diseases and are advancing to clinical application in acute 
coronary syndromes,24 acute myocardial infarction (MI),25 cardiomy-
opathies,26 type 2 diabetes,27 hypertension,28 and heart failure.29 
Most of these studies are small and require validation in larger 
populations.

Proteomics
Proteomics refers to the large-scale study of proteins, and the pro-
teome often is considered to embody the full complement of proteins 
and their various derivatives (e.g., splice variants or post-translational 
modification) (see also Chapter 10). In the context of health and 
disease, proteomics seeks to define the full set of proteins associated 
with a particular physiologic state. Although this technology is rela-
tively immature in its applications to human health and disease com-
pared with RNA and metabolic profiling, application of these 
methods, combined with the development of mass spectroscopy 
technology, should advance proteomics to more routine use in 
disease classification and diagnosis, prognosis, and pharmacoge-
nomics within the next several years.

Metabolomics
Metabolomics measures the approximately 5000 discrete small mol-
ecule metabolites and allows the identification of metabolic finger-
prints for specific diseases. This technology may have practical  
use in the development of therapies, because metabolic changes  
immediately suggest enzymatic drug targets (see also Chapter 10). 
Similar to genomics and proteomics, metabolomics may be useful  
in disease diagnosis, prognosis, and drug development. Targeted 

into patient care. FHH assessments can identify persons at higher risk 
for common chronic diseases, enabling preemptive and preventive 
steps including lifestyle changes, health screenings, testing, and early 
treatment as appropriate.

Systematic collection of FHH for cardiovascular risk assessment 
was recently implemented in 24 family practices in the United 
Kingdom using a pragmatic cluster randomized controlled trial 
design, and demonstrated a highly significant (40%) increase in the 
identification of individuals at high risk.8 This was the first rigorously 
designed prospective study to show that the collection and use of 
FHH in a primary care setting can improve risk stratification for car-
diovascular disease and health behaviors. Thus, ascertainment of 
FHH data is a feasible practice-level intervention that could improve 
cardiovascular risk assessment and help target patients who most 
need preventive interventions.

Family history and genomic testing are complementary tech-
niques for evaluating health risks.9 Rather than choosing between the 
two, an approach that incorporates both types of information, in 
addition to nongenetic risk factors, promises the most accuracy. The 
combination of detailed family history, medical history, clinical eval-
uation, and genome sequence information, as exemplified by the 
ClinSeq Project at the National Human Genome Research Institute 
(NHGRI),10 may eventually provide the most accurate cardiac risk 
prediction.

A GENOMIC TOOLBOX FOR PERSONALIZED 
AND PRECISION MEDICINE

Several genome-wide technology platforms are now routinely avail-
able for the exploration of the impact of the genome and its expressed 
products on health and disease states (see also Chapter 8). Concur-
rently, several cohort studies with longitudinal clinical data and  
biologic specimens sponsored by the National Heart, Lung, and 
Blood Institute (NHLBI) provide the opportunity for molecular analy-
ses, disease classification, and predictive modeling. These include 
the FHS, the Coronary Artery Risk Development in Young Adults 
(CARDIA) study, the Atherosclerosis Risk in Communities (ARIC) 
study, the Jackson Heart Study (JHS), the Women’s Health Initiative 
(WHI) study, the Cardiovascular Health Study (CHS), and the Multi-
Ethnic Study of Atherosclerosis (MESA). These powerful longitudinal 
studies and their clinical data and biospecimens can be accessed  
via the NHLBI’s BioLINCC program (https://biolincc.nhlbi.nih.gov), 
which contains a vast catalog of biospecimens resources that can be 
used to facilitate population genomics, using the tools outlined 
below. The discovery and development of genome-based biomarkers 
requires high-quality biospecimens linked to exquisitely defined phe-
notypes, assayed using one or more genome-based technologies. 
Their translation to clinical application forms the basis for personal-
ized medical care.

DNA Variation
Genome-wide association studies (GWASs) emerged in 2005 as an 
unbiased strategy to provide information on common DNA variants 
associated with complex phenotypes. GWASs are predicated on the 
common disease–common variant hypothesis, which postulates that 
common diseases result from many disease-influencing alleles that 
occur at relatively high frequencies in the population, but individually 
have little predictive value. Nineteen published GWASs on CAD  
are recorded in the NHGRI Catalogue of GWASs (http://www.
genome.gov/26525384), the largest being a meta-analysis of 63,746 
CAD cases and 130,681 control cases.11 The total number of loci for 
CAD now exceeds 46. These loci encompass genes related to lipid 
metabolism and other CAD risk factors, but some novel loci—such 
as the region on chromosome 9 near the genes CDKN2A/CDKN2B—
represent truly novel risk variants that will advance our understand-
ing of the mechanisms underlying CAD. Together, these variants 
account for less than 10% of the heritability of CAD, suggesting the 
involvement of genetic factors beyond common variants.
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Heart Failure
Increasingly detailed characterization of gene expression from dis-
eased tissues and circulating cells from animals and patients are 
providing new insights into the pathophysiology of heart failure (HF) 
that permit identification of novel diagnostic and therapeutic targets. 
Differential gene expression profiles for failing and nonfailing hearts 
have already identified types of HF with different causes.37 Gene 
expression profiles usually compare matched pairs of samples, such 
as nonfailing versus failing hearts, ischemic versus nonischemic 
hearts, male versus female failing hearts, or atria versus ventricles of 
failing hearts. This approach identified cardiac myosin light chain 
kinase (MLCK) as an HF-related gene by correlating expression levels 
with the severity of HF; further investigations confirmed the impor-
tance of cardiac MLCK in HF. A robust gene expression signature 
composed of 27 genes emerged from analysis of four independent 
microarray data sets from evaluation of the failing myocardium of 
dilated cardiomyopathy.38 Among these genes are several associated 
with mitochondrial dysfunction and oxidative phosphorylation,  
as well as three extracellular molecules, including periostin, pleiotro-
phin, and SERPINA3—some of which may become novel diagnostic 
and therapeutic targets for HF. Although the complexity of genomic 
and transcriptional profiling may be challenging to use in the clinic, 
advances in clinical information technology and user interfaces  
(see were later in this chapter) should permit greater individualiza-
tion of prevention and treatment strategies to personalize the treat-
ment of HF.39

Arrhythmias
Inherited arrhythmia syndromes and forms of structural heart disease 
cause arrhythmias and sudden cardiac death (see also Chapters 9 
and 33). Genetic testing for these conditions is among the most clini-
cally advanced areas of personalized and precision cardiovascular 
medicine. Tests for several arrhythmia syndromes are currently avail-
able through qualified laboratories including Correlagen, Familion/
Transgenomic, GeneDx, and Partners Healthcare. A definitive genetic 
diagnosis for the cause of a rhythm disorder may help to direct  
clinical recommendations, which include periodic follow-up, avoid-
ing medications that may exacerbate the condition, and avoiding 
strenuous activities such as competitive sports. In addition, specific 
genetic diagnoses may guide therapies, such as the use of beta block-
ers in long-QT syndrome and recommendations for an implantable 
cardioverter-defibrillator.

Current clinical practice guidelines recommend screening of 
asymptomatic first-degree relatives and all potentially symptomatic 
relatives of patients with a known inherited arrhythmia. Identification 
of a causative gene in a proband should prompt genetic screening of 
family members, although insurance carriers may not reimburse for 
the genetic screening of asymptomatic patients. The greatest use for 
genetic testing at present lies in the ability to define, in a family with 
an inherited condition of known genetic etiology, unaffected persons 
who therefore require no further clinical follow-up and cannot pass 
the condition to their children.

Cardiac Transplant Rejection
Profiling of patients after cardiac transplantation is altering clinical 
decision making and management of allograft rejection. Standard 
protocols after heart transplantation require patients to undergo 
serial endomyocardial biopsies as a means to monitor rejection and 
to guide immunosuppressive therapy. Horwitz and associates dem-
onstrated that gene expression profiles of peripheral blood mono-
nuclear cells (PBMCs) might provide an alternative approach to the 
diagnosis of allograft rejection.40 Patients who subsequently devel-
oped acute rejection had a distinct genomic profile compared with 
patients without any rejection, and after treatment for rejection, a 
majority (98%) of differentially expressed genes returned to baseline. 
The CARGO (Cardiac Allograft Rejection Gene Expression Observa-
tional) study prospectively investigated gene expression analysis 

mass spectroscopy–based metabolic profiling has been applied  
to cardiovascular disease to classify CAD and to predict ischemic 
events.30,31

PERSONALIZED AND PRECISION 
CARDIOVASCULAR MEDICINE:  
CLINICAL POTENTIAL

Hypertension
Genetic variants associated with blood pressure (BP) that robustly 
replicate have finally emerged from GWASs. The single-nucleotide 
polymorphisms (SNPs) discovered have mainly been common vari-
ants (minor allele frequency [MAF] of ≥5%), with small effect sizes 
(mostly ≤1 mm Hg for systolic BP [SBP] and ≤0.5 mm Hg for diastolic 
BP [DBP]), and they collectively have explained only a small propor-
tion (3% to 4%) of BP heritability. A recent GWAS investigated asso-
ciations with SBP, DBP, mean arterial pressure (MAP), and pulse 
pressure (PP) by genotyping some 50,000 SNPs that capture varia-
tion in approximately 2100 candidate genes for cardiovascular phe-
notypes in 61,619 persons of European ancestry from cohort studies 
in the United States and Europe. Novel associations were identified 
for SBP (chromosomal locus 3p25.3 in an intron of HRH1; and 11p15 
in an intron of SOX6, previously associated with MAP) and for DBP 
(1q32.1 in an intron of MDM4). Ten previously known loci associ-
ated with SBP, DBP, MAP, or PP were confirmed (ADRB1, ATP2B1, 
SH2B3/ATXN2, CSK, CYP17A1, FURIN, HFE, LSP1, MTHFR, SOX6; 
P < 2.4 × 10−6).32 These results represent a major advance in view of 
the fact that just a few years ago, almost no specific details were 
known about the genetic architecture of hypertension beyond the 
mendelian disorders. The results of ongoing fine-mapping studies  
of BP loci and sequence-based discovery of rare variants in extreme 
hypertensive cases and normotensive controls will provide further 
insights into the underlying genetic causes of BP, with the poten-
tial for improvement in the means for predicting and stratifying 
hypertension.

Coronary Artery Disease and  
Myocardial Infarction
As indicated previously, recent studies have identified a growing 
number of CAD-related and MI-related SNPs, and their results have 
stimulated additional studies to explore the value of these SNPs for 
risk prediction. Paynter and associates assessed the relationship of 
101 SNPs to CAD in a cohort of 19,000 women, followed for 12 years, 
from the Women’s Genome Health Study.33 A GRS based on these 
101 SNPs revealed a significant relationship between higher GRS and 
CAD, but failed to add incremental value to existing clinical models. 
Another GRS based on the counting of the number of “adverse” 
alleles influencing lipids has been shown to enhance risk prediction 
compared with measurement of lipids alone.34 Clinical adoption of 
GRS for CAD risk prediction will require unequivocal evidence that 
genotype predicts CAD, even after adjustment for plasma lipids and 
other known CAD risk factors.

Accompanying the transformative discoveries on genetic suscepti-
bility variants just described are additional predictive CAD and MI 
biomarkers emerging from the expressed genome. Rosenberg and 
colleagues found that the gene expression signature of 23 genes 
obtained from the peripheral blood of nondiabetic patients undergo-
ing coronary angiography for acute chest pain permitted reclassifica-
tion of the risk of having CAD, at a rate of approximately 20% of that 
for traditional clinical models.35 The negative predictive value of 83% 
for the gene expression assay compared favorably with typically used 
clinical tests such as myocardial perfusion imaging. In addition, 
Voora and co-workers recently reported the development of an RNA 
signature associated with the platelet response to aspirin and the 
ability of that same signature to predict acute coronary syndromes in 
two cohorts.36
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been identified that are associated with commonly used cardiovas-
cular medications (Tables 7-2 to 7-4).43 Presented next is an over-
view of the current status for the pharmacogenetics of statins, 
warfarin, and clopidogrel.

Statins (see Table 7-2).  Genetic testing for statin efficacy is not 
likely to enter clinical care, because the magnitude of association is 
small (approximately 10% to 15% differences in LDL cholesterol lower-
ing), and physicians can reasonably forecast the magnitude of LDL 
cholesterol lowering based on statin type, dose, and baseline LDL 
cholesterol. By contrast, statin-induced side effects and nonadherence 
are less predictable. The solute carrier organic anion transporter family, 
member 1B1 gene (SLCO1B1, also referred to as SLC21A6, OATP-C, or 
OATP1B1) harbors a genetic variant, the *5 variant (rs4149056, 
Val174Ala), that interferes with the localization of this transporter to 
the hepatocyte plasma membrane,44 leading to higher plasma statin 
concentrations.45-47 In candidate gene studies and GWASs, carriers of 
*5 have a fourfold to fivefold increased risk for severe, creatine kinase 
(CK)-positive simvastatin-induced myopathy, and a twofold to three-
fold increased risk for CK-negative myopathy.48,49

In trials of randomly assigned statins and in observational studies, 
the risk for myopathy with *5 depends on the statin type: The risk is 
greatest for simvastatin > atorvastatin > pravastatin, rosuvastatin, 
or fluvastatin.49,50 These effects parallel the influence of the *5 
allele on the clearance of these statins,45,47 and thus appear to be 
statin-specific.

Clinical guidelines do not currently recommend prospective geno-
typing for SLCO1B1*5 based on the current levels of evidence, but the 
test is currently offered on consumer-directed genotyping platforms, 

TABLE 7-1  Sources of Pharmacogenetic Variation

CATEGORY DESCRIPTION TYPES OF GENES EXAMPLE DRUGS WITH: GENES

Pharmacokinetic Variability in the concentration of 
drug at the site of drug effect

Drug-metabolizing enzymes
Drug transporters

Warfarin: CYP2C9
Clopidogrel: CYP2C19
Simvastatin: SLCO1B1
Metoprolol: CYP2D6

Pharmacodynamic Variability in the drug ability to 
influence its target

Transmembrane receptors
Intracellular enzymes

Clopidogrel: P2RY12
Simvastatin: HMGCR
Metoprolol: ADBR1

Underlying disease Variability in the disease being treated Often downstream or 
independent of drug target

HCTZ: ADD1
Simvastatin: APOE

HCTZ = hydrochlorothiazide.
Modified from Voora D, Ginsburg GS: Clinical application of cardiovascular pharmacogenetics. J Am Coll Cardiol 60:9, 2012.

TABLE 7-2  Genetic Associations with the Response to Statins

GENE VARIANT(S)
STATIN 

RESPONSE
STATIN 
TYPE

APOE ε2, ε3, and ε4 
haplotypes 
defined by 
alleles at rs7412

rs429358

LDL cholesterol 
lowering

Class effect

HMGCR H7 haplotype 
defined by 
alleles at 
rs17244841, 
rs17238540, 
and rs3846662

LDL cholesterol 
lowering

Simvastatin

SLCO1B1 rs4149056 Musculoskeletal 
side effects

Simvastatin, 
atorvastatin

SLCO1B1 rs4149056 Nonadherence Simvastatin, 
atorvastatin

Modified from Voora D, Ginsburg GS: Clinical application of cardiovascular phar-
macogenetics. J Am Coll Cardiol 60:9, 2012.

TABLE 7-3  Genetic Associations with the Response 
to Clopidogrel

GENE VARIANT(S) DRUG RESPONSE

CYP2C19 *2 (rs4244285) Drug concentration, 
platelet function, 
recurrent MI, stent 
thrombosis

CYP2C19 *17 (rs3758581) Drug concentration, 
platelet function, 
bleeding

ABCB1 T-T-T haplotype defined by T 
allele at C1236T (rs1128503), 
G2677T (rs2032582), and 
C3435T (rs1045642)

Drug concentration, 
platelet function, 
recurrent MI, stroke, 
death

P2RY12 F haplotype defined by 
following alleles: rs6798347, 
rs6787801, rs9859552, 
rs6801273, rs9848789, and 
rs2046934

Inhibition of platelet 
function

MI = myocardial infarction.
Modified from Voora D, Ginsburg GS: Clinical application of cardiovascular phar-
macogenetics. J Am Coll Cardiol 60:9, 2012.

from PBMCs as a diagnostic tool to predict transplant rejection.41 
From the core group of 11 genes associated with immune response 
pathways, which were identified by quantitative real-time polymerase 
chain reaction (RT-PCR) and assigned weighted scores, the CARGO 
investigators were able to predict rejection with a sensitivity and 
specificity of 80% and 60%, respectively.42 This study provided proof-
of-concept that expression profiling of 11 genes in PBMCs could 
predict acute rejection pathways in cardiac transplant recipients. One 
important implication is that blood genomic profiling can provide a 
sensitive marker for transplant rejection,41 potentially guiding surveil-
lance and therapeutic management.

Pharmacogenetics
The use of genetic variation to identify subgroups of patients who 
may respond differently to certain medications represents the leading 
edge of personalized and precision medicine. Since its first descrip-
tion, the field of pharmacogenetics has expanded to study a broad 
range of cardiovascular drugs, and has become a mainstream 
research discipline (see also Chapter 9). Three principal classes of 
pharmacogenetic markers have emerged: (1) pharmacokinetic, (2) 
pharmacodynamic, and (3) underlying disease mechanism. Signifi-
cant advances have identified markers in each class for a variety of 
therapeutics, some with the potential to improve patient outcomes 
(Table 7-1). Although ongoing clinical trials will determine the 
potential benefits of routine pharmacogenetic testing, current data 
support pharmacogenetic testing for certain variants on an individu-
alized, case-by-case basis. Major pharmacogenetic variants have 
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and is being provided to clinicians as part of the National Institutes of 
Health (NIH) eMERGE program.51 A potential strategy for prospective 
SLCO1B1*5 testing might recommend pravastatin, rosuvastatin, or 
fluvastatin as first-line agents for carriers, because these drugs seem 
to depend the least on SLCO1B1 for their clearance.

Clopidogrel (see Table 7-3).  The CYP2C19*2 allele is associated 
with a graded risk of death, MI, or stroke. Carriers of one allele (inter-
mediate metabolizers) have an approximately 1.5-fold increased risk, 
and carriers of two alleles (poor metabolizers) experience a 1.8-fold 
increase. This pattern also extends to stent thrombosis, with an 
approximately 2.6-fold and 4-fold increased risk in persons with one 
and two *2 alleles, respectively.52-57 The CYP2C19 genetic associations 
with platelet function correlate with the clinical response to clopido-
grel in the setting of percutaneous coronary intervention (PCI). These 
observations formed the foundation for the U.S. Food and Drug 
Administration’s (FDA) updating the clopidogrel label to include phar-
macogenetic information. Despite having an FDA “black box warning” 
for efficacy in individuals carrying the CYP2C19 genetic variant, its 
adoption in practice has lagged.

Warfarin (see Table 7-4).  The response to warfarin has strong 
genetic associations with CYP2C9, VKORC1, and CYP4F2 variants. 
Commercial testing and algorithms (e.g., see www.warfarindosing.org) 
can assist in the interpretation of genotypes. Evidence to justify and 
tools to enable genotype-guided warfarin therapy are thus well rec-
ognized. Until large-scale trials demonstrate a benefit for routine 
testing, physicians may choose to pursue testing in selected patients 
in whom it may be beneficial, for (1) diagnosing those with 

TABLE 7-4  Genetic Associations with the Response 
to Warfarin

GENE VARIANT(S) DRUG RESPONSE

CYP2C9 *2 (rs1799853)
*3 (rs1057910)

Drug concentration, warfarin 
dose requirements, out-of-
range INR values, hemorrhage

VKORC1 −1639 (rs9923231) Warfarin dose requirements, out-
of-range INR values

CYP4F2 rs2108622 Warfarin dose requirements

INR = international normalized ratio.
Modified from Voora D, Ginsburg GS: Clinical application of cardiovascular phar-
macogenetics. J Am Coll Cardiol 60:9, 2012.

complications from warfarin therapy (e.g., hemorrhage); (2) predicting 
dose for those at high risk of bleeding (e.g., “triple therapy” with 
aspirin, clopidogrel, and warfarin); or (3) weighing the costs of newer 
anticoagulants against warfarin.

For cardiovascular pharmacogenomics, the pace of genetic discov-
ery has outstripped the generation of evidence justifying its clinical 
adoption for many of the findings to date. Until the evidentiary gaps 
are filled, however, clinicians may choose to target therapeutics to 
individual patients whose genetic backgrounds indicate that they 
stand to benefit the most from pharmacogenetic testing.

TABLE 7-5  Barriers and Solutions to Implementing Personalized and Precision Cardiovascular Medicine

CHALLENGE ISSUE(S) POTENTIAL SOLUTIONS

Evidentiary framework Evidence of clinical validity and utility of genomic 
and predictive tests is key for FDA approval, 
insurance coverage, and physician uptake.

Randomized clinical trials (RCTs), the current gold 
standard for demonstrating clinical validity and 
utility, are expensive and time-consuming.

•	 Public-private consortia of stakeholders to pool resources and 
validate genomic biomarkers, e.g., the Biomarker Consortium 
between government and pharmaceutical companies

•	 Tailoring thresholds of evidence according to potential benefits 
and risks of the test

•	 Conducting pragmatic clinical trials (PCTs) in circumstances in 
which RCTs are not feasible

•	 Use of comparative effectiveness research to systematically 
evaluate data from real-world clinical practice setting

Diffusion of innovation Health care providers need to know what tests 
are available and the evidence supporting their 
use.

•	 Access to Genetic Testing Registry (http://www.ncbi.nlm.nih.gov
/gtr/), GAPPKB (http://www.hugenavigator.net/GAPPKB/home
.do), and PharmGKB (http://www.pharmgkb.org/) for 
information on available genomic tests

•	 CPIC (http://www.pharmgkb.org/page/cpic), EGAPP 
(http://www.egappreviews.org/), PloS Currents (http://
currents.plos.org/) for systematically reviewing tests and 
developing guidelines and recommendations on their use

Clinical implementation Integration of genomic testing into current 
systems of health care delivery requires 
fundamental changes to medical infrastructure, 
including broad access to CLIA-certified labs, 
different methods for tissue handling, and 
electronic health records with the capacity 
to access genomic data and deliver clinical 
decision support.

•	 Plug-and-play bioinformatic support tools developed by 
sequencing companies and commercial vendors of electronic 
health records

•	 Self-management of genomic data in personal health records 
such as Microsoft Health Vault and Dossia

•	 National, standardized technical architecture for integrating 
clinical decision support into electronic health records being 
developed by HL-7

•	 Open access clinical decision support repositories

Regulation Define the evidence required for approval of 
genomic and predictive test.

See “Evidentiary framework” section of this table

Coverage and reimbursement Define the evidence required for approval of 
genomic and predictive test.

See “Evidentiary framework” section of this table

Ethical issues Return of incidental findings to patients is a new 
concern with next-generation sequencing.

•	 NHGRI-sponsored, ClinAction (http://www.genome.gov/
27546546), to devise a plan for systematically evaluating and 
cataloguing genetic variants based on their clinical actionability

•	 Position statements developed by professional organizations on 
return of incidental findings

Education Need for physician training and knowledge in 
genomic medicine.

Need for patient understanding of genomic tests.

•	 Genomic medicine courses, CME offered at many medical 
schools

•	 Programs for primary and secondary education in genomics 
(e.g., GEON, GenEd)

CLIA = Clinical Laboratory Improvement Amendment; CME = continuing medical education; HL-7, Health Level Seven International [global authority on standards for 
interoperability of health information technology].
Modified from Manolio TA, Chisholm RL, Ozenberger B, et al: Implementing genomic medicine in the clinic: the future is here. Genet Med 10:157, 2013.
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BARRIERS AND SOLUTIONS TO THE 
INTEGRATION OF GENOMICS INTO 
CARDIOVASCULAR MEDICINE

The implementation and adoption of personalized and precision car-
diovascular medicine in practice will require several key strategies.58 
One such strategy is the development of enabling infrastructure at 
the level of specialized laboratory resources (i.e., coordinated bio-
banking linked to clinical data; informatics support and standards; 
easy access to genome-wide technologies and core laboratories). In 
addition, considerable bioinformatics and information technology 
development is required to make use of the deluge of data that is 
emerging from these resources: informatics and statistical specialists 
who can analyze complex multidimensional data; reliable, interoper-
able electronic health records linked to molecular data; integration 
of research, clinical, and molecular data; and clinical decision 
support. Moreover, there is a critical shortage of physicians trained 
in quantitative skills and decision analysis (understanding of human 
behaviors and decision making; elucidation of the biologic, psycho-
logical, and social factors in decision making). Further integration of 
personalized medicine into the clinical workflow requires overcom-
ing several key barriers,59 including the development of evidence to 
support personalized and precision medicine technology use in clini-
cal care, provider understanding and acceptance of these technolo-
gies, implementation and integration into clinical workflows, 
standards for regulation and reimbursement, and education of 
patients and providers on the benefits and risks of genomic testing 
(Table 7-5).

FUTURE PERSPECTIVE: TOWARD 
PERSONALIZED AND PRECISION 
CARDIOVASCULAR MEDICINE

Cardiovascular medicine is poised to become more personalized and 
precise through the translation of genome-based discoveries to clini-
cal practice. Several parallel approaches should speed the elucida-
tion of the genomic basis of many cardiovascular diseases. Rare 
susceptibility variants will rapidly be identified through exome and 
whole-genome sequencing programs. Detailed cataloging of tissue-
specific expression profiles—including the transcriptome, proteome, 
and metabolome—will yield important insight on the intrinsic 
biology of disease, along with the environmental and lifestyle impacts 
on disease. “Framingham 2.0” represents a model that incorporates 
genomics fully into longitudinal population studies with detailed 
environmental and geospatial data. The complete integration of 
genomics and electronic health records is another critical innovation 
required for a truly systems medicine approach that delivers genetic 
and genomic biomarkers for potential clinical use. The clinician, fully 
armed with the knowledge, informatics, and clinical decision support 
to interpret and use complex data, will be an essential facilitator of 
personalized and precision cardiovascular medicine and the 
improvement of cardiovascular public health.
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As physicians, we seek to understand the root cause of human 
disease. Human genetics provides a unique tool for generating new 
hypotheses about the root causes of disease based on genome-wide 
searches in the human population that are unlimited by prior assump-
tions about the underlying pathophysiologic processes. Over the past 
several decades, application of the principles discussed here has 
successfully identified the causative genes for a range of cardiovas-
cular diseases. This information has provided explanations to our 
patients, improved the ability to predict risk for disease, and most 
importantly, enabled understanding of the pathophysiology as a foun-
dation for designing rational approaches to improving prevention 
and therapy.1 This chapter reviews the principles of human genetics 
used to make gene discoveries and to translate these findings to 
improve patient care. We highlight these principles in the context of 
a clinical case presentation.

INHERITED BASIS FOR THE VARIATION IN 
RISK FOR CARDIOVASCULAR DISEASE

PATIENT CASE, PART I.  A 44-year-old man (JS) is seen in a cardi-
ologist’s office for a follow-up visit after having suffered an ST-segment 
elevation myocardial infarction (STEMI) and undergone treatment 
consisting of primary angioplasty and placement of a drug-eluting 
stent. His cardiovascular risk factors before STEMI included a fasting 
low-density lipoprotein cholesterol (LDL-C) level of 235 mg/dL and 
active cigarette smoking. His body mass index (BMI) is 25 kg/m2, he 
does not have a history of type 2 diabetes, and he is normotensive. 
His father died at 45 years of age as a result of myocardial infarction 
(MI), and his paternal uncle suffered an MI at 49 years of age. He has 
two brothers, 43 and 39 years old; both are free of clinical cardiovas-
cular disease. The 43-year-old brother (KS) has an elevated LDL-C 
level (214 mg/dL). The 39-year-old brother (LS) has an LDL-C level of 
130 mg/dL and a high-density lipoprotein cholesterol (HDL-C) level 
of 29 mg/dL. The pedigree of the family is shown in Figure 8-1.

Many cardiovascular diseases cluster within families, and studies 
of familial aggregation can determine the extent to which inherited 
DNA sequence variants contribute to these patterns. A family history 
of premature coronary heart disease (CHD) elevates the risk for CHD 
in offspring approximately threefold.2 Family history is an important 
risk factor for almost every cardiovascular disease—including atrial 
fibrillation, congenital heart disease, and hypertension—but familial 
clustering of disease can reflect shared environment in addition to 
shared genetic sequence.

Heritability—the fraction of interindividual variability in risk for 
disease attributable to additive genetic influences—is a commonly 
used measure for isolating the role of shared genetic sequence. The 
remaining variability among individuals results from all other con-
tributors: environmental influences on disease, nonadditive (epi-
static) genetic effects (e.g., gene-gene interactions or gene-environment 
interactions), error in the measurement of relatedness or disease, and 
random chance. For most clinically important traits (diseases and 
risk factors), empiric estimates of heritability range from 20% to  
80% (see Online Mendelian Inheritance in Man, available at 
www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=OMIM, for compre-
hensive information).

A BRIEF PRIMER ON MOLECULAR BIOLOGY

Genes are encoded in DNA, a polymeric molecule with two strands 
in a configuration known as a double helix. The “code” comprises 
four different DNA bases—adenine (A), cytosine (C), guanine (G), 
and thymine (T)—linked together in nonrandom order. The two 
strands contain redundant information by virtue of complementarity—
an adenine on one strand is always paired with a thymine on the 
other strand, and a cytosine on one strand is always paired with  
a guanine on the other strand. Thus double-strand DNA can be  
considered to be a sequence of A-T, T-A, C-G, and G-C base pairs  
(Fig. 8-2).

Human DNA is organized into a total of 23 pairs of chromosomes, 
with each chromosome spanning millions of base pairs. The 46 chro-
mosomes in total make up the genome. Each chromosome has 
numerous genes, which contain so-called coding DNA, separated by 
large stretches of noncoding DNA. A process called transcription 
copies the information in the DNA sequence into single-strand RNA, 
a polymer that is structurally similar to DNA but uses uracil (U) in 
place of thymine (T). Subsequently, the process of translation con-
verts the RNA sequence into an amino acid sequence that makes up 
a protein, which can serve in a variety of roles (structural elements, 
enzymes, hormones, etc.). Thus genetic information flows from DNA 
to RNA to protein in what is classically known as the “central dogma” 
of molecular biology (Fig. 8-3).

One of the consequences of the central dogma is that a change in 
the DNA sequence in the genome, if it should occur in or near a gene, 
can result in a change in the protein encoded by the gene, which in 
turn can have important consequences on the phenotype of an 
organism. Phenotype refers to any observable characteristic in a 
human being. Changes in DNA sequence leading to phenotypic 
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(called histones) in which the DNA is packaged. These changes can 
result in altered levels of RNA being transcribed from the DNA, which 
in turn results in altered levels of protein. In some cases the epige
netic changes are transmitted from parents to offspring, and thus can 
represent an additional source of phenotypic heritability.

MODES OF INHERITANCE

The genetic architecture of a disease refers to the number and mag-
nitude of genetic risk factors that exist in each patient and in the 
population, as well as their frequencies and interactions. Diseases 
can be due to a single gene (monogenic) in each family or to multiple 
genes (polygenic). Identifying genetic risk factors is easiest when 
only a single gene is involved and this gene has a large impact on 
disease in that family. In cases in which a single gene is necessary 
and sufficient to cause disease, the condition is termed a mendelian 
disorder because the disease tracks perfectly with a mutation (in the 
family) that obeys Mendel’s simple laws of inheritance.

For monogenic disorders, modes of inheritance include autosomal 
dominant, autosomal recessive, and X-linked. In autosomal dominant 
disorders, a single defective copy of a gene (either the maternal  
or paternal copy for every autosomal gene) suffices to cause the 
phenotype. In autosomal recessive disorders, both copies need to be 

FIGURE 8-1  Pedigree of the case patient JS (indicated by the arrow), who had a 
STEMI when he was 44 years old (yo). 
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FIGURE 8-2  Schematic representation of the DNA double helix. The specificity of genetic information is carried in the four bases—guanine (G), adenine (A), thymine (T), and 
cytosine (C)—that extend inward from a sugar phosphate backbone and form pairs with complementary bases on the opposing strand. 
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FIGURE 8-3  Flow of genetic information. Transcription in the nucleus creates a complementary RNA copy from one of the DNA strands in the double helix. mRNA is trans-
ported into the cytoplasm, where it is translated into protein. 
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changes underlie most of the heritability of diseases that have a 
genetic component.

Epigenetics pertains to phenotypic changes caused by DNA-level 
modifications that do not involve the DNA sequence, typically struc-
tural modifications either of certain DNA bases or of the proteins 
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defective to lead to the phenotype. In X-linked disorders, the defec-
tive gene resides on the X chromosome. Given that men have only 
one X chromosome and women have two X chromosomes, men who 
carry the defective copy are affected with the disorder, whereas 
women are unaffected carriers.

Most common cardiovascular diseases, however, do not obey Men-
del’s simple laws of inheritance but rather are complex—the result of 
an interplay between multiple genes and the environment. For these 
polygenic disorders, variants in more than one gene are needed to 
cause a disease. Accordingly, in these cases it becomes difficult to 
understand a disease by studying a single family. A corollary is that 
each contributing gene variant may have a small phenotypic effect 
that is not obvious by comparing a few people with and without that 
variant. For these reasons, elucidating the genetic architecture of a 
complex disorder is more feasible by studying a large population.

The patient case presented earlier describes both discrete cardio-
vascular phenotypes (i.e., traits defined by their presence or absence 
based on a set of criteria) and quantitative phenotypes. MI is a dis-
crete (also called dichotomous) phenotype, whereas blood pressure, 
LDL-C, HDL-C, and BMI are continuous cardiovascular traits. In the 
general population, most of these traits display a complex pattern of 
inheritance.

For many complex traits, however, some subtypes of the disease 
are monogenic in inheritance. In our patient case, the co-occurrence 
of high LDL-C, early-onset MI, and a family history of premature MI 
suggests a specific mendelian disorder, namely, familial hypercholes-
terolemia (FH).3 In FH, the extremely high LDL-C level and MI result 
from defects in the LDL receptor gene. Severely high LDL-C and early 
MI can also be caused by defects in other genes, including proprotein 
convertase subtilisin/kexin type 9 (PCSK9) and apolipoprotein B 
(APOB). Other examples of monogenic subtypes of complex traits 
include extremely high or low blood pressure caused by rare muta-
tions in genes involved in renal salt handling; extremely low LDL-C 
as a result of mutations in APOB, PCSK9, or ANGPTL3; and extreme 
obesity caused by mutations in MC4R.

APPROACHES TO DISCOVERING  
THE INHERITED BASIS FOR  
CARDIOVASCULAR DISEASE

Human Genetic Variation
The human genome contains about 6 billion base pairs across the 46 
chromosomes. Approximately 1% of the genomic DNA is coding DNA, 
which comprises an estimated 20,000 genes.4 Although most of the 
DNA in the genome is shared among all human beings, variations in 
the DNA sequence—occurring in both coding DNA and noncoding 
DNA—distinguish individuals from one another. These DNA sequence 
variants partly account for why a disease is more or less likely to 
develop in some individuals or why some respond more favorably or 
more adversely to a medication (see also Chapters 7 and 9).

As alluded to earlier, some DNA sequence variants have large 
phenotypic effects—meaning that they can cause disease single-
handedly. These DNA sequence variants tend to be rare (and some-
times unique to a single person or family) because natural selection 
weeds them out of a population. Classically, they cause monogenic 
disorders. Other DNA sequence variants commonly occur in a popu-
lation and tend to have smaller phenotypic effects. Typically it is these 
variants, in combination, that cause polygenic disorders. Because of 
natural selection, in general there is an inverse relationship between 
the frequency of a DNA sequence variant and the phenotypic effect 
conferred by that variant. For example, such a relationship is observed 
for gene variants that affect LDL-C in the population (Fig. 8-4).5-8

Coding sequence variants potentially disrupt the function of genes 
and their protein products (Fig. 8-5).9 Some coding variants do not 
affect the amino acid sequence of a protein; these are known as 
synonymous variants and do not usually have any phenotypic con-
sequences. Other coding variants can cause a variety of alterations 
in a protein—substitution of a single amino acid in a protein with a 

FIGURE 8-4  Effect sizes on LDL-C for DNA sequence variants at a range of al-
lele frequencies. Gene, variant, frequency, and effect size on LDL-C are as fol-
lows: NPC1L1, rs217386,5 43%, 1.2 mg/dL; HMGCR, rs12916,5 39%, 2.5 mg/
dL; ANGPTL3, rs2131925,5 32%, 1.6 mg/dL; SORT1, rs629301,5 22%, 5.7 mg/dL; 
APOE, rs429358/C130R,6 7.1%, 9.3 mg/dL; APOE, rs7412/R176C,6 3.7%, 18.8 mg/
dL; APOB, R3500Q,7 0.08%, 100 mg/dL; LDLR, W23X or W66G or W556S,8 0.03%, 
147 mg/dL. 
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FIGURE 8-5  Different types of mutations that alter the structure and expression 
of human genes. 
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cases, mutations are so rare that they are found only in one individual 
or in one family.

Two types of methods can be used to determine genotypes at the 
sites of DNA variants. In the first type, a genotyping technology 
directly ascertains the genotype at a single location in the genome. 
In the second type, polymerase chain reaction (PCR) is used to 
amplify the region of DNA immediately surrounding the site of the 
DNA variant (Fig. 8-6). The PCR product is subjected to DNA sequenc-
ing, which indirectly determines the genotype. The first type is gener-
ally cheaper—indeed, fabricated “chips” can directly genotype 
millions of DNA variants at a time—but requires optimization before-
hand. Thus direct genotyping is most useful for common and low-
frequency variants that have already been cataloged. The second 
type is more expensive and can be used only at one location at a 
time, but it can be flexibly adapted to any location in the genome. 
This approach can be used to discover previously uncataloged rare 
DNA sequence variants.

In recent years, a third type of method has been devised to char-
acterize a person’s genetic variation. This method entails the use of 
any of a group of techniques known as next-generation DNA sequenc-
ing.11 Although the operational details differ, these techniques share 
the ability to sequence billions of DNA base pairs at a time within a 
reasonable time frame and at a reasonable cost. The techniques have 
been applied successfully to efficiently sequence the entirety of a 
patient’s coding DNA, known as the exome, which accounts for about 
1% of the genome.12,13 More recently, sequencing the entirety of a 
patient’s genome for a few thousand U.S. dollars within 24 hours  
has become feasible, with the highly publicized “thousand-dollar 
genome” expected to emerge very soon.

Although performing DNA sequencing remains more expensive 
than direct genotyping, the decreasing cost of whole-genome 
sequencing will soon enable it to be performed in large cohorts of 
people. The advantage of whole-genome sequencing is that it deter-
mines genotypes at the locations of all known DNA sequence variants 
in a single experiment and, at the same time, identifies previously 
unknown DNA variants that are unique to the individual.

Study Designs to Correlate  
Genotype with Phenotype
Approaches to correlate genotype with phenotype are highlighted in 
Figure 8-7. The x axis shows the frequency of the allele in the popula-
tion, from rare to common; the y axis shows the size of the phenotypic 
effect conferred by the DNA sequence variant allele, from small to 
large. As described earlier, because of evolution and natural selec-
tion, an inverse relationship exists between allele frequency and 
effect size. Typically, to detect common DNA sequence variants of 
small to modest effect (e.g., increase in risk of 5% to 50%), genotyping 
characterizes the DNA sequence variation, and population-based 
association links genotype with phenotype. Rare variants with larger 
effect are discovered by sequencing to characterize their DNA 
sequence variation. One of two major approaches—family-based 
studies or extreme-phenotype studies—can be used to correlate rare 
variants with phenotype. Variants of low frequency (0.5% to 5%) can 
be approached by either genotyping or sequencing, and any of the 
three study designs may be useful in linking genotype with 
phenotype.

Family-Based Studies
PATIENT CASE, PART II.  The cardiologist refers the 45-year-old 

patient (JS) who recently suffered an MI to a geneticist for evaluation. 
The geneticist suspects that the patient has FH and arranges for clini-
cal sequencing of the LDLR, APOB, and PCSK9 genes. These tests 
identify a mutation in the PCSK9 gene: a T → A substitution in exon 
2 at nucleotide 625, which predicts a substitution of arginine at codon 
127 for the conserved serine (S127R). This mutation has been proved 
to lead to gain of PCSK9 function and cause autosomal dominant 
hypercholesterolemia.14

Two major study designs have been used to identify the gene muta-
tions responsible for monogenic disorders. Both take advantage of 

different amino acid (missense), premature truncation of a protein 
(nonsense), scrambling of the amino acid sequence past the site of 
the variant (frameshift), or insertion or deletion of amino acids. Any 
of these so-called nonsynonymous variants can have phenotypic 
effects ranging from negligible to profound, although nonsense and 
frameshift variants tend to be more deleterious than missense vari-
ants to protein function. Finally, sequence variants at splice sites (the 
first and second bases after the end of each exon and before the 
beginning of each exon) can lead to a severely disrupted protein 
product missing an entire exon.

Noncoding variants, although they do not directly affect the amino 
acid sequences of proteins, can cause phenotypic changes in other 
ways. For example, a noncoding variant near a gene might affect 
transcription of the gene and result in an increased amount of RNA 
being produced from a gene, and consequently an increased amount 
of the protein product.10 Noncoding variants can affect the processing 
of RNA in several other ways.

In addition to genes, the genome harbors a number of expressed 
RNA molecules that do not code for protein; such RNA includes 
microRNA and large intergenic noncoding RNA (lincRNA). Both 
these categories of noncoding RNA have been demonstrated to inter-
act with and modulate the activity of coding RNA, thereby regulating 
protein levels. For example, a given microRNA might physically bind 
to complementary sequences in a large number of coding RNA mol-
ecules and result in either suppression of RNA translation into pro-
teins or degradation of the RNA. A noncoding variant that falls in the 
midst of a microRNA might impair (or enhance) its ability to interact 
with specific coding RNA and result in phenotypic changes.

DNA sequence variants, also known as polymorphisms (derived 
from Greek words meaning “multiple forms”), consist of three major 
classes. Single-nucleotide polymorphisms (SNPs) involve the altera-
tion of a single DNA base pair in the genome. They are the most 
common and best cataloged of the DNA variants, with tens of mil-
lions having been identified to date across all human populations. 
Variable number tandem repeats (VNTRs) involve a variable number 
of repeats of a short DNA sequence at a genomic location; the number 
of repeats ranges from very few to thousands. Copy number variants 
(CNVs) involve a variable number of repeats of a long DNA sequence 
(more than 1000 base pairs), typically ranging from zero to one or a 
few repeats. An indel (an abbreviation of insertion/deletion) is a type 
of DNA variant in which a sequence is either present (insertion) or 
absent (deletion); it could be either a special type of a VNTR or a 
special type of a CNV, depending on the size of the involved sequence.

Characterizing Human Genetic Variation: 
Genotyping and Sequencing
In most cases a person has two copies of each DNA sequence 
because of the presence of paired chromosomes (the exceptions are 
DNA sequences on the X or Y chromosome in men, because these 
two chromosomes are entirely different). The two copies are known 
as alleles. For a DNA variant, the genotype is the identity of the two 
alleles at the site of the variant. The two alleles may be identical, in 
which case the person is said to be homozygous for the allele. If the 
two alleles are different, the person is heterozygous at the DNA 
variant. A haplotype is a series of genotypes at nearby sites of DNA 
variants. Because the haplotype is located on a single region of the 
chromosome, it tends to remain linked together as it passes from 
parents to offspring.

For polymorphisms that are primarily present in just two forms 
(typical of SNPs, i.e., one DNA base versus another DNA base, but not 
for VNTRs, which are usually found in at least a few forms, i.e., dif-
ferent numbers of repeats), the allele found more commonly in a 
given population is termed the major allele, with the less common 
allele being the minor allele. Common variants are so defined by 
virtue of the frequency of the minor allele being greater than 5% in 
the population. Low-frequency variants have a minor allele frequency 
of between 0.5% and 5%; rare variants have less than a 0.5% fre-
quency. Rare variants are typically referred to as mutations. In some 
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FIGURE 8-6  DNA amplification with PCR. Synthetic primers corresponding to the 5′ and 3′ ends of the DNA sequence are chemically synthesized. The double-stranded DNA 
is melted by heating to 92°C, followed by cooling to 72°C to anneal the primers. A heat-stable DNA polymerase amplifies each strand of the target sequence, which produces 
two copies of the DNA sequence. The process is repeated multiple times to achieve amplification of the target sequence. 
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family relationships. Classic linkage studies entail the genotyping of 
several hundred or thousand DNA variants (usually VNTRs with 
repeats that are two to six base pairs in length, also known as mic-
rosatellite markers) distributed across the genome. Linkage analysis 
identifies any markers that are strongly “linked” to the disease. For 
dominantly inherited disorders, linkage can be observed when one 
particular allele of the marker is found only in family members with 
the disease (“affecteds”) and not in healthy family members (“unaf-
fecteds”); for recessively inherited disorders, linkage is observed 
when two copies of a particular allele are found only in family 
members with the disease and not in healthy family members. The 
degree of linkage for each genomic marker with affected status is 
calculated to yield a metric known as the logarithm of odds (LOD) 
score. A LOD score higher than 3.0 is considered significant evidence 
of linkage.

As a practical matter, a high LOD score for a particular marker 
suggests that the causal disease mutation lies within several mega-
bases (i.e., millions of base pairs) of the marker. This region of interest 
typically harbors dozens, if not hundreds, of candidate genes. The 
region can sometimes be narrowed further by genotyping a set of 
markers clustered around the original marker and assessing for 
linkage, a process called positional cloning. Identification of the 

disease mutation entails sequencing candidate genes in the hope of 
finding a rare coding variant. Traditionally, sequencing of a large 
number of genes was prohibitively expensive, and one would have 
to judiciously pick a limited number of candidate genes thought  
most likely to have the causal mutation—and often come up 
empty-handed.

The second study design has been made possible by advances in 
next-generation DNA sequencing technologies. Rather than sequenc-
ing a few candidate genes, one can now perform exome sequencing 
and capture the coding DNA of all approximately 20,000 human 
genes in a single, relatively affordable experiment. In this study 
design, one chooses a few affected family members, performs exome 
sequencing on their DNA samples, and filters through the sequencing 
data to identify the handful of rare variants that are shared by all 
affecteds.15 This list of variants can be narrowed down further in 
several ways, such as confirming that a variant is not present in unaf-
fecteds or simultaneously performing a linkage study and filtering for 
variants that are close to a marker with a high LOD score.

Once the rare gene variant thought most likely to be the causal 
mutation is selected, it can be confirmed by sequencing the gene in 
unrelated individuals who have the same disorder. If some of these 
individuals have mutations in the same gene (either the same rare 
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trait of interest. SNPs exceeding a P value threshold of P < 5 × 10−8 
are considered “genome-wide significant” and are the least likely to 
be false-positive results. The Manhattan plot from a large-scale GWAS 
for CAD is displayed in Figure 8-9. A total of 25 chromosomal loci 
exceeded genome-wide significance in this study.

A GWAS uses a far more dense distribution of markers across the 
genome and data from far more people than a linkage study does. 
Furthermore, a GWAS takes advantage of the genome’s discrete 
recombination hot spots, between which regions of DNA remain rela-
tively intact as they are passed from parents to offspring. Conse-
quently, the resolution of a GWAS is much higher than that of a 
linkage study; rather than megabases, the locus of interest is defined 
by flanking recombination hot spots, which on average occur just 
tens to hundreds of kilobases apart. For a given SNP with a positive 
association with a phenotype, this considerably narrows the number 
of candidate causal genes. Also in contrast to linkage studies, GWASs 

variant or, more likely, different variants), it 
strongly argues that the gene is responsible 
for the disease.

Extreme-Phenotype Studies
Another approach to gene discovery is to 
identify individuals in a population who are 
at the extremes of a phenotype.16 For a quan-
titative phenotype such as blood cholesterol 
level, this might entail finding a sizable 
number of people with extremely high cho-
lesterol and people with extremely low cho-
lesterol. For a discrete phenotype such  
as MI, the desired individuals might be 
young people with premature disease versus 
elderly people with multiple risk factors but 
no evidence of coronary artery disease 
(CAD).

DNA samples from these extreme cohorts 
undergo either candidate gene sequencing, 
exome sequencing, or even whole-genome 
sequencing. The analysis entails identifying 
genes that have a preponderance of rare 
variants in one group versus the other group. 
For example, if a particular gene were to 
display a significantly higher frequency of 
rare variants in young people with MI than 
in elderly people without CAD, it would 
argue for that gene being causal for MI. Con-
versely, if the gene had a higher frequency 
of rare variants in elderly people without 
CAD than in young people with MI, the gene 
might protect against disease.

Population-Based Studies
Family-based studies are poorly suited to study polygenic disorders 
in which each contributing DNA variant has a small or moderate 
effect. Because these DNA variants tend to be common in a given 
population, population-based studies are better designed to detect 
their small effects with statistical rigor.

The genome-wide association study (GWAS) is the primary 
population-based study design.17,18 In a GWAS, DNA samples from 
many unrelated individuals in a population—as many as hundreds 
of thousands of people—undergo genotyping of millions of SNP 
markers across the genome using chips. The analysis entails a search 
for SNPs that have robust statistical associations with the phenotype 
of interest. For a GWAS on a quantitative phenotype such as blood 
cholesterol level, each SNP is evaluated to determine whether indi-
viduals with one genotype at that SNP have on average a significant 
difference in cholesterol level from individuals with another 
genotype.

For a GWAS on a discrete phenotype such as MI, the study com-
pares a group of individuals with the phenotype and a group of 
individuals without the phenotype (cases versus controls). Each indi-
vidual SNP is evaluated to determine whether its minor allele fre-
quency differs between the cases and controls (Fig. 8-8).

With any GWAS, because so many SNPs are being evaluated inde-
pendently, the traditional statistical significance threshold of P < 0.05 
is not valid and must be adjusted for the number of SNPs tested. The 
number of independent common SNPs tested in a single experiment 
is approximately 1,000,000. Accordingly, it is common practice with 
a GWAS to use a statistical significance threshold of P < 5 × 10−8 (i.e., 
Bonferroni correction of the traditional P value of 0.05 for 1,000,000 
independent tests). The need to meet a very rigorous significance 
threshold, as well as the fact that most DNA variants contributing to 
a polygenic trait have small effects, often dictates studying very large 
numbers of people to carry out a GWAS successfully.

GWAS results are typically displayed in a “Manhattan plot,” with 
the x axis representing each variant in chromosomal order and the 
y axis plotting −log10 of the P value associating each variant with the 

FIGURE 8-8  Analysis scheme for a GWAS involving a dichotomous phenotype. 
Step 1. Compare frequency of genetic variant in cases and controls.Carriers of a vari-
ant allele are shown in pink, and noncarriers are shown in blue. Boxes represent men 
and circles represent women. Here the variant allele is more frequent in cases com-
pared with controls. Step 2. For each genetic variant (typically 300,000 to 1,000,000 
in each experiment), generate P value for the difference in frequency being a chance 
observation. 

Patients with MI Patients Without MI

FIGURE 8-7  Approaches to correlate genotype with phenotype. 
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In sequencing PCSK9, they found two different rare variants in differ-
ent families. Subsequent studies in mice confirmed that PCSK9 is a 
bona fide regulator of blood cholesterol levels, and indicated that the 
mutations discovered were likely to be gain-of-function rather than 
loss-of-function mutations.21

Mendelian Disease Using Direct  
DNA Sequencing
Schonfeld and colleagues identified a family in which four siblings 
displayed extremely low blood LDL-C, HDL-C, and triglyceride 
levels—an apparently recessive disorder termed familial combined 
hypolipidemia.22 A linkage study could not identify the causal gene 
because of the prohibitively large number of genes in the linkage 
region. Years later, following the advent of exome sequencing, DNA 
samples from two of the siblings were subjected to the technique. In 
a comparison of the siblings’ exomes, only one gene harbored rare 
DNA variants in both alleles in both siblings—the angiopoietin-like 3 
(ANGPTL3) gene, which had been implicated previously in the 
metabolism of triglycerides but not LDL-C. Of note, the siblings had 
two different mutations, each of which was a nonsense mutation, 
consistent with total loss of ANGPTL3 function. Subsequent studies 
confirmed the presence of various ANGPTL3 mutations in unrelated 
individuals with familial combined hypolipidemia.

Complex Trait Using Extremes  
in a Population
Shortly after the discovery of PCSK9 as a causal gene in FH, Hobbs, 
Cohen, and colleagues hypothesized that loss-of-function variants in 

have successfully pinpointed noncoding causal DNA variants that 
affect gene expression.

ILLUSTRATIVE EXAMPLES

In presenting examples of the various approaches described above, 
we focus on LDL-C—whether in the context of monogenic lipid dis-
orders such as FH or in the context of the blood LDL-C level as a 
polygenic, quantitative trait.

Mendelian Disease Using Classic Linkage
FH is a monogenic disorder in which patients have extremely high 
blood LDL-C levels that result in abnormal deposition of cholesterol 
(xanthomas) and a severely increased risk for premature MI, as  
early as childhood. Initial studies in the 1970s and 1980s by Brown, 
Goldstein, and colleagues demonstrated that most cases of FH  
result from mutations in the LDL receptor gene (LDLR).19 In 1989, a 
subset of cases were found to result from mutations in the apolipo-
protein B gene (APOB).20 Following these discoveries, other cases 
remained in which neither LDLR nor APOB mutations appeared to 
be responsible.

Boileau and coworkers identified French families affected by FH 
without apparent LDLR or APOB mutations and, in performing a 
linkage study, identified a region on chromosome 1 where markers 
had strong linkage to the disease.14 Using positional cloning, they 
narrowed the region to an interval containing 41 genes. One  
gene, PCSK9, was a strong candidate because a similar gene had 
previously been reported to be involved in cholesterol metabolism. 

FIGURE 8-9  Graphic summary (Manhattan plot) of genome-wide association results. The x axis represents the genome in physical order; the y axis shows −log10 P for all SNPs. 
Data from the discovery phase are shown in circles, and data from the combined discovery and replication phases are shown in stars. Genes at the significant loci are listed above 
the signals. Known loci (before publication of this work) are shown in red, and newly discovered loci from this work are shown in blue. (From Schunkert H, Konig IR, Kathiresan 
S, et al: Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 43:333, 2011.)
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CLINICAL APPLICATION  
OF GENETIC FINDINGS

Risk Prediction
PATIENT CASE, PART III.  The two brothers of the patient JS are 

referred to a cardiologist for assessment of risk for MI. Both brothers 
are asymptomatic but are worried about their strong family history 
and that JS suffered a coronary event at a similarly young age. They 
inquire whether they have an increased risk for a coronary event, 
whether that risk can be quantified, and whether they should be 
changing their lifestyle or taking any medications. Both patients 
undergo DNA sequencing to determine whether they carry the PCSK9 
mutation responsible for disease in JS. The 43-year-old brother (KS) 
carries PCSK9 S127R, but the 39-year-old brother (LS) does not.

Identifying individuals at increased risk for cardiovascular disease 
and implementing preventive interventions to reduce that risk are key 
goals of biomedicine (see Chapters 7 and 42). Genetic markers have 
long been considered a promising tool to discern patients at increased 
risk. The use of genetic markers to assess risk entails consideration 
of two scenarios.

The first is risk prediction in the context of a family that suffers from 
a mendelian disorder. Here, a single defective gene is responsible for 
disease in the family. The central question is whether the asymptom-
atic family member carries the causal mutation (or two mutations for 
a recessive disease). Direct DNA sequencing can determine mutation 
status and whether the mutation is present, which typically means a 
near-certain risk for disease. However, complexities may exist in even 
a single-gene disorder.1 Among carriers of a mendelian mutation in a 
given family, some may exhibit the condition and others may not. 
Penetrance refers to the proportion of individuals with a given geno-
type who exhibit the phenotype associated with the genotype. In 
many mendelian cardiovascular conditions inherited in an autoso-
mal dominant manner, evidence exists for incomplete penetrance. 
For example, Hobbs and colleagues reported that in a pedigree with 
FH caused by a point mutation in LDLR, only 12 of 18 heterozygotes 
had high LDL-C (>95th percentile), whereas some of the remaining 
6 heterozygotes had LDL-C as low as the 28th percentile for the 

PCSK9 may contribute to differences in blood cholesterol levels in 
the general population. Reasoning that individuals with low LDL-C 
levels were more likely to have such loss-of-function variants (because 
gain-of-function mutations cause increased LDL-C levels in FH), they 
sequenced PCSK9 in individuals at the phenotypic extreme in the 
multiethnic Dallas Heart Study—those with the lowest LDL-C 
levels.23,24 Several of these individuals had one copy of either of two 
different nonsense variants in the gene. The investigators then specifi-
cally genotyped at the sites of the two nonsense variants in the entire 
Atherosclerosis Risk in Communities study and found that together, 
2.6% of the black subjects in the study had either of the two variants. 
These individuals had on average a 28% reduction in LDL-C when 
compared with those without PCSK9 variants. Subsequent work dem-
onstrated that individuals with PCSK9 nonsense variants experience 
a significant reduction in the risk for incident CHD (Fig. 8-10). 
Notably, individuals with loss-of-function variants in PCSK9 appear 
to suffer no adverse clinical consequences, thus suggesting that thera-
pies directed against PCSK9 would offer beneficial cardiovascular 
effects without any accompanying undesirable effects.

Complex Trait Using Genome-Wide 
Association
Starting in 2007, GWASs were performed on collections of individuals 
of European descent to identify SNPs associated with blood LDL-C, 
HDL-C, triglycerides, and/or total cholesterol levels. Each year 
brought a successively larger study and culminated in a collaborative 
study involving approximately 100,000 people in 2010.5 This study 
identified a total of 95 loci associated with one or more of the lipid 
phenotypes. Remarkably, a third of the loci have genes previously 
known to be involved in lipid metabolism; indeed, more than a dozen 
genes had formerly been found to harbor rare DNA variants respon-
sible for monogenic lipid disorders, including LDLR, APOB, PCSK9, 
and ANGPTL3. The other two thirds of the loci presumptively harbor 
novel lipid-regulating genes, and considerable effort is now focused 
on characterizing the functions of some of these genes. Some exam-
ples include GALNT2, SORT1, and TRIB1.

FIGURE 8-10  Distribution of LDL-C (A) and risk for CHD (B) in carriers versus noncarriers of nonsense mutations in the PCSK9 gene. (From Cohen JC, Boerwinkle E, Mosley 
TH Jr, Hobbs HH: Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354:1264, 2006.)
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conception—genotypes of DNA variants are randomly “assigned” to 
gametes during meiosis, a process that should be impervious to  
the typical confounders observed in observational epidemiologic 
studies. For example, a parent’s disease status or socioeconomic 
status should not affect which of the parent’s two alleles at a given 
SNP is passed to a child, with each allele having an equal (50%) 
chance of being transmitted via the gamete to the zygote. Thus men-
delian randomization should be unaffected by confounding or 
reverse causation. Mendelian randomization has potential shortcom-
ings, however, including that (1) the technique is only as reliable  
as the robustness of the estimates of the effect sizes of the variant  
on the phenotype and of the phenotype on disease, and that  
(2) it assumes that the DNA variant does not influence the disease 
by means other than the intermediate phenotype being studied  
(pleiotropy), which may not be true. In addition, a potential con-
founder of mendelian randomization is that, in certain situations, a 
disease might cause the allele of a DNA variant passed from a parent 
to an offspring to be expressed in a different way; for example, it 
could occur through inherited epigenetic effects. Nevertheless, men-
delian randomization has the potential to be as informative as a  
traditional randomized clinical trial.

Several mendelian randomization studies have confirmed a causal 
relationship between LDL-C and CHD. Nonsense variants in the 
PCSK9 gene that significantly reduce plasma LDL-C concentrations 
have been associated with a reduced incidence of CHD in a black 
cohort.24 Similarly, in white subjects a low-frequency missense variant 
in PCSK9 was found to be associated with lower LDL-C levels, as well 
as with a lower risk for MI. These observations suggest that lower 
LDL-C is sufficient to provide protection against CHD. Similar to 
LDL-C, several recent genetic studies have confirmed previous obser-
vations that plasma lipoprotein(a) (Lp[a]) is causally related to 
CHD.33,34

Unlike the results with plasma LDL-C and Lp(a) concentrations, a 
recent large mendelian randomization study of variants that affect 
plasma HDL-C, performed in more than 100,000 individuals, did not 
show an association between these variants and MI.35 The investiga-
tors performed two mendelian randomization analyses. First, an SNP 
in the endothelial lipase gene (LIPG Asn396Ser) was used as an 
instrument, and this SNP was tested in 20 studies (20,913 MI cases, 
95,407 controls). Second, a genetic score consisting of 14 common 

population.25 The lack of a high-cholesterol phenotype given the 
same genotype may be due to modifier genes or environmental 
influences.

The second scenario uses genetics to predict risk for a common, 
complex disease. Here, disease results from the interplay of multiple 
genetic and nongenetic factors. The central questions are whether 
genetic markers can identify a subset of the population at higher risk 
for disease and whether effective interventions can be allocated to 
this subset of individuals to reduce their risk. For example, we com-
monly use a nongenetic marker, the presence of type 2 diabetes mel-
litus, to identify a subset of the population at higher risk for CHD (those 
with type 2 diabetes have a twofold increase in CHD).26 We target 
statin intervention to this group to reduce their absolute risk for CHD.

Use of the GWAS approach has recently identified 45 common vari-
ants for CAD or MI, thereby permitting construction of a genetic risk 
score using mapped variants.27 For the first 12 common variants 
mapped for CAD or MI using GWAS, a simple genetic risk score ranging 
from 0 to 24 alleles was generated (i.e., each individual can carry 0, 1, 
or 2 copies of the risk allele at each of these 12 sites), with 0 being ideal 
and 24 being the most unfavorable.28 The distribution of this genetic 
risk score in the population approaches normal. Those in the top 
quintile of this distribution (the 20% of the population with the highest 
scores) had an approximately 1.7-fold increased risk for incident CHD, 
even after accounting for all other cardiovascular risk factors.

Will this information have clinical usefulness? Debated at present 
is whether young and middle-aged individuals (i.e., men 30 to 50 
years of age and women 40 to 60 years of age) should be treated with 
a statin to prevent a first MI. Based on the genetic results presented 
earlier, one approach could be to use a genetic risk score to identify 
the subset of individuals at highest genetic risk and target statin treat-
ment to these individuals. This hypothesis remains to be tested for-
mally in randomized controlled trials.

Distinguishing Causal from  
Reactive Biomarkers

PATIENT CASE, PART IV.  The 39-year-old brother of the patient JS 
has an HDL-C level of 29 mg/dL. Does his low HDL-C concentration 
causally contribute to risk for MI?

Hypotheses concerning causative agents for complex diseases 
have often initially come from observational epidemiology. In a 1961 
paper titled “Factors of Risk in the Development of Coronary Heart 
Disease,” William Kannel and colleagues in the Framingham Heart 
Study established an association of total plasma cholesterol with 
future risk for CHD.29 Since then, hundreds of soluble biomarkers have 
similarly been associated with risk for CAD (see also Chapter 10). 
How many of these biomarkers directly cause CAD, how many simply 
reflect other causal processes, and why is this question important? 
Both causal and noncausal biomarkers may be helpful in predicting 
risk for future disease, but only a causal biomarker may be appropri-
ate as a target of therapy. The ultimate proof of causality in humans 
is a randomized controlled trial testing whether a treatment that alters 
the biomarker will affect risk for disease. But, because clinical trials 
are expensive and time-consuming, having evidence in humans 
before engaging in a clinical trial would be helpful.

In a technique termed mendelian randomization, DNA sequence 
variants are used to address the question of whether an epidemio-
logic association between a risk factor and disease reflects a causal 
influence of the former on the latter.30-32 In principle, if a DNA sequence 
variant is known to directly affect an intermediate phenotype (e.g., a 
variant in the promoter of a gene encoding a biomarker that alters its 
expression) and the intermediate phenotype truly contributes to the 
disease, the DNA variant should be associated with the disease to 
the extent predicted by (1) the size of the effect of the variant on the 
phenotype and (2) the size of the effect of the phenotype on the 
disease (Fig. 8-11). If the predicted association between the variant 
and disease was not observed in an adequately powered sample, it 
would argue against a purely causal role for the intermediate pheno-
type in pathogenesis of the disease.

The study design is akin to a prospective randomized clinical trial 
in that randomization for each individual occurs at the moment of 

FIGURE 8-11  Design of a mendelian randomization study to test whether a bio
marker causally influences risk for disease. The study design has three elements. First, 
one needs to identify a genetic variant, an instrument that exclusively alters the bi-
omarker of interest. Second, one needs to derive a theoretically predicted estimate 
of disease risk for the instrument. This estimate is usually derived on the basis of  
(1) association of the gene variant to the biomarker (i.e., the degree of change in the 
biomarker conferred by the variant) and (2) association of the biomarker to disease in 
the population (i.e., the extent to which a given change in biomarker is expected to 
alter risk for disease in the population). Finally, one derives an observed disease risk 
estimate for the instrument after testing the instrument for association with disease 
in the population. If the observed risk estimate for the instrument is consistent with 
that predicted theoretically, this supports the notion that the biomarker causally influ-
ences risk for disease. 
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severe chest pain. He is found to be in the throes of STEMI. The 
cardiac catheterization team is activated to perform a percutaneous 
coronary intervention. The emergency department physician asks 
the cardiology consultant which antiplatelet agent besides aspirin 
should be administered to the patient at this time.

Just as genetic data can be used to predict a patient’s risk for 
development of a disease, it can also be used to predict whether a 
patient will have a therapeutic response and/or an adverse response 
to a particular medication. Termed pharmacogenetics or, in broader 
terms, personalized medicine, its goal is to safely deliver the right 
therapy at the right dose to the right patient (see also Chapters 7 
and 9).

One example of the emerging use of pharmacogenetics centers on 
use of the antiplatelet agent clopidogrel. Given routinely to patients 
after a coronary event, clopidogrel has reduced the risk for future 
coronary events and, in patients in whom coronary stents are placed, 
has decreased the risk for in-stent thrombosis. Common loss-of-func-
tion variants in the CYP2C19 gene, which encodes an enzyme that 
metabolizes clopidogrel into its active form, have been shown to 
reduce the effectiveness of the medication, especially with respect 
to the prevention of in-stent thrombosis.37,38 Accordingly, many institu-
tions are evaluating whether CYP2C19 genotyping should be per-
formed at the point of care and used to guide the choice of therapy. 
Alternatives for patients found to have loss-of-function CYP2C19 vari-
ants might be prescription of an increased dose of clopidogrel or the 
use of an alternative medication of the same drug class, such as 
prasugrel or ticagrelor, that CYP2C19 function does not affect.

Therapeutic Targets: From Gene to  
Drug in a Decade
The example of PCSK9 has emerged as a success story for the transla-
tion of cardiovascular genetics to the clinic in a relatively short time. 
The original report of the involvement of gain-of-function mutations 
in PCSK9 in causing FH was published in 2003. Just 10 years later, 
several companies have developed antibody-based drugs targeting 
the PCSK9 protein that are being evaluated in clinical trials.39,40 Devel-
opment of these drugs was directly motivated by the finding that 
individuals with loss-of-function PCSK9 mutations are genetically 
protected from CHD without suffering any known ill effects. Prelimi-
nary data from the clinical trials have demonstrated a large reduction 
in blood LDL-C levels with these agents, in some cases surpassing 
even the most potent statin drugs. Although the cholesterol-lowering 
effects of these agents are expected to result in a reduction in car-
diovascular risk, definitive outcomes trials remain to be completed.

FUTURE DIRECTIONS

The last decade has witnessed remarkable advances in human genet-
ics that have the promise of transforming our understanding of car-
diovascular disease, as well as the approaches by which practitioners 
will prevent and treat disease. Although we are still largely in an 
information-gathering stage, the first practical applications of the 
information have begun to emerge—ranging from improvement in 
cardiovascular risk prediction, to the use of pharmacogenetics to 
tailor therapy for individual patients, to the development of novel 
therapies such as the PCSK9 antibody-based drugs. In the decade to 
come, we can expect substantial progress in all these domains.

Indeed, not too far in the future, the standard of cardiovascular  
care may look quite different from today’s practices. Patients would 
undergo whole-genome sequencing at birth, thereby allowing 
so-called primordial prevention by assessing the genetic determi-
nants of an individual’s lifetime risk for cardiovascular disease and 
institution of appropriate counseling—starting with life-long exercise 
and dietary habits and, as the patient advances in age, individually 
tailored preventive medications and therapies that address all the 
individual’s various validated, causal genetic risk factors for disease. 
If cardiovascular disease should nevertheless emerge at some point 
in the patient’s life, he or she would receive the specific therapies that 

SNPs that are exclusively associated with HDL-C was used as an 
instrument, and this score was tested in up to 12,482 MI cases and 
41,331 controls. As a positive control, the investigators tested a genetic 
score of 13 common SNPs exclusively associated with LDL-C. Carriers 
of the LIPG 396Ser allele (2.6% frequency) had higher HDL-C (5.5 mg/
dL higher, P = 8 × 10−13) but similar levels of other lipid and nonlipid 
risk factors for MI when compared with noncarriers. This difference 
in HDL-C was expected to decrease the risk for MI by 13% (odds ratio 
[OR], 0.87; 95% confidence interval [CI], 0.84 to 0.91), but the 396Ser 
allele was not associated with risk for MI (OR, 0.99; 95% CI, 0.88 to 
1.11, P = 0.85) (Fig. 8-12). From observational epidemiology, an 
increase of 1 standard deviation (SD) in HDL-C is associated with a 
reduced risk for MI (OR, 0.62; 95% CI, 0.58 to 0.66). A 1-SD increase in 
HDL-C because of genetic score, however, was not associated with 
risk for MI (OR, 0.93; 95% CI, 0.68 to 1.26, P = 0.63). For LDL-C, the esti-
mate from observational epidemiology (a 1-SD increase in LDL-C is 
associated with risk for MI; OR, 1.54; 95% CI, 1.45 to 1.63) agreed with 
that from the genetic score (OR, 2.13; 95% CI, 1.69 to 2.69, P = 2 × 10−10). 
The authors interpreted these findings as indicating that some genetic 
mechanisms that raise plasma HDL-C do not seem to lower the risk 
for MI. These data challenge the concept that raising plasma HDL-C 
therapeutically will uniformly translate into reductions in risk for MI.

A parallel line of clinical trial evidence also casts doubt on the 
notion that any intervention that raises HDL-C will reduce risk for MI. 
Dalcetrapib, an inhibitor of cholesterol ester transfer protein (CETP), 
raised HDL-C by approximately 30% in comparison to placebo. As a 
result, the dal-OUTCOMES trial randomly assigned more than 15,000 
participants to test the hypothesis that CETP inhibition with dalcetra-
pib will reduce cardiovascular morbidity and mortality in patients 
with a recent acute coronary syndrome.36 In May 2012, the data safety 
and monitoring board stopped the trial at a second interim analysis 
because of “lack of clinically meaningful efficacy” (see also Chap-
ters 42 and 45). When combined, the dalcetrapib clinical trial 
results and the human genetic findings summarized here cast doubt 
on the notion that raising HDL-C in isolation will reduce risk for CHD. 
For several decades the biomedical research community has assumed 
that if an intervention raises HDL-C, that intervention will reduce risk 
for CHD. It seems prudent now to rethink this assumption and reeval-
uate the use of HDL-C as a biomarker predictive of CHD in interven-
tion studies.

Overall, with the recent explosion in our ability to measure soluble 
biomarkers (including metabolites and proteins, see Chapter 10) 
and genetic variation, mendelian randomization will probably be 
used increasingly to distinguish causal biomarkers from noncausal 
ones.

Personalized Medicine
PATIENT CASE, PART V.  Shortly after his clinic visit, the 43-year-

old brother (KS) goes to the emergency department because of 

FIGURE 8-12  Mendelian randomization study for plasma HDL-C and risk for MI 
by using an instrument in the endothelial lipase (LIPG) gene. Individuals who carry the 
serine allele at amino acid 396 of the LIPG gene have about 6 mg/dL higher HDL-C. 
If HDL-C were a causal factor, carriers of the serine allele would be expected to be 
protected from risk for MI. After association testing in 116,320 individuals, the LIPG 
instrument was not associated with MI. Individuals who carried the HDL-boosting 
variants had the same risk for MI as did those who did not carry the variant. 
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Applications of Genetics to Lipid Disorders
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have been demonstrated to be most efficacious and safest for indi-
viduals with that genetic profile, both in the acute setting and in the 
long term for secondary prevention. This standard of care would 
represent an important step toward ensuring that people everywhere 
enjoy longer lives free of cardiovascular disease.
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IMPORTANCE OF CORRECT DRUG USE

Drug treatment makes up a large fraction of total health care costs. 
In 2008, the total cost of healthcare in the United States was approxi-
mately $2.5 trillion, and more than 10% was spent on prescription 
drugs.1 Cardiovascular disease makes up the largest subcategory in 
this spending: The American Heart Association estimated that the 
2008 cost of care for cardiovascular disease was $298 billion, and 
total prescription drug costs for cardiovascular care were $33 billion.2

Patients vary in their responses to drug treatment, and multiple 
mechanisms can be invoked, such as poor compliance, variable 
impact of diverse disease mechanisms on drug actions, drug interac-
tions, and an increasingly recognized role of genomic variation. 
Indeed, adverse drug reactions across all therapeutic categories are 
estimated to be the fourth to the sixth most common cause of death 
in the United States, costing $19 to $27 billion annually, and account-
ing directly for 3% to 6% of all hospital admissions.3 This chapter 
outlines principles of drug action, the major mechanisms underlying 
variability in drug effects, and current and future approaches to 
enable the safest and most effective therapy for an individual patient.

THE KEY DECISION IN DRUG THERAPY: RISK 
VERSUS BENEFIT

The fundamental assumption underlying administration of any drug 
is that the real or expected benefit exceeds the anticipated risk. The 
benefits of drug therapy are initially defined in small clinical trials, 
perhaps involving several thousand patients, before a drug’s market-
ing and approval. Ultimately, the efficacy and safety profiles of any 
drug are determined after the compound has been marketed and 
used widely in hundreds of thousands of patients.

When a drug is administered for the acute correction of a life-
threatening condition, the benefits are often self-evident; insulin for 
diabetic ketoacidosis, nitroprusside for hypertensive encephalopa-
thy, and lidocaine for ventricular tachycardia are examples. Extrapo-
lation of such immediately obvious benefits to other clinical situations 
may not be warranted, however.

The efficacy of lidocaine to terminate ventricular tachycardia led 
to its widespread use as a prophylactic agent in cases of acute myo-
cardial infarction, until it was recognized that in this setting, the drug 
does not alter mortality rates. The outcome of the Cardiac Arrhythmia 
Suppression Trial (CAST) highlights the difficulties in extrapolating 
from an incomplete understanding of physiology to chronic drug 
therapy. CAST tested the hypothesis that suppression of ventricular 
ectopic activity, a recognized risk factor for sudden death after myo-
cardial infarction, would reduce mortality; this notion was highly 
ingrained in cardiovascular practice in the 1970s and 1980s. In CAST, 

sodium channel–blocking antiarrhythmics did suppress ventricular 
ectopic beats but also unexpectedly increased mortality threefold. 
Similarly, with the development of a first-generation cholesterol ester 
transport protein (CETP) inhibitor, the goal of elevation of high-
density lipoprotein (HDL) levels was achieved, but with an accompa-
nying increase in mortality. Thus, the use of arrhythmia suppression 
or of HDL elevation as a surrogate marker did not produce the desired 
drug action, reduction in mortality, probably because the underlying 
pathophysiology or full range of drug actions were incompletely 
understood.

Similarly, drugs with positive inotropic activity augment cardiac 
output in patients with heart failure but also are associated with an 
increase in mortality, probably as a consequence of drug-induced 
arrhythmias. Nevertheless, clinical trials with these agents suggest 
symptom relief. Thus, the prescriber and the patient may elect therapy 
with positive inotropic drugs to realize this benefit while recognizing 
the risk. This complex decision making is at the heart of the broad 
concept of personalized medicine that incorporates into the care of 
an individual patient not only genomic (or other) markers of variable 
drug responses but also factors such as patients’ understanding of 
their disease and their willingness to tolerate minor or serious risks 
of treatment.

The risks of drug therapy may be a direct extension of the pharma-
cologic actions for which the drug is actually being prescribed. 
Excessive hypotension in a patient taking an antihypertensive agent 
and bleeding in a patient taking a platelet IIb/IIIa receptor antagonist 
are examples. In other cases, adverse effects develop as a conse-
quence of pharmacologic actions that were not appreciated during a 
drug’s initial development and use in patients. Rhabdomyolysis 
occurring with HMG-CoA reductase inhibitors (statins), angioedema 
developing during ACE inhibitor therapy, and torsades de pointes 
arising during treatment with noncardiovascular drugs such as thio-
ridazine or pentamidine are examples. Of importance, these rarer but 
serious effects generally become evident only after a drug has been 
marketed and extensively used. Even rare adverse effects can alter 
the overall perception of risk versus benefit and can prompt removal 
of the drug from the market, particularly if alternate therapies thought 
to be safer are available. For example, withdrawal of the first insulin 
sensitizer, troglitazone, after recognition of hepatotoxicity was further 
spurred by the availability of other new drugs in this class.

The recognition of multiple cyclooxygenase (COX) isoforms led to 
the development of specific COX-2 inhibitors to retain aspirin’s analge-
sic effects but reduce gastrointestinal side effects. However, one of 
these, rofecoxib, was withdrawn because of an apparent increase in 
cardiovascular mortality. The events surrounding the withdrawal of 
rofecoxib have important implications for drug development and util
ization. First, specificity achieved by targeting a single molecular 
entity may not necessarily reduce adverse effects; one possibility is 
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that by inhibiting COX-2, the drug removes a vascular protective effect 
of prostacyclin. Second, drug side effects may include not only readily 
identifiable events such as rhabdomyolysis or torsades de pointes but 
also an increase that may be difficult to detect in events such as myo-
cardial infarction that are common in the general population.

MECHANISMS UNDERLYING VARIABILITY  
IN DRUG ACTION

Two major processes determine how the interaction between a drug 
and its target molecule(s) can generate variable drug actions in a 
patient (Fig. 9-1). The first, pharmacokinetics, describes drug deliv-
ery to and removal from the target molecule and includes the  
processes of absorption, distribution, metabolism, and excretion—
collectively termed drug disposition. The second process, pharmaco-
dynamics, describes how the interaction between a drug and its 
molecular target(s) generates downstream molecular, cellular, whole-
organ, and whole-body effects.

The framework shown in Figure 9-1 identifies a series of genes that 
mediate clinical drug actions, and in which variants may thus con-
tribute to variable drug actions. These genes encode drug-metabolizing 
enzymes, drug transport molecules, drug targets, and molecules 
modulating the biology in which the drug-target interaction occurs. 
The latter include molecular perturbations that cause the disease 
being targeted. Pharmacogenetics describes the concept that indi-
vidual variants in the genes controlling these processes contribute to 
variable drug actions, whereas pharmacogenomics describes the way 
in which variability across multiple genes, up to whole genomes, 
explains differences in drug response among individuals and popula-
tions. Presented next is an overview of broad principles of pharma-
cokinetics, pharmacodynamics, and pharmacogenomics, followed 
by more detailed discussions of the specific genes, their function, and 
important variants influencing cardiovascular drug responses.

Pharmacokinetic Principles
Administration of an intravenous drug bolus results in maximal drug 
concentrations at the end of delivery of the bolus, followed by a 
decline in plasma drug concentrations over time (Fig. 9-2A), generally 
due to drug elimination. The simplest case is one in which this decline 
occurs monoexponentially over time. A useful parameter to describe 
this decline is the half-life (t1/2), the time in which 50% of the drug is 
eliminated; for example, after two half-lives, 75% of the drug has 
been eliminated, after three half-lives, 87.5%. A monoexponential 
process can be considered almost complete in four or five half-lives.

In some cases, the decline of drug concentrations following admin-
istration of an intravenous bolus dose is multiexponential. The most 
common explanation is that drug is not only eliminated (represented 
by the terminal portion of the time-concentration plot) but also 

FIGURE 9-1  A model for understanding variability in drug action. When a dose of 
a drug is administered, the processes of absorption, metabolism, excretion, and distri
bution determine its access to specific molecular targets that mediate beneficial and 
toxic effects. The interaction between a drug and its molecular target then produces 
changes in molecular, cellular, whole-organ, and ultimately whole-patient physiol-
ogy. This molecular interaction does not occur in a vacuum, but rather in a complex 
biologic milieu modulated by multiple factors, some of which are disturbed to cause 
disease. DNA variants in the genes responsible for the processes of drug disposi-
tion (green), the molecular target (blue), or the molecules determining the biologic 
context in which the drug-target interaction occurs (brown) all can contribute to 
variability in drug action. 
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undergoes more rapid distribution to peripheral tissues. Just as  
elimination may be usefully described by a half-life, distribution half-
lives also can be derived from curves such as those shown in  
Figure 9-2B.

The plasma concentration measured immediately after a bolus dose 
can be used to derive a volume into which the drug is distributed. 
When the decline of plasma concentrations is multiexponential, mul-
tiple distribution compartments can be defined; these volumes of 
distribution can be useful in considering dose adjustments in cases of 
disease but rarely correspond exactly to any physical volume, such as 
plasma or total body water. With drugs that are highly tissue-bound 
(e.g., some antidepressants), the volume of distribution can exceed 
total body volume by orders of magnitude.

Drugs are often administered by nonintravenous routes, such as 
oral, sublingual, transcutaneous, or intramuscular. Such routes of 
administration differ from the intravenous route in two ways (see Fig. 
9-2A). First, concentrations in plasma demonstrate a distinct rising 
phase as the drug slowly enters plasma. Second, the total amount of 
drug that actually enters the systemic circulation may be less than that 
achieved by the intravenous route. The relative amount of drug enter-
ing by any route, compared with the same dose administered intra-
venously, is termed bioavailability. Some drugs undergo such extensive 
presystemic metabolism that the amount of drug required to achieve 
a therapeutic effect is much greater (and often more variable) than 
that required for the same drug administered intravenously. Thus, 
small doses of intravenous propranolol (5 mg) may achieve heart  
rate slowing equivalent to that observed with much larger oral  
doses (80 to 120 mg). Propranolol is actually well absorbed but  
undergoes extensive metabolism in the intestine and liver before 
entering the systemic circulation. Another example is that of amioda-
rone; its physicochemical characteristics make it only 30% to 50% 
bioavailable when administered orally. Thus, an intravenous infusion 
of 0.5 mg/min (720 mg/day) is equivalent to 1.5 to 2 g/day orally.

FIGURE 9-2  Models of plasma concentrations as a function of time after a single 
dose of a drug. A, The simplest situation is one in which a drug is administered as 
a rapid intravenous (IV) bolus into a volume (Vc), where it is instantaneously and 
uniformly distributed. Elimination then takes place from this volume. In this case, 
drug elimination is monoexponential; that is, a plot of the logarithm of concentration 
versus time is linear (inset). When the same dose of drug is administered orally, a dis-
tinct absorption phase is required before drug entry into Vc. Most absorption (shown 
here in red) is completed before elimination (shown in green), although the processes 
overlap. In this example, the amount of drug delivered by the oral route is less than 
that delivered by the intravenous route, assessed by the total areas under the two 
curves, indicating reduced bioavailability. B, In this example, drug is delivered to the 
central volume, from which it is not only eliminated but also undergoes distribution 
to the peripheral sites. This distribution process (blue) is more rapid than elimination, 
resulting in a distinct biexponential disappearance curve (inset). 
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takes place. Variability in the number or function of a drug’s target 
molecules can arise because of genetic factors (see later) or because 
disease alters the number of target molecules or their state (e.g., 
changes in the extent of phosphorylation). Simple examples of vari-
ability in the biologic context are high dietary salt, which can inhibit 
the antihypertensive action of beta blockers, and hypokalemia, 
which increases the risk for drug-induced QT prolongation. In addi-
tion, disease itself can modulate drug response. For example, the 
effect of lytic therapy in a patient with no clot is manifestly different 
from that in a patient with acute coronary thrombosis, or the vasodi-
lating effects of nitrates, beneficial in patients with coronary disease 
with angina, can be catastrophic in patients with aortic stenosis. 
These examples highlight the requirement for precision in diagnosis 
to avoid situations in which risk outweighs potential benefit. One 
hope is that emerging genomic or other molecular approaches can 
add to this precision.

The targets with which drugs interact to produce beneficial effects 
may or may not be the same as those with which drugs interact  
to produce adverse effects. Drug targets may be in the circulation, at 
the cell surface, or within cells. Many newer drugs have been devel-
oped to interact with a specific drug target; examples of such targets 
are 3-hydroxy-3-methyl-glutaryl–coenzyme A (HMG-CoA) reductase, 
angiotensin-converting enzyme (ACE), G protein–coupled receptors 
(e.g., alpha, beta, angiotensin II, histamine), and platelet IIb/IIIa 
receptors. Such targets generally are identified in the course of basic 
mechanistic studies; a very appealing newer approach is to use 
modern genetic techniques to identify DNA variants associated with 
desired phenotypes, such as absence of myocardial infarction, as a 
clue to identify new drug targets.4 On the other hand, many drugs 
widely used in cardiovascular therapeutics were developed when the 
technology to identify specific molecular targets simply was not avail-
able; digoxin, amiodarone, and aspirin are examples. Some, like 
amiodarone, have many drug targets. In other cases, however, even 
older drugs turn out to have rather specific molecular targets. The 
actions of digitalis glycosides are mediated primarily by the inhibition 
of Na+,K+-ATPase. Aspirin permanently acetylates a specific serine 
residue on the COX enzyme, an effect that is thought to mediate its 
analgesic effects and its gastrointestinal toxicity.

Time Course of Drug Effects
With repeated doses, drug levels accumulate to a steady state, the 
condition under which the rate of drug administration is equal to the 
rate of drug elimination in any given period. Drug accumulation to 
steady state is near-complete in four to five elimination half-lives (see 
Fig. 9-3). For many drugs, the target molecule is in or readily acces-
sible from plasma, so this time course also describes the develop-
ment of pharmacologic effects. However, in other cases, whereas 
steady-state plasma concentrations are achieved in four to five elimi-
nation half-lives, steady-state drug effects take longer to achieve and 
several explanations are possible. First, an active metabolite may 
need to be generated to achieve drug effects. Second, time may be 
required for translation of the drug effect at the molecular site to a 
physiologic endpoint; inhibition of synthesis of vitamin K–dependent 
clotting factors by warfarin ultimately leads to a desired elevation of 
the international normalized ratio (INR), but the development of this 
desired effect occurs only as levels of clotting factors fall. Third, 
penetration of a drug into intracellular or other tissue sites of action 
may be required before development of drug effect. One mechanism 
underlying such penetration is the variable function of specific drug 
uptake and efflux transport proteins that control intracellular drug 
concentrations.

Pharmacogenomic Principles
As described next, studies have exploited a range of experimental 
techniques to establish a role for both common and rare DNA poly-
morphisms in pharmacokinetic and pharmacodynamic pathways as 
mediators of variable drug actions. Rare disease-associated variants 
are traditionally termed mutations, whereas commoner variants (tra-
ditionally defined as minor allele frequency >1%) are termed polymor-
phisms. The commonest type is a single-nucleotide polymorphism 
(SNP); SNPs that change the encoded amino acid are termed 

Drug elimination occurs by metabolism followed by the excretion 
of metabolites and unmetabolized parent drug, generally by the biliary 
tract or kidneys. This process can be quantified as clearance, the 
volume that is cleared of drug in any given period. Clearance may be 
organ-specific (e.g., renal clearance, hepatic clearance) or whole-body 
clearance. Drug metabolism is conventionally divided into phase I 
oxidation and phase II conjugation, both of which enhance water 
solubility and, consequently, biliary or renal elimination.

The most common enzyme systems mediating phase I drug metab-
olism are those of the cytochrome P-450 superfamily, termed CYPs. 
Multiple CYPs are expressed in human liver and other tissues. A major 
source of variability in drug action is variability in CYP expression and/
or genetic variants that alter CYP activity. Table 9-1 lists CYPs and 
other drug-metabolizing enzymes important in cardiovascular therapy. 
Excretion of drugs or their metabolites into the urine or bile is accom-
plished by glomerular filtration or specific drug transport molecules, 
whose level of expression and genetic variation are only now being 
explored. One widely studied transporter is P-glycoprotein, the 
product of expression of the MDR1 (or ABCB1) gene. Originally identi-
fied as a factor mediating multiple drug resistance in patients with 
cancer, P-glycoprotein expression is now well recognized in normal 
enterocytes, hepatocytes, renal tubular cells, the endothelium of the 
capillaries forming the blood-brain barrier, and the testes. In each of 
these sites, P-glycoprotein expression is restricted to the apical aspect 
of polarized cells, where it acts to enhance drug efflux. In the intestine, 
P-glycoprotein pumps substrates back into the lumen, thereby limiting 
bioavailability. In the liver and kidney, it promotes drug excretion  
into bile or urine. In central nervous system capillary endothelium, 
P-glycoprotein–mediated efflux is an important mechanism limiting 
drug access to the brain. Drug transporters play a role not only in drug 
elimination but also in drug uptake into many cells, including hepato-
cytes and enterocytes.

Pharmacodynamic Principles
Drugs can exert variable effects, even in the absence of pharmacoki-
netic variability. As indicated in Figure 9-1, this can arise as a function 
of variability in the molecular targets with which drugs interact to 
achieve their beneficial and adverse effects, as well as variability in 
the broader biologic context within which the drug-target interaction 

TABLE 9-1  Proteins Important in Drug Metabolism 
and Elimination

PROTEIN SUBSTRATES

CYP3A4, CYP3A5 Erythromycin, clarithromycin; quinidine, 
mexiletine; many benzodiazepines; 
cyclosporine, tacrolimus; many 
antiretrovirals;

HMG CoA reductase inhibitors 
(atorvastatin, simvastatin, lovastatin; 
not pravastatin); many calcium channel 
blockers

CYP2D6* Some beta blockers—propranolol, timolol, 
metoprolol, carvedilol

Propafenone; desipramine and other 
tricyclics; codeine†; tamoxifen†; 
dextromethorphan

CYP2C9* Warfarin, phenytoin, tolbutamide, 
losartan†

CYP2C19* Omeprazole, clopidogrel†

P-glycoprotein Digoxin

N-acetyl transferase* Procainamide, hydralazine, isoniazid

Thiopurine methyltransferase* 6-Mercaptopurine, azathioprine

Pseudocholinesterase* Succinylcholine

UDP-glucuronosyltransferase* Irinotecan†

SLCO1B1* Simvastatin and other statins; 
methotrexate; troglitazone; bosentan

Full CYP listing is available at http://medicine.iupui.edu/flockhart.
*Clinically important genetic variants described; see text.
†Prodrug bioactivated by drug metabolism.
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also contributes importantly to variability in common human traits, 
such as laboratory values or susceptibility to common disease. Methods 
are available to establish the extent to which that variability includes 
a heritable component, generally by examining twins, large families, 
or groups of families; evidence for heritability provides strong justifica-
tion for pursuing studies to identify contributing genetic variation. 
Indeed, this general approach has established that common pheno-
types such as LDL cholesterol, blood pressure, or susceptibility to atrial 
fibrillation are highly heritable. The extent to which rare and common 
variants contribute to this variability is only now being addressed. 
Across populations, it is very unusual for single common DNA poly-
morphisms to account for more than even 1% of variability in common 
traits. Variability in response to drug exposure presents a striking 
exception to this general rule, where even single common DNA poly-
morphisms may contribute substantially, 10% or more in many cases, 
to overall variability in drug response. It has been speculated that 
common variants with large effects on drug response can persist in a 
population because there is no evolutionary pressure against such 
variants since drug exposure is a recent event in human history. One 
mechanism accounting for this large effect is common SNPs in drug 
metabolism pathways that then result in very large fluctuations in drug 
concentration and corresponding effects. As described further on, 

common SNPs in drug target genes 
also can produce such large effects. 
Examples of specific cardiovascular 
phenotypes in which common SNPs 
have been associated with risk are pre-
sented in Table 9-2 and discussed 
later on. Of note, rarer variants in these 
(or other) genes are only now being 
described, so their role in mediating 
drug response is much less well under-
stood. In addition, virtually all studies 
to date have focused primarily on 
white populations, and data are only 
now being generated on specific poly-
morphisms mediating variable drug 
actions in other ancestries.

One technique to identify associa-
tions between DNA polymorphisms 
and drug response (or other) traits uses 
an understanding of the physiology of 
the trait under question to identify 
candidate genes modulating the trait. 
Thus, for example, an investigator 

FIGURE 9-3  Time course of drug concentrations when treatment is started or dose changed. Left, The hash lines on 
the abscissa each indicate one elimination half-life (t1/2). With a constant rate intravenous (IV) infusion (gold), plasma con-
centrations accumulate to steady state in four or five elimination half-lives. When a loading bolus is administered with the 
maintenance infusion (blue), plasma concentrations are transiently higher but may dip, as shown here, before achieving the 
same steady state. When the same drug is administered by the oral route, the time course of drug accumulation is identical 
(magenta); in this case the drug was administered at intervals of 50% of a t1/2. Steady-state plasma concentrations during 
oral therapy fluctuate around the mean determined by intravenous therapy. Right, This plot shows that when dosages are 
doubled, or halved, or the drug is stopped during steady-state administration, the time required to achieve the new steady 
state is four or five t1/2 and is independent of the route of administration. 
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TABLE 9-2  Examples of Common Single Nucleotide Polymorphisms Mediating Variable Drug Actions

DRUG EFFECT PATHWAY GENE SNP*
DBSNP ID 
NUMBER COMMENTS

Adverse outcomes during 
clopidogrel treatment for acute 
coronary syndrome

PK CYP2C19 CYP2C19*2: 
truncation at 
P227

rs4244285 *2 results in defective clopidogrel bio-activation; this SNP 
contributes ~10% to variability in clopidogrel-mediated 
inhibition of ADP-induced platelet aggregation

Excess beta blocker effect: 
metoprolol, timolol

PK CYP2D6 Many variants

Warfarin steady-state dose PK CYP2C9 CYP2C9*2: R144C
CYP2C9*3: I359L

rs1799853
rs1057910

VKORC1 and CYP2C9 variants account for ~50% of 
variability in warfarin steady-state dose

PD VKORC1 Promoter variant: 
−1639G>A

rs9923231

PD CYP4F2 V433M rs2108622

Statin myotoxicity PK SLCO1B1 SLCO1B1*5: 
V174A

rs4149056 Risk of simvastatin myotoxicity increased 20-fold in 
homozygotes and 4-fold in heterozygotes

Response to beta blockers for 
hypertension, heart failure

PD (target) ADRB1
ADRB2

S49G
R389G

rs1801252
rs1801253

Beta blocker therapy in heart failure PD (target) GRK5 G41L rs17098707

Antihypertensive response during 
thiazides

PD ADD1 G460W rs4961

Torsades de pointes PD KCNE1 D85N rs1805128 8% allele frequency in patients with torsades versus ~2% 
in control subjects (odds ratio ~10)

*Trivial name (e.g., *2, *3) and amino acid change provided.
dbSNP = National Center for Biotechnology Information’s SNP database; PD = pharmacodynamic; PK = pharmacokinetic.

nonsynonymous. The advent of modern sequencing technologies has 
demonstrated that most DNA variants in an individual are in fact rare,5 
so the distinction between mutation and polymorphism is blurred. 
Furthermore, polymorphism frequencies can vary strikingly by ethnic-
ity; a common variant in persons of African ethnicities may be absent 
in whites.

One of the great success stories of modern cardiovascular genetics 
has been the use of linkage analysis in large families to identify 
disease-causing rare variants (mutations) in familial syndromes with 
highly unusual clinical phenotypes, such as familial hypercholesterol-
emia (see Chapter 45), hypertrophic cardiomyopathy (see Chapter 
66), or the ion channelopathies (see Chapter 32). Linkage analysis 
has not been widely applied to study pharmacogenomics because 
large kindreds in which multiple individuals display extreme responses 
to drug exposure generally are not available. In the syndrome of 
malignant hyperthermia occurring in response to general anesthetics, 
it was possible to assign phenotype using functional studies in muscle 
biopsies and thus identify a linkage signal at chromosomal region 19q, 
which includes the gene encoding RYR1, the skeletal muscle calcium 
release channel in which mutations cause the disease.

When an extreme phenotype occurs in multiple family members, it 
is logical to invoke a genetic origin. It is now clear that DNA variation 
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CYP2C19 is an example; persons with reduced CYP2C19 activity 
(caused by genetic variants or possibly by interacting drugs; see 
Tables 9-1 and 9-2) have an increased incidence of cardiovascular 
events following coronary stent placement.11 Similarly, the widely 
used analgesic codeine undergoes CYP2D6-mediated bioactivation 
to an active metabolite, morphine, and patients with reduced CYP2D6 
activity display reduced analgesia. A small group of individuals with 
multiple functional copies of CYP2D6, and hence increased enzy-
matic activity, has been identified; in this group, codeine may produce 
nausea and euphoria, presumably because of rapid morphine gen-
eration. A third example is the angiotensin receptor blocker losartan, 
which is bioactivated by CYP2C9; reduced antihypertensive effect is 
a risk with common genetic variants that reduce CYP2C9 activity or 
with coadministration of CYP2C9 inhibitors, such as phenytoin.

A second high-risk pharmacokinetic scenario is one in which a 
drug is eliminated by only a single pathway. In this case, absence of 
activity of that pathway will lead to marked accumulation of drug in 
plasma, and for many drugs, such accumulation results in a high risk 
of drug toxicity. A simple example is the dependence of sotalol or 
dofetilide elimination on renal function; failure to decrease the 
dosage in a patient with renal dysfunction leads to accumulation of 
these drugs in plasma and an increased risk for drug-induced QT 
prolongation and torsades de pointes. Similarly, administration of a 
wide range of P-glycoprotein inhibitors will predictably elevate 
plasma concentration of digoxin, which is eliminated primarily by 
P-glycoprotein–mediated efflux into bile and urine (see Table 9-2).

Administration of CYP2D6-metabolized beta blockers, including 
metoprolol and carvedilol, to patients with defective enzyme activity 
may produce exaggerated heart rate slowing. The weak beta-blocking 
actions of the antiarrhythmic propafenone also are increased in 
patients with reduced CYP2D6 activity. Some antidepressants are 
CYP2D6 substrates; for these drugs, cardiovascular adverse effects are 
more common in poor metabolizers (PMs) of CYP2D6, whereas thera-
peutic efficacy is more difficult to achieve in ultrarapid metabolizers.

The risk of aberrant drug responses due to CYP variants is greatest 
in persons who are homozygous (i.e., PMs). However, for drugs with 
very narrow therapeutic margins (e.g., warfarin, clopidogrel), even 
heterozygotes may display unusual drug sensitivity. Although PMs 
make up a minority of subjects in most populations, many drugs in 
common use can inhibit these enzymes (see Table 9-3) and thereby 
“phenocopy” the PM trait. Omeprazole and possibly other proton 
pump inhibitors block CYP2C19 and have been associated with an 
increase in cardiovascular events during clopidogrel therapy.12 Simi-
larly, specific inhibitors of CYP2D6 and CYP2C9 can phenocopy the 
PM trait when coadministered with substrate drugs (Table 9-3).

An example of variant drug transporter function mediating vari-
able drug actions is provided by SLCO1B1, encoding a drug uptake 
transporter in liver. A common nonsynonymous SNP in this gene has 
been associated by candidate studies with variability in simvastatin 
pharmacokinetics and by GWASs with a markedly increased risk for 
simvastatin-induced myopathy.13

The heart rate slowing and blood pressure effects of beta blockers 
and beta agonists have been associated with polymorphisms in the 
drug targets, the beta-1 and beta-2 receptors. A common variant in 
ADRB1, encoding the beta-1 receptor, has been implicated as a medi-
ator of survival during therapy with the beta blocker bucindolol in 
heart failure. Variability in warfarin dose requirements has been 
clearly associated with variants in both CYP2C9, which mediates 
elimination of the active enantiomer of the drug, and VKORC1, part 
of the vitamin K complex that is the drug target. Indeed, these 
common variants account for up to half of the variability in warfarin 
dose requirement,14 illustrating the large impact that common SNPs 
can exert on drug response phenotypes. Furthermore, allele frequen-
cies vary strikingly by ancestry, probably accounting for the fact that 
warfarin dose requirements are low in Asian subjects and high in 
African subjects compared with whites.15

An example of a variant modulating biologic context in which the 
drug acts is susceptibility to stroke in patients receiving diuretics; this 
has been linked to a polymorphism in the alpha-adducing gene 
whose product plays a role in renal tubular sodium transport. 

interested in variability in the PR interval might invoke polymorphisms 
in calcium channel genes, or an investigator interested in blood pres-
sure might invoke variation in the ACE gene. The association between 
polymorphisms in these candidate genes and the phenotype under 
study is then examined in persons with well-characterized pheno-
types. The candidate gene approach is intuitively appealing because 
it takes advantage of what is known about underlying physiology. 
Despite this appeal, however, the method is now recognized to carry 
with it the great potential for false-positive associations, especially 
when small numbers of subjects are studied. An important exception 
has been in pharmacogenomics, where the candidate gene approach 
has yielded important and clinically reproducible associations between 
single common polymorphisms and drug response. This exception 
probably reflects the unusually high contribution of SNPs to overall 
variability in drug response mentioned above.

Another approach to identifying polymorphisms contributing to 
variable human traits is the genome-wide association study (GWAS). 
Here, study subjects are genotyped at hundreds of thousands or mil-
lions of sites known to harbor common SNPs across the genome. 
Because the GWAS platforms focus on common SNPs, effect sizes  
are often small and difficult to identify and validate unless very  
large numbers of subjects, thousands or more, are studied. In addi-
tion, the SNPs associated with the trait usually are not themselves 
functional but rather serve as markers for loci that harbor truly func-
tional variants. The great advantage of the method is that it makes 
no assumptions about underlying physiology, and one of its major 
accomplishments has been to identify entirely new pathways underly-
ing variability in human traits.6 The GWAS approach has been applied 
to study drug response phenotypes7 and even in relatively small sets 
has occasionally been successful in identifying associated common 
variants. Sometimes these are known from candidate gene studies.  
In other cases, notably drug hypersensitivity reactions,8 GWASs involv-
ing even a few dozen cases have identified strong signals that have 
then been replicated.

The GWAS paradigm is enabled by technology to generate the dense 
genotype datasets. New technologies being developed to generate 
other types of high-dimensional data similarly hold the promise of 
elucidating new biologic pathways in disease and drug response. Rapid, 
extremely high-throughput and increasingly inexpensive sequencing 
technologies are detecting rare DNA sequence variants whose contri-
bution to disease is only now being appreciated.5 RNA sequencing 
(“RNA-Seq”) using these technologies is replacing microarray analysis 
as the method of choice for cataloguing RNA transcript profiles and 
abundance by specific cellular subtype and disease. Advances in mass 
spectrometry are similarly enabling development of catalogs (pro-
teomic and metabolomic profiling) of all proteins or of small-molecule 
metabolites of cellular processes, including drug metabolites, by cell 
and disease. Other sources of high-dimensional data include electronic 
medical record (EMR) systems, discussed further later on, and high-
density digital images. Integrating these diverse data types into a 
comprehensive picture of the perturbations that result in disease or 
variable drug responses is the goal of the evolving discipline of systems 
biology and pharmacology. It has been proposed that future drug 
development would be better served by a focus on pathways identified 
by systems approaches rather than single targets.9

MOLECULAR AND GENETIC BASIS  
FOR VARIABLE DRUG RESPONSE

Many factors contribute to variable drug responses—the patient’s 
age, the severity of the disease being treated, presence of disease of 
excretory organs, drug interactions, and poor compliance, to name 
but a few. This section describes major pathways leading to variable 
drug responses.

When a drug is metabolized and excreted by multiple pathways, 
absence of one of these, because of genetic variants, drug interac-
tions, or dysfunction of excretory organs, generally does not affect 
drug concentrations or actions. By contrast, if a single pathway plays 
a critical role, the drug is more likely to exhibit marked variability in 
plasma concentration and associated effects, a situation that has 
been termed high-risk pharmacokinetics.10

One high-risk scenario is that involving bioactivation of a drug—
that is, metabolism of the drug to active and potent metabolites that 
mediate pharmacologic action. Decreased function of such a pathway 
reduces or eliminates drug effect. Bioactivation of clopidogrel by 
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OPTIMIZING DRUG DOSES

The goals of drug therapy should be defined before the initiation of 
drug treatment. These may include acute correction of serious patho-
physiology, acute or chronic symptom relief, or changes in surrogate 
endpoints (e.g., blood pressure, serum cholesterol, international nor-
malized ratio [INR]) that have been linked to beneficial outcomes in 
target patient populations. The lessons of CAST and of positive ino-
tropic drugs should make prescribers skeptical about such surrogate-
guided therapy in the absence of controlled clinical trials.

When the goal of drug therapy is to acutely correct a disturbance 
in physiology, the drug should be administered intravenously in doses 
designed to achieve a therapeutic effect rapidly. This approach is best 
justified when benefits clearly outweigh risks. Large intravenous drug 
boluses carry with them a risk of enhancing drug-related toxicity; 
therefore, even with the most urgent of medical indications, this 

Torsades de pointes during QT-prolonging drug therapy has been 
linked to polymorphisms not only in the ion channel that is the drug 
target but to other ion-channel genes; a large candidate gene survey 
reported that a nonsynonymous SNP in KCNE1, a subunit for the 
slowly-activating potassium current IKs, conferred an odds ratio of 
approximately 10 for torsades risk.16 In addition, this adverse effect 
sometimes occurs in patients with clinically latent congenital long-QT 
syndrome, emphasizing the interrelationship among disease,  
genetic background, and drug therapy (see Chapters 32 and 
35). Drugs also can bring out latent Brugada syndrome (see 
www.brugadadrugs.org).

The anticancer drug trastuzumab is effective only in patients with 
cancers that do not express the Her2/neu receptor. Because the  
drug also potentiates anthracycline-related cardiotoxicity, toxic 
therapy can be avoided in patients who are receptor-negative (see 
Chapter 85).

TABLE 9-3  Drug Interactions: Mechanisms and Examples

MECHANISM DRUG INTERACTING DRUG EFFECT

Decreased 
bioavailability

Digoxin Antacids Decreased digoxin effect secondary to decreased 
absorption

Increased 
bioavailability

Digoxin Antibiotics By eliminating gut flora that metabolize digoxin, some 
antibiotics may increase digoxin bioavailability; NOTE: 
some antibiotics also interfere with P-glycoprotein 
(expressed in the intestine and elsewhere), another 
effect that can elevate digoxin concentration

Induction of hepatic 
metabolism

CYP3A substrates:
Quinidine
Mexiletine
Verapamil
Cyclosporine

Phenytoin
Rifampin
Barbiturates
St. John’s wort

Loss of drug effect secondary to increased metabolism

Inhibition of hepatic 
metabolism

CYP2C9:
Warfarin
Losartan

Amiodarone
Phenytoin

Decreased warfarin requirement
Diminished conversion of losartan to its active metabolite, 

with decreased antihypertensive control

CYP3A substrates:
Quinidine
Cyclosporine
HMG-CoA reductase inhibitors: 

lovastatin, simvastatin, 
atorvastatin; not pravastatin

cisapride, terfenadine, astemizole

Ketoconazole
Itraconazole
Erythromycin
Clarithromycin
Some calcium blockers
Some HIV protease inhibitors 

(especially ritonavir)

Increased risk for drug toxicity

CYP2D6 substrates:
Beta blockers (see Table 9-2)
Propafenone
Desipramine
Codeine

Quinidine (even ultralow dose)
fluoxetine, paroxetine

Increased beta blockade
Increased beta blockade
Increased adverse effects
Decreased analgesia (due to failure of biotransformation 

to the active metabolite morphine)

CYP2C19:
Clopidogrel

Omeprazole, possibly other proton 
pump inhibitors

Decreased clopidogrel efficacy

Inhibition of drug 
transport

P-glycoprotein transport:
Digoxin

Amiodarone, quinidine
verapamil, cyclosporine
itraconazole, erythromycin

Digoxin toxicity

Renal tubular transport:
dofetilide

Verapamil Slightly increased plasma concentration and QT effect

Monoamine transport:
guanadrel

Tricyclic antidepressants Blunted antihypertensive effects

Pharmacodynamic 
interactions

Aspirin + warfarin Increased therapeutic antithrombotic effect; increased risk 
of bleeding

Nonsteroidal anti-inflammatory drugs Warfarin Increased risk of gastrointestinal bleeding

Antihypertensive drugs Nonsteroidal anti-inflammatory drugs Loss of blood pressure lowering

QT-prolonging antiarrhythmics Diuretics Increased torsades de pointes risk secondary to diuretic-
induced hypokalemia

Supplemental potassium ACE inhibitors Hyperkalemia

Sildenafil Nitrates Increased and persistent vasodilation; risk of myocardial 
ischemia
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drug concentrations to ensure that they remain within a desired 
therapeutic range (i.e., above a minimum required for efficacy and 
below a maximum likely to produce adverse effects) may be a useful 
adjunct to therapy. Monitoring drug concentrations also may be useful 
to ensure compliance and to detect pharmacokinetically based drug 
interactions that underlie unanticipated efficacy and/or toxicity at 
usual dosages. Samples for measurement of plasma concentrations 
generally should be obtained just before the next dose, at steady state. 
These trough concentrations provide an index of the minimum plasma 
concentration expected during a dosing interval.

On the other hand, patient monitoring, whether by plasma concen-
tration or other physiologic indices, to detect incipient toxicity is best 
accomplished at the time of anticipated peak drug concentrations. 
Thus, patient surveillance for QT prolongation during therapy with 
sotalol or dofetilide is best timed for 1 to 2 hours after the administra-
tion of a dose of drug at a steady state.

A lag between the time courses of drug in plasma and drug effects 
may exist (see earlier). In addition, monitoring plasma drug concentra-
tions relies on the assumption that the concentration measured is in 
equilibrium with that at the target molecular site. Of note, it is only the 
fraction of drug not bound to plasma proteins that is available to 
achieve such equilibration. Variability in the extent of protein binding 
can therefore affect the free fraction and anticipated drug effect, even 
in the presence of apparently therapeutic total plasma drug concentra-
tions. Basic drugs such as lidocaine and quinidine are not only bound 
to albumin but also bind extensively to alpha-1 acid glycoprotein, an 
acute-phase reactant whose concentrations are increased in a variety 
of stress situations, including acute myocardial infarction. Because of 
this increased protein binding, drug effects may be blunted, despite 
achieving therapeutic total drug concentrations in these situations.

approach is rarely appropriate. An exception 
is adenosine, which must be administered as 
a rapidly delivered bolus because it under-
goes extensive and rapid elimination from 
plasma by uptake into almost all cells. As a 
consequence, a slow bolus or infusion rarely 
achieves sufficiently high concentrations at 
the desired site of action (the coronary artery 
perfusing the atrioventricular node) to termi-
nate arrhythmias. Similarly, the time course 
of anesthesia depends on anesthetic drug 
delivery to and removal from sites in the 
central nervous system.

The time required to achieve steady-state 
plasma concentrations is determined by the 
elimination half-life (see earlier). The admin-
istration of a loading dose may shorten this 
time, but only if the kinetics of distribution 
and elimination are known beforehand in an 
individual subject and the correct loading 
regimen is chosen. Otherwise, overshoot or 
undershoot during the loading phase may 
occur (see Fig. 9-3). Thus, the initiation of 
drug therapy by a loading strategy should be 
used only when the indication is acute.

Two dose-response curves describe the 
relationship between drug dose and the 
expected cumulative incidence of a benefi-
cial effect or an adverse effect (Fig. 9-4). The 
distance along the x-axis describing the dif-
ference between these curves, often termed 
the therapeutic ratio (or index or window), 
provides an index of the likelihood that a 
chronic dosing regimen that provides bene-
fits without adverse effects can be identified. 
Drugs with especially wide therapeutic 
indices often can be administered at infre-
quent intervals, even if they are rapidly elimi-
nated (see Fig. 9-4A, C).

When anticipated adverse effects are 
serious, the most appropriate treatment strategy is to start at low 
doses and reevaluate the necessity for increasing drug dosages once 
steady-state drug effects have been achieved. This approach has the 
advantage of minimizing the risk of dose-related adverse effects but 
carries with it a need to titrate doses to efficacy. Only when stable 
drug effects are achieved should increasing drug dosage to achieve 
the desired therapeutic effect be considered. An example is sotalol: 
Because the risk of torsades de pointes increases with drug dosage, 
the starting dose should be low.

In other cases, anticipated toxicity is relatively mild and manage-
able. It may then be acceptable to start at dosages higher than the 
minimum required to achieve a therapeutic effect, accepting a greater 
than minimal risk of adverse effects; some antihypertensives can be 
administered in this fashion. However, the principle of using the 
lowest dose possible to minimize toxicity, particularly toxicity that is 
unpredictable and unrelated to recognized pharmacologic actions, 
should be the rule.

Occasionally, dose escalation into the high therapeutic range 
results in no beneficial drug effect and no side effects. In this circum-
stance, the prescriber should be alert to the possibility of noncompli-
ance or drug interactions at the pharmacokinetic or pharmacodynamic 
level. Depending on the nature of the anticipated toxicity, dose esca-
lation beyond the usual therapeutic range may occasionally be 
acceptable, but only if anticipated toxicity is not serious and is readily 
manageable.

Plasma Concentration Monitoring 
For some drugs, curves such as those shown in Figure 9-4A and B 
relating drug concentration to cumulative incidence of beneficial and 
adverse effects can be generated. With such drugs, monitoring plasma 

FIGURE 9-4  The concept of therapeutic ratio. A, B, Two dose- (or concentration-) response curves. The blue 
lines describe the relationship between dose and cumulative incidence of beneficial effects, and the magenta line 
depicts the relationship between dose and dose-related adverse effects (risk). As depicted in A, a drug with a wide 
therapeutic ratio displays separation between the two curves, a high degree of efficacy, and low degree of dose-
related toxicity. Under these conditions, a wide therapeutic ratio can be defined. In B, conversely, the curves describ-
ing cumulative efficacy and cumulative incidence of adverse effects are positioned near each other, the incidence 
of adverse effects is higher, and the expected beneficial response is lower. These characteristics define a narrow 
therapeutic ratio. C, D, Steady-state plasma concentrations with oral drug administration as a function of time with 
wide (left) and narrow (right) therapeutic ratios. The hash marks on the abscissae each indicate one elimination half-
life. C, When the therapeutic window is wide, drug administration every three elimination half-lives can produce 
plasma concentrations that are maintained above the minimum for efficacy and below the maximum beyond which 
toxicity is anticipated. D, The opposite situation is illustrated. To maintain plasma concentrations within the narrow 
therapeutic range, the drug must be administered more frequently. 
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addition, drugs can interact at the pharmacodynamic level. A trivial 
example is the coadministration of two antihypertensive drugs, 
leading to excessive hypotension. Similarly, coadministration of 
aspirin and warfarin leads to an increased risk for bleeding, although 
benefits of the combination also can be demonstrated.

The most important principle in approaching a patient receiving 
polypharmacy is to recognize the high potential for drug interactions. 
A complete medication history should be obtained from each patient 
at regular intervals; patients will often omit topical medications such 
as eye drops, health food supplements, and medications prescribed 
by other practitioners unless specifically prompted. Each of these, 
however, carries a risk of important systemic drug actions and inter-
actions. Even high dosages of grapefruit juice, which contains CYP3A 
and P-glycoprotein inhibitors, can affect drug responses. Beta blocker 
eye drops can produce systemic beta blockade, particularly with 
CYP2D6 substrates (e.g., timolol) in patients with defective CYP2D6 
activity. St. John’s wort induces CYP3A and P-glycoprotein activity 
(like phenytoin and other drugs) and thus can markedly lower plasma 
concentrations of substrate drugs such as cyclosporine. As with many 
other interactions, this may not be a special problem so long as both 
drugs are continued. However, if a patient stabilized on cyclosporine 
stops taking a concomitantly administered CYP3A inducer, plasma 
concentrations of the drug can rise dramatically and toxicity can 
ensue. Similarly, initiation of an inducer may lead to markedly 
lowered cyclosporine concentrations and a risk of organ rejection. A 
number of natural supplements have been associated with serious 
drug toxicity that has resulted in withdrawal from the market; 
phenylpropanolamine-associated stroke is an example.

Incorporating Pharmacogenetic Information 
into Prescribing
The identification of polymorphisms associated with variable drug 
responses naturally raises the question of how these data could or 
should be used to optimize drug doses, to avoid drugs likely to be inef-
fective, and to avoid drugs likely to produce major toxicities. Indeed, 
in 2007, the U.S. Food and Drug Administration (FDA) began systemati-
cally including pharmacogenetic information in drug labels.17 Despite 
the intuitive appeal of a pharmacogenetically guided approach to 
drug therapy, however, practitioners wishing to adopt genetic testing 
to guide drug therapy encounter substantial practical barriers; these 
include cost, varying levels of evidence supporting a role for genetics, 
and implementation issues such as how fast and accurately a genetic 
test result can be delivered. It is the nature of pharmacogenetic varia-
tion that most patients will display average responses to most drugs, so 
systematically testing every patient in the hopes of finding the minority 
likely to display aberrant responses is cumbersome and seems time- 
and cost-inefficient unless the benefit for individual patients is large. 
An example of a large benefit is that routine genotyping of all patients 
receiving the antiretroviral agent abacavir is now standard of care 
because it avoids a potentially life-threatening skin reaction in 3% of 
patients.18 In cardiovascular medicine, initial results of clinical trials 
suggest either no effect or a modest effect of genotyping to keep anti-
coagulation therapeutic during warfarin therapy.

A difficulty with such drug-specific approaches is that the benefit 
of the genotype data must be large to justify the cumbersomeness 
and cost of testing all exposed subjects. Although the probability is 
small that genetic variation plays an important role in predicting the 
response of an individual patient to a specific drug, it is likely that 
when many drugs are prescribed for a population of patients, each 
patient will display genetically determined aberrant responses to 
some drugs. This reasoning underlies the concept of preemptive 
genotyping, in which many genetic variants relevant to many variable 
drug responses are assayed in subjects who have not yet been 
exposed to the drugs.19 These data are then stored in EMR systems 
with advanced point-of-care decision support capabilities that  
deliver instantaneous advice when a drug is prescribed to a  
patient with known genomic variants.20 Several technological devel-
opments enable this vision, and these include advanced EMRs and 
multiplexed inexpensive genotyping assays that interrogate many 

Dose Adjustments
Disease and Concomitant Drugs
Polypharmacy is common in patients with varying degrees of specific 
organ dysfunction. Although treatment with an individual agent may 
be justified, the practitioner should also recognize the risk of unan-
ticipated drug effects, particularly drug toxicity, during therapy with 
multiple drugs.

The presence of renal disease mandates dose reductions for drugs 
eliminated primarily by renal excretion, including digoxin, dofetilide, 
and sotalol. A requirement for dose adjustment in cases of mild renal 
dysfunction is dictated by available clinical data and the likelihood 
of serious toxicity if drug accumulates in plasma because of impaired 
elimination. Renal failure reduces the protein binding of some drugs 
(e.g., phenytoin); in this case, a total drug concentration value in  
the therapeutic range may actually represent a toxic value of un
bound drug.

Advanced liver disease is characterized by decreased hepatic drug 
metabolism and portacaval shunts that decrease clearance, particu-
larly first-pass clearance. Moreover, affected patients frequently have 
other profound disturbances of homeostasis, such as coagulopathy, 
severe ascites, and altered mental status. These pathophysiologic 
features of advanced liver disease can profoundly affect not only the 
dose of a drug required to achieve a potentially therapeutic effect but 
also the perception of risks and benefits, thereby altering the pre-
scriber’s assessment of the actual need for therapy.

Heart disease similarly carries with it a number of disturbances of 
drug elimination and drug sensitivity that may alter the therapeutic 
doses or the practitioner’s perception of the desirability of therapy on 
the basis of evaluation of risks and benefits. Patients with left ventricu-
lar hypertrophy often have baseline QT prolongation, so risks associ-
ated with use of QT-prolonging antiarrhythmics may increase; most 
guidelines suggest avoiding QT-prolonging antiarrhythmics in such 
patients (see Chapters 35, 86, and 88; see also www.torsades.org).

In heart failure (see Chapter 25), hepatic congestion can lead to 
decreased clearance with a corresponding increased risk for toxicity 
with usual doses of certain drugs, including some sedatives, lido-
caine, and beta blockers. On the other hand, gut congestion can lead 
to decreased absorption of orally administered drugs and decreased 
effects. In addition, patients with heart failure may demonstrate 
reduced renal perfusion and require dose adjustments on this basis. 
Heart failure also is characterized by a redistribution of regional 
blood flow, which can lead to reduced volume of distribution and 
enhanced risk for drug toxicity. Lidocaine probably is the best-
studied example; loading doses of lidocaine should be reduced in 
patients with heart failure because of altered distribution, whereas 
maintenance doses should be reduced in heart failure and liver 
disease because of altered clearance.

Age also is a major factor in determining drug doses, as well as 
sensitivity to drug effects. Doses in children generally are adminis-
tered on an mg/kg body weight basis, although firm data to guide 
therapy are often not available. Variable postnatal maturation of drug 
disposition systems may present a special problem in the neonate. 
Older persons often have reduced creatinine clearance, even those 
with a normal serum creatinine level, and dosages of renally excreted 
drugs should be adjusted accordingly (see Chapter 76). Diastolic 
dysfunction with hepatic congestion is more common in older adults, 
and vascular disease and dementia are common, which can lead to 
increased postural hypotension and risk of falling. Therapies such as 
sedatives, tricyclic antidepressants, or anticoagulants should be initi-
ated only when the practitioner is convinced that the benefits of such 
therapies outweigh this increased risk.

Drug Interactions
As a result of therapeutic successes not only in heart disease but also 
in other disease areas, cardiovascular physicians are increasingly 
encountering patients receiving multiple medications for noncardio-
vascular indications. Table 9-3 summarizes mechanisms that may 
underlie important drug interactions. Drug interactions may be based 
on altered absorption, distribution, metabolism, or excretion. In 
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genome-guided healthcare but presents major challenges in data 
storage and mining.

The relationship between the prescriber and the patient remains 
the centerpiece of modern therapeutics. An increasingly sophisti-
cated molecular and genetic view of response to drug therapy should 
not change this view, but rather complement it. Each initiation of drug 
therapy represents a new clinical experiment. Prescribers must 
always be vigilant regarding the possibility of unusual drug effects, 
which could provide clues about unanticipated and important mech-
anisms of beneficial and adverse drug effects.
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polymorphisms for the same cost as a handful relevant to one drug. 
The concept is now being tested at a handful of medical centers with 
the goal of testing the idea, establishing its cost and benefit, and 
optimizing this approach to implementing pharmacogenomic infor-
mation into health care.

FUTURE CHALLENGES

The past 25 years have seen dramatic advances in the treatment of 
heart disease, in no small part because of the development of highly 
effective and well-tolerated drug therapies such as with HMG-CoA 
reductase inhibitors, ACE inhibitors, and beta blockers. These devel-
opments, along with improved nonpharmacologic approaches, have 
led to dramatically enhanced survival of patients with advanced 
heart disease. Thus, polypharmacy in an aging and chronically ill 
population is becoming increasingly common. In this milieu, drug 
effects become increasingly variable, reflecting interactions among 
drugs, underlying disease and disease mechanisms, and genetic 
backgrounds. Furthermore, despite advances in the Western world, 
cardiovascular disease is emerging as an increasing problem world-
wide as infectious diseases, formerly predominant contributors to 
morbidity and mortality, are coming under control and smoking con-
tinues to increase. Understanding the way in which genetic back-
ground plays into disease susceptibility and responses to drug 
therapy, concepts largely tested in only white populations to date, 
represents a major challenge in cardiovascular medicine.

More generally, an important point is that genomic science is still 
in its infancy, so reported associations require independent confirma-
tion and assessment of clinical importance and cost-effectiveness 
before they can or should enter clinical practice. Importantly, most 
pharmacogenomic studies reported to date have focused on common 
variants with relatively large effects on phenotypes like drug concen-
trations or drug responses. However, application of modern sequenc-
ing technologies has revealed that the vast majority of polymorphisms 
are uncommon (minor allele frequencies under 1%), and CYP and 
other genes relevant to pharmacogenomics are no exception. Devel-
oping approaches to establish the clinical impact of such rare vari-
ants on drug responses is an emerging challenge.

This challenge is all the more acute because the cost of sequencing 
has fallen drastically since the completion of the first-draft human 
genome in 2000, and the sub-$1000 whole-genome sequence is likely 
to be a reality in 2014. This may be enabling for the preemptive phar-
macogenomic strategy just outlined, as well as a broader vision of 
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We use biomarkers daily in the practice of cardiovascular medicine. 
Moreover, the use of biomarkers has the potential to continue to 
improve our ability to provide clinically effective and cost-effective 
cardiovascular medicine in the years to come. Appropriate risk strati-
fication and targeting of therapies should not only help improve 
patient outcomes but also assist in responding to the urgent need to 
“bend the cost curve” of medical care. In particular, excessive use of 
imaging biomarkers increases the cost of medical care and can jeop-
ardize patient outcomes (for example, radiation exposure or compli-
cations of administering contrast material or investigating incidental 
findings). Inappropriate use or interpretation of blood biomarkers 
(e.g., cardiac troponin levels) can lead to unnecessary hospitalization 
or procedures as well.

Despite the current usefulness of biomarkers, their future promise, 
and the critical need to use them appropriately, a great deal of mis-
understanding surrounds their current clinical application. In addi-
tion, contemporary technologies have the potential to greatly expand 
the gamut of biomarkers relevant to cardiovascular practice. Emerg-
ing genetic, proteomic, metabolomic, and molecular imaging strate-
gies will surely transform the landscape of cardiovascular biomarkers 
(see also Chapters 7, 8, 9, and 42). This chapter provides a primer 
on cardiovascular biomarkers by defining some terms and discussing 
how the application of biomarkers can assist in clinical care, in addi-
tion to exploring some emerging technologies. Finally, we discuss an 
approach to the rigorous evaluation of the clinical usefulness of 
biomarkers. Advances in cardiovascular biology and the application 
of novel technologies have identified a plethora of novel cardiovas-
cular biomarkers of potential clinical usefulness—begging the ques-
tion of whether a novel biomarker adds value to existing and often 
better-validated biomarkers. Thus clinicians need tools to evaluate 
these emerging biomarkers, adoption of which may elevate clinical 
practice and improve patient outcomes.

WHAT IS A BIOMARKER?

For regulatory purposes, the U.S. Food and Drug Administration 
(FDA) first defined a biomarker in 1992 as “a laboratory measure or 
physical sign that is used in therapeutic trials as a substitute for a 
clinically meaningful end point that is a direct measure of how a 
patient feels, functions, or survives and is expected to predict the 
effect of the therapy.” At that time the FDA considered a surrogate 
endpoint as “reasonably likely, based on epidemiologic, therapeutic, 
pathophysiologic, or other evidence to predict clinical benefit.”1 The 
National Institutes of Health (NIH) convened a working group in 1998 

that offered some parallel operating definitions to guide the bio-
marker field (Table 10-1).2 They defined a biologic marker—
biomarker for short—as “a characteristic that is objectively measured 
and evaluated as an indicator of normal biologic processes, patho-
genic processes, or pharmacologic responses to a therapeutic inter-
vention.” Thus the NIH definition embraces not only soluble 
biomarkers in circulating blood but also “bedside biomarkers” such 
as anthropomorphic variables obtainable with a blood pressure cuff 
or a tape measure at the point of care. This broad definition encom-
passes not only measurements of biomarkers in blood (Fig. 10-1A) 
but also those derived from a variety of techniques, including mea-
surements from imaging studies (Fig. 10-1B). Imaging biomarkers can 
include those derived from classic anatomic approaches. Imaging 
modalities now offer functional information, such as estimates of 
ventricular function, myocardial perfusion, and the like. Molecular 
imaging has the potential to target specific molecular processes. A 
functional classification of biomarkers helps sort through the pleth-
ora encountered by the clinician inasmuch as biomarkers can reflect 
a variety of biologic processes or organs of origin. For example, as a 
first approximation, cardiac troponin reflects myocardial injury, 
brain natriuretic peptide reflects cardiac chamber stretch, C-reactive 
protein (CRP) reflects inflammation, and the estimated glomerular 
filtration rate reflects kidney function (see Fig. 10-1B).

The NIH working group also provided further definitions relevant 
to the field of biomarkers. They defined a “surrogate endpoint” as “a 
biomarker intended to substitute for a clinical endpoint. A surrogate 
endpoint is expected to predict clinical benefit (or harm), or lack of 
benefit (or harm) based on epidemiologic, therapeutic, pathophysi-
ologic, or other scientific evidence.” (Note that the NIH definitions do 
not include the commonly used term “surrogate marker.”) (Table 
10-1). Thus a surrogate endpoint is a biomarker that has been “ele-
vated” to surrogate status. This distinction has particular importance 
in the regulatory aspects of cardiovascular medicine. For example, 
the FDA previously accepted a certain degree of reduction in hemo-
globin A1c (HbA1c) as a criterion for registration of a novel oral 
hypoglycemic agent—thus HbA1c was considered a biomarker 
accepted as a surrogate endpoint. Current FDA guidance now requires 
a cardiovascular safety study for the registration of new medications 
that target diabetes.3 This policy indicates doubts about the fidelity 
of a drop in HbA1c as a surrogate endpoint for reduced cardiovascu-
lar risk in the eyes of regulatory authorities despite its value as a 
biomarker of glycemia.

The NIH working group defined a “clinical endpoint” as “a charac-
teristic or variable that reflects how a patient feels, functions, or 
survives” (Table 10-1). Pivotal or phase III cardiovascular trials aspire 
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TABLE 10-1  National Institutes of Health Biomarkers 
Definition Working Group (1998)

Biologic Marker (Biomarker)

A characteristic that is objectively measured and evaluated as an indicator 
of normal biologic processes, pathogenic processes, or pharmacologic 
responses to a therapeutic intervention.

Surrogate Endpoint

A biomarker intended to substitute for a clinical endpoint. A surrogate 
endpoint is expected to predict clinical benefit (or harm or lack of 
benefit or harm) based on epidemiologic, therapeutic, 
pathophysiologic, or other scientific evidence.

Clinical endpoint

A characteristic or variable that reflects how a patient feels, functions, or 
survives.

FIGURE 10-1  Examples of commonly used clinical biomarkers for cardiovascular disease (A), as well as research-oriented biomarkers categorized according to purpose 
(B) and technology (C). BNP = brain natriuretic peptide; TG = triglyceride. 

Clinical Purpose Technology

Biomarkers Biomarkers Biomarkers
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Monitoring therapy
Toxicity evaluation

Dose ranging

Disease monitoring
Goal of therapy

Risk predication/
assessment

Predictive medicine
Disease prevention
Genomic/Proteomic
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Define/discover
new targets
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Therapeutic targeting
Gene-drug interaction

Protein-drug interactions

Image based

Behavior basedPhysiologic based

Cell based Proteomic based
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A B C

to use clinical endpoints as defined above. The distinction between 
biomarkers, surrogate endpoints, and clinical endpoints has crucial 
implications as practitioners, regulators, and payers increasingly 
demand evidence of improvements in actual clinical outcomes rather 
than mere manipulation of biomarkers as a criterion for adoption of 
a treatment in clinical practice.

Clinical Applications of  
Cardiovascular Biomarkers
Much of the prevailing confusion regarding biomarkers involves 
framing the question that one wants to answer with the use of a 
biomarker (Fig. 10-1C). We can classify the goals of application of 
cardiovascular biomarkers into several rubrics.
1.	 Diagnosis: The use of biomarkers for cardiovascular diagnosis has 

daily familiarity to practitioners of cardiovascular medicine. The 
current universal definition of myocardial infarction, for example, 
requires elevation of a biomarker of myocyte injury, such as 
cardiac-specific isoforms of troponin.

2.	 Risk stratification: Familiar examples of biomarkers used in risk 
stratification in cardiovascular medicine include systolic blood 
pressure or low-density lipoprotein (LDL) cholesterol. These 

biomarkers reliably predict future risk for cardiovascular events on 
a population basis.

3.	 Goals for therapy: Our contemporary guidelines often specify cut 
points for targets of treatment—for example, a specific level of a 
biomarker such as systolic blood pressure or LDL cholesterol in a 
particular group of individuals. Practitioners of cardiovascular 
medicine commonly use the biomarker international normalized 
ratio (INR) to titrate the dosage of warfarin administered to an 
individual patient. Abundant data support the clinical benefit of 
maintaining the INR within a certain range in various patient 
groups—an example of a widely used biomarker that has proven 
clinical usefulness as a goal for therapy.

4.	 Targeting of therapy: In clinical practice, using biomarkers to 
target therapy has great usefulness and promise as we move 
toward a more comprehensive “personalized medicine” approach 
to practice (see Chapter 8). Examples of biomarkers used to 
target therapy include troponin measurements to triage patients 
with acute coronary syndromes for early invasive management or 
measurement of high-sensitivity C-reactive protein (hsCRP) to  
allocate statin treatment to individuals with below-average LDL 
cholesterol.

5.	 Drug development, evaluation, and registration: Biomarkers have 
critical importance in the development of new pharmacologic 
agents. Biomarkers can provide early signals of efficacy that will 
help prioritize agents more likely to provide benefit on clinical 
endpoints in large-scale trials. Inappropriate dose selection repre-
sents a major mode of failure of clinical trials. Judicious use of 
biomarkers can help in selecting an appropriate dose of an agent 
to study in a large endpoint trial. Finally, biomarkers accepted as 
surrogate endpoints prove useful to regulatory agencies in grant-
ing approval for novel therapies.
Clinical use of cardiovascular biomarkers requires a clear under-

standing of how they should be used. Many biomarkers provide clini-
cally useful information when measured once at “baseline.” A 
baseline measurement of high-density lipoprotein (HDL) cholesterol, 
for example, indubitably correlates inversely with future risk for car-
diovascular events. Yet serial measurement of biomarkers to docu-
ment a change does not always guarantee a clinical benefit. In the 
case of HDL, recent large-scale trials that have measured clinical 
endpoints have cast doubt on the fidelity of a rise in HDL cholesterol 
as a predictor of clinical benefit (see Chapter 45).
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Biomarkers require rigorous validation before adoption into clini-
cal practice. In cardiovascular medicine, LDL cholesterol has high 
reliability as a biomarker; it satisfies the modified Koch postulates. 
LDL levels prospectively predict cardiovascular risk, and drops in 
LDL generally correlate with improved outcomes. Not all biomarkers, 
though, have proved as faithful in predicting clinical events. In the 
1960s and 1970s, for example, most of the cardiovascular community 
considered ventricular premature depolarizations on the electrocar-
diogram as important biomarkers for lethal arrhythmias. Numerous 
strategies have been aimed at suppressing ventricular ectopy. CAST 
(Cardiac Arrhythmia Suppression Trial), however, showed that drugs 
capable of suppressing ventricular premature depolarizations actu-
ally worsened clinical endpoints. The short-term improvements in 
indices of cardiac contractility produced by inotropic agents similarly 
led to worsened clinical outcomes, including increased mortality. 
These examples illustrate the necessity of rigorous validation of bio-
markers before adoption into clinical practice.

Another important consideration in the use of cardiovascular bio-
markers involves the question of causality. LDL cholesterol exempli-
fies a causal biomarker, one that clearly participates in the 
pathogenesis of atherosclerosis. Its levels prospectively correlate with 
risk for cardiovascular events and the development of atherosclerotic 
lesions identified by a variety of imaging modalities. A variety of 
independent manipulations of LDL levels correlate with clinical out-
comes. Finally, very strong genetic evidence based on mendelian 
disorders (e.g., familial hypercholesterolemia) and unbiased genome-
wide association scans, as well as mendelian randomization analy-
ses, has established LDL cholesterol as a causal risk factor in 
atherosclerotic cardiovascular disease and as a generally valid sur-
rogate endpoint offering great value in clinical practice (see Chapter 
45).4,5 For a biomarker that has a causal role, the expected random 
population distribution of a polymorphism that determines high or 
low biomarker concentrations would be skewed in individuals, 
depending on their disease status.

Other biomarkers, although clearly clinically useful, do not partici-
pate in the causal pathway for disease. For example, fever has served 
since antiquity as an important biomarker of infection. Resolution of 
fever correlates with successful resolution of infectious processes. Yet 
fever does not participate causally in the pathogenesis of infection 
but merely serves as a biomarker of the host defenses against the 
infectious process. Similarly, the use of hsCRP measurements 
improves the prediction of cardiovascular risk, and reductions in CRP 
correlate with clinical benefit in many cases. Yet, evidence support-
ing a causal role for CRP in the pathogenesis of cardiovascular 
disease lacks strength.6

These examples illustrate how a biomarker does not have to reside 
in the causal pathway of a disease to have clinical usefulness. A clear 
and early exposition of the uses and pitfalls in the application of 
biomarkers emerged from the landmark work of Fleming and DeMets 
(Fig. 10-2).7 Biomarkers have the greatest potential for validity when 
there is one causal pathway and when the effect of intervention on 
true clinical outcomes is mediated directly through the biomarker 
surrogate (Fig. 10-2A). But, biomarker development can fail when the 
biomarker turns out not to be in the causal pathway, when the bio-
marker is insensitive to the specific intervention’s effect, or when the 
intervention of interest has a mechanism of action (or a toxicity) that 
is independent of the pathway described by the biomarker (Fig. 
10-2B-E). These examples do not mean that biomarkers lack value. 
Quite the contrary, few—if any—novel biologic fields could develop 
without biomarker discovery and validation. Yet surrogate endpoints 
probably will not replace large-scale randomized trials that address 
whether interventions reduce actual event rates.

Novel Technologies in the Identification  
of Biomarkers
The limitations of currently available biomarkers for screening  
or prognostic use underscore the importance of identifying “uncor-
related” or “orthogonal” biomarkers associated with novel disease 
pathways. Most current biomarkers have been developed as 

FIGURE 10-2  Biomarkers as surrogate endpoints in clinical research. A, The 
setting that provides the greatest potential for the surrogate endpoint to be valid. 
B, The surrogate is not in the causal pathway of the disease process. C, Of several 
causal pathways of disease, the intervention affects only the pathway mediated 
through the surrogate. D, The surrogate is not in the pathway of the intervention’s 
effect or is insensitive to its effect. E, The intervention has mechanisms of action 
independent of the disease process. Dotted lines represent possible mechanisms 
of action. (Modified from Fleming TR, DeMets DL: Surrogate end points in clinical 
trials: Are we being misled? Ann Intern Med 125:605, 1996.)
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an extension of targeted physiologic studies investigating known 
pathways such as tissue injury, inflammation, or hemostasis. By con-
trast, emerging technologies now enable the systematic, unbiased 
characterization of variation in proteins and metabolites associated 
with disease conditions.

INTRODUCTION TO PROTEOMICS  
AND METABOLOMICS

Of the emerging platforms for biomarker discovery, perhaps none 
have garnered more recent attention than proteomics and metabolo-
mics. Proteomics aims to catalogue the entire protein products of the 
human genome. By contrast, metabolomics attempts to systemically 
capture smaller biochemical compounds, including simple amino 
acids and related amines, as well as lipids, sugars, nucleotides, and 
other intermediary metabolites. Although still in their infancy with 
respect to other approaches, proteomics and metabolomics offer 
insight into the full complexity of a given disease phenotype (Fig. 
10-3). Because proteins and metabolites are downstream of genetic 
variation and transcriptional changes, they provide instantaneous 
“snapshots” of the state of a cell or organism. They can rapidly change 
in response to environmental stressors such as exercise or directly 
by the ingestion of foods or other compounds. A growing body of 
literature suggests unanticipated roles of small proteins and metabo-
lites in the control of biologic functions such as blood pressure and 
energy homeostasis.8,9 Thus metabolomics and proteomics may not 
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errors of metabolism in infants have served as a key springboard. 
Millington and colleagues pioneered the use of mass spectrometry 
(MS)-based methods for monitoring fatty acid oxidation, as well  
as organic and selected amino acids. Their work has culminated  
in neonatal screening for metabolic disorders,14 thereby enabling 
the identification of infants with fatty acid oxidation disorders, 
organic acidemias, and aminoacidopathies. In certain situations, 
rapid identification of these disorders triggers intervention in the 
form of dietary modulation, with beneficial therapeutic effects.  
A global metabolomic or proteomic analysis of more common 
complex diseases might similarly spotlight pathways for dietary or 
drug modulation.

Analytic Challenges for Proteomics  
and Metabolomics
The many classes of proteins and chemicals present analytic chal-
lenges, particularly as applied to searching for biomarkers in blood. 
Many different types of cells contribute to the plasma proteome and 
metabolome, thus increasing their complexities and presenting chal-
lenges to interpretation of the data that emerge. In the case of the 
proteome, the 22 most abundant proteins, including albumin and the 
immunoglobulins, account for 99% of the total proteome mass (Fig. 
10-4). Many of the biologically interesting molecules relevant to 
human disease occur in low abundance. Cardiac markers such as 
troponin circulate in the nanomolar range, insulin in the picomolar 
range, and tumor necrosis factor in the femtomolar range. Plasma 
contains tens of thousands of unique protein species in concentra-
tions spanning a range of more than 10 orders of magnitude. Indeed, 
some suggest that the plasma proteome might encompass the entire 
set of human polypeptide species resulting from splice variants and 
post-translational modifications15 because the protein content of 
plasma unexpectedly includes proteins of all functional classes and 
from apparently all cellular localizations. Most low-abundance pro-
teins in plasma are intracellular or membrane proteins that are 
present in plasma as a result of cellular turnover.16 By contrast, recent 
estimates suggest that the human metabolome may include approxi-
mately 5000 small molecules17 and thus may be somewhat more trac-
table to analyze and systematize than the human proteome.

Several features contribute critically to the success of proteomic or 
metabolomic technologies. First, the technique must have the 

only identify novel biomarkers but also provide information on 
biology and highlight potential therapeutic targets.

The term proteome was coined in the 1990s with the increasing 
realization that although all cells of a given organism contain an 
equivalent genomic content, their protein content does not represent 
all possible proteins that the genome can express. Selective gene 
expression during development and differentiation and in response 
to external stimuli results in each cell expressing only a subset of the 
encoded proteins at any given time. One can speak not only of the 
general human proteome but also more specifically about the pro-
teome of tissues such as the heart, of specific cells such as cardiac 
myocytes, and even of subproteomes that correspond to particular 
organelles or biologic compartments, such as mitochondria.

The proteome provides information beyond the messenger RNA 
(mRNA) expression profile of a particular genome. Studies suggest 
that gene expression often correlates poorly with protein levels.10 
Protein expression depends not only on transcription but also on 
mRNA stability and rates of protein synthesis and degradation, so the 
presence or absence of mRNA may not accurately reflect levels of the 
corresponding protein. Following transcription and translation, pro-
teins may undergo one or more of dozens of potential post-
translational modifications (such as phosphorylation, glycosylation, 
acetylation, or sulfation) at multiple sites. Subsequent enzymatic and 
nonenzymatic alterations greatly expand the number of simultane-
ously existing protein species.

When compared with proteomics techniques, metabolomics tech-
nologies focus on smaller compounds, generally less than 2 kDa in 
size. Metabolites are usually easily separated from protein constitu-
ents by simple extraction techniques and precipitation and removal 
of the proteins. As early as the 1970s, Arthur Robinson and Linus 
Pauling postulated that the quantitative and qualitative pattern of 
metabolites in biologic fluids reflected the functional status of the 
complex biologic system from which they were derived.11 The term 
“metabolic profiling” was introduced to describe data obtained from 
gas chromatographic analysis of a patient sample.12 This emerging 
approach to quantitative metabolic profiling of large numbers of 
small molecules in biofluids was ultimately termed “metabonomics” 
by Nicholson and colleagues13 and “metabolomics” by others. 
Recently, more focused analyses of specific metabolite families or 
subsets have given rise to new terms such as “lipidomics.” In terms 
of applications to human diagnostics, seminal studies of inborn 

FIGURE 10-3  The conceptual relationship of the genome, transcriptome, proteome, and metabolome. Informational complexity increases from genome to transcriptome 
to proteome. The estimated number of entities of each type of molecule in humans is indicated in parentheses. 
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FIGURE 10-4  Reference concentration for representative protein analytes in plasma. Protein abundance is 
plotted on a log scale spanning 12 orders of magnitude. When only an upper limit is quoted, the lower end of 
the interval line shows an arrowhead. The classic plasma proteins are clustered to the left (high abundance), the 
tissue leakage markers (e.g., enzymes and troponins) are clustered in the center, and the cytokines are clustered 
to the right (low abundance). TPA = tissue plasminogen activator; G-CSF = granulocyte colony-stimulating factor; 
MIP = macrophage inflammatory protein; RANTES = regulated on activation, T cell expressed and secreted; 
TNF = tumor necrosis factor; TPA = tissue plasminogen activator. (From Anderson NL, Anderson NG: The human 
plasma proteome: History, character, and diagnostic prospects. Mol Cell Proteomics 2:50, 2003.)
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capability of identifying a wide breadth of proteins or metabolite 
analytes within complex biologic samples across a broad range  
of physical characteristics, including size and charge. Second, the 
technologies must be sensitive enough to probe the proteome or 
metabolome to adequate “depths”—that is, to provide resolution of 

biologically active compounds of the lowest 
abundance. Frequently, the least abundant 
entities play critical regulatory roles in  
the response to physiologic stressors. Third, 
tools must also work across a broad 
dynamic range, a notion underscored in 
Figure 10-4—they must be able to simulta-
neously identify both more abundant and 
less abundant proteins in the same complex 
mixture. Unfortunately, most analytic tech-
niques apply well only across concentra-
tions of several orders of magnitude. Finally, 
the ideal technology should be stable and 
reproducible, an attribute necessary for 
minimizing artifacts during initial discov-
ery, validation, and testing for clinical 
applications.

Robust, searchable databases for valida-
tion of identified proteins or metabolites 
represent an increasingly crucial support 
for biomarker discovery. The scope of  
investigation addressable by these tech-
niques has widened immeasurably since 
completion of the Human Genome Project. 
At present, the human databases are  
the largest and easiest to use, which will 
help accelerate translational investigation. 
Genomic databases collectively provide a 
catalog of all known or theoretical proteins 
expressed in organisms for which data-
bases exist. Software that can search 
through databases for identification of can-
didates has proved essential to interpreta-
tion of the data; much of this software is 
available on the Internet. Collaborative 
efforts have recently begun to catalog both 
the human proteome and the plasma 
metabolome.

OVERVIEW OF THE 
DISCOVERY PROCESS

Figure 10-5 summarizes the essential ele-
ments of the discovery approach by using a 
proteomics experiment as an example. Bio-
logic samples consist of a complex mixture 
containing intact and partially degraded 
proteins and metabolites of various molecu-
lar weights, modifications, and solubility. 
The chance of identifying proteins or 
metabolites in a mixture increases as the 
complexity of the mixture decreases. As 
suggested by Liebler,18 the problem of com-
plexity and how to deal with it resembles 
the process of printing a book. Printing all 
the words on a single page could be accom-
plished quickly, but the resulting page 
would be illegibly black with ink; dividing 
the text into multiple pages reduces  
the complexity to reveal organized text. 
Samples can be analogously enriched for 
certain components through fractionation 
or affinity depletion columns, but all pre-

parative procedures—including solubilization, denaturation, and 
reduction processes—should be compatible with the constraints of 
subsequent analysis steps. The quest to reduce complexity requires 
careful balance against the possibility that each additional step might 
also introduce undesired protein or metabolite modifications or loss.
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quadrupole mass filter, ion trap mass analyzer, and time-of-flight mass 
analyzer. Finally, the detector records the ions via an electronic mul-
tiplier and records ion intensity versus the m/z value to create the 
resulting MS spectra.

These technologies can be used to characterize biologic fluids either 
in a targeted manner or in a pattern discovery manner. In the former, 
the investigator targets a predefined set of analytes to be quantitated. 
For example, libraries of metabolites can be purchased and their 
chromatographic and MS characteristics determined empirically by 
“spiking” reference standards into plasma. Endogenous metabolites 
can then be quantified based on the information ascertained from the 
known standards. The targeted approach now readily permits assay 
of several hundred metabolites in as little as tens of microliters of 
plasma. In the pattern discovery experiment, by contrast, the investi-
gator confronts a complex pattern of peaks, many of which are 
anonymous—the molecular identities of the species that give rise to 
the peaks are not generally known. Although the targeted approach 
is more limiting, the analysis is more straightforward because the 
analytes yielding the signals are already known. The untargeted or 
“fingerprint” approach has less inherent bias, but unambiguous iden-
tification of the peaks can prove laborious and difficult. In clinical 
samples, considerable care must be taken to rule out spurious 
associations—for example, confounding related to drug treatment.

Applications of Mass Spectrometry–Based 
Discovery to Cardiometabolic Disease
In an initial proof-of-principle study using a targeted metabolite profil-
ing approach, Newgard and colleagues profiled obese versus lean 
humans to gain a broad understanding of the metabolic and physi-
ologic differences in these two disparate groups.19 Their studies iden-
tified a branched-chain amino acid signature that correlated highly 
with the metrics of insulin resistance. Complementary studies in two 
large population-based cohorts demonstrated that branched-chain 
and aromatic amino acid concentrations associate significantly with 
incident type 2 diabetes up to 12 years before the onset of overt 
disease.20 Adjustment for established clinical risk factors did not 
substantially attenuate the strength of these associations. Further-
more, the branched-chain amino acid signature also predicts athero-
sclerosis even after adjusting for the metrics of insulin resistance  
and diabetes.21 For those in the top quartile of branched-chain amino 
acid levels, the odds for development of cardiometabolic disease 
exceeded any single-nucleotide polymorphism identified to date. 
Taken together, these findings have disclosed dysregulation of amino 
acid metabolism very early in the development of cardiometabolic 
diseases. Ongoing studies are examining the relative genetic versus 
environmental contributions to these findings.FIGURE 10-5  Overview of a proteomics experiment. 
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FIGURE 10-6  Schematic of tandem MS. m/z = mass-to-charge ratio. 
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Several analytic techniques can serve to identify metabolites or pro-
teins, although MS instrumentation offers an unrivaled ability to 
provide several layers of complementary information, which has ben-
efited tremendously from whole-genome analysis and the genomics 
revolution. MS provides accurate mass detection of peptides from 
proteolytic digests of complex protein mixtures or small metabolites 
derived from tissues or blood. The set of peptide or metabolite mass 
measurements can be searched in databases to obtain definitive iden-
tification of the parent proteins or metabolites of interest. Favorably 
compared against other proteomics and metabolomics technologies, 
MS offers high sensitivity and amenability to automation, thus pro-
moting high-throughput processing. MS has a wide range of applica-
bility and not only detects metabolites and proteins but also 
characterizes any post-translational modifications.

Mass spectrometers are composed of modular elements, including 
an ion source, mass analyzer, and a detector/recorder (Fig. 10-6). MS 
instruments are classified according to the ionization source and mass 
analyzer used, but all process samples as gas-phase ions, the move-
ments of which are precisely measured within an electromagnetic 
field. An ion source generates these gas-phase ions from the analyte 
through a variety of available techniques, from either the solid state 
by matrix-assisted laser desorption/ionization (MALDI) or directly from 
the liquid phase by electrospray ionization (ESI). A coupled chromato-
graphic separation step fractionates complex sample mixtures before 
ESI spectroscopic analysis. The gas-phase ions then enter the mass 
analyzer, which resolves the peptides based on their mass-to-charge 
(m/z) ratio. Examples of commonly used mass analyzers include the 
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performance measures that include sensitivity, specificity, positive 
and negative predictive value, discrimination, calibration, reclassifi-
cation, and tests for external validity. These terms and their use in 
clinical biomarker development are outlined below.

Sensitivity, Specificity, and Positive and 
Negative Predictive Value
The validity of a screening or diagnostic test (or one used for predic-
tion) is initially measured by its ability to correctly categorize indi-
viduals who have preclinical disease as “test positive” and those 
without preclinical disease as “test negative.”23 A simple two-by-two 
table is commonly used to summarize the results of a screening test 
by dividing those screened into four distinct groups (Table 10-2). In 
this context, sensitivity and specificity provide fundamental mea-
sures of the test’s clinical validity. Sensitivity is the probability of 
testing positive when the disease is truly present and is defined 
mathematically as a/(a + c); as sensitivity increases, the number of 
individuals with disease who are missed by the test decreases, so a 
test with perfect sensitivity will detect all individuals with disease 
correctly. In practice, tests with ever-higher sensitivity tend to also 
classify as “diseased” many individuals who are not actually affected 
(false positives). Thus the specificity of a test is the probability of 
screening negative if the disease is truly absent and is defined math-
ematically as d/(b + d). A test with high specificity will rarely be 
positive when disease is absent and will therefore lead to a lower 
proportion of individuals without disease being incorrectly classified 
as test positive (false positives). A simple way to remember these 
differences is that sensitivity is “positive in disease” whereas specific-
ity is “negative in health.”

A perfect test has both very high sensitivity and specificity and thus 
low false-positive and false-negative classifications. Such test charac-
teristics are rare, however, because there is a tradeoff between  
sensitivity and specificity for almost every screening biomarker, diag-
nostic, or predictive test in common clinical use. For example, 
although high LDL cholesterol levels commonly serve as a biomarker 
for atherosclerotic risk, up to half of all incident cardiovascular 
events occur in those with LDL cholesterol levels well within the 
normal range, and many events occur even when LDL cholesterol 
levels are low. If the diagnostic cutoff criterion for LDL cholesterol is 
reduced so that more people who actually have high risk for disease 
will be test positive (i.e., increase sensitivity), an immediate conse-
quence of this change will be an increase in the number of people 
without disease in whom the diagnosis is made incorrectly (i.e., 
reduced specificity). Conversely, if the criterion for diagnosis or pre-
diction is made more stringent, a greater proportion of those who test 
negative will actually not have the disease (i.e., improved specificity), 
but a larger proportion of true cases will be missed (i.e., reduced 
sensitivity).

In a translational study using nontargeted liquid chromatography–
MS–based metabolite profiling applied to cardiovascular disease, 
Wang and associates first profiled the plasma of 75 individuals from 
a hospital-based cohort who experienced a myocardial infarction, 
stroke, or death in the ensuing 3 years and 75 age- and sex-matched 
controls who did not.20 Of 18 analytes that differed significantly 
between cases and controls, 3 demonstrated significant correlations 
among one another, thus suggesting a potential common biochemi-
cal pathway. Using complementary analytic methods, these metabo-
lites were identified as betaine, choline, and trimethylamine-N-oxide, 
all metabolites of dietary phosphatidylcholine. Dietary supplementa-
tion of choline was sufficient to promote atherosclerosis in mice, and 
suppression of the intestinal bacteria responsible for the conversion 
of phosphatidylcholine to choline inhibited this atherogenesis. In 
addition to reinforcing the interaction between diet, gut bacteria, and 
the metabolome, this study demonstrated how metabolomic bio-
marker discovery can elucidate novel pathways to disease.

Future Directions in Biomarker Discovery
Identification of new biomarkers for cardiovascular disease depends 
on the complementary power of genetics, transcriptional profiling, 
proteomics, and metabolomics. As discussed in the next section, the 
clinical usefulness of new biomarkers will require rigorous evalua-
tion of their ability to improve the prediction of risk or to direct and 
monitor management in an individual, the ultimate goal of personal-
ized medicine. In addition to risk biomarkers, diagnostic biomarkers 
could help in making challenging acute diagnoses such as reversible 
myocardial ischemia, pulmonary embolism, and aortic dissection. 
The evolution of a clinical biomarker requires a long journey and an 
arduous transition from the research environment to clinical prac-
tice. Emerging technologies such as those described above have the 
potential to permit systematic assessment of variation in genes, RNA, 
proteins, and metabolites for identification of “uncorrelated” or 
“orthogonal” biomarkers that probably would not emerge with a 
focus on candidates from well-studied pathways.

CLINICAL MEASURES OF  
BIOMARKER PERFORMANCE

When considering any biomarker in a clinical setting for risk predic-
tion, physicians should ask two interrelated questions. First, is there 
clear evidence that the biomarker of interest predicts future cardio-
vascular events independent of other already measured biomarkers? 
Second, is there clear evidence that those identified by the biomarker 
of interest will benefit from a therapy that they otherwise would not 
have received?22 If the answer to both these questions is not a clear 
“yes,” an argument can be made that measuring the biomarker will 
not probably have sufficient usefulness to justify its cost or unin-
tended consequences. Such judgments require clinical expertise and 
will vary on a case-by-case basis.

Biomarker evaluation also typically involves repeated testing in 
multiple settings that include varied patient populations and that use 
different epidemiologic designs. Prospective cohort studies (in which 
the biomarker or exposure of interest is measured at baseline, when 
individuals are healthy, and then related to the future development 
of disease) provide a much stronger form of epidemiologic evidence 
than do data from retrospective case-control studies (in which the 
biomarker of interest is measured after the disease is present in the 
case subjects).

After discovery by the technologies described above or identifica-
tion by a candidate approach, a novel biomarker typically requires 
development in a translational laboratory for refinement of its assay 
to address issues of interassay and intra-assay variation before any 
clinical testing begins. Focused studies in specific patient popula-
tions typically follow and eventually broaden to encompass the popu-
lation of greatest clinical interest. Beyond simple reproducibility, 
biomarkers under development for diagnostic, screening, or predic-
tive purposes require further evaluation with a standard set of 

TABLE 10-2  Summarizing the Results of Screening, 
Diagnostic, or Predictive Tests

DISEASE PRESENT DISEASE ABSENT

Test positive a b a + b

Test negative c d c + d

Total a + c b + d

Sensitivity = a/(a + c)

Specificity = d/(b + d)

Positive predictive value = a (a + b)

Negative predictive value = d/(c + d)

a = number of individuals for whom the screening test is positive and the individual 
actually has the disease (true positives); b = number of individuals for whom the 
test is positive but the individual does not have the disease (false positives); c = 
number of individuals for whom the test is negative but the individual actually has 
the disease (false negatives); d = number of individuals for whom the test is negative 
and the individual does not have the disease (true negatives).
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use. This approach permits direct comparison of the relative effi-
ciency of multimarker panels. For example, using comparative 
C-statistic analyses, investigators in the Emerging Risk Factors Col-
laboration recently found that the incremental clinical usefulness of 
CRP has similar magnitude as that of total and HDL cholesterol.24 
Thus when change in the C-statistic can be demonstrated and the 
overall power to do so is adequate, this test can aid understanding of 
the impact that novel pathways and novel risk biomarkers have on 
prediction and prevention.

Unfortunately, as Cook has shown in several settings,25,26 the tradi-
tional C-statistic approach is limited in that biomarkers with large 
associations may have little effect on the area under the ROC curve. 
For example, a predictor (or set of predictors) would need an odds 
ratio as high as 16 (>2 SD) to lead to a substantial increase in the 
C-statistic.27 Almost no test in common use for risk prediction or 
prognostication in cardiovascular medicine has an odds ratio in this 
range; high cholesterol, smoking, high blood pressure, and diabetes 
are all associated with odds ratios of less than 2 and thus have little 
individual impact at all on the area under the ROC curve. Conse-
quently, sole reliance on the C-statistic as a method for developing 
and evaluating new biomarkers, at least in the setting of risk predic-
tion, is insufficient.

Accuracy and Calibration
Discrimination is only one measure of model accuracy. The other 
important measure is calibration, or the ability of a predictive model 
to assign risk estimates accurately in comparison to the actual 
observed risk in the population being tested. Unlike discrimination, 
which is based solely on relative rankings of risk, calibration com-
pares the risk predicted from a model or test with that actually 
observed.

For binary outcomes (such as disease or no disease), calibration 
is often evaluated with the Hosmer-Lemeshow test, which places 
individuals within categories of estimated risk by using the test bio-
marker or multivariable model and compares these estimates with 
the proportions actually observed. These “predicted” and “observed” 
probabilities can be compared with standard goodness-of-fit tests 
across categories of risk (e.g., across estimated quintiles or estimated 
deciles of risk). Calibration becomes particularly important when 
addressing a biomarker in different populations from the one in 
which it was originally developed. A biomarker may calibrate well in 
men but not in women or among whites but not among blacks. This 
consideration also applies to multimarker panels—such as the Fram-
ingham Risk Score, which calibrates well in whites but less well in 
other population groups. Newer risk models such as the Reynolds 
Risk Score (www.reynoldsriskscore.org) show improved calibration, 
as well as discrimination, when compared with the traditional Fram-
ingham model.28

Risk Reclassification
To address the shortcoming of biomarker validation via the C-statistic 
alone, contemporary biomarker development programs for risk pre-
diction now use a series of “reclassification statistics,” as initially 
developed by Cook and colleagues29,30 and refined by Pencina and 
associates.31 Rather than addressing whether a new biomarker of 
interest adds to the area under the ROC curve, reclassification 
addresses whether the biomarker can shift overall risk estimates 
upward or downward in a clinically meaningful way. Specifically, 
reclassification methods compare risk strata formed from prediction 
models with and without the new biomarker of interest and then 
determine which model leads to the most accurate classification of 
risk. Risk reclassification is particularly useful when actionable and 
clinically relevant risk categories already exist. For example, in 
primary cardiovascular prevention, 10-year estimated risk is often 
categorized as being less than 5%, 5% to 10%, 10% to 20%, or greater 
than 20%, and those above or below these cut points are frequently 
targeted for interventions such as aspirin and statin therapy. Thus a 
biomarker that reclassifies a proportion of individuals upward (or 

In addition to sensitivity and specificity, the performance or yield 
of a screening, diagnostic, or predictive test also varies depending 
on the characteristics of the population being evaluated. Positive and 
negative predictive values are terms used in epidemiology that refer 
to measurement of whether an individual actually has (or does not 
have) a disease, contingent on the result of the screening test itself.

The positive predictive value (PPV) is the probability that a person 
has the disease of interest, given that the individual tests positive, and 
is mathematically calculated as PPV = a/(a + b). High PPV can be 
anticipated when the disease is common in the population being 
tested. Conversely, the negative predictive value (NPV) is the prob-
ability that an individual is truly disease free, provided that the test 
has a negative result, and is mathematically calculated as NPV = d/
(c + d). High NPV can be anticipated when the disease is rare in the 
population being tested. Although sensitivity and specificity are 
largely performance characteristics of the test itself (and thus tend to 
be fixed values), PPV and NPV depend in part on the population 
being tested (and thus tend to vary).23

Discrimination, C-Statistics, and the 
Receiver Operative Characteristic Curve
Discrimination is the ability of a test (or prognostic model) to sepa-
rate those with disease or at high risk for disease (cases) from those 
without disease or at low risk for disease (controls). The most 
common method used to measure discrimination has been the area 
under the receiver operating characteristic (ROC) curve, which 
relates sensitivity (on the y axis) to (1 − specificity) (on the x axis) 
across a full range of cutoff values for the test or screening algorithm 
of interest (Fig. 10-7).

Given a population of individuals being evaluated, the area under 
the ROC curve—also called the C-statistic—equals the probability of 
correctly ranking risk for individuals by using the test or model under 
evaluation. A random test with no clinical usefulness would have a 
C-statistic (or area under the ROC curve) of 0.5, which corresponds 
to the diagonal line in Figure 10-7. A perfect test that completely 
discriminates individuals with disease from those without disease 
would have a C-statistic that approaches 1.0. As the C-statistic 
increases from 0.5 to 1.0, model fit (or test accuracy) improves—thus 
the change in the C-statistic has been used historically to judge 
whether a new biomarker can “add” significantly to those already in 

FIGURE 10-7  ROC curves for a series of biomarkers or risk prediction models 
with incremental improvement. The diagonal line corresponds to a random effect 
(C-statistic = 0.5), whereas the increasing C-statistic corresponds to improving 
model discrimination. 
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hsCRP assays—reproducible, internally calibrated, and externally 
validated to improve assay precision—were clinically available. Mul-
tiple studies have shown that statins reduce hsCRP in a manner 
largely independent of reduction of LDL cholesterol,36 thus suggesting 
that statins have both lipid-lowering and anti-inflammatory effects.37 
In 2006, Cook and coauthors reported the ability of hsCRP to cor-
rectly reclassify patients into improved vascular risk categories.29 The 
addition of hsCRP to the family history and HbA1c was formally 
incorporated into the Reynolds Risk Score in 2008. This score was 
subsequently externally validated and shown to have superior cali-
bration, discrimination, and reclassification over the more traditional 
Framingham Risk Score.28 Using hsCRP to define a high-risk popula-
tion in need of treatment, JUPITER (Justification for the Use of Statins 
in Prevention: an Intervention Trial Evaluating Rosuvastatin) reported 
in 2008 that statin therapy (versus placebo) in those with elevated 
hsCRP but low levels of LDL cholesterol resulted in a 50% reduction 
in myocardial infarction and stroke and a 20% reduction in all-cause 
mortality.38 By 2010, more than 50 prospective cohort studies evaluat-
ing hsCRP were subjected to a meta-analysis in which it was affirmed 
that the magnitude of vascular risk associated with a change of 1 SD 
in hsCRP was at least as large as that of a comparable change in 
cholesterol or blood pressure.39 In an updated 2012 meta-analysis that 
evaluated clinical usefulness and risk prediction, found the change 
in C-statistic associated with hsCRP to be similar to the change in 
C-statistic associated with the use of total and HDL cholesterol.24 On 
this basis, several national guidelines incorporated hsCRP screening 
in primary and secondary prevention,40 and the FDA approved a 
labeling claim for the use of statin therapy in those with elevated 
hsCRP levels.

CRP itself, however, probably does not cause atherothrombosis but 
rather serves as a biomarker for the underlying inflammatory process. 
Thus as a direct outcome of the hsCRP development program, two 
randomized trials have been initiated to directly test whether lower-
ing inflammation per se can reduce vascular risk. These two trials—
the NIH-funded CIRT (Cardiovascular Inflammation Reduction Trial), 
which evaluated low-dose methotrexate, and CANTOS (Canakinumab 
Anti-inflammatory Thrombosis Outcomes Study), which evaluated 
interleukin-1beta inhibition—are ongoing and, when complete, will 
have involved more than 18,000 patients worldwide.41

CONCLUSION

We use biomarkers in our daily clinical practice, and cardiovascular 
journals contain numerous reports regarding biomarkers, new and 
old, that purport to show how they may aid clinical practice. More-
over, many cardiovascular trials use biomarkers—hence the current 
practice of cardiovascular medicine requires a firm foundation in 
understanding and evaluating biomarkers. The road map to the field 
of biomarkers provided in this chapter—including their use, develop-
ment, and methods for evaluating their usefulness for various specific 
applications—should give practitioners tools to sort out the various 
uses of biomarkers encountered in practice and in the cardiovascular 
literature.

Informed use of biomarkers can aid in decision making in daily 
patient care. Biomarkers should provide a key for personalized man-
agement by directing the right therapy to the right patient at the right 
time. They can also shed mechanistic insight on human pathophysi-
ology that is difficult to obtain in other ways. Rigorous and careful 
use of biomarkers can aid in the development of novel therapies to 
address the residual burden of cardiovascular risk.
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