15-750 Algorithms (Spring 2002) Prof. Manuel Blum

Homework #7 Solutions

Problem 1: Graph coloring (20 points)

(this is Problem 6.5 from M&R; you should solve it without using the reference given in the book)

Let G be a 3-colorable graph. Consider the following algorithm for coloring the vertices of G with 2
colors, so that no triangle of G is monochromatic. The algorithm begins with an arbitrary 2-coloring of
G. While there is a monochromatic triangle in GG, it chooses one such triangle, and changes the color
of a randomly chosen vertex of that triangle. Derive an upper bound on the expected number of such
re-coloring steps before the algorithm finds a 2-coloring with the desired property.

(Solution due to Ashwin Bharambe, Jonathan Moody, and Susmit Sarkar)

A 3—-Coloring of G

States of the 2—Coloring Algorithm

Figure 1: Random walk on 2-colorings

Let C be any 3-coloring of the graph G. Let Vj, V, and V, be the vertex sets colored by
blue, red and green colors, respectively. Clearly, each of them is an independent set. Hence
any triangle in the graph must be of the form shown in Figure 1.

Let C’ be the arbitrary 2-coloring of G from which the algorithm starts. Suppose that C’ uses
blue and red colors only. Let’s compare C' with C. If the algorithm reaches a state starting
with C’' such that all vertices € V}, are colored blue and all vertices € V. are colored red,
then clearly, no triangle can be monochromatic irrespective of the color of the vertices € V.

Thus, we can measure the distance of the goal coloring from the present one using the
number of miscolored blue or red vertices, i.e., v € V} such that color(v) = red and v' € V,
such that color(v') = blue.

Now, at each step, the algorithm chooses a monochromatic triangle at random. It can either
be a rrr or bbb triangle. If it flips the color of a vertex € V,, the distance from the goal
coloring remains the same.



In the case when it is a rrr triangle, if it flips the color of a vertex € V;, the number of
miscolored vertices decreases. On the other hand, if the flip occurs for a vertex € V,., this
number increases. Similar situation exists in the bbb case.

The algorithm, thus, can be represented as performing a random walk on a n vertex line,
where n = |G| with the probabilities shown in Figure 1. Hence, the expected time to
complete is the expected time to reach the end vertex starting from any vertex in between.
In the worst case, it can start from the other end of the line when all vertices are miscolored.

The recurrence for the expected time is,

1
hin = 3 (hin + hicip + hivin)
1
= hipn = 2 (hi—1n + hit1n)

From this, we get hg, = O(n?).! Hence, the expected running time of the algorithm is

O(n?).

Problem 2: A long directed random walk (10 points)

(this is Problem 6.16 from M&R)

Show that the expected time for a random walk to visit every vertex of a strongly connected directed graph
is not bounded above by any polynomial function of n, the number of vertices. In other words, construct
a directed graph that is strongly connected and where the expected cover time is super-polynomial.

Consider a graph G, with n vertices v1,... ,v,, and directed edges (v;_1,v;) and (v;,v1),
for i = 2...n. G, is a strongly connected directed graph (without self-loops or multiple
edges), where v; has out-degree 1, and every other vertex has out-degree 2. Let h;; denote
the hitting time in a random walk starting at v; and ending upon first reaching of v;. We
will show that hi, is super-polynomial, which directly implies that C(G,), the expected
cover time of G, is super-polynomial.

We get the following set of equations:

hln = 1+ h2n
hon 14 han/2 + hipn /2
han = 1+ han/2+ hin/2

htn—oyn = 1+ hm_1)/2+hin/2
h(n—l)n = 1+ hln/Q s

!This is the same as the recurrence for hitting times in the ‘normal’ straight line graph.




which yield directly

hin = 14+@2+hn)1/2+1/4+1/8+...+1/2"72)
hin = 142+ hi)(1—1/2"72)
hin, = 2"%(3-1/2"7%)=Q(2").

Problem 3: Take a walk on a ... straight line (20 points)

(a)

What is the exact value for the expected time for a random walk to go from u to v, where u and
v are opposite ends of the n-node straight line graph:
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Compute this quantity both directly and using the method of resistive networks. Run a simulation
to determine the expected time empirically: perform a series of experiments for n = 11 with
t = 1,10,100,... trials (where each trial is a complete random walk from u to v), and take the
arithmetic mean from each experiment. How many trials do you need to get the mean within 1%
of the exact computed value (i.e. two decimal digits correct)?

A direct computation of hy, was described in the solution to Problem 2(a) of Home-
work #6. The method of resistive networks yields by symmetry

huyy = Cyp /2 = (n — 1)2 .

With n = 11 the expected hitting time is 100 steps. The empirical estimation of A,
converges nicely with the growing number of trials. About 10° trials are sufficient to
get the mean within 1% of the exact computed value.

What is the exact value for the expected time for a random walk to go from u to v, where u and
v are adjacent vertices of the 2-way infinite straight line graph:

u 1%
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Compute this quantity however you like. Run a simulation, as in part (a). What do you observe?
Understand and explain.

Since the graph is infinite, the method of resistive networks yields directly h,, = co.
The empirical estimation of h,, diverges with the growing number of trials — although
many trials reach v pretty fast, some trials manage to walk quite far away left of u,
and need many steps to come back to v. As we increase the number of trials, the
probability that at least one trial takes many steps grows, and so does the arithmetic
mean.



Problem 4: A “universal” universal sequence (extra credit)

(this problem is due to Grant Reaber)

Recall from the lecture on universal sequences, that for each n there exists a universal sequence of length
polynomial in n, which traverses every labeled graph? with n vertices.

Is it true, that there exists a single (infinite) universal sequence S such that for each n the initial portion
of S, of length polynomial in n, traverses every labeled, connected graph with n vertices. Prove your
answer.

Yes, there exists a “universal” universal sequence. Let S, denote a universal sequence (of
polynomial length) for graphs with n vertices, and let |S,| denote length of S,. Wlog.
assume that |S;| > |S;] if ¢ > j. Consider an infinite sequence S = 515253..., i.e. a
concatenation of all S;’s. For a given n define S, as an initial portion of S' consisting of all
universal sequences up to Sy, i.e. S, = 5152...5,. Since S, contains S, as a subsequence,
S/ is also a universal sequence for graphs with n vertices. Moreover, the length of ), is at
most n times |S,|, hence it is also polynomial in 7. 0.

2The graphs considered are connected, undirected, without self-loops or multiple edges.



