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To Keelin, Ciana, and Georgina —
for never giving up on your dreams



“It’s a poor sort of memory that only works backwards.”

Lewis Carroll — Through the Looking Glass
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Preface

This primer introduces you to the emerging field of artificial
cognitive systems. Inspired by artificial intelligence, developmen-
tal psychology, and cognitive neuroscience, the aim is to build
systems that can act on their own to achieve goals: perceiving
their environment, anticipating the need to act, learning from
experience, and adapting to changing circumstances.

It is an exciting and challenging area. The excitement stems
from the possibility of designing intelligent adaptive systems
that can serve society in a host of ways. The challenge is the
breadth of the field and the need to bring together an intimidat-
ing spectrum of disciplines. Add to this the fact that there is no
universal agreement on what exactly it means to be cognitive
in the first place and the stage is set for an interesting journey.
Think of this primer as a guidebook to help you on that journey,
pointing out the main features of the landscape, the principal
routes, and the most important landmarks.

To get started, we develop a working definition of cognitive
systems, one that strikes a balance between being broad enough
to do service to the many views that people have on cognition
and deep enough to help in the formulation of theories and
models. We then survey the different paradigms of cognitive
science to establish the full scope of the subject and sketch the
main geography of the area. We follow that with a discussion
of cognitive architectures — effectively the blueprints for im-
plementing cognitive systems — before tackling the key issues,
one by one, in the remaining chapters: autonomy, embodiment,
learning & development, memory & prospection, knowledge &
representation, and social cognition.
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By the time you have finished reading this primer, you will
have a clear understanding of the scope of the domain, the dif-
ferent perspectives, and their underlying differences. You will
have a solid grasp of the issues that need to be addressed when
attempting to design an artificial cognitive system. Perhaps most
important of all, you will know where to go next to deepen your
understanding of the area and its constituent disciplines.

Like all guidebooks, this primer tells a story about the land
it surveys. In fact, it tells two stories in parallel, one in the main
narrative and another through a sequence of sidenotes. The main
text is kept as short and simple as possible, focussing on rela-
tively straightforward descriptions of the key issues. The side-
notes highlight the finer points of the material being discussed in
the main narrative, suggesting material that you can read to gain
a deeper insight into the topic under discussion. New ideas are
introduced in a natural intuitive order, building step-by-step to a
clear overview of this remarkable and exciting field, priming you
to go further and faster in your studies of cognitive systems.

Ideally, you will read the primer three times. On the first
reading, you might read only the main narrative to get a feeling
for the topic. You might then read through the sidenotes without
reference to the main text. This will expose you to a series of
interesting snapshots of key landmark topics and reinforce ideas
you encountered on the first reading. Finally, you should be
ready for a third, more careful reading of the book, referring to
each sidenote as it is referenced in the main narrative.

A primer, by its very nature, is a short book. Consequently,
there are many omissions in this text, some intentional, others
less so. By far, the topic that is most noticable by its absence is
language. While providing an overview of areas such as em-
bodiment and autonomy is a challenge because of their diverse
meanings, the task of doing the same for language is far greater.
So, rather than attempt it and almost inevitably fall short, I have
omitted it. If there is ever a second edition, the inclusion of lan-
guage will be the top priority.

Other omissions are more methodological. This primer fo-
cusses almost exclusively on the “What?” and “Why?” ques-
tions in cognitive systems, to the exclusion of the “How?” In
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other words, it does everything except tell you how you can
go about building a cognitive system. There is an unfortunate,
but inevitable, lack of formal theory and algorithmic practice
in this book. This doesn’t mean that this theory doesn’t exist —
it certainly does, as a quick scan of the literature on, e.g., ma-
chine learning and computer vision will demonstrate — but the
breadth of cognitive systems is so great that to address the com-
putational and mathematical theories as well as the algorithmic
and representational details of cognition would require a book of
far greater scope than this one. Perhaps, some day, a companion
volume might be appropriate.

Skövde, Sweden David Vernon
May 2014
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1
The Nature of Cognition

1.1 Motivation for Studying Artificial Cognitive Systems

When we set about building a machine or writing a software ap-
plication, we usually have a clear idea of what we want it to do
and the environment in which it will operate. To achieve reliable
performance, we need to know about the operating conditions
and the user’s needs so that we can cater for them in the design.
Normally, this isn’t a problem. For example, it is straightfor-
ward to specify the software that controls a washing machine or
tells you if the ball is out in a tennis match. But what do we do
when the system we are designing has to work in conditions that
aren’t so well-defined, where we cannot guarantee that the infor-
mation about the environment is reliable, possibly because the
objects the system has to deal with might behave in an awkward
or complicated way, or simply because unexpected things can
happen?

Let’s use an example to explain what we mean. Imagine we
wanted to build a robot that could help someone do the laun-
dry: load a washing machine with clothes from a laundry basket,
match the clothes to the wash cycle, add the detergent and con-
ditioner, start the wash, take the clothes out when the wash is
finished, and hang them up to dry (see Figure 1.1). In a per-
fect world, the robot would also iron the clothes,1 and put them

1 The challenge of ironing
clothes as a benchmark for
robotics [1] was originally
set by Maria Petrou [2]. It
is a difficult task because
clothes are flexible and
unstructured, making them
difficult to manipulate, and
ironing requires careful use
of a heavy tool and complex
visual processing.

back in the wardrobe. If someone had left a phone, a wallet, or
something else in a pocket, the robot should either remove it
before putting the garment in the wash or put the garment to
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Figure 1.1: A cognitive robot
would be able to see a dirty
garment and figure out what
needs to be done to wash
and dry it.

one side to allow a human to deal with it later. This task is well
beyond the capabilities of current robots2 but it is something 2 Some progress has been

made recently in developing
a robot that can fold clothes.
For example, see the article
“Cloth grasp point detection
based on multiple-view geo-
metric cues with application
to robotic towel folding” by
Jeremy Maitin-Shepard et al.
[3] which describes how the
PR2 robot built by Willow
Garage [4] tackles the prob-
lem. However, the focus in
this task is not so much the
ill-defined nature of the job
— how do you sort clothes
into different batches for
washing and, in the process,
anticipate, adapt, and learn
— as it is on the challenge of
vision-directed manipulation
of flexible materials.

that humans do routinely. Why is this? It is because we have
the ability to look at a situation, figure out what’s needed to
achieve some goal, anticipate the outcome, and take the appro-
priate actions, adapting them as necessary. We can determine
which clothes are white (even if they are very dirty) and which
are coloured, and wash them separately. Better still, we can also
learn from experience and adapt our behaviour to get better at
the job. If the whites are still dirty after being washed, we can
apply some extra detergent and wash them again at a higher
temperature. And best of all, we usually do this all on our own,
autonomously, without any outside help (except maybe the first
couple of times). Most people can work out how to operate a
washing machine without reading the manual, we can all hang
out damp clothes to dry without being told how to do it, and
(almost) everyone can anticipate what will happen if you wash
your smartphone.

We often refer to this human capacity for self-reliance, for
being able to figure things out, for independent adaptive an-
ticipatory action, as cognition. What we want is the ability to
create machines and software systems with the same capacity,
i.e., artificial cognitive systems. So, how do we do it? The first
step would be to model cognition. And this first step is, un-
fortunately, where things get difficult because cognition means
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different things to different people. The issue turns on two key
concerns: (a) the purpose of cognition — the role it plays in hu-
mans and other species, and by extension, the role it should play
in artificial systems — and (b) the mechanisms by which the
cognitive system fulfils that purpose and achieves its cognitive
ability. Regrettably, there’s huge scope for disagreement here
and one of the main goals of this book is to introduce you to the
different perspectives on cognition, to explain the disagreements,
and to tease out their differences. Without understanding these
issues, it isn’t possible to begin the challenging task of develop-
ing artificial cognitive systems. So, let’s get started.

1.2 Aspects of Modelling Cognitive Systems

There are four aspects which we need to consider when mod-
elling cognitive systems:3 how much inspiration we take from 3 For an alternative view

that focusses on assessing
the contributions made by
particular models, espe-
cially computational and
robotic models, see Anthony
Morse’s and Tom Ziemke’s
paper “On the role(s) of
modelling in cognitive
science” [5].

natural systems, how faithful we try to be in copying them, how
important we think the system’s physical structure is, and how
we separate the identification of cognitive capability from the
way we eventually decide to implement it. Let’s look at each of
these in turn.

To replicate the cognitive capabilities we see in humans and
some other species, we can either invent a completely new so-
lution or draw inspiration from human psychology and neuro-
science. Since the most powerful tools we have today are com-
puters and sophisticated software, the first option will probably
be some form of computational system. On the other hand, psy-
chology and neuroscience reflect our understanding of biological
life-forms and so we refer to the second option as a bio-inspired
system. More often than not, we try to blend the two together.
This balance of pure computation and bio-inspiration is the first
aspect of modelling cognitive systems.

Unfortunately, there is an unavoidable complication with the
bio-inspired approach: we first have to understand how the bi-
ological system works. In essence, this means we must come up
with a model of the operation of the biological system and then
use this model to inspire the design of the artificial system. Since
biological systems are very complex, we need to choose the level
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Figure 1.2: Attempts to build
an artificial cognitive sys-
tem can be positioned in a
two-dimensional space, with
one axis defining a spec-
trum running from purely
computational techniques to
techniques strongly inpired
by biological models, and
with another axis defining
the level of abstraction of the
biological model.

of abstraction at which we study them. For example, assuming
for the moment that the centre of cognitive function is the brain
(this might seem a very safe assumption to make but, as we’ll
see, there’s a little more to it than this), then you might attempt
to replicate cognitive capacity by emulating the brain at a very
high level of abstraction, e.g. by studying the broad functions of
different regions in the brain. Alternatively, you might opt for a
low level of abstraction by trying to model the exact electrochem-
ical way that the neurons in these regions actually operate. The
choice of abstraction level plays an important role in any attempt
to model a bio-inspired artificial cognitive system and must be
made with care. That’s the second aspect of modelling cognitive
systems.

Taking both aspects together — bio-inspiration and level of
abstraction — we can position the design of an artificial cognitive
system in a two-dimensional space spanned by a computational
/ bio-inspired axis and an abstraction-level axis; see Figure 1.2.
Most attempts today occupy a position not too far from the cen-
tre, and the trend is to move towards the biological side of the
computational / bio-inspired spectrum and to cover several lev-
els of abstraction.

In adopting a bio-inspired approach at any level of abstraction
it would be a mistake to simply replicate brain mechanisms in
complete isolation in an attempt to replicate cognition. Why? Be-
cause the brain and its associated cognitive capacity is the result

High 

Abstraction 
Level 

Low 

X 

Modular decomposition of a 
hypothetical model of mind 

/ 

/ 
X 

Cognitive system modelled on 
the macroscopic organization 
of the brain 

Cognitive system based on 
statistical learning of 
specific domain rules 

X 
/ 

Cognitive system based on _....... )(: 
artificial neural networks 

Computational Biological 
Inspiration 
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Proximate Explanation: 
How?

Mechanism 1 Mechanism N

Behaviour Z

Ultimate
Explanation:

Why?

Behaviour A

Different behaviours realized 
with the same mechanism

Different mechanisms used
to realize the same behaviour

Figure 1.3: The ultimate-
proximate distinction. Ulti-
mate explanations deal with
why a given behaviour exists
in a system, while proximate
explanations address the
specific mechanisms by
which these behaviours are
realized. As shown here,
different mechanisms could
be used to achieve the same
behaviour or different be-
haviours might be realized
with the same mechanism.
What’s important is to un-
derstand that identifying the
behaviours you want in a
cognitive system and finding
suitable mechanisms to re-
alize them are two separate
issues.

of evolution and the brain evolved for some purpose. Also, the
brain and the body evolved together and so you can’t divorce
one from the other without running the risk of missing part of
the overall picture. Furthermore, this brain-body evolution took
place in particular environmental circumstances so that the cog-
nitive capacity produced by the embodied brain supports the
biological system in a specific ecological niche. Thus, a com-
plete picture may really require you to adopt a perspective that
views the brain and body as a complete system that operates in
a specific environmental context. While the environment may
be uncertain and unknown, it almost always has some in-built
regularities which are exploited by brain-body system through
its cognitive capacities in the context of the body’s characteris-
tics and peculiarities. In fact, the whole purpose of cognition in
a biological system is to equip it to deal with this uncertainty
and the unknown nature of the system’s environment. This,
then, is the third aspect of modelling cognitive systems: the ex-
tent to which the brain, body, and environment depend on one
another.4 4 We return to the relation-

ship between the brain,
body, and environment in
Chapter 5 on embodiment.

Finally, we must address the two concerns we raised in the
opening section, i.e., the purpose of cognition and the mecha-
nisms by which the cognitive system fulfils that purpose and
achieves its cognitive ability. That is, in drawing on bio-inspiration,
we need to factor in two complementary issues: what cognition
is for and how it is achieved. Technically, this is known as the
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ultimate-proximate distinction in evolutionary psychology; see Fig-
ure 1.3. Ultimate explanations deal with questions concerned
with why a given behaviour exists in a system or is selected
through evolution, while proximate explanations address the
specific mechanisms by which these behaviours are realized.
To build a complete picture of cognition, we must address both
explanations. We must also be careful not to get the two issues
mixed up, as they very often are.5 Thus, when we want to build 5 The importance of the

ultimate-proximate dis-
tinction is highlighted by
Scott-Phillips et al. in a re-
cent article [6]. This article
also points out that ultimate
and proximate explanations
of phenomena are often con-
fused with one another so
we end up discussing prox-
imate concerns when we
really should be discussing
ultimate ones. This is very
often the case with artificial
cognitive systems where
there is a tendency to focus
on the proximate issues of
how cognitive mechanisms
work, often neglecting the
equally important issue of
what purpose cognition is
serving in the first place.
These are two complemen-
tary views and both are
needed. See [7] and [8] for
more details on the ultimate-
proximate distinction.

machines which are able to work outside known operating con-
ditions just like humans can — to replicate the cognitive charac-
teristics of smart people — we must remember that this smart-
ness may have arisen for reasons other than the ones in which
it is being deployed in the current task-at-hand. Our brains and
bodies certainly didn’t evolve so that we could load and unload
a washing machine with ease, but we’re able to do it nonethe-
less. In attempting to use bio-inspired cognitive capabilites to
perform utilitarian tasks, we may well be just piggy-backing on
a deeper and quite possibly quite different functional capacity.
The core problem then is to ensure that this system functional
capacity matches the ones we need to get our job done. Under-
standing this, and keeping the complementary issues of the
purpose and mechanisms of cognition distinct, allows us to keep
to the forefront the important issue of how one can get an artifi-
cial cognitive system (and a biological one, too, for that matter)
to do what we want it to do. If we are having trouble doing this,
the problem may not be the operation of the specific (proximate)
mechanisms of the cognitive model but the (ultimate) selection of
the cognitive behaviours and their fitness for the given purpose
in the context of the brain-body-mind relationship.

To sum up, in preparing ourselves to study artificial cognitive
systems, we must keep in mind four important aspects when
modelling cognitive systems:

1. The computational / bio-inspired spectrum;

2. The level of abstraction in the biological model;

3. The mutual dependence of brain, body, and environment;

4. The ultimate-proximate distinction (why vs. how).
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Understanding the importance of these four aspects will help
us make sense of the different traditions in cognitive science,
artificial intelligence, and cybernetics (among other disciplines)
and the relative emphasis they place on the mechanisms and the
purpose of cognition. More importantly, it will ensure we are
addressing the right questions in the right context in our efforts
to design and build artificial cognitive systems.

1.3 So, What Is Cognition Anyway?

It should be clear from what we have said so far that in asking
“what is cognition?” we are posing a badly-framed question:
what cognition is depends on what cognition is for and how
cognition is realized in physical systems — the ultimate and
proximate aspects of cognition, respectively. In other words, the
answer to the question depends on the context — on the rela-
tionship between brain, body, and environment — and is heavily
coloured by which cognitive science tradition informs that an-
swer. We devote all of Chapter 2 to these concerns. However,
before diving into a deep discussion of these issues, we’ll spend
a little more time here setting the scene. In particular, we’ll pro-
vide a generic characterization of cognition as a preliminary
answer to the question “what is cognition?”, mainly to identify
the principal issues at stake in designing artificial cognitive sys-
tems and always mindful of the need to explain how a given
system addresses the four aspects of modelling identified above.
Now, let’s cut to the chase and answer the question.

Cognition implies an ability to make inferences about events
in the world around you. These events include those that in-
volve the cognitive agent itself, its actions, and the consequences
of those actions. To make these inferences, it helps to remem-
ber what happened in the past since knowing about past events
helps to anticipate future ones.6 Cognition, then, involves pre-

6 We discuss the forward-
looking role of memory
in anticipating events in
Chapter 7.

dicting the future based on memories of the past, perceptions of
the present, and in particular anticipation of the behaviour7 of

7 Inanimate objects don’t
behave but animate ones
do, as do inanimate objects
being controlled by animate
ones (e.g. cars in traffic). So
agency, direct or indirect, is
implied by behaviour.

the world around you and, especially, the effects of your actions
in it. Notice we say actions, not movement of motions. Actions
usually involve movement or motion but an action also involves
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something else. This is the goal of the action: the desired out-
come, typically some change in the world. Since predictions are
rarely perfect, a cognitive system must also learn by observing
what does actually happen, assimilate it into its understanding,
and then adapt the way it subsequently does things. This forms
a continuous cycle of self-improvement in the system’s ability to
anticipate future events. The cycle of anticipation, assimilation,
and adaptation supports — and is supported by — an on-going
process of action and perception; see Figure 1.4.

Figure 1.4: Cognition as
a cycle of anticipation,
assimilation, and adaptation:
embedded in, contributing
to, and benefitting from a
continuous process of action
and perception.

We are now ready for our preliminary definition.

Cognition is the process by which an autonomous system per-
ceives its environment, learns from experience, anticipates the
outcome of events, acts to pursue goals, and adapts to changing
circumstances.8

8 These six attributes of
cognition — autonomy,
perception, learning, antic-
ipation, action, adaptation
— are taken from the au-
thor’s definition of cognitive
systems in the Springer En-
cyclopedia of Computer Vision
[9]

We will take this as our preliminary definition of cognition and,
depending on the approach we are discussing, we will adjust it
accordingly in later chapters.

While definitions are convenient, the problem with them is
that they have to be continuously amended as we learn more
about the thing they define.9 So, with that in mind, we won’t be-

9 The Nobel laureate, Peter
Medawar, has this to say
about definitions: “My ex-
perience as a scientist has
taught me that the comfort
brought by a satisfying and
well-worded definition is
only short-lived, because it is
certain to need modification
and qualification as our ex-
perience and understanding
increase; it is explanations
and descriptions that are
needed” [10]. Hopefully, you
will find understandable
explanations in the pages
that follow.

come too attached to the definition and we’ll use it as a memory
aid to remind us that cognition involved at least six attributes of
autonomy, perception, learning, anticipation, action, and adapta-
tion.

For many people, cognition is really an umbrella term that
covers a collection of skills and capabilities possessed by an
agent.10 These include being able to do the following.

10 We frequently use the term
agent in this book. It means
any system that displays a
cognitive capacity, whether
it’s a human, or (potentially,
at least) a cognitive robot,
or some other artificial
cognitive entity. We will use
agent interchangably with
artifical cognitive system.

• Take on goals, formulate predictive strategies to achieve them,
and put those strategies into effect;

• Operate with varying degrees of autonomy;

• Interact — cooperate, collaborate, communicate — with other
agents;

• Read the intentions of other agents and anticipate their ac-
tions;

• Sense and interpret expected and unexpected events;
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Figure 1.5: Another aspect
of cognition: effective
interaction. Here the robot
anticipates someone’s needs
(see Chapter 9, Section 9.4
Instrumental Helping).

• Anticipate the need for actions and predict the outcome of its
own actions and those of others;

• Select a course of action, carry it out, and then assess the
outcome;

• Adapt to changing circumstances, in real-time, by adjusting
current and anticipated actions;

• Learn from experience: adjust the way actions are selected
and performed in the future;

• Notice when performance is degrading, identify the reason for
the degradation, and take corrective action.

These capabilities focus on what the agent should do: its func-
tional attributes. Equally important are the effectiveness and
the quality of its operation: its non-functional characteristics (or,
perhaps more accurately, its meta-functional characteristics): its
dependability, reliability, usability, versatility, robustness, fault-
tolerance, and safety, among others.11

11 The “non-” part of “non-
functional” is misleading
as it suggests a lesser value
compared to functional
characteristics whereas, in
reality, these characteristics
are equally important but
complementary to func-
tionality when designing a
system. For that reason, we
sometimes refer to them as
meta-functional attributes;
see [11] for a more extensive
list and discussion of meta-
functionional attributes.

These meta-functional characteristics are linked to the func-
tional attributes through system capabilities that focus not
on carrying out tasks but on maintaining the integrity of the
agent.12 Why are these capabilities relevant to artificial agents?

12 We will come back to
the issue of maintaining
integrity several times in
this book, briefly in the next
section, and more at length
in the next chapter. For the
moment, we will just remark
that the processes by which
integrity is maintained
are known as autonomic
processes.

They are relevant — and critically so — because artificial agents
such as a robot that is deployed outside the carefully-configured
environments typical of many factory floors have to deal with a
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world that is only partially known. It has to work with incom-
plete information, uncertainty, and change. The agent can only
cope with this by exhibiting some degree of cognition. When you
factor interaction with people into the requirements, cognition
becomes even more important. Why? Because people are cogni-
tive and they behave in a cognitive manner. Consequently, any
agent that interacts with a human needs to be cognitive to some
degree for that interaction to be useful or helpful. People have
their own needs and goals and we would like our artificial agent
to be able to anticipate these (see Figure 1.5). That’s the job of
cognition.

So, in summary, cognition is not to be seen as some module
in the brain of a person or the software of a robot — a planning
module or a reasoning module, for example — but as a system-
wide process that integrates all of the capabilities of the agent to
endow it with the six attributes we mentioned in our memory-
aid definition: autonomy, perception, learning, anticipation,
action, and adaptation.

1.3.1 Why Autonomy?

Notice that we included autonomy in our definition. We need to
be careful about this. As we will see in Chapter 4, the concept of
autonomy is a difficult one. It means different things to different
people, ranging from the fairly innocent, such as being able to
operate without too much help or assistance from others, to the
more controversial, which sees cognition as one of the central
processes by which advanced biological systems preserve their
autonomy. From this perspective, cognitive development has
two primary functions: (1) to increase the system’s repertoire of
effective actions, and (2) to extend the time-horizon of its ability
to anticipate the need for and outcome of future actions.13

13 The increase of action ca-
pabilities and the extension
anticipation capabilities as
the primary focus of cogni-
tion is the central message
conveyed in A Roadmap
for Cognitive Development
in Humanoid Robots [12], a
multi-disciplinary book co-
written by the author, Claes
von Hofsten, and Luciano
Fadiga.

Without wishing to preempt the discussion in Chapter 4,
because there is a tight relationship between cognition and au-
tonomy — or not, depending on who you ask — we will pause
here just a while to consider autonomy a little more.

From a biological perspective, autonomy is an organizational
characteristic of living creatures that enables them to use their



the nature of cognition 11

own capacities to manage their interactions with the world in
order to remain viable, i.e., to stay alive. To a very large extent,
autonomy is concerned with the system maintaining itself: self-
maintenance, for short.14 This means that the system is entirely 14 The concepts of self-

maintenance and recursive
self-maintenance in self-
organizing autonomous
system was introduced by
Mark Bickhard [13]. We will
discuss them in more detail
in Chapter 2. The key idea is
that self-maintenant systems
make active contributions
to their own persistence
but do not contribute to
the maintenance of the
conditions for persistence.
On the other hand, recursive
self-maintenant systems do
contribute actively to the
conditions for persistence.

self-governing and self-regulating. It is not controlled by any
outside agency and this allows it to stand apart from the rest
of the environment and assert an identity of its own. That’s
not to say that the system isn’t influenced by the world around
it, but rather that these influences are brought about through
interactions that must not threaten the autonomous operation of
the system.15

15 When an influence on
a system isn’t directly
controlling it but nonetheless
has some impact on the
behaviour of the system, we
refer to it as a perturbation.

If a system is autonomous, its most important goal is to pre-
serve its autonomy. Indeed, it must act to preserve it since the
world it inhabits that may not be very friendly. This is where
cognition comes in. From this (biological) perspective, cognition
is the process whereby an autonomous self-governing system
acts effectively in the world in which it is embedded in order to
maintain its autonomy.16 To act effectively, the cognitive system

16 The idea of cognition
being concerned with
effective action, i.e. action
that helps preserve the
system’s autonomy, is due
primarily to Francisco Varela
and Humberto Maturana
[14]. These two scientists
have had a major impact
on the world of cognitive
science through their work
on biological autonomy and
the organizational principles
which underpin autonomous
systems. Together, they
provided the foundations for
a new approach to cognitive
science called Enaction. We
will discuss enaction and
enactive systems is more
detail in Chapter 2.

must sense what is going on around it. However, in biological
agents, the systems responsible for sensing and interpretation of
sensory data, as well as those responsible for getting the motor
systems ready to act, are actually quite slow and there is often
a delay between when something happens and when an au-
tonomous biological agent comprehends what has happened.
This delay is called latency and it is often too great to allow the
agent to act effectively: by time you have realized that a preda-
tor is about to attack, it may be too late to escape. This is one of
the primary reasons a cognitive system must anticipate future
events: so that it can prepare the actions it may need to take in
advance of actually sensing that these actions are needed.

In addition to sensory latencies, there are also limitations im-
posed by the environment and the cognitive system’s body. To
perform an action, and specifically to accomplish the goal asso-
ciated with an action, you need to have the relevant part of your
body in a certain place at a certain time. It takes time to move,
so, again, you need to be able to predict what might happen and
prepare to act. For example, if you have to catch an object, you
need to start moving your hand before the object arrives and
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sometimes even before it has been thrown. Also, the world in
which the system is embedded is constantly changing and is out-
side the control of the system. Consequently, the sensory data
which is available to the cognitive system may not only be late in
arriving but critical information may also be missing. Filling in
these gaps is another of the primary functions of a cognitive sys-
tem. Paradoxically, it is also often the case that there is too much
information for the system to deal with and it has to ignore some
of it.17 17 The problem of ignoring

information is related to
two problems in cogitive
science: the Frame Problem
and Attention. We will take
up these issues again later in
the book.

Now, while these capabilities derive directly from the biolog-
ical autonomy-preserving view of cognition, it should be fairly
clear that they would also be of great use to artificial cognitive
systems, whether they are autonomous or not. However, before
moving on to the next section which elaborates a little more on
the relationship between biological and artificial cognitive sys-
tems, it is worth noting that some people consider that cognition
should involve even more than what we have discussed so far.
For example, an artificial cognitive system might also be able
to explain what it is doing and why it is doing it.18 This would 18 The ability not simply

to act but to explain the
reasons for an action was
proposed by Ron Brachman
in an article entitled “Sys-
tems that know what they’re
doing” [15].

enable the system to identify potential problems which could
appear when carrying out a task and to know when it needed
new information in order to complete it. Taking this to the next
level, a cognitive system would be able to view a problem or sit-
uation in several different ways and to look at alternative ways
of tackling it. In a sense, this is similar to the attribute we dis-
cussed above about cognition involving an ability to anticipate
the need for actions and their outcomes. The difference in this
case is that the cognitive system is considering not just one but
many possible sets of needs and outcomes. There is also a case to
be made that cognition should involve a sense of self-reflection:19 19 Self-reflection, often re-

ferred to as meta-cognition,
is emphasized by some peo-
ple, e.g. Aaron Sloman [16]
and Ron Sun [17], as an im-
portant aspect of advanced
cognition.

an ability on the part of the system to think about itself and its
own thoughts. We see here cognition straying into the domain of
consciousness. We won’t say anything more in this book on that
subject apart from remarking that computational modelling of
consciousness is an active area of research in which the study of
cognition plays an important part.
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1.4 Levels of Abstraction in Modelling Cognitive Systems

All systems can be viewed at different levels of abstraction, suc-
cessively removing specific details at higher levels and keeping
just the general essence of what is important for a useful model
of the system. For example, if we wanted to model a physical
structure, such as a suspension bridge, we could do so by speci-
fying each component of the bridge — the concrete foundations,
the suspension cables, the cable anchors, the road surface, and
the traffic that uses it — and the way they all fit together and
influence one another. This approach models the problem at a
very low level of abstraction, dealing directly with the materials
from which the bridge will be built, and we would really only
know after we built it whether or not the bridge will stay up. Al-
ternatively, we could describe the forces at work in each member
of the structure and analyze them to find out if they are strong
enough to bear the required loads with an acceptable level of
movement, typically as a function of different patterns of traffic
flow, wind conditions, and tidal forces. This approach models
the problem at a high level of abstraction and allows the architect
to established whether or not his or her design is viable before
it is constructed. For this type of physical system, the idea is
usually to use an abstract model to validate the design and then
realize it as a physical system. However, deciding on the best
level of abstraction is not always straightforward. Other types
of system — biological ones for example — don’t yield easily to
this top-down approach. When it comes to modelling cognitive
systems, it will come as no surprise that there is some disagree-
ment in the scientific community about what level of abstraction
one should use and how they should relate to one another. We
consider here two contrasting approaches to illustrate their dif-
ferences and their relative merits in the context of modelling and
designing artificial cognitive systems.

As part of his influential work on modelling the human visual
system, David Marr20 advocated a three-level hierarchy of ab-

20 David Marr was a pioneer
in the field of computer
vision. He started out as a
neuroscientist but shifted
to computational modelling
to try to establish a deeper
understanding of the human
visual system. His semi-
nal book Vision [18] was
published posthumously in
1982.

straction;21 see Figure 1.6. At the top level, there is the computa- 21 Marr’s three-level hierar-
chy is sometimes known as
the Levels of Understanding
framework.

tional theory. Below this, there is the level of representation and
algorithm. At the bottom, there is the hardware implementation.
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Figure 1.6: The three levels
at which a system should be
understood and modelled:
the computational theory
that formalizes the prob-
lem, the representational
and algorithmic level that
addresses the implementa-
tion of the theory, and the
hardware level that phy-
ically realizes the system
(after David Marr [18]).
The computational theory
is primary and the system
should be understood and
modelled first at this level
of abstraction, although the
representational and algo-
rithmic level is often more
intuitively accessible.

At the level of the computational theory, you need to answer
questions such as “what is the goal of the computation, why is
it appropriate, and what is the logic of the strategy by which it
is carried out?” At the level of representation and algorithm, the
questions are different: “how can this computational theory be
applied? In particular, what is the representation for the input
and output, and what is the algorithm for the transformation?”
Finally, the question at the level of hardware implementation is
“how can the representation and algorithm be physically real-
ized?” In other words, how can we build the physical system?
Marr emphasized that these three levels are only loosely cou-
pled: you can — and, according to Marr, you should — think
about one level without necessarily paying any attention to those
below it. Thus, you begin modelling at the computational level,
ideally described in some mathematical formalism, moving on to
representations and algorithms once the model is complete, and
finally you can decide how to implement these representations
and algorithms to realize the working system. Marr’s point is
that, although the algorithm and representation levels are more
accessible, it is the computational or theoretical level that is crit-
ically important from an information processing perspective. In
essence, he states that the problem can and should first be mod-
elled at the abstract level of the computational theory without
strong reference to the lower and less abstract levels.22 Since

22 Tomaso Poggio recently
proposed a revision of
Marr’s three-level hierarchy
in which he advocates
greater emphasis on the
connections between the
levels and an extension of
the range of levels, adding
Learning and Development
on top of the computational
theory level (specifically
hierarchical learning), and
Evolution on top of that [19].
Tomaso Poggio co-authored
the original paper [20] on
which David Marr based his
more famous treatment in
his 1982 book Vision [18].

many people believe that cognitive systems — both biological
and artificial — are effectively information processors, Marr’s
hierarchy of abstraction is very useful.

Marr illustrated his argument succinctly by comparing the
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problem of understanding vision (Marr’s own goal) to the prob-
lem of understanding the mechanics of flight.

“Trying to understand perception by studying only neurons is
like trying to understand bird flight by studying only feathers: it
just cannot be done. In order to understand bird flight, we have to
understand aerodynamics; only then do the structure of feathers
and the different shapes of birds’ wings make sense”

Objects with different cross-sectional profiles give rise to differ-
ent pressure patterns on the object when they move through a
fluid such as air (or when a fluid flows around an object). If you
choose the right cross-section then there is more pressure on the
bottom than on the top, resulting in a lifting force that counters
the force of gravity and allows the object to fly. It isn’t until you
know this that you can begin to understand the problem in a
way that will yield a solution for your specific needs.

Of course, you eventually have to decide how to realize a
computational model but this comes later. The point he was
making is that you should decouple the different levels of ab-
straction and begin your analysis at the highest level, avoiding
consideration of implementation issues until the computational
or theoretical model is complete. When it is, it can then subse-
quently drive the decisions that need to be taken at the lower
level when realizing the physical system.

Marr’s dissociation of the different levels of abstraction is
significant because it provides an elegant way to build a com-
plex system by addressing it in sequential stages of decreasing
abstraction. It is a very general approach and can be applied
successfully to modelling, designing, and building many differ-
ent systems that depend on the ability to process information. It
also echoes the assumptions made by proponents of a particular
paradigm of cognition — cognitivism — which we will meet in
the next chapter.23

23 The cognitivist approach
to cognition proposes an
abstract model of cognition
which doesn’t require you to
consider the final realization.
In other words, cognitivist
models can be applied to
any platform that supports
the required computations
and this platform could be
a computer or a brain. See
Chapter 2, Section 2.1, for
more details.

Not everyone agrees with Marr’s approach, mainly because
they think that the physical implementation has a direct role to
play in understanding the computational theory. This is particu-
larly so in the emergent paradigm of embodied cognition which
we will meet in the next chapter, the embodiment reflecting the
physical implementation. Scott Kelso,24 makes a case for a com-

24 Over the last 25 years,
Scott Kelso, the founder
of the Center for Complex
Systems and Brain Sciences
at Florida Atlantic Univer-
sity, has developed a theory
of Coordination Dynamics.
This theory, grounded in the
concepts of self-organization
and the tools of coupled
nonlinear dynamics, incor-
porates essential aspects of
cognitive function, includ-
ing anticipation, intention,
attention, multimodal inte-
gration, and learning. His
book, Dynamic Patterns –
The Self-Organization of Brain
and Behaviour [21], has influ-
enced research in cognitive
science world-wide.



16 artificial cognitive systems

Figure 1.7: Another three
levels at which a system
should be modelled: a
boundary constraint level
that determines the task or
goal, a collective variable
level that characterizes
coordinated states, and a
component level which
forms the realized system
(after Scott Kelso [21] ).
All three levels are equally
important and should be
considered together.

pletely different way of modelling systems, especially non-linear
dynamical types of systems that he believes may provide the true
basis for cognition and brain dynamics. He argues that these
types of system should be modelled at three distinct levels of ab-
straction, but at the same time. These three levels are a boundary
constraint level, a collective variables level, and a components
level. The boundary constraint level determines the goals of
the system. The collective variable25 level characterizes the be- 25 Collective variables, also

referred to as order param-
eters, are so called because
they are responsible for the
system’s overall collective
behaviour. In dynamical
systems theory, collective
variables are a small sub-
set of the system’s many
degrees of freedom but
they govern the transitions
between the states that the
system can exhibit and
hence its global behaviour.

haviour of the system. The component level forms the realized
physical system. Kelso’s point is that the specification of these
three levels of model abstraction are tightly coupled and mutu-
ally dependent. For example, the environmental context of the
system often determines what behaviours are feasible and use-
ful. At the same time, the properties of the physical system may
simplify the necessary behaviour. Paraphrasing Rolf Pfeifer,26

26 Rolf Pfeifer, University
of Zurich, has long been
a champion of the tight
relationship between a
system’s embodiment and
its cognitive behaviour, a
relationship set out in his
book How the body shapes the
way we think: A new view of
intelligence [22], co-authored
by Josh Bongard.

“morphology matters”: the properties of the physical shape or
the forced needed for required movements may actually simplify
the computational problem. In other words, the realization of
the system and its particular shape or morphology cannot be
ignored and should not be abstracted away when modelling the
system. This idea that you cannot model the system in isolation
from either the system’s environmental context or the system’s
ultimate physical realization is linked directly to the relationship
between brain, body, and environment. We will meet it again
later in the book when we discuss enaction in Chapter 2 and
when we consider the issue of embodiment in Chapter 5.

The mutual dependence of system realization and system
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Figure 1.8: Circular causality
— sometimes referred

to as continuous recipro-
cal causation or recursive
self-maintenance — refers to
the situation where global
system behaviour some-
how influences the local
behaviour of the system
components and yet it is the
local interaction between
the components that deter-
mines the global behaviour.
This phenomenon appears
to be one of the pivotal
mechanisms in autonomous
cognitive systems.

modelling presents us with a difficulty, however. If we look care-
fully, we see a circularity, with everything depending on some-
thing else. It’s not easy to see how you break into the modelling
circle. This is one of the attractions of Marr’s approach: there is
a clear place to get started. This circularity crops up repeatedly
in cognition and it does so in many forms. All we will say for
the moment is that circular causality27 — where global system

27 Scott Kelso uses the
term “circular causality”
to describe the situation
in dynamical systems
where the cooperation of
the individual parts of the
system determine the global
system behaviour which, in
turn, governs the behaviour
of these individual parts
[21]. This is related to
Andy Clark’s concept
of continuous reciprocal
causation (CRC) [23] which
“occurs when some system
S is both continuously
affecting and simultaneously
being affected by, activity in
some other system O” [24].
These ideas are also echoed
in Mark Bickhard’s concept
of recursive self-maintenance
[13]. We will say more about
these matters in Chapter 4.

behaviour somehow influences the local behaviour of the sys-
tem components and yet it is the local interaction between the
components that determines the global behaviour; see Figure 1.8
— appears to be one of the key mechanisms of cognition. We
will return again to this point later in the book. For the moment,
we’ll simply remark that the two constrasting approaches to
system modelling mirror two opposing paradigms of cognitive
science. It is to these that we now turn in Chapter 2 to study the
foundations that underpin our understanding of natural and
artificial cognitive systems.



2
Paradigms of Cognitive Science

In Chapter 1, we were confronted with the tricky and unex-
pected problem of how to define cognition. We made some
progress by identifying the main characteristics of a cognitive
system — perception, learning, anticipation, action, adaptation,
autonomy — and we introduced four aspects that must be borne
in mind when modelling a cognitive system: (a) biological in-
spiration vs. computational theory, (b) the level of abstraction
of the model, (c) the mutual dependence of brain, body, and en-
vironment, and (d) the ultimate-proximate distinction between
what cognition is for and how it is achieved. However, we also
remarked on the fact that there is more than one tradition of cog-
nitive science so that any definition of cognition will be heavily
coloured by the background against which the definition is set.
In this chapter, we will take a detailed look at these various tra-
ditions. Our goal is to tease out their differences and get a good
grasp of what each one stands for. Initially, it will seem that
these traditions are polar opposites and, as we will see, they do
differ in many ways. However, as we get to the end of the chap-
ter, we will also recognize a certain resonance between them.
This shouldn’t surprise us: after all, each tradition occupies its
own particular region of the space spanned by the ultimate and
proximate dimensions which we discussed in Chapter 1 and it
is almost inevitable that there will be some overlap, especially
if that tradition is concerned with a general understanding of
cognition.

Before we begin, it’s important to appreciate that cognitive sci-
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Figure 2.1: The cognitivist,
emergent, and hybrid
paradigms of cognition.

ence is a general umbrella term that embraces several disciplines,
including neuroscience, cognitive psychology, linguistics, epis-
temology, and artificial intelligence, among others. Its primary
goal is essentially to understand and explain the underlying
processes of cognition: typically human cognition and ideally
in a way that will yield a model of cognition that can then be
replicated in artificial agents.

To a large extent, cognitive science has its origins in cyber-
netics which in the early 1940s to 1950s made the first attempts
to formalize what had up to that point been purely psychologi-
cal and philosophical treatments of cognition. Cybernetics was
defined by Norbert Wiener as “the science of control and com-
munication in the animal and the machine.”1 The intention of

1 The word cybernetics has
its roots in the Greek word
κυβερνήτης or kybernētēs,
meaning steersman. It was
defined in Norbert Wiener’s
book Cybernetics [25], first
published in 1948, as “the
science of control and
communication” (this was
the sub-title of the book).
W. Ross Ashby remarks in
his book An Introduction to
Cybernetics [26], published
in 1956, that cybernetics
is essentially “the art of
steersmanship” and as such
its themes are co-ordination,
regulation, and control.

the early cyberneticians was to understand the mechanisms of
cognition and to create a science of mind, based primarily on
logic. Two examples of the application of cybernetics to cog-
nition include the seminal paper by Warren S. McCulloch and
Walter Pitts “A logical calculus immanent in nervous activity”2

2 As well as being a seminal
work in cybernetics, the 1943
paper by Warren S. McCul-
loch and Walter Pitts, “A
logical calculus immanent in
nervous activity” [27], is also
regarded as the foundation
for artificial neural networks
and connectionism [28].

and W. Ross Ashby’s book Design for a Brain.3

3 Complementing his influ-
ential book Design for a Brain
[29, 30, 31], W. Ross Ashby’s
Introduction to Cybernetics’
[26] is also a classic text.

The first attempts in cybernetics to uncover the mechanisms
of cognitive behaviour were subsequently taken up and devel-
oped into an approach referred to as cognitivism. This approach
built on the logical foundations laid by the early cyberneticians
and exploited the newly-invented computer as a literal metaphor
for cognitive function and operation, using symbolic informa-
tion processing as its core model of cognition. The cognitivist
tradition continued to be the dominant approach over the next
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30 or so years and, indeed, it was so pervasive and became so
deeply embedded in our mind-set that it still holds sway today
to a considerable extent.

Paradoxically, the early cybernetics period also paved the way
for a completely different approach to cognitive science — the
emergent systems approach — which recognized the importance
of self-organization in cognitive processes. Initially, emergent
systems developed almost under the radar — it was difficult
to challenge the appeal of exciting new computer technology
and the computational model of cognition — but it progressed
nonetheless in parallel with the cognitivist tradition over the
next fifty years and more, growing to embrace connectionism,
dynamical systems theory, and enaction, all of which we will
discuss in more detail later in the chapter.

In recent years, a third class — hybrid systems — has become
popular, and understandably so since, as the name suggests, it
attempts to combine the best from each of the cognitivist and
emergent paradigms; see Figure 2.1.

In the sections that follow, we will take a closer look at all
three traditions of cognitive science — cognitivist, emergent, and
hybrid — to draw out the key assumptions on which they build
their respective theories and to compare and contrast them on
the basis of several fundamental characteristics that reflect dif-
ferent points in the ultimate-proximate space. Before we proceed
to do this, it is worth noting that, although we have referred so
far to the different traditions of cognitive science, the title of the
chapter refers to the different paradigms of cognitive science. Is
there any great significance to this? Well, in fact, there is. As we
will see in what follows, and not withstanding the resonance that
we mentioned above, the two traditions do make some funda-
mentally different assertions about the nature of cognition (i.e.
its ultimate purpose) and its processes (i.e. its proximate mech-
anisms). In fact, these differences are so strong as to render the
two approaches intrinsically incompatible and, hence, position
them as two completely different paradigms. It isn’t hard to see
that this incompatibility is going to cause problems for hybrid
approaches, but we’ll get to that in due course. For the present,
let’s proceed with our discussion of the cognitivist and emergent
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traditions of cognitive science, seeking out the issues on which
they agree, but recognizing too those on which they do not, both
in principle and in practice.4 4 For an accessible summary

of the different paradigms
of cognition, refer to a paper
entitled “Whence Perceptual
Meaning? A Cartography of
Current Ideas” [32] It was
written by Francisco Varela,
one of the founders of a
branch of cognitive science
called Enaction, and it is
particularly instructive be-
cause, as well as contrasting
the various views of cogni-
tion, it also traces them to
their origins. This historical
context helps highlight the
different assumptions that
underpin each approach
and it shows how they have
evolved over the past sixty
years or so. Andy Clark’s
book Mindware – An Intro-
duction to the Philosophy of
Cognitive Science [33] also
provides a useful introduc-
tion to the philosophical and
scientific differences between
the different paradigms of
cognition.

2.1 The Cognitivist Paradigm of Cognitive Science

2.1.1 An Overview of Cognitivism

As we have seen, the initial attempt in cybernetics to create a
science of cognition was followed by the development of an ap-
proach referred to as cognitivism. The birth of the cognitivist
paradigm, and its sister discipline of Artificial Intelligence (AI),
dates from a conference held at Dartmouth College, New Hamp-
shire, in July and August 1956. It was attended by people such
as John McCarthy, Marvin Minsky, Allen Newell, Herbert Simon,
and Claude Shannon, all of whom had a very significant influ-
ence on the development of AI over the next half-century. The
essential position of cognitivism is that cognition is achieved by
computations performed on internal symbolic knowledge repre-
sentations in a process whereby information about the world is
taken in through the senses, filtered by perceptual processes to
generate descriptions that abstract away irrelevant data, repre-
sented in symbolic form, and reasoned about to plan and execute
mental and physical actions. The approach has also been labelled
by many as the information processing or symbol manipulation
approach to cognition.

For cognitivist systems, cognition is representational in a par-
ticular sense: it entails — requires — the manipulation of explicit
symbols: localized abstract encapsulations of information that
denote the state of the world external to the cognitive agent. The
term ‘denote’ has particular significance here because it asserts
an identity between the symbol used by the cognitive agent and
the thing that it denotes. It is as if there is a one-to-one corre-
spondence between the symbol in the agent’s cognitive system
and the state of the world to which it refers. For example, the
clothes in a laundry basket can be represented by a set of sym-
bols, often organized in a hierarchical manner, describing the
identity of each item and its various characteristics: whether it is
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heavily soiled or not, its colour, its recommended wash cycle and
water temperature. Similarly, the washing machine can be repre-
sented by another symbol or set of symbols. These symbols can
represent objects and events but they can also represent actions:
things that can happen in the world. For example, symbols that
represent sorting the clothes into bundles, one bundle for each
different wash cycle, putting them into the washing machine,
selecting the required wash cycle, and starting the wash. It is a
very clear, neat, and convenient way to describe the state of the
world in which the cognitive agent finds itself.

Having this information about the world represented by such
an explicit abstract symbolic knowledge is very useful for two
reasons. First, it means that you can easily combine this knowl-
edge by associating symbolic information about things and sym-
bolic information about actions that can be performed on them
and with them. These associations effectively form rules that
describe the possible behaviours of the world and, similarly,
the behaviours of the cognitive agent. This leads to the second
reason why such a symbolic representational view of cognition
is useful: the cognitive agent can then reason effectively about
this knowledge to reach conclusions, make decisions, and ex-
ecute actions. In other words, the agent can make inferences
about the world around it and how it should behave in order
to do something useful, i.e. to perform some task and achieve
some goal. For example, if a particular item of clothing is heav-
ily soiled but it is a delicate fabric, the agent can select a cool
wash cycle with a pre-soak, rather than putting it into a hot wa-
ter cycle (which will certainly clean the item of clothing but will
probably also cause it to shrink and fade). Of course, the agent
needs to know all this if it is to make the right decisions, but this
doesn’t present an insurmountable difficulty as long as someone
or something can provide the requisite knowledge in the right
form. In fact, it turns out to be relatively straightforward because
of the denotational nature of the knowledge: other cognitive
agents have the same representational framework and they can
share this domain knowledge directly5 with the cognitive robot

5 The idea of cognitive
robots sharing knowledge
is already a reality. For
example, as a result of
the RoboEarth initiative,
robots are now able to share
information on the internet:
see the article by Markus
Waibel and his colleagues
“RoboEarth: A World-Wide
Web for Robots” [34]. For
more details, see Chapter 8,
Section 8.6.1.

doing the laundry. This is the power of the cognitivist perspec-
tive on cognition and knowledge.
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A particular feature of this shared symbolic knowledge —
rules that describe the domain in which the cognitive agent is
operating — is that it is even more abstract than the symbolic
knowledge the agent has about its current environment: this
domain knowledge describes things in general, in a way that isn’t
specific to the particular object the agent has in front of it or the
actions it is currently peforming. For example, the knowledge
that delicate coloured fabrics will fade and shrink in very hot
water isn’t specific to the bundle of laundry that the agent is
sorting but it does apply to it nonetheless and, more to the point,
it can be used to decide how to wash this particular shirt.

Now, let’s consider for a moment the issue of where the
agent’s knowledge comes from. In most cognitivist approaches
concerned with creating artificial cognitive systems, the symbolic
knowledge is the descriptive product of a human designer. The
descriptive aspect is important: the knowledge in question is
effectively a description of how the designer — a third-party ob-
server — sees or comprehends the cognitive agent and the world
around it. So, why is this a problem? Well, it’s not a problem if
every agent’s description is identical or, at the very least, com-
patible: if every agent sees and experiences the world the same
way and, more to the point, generates a compatible symbolic
representation of it. If this is the case — and it will be the case if
the assertion which cognitivism makes that an agent’s symbolic
representation denotes the objects and events in the world is
true — then the consequence is very significant because it means
that these symbolic representations can be directly accessed,
understood, and shared by the cognitive agent (including other
people). Furthermore, it means that domain knowledge can be
embedded directly in to, and extracted from, an artificial cog-
nitive agent. This direct transferrability of knowledge between
agents is one of cognitivism’s key characteristics. Clearly, this
makes cognitivism very powerful and extremely appealing, and
the denotational attribute of symbolic knowledge is one of its
cornerstones.

You may have noticed above a degree of uncertainty in the
conditional way we expressed the compatibility of descrip-
tive knowledge and its denotational quality (“if the assertion
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... that an agent’s symbolic representation denotes the objects
and events in the world is true”). Cognitivism asserts that this is
indeed the case but, as we will see in Section 2.2, the emergent
paradigm of cognitive science takes strong issue with this posi-
tion. Since this denotational aspect of knowledge and knowledge
sharing (in effect, cognitivist epistemology) is so important, it
will come as no surprise that there are some far-reaching im-
plications. One of them concerns the manner in which cogni-
tive computations are carried out and, specifically, the issue of
whether or not the platform that supports the required symbolic
computation is of any consequence. In fact, in the cognitivist
paradigm, it isn’t of any consequence: any physical platform that
supports the performance of the required symbolic computation
will suffice. In other words, a given cognitive system (technically,
for a given cognitive architecture; but we’ll wait until Chapter
3 to discuss this distinction) and its component knowledge (the
content of the cognitive architecture) can exploit any machine
that is capable of carrying out the required symbol manipula-
tion. This could be a human brain or a digital computer. The
principled separation of computational operation from the phys-
ical platform that supports these computations is known as
computational functionalism.6 Cognitivist cognitive systems are 6 The principled decou-

pling of the computational
model of cognition from its
instantiation as a physical
system is referred to as
computational functionalism.
It has its roots in, for ex-
ample, Allen Newell’s and
Herbert Simon’s seminal
paper “Computer Science
as Empirical Enquiry: Sym-
bols and Search” [35]. The
chief point of computational
functionalism is that the
physical realization of the
computational model is in-
consequential to the model:
any physical platform that
supports the performance
of the required symbolic
computations will suffice, be
it computer or human brain;
also see Chapter 5, Section
5.2.

computationally functionalist systems.
Although the relationship between computational functional-

ism and the universal capability of cognitivist symbolic knowl-
edge is intuitively clear — if every cognitive agent has the same
world view and a compatible representational framework, then
the physical support for the symbolic knowledge and associated
computation is of secondary importance — they both have their
roots in classical artificial intelligence, a topic to which we now
turn. We will return to the cognitivist perspective on knowledge
and representation in Chapter 8.

2.1.2 Cognitivism and Artificial Intelligence

As we mentioned at the outset, both cognitivist cognitive science
and artificial intelligence share a common beginning and they
developed together, building a strong symbiotic relationship over
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a period of approximately thirty years.7 Artificial intelligence 7 Some observers view AI
less as a discipline that
co-developed along with
cognitivist cognitive science
and more as the direct de-
scendent of cognitivism.
Consider the following state-
ment by Walter Freeman
and Rafael Núñez: “... the
positivist and reductionist
study of the mind gained
an extraordinary popularity
through a relatively recent
doctrine called Cognitivism,
a view that shaped the
creation of a new field —
Cognitive Science — and its
most hard core offspring:
Artificial Intelligence” (em-
phasis in the original) [36].

then diverged somewhat from its roots, shifting its emphasis
away from its orginal concern with human and artificial cogni-
tion and their shared principles to issues concerned more with
practical expediency and purely computational algorithmic tech-
niques such as statistical machine learning. However, the past
few years have seen a return to its roots in cognitivist cognitive
science, now under the banner of Artificial General Intelligence
(to reflect the reassertion of the importance of non-specific ap-
proaches built on human-level cognitive foundations).8 Since

8 The renewal of the cog-
nitivist goals of classical
artificial intellegence to
understand and model
human-level intelligence
is typified by the topics
addressed by the cognitive
systems track of the AAAI
conference [37], and the
emergence of the discipline
of artificial general intelligence
promoted by, among oth-
ers, the Artificial General
Intelligence Society [38] and
the Artificial General Intel-
ligence Research Institute
[39].

there is such a strong bond between cognitivism and classical
artificial intelligence, it is worth spending some time discussing
this relationship.

In particular, because it has been extraordinarily influential in
shaping how we think about intelligence, natural as well as com-
putational, we will discussAllen Newell’s and Herbert Simon’s
“Physical Symbol System” approach to artificial intelligence.9

9 Allen Newell and Herbert
Simon were the recipients
of the 1975 ACM Turing
Award. Their Turing Award
lecture “Computer Science
as Empirical Enquiry: Sym-
bol and Search” [35] proved
to be extremely influential in
the development of artificial
intelligence and cognitivist
cognitive science.

As is often the case with seminal writing, the commentaries and
interpretations of the original work frequently present it in a
somewhat distorted fashion and some of the more subtle and
deeper insights get lost. Despite our brief treatment, we will try
to avoid this here.

Allen Newell and Herbert Simon, in their 1975 ACM Turing
Award Lecture “Computer Science as Empirical Enquiry: Symbol
and Search,” present two hypotheses:

1. The Physical Symbol System Hypothesis: A physical symbol
system has the necessary and sufficient means for general
intelligent action.

2. The Heuristic Search Hypothesis: The solutions to problems are
represented as symbol structures. A physical-symbol system
exercises its intelligence in problem-solving by search, that is,
by generating and progressively modifying symbol structures
until it produces a solution structure.

The first hypothesis implies that any system that exhibits gen-
eral intelligence is a physical symbol system and, furthermore,
any physical symbol system of sufficient size can be config-
ured somehow (“organized further,” in the words of Newell and
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Simon) to exhibit general intelligence. This is a very strong as-
sertion. It says two things: (a) that it is necessary for a system to
be a physical symbol system if the system is to display general
intelligence (or cognition), and (b) that being a physical symbol
system of adequate size is sufficient to be an intelligent system
— you don’t need anything else.

The second hypothesis amounts to an assertion that sym-
bol systems solve problems by heuristic search, i.e. “successive
generation of potential solution structures” in an effective and
efficient manner: “The task of intelligence, then, is to avert the
ever-present threat of the exponential explosion of search.” This
hypothesis is sometimes caricatured by the statement that “All
AI is search” but this is to unfairly misrepresent the essence of
the second hypothesis. The point is that a physical symbol sys-
tem must indeed search for solutions to the problem but it is
intelligent because its search strategy is effective and efficient:
it doesn’t fall back into blind exhaustive search strategies that
would have no hope of finding in a reasonable amount of time a
solution to the kinds of problems that AI is interested in. Why?
Because these are exactly the problems that defy simple exhaus-
tive search techniques by virtue of the fact that the computa-
tional complexity of these brute-force solutions — the amount
of time needed to solve them — increases exponentially with
the size of the problem.10 It is in this sense that the purpose of

10 Formally, we say that
exponential complexity is
of the order kn, where k is
a constant and n is the size
of the problem. By contrast,
we also have polynomial
complexity: n2, n3, or nk .
The difference between these
two classes is immense.
Problems with exponential
complexity solutions scale
very badly and, for any
reasonably-sized problem,
are usually intractable, i.e.
they can take days or years
to solve, unless some clever
— intelligent — solution
strategy is used.

intelligence is to deal effectively with the danger of exponentially
large search spaces.

A physical symbol system is essentially a machine that pro-
duces over time an evolving collection of symbol structures.11 A

11 For a succinct overview of
symbol systems, see Stevan
Harnad’s seminal article
“The Symbol Grounding
Problem” [40].

symbol is a physical pattern and it can occur as a component of
another type of entity called an expression or symbol structure:
in other words, expressions or symbol structures are arrange-
ments of symbols. As well as the symbol structures, the system
also comprises processes that operate on expressions to produce
other expressions: to process, create, modify, reproduce, and de-
stroy them. An expression can designate an object and thereby
the system can either affect the object itself or behave in ways
that depend on the object. Alternatively, if the expression des-
ignates a process, then the system interprets the expression by
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Symbol Systems

Symbol Structures /
Expressions /

Patterns

Processes
Produce, destroy, modify

Objects

designate

Processes

designate

comprise comprise

Can be interpreted: 
carry out the designated process

Can affect objects
Can be affected by objects

designate

Figure 2.2: The essence of
a physical symbol system
[35].

carrying out the process (see Figure 2.2). In the words of Newell
and Simon,

“Symbol systems are collections of patterns and processes, the
latter being capable of producing, destroying, and modifying the
former. The most important properties of patterns is that they can
designate objects, processes, or other patterns, and that when they
designate processes, they can be interpreted. Interpretation means
carrying out the designated process. The two most significant
classes of symbol systems with which we are acquainted are
human beings and computers.”

There is an important if subtle point here. This explanation of
a symbol system is much more general and powerful than the
usual portrayal of symbol-manipulation systems in which sym-
bols designate only objects, and in which case we have a system
of processes that produces, destroys, and modifies symbols,
and no more. Newell’s and Simon’s original view is consider-
ably more sophisticated. There are two recursive aspects to it:
processes can produce processes, and patterns can designate
patterns (which, in turn, can be processes). These two recursive
loops are closely linked. Not only can the system build ever
more abstract representations and reason about those representa-
tion, but it can modify itself as a function of its processing and its
symbolic representations. The essential point is that in Newell’s
and Simon’s original vision, physical symbol systems are in prin-
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ciple capable of development. This point is often lost in contem-
porary discussions of cognitivist AI systems. On the other hand,
as we will see later, emergent approaches focus squarely on the
need for development. This is one of the resonances between the
cognitivist and emergent paradigms we mentioned, although one
that isn’t often picked up on because the developmental capacity
that is intrinsic in principle to cognitivist system, by virtue of
the physical symbol systems hypothesis, often doesn’t get the
recognition it deserves.

In order to be realized as a practical agent, symbol systems
have to be executed on some computational platform. However,
the behaviour of these realized systems depend on the details of
the symbol system, its symbols, operations, and interpretations,
and not on the particular form of the realization. This is some-
thing we have already met: the functionalist nature of cognitivist
cognitive systems. The computational platform that supports the
physical symbol system or the cognitive model is arbitrary to
the extent that it doesn’t play any part in the model itself. It may
well influence how fast the processes run and the length of time
it takes to produce a solution, but this is only a matter of timing
and not outcome, which will be the same in every case.

Thus, the physical symbol system hypothesis asserts that a
physical symbol system has the necessary and sufficient means
for general intelligence. From what we have just said about sym-
bol systems, it follows that intelligent systems, either natural or
artificial ones, are effectively equivalent because the instantiation
is actually inconsequential, at least in principle. It is evident that,
to a very great extent, cognitivist systems and physical symbol
systems are effectively identical with one another. Both share the
same assumptions, and view cognition or intelligence in exactly
the same way.

Shortly after Newell and Simon published their influential
paper, Allen Newell defined intelligence as the degree to which
a system approximates the ideal of a knowledge-level system.12

12 In addition to his seminal
1975 Turing Award Lecture,
Allen Newell made several
subsequent landmark contri-
butions to the establishment
of practical cognitivist sys-
tem, beginning perhaps in
1982 with his introduction of
the concept of a knowledge-
level system, the Maximum
Rationality Hypothesis, and
the principle of rationality
[41], in the mid-1980s with
the development of the Soar
cognitive architecture for
general intelligence (along
with John Laird and Paul
Rosenbloom) [42], and in
1990 the idea of a Unified
Theory of Cognition [43].

This is a system which can bring to bear all its knowledge onto
every problem it attempts to solve (or, equivalently, every goal
it attempts to achieve). Perfect intelligence implies complete
utilization of knowledge. It brings this knowledge to bear ac-
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cording to the Maximum Rationality Hypothesis expressed as
the principle of rationality which was proposed by Allen Newell
in 1982 as follows: “If an agent has knowledge that one of its
actions will lead to one of its goals, then the agent will select that
action.” John Anderson later offered a slightly different perspec-
tive, referred to as rational analysis, in which the cognitive system
optimizes the adaptation of the behaviour of the organism. Note
that Anderson’s principle considers optimality to be necessary
for rationality, something that Newell’s principle does not.13 13 For a good comparison of

Newell’s principle of ratio-
nality [41] and Anderson’s
rational analysis [44], refer to
the University of Michigan’s
Survey of Cognitive and
Agent Architectures [45].

In essence, the principle of rationality formalizes the intuitive
idea that an intelligent agent will never ignore something if it
knows it will help achieve its goal and will always use as much
of its knowledge as it can to guide its behaviour and successfully
complete whatever task it is engaged in.

As we might expect, the knowledge in such an artificial intel-
ligence system, i.e. in a knowledge-level system, is represented
by symbols. Symbols are abstract entities that may be instanti-
ated and manipulated as tokens. Developing his physical symbol
systems hypothesis, Newell characterizes a symbol system as
follows.14 It has: 14 Newell’s characterization

of a symbol system can
be found on a website at
the University of Michigan
dedicated to cognitive and
agent architectures [45] .

• Memory to contain the symbolic information;

• Symbols to provide a pattern to match or index other symbolic
information;

• Operations to manipulate symbols;

• Interpretations to allow symbols to specify operations;

• Capacities for composability, so that the operators may produce
any symbol structure; for interpretability, so that the symbol
structures are able to encode any meaningful arrangement
of operations; and sufficient memory to facilitate both of the
above.

Newell suggests a progression of four bands of operation,
depending on the timescale over which processing takes place,
ranging from biological, cognitive, rational, to social. The typical
execution time in the biological band is 10−4 to 10−2 seconds,
the cognitive 10−1 to 101 seconds, the rational 102 to 104 seconds,
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and the social 105 to 107 seconds. The biological band corre-
sponds to the neurophysiological make-up of the system. Newell
identifies three layers in this band: the organelle, the neuron,
and the neural circuit. Connectionist systems and artifical neural
networks are often focussed exclusively on this band.

The cognitive band corresponds to the symbol level and its
physical instantiation as a concrete architecture. The idea of a
cognitive architecture is one of the most important topics in the
study of cognitive systems (both biological and artificial) and
artificial intelligence, and cognitive architectures play a key role
in cognitivist cognitive science in particular. We devote all of the
next chapter to this topic.

Newell identifies three layers in the cognitive band. First,
there are deliberate acts that take a very short amount of time,
typically 100ms. For example, reaching to grasp an object. Sec-
ond, there are ‘composed operations’ which comprise sequences
of deliberate acts. For example, reaching for an article of cloth-
ing, grasping it, picking it up, and putting it in a washing ma-
chine. These composed operations take on the order of a second.
Third, there are complete actions that take up to ten seconds. For
example, finding the washing powder tablets, opening the wash-
ing powder tray in the washing machine, inserting the tablet,
and adding the fabric conditioner.

The rational band is concerned with actions that are typi-
cally characterized by tasks and require some reasoning. For
example, doing the laundry. The social band extends activity to
behaviours that occupy hours, days, or weeks, often involving
interaction with other agents.

All knowledge is represented (symbolically) at the cognitive
symbol level. All knowledge-level systems contain a symbol sys-
tem. As we have already seen, this is the strong interpretation
of the physical symbol system hypothesis: not only is a phys-
ical symbol system sufficient for general intelligence, it is also
necessary for intelligence.

This section has summarized very briefly the close relation-
ship between classical AI and cognitivism and, by extension,
the new incarnation of classical AI in Artificial General Intelli-
gence (AGI). It is impossible to overestimate the influence that AI
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has had on cognitivist cognitive science and, to a slightly lesser
extent, that of cognitivism on AI. This is not surprising when
you consider that they were both born as disciplines at the same
time by more or less the same people and that their goals were
identical: to develop a comprehensive theory — inspired by the
computational model of information processing — that moved
forward the original agenda of the early cyberneticians to for-
malize the mechanisms that underpin cognition in animals and
machines. AI may well have deviated from that goal in the last
20 or so years to pursue alternative strategies such as statistical
machine learning but, as we mentioned above, there is now a
large and growing body of people who are championing a return
to the original goals of the founders of cognitivism and classical
AI which, in the words of Pat Langley at Arizona State Univer-
sity, was to understand and reproduce in computational systems
the full range of intelligent behaviour observed in humans.

With this important pillar of cognitive science now firmly
established, let’s move on to the second pillar that also grew out
of the goals and aspirations of the early cyberneticians: emergent
systems.

2.2 The Emergent Paradigm of Cognitive Science

The view of cognition taken by emergent approaches is very
different to that taken by cognitivism. The ultimate goal of an
emergent cognitive system is to maintain its own autonomy, and
cognition is the process by which it accomplishes this. It does
so through a process of continual self-organization whereby the
agent interacts with the world around it but only in such a way
as not to threaten its autonomy. In fact, the goal of cognition is to
make sure that the agent’s autonomy is not compromised but is
continually enhanced to make its interactions increasingly more
robust. In achieving this, the cognitive process determines what
is real and meaningful for the system: the system constructs its
reality — its world and the meaning of its perceptions and ac-
tions — as a result of its operation in that world. Consequently,
the system’s understanding of its world is inherently specific to
the form of the system’s embodiment and is dependent on the
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system’s history of interactions, i.e., its experiences.15 This pro- 15 This mutual specification
of the system’s reality by
the system and its envi-
ronment is referred to as
co-determination [14] and
is related to the concept of
radical constructivism [46]
(see Chapter 8, Section 8.3.4).

cess of making sense of its environmental interactions is one of
the foundations of a branch of cognitive science called enaction,
about which we will say much more in Section 2.2.3. Cognition
is also the means by which the system compensates for the im-
mediate “here-and-now” nature of perception, allowing it to
anticipate events that occur over longer timescales and prepare
for interaction that may be necessary in the future. Thus, cog-
nition is intrinsically linked with the ability of an agent to act
prospectively: to deal with what might be, not just with what is.

Many emergent approaches also adhere to the principle that
the primary mode of cognitive learning is through the acquisi-
tion of new anticipatory skills rather than knowledge, as is the
case in cognitivism.16 As a result, in contrast to cognitivism, 16 Emergent approaches

typically proceed on the
basis that processes which
guide action and improve
the capacity to guide action
form the root capacity of all
intelligent systems [47].

emergent approaches are necessarily embodied and the physical
form of the agent’s body plays a pivotal role in the cognitive pro-
cess. Emergent systems wholeheartedly embrace the idea of the
interdependence between brain, body, and world that we men-
tioned in the previous chapter. Because of this, cognition in the
emergent paradigm is often referred to as embodied cognition.17 17 We discuss the issue of

embodied cognition in detail in
Chapter 5.

However, while the two terms might be synonymous, they are
not equivalent. Embodied cognition focusses on the fact that the
body and the brain, together, form the basis of a cognitive sys-
tem and they do so in the context of a structured environmental
niche to which the body is adapted. Emergent systems, as we
will see, do so too but often they make even stronger assertions
about the nature of cognition.

The emergent paradigm can be sub-divided into three ap-
proaches: connectionist systems, dynamical systems, and enac-
tive systems (refer again to Figure 2.1). However, it would be
wrong to suggest that these three approaches have nothing to
do with one another. On the contrary, there are very important
ways in which they overlap. The ultimate-proximate relationship
again helps to clarify the distinctions we make between them.
Both connectionist and dynamical systems are more concerned
with proximate explanations of cognition, i.e. the mechanisms by
which cognition is achieved in a system. Typically, connectionist
systems correspond to models at a lower level of abstraction, dy-
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namical systems to a higher level. Enaction, on the other hand,
makes some strong claims about what cognition is for (as does
the emergent paradigm in general) and why certain characteris-
tics are important. Enaction does have a lot to say about how the
process of cognition is effected, touching on the proximate expla-
nations, but it does so at quite an abstract level. To date, explicit
formal mechanistic, computational, or mathematical models of
enaction remain goals for future research.18 In contrast, con-

18 Enaction: Towards a New
Paradigm for Cognitive Science
[48], edited by John Stewart,
Olivier Gapenne, and
Ezequiel Di Paolo, and
published by MIT Press in
2010, provides an excellent
snapshot of the current
state of development of the
enactive paradigm.

nectionism and dynamical systems theory provide us with very
detailed and well-understood formal techniques, mathemati-
cally and computationally, but the challenge of scaling them to
a fully-fledged theory of cognition on a par with, say, the cogni-
tivist Unified Theory of Cognition (a concept that was already
mentioned above in Section 2.1.2 and that will be discussed more
fully in Chapter 3) requires much more time and effort, not to
mention some intellectual breakthroughs.

Many working on the area feel that the future of the emergent
paradigm may lie in the unification of connectionist, dynamical,
and enactive approaches, binding them together in a cohesive
joint ultimate-proximate explanation of cognition. Indeed, as
we will see shortly, connectionism and dynamical systems the-
ory are best viewed as two complementary views of a common
approach, the former dealing with microscopic aspects and the
latter with macroscopic. On the other hand, others working in
the field prefer the view that a marriage of cognitivist and emer-
gent approaches is the best way forward, as exemplified by the
hybrid systems approach about which we will say more in Sec-
tion 2.3. There are other interesting perspectives too, such as the
computational mechanics espoused by James Crutchfield who ar-
gues for a synthesis and extension of dynamical and information
processing approaches.19

19 James Crutchfield agrees
with those who advocate a
dynamical perspective on
cognition, asserting that
time is a critical element,
and he makes the point
that one of the advantages
of dynamical systems ap-
proaches is that it renders
the temporal aspects geo-
metrically in a state space.
Structures in this state space
both generate and constrain
behaviour and the emer-
gence of spatio-temporal
patterns. Dynamics, then,
are certainly involved in cog-
nition. However, he argues
that dynamics per se are “not
a substitute for information
processing and computa-
tion in cognitive processes”
but neither are the two ap-
proaches incompatible [49].
He holds that a synthesis of
the two can be developed
to provide an approach that
does allow dynamical state
space structures to support
computation. He proposes
computational mechanics
as the way to tackle this
synthesis of dynamics and
computation.

Bearing in mind these relationships, let us now proceed to
examine the three emergent approaches, one by one, highlighting
the areas where they overlap.
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2.2.1 Connectionist Systems

Connectionist systems rely on parallel processing of non-symbolic
distributed activation patterns in networks of relatively simple
processing elements. They use statistical properties rather than
logical rules to analyze information and produce effective be-
haviour. In the following, we will summarize the main principles
of connectionism, briefly tracing its history and highlighting the
main developments that have led us to where we are today. Un-
fortunately, but inevitably, we will be forced into making use of
many technical terms with little or no explanation: to do justice
to connectionism and the related field of artificial neural net-
works would require a substantial textbook in its own right. All
we can hope for here is to convey some sense of the essence of
the connectionism, its relevance to cognitive science, and the way
it differs from cognitivism. References to supplementary material
are provided in the sidenote.20

20 David Medler’s paper “A
Brief History of Connec-
tionism” [50] provides an
overview of classical and
contemporary approaches
and a summary of the link
between connectionism
and cognitive science. For a
selection of seminal papers
on connectionism, see James
Anderson’s and Edward
Rosenfeld’s Neurocomput-
ing: Foundations of Research
[28] and Neurocomputing 2:
Directions of Research [51].
Paul Smolensky reviews the
field from a mathematical
perspective [52, 53, 54, 55].
Michael Arbib’s Handbook
of Brain Theory and Neural
Networks provides very ac-
cessible summaries of much
of the relevant literature [56].

The roots of connectionism reach back well before the com-
putational era. Although the first use of connectionism for
computer-based models dates from 1982,21 the term connec-

21 The introduction of the
term connectionist models in
1982 is usually attributed
to Jerome Feldman and
Dana Ballard in their paper
“Connectionist Models and
their Properties” [57].

tionism had been used in psychology as early as 1932.22 Indeed,

22 Edward Thorndike used
the term connectionism to
refer to an extended form
of associationism in 1932
[58, 59].

connectionist principles are clearly evident in William James’
nineteenth century model of associative memory,23 a model

23 Anderson’s and Rosen-
feld’s collection of papers
[28] opens with Chapter XVI
“Association” from William
James’s 1890 Psychology,
Briefer Course [60].

that also anticipated mechanisms such as Hebbian learning, an
influential unsupervised neural training process whereby the
synaptic strength — the bond between connecting neurons — is
increased if both the source and target neurons are active at the
same time. The introduction to Donald Hebb’s book The Organi-
zation of Behaviour published in 1949 also contains one of the first
usages of the term connectionism.24

24 The introduction of Don-
ald Hebb’s book The Or-
ganization of Behaviour [61]
can be found in Anderson’s
and Rosenfeld’s collection of
papers [28].

We have already noted that cognitivism has some of its roots
in earlier work in cybernetics and in the seminal work by Warren
McCulloch and Walter Pitts in particular.25 They showed that

25 See Sidenote 2 in this
chapter.

any statement within propositional logic could be represented by
a network of simple processing units, i.e. a connectionist system.
They also showed that such nets have, in principle, the compu-
tational power of a Universal Turing Machine, the theoretical
basis for all computation. Thus, McCulloch and Pitts managed
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the remarkable feat of contributing simultaneously to both the
foundation of cognitivism and the foundation of connectionism.

The connectionist approach was advanced significantly in
the late 1950s with the introduction of Frank Rosenblatt’s per-
ceptron and Oliver Selfridge’s Pandemonium model of learn-
ing.26 Rosenblatt showed that any pattern classification prob-

26 The perceptron was
introduced in 1958 by Frank
Rosenblatt [62] while the
Pandemonium learning model
was developed by Oliver
Selfridge in 1959 [63]; both
are included in Anderson’s
and Rosenfeld’s collection of
seminal papers [28].lem expressed in binary notation can be solved by a perceptron

network, a simple network of elementary computing elements
which do little more than sum the strength of suitably-weighted
input signals or data streams, compare the result to some fixed
threshold value, and, on the basis of the result, they either fire
or not, producing a single output which then connected to other
computing element in the network.

Although network learning advanced in 1960 with the intro-
duction of the Widrow-Hoff rule (also called the delta rule) for
supervised training in the Adaline neural model,27 perceptron

27 Adaline — for Adaptive
Linear — was introduced
by Bernard Widrow and
Marcian Hoff in 1960 [64].

networks suffered from a severe problem: no learning algorithm
existed to allow the adjustment of the weights of the connections
between input units and hidden associative units in networks
with more than two layers.

In 1969, Marvin Minsky and Seymour Papert caused some-
thing of a stir by showing that these perceptrons can only be
trained to solve linearly separable problems and couldn’t be
trained to solve more general problems.28 As a result, research

28 Perceptrons: An Introduction
to Computational Geometry
by Marvin Minsky and
Seymour Papert [65] was
published in 1969 and had
a very strong negative
influence on neural network
research for over a decade.
For a review of the book,
see “No Harm Intended” by
Jordan Pollack [66].

on neural networks and connectionism suffered considerably.
With the apparent limitations of perceptions clouding work

on network learning, research focussed more on memory and
information retrieval and, in particular, on parallel models of
associative memory.29

29 For examples of connec-
tionist work carried out in
the 1970s and early 1980s,
see Geoffrey Hinton’s and
James Anderson’s book
“Parallel Models of Associa-
tive Memory” [67].

During this period, alternative connectionist models were
also being developed, such as Stephen Grossberg’s Adaptive
Resonance Theory (ART)30 and Teuvo Kohonen’s self-organizing

30 Adaptive Resonance The-
ory (ART) was introduced
by Stephen Grossberg in
1976 and has evolved con-
siderably since then. For
a succinct summary, see
the entry in The Handbook
of Brain Theory and Neural
Networks [68].

maps (SOM), often referred to simply as Kohonen networks.31

31 Kohonen networks [69]
produce topological maps in
which proximate points in
the input space are mapped
by an unsupervised self-
organizing learning process
to an internal network
state which preserves this
topology.

ART addresses real-time supervised and unsupervised category
learning, pattern classification, and prediction, while Kohonen
networks exploit self-organization for unsupervised learning and
can be used as either an auto-associative memory or a pattern
classifier.
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Perceptron-like neural networks underwent a strong resur-
gence in the mid-1980s with the development of the parallel
distributed processing (PDP) architecture,32 in general, and with 32 David Rumelhart’s and

James McClelland’s 1986
book Parallel Distributed
Processing: Explorations in the
Microstructure of Cognition
[70] had a major influence
on connectionist models of
cognition.

the introduction of the back-propagation algorithm by David
Rumelhart, Geoffrey Hinton, and Ronald Williams, in partic-
ular.33 The back-propagation learning algorithm, also known

33 Although the back-
propagation learning rule
made its great impact
through the work of David
Rumelhart et al. [71, 72],
it had previously been de-
rived independently by Paul
Werbos [73], among others
[50].

as the generalized delta rule or GDR since it is a generalization
of the Widrow-Hoff delta rule for training Adaline units, over-
came the limitation identified by Minsky and Papert by allowing
the connection weights between the input units and the hidden
units be modified, thereby enabling multi-layer perceptrons to
learn solutions to problems that are not linearly separable. This
was a major breakthrough in neural network and connectionist
research. In cognitive science, PDP had a significant impact in
promoting a move away from the sequential view of computa-
tional models of mind, towards a view of concurrently-operating
networks of mutually-cooperating and competing units. PDP
also played an important role in raising an awareness of the
importance of the structure of the computing system on the
computation, thereby challenging the functionalist doctrine of
cognitivism and the principled divorce of computation from
computational platform.

The standard PDP model represents a static mapping be-
tween the input vectors as a consequence of the feed-forward
configuration, i.e. a configuration in which data flows in just one
direction through the network, from input to output. There is
an alternative, however, in which the network has connections
that loop back to form circuits, i.e. networks in which either the
output or the hidden unit activation signals are fed back to the
network as inputs. These are called recurrent neural networks.
The recurrent pathways in the network introduce a dynamic be-
haviour into the network operation.34 Perhaps the best known 34 This recurrent feed-back

has nothing to do with the
feed-back of error signals
(by, for example, back-
propagation) to effect weight
adjustment during learning.

type of recurrent network is the Hopfield network. These are
fully recurrent networks that act as an auto-associative memory
or content-addressable memory.

As a brief aside, associative memory comes in two types:
hetero-associative memory and auto-associative memory. Hetero-
associative memory produces an output that is different in char-
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acter from the input; the two are associated. Technically, the
spaces to which the input and output vectors belong are differ-
ent. For example, the input space might be an image of an object
and the output might be a digitally-synthesized speech signal
encoding a word or phrase describing the object’s identity. On
the other hand, auto-associative memory produces an output
vector that belongs to the same space as the input vector. For
example, a poorly-taken image of the object might produce —
recall — a perfect image of the object taken previously.

Other recurrent networks include Elman networks (with re-
current connections from the hidden to the input units) and Jor-
dan networks (with recurrent connections from the output to the
input units). Boltzmann machines are variants of Hopfield nets
that use stochastic rather than deterministic weight update pro-
cedures to avoid problems with the network becoming trapped
in local minima during learning.35 35 For more information on

Hopfield networks, Elman
networks, Jordan networks,
and Boltzmann machines,
refer to [74], [75], [76], and
[77], respectively.

Multi-layer perceptrons and other PDP connectionist networks
typically use monotonic functions36 such as hard-limiting thresh-

36 Monotonic functions
grow in one direction only:
monotonically-increasing
functions only increase in
value as the independent
variable gets larger whereas
monotonically-decreasing
functions only decrease in
value as the independent
variable gets larger.

old functions or sigmoid functions to trigger the activation of
individual neurons. The use of non-monotonic activation func-
tions, such as the Gaussian function, can offer computational
advantages, e.g. faster and more reliable convergence on prob-
lems that are not linearly separable. Radial basis function (RBF)
networks37 use Gaussian functions but differ from multi-layer

37 For more details on ra-
dial basis function (RBF)
networks, see for example
[78].

perceptrons in that the Gaussian function is used only for the
hidden layer, with the input and output layers using linear acti-
vation functions.

Connectionist systems still continue to have a strong influ-
ence on cognitive science, either in a strictly PDP sense such as
James McClelland’s and Timothy Rogers’ PDP approach to se-
mantic cognition or in the guise of hybrid systems such as Paul
Smolensky’s and Geraldine Legendre’s connectionist/symbolic
computational architecture for cognition.38

38 See [79] for details of
James McClelland’s and
Timothy Rogers’ PDP ap-
proach to semantic cognition
and [80, 81] for details of
Paul Smolensky’s and Geral-
dine Legendre’s connection-
ist/symbolic computational
architecture for cognition.

With that all-too-brief overview of connectionism in mind, we
can now see why connectionism, as a component of the emer-
gent paradigm of cognitive science, is viewed as a viable and at-
tractive alternative to cognitivism. Specifically, one of the original
motivations for work on emergent systems was disaffection with
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the sequential, atemporal, and localized character of symbol-
manipulation based cognitivism. Emergent systems, on the other
hand, depend on parallel, real-time, and distributed architec-
tures, just like natural biological systems do, and connectionist
neural networks with their inherent capacity for learning are an
obvious and appealing way to realize such systems. Of itself,
however, this shift in emphasis isn’t sufficient to constitute a new
paradigm. While parallel distributed processing and real-time
operation are certainly typical characteristics of connectionist
systems, there must be more to it than this since modern cog-
nitivist systems exhibit the very same attributes.39 So, what are 39 Walter Freeman and Rafael

Núñez have argued that
recent systems — what they
term neo-cognitivist systems
— exploit parallel and
distributed computing in
the form of artificial neural
networks and associative
memories but, nonetheless,
still adhere to many of
the original cognitivist
assumptions [36]. A similar
point is made by Timothy
van Gelder and Robert Port
[82].

the key differentiating features? We defer answering this ques-
tion until in Section 2.4, where we will compare and contrast the
cognitivist and emergent paradigms on the basis of fourteen dis-
tinct characteristics. For now, we move on to consider dynamical
systems approaches to emergent cognitive science.

2.2.2 Dynamical Systems

While connectionist systems focus on the pattern of activity that
emerges from an adaptive network of relatively simple process-
ing elements, dynamical systems theory models the behaviour
of systems by using differential equations to capture how cer-
tain important variables that characterize the state of the system
change with time. Dynamical systems theory is a very general
approach and has been used to model many different types of
systems in various domains such as biology, astronomy, ecology,
economonics, physics, and many others.40 40 For an intuitive introduc-

tion to dynamical systems
theory, see Section 5.2 of
Lawrence Shapiro’s book
Embodied Cognition [83]. For
an overview of the way dy-
namical systems theory can
be used to model cognitive
behaviour, refer to Scott
Kelso’s book Dynamic Pat-
terns – The Self-Organization
of Brain and Behaviour [21].

A dynamical system defines a particular pattern of behaviour.
The system is characterized by a state vector and its time deriva-
tive, i.e. how it changes as time passes. This time derivative is
determined by the state vector itself and also some other vari-
ables called control parameters. Usually, the dynamical equa-
tions also takes noise into account. To model a dynamical sys-
tem, you need to identify the state variables and the control
parameters, how noise will be modelled, and finally the exact
form of the relationship which combines these and expresses
them in terms of derivatives, i.e. how they change with time.
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The Nature of Dynamical Systems
In general, a dynamical system has several key attributes. First of
all, it is a system. This may seem to be a bit obvious but it’s im-
portant. It means that it comprises a large number of interacting
components and therefore a large number of degrees of freedom.

Second, the system is dissipative, that is, it uses up or dissi-
pates energy. This has an important consequence on the system
behaviour. In particular, it means that the number of states that
the system can reach reduces with time. Technically, we say that
its phase space decreases in volume. The main upshot of this is
that the system develops a preference for certain sets of states
(again, technically, they are preferential sub-spaces in the com-
plete space of possible states).

A dynamical system is also what is referred to as a non-
equilibrium system. This just means that it never comes to rest.
It doesn’t mean that it can’t exhibit stable behaviour — it can
— but it does mean that it is unable to maintain its structure
and carry out its function without external sources of energy,
material, or information. In turn, this means that, at least from
an energy, material, or information perspective, the system is
open, i.e. stuff can enter and exit the system. In contrast, a closed
system doesn’t allow anything to cross the system boundary.

A dynamical system is also non-linear. This simply means that
the equations that define the differential relationship between the
state variables, the control parameters, and the noise components
are combined together in a multiplicative manner and not simply
by weighting and adding them together. Although non-linearity
might appear to be a mathematical nicety (or, more likely, a
mathematical complication) this non-linearity is extremely im-
portant because it provides the basis for complex behaviour —
most of the world’s interesting phenomena exhibit this hard-to-
model characteristic of non-linearity — but, not only that, it also
means that the dissipation is not uniform and that only a small
number of the system’s overall degrees of freedom contribute to
its behaviour. In other words, when modelling the system, we
need focus only on a small number of state variables instead of
having to consider every single one (which would more or less
make the task of modelling the system impossible). We refer to
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these special variables by two different, but entirely equivalent,
terms: order parameters and collective variables.41 Which term you 41 We already met the con-

cept of a collective variable
in Chapter 1 when we dis-
cussed Scott Kelso’s ideas
on the different levels of
abstraction which need to be
considered when modelling
a system.

choose is largely a matter of convention or tradition.
Each collective variable plays a key role in defining the way

the system’s behaviour develops over time. In essence, the collec-
tive variables are the subset of the system variables that govern
the system behaviour. The main consequence of the existence of
these collective variables is that the system behaviour is charac-
terized by a succession of relatively stable states: in each state
the system is doing something specific and stays doing it until
something happens to cause it to jump to the next relatively sta-
ble state. For this reason, we say that the states are meta-stable
(stable but subject to change) and we call the local regions in the
state space around them attractors (because once a behaviour
gets close to one, it is attracted to stay in the vicinity of that be-
haviour until something significant disturbs it).

Being able to model the behaviour of the system — a system
with very many variables and therefore a very high dimensional
space of possible states — with a very small number of relevant
variables — and therefore a very low dimensional space of rel-
evant states — makes the modelling exercise practical and at-
tractive, and it is one of the main characteristics that distinguish
dynamical systems from connectionist systems.

Dynamical Systems and Cognition
These are all very general characteristics of dynamical systems.
So, what makes them suitable for modelling cognition? To an-
swer this question, we need to understand the perspective that
advocates of dynamical systems take on cognition. Esther Thelen
and Helen Smith express it the following way:42 42 This quotation is taken

from Esther Thelen’s and
Helen Smith’s influential
book A Dynamic Systems
Approach to the Development
of Cognition and Action [84].

Cognition is non-symbolic, nonrepresentational and all mental
activity is emergent, situated, historical, and embodied.

To this we might add that it is socially constructed so that some
aspects of cognition arise from the interaction between cognitive
agents, again modelled as a dynamical process. It is clear that
Thelen and Smith, along with many others who subscribe to the
emergent paradigm, take issue with the symbolic nature of cog-
nitivist models and with the representationalism it encapsulates.
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Here we must exercise some caution in understanding their in-
terpretation of symbolic representationalism and their assertion
that this is not a true reflection of cognition.

There are two principle ways which proponents of dynami-
cal systems models, and emergent models in general, object to
symbol manipulation and representation. One is symbol manip-
ulation in the literal sense that a computer program manipulates
symbols. In other words, the objection is to the mechanism of
symbolic processing: the rule-based shuffling of symbols in
search of a state that satisfies the conditions defined by the goal
of the system. Instead of this, proponents of dynamical systems
and connectionism contend that cognitive behaviour arises as a
natural consequence of the interaction of appropriately config-
ured network of elementary components. That is, cognition is a
behaviour that is a consequence of self-organization, i.e. a global
pattern of activity that arises because of, and only because of, the
dynamic interaction of these components. It is emergent in the
sense that this global pattern of activity cannot be predicted from
the local properties of the system components.43 43 Strictly speaking, the

pattern of activity that arises
from self-organization can
in principle be predicted
from the properties of the
components so in a sense
emergence is a stronger —
and more obscure — process
which may, or may not,
exploit self-organization; see
the article “Self-Organizing
Systems” by Scott Camazine
in Encyclopedia of Cognitive
Science [85].

The second aspect of the objections of proponents of dynam-
ical systems concerns the issue of representation. This is a very
hotly debated issue and there is considerable disagreement over
exactly what different people mean by representation.44 As we

44 We discuss the trouble-
some issue of representation
in some depth in Chapter 8.

have seen, cognitivism hinges upon the direct denotation of an
object or an event in the external world by a symbolic repre-
sentation that is manipulated by the cognitive system. It is this
strong denotational characterization that emergent systems peo-
ple object to because it entails (i.e. it necessarily involves) a cor-
respondence between the object as it appears and is represented
by the symbol and the object as it is in the world. Furthermore,
by virtue of the computational functionalism of cognition, these
denoted symbolic object correspondences are shared by every
cognitive agent, irrespective of the manner in which the system
is realized in a cognitive agent: as a computer or as a brain. This
is simultaneously the power of cognitivism and a great bone of
contention among those who advocate an emergent position.

So, how do emergent systems manage without representa-
tions, as the quotation above suggests they do? Here again, we
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need to be careful in our interpretation of the term representa-
tion. It is clearly evident from what we have discussed so far
that connectionist and dynamical systems exhibit different states.
Could these states not be interpreted as “representing” objects
and events in the world and, if so, doesn’t that contradict the
anti-representational position articulated above? The answer to
these two questions is a conditional “yes” and a cautious “no.”
Such states could be construed as a representation, but not in
the sense that they denote the object or event in the cognitivist
sense. Rather, it is a question of them being correlated in some
way with these objects and events but they need not mean the
same thing: it’s a marriage of convenience, not one of absolute
commitment.

We say that such a representation connotes the objects or
events and, in so saying, we imply nothing at all about the na-
ture of the object or the event except that the emergent system’s
state is correlated in some way with its occurence.45 If this seems 45 For a deep, if also very

dense, discussion of the
difference between deno-
tation and connotation in
the specific context of lan-
guage, refer to Alexander
Kravchenko’s paper “Essen-
tial properties of language,
or, why language is not a
code” [86].

to be a very fine, almost pedantic, point, it’s because it is. But
it is a fundamentally important point nonetheless since it goes
straight to the heart of one of the core differences between the
cognitivist and emergent paradigms: the relationship between
the state of the agent — cognitivist or emergent — and the world
it interacts with.

Cognitivism asserts that the symbolic knowledge it represents
about the world is a faithful counterpart of the world itself;
emergent approaches make no such claim and, on the contrary,
simply allows that the internal state reflects some regularity
or lawfulness in the world which it doesn’t know but which it
can adapt to and exploit through its dynamically-determined
behaviour. This helps explain what is meant in the quotation
above by cognition being situated, historical, and embodied. A
dynamical system must be embodied in some physical way
in order to interact with the world and the exact form of that
embodiment makes a difference to the manner in which the
agent behaves (or can behave). Being situated means that the
agent’s cognitive understanding of the world around it emerges
in the specific context of its local surroundings, not in any virtual
or abstract sense. Furthermore, the history of these context-
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specific interactions have an effect on the way the dynamical
system develops as it continually adjusts and adapts.46 46 We discuss the issue of

situated embodiment in
some detail in Chapter 5.

Time
This brings us to a crucial aspect of dynamical systems which is
rather obvious once we say it: it’s about time.47 To be dynamic 47 It’s about Time: An Overview

of the Dynamical Approach
to Cognition is the title of a
book by Robert Port and
Timothy van Gelder which
is devoted to discussing
the importance of time
in cognition and arguing
the case for a dynamical
approach to modelling
cognition.

means to change with time so it is clear that time must play a
crucial part in any dynamical system. With emergent systems
in general, and dynamical systems in particular, cognitive pro-
cesses unfold over time. More significantly, they do so not just
in an arbitrary sequence of steps, where the actual time taken to
complete each step doesn’t have any influence on the outcome of
that step, but in real-time — in lock-step, synchronously — with
events as they unfold in the world around the agent. So, time,
and timing, is at the very heart of cognition and this is one of the
reasons why dynamical systems theory may be an appropriate
way to model it.

The synchronicity of a dynamical cognitive agent with the
events in its environment has two unexpected and, from the
perspective of artificial cognitive systems, somewhat unwelcome
consequences. First, it places a strong limitation on the rate
at which the development of the cognitive agent can proceed.
Specifically, it is constrained by the rate at which events in the
world unfold and not on the speed at which internal changes can
occur in the agent.48 Biological cognitive systems have a learning 48 Terry Winograd and

Fernando Flores explain in
their book Computers and
Cognition [87] the impact of
real-time interaction between
a cognitive system and its
environment on the rate
at which the system can
develop.

cycle measured in weeks, months, and years. While it might be
possible to collapse it into minutes and hours for an artificial
system because of increases in the rate of internal adaptation
and change, it cannot be reduced below the time-scale of the
interaction. Second, taken together with the requirement for
embodiment, we see that the historical and situated nature of
the systems means that we cannot by-pass the developmental
process: development is an integral part of cognition, at least in
the emergent paradigm of cognitive science.

Dynamical systems and connectionism
We have already mentioned that there is a natural relationship
between dynamical systems and connectionist systems. To a
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significant extent, you can consider them to be complementary
ways of describing cognitive systems, with dynamical systems
focussing on macroscopic behaviour and connectionist systems
focussing on microscopic behaviour.49 Connectionist systems 49 The intimate relationship

between connectionism and
dynamical systems is teased
out in the book Toward a New
Grand Theory of Development?
Connectionism and Dynamic
Systems Theory Re-Considered,
edited by John Spencer,
Michael Thomas, and James
McClelland [88].

themselves are, after all, dynamical systems with temporal prop-
erties and structures such as attractors, instabilities, and tran-
sitions. Typically, however, connectionist systems describe the
dynamics in a high dimensional space of computing element
activation and network connection strengths. On the other hand,
dynamical systems theory describes the dynamics in a low di-
mensional space because a small number of state variables are
capable of capturing the behaviour of the system as a whole.50 50 Gregor Schöner argues

that it is possible for a dy-
namical system model to
capture the behaviour of
the system using a small
number of variables because
the macroscopic states of
high-dimensional dynamics
and their long-term evo-
lution are captured by the
dynamics in that part of the
space where instabilities
occur: the low-dimensional
Center-Manifold [89].

Much of the power of dynamical perspectives comes from this
higher-level abstraction of the dynamics51 and, as we have al-

51 There is a useful overview
of the dynamical perspec-
tive on neural networks in
a book Mathematical per-
spectives on neural networks
edited by Paul Smolen-
sky, Michael Mozer, and
David Rumelhart [90]. The
same book also provides
useful overviews from com-
putational and statistical
viewpoints.

ready noted above, this is the key advantage of the dynamical
systems formulation of system dynamics: it collapses a very
high-dimensional system defined by the complete set of system
variables onto a low-dimensional space defined by the collective
variables.

The complementary nature of dynamical systems and con-
nectionist descriptions is reflected in the approach to modelling
that we met in Chapter 1 in which systems are modelled si-
multaneously at three distinct levels of abstraction: a boundary
constraint level that determines the task or goals (initial condi-
tions, non-specific conditions), a collective variables level which
characterize coordinated states, and a component level which
forms the realized system (e.g. nonlinearly coupled oscillators or
neural networks). This complementary perspective of dynami-
cal systems theory and connectionism enables the investigation
of the emergent dynamical properties of connectionist systems
in terms of attractors, meta-stability, and state transition, all of
which arise from the underlying mechanistic dynamics. It also
offers the possibility of implementing dynamical systems theory
models with connectionist architectures.

The strength of the dynamical systems approach
Those who advocate the use of dynamical systems theory to
model cognition point to the fact that they provide you directly
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with many of the characteristics inherent in natural cognitive
systems such as multistability, adaptability, pattern formation
and recognition, intentionality, and learning. These are all
achieved purely as a function of dynamical laws and the self-
organization of the system that these laws enable. They require
no recourse to symbolic representations, especially represen-
tations that are the result of human design: there is just an on-
going process of dynamic change and formation of meta-stable
patterns of system activity. They also argue that dynamical sys-
tems models allow for the development of higher order cognitive
functions, such as intentionality and learning, in a relatively
straight-forward manner, at least in principle. For example, in-
tentionality — purposive or goal-directed behaviour — can be
achieved by superimposing a function that encapsulates the in-
tention onto the equations that define the dynamical system.
Similarly, learning can be viewed as a modification of existing
behavioural patterns by introducing changes that allow new
meta-stable behaviours to emerge, i.e. by developing new attrac-
tors in the state space. These changes don’t just add the extra
meta-stable patterns but in doing so they also may have an ef-
fect on existing attractors and existing behaviour. Thus, learning
changes the whole system as a matter of course.

While dynamical models can account for several non-trivial
behaviours that require sensorimotor learning and the integra-
tion of visual sensing and motoric control (e.g. the perception of
affordances,52 perception of time to contact,53 and figure-ground

52 The concept of affordance
is due to the influential
psychologist J. J. Gibson
[91]. It refers to the potential
use to which an object
can be put, as perceived by
an observer of the object.
This perceived potential
depends on the skills the
observer possesses. Thus,
the affordance is dependent
both on the object itself and
the perception and action
capabilities of the observing
agent.
53 The time-to-contact refers
to the time remaining before
an agent or a part of the
agent’s body will make
contact with something in
the agent’s environment.
It is often inferred from
optical flow (a measure
of how each point in the
visual field of an agent is
moving) and is essential
to many behaviours; e.g.,
as Scott Kelso illustrates in
his book Dynamic Patterns,
gannets use optical flow to
determine when to fold their
wings before entering the
water as they dive for fish
[21].

bi-stability54 the feasibility of realizing higher-order cognitive

54 Figure-ground bi-stability
refers to the way we al-
ternately see one shape
(the figure) or another (the
background, formed by the
complement of the figure),
but never both at the same
time; see Wolfgang Köhler’s
Dynamics in Psychology [92]
for more details.

faculties has not yet been demonstrated. It appears that dynami-
cal systems theory (and connectionism) needs to be embedded in
a larger emergent context. This makes sense when you consider
dynamical systems theory and connectionism from the ultimate-
proximate perspective we discussed in Chapter 1: both focus
more on the proximate aspects of modelling methodology and
mechanisms of cognition than on the ultimate concern of what
cognition is for, an issue to which we now turn.
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2.2.3 Enactive Systems

We now focus on an increasingly-important approach in cogni-
tive science: enaction.55 The principal idea of enaction is that a 55 Section 2.2.3 is based

directly on a study by the
author of enaction as a
framework for develop-
ment in cognitive robotics
[93]. The paper contains
additional technical details
relating to enactive systems
which are not strictly re-
quired here. Readers who
are interested in delving
more deeply into enaction
are encouraged to refer to
this paper as well as to the
original literature [14, 32, 48,
87, 94, 95, 96, 97, 98]. The
book The Embodied Mind
by Francisco Varela, Evan
Thompson, and Eleanor
Rosch [98] would make a
good starting point, followed
perhaps by the book Enac-
tion: Toward a New Paradigm
for Cognitive Science by John
Stewart, Olivier Gapenne,
and Ezequiel Di Paolo [48]
for a contemporary perspec-
tive on Enaction.

cognitive system develops it own understanding of the world
around it through its interactions with the environment. Thus,
enactive cognitive system operate autonomously and generate
their own models of how the world works.

The five aspects of enaction
When dealing with enactive systems, there are five key elements
to consider. These are:

1. Autonomy

2. Embodiment

3. Emergence

4. Experience

5. Sense-making

We have already encountered the first four of these elements.
The issue of autonomy was introduced in Chapter 1, Section

1.3, where we noted the link between cognition and autonomy,
particularly from the perspective of biological systems. We take
up this important issue again later in the book and devote all of
Chapter 4 to unwrapping the somewhat complex relationship
between the two topics.

Similarly, in this chapter we have already met the concept of
embodiment and the related concept of embodied cognition.
Again, a full chapter is dedicated to embodiment later in the
book (Chapter 5) reflecting is importance in contemporary cogni-
tive science.

Emergence is, of course, the topic of the current section and
we have already discussed the relationship between emergence
and self-organization (see Section 2.2.2). Emergence refers to the
phenomenon whereby the behaviour we call cognition arises
from the dynamic interplay between the components of the
system and between the components and the system as a whole.
We return to this issue in Chapter 4, Section 4.3.5.
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Experience is the fourth element of enaction and, as we noted
in the introduction to this section, it is simply the cognitive sys-
tem’s history of interaction with the world around it: the actions
it takes in the environment in which it is embedded and the
actions arising in the environment which impinge on the cogni-
tive system. In enactive systems, these interactions don’t control
the system, otherwise it wouldn’t be autonomous and, notwith-
standing what we said in Chapter 1 about having to be cautious
in approaching the relationship between cognition and auton-
omy, enactive systems are by definition autonomous. Even so,
these interactions can and do trigger changes in the state of the
system. The changes that can be triggered are structurally deter-
mined: they depend on the system structure, i.e. the embodiment
of the self-organizational principles that make the system au-
tonomous.56 This structure is also referred to as the system’s

56 The founders of the enac-
tive approach use the term
structural determination to
denote the dependence of
a system’s space of viable
environmentally-triggered
changes on the structure
and its internal dynamics
[14, 98]. The interactions of
this structurally-determined
system with the environ-
ment in which it is em-
bedded are referred to as
structural coupling: a process
of mutual perturbations of
the system and environment
that facilitate the on-going
operational identity of the
system and its autonomous
self-maintenance. Fur-
thermore, the process of
structural coupling produces
a congruence between the
system and its environment.
For this reason, we say that
the system and the envi-
ronment are co-determined.
The concepts of structural
determination and structural
coupling of autopoietic sys-
tems [14] are similar to Scott
Kelso’s circular causality
of action and perception
[21] and the organizational
principles inherent in Mark
Bickhard’s self-maintenant
systems [13]. The concept of
enactive development has
its roots in the structural
coupling of organizationally-
closed systems which have
a central nervous system
and is mirrored in Bick-
hard’s concept of recursive
self-maintenance [13].

phylogeny: the innate capabilities of an autonomous system with
which it is equipped at the outset (when it is born, in the case of
a biological system) and which form the basis for its continued
existence. The experience of the system — its history of interac-
tions — involving structural coupling57 between the system and

57 Structural coupling: see
Sidenote 56 above.

its environment in an ongoing process of mutual perturbation is
referred to as its ontogeny.

Finally, we come to the fifth and, arguably, the most impor-
tant element of enaction: sense-making. This term refers to the
relationship between the knowledge encapsulated by a cognitive
system and the interactions which gave rise to it. In particu-
lar, it refers to the idea that this emergent knowledge is gener-
ated by the system itself and that it captures some regularity or
lawfulness in the interactions of the system, i.e. its experience.
However, the sense it makes is dependent on the way in which
it can interact: its own actions and its perceptions of the envi-
ronment’s action on it. Since these perceptions and actions are
the result of an emergent dynamic process that is first and fore-
most concerned with maintaining the autonomy and operational
identity of the system, these perceptions and actions are unique
to the system itself and the resultant knowledge makes sense
only insofar as it contributes to the maintenance of the system’s
autonomy. This ties in neatly with the view of cognition as a pro-
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Figure 2.3: Matu-
rana and Varela’s
ideogram to denote a
structurally-determined
organizationally-closed
system. The arrow circle
denotes the autonomy
and self-organization of
the system, the rippled
line the environment,
and the bi-directional
half-lines the mutual
perturbation — structural
coupling — between the
two.

cess that anticipates events and increases the space of actions in
which a system can engage.

By making sense of its experience, the cognitive system is con-
structing a model that has some predictive value, exactly because
it captures some regularity or lawfulness in its interactions. This
self-generated model of the system’s experience lends the sys-
tem greater flexibility in how it interacts in the future. In other
words, it endows the system with a larger repertoire of possible
actions that allow richer interactions, increased perceptual capac-
ity, and the possibility of constructing even better models that
encapsulate knowledge with even greater predictive power. And
so it goes, in a virtuous circle. Note that this sense-making and
the resultant knowledge says nothing at all about what is really
out there in the environment. It doesn’t have to: all it has to do
is make sense for the continued existence and autonomy of the
cognitive system.

Sense-making is actually the source of the term enaction. In
making sense of its experience, the cognitive system is somehow
bringing out through its actions — enacting — what is impor-
tant for the continued existence of the system. This enaction is
effected by the system as it is embedded in its environment, but
as an autonomous entity distinct from the environment, through
an emergent process of making sense of its experience. To a large
extent, this process of sense-making is exactly what we mean by
cognition (in the emergent paradigm, at least).

Enaction and Development
The founders of the enactive approach, Humberto Maturana and
Francisco Varela, introduced a diagrammatic way of conveying
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the self-organizing and self-maintaining autonomous nature
of an enactive system, perturbing and being perturbed by its
environment: see Figure 2.3.58 The arrowed circle denotes the 58 The Maturana and Varela

ideograms depicting self-
organizing, self-maintaining,
developmental systems
appear in their book The
Tree of Knowledge — The
Biological Roots of Human
Understanding [14].

autonomy and self-organization of the system, the rippled line
the environment, and the bi-directional half-arrows the mutual
perturbation.

We remarked above that the process of sense-making forms
a virtuous circle in that the self-generated model of the sys-
tem’s experience provides a larger repertoire of possible actions,
richer interactions, increased perceptual capacity, and poten-
tially better self-generated models, and so on. Recall also our
earlier remarks that the cognitive system’s knowledge is repre-
sented by the state of the system. When this state is embodied
in the system’s central nervous system, the system has much
greater plasticity in two senses: (a) the nervous system can ac-
commodate a much larger space of possible associations between
system-environment interactions, and (b) it can accommodate a
much larger space of potential actions. Consequently, the pro-
cess of cognition involves the system modifying its own state,
specifically its central nervous system, as it enhances its predic-
tive capacity and its action capabilities. This is exactly what we
mean by development. This generative (i.e. self-constructed) au-
tonomous learning and development is one of the hallmarks of
the enactive approach.

Development is the cognitive process of establishing and en-
larging the possible space of mutually-consistent couplings in
which a system can engage (or, perhaps more appropriately,
which it can withstand without compromising its autonomy).
The space of perceptual possibilities is founded not on an abso-
lute objective environment, but on the space of possible actions
that the system can engage in while still maintaining the consis-
tency of the coupling with the environment. These environmen-
tal perturbations don’t control the system since they are not com-
ponents of the system (and, by definition, don’t play a part in the
self-organization) but they do play a part in the ontogenetic de-
velopment of the system. Through this ontogenetic development,
the cognitive system develops its own epistemology, i.e. its own
system-specific history- and context-dependent knowledge of its
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Figure 2.4: Matu-
rana and Varela’s
ideogram to denote a
structurally-determined
organizationally-closed
autonomous system with
a central nervous system.
This system is capable of
development by means
of self-modification of its
nervous system, so that it
can accommodate a much
larger space of effective
system action.

world, knowledge that has meaning exactly because it captures
the consistency and invariance that emerges from the dynamic
self-organization in the face of environmental coupling. Again,
it comes down to the preservation of autonomy, but this time
doing so in an ever-increasing space of autonomy-preserving
couplings.

This process of development is achieved through self-modification
by virtue of the presence of a central nervous system: not only
does environment perturb the system (and vice versa) but the
system also perturbs itself and the central nervous system adapts
as a result. Consequently, the system can develop to accom-
modate a much larger space of effective system action. This is
captured in a second ideogram of Maturana and Varela (see Fig-
ure 2.4) which adds a second arrow circle to the ideogram to
depict the process of development through self-perturbation and
self-modification. In essence, development is autonomous self-
modification and requires the existence of a viable phylogeny,
including a nervous system, and a suitable ontogeny.

Knowledge and Interaction
Let us now move on to discuss in a little more detail the nature
of the knowledge that an enactive cognitive system constructs.
This knowledge is built on sensorimotor associations, achieved
initially by exploration of what the world offers. However, this
is only the beginning. The enactive system uses the knowledge
gained to form new knowledge which is then subjected to em-
pirical validation to see whether or not it is warranted. After
all, we, as enactive beings, imagine many things but not ev-
erything we imagine is valid in the sense that it is plausible or



52 artificial cognitive systems

Figure 2.5: Maturana and
Varela’s ideogram to
denote the development
engendered by interac-
tion between cognitive
systems

corresponds well with reality. This brings us to one of the key
issues in cognition: internal simulation, i.e. the ability to rehearse
a train of imagined perceptions and actions, and assess the likely
outcome in memory. This internal simulation is used to build
on sensorimotor knowledge and accelerate development. Inter-
nal simulation thus provides the key characteristic of cognition:
the ability to predict future events, to reconstruct or explain ob-
served events (constructing a causal chain leading to that event),
or to imagine new events.59 Naturally, there is a need to focus on 59 For more details on the na-

ture of internal simulation,
see [99, 100, 101]. We return
to this topic in Sections 5.8
and 7.5.

(re-)grounding predicted, explained, or imagined events in expe-
rience so that the system can do something new and interact with
the environment in a new way. If the cognitive system wishes or
needs to share this knowledge with other cognitive systems or
communicate with other cognitive systems, it will only be pos-
sible if they have shared a common history of experiences and
if they have a similar phylogeny and a compatible ontogeny. In
essence, the meaning of the knowledge that is shared is negotiated and
agreed by consensus through interaction.

When there are two or more cognitive agents involved, in-
teraction is a shared activity in which the actions of each agent
influence the actions of the others, resulting in a mutually con-
structed pattern of shared behaviour. Again, Humberto Matu-
rana and Francisco Varela introduce a succinct diagrammatic
way of of conveying this coupling between cognitive agent and
the development it engenders: see Figure 2.5.60 Thus, explicit 60 Such mutually-constructed

patterns of complementary
behaviour is also empha-
sized in Andy Clark’s notion
of joint action [102].

meaning is not necessary for something to be communicated in
an interaction, it is simply necessary that the agents are engaged
in a mutual sequence of actions. Meaning emerges through
shared consensual experience mediated by interaction.
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Summary
To recap: enaction involves two complementary processes: (a)
phylogenetically-dependent structural determination, i.e. the
preservation of autonomy by a process of self-organization
which determines the relevance and meaning of the system’s
interactions, and (b) ontogenesis, i.e. the increase in the system’s
predictive capacity and the enlargement of its action repertoire
through a process of model construction by which the system de-
velops its understanding of the world in which is it embedded.
Ontogenesis results in development: the generation of new cou-
plings effected by the self-modification of the system’s own state,
specifically its central nervous system. This complementarity of
structural determination — phylogeny — and development —
ontogeny — is crucial.

Cognition is the result of a developmental process through
which the system becomes progressively more skilled and ac-
quires the ability to understand events, contexts, and actions,
initially dealing with immediate situations and increasingly
acquiring a predictive or prospective capability. Prediction, or
anticipation, is one of the two hallmarks of cognition, the sec-
ond being the ability to learn new knowledge by making sense
of its interactions with the world around it and, in the process,
enlarging its repertoire of effective actions. Both anticipation
and sense-making are the direct result of the developmental pro-
cess. This dependency on exploration and development is one
of the reasons why an artificial cognitive system requires a rich
sensory-motor interface with its environment and why embodi-
ment plays such a pivotal role.

2.3 Hybrid Systems

Cognitivist and emergent paradigms of cognitive science clearly
have very different outlooks on cognition and they each have
their own particular strengths and weaknesses. Thus, it would
seem to be a good idea to combine them in a hybrid system
that tries to get the benefits of both without the disadvantages
of either. This is what many people try to do. Typically, hybrid
systems exploit symbolic knowledge to represent the agent’s



54 artificial cognitive systems

world and logical rule-based systems to reason with this knowl-
edge to pursue tasks and achieve goals. At the same time, they
typically use emergent models of perception and action to ex-
plore the world and construct this knowledge. While hybrid
systems still use symbolic representations, the key idea is that
they are constructed by the system itself as it interacts with and
explores the world. So, instead of a designer programming in
all the necessary knowledge, objects and events in the world can
be represented by observed correspondences between sensed
perceptions, agent actions, and sensed outcomes. Thus, just like
an emergent system, a hybrid system’s ability to understand the
external world is dependent on its ability to flexibly interact with
it. Interaction becomes an organizing mechanism that establishes
a learned association between perception and action.

2.4 A Comparison of Cognitivist and Emergent Approaches

Although cognitivist and emergent approaches are often con-
trasted purely on the basis of their use of symbolic representa-
tion — or not, as the case may be — it would be a mistake to
think that this is the only issue on which they differ and, equally,
it would be wrong to assume that the distinction is as black-and-
white as it is sometimes presented. As we have seen, symbols
have a place in both paradigms; the real issue is whether these
symbols denote things in the real world or simply connote them
from the agent’s perspective. In fact, we can contrast the cog-
nitivist and emergent paradigms in many different ways. The
following are fourteen characteristics that have proven to be
useful in drawing out the finer distinctions between the two
paradigms.61

61 These fourteen charac-
teristics are based on the
twelve proposed by the
author, Giorgio Metta, and
Giulio Sandini in a paper
entitled “A Survey of Ar-
tificial Cognitive Systems:
Implications for the Au-
tonomous Development of
Mental Capabilities in Com-
putational Agents” [103].
They have been augmented
here by adding two more:
the role of cognition and the
underlying philosophy. The
subsequent discussion is also
an extended version of the
commentary in [103].

1. Computational operation

2. Representational framework

3. Semantic grounding

4. Temporal constraints

5. Inter-agent epistemology

6. Embodiment

7. Perception
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8. Action

9. Anticipation

10. Adaptation

11. Motivation

12. Autonomy

13. The role of cognition

14. Philosophical foundations

Let us look at each of these in turn. In doing so, we some-
times have to refer to concepts that are covered later in the book.
The relevant chapters or sections or end-notes are indicated in
the end-notes.

Computational operation: cognitivist systems use rule-based
manipulation of symbol tokens, typically but not necessarily in a
sequential manner. On the other hand, emergent systems exploit
processes of self-organization, self-production, self-maintenance,
and development, through the concurrent interaction of a net-
work of distributed interacting components.

Representational framework: cognitivist systems use patterns of
symbol tokens that denote events in the external world. These
often describe how the designer sees the relationship between
the representation and the real-world, the assumption being that
all agents see the world in the same way. The representations
of emergent systems are global system states encoded in the
dynamic organization of the system’s distributed network of
components.

Semantic grounding: semantic representations reflect the way
that a particular cognitive agent sees the world. Cognitivist
systems ground symbolic representations by identifying per-
cepts with symbols, either by design or by learned association.
These representations are accessible to direct human interpre-
tation. In contrast, emergent systems ground representations
by autonomy-preserving anticipatory and adaptive skill con-
struction. These representations only have meaning insofar as
they contribute to the continued viability of the system and are
inaccessible to direct human interpretation.
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Temporal constraints: cognitivist systems operate atemporally
in the sense that time is not an essential element of the compu-
tation. It is just a measure of how long it takes to get the result
and these results won’t change with the amount of time taken.
However, emergent systems are entrained by external events and
timing is an intrinsic aspect of how they operate. The timing of
the system’s behaviour relative to the world’s behaviour is cru-
cial. This also limits the speed with which they can learn and
develop.

Inter-agent epistemology: for cognitivist systems, an absolute
shared epistemology, i.e. framework of knowledge, between
agents is guaranteed by virtue of their positivist stance on real-
ity; that is, each agent is embedded in an environment, the struc-
ture and semantics of which are independent of the system’s
cognition. This contrasts strongly with emergent systems for
which epistemology is the subjective agent-specific outcome of a
history of shared consensual experiences among phylogentically-
compatible agents. This position reflects the phenomenological
stance on reality taken by emergent systems, in general, and
enaction, in particular.

Embodiment: cognitivist systems do not need to be embodied,
in principle, by virtue of their roots in computational function-
alism which holds that cognition is independent of the physical
platform in which it is implemented. Again, in contrast, emer-
gent systems are necessarily embodied and the physical realiza-
tion of the cognitive system plays a direct constitutive role in the
cognitive process.

Perception: in cognitivist systems, perception provides an in-
terface between the absolute external world and the symbolic
representation of that world. The role of perception is to abstract
faithful spatio-temporal representations of the external world
from sensory data. In emergent systems, perception is an agent-
specific interpretation of the way the environment perturbs the
agent and is, at least to some extent, dependent on the embodi-
ment of the system.

Action: in cognitivist systems, actions are causal consequences
of symbolic processing of internal representations, usually car-
ried out when pursuing some task. In emergent systems, actions
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are the way the agent perturbs the environment, typically to
maintain the viability of the system. In both cases, actions are
directed by the goals these actions are intended to fulfil.

Anticipation: in cognitivist systems, anticipation typically takes
the form of planning using some form of procedural or prob-
abilistic reasoning with some prior model. Anticipation in the
emergent paradigm takes the form of the cognitive system visit-
ing some subset of the states in its self-constructed perception-
action state space but without commiting to the associated ac-
tions.

Adaptation: for cognitivism, adaptation ususally implies the
acquisition of new knowledge. In emergent systems, adaptation
entails a structural alteration or re-organization to effect a new
set of dynamics. Adaptation can take the form of either learning
or development; Chapter 6 explains the difference.

Motivation: in cognitivist systems, motives provide the criteria
which are used to select a goal and the associated actions. In
emergent systems, motives encapsulate the implicit value system
that modulate the system dynamics of self-maintenance and
self-development, impinging on perception (through attention),
action (through action selection), and adaptation (through the
mechanisms that govern change), such as enlarging the space of
viable interaction.

Autonomy: the cognitivist paradigm does not require the
cognitive agent to be autonomous but the emergent paradigm
does. This is because in the emergent paradigm cognition is the
process whereby an autonomous system becomes viable and
effective through a spectrum of homeostatic processes of self-
regulation. Chapter 4 explains the concept of homeostasis and
exands further on the different nuances of autonomy.

Role of cognition: in the cognitivist paradigm, cognition is
the rational process by which goals are achieved by reason-
ing with symbolic knowledge representations of the world in
which the agent operates. This contrasts again with the emergent
paradigm, in which cognition is the dynamic process by which
the system acts to maintain its identity and organizational coher-
ence in the face of environmental perturbation. Cognition entails
system development to improve its anticipatory capabilities and
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The Cognitivist Paradigm vs. the Emergent Paradigm

Characteristic Cognitivist Emergent

Computational Operation Syntactic manipulation of symbols Concurrent self-organization of a network

Representational Framework Patterns of symbol tokens Global system states

Semantic Grounding Percept-symbol association Skill construction

Temporal Constraints Atemporal Synchronous real-time entrainment

Inter-agent epistemology Agent-independent Agent-dependent

Embodiment No role implied: functionalist Direct constitutive role: non-functionalist

Perception Abstract symbolic representations Perturbation by the environment

Action Causal result of symbol manipulation Perturbation by the system

Anticipation Procedural or probabilistic reasoning Traverse of perception-action state space

Adaptation Learn new knowledge Develop new dynamics

Motivation Criteria for goal selection Increase space of interaction

Autonomy Not entailed Cognition entails autonomy

Role of Cognition Rational goal-achievement Self-maintenance and self-development

Philosophical Foundation Positivism Phenomenology

Table 2.1: A comparison of
cognitivist and emergent
paradigms of cognition;
refer to the text for a full
explanation (adapted from
[103] and extended).

extend its space of autonomy-preserving actions.
Philosophical foundations: the cognitivist paradigm is grounded

in positivism, whereas the emergent paradigm is grounded in
phenomenology.62 62 For a discussion of the

positivist roots of cogni-
tivism, see “Restoring to
Cognition the Forgotten
Primacy of Action, Intention
and Emotion” by Walter
Freeman and Rafael Núñez
[36]. The paper “Enactive
Artificial Intelligence: In-
vestigating the systemic
organization of life and
mind” by Tom Froese and
Tom Ziemke [104] discusses
the phenomenological lean-
ings of enaction. A paper
by the author and Dermot
Furlong [105], “Philosophical
Foundations of Enactive AI,”
provides an overview of the
philosophical traditions of
AI and cognitive science.

Table 2.1 presents a synopsis of these key issues.

2.5 Which Paradigm Should We Choose?

The cognitivist, emergent, and hybrid paradigms each have their
proponents and their critics, their attractions and their chal-
lenges, their strong points and their weak points. However, it is
crucial to appreciate that each paradigm is not equally well de-
veloped as a science and so it isn’t possible to make any defini-
tive judgement on their long-term prospects. At the same time,
it is important to recognize that while the arguments in favour
of emergent systems are very compelling, the current capabili-
ties of cognitivist systems are more advanced. At present, you
can do far more with a cognitivist system than an emergent one
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(from the perspective of artificial cognitive systems, at any rate).
With that in mind, we wrap up this chapter by looking briefly at
some of their respective strengths and weaknesses, and how they
might be resolved.

According to some, cognitivist systems suffer from three
problems:63 the symbol grounding problem (the need to give 63 For more details on the

problems associated with
cognitivism, see Wayne
Christensen’s and Cliff
Hooker’s paper “Represen-
tation and the Meaning of
Life” [106].

symbolic representations some real-world meaning; see Chap-
ter 8, Section 8.4), the frame problem (the problem of knowing
what does and does not change as a result of actions in the the
world),64 and the combinatorial explosion problem (the prob-

64 In the cognitivist
paradigm, the frame prob-
lem has been expressed in
slightly different but essen-
tially equivalent terms: how
can one build a program
capable of inferring the
effects of an action without
reasoning explicitly about
all its perhaps very many
non-effects? [107].

lem of handling the large and possibly intractable number of
new relations between elements of a representation when some-
thing changes in that representation as a consequence of some
action; see Sidenote 10 in this chapter). These problems are put
forward as reasons why cognitivist models have difficulties in
creating systems that exhibit robust sensori-motor interactions in
complex, noisy, dynamic environments, and why they also have
difficulties modelling the higher-order cognitive abilities such as
generalization, creativity, and learning. A common criticism of
cognitivist systems is that they are are poor at functioning effec-
tively outside narrow, well-defined problem domains, typically
because they depend so much on knowledge that is provided
by others and that depends very often on implicit assumptions
about the way things are in the world in which they are oper-
ating. However, setting aside one’s scientific and philosophical
convictions, this criticism of cognitivism is unduly harsh because
the alternative emergent systems don’t perform particularly well
at present (except, perhaps, in principle).

Emergent systems should in theory be much less brittle be-
cause they emerge — and develop — through mutual specifi-
cation and co-determination with the environment. However,
our ability to build artificial cognitive systems based on these
principles is very limited at present. To date, dynamical systems
theory has provided more of a general modelling framework
rather than a model of cognition and has so far been employed
more as an analysis tool than as a tool for the design and syn-
thesis of cognitive systems. The extent to which this will change,
and the speed with which it will do so, is uncertain.
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Hybrid approaches appear to offer the best of both worlds:
the adaptability of emergent systems (because they populate
their representational frameworks through learning and ex-
perience) and also the advanced starting point of cognitivist
systems (because the representational invariances and represen-
tational frameworks don’t have to be learned but are designed
in). However, it is unclear how well one can combine what are
ultimately highly antagonistic underlying philosophies. Opin-
ion is divided, with arguments both for and against.65 One 65 For the case in favour of

hybrid systems, see e.g.
[33, 49, 108]; for the case
against, see e.g. [106]

possible way forward is the development of a form of dynamic
computationalism in which dynamical elements form part of an
information-processing system.66 66 Apart from offering a

way out of the cognitivist-
emergent stand-off through
dynamic computationalism,
Andy Clark’s book Mind-
ware – An Introduction to
the Philosophy of Cognitive
Science [33] provides a good
introduction to the foun-
dational assumptions upon
which both paradigms are
based. Regarding dynamic
computationalism, James
Crutchfield, whilst agreeing
that dynamics are certainly
involved in cognition, argues
that dynamics per se are “not
a substitute for information
processing and computa-
tion in cognitive processes”
[49]. He puts forward the
idea that a synthesis of the
two can be developed to
provide an approach that
does allow dynamical state
space structures to support
computation and he pro-
poses computational mechanics
as the way to tackle this
synthesis of dynamics and
computation.

Clearly, there are some fundamental differences these two
general paradigms — for example, the principled body-independent
nature of cognitivist systems vs. the body-dependence of emer-
gent developmental systems, and the manner in which cog-
nitivist systems often preempt development by embedding
externally-derived domain knowledge and processing structures
— but the gap between the two shows some signs of narrow-
ing. This is mainly due to (i) a fairly recent recognition on the
part of proponents of the cognitivist paradigm of the impor-
tant role played by action and perception in the realization of a
cognitive system; (ii) a move away from the view that internal
symbolic representations are the only valid form of represen-
tation; and (iii) a weakening of the dependence on embedded
pre-programmed knowledge and the attendant increased use
of machine learning and statistical frameworks both for tuning
system parameters and the acquisition of new knowledge.

Cognitivist systems still have some way to go to address the
issue of true ontogenetic development with all that it entails
for autonomy, embodiment, architecture plasticity, and agent-
centred construction of knowledge, mediated by exploratory
and social motivations and innate value systems. Nevertheless,
to some extent they are moving closer together in the ultimate
dimension of the ultimate-proximate space, if not in the proxi-
mate dimension. This shift is the source of the inter-paradigm
resonances we mentioned in this chapter and the previous one.
However, since fundamental differences remain it is highly un-
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likely they will ever fully coalesce. This puts hybrid systems in
a difficult position. For them to be a real solution to the cogni-
tivist/emergent dilemma, they need to overcome the deep-seated
differences discussed in the previous section.

Let us close this chapter with a reminder that, to date, no one
has designed and implemented a complete cognitive system.
So, on balance, the jury is still out on which paradigm to choose
as the best model of an artificial cognitive system, especially
given that both fields continue to evolve. Nonetheless, we need
to move forward and make some choices if we are to realize an
artifical cognitive system. For cognitive science, this process of
realization begins with the specification of what is known as the
cognitive architecture, the subject of the next chapter.



3
Cognitive Architectures

3.1 What Is a Cognitive Architecture?

When we think of architecture, typically what comes to mind
is the design of buildings that satisfy some functional need but
do so in a way that appeals to the people that use them. Often,
architecture inspires some sense of the extraordinary and gives
an impression of cohesion that makes the building whole and
self-contained. Since the architectural process involves not just
imagining bold new concepts but also the creation of detailed
designs and technical specifications, architecture has been bor-
rowed by many other desciplines to serve as a catch-all term for
the technical specification and design of any complex artifact.
Just as with architecture in the built environment, system archi-
tecture addresses both the conceptual form and the utilitarian
functional aspects of the system, focussing on inner cohesion and
self-contained completeness.

We use the term cognitive architecture in exactly this way to
reflect the specification of a cognitive system, its components,
and the way these components are dynamically related as a
whole.

One of the most famous maxims in architecture, and in design
generally, is that “form follows function,”1 the principle that the 1 The idea that form fol-

lows function is due to the
nineteenth century architect
Louis Sullivan.

shape of a building, or any object, should be mainly based on
its intended purpose or function. However, in contemporary ar-
chitecture this is interpreted very broadly to include both utility
and aesthetic value: the degree to which it engenders a posi-
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tive interaction between people and the building and the degree
to which the building is perceived as a complete entity. As we
noted in the previous chapter, interaction plays a key role in cog-
nition (and vice versa) so this broad interpretation of architecture
is very apt when it comes to cognitive architecture: the system
the architecture describes must work both at a global system
level, enabling the effective interaction of a cognitive agent with
the world around it, and at a component level, showing how
all the parts should fit together to create the global system: the
cohesive whole.

Just as there are different styles and traditions in traditional
architecture, each emphasizing different facets of form and
function, so too there are many different styles of cognitive ar-
chitecture, each derived, more or less directly, from the three
paradigms of cognitive science we discussed in the previous
chapter: the cognitivist, the emergent, and the hybrid. However,
the term cognitive architecture can in fact be traced to pioneering
work in cognitivist cognitive science.2 Consequently, it means 2 The term cognitive architec-

ture is due to Allen Newell
and his colleagues in their
work on unified theories of
cognition [41, 43].

something very specific in cognitivism. In particular, a cognitive
architecture represents any attempt to create what is referred
to as a unified theory of cognition.3 This is a theory that covers

3 Unified theories of cogni-
tion are discussed in depth
in Allen Newell’s book of
the same name [43] and John
Anderson’s paper “An inte-
grated theory of the mind”
[109].

a broad range of cognitive issues, such as attention, memory,
problem solving, decision making, and learning. Furthermore, a
unified theory of cognition should cover these issues from sev-
eral aspects including psychology, neuroscience, and computer
science. Allen Newell’s and John Laird’s Soar4 architecture, John

4 For more details on the
Soar cognitive architecture,
please refer to the papers by
Allen Newell, John Laird,
and colleagues [42, 110, 111,
112, 113], John Laird’s book
[114], and read Section 3.4.1
in this chapter.

Anderson’s ACT-R5 architecture, and Ron Sun’s CLARION ar-

5 For more details on the
ACT-R cognitive archi-
tecture, please refer to
[109, 115].

chitecture are typical candidate unified theories of cognition.6

6 The CLARION cognitive
architecture is described in
depth in, e.g., [116, 117].

Since unified theories of cognition are concerned with the
computational understanding of human cognition, cognitivist
cognitive architectures are concerned with human cognitive
science as well as artificial cognitive systems. There is an argu-
ment that the term cognitive architecture should be reserved for
systems that model human cognition and that the term “agent
architecture” would be a better term to refer to general intel-
ligent behaviour, including both human and computer-based
artificial cognition. However, it has become common to use the
term cognitive architecture in this more general sense so we will
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use it throughout the book to refer to both human and artificial
cognitive systems.

Although the term cognitive architecture originated in cog-
nitivist cognitive science, it has also been adopted in the emer-
gent paradigm where it has a sightly different meaning. Conse-
quently, we will begin by considering exactly what a cognitive
architecture does involve in the two different approaches: cogni-
tivist and emergent. Following that, we will discuss the features
of a cognitive architecture that are considered to be necessary
and desirable. Finally, we will look at three specific cognitive
architectures — one from the cognitivist paradigm of cogni-
tive science, one from the emergent, and one from the hybrid
paradigm — in different levels of detail to get some understand-
ing of what they involve and the role they play in the design of a
working cognitive system.

3.1.1 The Cognitivist Perspective

In the cognitivist paradigm, the focus in a cognitive architecture
is on the aspects of cognition that are constant over time and that
are independent of the task.7 In the words of Ron Sun, a leading 7 The idea that a cognitive

architecture focusses on
those aspects of cognition
that are constant over time
and independent of the
task, i.e. unchanging from
situation to situation, is
widely supported in the
literature; for example, see
[118, 119, 120, 121].

exponent of cognitive architectures, [17]:

“a cognitive architecture is a broadly-scoped domain-generic
computational cognitive model, capturing the essential structure
and process of the mind, to be used for broad, multiple-level,
multiple-domain analysis of behaviour.”

Since a cognitive architecture represents the fixed part of cog-
nition, it cannot accomplish anything in its own right. A cog-
nitivist cognitive architecture is a generic computational model
that is neither domain-specific nor task-specific. To do some-
thing, i.e. to perform a given task, it needs to be provided with
the knowledge to perform any given task. It is the knowledge
which populates the cognitive architecture that provides the
means to perform a task or to behave in some particular way.
This combination of a given cognitive architecture and a partic-
ular knowledge set is generally referred to as a cognitive model.
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So, where does this knowledge come from? In most cogni-
tivist systems the knowledge incorporated into the model is
normally determined by the person who designed the archi-
tecture, and often this knowledge is highly crafted, possibly
drawing on years of experience working in the problem domain.
Machine learning is increasingly used to augment and adapt this
knowledge but typically you need to provide a critical minimum
amount of knowledge in order to get the learning started.

The cognitive architecture itself determines the overall struc-
ture and organization of a cognitive system, including the com-
ponent parts or modules, the relations between these modules,
and the essential algorithmic and representational details within
them. The architecture specifies the formalisms for knowledge
representations and the types of memories used to store them,
the processes that act upon that knowledge, and the learning
mechanisms that acquire it. Usually, it also provides a way of
programming the system so that a cognitive system can be cus-
tomized for some application domain.

A cognitive architecture plays an important role in compu-
tational modelling of cognition in that it makes explicit the set
of assumptions upon which that cognitive model is founded.
These assumptions are typically derived from several sources:
biological or psychological data, philosophical arguments, or ad
hoc working hypotheses inspired by work in different disciplines
such as neurophysiology, psychology, or artificial intelligence.
Once it has been created, a cognitive architecture also provides
framework for developing the ideas and assumptions encapsu-
lated in the architecture.

3.1.2 The Emergent Perspective

Emergent approaches to cognition focus on the development of
the agent from a primitive state to a fully cognitive state over its
life-time. Although the concept of a cognitive architecture has
its origins in cognitivism as the timeless fixed part of a cognitive
system that provides the framework for processing knowledge,
the term cognitive architecture is also used with emergent ap-
proaches. In this case, it isn’t so much the framework that com-
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plements the knowledge as it is the framework that facilitates
development. In this sense, an emergent cognitive architecture is
essentially equivalent to the phylogenetic configuration of a new-
born cognitive agent: the initial state from which it subsequently
develops. In other words, an emergent cognitive architecture is
everything a cognitive system needs to get started. This doesn’t
guarantee successful development, though, because development
also requires exposure to an environment that is conducive to
development, one in which there is sufficient regularity to al-
low the system to build a sense of understanding of the world
around it, but not excessive variety that would overwhelm an
agent which has inherent limitations on the speed with which it
can develop. Thus, in a way that parallels the two-sided coin of
cognitivist cognition — architecture and knowledge — emergent
cognition also has two sides: architecture and gradually-acquired
experience. These two sides of the emergent coin are referred
to as phyogeny and ontogeny (or ontogenesis), the latter being
the interactions and experiences that a developing cognitive sys-
tem is exposed to as it acquires an increasing degree of cognitive
capability.

With emergent approaches, the cognitive architecture pro-
vides a way of dealing with the intrinsic complexity of a cogni-
tive system, by providing some form of structure within which
to embed the mechanisms for perception, action, adaptation,
anticipation, and motivation that enable the ontogenetic devel-
opment over the system’s life-time. It is this complexity that
distinguishes an emergent developmental cognitive system from,
for example, a connectionist system such as an artificial neural
network that performs just one or two functions such as recog-
nition or control. Of course, an emergent cognitive architecture
might comprise many individual neural networks and, as we
will see later, some do.

So, the cognitive architecture of an emergent system thus
provides the basis for its subsequent development. It’s worth
remarking that, as a consequence of this development, the ar-
chitecture itself might change. Thus, an emergent cognitive
architecture isn’t necessarily fixed and timeless: it is a point of
departure.
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The presence of innate capabilities in an emergent system
does not imply that the architecture is necessarily functionally
modular, i.e. that the cognitive system is comprised of distinct
modules each one carrying out a specialized cognitive task.8 If 8 Heinz von Foerster argues

that the constituents of a
cognitive architecture cannot
be separated into distinct
functional components: “In
the stream of cognitive pro-
cesses one can conceptually
isolate certain components,
for instance (i) the faculty
to perceive, (ii) the faculty
to remember, and (iii) the
faculty to infer. But if one
wishes to isolate these fac-
ulties functionally or locally,
one is doomed to fail. Con-
sequently, if the mechanisms
that are responsible for any
of these faculties are to be
discovered, then the totality
of cognitive processes must
be considered.” [122], p. 105.

modularity is present, it may be because it develops this modu-
larity through experience as part of its ontogenesis rather than
being prefigured by the phylogeny of the system. The cogni-
tivist and emergent perspectives differ somewhat on the issue
of innate structure. While in an emergent system the cognitive
architecture is the innate structure, this is not necessarily so with
a cognitivist system.9

9 Ron Sun contends that “an
innate structure can, but
need not, be specified in an
initial architecture” [117].
He argues that an innate
structure does not have to
be specified or involved in
the computational modelling
of cognition and that archi-
tectural detail may indeed
result from ontogenetic
development. However, he
suggests that non-innate
structures should be avoided
as much as possible and
that we should adopt a
minimalist approach: an
architecture should include
only minimal structures and
minimal learning mech-
anisms which should be
capable of “bootstrapping
all the way to a full-fledged
cognitive model.”

Sometimes, especially in developmental robotics, the term
epigenesis is used instead of ontogensis, and developmental
robotics is sometimes referred to as epigenetic robotics. Epigene-
sis has its roots in biology where it refers to the way an organism
develops through cell-division into a a viable complex entity.
This happens through gene expression so that the epigenesis
refers to the changes that result from factors other than those
determined by the organism’s DNA. Ontogenesis also refers to
early cellular development but more generally it refers to the de-
velopment of the organism over its full lifetime. Thus, it includes
the development of the agent after birth, including its cognitive
development, and so embraces, for example, developmental psy-
chology. Since the epigenetic process focusses exclusively on the
very early growth of the agent and the way its final structure
is determined, in artificial cognitive systems, epigenesis would
probably be better reserved to reflect the autonomous formation
and construction of cognitive architecture prior to development
as a consequence of experience. To avoid confusion, we will
avoid using the term epigenesis and epigenetic robotics, and
refer to ontogeneis and developmental robotics on the under-
standing that we are discussing the development of an entity
after it has been born (in the case of natural cognitive systems)
or realized as a physical system (in the case of artifical cognitive
systems). For the most part, we won’t discuss the issue of how
a cognitive architecture might emerge or develop prior to this
point, although, as we will see, the configuration of a complete
emergent cognitive architecture isn’t a straightforward task and
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it is conceivable that epigenetic considerations might be able to
shed some light on the matter.

Finally, we remind ourselves that the emergent paradigm
rejects the position that cognitivism takes on two key issues:
the dualism that separates the mind and body and treats them
as distinct entities and the functionalism that treats cognitive
mechanisms independently of the physical platform. The logical
separation of mind and body, and of mechanism and physical
realization, means that cognition can, in principle, be studied in
isolation from the physical system in which it occurs. The emer-
gent paradigm takes the opposite view, holding that the physical
system — the body — is just as much a part of the cognitive pro-
cess as are the cognitive mechanisms in the brain. Consequently,
an emergent cognitive architecture will ideally reflect in some
way the structure and capabilites — the morphology — of the
physical body in which it is embedded and of which it is an in-
trinsic part. We consider these aspects in detail in Chapter 5 on
embodiment.

3.2 Desirable Characteristics

When we say that an emergent cognitive architecture ideally
reflects the form and capabilities of its associated physical body,
we recognize that very few, if any, current cognitive architectures
have managed to do this. There is a gap at present between what
we know a cognitive architecture should be and what in fact
existing architectures have managed to achieve. In this section,
we focus on the ideal features of a cognitive architecture.

3.2.1 Realism

We begin with some features related to the realism of the archi-
tecture. Since a cognitivist cognitive architecture represents a
unified theory of cognition, and hence a theory of human cogni-
tion, it should strive to exhibit several types of realism.10

10 These different types
of realism — ecological,
bio-evolutionary, cognitive
— as well as several other
desirable characteristics of
a cognitive architecture are
described by Ron Sun in
his paper “Desiderata for
Cognitive Architectures”
[117].

First, it should enable the cognitive agent to operate in its
natural environment, engaging in “everyday activities.” This
is referred to as ecological realism. It means that the architecture
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has to deal with many concurrent and often conflicting goals in
an environment about which the agent probably doesn’t know
everything. In fact, that’s exactly the point of cognition: being
able to deal with these uncertainties and conflicts in a way that
still gets the job done, whatever it is. So, ecological realism goes
to the very heart of cognition.

Second, since human intelligence evolved from the capabilities
of earlier primates, ideally a cognitive model of human intelli-
gence should be reducible to a model of animal intelligence. This
is bio-evolutionary realism. Sometimes, this is taken the other way
around by focussing on simpler models of cognition as exhib-
ited by other species — birds and rats, for example — and then
attempting to scale them up to human-level cognition.

Third, a cognitive architecture should capture the essential
characteristics of human cognition from several perspectives:
psychology, neuroscience, and philosophy, for example. This is
referred to as cognitive realism. To an extent, this means that the
cognitive architecture, and the overall cognitive model of which
it an essential part, should be complete.

Finally, as with all good science, new models should draw on,
subsume, or supercede older models (this means that a cognitive
architecture should strive for inclusivity of prior perspectives11). 11 Ron Sun refers to this

inclusivity as “eclecticism
of methodologies and
techniques” [117].

3.2.2 Behavioural Characteristics

Several behavioural and cognitive characteristics should ide-
ally be captured by a cognitive architecture and exhibited by a
cognitive system.12 From a behavioural perspective, a cognitive 12 Again, these ideal be-

havioural and cognitive
characteristics are described
by Ron Sun in his paper
“Desiderata for Cognitive
Architectures” [117].

architecture should not have to employ excessively complicated
conceptual representations and extensive computations devoted
to working through alternative strategies. The cognitive sys-
tem should behave in a direct and immediate manner, making
decisions and acting in an effective and timely manner. Further-
more, a cognitive system should operate one step at a time, in
a sequence of actions extended over time. This gives rise to the
desirable characteristic of being able to learn routine behaviours
gradually, either by trial-and-error or by copying other cognitive
agents.
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3.2.3 Cognitive Characteristics

As far as cognitive characteristics are concerned, a cognitive ar-
chitecture should comprise two distinct types of process: one
explicit, the other implicit. The explicit processes are accessible
and precise whereas the implicit ones are inaccessible and impre-
cise. Furthermore, there should be a synergy borne of interaction
between these two types of process. There are, for example, ex-
plicit and implicit learning processes and these interact.13 To a 13 These cognitive character-

istics are reflected in Sun’s
own cognitive architecture
CLARION [116, 17], in
which implicit processes
operate on connectionist
representations and im-
plicit processes on symbolic
representations (thus, CLAR-
ION is a hybrid cognitive
architectures).

significant extent, these cognitive characteristics reflect a hybrid
approach to cognition: strict emergent approaches would not be
able to deliver on the requirement for accessibility, which cog-
nitivist approaches most certainly would. At the same time, not
all cognitive architectures make use of implicit processes, such
as connectionist learning, although there is an increasing trend
to do so, as we will see below when we survey three current
cognitive architectures.

3.2.4 Functional Capabilities

In fulfilling these roles, an ideal cognitive architecture should
ideally exhibit several functional capabilities.14

14 Pat Langley, John Laird,
and Seth Rogers [120] cat-
alogue nine functional
capabilities that should be
exhibited by an ideal cogni-
tive architecture. Although
they focus mainly on cogni-
tivist cognitive architectures
in their examples, the ca-
pabilities they discuss also
apply for the most part to
emergent systems. Ron Sun
lists a similar list of twelve
functional capabilities [17].

A cognitive architecture should be able to recognize objects,
situations, and events as instances of known patterns and it
must be able to assign them to broader concepts or categories. It
should also be able to learn new patterns and categories, modify
existing ones, either by direct instruction or by experience.

Since a cognitive architecture exists to support the actions
of a cognitive agent, it should provide a way to identify and
represent alternative choices and then decide which are the most
appropriate and select an action for execution. Ideally, it should
be able to improve its decisions through learning.

It should have some perceptual capacity — vision, hearing,
touch, for example15 — and, since a cognitive agent typically has

15 There are two categories
of perception: exterocep-
tion and proprioception.
Exteroception includes all
those modalities which sense
the external world, such
as vision, hearing, touch,
and smell. Proprioception
is concerned with sensing
the status or configuration of
the agent’s body; whether an
arm is extended and by how
much, for example.

limited resources for processing information, it should have an
attentive capacity to decide how to allocate these resources and
to detect what is immediately relevant.

A cognitive architecture should also have some mechanism to
predict situations and events, i.e. to anticipate the future. Often,
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this ability will be based on an internal model of the cognitive
agent’s environment. Ideally, a cognitive architecture should
have a mechanism to learn these models from experience and
improve them over time.

To achieve goals, it must have some capability to plan actions
and solve problems. A plan requires some representation of a
partially-ordered sequence of actions and their effects. Inciden-
tally, problem solving differs from planning in that it may also
involve physical change in the agent’s world.

The knowledge that complements a cognitive architecture con-
stitutes the agent’s beliefs about itself and its world, and plan-
ning is focussed on using this knowledge to effect some action
and achieve a desired goal. The cognitive architecture should
also have a reasoning mechanism which allows the cognitive sys-
tem to draw inferences from these beliefs, either to maintain the
beliefs or to modify them.

A cognitive architecture should have some mechanism to rep-
resent and store motor skills that can be used in the execution of
an agent’s actions. As always, an ideal cognitive architecture will
have some way of learning these motor skills from instruction or
experience.

It should be able to communicate with other agents so that
they can obtain and share knowledge. This may also require
a mechanism for transforming the knowledge from internal
representations to a form suitable for communication.

It may also be useful for a cognitive archtitecture to have addi-
tional capabilities which are not strictly necessary but which may
improve the operation of the cognitive agent. These are referred
to as meta-cognition (sometimes called meta-management) func-
tions and they are concerned with remembering (storing and re-
calling) the agent’s cognitive experiences and reflecting on them,
for example, to explain decisions, plans, or actions in terms of
the cognitive steps that led to them.16

16 For more details on
the importance of meta-
management in cognitive
architectures, see Aaron
Sloman’s paper “Varieties
of affect and the CogAff
architecture schema” [16].

Finally, an ideal cognitive architecture should have some way
of learning to improve the performance of all the foregoing func-
tions and to generalize from specific experiences of the cognitive
system.17

17 By generalizing from
specific experiences, the
cognitive agent is engaging
in inductive inference.In summary, an ideal cognitive architecture supports at least
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the following nine functional capabilities:

1. Recognition and categorization;

2. Decision making and choice;

3. Perception and situation assessment;

4. Prediction and monitoring;

5. Problem solving and planning;

6. Reasoning and belief maintenance;

7. Execution and action;

8. Interaction and communication;

9. Remembering, reflection, and learning.

This list is not exhaustive and one could add other functional-
ities: the need for multiple representations, the need for several
types of memory, and the need to have different types of learn-
ing, for example. We discuss these issues in Chapters 6 and 7.

3.2.5 Development

One thing should strike you about the list above: it doesn’t ex-
plictly address development. That’s because, for the most part,
it results from research in cognitivist cognitive architectures. For
emergent cognitive architecture that focus on development, Jef-
frey Krichmar has identified several desirable characteristics.18 18 While not specifically

targetting cognitive archi-
tectures, Jeffrey Krichmar’s
design principles for devel-
opmental artificial brain-
based devices [123, 124, 125]
are directly applicable to
emergent systems in general.

First, he suggests that the architecture should address the dy-
namics of the neural element in different regions of the brain,
the structure of these regions, and especially the connectivity
and interaction between these regions. Second, he notes that
the system should be able to effect perceptual categorization:
i.e. to organize unlabelled sensory signals of all modalities into
categories without prior knowledge or external instruction. In
effect, this means that the system should be autonomous and, as
a developmental system, it should be a model generator, rather
than a model fitter.19 Third, a developmental system should have

19 The distinction between
model generation and
model fitting in cognitive
systems is also emphasized
by John Weng in his paper
“Developmental Robotics:
Theory and Experiments”
[126].

a physical instantiation, i.e. it should be embodied, so that it is
tightly coupled with its own morphology and so that it can ex-
plore its environment. Fourth, the system should engage in some
behavioural task and, consequently, it should have some minimal
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set of innate behaviours or reflexes in order to explore and sur-
vive in its initial environmental niche. From this minimum set,
the system can learn and adapt so that it improves its behaviour
over time. Fifth, developmental systems should have a means
to adapt. This implies the presence of a value system, i.e. a set
of motivations that guide or govern its development.20 These 20 For an overview of the role

of value systems in cognitive
systems, see the paper
by Kathryn Merrick “A
Comparative Study of Value
Systems for Self-motivated
Exploration and Learning by
Robots” [127] and the paper
by Pierre-Yves Oudeyer,
Frédéric Kaplan, and Verena
Hafner “Intrinsic motivation
systems for autonomous
mental development” [128].

should be non-specific21 modulatory signals that bias the dy-

21 Non-specific in the sense
that they don’t specify what
actions to take.

namics of the system so that the global needs of the system are
satisfied: in effect, so that the system’s autonomy is preserved or
enhanced.

3.2.6 Dynamics

It is clear that a cognitive system is going to be a very complex
arrangement of components parts. After all, that’s why an archi-
tecture is necessary in the first place. However, there is more to
an architecture than just its components: there is also the manner
in which they are connected with one another and the dynamic
behaviour of the various components as they interact with one
another and as the agent interacts with its environment. A cog-
nitive architecture needs to be complex enough to capture these
dynamics without being excessively complicated. It should in-
corporate only what is necessary without compromising its eco-
realism. Clearly, this is a difficult balance to get right and, as we
mentioned above, very few cognitive architectures fully support
all of the desired characteristics at present.22 Many challenges

22 See Ron Sun’s paper “The
importance of cognitive
architectures: an analysis
based on CLARION” [17] for
a more extended discussion
of the degree to which
contemporary cognitive
architectures exhibit the
desirable characteristics of
an ideal architecture.

remain and there is a long list of issues where our understanding
is inadquate. Example include23 understanding the mechanisms

23 This list of research chal-
lenges is taken from the
paper by Pat Langley, John
Laird, and Seth Rogers
“Cognitive architectures:
Research issues and chal-
lenges” [120].

for selective attention, the processes for categorization, devel-
oping support for episodic memory and processes to reflect on
it, developing support for multiple knowledge representation
formalisms, the inclusion of emotion in cognitive architectures
to modulate cognitive behaviour, and the impact of physical em-
bodiment on the overall cognitive process, including the agent’s
internal drives and goals.
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3.3 Designing a Cognitive Architecture

Before we move on to look at some cognitive architectures that
have been developed in recent years, we will first say a few
words about how one might go about designing one. Given
the apparent complexity of a cognitive architecture, the long
list of desirable characteristics set out above, and the many re-
search challenges we still face, it should be evident that this is
not a simple matter. However, a relatively straight-forward three-
step process has been proposed by Aaron Sloman and his co-
workers.24 First, the requirements of the architecture needs to be

24 The three-step process
for designing a cognitive
architecture is discussed in
a technical report by Nick
Hawes, Jeremy Wyatt, and
Aaron Sloman “An architec-
ture schema for embodied
cognitive systems” [129].

identified, partly through an analysis of several typical scenarios
in which the eventual agent would demonstrate its competence.
These requirements are then used to create an architecture schema:
a task- and implementation-independent set of rules for struc-
turing processing components and information, and controlling
information flow. This schema leaves out much of the detail of
the final design choices, detail which is finally filled in at the
third step by an instatiation of the architecture schema in a cog-
nitive architecture proper on the basis of a specific scenario and
its attendant requirements. This process is particularly suited
to cognitivist cognitive architectures because it emphasizes the
logical division of task-independent processing mechanisms and
structure from task-dependent knowledge.

3.4 Example Cognitive Architectures

For the remainder of the chapter, the term cognitive architecture
will be used in a general sense without specific reference to
the underlying paradigm, cognitivist or emergent. By this we
interpret it to mean the minimal configuration of a system that
is necessary for the system to exhibit cognitive capabilities and
behaviours, i.e. the specification of the components in a cognitive
system, their function, and their organization as a whole.

In the following, we will provide a brief overview of a sam-
ple of three cognitive architectures, one from the cognitivist
paradigm of cognitive science (Soar), one from the emergent
(Darwin), and one from the hybrid paradigm (ISAC).25

25 There are many other
cognitive architectures in all
three paradigms: cognitivist,
emergent, and hybrid. These
include for example ACT-R
[109, 115], CoSy Architecture
Schema [129, 130], GLAIR
[131], ICARUS [132, 133]
(cognitivist); Cognitive-
Affective Architecture
Schematic [134, 135], Global
Workspace [101], iCub
[136, 137], SASE [126, 138]
(emergent); and CLARION
[116, 17], HUMANOID [139],
LIDA [140, 141], PACO-
PLUS [142] (hybrid). On-line
surveys of cognitive archi-
tectures can be found on the
website of the Biologically
Inspired Cognitive Architec-
tures Society [143] and on
the website of the University
of Michigan [45]. Surveys
published in the literature
include an overview pub-
lished by the author, Claes
von Hofsten, and Luciano
Fadiga in “A Survey of Ar-
tificial Cognitive Systems:
Implications for the Au-
tonomous Development of
Mental Capabilities in Com-
putational Agents” [103]
and updated in A Roadmap
for Cognitive Development in
Humanoid Robots [12], and a
survey by Włodzisław Duch
and colleagues “Cognitive
Architectures: Where do we
go from here?” [144].
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3.4.1 Soar

Soar26 is a candidate Unified Theory of Cognition and, as such, 26 For more details on the
Soar cognitive architecture,
please refer to the papers by
Allen Newell, John Laird,
and colleagues [42, 110, 111,
112, 113] and the book by
John Laird [114].

it is a quintessential cognitivist cognitive architecture. It is also
an iconic one, being one of the very first cognitive architectures
to be developed. Futhermore, it was created by Allen Newell (the
person who introduced the idea of a unified theory of cognition)
and his colleagues, and has been continually enhanced over the
past 25 years or so. Hence, Soar occupies a special place in the
history of cognitive architectures and their continuing evolution.
As we will see, the themes raised by Soar are reflected in several
other cognitive architectures.

We will begin by reminding ourselves of the key ideas un-
derpinning cognitivism. It is important to do this because Soar
was built on these and the way it operates refects the fundamen-
tal assumptions of cognitivism. We will then give a very brief
sketch of the way Soar operates, just to get a feeling for the way
it works.

As we have already said, in cognitivism a cognitive architec-
ture represents the aspects of cognition that are constant over
time and independent of the task. To do something, i.e. to per-
form a given task, a cognitivist cognitive architecture needs to be
provided with the knowledge to perform the task (or it needs to
acquire this knowledge for itself). This combination of a given
cognitive architecture and a particular knowledge set is referred
to as a cognitive model and it is this knowledge which populates
the cognitive architecture that provides the means to perform a
task or to behave in some particular way. To put it another way,
cognitive behaviour equals architecture combined with content.

An architecture is a theory about what is common to the con-
tent it processes and Soar is a particular theory of what cognitive
behaviours have in common. In particular, the Soar theory holds
that cognitive behaviour has at least the following characteristics:
it is goal-oriented, it reflects a complex environment, it requires
a large amount of knowledge, and it requires the use of symbols
and abstraction. The idea of abstraction is very important in cog-
nition. It comes down to the difference between the concept of
something vs. something in particular. For example, a shirt as
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a garment to provide warmth and protection vs. this particular
blue shirt with a button-down collar and an embroidered logo
on the pocket. The knowledge you have of a shirt as an abstract
concept can be elicited — recalled and used — by something
other than your particular perceptions in all their detail. This is
referred to as a symbol (or set of symbols) and the knowledge is
referred to as symbolic knowledge. The Soar cognitive architec-
ture focusses on processing symbolic knowledge and matching
it with knowledge that relate to current perceptions and actions.
Let’s now sketch out how it does this.

First, Soar is a production system (sometimes called a rule-
based system). A production is effectively a condition-action
pair and a production system is a set of production rules and
a computational engine for interpreting or executing produc-
tions. Rules in Soar are called associations. Thus, the core of
Soar comprises two memories, one called the long-term memory
(sometimes referred to as recognition memory) which holds the
productions rules, and one called working memory (also called
declarative memory), which holds the attribute values that reflect
Soar’s perceptions and actions). In addition, there are several
processes: one called elaboration which matches the productions
and the attribute values (i.e it decides which productions can
fire), one for determining the preferences to use in the decision
process, and one called chunking which effectively learns new
production rules (called chunks).

Soar operates in a cyclic manner with two distinct phases:
a production cycle and a decision cycle. First, all productions
that match the contents of declarative (working) memory fire. A
production that fires may alter the state of declarative memory
and cause other productions to fire. This continues until no
more productions fire. At this point, the decision cycle begins
and a single action is selected from several possible actions. The
selection is based on stored action preferences.

Since there is no guarantee that the action preferences will
be unambiguous or that they will lead to a unique action or in-
deed any action, the decision cycle may lead to what is known
as an impasse. If this happens, Soar sets up a new state in a new
problem space — a sub-goal — with the goal of resolving the im-
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Figure 3.1: The Soar cog-
nitive architecture, v. 9.
From [114], © 2012, with
permission from MIT
Press.

passe. This process is known as universal sub-goaling. Resolving
one impasse may cause others and the sub-goaling process con-
tinues. Eventually, all impasses should be resolved. In the case
where the situation degenerates with Soar having insufficient
knowledge to resolve the impasse, it chooses randomly between
possible actions.

Whenever an impasse is resolved, Soar creates a new produc-
tion rule, i.e. a new association, which summarizes the process-
ing that occurred in the sub-state in solving the sub-goal. As we
noted above, this new learned association is called a chunk and
the Soar learning process is referred to as chunking.

As we said at the outset, the Soar cognitive architecture con-
tinues to evolve. While the foregoing description of Soar fo-
cussed on the production system that is so characteristic of cog-
nitivist cognitive architectures, Soar also has the potential to be
used for cognitive robotics. To facilitate this, the Soar architec-
ture has been extended (see Figure 3.1) to embrace many of the
components of emergent and hybrid cognitive architectures such
as episodic memory, procedural memory, semantic memory, and
associated learning techniques, e.g. reinforcement learning, as
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well as the crucial capability for internal simulation of percep-
tion and action using mental imagery. We discuss these topics in
more detail in Chapter 7.

3.4.2 Darwin: Neuromimetic Robotic Brain-Based Devices

Darwin27 is a series of robot platforms designed to experiment 27 For more details on the
Darwin cognitive archi-
tecture, please refer to
[123, 124, 125, 145, 146, 147].

with developmental agents. These agents are brain-based de-
vices (BBDs) which exploit a simulated nervous system that can
develop spatial and episodic memory as well as recognition
capabilities through autonomous experiential learning, i.e. by
exploring and interacting with the world around them. BBDs are
neuromimetic — they mimic the neural structure of the brain —
and are closely aligned with enactive and connectionist models.
However, they differ from many connectionist approaches in
that they focus on the nervous system as a whole, its constituent
parts, and their interaction, rather than on a neural implementa-
tion of some individual memory, control, or recognition function.

The principal neural mechanisms of a BDD are synaptic plas-
ticity, a reward (or value) system, reentrant connectivity, dy-
namic synchronization of neuronal activity, and neuronal units
with spatiotemporal response properties. Adaptive behaviour is
achieved by the interaction of these neural mechanisms with sen-
sorimotor correlations28 which have been learned autonomously 28 Sensorimotor correlations

are sometimes referred to as
contingencies.

through active sensing and self-motion.
Different versions of Darwin exhibit different cognitive capa-

bilities. For example, Darwin VIII is capable of discriminating
reasonably simple visual targets (coloured geometric shapes)
by associating them with an innately preferred auditory cue.
Its simulated nervous system contains 28 neural areas, approx-
imately 54,000 neuronal units, and approximately 1.7 million
synaptic connections. The architecture comprises regions for
vision (V1, V2, V4, IT), tracking (C), value or saliency (S), and
audition (A). Gabor filtered images, with vertical, horizontal, and
diagonal selectivity, and red-green colour filters with on-centre
off-surround and off-centre on-surround receptive fields, are fed
to V1. Sub-regions of V1 project topographically to V2 which
in turn projects to V4. Both V2 and V4 have excitatory and in-
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hibitory reentrant connections. V4 also has a non-topographical
projection back to V2 as well as a non-topographical projection
to IT, which itself has reentrant adaptive connections. IT also
projects non-topographically back to V4. The tracking area (C)
determines the gaze direction of Darwin VIII’s camera based on
excitatory projections from the auditory region A. This causes
Darwin to orient toward a sound source. V4 also projects to-
pographically to C causing Darwin VIII to centre its gaze on
a visual object. Both IT and the value system S have adaptive
connections to C which facilitates the learned target selection.
Adaptation is effected using the Hebbian-like learning.29 From a 29 Specifically, the Hebbian-

like learning uses the
Bienenstock-Cooper-Munroe
(BCM) rule [148]; also see
Chapter 2, Section 2.2.1.

behavioural perspective, Darwin VIII is conditioned to prefer one
target over others by associating it with the innately preferred
auditory cue and to demonstrate this preference by orienting
towards the target.

Darwin IX can navigate and categorize textures using arti-
ficial whiskers based on a simulated neuroanatomy of the rat
somatosensory system, comprising 17 areas, 1101 neuronal units,
and approximately 8400 synaptic connections.

Darwin X is capable of developing spatial and episodic mem-
ory based on a model of the hippocampus and surrounding
regions. Its simulated nervous system contains 50 neural ar-
eas, 90,000 neural units, and 1.4 million synaptic connections.
It includes a visual system, head direction system, hippocam-
pal formation, basal forebrain, a value/reward system based on
dopaminegic function, and an action selection system. Vision is
used to recognize objects and then compute their position, while
odometry is used to develop head direction sensitivity.

3.4.3 ISAC

ISAC30 — Intelligent Soft Arm Control — is a hybrid cogni- 30 For a more detailed
description of the ISAC
cognitive architecture, please
refer to “Implementation
of Cognitive Control for
a Humanoid Robot” by
Kazuhiko Kawamura and
colleagues [149].

tive architecture for an upper torso humanoid robot (also called
ISAC). From a software engineering perspective, ISAC is con-
structed from an integrated collection of software agents and
associated memories. Agents encapsulate all aspects of a com-
ponent of the architecture, operate asynchonously (i.e. without
a shared clock to keep the processing of all agents locked in step
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Figure 3.2: The ISAC
cognitive architecture.
From [149], © 2008, with
permission from World
Scientific Publishing
Company.

with each another), and communicate with each other by passing
messages.

As shown in Figure 3.2, the multi-agent ISAC cognitive archi-
tecture comprises activator agents for motion control, perceptual
agents, and a First-order Response Agent (FRA) to effect reactive
perception-action control. It has three memory systems: Short-
term memory (STM), Long-term memory (LTM), and a working
memory system (WMS).

STM has a robot-centred spatio-temporal memory of the per-
ceptual events currently being experienced. This is called a Sen-
sory EgoSphere (SES) and it is a discrete representation of what
is happening around the robot, represented by a geodesic sphere
indexed by two angles: horizontal (azimuth) and vertical (ele-
vation). STM also has an attentional network that determines
the perceptual events that are most relevant and then directs the
robot’s attention to them.

LTM stores information about the robot’s learned skills
and past experiences. LTM is made up of semantic, episodic,
and procedural memory. Together, the semantic memory and
episodic memory make up the robot’s declarative memory of
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the facts it knows. On the other hand, procedural memory stores
representations of the motions the robot can perform.

ISAC’s episodic memory abstracts past experiences and cre-
ates links or associations between them. It has multiple layers.
At the bottom, an episodic experience contains information
about the external situation (i.e. task-relevant percepts from the
SES), goals, emotions (in this case, internal evaluation of the per-
ceived situation), actions, and outcomes that arise from actions,
and valuations of these outcomes (e.g. how close they are to the
desired goal state and any reward received at a result). Episodes
are connected by links that encapsulate behaviours: transitions
from one episode to another. Higher layers abstract away specific
details and create links based on the transitions at lower levels.
This multi-layered approach allows for efficient matching and
retrieval of memories.

WMS, inspired by neuroscience models of brain function, tem-
porarily stores information that is related to the task currently
being executed. It forms a type of cache memory for STM and
the information it stores, called chunks, encapsulates expecta-
tions of future reward that are learned using a neural network.

Cognitive behaviour is the responsibility of a Central Exec-
utive Agent (CEA) and an Internal Rehearsal System, a system
that simulates the effects of possible actions. Together with a
Goals & Motivation sub-system comprising an Intention Agent
and an Affect Agent, the CEA and Internal Rehearsal System
form a compound agent called the Self Agent that, along with
the FRA, makes decisions and acts according to the current sit-
uation and ISAC’s internal states. The CEA is responsible for
cognitive control, invoking the skills required to perform some
given task on the basis of the current focus of attention and past
experiences. The goals are provided by the Intention Agent.
Decision-making is modulated by the Affect Agent.

ISAC works the following way. Normally, the First-order Re-
sponse Agent (FRA) produces reactive responses to sensory
triggers. However, it is also responsible for executing tasks.
When a task is assigned by a human, the FRA retrieves the
skill from procedural memory in LTM that corresponds to the
skill described in the task information. It then places it in the
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WMS as chunks along with the current percept. The Activator
Agent then executes it, suspending execution whenever a reac-
tive response is required. If the FRA finds no matching skill for
the task, the Central Executive Agent takes over, recalling from
episodic memory past experiences and behaviours that contain
information similar to the current task. One behaviour-percept
pair is selected, based on the current percept in the SES, its rele-
vance, and the likelihood of successful execution as determined
by internal simulation in the IRS. This is then placed in working
memory and the Activator Agent executes the action.

As with Soar and Darwin, there are many features in the
ISAC architecture that we will discuss in greater depth later in
the book, such as attention (Chapter 5, Section 5.6), the role of
affect and motivation in cognition (Chapter 6, Section 6.1.1),
episodic, semantic, procedural, declarative, long-term, short-
term, and working memory (Chapter 7, Section 7.2), and internal
simulation (Chapter 7, Section 7.4).

3.5 Cognitive Architectures — What Next?

In this chapter, we began to put some flesh on the bones of
the theoretical issues set out in Chapter 2 by addressing the
blueprint of every cognitive system: its architecture. This took
us on a long journey, from our discussion of what a cognitive
architecture means for the cognitivisit, emergent, and hybrid
paradigms of cognitive science, through quite a long list of the
attributes that an ideal cognitive architecture should exhibit, to
short summaries of three typical cognitive architectures, one
cognitivist, one emergent, and one hybrid. On the way, we’ve
encountered many new ideas and concepts which we had to
gloss over far too quickly. Our goal now is to deepen our un-
derstanding of some of these issues: autonomy, embodiment,
development, learning, memory, prospection, knowledge, and
representation, for example. We turn our attention first to au-
tonomy, a concept that is difficult to model and even harder to
synthesize in artificial systems.



4
Autonomy

4.1 Types of Autonomy

It is widely recognized that autonomy is a difficult concept to tie
down and, like cognition, it means different things to different
people.1 To complicate matters further, there are many differ-

1 Margaret Boden explains
the reasons why autonomy
is such an obscure concept
in an editorial “Autonomy:
What is it?” [150]. For
an overview of different
perspectives, read the short
paper by Tom Froese and
colleagues “Autonomy: a
review and a reappraisal”
[151].

ent ways of qualifying the concept, each suggesting a different
type of autonomy. For example, you will see references to the
following.

Adaptive autonomy, adjustable autonomy, agent autonomy, basic
autonomy, behavioural autonomy, belief autonomy, biological
autonomy, causal autonomy, constitutive autonomy, energy auton-
omy, mental autonomy, motivational autonomy, norm autonomy,
robotic autonomy, shared autonomy, sliding autonomy, social
autonomy, subservient autonomy, user autonomy, among others.

Once we have studied autonomy in more depth, we look at each
of these different types of autonomy when we close the chapter
in Section 4.9. In the meantime, we will pick out two of these —
robotic autonomy and biological autonomy2 — and use them

2 The primary distinction
between robotic autonomy
and biological autonomy is
discussed by Tom Ziemke
in his paper “On the role of
emotion in biological and
robotic autonomy” [152].

as a way of organizing and explaining the other types. To get
started, we need a definition3 even if only as a basis for discus-

3 The word autonomy has its
roots in the Greek words
αυτóς (autos, meaning
“self”) and νóμoς (nomos,
meaning “law”). Thus,
autonomy literally means
being governed by self-law,
rather than the laws of some
other agent.

sion and subsequent refinement. To that end, we will define au-
tonomy as the degree of self-determination of a system, i.e. the
degree to which a system’s behaviour is not determined by the
environment and, thus, the degree to which a system determines
its own goals.4 Thus, an autonomous system is not controlled

4 The equivalence of au-
tonomy and the degree of
self-determination is dis-
cussed by Anil Seth in [153].
He also discusses the idea
that autonomy corresponds
to the degree to which a
system’s behaviour is not
determined by the environ-
ment. The equivalence of
autonomy and the degree to
which a system determines
its own goals is discussed
by Nils Bertschinger and
colleagues in [154].by some other agent but is self-governing and self-regulating,
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Figure 4.1: An au-
tonomous agent — a
person or a robot —
can be situated in a
two-dimensional space
spanned in one dimen-
sion by the amount of
unpredictability in the
task and the working
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degree of human assis-
tance that is required.
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are the task entropy (i.e.
uncertainty) and the de-
gree of automation. This
figure was adapted from
one that appears in [156]
(see Sidenote 6).

to a greater or lesser extent. Of course, it isn’t a lot of use for an
agent to have its own goals5 unless it can do something about 5 Willem Haselager argues

that goals belong to a system
“when they arise out of the
on-going attempt, sustained
by both the body and the
control system, to maintain
homeostasis ... autonomy is
grounded in the formation
of action patterns that result
in the self-maintenance of
the embodied system and it
develops during embodied
interaction of a system with
its environment” [155]. We
follow this theme at several
points in the chapter; see
Sidenotes 19 and 33 for more
details on homeostasis and
self-maintenance.

them. So, implicit in this definition is the idea that, in addition to
selecting its goals, the agent can then choose how best to achieve
them and that it can then act to do so.

With that preliminary definition in mind, let us now proceed
to look at the two types of autonomy, robotic and biological,
beginning with the former.

4.2 Robotic Autonomy

4.2.1 Strength and Degree of Autonomy

In robotics, it can be useful to categorize the capabilities of a
robot on the basis of its ability to deal with uncertainty in its en-
vironment and on the extent to which a human operator assists
the robot in pursuing a task and achieving some goal (see Figure
4.1).

The ability to deal with uncertainty in carrying out a task is
sometimes referred to as task entropy.6 At one end of the task en-

6 The two dimensions of task
entropy, i.e. environmental
uncertainty, and degree of
automation was suggested
by Thomas Sheridan and
William Verplank in 1978
in a widely-acclaimed MIT
technical report dealing
with human and computer
control for teleoperated
undersea robots [156].

tropy spectrum you have tasks that are completely pre-specified.
There is no uncertainty at all about the task, the objects, and how
to go about achieving the goal. Everything is fully known. This
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is a low-entropy task. At the other end of the spectrum there is
significant uncertainty about the task and there is a lot of unpre-
dictability about what objects are present, where they are, what
they look like, and what is the best way of achieving the goal of
the task. This is a high-entropy task. We use the term strength of
autonomy to denote the extent to which an autonomous system
can deal with this unpredictability: strong autonomy indicates
that the system can deal with considerable uncertainty in the
task whereas weak autonomy indicates that it cannot.

On the other hand, the extent to which a human assists the
robot reflects the degree of automation realized by the robot. We
use the term degree of autonomy7 to indicate the relative balance

7 The term level of autonomy
is sometimes used inter-
changeably with degree of
autonomy but we will just
use degree here. The term
level of autonomy is com-
monly used in the field of
human–robot interaction, as
noted by Michael Goodrich
and Alan Schultz in their
survey [157].

of automatic and human-assisted operation. At one end of the
scale, we have entirely manual operation. This corresponds to a
teleoperated robot, i.e. a robot that is controlled completely by a
human operator, possibly mediated through a computer system,
and typically from some distance away (hence the prefix tele8).

8 The prefix tele comes from
the Greek word tēle meaning
“far off.”

At the other end of the scale, we have completely automatic
operation, i.e. the robot operates entirely on its own, with no
assistance or intervention by a human operator.

The strength of autonomy is sometimes referred to as self-
sufficiency: the capability of a system to take care of itself. The
degree of autonomy is sometimes referred to as self-directedness:
freedom from outside control.9 These two dimensions corre-

9 The two dimensions of
autonomy — self-sufficiency
and self-directedness —
were suggested by Jeffrey
Bradshaw and colleagues in
an article entitled “Dimen-
sions of adjustable auton-
omy and mixed-initiative
interaction” [158].

spond more or less to the two dimensions of task entropy and
degree of automation in Fig. 4.1 and the strength of autonomy
and degree of autonomy, respectively.

Overall, we see that autonomy is a relative, relational, and
situated notion: an agent is autonomous with respect to an-
other agent, for some given action or goal, in some context, if
its behaviour regarding that action or goal is not imposed by or
depends on that other agent.10

10 The relational and situated
nature of autonomy — the
idea that an agent is au-
tonomous for some action or
goal and from something or
some agent — is highlighted
by Cristiano Castelfranchi
in his paper “Guarantees
for Autonomy in Cogni-
tive Agent Architecture”
[159] and developed by
him with Rino Falcone in
“Founding Autonomy: The
Dialectics Between (Social)
Environment and Agent’s
Architecture and Powers”
[160] and by Cosmin Cara-
belea, Olivier Boissier, and
Adna Florea in their article
“Autonomy in Multi-agent
Systems: A Classification
Attempt” [161].

4.2.2 Adjustable, Shared, Sliding, and Subservient Autonomy

Many of the types of autonomy we noted in the opening para-
graph of this chapter are ways of qualifying the degree of auton-
omy and the relative involvement of a human with the cognitive
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system in carrying out tasks and pursuing goals. For example,
the terms adjustable, shared, sliding, and subservient autonomy
(see Section 4.9) all suggest different degrees of autonomy in
this balance of human-assisted and automatic operation in sit-
uations where the task is undertaken jointly by both humans
and machines. The key point is that in these modes of autonomy
the system controls its own behaviour to a greater or lesser ex-
tent but the goals are determined by the human with which it is
interacting.11

11 The balance between
human-assisted and auto-
matic operation in systems
that exhibit shared, sub-
servient, adjustable, and
sliding autonomy is ad-
dressed in a white paper
“Measuring Performance
and Intelligence of Systems
with Autonomy: Metrics for
Intelligence of Constructed
Systems” written by Alex
Meystel to explain the goals
of a workshop in 2000 [162].Although the most common approach to adjustable and

shared autonomy is to assign supervisory or high-level func-
tions to the human participant and lower-level functions to the
autonomous agent, there are cases where this is reversed and
the human intervenes when some difficult low-level operation is
needed (e.g. interpreting a visual scene12).

12 For an example of the
reversal of the usual as-
signment of high-level
supervisory tasks to a hu-
man and low-level tasks
to the autonomous agent
or robot, see the “Towards
perceptual shared autonomy
for robotic mobile manipu-
lation” by Benjamin Pitzer
and colleagues [163]. Here,
the human does the diffi-
cult job of solving low-level
perceptual tasks and uses
autonomous machine intel-
ligence for the remaining
high-level and low-level
functions.

The term sliding autonomy is sometimes used instead of ad-
justable autonomy as it suggests the possibility of dynamically
altering the level of autonomy as the circumstances require, slid-
ing it back and forth as the task progresses. Sliding autonomy
(as well as adjustable, shared, and subservient autonomy) gives
rise to some interesting problems, especially when working with
a team of robots. For example, the human operator may not al-
ways be aware of everything that is happening and therefore the
robot may have to ask for help rather than depending on the op-
erator to step in at just the right time when the need arises. Also,
when assuming control of one of the robots, the human will take
time to assess the situation. The robot needs to take account of
this when making a decision to ask for help. When the human
does take control of a robot, then it is important that the other
robots in the team — still operating autonomously — remain
autonomous and continue to work together effectively.

4.2.3 Shared Responsibility

The following ten modes of cooperation illustrate the ways in
which the responsibility for carrying out a task can be shared by
a human and a computer.
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1. The human does the whole job up to the point of turning it
over to the computer to implement.13 13 This ten-level spectrum

of robot autonomy was
suggested by Thomas
Sheridan and William
Verplank in 1998, in the
same technical report [156]
mentioned in Sidenote 6
above. The descriptions of
the ten levels are the same
as they appear in Table 8.2,
pp. 8-17 – 8-18, in Sheridan’s
and Verplank’s report.
Other descriptions have also
been used, for example in
a survey of human–robot
interaction by Michael
Goodrich and Alan Schultz
[157] but some of the finer
nuances in Sheridan’s and
Verplank’s formulation are
lost in these descriptions.

2. The computer helps by determining the options.
3. The computer helps determine options and suggests one,

which the human need not follow.
4. The computer selects action and the human may or may not do

it.
5. The computer selects action and implements it if the human

approves.
6. The computer selects action, informs the human in plenty of

time to stop it.
7. The computer does whole job and necessarily tells the human

what it did.
8. The computer does whole job and tells the human what it did

only if the human explicitly asks.
9. The computer does whole job and tells the human what it did

and it, the computer, decides he should be told.
10. The computer does whole job if it decides it should be done,

and if so tells the human, if it decides he should be told.

In these ten modes of operation, there is a continuum: from the
agent — the computer or robot — being completely controlled
by a human (i.e., tele-operated) all the way through to the agent
being completely autonomous, operating independently of the
human, not requiring any input from the human, and not requir-
ing any approval for its actions either. This scale reflects another
operational characterization of autonomy that applies in partic-
ular to robots: the tolerance of the robot to being neglected by a
human operator.14 14 The idea of tolerance to

neglect by a human operator is
suggested by Jacob Crandall
et al. in a paper on human-
robot interaction [164].

4.2.4 Energy Autonomy

There is one other type of autonomy that we need to mention
under the heading of robotic autonomy. Quite often in robotics,
and in mobile robotics in particular, when people refer to an
autonomous robot they simply mean that the robot can operate
for extended periods of time without being connected to an ex-
ternal power outlet. In other words, the robot can operate using
some form of mobile power source, such as a battery or fuel cell.
This is what is meant by energy autonomy. In this case, being au-
tonomous has nothing to do with the unpredictability of the task
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or environment or the degree of automation: it simply means en-
ergy self-sufficiency for some limited but usually lengthy period
of time.

Let us move on now to consider an alternative perspective on
autonomy: biological autonomy.

4.3 Biological Autonomy

When we consider biological — natural — autonomous enti-
ties, the issue of autonomy becomes one of survival, typically
in the face of precarious conditions, i.e. environmental condi-
tions in which the entity has to work to keep itself going as an
autonomous system, both physically and organizationally as a
dynamic self-sustaining entity.

Living systems face two problems: they are delicate and they
are dissipative. Being delicate means that they are easily dis-
rupted and possibly destroyed by the stronger physical forces
present in their environment (including other biological agents).
Consequently, living systems have to avoid these disruptions
and repair or heal them when they do occur. Dissipation arises
from the fact that living systems are comprised of far-from-
equilibrium processes. This means that the system must have
some external source of energy or matter if they are to avoid
lapsing into a state of thermodynamic equilibrium. If they do
succumb to this, they come to rest and cease to be able to change
in response to or in anticipation of any external factors that
would threaten their autonomy or their existence. Again, as
with the delicacy of living systems, the dissipation inherent in
far-from-equilibrium stability means that the system has to con-
tinually acquire resources, repair damage to itself, and avoid
damage in the first place. All of this has to be done by the agent
itself.

From this perspective, biological autonomy is the self-maintaining
organizational characteristic of living creatures that enables them
to use their own capacities to manage their interactions with
the world in order to remain viable: i.e. compensate for dissi-
pation, avoid disruption, and self-repair when necessary.15 In

15 This characterization of
biological autonomy as the
self-maintenant organiza-
tional characteristic of living
creatures was introduced by
Wayne Christensen and Cliff
Hooker in their paper “An
interactivist-constructivist
approach to intelligence:
self-directed anticipative
learning” [165].other words, biological autonomy is the process by which a sys-
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Figure 4.2: An alternative
characterization of an au-
tonomous agent situated
in a two-dimensional
space spanned in one di-
mension by behavioural
autonomy and in the
other by constitutive
autonomy (see [151]).

tem manages — self-regulates — to maintain itself as a viable
entity in the face of the precarious circumstances with which the
environment continually confronts it.

4.3.1 Behavioural and Constitutive Autonomy

In the Section 4.2, we characterized autonomy by strength and
by degree, relating these characteristics to the two-dimensional
space spanned in one dimension by its robustness to the amount
of unpredictability in the task and the working environment (its
strength) and in the other dimension by the degree of human
assistance that is required to achieve the task (its degree). These
two dimensions reflect the task entropy (i.e. uncertainty) and the
degree of automation, shown in Figure 4.1.

For biological autonomy, an alternative distinction can be
made, differentiating between behavioural autonomy and consti-
tutive autonomy, as illustrated in Figure 4.2 (see also Section 4.9).
The behavioural dimension focusses on the degree of indepen-
dence of human assistance and the extent to which the system
sets its own goals, and therefore corresponds loosely to degree
of autonomy and the dimension of degree of automation in Figure
4.1. The constitutive autonomy dimension focusses on the or-
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ganizational characteristics that allow the system to maintain
itself as an identifiable autonomous entity. Since some systems
don’t exhibit the requisite organizational characteristics (e.g.
organizational closure; see Section 4.3.6), they aren’t constitu-
tively autonomous. These occupy the white region at the bottom
of the space. Those systems that are constitutively autonomous
can make different levels of contribution to the maintenance of
their autonomy and, thus, this dimension corresponds loosely to
strength of autonomy and the task entropy dimension in Figure 4.1
(in this case we interpret the term task in a very general sense to
mean anything the system can be engaged in as it survives in its
environment).

Behavioural autonomy focusses on the external characteristics
of the system while constitutive autonomy focusses on the inter-
nal organization and the organizational processes that manage
to keep the system viable and autonomous. To an extent, the
external behavioural aspects mirror the degree of autonomy as it
focusses on the ability of the system to function without human
assistance and the system’s ability to set and achieve its own
goals.16 16 According to Tom Froese,

Nathaniel Virgo, and Ed-
uardo Izquierdo [151]
behavioural autonomy in-
cludes — in addition to the
degree of independence
of human assistance and
the degree to which the
system sets its own goals
— the system’s robustness
and flexibility. This latter
attribute reflects the way we
have characterized strength
of autonomy rather than
the degree of autonomy and
therefore it mixes degree of
autonomy and strength of
autonomy somewhat.

So, can we draw a similar parallel between constitutive au-
tonomy and strength of autonomy as characterized by the task
entropy dimension? On balance, yes we can. The concept of
constitutive autonomy is concerned with maintaining the via-
bility of the system through processes of internal organization
(or self-organization). These processes can be less or more effec-
tive in dealing with the uncertainty and precariousness of the
environment in which the system is embedded and in which it
has to survive. Constitutive autonomy focusses on the organiza-
tional principles by which the system arises and survives as an
identifiable autonomous entity in the first place and so is closely
linked to the issue of autonomy in living systems, i.e. biological
autonomy. In fact, the concept of constitutive autonomy derives
from a very specific form of self-organization referred to as au-
topoiesis and organizational closure, two subjects we will discuss
below in Section 4.3.6. Essentially, constitutive autonomy has
more to do with the system’s own internal processes than it does
with the external characteristics of a precarious environment.



autonomy 93

Nevertheless, the two are related: a system can’t deal with uncer-
tainty and danger if it is not organizationally — constitutively —
equipped to do so.

There is just one problem that spoils this picture. The condi-
tions for constitutive autonomy, derived from the conditions of
autopoiesis and organizational closure, are very clear and strict
with the result that a system is either constitutively autonomous
or it isn’t. From this perspective, the dimension of constitutive
autonomy is less a spectrum and more of a binary classification.
On the other hand, once it is constitutively autonomous, the
self-organizing processes that maintain the system autonomy17 17 As we will see later, it

would be more accurate to
refer to them as processes
of self-construction and
self-production.

can exhibit different levels of robustness to precarious circum-
stances. We will return to this issue later in the chapter when
we introduce the concept of recursive self-maintenance, i.e. the
contributions that a system can make to its own survival as an
autonomous entity.

4.3.2 Constitutive and Interactive Processes

The constitutive-behavioural distinction is sometimes cast as
a difference between constitutive processes and interactive pro-
cesses.18 As we have seen, constitutive processes deal with the 18 The difference between

constitutive and interactive
processes is discussed by
Tom Froese and Tom Ziemke
in their paper “Enactive
Artificial Intelligence:
Investigating the systemic
organization of life and
mind” [104].

system itself, its organization, and its maintenance as a system
through on-going processes of self-construction and self-repair.
On the other hand, interactive processes deal with the interac-
tion of the system with its environment. Both processes play
complementary roles in autonomous operation of the systems.
Constitutive processes are more fundamental to the autonomy of
the system but both are required. Constitutive processes operate
on faster time scales than interactive processes. Often robotic
autonomy tends to be more concerned with interactive pro-
cesses whereas biological autonomy is critically dependent on
the constitutive processes. From this perspective, we can see that
biological autonomy and constitutive autonomy deal very much
with the same issues. For more detail and further reading, please
refer to the relevant part of Section 4.9 below.
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4.3.3 Homeostasis

The process of self-regulation is central to constitutive autonomy.
In biological systems, the automatic regulation of physiological
functions is referred to as homeostasis.19 In particular, homeo-

19 The word homeostasis
derives from “homeo,”
meaning similar, and “sta-
sis” meaning stands still
or stable. It was coined by
Walter Cannon in 1929 in
his paper “Organization for
Physiological Homeosta-
sis” [166]. It formalizes the
idea advanced in the nine-
teenth century by Claude
Bernard that “all the vital
mechanisms, however varied
they may be, have only one
object, that of preserving
constant the conditions of
life in the internal environ-
ment" [167].

static processes regulate the operation of a system in order to
keep the value of some system variables constant or within ac-
ceptable bounds. It does this by sensing any deviation from the
desired value and feeding this error back to the control mecha-
nism to correct the error. The desired value is called the setpoint
in control theory and the use of the deviation from the desired
value is called feedback. Body temperature, for example, is reg-
ulated by perspiration when we are hot (the heat used to convert
the water secreted by the sweat glands into water vapour is
transferred from the body to the water and this acts to lower
temperature) and by shivering when we become too cold (the
muscles generate heat when they twitch violently, thereby act-
ing to increase temperature). However, homeostasis involves
more than just maintaining the required system variable constant
through the use of feedback as, for example, a thermostat would
do when regulating the temperature of a room. A homeostatic
control system itself depends on the self-regulation and will be
damaged or destroyed if the regulation fails. The thermostat, on
the other hand, isn’t impacted at all if it isn’t working correctly,
although the occupants of the room it is regulating may well
be.20

20 Homeostatic systems are
more than just systems with
feedback regulators. As
Willem Haselager points
out [155], they are self-
regulating and the integrity
of the homeostatic system
itself depends on the self-
regulation working properly.
If it doesn’t, the system itself
will be damage or destroyed.

One prominent school of thought is that the autonomy of
an agent is effected through a hierarchy of homeostatic self-
regulatory processes, exploiting a spectrum of associated affec-
tive (i.e. emotional or feeling) states, ranging from basic reflexes
linked to metabolic regulation, through drives and motives, and
on to the emotions and feelings often linked to higher cognitive
functions.21 Different homeostatic processes regulate different

21 The progression of pro-
cesses of homeostasis from
basic reflexes and metabolic
regulation, through drives
and motives, to emotions
and feelings is described by
Rob Lowe, Anthony Morse,
and Tom Ziemke in the
context of a schema for a
cognitive architecture that
places affect (i.e. emotion
and feeling) on an equal
footing with more conven-
tional cognitive processes
[134, 135]. This progression
follows closely Antonio
Damasio’s hierarchy of lev-
els of homeostatic regulation
[168].

system properties. Typically, the autonomous agent is perturbed
during interactions with the world with the result that the orga-
nizational dynamics have to be adjusted. This process of adjust-
ment is exactly what is meant by homeostasis — self-regulation
— and the motives at every level of this hierarchy of homeostatic
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processes are effectively the drives that are required to return
the agent to a state where its autonomy is no longer threatened.
In the interaction with the world around it, the perturbations
of the agent by the environment have no intrinsic value in their
own right — they are just the stuff that happens to the agent as it
goes about its business of survival — but for the agent this stuff,
these interactions and perturbations, have a perceived value in
that they act to endanger or support its autonomy. This value is
conveyed though the affective aspect of these homeostatic pro-
cesses and consequently the agent then attaches some value to
what is an otherwise neutral world (even if it is a precarious
one).

4.3.4 Allostasis

While many autonomous systems are self-governing in the sense
that they adjust automatically to events in the environment and
self-correct when necessary (e.g. by way of homeostasis), other
autonomous systems begin to adjust before the event actually oc-
curs. This form of autonomy requires a continual preparation for
what might be coming next. It means that an autonomous sys-
tem anticipates what events might occur in its environment and
actively prepares for them so that it is capable of dealing with
them if they do occur. From this perspective, autonomy requires
pre-emptive action, not just reactive action, and predictive self-
regulation, not just reactive self-regulation. These autonomous
systems ready themselves for multiple contingencies — i.e. pos-
sible events — and have several strategies for dealing with them.
They deploy them while pursing some goal or other that the
system has defined for itself. This characteristic can be viewed
as predictive homeostasis and is known as allostasis.22 Allosta-

22 The word allostasis was
coined from the Greek
roots allo, meaning other
or departure from normal,
and stasis meaning stand-
ing still or stable. Thus,
allostasis is concerned with
adapting to change in or-
der to achieve the goal of
stability in the face of un-
certain circumstances. For
an overview of allostasis
and the relationship with
homeostasis, see the articles
by Peter Sterling “Princi-
ples of allostasis” [169] and
“Allostasis: A model of
predictive behaviour” [170].
These papers emphasize that
efficient regulation requires
the anticipation of needs and
preparation to satisfy them
before they arise: “The brain
monitors a very large num-
ber of external and internal
parameters to anticipate
changing needs, evaluate
priorities, and prepare the
organism to satisfy them
before they lead to errors.
The brain even anticipates
its own local needs, increas-
ing flow to certain regions
— before there is an error
signal” [170]. Although
you can view allostasis as a
complementary mechanism
to homeostasis, Sterling
notes that it was introduced
as a potential replacement
for homeostasis as the core
model of physiological
regulation.

sis is based on the principle that the goal of self-regulation is
fitness to meet the demands placed on the autonomous system
as it survives in its environment. To be fit, the system needs to
be efficient: to prevent errors and minimize costs. This can be
best accomplished by using prior information to anticipate the
likely demands that will be placed on the system and then pre-
emptively adjust all the parameters to meet this demand. Thus,
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Figure 4.3: Homeostasis
and allostasis are dif-
ferent approaches to
self-regulation. Home-
ostasis holds the value
of a controlled variable
constant by sensing its
deviation from a set-
point and using negative
feedback to correct the
error. Allostasis changes
the controlled variable
by predicting what level
will be needed and by
overriding local feedback
to meet the anticipated
demand. From [170],
© 2012, with permission
from Elsevier.

the goal of allostasis is efficient regulation, achieved by the brain
sensing the current state of the organism and its environment,
integrating this information with prior knowledge to change the
controlled variable by predicting what value will be needed to
meet the anticipated demand, possibly overriding local feed-
back to do so. These predictions are then absorbed into the prior
knowledge to improve the future predictions.

While the key difference between allostasis and homeostasis
is the predictive character of allostasis in contrast to the reac-
tive character of homeostasis, they also differ in other important
ways. Allostatic systems adapt to change rather than resist it, as
homeostatic systems do. Also, allostasis is effected at a higher
level of organization, involving greater number of sub-systems
acting together in a coordinated manner. In contrast, mecha-
nisms for homeostasis operate at a simpler level of negative
feedback control.23

23 For additional details on
the way that allostasis differs
from homeostasis, see Peter
Sterling’s articles “Principles
of allostasis” [169] and
“Allostasis: A model of
predictive behaviour” [170].
Refer also to the paper
“Autonomous agency, AI,
and allostasis” by Ioan
Muntean and Cory Wright
[171].

The focus on predictive regulation in allostasis mirrors strongly
the anticipatory nature of cognition. We will return to this link
between autonomy and cognition in Section 4.8. Figure 4.3 illus-
trates the essential difference between homeostasis and allostasis.

4.3.5 Self-organization and Emergence

Autonomy is closely linked to self-organization, yet another
concept that is difficult to tie down.24 One definition of self-

24 Margaret Boden points
out that autonomy, self-
organization, and freedom
are three notoriously slip-
pery notions and none of
them can be properly under-
stood without considering
the others [150]. In this
primer, we haven’t consid-
ered the concept of freedom
explicitly so the reader is
encouraged to read Boden’s
editorial to understand
the role freedom plays in
autonomy.organization goes as follows.
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“A process in which pattern at the global level of a system
emerges solely from numerous interactions among the lower-
level components of the system. The rules specifying interactions
among the system’s components are executed using only local
information, without reference to the global pattern.”25

25 This definition of self-
organization is provided in
the Encyclopedia of Cognitive
Science [85].

Typically, patterns that arise from self-organization, such as
the stripes on a zebra’s coat, result from the balance between
processes of local activation and inhibition.

Emergence26 also refers to a process involving interacting

26 Readers interested in a
philosophical account of
emergence and the related
issues of anti-reductionism,
subservience, and down-
ward causation will find
many insights in an article
by Mark Bickhard and Don-
ald Campbell [172]. Anil
Seth provides a technical
introduction to emergence
[153], distinguishing be-
tween nominal, weak, and
strong emergence. Strong
emergence claims that
macro-level properties are in
principle not deducible from
obervation of the micro-level
components and they have
causal powers that are irre-
ducible, i.e. they arise only
because of the existence of
the emergent behaviours.
These causal powers are
directed at the behaviour
of the components from
which the emergent pattern
emerges. This macro-to-
micro causation is referred
to as downward causation (see
also Section 4.3.8).

components in a system and the consequent generation of a
global pattern. However, in this case, the global pattern emerges
as something qualitatively different from the underlying as-
sembly of components and, most significantly, is not simply a
consequence of the superposition of the contributions of the
individual components: they are not just “added together” to
produce the result. Something else is involved in the process. It
may be due to a particular form of non-linearity in the way the
local components combine together to form the global pattern
but it may also be due to a mutual influence between the sys-
tem’s local interactions and the global pattern. This form of self-
organization gives rises to systems that have a clear identity or
behaviour that results from two factors: (a) local-to-global deter-
mination and (b) global-to-local determination. In local-to-global
determination, the emergent process has its global identity con-
stituted and constrained by local interactions. In global-to-local
determination, the global identity and its interaction with the
system environment constrain the local interactions.27 This is

27 The concept of emergent
self-organization and the
two factors of local-to-
global and global-to-local
interaction that are involved
in it are discussed in a book
entitled Enaction: Toward a
New Paradigm for Cognitive
Science [48].

sometimes referred to as emergent self-organization (refer back to
Section 1.4 and Figure 1.8). In fact, self-organization has also
been defined as “the spontaneous emergence (and maintenance)
of order, out of an origin that is ordered to a lesser degree.”28

28 This definition of self-
organization is due to
Margaret Boden and is
taken from her editorial
“Autonomy: What is it?”
[150].

This definition provides the key link between self-organization,
emergence, and autonomy: that self-organization results from
the intrinsic spontaneous character of the system (possibly in-
volving interaction with the environment) rather than being im-
posed by some external force or agent. In other words, emergent
self-organization is autonomous and, vice versa, autonomous sys-
tems typically involve some form of emergent self-organization.
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4.3.6 Self-production and Self-construction: Autopoiesis and Or-
ganizational Closure

Emergent self-organization gives rise to a special view of biolog-
ical autonomy, a view that is also characterized by self-production.
Not only is there a reciprocal local-global and global-local inter-
action but the nature of the interaction is to re-create the local
components from which the global system arises. This is essen-
tially constitutive autonomy. The components can be physical
entities or logical organizational ones.

A system which exhibits constitutive autonomy actively gen-
erates and sustains its existence and systemic identity under
precarious conditions, i.e. conditions which, in the absence of
some appropriate form of emergent self-organization and asso-
ciated behaviour, would cause the system to cease to exist and
cause its identity to be destroyed.

Constitutive autonomy is closely related to a concept known
as organizational closure. Francisco Varela famously equates orga-
nizational closure with autonomy:

“Autonomous systems are mechanistic (dynamic) systems de-
fined as a unity by their organization. We shall say that autonomous
systems are organizationally closed. That is, their organization is charac-
terized by processes such that (1) the processes are related as a network,
so that they recursively depend on each other in the generation and real-
ization of the processes themselves, and (2) they constitute the system as
a unity recognizable in the space (domain) in which the processes exist.”
[97], p. 55 (emphasis in the original).

Humberto Maturana and Francisco Varela subsequently de-
fine autonomy as “the condition of subordinating all changes to
the maintenance of the organization.”29

29 This definition of auton-
omy appears in the glossary
of Autopoiesis and Cogni-
tion — The Realization of the
Living [96].

Organizational closure is a necessary characteristic of a partic-
ular form of self-producing self-organization called autopoiesis,30

30 Autopoiesis, from the
Greek αυτóς (autos, meaning
self) and πoιειν (poiein, to
make or produce) and hence
self-production.

that operates at the bio-chemical level, e.g., in cellular systems.
Autopoiesis was introduced by Maturana and Varela, in the
1970s31 and defined as follows.

31 The seminal work of
Humberto Maturana and
Francisco Varela on au-
topoiesis is documented in
The Biology of Cognition pub-
lished in 1970 by Maturana
[94] and in a subsequent
paper “The Organization of
the Living: a Theory of the
Living Organization” in 1975
[95]. The definitive exposi-
tion is contained in jointly
authored book Autopoiesis
and Cognition — The Realiza-
tion of the Living published in
1980. They also published a
popular and very accessible
account of their position
in 1987 in a book entitled
The Tree of Knowledge — The
Biological Roots of Human
Understanding. Varela’s
landmark book Principles of
Biological Autonomy [97] was
published in 1979.

“An autopoietic system is organized (defined as a unity) as a network of
processes of production (transformation and destruction) of components
that: (1) through their interactions and transformations continuously
regenerate and realize the network of processes (relations) that produced
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them; and (2) constitute it (the machine) as a concrete unity in the space
in which they exist by specifying the topological domain of its realization
as such a network.” [97], p. 13 (emphasis in the original).

Thus, autopoietic systems are quite literally self-organizing sys-
tems that self-produce. Maturana and Varela later expanded the
concept to deal with autonomous systems in general and refer
to it in this context as operational closure, rather than autopoiesis
which is specific to the bio-chemical domain.32

32 The operational closure
vs. organizational closure
terminology can be confus-
ing because in some earlier
publications, e.g. [97], Varela
refers to organizational closure
but in later works (by Matu-
rana and Varela themselves,
e.g. [14], and by others,
e.g. [48]) this term was
subsequently replaced in
favour of operational closure.
However, as Tom Froese
and Tom Ziemke note, the
term operational closure is
appropriate when one wants
to identify any system that
is identified by an observer
to be self-contained and
parametrically coupled with
its environment but not con-
trolled by the environment.
On the other hand, organiza-
tional closure characterizes
an operationally-closed
system that exhibits some
form of self-production or
self-construction [104].

4.3.7 Self-maintenance and Recursive Self-maintenance

These organizational principles are also reflected in Mark Bick-
hard’s concepts of self-maintenance and recursive self-maintenance
in far-from-equilibrium systems.33 Self-maintenant systems con-

33 The concepts of self-
maintenance and recursive
self-maintenance were in-
troduced by Mark Bickhard
in an article “Autonomy,
Function, and Representa-
tion” [13]. Arguably, these
two concepts represent a
generalization of the ideas
of self-construction and
self-production introduced
by Humberto Maturana and
Francisco Varela in their
processes of autopoiesis,
organizational closure, and
operational closure; see
Sidenotes 30 and 32.

tribute to the conditions which are necessary to maintain it, i.e.
to keep it going. In contrast, recursive self-maintenant systems
exhibit a stronger form of autonomy in that they can deploy
different processes of self-maintenance depending on environ-
mental conditions, recruiting different self-maintenant processes
as conditions in the environment require. Self-maintenance and
recursive self-maintenance align well with the concepts of self-
organization and emergent self-organization (constitutive auton-
omy), respectively.

4.3.8 Continuous Reciprocal Causation

In the last three sections, there has been a recurring theme: a cir-
cular relationship between part and whole: between local factors
and global factors. It appears that the characteristics of emer-
gence and emergent self-organization are deeply dependent on
dynamic re-entrant structures. This is related to the concept of
continuous reciprocal causation (CRC) which occurs when some
system is both continuously affecting and simultaneously being
affected by activity in some other system.34 In other words, one

34 The concept of continuous
reciprocal causation (CRC)
is discussed in depth in an
article “Time and Mind” by
Andy Clark [24].

system causes an effect in a second system which then causes
an effect in the first, reinforcing the dynamic and causing the
process to continue: a very circular process. CRC can also oc-
cur in a single system. In this case, the causal contribution of
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each systemic component partially determines, and is partially
determined by, the causal contributions of large numbers of
other systemic components. This single-system CRC is often re-
ferred to as circular causality or circular causation.35 While circular 35 The term circular causality

is used by Scott Kelso in
Dynamic Patterns – The Self-
Organization of Brain and
Behaviour [21] while Andy
Clark uses the term circular
causation in his book Being
There: Putting Brain, Body,
and World Together Again [23].
Clark provides an intuitive
example: “Consider the way
the actions of individuals in
a crowd combine to initiate
a rush in one direction,
and the way that activity
then sucks in and molds
the activity of undecided
individuals and maintains
and reinforces the direction
of collective motion.”

causality can occur between distinct sub-systems in this overall
system, it more usually reflects the interaction between global
system dynamics (the whole) and local system dynamics (the
parts). In other words, circular causality exists between levels of
a hierarchy of system and sub-system. This influence of macro-
scopic levels on microscopic levels in a system is captured in the
term downward causation.36 In circularly causal systems, global

36 The concept of downward
causation, i.e. that global-
to-local or macroscopic-
to-microscopic aspect of
circular causality whereby
the global system behaviour
causally influences the indi-
vidual system components,
is discussed by Anil Seth
in his article“Measuring
Autonomy and Emergence
via Granger Causality” [153].

system behaviour influences the local behaviour of the system
components and yet it is the local interaction between the com-
ponents that determines the global behaviour. Thus, in biological
autonomy, the degree of participation of the components of a
system is determined by the global behaviour which, in turn, is
determined by the interaction among the components through
causal reciprocal feedback loops. Sounds confusing? It is! As
you would expect, modelling circular causality and downward
causation is still an open and important research problem. De-
spite the apparent esoteric nature of the material — and of this
overview of it — it does have very practical value. To see this, we
now consider a topic that is biologically inspired but is driven by
the needs of software engineering.

4.4 Autonomic Systems

The ultimate goal for many people in computer technology is
to produce a software-controlled system that you can simply
turn on and leave to its own devices, knowing that if anything
unforeseen happens, the system will sort itself out. This very
desirable capability is often referred to as autonomic computing.37

37 According to Jeffrey
Kephart and David Chess in
“The Vision of Autonomic
Computing,” an article in
IEEE Computer [173], the
term autonomic computing
was introduced by IBM
vice-president Paul Horn,
in a keynote address to
the National Academy
of Engineers at Harvard
University in March 2001
[174].

The originator of the term, IBM vice-president Paul Horn, de-
fined autonomic computing systems as systems that can manage
themselves, given high-level objectives from administrators.
Thus, autonomic computing is strongly aligned with the concept
of subservient autonomy which we discussed above. The term
autonomic computing was inspired by the autonomic nervous
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system found in mammals, i.e. the part of the nervous system
that operates automatically to regulate the body’s physiological
functions such as heart-beat, breathing, and digestion. Thus, au-
tonomic computing is also strongly aligned with self-regulatory
biological autonomy, in general, and homeostasis and allosta-
sis, in particular. Autonomic computing systems aim to exhibit
several operational characteristics, including the ability to be self-
configuring, self-healing, self-optimizing, and self-protecting.38 38 The characteristics of

autonomic computing —
self-configuring, self-healing,
self-optimizing, and self-
protecting — are described
in the IBM white paper
“An architectural blueprint
for autonomic computing”
[175].

Other characteristics have also been suggested for autonomic
systems.39 The question that arises is: how can we build such

39 James Crowley and
colleagues suggest that
an autonomic system
should have capabilities
for self-monitoring, self-
regulation, self-healing, and
self-description; see [176].

computing systems? Should we focus on autonomy or should we
focus on cognition? We return to these questions in Section 4.8.

4.5 Different Scales of Autonomy

It is worth noting that autonomy applies at different scales. This
means that autonomy appears at different levels in the hierar-
chies that are evident in natural systems. For example, think of
an ant colony and an individual ant in that colony: both exhibit
characteristics of autonomy but the autonomy of the ant is sub-
servient to that of the colony. An eco-system, such as a tidal lake,
may also exhibit element of autonomy over an extended period
of time, self-adjusting as a complete system to keep the eco-
system healthy. Within the eco-system there are many subsidiary
autonomous systems: species and individuals. Again, an au-
tonomous individual at one level of this ecological hierarchy may
be subservient and therefore less autonomous when considered
as a component or element of a system at a larger scale.

4.6 Goals

Looking back to the opening remark about autonomous systems
setting their own goals, we note that this goal-setting capabil-
ity brings with it an interesting problem. If a system, natural or
artificial, is autonomous and self-controlled with its own self-
determined goals, then how do you get it to do something useful
for others: e.g. the people that interact with it?40 This is particu-

40 The tension between the
goals an autonomous system
sets for itself and the goals
another agent might wish
it to pursue is addressed
in a short article by the
author, entitled “Reconciling
Autonomy with Utility: A
Roadmap and Architecture
for Cognitive Development”
[177].larly relevant for forms of autonomy such as adjustable, shared,
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sliding, and subservient autonomy, where the autonomy of the
system is intentionally traded-off against the needs and require-
ments of the agents with which it interacts. This balance of goals
that serve the needs of two or more agents is exemplified per-
fectly by symbiotic relationships where two or more autonomous
systems interact to the mutual benefit of each other, while re-
maining focussed on their own goals and without sacrificing
their autonomy.

The problem is even more acute for artificial autonomous
systems because there is a clear conflict between the need for an
external designer of the system and, at the same time, the need
for the system to set its own goals (or take on board the goals
of other agents) and autonomously maintain itself. In the words
of Ezequiel Di Paolo and Hiroyuki Iizuka, “This is the apparent
paradox of autonomy. The system should in some sense build
itself, the designer should intervene less, but it should at the
same time be more intelligently involved in setting the right
processes in motion.”41

41 This quotation is taken
from Ezequiel Di Paolo’s
and Hiroyuki Iizuka’s
paper “How (not) to model
autonomous behaviour”
[178].

4.7 Measuring Autonomy

So far, our treatment of autonomy has been entirely qualitative:
we haven’t said anything about what types of mechanisms or
algorithms might be used to bring about autonomy in a system,
and we haven’t even hinted at some formal mathematical the-
ory of autonomous systems. To a large extent, this is because no
such theory yet exists, at least no mature proven one. However,
this does not mean that people are not trying to develop one.
A natural place to start in this endeavour is to try to measure
autonomy since, without measurement and quantitative eval-
uation, it is difficult to gauge progress.42 However, despite the

42 The observation that it is
difficult to make progress in
advancing a theory of au-
tonomy was made by Alex
Meystel in a white paper
explaining the goals of a
workshop: ‘’Measuring Per-
formance and Intelligence
of Systems with Autonomy:
Metrics for Intelligence of
Constructed Systems” [162].

importance of autonomy and the acknowledged need to be able
to quantify and measure the autonomy of a system (or its degree
of autonomy), such measures are very rare. One attempt to rem-
edy this situation involves an information-theoretic43 measure

43 Information-theoretic
approaches are based on
a branch of mathematics
known as information
theory. It has its roots in
the seminal work of Claude
Shannon and in his famous
1948 paper “A Mathematical
Theory of Communication”
[179] in particular. This
work builds on the formal
idea of information as the
reduction of uncertainty of
the outcome of events and
its mathematical counterpart
entropy.

based on the observations that an autonomous system should
not be governed by its environment and should determine its
own goals. In particular, it uses the degree to which mutual in-
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formation (a formal information-theoretic concept) between the
system and its environment is caused by the environment or by
the system itself. This is referred to as causal autonomy. 44 At 44 Causal autonomy: a quanti-

tative measure of autonomy;
for more details, see “Au-
tonomy: An information
theoretic perspective” by
Nils Bertschinger and col-
leagues [154].

present, it is not certain that this measure of autonomy can be
used with autonomous systems that exhibit self-reference and
that are self-maintaining. The search for such a measure remains
an open problem, like so many other issues in this area. An-
other related quantitative measure, G-autonomy, is based on the
premise that an autonomous system is not fully determined by
its environment and a random system should not have a high
degree of autonomy.45 In essence, a G-autonomous system “is 45 G-autonomy: a quantita-

tive measure of autonomy
introduced by Anil Seth
in “Measuring Auton-
omy and Emergence via
Granger Causality” [153].
G-autonomy builds on the
work of Nils Bertschinger
and colleagues (see Sidenote
44).

one for which prediction of its future evolution is enhanced by
considering its own past states, as compared to predictions based
on past states of a set of external variables.” The G-autonomy
measure is based on the statistical concept of Granger causality
whereby a signal A causes a signal B if information in the history
of A predicts the future of B more accurately than predictions
based on the past of B alone.46

46 For a detailed treatment
of Granger causality, see
“Investigating causal rela-
tions by econometric models
and cross-spectral methods”
by Clive Granger [180] and
“Granger causality” by Anil
Seth [181].

4.8 Autonomy and Cognition

In Chapter 1 we said that autonomy is, to a greater or lesser
extent, an important attribute of cognitive systems because it
allows the cognitive system to operate without human assistance.
We can now see that perhaps we should have reversed the order,
put it the other way around, and said that cognition may be an
important attribute of an autonomous system. Certainly that
is the case from the perspective of biological autonomy. This
is an important switch in our understanding of cognition and
autonomy so let’s take the time to tease it out a little more.

Cognition, we agreed in Chapter 1, involves the ability to
perceive the environment, learn from experience, anticipate the
outcome of events, act to pursue goals, and adapt to changing
circumstances. We also said that cognitive systems are typically
autonomous, in the sense that they operate without human in-
tervention. However, it is not necessarily the case that a cognitive
system has to be autonomous: there is no reason in principle
why these characteristics of perception, learning, anticipation,
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Figure 4.4: Autonomy and
cognition are two over-
lapping and complemen-
tary system attributes:
some but not necessarily
all cognitive systems are
autonomous and, sim-
ilarly, some but not all
autonomous systems are
cognitive.

action, and adaptation cannot be present in a system that also
depends on human input. To be able to operate in such a way
completely independently — autonomously — would of course
be a very useful attribute, but not a necessary one.

On the other hand, an autonomous system, and certainly one
that reflects biological autonomy, has a clear focus on maintain-
ing that autonomy in a world that may not be very cooperative
and helpful: in precarious circumstances, as we put it above.
It may be very helpful for such an autonomous system to have
some or all of the capabilities of perception, learning, anticipa-
tion (or prediction), action, and adaptation — in other words,
a cognitive capability — because these will help in the process
of preserving the system’s autonomy. It may also be useful in
pursuing the goals that the autonomous system sets for itself,
implicitly or explicitly. Again, however, it is conceivable that an
autonomous system could be autonomous without this cognitive
capability, although in this case the autonomy may not be very
robust, especially if the circumstances in which the system is
operating is very precarious or changeable.

We begin to see the relationship between autonomy and cog-
nition emerging as two overlapping and complementary system
attributes: some but not necessarily all cognitive systems are au-
tonomous and, similarly, some but not all autonomous systems
are cognitive (see Figure 4.4).47 This view fits well with the two-

47 Not everyone agrees that
you can have cognition
without autonomy. Mark
Bickhard, for example, states
that “the grounds of cogni-
tion are adaptive far-from-
equilibrium autonomy —
recursively self-maintenant
autonomy” (see Sidenote
33).

dimensional characterization of an autonomous agent in Figure
4.1 — task entropy vs. degree of automation — and the related
concepts of strength of autonomy and degree of autonomy, re-
spectively, and particularly with the idea of increased strength of
autonomy being achieved through cognition.

Autonomy Cognition 
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4.9 A Menagerie of Autonomies

At the beginning of this chapter, we mentioned some 19 different
types of autonomy.48 With the detailed discussion of the various 48 These are not the only

types of autonomy. Oth-
ers are often introduced to
aid the development of a
systematic treatment of the
topic. For example, Michael
Schillo and Klaus Fischer
identify forms of auton-
omy based on an agent’s
dependency on other agents.
These include skill and
resource autonomy, goal
autonomy, representational
autonomy, deontic auton-
omy (subject to the authority
of another agent), planning
autonomy, income auton-
omy, exit autonomy, and
processing autonomy [182].
Similarly, Cosmin Carabelea,
Olivier Boissier, and Adna
Florea identify five types of
autonomy — user auton-
omy, norm autonomy, social
autonomy, environment au-
tonomy, and self autonomy
— in their paper “Autonomy
in Multi-agent Systems:
A Classification Attempt”
[161]. In “Founding Auton-
omy: The Dialectics Between
(Social) Environment and
Agent’s Architecture and
Powers,” Cristiano Castel-
franchi and Rino Falcone
identify three types of au-
tonomy depending on the
level of delegation by an
agent — executive auton-
omy, planning autonomy,
and goal autonomy — as
well as the concepts of
norm autonomy and social
autonomy.

issues that arise in connection with autonomy, we are now in a
position to walk through these 19 types to highlight their main
characteristics.

Adaptive Autonomy The terms adaptive autonomy and cogni-
tive autonomy are used by Tom Ziemke in his paper “On the role
of emotion in biological and robotic autonomy” [152] to refer to
higher levels of autonomy in complex organism. Typically, the
terms refer to the processes that govern the interaction of the
system with its environment, rather than the lower level constitu-
tive processes that are concerned with the internal organization
and well-being of the system (see Constitutive Autonomy in this
section and also Section 4.3). Xabier Barandiaran uses the term
behavioural adaptive autonomy in much the same way in a paper
entitled “Behaviour Adaptive Autonomy: A Milestone on the Al-
ife route to AI” [183]. He defines it as “homeostatic maintenance
of essential variables under viability constraints [adaptivity]
through a self-modulating behavioural coupling with the en-
vironment [agency], hierarchically decoupled from metabolic
(constructive) processes [domain specificity].” These metabolic
constructive processes are the constitutive processes referred to
by Tom Ziemke.

According to this view, there are two complementary aspects
of autonomy: a constructive aspect that is concerned with the
constitutive metabolic processes that effectively look after the
ongoing re-building of the system and an interactive aspect that
is concerned with making sure the environmental conditions
are right to facilitate the constructive metabolic processes. In
a very loose sense, it is like the difference between eating to
stay alive and foraging to make sure there is something to eat
in the first place. Together, these two aspects characterize basic
autonomy: “the organization by which far from equilibrium and
thermodynamically open systems adaptively generate internal
and interactive constraints to modulate the flow of matter and
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energy required from their self-maintenance” [183] (see Basic
Autonomy below).

Adjustable Autonomy The concept of adjustable autonomy
is developed in an article “Dimensions of adjustable autonomy
and mixed-initiative interaction” [158]. The article is based on
a paper that was presented at the First International Workshop
on Computational Autonomy held in July 2003 in Melbourne,
Australia. The phrase is also used in the same year in the title of
an article entitled “Self-organization and adjustable autonomy:
Two sides of the same coin?” [184]. Adjustable autonomy is
related to the concepts of shared autonomy, sliding autonomy,
and subservient autonomy. All are concerned with achieving
a balance of human control and agent or robot autonomy in
situations where the task is undertaken jointly by both humans
and machines.

Agent Autonomy A complete book is devoted to the topic
agent autonomy [185]. It discusses many aspects of the rela-
tionship between autonomy and agents: software entitites that
independently carry out some set of functions or operations on
behalf of another agent, such as a person or a computer applica-
tion. The ISAC cognitive architecture we discussed in Chapter 3,
Section 3.4.3, is constructed from software agents.

Basic Autonomy is a term developed by Kepa Ruiz-Mirazo
and Alvaro Moreno in their paper “Basic autonomy as a funda-
mental step in the synthesis of life” [186]. They use it to denote
the capacity of a system to manage the flow of matter and en-
ergy through the system with the specific purpose of regulating
— modifying and controlling — the system’s own basic pro-
cesses of self-construction and interaction with the environment.
The process of self-construction is closely linked to the concepts
of autopoiesis (see Sidenote 30) and recursive self-maintenance
(see Sidenote 33), while the interactive aspect is linked to the
concept of (behavioural) adaptive autonomy.

Behavioural Autonomy The concept of behavioural au-
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tonomy is discussed by Tom Froese, Nathaniel Virgo, and Ed-
uardo Izquierdo in their paper “Autonomy: a review and a
reappraisal” [151]. The term is used to characterize the exter-
nal aspects of autonomous systems as distinct to their internal
organizational aspects (referred to as constitutive autonomy).

Belief Autonomy refers to the degree that an agent can exert
control of its own beliefs and the degree of dependence on others
to build its belief models. This complements the view of auton-
omy as the degree to which an agent determines its own goals
and, as pointed out by Suzanne Barber and Jisun Park in their
paper “Agent Belief Autonomy in Open Multi-agent Systems”
[187], it highlights the mutual dependence between beliefs and
goals. Barber and Park suggest that an agent should select for
itself an appropriate degree of belief autonomy for a given goal
on the basis of the trustworthiness of the information provided
by other agents, the degree to which that information contributes
to an agents’s information needs, and the cost of getting that
information, in terms of its timeliness.

Biological Autonomy Perhaps one of the most widely cited
work on biological autonomy is Francisco Varela’s Principles of Bio-
logical Autonomy [97]. It is essential reading for anyone interested
in the subject. Varela’s thesis is that biological autonomy arises
from a specific form of self-organization referred to as autopoiesis
(see Sidenote 30). Ezequiel Di Paulo’s introduction to a special
issue of Artificial Life — “Unbinding biological autonomy: Fran-
cisco Varela’s contributions to artificial life” [188] — provides an
insightful commentary on Varela’s contributions. On the other
hand, Tom Ziemke’s “On the role of emotion in biological and
robotic autonomy” [152] highlights the relationship between bio-
logical autonomy and robotic autonomy (see Robotic Autonomy in
this section).

Causal Autonomy The term causal autonomy arises in the
context of quantitative measures of autonomy (see Section 4.7).
In particular, the term is used by Nils Bertschinger and col-
leagues in their paper “Autonomy: An information theoretic
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perspective” [154] to define an autonomy measure for situations
in which structure of the interaction between the autonomous
system and the environment is known. They note in their con-
clusions that the problem of extending their measure to cater for
the situation exhibited typically by biological autonomy, in gen-
eral, and self-referential systems and self-maintaining systems,
in particular , is still open (e.g. see Biological Autonomy in this
section).

Constitutive autonomy The concept of constitutive auton-
omy refers to the internal organizational characteristics of an
autonomous system rather than the external behavioural aspects;
see “Autonomy: a review and a reappraisal” [151] and “Enactive
Artificial Intelligence: Investigating the systemic organization
of life and mind” [104] for more details. Constitutive autonomy
and constitutive processes are also dealt with in the main text in
Section 4.3.

Energy Autonomy (or, alternatively, energetic autonomy) refers
to the ability of an agent to supply its own energy needs over
an extended period of time. Chris Melhuish and colleagues, for
example, seek to achieve this in mobile robots through the use
of microbial fuel cells (MFC) that convert unrefined biomass in
the form of insect and plant material into useful energy. Their
papers “Energetically autonomous robots: Food for thought”
[189] and “Microbial fuel cells for robotics: Energy autonomy
through artificial symbiosis” [190] provide more details. More
generally, energy autonomy is set in the context of the hierarchy
of processes of homeostasis exhibited by biological autonomous
systems by Tom Ziemke and Rob Lowe in their paper “On the
Role of Emotion in Embodied Cognitive Architectures: From
Organisms to Robots” [135]. Energy autonomy occupies the
first level of the hierarchy, and the homeostatic processes act
to regulate “pre-somatic” processes, i.e. reflex-driven reactive
sensorimotor activity such as achieving a balance beween energy
consumption and energy expenditure (see also “On the role of
emotion in biological and robotic autonomy” [152]). Energy
autonomy is positioned below both motivational autonomy and
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mental autonomy in the hierarchy of homeostatic processes (see
the respective entries below).

Mental autonomy refers to the processes that operate at the
third level of a hierarchy on homeostatic processes (see entries
on Energy Autonomy above and Motivational Autonomy below).
The mental autonomy processes act to regulate the body through
“somatic simulation,” i.e. through internal simulation of be-
haviour and interoception (perception of internal states) using
extended working memory to achieve a predictive capability
that may allow higher cognitive function such as planning. Men-
tal autonomy is positioned above motivational autonomy and
energy autonomy in the hierarchy of homeostatic processes.

Motivational autonomy refers to the processes that oper-
ate at the second level of a hierarchy on homeostatic processes
(see entries on Energy Autonomy and Mental Autonomy above).
The motivational autonomy processes act to regulate the body
through “somatic modulation,” i.e. through processes such as
value-based learning, using basic working memory and senso-
rimotor association together with positive and negative rewards
to achieve an elementary predictive capability. Motivational au-
tonomy is positioned above energy autonomy and below mental
autonomy in the hierarchy of homeostatic processes.

Norm autonomy: a norm is a social law, convention, or orga-
nizational construct that constrains the autonomy of agents in
a multi-agent system. An agent exhibits norm autonomy if it
can violate or ignore that norm; see “Autonomy in Multi-agent
Systems: A Classification Attempt” by Cosmin Carabelea, Olivier
Boissier, and Adna Florea [161] and “Founding Autonomy: The
Dialectics between (Social) Environment and Agent’s Architec-
ture and Power” by Cristiano Castelfranchi and Rino Falcone
[160] . Norm autonomy is an advanced from of social autonomy
(see Social Autonomy below).

Robotic Autonomy The differences between robotic autonomy
and biological autonomy are addressed in Tom Ziemke’s paper
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“On the role of emotion in biological and robotic autonomy”
[152] citing a distinction made by Alvaro Moreno and colleagues
between constitutive processes and interactive processes in their
paper “The autonomy of biological individuals and artificial
models” [191]. Tom Ziemke and Alvaro Moreno note that robotic
autonomy tends to be more concerned with interactive pro-
cesses whereas biological autonomy is critically dependent on
the constitutive processes. Constitutive autonomy and consti-
tutive processes are also dealt with in the main text in Section
4.3.

Shared Autonomy The concepts of shared autonomy and ad-
justable autonomy are addressed in a paper presented by Ben-
jamin Pitzer and colleagues at the 2011 International Conference
on Robotics and Automation (ICRA) [163]. Both shared auton-
omy and adjustable autonomy are related to the concepts of
sliding autonomy and subservient autonomy (see the respective
entries below). All are concerned with achieving a balance of
human control and agent or robot autonomy in situations where
the task is undertaken jointly by both humans and machines.

Sliding Autonomy The phrase sliding autonomy is used by
Brennan Sellner and colleagues in their paper “Coordinated
multi-agent teams and sliding autonomy for large-scale as-
sembly” [192] as an alternative to adjustable autonomy, since it
suggests the dynamic alteration of the level of autonomy with
changing circumstances. Sellner suggests four different modes
of operation along the sliding scale of autonomy: pure auton-
omy, System-Initiative Sliding Autonomy (SISA), Mixed-Initiative
Sliding Autonomy (MISA), and teleoperation: “Pure autonomy
does not involve the human, consisting solely of autonomous
behaviors and recovery actions. In contrast, during teleopera-
tion the human is in complete control of all aspects of all the
robots. Bridging the gap between these two extremes, SISA al-
lows the operator to intervene only when asked to do so by the
autonomous system, while in MISA the human can also inter-
vene at any time of his own volition. SISA is designed to ap-
proximate situations where the operator is a scarce resource, and
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must attend to multiple robot teams or other tasks. MISA, on the
other hand, captures situations where humans can be more ded-
icated to observing the team’s activities.” Both sliding autonomy
and adjustable autonomy are related to the concepts of shared
autonomy and subservient autonomy (see respective entries in
this section). Sellner’s paper focusses on sliding autonomy in
teams of heterogeneous robots working with the assistance of
human operators.

Social Autonomy There are various interpretations of what
social autonomy means. According to Cosmin Carabelea, Olivier
Boissier, and Adna Florea in their classification of autonomy
[161], social autonomy concerns the adoption of goals of other
agents through social interaction. For social autonomy, an agent
X is autonomous with respect to another agent Y for the adop-
tion of a goal G if X can refuse the adoption of G from Y. On
the other hand, Cristiano Castelfranchi and Rino Falcone define
social autonomy to mean “that an agent is able and in condition
to pursue and achieve a goal not depending on the other’s inter-
vention” [160]. This latter definition is similar to the concept of
user autonomy.

Subservient Autonomy The exact term used by Alex Meystel
in an introduction to a workshop on measuring the performance
and intelligence of autonomous systems is “subserviently au-
tonomous” [162]. It means that while the system is capable of
autonomous operation it can also be taken over and controlled
by a human operator. Thus, subservient autonomy is related to
the concepts of adjustable autonomy, shared autonomy, and slid-
ing autonomy (see respective entries above). All are concerned
with achieving a balance of human control and agent or robot
autonomy in situations where the task is undertaken jointly by
both humans and machines.

User autonomy An agent is autonomous with respect to an-
other agent — a user — for choosing actions if it can make that
choice without the user’s intervention. User autonomy is one of
five types of autonomy described by Cosmin Carabelea, Olivier
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Boissier, and Adna Florea in their classification of autonomy
[161]. The other four types are social autonomy, norm autonomy,
environment autonomy, and self-autonomy. Cristiano Castelfranchi
and Rino Falcone [160] refer to user autonomy as social autonomy.



5
Embodiment

5.1 Introduction

In the previous chapter, we explored various aspects of the re-
lationship between autonomy and cognition. As we discovered,
this relationship poses a problem for cognitive systems. Unfor-
tunately, there is no shortage of such problems. In Chapter 2 we
noted a number of others, one of which is the role played by the
body of an agent in cognitive activity. When a body does play a
role — and not everyone thinks it does — we often use the short-
hand embodied cognition.1 In this chapter we are going to take a

1 There is a rich, varied,
and sometimes bewildering
range of writing devoted
to embodied cognition. The
epilogue to this chapter
gives some guidance on
where to begin.

closer look at embodiment.2 We explain what is meant by em-

2 A good place to start when
reading up on embodiment
is Ron Chrisley’s and Tom
Ziemke’s article entitled,
appropriately enough, “Em-
bodiment” [193]. It provides
a succinct synthesis, rang-
ing over topics such as the
concept of embeddedness,
the need for representations
(or not), the importance of
dynamics, the relevance
of biology, the different
types of embodiment, the
philosophical foundations of
embodiment, and its links
with cognitive science.

bodied cognition and we discuss the ways cognition is impacted
by the physiology of a cognitive system, its evolutionary history,
its practical activity, and its social and cultural circumstances.3

3 Michael Anderson’s article
“Embodied Cognition: A
Field Guide" [194] identifies
these four aspects of em-
bodiment: physiology, evo-
lutionary history, practical
activity, and socio-cultural
situatedness.

We then consider three complementary claims that are made
about embodied cognition, referred to as the conceptualization
hypothesis, the constitution hypothesis, and the replacement
hypothesis.4 These various aspects of embodied cognition are

4 The conceptualization, con-
stitution, and replacement
hypotheses are discussed in
detail in Lawrence Shapiro’s
book Embodied Cognition [83];
see Sidenotes 18, 20, and 19
in this chapter.

founded on a two-way mutual dependence of perception and
action and we spend some time discussing the neurophysiolog-
ical evidence for this dependence. We follow this with a look at
the different forms that embodiment can take. Finally, we dis-
cuss how embodied cognition is linked to the related concepts of
situated cognition, embedded cognition, grounded cognition, extended
cognition, and distributed cognition.

To begin with, however, we remind ourselves why embod-
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iment is a problematic issue in the first place. It comes down
to the stance you take on cognition, i.e. whether you adhere
to the cognitivist paradigm or the emergent paradigm that we
discussed in Chapter 2. Let’s recap each approach.

5.2 The Cognitivist Perspective on Embodiment

The essence of the cognitivist approach is that cognition com-
prises computational operations defined over symbolic rep-
resentations and these computational operations are not tied
to any given instantiation. From the perspective of the cogni-
tivist paradigm, bodies are useful but not necessary. Cognitivist
systems don’t have to be embodied; they only have to be is phy-
ically instantiated and the form of this physical instantiation
doesn’t matter as long as it supports the computational require-
ments of the cognitivist cognitive architecture.5 A physical body 5 Cognitivist cognitive architec-

ture: see Chapter 3, Section
3.1.1.

may facilitate exploration and learning, but it is by no means
necessary.

As we noted earlier, the principled decoupling of the cogni-
tivist computational model of cognition from its instantiation as
a physical system is referred to as computational functionalism.6 6 Computational functionalism:

see Chapter 2, Section 2.1
and Sidenote 6.

The chief point of computational functionalism is that the phys-
ical realization of the computational model is inconsequential
to the model: any physical platform that supports the perfor-
mance of the required symbolic computations will suffice, be
it computer or human brain. Some caution is needed, though.
Computational functionalism is the conjunction of functionalism
and computationalism, both of which are quite distinct ideas.

Functionalism holds that the mind is equivalent to the func-
tional organization of the brain. Computationalism holds that
the organization of the brain is computational. Computational
functionalism, then, amounts to the position that the mind is
effectively the computational organization of the brain. Function-
alism of itself does not entail computationalism, and neither does
computationalism of itself entail functionalism. They are distinct
concepts. Taken together, though, computational functionalism
effectively says that the mind is the software of the brain or any
functionally equivalent system. This is an important claim:
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“Computational functionalism entails that minds are multiply
realizable, in the sense in which different tokens of the same type
of computer program can run on different kinds of hardware.
So if computational functionalism is correct, then ... mental pro-
grams can also be specified and studied independently of how
they are implemented in the brain, in the same way in which one
can investigate what programs are (or should be) run by digi-
tal computers without worrying about how they are physically
implemented.”7

7 For an overview of the
finer points of computational
functionalism, see Gualtiero
Piccinini’s article “The Mind
as Neural Software? Un-
derstanding Functionalism,
Computationalism, and
Computational Functional-
ism” [195]. The quotation in
the main text is taken from
this article.

This is not to say that cognitivist cognitive systems are not and
cannot be embodied: they certainly can be and very often are.
The point is that the form of the body is arbitrary, as long as it
is capable of supporting the required computation. Put another
way, the body of an embodied cognitivist cognitive system plays
no direct part in the cognitive processes themselves: that’s all
down to the cognitive architecture and the knowledge compris-
ing the cognitive model.8

8 Cognitive model: see Chapter
3, Section 3.1.1.

5.3 The Emergent Perspective on Embodiment

The perspective from the emergent paradigm is the very oppo-
site:9 emergent systems are intrinsically embodied and embed-

9 The striking contrast
between the emergent per-
sective and the cognitivist
perspective on embod-
iment is evident in the
Radical Embodied Cognition
Thesis which states that
the “Structured, symbolic,
representational and com-
putational view of cognition
are mistaken. Embodied
cognition is best studied us-
ing non-computational and
non-representational ideas
and explanatory schemes”
[196].

ded in the world around them, developing through real-time
interaction with their environment. There are two complemen-
tary aspects to this development: one is the self-organization10 of

10 Self-organization: see
Chapter 2, Section 2.2.2 and
Chapter 4, Section 4.3.5.

the system as a distinct entity, and the second is the coupling of
that entity with its environment through interaction in the form
of perception and action.11

11 In the emergent paradigm,
and in particular in the
dynamical and enactive
approaches, “perception,
action, and cognition form
a single process” [197] of
self-organization in the
context of environmental
perturbations of the system.

Coupling, often referred to as structural coupling,12 is a pro-

12 Alexander Riegler pro-
vides a clear explanation
of structural coupling in his
paper “When is a cognitive
system embodied?”, noting
that it is a matter of mutual
interactivity [198]. Also, see
Chapter 2, Section 2.2.3 and
Sidenote 56.

cess of mutual perturbation: the cognitive system perturbing
the environment and vice versa. It is coupling because of the
mutual perturbation, and it is structural because the nature of
these perturbations is determined by the physical structure of the
agent and the environment. Consequently, structural coupling
allows the cognitive system and its environment to adapt to each
other in a mutually compatible manner. This is usually called
co-determination.13 The adaptation of the cognitive system over

13 Co-determination: see
Chapter 2, Section 2.2.3 and
Sidenote 56.

its lifetime as it gets better and better at this structural coupling
is referred to as development and, more formally ontogenetic
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development, or just ontogenesis.14 This development is effec- 14 Ontogenesis and ontogeny:
see Chapter 2, Section 2.2.3.tively the (cognitive) process of establishing and enlarging the

space of mutually-consistent couplings that the cognitive system
can engage in, i.e. the perceptions and actions that facilitate the
continued autonomy of the system.

Now, from the point of view of embodiment, here’s the im-
portant part: the way the cognitive agent perceives the world
— its space of possible perceptions — derives not from a pre-
determined, i.e. purely objective, world but from actions that the
system can engage in whilst still maintaining its autonomy. In
other words, it is the space of possible actions facilitated by and
conditioned by the particular embodiment of the cognitive agent
that determines how that cognitive agent perceives the world.
Thus, through this ontogenetic development, the cognitive sys-
tem constructs and develops its own understanding of the world
in which it is embedded, i.e. its own agent-specific and body-
specific knowledge of its world. This knowledge has meaning
exactly because it captures the consistencies and invariances that
emerge from the dynamic self-organization in the face of envi-
ronmental coupling. From the emergent perspective, cognition
is inseparable from bodily action because, without physical em-
bodied action, a cognitive system cannot develop.15 We return to 15 This argument for em-

bodiment — that cognition
is inseparable from bodily
action because, without
physical embodied explo-
ration, a cognitive system
has no basis for develop-
ment — is one of the central
planks of the dynamical
systems approach to devel-
opment advocated by Esther
Thelen and Linda Smith;
for example, see Thelen’s
article “Time-Scale Dynam-
ics and the Development of
Embodied Cognition” [197],
Thelen’s and Smith’s book
“A Dynamic Systems Ap-
proach to the Development
of Cognition and Action”
[199], and their overview
article “Development as a
Dynamic System” [200].

this issue several more times as we continue to explore embodied
cognition.

5.4 The Impact of Embodiment on Cognition

In contrasting the cognitivist and emergent stances on embod-
iment as we did in the previous two sections, we see they have
incompatible views on the direct role played by a body in cog-
nition. In the cognitivist paradigm, it plays no direct role. In the
emergent paradigm, embodiment plays a critical role concerned
with coupling the system to its world and maintaining it auton-
omy by enabling it to construct a meaningful understanding of
the world around it and thereby act effectively in that world.
This argument, though valid from the perspective of the emer-
gent paradigm of cognitive systems, is too abstract to help us
understand what embodiment means in a practical sense. So, in
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this section, we will be more specific on the way embodiment
might impact the operation of a cognitive system.

We set the scene by stating a general and commonly-held
view: the embodied cognition thesis.

“Many features of cognition are embodied in that they are deeply
dependent upon characteristics of the physical body of an agent,
such that the agent’s beyond-the-brain body plays a significant
causal role, or physically constitutive role, in that agent’s cognitive
processing.”16 16 The Embodiment Thesis

is quoted from Robert
Wilson’s and Lucia Foglia’s
“Embodied Cognition” in
the Stanford Encylopedia of
Philosophy [201].

Our aim in what follows is to look at the various strands that
make up this thesis and to differentiate between the various
stances people take on embodiment. In the next section, we will
then formalize these stances as three distinct hypotheses on
embodied cognition.

Embodiment can have an impact on cognition in a number of
ways: through the physiology of the cognitive system, through
its evolutionary history, through practical activity, and through
its socio-cultural situation. Let’s look at each of these in turn.

Proponents of embodied cognition argue that physiology, in
general, and the physiology of the perceptual and motor systems
of living systems, in particular, play a direct role in defining
cognitive concepts and in the processes of cognitive inference.
For example, whether you think something is rough or smooth
depends on what you can feel through the tactile sensors in your
fingertips. What looks like a steep hill to one cyclist will look
like a gradual rise to another who is highly trained and has a
different physiology, one that can deliver the glucose needed by
the muscles at the rate they are required.

As we will see in Section 5.6, there is evidence that an agent’s
perceptions depend not just on what’s happening in the envi-
ronment and what the senses convey about these events, but
they also depend on the state of the motor circuits. However,
this two-way dependency between the sensory states and mo-
tor states extends further to include also a two-way dependency
between perceptions (and the concepts they convey) and ac-
tions (and the goals implied by these actions). Thus, there is a
blurring of the boundaries between perception, action, and cog-
nition (at least in the emergent paradigm). These are not three
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functionally-distinct processes but are rather three aspects of one
global process devoted to guiding effective action and preserving
the agent’s autonomy. The mutual dependence of perception
and action implies a dependence of cognition on the embodi-
ment of the cognitive agent and the actions that embodiment
enables. This has a far reaching consequence: agents with different
type of bodies understand the world differently. We will return to the
mutual dependence of perception and action in more detail in
Section 5.6 below and also in Section 5.7 when we discuss dif-
ferent forms of embodiment. For now, we emphasize again that
the dependence of percepts, and associated concepts constructed
through cognitive activity, on the specific form of embodiment is
a fundamental cornerstone of embodied cognition and emergent
cognitive systems generally.

The importance of embodiment is also reflected in the evolu-
tionary history of a cognitive agent. Sometimes, the way we infer
things can be traced back to more primitive inference mecha-
nisms that derive from an earlier phase in the history of evolu-
tion. Often we recruit older (in evolutionary terms) cognitive
capabilities in new ways. In a sense, this is like redeploying an
ultimate capability for a different new purpose.17 What makes it 17 The ultimate and proximate

aspects of cognition: see
Section 1.2 on the ultimate-
proximate distinction.

possible to carry these mechanisms forward from generation to
generation is the agent’s embodiment, encoded in its genes.

Embodiment is also crucially important in practical activ-
ity. The way we go about solving problems very often relies
on physical trial and error: try something out, see how well it
works, and adapt (for example, by fashioning a hook to retrieve
an object that is difficult to reach). The point is that these tri-
als are dependent on your physical capabilities, the dexterity of
your hands, the reach of your arms, so that cognition is bound
up with the size, shape, and motor possibilities of the body as a
whole. As you engage in this practical activity, you develop an
understanding of the environment in terms of your embodied action
capabilities. Thus, practical activity plays a role in giving meaning
to the particular experiences of a given individual agent.

The fourth aspect of embodiment is what is referred to as
socio-cultural situatedness. Cognitive agents are very often also
social agents. This is certainly true for humans and therefore our
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understanding of the meaning attaching to an object or event
may depend on the social and cultural context, i.e. on the way
we and others have interacted in the past and the way we are ex-
pected to interact and behave now. Hand gestures, for example,
can have completely different meanings in different cultures.

These four aspects — physiology, evolutionary history, practi-
cal activity, and socio-cultural situatedness — reflect the impor-
tance of embodiment in cognition. In one way or another, they
all reflect the mutual dependence of perception and action and,
especially, the consequent dependence of cognitive understand-
ing on action-dependent perception.

5.5 Three Hypotheses on Embodiment

We can see two distinct threads in the discussion above: the im-
pact of embodiment on the agent’s understanding of the world
and the direct role the body plays in the cognitive process.

The position that the physical morphology — the shape or
form — and motor capabilities of a system has a direct bearing
on the way the cognitive agent understands the world in which
it is situated is sometimes referred to as the conceptualization
hypothesis.18 That is, the characteristics of an agent’s body deter-

18 In his book Embodied Cog-
nition [83], Lawrence Shapiro
formulates the conceptualiza-
tion hypothesis as the claim
that “the properties of an
organism’s body limit or
constrain the concepts an
organism can acquire. That
is, the concepts on which
an organism relies to un-
derstand its surrounding
world depend on the kind of
body that it has, so that were
organisms to differ with
respect to their bodies, they
would differ as well in how
they understand the world.”

mine the concepts an organism can acquire and so agents with
different type of bodies will understand the world differently.

The idea that the body (and possibly also the environment)
plays a constitutive rather than a supportive role in cognitive
processing, i.e. that the body is itself an integral part of cogni-
tion, is referred to as the constitution hypothesis.19

19 Lawrence Shapiro for-
mulates the constitution
hypothesis as the claim that
“the body or world plays
a constitutive rather than
merely causal role in cogni-
tive processing” [83].

The claim made by the constitution hypothesis is stronger
than that made by the conceptualization hypothesis. Cognition is
not only influenced and biased by the characteristics and states
of the agent’s body, but the body and its dynamics augment the
brain as an additional cognitive resource. In other words, the
way the body is shaped and moves help it accomplish the goals
of cognition without having to depend on brain-centred neural
processing.

There is a third claim sometimes made by proponents of em-
bodied cognition: that because an agent’s body is engaged in
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real-time interaction with its environment the need for repre-
sentations and representational processes is removed. This is re-
ferred to as the replacement hypothesis.20 The point of this hypoth-

20 The replacement hypothesis
is usually associated with
the dynamical systems
approach in the emergent
paradigm (see Section 2.2.2)
and has strong parallels
with the Radical Embodied
Cognition Thesis (see Sidenote
9).

esis is that there is no need for the cognitive system to represent
anything, computationally or otherwise, because all the informa-
tion it needs is already immediately accessible as a consequence
of its sensorimotor interaction. This non-representational posi-
tion is neatly captured in the observation by Rodney Brooks that
“the world is its own best model.”21

21 The phrase “the world is
its own best model” comes
from “Elephants don’t play
chess” by Rodney Brooks
[202].

The replacement hypothesis is also linked to the constitu-
tion hypothesis. If we view the body as an additional cognitive
resource (i.e. the position put forward in the constitution hy-
pothesis) it can also be argued that it is replacing some of the
processing traditionally attributed to the brain. Furthermore, and
this is the strong part of the replacement hypothesis, in doing
this, it removes the need for brain-centred neural representations
of the world with which the agent is engaging, replacing them
with very different dynamical systems based perception-action
couplings.22 For example, walking gaits can be produced by an

22 Andrew Wilson and
Sabrina Golonka provide
a number of arguments in
favour of the replacement
hypothesis in their article
“Embodied cognition is not
what you think it is” [203]
along with several examples
of how embodiment removes
the need for traditional
repesentations in cognition.

appropriately configured body without any central controller
using passive dynamics,23 coordinated activities such as flock-

23 For more on passive
dynamic walking, see [204].

ing, herding, and hunting in groups of agents are effected again
without any central control with a common shared representa-
tion, and a person can intercept and catch a ball thrown or hit
high into the air simply by running with a speed and direction
that induces a particular perceptual pattern as you watch the
ball. Again this is done purely by matching actions with a (de-
sired) perception and doesn’t require you to to model, represent,
or predict the ball’s trajectory.

As well as making stronger claims than the conceptualization
and constitution hypotheses, the replacement hypothesis is also
more contentious, even among proponents of embodied cogni-
tion.24 One of the arguments against the replacement hypothesis,

24 The contentious nature
of the replacement hypothesis
is discussed by Margaret
Wilson in her article “Six
Views of Embodied Cogni-
tion” [205]. The six views
are, roughly, that cognition
is situated, that cognition
is time-pressured, that we
off-load cognitive work
onto the environment, that
the environment is part of
the cognitive system, that
cognition is for action, and
that off-line cognition is
body-based.

at least in the strong form that involves the denial of the need
for representations and representational processing of any kind,
is that none of the examples put forward in its favour are repre-
sentation hungry25 in the sense that they involve problems that

25 The idea of representation
hungry problems is intro-
duced by Andy Clark’s
and Josefa Toribio’s paper
“Doing without Represent-
ing” [206] and discussed
further in Andy Clark’s book
Mindware [33].require the cognitive agent to act despite not having any direct



embodiment 121

connection with the physical situation, such as is often the case
in cognition, for example when anticipating the need for some
action.

The conceptualization, constitution, and replacement hypothe-
ses can also be expressed in a slightly different way, viewing the
role of the body as a constraint on cognition, as a distributor for
cognition, and as a regulator of cognitive activity.26 The concep- 26 The idea that embodiment

acts as a constraint on, a
distributor for, or a regu-
lator of cognitive activity
is explained in more de-
tail in Robert Wilson’s and
Lucia Foglia’s “Embodied
Cognition” in the Stanford
Encylopedia of Philosophy
[201]. This article provides
an in-depth analysis of the
arguments for and against
embodied cognition and a
comparison with traditional
computational represen-
tational, i.e. cognitivist,
cognitive science.

tualization hypothesis effectively boils down to the body con-
straining or conditioning cognition. The constitution hypothesis
effectively says that the cognitive process is distributed between
the neural and non-neural parts of the agent’s physiology, either
simplifying what the brain has to do or taking over responsibility
for it completely. Finally, the replacement hypothesis depends on
a tight coupling of cognition and action, with the body acting as
a regulator of cognitive activity.

5.6 Evidence for the Embodied Stance: The Mutual Depen-
dence of Perception and Action

As we noted above, two of the main contentions of embodied
cognition are (a) the body of a cognitive agent is a constitutive
part of the cognitive process and (b) cognitive concepts and cog-
nitive activity therefore depend directly on the form and capa-
bilities of the body the agent possesses. We saw that this means
there is a mutual two-way dependency between sensory data
and motor activity and, moreover, that the agent’s perceptions
and cognitive concepts depend on its actions and action capa-
bilites. In this section, we will look at some evidence to support
this position.27 27 Lawrence Barsalou’s article

“Social Embodiment” [207]
contains a rich collection of
examples of dependency
between the states of the
body (such as posture, arm
movement, facial expression)
and cognitive and affective
states.

We consider first an important aspect of cognition: visual
attention. Normally, we distinguish between two types of atten-
tion: spatial attention and selective attention. Roughly speaking,
these are where we direct our gaze and what sort of things are
most apparent to our gaze. You would expect spatial attention
to be dependent on, and only on, the what is happening in the
visual field. However, it turns out that spatial attention is also
dependent on what is known as oculomotor programming, i.e.
the jump-like movements of the the eye — called saccades —
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as it scans the visual field and the angle of the eye in its socket.
When the eye is positioned close to the limit of its rotation, and
therefore cannot saccade in any further in one direction, visual
attention in that direction is attenuated.28 Selective attention, 28 The dependence of spatial

attention on the angle of eye
rotation is documented in
a paper by Laila Craighero,
Mauro Nascimben, and
Luciano Fadiga: “Eye
Position Affects Orienting
of Visuospatial Attention”
[208].

in which some objects rather than others are more apparent, is
also dependent on the motor system. For example, the ability to
detect an object is enhanced when the appearance and features
of the object match the configuration of the agent’s hands as it
prepares to grasp an object.29 This shows that an agent’s current

29 The dependence of se-
lective attention on current
grasp configuration is
discussed in a paper by
Laila Craighero, Luciano
Fadiga, and colleagues in
“Movement for perception:
a motor-visual attentional
effect” [209]

and potential actions has a direct influence on its perceptions.
The Pinocchio Effect30 is another interesting example. Using

30 The example of the Pinoc-
chio Effect shows how one
can deceive someone’s
perceptions by providing
misleading motor stimu-
lation. The example in the
text was published by James
Lackner in 1988 [210] and
recounted by Scott Kelso in
his book Dynamic Patterns –
The Self-Organization of Brain
and Behaviour [21].

a vibrator to stimulate a person’s biceps while at the same time
physically restraining the arm so that the person cannot move,
and specifically so that he cannot not spontaneously flex as he
would do naturally if left unrestrained, within a couple of sec-
onds the person feels that their arm is more extended than it
actually is. The opposite happens for triceps stimulation. Now,
when you perform the experiment while the person is holding
their own nose, the effect is a rather startling perception — The
Pinocchio Effect — that his nose is a foot long (some people feel
their fingers elongating but not their noses, and others feel both).
With vibration of the triceps the perception is one of pushing
their fingers through the nose into the interior of the head. This
perception arises is because the artificial stimulation creates the
motor (i.e. muscular) circumstances in which the arm would
normally be extended. However, since the person is grasping his
nose, it can’t extend. So, instead, the perception the person has is
that their nose is much longer than it actually is since this is the
only other way of making sense of the motor state, the percep-
tual state, and the impression the subject has of his own body.
The point here again is that our perceptions depend on the state
of our embodiment; if you fool the neural system by evoking an
altered embodied state, then the perceptions change accordingly.

We also have direct neurophysiological evidence of the mutual
dependence of perception and action. In recent years, studies
have given us a good overall view of how reaching and grasp-
ing actions are planned and executed by the monkey brain. The
brain has two areas devoted to controlling the movements of
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a primate: the premotor cortex and the motor cortex. The pre-
motor cortex is the area of the brain that is active during motor
planning and it influences the motor cortex which then executes
the motor program comprising an action. The premotor cortex
receives strong visual inputs from a region in the brain known
as the inferior parietal lobule. These inputs serve a series vi-
suomotor transformations for reaching (Area F4) and grasping
(Area F5). Single neuron studies have shown that most F5 neu-
rons code for specific goal-directed actions, rather than their
constituent movements. Several F5 neurons, in addition to their
motor properties, respond also to visual stimuli. These are re-
ferred to as visuomotor neurons.

The significance of this is that the premotor cortex of primates
encodes actions (including implicit goals and expected states)
and not just movements. In its neurophysiological sense, the
term action defines a movement made in order to achieve a goal.
The goal, therefore, is the fundamental property of the action
rather than the specific motoric details of how it is achieved.

Now, according to their visual responses, two classes of visuo-
motor neurons can be distinguished within area F5: canonical
neurons and mirror neurons.31 The activity of both canonical

31 For more details on the
canonical and mirror neu-
rons in the primate brain,
see “Grasping objects and
grasping action meanings:
the dual role of monkey ros-
troventral premotor cortex
(area F5)” by Giacomo Riz-
zolatti and Luciano Fadiga
[211].

and mirror neurons correlates with two distinct circumstances.
In the case of canonical neurons, the same canonical neuron
fires when a monkey sees a particular object and also when the
monkey actually grasps an object with the same characteris-
tic features. On the other hand, mirror neurons32 are activated

32 Mirror neurons in the
monkey were discovered in
the 1990s by Giacomo Rizzo-
latti and co-workers Luciano
Fadiga, Leonardo Fogassi,
and Vittorio Gallese; see,
e.g., “Action Recognition in
the Premotor Cortex” [212]
and “Premotor cortex and
the recognition of motor
actions” [213]. However,
because there are no equiv-
alent invasive experiments
in humans, the presence of
mirror neurons in humans
is inferred rather than being
empirically established.
For a good overview, see
the review article “The
Mirror-Neuron System” by
Giacomo Rizzolatti and Laila
Craighero [214].

both when an action is performed and when the same or simi-
lar action is observed being performed by another agent. These
neurons are specific to the goal of the action and not the me-
chanics of carrying it out.33 So, for example, a monkey observing

33 For more details on the
goal-orientation of actions,
see the article by Claes
von Hoftsten: “An action
perspective on motor devel-
opment” [215].

another monkey, or a human, reaching for a nut will cause mir-
ror neurons in the premotor cortex to fire; these are the same
neurons that fire when the monkey actually reaches for a nut.
However, if the monkey observes another monkey making ex-
actly the same movements but there is no nut present — there
is no apparent goal of the reaching action — then the mirror
neurons don’t fire. Similarly, different motions that comprise the
same goal-directed action will cause the same mirror neurons
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to fire. It’s the action that matters, not the motor activity or the
movement.

Mirror neurons provide empirical neurophysiological evi-
dence of the bi-directional interdependence action and percep-
tion — how you perceive an object depends on how you can
act towards that object — and consequently how you categorize
an object will depend in part on the motor capabilities and the
embodiment of the agent. Thus, the presence of canonical and
mirror neurons are often cited in support of the conceptualiza-
tion hypothesis. However, it’s not just that the shape of an object
can be categorized according to how it matches, e.g., the grasp
capabilities of an agent — a table-tennis ball is perceived not just
as a sphere but as a sphere-graspable-by-finger-and-thumb, a tennis
ball as a sphere-graspable-by-a-whole-hand, and a medicine ball as a
sphere-graspable-by-two-hands34 — but perhaps more importantly 34 The table tennis and

tennis ball examples of
how your embodiment, and
your grasp capabilities in
particular, impact on the
way you conceptualize and
categorize objects is taken
from Lawrence Shapiro’s
book Embodied Cognition [83].

that the specific form of embodiment also impacts on what you
can do with that object. Canonical neurons are sufficient to ex-
plain the former perception-action interdependence but mirror
neurons reflect also the intention of the agent, i.e. how it antici-
pates it might interact with that object and, thus, they show how
embodiment (they are motor neurons, after all) is directly in-
volved in at least one of the essential characteristics of cognition,
i.e. the prospective aspect. From this perspective, mirror neurons
also provide some support for the constitution hypothesis.

In this context, it’s important to remark on the parallel be-
tween action-dependent perception and the concept of affordance
introduced by the ecological psychologist James J. Gibson: the
idea that the perception of the potential use to which an object
can be put depends on the action capabilities of the observing
agent as much as it does on the object itself.35 35 For a review of the link

between affordance and
the mirror neuron system,
see the article by Serge
Thill and colleagues [216].
Annemiek Barsingerhorn
and colleagues summarize
progress in affordance
research in [217]. Also, see
Chapter 2, Sidenote 52.

While the evidence for the mutual — bi-directional — depen-
dence of perception and action is compelling, there remains a
possible concern that it doesn’t make a convincing case for the
embodiment of higher cognitive functions. As it happens, there
is a link between the perception-action dependence and higher
functions: sensorimotor processes and higher-level processes
share or make use of the same neural mechanisms. Specifically,
they do so when the higher-level cognitive functions engage in
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what is known as internal simulation (alternatively, internal em-
ulation or rehearsal).36 We had a brief encounter with the idea of

36 Read “Making Sense
of Embodied Cognition”
[218] by Henrik Svensson,
Jessica Lindblom, and Tom
Ziemke for an account of
the embodiment of higher
cognitive functions and an
explanation of the view of
cognition as body-based
simulation. The empirical
evidence presented in this
article ranges widely from
motor imagery, visual
imagery, cononical neurons,
mirror neurons, the body’s
role in social interaction,
gesture, and language.

internal simulation earlier in Chapter 2, Section 2.2.3 and Side-
note 59, and we take it up again in this chapter in Section 5.8,
and again in more depth in Chapter 7, Section 7.5.

5.7 Types of Embodiment

We have talked quite a lot about embodiment but we haven’t
said yet what exactly embodiment actually involves. What does
it mean to be embodied? What types of bodies are required?
These are the questions we address now.

We begin by making three assumptions. First, cognition in-
volves some level of conceptual understanding of the world
with which it interacts. This is explicit in the conceptualization
hypothesis we discussed above: these concepts depend on the
nature of the agent’s embodiment. Second, we assume that these
concepts are represented in some way by the cognitive system.37

37 The issue of representa-
tion is another of the many
problematic issues in cog-
nitive systems. When we
discussed the replacement
hypothesis, we saw that
there is disagreement about
whether or not embodied
cogntive systems use inter-
nal representations of the
world around it. On the
other hand, as we discussed
Chapter 2, the nature of the
representational framework
is one of the main differ-
ences between the cognitivist
and the emergent paradigms
and there are several ways of
interpreting what is meant
by a representation. We deal
with this ambiguity in more
detail in Chapter 7.

Third, cognition involves a capacity for learning and adapting.
By constructing some model of how the world works, the cog-
nitive agent can anticipate and act effectively. As we have noted
several times, this is a foundation of the emergent paradigm of
cognition.

Taking these three assumptions together, we see that a cog-
nitive system must be able to construct and improve its rep-
resentations. We can put this a bit stronger by saying that the
representational framework needs to fulfill two related criteria:38

38 The two criteria that must
be fulfilled by a represen-
tational framework — that
it be able to account for the
possibility that it is in error
and that it be able to com-
pare the representation with
what is being represented
— was proposed by Mark
Bickhard in his article “Is
Embodiment Necessary?"
[219]. He uses these two
criteria to argue the case for
embodied cognition.

the framework must be able to account for the possibility that
the representation is in error, and it must be able to compare the
representation with what is being represented. In other words,
the cognitive system must be able to detect its own errors. This
is necessary for error-guided behaviour and learning, two of the
principal facets of cognition, as we saw in Chapter 1. Further-
more, it must have access to its own representational contents
to allow this comparison to take place and to amend it. Some
minimal form of embodiment is required to satisfy these two
criteria. This minimal embodiment requires that the cognitive
system be capable of “full” interaction, i.e. interaction that not
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only influences and alters the state of the world but, in turn,
that these influences on the environment in turn influence the
interactive process of the cognitive system. The interaction must
have an impact on both the world and the agent itself. Put more
formally, the agent’s actions must have a causal impact on the
agent’s percepts of the world. This is necessary so that the agent
can assess how well its representations model the world in which
it is embedded. This, in turn, allows the agent to assess its antic-
ipated actions and decide whether they are right or wrong. The
assessment of anticipated action is linked to the concept of inter-
nal simulations, an issue we take up below in Section 5.8. For the
moment, we stay with embodiment and, in particular, with the
necessary conditions attaching to embodiment.

We have established that the minimal form of embodiment
requires full interaction, with an agent’s action resulting in
changes in the environment that are peceptible by the agent
itself. That’s a good start. Can we go further? Yes, we can. At
least six different types of embodiment are possible.39 They are:

39 The framework for distin-
guishing between different
forms of embodiment —
ranging from structural cou-
pling, physical embodiment,
organismoid embodiment,
to organismic embodiment
— was proposed by Tom
Ziemke in “Disentangling
Notions of Embodiment”
[220]. He added historical
embodiment in a subsequent
paper “Are Robots Em-
bodied?” [221], and social
embodiment in a later paper
“What’s that thing called
embodiment?” [222].

1. Structural coupling between agent and environment in the
sense a system can be perturbed by its environment and can
in turn perturb its environment;

2. Historical embodiment as a result of a history of structural
coupling;

3. Physical embodiment in a structure that is capable of forcible
action (this excludes software agents);

4. Organismoid embodiment, i.e. organism-like bodily form (e.g.
humanoid robots);

5. Organismic embodiment of autopoietic living systems;

6. Social embodiment reflecting the role of the agent’s body in
social interaction.

These six types are increasingly more restrictive. Structural cou-
pling entails only that the system can influence and be influ-
enced by the physical world.40 Historical embodiment adds the

40 The minimal form of em-
bodiment, structural coupling,
is taken by Kerstin Dauten-
hahn, Bernard Ogden, and
Tom Quick [223] as the basis
for an operational definition
of embodiment. Their defini-
tion is significant in several
ways. First, as Dautenhahn
et al. note, it does not require
embodied systems to be
cognitive, conscious, inten-
tional, made of molecules
or alive, for example. Sec-
ond, it provides a basis for
quantifying embodiment
— “regarding embodiment
as a matter of degree” —
based on some function of
the mutual perturbation
between system and envi-
ronment. They suggest that
there may be a measurable
correlation between degree
of embodiment and the
extent to which cognitive
behaviour is possible and,
significantly, that “cognition
as a phenomena arises from
embodiment.” Third, and
somewhat paradoxically,
embodiment is “freed from
material constraints,” leav-
ing open the possibility of
embodiment in software
domains.incorporation of a history of structural coupling to this level of
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physical interaction so that past interactions shape the embodi-
ment. Physical embodiment is most closely allied to conventional
robot systems, with organismoid embodiment adding the con-
straint that the robot morphology is modelled on specific natural
species or some feature of natural species. Organismic embod-
iment corresponds to living beings, i.e. autopoietic systems.41 41 Autopoiesis is an organi-

zational characterization
of what it is to be a living
entity; see Chapter 4, Section
4.3.6 and Sidenote 30.

Finally, there is social embodiment, a term used to convey the
role of embodiment in social interactions between agents. In this
sense, it doesn’t extend the continuum from structural coupling
to organismic embodiment but addresses instead the mutual re-
lationship between body states and cognitive and affective (i.e.
emotional) states. This echoes the mutual dependency of percep-
tion and action which we discussed in Section 5.6 above where
we mentioned in passing the dependency between the states of
the body (such as posture, arm movement, facial expression) and
cognitive and affective states.

There are four aspects to the relationship between body states
and cognitive/affective states in social interaction. First, there
is the fact that the perception of social stimuli elicits or triggers
body states in the perceiving agent. Second, the perception of
body states in other agents frequently evokes a tendency to
mimic those states. Third, the agent’s own bodily states, such as
posture, constitute a powerful trigger for affective states in the
agent. The three preceding aspects work together to produce a
fourth aspect: the compatibility between the bodily states and
the cognitive states of an agent influences the efficiency of that
agent’s physical and cognitive performance is several spheres,
including motor control, memory, judging facial expressions,
reasoning, and the effectiveness in performing tasks.42

42 As noted already, the ar-
ticle “Social Embodiment”
by Lawrence Barsalou and
co-workers [207] provides
many specific and often sur-
prising examples of the four
aspects to the relationship
between body states and
cognitive/affective states in
social interaction.

The two categories of physical embodiment and organismic
embodiment provide a way of contrasting two extremes of em-
bodied cognition, one of which — mechanistic embodiment —
is related to the Replacement Hypothesis we discussed above,
and the other of which — phenomenal embodiment — is related to
enactive systems in general, and autopoietic systems in particu-
lar.43 Mechanistic embodiment means that cognition is embod-

43 These two types of em-
bodiment — mechanistic and
phenomenal — are discussed
in two papers by Noel
Sharkey and Tom Ziemke
[224, 225] where they also
refer to them as Loebian and
Uexküllian embodiment,
respectively, after the two bi-
ologists Jacques Loeb (1859 –
1924) and Jakob von Uexküll
(1864 – 1944).

ied in the physical entity itself and, in particular in its physical
control mechanism. Everything you need for cognitive activity
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is there in the physical mechanism and there is no need to in-
voke mental states, representations, symbols, or the attendant
need to ground these symbols in the interactive experience of
the agent. The cognitive behaviour of this mechanistically em-
bodied agent then is tied very closely to the agent’s interaction
with its world and, indeed, it is dependent on what happens
in the environment and on what the environment does to it.
The parallels with the Replacement Hypothesis are clear. On
the other hand, phenomenal embodiment asserts that embod-
ied cognition is uniquely reserved to living entities that exist in
some environmental niche44 and have a subjective or phenome- 44 This subjective or phenom-

enal world of an agent that
exhibits phenomenal embod-
iment is often referred to as
its Umwelt, the term used by
biologist Jakob von Uexküll
[226, 227].

nal experience of that environment. For the cognitive agent, the
environment is comprehended — understood — in a strongly
agent-specific manner that depends on the agent’s perceptual
and motoric capacities, with the agent and the environment
forming a mutually-defining couple. Again, the parallel with
enaction and structural coupling is clear.

The agent-specific understanding of its environment applies
to embodiment in general and not just to phenomenal embodi-
ment. If a system is embodied, it does not necessarily guarantee
that cognitive concepts that result from its action-dependent per-
ceptions will be consistent with human conceptions of cognitive
behaviour. This may be quite acceptable, as long as the system
does what we want it to do. However, if we want to ensure com-
patibility with human cognition and, specifically, compatible
interaction between a human and an artificial cognitive system,
then we may have to adopt the stronger version of embodiment
that is consistent with the way humans are embodied: one that
involves physical movement, forcible manipulation, and explo-
ration, in human form. This is the consequence of the concep-
tualization hypothesis we discussed in Section 5.5 above: “to
conceive of the world as a human being does requires having a
body like a human being’s.”45 Why? Because when two cogni- 45 The quotation is taken

from Lawrence Shapiro’s
book Embodied Cognition
[83] and encapsulates the
conceptualization hypothesis;
see Section 5.5 and Sidenote
18.

tive systems interact or couple, the shared understanding will
only have similar meaning if the embodied experiences of the
two systems are compatible.

It is important to be clear what we mean here by the term
interaction. For the emergent stance on cognition, interaction is
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a shared activity in which the actions of each agent influence
the actions of the other agents engaged in the same interaction,
resulting in a mutually constructed pattern of shared behavior.46 46 For more details on inter-

action as a shared activity,
see the article by Bernard
Ogden, Kerstin Dautenhahn,
and Penny Stribling [228].

Such mutually constructed patterns of complementary behaviour
is also emphasized in the notion of joint action: the coordination
of individual actions by two or more people.47 Thus, explicit

47 We consider joint action
in more detail in Chapter 9,
Section 9.5.1.

meaning is not necessary for anything to be communicated in an
interaction, it is simply important that the agents are mutually
engaged in a sequence of actions. Meaning emerges through
shared consensual experience mediated by interaction.

Finally, we note that the spectrum of embodiment from struc-
tural coupling to organismic embodiment, only the physical, or-
ganismoid, and organismic versions are sufficient to support the
embodiment thesis we discussed in Section 5.4 and the conceptu-
alization, constitution, and replacement hypotheses we discussed
in Section 5.5. Historical embodiment may or may not include
these three types of embodiment and structural coupling, while
necessary for the other four types, doesn’t have to involve body-
like physicality, the cornerstone of the embodiment thesis and
the three hypotheses. You can see why the topic of embodiment
can be confusing and why so much has been written in the liter-
ature trying to untangle the different notions of embodiment.48

48 Tom Ziemke [229] dis-
cusses other notions of
embodiment, including the
distinction made by Rafael
Núñez [230] between trivial
embodiment, material embod-
iment, and full embodiment
(respectively: cognition is
directly related to biologi-
cal structures, cognition is
dependent on the real-time
bodily interactions between
an embodied agent and its
environment, and the body
is involved in all forms of
cognition, including con-
ceptual activity) and the
distinction made by Andy
Clark [231] between sim-
ple embodiment and radical
embodiment (respectively:
embodiment places con-
straints on cognitive activity,
and embodiment fundamen-
tally alters the discipline of
cognitive science).

We make our own attempt here and Section 5.10 concludes with
an overview of the various meanings that are attached to embod-
iment and embodied cognition and various related terms, e.g.
situated cognition, embedded cognition, grounded cognition,
extended cognition, and distributed cognition. Before then, we
consider two other inward-looking aspects of embodiment.

5.8 Off-line Embodied Cognition

We have already met the idea that cognition is concerned pri-
marily with action.49 This action-centric nature of cognition is

49 The idea that cognition is
action-focussed is a central
tenet of embodied cognition.
For example, Humberto
Maturana and Francisco
Varela famously stated
that “cognition is effective
action” [14] (see Chapter
1, Sidenote 16). Margaret
Wilson puts it a slightly
different way: “Cognition is
for action” [205].

a cornerstone of embodied cognition. However, it is clear that
cognitive systems do more than just act: they think (or, equiv-
alently, they prepare for action). This non-action cognition is
sometimes referred to as off-line cognition or internal simulation.
This is a thread we left off in Section 5.6 above and we take it up
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again here. We do so just temporarily to highlight its relevance
to embodiment. We will discuss it in more detail in Chapter 7,
Section 7.5.

Internal simulation is effected by preparing and executing mo-
tor programs off-line, as the brain does when anticipating events.
Several possibilities can be simulated, choosing one action on the
basis of an internal attention process in the light of the current
flow of perceptions. Thus, the cognitive system as a whole acts
as a simulator. This is the basis for the design of the HAMMER
architecture, for example.50 HAMMER accomplishes internal

50 The HAMMER (Hierar-
chical Attentive Multiple
Models for Execution and
Recognition) architecture
is described by Yiannis
Demiris and Bassam Khad-
houri in a paper of the same
name [232]. A later article
discusses HAMMER in the
context of the mirror neuron
system [233].

simulation using forward and inverse models. These encode in-
ternal sensorimotor models that the agent would utilise if it were
to execute that action. The inverse model takes as input informa-
tion about the current state of the system and the desired goal or
goals and it outputs the control or motor commands necessary
to achieve or maintain those goals. The forward model acts as
a predictor. Given the current state of the system, it outputs the
predicted state of the system, if the control commands provided
by the inverse model were to be executed.51 This mode of opera-

51 HAMMER’s internal mod-
els are actually arranged
in a hierarchical manner,
with models in lower lev-
els typically working on
the trajectory description
level using sub-symbolic
techniques and models in
higher levels using symbolic
techniques.

tion reflects the essential role of cognition as a multiple-timescale
and multiple-outcome predictor with the express function of
enabling effective action and learning effective actions. So, from
this perspective, it is more appropriate to consider internal simu-
lation as a (off-line) mode of cognition and not, for example, as a
separate component of a cognitive architecture.

For embodied cognition, even off-line cognition is still body-
based, i.e. the cognitive activity is still grounded in the mecha-
nisms of sensory processing and motor control.52 This focus on

52 With respect to off-line
cognition, Michael Ander-
son explains that, from the
perspective of embodied
cognition, and despite the
fact that it is decoupled
from the environment in
both time and space, this
cognitive activity is still
body-based [234]. This point
is emphasized by Henrik
Svensson, Jessica Lindblom,
and Tom Ziemke in their
article “Making Sense of
Embodied Cognition: Sim-
ulation Theories of Shared
Neural Mechanisms for
Sensorimotor and Cognitive
Processes” in which they
argue that “many, if not
all, higher-level cognitive
processes are body-based in
the sense that they make use
of (partial) simulations or
emulations of sensorimotor
processes through the re-
activation of neural circuitry
that is also active in bodily
perception and action” [218].

body-based internal simulation is the basis of grounded cogni-
tion, which we discuss in the section after next.

5.9 Interaction Within

There is one other twist on embodiment that we need to discuss
before we close this chapter on the spectrum of ways that the
environment, and the embodied agent’s interaction with that
environment, impacts on the cognitive capacity of that agent.
So far, we have focussed on the interaction between the agent
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and its external environment. But bodies have insides and this
raises the possibility of interaction between the agent and its
own internal body, rather than interaction between agent and
the external world. We touched on a similar theme when we
discussed autonomic processes in Chapter 4, Section 4.4.

While some cognitive architectures restrict internal sensing —
or interoception as it often called — to the central nervous system,
other cognitive architectures extend interoception to address the
affective, or emotional, aspects of the cognitive system including
metabolic regulation.53 This move reflects an increasing trend

53 John Weng’s SASE cogni-
tive architecture [126, 138]
focusses on the central
nervous system, while the
Cognitive-Affective cogni-
tive architecture schematic
developed by Rob Lowe,
Anthony Morse, and Tom
Ziemke [134, 135] deals
explicitly with the affective
and emotional aspect of
cognition. Note, however,
that the two perspectives are
linked, especially in the case
of developmental cognitive
architectures, such as SASE.
As we will see in Chapter 6,
Section 6.1.1, development
is dependent on motivation
and an associated value
system, and SASE builds
on work that integrates a
novelty-based value system
with reinforcement learning
[235, 236].

in cognitive science recognizing that cognition, as a process, is
not restricted to the traditional concerns of memory, attention,
and reasoning, nor yet to the co-dependence between action and
perception and the approach to embodied cognition that we
have been discussing so far. Instead, it also embraces the inter-
nal constitution of the embodied agent through, for example,
the homeostatic processes we discussed in Chapter 4 and the
affective processes that provide the internal value systems which
influence the goals of autonomous cognitive agents.54 The key 54 The importance of in-

teraction between the
nervous system and the
internal body is discussed by
Domenico Parisi in his paper
“Internal Robotics” [237]. He
notes seven ways in which
internal interaction differs
from external interaction.

point here is that a complete picture of embodiment may also
have to include a place for interaction between the nervous sys-
tem (and possibly also the hormone-driven endocrine system)
with the body itself.55

55 Mog Stapleton calls this
being “properly embod-
ied” [238] and she argues
that this requires embod-
ied cognition to embrace
interoception and a more
comprehensive view of the
processes that contribute an
agent’s cognitive capacities,
including affective emotional
processes.

5.10 From Situated Cognition to Distributed Cognition

One of the several cornerstones of embodied cognition is that
the activities of a cognitive system — biological or artificial —
take place in the context of real-world environments and involve
repeated real-time interaction with that environment, in a con-
tinuous anticipatory and adaptive cycle of perception, action,
and adjustment. A variety of terms are often used to convey this
sense of the importance of the environment to cognition. As we
noted at the beginning of the chapter, these include situated cog-
nition, embedded cognition, grounded cognition, extended cognition,
and distributed cognition. This can be confusing because, while
these terms are all related, they do not necessarily mean the
same thing. In this section, we will explain their differences.
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As we saw above, one of the main arguments underpinning
embodied cognition is that the cognitive agent exists in some
ecological niche and that the brain-body system has evolved to
take advantage of the perculiarities of its environment. Cogni-
tion, from the embodied cognition perspective and, more gen-
erally, from the emergent and enactive systems perspective, is
a process that serves to support the survival of that system,
to maintain its viability as an autonomous entity, in its envi-
ronmental niche. Thus, we sometimes speak of the brain-body-
environment characteristic of embodied cognition, implying that
the environment is somehow a part of the cognitive process.
Unfortunately, we don’t always make clear to what extent the
environment is involved and how it is involved. This is the nub
of the problem and the source of some of the confusion. A sec-
ond source of confusion is that some versions of embodiment
don’t require bodies! For these, realtime structural coupling is
sufficient. As we mentioned above, this version of embodiment,
while necessary, is not sufficient to support the embodiment
thesis and the conceptualization, constitution, and replacement
hypotheses we discussed in previous sections.

When we say an embodied cognitive system is situated,56 we 56 The classic text is William
Clancey’s book Situated Cog-
nition: On Human Knowledge
and Computer Representations
[239]. The Cambridge Hand-
book of Situated Cognition by
Philip Robbins and Murat
Aydede [240] is another
definitive reference.

mean to draw attention to the fact that it is engaged in on-going
real-time interaction with its environment: that it is structurally-
coupled to the environment. Situated cognition reflects this mu-
tual interplay between cognitive agent and environment as the
system struggles to maintain its autonomy despite the precarious
circumstances that the environment may present. To do this, the
cognitive system sometimes exploits these circumstances.

There are several ways in which a situated embodied cog-
nitive system makes use of the environment.57 For example,

57 For an overview of the
way that the environment
is utilized in cognition, see
Margaret Wilson’s article
“Six views of embodied
cognition” [205].

because cognitive systems are physically-instatiated systems,
they have finite capacities for, e.g., memory and attention. To
overcome any problems associated with these limitations, they
might off-load cognitive work onto the environment and exploit
it to reduce the cognitive workload by simplifying whatever task
they are engaged in. This can be something as simple as using
natural landmarks to help remember your way home or some-
thing more complicated like counting with the aid of pebbles.58

58 The use of physical aids in
the environment to aid with
mental processes is referred
to as symbolic off-loading; see
Andy Clark’s book Being
There: Putting Brain, Body,
and World Together Again [23].
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Cognitive agents also modify the environment to assist with
their cognitive actions. This is referred to as external scaffolding.59 59 External scaffolding is

discussed in Section 2.5 of
Andy Clark’s book [23].
Quoting an earlier book
[241], he sums up the idea
in his 007 Principle: “In
general, evolved creatures
will neither store nor process
information in costly ways
when they can use the
structure of the environment
and their operations upon it
as a convenient stand-in for
the information-processing
operations concerned.”

We create signs to help with navigation and convey messages
and we fashion and use tools to aid physical and cognitive tasks.
This capacity to exploit the environment to assist cognitive ac-
tivity is what is meant by embedded cognition. Thus, embedded
cognition focusses less on the roles of the agent’s body and more
on the role of the physical, social, and cultural environment in
cognitive activity, allowing the agent to off-load cognitive load
onto elements of its environment.60

60 Embedded cognition, with
its focus on the social and
cultural environment in
cognitive activity, is some-
times referred to as social
situatedness. For more de-
tails, see the article by Jessica
Lindblom and Tom Ziemke
[242].

Grounded cognition,61 sounds as if it might be a synonym for

61 For an authoritative
overview of grounded cogni-
tion, see Lawrence Barsalou’s
article “Grounded Cog-
nition” [243]. A shorter
introduction can be found
in his paper “Grounded
cognition: Past, Present,
and Future” [244]. The sec-
ond article briefly reviews
progress over the past 30
years and predicts some
likely developments over
the coming 30 years. Among
these are the increasing
integration of classical sym-
bolic (cognitivist) cognitive
architectures, statistical and
dynamical approaches, and
grounded cognition, leverag-
ing the power of the brain’s
modal representational
mechanisms.

situated or embedded cognition but it actually means some-
thing slightly different. The focus of grounded cognition is not
so much embodiment (in the sense that the body plays an active
part in the cognitive process) as it is on the nature of represen-
tations that are used by a cognitive system. Grounded cognition
takes issue with the symbol manipulation characteristic of the
cognitivist paradigm that we discussed in Chapter 2 and es-
pecially with the assertion that these symbols, and hence the
representation, are amodal, i.e. they are not tied directly to any
particular modality such as vision, audition, or touch. Grounded
cognition holds that the representations used by cognitive sys-
tems are modal, i.e. that they are intrinsically linked to the senso-
rimotor experiences of the cognitive system. From this point of
view, we can see why grounded cognition is linked to embodied
cognition. However, we need to be careful not to misconstrue
grounded cognition as embodied cognition in the sense that we
have discussed it so far. Yes, grounded cognition agrees that situ-
ated action is a key aspect of cognition and, yes, it exploits body
states and sensorimotor experiences, but it does not adhere,
for example, to the replacement hypothesis. On the contrary,
grounded cognition does exploit symbolic representations. It is
just that these representations are modal. Furthermore, a key
aspect of grounded cognition is that cognition involves inter-
nal simulation, specifically modal, sensorimotor, simulation.
Consequently, grounded cognition operates not just in real-time
contact with the environment but it also operates off-line, in-
dependently of the body. That is not to say that situated and
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embedded embodied cognitive systems don’t exploit internal
simulation — they can and they do — but grounded cognition
makes this modal internal simulation the focus of cognition,
rather than the direct involvement of the body in cognition, as
encapsulated in the constitution hypothesis. Overall, we can
characterize grounded cognition as agreeing with the concep-
tualization hypothesis, being neutral with respect to the con-
stitution hypothesis, and positively rejecting the replacement
hypothesis. In agreeing with the conceptualization hypothesis,
grounded cognition also asserts that the modal representations
can be based on introspective internal simulations which do not
necessarily involve a faithful complete reconstruction of embod-
ied experience. This is pivotal to the grounded cognition thesis
as it allows explicitly for the inclusion of abstract concepts that
are not grounded directly in specific sensorimotor experiences.

Embedded cognition involves the environment to support
cognitive activity, leveraging the properties and behaviour of
objects and other cognitive agents. However, there is a stronger
sense in which an embodied cognitive system can involve the
world around it. Instead of the environment being just some-
thing for a cognitive system to interact with, anticipate, adapt to,
and even exploit to assist or amplify its cognitive activity, parts
of the environment could be a direct constituent of the cognitive
process itself. This view of embodied cognition is referred to as
extended cognition.62 62 The seminal publication

on extended cognition is
Andy Clark’s and David
Chalmers’s article “The Ex-
tended Mind” [245]. Andy
Clark has also written a
book on the topic: Supersiz-
ing the Mind: Embodiment,
Action, and Cognitive Ex-
tension [246]. A summary
of this book can be found
here [247]. It is also worth
reading Jerry Fodor’s review
of the book “Where is my
mind?” and Clark’s response
[248].

Extended cognition holds that the environment is not just the
physical backdrop in which an embodied cognitive system is
situated or embedded and with which it interacts, even in ways
that assist with the cognitive process, but that it is a constitutent
component — and an equal partner — in a bigger brain-body-
environment cognitive system. Extended cognition refers not just
to the extension of an agent’s cognitive capability by recruiting
objects or other agents in the environment but to the extension of
what is the actual scope of the cognitive system itself to include
the environment. Embodied cognition takes the critical step of
asserting that cognition extends beyond the brain and includes
the body. Extended cognition takes an additional step and claims
that cognition takes place outside the body and in the larger
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environment. For some, this is a step too far.63 63 The claims associated
with the stance on extended
cognition are controversial.
Margaret Wilson’s article
“Six views of embodied
cognition” [205] and Michael
Anderson’s “How to study
the mind: an introduction
to embodied cognition”
provide useful critiques of
these claims.

But you can go even further. The term distributed cognition64

64 The classic book on dis-
tributed cognition is Edwin
Hutchins’s 1995 text Cog-
nition in the Wild [249]. An
overview can be found
in a paper “Distributed
Cognition: Toward a New
Foundation for Human-
Computer Interaction
Research” by James Hollan,
Edwin Hutchins, and David
Kirsh [250]. Hutchins article
“How a Cockpit Remembers
Its Speed” [251] describes
an example of how a socio-
technical system, specifically
the cockpit of a commer-
cial airliner comprising
human pilots, instruments,
and physical objects, can
be viewed as a distributed
cognitive system. It also
contains examples of sym-
bolic off-loading where certain
structural features of the
cockpit environment (such
as the salmon speed bug)
allows a conceptual cogni-
tive task to be accomplished
more simply by perceptual
processes.

refers to the idea that cognition takes place not only in individu-
als but in any system that involves interactions between people
and resources in the environment. Thus, a cognitive system is
characterized by dynamic self-configuration and coordination
of sub-systems to accomplish some set of functions, and not by
its physical extent or the range of mechanisms assumed to be
responsible for cognition. So, a process is not cognitive just be-
cause it takes place in the brain, or in the brain and body, of an
individual. Instead, a cognitive process is determined not by
spatial location of the elements of the process but by the func-
tional relationships among those elements. It is important that
this generalization of cognition in no way precludes embod-
ied cognitive systems as we have described them above. On the
contrary, it includes them and, indeed, distributed cognition
requires cognition to be embodied. But it is more than just the
embodied cognition of an individual. Cognitive processes can
be distributed across a group of individuals in a social group
and it can involve coordinated interaction between those indi-
viduals and elements of their environment. Cognition can also
be distributed through time so that events can unfold in a way
that is dependent on earlier interactions. Viewed from this per-
spective, a social organization can be considered a cognitive ar-
chitecture65 in its own right. Furthermore, the development and

65 To review what is meant
by a cognitive architecture,
refer back to Chapter 3.

operation of cognition in an individual agent depends critically
on the physical embodied interaction between that agent and
the material world around it, including other agents. Since social
organizations operate in a historical cultural context (a context
founded on interaction), distributed cognition is shaped by cul-
tural factors, and in turn shapes them. This cultural context in
which the distributed cognitive system is embedded provides
an important resource for cognitive activity, akin to a corporate
memory, by which the fruits of past collective experience can be
shared among the individual elements — the agents — in the
distributed cognitive system.
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A Spectrum of Embodied Cognition

Type Necessary

Constituents

Typical Characteristics

Embodied Depends on

interpretation

Body and brain are both constitutive

elements of the cognitive process

Situated Brain Real-time interaction with the environ-

ment

Embedded Brain, body Exploit the environment and other

agents to assist with cognitive activities

Grounded Brain and body Experiential modal representations and

internal simulation

Extended Brain, body,

environment

Environment is part of the cognitive

system

Distributed Brain, body,

environment

Cognitive systems include environmen-

tal systems

Table 5.1: A characterization
of different types of embod-
ied cognition. Confusingly,
embodied cognition is often
used to refer to some or all
of these different types. All
involve structural coupling
with the environment in
some way.

5.11 Summary

So, there we have it, the many different types of embodiment
— ranging from structural coupling, through historical, physi-
cal, organismoid, organismic, to social embodiment — and the
various candidate aspects of embodied cognition. These are
the direct involvement of the body in the cognitive process, the
dependence of cognitive concepts on the specific form of the
cognitive system’s body, the real-time situated coupling between
cognitive system and the environment, the removal the need for
symbolic (or any) representations, the embedded and grounded
exploitation of the environment by the cognitive system to facil-
itate cognitive activity and off-load cognitive work and scaffold
enhanced capabilities, the interaction with the environment and
especially with other cognitive systems in distributing cognitive
activity, and the extension of the cognitive system to include the
environment not just as a tool but as a constituent component
of the cognitive process. We say ‘candidate’ aspects because em-
bodiment may entail some or all of them. It depends on who is
making the argument and there is no universal agreement — a
recurrent theme in cognitive systems — on what embodied cog-
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nition does and does not entail.66 However, at least the meaning 66 Toni Gomila’s and Paco
Calvo’s “Directions for an
embodied cognitive science:
towards an integrated
approach” [252] illustrates
the diversity of view points
on embodied cognition,
giving several examples of
the different taxonomies and
classifications that have been
suggested, many of which
we have already mentioned
(e.g. Margaret Wood’s six
views of embodied cognition
[205] and Tom Ziemke’s
classification of embodiment
[222]).

of each of the various terms — situated, grounded, embedded,
enactive, extended, and distributed cognition — should now be
clear and Table 5.1 gives a very brief characterization of them.

We concluded Chapter 2 by remarking that, irrespective of the
arguments for or against the cognitivist and emergent paradigms
of cognitive systems and their long-term prospects, the current
capabilities of cognitivist systems are actually more advanced.
This is reflected in the state of embodied cognition which is
sometimes referred to as a research program67 rather than a ma-

67 Lawrence Shapiro’s article
“The Embodied Cognition
Research Programme” [253]
provides a summary of the
research challenges facing
embodied cognition, as well
as a succinct overview of the
field.

ture discipline. It is a plausible and, to many, a very compelling
hypothesis but, despite the fact that it is now accepted as a main-
stream alternative to cognitivism, much remains to be done to
establish it as an established science with well-understood engi-
neering principles.

5.12 Epilogue: Embodied Cognition Revisited

We mentioned at the outset that the literature devoted to embod-
ied cognition is rich, varied, and sometimes bewildering. Here
are some ideas on where to begin reading your way into the
subject.

Michael Anderson’s field guide [194] is one of the definitive
studies on the topic, while his article “How to study the mind:
An introduction to embodied cognition” [234] provides an easy-
to-read overview.

Lawrence Shapiro’s book Embodied Cognition [83] gives a bal-
anced and thorough explanation of the topic, touching on many
of the issues covered in this chapter.

As we have seen, embodied cognition makes many claims.
These are discussed very clearly in Margaret Wilson’s article “Six
views of embodied cognition” [205].

The influential book The Embodied Mind by Francisco Varela,
Evan Thompson, and Eleanor Rosch [98] explains embodied cog-
nition from the perspective of the enactive approach to emergent
systems (see Chapter 2, Section 2.2.3) and is essential reading.

Paco Calvo’s and Toni Gomila’s Handbook of Cognitive Science:
An Embodied Approach [252] provides a comprehensive treatment
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of the subject, collecting together the viewpoints of many of the
most prominent researchers in the field.

Andy Clark’s book Being There: Putting Brain, Body, and World
Together Again [23] is one of the first books to offer a complete
synthesis of the arguments for embodied, embedded, activity-
focussed view of cognition, a view that eliminates any hard
boundaries between perception, cognition, and action and high-
lights their interdependence.

A special issue of Cognitive Systems Research provides a snap-
shot of the research challenges in situated and embodied cogni-
tion [254]. Even though it was published in 2002, all of the issues
raised are still live today.

Finally, there is a comprehensive tutorial on embodied cog-
nition, including video lectures, on the website of the European
Network for the Advancement of Artificial Cognitive Systems,
Interaction, and Robotics [255].



6
Development and Learning

6.1 Development

We saw in Chapter 2 that development is a key aspect of the
emergent paradigm of cognitive systems1 and we are all aware 1 We remarked in Chapter 1,

Sidenote 22, that, reflecting
the importance of learning
and development, both
have been included in a
revision of Marr’s three-level
hierarchy of understanding
(above the computational
theory level — the original
top level — and below a new
top level: evolution) [19].

that humans develop as they grow, especially during infancy.
The degree of development is often surprising. Table 6.1 picks
out just some of the milestones in the development of an infant,2

2 Infants are often referred
to as neonates in the de-
velopmental psychology
literature.

focussing on the capabilities that are necessary for a child to ac-
quire the ability to notice that someone might need help. This
itself is just a part of the developmental process by which a child
acquires an ability to actively help others and eventually col-
laborate with them (an aspect of cognition to which we alluded
in Chapter 1; see Figure 1.5). Development is an increasingly
important aspect of artificial cognitive systems, in general, and
robotic systems, in particular.3 3 For overviews of the

developmental approach
in robotics, see the surveys
by Max Lungarella and
colleagues [276] and Minoru
Asada and colleagues [277].

Given that development is an important part of cognition,
what drives the development process and what factors motivate
development? Put more formally, how do innate mechanisms
enable development so that ever-richer cognitive capabilities
emerge, consolidate, and combine to produce an embodied
agent capable of flexible anticipatory interaction? What type
of phylogeny (or cognitive architecture) is needed to facilitate
development? We look to developmental psychology to provide
some guidance on the necessary phyologeny, the process of on-
togenetic development, the balance between the two, and the
factors that drive development.4 First, let’s discuss the concept of

4 Read “Human Sensori-
Motor Development and
Artificial Systems” by Giulio
Sandini and colleagues
[278] for a good overview
of how an understanding of
human development inspires
artificial development in
robots.
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Newborns

Newborns gaze longer when a person looks directly at them [256].

Newborns are attracted to people (i.e. face and voice) [257].

Newborns prefer biological motion [258].

Newborns preferentially orient toward faces [259, 260].

Newborns prefer human voices to other sounds [261].

Early Development

2

1
2 months: infants can discriminate a familiar adult’s expressions if presented with multimodal expressions [262].

3 months: infants engage mutual gaze with adults, i.e. both agents attend to each other’s eyes simultaneously [263].

3–4 months: infants have the ability to discriminate among a few photographed, static facial expressions [264].

4 months: infants presented with multimodal expressions can discriminate some adult’s expressions [265, 266].

5 months: infants discriminate auditory-only displays of affect [266].

6 months: infants can perceive approximate direction of attention of others (i.e. to the left or to the right) [267].

10–12 months: infants show the first strong evidence of understanding the feelings of others.
9 months: infants can accurately detect the direction of the adult’s gaze [263].

12 months: infants look at the object fixated by the adults [268].

12 months: infants consider eye rather than head direction [269].

12 months: Children start to understand pointing as an object-directed action [270].

12 months: Children anticipate with gaze the goal of a feeding action [271].

Later Development

18 months: children start to follow an adult’s gaze outside their own field of view [263].

18 months: children perceive from emotions that a person wants something [272].

18 months: infants can infer what another person is trying to achieve (even if the attempt is unsuccessful) [273, 274].

18 months: infants altruistically (instrumentally) help adults when they are having problems achieving a goal [275].

Table 6.1: Selected mile-
stones in the development of
a human infant, highlight-
ing some of those that are
involved in interaction and
especially those that lead
to an ability to collaborate
with others. The innate
skills in newborns provide
a sensitivity to character-
istics of the external world
that maximize an infant’s
chances of interacting with
others [257]. This material
was compiled by Alessandra
Sciutti, Istituto Italiano di
Tecnologia (IIT).

development a little more.
Development arises due to changes in the central nervous

system as a result of dynamic interaction with the environment.
Development results in new forms of action and the acquisi-
tion of predictive control of these actions. The predictive part
is important: to control actions effectively, a cognitive agent
needs to be able to anticipate the outcome of these actions, as
well as anticipating the need for them in the first place. It seems
that cognition is the way an agent manages to align these two
forward-looking views of its interaction with the environment
in which it is embedded. To act effectively, an agent must be
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Figure 6.1: The time hori-
zon of a cognitive system
increases with develop-
ment. The top half of the
figure depicts a system
without a central nervous
system (see Chapter 2,
Figure 2.3); it has little or
no prospective capacity.
The bottom half depicts a
system with a central ner-
vous system, and hence
one capable of devel-
opment (see Chapter 2,
Figure 2.4); it has consid-
erably greater prospective
capacity.

able to infer upcoming events. We call this prospection. For ex-
ample, when a cognitive agent, and specifically a human agent,
practices some new action repetitively, the focus isn’t as you
might think on establishing fixed patterns of movement — mus-
cle memory as it is sometimes called — but on establishing the
scope for prospective control of these movements in the con-
text of the goals of an action.5 Thus, sensorimotor skills that are

5 The importance of prospec-
tion (i.e. anticipation) in
motor control, especially
when viewed in the context
of carrying out goal-directed
actions, is developed by Ed
Reed in his book Encoun-
tering the world: Toward an
ecological psychology [279];
also see the review by Gavan
Lintern [280].

learned early on are gradually developed. The progressive de-
velopment of innate skills or skills that are learned early on is
sometimes referred to as scaffolding. This development, particu-
larly the prospective aspect, is accelerated by internal simulation,
i.e. mentally rehearsing — consciously or subconsciously — the
execution of actions and inferring the likely outcome of those
actions. Thus, cognition itself can be viewed as a developmental
process through which the system becomes progressively more
skilled and acquires the ability to understand events, contexts,
and actions, initially dealing with immediate situations and in-
creasingly acquiring a predictive, i.e. prospective, capability (see
Figure 6.1).

Like cognition, development is a system-wide process: the
development of action and perception, the development of the
nervous system, and the development and growth of the body all
mutually influence each other as increasingly-sophisticated and
increasingly prospective (i.e. future-oriented) action capabilities
are acquired.6

6 Claes von Hoftsten’s paper
“Action in Development”
provides an accessible
overview of the importance
of prospective goal-directed
action in cognitive devel-
opment and the role of
exploratory and social moti-
vations in the developmental
process [281]. A more in-
depth treatment can be
found in his article “Action
in Infancy: A Foundation
for Cognitive Development”
[282].
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6.1.1 Motivation

The development of an autonomous agent is crucially dependent
on motives. They determine the goals of actions and provide
the drive for achieving them. As we noted in Chapter 3, Sec-
tion 3.2.5, motivations imply the presence of a value system that
guide or govern development.7 The two most important motives 7 For an overview of the role

of value systems in artifi-
cial cognitive systems, see
the paper “A Comparative
Study of Value Systems for
Self-motivated Exploration
and Learning by Robots” by
Kathryn Merrick [127] and
“Intrinsic motivation sys-
tems for autonomous mental
development” by Pierre-Yves
Oudeyer and colleagues
[128]. An early example of
the use of a value system
in developmental robotics
can be found in the work by
Xiao Huang and John Weng
[235, 236].

that drive actions, and thus development, are social and ex-
ploratory. They both function from birth and provide the driving
force for action throughout life.

The social motive puts the subject in a broader context of
other humans that provide comfort, security, and satisfaction,
from which the subject can learn new skills, find out new things
about the world, and exchange information through communica-
tion. The social motive is so important that it has been suggested
that without it a person will stop developing altogether. The
social motive is expressed from birth in the tendency to fixate so-
cial stimuli, imitate basic gestures, and engage in social interac-
tion. Social motives include the need to belong, self-preservation,
and cognitive consistency with others.8 8 The introduction to the

book Social Motivation by
Joseph Forgas and col-
leagues [283] gives a good
account of social motiva-
tions and their relation to
cognition and affect (i.e.
emotional states).

There are at least two exploratory motives. The first one has to
do with finding out about the surrounding world: the discovery
of novelty and regularity in the world. The second exploratory
motive has to do with finding out about the potential of one’s
own action capabilities.

New and interesting objects and events attract infants’ visual
attention, but after a few exposures they are not attracted any
more. Infants also have a strong motivation to discover what
they can do with objects, especially with respect to their own
sensorimotor capabilities and the particular characteristics of
their embodiment. Put a little more formally, infants have a
strong motivation to discover the affordances of objects in their
surroundings in the context of new actions they can perform
with them.9

9 To refresh your memory
of affordances, refer back to
the second last paragraph of
Section 5.6, Chapter 5, and
to Sidenote 52 in Chapter 2.
Remember too that actions
are focussed on the goal
of the action, not on the
movements by which that
goal is achieved.

The motivation to seek new ways of doing things is so strong
that it often overrides ways achieving a goal that have already
become established through previous development. For example,
infants persist in trying to walk even when they can get about
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very effectively by crawling, and they keep using head move-
ments when directing gaze even though eye movement alone
will suffice. It isn’t necessarily success at achieving task-specific
goals that drives development in infants but rather the discovery
of new modes of interaction with the world in which the infant
is embedded: the acquisition of a new way of doing something
through exploration.10

10 The view that exploration
is crucial to development
is supported by research
findings in developmental
psychology, e.g. see Claes
von Hofsten’s articles
“On the development of
perception and action” [284]
and “An action perspective
on motor development”
[215].

6.1.2 Imitation

In addition to the development of skills through exploration
— reaching, grasping, and manipulating what’s around you
— there are two other very important ways in which cognition
develops. These are imitation and social interaction, including
teaching. These two different drivers of development — the ex-
ploratory and the social — mirror the developmental psychology
of Jean Piaget and Lev Vygotsky, respectively.11

11 A paper by Kerstin Daut-
enhahn and Aude Billard
[285] provides a succinct
introduction to the dif-
ferences between Jean
Piaget’s exploration-centred
approach to infant develop-
ment and Lev Vygotsky’s
social approach. It empha-
sises the importance of social
interaction and teaching in
development and describes
a framework for develop-
ment in robots. We return
to Piaget and Vygotsky in
Chapter 9, Section 9.6.

Imitation12 — the ability to learn new behaviours by observ-

12 Read Aude Billard’s article
“Imitation” [286] for an
overview of the role imita-
tion plays in social cognition,
i.e. the way agents interact
with each other cognitively,
and an explanation of three
ways in which imitiation
is modelled: theoretically
based on behavioural stud-
ies, computationally based
on models of neural mech-
anisms, and synthetically
in robotics to allow robots
to learn by demonstration.
Andrew Meltzoff’s article
[287] provides an indepth
overview of the importance
of imitation as a fundamen-
tal component of cognitive
development.

ing the actions of others — is a key mechanism in development
and it is innate in humans.13

13 Andrew Meltzoff and
Keith Moore showed that
newborn infants can imitate
facial expressions, for
example see [288, 289].

In contrast to trial-and-error exploration and associated learn-
ing methods such as reinforcement learning (where little suc-
cesses slowly guide you towards an overall strategy for accom-
plishing some task), imitation provides a way of learning rapidly.
Note that imitiation and mimicry are not the same. Imitation is
focussed on learning new skills by trying to replicate by observa-
tion what someone else is doing with the results that the agent’s
repertoire of actions is enlarged. Mimicry, on the other hand, is
simply copying, typically by using some skill that the mimicing
agent already possesses.

Although present at birth, the ability to imitate develops over
the first couple of years of an infant’s life. Newborn infants
imitate facial expressions but it is not until 15 to 18 months that
an infant can imitate a variety of actions. Imitation develops in
infants in four phases:

1. Body babbling;

2. Imitation of body movements;

3. Imitation of actions on objects;
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4. Imitation based on inferring intentions of others.14 14 The identification of
the four phases in the
development of imitiation
are due to Andrew Meltzoff
and Keith Moore in their
widely-cited article [289].
It is explained and applied
in a subsequent paper by
Rajesh Rao, Aaron Shon, and
Andrew Meltzoff [290].

The term body babbling (or sometimes motor babbling) derives
from the more common phrase vocal babbling that is used to
describe the seemingly random noises a baby makes before it
learns to talk. The idea with body babbling is much the same:
infants do not know what muscle movements are needed to
achieve the goal associated with some particular action. So, to
learn this, an infant engages in random trial-and-error learning.
This allows the infant to generate a map between movements, or
motor commands, and the resultant action. This is quickly fol-
lowed by the developement of an ability to imitate body move-
ments and gestures.

Infants who are a few months old can direct their imitation
to objects around them and later on they can defer the imita-
tion, enacting it later on, long after the imitated action has been
observed.

Imitation culminates in the ability to infer the intentions of
others. In this, imitation provides a bridge between different
accounts of development, specifically cognitive neuroscience
and developmental psychology, and how humans develop an
undertanding of the intentions of other people and the ability to
empathize with them.15 This is referred to as a Theory of Mind, 15 Andrew Meltzoff’s and

Jean Decety’s landmark
paper [291] describes the
importance of a human’s
innate ability to imitate, and
the neural basis for imitation
in the mirror neuron system
(see Chapter 5, Section 5.6),
in providing a mechanism
for the development of a
theory of mind. In their
words, “In ontogeny, infant
imitation is the seed and the
adult theory of mind is the
fruit.”

a term which is often misunderstood. It means that one agent
is able to form a view (or take a perspective) on someone else’s
situation; it isn’t meant as a theory of how cognition works in
general, i.e. a theory of how a mind works. So, to have a theory
of mind means to have the ability to infer what someone else is
thinking and wants to do. We return to this issue of theory of
mind and inferring intentions in Chapter 9, Section 9.3.

6.1.3 Development and Learning

Development and learning are related but they are not the same.
We said already in this chapter that development differs from
learning in that it involves the inhibition of existing abilities and
that it must be able to deal with changes to the morphology or
structure of the agent. In Chapter 3, we also noted that develop-
mental systems are model generators rather than model fitters.
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We will now explain and amplify these statements.
First and foremost, development is a process which an agent

undergoes to expand its repertoire of possible actions and to
extend the time horizon of its capacity for prospection (i.e. the
ability to anticipate events and the need to act).

Learning and development are both concerned with building
models of how the world works, and how the agent fits into that
model, but learning is usually based on adapting or calibrating a
model provided by another agent whereas development usually
entails the agent discovering that model for itself. Thus learning
is focused on determining the parameters of a model provided
by others, e.g. to improve performance of the correspondence be-
tween observations. On the other hand, development is focussed
on generating the model in the first place: figuring out a new
way of doing something or coming up with a new explanation
of why something works a certain way. The model does not have
to be correct: it just has to make sense for the cognitive agent.16 16 Regarding the correctness

of models, the statistician
George Box famously noted
“Essentially, all models are
wrong, but some are useful”
[292].

Learning is often concerned with acquiring an understanding
of how the world works without any reference to the agent’s
own perspective on matters; development is always concerned
with the relationship of the agent’s capabilities in the context
of how the world works. Consequently, development requires
two-way interaction between the agent and its environment: it
involves structural coupling, to use the terminology from Chap-
ter 5. There has to be an element of exploration and assessment,
of hypothesis and testing, in the development of the cognitive
agent’s understanding. Furthermore, the agent’s actions have to
have some causal impact on its sensory perceptions. Learning
can often be accomplished just on the basis of observation.

Development often involves a decrease in performance before
an improvement sets in: the curve of performance often dips
before rising again. We call this a non-monotic process. In con-
trast, a monotonic process or curve doesn’t dip and always rises.
Learning techniques are often monotonic: they usually involve
continual improvement. The problem with this is that what is
learned may be a good solution, but there is no guarantee that
it is the best: it may not be globally optimal. In terms of learn-
ing knowledge, a monotonic learning agent can only learn new
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knowledge that does not contradict what it already knows.
On the other hand, non-monotonic learning would enable the

agent to learn new knowledge that is inconsistent with what it
currently knows. This allows the agent to replace or override
existing knowledge if it makes more sense.17 As we noted above, 17 There is an overview

of monotonic and non-
monotonic learning from
the perspective of cognitive
systems on the University
of Michigan’s Cognitive and
Agent Architecture website
[293].

in order to facilitate exploration of new ways of doing things,
an agent must sometimes suspend current skills. Consequently,
development differs from learning in that (a) it must inhibit
existing abilities, and (b) it must be able to cater for (and perhaps
cause) changes in the morphology or structure of the agent.
The inhibition does not imply a loss of learned control but an
inhibition of the link between a specific sensory stimulus and a
corresponding motor response.

Despite these distinctions, learning and development do go
hand in hand and development won’t occur if the agent does
not have some capacity for learning. So, with that in mind, let us
discuss learning very briefly.18 18 For an introduction to

the different techniques
involved in learning, see
Tom Mitchell’s book Machine
Learning [294].

Overall, we can distinguish three types of learning: super-
vised learning, reinforcement learning, and unsupervised learn-
ing.19

19 Kenji Doya’s paper “What
are the computations of the
cerebellum, the basal ganglia
and the cerebral cortex?”
[295] contains a succinct
explanation of the three
basic learning paradigms of
supervised, reinforcement,
and unsupervised learning.
There is a more gentle
introduction to this material
in a later paper [296].

In supervised learning, the agent that is learning is provided
with examples of what it needs to learn and, in particular, it
can determine an error value between the correct answer and
its estimate of the correct answer. These errors are vector val-
ues: they show how much the estimate differs — the magnitude
of the error — as well as the direction in which it needs to ad-
just its estimate in order to reduce the error next time it makes
that estimate. For example, if a cognitive agent is learning the
relationship between the motor control values to reach for an
object and the position of that object in its field of view, it will be
provided with a training set that comprises pairs of correct cor-
respondences between both data sets. Furthermore, when it tries
to reach for the object, and fails, it is able to estimate not only
how far away its attempt is from the correct position, but also the
required adjustment in direction. Thus, in supervised learning,
the teaching (or training) signals are directional errors.

Reinforcement learning20 is also a form of supervised learn-

20 For an overview of re-
inforcement learning, see
Mance Harmon’s and
Stephanie Harmon’s “Re-
inforcement Learning: A
Tutorial” [297].ing insofar as a reward signal is provided at each step of the
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learning process. In this case, the teaching signals don’t con-
tain any directional information. They are simply scalar values
called rewards or reinforcement signals. In the reinforcement
learning paradigm, an agent takes some action which results in
some change in the state of the environment (including the agent
itself). It receives a reinforcement signal, or reward. Another
action results in another, possibly different, reward. The goal of
the learning process is to maximize the cumulative sum of the
rewards over time. In this way, successful behaviour is reinforced
and unsuccessful behaviour is penalized.

Unsupervised learning21 operates with no teaching signals, 21 See Zoubin Ghahramani’s
paper “Unsupervised
Learning” [298] for a tutorial
introduction to the topic.

just a stream of input data. The goal of learning is to uncover
the statistical regularity in this input stream and, in particular,
to find some mapping between the input data and the learned
output that reflects the underlying order in the input data. For
example, the data stream might reflect a number of different
clusters; unsupervised learning provides a way of identifying
and characterizing these clusters.

As you would expect, different types of development require
different learning mechanisms and the human brain is good at
all three types of learning, with different regions being special-
ized for different types.22 Innate behaviours are honed through

22 For example, Kenji Doya
argues that the cerebellum
is specialized for supervised
learning, basal ganglia for
reinforcement learning,
and the cerebral cortex
for unsupervised learning
[295]. These regions and
the learning processes are
also interdependent: James
McClelland and colleagues
argue that the hippocampal
formation and the neo-cortex
form a complementary
system for learning [299].
The hippocampus facil-
itates rapid learning of
associations between events
— associative learning —
which is used to reinstate
and consolidate learned
memories in the neo-cortex
in a gradual manner.

continuous knowledge-free reinforcement-like learning while
new skills develop through a different form of learning, driven
by spontaneous unsupervised play and exploration which is not
directly reinforced. On the other hand, imitative learning and
learning by instruction makes use of supervised learning.23

23 For a comprehensive
overview of the different
approaches to supervised
learning in robots, including
imitation, see “A survey
of robot learning from
demonstration” by Brenna
Argall and colleagues [300].

In summary, cognitive skills emerge progressively through the
development of an agent as it learns to make sense of its world
through exploration, through manipulation, imitation, and social
interaction. Terry Winograd and Fernando Flores capture the
essence of developmental learning, at least from the emergent
perspective, in their classic book Understanding Computers and
Cognition [87]:

“Learning is not a process of accumulation of representations
of the environment; it is a continuous process of transformation
of behaviour through continuous change in the capacity of the
nervous system to synthesize it. Recall does not depend on the
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indefinite retention of a structural invariant that represents an
entity (an idea, image, or symbol), but on the functional ability
of the system to create, when certain recurrent conditions are
given, a behaviour that satisfies the recurrent demands or that the
observer would class as a reenacting of a previous one.”

6.2 Phylogeny vs. Ontogeny

Two terms, both of which we have already encountered in Chap-
ters 2 and 3, are important in any discussion of development and
learning. These are phylogeny and ontogeny. Phylogeny refers
to the evolution of the an agent from generation to generation
whereas ontogeny refers to the adaptation and learning of the
system during its lifetime. Thus, ontogeny is just another word
for development.

Development must have a starting point. This is provided by
phylogeny which determines the agents initial sensori-motor
capabilities and its innate behaviours. These are embedded in
the agent’s cognitive architecture and exist at birth in a biological
cognitive agent. Ontogeny (i.e. development) then gives rise to
the cognitive capabilities that we seek.

Not all species of animal or bird are capable of significant cog-
nitive development. In nature, there is a trade-off between the
agent’s initial capabilities (its phylogenetic configuration) and its
capacity for development (its ontogenetic potential). In general,
two types of species can be distinguished: precocial species and
altricial species. Precocial species are those that are born with
well-developed behaviours, skills, and abilities. These are the
direct result of their genetic make-up, i.e. their phylogenetic con-
figuration. As a result, precocial species are quite independent
at birth. Altricial species, on the other hand, are born with un-
developed behaviours and skills and they are highly-dependent
on their parents for support. However, in contrast to precocial
species, they have a much greater capacity to develop complex
cognitive skills over their life-time (i.e. through ontogeny).24

24 Aaron Sloman and Jackie
Chappell argue that, rather
than viewing the precocial
vs. altricial distinction as a
simple dichotomy in phy-
logenetic configuration and
ontogenetic potential, we
should view the precocial
and altricial as two ends of
a spectrum of possible con-
figurations: “precocial skills
can provide sophisticated
abilities at birth. Altricial ca-
pabilities have the potential
to adapt to changing needs
and opportunities. So it is
not surprising that many
species have both” [301].

In the context of artificial cognitive system, the challenge is
to strike the right balance between precocial and altricial in the
design of a cognitive system, specifically in the design of its cog-
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nitive architecture. In effect, there are two problems: to identify
the innate phylogentically-endowed skills (which need not be
perfect and can be tuned through some form of learning), and
to establish how these capabilities are developed. Although we
have already touched on these issues in Chapter 3 on cognitive
architectures, here will will take the opportunity to draw more
deeply on developmental psychology and neuroscience to pro-
vide some insight into these problems, specifically with a view
to understanding the necessary — core — skills, capacities, and
knowledge that should be present in an agent’s phylogenetic
configuration, i.e. its cognitive architecture, if it is to be capable
of development.

6.3 Development from the Perspective of Psychology

6.3.1 The Goal-directed and Prospective Nature of Action

Evidence from many different fields of research, including psy-
chology and neuroscience, suggests that the movements of bi-
ological organisms are organized as actions and not reactions.
While reactions are elicited by earlier events, actions are initiated
by a motivated subject, they are defined by goals, and they are
guided by prospective information.25 In essence, actions are

25 The anticipatory, goal-
directed, nature of action
is a keystone of A Roadmap
for Cognitive Development in
Humanoid Robots, a book co-
written by the author, Claes
von Hofsten, and Luciano
Fadiga [12].

organized by goals and not by their trajectories or constituent
movement, although of course these matter too.

For example, when performing manipulation tasks or observ-
ing someone else performing them, subjects fixate on the goals
and sub-goals of the movements not on the body parts, e.g. the
hands, or the objects.26 However, this happens only if a (goal-

26 A paper by Roland Johans-
son and colleagues [302]
describes an experiment
which shows that people
fixate on key landmarks
such as the point where
an object is grasped, the
target location of object,
and the support surface,
but never on their hand
or the moving object. This
shows that gaze supports
predictive motor control in
manipulation and provides
evidence for the prospec-
tive goal-directed nature of
action we have highlighted
in this chapter. A related
paper by Randal Flanagan
and Roland Johansson [303]
shows the same behaviour
when people observe object
manipulation tasks.

directed) action is implied. When showing the same movements
without the context of an agent, subjects fixate the moving object
instead of the goal.

Similarly, evidence from neuroscience shows that the brain
represents movements in terms of actions even at the level of
neural processes. For example, as we noted in Chapter 5, Section
5.6, a specific set of neurons, mirror neurons, is activated when
perceiving as well as when performing an action.27 These neu-

27 For a good overview of
the mirror-neuron system,
see the review article by
Giacomo Rizzolatti and Laila
Craighero [214].rons are specific to the goal of actions and not to the mechanics
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of executing them: they are not active if there is no explicit or
implied goal associated with the movement associated with the
action.

Actions, as we have emphasized several times, are guided by
prospective information as opposed to instantaneous feedback
data. Part of the reason for this is that events may precede the
feedback signals about them because in biological systems the
delays in the control pathways may be substantial. If you can
not rely on feedback, the only way to overcome the problem
is to anticipate what is going to happen next and to use that
information to control one’s behaviour.

6.3.2 Core Cognitive Abilities in Infants

The phylogenetic configuration of a cognitive system provides
the core from which development builds. Young infants have
two core knowledge systems that provide the basis for repre-
senting objects (including persons and places) and the concept
of number (numerosities).28 While these core systems provide 28 Elizabeth Spelke’s ar-

ticle “Core Knowledge”
[304] gives a very accessible
overview of core knowl-
edge systems and the way
they contribute to flexible
cognitive skills through
development.

the foundation of cognitive flexibility, they are themselves lim-
ited in a number of ways: they are domain specific, task specific,
and encapsulated (i.e. they operate fairly independently of one
another).

Infants build representations of objects but only if they exhibit
certain characteristics. Specifically, the entities that are consid-
ered to be object-line are complete, connected, solid bodies that
maintain their identity over time, and persist through occlusion
when they are hidden by other objects. Infants can keep track
of multiple objects simultaneously but the number is limited to
about three objects and this ability is tolerant to changes in object
properties such as colour, precise shape, and spatial location.

Infants have two core systems related to numbers: one that
deals with small exact numbers of objects and one that deals
with approximate numbers in sets. Infants can reliably discrim-
inate between one and two objects, and between two and three
objects, but not any higher numbers.29 The ability to quantify

29 “Core systems of number”
by Lisa Feigenson, Stanislaus
Dehaene, and Elizabeth
Spelke [305] provides a
succinct summary of both
numerosity core systems:
approximate representations
of numerical magnitude and
precise discrimination of
distinct individuals.

small numbers of items without conscious counting is called
subitization. This capability is not dependent on modality and in-
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fants can do the same with sounds. Infants also have the ability
to add these small numbers. On the other hand, the approxi-
mate number system enables infants to discriminate larger sets
of entities.

An important part of core knowledge has to do with people.
Specifically, it as to do with interaction between infants and their
carers, and the predisposition of human infants to interact with
other humans. Infants are attracted by other people and are
endowed with abilities to recognize them and their expressions,
and to communicate with them. As we saw in Table 6.1 at the
beginning of the chapter, they develop an ability to perceive the
goal-directedness of the actions of other people quite quickly.
Similarly, young infants exhibit a preference for the motions
produced by a moving person over other motions, so-called
biological motion.30

30 The preference for bio-
logical motion by human
infants aged four to six
months was suggested in
1982 as evidence in support
of the hypothesis that this is
an intrinsic capacity of the
human visual system [306].
Recently, in 2008, it was
shown by Francesca Simion
and colleagues that in fact
newborn babies are sensitive
to biological motion [258].

Intentions and emotions are displayed by elaborate and spe-
cific movements, gestures, and sounds that become important to
perceive and control. Some of these abilities are already present
in newborn infants and reflect their preparedness for social in-
teraction. Young infants are very attracted by people, especially
to the sounds, movements, and features of the human face, and
they look longer at a face that directs the eyes straight at them
than at one that looks to the side.31 They also engage in some

31 A paper by Teresa Far-
roni and colleagues [256]
describes an experiment
that demonstrates that, from
birth, human infants prefer
to look at faces that engage
them in mutual gaze, i.e.
to interact with people that
make direct eye contact.

social interaction and turn-taking that among other things is
expressed in their imitation of facial gestures.32

32 Two classic papers on
imitation of facial features
by neonates, and imitation
generally, are the result of
work by Andrew Meltzoff
and Keith Moore [288, 289].

The ability to spatially reorient and navigate, often taken as a
typical cognitive abilities, is also subject to development. While
adults solve reorientation tasks by combining non-geometric
information (e.g. colour) with geometric information, young chil-
dren rely only on geometry.33 Similarly, there is evidence that

33 Linda Hermer’s and
Elizabeth Spelke’s paper
[307] discusses the difference
between the way young
children and adults reorient
in space. In contrast to
adults, children rely only
on geometry to reorient
even when nongeometric
information is available.

navigation is based on representations that are momentary rather
than enduring, egocentric rather than geocentric, and limited in
the information they capture about the environement.34 When

34 An article by Ranxiao
Wang and Elizabeth Spelke
[308] discusses the character-
istic dependence by humans
on momentary, egocentric,
and informationally-limited
cues in spatial represen-
tation, contrasting it with
the more widely-held and
more intuitive assumption
that it is based on enduring,
geocentic "cognitive maps.”

navigating, children and adults base their turning decisions on
local, view-dependent, and geometry-based representations.
They navigate by forming and updating a dynamic represen-
tation of their relationship to the environment. This capacity
for path integration, whereby an agent navigates from point to
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point, cumulatively basing the next step on the previous ones,
has been found to be one of the primary forms of navigation in
insects, birds, and mammals. Like other animals, humans can re-
turn to the origin of a path and travel to familiar locations along
novel paths, reorienting by recognizing landmarks rather than by
forming global representations of scenes.

6.3.3 Ontogeny

If the phylogenetic configuration of a cognitive system provides
the core of development, then ontogeny is the path that devel-
opment takes when scaffolding these abilities to generate the
anticipatory, prospectively-controlled goal-directed repertoire of
possible actions.

The ontogeny of a cognitive system begins with actions that
are immediate and have minimal prospection, and progresses
to more complex actions that bring forth increasingly prospec-
tive cognitive capabilities. This involves the development of
perception-action coordination, beginning with head-eye-hand
coordination, progressing through manual and bi-manual ma-
nipulation, and extending to more prospective couplings involv-
ing inter-agent interaction, imitation, and communication, gestu-
ral and vocal (refer again to Table 6.1 at the start of the chapter).
This development occurs in both the innate skills with which
phylogeny equips the system and in the acquisition of new skills
that are acquired as part of the ontgenetic development of the
system.

6.4 Conclusions

We can now make some general observations on the nature of
cognitive systems that have a capacity for development.

Perhaps most important of all is the recognition that a devel-
opmental cognitive system’s actions are guided by prospection,
directed by goals, and triggered by affective motives. Develop-
ment, then, is the process by which the system progressively
extends the time-scales of its prospective capacity and extends its
repertoire of actions. As a consequence, a cognitive system needs
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an attentional system that fixates on the goals of actions. It also
needs to have some mechanism to rehearse hypothetical scenar-
ios through internal simulation in order to predict, explain, and
imagine events. There needs to be a mechanism to use the out-
come of this simulation to modulate the behaviour of the system
and scaffold new knowledge through generative model building.
We return to this issue in the next chapter on memory.

A developmental cognitive system is capable of adaptation
and self-modification, both in the sense of parameter adjustment
of phylogenetic skills through learning and through the modi-
fication of the structure and organization of the system itself so
that it is capable of altering its system dynamics based on expe-
rience.35 Again, this gives it the capacity to expand its repertoire

35 Although written over 60
years ago, W. Ross Ashby’s
classic book Design for a
Brain [29, 30, 31] provides
a very instructive analy-
sis of the mechanisms by
which this self-organizing
adaptive behaviour can be
achieved through home-
ostasis, ultrastability, and
multistability. Note that
there are two editions of
this book and that they dif-
fer quite significantly. It is
worth reading both versions
to see how Ashby’s thinking
changed in the eight years
that elapsed between the
publication of the first and
second editions. See an open
peer commentary article by
the present author for a brief
and selective overview of the
differences between the two
editions.

of actions, adapt to new circumstances, and enhance its prospec-
tive capabilities.

A developmental cognitive system needs an appropriate phy-
logenetic configuration with innate — core — abilities. This is
encapsulated in its cognitive architecture. It also needs the op-
portunity to develop: a period of ontogeny. During this period,
development is driven by both exploratory and social motives,
the first concerned with the discovery of novel regularities in the
world and the potential of the system’s own actions, the second
with inter-agent interaction, shared activities, and mutually-
constructed patterns of shared behaviour. We return to this issue
in the last chapter on social cognition.



7
Memory and Prospection

7.1 Introduction

We began our study of artificial cognitive systems in Chapter 1
with a general overview of the nature of cognition, highlighting
the essential characteristics of a cognitive system. We focussed
in particular on the ability of a cognitive agent to anticipate the
need for action and expand its repertoire of actions. We saw that
cognitive systems develop and learn, and in so doing adapt to
changing circumstances. In Chapter 2, we looked at the different
paradigms of cognitive science and the different assumptions
people make about cognition. As we saw, this has a significant
impact on the way that cognitive systems are modelled. Then,
in Chapter 3, we looked at various aspects of these models un-
der the general heading of cognitive architectures. One of the
central issues in all of the cognitive architectures we studied was
concerned with what a cognitive systems knows and how it ac-
quires, retains, and uses its knowledge and know-how, i.e. its
cognitive skills. This brings us to our next topic: memory.

Memory plays a crucial and sometimes unexpected role in
cognition. In this chapter, we ask what a cognitive system re-
members, why it remembers, and how it uses what it remem-
bers. In answering these questions we will build on what we
learned in Chapters 4, 5, and 6 on autonomy, embodiment, and
development & learning, respectively.

There is a strong parallel between memory and knowledge
and, in the following, we will examine this relationship. It is
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tempting to think of memory just as a passive mechanism for
storing knowledge and to focus exclusively on knowledge. As
we saw in Chapters 2 and 3, knowledge is central to cognitivist
cognitive systems, providing the content that complements the
cognitive architecture. Together, they form the complete cogni-
tive model. Very often, as a natural consequence of cognitivism’s
close relationship with classical AI and the physical symbol sys-
tem hypothesis in particular (see Section 2.1.2), knowledge is
assumed to be symbolic. However, this assumption may not al-
ways hold. So, to avoid unintentional misunderstandings about
the nature of knowledge, in this chapter we will tackle the issue
from the perspective of memory, highlighting the similarities
and, often, the duality of memory and knowledge. We will not
view knowledge as simply the contents of memory and we will
view memory and knowledge as being in some sense equiva-
lent in that they both encapsulate the experience that arises from
interaction with the world.

This is how we will proceed. We will begin with the simplest
task: distinguishing between different types of memory. We will
differentiate between several types of memory, including declara-
tive, procedural, semantic, episodic, long-term, short-term, work-
ing, modal, amodal, symbolic, sub-symbolic, hetero-associative,
and auto-associative memory. We have already met many of
these distinctions in Chapter 3 when discussing cognitive archi-
tectures. Our goal here is to explain the differences.

Once we are aware of the different types of memory, we will
discuss the role of memory. It will quickly become clear that
memory has as much to do with the future as it does with the
past. Memory facilitates the persistence of knowledge and forms
a reservoir of experience. Without it, it would be impossible for
the system to learn, develop, adapt, recognize, plan, deliber-
ate, and reason. Memory functions to preserve what has been
achieved through learning and development, ensuring that,
when a cognitive systems adapts to new circumstances, it doesn’t
lose its ability to act effectively in situations to which it had
adapted previously. But memory has another role in addition to
preserving past experience: it is to anticipate the future. In this
context, we will discuss one of the central pillars of cognitive
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capacity: the ability to simulate internally the outcomes of pos-
sible actions and select the one that seems most appropriate for
the current situation. Viewed in this light, memory can be seen
as a mechanism that allows a cognitive agent to prepare to act,
overcoming through anticipation the inherent “here-and-now”
limitations of its perceptual capabilities.

7.2 Types of Memory

7.2.1 Overview

We will begin by differentiating between different types of mem-
ory.1 As we noted in the previous section, there are many dis- 1 For an overview of memory

in both natural and artificial
cognitive systems, see the
review by Rachel Wood,
Paul Baxter, and Tony Bel-
paeme [309]. Larry Squire’s
article “Memory systems of
the brain: A brief history
and current perspective”
[310] provides a succinct and
accessible overview from a
neuroscientific perspective.

tinctions to be made. These include the following.

• short-term vs. long-term
• declarative vs. procedural
• semantic vs. episodic
• symbolic vs. sub-symbolic
• modal vs. amodal modal
• hetero-associative vs. auto-associative

That isn’t the end of the story, though. Declarative memory is
sometimes referred to as propositional or descriptive memory.
Short-term memory is sometimes referred to as working memory
but there are some subtle distinctions to be made here too. To
give us some basis for making these distinctions, it may be help-
ful to first consider what memory is. To a large extent, memory
can be viewed as something that results from past experience
and which is available for recall to support effective on-going
and future behaviour. We are being a little evasive here by refer-
ring to it as “something.” There is a reason for this evasiveness
and it goes back (once again) to the differences between cogni-
tivist and emergent approaches to cognition.

If you adhere to the cognitivist approach, you would call that
something knowledge. If you adhere to the emergent approach,
you would be less willing to commit to this term because it
might be misconstrued to mean that this “something” is a neatly
encoded and probably symbolic description — or representa-
tion — of the world that the cognitive agent has experienced.
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MEMORY 

Short-term 
Memory 

Long-term 
Memory 

Declarative 
Memory 

Semantic 
Memory 

Procedural 
Memory 

Working  
Memory 

Episodic 
Memory 

Figure 7.1: A simplified
taxonomy of memory.
For a more complete
taxonomy, see [310].

Someone who adheres to the emergent paradigm would prefer
to think of memory as some state of the cognitive system that
can be recalled in the service of current, imminent, or future ac-
tion. We called this action effective above and we should remind
ourselves again what we learned in Chapters 1 and 2: that effec-
tive means adaptive and anticipatory, so that a cognitive system
doesn’t operate just on the basis of its current sensory data but
readies itself for what it expects and adjusts to the unexpected.

One further point: in contrast with most artificial computer-
based systems, memory in natural systems is not localized and
it is not passive. On the contrary, it is distributed and active to
the extent that memory should be thought of not as a “storage
location” in a cognitive architecture, but a pervasive facet of the
complete cognitive system, fully integrated into all aspects of
the cognitive architecture. In this sense, memory is an active
process — a primary mechanism of cognition — rather than
a passive information repository. Increasingly, this position is
being adopted in artificial cognitive systems.2

2 On the pervasive view
of memory in a cognitive
system, Joaquín Fuster
remarks “We are shifting
our focus from ‘systems of
memory’ to the memory of
systems. The same cortical
systems that serve us to
perceive and move in the
world serve us to remember
it.” [311]. An example
of how this perspective
is being applied in the
design of artificial cognitive
systems can be found in
Paul Baxter’s and Will
Browne’s Memory-Based
Cognitive Framework
(MBCF) [312].

7.2.2 Short-term and Long-term Memory

Let us now look at different types of memory (refer to Figure
7.1 as you read through this section).3 The first distinction we

3 The overview of the differ-
ent types of memory follows
closely the treatment in “A
review of long-term memory
in natural and synthetic sys-
tem" by Rachael Wood, Paul
Baxter, and Tony Belpaeme
[309].
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make is between short-term memory and long-term memory. The
difference between them is evidently based on how long the
content of memory lasts but there are other differences to do
with the physical process by which the memory is retained. In
short-term memory, the memory is maintained by transitory
electrical activity while long-term memory uses longer-lasting
chemical changes in the neural system.4 Short-term memory is

4 Rachael Wood and col-
leagues [309] note that the
distinction between short-
and long-term memory was
first made by Donald Hebb
in 1949 in his book The Orga-
nization of Behaviour [61]. On
the other hand, the review
by Nelson Cowan [313] puts
forward the view that short-
term memory is an activated
part of long-term memory.
Joaquín Fuster supports this
position, viewing working
memory as the temporary
activation of short-term and
long-term perceptual and
motor memory [311].

sometimes referred to as working memory, a form of temporary
memory that is used to support current cognitive processing,
such as the achievement of goal-directed action.5 We already

5 For an overview of neu-
rocomputational models of
working memory, see [314].
The authors, Daniel Durste-
witz, Jeremy Seamans, and
Terrence Sejnowski, refer to
working memory as a form
of short-term memory, again
making the point that short-
term memory depends on
the maintenance of elevated
activity (i.e. firing rates) in
sub-populations of neurons
in the absence of external
cues. This contrasts with
more long-lasting chemi-
cal changes in the neural
synapses typical of long-
term memory. The article
reviews the different ways
that this persistent elevated
activity is achieved.

met this in Chapter 3 where we discussed the Soar and ISAC
cognitive architectures (see Sections 3.4.1 and 3.4.3).

7.2.3 Declarative and Procedural Memory

We can also distinguish memory based on the nature of what is
remembered and the type of access we have to it. Specifically,
memory can be categorized as either declarative or procedural, de-
pending on whether it captures knowledge of things — facts —
or actions — skills. Sometimes they are characterized as memory
of knowledge and know-how: “knowing that” and “knowing
how.”6 This distinction applies mainly to long-term memory

6 The distinction between
knowing that and knowing
how was made in 1949 by
Gilbert Ryle in his book The
Concept of Mind [315].

but short-term memory too has a declarative aspect. Declarative
memory is sometimes referred to as propositional memory because
it refers to information about the agent’s world that can be ex-
pressed in the form of propositions. This is significant because
propositions are either true or false. Thus declarative memory
typically deals with factual information. This is not the case with
skill-oriented procedural memory. As a consquence, declarative
memories, in the form of knowledge, can be communicated from
one agent to another through language, for example, whereas
procedural memories can only be demonstrated.

Declarative and procedural memory differ in other ways.
Declarative knowledge can be acquired in a single act of per-
ception or cognition whereas procedural memories are acquired
progressively and may require an element of practice. Declar-
ative memory is accessible to conscious recall but procedural
memory is not. You can engage in introspection about your
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declarative memories but you can’t think in this way about your
skills and motor abilities. Thus, an agent has conscious access to
its declarative memory of facts but skills and motor abilities are
accessed unconsciously. For this reason, declarative and proce-
dural memory are sometimes referred to as explicit and implicit
memory, respectively.

The term non-declarative memory is sometimes applied to pro-
cedural memory. However, in general, this term also embraces
other forms on non-conscious memory.7

7 Non-declarative procedural
memory is subdivided
into four types: skills and
habits, priming, classical
conditioning, and non-
associative learning. For
more details, see Larry
Squire’s article “Memory
systems of the brain” [310].

7.2.4 Episodic and Semantic Memory

Two different types of declarative memory can be distinguished.
These are episodic memory and semantic memory.8

8 The term episodic memory
was coined by Endel Tulving
in 1972 in an article entitled
‘Episodic and Semantic
Memory‘” [316]. His 1983
book Elements of Episodic
Memory is his definitive
work and his overview of
the book, Précis of Elements
of Episodic Memory [317] is
essential reading, not only
for its clear explanation
of the many differences
between episodic memory
and semantic memory, but
for its characterization of
declarative (propositional)
memory and procedural
memory. As we will see,
episodic memory plays a
key role in cognition and in
the anticipatory aspect of
cognition in particular.

Episodic memory refers to specific instances in the agent’s
experience while semantic memory refers to general knowl-
edge about the agent’s world which may be independent of the
agent’s specific experiences. In this sense, episodic memory is
autobiographical. By its very nature in encapsulating some spe-
cific event in the agent’s experience, episodic memory has an
explicit spatial and temporal context: what happened, where it
happened, and when it happened. This temporal sequencing
is the only element of structure in episodic memory. Episodic
memory is a fundamentally constructive process.9 Each time an

9 The constructive charac-
teristic of episodic memory
is emphasized by Martin
Seligman and colleagues in
their paper on prospection
“Navigating into the Future
or Driven by the Past” [318].

event is assimilated into episodic memory, past episodes are re-
constructed. However, they are reconstructed a little differently
each time. This constructive characteristic is related to the role
that episodic memory plays in the process of internal simulation
that forms the basis of prospection, the key anticipatory function
of cognition (see Section 7.4 below).

In contrast, semantic memory “is the memory necessary for
the use of language. It is a mental thesaurus, organized knowl-
edge a person possesses about words and other verbal symbols,
their meaning and referents, about relations among them, and
about rules, formulas, and algorithms for the manipulation of
the symbols, concepts, and relations.”10 While this definition

10 This quotation explaining
the characteristics of seman-
tic memory appears in Endel
Tulving’s 1972 article [316],
p. 386 and is quoted in his
Précis [317].

of semantic memory dates from 1972, it is still valid today, es-
pecially in the cognitivist paradigm of cognitive science. It also
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explains the linguistic origins of the term.
Episodic memory and semantic memory differ in many ways.

In general, semantic memory is associated with how we under-
stand (or model) the world around us, using facts, ideas, and
concepts. On the other hand, episodic memory is closely associ-
ated with experience: perceptions and sensory stimulus. While
episodic memory has no structure other than its temporal se-
quencing, semantic memory is highly structured to reflect the
relationships between constituent concepts, ideas, and facts.
Also, the validity (or truth: remember semantic memory is a sub-
set of propositional declarative memory) of semantic memories
is based on social agreement rather than personal belief, as it is
with episodic memory.11 11 Semantic memory and

episodic memory can be
contrasted in many other
ways: twenty-seven differ-
ences are listed in [319], p.
35. Interestingly, this article
notes the clear applicabil-
ity of semantic memory in
artificial intelligence but
questions the relevance of
episodic memory for AI.
Today, the importance of
episodic memory is widely
accepted, even in the cogni-
tivist community, as one can
see by its relatively recent
incorporation in the Soar
cognitive architecture (see
[113]).

Semantic memory can be derived from episodic memory
through a process of generalization and consolidation. Episodic
memory can be both short-term and long-term while semantic
and procedural memory are long-term.

In artificial cognitive systems, declarative memory is usually
based on symbolic information. On the other hand, episodic
memory and procedural memory often exploit non-symbolic
information, sometimes referred to as sub-symbolic memory.

7.2.5 Modal and Amodal Memory

In Section 5.10 we encountered the distinction between modal
and amodal representation in our discussion of grounded cog-
nition. Modal memory is tied directly to a particular sensory
modality such as vision, audition, or touch. On the other hand,
amodal memory has no necessary association with the senso-
rimotor experiences. Semantic declarative facts, represented
symbolically, are typically amodal, especially considered from
the perspective of the cognitivist paradigm. Episodic memory
though is more likely to be modal since it is closely tied to an
agents’s specific experiences.

7.2.6 Auto- and Hetero-Associative Memory

In Section 2.2.1 we discussed associative memory, noting that
there are two variants: hetero-associative and auto-associative.
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The main idea with associative memory is that some element of
information or, more generally, some pattern is associated with
and linked to another element of information or pattern. The
first element or pattern is used to recall the second, by associa-
tion. Hetero-associative memory recalls a memory that is differ-
ent in character from the input; a particular smell or sound, for
example, might evoke a visual memory of some past event. On
the other hand, auto-associative memory recalls a memory of the
same modality as the one that evoked it: picture of a favourite
object might evoke a mental image of that object in vivid detail.

7.3 The Role of Memory

Why do we remember things? One answer is so that we can rec-
ognize objects, events, and people we’ve encountered before and
act towards them in some appropriate way: avoiding the things
that we have discovered are dangerous but not the things that
are good for us. Putting it another way: memory is what makes
it possible for the changes that occur as a result of learning and
development to persist. That is clearly very important. However,
there is another and possibly more important role of memory in
cognitive systems. It is not to remember, but to anticipate.12 The

12 Alain Berthoz sums up the
purpose of memory like this:
“Memory is used primarily
to predict the consequences
of future action by recalling
those of past action” [320].
Daniel Schacter’s and Donna
Addis’s essay in Nature,
“Constructive memory
— The ghosts of past and
future” explains the way
memories flexibly recombine
to anticipate the future [321].

White Queen in Lewis Carroll’s classic Through the Looking Glass
puts it nicely when she tells Alice that “It’s a poor sort of mem-
ory that only works backwards.”13 It is an important observation

13 See Chapter 5 of Lewis
Carroll’s Through the Looking
Glass [322].

and one that resonates with our comments above that memory
is increasingly coming to be understood not simply as a reposi-
tory of past experiences and learned knowledge, but as an active
and pervasive cognitive mechanism in its own right. One might
even view memory as the engine that drives cognition, especially
when you consider it as a way of looking forwards rather than
backwards.14

14 The brain is geared up to
anticipate. Keith Downing’s
“Predictive Models in the
Brain” [323] highlights
five different predictive
architectures in the different
regions of the brain: the
cerebellum, basal ganglia,
hippocampus, neo-cortex,
and the thalamocortical
system. In line with the
distinction we drew above
between declarative and
procedural memory, the first
two deal with procedural
prediction whereas the last
three are more concerned
with declarative prediction.

There are a number of implications that arise from this forward-
looking perspective on memory.15 The first is that memory is an

15 The associative and de-
velopmental implications
of active memory-based
cognition are discussed
in Paul Baxter’s and Will
Browne’s paper “Memory as
the substrate of cognition:
a developmental robotics
perspective” [312].

active process, as we have said, and also that it is fundamentally
associative. Memories are recalled by associated triggers, which
of course, can be other memories. If you have a network of asso-
ciative memories, you can run through this network backwards
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or forwards. Running through it forwards provides the anticipa-
tory predictive element of memory suggesting possible sequence
of events leading to a desired goal. Running through it back-
wards provides a way of explaining how some event or other
might have occurred16 or imagining ways in which it might have 16 The explanatory process is

sometimes called abduction
or abductive inference.

turned out differently.17 The second implication is that cognition
17 Imagining different out-
comes is referred to as coun-
terfactual thinking; literally,
counter to the facts.

is inherently a developmental process. Memory, and memories,
are both the process and the product of interaction with the
world and memory reflects the way that a cognitive agent comes
to understand that world in a way that facilitates these interac-
tions. This associative prospective-retrospective view of memory
is more in tune with the emergent paradigm of cognitive systems
than it is with the cognitivist paradigm.

7.4 Self-projection, Prospection, and Internal Simulation

Memory plays at least four roles in cognition: it allows us to
remember past events, anticipate future ones, imagine the view-
point of other people, and navigate around our world. All four
involve self-projection: the ability of an agent to shift perspec-
tive from itself in the here-and-now and to take an alternative
perspective. It does this by internal simulation, i.e. the mental con-
struction of an imagined alternative perspective.18 Thus, there 18 For an overview of the

concept of simulation in
cognitive psychology and
neuroscience, read “Episodic
Simulation of Future Events
— Concepts, Data, and
Applications” by Daniel
Schacter, Donna Addis, and
Randy Buckner [324].

are four forms of internal simulation:19

19 The four types of self-
projection through mental
simulation — episodic
memory, navigation, theory
of mind, and prospec-
tion — are proposed by
Randy Buckner and Daniel
Carroll in their article “Self-
projection and the Brain”
[325].

1. Episodic memory (remembering the past).
2. Navigation (orienting yourself topographically, i.e. in relation

to your surroundings).
3. Theory of mind (taking someone else’s perspective on mat-

ters).
4. Prospection (anticipating possible future events).

Each form of simulation has a different orientation (past, present,
or future) and each refers to the perspective of either the first
person, i.e. the agent itself, or another person.

We have already met the concept of theory of mind in Chapter
6, Section 6.1.2, and we will return to it again in Chapter 9, Sec-
tion 9.3. We discussed navigation briefly in Chapter 6, Section
6.3.2, when describing the core abilities that provide the founda-



164 artificial cognitive systems

tion for learning and development. In the next section, we will
focus on prospection in relation to episodic memory.20 20 For an overview of the

nature of prospection —
the mental simulation of fu-
ture possibilities — and the
central role it plays in orga-
nizing perception, cognition,
affect, memory, motivation,
and action, you should read
“Navigating into the Fu-
ture or Driven by the Past”
by Martin Seligman, Peter
Railton, Roy Baumeister,
and Chandra Sripada [318].
Randy Buckner and Daniel
Carroll note that prospec-
tion and related concepts
are referred to in various
ways, e.g. episodic future
thinking, memory of the future,
pre-experiencing, proscopic
chronesthesia, mental time
travel, and just plain imag-
ination. They also remind
us that prospection can
involve conceptual content
and affective — emotional
— states. We say more about
this in Section 7.4.2.

Recent evidence suggests that all four kinds of internal sim-
ulation involve a single core brain network and this network
overlaps what is known as the default-mode network, a set of in-
terconnected regions in the brain that is active when the agent is
not occupied with some attentional task.21

21 Evidence for the involve-
ment of the default-mode
network in remembering the
past and envisioning the
future, i.e. in prospection, is
reported by Ylva Østby and
colleagues in “Mental time
travel and default-mode net-
work functional connectivity
in the developing brain”
[326].

It is significant that all four forms of simulation are construc-
tive, i.e., they involve a form of imagination. This may not seem
odd in the case of prospection, theory of mind, or even naviga-
tion, but it does seem curious in the context of remembering the
past. However, when we engage in retrospection, we don’t just
try to recall events, but very often we reconstruct events to see
how they could have turned out differently. Later in this chap-
ter, we will explain further why it is believed that memory, and
episodic memory in particular, is constructive and not simply a
store of perfect recollections.

We now take a closer look at the link between episodic mem-
ory and prospection, as well as the role of affect and emotion
in prospection. Section 7.5.8 then takes up the issue of internal
simulation in the context of action and motor control.

7.4.1 Prospection and Episodic Memory

As we have emphasized throughout this book, anticipation is
one of the central characteristics of cognition. While retrospec-
tion refers to the ability to re-experience the past, prospection
refers to the brain’s ability to experience the future by simulating
what it might be like. To a large extent, cognition is the mech-
anism by which we prepare to act and without which we — or
an artificial cognitive system — would be ill-equipped to deal
with the uncertain constantly-changing and often precarious
conditions of our environment.

There is a difference between knowing about the future and
projecting ourselves into the future. The latter is experiential and
the former is not. Thus, as you might suspect, episodic mem-
ory (memory of experiences) and semantic memory (memory
of facts) facilitate different types of prospection. Episodic mem-
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ory allows you to re-experience your past and pre-experience
your future. There is evidence that projecting yourself forward
in time is important when you form a goal, creating a mental
image of yourself acting out the event and then episodically
pre-experiencing the unfolding of a plan to achieve that goal.22

22 This use of episodic
memory in prospection is
referred to as episodic future
thinking, a term coined by
Cristina Atance and Daniela
O’Neill to refer to the ability
to project oneself forward
in time to pre-experience
an event. Their article [327]
explains the role of episodic
memory in prospection and
its relationship to semantic
memory. For an overview,
see Karl Szpunar’s review
“Episodic Future Thought:
An Emerging Concept”
[328].

We mentioned already that episodic memory is inherently
constructive: old episodic memories are reconstructed slightly
differently every time a new episodic memory is assimilated or
remembered. Why would this be so? While episodic memory
certainly needs some constructive capacity to assemble indi-
vidual details into a coherent memory of a given episode, the
constructive episodic simulation hypothesis23 suggests that its role

23 The constructive episodic
simulation hypothesis
was proposed by Daniel
Schacter, Donna Addis,
and colleagues: refer their
seminal articles [324, 329] for
more details and also see a
review in [328].

in prospection involving the simulation of multiple possible fu-
tures imposes an even greater need for a constructive capacity
because of the need to extrapolate beyond past experiences. In
other words, simulating multiple yet-to-be-experienced futures
requires flexibility in episodic memory. This flexibility is possible
because episodic memory is not an exact and perfect record of
experience but one that conveys the essence of an event and is
open to re-combination.

It is worth noting that the ability to pre-experience the future
does not appear in human children until the third or fourth year
of life, very late in the child’s overall development, and much
later than other cognitive abilities.24

24 Cristina Atance and
Daniela O’Neill established
that episodic future thinking
ability appears between 3
and 4 years of age; see their
article “The emergence of
episodic future thinking in
humans” [330],

7.4.2 Prospection and Affect

When humans imagine the future, they not only anticipate an
event, they also anticipate how they feel about that event. They
do so for a very good reason: knowing how you feel about some-
thing is a very good way of telling whether or not that event is
safe or dangerous. We call these the hedonic consequences of the
event: whether we feel good about it or bad about it, whether it
is associated with pleasure or pain, lack of concern or fear. Thus,
the pre-experience of prospection also involves “pre-feeling.”
The brain accomplishes prospection by simulating the event and
the associated hedonic experience.25 However, pre-feeling is not

25 For an overview of the
importance of hedonic
experience in prospection,
and its short-comings, read
“Prospection: Experiencing
the Future” by Daniel
Gilbert and Timothy Dawson
[331]. It explains the idea
of “pre-feeling,” i.e. the
hedonic experience during
simulation and it explains
why prefeelings are not
always reliable predictors
of subsequent hedonic
experiences: you don’t
always end up feeling the
way you thought you would
feel about a future event.always reliable because contextual factors also play a part in the
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hedonic experience.
In general, a pre-feeling will be a good predictor of subse-

quent hedonic experiences only if (a) the influence of a simula-
tion of an event on our current hedonic experience is the same
as the eventual perception of that event on our future hedonic
experience, and (b) the current contextual factors are the same
as the future contextual factors. Errors in prospection arise when
either of these two conditions are not met. Many of the errors are
due to inadequacies in the simulation.

There are four types of problems with simulation in humans.
First, simulations can be unrepresentative. We don’t always use
the most appropriate memories to imagine the future event,
often using an extreme memory of a past event (either bad or
good) to imagine such an event in the future. Second, simula-
tions are based on memories that retain only the essentials of the
event. The problem is that the non-essential elements often have
a significant impact on subsequent hedonic experience. Conse-
quently, people tend to predict that good events will be better in
the future and, vice versa, bad events will be worse. Third, simu-
lations are abbreviated and are focussed on the early aspects of
an event: they over-emphasize the initial moments of the event.
As a result, these simulations under-estimate how quickly we
adapt and therefore they don’t represent how we will actually
feel about an event.

These three problems with simulation interfere with meeting
condition (a) above so that the influence of the simulation on
the pre-feeling is not the same as the influence of the eventual
perception on the eventual feeling. The fourth problem with
simulations is that they are decontextualized: they don’t reflect
the contextual conditions that can have a significant impact on
hedonic experience. This interferes with condition (b) and causes
people to predict future hedonic experience inaccurately.

Why we are spending so much time discussing feeling in a
book devoted to cognition? The reason is that feeling — affect or
emotion — plays a pivotal role in cognitive behaviour, influenc-
ing the decisions we make and the actions we select.26 Cognition

26 For a detailed review
of the link between affect
and action from several
perspectives — psycholog-
ical, neurophysiological,
and computational —- see
[332]. The authors, Rob
Lowe and Tom Ziemke, also
put forward the view that
emotional feelings are pre-
dictors of action tendency,
i.e. the actions that an agent
is primed to take. In their
model, these predictions ei-
ther increase or decrease the
action tendency in relation
to feedback from the body
(as well as from the per-
ceived, e.g. social, context).
Thus, emotional feelings
and actions combine in a
single system of predictive
regulation and feedback in
a manner that is similar to
allostasis (see Section 4.3.4).

For a more general
overview of the relevance of
emotion to cognition, read
Rosalind Picard’s article
“Affective Computing” [333]
or her book of the same
title [334]. The term affective
computing, coined by Picard
in 1995, refers both to the
role of emotion in modulat-
ing behaviour and decision
making and to the inference
of a person’s emotional state
by interpreting visual and
aural cues. More broadly,
affective computing includes
the design of computers that
can detect, respond to, and
simulate human emotional
states (e.g. see [335]). This
is an important part of an
artifical cognitive system’s
ability to infer the intentions
of a human and predict
how they will act, a topic
we discuss in more detail in
Chapter 9.

is not just about rational analysis. It is as much about acting ef-
fectively, as we have stated previously. The preceding discussion
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of the relationship between hedonic experience and prospection
shows the impact that feeling can have on the way people as-
sess a future situation (sometimes incorrectly) and consequently
on the way they will act. We have come across this relationship
between affect and cognition several times already in the book.
We remarked on the affective aspect of homeostasis in Chapter
4, Section 4.3.3, and the link between affect and embodiment
in Chapter 5, Sections 5.6 and 5.7. Affect is also an important
consideration when you address the internal value system that
provides the drives and motivations underpinning learning and
development, as we saw in Chapter 5, Section 5.9, and Chapter 6,
Section 6.1.1.

7.5 Internal Simulation and Action

So far, we have considered internal simulation entirely in terms
of memory-based self-projection, using re-assembled combina-
tions of episodic memory to pre-experience possible futures,
re-experience (and possibly adjust past experiences), and project
ourselves into the experiences of others. However, we know from
Chapter 5 that action plays a significant role in our perceptions
so the question then is: does action play a role in internal simu-
lation? The answer is a clear ‘yes’.27 Internal simulation extends

27 The literature on embod-
ied internal simulation, i.e.
internal simulation that
binds perception and ac-
tion together, is extensive.
To get started, read Ger-
mund Hesslow’s articles
on the simulation hypothesis
[100, 336]. Then read Henrik
Svensson’s, Jessica Lind-
blom’s, and Tom Ziemke’s
paper [218] for a more de-
tailed overview of various
approaches to simulation.beyond episodic memory and includes simulated interaction,

particularly embodied interaction. Although the terms simula-
tion, internal simulation, and mental simulation are widely used,
you will also see references being made to emulation, very often
when the approach endeavours to model the exact mechanism
by which the simulation is produced.28

28 Rick Grush, for example,
when describing processes
similar to those outlined in
this section, uses emulation to
distinguish his theory from
alternative simulation theo-
ries that do not incorporate
a model of the effect that
off-line motor commands
would have on the agent’s
perceptions [99].

7.5.1 The Simulation Hypothesis

There are a number of simulation theories, but perhaps the most
influential is what is known as the simulation hypothesis.29 It

29 The simulation hypothesis
was first put forward by
Germund Hesslow in 2002
[100]. His recent review
[336] revisits the hypothesis,
provides additional neu-
roscientific evidence, and
considers its implications.

makes three core assumptions:

1. The regions in the brain that are responsible for motor control
can be activated without causing bodily movement.
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Figure 7.2: Internal sim-
ulation. (a) stimulus S1
elicits activity s1 in the
sensory cortex. This leads
to the preparation of a
motor command r1 and
an overt response R1.
This alters the external
situation, leading to S2,
which causes new per-
ceptual activity, and so
on. There is no internal
simulation. (b) The motor
command r1 causes the
internal simulation of
an associated perception
of, for example, the con-
sequence of executing
that motor command.
(c) The internally simu-
lated perception elicits
the preparation of a new
motor command r2, i.e.
a covert action, which
in turn elicits the inter-
nal simulation of a new
perception s3 and a con-
sequent covert action r3,
and so on. From [100],
© 2002, with permission
from Elsevier.

2. Perceptions can be caused by internal brain activity and not
just by external stimuli.

3. The brain has associative mechanisms that allow motor be-
haviour or perceptual activity to evoke other perceptual activ-
ity.

The first assumption allows for simulation of actions and is often
referred to as covert action or covert behaviour. The second allows
for simulation of perceptions. The third assumption allows sim-
ulated actions to elicit perceptions that are like those that would
have arisen had the actions actually been performed. There is an
increasing amount of neurophysiological evidence in support of
all three assumptions.30

30 For a summary of the
neuroscientific evidence in
support of the simulation
hypothesis, refer to a paper
by Henrik Svensson and
colleagues on dream-like
activity in the development
of internal simulation [337].

If we link these assumptions together, we see that the simu-
lation hypothesis shows how the brain can simulate extended
perception-action-perception sequences by having the simulated
perceptions elicit simulated action which in turn elicits simulated
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perceptions, and so on. Figure 7.2 summarizes the simulation
hypothesis, showing three situations, one where there is no inter-
nal simulation, one where a motor response to an input stimulus
causes the internal simulation of an associated perception, and
one where this internally simulated perception then elicits a
covert action which in turn elicits a simulated perception and a
consequent covert action, and so on.

7.5.2 Motor, Visual, and Mental Imagery

Action-directed internal simulation involves three different types
of anticipation: implict, internal, and external.31 Implicit antic-

31 The three functional
parts of the simulation
process (implicit, internal,
and external anticipation)
are described in a paper
by Henrik Svensson and
colleagues: “Representation
as Internal Simulation: A
Minimalistic Robotic Model”
[338].

ipation concerns the prediction of motor commands from per-
ceptions (which may have been simulated in a previous phase
of internal simulation). Internal anticipation concerns the pre-
diction of the proprioceptive consequences of carrying out an
action, i.e. the effect of an action on the agent’s own body. Ex-
ternal anticipation concerns the prediction of the consequences
for external objects and other agents of carrying out an action.32

32 The terms internal anticipa-
tion and external anticipation
are also referred to as bodily
anticipation and environmental
anticipation [337].

Implicit anticipation selects some motor activity (possibly covert,
i.e. simulated) to be carried out based on an association between
stimulus and actions; internal and external anticipation then pre-
dict the consequences of that action. Collectively, they simulate
actions and the effects of actions.

Covert action involves what is referred to as motor imagery and
simulation of perception is often referred to as visual imagery.
Perceptual imagery would perhaps be a better term since there
is evidence that humans use imagery from all the senses. In
a way, motor imagery is also a form of perceptual imagery, in
the sense that it involves the proprioceptive and kinesthetic
sensations associated with bodily movement. However, reflecting
the interdependence of perception and action, covert action
often has elements of both motor and visual imagery and, vice
versa, the simulation of perception often has elements of motor
imagery. Visual and motor imagery are sometimes referred to
collectively as mental imagery.33 As such, mental imagery can be

33 For an overview of mental
imagery from the perspective
of psychology, see Samuel
Moulton’s and Stephen
Kosslyn’s article [339]. They
identify several different
types of perceptual imagery
and distinguish between two
different types of simula-
tion: instrumental simulation
and emulative simulation.
The former concerns itself
only with the content of the
simulation while the latter
also replicates the process
by which that content is cre-
ated in the simulated event
itself. They refer to this as
second-order simulation. For
a computational perspec-
tive on mental imagery,
specifically in the context of
cognitive architecture, see
Samuel Wintermute’s survey
[340].

viewed as a synonym for internal simulation.34

34 Samuel Moulton and
Stephen Kosslyn put it like
this: “all imagery is mental
emulation” [339], p. 1276.
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Figure 7.3: The HAMMER
architecture, showing
multiple inverse models
(B1 to Bn) taking as in-
put the current system
state, which includes a
desired goal, suggesting
motor commands (M1
to Mn), with which the
corresponding forward
models (F1 to Fn) form
predictions of the sys-
tem’s next state (P1 to
Pn). These predictions
are verified at the next
time state, resulting in a
set of error signals (E1 to
En). From [232], © 2006,
with permission from
Elsevier. See also [233]
for an alternative ren-
dering of the HAMMER
architecture.

7.5.3 Internal Simulation in Artificial Cognitive Systems

While internal simulation is an essential aspect of human cog-
nition, it is also an increasingly-important part of artificial cog-
nitive systems, as we saw in the ISAC cognitive architecture in
Chapter 3, Section 3.4.3. We also discussed internal simulation
in Chapter 5, Section 5.8, on Off-line Embodied Cognition, in
general, and in the HAMMER architecture, in particular.35 We 35 HAMMER (Hierarchical

Attentive Multiple Models
for Execution and Recogni-
tion) is an architecture for
internal simulation devel-
oped by Yiannis Demiris
and Bassam Khadhouri
[232, 233]. We discussed it
briefly in Chapter 5, Section
5.8 and Sidenote 50.

will now look a little closer at how the HAMMER architecture
effectively builds on the simulation hypothesis.

Recall that HAMMER accomplishes internal simulation using
forward and inverse models which encode internal sensorimotor
models that the agent would utilise if it were to execute that
action (see Figure 7.3).

The inverse model takes as input information about the cur-
rent state of the system and the desired goal, and it outputs the
motor commands necessary to achieve that goal.

The forward model acts as a predictor. It takes as input the
motor commands and simulates the perception that would arise

Mn 
Bn Fn 

M2 
B2 F2 

M1 
B1 

En 

Pn 

E2 

P2 

F1 

E1 

P1 

verification 
(a11+1) 
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if this motor command were to be executed, just as the simula-
tion hypothesis envisages. However, the HAMMER architecture
takes internal simulation one step further by providing the out-
put of the inverse model as the input to the forward model. This
allows a goal state (demonstrated, for example, by another agent
or possibly recalled from episodic memory) to elicit the simu-
lated action required to achieve it. This simulated action is then
used with the forward model to generate a simulated outcome,
i.e. the outcome that would arise if the motor commands were to
be executed. The simulated perceived outcome is then compared
to the desired goal perception and the results are then fed back
to the inverse model to allow it to adjust any parameters of the
action.

A distinguishing feature of the HAMMER architecture is
that it operates multiple pairs of inverse and forward models
in parallel, each one representing a simulation — a hypothesis
— of how the goal action can be achieved. The choice of in-
verse/forward model pair is made by an internal attention pro-
cess based on how close the predicted outcome is to the desired
one. Furthermore, it provides for the hierarchical composition of
primitive actions into more complex sequences and it has been
implemented both in robot simulations and on physical robotic
platforms.

7.5.4 Episodic and Procedural Memory in Internal Simulation

The forward and backward models of the HAMMER architecture
reflect the bi-directional nature of memory that we noted at the
beginning of this chapter. What is significant here is that we have
now gone beyond the scope of episodic memory in effecting
internal simulation by invoking actions and behaviours. The
sensorimotor associations involved in internal simulations, for
forward and inverse models, requires both episodic memory
and procedural memory. Episodic memory is needed for visual
imagery, including proprioceptive imagery, whereas procedural
memory is needed for motor imagery.

Classical treatments of memory, such as the way we described
it in Section 7.2 above, usually maintain a clear distinction be-
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tween declarative memory and procedural memory, in general,
and between episodic memory and procedural memory, in par-
ticular. However, contemporary research takes a slightly different
perspective, binding the two more closely. We already saw an
example of this in Section 5.6 on the interdependency of action
and perception and on the mirror neuron system, in particular.
While it is still a major challenge to understand how these two
memory systems are combined, this coupling is the basic idea
underpinning joint perceptuo-motor representations36 We will 36 Examples of joint

perceptuo-motor techniques
include Marco Iacoboni’s
instantiation of Ideo-motor
Theory [341] and Theory of
Event Coding by Bernhard
Hommel and colleagues
[342].

develop this issue further in the next chapter in Section 8.5. For
now we finish our discussion of internal simulation by address-
ing imagination.

7.5.5 Functional Imagination

At the beginning of Section 7.4, we referred informally to imag-
ination. We will now bring a little more structure to our under-
standing of this term.

Generally speaking, imagination refers to cognitive activ-
ity that operates without direct recourse to an agent’s sensory
system. That’s exactly what we have been discussing here with
respect to internal simulation and imagination loosely associated
with visual and motor imagery. We can be a little more specific
though if we refer to functional imagination:37 a mechanism that 37 The concept of functional

imagination was suggested
by Hugo Gravato Marques
and Owen Holland [343]
along with five necessary
and sufficient conditions for
its implementation.

allows an agent to simulate its own actions and behaviours, pre-
dicting their sensorimotor consequences for some operational
advantage. The advantage could be a reward such as finding a
source of power or it could be some systemic change linked to
the agent’s value system, drives, or affective motivations, such as
those we discussed in Chapter 6.

Five conditions have been proposed for implementing an
artificial cognitive system capable of functional imagination.
They are:
1. An agent must be able to predict the sensory consequences of

motor actions.
2. An agent must be able to represent the sensory states that

result from simulated actions.
3. An agent must be able to behave in a way that allows goals to

be accomplished.



memory and prospection 173

4. An agent must be able to select actions for internal simula-
tion.

5. An agent must be able to evaluate the sensory state to assess
whether or not that action is relevant to the achievement of
the goal.

These are necessary and sufficient conditions so that, in principle
at least, no other conditions need be met. All five are strongly
related to the assumptions made by the simulation hypothesis
and the operation of forward and backward models. While each
condition is important, the fifth condition turns out to be partic-
ularly relevant to a discussion we have yet to have on the subject
of representation and we will return to it in the next chapter.

7.5.6 The Basis for Internal Simulation

There is an important unanswered question in our treatment of
internal simulation: what is the origin of the internal model that
the simulation is based on? In other words, how does the simu-
lation process get started and how does it develop? One possible
answer lies in the inception of simulation hypothesis38 which asserts

38 The inception of simula-
tion hypothesis, according
to which dreams in young
children play a role in the
formation and refinement of
internal simulation, was for-
mulated by Serge Thill and
Henrik Svensson [344]. It
formed the basis of compu-
tational experiments using a
robotic simulator. These ex-
periments showed that robot
“dreams” can lead to faster
development of improved
internal simulation during
waking behaviour [337].

that internal simulations in young infants are formed by re-
enacting sensory-motor experiences in dreams. The models that
arise from these simulations are validated while awake and sub-
sequently refined. As the child develops, the simulations become
more accurate and reliable, adjustments are needed less and less,
and internal simulation can be used increasingly in everyday
cognitive activities. This inception and adjustment of simulation
models is a form of learning and is similar to an idea we met
briefly in the previous chapter, Section 6.1.3, Sidenote 22. There,
we noted that, in the brain, the hippocampal formation and the
neo-cortex may form a complementary system for learning, with
the hippocampus facilitating rapid auto- and hetero-associative
learning which is later used to reinstate and consolidate learned
memories in the neo-cortex. What we didn’t mention there is
that this reinstatement can occur off-line as well as on-line, e.g. in
mental rehearsal, recollection, and during sleep.39

39 For more details, see the
review “Why there are
complementary learning
systems in the hippocampus
and neocortex: insights from
the successes and failures
of connectionist models
of learning and memory”
by James McClelland and
colleagues [299].
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7.5.7 Afference and Efference

The language in internal simulation can be confusing. Two terms
that are used frequently are afference and efference. Afference
refers to sensory input; efference refers to motor output. Thus,
we speak of afferent signals and efferent signals to refer sensory
stimuli and motor commands respectively. You will also see the
term efference copy. This just means that the motor commands are
sometimes directed to other sub-systems, not just the actuators
themselves, be they muscles or motors. The copy could be a lit-
eral copy, stored temporarily in memory, or it could also just be
a direct connection via a feedback loop. In internal simulation,
efference copies are typically re-directed back to sub-systems
responsible for sensory interpretation in this manner.

7.5.8 Internal Models for Motor Control

Our discussion of prospection and internal simulation so far
has focussed on anticipation over quite long periods of time:
several seconds or minutes for some behaviours and possibly
much longer. However, internal simulation and internal models
are also involved in short-term prospection less than one sec-
ond. This is particularly true in the area of motor control and
trajectory planning.40 The case for prospective control is very 40 The review article “In-

ternal models in the cere-
bellum” by Daniel Wolpert
and colleagues [345] sum-
marizes the role of forward
and inverse models in motor
control and discusses the
possibility that the cere-
bellum uses a model, and
perhaps several models,
of the motor system and
the physical embodiment
in prospectively guiding
an agent’s actions. A later
review “Principles of sen-
sorimotor learning” [346]
discusses how these models
are learned.

compelling: the delays in acquiring and processing feedback
(i.e. information that captures the error between a desired and
an actual state) in biological system are in the region of 150–250
ms. This is far too long to be effective in controlling the agent’s
movement. Again, both forward models and inverse models
come into play. Here, the forward internal models predict both
the future state of the body part being controlled, e.g. the hand
when reaching for some object, on the basis of efference copies
of the motor commands that are being issued. The inverse mod-
els determine the motor commands that are required to achieve
some desired state. The predicted or desired state in question
might be position, velocity, acceleration of the body part being
controlled (and related forces) or it might be some set of as-
sociated sensory features. These are referred to as a dynamic
model (because they model the system’s dynamics) and a sen-
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sory output model (providing, e.g., the predicted afferent con-
sequences of a movement), respectively. Again, multiple models
are thought to be involved, all operating simultaneously, just as
with prospection and internal simulation over longer periods as
discussed above.41 41 Mitsuo Kawato’s article

“Internal models for motor
control and trajectory
planning” [347] gives a
useful overview of the case
for forward and inverse
internal models, in general,
and of multiple paired
forward and inverse models,
in particular.

7.6 Forgetting

This is a chapter on memory, prospection, and internal simula-
tion, so it is appropriate to close it by discussing briefly one of
the most notable characteristics of cognitive agents: they forget.
Memory fades in animal brains without repeated stimulation,
or re-consolidation as it is sometimes called. On the other hand,
for convenience, memory in artificial cognitive systems is often
assumed to be persistent.42 The focus is usually placed on how 42 Memory in artificial

cognitive systems is not
always assumed to be
persistent. For example,
since episodic memory
reflects the experiences of
a cognitive agent, it can
grow continuously. For
that reason, forgetting
algorithms are sometimes
used. Andrew Nuxoll
and colleagues compare
forgetting algorithms for
episodic memory in three
episodic memory systems
in [348] and conclude that
activation-based algorithms
can be more effective at
selecting the memories with
lower utility and, hence,
the ones that should be
removed.

the contents of memory can be learned effectively, i.e. the em-
phasis is on what needs to be learned, how best to learn it, and
how best to represent it. While the simplification of memory
persistence is convenient, it is conceivable that an important as-
pect of memory and cognition is lost in this simplification. By
recognizing the fact that memory traces fade, we are forced into
addressing how this fading can be alleviated and what role such
a mechanism might play in the overall cognitive process. Un-
fortunately, the causes for this process of forgetting — and the
dual process of memory retention — are not well understood.43

43 See John Wixted’s arti-
cle “The Psychology and
Neuroscience of Forgetting”
[349] for an overview of
why and how people forget
and a summary of how our
understanding of forgetting
has evolved over the past 30
years.

Furthermore, it appears that different memory retention mecha-
nisms apply in different forms of memory.

In short-term memory, forgetting is an intrinsic property, ex-
actly because short-term memory is a transient phenomenon. As
we mentioned above, short term memory depends on persistent
elevated firing rates in local sub-populations of neurons in the
absence of external cues. Forgetting happens naturally when the
activity of these neurons decreases.

In long-term declarative episodic memory, it is less clear what
factors influence forgetting. Possible causes include decay, inter-
ference between memories, and interference from mental activity
and memory formation. It is even less clear what are the mecha-
nisms of forgetting in non-declarative procedural memory. What



176 artificial cognitive systems

is clear though is that long-term memory of itself is not persis-
tent in the normal course of events in a cognitive agent. Where
long-term memory forgetting is modelled in artificial cognitive
systems, time-dependent decay functions are often used rather
than interference between memories and the degree to which
memory decays or fades in long-term memory is modelled as a
logarithmic, power, or exponential function of time.44

44 The consolidation and
decay of long-term memory
can be realized using what
is referred to as a leaky in-
tegrator model (see [350]).
John Staddon has shown
that cascaded leaky inte-
grators provide a model of
decay which is more con-
sistent with Jost’s law — a
general principle of memory
which states that newer
memories decay at a faster
rate than old memories —
than simple exponential
decay [351].



8
Knowledge and Representation

8.1 Introduction

Memory and knowledge are intimately related. By focussing
our attention on memory in the previous chapter, we introduced
many of the concepts that are relevant to knowledge. In this
chapter we will build on these and discuss how the principles we
have learned in the previous chapter can be applied directly to
our understanding of knowledge.

Knowledge, arguably, needs to be represented somehow. The
need for representations and the form they take are contentious
issues in cognitive science. We will spend some time discussing
the various issues on either side of the debate. In the process,
we will introduce the symbol grounding problem: the problem of
how symbolic knowledge becomes grounded in experience and
acquires meaning for a particular cognitive agent.

Following this, we ask how an agent acquires knowledge and
how it shares it. We already met some of the issues associated
with these questions in Chapter 6 on development and learning,
and we will revisit and expand on them here. The two concerns
— acquiring and sharing knowledge — are clearly related, es-
pecially in the context of several agents interacting with one
another. This provides a fitting introduction to the topic of the
next and final chapter of the primer: social cognition.
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8.2 The Duality of Memory and Knowledge

In the previous chapter, we referred to knowledge sparingly. As
we explained there, we did this for the specific reason that we
did not want to over-complicate matters too soon. However, the
time has come to face this issue head on, identify the complica-
tions, and explain how they can be avoided by being explicit and
clear about the assumptions we make when discussing knowl-
edge.

To begin with, we emphasize that there is a clear link between
memory and knowledge and we can qualify different types of
knowledge just in much the same way as we did with memory.
Thus, we differentiate between declarative, procedural, episodic,
and semantic knowledge, depending on the nature of what is
known: knowledge of facts, skill-based knowledge (know-how),
knowledge of specific incidents and events, or knowledge of ab-
stract concepts, respectively. That’s the easy part. The difficulty
is the hidden assumptions about the nature of that knowledge.

As with so many of the complicated topics we have encoun-
tered in studying cognitive systems, most of the issues that
cloud the issue of memory and knowledge can be traced to the
paradigm of cognitive science that underpins our assumptions,
be it cognitivist or emergent (and, therefore, embodied to some
extent).

In the cognitivist paradigm, the situation is very clear. As we
saw in Chapters 2 and 3, knowledge is the content that comple-
ments the cognitive architecture. Together, they provide the com-
plete cognitive model. Very often, as a natural consequence of
cognitivism’s close relationship with classical AI and the phys-
ical symbol system hypothesis in particular (see Section 2.1.2),
knowledge, even procedural knowledge, is assumed to be sym-
bolic. The validity of these two tacit assumptions — knowledge
as content and knowledge as symbols — is a given from the per-
spective of cognitivism. However, when treating knowledge from
the perspective of the emergent paradigm they are problem-
atic because neither assumption may be valid. In the preceding
sections, we viewed memory as both content and process: as a
mechanism for prediction and recollection. Knowledge, from
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this perspective, is no more and no less than the manifestation of
that process: it is what emerges when memory works effectively.
Viewing knowledge and memory as duals — complementary as-
pects of the same thing — keeps the process aspect of knowledge
in focus without pre-judging the nature of the representation
of that knowledge, be it symbolic or non-symbolic (or, as it is
sometimes called, sub-symbolic).

8.3 Representation and Anti-representation

In the introduction to this chapter, we said that arguably knowl-
edge needs to be represented. It turns out that one of the most
hotly debated topics in cognitive science is whether or not cog-
nitive systems use representations and, if they do, what is the
nature of these representations. Let’s first address the issue of
representation vs. non-representation1 and then turn our atten- 1 See Andy Clark’s and

Josefa Toribio’s article “Do-
ing without Representing?”
[206] for an overview of the
debate on representation
and non-representation in
cognitive science and an ex-
tended argument against the
anti-representational case.
Henrik Svensson’s and Tom
Ziemke’s paper “Embodied
Representation: What are
the Issues?” [352] gives a
succinct overview of the
debate from the perspective
of embodied cognition.

tion to the various aspects of representation itself.
We first met the representation vs. non-representation debate

in Chapter 5, Section 5.5, when we discussed the replacement
hypothesis on embodiment (see also Chapter 5, Sidenote 20).
According to this hypothesis, there is no need for the cogni-
tive system to represent anything because all the information a
cognitive system needs is already immediately accessible as a
consequence of its non-stop real-time sensorimotor interaction
with the world around it. As we noted in Chapter 5, Section 5.5,
one of the arguments against this non-representational position
is that none of the examples put forward in its favour are “rep-
resentation hungry”2 in the sense that they involve situations 2 As we noted previously, the

idea of “representation hun-
gry” problems is introduced
in Andy Clark’s and Josefa
Toribio’s paper “Doing with-
out Representing?” [206],
pp. 418–420, and discussed
further in Andy Clark’s book
Mindware [33].

where the cognitive agent has to act on the basis of knowledge
which is not presently available to it.

Now, if we admit that knowledge is represented somehow
in a cognitive system, there still remain some fine distinctions
that derive from the differences between the cognitivist and
emergent paradigms concerning what is represented and how it
is represented.
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8.3.1 Representation and Sharing Knowledge

The cognitivist approach holds that a cognitive system’s repre-
sentation of the world is a direct one-to-one mapping between
an internal state (typically, encapsulated in symbolic form) and
its counterpart in the real world. This mapping is established by
perceptual processes and it assumes that the things we perceive
in the world are just as we perceive them. Consequently, all other
perceptually-equipped cognitive systems perceive the world in
the same way. The representation of what exists in the world is
therefore a faithful model of the world. Because the real world is
not relative to any cognitive observer — it is what it appears to be
— all properly constructed models must therefore be compatible.
As a consequence of this, it is possible for one cognitive agent to
assume that its model is entirely consistent with that of another
cognitive agent.

As a result, sharing knowledge among cognitive systems
poses no problems in principle: all knowledge representations
are consistent exactly because they are are derived from a unique
and absolute real world. An important consequence of this view-
point is that it is therefore feasible for a human designer to im-
plant knowledge directly in an artificial cognitive system, since
the designer’s model is by definition compatible with that of any
other cognitive system. This is the basis for the representation
and embedding of knowledge in the Soar cognitive architecture,
for example (see Section 3.4.1).

The counter-point to this view is the one advocated by the
emergent systems community. Whilst acknowledging that all
cognitive systems are embedded in, and are situated in, a shared
reality, they hold that one can’t automatically assume that your
perceptions and cognitive understanding of that reality are nec-
essarily identical with all other cognitive agents. On the contrary,
the emergent position — and the embodied cognition position
— is that our perceptions and understanding are fundamentally
linked to the manner in which you interact with that reality (or
the manner in which you are structurally coupled with it, to use
the terminology we introduced in Chapters 2 and 5). Your per-
ceptions, and therefore your representations of what it is you are
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perceiving, are shaped by your actions and the range of possible
actions you can perform.

From this perspective, any knowledge that might exist in a
cognitive system is relative to the situatedness of that system
and its history of interaction. There is always the potential to
see the world differently because there is always the possibility
to alter your space of interaction or structural coupling. An
important consequence of this viewpoint is that it is not possible
for a human designer to implant knowledge directly into an
artificial cognitive system, since the designer’s model is the
result of her or his personal history of interaction with the world
and is dependent on her or his space of action, a space that is
by definition different from the cognitive system he or she is
designing. Knowledge, then, must be acquired by an embodied
cognitive agent by learning.

Unfortunately, and setting aside for the sake of convenience
the anti-representational stance,3 the situation in the emergent

3 Pim Haselager and col-
leagues deem the debate
between representationalists
and anti-representationalists
to be one that can’t be re-
solved; see their article
“Representationalism vs.
anti-representationalism:
a debate for the sake of
appearance” [353].

cognition paradigm, and in embodied cognition in particular,
is still somewhat confused because there is no broadly agreed
way of identifying what constitutes a representation in the first
place.4

4 Again, refer to reference
[352] for an overview of
the types of mechanisms in
embodied cognition that can
be considered candidates
for representationhood,
and the criteria that a
potential mechanism must
satisfy to be considered a
representation (at least from
the perspective of embodied
cognition).

8.3.2 What Qualifies as a Representation?

One might argue that any stable state of a cognitive system, and
of its memory in particular, that correlates with events in the
world is a representation. This may not be a valid argument,
however. Just because stable states of a cognitive system are
strongly correlated with events in the world does not, accord-
ing to some experts in the field, necessarily make them repre-
sentations. To qualify as a representation these states — these
“stand-ins” for the things in the world that are not immediately
accessible to the cognitive agent — must also be used for some
purpose or function and must be generally available for such use
by the cognitive system.5

5 The additional qualification
that for a brain state, e.g., to
be considered a represen-
tation of something it must
not only be correlated with
that something but it must
also be used by the cognitive
system for some purpose
or function is highlighted
by Lawrence Shapiro in his
book Embodied Cognition
[83] and by Andy Clark in
his article “The Dynamical
Challenge” [196].

Another way of putting this is to say that a representation
must play an active causal role in generating the system’s be-
haviour. By now, you should be able to see how this view of a



182 artificial cognitive systems

representation mirrors the way we characterized memory sys-
tems above as pervasive and active components of the overall
cognitive architecture. It is also consistent with internal sim-
ulation (or emulation) as a mechanism for achieving the an-
ticipatory prospective capacity that is one of the hallmarks of
cognition.

8.3.3 Weak and Strong Representation

We can distinguish between weak and strong representations.
Weak representations correspond to events that are currently
accessible by our senses while strong representation correspond
to those that are not (e.g. objects that are out of sight or that we
saw previously).6 Strong representations are required in circum-

6 The distinction between
weak representations and
strong representations is
explained by Andy Clark in
his article “The Dynamical
Challege” [196]. Lawrence
Shapiro quotes him in
his book on embodied
cognition [83]: “Weak
internal representations are
those ... that merely have
the function of carrying
information about some
object that is in contact with
sensory organs. Unlike
a map or a picture, these
representations persist for
only as long as the link
between them and the world
remains unbroken. ... These
weak representations are
ideal for ‘inner systems that
operate only so as to control
immediate environmental
interactions’ [23], p. 464.”

stances where the events to be represented might no longer be
present, might not even exist, or might be counter-factual: the
opposite of affairs as they appear to be.7 These situations require

7 The situations in which
strong internal representations
are required typically arise
in problems that Andy Clark
and Josefa Toribio refer
to as being representation
hungry: the problems involve
reasoning about absent, non-
existent, or counterfactual
events [206].

strong internal representations, typically to allow the cognitive
agent to function prospectively.

There is also a form of “representation” which falls some-
where between representationalism and anti-representationalism.
It derives from the enactive approach to emergent cognitive sys-
tems we discussed in Chapter 2, Section 2.2.3.

Recall that an enactive system constructs its own model of
the world as a consequence of the mutual structural coupling
between the agent and the world in which it is situated and em-
bedded. We referred to this process as sense-making and we noted
that the resultant knowledge says nothing at all about what is
really out there in the environment. It doesn’t have to: all it has
to do is make sense for the continued existence and autonomy
of the cognitive system. This self-generated knowledge cannot
be said to be a “re-presentation” of the agent’s world — for the
principled reason that an enactive system is organizationally-
closed8 — but nevertheless the internal states do play a “stand-

8 See Section 4.3.6 and Side-
note 32 for an explanation of
organizational closure and the
related concept of operational
closure.

in” part in the agent’s cognitive processes, its internal simulation,
and prospection. Thus, they are representations in an alternative
sense that doesn’t imply a re-presentation of anything external,
but is instead a re-presentation of an agent’s self-constructed
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understanding of its world derived from its experience as an
autonomous organizationally-closed entity, a construction that
plays a part in achieving adaptive anticipatory behaviour.

8.3.4 Radical Constructivism

The constructive aspect of enactivism is referred to as construc-
tivism9 and, occasionally, radical constructivism.10 The qualifica-

9 For an introduction to con-
structivism, see Alexander
Riegler’s editorial in the
inaugural issue of Construc-
tivist Foundations [354].
10 The definitive work on
radical constructivism is
Ernst von Glaserfeld’s book
Radical Constructivism [46].
He has also published a
short overview of the field
in a paper entitled “Aspects
of radical constructivism”
[355].

tion radical is applied to constructivism to emphasize that the
principles of constructivism have to be applied at every level we
chose to describe a cognitive system. Strictly-speaking, (radi-
cal) constructivism rejects representationalism, but only in the
sense that representationalism assumes an external world — a
reality — to which cognitive agents have direct access and can
represent. Constructivism does allow for knowledge; it simply
stipulates that knowledge is the result of an active process of
construction whereby the cognitive agent determines through
its structural coupling with its environment what matters for
its survival and what doesn’t.11 This is “sense-making,” in the

11 The two basic principles
of radical constructivism
are [355]: (1) Knowledge
is not passively received
either through the senses or
by way of communication,
but it is actively built up by
the cognizing subject; (2)
The function of cognition
is adaptive and serves the
subject’s organization of the
experiential world, not the
discovery of an objective
ontological reality.

language of enaction, or model generation, in the language of
computational modelling.

Before finishing up on this topic, a word on symbolic repre-
sentations is in order. While explicit symbolic representations
are the life-blood of cognitivist systems and there other implicit
non-symbolic forms of representation, symbolic encoding of
knowledge is only strictly necessary when you need to encap-
sulate that knowledge in some linguistic form to effect its repre-
sentation and communication externally to another agent. This
linguistic communication may be written, graphic, or spoken.
Thus, according to some experts, symbolic knowledge represen-
tations may exist as mechanisms of communication of meaning
rather than being the mechanisms of the cognitive processes
which gave rise to them: “The point of having a symbolic repre-
sentation of knowledge is exactly its utility and ability to convey
and share meaning between cognitive agents.”12

12 This quotation is taken
from a book by George
Lakoff and Rafael Núñez on
the origin of mathematics,
perhaps the most refined
manifestation of symbolic
communication, in which
they argue that mathematics
results from human cogni-
tion rather than having some
transcendent Platonistic
existence. This does not take
from its utility or meaning-
fulness: “[Mathematics] is
precise, consistent, stable
across time and human
communities, symbolizable,
calculable, generalizable,
universally available, con-
sistent within each of its
subject matters, and effec-
tive as a general tool for
description, explanation, and
prediction in a vast number
of everyday activities” [356].
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8.4 The Symbol Grounding Problem

If a cognitive system has some form of symbolic representation
of the world around it — some set of tokens that denote ob-
jects in the agent’s world — the question arises as to how the
representation acquires meaning? How do purely symbolic rep-
resentations acquire semantic content? This might seem like
an innocent question but it is made difficult by the fact that
symbols systems, which we described in Section 2.1.2, are gov-
erned by purely syntactic processes. That is, the atomic symbols,
the strings of symbols, and the symbol-based rules that define
the manipulation and recombination of symbols and strings
of symbols are all defined in terms that make no reference to
what these symbols mean. On the other hand, they are all “se-
mantically interpretable”: that is, the syntax can be assigned a
semantic meaning so that symbols and strings of symbols can
represent objects, events, or concepts, and describe them or stand
in for them. The problem is how to assign this meaning. This is
the symbol grounding problem.13 The key idea is that symbolic 13 The symbol grounding

problem was introduced
by Stevan Harnad in a
classic paper [40] in 1990.
A restricted form is the
anchoring problem [357]
which differs from the more
general symbol grounding
problem in a number of
ways. It is concerned only
with artificial systems and
focusses on establishing
a relationship between a
symbolic label denoting
some object and the sensory
perception of that object,
maintaining that relationship
over extended periods of
time, even when that object
cannot be seen. Also, it
is concerned only with
grounding physical objects
and doesn’t address the
grounding of abstract
concepts such as war or
peace.

representations have to be grounded bottom-up in non-symbolic
representations of two kinds:

1. Iconic representations, which are derived directly from sen-
sory data; and

2. Categorical representations, based on the output of both
learned and innate processes that detect invariant features of
object and event categories from these sensory data.

Higher-order symbolic representations can then be derived from
these elementary symbols. The iconic representations allow you
to discriminate between different objects and the categorical rep-
resentations allow you to identify an object encapsulated by its
iconic representation as belonging to a particular class or cat-
egory of objects (this is why the features have to be invariant:
they don’t change significantly within a given category). Both
types of representation, iconic and categorical, are non-symbolic
and, therefore, a non-symbolic process is required to learn the
invariances and thereby form the categories. Usually, we resort
to some form of connectionist approach (see Chapter 2, Section



knowledge and representation 185

2.2.1) to accomplish this mapping and form the categorical rep-
resentation. As a consequence, according to this argument, a
grounded symbol system is a hybrid system: a combination of
symbolic and emergent approaches. We introduced hybrid sys-
tems in Chapter 2, Section 2.3, and gave an example of a hybrid
cognitive architecture in Chapter 3, Section 3.4.3.

Not everyone agrees with this characterization of the symbol
grounding problem. An alternative viewpoint is that internal
symbolic representations are the result of ontogenetic develop-
ment and that they are are tethered to the world through sensory
perception rather than being grounded.14 The distinction is an 14 The concept of symbol

tethering was introduced
by Aaron Sloman [301].
His seminar on symbol
grounding and symbol
tethering [358] is a good
place to start reading about
the difference between the
two ideas. Symbol tethering
is sometimes referred to as
symbol attachment.

important one. Symbol grounding implies that the meaning of
a symbol is derived bottom-up by abstraction from direct sen-
sory experience. The need for symbol grounding in this sense
is a direct consequence of adopting a cognitivist approach to
cognition. Symbol tethering is quite different. It arises through a
rich process of structural coupling with the world. With symbol
tethering, the symbols don’t derive directly from the sensory
data, they derive from development, the process of developing
new items of knowledge that are specific to the embodiment of
the agent in question. Thus, symbol grounding is required only
if one adopts a cognitivist approach; symbol tethering is more
neutral in the sense that it makes no strong claims about the re-
lationship between world and respresentation, or the necessary
uniqueness of these representations.

The difference between symbol grounding and symbol teth-
ering is very much the same as the difference we discussed in
Chapter 2, Section 2.2.2, on the difference between representa-
tions that denote objects and those that connote objects.

8.5 Joint Perceptuo-motor Representations

In Section 7.5 above we remarked on the fact that mental im-
agery, viewed as another way of expressing the process of inter-
nal simulation, comprises both visual imagery (or, better still,
perceptual imagery) and motor imagery. More importantly,
though, we noted that these two forms of imagery are tightly
entwined: they complement each other and the simulation of
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perception and covert action both involve elements of visual
and motor imagery. We subsequently discussed the idea that
the classical separation of declarative and procedural memory,
and of episodic and procedural memory in particular, is being
eroded to reflect contemporary understanding of the interde-
pendence of perception and action. This gave us the opportunity
to mention the idea of joint perceptuo-motor representations:
representations that bring together the motoric and sensory as-
pects of experience in one framework. We left that thread of our
narrative hanging at that point while we discussed the difficult
issue of representation in its own right. Having done that, we
now come back to address joint perceptuo-motor representa-
tions in more detail. We consider here two different approaches:
the Theory of Event Coding and Object-Action Complexes. To set
the scene for them, we must first explain the difference between
sensory-motor theory and ideo-motor theory.

8.5.1 Sensory-motor Theory and Ideo-motor Theory

Broadly speaking, there are the two distinct approaches to plan-
ning actions: sensory-motor action planning and ideo-motor ac-
tion planning.15 Sensory-motor action planning treats actions 15 For a good overview of

ideo-motor theory, read
Armin Stock’s and Claudia
Stock’s “A short history of
ideo-motor action” [359].
Sensory-motor and ideo-
motor models are sometimes
written sensorimotor and
ideomotor models; either
formulation is correct.

as reactive responses to sensory stimuli and assumes that per-
ception and action use distinct and separate representational
frameworks. The sensory-motor view builds on the classic uni-
directional data-driven information-processing approach to
perception, proceeding stage by stage from stimulus to percept
and then to response. It is unidirectional in that it doesn’t allow
the results of later processing to influence earlier processing. In
particular, it doesn’t allow the resultant (or intended) action to
impact on the related sensory perception.

Ideo-motor action planning, on the other hand, treats action as
the result of internally-generated goals. It is the idea of achieving
some action outcome, rather than some external stimulus, that is
at the core of how cognitive agents behave. This reflects the view
of action described in Chapter 6, Section 6.3, with action being
initiated by a motivated subject, defined by goals, and guided
by prospection. The key point of the ideo-motor principle is that
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the selection and control of a particular goal-directed movement
depends on the anticipation of the sensory consequence of ac-
complishing the intended action: the agent images (e.g. through
internal simulation) the desired outcome and selects the appro-
priate actions in order to achieve it.

There is an important difference, though, between the concrete
movements comprising an action and the higher-order goals of
an action. Typically, actors do not voluntarily pre-select the exact
movements required to achieve a desired goal. Instead, they se-
lect prospectively-guided intention-directed goal-focussed action,
with the specific movements being adaptively controlled as the
action is executed. Thus, ideo-motor theory should be viewed
both as an anticipatory idea-centred way of selecting actions and
as a way of bridging the higher-order conceptual representations
of intentions and goals16 with the concrete adaptive control of

16 Michael Tomasello and
colleagues note that the
distinction between inten-
tions and goals is not always
clearly made. Taking their
lead from Michael Bratman
[360], they define an inten-
tion as a plan of action an
agent chooses and commits
itself to in pursuit of a goal.
An intention therefore in-
cludes both a means (i.e. an
action plan) as well as a goal
[361].

movements when executing that action.17

17 See “Hierarchy of
idea-guided action and
perception-guided move-
ment” by Sasha Ondobaka
and Harold Bekkering
[362] for a review of the
ideo-motor principle in
the context of higher-order
conceptual goals.In contrast to sensory-motor models, ideo-motor theory as-

sumes that perception and action share a common representa-
tional framework. Because ideo-motor models focus on goals,
and because they use a common joint representation that em-
braces both perception and action, they provide an intuitive
explanation of why cognitive agents, humans in particular, are
so adept at and predisposed to imitation.18 The essential idea is

18 See Marco Iacoboni’s
article “Imitation, Empathy,
and Mirror Neurons” [341]
for an explanation of the
links between ideo-motor
theory, imitation, and the
mirror neuron system. Also
refer back to the earlier
discussion of imitation and
mirror neurons in Chapter 6,
Section 6.1.2, and Chapter 5,
5.6, respectively.

that when I see somebody else’s actions (and remember: actions
are goal-directed) and the consequences of these actions, the
representations of my own actions that would produce the same
consequences are activated.

At first glance, ideo-motor theory seems to present a puzzle:
how can the goal, achieved through action, cause the action in
the first place? In other words, how can the later outcome affect
the earlier action? This seems to be a case of backward causation,
i.e. causation backwards in time.19 The solution to the puzzle

19 Backward causation — later
events influencing earlier
events — is not the same as
the downward causation we
met in Chapter 4, Section
4.3.5, where global system
activity influences the local
activity of the system’s
components.

is prospection. It is the anticipated goal state, not the achieved
goal state, that impacts on the associated planned action. Goal-
directed action, then, is a centre-piece of ideo-motor theory,
which is also referred to as the goal trigger hypothesis.20

20 Bernhard Hommel and
colleagues refer to ideo-
motor theory as the “goal
trigger hypothesis” in their
article on the Theory of
Event Coding [342].
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8.5.2 The Theory of Event Coding

The Theory of Event Coding (TEC)21 is a representational frame- 21 The Theory of Event
Coding (TEC) was proposed
by Bernhard Hommel and
colleagues in 2001 [342].
As well as setting out the
main tenets of the theory,
their paper also provides
a good overview of the
two distinct approaches to
planning actions: sensory-
motor action planning and
ideo-motor action planning.

work for combining perception and action planning. It focusses
mainly on the later stages of perception and the earlier phases
of action. As such, it concerns itself with perceptual features but
not with how those features are extracted or computed. Simi-
larly, it concerns itself with preparing actions — action planning
— but not with the final execution of those actions and the adap-
tive control of various parts of the agent’s body. The main idea
is that perception, attention, intention, and action all work with
a common representation and, furthermore, that action depends
on both external and internal causes.

TEC is intended to provide a basis for combining both sensory-
motor and ideo-motor action planning: to be a joint representa-
tion that serves both sensory-stimulated action and prospective
goal-directed action. The core concept in TEC is the event code.
This is effectively a structured aggregation of distal features of
an event in the agent’s world, i.e. features that the agent ob-
serves from some distance. In TEC, these are called feature codes.
They can be relatively simple (e.g. colour, shape, moving to the
left, falling) or more complex, such as an affordance.22 Also, TEC 22 To refresh your memory

of affordances, refer back to
the second last paragraph of
Chapter 5, Section 5.6, and
to Sidenote 52 in Chapter 2.

feature codes can emerge through the agent’s experience; they
don’t have to be pre-specified. Remember, TEC is a framework
and doesn’t concern itself with how these features are made
explicit or computed.

A given TEC feature code (of which there are many) is as-
sociated with both the sensory system and the motor system
(see Figure 8.1). Typically, a feature code is derived from several
proximal sensory sources (sensory codes) and it contributes to
several proximal motor actuators (motor codes). They are prox-
imal because they are part of the agent’s body, as opposed to
being distal and disconnected from the agent’s body. Thus, sen-
sory and motor codes capture proximal information whereas
feature codes (however they are computed) in the common joint
TEC representation capture distal information about events in
the world.

Each event code comprises several feature codes representing
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Figure 8.1: Features in the
Theory of Event Coding
combine sensory infor-
mation from a variety
of sensory modalities.
In this example, sensory
information s1, s2, s3 and
s4, s5, s6 comes from two
sensory systems and con-
verges onto two abstract
feature codes f1 and f2
in a common-coding
system. These features
spread their activation
to codes belonging to
two different motor sys-
tems: m1, m2, m3 and
m4, m5, m6, respectively.
Feature codes, which can
be activated by external
stimulation or internal
processes, are integrated
into separate event codes.
Features, e.g. f1, can be
shared between event
codes. Adapted from
[342].

some event, be it a perceived event or a planned event. Feature
codes associated with an event are activated both when the event
is perceived and when it is planned. Of course, because features
can be elements of many event codes, the activation of a given
feature effectively primes, i.e. predisposes, all the other events of
which this feature is a component. Activation of features alone,
though, is not the end of the story. The features that make up
an event are bound together: integrated into some event code.
The nature of the binding isn’t specified in TEC but the effect of
binding is a form of event code suppression in which one event
will interfere with and inhibit other events that share some of the
dominant event codes features.

8.5.3 Object-Action Complexes

Our second example of a joint representation of action and per-
ception comes from the robotics domain. The representation
is referred to as an Object-Action Complex, or OAC for short
(pronounced “oak”).23 An OAC is a triple, i.e. a unit with three

23 Norbert Krüger and
colleagues explain the
way that Object Action
Complexes (OACs) provide
symbolic representations of
sensory-motor experience
and predictive behaviours in
their article “Object-Action
Complexes: Grounded
abstractions of sensory-
motor processes” [363].
This article also provides
some examples of how
OACs have been used by an
artificial cognitive system, a
humanoid robot in this case,
to learn the affordances of
simple objects.components: (E, T, M), where

Sensory Systems Common Coding System Motor Systems 
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• E is an “execution specification”; think of it as an action.

• T : S → S is a function that predicts how the attributes
that characterize the current state of the agent’s world will
change if the execution specification is executed. Think of T
as a prediction of how the agent’s perceptions will change as
a result of carrying out the actions given by E. S is just the
space of all possible perceptions of the agent.

• M is a statistical measure of the success of the OAC’s past
predictions.

Thus, an OAC combines the essential elements of a joint repre-
sentation — perception and action — with a predictor that links
current perceived states and future predicted perceived states
that would result from carrying out that action. To a large ex-
tent, an OAC models an agent’s interaction with the world as
it executes some motor program (this is referred to a low-level
control program CP in the OAC literature). For example, an
OAC might encode how to grasp a object or push an object into
a given position and orientation (usually referred to as the ob-
ject pose). OACs can be learned and executed, and they can be
combined into more complex representations of actions and their
perceptual consequences.

8.6 Acquiring and Sharing Knowledge

In Section 8.3 above we highlighted an important difference
between the cognitivist and the emergent approaches to cogni-
tion regarding their treatment of knowledge: that it is possible
in principle to directly share knowledge between cognitivist
systems, whereas it is not possible in principle to do so for emer-
gent ones. Instead, an emergent system has to learn its knowl-
edge. A cognitivist system can learn knowledge too, of course:
the issue is the possibility or not of direct sharing. In this section,
we look at how cognitivist agents — robots in particular — share
knowledge directly with humans and other robots. To complete
the picture, we also look at how emergent agents — again, cog-
nitive robots — acquire knowledge and know-how by observing
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other agents, i.e. by learning from demonstration. This approach
to indirect sharing of knowledge and know-how among cogni-
tive agents is related to the topic of imitation which we discussed
in Chapter 6, Section 6.1.2.

8.6.1 Direct Knowledge Transfer — the Cognitivist Perspective

One the greatest strengths of the cognitivist paradigm, and at
the same time one of its potential weaknesses, is the assumption
that all cognitive agents have access to the same understanding
of the world around them. The strength of this position is that
it means that the knowledge possessed by one agent is inher-
ently compatible with the understanding mechanisms — the
faculties for perception, reasoning, and communication — of
another agent. This strength has been widely exploited by all
cognitivist systems to allow humans to embed representations
of their knowledge in cognitive systems, very often as symbol-
based rules as we saw in Chapter 3, Section 3.1.1 on cognitivist
cognitive architectures. The weakness lies in the fact that a pro-
grammer’s knowledge is limited to what he or she knows and
considers important enough to encode and embed in the cogni-
tive agent. Of course, a cognitivist cognitive agent can also learn
for itself, but its understanding — its reasoning capability — is
often bounded by the programmer’s initial knowledge.

Recently, however, there have been developments designed
to overcome this weakness by allowing robots to share their
knowledge and their experience, and autonomously mine other
sources of knowledge. Thus, as one robot learns how to solve a
given task, it can make that knowledge available to other robots.
This is the rationale for RoboEarth, 24 a fast-growing world-wide

24 The RoboEarth framework
is described in general terms
in an article “RoboEarth:
A World-wide Web for
Robots” by Markus Waibel,
Michael Beetz, and others
[34]. A later paper by Moritz
Tenorth, Michael Beetz, and
colleagues, “Representation
and Exchange of Knowl-
edge about Actions, Objects,
and Environments in the
RoboEarth Framework,” pro-
vides more technical detail
on the various knowledge
representations involved and
the associated knowledge
reasoning techniques use to
draw inferences about that
knowledge [364].

open-source framework that allows robots to generate, share,
and reuse knowledge and data. The RoboEarth architecture pro-
vides for various types of knowledge: global world models of
objects, environments, actions, all linked to semantic informa-
tion. Different representations are used: for example, images,
point clouds, and 3-D models for objects, maps and coordinates
for environments, and human-readable action recipes for ac-
tions and task descriptions. This information is linked with a



192 artificial cognitive systems

graph-based semantic representation that allows the robot to
understand how to use all the various knowledge components.

RoboEarth is effectively a world wide web for robots: a web-
based resource that robots can use to exchange knowledge
among each other and benefit from the experience of other
robots, customizing that knowledge to suit their own particu-
lar circumstances. It is this ability to customize that particularly
distinguises RoboEarth. It is not just a repository of object, envi-
ronment, and task data: it includes also the semantic knowledge
that encodes the meaning of the content in terms of the relation-
ships between the various entities in a way that allows the robot
to decide if an object model will be useful in some given task, for
example.

The core of the framework is a language that allows all the
relevant information to be encoded, exchanged, and re-used by
the robots. For example, it provides ways of describing actions
and their parameters, objects and their positions and orientations
(poses), and models for recognizing objects. It also provides a
way of exchanging the meta-information — information about
the information — such as coordinate reference frames and units
of measure. Since the robots that are hooked up to RoboEarth
will differ significantly in size, shape, and sensory-motor capa-
bilities, the language also allows models of the robot’s config-
uration to be captured as well as specifications for prerequisite
components that a robot must have to make use of each piece of
information. Finally, it also provides a way to match these speci-
fications to the robot’s capabilities so that it can check to see if it
is missing any components.

While a world wide web exclusively for robots has clear ad-
vantages, there is a lot of information intended for human use
on the normal world wide web that could be very useful for
robots too.25 Cognitive robots could use sites that provide step- 25 The article “Web-enabled

Robots” by Moritz Tenorth,
Michael Beetz, and col-
leagues describes a number
of ways in which the world
wide web is being used
to provide knowledge for
robots to help them carry
out everyday tasks [365].

by-step instruction on how to do things to formulate a plan for
undertaking a task. Shopping sites and image databases provide
pictures that can be used by the robot to search its own environ-
ment for objects. Other sites provide access to 3-D CAD models
of household items that can be used to plan grasping actions.
Encyclopedic knowledge-bases provide information on the rela-



knowledge and representation 193

tionships between different objects.26 Common-sense knowledge 26 Encyclopedic knowledge
is often represented by an
ontology, a specification of
knowledge in terms of con-
cepts, their types, properties,
and inter-relationships. By
the way, this is how ontol-
ogy is defined in computer
science; it has a different
meaning in philosophy
where it refers to the study
of the nature of existence
and reality.

is rarely formalized but this too is also available As an example,
a home-help robot might need to use milk in preparing a meal.
The information it acquires about milk from a shopping site will
provide the appearance of a milk carton and it will also reveal
that it is perishable. Common sense knowledge would provide
the information that perishable goods are stored in the refrig-
erator and encylopedic knowledge provides information about
refrigerators. By combining all this information, the robot can
determine where to look to find the milk. The challenge is to
provide cognitive robots with the ability to access and combine
all this knowledge, as required, when planning a given task.27

27 A common knowledge
representation helps in
tackling the problem of
combining information
from several sources. The
KnowRob knowledge base
is one example of this type
of common representation;
see Moritz Tenorth’s and
Michael Beetz’s article
“KnowRob — Knowledge
processing for autonomous
personal robots” [366].

Finally, some terminology: the sharing of knowedge, both
robot-oriented and human-oriented, by robots on the internet is
sometimes referred to as Cloud Robotics.28

28 The term Cloud Robotics
was introduced by James
Kuffner at the IEEE Confer-
ence on Humanoid Robotics
in 2010 [367]. A techncial
report by Ken Goldberg
and Barry Kehoe “Cloud
Robotics and Automation:
A Survey of Related Work”
provides a succinct overview
of the area [368].

8.6.2 Learning from Demonstration — the Emergent Perspective

As we have noted on several occasions, we do not have direct
access to the knowledge of a cognitive system that adheres to
the emergent paradigm of cognitive science. Such knowledge
is specific to that particular agent and it is acquired through
development and learning. We discussed the importance of ex-
ploration and social interaction in Section 6.1.1 on development
and in Section 6.1.2 we highlighted the natural predisposition
that humans have for imitation. In Section 6.1.3 we remarked
that imitative learning provides a way of actively teaching a cog-
nitive robot, instructing it on how to achieve a certain action or
task. This approach to imparting knowledge to a cognitive robot,
particularly know-how in the form of procedural and episodic
knowledge, is referred as Learning from Demonstration or Program-
ming by Demonstration.29 We will develop this theme a little more

29 For a comprehensive
overview of the different
approaches to learning from
demonstration, read the
survey by Brenna Argall
and colleagues [300]. The
article by Aude Billard and
colleagues in the Springer
Handbook of Robotics provides
a good overview of robot
programming by demon-
stration [369], as does the
article by Rüdiger Dillman
and colleagues [370].

here.
Before beginning, it is important to be clear that learning

from demonstration is relevant to cognitive robotics in both
the cognitivist and the emergent traditions. However, there are
four variants of the general approach and just one of these is
applicable to emergent cognitive robotics.
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Figure 8.2: The four types
of learning from demon-
stration. In the top row,
the required teaching
data is recorded and can
be used directly by the
robot; in the bottom row,
the required data is avail-
able indirectly and so
has to be inferred by the
robot. In the left column
— Demonstration — the
teaching data matches
the robot’s body and can
be used directly. In the
right column — Imitation
— the teacher’s body
doesn’t match the robot’s
body and therefore the
teaching data has to be
mapped to the robot’s
body. From [300], © 2009,
with permission from
Elsevier.

First, let us state exactly what learning from demonstration
tries to achieve and then we will see how different approaches
to solving this problems yield the four different variants.30 A 30 The treatment of program-

ming by demonstration,
and the four different cate-
gories of approach, follow
closely the approach intro-
duced by Brenna Argall and
colleagues in their survey
[300].

cognitive robot needs to know how to act in any given situation:
what action is appropriate given the current state of its world.
Thus, the goal of the exercise is to learn a mapping from world
state to action. This mapping is called a policy; here we will refer
to it as an action policy to remind us that the policy determines
appropriate actions based on what’s going on in the robot’s
world.

To learn this action policy, a teacher provides a series of exam-
ples — demonstrations — of the world state and the associated
actions. These world states typically reflect some situation that
requires an action: there is a dirty garment in the laundry basket,
so the action might be to put it in the washing machine. As we
mentioned previously in Chapter 6, Section 6.1.3, learning from
demonstration is a particular form of supervised learning. Often,
the world state isn’t directly accessible to the robot, so it has to
depend on its observations. The learned action policy then tells
the robot what action to take based on its observations.
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During learning, knowledge is transferred to the robot. That
transfer may be explicit or implicit, depending on whether the
robot has direct access to the teacher’s knowledge — the mo-
tion and world state information that characterize the actions
being taught — or whether it has to infer it. There are two steps
to this transfer: (a) recording of the teacher’s actions and (b)
determining the correspondence of this data with the robot’s
embodiment. Either steps can be direct or indirect. If it is direct,
then the data can be used by the robot without modification. If
it is indirect, the data has to be mapped to the robot, i.e. the in-
formation required by the robot to reproduce the action has to
be inferred. Since there are two stages, each with two options —
directly used and indirectly mapped — there are four different
types of learning from demonstration; see Figure 8.2.

The first type is teleoperation. Here, a teacher directly operates
the robot learner and the robot’s sensors records the required
actions. Thus, the recording is direct. Since, the teacher and
learner embodiments correspond exactly (they are in fact the
same body, i.e. the robot), no further mapping is required.

The second type is called shadowing. Here, the robot doesn’t
have direct access to the teachers action data. Instead, it attempts
to mimic teachers actions (e.g. by tracking the teacher’s action)
and it records its own movements through its own sensors. Thus,
the recording is indirect. However, the data recorded corre-
sponds directly to the robot’s own embodiment.

The third type is referred to as sensors on teacher. Here the
teacher’s movements are recorded directly on the teacher and the
learning robot has direct access to this data. Thus, the recording
is explicit and direct. On the other hand, the embodiment of
teacher and learner robot are different so this data has to be
used indirectly and mapped to the particular embodiment of the
learner robot.

Finally, the fourth type is called external observation. In this
case, both the recording and the embodiment correspondence
have to be inferred. The robot observes the teacher with sensors
that are external to the teacher (in contrast to the sensor on teacher
type). These could be on the robot itself or arranged around the
robot in a sensorized environment. Furthermore, the teacher



196 artificial cognitive systems

and robot embodiments differ, such as in the case of a human
teaching a 53 degree of freedom humanoid, so that the observed
data, i.e. the teacher’s movements, has to be mapped to the
robot’s frame of reference.

The term demonstration is used to refer to the first two types:
teleoperation and shadowing. Imitation refers to either the third
or fourth type: sensor on teacher or external observation. How-
ever, in the context of our discussion of emergent cognitive sys-
tems, only the fourth type — external observation imitation — is
applicable because direct knowledge transfer, in either steps of
the knowledge transfer process, is not possible.

One final point is relevant. It concerns the manner in which
the demonstration — the pairs of world states or observations of
world states and associated actions — is presented to the learn-
ing robot. There are two options, one is batch learning in which
the action policy is learned after all the data has been presented.
The second is interactive learning so that the action policy is up-
dated as the training data is progressively presented to the learn-
ing robot. Interactive learning provides the opportunity for the
teacher to correct the learned action policy or to suggest ways of
improving it, i.e. the teacher not only demonstrates examples of
the required action policy but he or she also coaches the robot,
fine-tuning its behaviour.31

31 For an example of robot
coaching, see the work of
Marcia Riley and colleagues
who use an interactive
learning from demonstration
methodology to coach
humanoid robots [371].
The key features of their
approach is the use of a
verbal coaching vocabulary,
the ability to refine specific
parts of a behaviour, and the
ability to clarify instructions
or resolve ambiguities
through dialogue.



9
Social Cognition

9.1 Introduction

So far in this book, cognition has been portrayed as an agent-
centred and relatively lonely activity: cognitive systems explore
and interact with the world around them but the focus of this
interaction has been on structural coupling, with an emphasis on
adaptation and autonomy rather than on collective social activity.
However, as we noted in Chapter 5 on embodiment and Chapter
6 on development, interaction can go well beyond being embed-
ded in the environment, with other cognitive agents playing a
major role in the cognitive activities of an individual cognitive
agent. In this final chapter, we place cognitive systems in a col-
lective setting and discuss how cognition in an individual agent
takes place in a social milieu. This positions social cognition
differently from extended cognition and distributed cognition,
as defined in Chapter 5, Section 5.10. Thus, in this chapter we
aren’t considering how cognition in an individual might directly
involve the agent’s environment (extended cognition), nor yet
are we considering collective cognition in the sense of a group of
individual agents collectively exhibiting a capacity for cognition
(distributed cognition). Instead, we focus here on how an indi-
vidual cognitive agent develops and interacts in a social setting
involving other cognitive agents.1

1 In this chapter, we restrict
our focus to direct inter-
action between cognitive
agents. For a discussion of
social cognition where the
agents interact indirectly, i.e.
though artefacts, using the
principles of stigmergy (by
which social insects such as
ants achieve collective coor-
dination), see the article by
Tarja Susi and Tom Ziemke
[372].

To provide the basis for discussing the social interaction be-
tween two or more cognitive agents, we need to characterize
the essence of individual cognition: how a single agent inter-
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acts with its environment. At this point of the book, we are now
familiar with the idea that cognition focusses on action, and es-
pecially on prospective goal-directed action. Action and goals
are two of the essential characteristics of cognitive interaction.
There are two others. The first of these — intention — captures
the prospective aspect of action and goals. Recall the distinction
we drew between goals and intentions in Chapter 8, Sidenote 16:
an intention is a plan of action an agent chooses and commits
itself to in pursuit of a goal. An intention therefore includes both
a goal and the means of achieving it. Thus, an agent may have
a goal for some state of affairs to exist and an intention to do
something specific in pursuit of that state of affairs. Intentions
integrate, in a prospective framework, actions and goals. Finally,
we have perception: the essential sensory aspect of cognition.
However, in the context of cognitive interaction, perception is
directed. It is focussed on goals, influenced by expectations: it is
attentive.

Although we have mentioned attention on several occasions in
the book, we have never actually said exactly what we mean by
it. So, before continuing and because it is a key characteristic of
cognitive interaction, we will take some time to do so.

Perhaps the closest we got to explaining the attention was
in Chapter 5, Section 5.6, where we discussed spatial attention
and selective attention (more or less: where we direct our gaze
and what sort of things are most apparent to our gaze). We can
make this a little more explicit by defining attention as “the
temporally-extended processes whereby an agent concentrates
on some features of the environment to the (relative) exclusion
of others.”2 In closing Chapter 6 we remarked that a cognitive

2 This definition of attention
is taken from “The Chal-
lenges of Joint Attention”
by Frédéric Kaplan and
Verena Hafner [263], p. 138.
However, we must be careful
to recognize that attention
can be very difficult to pin
down and good definitions
are very scarce. The title of
Chapter 1 of John Tsotsos’s
book A Computational Per-
spective on Visual Attention
[373] and the title of the first
section sum this predica-
ment up neatly: “Attention
— We All Know What It Is”;
“But Do We Really?”

system needs an attentional system which fixates on the goals
of actions. This mirrors an important aspect of attention: it is
strongly linked to intentionality. It could even be characterized
as intentionally-directed perception: we focus our attention on what
matters to us in pursuit of our goals.3

3 The selectivity of attention
was recognized early on
by William James who
described it as follows:
“Everyone knows what
attention is. It is the taking
possession by the mind,
in clear and vivid form,
of one out of what seem
several simultaneously
possible objects or trains of
thought” [60]. John Tsotsos
used the first of these two
sentences as the basis for
setting up his discussion of
the surprising difficulty in
defining attention [373].

To sum up, then, we characterize the interaction of an indi-
vidual cognitive agent by the four characteristics of action, goals
(or commitment), intention, and attention (understood in the
sense of intention-guided perception), all of which have an ele-



social cognition 199

ment of prospection. Our goal in this chapter is to show what is
necessary to transform this characterization to one that is rep-
resentative of social cognition: the interaction between two (or
more) cognitive agents. This will involve the notions of joint ac-
tion, shared goals, shared intentions, and joint attention. As we
will see, this transformation, and these four notions, go far be-
yond a simple superposition of the notions of individual action,
goals, intentionality, and attention from which they derive. Much
more is involved in social cognition. But we are getting a little
ahead of ourselves and we need to cover some preparatory mate-
rial to get ready to discuss these issues. To set the scene for this,
we begin with a brief overview of social cognition to introduce
the key elements of social interaction, in general, and helping
other agents, in particular.

9.2 Social Interaction

Social cognition embraces a wide range of topics.4 The abilities 4 A research review of
Social Cognition written
by Uta Frith and Sarah-
Jayne Blakemore for the
Foresight Cognitive Systems
Project [374] provides a very
accessible overview of the
field, its scope, and its many
component mechanisms
and processes, as well as
discussing how it is affected
by pathology, e.g. autism
spectrum disorder (ASD).

required for successful social interaction range from reading
faces, detecting eye gaze, recognizing emotional expressions,
perceiving biological motion, paying joint attention, detecting
goal-directed actions, discerning agency, imitation, deception,
and empathy, among many others. To help us navigate our way
through the many related topics, it may help to know where we
are headed. Our target in this chapter is the social capacity of
cognitive agents to collaborate with one another — to engage
in joint action — and we will focus in particular on the manner
in which humans develop the mechanisms they need for collab-
oration. Along the way, we will explore several related issues,
including the ability to infer the intentions of other agents, to
help them, to share goals and intentions, and ultimately to carry
out joint actions by paying joint attention to the task at hand.

Social cognition — effective social interaction with other cog-
nitive agents — depends on an agent’s ability to interpret a wide
variety of visual data that conveys information about the activi-
ties and intentions of other agents. As we saw noted in Table 6.1,
newborns have an innate attraction to biological motion and it
has been shown that the ability to process biological motion is a
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hallmark of social cognition, providing a cognitive agent with a
capacity for adaptive social behaviour and nonverbal communi-
cation.5 The clearest example of this is the ability to read body 5 Marina Pavlova’s article

“Biological Motion Process-
ing as a Hallmark of Social
Cognition” [375] provides
a detailed analysis of the
tight relationship between
the perception of biological
motion and social cogni-
tive abilities, noting that
individuals who exhibit a
deficit in visual processing
of biological motion are
also compromised in social
perception.

language, the subtle body movements, gestures, and actions that
are an essential aspect of successful interaction between cogni-
tive agents (we assume here that we are dealing with embodied
cognitive systems in the sense discussed in Chapter 5). For an
agent to interact socially with another cognitive agent, it must
be aware of the cognitive state of that agent and be sensitive to
changes. In Section 5.7 we discussed the link between the state
of an agent’s body and its cognitive and affective state, especially
during social interaction. Recall that there are four aspects to this
link:

1. When an agent perceives a social stimulus, this perception
produces bodily states in the perceiving agent.

2. The perception of bodily states in other agents frequently
evokes a tendency to mimic those states.

3. The agent’s own body states trigger affective states in the
agent.

4. The efficiency of an agent’s physical and cognitive perfor-
mance is strongly affected by the compatiblity between its
bodily states and its cognitive states.6 6 Refer again to the article

“Social Embodiment” by
Lawrence Barsalou and
co-workers [207]; it provides
many examples of the link
between body states and
cognitive & affective states in
social interaction, including
the impact on motor control,
memory, judging facial
expressions, reasoning, and
general effectiveness in
performing tasks.

Because of the strong link between bodily states and cognitive
and affective states, the posture, movements, and actions of
an agent convey a great deal about its cognitive and affective
disposition as well as influencing how another agent will behave
towards it.

While social cognition is ultimately about mutual interaction,
this interaction doesn’t have to be entirely symmetric: for exam-
ple, one agent can assist another or both agents can assist each
other. In the following, we will refer to these behaviours as help-
ing (sometimes adding the qualification instrumental helping)
and collaboration, respectively. For the moment, it is just impor-
tant to realize that one (collaboration) develops from the other
(instrumental helping).
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9.2.1 The Prospective Nature of Helping

For one agent to be able to help another agent, it must first in-
fer the other agent’s intentions. We sometimes call this reading
intentions. This in itself is a complex problem. It can be ad-
dressed in two phases: reading low-level intentions associated
with movements (e.g. predicting what someone is reaching for)
and reading high-level intentions associated with actions (e.g.
predicting why someone is reaching for that object).7 Instrumen-

7 Elisabeth Pacherie argues
that three different levels
of intentions can be distin-
guished: (1) distal intentions,
where the goal-directed
action to be performed is
specified in cognitive terms
with reference to the agent’s
environment; (2) proximal
intentions, where the action
is specified in terms of bod-
ily action and the associated
perceptual consequence;
and (3) motor intentions,
where the action is speci-
fied in terms of the motor
commands and the impact
on the agent’s sensors. For
more details, see her arti-
cle “The Phenomenology
of Action: A Conceptual
Framework” [376].

tal helping requires one agent to understand the goal of another
agent by inferring its intention, to recognize that it can’t achieve
it without assistance, and then to act to provide the necessary
help (e.g., picking up something for a person whose hands are
full).

The second form of helping — collaboration — is more com-
plicated and focuses on mutual helping where two agents work
together to achieve a common goal. It requires the two agents
to share their intentions, to agree on the goal, share attention,
and engage in joint action. Collaboration requires complex in-
teraction over and above the ability to engage in instrumental
helping. It involves the establishment of shared goals and shared
intentions8 and it requires subtle adjustment of actions when the

8 Michael Tomasello and Ma-
linda Carpenter argue that
shared intentionality, i.e. a
collection of social-cognitive
and social-motivational
skills that allow two or more
participants engaged in col-
laborative activity to share
psychological states with
one another, plays a crucial
role in the development of
human infants. In particular,
it allows them to transform
an ability to follow another
agent’s gaze into an ability
to jointly pay attention to
something, to transform
social manipulation into
cooperative communication,
group activity into collabora-
tion, and social learning into
instructed learning [377].

two agents are in physical contact such as when handing items
to each other or carrying objects together.

The key to both types of helping is the prospective nature of
cognition. Reading intentions, both low-level and high-level, is
an exercise in prospection: you have to predict what another
agent is going to do but hasn’t done yet. Equally, helping some-
one to do something is prospective because you need to envisage
their goal and plan what to do to help the other person achieve
it. When collaborating, prospection also allows an agent (robot
or human) to establish a compatible representation of some goal
that is to be achieved by working together and a shared perspec-
tive on what both agents need to do to achieve it together.

9.2.2 Learning to Help and Be Helped

Learning to help is not as easy as it sounds. It takes several
years for human infants to develop the requisite abilities, as
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we already saw in Chapter 6, Table 6.1, on development and
learning.

During the first year of life the progressive acquisition of
motor skills determines the development of the ability to under-
stand the intentions of other agents, from anticipating the goal of
simple movements to the understanding of more complex goals.
At the same time, the ability to infer what another agent is fo-
cussing their attention on and the ability to interpret emotional
expressions begins to improve substantially.

Around 14 to 18 months of age children begin to exhibit in-
strumental helping behaviour, i.e. they display spontaneous,
unrewarded helping behaviours when another person is unable
to achieve his goal.9 For example, an infant, on seeing another

9 In “The Roots of Human
Altruism” [275], Felix
Warneken and Michael
Tomasello argue that young
children are naturally
altruistic and have an innate
propensity to help others
instrumentally, even when
no reward is offered; see
Section 9.4 below.

infant unable to reach something it wants to play with, will move
it closer to her or him, without the promise of any reward. This
is a critical stage in the development of a capacity for collabo-
rative behaviour, a process that progresses past three and four
years of age.

Around 2 years of age children start to solve simple cooper-
ation tasks together with adults.10 This phase of development

10 A study by Felix Warneken
and colleagues on coop-
erative activities in young
children [378] showed that
the ability to engage in
non-ritualized cooperative
interactions with adults
begins to emerge in between
18 and 24 months.

sees the beginning of shared intentionality where a child and an
adult form a shared goal and both engage in joint activity. It also
seems that children seem to be motivated not just by the goal but
by the cooperation itself, i.e. the social aspect of the interaction.

The ability to cooperate with peers and become a social part-
ner in joint activities develops over the second and third years
of life as social understanding increases.11 More complex col-

11 Celia Brownell and col-
leagues [379] describe sig-
nificant differences between
one- and two-year children
in their degree of coordi-
nated activity and level of
cooperation in achieving
shared goals.

laboration, which necessitates the sharing of intentions and joint
coordination of actions, appears at about three years of age when
children master more difficult cooperation tasks such as those
involving complementary roles for the two partners in a collabo-
rative task.12

12 A study of joint action
coordination in 2½- and 3-
year-old children by Marlene
Meyer and colleagues
[380] shows the dramatic
improvement in the older
children in their ability to
establish well-coordinated
joint action with an adult
partner.

At three years of age, children begin to develop the ability to
cooperate by coordinating two complementary actions. By three-
and-a-half years of age children quickly master the task, can deal
effectively with the roles in the task being reversed, and can even
teach new partners.13

13 A study by Jennifer Ash-
ley and Michael Tomasello
[381] shows how children
develop the capacity to
cooperate by coordinating
two complementary ac-
tions. 2-year-old children
never became independently
proficient. 2½- and 3-year-
old children showed some
proficiency, but mainly as
individuals and without
much behavioural coordina-
tion. However, 3½-year-old
children quickly master the
set task.The motives which drive instrumental helping are simpler
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than those of collaborative behaviours: they are based on want-
ing to see the goal completed or wanting to perceive pleasure
in the human at being able to complete it. In this case, the mo-
tivational focus is solely on the needs of the second agent. The
needs of the first agent don’t enter into the equation. The mo-
tives underlying collaborative behaviour are more complicated.
In this case, the intentions and the goals have to be shared and
the motivational focus is on the needs of both agents.

9.3 Reading Intentions and Theory of Mind

As we have said on several occasions, prospection is the very
essence of cognitive behaviour: anticipating the need to take
action, predicting what action is most appropriate, and prospec-
tively guiding actions during their execution. When actions take
on a social aspect, a new dimension of complexity is introduced
because other cognitive agents behave in a qualitatively differ-
ent way to inanimate physical objects. Action becomes interac-
tion.14 Now, not only does a cognitive agent have to anticipate

14 Tarja Susi and Tom Ziemke
provide a neat character-
ization of interaction in a
social context: “Interaction is
the reciprocal action where
one individual’s action
may influence and modify
the behaviour of another
individual” [372].

the behaviour of inanimate objects, it also has to anticipate the
behaviour of other cognitive agents. The complexity of this arises
because of the very fact that cognitive agents act prospectively
and, thus, a cognitive agent must anticipate the actions of an
agent that itself is already anticipating what it is going to do. To
put it another way, in social cognition, an agent must anticipate
the intentions of other agents: it must predict what they will do
and possibly why they want to do it.

Infants as young as 18 months understand that there is a dif-
ference between the behaviour of inanimate objects and people.
They begin to differentiate between physical movements and
actions. In particular, they begin to attach a deeper meaning to
the movements of people, a meaning which attributes a psycho-
logical perspective to their movements, treating them as actions
with intended goals, and situating people in a psychological
framework involving goals and intentions. Indeed, by 18 months,
infants have developed some understanding of intentions.15

15 The ability to infer inten-
tions is related to an agent’s
capacity to predict the goal
of an action being performed
by another agent. This ca-
pacity is often explained
with reference to the mirror
neuron system (see Chapter
5, Sections 5.6, and Chapter
6, Section 6.1.2) because it
explicitly links the percep-
tion of the goal of an action
with the agent’s own ability
to perform that action. This
is supported by a study
which shows that infants
only develop the ability to
predict the goals of other
people’s simple actions after
they can perform that action
themselves [382].

The ability to infer intentions is closely linked to what is
known as a theory of mind.16 We met this concept already in

16 Read Andrew Meltzoff’s
article “Understanding the
Intentions of Others: Re-
Enactment of Intended Acts
by 18-Month-Old Children,”
one of the landmark studies
on the development of chil-
dren’s ability to understand
the intentions of other peo-
ple and form a theory of mind
[273].
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Chapter 6, Section 6.1.2, and Chapter 7, Section 7.4, where we
defined it to be the capacity by which one agent is able to take
a perspective on someone else’s situation.17 It is one of four 17 A theory of mind is defined

by Andrew Meltzoff as “the
understanding of others
as psychological beings
having mental states such
as beliefs, desires, emotions,
and intentions” [273].

forms of internal simulation (see Section 7.4). To have a theory
of mind means to have the ability to infer what someone else
is thinking and wants to do. As we noted in Chapter 6, Section
6.1.2 and Sidenote 15, the innate ability to imitate forms the ba-
sis for the development of a person’s ability to form a theory of
mind. The link between them is the ability of an agent to infer
the intentions of another agent. When imitating adults, infants as
young as 18 months of age can not only replicate the actions of
the adult (and remember: actions are focussed on goals, not just
bodily movements) when successfully performing a task but they
can also persist in trying to achieve the goal of the action even
when the adult is unsuccessful in performing the task. In other
words, the infant can read the intention of the adult and infer the
unseen goal implied by the unsuccessful attempts.18

18 Andrew Meltzoff and
Jean Decety summarize the
link between imitation and
theory of mind (which they
also refer to as mentalizing)
as follows “Evidently, young
toddlers can understand our
goals even if we fail to fulfil
them. They choose to imitate
what we meant to do, rather
than what we mistakenly
did do.” [291], p. 496. As
we already noted in Chapter
6, Sidenote 15, they also
remark that “In ontogeny,
infant imitation is the seed
and the adult theory of mind
is the fruit.”

We saw above that young children differentiate between the
behaviour of inanimate and animate objects, attributing mental
states to the animate objects. In fact, such is the importance of
biological motion to social cognition (as we saw above in Section
9.2) that if an inanimate object, even two-dimensional shapes
such as triangles, exhibit movements that are animate or biolog-
ical — self-propelled, non-linear paths with sudden changes in
velocity — humans cannot resist atttributing intentions, emo-
tions, and even personality traits to that inanimate object.19 In

19 A classic paper by Fritz
Heider and Marianne
Simmel in 1944, “An exper-
imental study of apparent
behaviour” [383], demon-
strates that humans interpret
certain types of movements
combinations (e.g. successive
movement with momen-
tary contact, simultaneous
movement with prolonged
contact, simultaneous move-
ments without contact,
successive movements
without contact) as acts of
animated beings, mainly
people, even when these
movements are exhibited
by simple two dimensional
shapes such as circles and
triangles. Furthermore, hu-
mans even attribute motives
to these acts.

the same way, humans also infer different types of intention de-
pending on whether they are interpreting movements (lower
level intentions) or actions (higher level). Whereas movement
intention refers to what physical state is intended by a certain
action, e.g., inferring the end location of a specific observed
movement — if the hand moves into the direction of a cup, it
is likely that the agent intends to grasp that cup — higher con-
ceptual level intention refers to why that specific action is being
executed and the motives underlying the action, e.g., the agent
might be thirsty and want a drink. This should bring to mind the
distinction we made between the concrete movements compris-
ing an action and the higher-order conceptual goals of an action
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in the previous chapter where we discussed ideo-motor theory
(see Chapter 8, Section 8.5.1 and Sidenote 17).

So, how do human infer the intentions of others from their
actions? The internal simulation we discussed in Chapter 7,
Sections 7.4 and 7.5, is a possible mechanism.20 The key idea is 20 The review article “From

the perception of action
to the understanding of
intention” by Sarah-Jayne
Blakemore and Jean Decety
gives a succinct account of
the link between biological
motion, simulation theory,
and the inference of inten-
tions [384]. For an in-depth
discussion of a computa-
tional approach to intention
recognition, see “Towards
computational models of
intention detection and
intention prediction” by
Elisheva Bonchek-Dokow
and Gal Kaminka [385].

that the ability to infer the intentions of another agent from ob-
servations of their actions might actually be based on the same
mechanism that predicts the consequences of the agent’s own
actions based on its own intentions. As we saw in Chapter 7,
Section 7.5, cognitive systems make these predictions by inter-
nal simulation using forward models that take either overt or
covert motor commands as input and produce as output the
likely sensory consequences of carrying out those commands.
When a cognitive system observes another agent’s actions, the
same mechanism can operate provided that the internal sim-
ulation mechanism is able to associate observed movements
(and not just self-generated motor commands) and likely, i.e.
intended, sensory consequences. We saw previously that this
is exactly what the ideo-motor principle suggests (Chapter 8,
Section 8.5.1) and what the mirror-neuron system provides (in
Chapter 5, Section 5.6). In Chapter 6, Section 6.1.2 and Sidenote
15, we discussed the role of imitation in the development of an
ability to infer the intentions of others and to empathize with
them, providing a mechanism for the developing of a theory
of mind. Because ideo-motor models focus on goals and inten-
tions, and because they use a common joint representation that
embraces both perception and action, they provide a plausible
mechanism for effecting imitation: when an agent sees another
agent’s actions and the consequences of these actions, the rep-
resentations of its own actions that would produce the same
consequences are activated. By exploiting internal simulation,
when an agent just sees another agent’s action, not only are the
actions activated in it but so too are the consequences of those
actions, and hence the intention of the actions can be inferred.
With a suitably-sophisticated joint representation and internal
simulation mechanism, both low-level movement intentions and
high-level action intentions can be accommodated.

While we have discussed intentionality and theory of mind
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mainly from the perspective of development in children, the abil-
ity to infer intentions is very important for artificial cognitive
systems, particularly for robots that need to interact naturally
with humans, on human terms. As we have just noted, internal
simulation is an important mechanism for inferring intentions.
In Chapter 7, Sections 7.5.3 and 7.5.4, we discussed the HAM-
MER architecture and how it uses forward and inverse models
to do internal simulation. In fact, HAMMER can also be used
to give robots the ability to read intentions in exactly the way
suggested in the preceding paragraph: by internal simulation
to form a theory of mind and exploiting the multiple pairs of
inverse and forward models as a correlate of the mirror neuron
system and a realization of ideo-motor theory.21

21 In addition to reviewing
several computational ap-
proaches to recognizing ac-
tions and intentions, Yiannis
Demiris’s article “Predic-
tion of intent in robotics
and multi-agent systems”
[386] also explains how the
HAMMER architecture can
be used to infer intentions.
He notes that predicting and
recognizing intentions in
situations where there are
groups of agents is partic-
ularly challenging because
the cognitive system has
to do more than track and
predict the actions of indi-
vidual agents, it also has to
infer the joint intention of
the entire group and this
may not simply be “the
sum of the intentions of the
individual agent.” It is also
necessary to recognize the
position of each agent in the
social structure of the group.
Again, this is a difficult chal-
lenge because an agent may
play more than one role in
the group. The application
of the HAMMER architec-
ture to infer the intentions of
a disabled wheelchair user
is described in his article
“Knowing when to assist:
developmental issues in
lifelong assistive robotics”
[387].

9.4 Instrumental Helping

Young children — as young as one year old — are naturally
altruistic and display an innate propensity to help others even
when no reward is offered.22 This altruistic behaviour can take

22 This section on instrumen-
tal helping is a very brief
summary of the “The Roots
of Human Altruism” by
Felix Warneken and Michael
Tomasello [275].

many forms, such as comforting another person who appears to
be distressed or helping someone achieve something that they
can’t do on their own, such as picking up something they’ve
dropped when their hands are full. The latter is referred to as
instrumental helping as it focuses on helping another individ-
ual achieve their instrumental goal. Thus, the primary goal in
instrumental helping is to assist the other individual achieve
their goals, even in the absence of any benefit from doing so
and sometimes because there is no benefit in doing so. Such
behaviour is sometimes referred to as prosocial behaviour23, in

23 The term prosocial behaviour
was coined by Lauren Wispé
in 1972 [388].

contrast to anti-social behaviour, because they are directed at
benefiting another person.

Instrumental helping has two components: a cognitive one
and an emotional one. The cognitive component is concerned
with recognizing what the other agent’s goal is — what they
are trying to do — and the reason they can’t achieve it on their
own. The motivational component is what drives the helping
agent to act in the first place. This could be the desire to see the
second agent achieve the goal or, alternatively, the desire to see
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the second agent exhibit pleasure at achieving the goal.
The ability to engage in instrumental helping develops with

time. 14-month-old infants can help others in situations where
the task is relatively simple, e.g. helping with out-of-reach ob-
jects, whereas 18-month-old infants engage in instrumental help-
ing in situations where the cognitive task is more complicated.

As already mentioned, rewards are not necessary and the
availability of rewards does not increase the incidence of helping.
Indeed, rewards can sometimes undermine the motivation to
help. Infants are willing to help several times and will even
continue to help even if the cost of helping is increased.

Infants as young as 12 months of age offer comfort to other
individuals who appear sad or in distress. This is referred to as
emotional helping and is motivated by a desire to change the
emotional or psychological state of the other agent for the better
(as opposed to a desire to see them achieve a goal, as in the case
of instrumental helping). It is an open question whether or not
young infants combine the motives underlying emotional help-
ing with goal-fulfilment motives during instrumental helping.

9.5 Collaboration

Progressing from instrumental helping to collaboration, the sit-
uation becomes more complicated. Here we are dealing with
joint cooperative action, or joint action for short, sometimes referred
to as shared cooperative activity. Agents that engage in joint ac-
tion share the same goal, intend to act together, and coordinate
their actions to achieve their shared goal through joint attention.
That sounds fairly straightforward but as we unwrap each of
these issues — joint action, shared intentions, shared goals, and
joint attention — the picture becomes complicated because of
the interdependencies between them. For example, joint action
requires a shared intention, a shared goal, and joint attention
when executing the joint action; shared intention includes shared
goals; and joint attention is effectively perception that is guided
by shared intention and is goal-directed.

To take part in collaborative activities requires an ability to
read intentions and infer goals (as was the case in instrumental
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helping) but it also requires a unique motivation to share psy-
chological states with other agents. By shared intentionality we
mean: “collaborative actions in which participants have a shared
goal (shared commitment) and coordinated action roles for pur-
suing that shared goal.”24 What is significant is that the goals

24 This quote is take from
“Understanding and sharing
intentions: The origins
of cultural cognition” by
Michael Tomasello and
colleagues [361].and intentions of each agent involved in the collaboration must

include something of the goals and intentions of the other agent
and something of its own goals and intentions. In other words,
the intention is a joint intention and the associated actions are
joint actions. This differentiates collaboration from instrumental
helping and, as we have said, makes it more complicated. Fur-
thermore, each agent understands both roles of the interaction
and so can help the other agent if required. Critically, agents not
only choose their own action plan, but also represent the other
agent’s action plan in its own motor system to enable coordina-
tion in the sense of who is doing what and when.

9.5.1 Joint Action

There are at least six degrees of freedom in joint action.25 These

25 The six dimensions of
joint action are suggested
by Elisabeth Pacherie in her
article “The Phenomenology
of Joint Action: Self-Agency
vs. Joint-Agency” [389].

include the number of participants involved, the nature of the
relationship between the participants (e.g. peer-to-peer or hierar-
chical), whether or not the roles are interchangeable, whether the
interaction is physical or virtual, whether or not the participants’
association is temporary or more long-lasting, and whether or
not the interaction is regulated by organizational or cultural
norms. In the following, we will assume physical joint action
between two peers that temporarily collaborate on a shared goal.

Joint action, or shared cooperative activity, has three essential
characteristics:26

26 The three characteristics
of a shared cooperative activity
are described in detail in
Michael Bratman’s article
of the same title [390].
Philip Cohen and Hector
Levesque address similar
issues in their theory of
teamwork [391]. They do so
in the context of designing
artificial agents that can
engage in joint action,
setting out the conditions
that need to be fulfilled for
a group of agents to exhibit
joint commitment and
joint intention. Bratman’s
account of joint action
has been subject to some
criticism in that it appears
to require sophisticated
shared intentionality and
an adult-level theory of
mind. Yet, as we have seen,
young children develop a
capability for joint action.
An alternative account that
doesn’t require sophisticated
shared intentionality, but
only requires shared goals
and an understanding of
goal-directed actions has
been proposed; see “Joint
Action and Development”
by Stephen Butterfill [392]
and “Intentional joint
agency: shared intention
lite” by Elisabeth Pacherie
[393].

1. Mutual responsiveness;
2. Commitment to joint activity;
3. Commitment to mutual support.

Let’s assume there are two agents engaged in a shared cooper-
ative activity. Each agent must be mutually responsive to the
intentions and actions of the other and each must know that the
other is trying to be similarly responsive. Consequently, each
agent behaves in a way that is guided partially by the behaviour
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of the other agent. This is different from instrumental helping
where the helping agent is responsive to the intentions of the
agent that needs help but not the other way round.

Each agent must also be committed to the activity in which
they are engaged. This means that both agents have the same
intention but they need not have the same reason for engaging
in the activity. This is a subtle point: it means that the outcome
of the collaboration is the same for both agents but the reason
for adopting the goal of achieving that outcome need not be the
same. If a cognitive robot and a disabled person collaborate to
do the laundry, the outcome — the goal — may be a wardrobe
full of clean clothes but the reason the person has the goal is to
have a fresh shirt to wear in the morning whereas the reason
the robot has the goal may just be to keep the house clean and
uncluttered.

Finally, each agent must be commited to supporting the efforts
of the other to play their role in the joint activity. This character-
istic complements the mutual responsiveness by requiring that
each agent will in fact provide any help the other agent requires.
It says that each agent treats this collaborative mutual support as
a priority activity: even if there are other activities that are com-
peting for the attention of each agent, they will still pay attention
to the shared cooperative activity they are both engaged in.

Shared intentions are essential for joint action and the inten-
tions of each agent must interlock: each agent must intend that
the shared activity be fulfilled in part by the other agent and that
their individual activities — both planned actions and actual
actions when being executed — mesh together in a mutually-
supportive manner.

9.5.2 Shared Intentions

A shared intention — sometimes called we-intention, collective
intention, or joint intention — is not simply a collection of indi-
vidual intentions, even when those individual intentions are
supplemented by beliefs or knowledge that both participating
agents share. There is more.27

27 Michael Tomasello’s and
Malinda Carpenter’s arti-
cle “Shared intentionality”
[377] provides a good sum-
mary of the importance of
shared intentionality and its
role in the development of
socio-cognitive skills such
as collaboration and joint
attention. An earlier paper
by Michael Tomasello and
colleagues, “Understanding
and sharing intentions: the
origins of cultural cognition”
[361], discusses the unique-
ness of shared intentionality
in humans and explains its
development on the basis
of a peculiarly-human mo-
tivation to share emotions,
experience, and activities
and a more general motiva-
tion to understand others
as animate, goal-directed,
and intentional. An example
of how artificial cognitive
systems can exploit these
ideas can be found in Peter
Ford Dominey’s and Felix
Warneken’s paper “The
basis of shared intentions
in human and robot cogni-
tion.” Based on findings in
computational neuroscience
(e.g. the mirror neuron
system) and developmental
psychology, it describes how
representations of shared
intentions allow a robot to
cooperate with a human
[394].An agent with an individual intention represents the overall



210 artificial cognitive systems

goal and the action plan by which it will achieve that goal and,
furthermore, this plan is to be performed by the agent alone.
That much is clear. However, agents with a shared intention
(and engaged in a joint action) represent the overall shared goal
between them but only their own partial sub-plans.28 Each in-

28 The characterization of
shared intention in this sec-
tion is adapted from the
treatment by Elisabeth
Pacherie [389]. She identi-
fies three levels of shared
intentions (shared distal
intentions, shared proximal
intentions, and coupled
motor intentions) which
are extensions of her char-
acterization of individual
intentions [376] mentioned
in Sidenote 7 above. The
description of shared in-
tentions in this section
omits this distinction but
nevertheless begins with
characteristics of shared
distal intentions before
considering the constraints
related to the coordination of
activity during the real-time
execution of joint action,
i.e, the constraints that are
entailed by shared proxi-
mal intentions and coupled
motor intentions.

dividual agent with a shared intention does not need to know
the other agent’s partial plan. However, they do need to share
the overall goal. When it comes to the realization of a shared
intention and the execution of a joint action, the agent must also
factor in the real-time coordination of their individual activi-
ties. In this case, each agent must also represent its own actions
and their predicted consequences and the goals, intentions, ac-
tions and predicted consequences of the other agent (just as we
discussed above in Section 9.3). Furthermore, each agent must
represent the effect that their actions have on the other agent, it
must have at least a partial representation of how component
actions combine to achieve the overall goal, it must be able to
predict the effects of their joint actions so that it can monitor
progress towards the overall goal and adjust its actions to help
the other agent if necessary (just as we discussed in the previous
section).

It is apparent that, in carrying out a joint intention and execut-
ing a joint action, both agents must establish a shared perceptual
representation. This is where joint attention (in the sense of per-
ception guided by shared intention) comes in.

9.5.3 Joint Attention

Social cognition, in general, and collaborative behaviours, in
particular, depend on the participating agents to establish joint
attention.29

29 For a compreshensive
overview of joint attention,
see the survey by Frédéric
Kaplan and Verena Hafner
[263] which addresses the
topic from the perspectives
of both developmental psy-
chology and computation
modelling. This section
closely follows their treat-
ment of the topic.

Joint attention involves much more than two agents looking
at the same thing.30 The essence of joint attention lies in the re-

30 Michael Tomasello and
Malinda Carpenter note that
joint attention “is not just
two people experiencing
the same thing at the same
time, but rather it is two
people experiencing the
same thing at the same time
and knowing together that they
are doing this” [377].

lationship between intentionality and attention. This provides
the basis for a definition of joint attention as “(1) a coordinated
and collaborative coupling between intentional agents where (2)
the goal of each agent is to attend to the same aspect of the envi-
ronment.”31 Joint attention, then, requires shared intentionality.

31 This definition of joint
attention is taken from
Frédéric Kaplan’s and
Verena Hafner’s article [263].
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Furthermore, the participating agents must be engaged in collab-
orative intentional action. During this collaboration, each agent
must monitor, understand, and direct the attentional behaviour
of the other agent, and significantly, both agents must be aware
that this is going on.

Joint attention is an on-going mutual activity that is carried on
throughout the collaborative process to monitor and direct the
attention of the other agent. In a sense, joint attention is, itself, a
joint activity.

At least four skills need to be recruited by a cognitive agent
to achieve joint attention. First, the agent must be able to detect
and track the attentional behaviour of the other agent (we are as-
suming that there are just two agents involved in joint attention
here but of course there could be more). Second, the agent must
be able to influence the attentional behaviour of the other agent,
possibly by using gestures such as pointing or by use of appro-
priate words. Third, the agent must be able to engage in social
coordination to manage the interaction, using techniques such as
taking turns or swapping roles, for example. Finally, the agent
must be aware that the other agent has intentions (which, as we
noted, could be different provided the goal is the same). That is,
the agent must be capable of intentional understanding: it must
be able to interpret and predict the behaviour of the other agent
in terms of the actions required to reach the shared goal.

9.6 Development and Interaction Dynamics

In Chapter 6 on development and learning, Section 6.1.2 and
Sidenote 11, we remarked very briefly on two quite different
theories of cognitive development, one due to Jean Piaget and
the other to Lev Vygotsky.32 We opened this chapter by remark-

32 The explanation of the
contrast between the cogni-
tive development theories
of Jean Piaget (1896–1980)
and Lev Vygotsky (1896–
1934) in this section follows
the treatment in Kerstin
Dautenhahn’s and Aude
Billard’s paper “Studying
Robot Social Cognition
withing a Developmental
Psychology Framework”
[285]. There is a summary of
Vygotsky’s psychology and
a discussion of its relevance
to artificial cognitive sys-
tems, specifically cognitive
humanoid robots, in “Social
Situatedness of Natural and
Artificial Intelligence: Vygot-
sky and Beyond” by Jessica
Lindblom and Tom Ziemke
[242]. For a more in-depth
overview of Piagetian and
Vygotskian developmental
psychology, see Chapter 2
of Jessica Lindblom’s book
Embodied Social Cognition,
[395]. See also Piaget’s and
Vygotsky’s landmark books
The Construction of Reality in
the Child [396] and Mind in
Society: The Development of
Higher Psychological Processes
[397], respectively.

ing that our treatment so far in this primer presented cognition
as a somewhat “lonely” process, focussing on an individual
agent and that agent’s more or less autonomous striving to make
sense of its world: acting, anticipating the need for actions, and
prospectively choosing and guiding the actions most appropriate
for its own goals. We then spent the rest of the chapter balanc-
ing this picture, focussing on the social elements of cognition
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that are required for effective interaction with other agents —
inferring intentions, instrumental helping, cooperation, leading
to the essence of social cognition: collaborative behaviour and
its constituent aspects of shared intentionality, joint action, and
joint attention. To a large extent, as we remarked in Section 6.1.2,
the agent-centred perspective reflects the cognitive development
theory of Jean Piaget while the social cognition perspective mir-
rors the theory of Lev Vygotsky. So, it is fitting to bring the final
chapter of this primer to a close by referring again to these two
theories: it serves to remind us of the importance of develop-
ment in cognition and it highlights the complementary nature of
the motivations that drive cognitive development: the individ-
ual and the social. It also reprises some of the issues we raised
through out the book: the importance of interaction, the role of
autonomy, and the primacy of prospection in cognition.

Piaget’s theory of developmental psychology focusses on the
spontaneous development of the child as he or she interacts with
the world. While the child’s social context might help promote
development, the child’s own activity is primary: in exploring
and understanding his or her own capabilities and in determin-
ing his or her relationship to the world around it. In Piaget’s
theory, a child goes through several stages of development: a
sensorimotor stage up to two years of age, a preoperational stage
from two to seven years of age, a concrete operational state from
seven to eleven years of age, and finally a formal operational
state from eleven years on. Each stage build on — scaffolds —
what the child has learned for itself in the previous phases of de-
velopment. However, the primary building blocks of the child’s
knowledge are based on his or her own first-hand experiential
interaction with the object and people around it. Piaget’s the-
ory is effectively a constructivist one (see Section 8.3.4) whereby
the child constructs his or her own undertanding of the world
through first-hand exploration of that world rather than watch-
ing other people do things or being told about things by other
people.

On the other hand, Vygotsky’s position is that the social con-
text is the essential element in development.33 Teaching plays

33 Jessica Lindblom points
out that Piaget did in fact
recognize the importance
of the social and cultural
dimension to development
but notes that it affects more
the speed of development
rather than the direction of
development [395].a pivotal role and a child’s cognitive development is heavily in-
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fluenced by the cultural norms in which the child is immersed.
These cultural and social patterns determine the way the child
will develop and the way the child will learn to understand the
world around it. In the same way, social dynamics are an impor-
tant aspect of this development. The coordination of movements
between agents as they interact plays a key role in the devel-
opment of cognitive skills, both because of the natural need to
synchronize activities during cooperative activities and because
of the need to coordinate the agent’s goals and intentions with
those of the other agent with which it is interacting. Among
many other things, Vygotsky introduced the concept of the zone
of proximal development to characterize the situation where chil-
dren develop skills that are just beyond their current capabilites,
doing so with the help of another agent or in collaboration with
another agent. In a neat twist, the zone of proximal development
has also been used to identify the degree of assistance that an
artificial cognitive system should provide to a disabled user of a
wheelchair in order to balance the current needs of the user with
the longer-term rehabilitation potential provided by adaptive
assistive technology.34 34 The incorporation of

Vygotsky’s concept of the
zone of proximal development
to modulate the level of
assistance provided by a
cognitive system to a dis-
abled user is described in
Yiannis Demiris’s article
“Knowing when to assist:
developmental issues in
lifelong assistive robotics”
[387]. This cognitive system
uses the HAMMER archi-
tecture discussed in Chapter
7, Section 7.5.3, to infer the
intentions of a disabled user
of a wheelchair.

Perhaps it is best to view the Piagetian and Vygotskian posi-
tions as complementary rather than incompatible alternatives.
After all, we saw shades of both positions throughout this book.
For example, in Chapter 6, we emphasized that there are two
types of motivation that drive development in a child: the ex-
ploratory and the social. In Chapter 2 we highlighted that a
striving to make sense of the world is a key characteristic of the
emergent paradigm of cognitive science and, especially, the en-
active stance on cognition while in Chapters 2 and 5 we noted
that the meaning of knowledge emerges through interaction: it
is negotiated by two or more agents as they interact and what
something means is agreed by consensus.

Ultimately, cognitive development is a journey of discovery: to
determine what matters and what does not matter to an agent.
Discovering what matters allows the agent to act prospectively,
both to help itself and to help others, and in so doing to con-
struct an understanding of the world, an understanding that
manages an effective tradeoff between being autonomous and
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surrendering some of that autonomy to protect the social en-
vironment upon which the agent depends. Piaget’s position
reflects the child’s part in the process of discovery through spon-
taneous exploration; Vygotsky’s position recognizes the essential
role of the social interaction in guiding that journey and de-
termining what each act of discovery reveals. In the end, this
process of discovery, this development of cognition, gives the
agent — biological or artificial — the ability to anticipate the
need for action and the flexibility to adapt as the world throws
unexpected events in its path.
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