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Rzeczywistość, jak zawsze, jest bardziej skomplikowana,
ale i mniej z lośliwa.1

Stanis law Lem

1As usual, the reality is more complex, but less mischievous.
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Introduction

The science of complexity

Throughout history there have always been scientists who sought unification of all
scientific knowledge. They dreamt about having a small, easily remembered set of
principles that would provide us with all we need to understand any phenomenon
and to give us all the answers we want. No doubt this reductionist point of view is
aesthetically pleasing, but every day we witness the failure of such an effort. As an
ideologically neutral example let us mention the long-term unpredictability of weather.
The prophets of reductionism are not discouraged, though. They especially like to
believe that social phenomena can be described as completely as physical ones if only
we knew the right set of laws and were smart enough to do the calculations involved.

This belief is actually quite an old one. Auguste Comte [1, 2] was its first prophet, in
the early 19th century. Comte coined the term ‘social physics’ as an explicit reference
to the success of the Newtonian mechanics. Though Comte himself abandoned the
term social physics, it was called to life again by his successors, most notably Adolphe
Quételet [3], and it has survived in various disguises up to the present time.

Naive and unjustified claims to handle scientifically complex systems like society
were especially popular in totalitarian systems of various kinds. The most acute anal-
ysis of the arrogance of this pseudo-science and the harms it induces when applied
to society was set forth by Friedrich von Hayek [4]. He argued that complex systems,
and human society in particular, cannot be described as an assembly of simple ele-
mentary parts. There is always something irreducible that emerges when these parts
are put together. Moreover, complex systems are characterised by a high level of self-
organisation, which is actually the most prominent feature of human society. This
precludes all means of directing the society from a single centre using pure and infalli-
ble deduction based on a first principle theory. In Hayek’s line of thought the so-called
‘hard science’ becomes in fact a pseudo-science when applied outside of its domain. It
promises something it can never fulfil. On the other hand, science cured of its hubris
can prove to be very useful. This is the moment where the science of complexity comes
in [5].

The science of complexity pays attention to exactly the same features of complex
systems which are stressed by Hayek. The first one is emergence: an ensemble of
interacting units exhibits new features that cannot be immediately deduced from the
properties of its constituents. Moreover, properties of the elements may be to a large
extent (but not fully, of course!) irrelevant for the emergent phenomenon, as if the
microscopic and macroscopic levels of description were quasi-independent.

Another feature of complex systems is self-organisation. The processes within a
complex system often lead to the creation of structures that are surprisingly stable
under external perturbations. The system does not need to be governed from outside.



2 Introduction

Nowadays, considerable knowledge has been accumulated about self-organisation on
the levels of physical, chemical, and biological as well as social phenomena. If we know
what question to ask and if we are aware of the limitations of the answers, the study
of complexity can be extremely useful. This book intends to contribute to the science
of complexity in the specific field of economics.

Econophysics

Society is complex, and in order to succeed everybody has to make a good deal of
rational decisions. The area where complexity and rationality meet is economic ac-
tivity, a kind of process which is of concern for every inhabitant of our planet. That
is why scientists investigating complex systems soon focused their attention on eco-
nomics, and this is the area where the discipline we now call econophysics was born.
We do not intend to write a review on its history, but let us mention a few important
milestones.

At the beginning of the 19th century, at about the same time that the concept
of social physics appeared, a country nobleman in southern Bohemia contemplated
applying the principles of classical mechanics to economics. His name was Georg Graf
von Buquoy, the Count of Nové Hrady. His knowledge of Newtonian mechanics was
very profound, and he contributed to several fields of science [6, 7]. His bulky trea-
tise Die Theorie der Nationalwirthschaft nach einem neuen Plane und nach mehrern

eigenen Ansichten dargestellt [8] appeared in 1815 and, with a moderate amount of
mathematics, presented something which now would be a chapter in a textbook on
economics. He explicitly refers to mechanics, and such reasoning was revolutionary in
his time.

It was not until the second half of the 19th century when a similar attempt was
undertaken by Vilfredo Pareto. An Italian engineer who spent long years of his career
in Switzerland, Pareto turned to economics equipped with a good knowledge of classi-
cal Newtonian mechanics and a good deal of enthusiasm to describe social movements
in the same way that physics describes the motion of planets. Indeed, Pareto himself
liked to compare Kepler’s laws to new economic laws that were yet to be discovered.
The Pareto law of wealth distribution is now a standard piece of economic knowl-
edge. However, the reduction of economic laws to something akin to Newton’s laws of
mechanics remained a dream for some people, a Fata Morgana for others.

Physics, however, changed completely following the discovery of the theory of rel-
ativity and quantum mechanics at the beginning of the 20th century. The question
naturally emerged: if the old Newtonian physics was found inadequate in explaining
complex systems like society and economics, does the same apply to the new physics of
Einstein and Schrödinger? Or does the new physics open new ways to grasp complex-
ity scientifically? Ettore Majorana, a genius of theoretical physics, tried to respond to
these questions in his famous last paper [9, 10].

One of the decisive breakthroughs which influenced the whole course of interactions
between physics and economics was the introduction of the concept of fractals [11] by
Benôıt B. Mandelbrot. But many other developments went on in parallel. There is an
often forgotten event that played a decisive role in the transfer of the ideas and lan-
guage of physics into other branches of human knowledge. A conference was scheduled
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to take place in Moscow from 1 to 5 July 1974. Scientists both from the West and the
USSR were invited to discuss the implications of physics in other fields, including so-
cial sciences and humanities. The organising committee included people like Kenneth
Arrow, a Nobel laureate in economics, and Hans Bethe, a Nobel laureate in physics.
However, the communist leaders found the subject of the meeting incompatible with
the ruling ideology. The conference was banned, most of the Russian participants were
arrested, and a majority of them eventually left the USSR, going mainly to Israel. But
many drafts scheduled for the conference talks were successfully smuggled from the
USSR to the West and eventually were published in a proceedings volume [12]. A tiny
portion of it appeared in Ref. [13].

After the non-event in Moscow, the attempts to merge physics with other disciplines
began to flourish. In the 1970s and 1980s, Hermann Haken developed a very general
concept of synergetics [14, 15]. About the same time, the science of complexity became
increasingly popular, with the Santa Fe Institute playing the key role in this research.
It was the place where the theory of complex systems began to be systematically
applied to economics. Another physics Nobel laureate, P. W. Anderson [16], began
to be deeply involved in promoting this line of research. Finally, in 1991 the journal
Physica A published what is now considered to be the first paper that can truly be
attributed to the newborn field of econophysics [17].

What is so special about econophysics? In what respect is it different from other
approaches trying to mix natural sciences and economics? The answer is not very
easy. Econophysics is certainly not a simple mixture of disciplines, and it definitely is
not just economics done by people who have obtained a PhD in theoretical physics.
Neither it is correct to label econophysics as an interdisciplinary science living in a
shadow area between the kingdoms of Economics and Physics. We prefer to call it
transdisciplinary. It looks like a little difference, but it is not. Econophysics does not
aim at obtaining a place between these disciplines but rather tries to find principles
that are as true in one discipline as in the other. It is a quest for common principles,
common tools, and common consequences found both in physics and economics, and
it is by no means evident that such common principles exist. But let us just say that
one might try and see. Suppose we find the common principles; then we can check
whether they can be useful. We hope that the reader, after having gone through this
book, finds that they are useful indeed.

Another feature which is characteristic for econophysic endeavours is the way it
applies physics to economics: physics is used systematically and proceeds from thor-
ough empirical analysis and model building, using advanced mathematical techniques
for real-world applications. It is not like taking a snippet of a physical theory and re-
interpreting it in the language of economics. Econophysics tries to be comprehensive
and coherent.

Which part of econophysics does this book belong to?

Econophysics is an internally structured field. The first branch relies fully on empirical
data and tries to apply sophisticated methods to their analysis. Physics is an empirical
rather than speculative science, and it has developed powerful techniques and know-
how that prove very fruitful when applied to economic data like time series of prices,
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etc. The first chapter of this book is devoted to an overview of basic empirical findings
the econophysicists collected. However, empirics is not the main subject of this book.
We present here only what we consider absolutely necessary for understanding the
facts and motivations contained in the rest of the book.

The second branch of econophysics concentrates on modelling, and this is the
proper theme of this book. Modelling uses the information provided by empirical
econophysics and tries to explain the collected facts by means of more or less sophis-
ticated models. Modelling tries to make a copy of reality, and, as in every process
of copying, something is always lost. The ability not to lose essential details is what
distinguishes a good model from a bad one. However, it can rarely be known a priori
whether the model in question keeps the essential and throws away the unessential,
or the other way round. Therefore, modelling is always an interactive process. The
econophysics models resemble ad hoc solutions, and the coat they bear is patchy in
many places. We do not consider it a disadvantage. Instead, the lack of systematics is
very often a sign of vitality. Even within the modelling branch of econophysics there is
an enormous amount of material. Models abound, and the quantity of achievements is
very large. It means that we had to make very careful selections which ones to include.
In doing that, we were guided by a certain vision of what the econophysics modelling
should look like.

But let us go back to the structure of econophysics. There is a large area we have
deliberately left out. It may be called the practical fruits of econophysics, as it deals
with problems such as the evaluation of options, investment strategies, predictions
of crashes, and similar things. There are two good reasons for not including it in this
book. First, and most importantly, the author feels there are good books on the subject
already; see for example these classical titles [18, 19]. Second, this book is devoted to
ideas, to discovering why things are happening and not to provide recipes for becoming
rich. The author does not feel qualified in the latter.

The structure of the book

We expect readers of this book to have a basic knowledge of either economics or
physics. We strove to make the book accessible and interesting to both communities.
Both disciplines are mathematically based, so we also suppose the reader has no fear
of mathematical formulae. At some places, however, we felt that certain concepts and
techniques deserve some explanation. We put these explanations into boxes, in order
that an advanced reader could easily skip them while on the other hand undergraduate
students could use the book without waiting until they learned these concepts later in
their university curriculum. We also hope the boxes may help to bridge the remaining
cultural gap between economics- and physics-based readers.

To stress that the field is open and to encourage the reader to think independently,
we placed a Problems section at the end of each chapter (with the exception of the
first one). Some of the problems are fairly trivial to solve, but some are more like
little research projects. Each chapter is closed with a section named What remains.
It contains a short annotation of the material which was not included, mainly due to
the lack of space, and relevant references. We tried to include just the most useful
references, not a complete bibliography of the subject.
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The book consists of eight chapters. In the first one we present fundamental empir-
ical facts necessary to understand the motivation of the models. It starts with a brief
historical introduction and then covers the findings on price fluctuations, order books,
and non-trivial correlations among prices. The cornerstone of mainstream economics,
the efficient market hypothesis, is called into question. The second chapter shows how
price fluctuations and other phenomena can be modelled using stochastic processes.
From random walks we go to GARCH and cascade processes and finish with models
with stochastic volatility. The third chapter opens the matter of agent-based models,
showing the wide variety of their variants. The fourth chapter is slightly different.
Agents are nearly forgotten. We focus on modelling the order book, and the methods
more closely resemble modelling a snowfall than rational people. We call that approach
zero-intelligence agent modelling. In the fifth chapter the intelligence reappears. We
deal with a prominent model of econophysics, the minority game. Both simulation
results and solutions using the advanced replica method are explained in depth. In
the sixth chapter we explain how the network structures appear in economics, how
they are modelled, and what their relevance is. In the seventh chapter we show how
economic activity organises society into groups of rich and poor people, what the dis-
tribution of wealth is, and what dynamics this distribution has. The eighth chapter
deals with other aspects of social structures that emerge in human society. What is
the origin of cooperation? Should it appear at all? How is consensus reached, and how
much do people trust each other?

Where to read more

Some material contained in this book has already been published by the author else-
where. Besides the journal articles, which will be cited at appropriate places, this
category includes the article Social Processes, Physical Models of, contained in the
Encyclopedia of Complexity and Systems Science [20], and the review article in the
edited volume Order, disorder, and criticality, vol. 3 [21].

A good number of sources exist that cover various aspects of econophysics, includ-
ing several good books. Let us present a short list of existing econophysical literature
which the reader is encouraged to consult. The original sources will be cited at proper
places in corresponding chapters. Here we mention only general literature.

Among the basic econophysics books let us name (in alphabetical order of the
first author) the following ones: Bouchaud and Potters [18, 19]; Johnson, Jefferies, and
Hui [22]; Levy, Levy, and Solomon [23]; Mantegna and Stanley [24]; Roehner [25–27];
Roehner and Syme [28]; Schulz [29]; Sinha, Chatterjee, Chakraborti, and Chakrabarti
[30]; Sornette [31]; and Voit [32]. There are two special books on minority game: the
first by Challet, Marsili and Zhang [33], and the other by Coolen [34]. Also, the above
mentioned book [22] mostly deals with minority game. Complexity of social structures
is thoroughly investigated in the monograph on active Brownian agents by Schweitzer
[35]. Econophysical applications are also discussed in the book on thermodynamics by
Šesták [36] and in the book on new applications of statistical physics by Wille [37].

More for historical than factual interest, the reader may wish to review the already-
mentioned proceedings volume of the Moscow conference [12] and the book on eco-
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nomics written from the point of view of a theoretical physicist, by M. F. M. Os-
borne [38].

There are many proceedings from conferences on econophysics. The one certainly
worth mentioning originated from the very first conference with the word econophysics
in its name. It was held in 1997 in Budapest and the proceedings never appeared in
print but are available on the Internet [39]. There are also several volumes from the
Nikkei econophysics symposia [40–42] and several others from the conferences held in
Kolkata [43–47]. The Santa Fe Institute produced one of the first edited volumes of
econophysical papers [16], which was followed by at least two others [48, 49]. Among
other edited volumes let us mention Refs. [50–57].

Besides these books, a lot of information is contained in numerous special journal
issues devoted to econophysics and related areas [58–69]. Many review articles have
appeared where the results are presented in a compact form [70–74]. Numerous papers
pose general questions about the proper place of econophysics among other fields [75–
84]. Finally, there are also popular articles, in which the general public can get an idea
of what econophysics is all about [85–92].

The message

This book emerged from several years of my activities related to various fields of
econophysics. Originally, I planned to write a much shorter book, containing only the
really essential issues in the modelling branch of econophysics. As time went on, the
material grew and the book swelled until it reached its current size. I would never
have succeeded without the initial and lasting inspirations from Yi-Cheng Zhang, who
introduced me to the jungle of econophysics in the late 1990s. And I would not have
started writing a single letter of this book without the kind and friendly encouragement
from Sorin Solomon. I am extremely grateful to both of them. I wish to thank numerous
friends and colleagues whom I have had the chance to speak to and work with during
the time I have been involved in the econophysics business. I am also indebted to Jan
Kĺıma, who helped me to improve the style. The original results contained in this book
were supported by the MŠMT of the Czech Republic, grant no. OC09078.

It was not my intention to help to raise an amount of gold clinking in readers’
pockets. But I will be happy if a single person after reading this book feels enriched
by the understanding of the world around us. A. M. D. G.

Prague, June 2012 Frantǐsek Slanina
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Empirical econophysics and stylised
facts

‘Daß alle unsere Erkenntnis mit der Erfahrung anfange, daran ist gar kein Zweifel.’
(That all our knowledge begins with experience there can be no doubt.) This is the
famous sentence opening Immanuel Kant’s monumental treatise, The Critique of Pure
Reason. If the highly abstract and subtle philosopher values experience above all his
reasoning, what else should the scientists of today, who are supposed to be practical
and base all their knowledge on empirical facts, do? Yet there is a constant temptation
to build speculative theories rather than keep in contact with reality. There are nu-
merous examples showing that theorising is good. Indeed, the theory of relativity was
highly speculative at first, only to become a daily business of many researchers now.
But there are nearly as many examples of how the exaggerated disposition for rigorous
mathematical apparatus void of any empirical basis was harmful, at a minimum by
guiding the enthusiastic young people into a dead end.

You will see that this book is not free of such temptations either. To keep balanced
as far as we can, we shall expose at least some of the most important empirical findings,
which will provide motivation for the models discussed in later chapters. We encourage
the reader to frequently compare the outcomes of the models with the data shown here,
in order to develop her own opinion on the trustworthiness of the abstract theories we
shall elaborate in the rest of the book.

1.1 Setting the stage

1.1.1 A few words on history

People have been engaged in economics since the Stone Age. Tribes were trading in
flint, arrowheads, and even gold. It is certain that the rate at which these articles
were exchanged varied in space and time, and these variations soon became driving
forces for profound changes in human society. Since the Neolithic Revolution we live
in an environment of incessant trade. The emergence of money, i.e. a certain good
accepted by anybody although having little use in itself, marked another revolution.
Since then, exchange rates could be expressed in the universal language of a currency
(or currencies).

First records

People probably always kept records on prices and exchange rates, but it was not
until the 17th century that they realised how important it was to do it systematically.
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The first modern stock markets emerged in Amsterdam and London [93, 94]. London
became the hub of the information network communicating share prices for joint-stock
companies, exchange rates, and various other information relevant for people busy with
investing capital. The international links led chiefly to Amsterdam, but also to Paris
and other commercial centres. After some ephemeral periodicals containing price lists,
the first long-lasting source of reliable information on exchange was ‘The Course of the
Exchange and other things’, published in London by ‘John Castaing, Broker, at his
Office at Jonathan’s Coffee-house’ as stated at the bottom of the page [93]. It appeared
twice a week from March 1697 and contained daily stock and commodity prices, as
well as exchange rates and other financial information. Figure 1.1 shows a facsimile of
the issue dated 4 January 1698, as well as graphs of the historical share prices of the
Bank of England and the South Sea Company.

This newspaper became a widely accepted standard and continued under the heirs
of Castaing for more than a century. John Castaing himself was a French Huguenot
who arrived in England in the 1680s and worked as a broker at the Royal Exchange
during the 1690s. At that time the coffee houses were the usual places where stock
brokers met with their clients and where most transactions were negotiated and set-
tled. What is now the London Stock Exchange evolved gradually and painfully from
these unorganised coffee-house businesses. It is an early example of the self-organising
potential of the free market [95], and as such it is cited in textbooks, although nowa-
days hardly any person is willing to wait for decades or a century until a confused
chaos self-organises into a shiny, frictionless economic machine.

In any case, the broad dispersion of information was a crucial ingredient in the
self-organisation of the early modern international stock market. The transfer of eco-
nomic news relied on the already existing information networks consisting of many
newspapers, which mushroomed in England in large numbers after the de facto free-
dom of press came into effect in 1695. The rapid dispersion of exchange information
not only became indispensable for stockbrokers and stockjobbers, the professionals
in share trading, but from the outset it provided fertile ground for various kinds of
fraud. Dissemination of false information, bribery of journalists, and other artificial
manipulations of exchange courses were common, as testified by many contemporary
writers, such as Daniel Defoe [96] (quoted in [97]).

First bubbles

The manias, fuelled by either true or false news of fantastic gains, resulted inevitably
in short-lived bubbles, devastating the major emerging financial markets in the early
18th century [98, 99]. The first in the series occurred in Paris in 1719–1720. In the
decades that preceded, John Law, a Scottish financier hired by the Regent of France,
was in charge to cure the French state finances, burdened by enormous war debts. As
a part of his scheme, he reorganised the former Mississippi Company and transformed
it in several steps into the Compagnie des Indes, which was granted a monopoly
for virtually all overseas trade. Irrational expectations of enormous profits that the
Compagnie would offer quickly pushed the prices of its shares to the skies. Not only
that—all economy suddenly seemed to flourish; but the dream lasted only a few months
before everything crashed.
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Fig. 1.1 In the left panel, a facsimile of Castaing’s Course of the Exchange from 4

January 1698 (Julian calendar). Reprinted with the permission of The Lordprice Collec-

tion. In the right column, three graphs of stock prices, based on the data compiled from

the Course of the Exchange by L. Neal, accompanying the book [93] and accessible at

www.le.ac.uk/hi/bon/ESFDB/NEAL/neal.html. In the top panel, the price of a share of

the Bank of England from 1698 to 1809. Note the sudden blip in 1720, related to the South

Sea Bubble. In the middle panel, the price of the South Sea Company shares, from 1711

to 1734. In the lower panel, the detail of the South Sea Company prices during the bubble

period in 1720.
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Law’s idea was based on the hope that high share prices could be sustained per-
petually by issuing a large amount of paper currency. Alas, in the absence of proper
regulation it resulted in a disaster, which was then only made worse by government
directives. Immediately after the collapse of Law’s scheme, the attention of the spec-
ulators was drawn to London, where the shares of the South Sea Company started to
rise in an unprecedented manner. In complete analogy with Paris, the South Sea Com-
pany was intended to liberate the State Treasury from the burden of war debts. Within
several months the shares of the South Sea Company rose nearly ten-fold and then
plummeted back to nearly the starting value, leaving crowds ruined and angry, some
individuals fleeing safely abroad and a few arrested. In Fig. 1.1 we show the course
of the South Sea Bubble, as documented in the share prices published in the Course
of the Exchange. Ironically, just before the bubble started, Defoe had published his
pamphlet [96] severely condemning the ‘knavish practices’ of stockjobbers as ‘treason’.
All warnings, including a few courageous voices from the Parliament speaking counter
to the overwhelming current, were of no effect.

The bubbles in France and England were also followed by some repercussions in
Amsterdam and Hamburg before the business settled down to its usual pace. It is
important to realise that the spread of information, either true or false, on the state
of the stock market, on current prices, ship arrivals or shipwrecks, was essential in
the emergence of bubbles. Equally important was the ease of travel between the three
principal centres, Paris, London and Amsterdam. The bubbles were all too visible
signs that the markets had become both information-driven and truly international.
The information not only describes the events but at the same time causes them to
appear.

The moral is that. . .

This was the first (or at least the first well-documented) occasion for humanity to taste
the boisterous elements of information economy. Since then, we live in incessant fear
of a crash [100]. In an information-driven market, catastrophic events occur much too
often, more than anybody would like, more than any person would predict using only
common sense. For a scientist, it is a challenge to express the fact of events that are too
large and happen too frequently in a mathematical language. It is highly probable that
the disasters would come regardless of whatever effort we make to tame them. Science
may help us to allocate them a proper place in our understanding of the outside world.

1.1.2 About efficient markets

Efficient market hypothesis

Every person engaged in the analysis of prices, studying the question how and why
they evolve, must be confronted with the cornerstone of financial theory, which is the
efficient market hypothesis (EMH) [101]. Briefly stated, it claims that all information
you might try to use to make a profit from price movements has already been incorpo-
rated into the price. This has the serious consequence that the future price cannot be
predicted from the observation of past prices alone. Moreover, EMH in its strongest
formulation means that you would not be able to predict the price even with all other
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public sources of information, not just the past price record. Partisans of EMH call
that condition ‘no free lunch’ and are happy with that.

Roots

In brief, EMH implies that price makes random and unpredictable movements up
and down, much like the path of a drunkard. This idea is not new at all. Already in
1900 the French mathematician Louis Bachelier, in his thesis entitled Théorie de la

spéculation [102], introduced the idea that the prices at the Bourse follow a random
walk and from this was able to make some exact predictions. The comparison with
real stock price data was rather scarce but considered satisfactory.

Yet Bachelier was not the first. Already in 1863, Jules Regnault in his book Calcul

des chances et philosophie de la bourse [103, 104] assumed that prices rise or fall with
equal probabilities of 1/2, thus reacting to random items of information. He deduced
that the mean deviation of price during a certain interval of time is proportional to the
square root of that time. It is probably the first correct formulation of the law of the
random walk, although it was more of an empirical observation than a mathematical
theorem. Unfortunately, the mathematical argument put forward by Regnault was
misleading.

Regnault was, in turn, profoundly influenced by the Belgian Adolphe Quételet and
his concept of social physics [3]. Quételet’s aim was to establish quantitative laws
governing all human behaviour at the level of individuals as well as societies, nations,
and states. The methods for achieving this goal were based on accumulating large
amounts of empirical data followed by the statistical analysis of that data, which
was as sophisticated as the science of that time permitted. What is now empirical
econophysics and what we try to cover at least partially in this chapter would fit
excellently into the programme of social physics put forward by Quételet more than a
century and half ago.

Let us make one more dive deeper into history before we stop. In fact, the notion
of social physics was first used by Auguste Comte [1], in a much wider sense than
Quételet’s. Comte’s original idea corresponds much better to the modern field of so-
ciophysics, to be discussed at length in Chapter 8. Why Comte later abandoned the
term ‘social physics’ and started to use ‘sociology’ instead is a question unrelated to
the theme of this book. However, it might be useful for a physicist to be aware of
this terminological shift and of the fact that the respectable discipline of sociology is
somehow rooted also in physics.

Random walk or not?

EMH was explicitly formulated by Eugene F. Fama in the early 1960s [105]. Since then
it has many times been criticised, and its formulation was just as many times corrected.
It has had an undeniable positive influence in two ways. First, it stressed that the prin-
cipal impossibility of obtaining systematic profit from stock market fluctuations is a
scientific statement, not mere babble. It was shown empirically a long time ago that
stock-market forecasting companies are right as often as they are wrong [106]. With
EMH, the price signal itself became the main object of study. Indeed, it was soon
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established that statistical regularities indicating the presence of remaining informa-
tion are very weak and can be explained as consequences of external hindrances [101].
Hence the conclusion that the market becomes more efficient as fewer regulations are
imposed on it.

The second benefit from EMH is the increased interest in the precise statistical
analysis of price fluctuations, which can go into the most minute details. The focus of
this chapter is to show some of the results. The consequence was drawn immediately
from the very first formulation of EMH [105] that stock prices must follow a random
walk. This means a price change during time δt is independent of all price changes in
the past. If it is true that all information is incorporated into the price immediately,
without any delay, this should hold for any time δt, however short it may be.

There is, moreover, a mathematical theorem [107] stating that a continuous time
sequence with increments which are independent of each other at arbitrarily short
time intervals must be a continuous-time limit of a random walk, i.e. a Brownian
motion, combined perhaps with a Poisson process, if we allow instantaneous finite
jumps. Therefore, the price changes ∆z over a fixed time interval δt must be normally
distributed, that is,

Pprice change(δt; ∆z) =
1√

2π σ δt
exp

(
− (∆z)2

2σ δt

)
(1.1)

where σ is a parameter to be found empirically. If EMH holds exactly, nothing else
can be expected.

This is a falsifiable statement and thus a sound basis for a scientific theory, if
it passes empirical testing. Indeed, the time series of prices was found to be unpre-
dictable in the sense that the price increments are uncorrelated [101]. On the other
hand, the fundamental property of the random walk, which is the normal distribution
of the deviation from its initial value, was refuted. A refined, much more rigorous
formulation of the mathematical consequences of EMH was found on the basis of the
martingale property, by P. A. Samuelson [108]. We shall resist the temptation to dwell
on martingales and other beauties of mathematical finance [109]. There are many ex-
cellent books on this subject, e.g., the classical one by R. C. Merton [110], and we
wish to move swiftly toward distant and less orthodox fields, specific to the discipline
of econophysics.

The milestones we cannot pass by, however, are the empirical and theoretical works
on the distribution of price changes. We already noted that the normal distribution
must be abandoned. What are we left with?

Perhaps the most fundamental deviation was announced by M. F. M. Osborne
[111], a former theoretical physicist. He observed that it is not the price but the
logarithm of it which is normally distributed—at least approximately. Moreover, there
are also two purely theoretical arguments in favour of such a result. First, the normal
distribution leaves a non-zero probability for negative prices, which is contrary to any
common-sense intuition. We do not have this problem with the logarithm of price.
Second, it was found in many areas that human perception of external signals is
scaled according to a logarithmic law. For example, we perceive a fixed difference
in the luminosity of two light signals if their actual intensities have fixed ratios, or
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Fig. 1.2 Weekly price change distribution for wheat traded at Chicago. On the horizontal

axis, absolute value of the price change in cents per bushel; on the vertical axis, number of

such events in the time series starting in 1883 and ending in 1934. The data were extracted

from Ref. [112], Table 1. The solid line is the power-law fit ∝ |∆z|−3, the dashed line is the

stretched-exponential fit ∝ e−(|∆z|/a)γ with a = 0.13 and γ = 0.43, and the dotted line is the

fit to the normal distribution (1.1).

equivalently, the logarithms of the intensities have fixed differences. The generalisation
of this observation states that it is the logarithm of the physical quantity that is
subjectively felt. This empirical rule is called the Weber-Fechner law, and Osborne
claims that it also holds for stock prices, so that it is the logarithm of the price that
is naturally observed by the participants in the stock market. Then, EMH holds for
the logarithms of price, and it is the logarithm which is normally distributed. The
distribution of price changes is log-normal.

Unfortunately, more detailed studies showed that neither normal nor log-normal
distribution of price changes is compatible with the data. Too many large changes
were observed consistently. As an early example of such a result we plot in Fig. 1.2
the distribution of weekly price changes, taken from Ref. [112]. We can see there that
the normal distribution is indeed a very bad approximation of the data. Much better
agreement is achieved with the fit to the stretched-exponential distribution, which has
the form

Pprice change(∆z) ∝ exp
(
−
(
|∆z|/a

)γ)
(1.2)

where a and γ are suitable parameters [113]. Surely, many different distributions can
be tried also. But whatever is the form of the best fit, the tails are much fatter
than predicted by the normal distribution. The emergence of fat tails in price-change
distribution is the basic non-trivial fact to be explained in any theory of stock-market
behaviour.

The stretched-exponential function has two free parameters. There is another pos-
sible fit, nearly as good as the former one, which has the advantage that it requires
only one free parameter. It is the fit by a power law

Pprice change(∆z) ∝
∣∣∆z

∣∣−1−α
(1.3)
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where α is the only parameter characterising the distribution. This fit is especially
appropriate at the tails, i.e. for large price changes, as can also be seen from Fig. 1.2,
where we used α = 2.

This finding deserves our full attention. A great deal of the research in econophysics
revolves around a power-law dependence for this or that quantity [114, 115].

Mandelbrot and fractals

Power-law distribution is indeed very far from the normal one. If EMH implies normal-
ity, how could the empirical data be consistent with it? Is there any way to reconcile
EMH and power laws? Here comes the groundbreaking idea of B. B. Mandelbrot. In
his paper [116] published in 1963 he analysed in detail the fluctuations in the price of
cotton. He compared three distributions of price changes. First, daily changes in the
period 1900–1905; second, daily changes in the period 1944–1958; and third, monthly
changes, 1880–1940. In all three cases he found that the tail of the cumulative distri-
bution of price changes is well fitted to a power law, as in (1.3), with α ≃ 2. So far,
he repeats and stresses older results, including those of Ref. [112], which we have seen
in Fig. 1.2. But Mandelbrot goes much farther than his predecessors.

As a brilliant mathematician, Mandelbrot knew that the theorem we mentioned
above holds only under strict conditions. The continuous-time process with indepen-
dent increments results in normal distribution only provided that the average of the
square of the increments, the variation, is finite. How could it be that the variation is
infinite? Does it happen only under truly pathological circumstances? From a math-
ematical point of view, such a situation occurs when the distribution of increments
has a power-law tail like (1.3), with α ≤ 2. For a long time people were not famil-
iar with real-life examples of such situations. Mandelbrot showed that fluctuations in
the price of cotton fall within that category. And later he devoted much of his life
to the development of the concept of fractals, geometrical objects with possibly frac-
tional dimensionality (hence the name) [11], which are the best pedagogical examples
of situations that lead to power-law distributions. It grasped the essence of power-
law distributions, scattered by that time in various disciplines. Note, for example, the
works of Pareto in economics [117], Zipf in linguistics [118], Korčák in geography [119],
and more. It became common wisdom to look for fractals everywhere a power-law dis-
tribution pops up. This popular knowledge is not always justified, but the widely
acknowledged ubiquity of fractals (everybody knows rivers, rocks, coastlines, etc. ad
infinitum) makes it much easier for us to accept the fact of power-law distributions
than it was before Mandelbrot.

The mathematical theorem which apparently leads inevitably to the normal distri-
bution must be modified if the distribution of increments has power-law tails. In this
case, the distribution of price changes (or changes in the logarithm of price, according
to Osborne) must follow one of the Lévy-stable distributions. There is no compact for-
mula for them, except for several special cases (see Box 7.1 for more information). One
of them is the Cauchy distribution (also called the Lorentz distribution by physicists)

P (∆z) =
1

π

a

a2 + (∆z)2
. (1.4)
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The tail of the Cauchy distribution decreases as a power ∼ (∆z)−2, which corresponds
to α = 1 in (1.3). All Lévy distributions are characterised by power-law tails with
α < 2.

We shall discuss them further in Sec. 7.1.3. For now, it is enough to know that
the Lévy-stable distributions for price changes are consistent with the requirements
of independent increments at arbitrarily short times δt and with the power-law tail of
such increments. The random process with such properties is called the Lévy walk,as
opposed to the usual random walk. What is important is that the mathematical con-
tent of the EMH is saved, at least for the moment. On the other hand, important
implications for investment strategies were noted immediately [120].

More on this topic can be found in the review [121] by Mandelbrot himself. Un-
fortunately, reality is not very kind to us. As we shall soon see, the empirical tails
of the distribution of price increments do follow a power law, but with too large an
exponent, α ≃ 3, outside the range of Lévy-stable distributions. Things seem to be
even more complicated. It is difficult to hold EMH any longer. What does remain
from Mandelbrot’s analysis is the idea that the graph of price fluctuations, seen as a
geometric object, is a fractal.

Critique

It is not only the empirical finding, but also sound reasoning that undermines EMH.
Sure, EMH is extremely intellectually appealing. It is easy to formulate. It is easy
to understand (at least it seems so). It is very intuitive. It seems to have far-reaching
consequences. It looks like a gem of human thought. Yet it cannot withstand even most
naive questions. The first: if it is true that nobody can earn money systematically on
an efficient market, where does the wealth of the biggest speculators come from? The
second: if nobody can gain in the long run, why do people keep buying and selling stock
all the time? According to EMH, no systematic profit can be expected from any trade,
so why did trading not completely stop a long time ago? The third: how should one
understand the claim that ‘information is immediately incorporated into the price’?
Does ‘immediately’ mean within milliseconds or femtoseconds, or even quicker? And
what is the mechanism of the ‘incorporation’? Is the price adjusted without any trade?
If not, does it mean that all agents on the stock market act in the same manner within
the same instant (within femtoseconds?), so that all of them collectively readjust the
price and none of them has any advantage over the others? If yes, it means that either
all of them buy or all of them sell. But then, where is the other partner of the trade?

We could continue in this way for quite a long time, suggesting the impossibility of
the EMH in its classical form. The proponents of EMH have invented many improve-
ments and weakened the statement of EMH so that it does not look that absurd. (For
example, it is argued that in fact the markets are not efficient, and we do not even have
the means to check whether or not they really are, but for all practical purposes they
look like they are efficient; and that is all we need.) Still, there are serious criticisms
which suggest that it is much wiser to abandon EMH as an intellectual dead end, in-
stead of repairing the wreck again and again. Most importantly, practical implications
follow from that stance [122–124].
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It is not our intention to go into detail here, but we must mention the fundamental
argument by Grossman and Stiglitz, which goes as follows [125]. If the information is
to be incorporated into the price, one should first have that information. But gather-
ing and analysing information requires some resources and takes some time. The cost
of information processing may be so large that nobody can afford to incorporate the
information into the price. Therefore, informationally efficient markets are not attain-
able. In fact, the importance of the economics of information was stressed long before
by Stigler [126], and the consequences of imperfect and asymmetric information were
investigated by Akerlof [127].

This idea has been amply discussed, and from the many ramifications which have
appeared since, (see e.g. Ref. [128]) let us mention only the theory of marginally effi-
cient markets, developed by Yi-Cheng Zhang [129], for it is deeply rooted in genuinely
physical reasoning. This theory is a beautiful analogy of the third law of thermody-
namics, stating that it is impossible to reach absolute zero of temperature. Because
heat engines are the more efficient the closer we can cool them to absolute zero, the
third law implies the impossibility of constructing an engine with 100 per cent effi-
ciency. Analogously, exploiting some pieces of information in the stock market costs
something. Exploiting more information costs more. Our resources are finite, so we
must stop at certain point, leaving some information out of the price determination.
Exploiting all information would require infinite information processing capacity, and
we would spend an infinite amount of money for that. Hence, some margin of ineffi-
ciency must always remain. Some people have asked if that implies the vanishing of
Adam Smith’s ‘invisible hand’ of the market [130]. We leave such speculations to the
reader’s self-study and proceed further to empirical facts.

1.1.3 Stylised facts

Empirical econophysics engages the analysis of large amounts of various data charac-
terising economic activity. Certain universal features exist independent of the details
of the trading, of the place on Earth and, within reasonable historical horizon, in-
dependent of time. Those features constitute the so-called stylised facts. Each model
aimed at explaining and predicting economic phenomena must be matched with these
stylised facts. If the model fails in such examination, it must be discarded, or at least
it must not be trusted too much. We shall see many times in the course of this book
that this is the unfortunate fate of numerous, otherwise beautiful, models.

The most immediate characteristics are the prices of various commodities, goods,
rights, etc. We shall start our overview of basic empirical findings using the price
statistics in Sec. 1.2. If we go deeper into the workings of the market, we ask not
only about the price, but also about how much of each commodity was sold at given
moment, i.e. the volume of the transactions. But this is still only the tip of the iceberg.
To fully describe the trading, at least in the stock and commodity markets, we would
need the history of each and every order to buy and sell, including the identity of the
agent who issued the order. Some of the information is inaccessible, and some will be
sketched in Sec. 1.3. Finally, in Sec. 1.4 we shall show how the correlations between
various prices can serve to extract structural information on the market, for example
the classification of companies into business sectors.
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1.2 Price fluctuations

1.2.1 Notation

Let us first introduce some notation we shall use throughout this chapter. We shall
analyse time sequences for various quantities. Suppose we know a time-dependent
quantity At at times t ∈ T = {T1, T2, . . . , TM}, where Ti < Ti+1. The number M = |T |
is the length of the data set. We denote the time average

〈At〉 =
1

M

∑

t∈T
At. (1.5)

Sometimes, the quantity At will be a product of two other quantities, say, At = BtCt.
Then, the average 〈Bt Ct〉 can be considered as a scalar product of the two time
sequences Bt and Ct, viewed as M -component vectors. Indeed, it is easy to verify that
the properties of the scalar product are satisfied, most notably the triangle inequality.
It will play an important role later.

We shall frequently look at cumulative distributions of various quantities. For At
it would be defined as

P>A (a) = 〈θ(At − a)〉 (1.6)

where θ(x) is the Heaviside function, equal to 1 for x > 0 and 0 otherwise. Less
frequently, we shall use the distribution function, defined as

PA(a) = 〈δ(At − a)〉 (1.7)

where δ(x) is here the Kronecker delta, equal to 1 if x = 0 and 0 otherwise. Obviously,
in practice the distribution function is plotted as a histogram, rather than an ensemble
of discrete ticks of height 1/M as the function (1.7) would suggest. However, we shall
see later a plot (Fig. 1.12), in which these ticks do appear and coexist with a histogram.

It will frequently happen that At depends implicitly on a parameter, say, w. In
that case, we shall include it into the notation for the distribution and cumulative
distribution as PA(w; a) and P>A (w; a), respectively.

To complete the definitions, we also introduce the conditional time average, includ-
ing two time sequences At and Bt. We write

〈At|Bt = b〉 =
〈At δ(Bt − b)〉
〈δ(Bt − b)〉 (1.8)

where δ(x) is again the Kronecker delta. Further, more specialised notation will be
introduced below where needed.

1.2.2 Basic analysis

Scaling and power-law tail in return distribution

Thus, we suppose that the empirical data set we have at our disposal is a finite sequence
of prices Zt, where t ∈ T = {T1, T2, . . . , TM}. The instants Ti may or may not be
equidistant, depending on how the data were collected. In the most precise studies,
the times Ti correspond to the moments when individual transactions took place.
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Then, of course, the intertrade times are not all equal. They themselves form a time
sequence

∆Tt = Ti − Ti−1 (1.9)

where t = Ti. In more coarse-grained studies, the prices are recorded regularly at times
that are multiples of an elementary time unit.

Following the widely accepted idea of Osborne, explained earlier, we consider the
logarithm of the price Yt = lnZt as the natural variable for further statistical analysis.
The first quantity derived from the price logarithm is the return. We can define either
the return at fixed time lag δt, which is

Xt = Yt − Yt−δt (1.10)

or the returns realised at individual trades

Xt = Yt − Yt′ (1.11)

where t = Ti and t′ = Ti−1. In the former case, the time lag δt is an implicit parameter
of the time sequence of returns Xt.

In both cases, the first question we ask is: what is the distribution of returns?
In the early 1990s, Rosario N. Mantegna pioneered the field of econophysics in his
investigation of the distribution of returns in the Milan stock exchange index [17]. He
found quite good agreement with a Lévy-stable distribution with the tail exponent
α = 1.16. However, a closer look at the data showed that at the ultimate tails were not
as fat as the Lévy distribution would have predicted. Following this study, Mantegna
and H. Eugene Stanley showed that the distribution of returns exhibits scaling, i.e. it is
invariant under rescaling of time and price [131]. In physics, scaling is the most typical
phenomenon accompanying phase transitions and critical behaviour. Scaling is the
daily business for many branches of complexity science. When a physicist comes across
a situation where scaling plays a role, she immediately smells something extremely
appealing. That is why physicists got excited once they learnt that scaling appears in
economics. So, what is it all about?

Scaling means that the distribution of returns at various time lags δt, which is a
function of two variables, x and δt, can be written using a function of one variable
only, as

PX (δt;x) = (δt)−H g
(
x (δt)−H

)
(1.12)

where the parameterH is the Hurst exponent and g(u) is the common scaling function.
In Ref. [131] scaling was confirmed in the range of times from δt = 1 min to δt =
1000 min. This is long enough to be assured of the existence of the scaling phenomenon.
One should note, however, that for very long times, on the order of years, scaling cannot
hold any longer, and a crossover time scale, at which scaling breaks down, must exist.

For the success of the analysis of scaling it is vital to establish the Hurst exponent
reliably. The easiest way to measure it is through the dependence of the probability of
zero return at time δt, or, in other words, the probability that the price comes back to
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its initial value after that time. From the function (1.12) we can see that it decreases
according to a power law

PX(δt; 0) = g(0) (δt)−H . (1.13)

In Ref. [131], the Hurst exponent was estimated as H = 0.712 ± 0.025 using this
method. In later analyses the value of the Hurst exponent varied from H ≃ 0.5 to
H ≃ 0.7, with H ≃ 0.6 being the most frequent estimate. It seems certain that H
is larger than the value 1/2, corresponding to the random walk, Brownian motion,
and similar ‘simple’ random processes. Irreducible complexity of price fluctuations is
looming here. Sometimes, it is speculated that the fractional value H = 2/3 is the
proper universal value. However, this hypothesis is far from being an established fact.
We shall see later how the Hurst exponent can be measured more precisely.

The value H > 1/2 already indicates that the fluctuations of price are far from
trivial. But the Hurst exponent still bears only a little portion of the information on
the price movements. We can learn more from the form of the scaling function g(u). As
already noted, the original hypothesis was that the scaling function is a Lévy-stable
distribution [17, 116]. If that were true, the tail exponent α of the Lévy distribution
and the Hurst exponent would be connected by the simple scaling relation

H =
1

α
. (1.14)

For the value of H reported in Ref. [131] it means that the tail exponent would have
the value α ≃ 1.4.

However, in reality the fit to a Lévy-stable distribution with this exponent is
reasonably good only in the central part of the distribution, but the tails are thinner.
The Lévy distribution overestimates the probability of very large price changes. This
is a significant discrepancy, because it is just the tail of the distribution which is most
important for the estimation of the risks induced by the price fluctuations.

There is no consensus on the form of the scaling function, but the best data seem
to indicate rather unequivocally that the tail of the scaling function is a power law,
g(u) ∼ u−1−α, for u → ∞, with exponent α ≃ 3, outside the Lévy range [132–134].
We show in Fig. 1.3 the cumulative distribution of returns for several values of δt,
indicating both the scaling phenomenon and the power-law tail of the distribution. In
this figure, the scaling is achieved by dividing the returns by the average quadratic
volatility σX(δt), defined as

σ2
X(δt) = 〈(Xt − 〈Xt〉)2〉. (1.15)

The dependence on δt on the right hand side is hidden as an implicit parameter of the
returns Xt. The quadratic volatility increases as a power, σX (δt) ∼ (δt)H , where H
is again the Hurst exponent introduced in (1.12). The value reported in Ref. [133] is
H ≃ 0.67.

It would be nice if the tail exponent α was universal, i.e. identical for all stocks
and commodities traded on the stock market. Unfortunately, it does not seem so. Also
in Fig. 1.3 we show the histogram of values of α found by a systematic study of a
large set of stocks. The histogram has a maximum of around α = 3, so this value is
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Fig. 1.3 Left panel: Cumulative distribution of returns for the S&P index, at time intervals

δt = 1 min (•), δt = 16 min (◦), δt = 32 min (△), δt = 128 min (2), and δt = 512 min (▽).

The straight line is a power law with exponent α = 3. Data were extracted from Ref. [133].

Right panel: Histogram of fitted tail exponents α of the cumulative return distributions (at

δt = 5 min) for 1000 companies traded in the American stock exchanges. The data were

extracted from Ref. [134].

considered as the most typical value of the tail exponent. However, the peak is rather
broad. Values ranging from α = 2.5 to α = 4 are found in a significant number of
cases.

In any case, the scaling relation (1.14) is violated. This means that Mandelbrot’s
idea of prices following a Lévy walkis wrong. The weak point is the assumption of
independence of price increments (i.e. returns) at short time intervals. On the contrary,
we shall soon see that the returns are strongly and non-trivially dependent even at
quite large time distances.

So, we can see that the price signal is indeed rather complex. The power-law tail in
the return distribution is the simplest of all the complex features. All sensible models
of stock-market fluctuations must reproduce, at least qualitatively, these power-law
tails.

Indeed, since the beginning of the empirical econophysics studies [17, 131, 135–139],
the amount of data supporting the basic results outlined here is enormous, confirming
their generic validity within the span of centuries [140] all over the entire globe [141–
166], comparing places as diverse as Hong Kong [144], Warsaw [157], and Tehran [147].
The precise form of the tail in the return distribution was a subject of debate for
some time, and suggestions ranged from stretched-exponential [167] to truncated Lévy
distributions [168–175], to exponential [176, 177].

Properties of volatility

If stock-market fluctuations are not well described by either a classical random walk or
a Lévy walk,we should ask what the crucial ingredients are which make them different.
One of them certainly is the fact that the amplitude of the fluctuations of prices
is not stationary but depends on time, while both random and Lévy walks can be
characterised by the time-independent typical size of fluctuations.
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power law PS ∼ s−1−α with α = 3. All the data were extracted from Ref. [178].

For measuring this scale, or size, there is no single universally applicable quantity.
We already encountered the quadratic volatility σX(δt), defined in Eq. (1.15), which
measures the average amplitude of the fluctuations. To see how the fluctuations swell
or diminish in time, we can use the sequence of volatilities computed over the fixed
time window ∆t = nδt. It is defined as (see Ref. [178])

St =
1

n

n−1∑

k=0

|Xt−kδt|. (1.16)

Note that it depends on two implicit parameters: the time lag δt at which the returns
are computed and the length of the time window ∆t. Clearly, other measures are also
possible; for example, instead of the absolute value of return, as in the sequence (1.16),
we can take its square, or in general any power of its absolute value. Then each power
provides somewhat different information.

In analogy with the sequence of returns, the sequence (1.16) can also be statis-
tically analysed [178–181] in the same manner. The most immediate property is the
distribution of volatilities. We show an example of the volatility sequence as well as its
distribution in Fig. 1.4. We can clearly see that the volatility is not stationary. There
are long periods, several months or even more, of high volatility, followed by other long
intervals of low volatility. In probabilistic language, volatilities at different times are
positively correlated. Qualitatively, this phenomenon is called volatility clustering. It
may be expressed quantitatively in the slow decay of the correlation function, as will
be shown below.

The distribution of the volatility is essentially log-normal, as shown in Fig. 1.4.
However, the right tail deviates markedly from log-normality and usually is well fitted
to a power law. For the data shown here, which originate from Ref. [178], we have
the same value of the tail exponent α = 3 as found for the distribution of returns,
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although the fit is not excellent at all. However, the evidence for the power-law tail was
strengthened by other studies [19, 182], and now it is considered very probable. It is
also very likely that it is not a mere coincidence that the tail exponents in return and
volatility distributions are close to each other. Indeed, the excess probability of periods
with high returns can serve as a simple (and cheap) explanation of the anomalously
large probability of high returns. This idea is formally elaborated in the stochastic
volatility models, treated in Sec. 2.4.

Further non-trivial features of the time sequence of volatility were discovered in the
study of time intervals between successive returns of volatility to the same level [183–
185]. There is a subtle point in this study. On average, volatility follows a specific
intraday pattern. It is higher close to the opening and closing times of the stock market,
while in the middle of the day, the volatility is lower. Such a ‘U’ shape must inevitably
be taken into account when we ask when the volatility reaches a prescribed level. In
the analysis, we first calculate the intraday volatility pattern by averaging over many
trading days and then divide the true volatility by this pattern. The time sequence
of scaled volatility St obtained in this way is further analysed. We find the instants
Ti at which it reaches the fixed threshold sthr and obtain the waiting times ∆T t =
Ti − Ti−1, where t = Ti in this formula. If the fluctuations in volatility were random,
the distribution of the waiting times would be Poissonian P∆T (∆t) ∼ exp(−a∆t).
However, the data show something different. The distribution is much closer to the
stretched-exponential form P∆T (∆t) ∼ exp(−a (∆t)γ), with γ ≃ 0.3 [184]. This is a
sign of strong temporal correlations in the sequence of volatilities.

Volatility defined as in the sequence (1.16) is a temporal average of absolute returns
over a certain time window. Instead of the time average we can also consider an
ensemble average over a set of Nsto different stocks [186–191]. Each stock, numbered

by the index a, has its own time sequence of returns X
(a)
t . To measure the differences

between returns of different stocks, we define the quantity Rt called variety [186] as

R2
t =

1

Nsto

Nsto∑

a=1

(
X

(a)
t − 1

Nsto

Nsto∑

a=1

X
(a)
t

)2
. (1.17)

We can again study the distribution of variety, and generically we find that it has
features similar to the distribution of volatility. The central part of the distribution,
around the maximum, is close to log-normal, while for large values a power-law tail
develops. However, compared to the volatility, the tail exponent is much larger. For
example in Ref. [186] the value is about α ≃ 6.

1.2.3 More advanced analysis

Anomalous diffusion

There are also other scenarios of how the movement of price can become different
from ordinary Brownian motion. One of them is related to the physical phenomenon
of anomalous diffusion [194]. To know more about what this term means in physics, see
Box 2.8. The basic difference of the anomalous diffusion from the ordinary one is that,
for the former, the waiting times between subsequent steps or jumps have a non-trivial
distribution. The input data are, first, the sequence of times of individual trades Ti,
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volatility was shifted by factor 10. The data were extracted from Ref. [192]. Right panel:

Distribution of intertrade times, in seconds, for Boeing traded from January 1993 to December

1996. The line is the Weibull distribution with τ = 27 and η = 0.73. The data were extracted

from Ref. [193].

from which we get the sequence of waiting times defined in Eq. (1.9); and second, the
sequence of prices established in these trades, which yields the sequence of returns
(1.11). The properties of the waiting times can be observed in two complementary
quantities either directly in the waiting-time distribution P∆T (∆t), or in the number
of trades which took place within a time interval of fixed length. The latter quantity
counts the number of such trade times Ti which fall within the interval [t− δt, t], i.e.
formally

Nt =
∑

i

θ(Ti − t+ δt) θ(t − Ti). (1.18)

We show the distributions for both ∆Tt and Nt in Fig. 1.5. The distribution of the
number of trades exhibits a power-law tail with exponent α ≃ 3.5. This means that
there is an anomalously large probability of finding a time interval within which a
very large number of trades occur. An attentive look at the distribution of the waiting
times instead reveals power-law dependence for short times. The tail of the waiting-
time distribution is not very important, and its form is better fitted on a stretched
exponential. Together with the power law at short times, this information leads to the
hypothesis that the waiting times are described by the Weibull distribution

P∆T (∆t) =
η

τ

(∆t

τ

)η−1

exp
[(

− ∆t

τ

)η]
. (1.19)

The data plotted in Fig. 1.5 are consistent with the value of the exponent η = 0.73.
We may also look at how much the price fluctuates in the interval [t − δt, t]. To

calculate a measure of these fluctuations, it is natural to work with returns of individual
trades, defined in Eq. (1.11). However, the data we show in Fig. 1.5 are based on
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Ref. [192], where the price changes in individual trades are used instead, defined as
∆Zt = Zt−Zt′ , with t = Ti and t′ = Ti−1. The fluctuations are then measured by the
time-dependent quadratic volatility

St =
[ 1

Nt

∑

i

θ(Ti − t+ δt) θ(t− Ti)
(
∆ZTi

)2]1/2
. (1.20)

Its cumulative distribution is shown in Fig. 1.5. It has again a power-law tail, with
exponent α ≃ 3.

Thus, we prove that the fluctuations of prices are described by an anomalous
diffusion, rather than an ordinary one [195]. However, we have here several quantities
with non-trivial behaviour, and it would be very interesting to see if we could combine
them into a quantity which could perhaps be artificial, yet would exhibit ordinary
fluctuations following a normal (Gaussian) distribution. It was found [192] that such
a combination is

Gt =
1

St
√
Nt

∑

i

θ(Ti − t+ δt) θ(t− Ti)∆ZTi (1.21)

i.e. the price change during the interval [t−δt, t] rescaled so that the effects of a variable
number of trades and the variable amplitude of the fluctuations are eliminated.

Finally, let us mention that the distribution of waiting times between individual
trades is an extremely important quantity, and its distribution [193, 196–208] serves as
an input for stochastic models based on the idea of the continuous-time random walk,
to be explained in Sec. 2.1.3.
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Multifractality

We have already seen two measures for the size of price fluctuations: the volatility
(1.16) and its quadratic version. It is not a priori clear whether the two bear the same
information or not. Moreover, we could use an arbitrary power of the return in the
definition, not just the first or the second. This way we could obtain an entire ensemble
of volatilities

S
(q)
t =

1

n

n−1∑

k=0

|Xt−kδt|q. (1.22)

The parameter δt is the time interval at which the return is calculated, and ∆t = nδt is
the time window over which the fluctuations are measured. The exponent q can be an
arbitrary real number. Calculating (1.22) we can compare the properties of volatilities
for different q. A non-trivial dependence on q would provide us with further information
on the complexity of price fluctuations.

We shall look here at another smart way to perform such an analysis. It relies on
the method called multifractal detrended fluctuation analysis (DFA) [209–216]. If the
series of price logarithms Yt extends from time t1 to t2, we first divide the interval
[t1, t2] into segments of equal length ∆t. In the ith segment, Ti = [t1+(i−1)∆t, t1+i∆t],
we first find the linear trend yt(i) = ai + bi t by the least square fit to Yt. Note that
the segments can each contain a different number of points Ni. Then, we calculate the
mean square fluctuation in each segment

m2(i; ∆t) =
1

Ni

∑

t∈Ti

(
Yt − yt(i)

)2
(1.23)

and the qth moment of the detrended fluctuation, defined as

mq(∆t) =
∆t

t2 − t1

∑

i

(
m2(i; ∆t)

)q/2
. (1.24)

The number q is not necessarily a positive integer. On the contrary, it can be any real
number, positive or even negative. The most important information is the dependence
of the moments on the length of the time segments. It is supposed that it grows as a
power with an exponent which depends on q, i.e.

mq(∆t) ∼ (∆t)ζ(q). (1.25)

If the time sequence of price logarithms Yt was a simple fractal, the function ζ(q)
would be linear, or ζ(q) = Hq. In that case, H would be the Hurst exponent of the
time series. However, it has been established that ζ(q) is nonlinear, indicating that the
time sequence has a more complicated structure. It is a multifractal, characterised by
not just one, but more or less a wide spread of exponents. The fluctuations are given
by a mixture of many components, each of them having a different Hurst exponent. To
stress the difference of the Hurst exponentH computed from the entire time series from
those computed from the components, we denote the latter by lowercase h. In order to
measure how much each of the values of h is represented in the mixture, we introduce



26 Empirical econophysics and stylised facts

∆t [min]

C
a
b
s
(δ

t;
∆

t)

105104103102

0.2

0.1

0.05

0.03

0.02

∆t [days]

C
2
,1
(δ

t;
∆

t)

200150100500

1

0

−1

−2

−3

Fig. 1.7 In the left panel, autocorrelation of absolute values of return are shown for the

S&P 500 index in the period 1984-1996 at δt = 1 min. The straight line is the power-law

decay ∝ (∆t)−0.35. The data were extracted from Ref. [133]. In the right panel, the leverage

effect is illustrated for returns calculated at δt = 1 day. The correlation function was averaged

over an ensemble of 500 European stocks, traded in the period 1990-2000. The data were

extracted from Ref. [251].

a quantity d(h) called a multifractal spectrum (for a more precise explanation see Sec.
2.3). It is obtained from ζ(q) by the Legendre transform

d(h) = min
q

(
qh+ 1 − ζ(q)

)
. (1.26)

The figure ‘1’ appearing in this formula refers to the one-dimensionality of time.
We can see the behaviour of the moments and the multifractal spectrum in Fig.

1.6. The nonlinearity of the function ζ(q) is clearly visible. After subtracting the linear
trend, the dependence of ζ(q)− q/2 is a concave function with a clear maximum. The
multifractal spectrum d(q) obtained by numerical implementation of the Legendre
transform (1.26) also has a maximum, at a value of h very close to 1/2, the Hurst
exponent of the ordinary random walk. Speaking very vaguely, the larger value of
d(h) means that this value of h is present in the fluctuations with a greater weight.
The maximum of d(h) at h ≃ 1/2 implies that the trivial random walk’s behaviour
is still dominant, but from behind its shoulders complex fluctuations peep out, with
a wide range of exponents h for which d(h) > 0. The minimum of such values of h
corresponds to the slope of the function ζ(q) at the lowest values of q. In principle we
should calculate this slope in the limit q → −∞, but this is impossible in practice.
Analogically, the maximum observed value of h corresponds to the slope of ζ(q) at the
highest measured values of q.

Multifractality is one of the most subtle features of the price signals and difficult to
detect reliably [217, 218], but it has been studied extensively [145–147,212, 219–247].
To reproduce it in a model, we shall resort to analogies with aerodynamic turbulence
[248–250]. The physics of wind will serve as an inspiration for multifractal cascade
models of price fluctuations, investigated in Sec. 2.3.
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Nonlinear correlations

In one respect the EMH is absolutely true. The direction of the price change in the
nearest future is practically independent of all the past price changes. This is the
reason why systematic gain on the stock market is impossible.

The words ‘practically independent’ can be given very sound mathematical mean-
ing in terms of the autocorrelation function of returns

C1,1(δt; ∆t) = 〈XtXt+∆t〉. (1.27)

The dependence on the time lag δt at which the returns are computed is implicit on the
right-hand side. We call these correlations linear as both Xt and Xt+∆t enter linearly
into the average (1.27). Within the level of statistical noise, the function C1,1(δt; ∆t)
is zero, except for short time distances ∆t . 20 min [133]. The length of such a time
interval is determined by transaction costs. Indeed, a large transaction fee discourages
frequent trading, and returns may remain correlated during times within which few
trades, if any, occur. The length of the interval of non-negligible correlations can be
considered as a practical measure of the market’s efficiency. It is interesting to note
that the residual correlations during that short interval of inefficiency have a negative
sign [19]. The returns are short-time anticorrelated, meaning that after each casual
price fluctuation the market forces tend to quickly restore the price to its original
level.

So far it has seemed that there is no problem with the validity of EMH. However,
EMH does not restrict its claims to the mere absence of correlations. It requires inde-
pendence of future returns over the course of history. Empirical evidence shows that
such pretended independence is very far from reality, but this is not revealed in the
linear correlations. To see it, we must calculate nonlinear correlations. The simplest
one is the autocorrelation function of absolute values of returns

Cabs(δt; ∆t) = 〈|XtXt+∆t|〉. (1.28)

It has been known for quite a long time [252] that it decays very slowly, the typical time
scale being a few days. This effect is sometimes called volatility clustering, evoking the
optical impression already visible in the time sequence of volatility in Fig. 1.4 that
periods of high volatility tend to be clustered together, leaving other long periods for
low-volatility stages.

In the data shown in Fig. 1.7 we observe that not only is the typical scale of the
decay of correlations long, but the form of the decay is also a slow function. It is a
power law with a very small exponent

Cabs(δt; ∆t) ∼ (∆t)−τ (1.29)

with τ ≃ 0.35. The precise value of τ varies from stock to stock, but always remains
small, τ . 1/2. The smallness even makes the precise fit difficult, and as an alterna-
tive it has been suggested that the decay is not power-law, but logarithmic [253–255].
Whatever the correct functional form of the slow decay is, it means that the memory
contained in the price signal is preserved for a very long time. However, this memory
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cannot be used for gaining profit. EMH is true up to the point that all the prof-
itable information is very quickly (although not ‘immediately’, since that would be
physical nonsense) incorporated into the price signal. But there is a huge amount of
non-profitable information remaining. That makes the price signal complex, definitely
different from any form of random or Lévy walk, and in this respect EMH completely
misses the point.

An example of even more subtle correlations in the price sequence is the leverage
effect [251, 256–260]. In words, it is a negative correlation between volatility and past
returns. It is measured by the correlation function

C2,1(δt; ∆t) =
〈(Xt+∆t)

2Xt〉
〈(Xt)2〉2

. (1.30)

For ∆t < 0 the correlation function is zero within the scope of statistical noise but
becomes negative for ∆t > 0 and decays to zero as a rather slow exponential, within
a typical scale of months. Thus, we can write

C2,1(δt; ∆t) ≃ −Aθ(∆t) e−∆t/a. (1.31)

This means that price drops bring about an increase in volatility, but the causality
does not go in the other direction. Increased volatility in the past does not have
any influence on price movement in the future. We can see a typical example of the
correlations in Fig. 1.7, where the decay time is well fitted to a ≃ 40 days [251].
Interestingly, the amplitude of the correlations is often very close to A ≃ 2, at least
for the price sequences of individual stocks. The same correlation function computed
for financial indices, such as the S&P 500, shows much higher A, for reasons that are
not completely clear [256].

1.3 Order-book statistics

1.3.1 Order placement

The prices announced at a stock market are only a tiny tip of the iceberg. Many things
must happen prior to the trade which fixes the price. There are many potential buyers
who stood idle because the offered price seemed too high for them. On the opposite
end of the market we can see as many people waiting in hope that they will sell later
at a more favourable price.

Whatever the structure of the stock market is, the participants always issue orders,
either buy or sell, which are to be executed under various conditions. These conditions
usually fix the limit price, i.e. the minimum price at which shares can be sold or the
maximum at which they can be bought. The issuer can also specify how long the
order can last, if not executed yet, and can also cancel the order directly. Therefore,
not all orders are eventually satisfied. The orders with fixed prices are called limit
orders. Besides those, there are also market orders that require buying or selling at any
price available in the market. While the limit orders last for some time and therefore
constitute the memory of the market, the market orders are executed immediately.

There are many stock markets around the globe, and they differ in their ways of
organising the trade. Some of them rely on a market maker who collects the orders and
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Fig. 1.8 A snapshot of the order book for FGBL (futures contracts on Euro Bund, a bond

issued by the Federal Republic of Germany), traded at Eurex (European financial derivatives

exchange) on 23 March 2007 at 15:21. For each price z we show the cumulative size of all

orders nbid,ask(z) at this price. For better visibility, the size of buy orders is plotted with a

negative sign. For this plot, the data freely accessible at www.eurexchange.com were used.

after a certain interval of time, she/he makes the best effort to settle the accumulated
package of buy and sell orders against each other. As a result, it is the market maker
who decides the price. Some other markets are fully automatic and each order is
executed instantly, as soon as an order of the opposite type is issued which can match
the price limits.

Snapshot

In any of the cases, the order book is a list of orders to sell (ask) and buy (bid) with a
specified price. The list is dynamic and is updated at a rate of seconds. Obviously, all
bids have lower prices than all asks. The distance between the lowest ask and highest
bid is called spread, and its fluctuations are nearly as important as the fluctuations of
the price.

The price at which an order is placed is not completely arbitrary but is usually a
multiple of a fixed discrete unit. Therefore, there may be several, or even many, orders
placed at the same price. The orders also differ in size, measured in the number of
shares to be sold or bought. Thus, at each moment we can draw a diagram showing
total size of the orders waiting at each price. An example of such a snapshot of the
order book is shown in Fig. 1.8. We can see that the instantaneous configuration of
orders is very uneven, with high peaks at some prices. Generally, however, the number
of orders is highest close to the actual price and decreases when we go farther from it.

Regularities in order placement

The placement of the orders is a matter of the investors’ strategy. An order placed
very close to the current price is likely to be executed rather soon, while an order
far away will probably wait quite a long time before it is satisfied, but the expected
profit is higher. The balance between tiny but frequent short-time gains versus rare
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Fig. 1.9 Left panel: Distribution of orders placed at distance ∆z from the current best

price (in Euros), for France Telecom traded at Paris Bourse in 2001. The line is the power

law ∝ (∆z)−1.5. The data were extracted from Ref. [261]. Right panel: Distribution of the

lifetimes of orders (in seconds), from placement to execution. The line is the power law

∝ (∆t)−1.5. The data were extracted from Ref. [262].

but large ones makes the order placement a complex optimisation problem [263]. Here
we discuss the empirically observed pattern which results from it.

First, it has been established that the size of the orders V is distributed according
to a power law PV (v) ∼ v−1−γ with exponent γ ≃ 1 [264]. This holds both for limit
and market orders. Furthermore, we can observe how far from the current price the
limit orders are placed. The distribution of such distance ∆Z is also governed by a
power law P∆Z(∆z) ∼ (∆z)−1−µ, as shown in Fig. 1.9. The value of the exponent µ
is controversial [261, 263, 265, 266], ranging from µ ≃ 0.5 [261] to µ ≃ 1.4 [266].

So far, we have investigated the ‘spatial’ characteristics of the order-placement
process. One of the important temporal characteristics is the lifetime of the orders,
i.e. how long a specific order lasts within the order book. Here we must distinguish
two ways in which the existence of the order can come to an end. Either the order is
executed by matching a complementary order, or the order is removed from the book
without being satisfied. In the former case a trade follows, accompanied by a newly
fixed price. Therefore, the occurrence of such an event is detectable in the time series of
prices. The latter case results in no visible effect, but it affects future price movements
through an indirect and subtle mechanism. The removed orders, either cancelled by
the brokers who placed them or erased automatically after their pre-defined expiry
time has elapsed, leave an empty space which may result in enhanced price movement
in the future.

The lifetime ∆T of both executed and removed orders is power-law distributed,
P∆T (∆t) ∼ (∆t)−1−η [262, 267–270]. The value of the exponent differs in these two
cases, being η ≃ 1.1 for removed or η ≃ 0.5 for executed orders, as also shown in
Fig. 1.9. A non-trivial spatio-temporal pattern in the placement and removal of orders
was revealed in the dependence of the probability of an order being cancelled on the
distance ∆z from the current price. It was found [265] that the cancel rate decays with
∆z, and except for the closest vicinity of the price, the decay roughly follows the power
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The data were averaged over 20 frequently traded stocks in NASDAQ from the year 2002.

Note that the virtual impact was rescaled by the factor 2/5 for better comparison with the

market impact. The data were extracted from Ref. [271].

law ≃ (∆z)−1.2. This finding is very important for any attempt to model the order
book, as it implies that close to the current price the orders are added and removed
extremely quickly. Such rapid rearrangement of the order book is like a complex dance
of gear trains inside a clock, from which we perceive only the number indicated by the
clock hand, which is the price.

1.3.2 Price impact

Order-book profile

In the first approximation we can forget about the fluctuations and try to understand
the behaviour of the order book from its averaged properties. The key quantity is the
averaged profile of the order book, which is found by superposing the instantaneous
profiles, like that of Fig. 1.8, in such a way that the current price is fixed at the origin
of the coordinates. Each profile is shifted to the right or left according to the actual
price. We must note that this procedure is not as innocent as it might look. An order
which is, say, placed at a moderate distance from the price and waits there for some
time appears in several superposed profiles. In each of these profiles it is located at
a different position, because the profiles are shifted by different amounts. Therefore,
one single order contributes to the average profile at several different places.

In Fig. 1.10 we show the dependence of time-averaged total size of orders 〈n(∆z)〉
as a function of the distance ∆z from the actual price. The general impression, drawn
from the snapshot in Fig. 1.8, namely, that the density of orders decreases with ∆z, is
nearly correct. However, in the region very close to the price the profile is suppressed,
so that a maximum develops at a finite distance from the price. In the example shown
in Fig. 1.10 the maximum lies around 0.3 EUR. It is also possible to look at the
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form of the profile’s tail. The results seem to be compatible with a power-law decay
〈n(∆z)〉 ∼ (∆z)−2 [261, 265, 272].

Virtual vs. market price impact

At first glance we might think the statistics of price changes can be deduced directly
from the average profile and distribution of order sizes. To this end, the function
called virtual price impact is defined. Intuitively, it tells us how far we must go on the
price axis in order to remove a specific volume of orders from the average order-book
profile. We shall now disclose the point of this story. The actual market impact, i.e.
the measured change in price induced by placing a given volume of orders, is very
much different from the virtual impact predicted from the average profile.

Let us observe the problem more closely. As the data we show here are based on the
work [271], in which the authors use a logarithm of price Y = lnZ as an independent
variable instead of the price itself, we now switch the notation: in the following we
shall express the average profile as a function of ∆y, the distance of log-prices.

We denote Vt the volume of all market orders which were issued from a time t0 in
the distant past up to the time t. Because we shall always deal only with differences
of the process Vt, the precise choice of t0 is irrelevant. The study of the market impact
is nothing else than studying the mutual correlation between the processes Yt and Vt.

We measure the fluctuations in the flow of orders within the time interval of length
δt by the quantity

σ∆V = 〈|Vt+δt − Vt − 〈Vt+δt − Vt〉|〉. (1.32)

For convenience, we shall measure the price impact in the units of the standard devi-
ation of log-price fluctuations, defined as

σ∆Y =

√
〈
(
Yt+δt − Yt − 〈Yt+δt − Yt〉

)2〉. (1.33)

This facilitates the comparison of price impacts for different stocks, each with a dif-
ferent level of trading activity.

If 〈n(y)〉 is the average order-book profile as a function of log-price, the expected
log-price change ∆y after arrival of market orders of volume ∆v is calculated by
inverting the integration, from the equation

∫ ∆y

0

〈n(y′)〉dy′ = ∆v. (1.34)

Then, the virtual price impact is

Iv(∆v) =
∆y

σ∆Y
. (1.35)

This is to be compared with the actual market price impact, defined as the conditional
average of log-price shift

Im(∆v) =
〈Yt+δt − Yt|Vt+δt − Vt = ∆v〉

σ∆Y
(1.36)

on the condition that the volume of the orders supplied was ∆v.
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In Fig. 1.10 we compare the empirical data for virtual and market impacts [271].
We see not only that the market impact is much smaller than the virtual impact, but
that the curvature of the two functions also has the opposite signs. While the virtual
impact is convex, which follows immediately from the decaying tail in the average
book profile, the actual market impact is concave. This discrepancy is the sign of a
complex relationship between price movements and order placement.

On a basic level of understanding, we would like to know if the shape of the actual
market impact follows a universal law, as the tail of the return distribution seems to
do. As we already said, the function is concave [273–277]. Zhang conjectured [129] that
the market impact should follow a square-root form, i.e.

Im(∆v) ∼ (∆v)ν (1.37)

with ν = 1/2. This was indeed found consistent with the data in several studies
[278, 279] and a theory of power-law tails in return distribution was built on it [278–
282], but the story does not seem so simple. First, other functional forms were tried,
often with better success, like the logarithmic function [265] or a power with exponent
ν < 1/2 [283–285]. Moreover, the market impact does not seem universal, as it varies
from market to market and even from stock to stock [283], despite the attempts to find
a single master curve for market impact [286–288]. On the other hand, a convincing
theory supported by empirical evidence was set up [289], showing that the impact
function has a square-root shape.

Second, a detailed study showed that, while the market impact grows with the
volume of the orders, the return distribution conditioned to a fixed volume is nearly
independent of the volume. This suggests that the form of the return distribution is
determined by the fluctuations in liquidity, i.e. fluctuations in the instantaneous order-
book profile rather than the averaged market impact [290, 291]. A fairly convincing
argument is the comparison of the distribution of returns generated by market orders
and the distribution of first gaps, i.e. distances between the highest and second high-
est ask (or lowest and second lowest bid). These two distributions are indeed nearly
identical [290]. This finding later inspired modelling order books as sequences of gaps
between limit orders, as shown in Chap. 4.

1.3.3 Long memory in the order flow

Another puzzling aspect of the complexity of order-book dynamics is implied by long-
time correlations in the signs of the orders, which lead to immediate trades (in our
terminology market orders) [292–294]. In these studies time is usually measured in
number of trades. If we define ǫn = ±1 for a buy (+ sign) or sell (− sign) market
order corresponding to trade number n, we can calculate the correlation function
Csig(∆n) = 〈ǫnǫn+∆n〉−〈ǫn〉〈ǫn+∆n〉. Alternatively, we can investigate order imbalance
within a fixed interval of time. Let n ∈ (t, t+δt) have the meaning that the market order
number n was issued within the time interval from t to t+ δt. Then we can define the
normalised order imbalance Et = (

∑
n∈(t,t+δt) ǫn)/(

∑
n∈(t,t+δt) 1) and its correlation

function Csig(δt; ∆t) = 〈EtEt+∆t〉. Both of the correlation functions consistently show
a long-term power-law behaviour
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Csig(∆n) ∼ (∆n)−θ

Csig(δt; ∆t) ∼ (∆t)−θ
′

.
(1.38)

Both exponents have very low values θ, θ′ < 1 indicating extremely long memory in the
sequence of market orders. The precise values seems to vary among different stocks,
for example θ = 0.4 for Vodafone [293], θ = 0.53 for Shell [294], or θ = 0.2 for France
Telecom [292]. Also θ and θ′ are not quite the same for the same stock, for example
θ′ = 0.3 for Vodafone again [293]. There is a consensus that the source of the long
memory lies in the presence of hidden orders, which are split into many smaller orders
to be revealed and submitted into the order book [294, 295]. Under the assumption of
power-law distribution of the sizes of the hidden orders, we get power-law correlations
as in (1.38).

Superficially, we are tempted to trivialise it. One power law more or less, who
cares among the plethora of others? But this time it is not the case. If the sell or-
ders are followed by sell again, and buys by buys, why does the price keep fluctuating
unpredictably? There must be a delicate mechanism which balances the correlated
market order flow with subtle correlations in liquidity. Some information is certainly
contained in the fluctuations of the bid-ask spread and its response to sudden per-
turbations [296–300]. However, the mechanisms are more complex and still not fully
understood. We prefer to stop here and suggest the reader to refer to the original
sources for the rest [285, 292, 294, 301–332].

1.4 Correlation matrices and economic sectors

1.4.1 Hierarchies among stocks

Correlations

We have seen enough evidence of the very complicated behaviour of price sequences.
Yet another level of complexity emerges when we observe the prices of several stocks
(or commodities or financial indices) simultaneously. There are lots of things one may
be curious about. How much do the price changes differ between different stocks? Are
there groups of stocks whose prices follow each other faithfully? Is it possible to trace
some information transfer through prices from one stock to the other?

The most fundamental notion enabling at least a partial answer to these questions
is the cross-correlation matrix. Let us have Nsto stocks and record their price sequences

Z
(a)
t , for a = 1, 2, . . . , Nsto. The returns realised at time interval δt and denoted X

(a)
t

are computed as usual. First, we define the reduced returns

X̃
(a)
t =

X
(a)
t − 〈X(a)

t 〉√
〈(X(a)

t − 〈X(a)
t 〉)2〉

. (1.39)

Then, the elements of the cross-correlation matrix are defined as averages

Mab = 〈X̃(a)
t X̃

(b)
t 〉 (1.40)
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which can be interpreted as scalar products of the time sequences X̃
(a)
t and X̃

(b)
t .

The information contained in the cross-correlation matrix M can be extracted using
various methods. We shall show three of them in the following paragraphs.

Distance

The correlations tell us which stocks are closer, in some sense, to each other. We can
arrange the stocks into groups which evolve more or less homogeneously. Or, based on
the sequence of returns, we can draw a hierarchy of stocks, much like biologists draw
genealogical trees of species, based on the sequence of base pairs in their genetic code.
This methodology was used many times for analysing dependencies among stocks, as
well as indices and interest rates [333–362].

Since the elements of M are scalar products, they should satisfy an appropriate
triangle inequality, and therefore it must be possible to define a distance between
stocks. The set of stocks forms a metric space.

The most convenient way to define the distance is by the formula

d(a, b) =
1

2

(
1 −Mab

)
. (1.41)

Then, for each pair of stocks a and b, we have d(a, b) ∈ [0, 1].

Minimum spanning tree

The distance is but an instrument for finding a structure which visualises the complex
dependencies between stocks [333]. The structure in question is the minimum spanning
tree. What is it? We can make a graph out of the set of stocks by first assigning a
point to each stock and then joining pairs of such points with lines. Depending on how
many lines (called edges) we draw and which points (called vertices) we connected
by edges, we construct different graphs. We shall read much more about graphs and
related things in Chap. 6. Here we need only a few basic notions.

A tree is such a graph that does not contain cycles, i.e. we cannot find a sequence of
edges which starts in a vertex and returns back again to the same vertex. A spanning
tree is a tree in which any two vertices are connected by a path along the edges of
the tree. Every vertex is connected by an edge to another vertex. None is left isolated.
Any spanning tree on Nsto stocks has exactly Nsto − 1 edges.

There are still many possible ways to make a spanning tree with a given set of
stocks. If the edges are not all equivalent but each bears some weight or length, we
can say which spanning tree is better than the other by summing the weights, or
lengths, of all the edges involved. For this purpose we assign the distance d(a, b),
defined above, to the edge connecting stock a with stock b. The minimum spanning
tree is a spanning tree that has the least possible sum of distances between all the
pairs of stocks connected by an edge.

The construction of the minimum spanning tree is easy. We start with an empty
graph, i.e. there are Nsto vertices and no edges. Then we find the minimum distance
d(a, b) between all possible pairs of vertices and add an edge between a and b. Then
we find the second smaller, third smaller, etc. distances and add edges one by one. In
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Fig. 1.11 In the left panel, we show the minimum spanning tree constructed from the

correlation matrix of the 30 stocks which are the components of the Dow Jones Industrial

Average index. In the right panel, the hierarchical structure of stocks generated by the

ultrametric distance dUM associated with the minimum spanning tree. The acronyms of

the stocks are: AA–Alcoa, ALD–Allied Signal, AXP–American Express Co, BA–Boeing Co,

BS–Bethlehem Steel, CAT–Caterpillar, CHV–Chevron, DD–Du Pont, DIS–Walt Disney,

EK–Eastman Kodak, GE–General Electric, GM–General Motors, GT–Goodyear Tire,

IBM–IBM Corp., IP–International Paper, JPM–Morgan JP, KO–Coca Cola, MCD–Mc-

Donalds, MMM–Minnesota Mining, MO–Philip Morris, MRK–Merck & Co, PG–Procter &

Gamble, S–Sears Roebuck, T–AT&T, TX–Texaco, UK–Union Carbide, UTX–United Tech,

WX–Westinghouse, XON–Exxon, and Z–Woolworth. In both panels, we reproduce the data

shown in Ref. [333].

so doing, we must avoid the situation in which adding an edge would produce a cycle
in the graph, which would spoil the tree structure. Therefore, we skip this ‘bad’ edge
and proceed to the next smallest distance. When Nsto − 1 edges are added, we know
that the tree is spanning, and we stop here.

The structure of the minimum spanning tree shows dependencies between different
stocks. Two stocks whose prices follow very similar courses in time are placed next
to each other in the tree. An example of a minimum spanning tree constructed from
the correlations of 30 important stocks is shown in Fig. 1.11. We observe a big hub
in the middle, which is the General Electric (GE) stock. Many other stocks are joined
directly to it, which means that GE can be considered as the centre of a cluster of stocks
which follow each other on the market. There are also several minor hubs, like Coca
Cola, International Paper, and Du Pont. These can be readily interpreted as centres
of secondary clusters. Therefore, the minimum spanning tree reveals the structure of
emergent business sectors, not necessarily related to a priori classification of businesses
according to their fields of activity. The a posteriori classification according to the
minimum spanning tree is also much more relevant for the investors, as it tells which
stocks are tied together and which ones are more independent. From the point of view
of diversification of the portfolio, it is useful to invest simultaneously in stocks far
apart on the tree, while investing in neighbours on the tree makes little sense.
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Ultrametricity

There is also another way to visualise the same data. The function d(a, b) is not the only
way of defining a distance on the set of stocks. If we find the minimum spanning tree,
we can subsequently define a new distance dUM(a, b) using the following procedure.
For a pair of vertices a and b we find a path on the minimum spanning tree connecting
a with b, i.e. the sequence of edges on the tree along which we can walk from a to
b (and back, of course). Each edge along this path joining, say, c with d, bears the
distance d(c, d). We can find the maximum of all the distances along the path from a
to b and call this number dUM(a, b).

This function again has all the properties we require from a distance. Moreover,
the triangle inequality is replaced by a stronger statement that, for any triple a, b, and
c, the following inequality holds:

dUM(a, b) ≤ max(dUM(a, c), dUM(c, b)). (1.42)

A set of points endowed with a distance satisfying such inequality is called ultrametric
space [363]. Every ultrametric space is also a metric space, but the opposite does not
generally hold. The most important property of every ultrametric space is that its
points can be organised hierarchically. It is possible to draw a tree which visualises
such hierarchy, so that the points of the space—in our case the stocks—are end points
of the tree. The branches of the tree are drawn in such a way that the ultrametric
distance dUM(a, b) between stocks a and b is just the length from the end points to
the point inside the tree where the branch ending at a departs from the branch ending
at b. We show in Fig. 1.11 a tree constructed in this way, from the same data as the
depicted minimum spanning tree. We can see, for example, a closely tied cluster of
Exxon-Texaco-Chevron. On the other hand, the stock of Sears Roebuck seems to be
related only loosely to the rest of the other stocks.

The analysis of the dependencies among stocks can be made even more detailed.
Instead of correlations between returns at the same moment, as in (1.40), we can define

the two-time correlation function Mab(∆t) = 〈X̃(a)
t+∆tX̃

(b)
t 〉. If we find that this function

has its maximum at a positive value of ∆t, we can conclude that the movements of
the prices of stock a are delayed with respect to the fluctuations in the stock b. There
is a directed influence from b to a. This way we can draw a directed graph of mutual
influences, showing a complex cascade of dependencies in the stock market [364–366].

1.4.2 Spectrum and localisation

Density of eigenvalues

A completely different method of identifying important clusters of stocks is based on
spectral analysis of matrix M [367–400]. It is inspired by quantum mechanics, where
the set of eigenvalues of the Hamiltonian determines all allowed values of energy. On
the one hand, from the analysis of spectra of heavy atomic nuclei, it evolved into the
abstract theory of random matrices [401] and on the other hand, the study of electronic
spectra of organic compounds [402] gave rise to the spectral graph theory [403]. A brief
explanation can be found in Box 1.1.
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Eigenvalue problem and inverse participation ratio Box 1.1

Let Aij be elements of an N × N matrix. If we find a number λ and a column vector
with elements ej such that

∑
j Aijej = λ ei, then λ is an eigenvalue of the matrix

A, and e is the corresponding eigenvector. It is chosen so that
∑

i e
2
i = 1. The set of

eigenvalues is the spectrum of the matrix A. In quantum mechanics, the system (e.g.
an atom or an electron in a metal) is characterised by a matrix called Hamiltonian,
and the eigenvalues of this matrix are the only allowed energy levels of the system.
We shall often deal with matrices whose elements Aij are random variables. Then its
eigenvalues Λ1,Λ2, . . . ,ΛN are also random. For any finite N , the density of eigenvalues
is the ensemble of δ-functions PΛ(λ) =

1
N

∑N
i=1 δ(λ−Λi), which can, however, approach

a continuous function in the limit N → ∞. We also define the integrated density of
eigenvalues P>

Λ (λ) = 1
N

∑N
i=1 θ(Λi − λ).

The example of an electron in a solid material reveals the importance of the quantity
called inverse participation ratio. If the eigenvalue λ corresponds to the eigenvector e,
then inverse participation ratio is defined as

q−1(λ) =
∑

i e
4
i .

An electron which can move freely in the entire volume of the solid is said to be in
a delocalised state. If we take its eigenvector and calculate the inverse participation
ratio, it decreases with increasing size of the system as q−1 ∼ N−1. On the contrary, if
the electron remains trapped within a limited area, its state is called localised. Inverse
participation ratio does not tend toward zero but has a finite limit for N → ∞.

The matrix elements Mab are scalar products (1.40) of fluctuating empirical data.
Thus, they are to a large extent random numbers. The matrices composed of random
numbers, the so-called random matrices, are the subject of a special discipline, the
random-matrix theory. It is relatively difficult, but good books are available, which
cover the essential results, e.g. Ref. [401]. For a large, real, N × N symmetric ma-
trix with zero diagonal, whose off-diagonal elements are independent and identically
Gaussian distributed random variables with zero mean, the density of eigenvalues ap-
proaches, for N → ∞, a semi-circular form PΛ(λ) =

√
σ2 − λ2/(π σ2). Results are

also known for other distributions and other kinds of matrices, but we shall not men-
tion them here, except for a rather special type which is relevant for the correlation
matrices we investigate.

Marčenko-Pastur and beyond

The point is that the elements Mab are not all mutually independent, because they
are constructed from N time sequences of returns. As a model for the correlation
matrix, we introduce a matrix Aij =

∑P
k=1DikDjk , where the elements of the N × P

rectangular matrix D are already all independent Gaussian variables with variance
1/N . We may think of k as time and considerDik andDjk as time series for stocks i and
j. It is possible to calculate the density of eigenvalues ofA in the limit N → ∞, P → ∞,
with r = P/N kept fixed. The result is the so-called Marčenko-Pastur density [404]

PΛ MP(λ) =
1

2πr λ

√
4r λ− (λ+ r − 1)2 (1.43)

characterised by a unique parameter r. This is the first benchmark against which the
spectra of empirical correlation matrices are scrutinised. An important feature is that
the Marčenko-Pastur density is non-zero only within the interval λ− < λ < λ+, where
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Fig. 1.12 In the left panel, the histogram of eigenvalues is shown for the correlation matrix

for 1000 large US companies traded in 1994–1995. The time series of returns were calculated

using time distance δt = 30 min. The dotted line is the Marčenko-Pastur eigenvalue density

with r = 0.18. In the inset, cumulative distribution of eigenvalues. The line is the power law

∝ λ−3.5, and the arrow indicates the upper edge of the Marčenko-Pastur density. In the right

panel, the inverse participation ratio is shown for the same matrix. Note that the localised

states lie outside the upper and lower edges of the Marčenko-Pastur density. The data in both

panels were extracted from Ref. [367].

the endpoints are λ± = (1 ± √
r)2. For an improvement over the Marčenko-Pastur

density, see Ref. [405].
We show in Fig. 1.12 the density of eigenvalues for a correlation matrix of 1000

stocks, compared with a fit by Marčenko-Pastur density (1.43). We can clearly see
that in the empirical data there are many eigenvalues beyond the Marčenko-Pastur
bounds. The most important difference occurs at the upper end of the spectrum, as
demonstrated by the integrated density in the inset of Fig. 1.12. While the Marčenko-
Pastur density ends sharply at λ = λ+, the empirical tail extends beyond this edge
and decays approximately as a power-law P>Λ (λ) ∼ λ−3.5. This crucial difference is
partially explained by the fat tails in the return distribution [406–411]. Indeed, fat tails
in the distribution of random elements Dik may be translated into a power-law tail
modifying the Marčenko-Pastur form (1.43). The results of [409, 411] indicate that, if
the distribution of returns is characterised by a power-law tail with exponent α, the
density of eigenvalues should decay as PΛ(λ) ∼ λ−η−1, where η = α/2. Unfortunately,
this is at odds with the empirical findings that α ≃ 3 and η ≃ 3.5. It seems that other
mechanisms are also at play, influencing the exponent of the power-law tail.

Inverse participation ratio

An even more important difference from Marčenko-Pastur behaviour is found in the
localisation properties of the eigenvectors, as measured by the inverse participation
ratio, denoted q−1(λ). We can see in Fig. 1.12 that the inverse participation ratio is very
low inside the Marčenko-Pastur edges, but outside these bounds inverse participation
ratio is much greater. This is an indication of localised states, both in the lower and
the upper tail of the spectrum. These states were used to identify business sectors
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[374, 375, 381, 382, 386]. The heuristic argument behind this method follows. Imagine
that the stocks are points in an abstract space, and there is a walker in that space,
jumping randomly from one point to another. We require that the probability of the
jump from stock a to stock b is proportional to the correlation Mab between these
two stocks. We can ask what the probability is that, after some time, the walker is
found at this or that point. The time evolution of this probability is described by the
diffusion matrix Mab which only slightly differs from the correlation matrix Mab. The
difference lies in the diagonal elements. While the correlation matrix has Maa = 1,
for the diffusion matrix we require conservation of probability, which results in the
condition Maa = −∑b(6=a)M ba.

If we neglect for the moment the difference between M and M , we can (vaguely) ar-
gue that those eigenvectors of M which are localised, i.e. only have a few non-negligible
elements, correspond to such states in which the walker remains for a prolonged time
within a certain small set of points. These are just the points at which the eigen-
vector has larger elements. The set of the stocks represented by these points is then
interpreted as a cluster, or business sector.

Surely such argumentation is far from being exact. However, when used in practice,
it does reveal clusters which typically belong to the same type of business [375]. This
gives strong empirical support to the method for finding the clusters through localised
eigenvectors. Let us also note that this method was successfully used for finding clusters
in social networks [412].

1.4.3 Clustering in correlation networks

Which clusters?

The groups of stocks highlighted by localisation of eigenvectors are by definition small
compared to the whole set of stocks. Very often, in fact most often, we ask a different
question. What are the clusters of strongly tied stocks into which the ensemble can be
meaningfully divided? What are the modules which make up the stock market?

In this formulation of the problem, the clusters, or modules, are expected to cover
a significant portion of the stocks. Thus, we are not looking for small, compact groups
as we were when using the localisation method. Here we want to see large sectors.
Typically, we expect to find a few large and important clusters, accompanied by many
small ones with a low level of significance.

Threshold algorithm

The problem of finding functional modules and structural clusters is extensively elab-
orated in the theory of random networks [413]. Not all of them are suitable for finding
clusters in the ‘network’ of correlations among stocks. It is not a proper network, as
all stocks are interconnected with all others; only the weights and signs of the con-
nections vary. But using a procedure of suppressing weak ties and fixing the strong
links we can obtain a network, or graph, which grasps some important structures. If
that procedure is smart, it visualises the clusters immediately. Perhaps the easiest and
still very efficient way to obtain such a graph is the filling method. We start with an
ensemble of Nsto vertices, each representing one stock, and ‘pour’ into it links between
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stocks until the number of edges L reaches the prescribed fraction p of all possible
edges, so L = pNsto(Nsto − 1)/2. The order in which the edges are added is given
by the absolute value of the correlations Mab between stocks, i.e. the largest |Mab| is
added first, the second largest next, etc. Therefore, the construction of the graph is
in a sense similar to the way we obtained the minimum spanning tree, but now we do
not care about the appearance of loops, and the number of edges to be added is a free
parameter.

We show in Fig. 1.13 such a graph, replotted from the data given in Ref. [386].
Different symbols for the vertices correspond to different business sectors, according
to the Forbes classification. Generally, the result fulfils our expectations. There are
several relatively large clusters and many small ones, mostly composed of an isolated
stock. Within each of the big clusters, we find stocks from the same sector, with only
a few exceptions. This confirms that the clusters bear sensible information.

The sensitive point of this clustering procedure is determination of the most suit-
able value of p. Sometimes, instead of prescribing the target concentration of edges
p, we fix the threshold value of the correlation Mthr and connect by edges all pairs
of stocks with a correlation stronger than the threshold |Mab| > Mthr [414]. The two
approaches are of course equivalent. Both suffer from the uncertainty of a threshold
variable, either p or Mthr. Reliable information may come only from comparison of
the resulting cluster structure for a series of different thresholds [386]. Such a com-
parison, supported by independent information, for example on the business sector
classification, can help us establish the proper value of the threshold.

Potts-model algorithm

Among other possible methods for finding clusters, let us briefly mention only the
procedure based on the Potts model [415, 416]. This method is routinely used for
analysing large sets of data in medicine [417, 418].

In this scheme, each stock should belong to one of q groups. There are many ways
to distribute the stocks among groups. We define a function, which may be called
energy or cost, for each of these distributions. Distributions with low energy (or cost)
should be favoured. To calculate the energy, we go through all pairs of stocks and add
−Mab if the stocks belong to the same group. Otherwise, the contribution is zero.

This done, we make the usual calculations of statistical physics with the energy
function defined above, which can be formally written as

E
(
σ(1), σ(2), . . . , σ(Nsto)

)
= −

∑

a<b

Mabδσ(a), σ(b) (1.44)

where σ(a) ∈ {1, 2, . . . , q} denotes the group to which the stock a belongs, and δσ, σ′

is the usual Kronecker delta. Minimisation of energy prefers that all stocks belong
to the same group. This is the low-temperature ordered state of the system. At high
temperatures this state will be destroyed by thermal fluctuations. If the correlations
among stocks are such that the stocks can be split into clusters, we can find a third
state at an intermediate temperature in which the system is ordered within clusters, i.e.
all stocks belong to the same group but different clusters belong to different groups. To
find the clusters we must decide whether the intermediate regime exists at all; and if it
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Fig. 1.13 Network of companies constructed from the correlation matrix of approx. 100

stocks traded on the New York Stock Exchange in the period 1997–2000. The links were

added in the order of their strength until the fraction of links reached the value p = 0.03.

Different symbols denote different business sectors according to the Forbes classification

(www.forbes.com), namely: basic materials (2), health care (⋄), energy ( ), electric util-

ities (△), financial and conglomerates ( ), and other sectors ◦. The network was plotted

from the data shown in Ref. [386].

does, what interval of temperatures it spans. To this end, we calculate the fluctuation
of the energy; more precisely, how the average fluctuations depend on temperature.
The temperature dependence typically has at least one maximum. Each maximum
marks the temperature at which the state of the system changes. It is not a proper
phase transition, because the system is finite, but it resembles a phase transition to
some extent. The desirable situation occurs when there are two maxima. The interval
between these maxima represents just the intermediate regime we are looking for. Now,
the only remaining task is to look at the typical distribution of stocks among groups
in the intermediate regime, and the clusters are found.

1.5 What remains

We shall stop here. A comprehensive review of the empirical basis for econophysics
would be much too much [74, 114, 371, 372, 419–506]. Let us only mention a few more
or less randomly chosen themes we were not able to cover in depth but want to bring
to the reader’s attention.

In the study of autocorrelations of price signal and correlations between different
prices, many subtle phenomena are revealed [507, 508]. One of them is the Epps effect
[509], which is expressed as a decrease of correlations between two different stocks
when the sampling frequency increases. Other interesting phenomena were found in
the investigation of the time evolution of correlation matrices [510–512]

The prices of stock and commodities are not the only economic signals studied.
Others include interest rates [513], real estate prices [514, 515], duration of calm-time
periods [516], duration of recessions and periods of prosperity [517–524], and business
cycles [525]. The inverse statistics of the price signal investigates the time needed
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to reach a prescribed increase or decrease of price [526–531]. The behaviour of prices
after a stock-market crash is also investigated [532], and a similarity to the aftershocks
following an earthquake (governed by the Omori law) was observed [533]. In a more
peculiar area, the laws governing the prices of precious stones [534] were empirically
observed.

The empirical studies often apply more sophisticated methods than those men-
tioned in this chapter, for example the n-Zipf analysis [213, 214, 535], detrended
cross-correlation analysis [536], or mapping on the non-extensive statistical physics
[537, 538].

A very important area, although not yet satisfactorily explored, is the phenomenol-
ogy of bubbles and crashes. The generic pattern of booms followed by crashes has been
watched throughout history [539–558]. To mention some more specific studies, postage-
stamp bubbles [559] and responses to 11 September 2001 [560] were investigated. In
Ref. [561] the generic patterns characterising the course of economic recession were
identified. To this line of research, we should also add the broad literature on the
log-periodic precursors of stock-market crashes [215, 562–574]. This is intimately re-
lated to the finding that the truly extreme events on the market are ‘outliers’, i.e.
they are governed by different mechanisms than the ordinary, however large, fluctua-
tions [552, 566].

Finally, let us stress that our list is by no means representative, and many other
results would certainly deserve the same attention. However, we must hasten now to
the core of this book, which covers building and investigating models for the above-
described empirical phenomena.



2

Stochastic models

Random factors play a significant role in any aspect of economic activity. We can-
not eliminate the influence of weather; people fall ill at unpredictable moments; our
decisions are overbalanced by quantum fluctuations in the synapses joining neurons
in our heads. All of this makes the processes at work indeterministic, and any model
of what is happening in the economy and in human society in general must essen-
tially be a stochastic process. The econophysics modelling is therefore much different
from calculating electrical conductivity of carbon nanotubes or solving the stability
of a 100-storey building. These are essentially deterministic situations, although some
casual factors may be taken into account as corrections.

We may also say that these problems are ‘merely’ complicated, while economics is
complex. The two words have a common stem, but denote different things. Sending a
human crew to Mars and bringing it back again is an extremely complicated task, but
it is not complex. It may need a lot of work, a huge amount of money, and ranks of
dedicated people. But still, in principle, all that is to be done relies on well-established
knowledge and experience. On the other hand, predicting precisely what happens when
one damages a certain protein within the cell is a complex problem. Previous knowledge
can give us some hints, but almost by definition every protein has a distinct function
and different interactions; so we must investigate all consequences of its malfunction
each time anew. And if we want to generalise the complex interactions of all proteins
throughout the immense variety of living organisms, we are deeply bogged down in
the science of complexity.

Econophysics also contrasts with, for example, modelling of water flowing along
a ship’s sides, or a flame streaming from a gas burner. Seemingly similar in terms of
poor predictability, the latter situations follow the paradigm of deterministic chaos
rather than that of stochastic evolution. Certainly, chaotic systems can be considered
as complex in a broader sense. For some time economics was thought to be chaotic
as well, all its complexity stemming from deterministic, but hardly predictable, rules.
Nowadays, this attitude has become rather rare, as people recognise the prevalence of
true chance over deterministic chaos in economics and social phenomena.

Therefore, the proper language for econophysics modelling is that of probability
and stochastic processes. The more random they are, the more faithful are the models
born in the theoretician’s brain. But it is useful to make a distinction between two
kinds of these, which we can call ‘bare’ and ‘involved’. To see what we have in mind
consider, e.g. fluctuations in the price of silver. We can suppose that all information on
the external influences are contained in the past record of prices, and therefore changes
in the future are determined by the past, plus stochastic noise. The noise may appear
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Random variable Box 2.1

can be intuitively understood as a mathematical object X assuming random values. To
give a random variable a sensible meaning, we must be able to calculate the probability
that X falls within a given interval. All information on X resides in its probability dis-
tribution function, which is just given by the probability

FX(x) = Prob{X ≤ x}.
Obviously, the distribution function is non-decreasing, and its values lie within the inter-
val [0, 1]. Discrete random variables have distribution functions composed of a countable
number of jumps. On the contrary, if the distribution function can be expressed as an
integral,

FX(x) =
∫ x

−∞ PX(x′)dx′,

we call X a continuous random variable and the function PX(x) its probability density.
Mostly we work with several random variables simultaneously. For random variables X
and Y we define their joint probability distribution function

FX,Y (x, y) = Prob{X ≤ x, Y ≤ y}.
The key concept of the theory of probability is independence. We call the random vari-
ables X and Y independent, if their joint probability distribution can be factorised

FX,Y (x, y) = FX(x)FY (y).
If both of them are continuous, their joint probability density can also be factorised in
the same manner: PX,Y (x, y) = PX(x)PY (y).

in various ways, but essentially it is constructed from a sequence of independent and
statistically identical random events. The complexity stems from the possible coupling
between the random variables describing the events and the past price. For example,
the price may follow a random walk, but the length of the steps may vary. It can grow if
the position fluctuated much in the past, but remain small if the past fluctuations were
low. This way, we introduce a kind of positive feedback in the price fluctuations, leading
to non-trivial consequences. This type of model deserves the name ‘bare’ stochastic
process, as we do not care much about the source of the randomness or how and why
the coupling with past values of the process comes into play. This chapter will be
entirely devoted to these ‘bare’ stochastic processes.

On the contrary, the ‘involved’ processes focus precisely on those mechanisms taken
for granted in the ‘bare’ processes. We try to build a model mimicking the true sources
of the noise and emulating the real mechanisms leading to feedback loops. Necessarily,
we make assumptions about hidden variables and processes, fluctuations in the silver
price being only the tiny tip of an iceberg. Generically, these models make some hy-
potheses on the nature and behaviour of economic agents, whether they are customers,
brokers, housekeepers, or multinational companies. These ‘involved’ processes will be
investigated in later parts of this book, starting with Chap. 3.

2.1 Random walk and beyond

The simplest stochastic processes do not look back. Whatever the past was, the random
influences do not care. The most important example of these memoryless processes is
the random walk. At each time, the quantity in question increases or decreases by a
random amount, the differences at all times being statistically independent. No wonder
that this simple dynamics was tried first as a model for price fluctuations.
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Stochastic process Box 2.2

Generally, a stochastic process is a collection of random variables {Xt|t ∈ T} parame-
terised by time t, which may be continuous, T = [0,∞), or discrete, T = {0, 1, 2, . . .}. Full
information on the stochastic process is contained in the joint probability distribution of
all variables Xt. This is so complicated an object that we rarely compute it in practice.
Mostly we ask about the time dependence of the moments 〈Xk

t 〉 ≡
∑

x x
k Prob{Xt = x},

and correlation functions 〈Xt Xt′ 〉 ≡
∑

xx′ xx
′ Prob{Xt = x∧Xt′ = x′}. Often we need

the probability distribution at one specific time Pt(x) ≡ Prob{Xt = x} and its limit
when the time goes to infinity. If this limit exists, it provides the stationary one-time
distribution for the process in question.

2.1.1 Bachelier’s programme

Probabilistic approach

If anybody merits the fame of the founding father of stochastic modelling in economics,
it is certainly Louis Bachelier. In his thesis Théorie de la spéculation [102], published
in 1900, he notices that the changes in the prices quoted at the Bourse occur very often
without any apparent relation to external events. This prevents the dynamics of the
Bourse from becoming an exact science. On the other hand, the theory of probability
makes it possible to establish the probabilistic laws which must be obeyed by variations
of the prices. Knowing these laws, we can reliably predict how often various events
happen within a prolonged period of time.

To be sure, Bachelier stresses that there are two sources of the random movements
of the Bourse. The first one cannot be determined a priori without knowledge of the
actual state of the market, while the second has its origin in specific facts which are
themselves unpredictable, but once they occur, their influence on the prices can be
more or less reliably established. It is the latter randomness the speculators rely upon,
while the former is the subject of mathematical study. Therefore, we can see from the
very beginning that the mathematical theory Bachelier tries to develop cannot make
the people playing with their fortune on the Bourse rich, just as the classical theory
of probability cannot help gamblers win in a casino, although it can say a lot of things
about the outcomes of roulette. Mathematics can provide understanding, thus giving
you a comparative advantage, but not an unearned gain.

Towards Gaussian distribution

At each time the price of a commodity traded on the Bourse is a random variable.
Altogether, the sequence of prices at all limes t makes up a stochastic process Zt.
(If obscure, see Boxes 2.1 and 2.2, which explain random variables and stochastic
processes, respectively). The difference of the price from its starting value is again
a stochastic process Xt = Zt − Z0; and Bachelier asks, what should the probability
density be for the price difference at time t? It can be written as

PX,t(x) =
d

dx
Prob{Xt ≤ x}. (2.1)

The first and most essential assumption is that the price increments in subsequent time
intervals are independent, i.e. Xt′,t = Zt′ −Zt and Xt′′,t′ = Zt′′ −Zt′ are independent
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random variables. Furthermore, Bachelier assumes that the Bourse is stationary, so
that the probability distributions do not depend on the absolute beginning of time, but
only on time differences. So, the variables Xt′,t and Xt′′,t′ have the same distributions
as variables Xt′−t and Xt′′−t′ , respectively.

Evidently, the price change from time 0 to t is the sum of two independent random
variables Xt = Xt,t′ + Xt′ for any intermediate time t′, and to find the probability
density for it we need to calculate the convolution

PX,t(x) =

∫
PX,t−t′(x− x′)PX,t′(x

′) dx′. (2.2)

We assume that the probability density has the same general form for all time dif-
ferences. This statement is somewhat vague but we can give it a precise meaning,
requiring that the function does not change when we simultaneously rescale time and
price. More precisely, we desire that there exists a function of one variable G(u) so
that

PX,t(x) = t−1/µG(x t−1/µ) (2.3)

for all times, with a suitably chosen exponent µ. The scaling assumption (2.3), although
not stated with full emphasis, was one of the main ingredients of Bachelier’s work, and,
as we have seen in Chap. 1, it was not until the 1990s that its validity as well as its
limitations were put on a solid empirical basis.

Let us turn now to slightly more technical questions. In fact, it is much more
convenient to work with the characteristic function of the variable Xt, instead of the
probability density, as the convolution in (2.2) becomes a simple multiplication. In

terms of the function G(u), or rather its Fourier transform G̃(w), we can write

G̃(t1/µw) = G̃((t− t′)1/µw)G̃(t′1/µw), (2.4)

and the only remaining task is to find a function satisfying this functional relation for
any choice of times t and t′.

It needs only a little guesswork to find a solution. It is easy to see that the normal
distribution

G(u) =
1√
2π σ

e−
u2

2σ2 (2.5)

satisfies Eq. (2.4) with µ = 2. This is the result announced by Bachelier: the distribu-
tion of price changes is Gaussian.

Lévy-stable distributions

However, it is clear that other solutions of the functional equation (2.4) can also be
found. To this end we convert the multiplicative formula (2.4) into an additive one

taking the logarithm g(v) = ln G̃(v1/µ), so that

g((t+ t′)wµ) = g(t wµ) + g(t′ wµ). (2.6)

Differentiating first with respect to t and then with respect to t′, we find that the
second derivative of g(v) is zero for any v. Moreover, taking the limit w → 0 we obtain
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Central limit theorem Box 2.3

states that the probability distribution of a sum Sn =
∑n

i=1 Xi of many independent and
identically distributed random variables Xi approaches the normal distribution, with the
only condition that the distribution of the individual variables Xi is not ‘too wild’. More
precisely, if the average 〈Xi〉 = µ and the second cumulant 〈(Xi)

2〉 − 〈Xi〉2 = σ2 are
finite, then

limn→∞ Prob
{
Sn − nµ ≤ √

nσ x
}
=

∫ x

−∞ e−
1
2
y2 dy√

2π
.

g(0) = 0. Therefore, the general solution of (2.6) is the linear function g(v) = −av
with a constant a. However, we must be careful when extending the result to negative
values of v, because the power vµ may not exist. The problem can be cured by always
taking the modulus of v, at the price that the function G̃(w) may not be analytic at
w = 0. Having this in mind, we conclude that the most general form of the Fourier
transform of the distribution function is the stretched exponential

G̃(w) = e−a|w|µ . (2.7)

For µ = 2 we recover the previous result, but any value of µ < 2 should work equally
well. For example, for µ = 1 we get a simple exponential G̃(w) = e−a|w| which is the
Fourier transform of the well-known Cauchy distribution

G(u) =
a

π

1

u2 + a2
, (2.8)

also called the Lorentz distribution by physicists. However, this is only the simplest-
ever example of the so-called Lévy-stable distributions, which all share the common
feature that they keep their form upon adding the underlying random variables, i.e.
if X1 and X2 are independent random variables with the same Lévy distribution,
then the sum X1 + X2 again has the same Lévy distribution. For µ < 2 the Lévy
distributions have another very important property. They decay as a power for large
values of the argument

G(u) ≃ A±|u|−1−µ for u→ ±∞ (2.9)

where A± are constants. For the general value of the parameter µ, the Lévy distribution
cannot be expressed using only elementary functions, but it is always possible to write
it as an inverse Fourier transform of a stretched-exponential function, as we have seen
above. For further information on Lévy distributions see also Box 7.1.

Random walk

Thus, the ensemble of all Lévy distributions, together with the Gaussian (or normal),
constitute all possible solutions of the problem posed by Bachelier, to find a distribu-
tion of price changes which preserves its form as time proceeds onward. We may ask
why only the normal distribution was accepted as the correct result. Most probably
it was just the simplest possibility. Moreover, as Bachelier notes, the same result can
be obtained by another, rather intuitive procedure. One of the principles Bachelier
postulates about the movements of the stock market states that the true price, i.e.
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price minus the long-time trend, rises or decreases with exactly the same probability.
If the changes within a very short time interval ∆t can assume only two values ±∆x,
the price performs a symmetric random walk with step size ∆x. If there are n steps
total in such a walk, the probability that k of them will go up, so that the walk moves
the distance Xn∆t = (2k − n)∆x from the initial position, is given by the binomial
distribution

Prob
{
Xn∆t = (2k − n)∆x

}
=

1

2n

(
n

k

)
. (2.10)

If we observe the price movements on a ‘mesoscopic’ time scale, where individual tiny
price jumps are invisible but the relevant price changes are relatively slow, we can make
the limit of continuous time, ∆t → 0, n → ∞, with t = n∆t and (∆x)2/∆t = 2σ2

kept constant. Then, the binomial coefficient turns into a Gaussian

1

2n

(
n

k

)
≃
√

2

π n
e−

(2k−n)2

2n , (2.11)

and the binomial distribution (2.10) for discrete variable Xn∆t converges to the normal
one, Eq. (2.5), for its continuous counterpart U = Xt/

√
t. This is one of the basic

results of elementary probability theory. It also exemplifies the well-known and deep
piece of knowledge called the central limit theorem (see Box 2.3). The elementary
changes in price may not have the same size. Indeed, we know nearly nothing about
the minute influences pushing the stock market a little up or down. The point is that we
can well do without that knowledge. Whatever are the elementary movements which
compose the price change at longer time scales, they result in the ubiquitous normal
distribution, except for some ‘pathological’ cases, neglected for decades. Nowadays,
we know that just these pathologies constitute the essential (and most interesting)
features of price fluctuations.

Empirical hints

Bachelier gives numerous examples of how the theory can predict empirical findings, if
we know just the parameters of the normal distribution of price changes, i.e. the average
growth and the volatility. The simplest one is perhaps calculation of the interval of
price changes such that the normal distribution predicts equal probabilities 1/2 of
finding the price inside and outside the interval. What is interesting in Bachelier’s
numbers is the systematic deviation from the prediction. For the time interval of one
month, he finds that the price change lies outside in 27

60 = 0.45 of the cases recorded,
instead of 0.5, and for the interval of one day this fraction is even lower and equals
0.4387. If Bachelier had used the Lévy-stable distributions instead of the Gaussian,
the agreement would have been better, and he would have gained immortal fame as
the discoverer of fat tails in price fluctuations!

2.1.2 Geometric random walk

There is one thing in Bachelier’s theory which is serious enough not to be cast aside. If
the price moved as a random walk, there would be no guarantee that it would remain
positive. Neither does use of the Lévy distributions cure the flaw. Although negative
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Stochastic differential equations Box 2.4

They look similar to normal (deterministic) differential equations but there are some cru-
cial differences. Any given stochastic differential equation defines a stochastic process Xt,
or a family of processes, distinguished by initial conditions prescribed for the solution
of the stochastic differential equation. The time is assumed to be continuous, t ∈ [0,∞),
and the solution is considered to be a limit of processes obtained by discretisation of the
time t = i∆t, i = 0, 1, . . .. (We shall always suppose ∆t > 0.) The essential ingredient
of all non-trivial stochastic differential equations are the independent increments ∆Wt,
representing the sources of external noise. They are random variables, independent as
long as they correspond to different times t. We typically assume that their mean value
is zero 〈∆Wt〉 = 0. An example of a discretized equation is

∆Xt ≡ Xt+∆t −Xt = a(t)∆t+ b(t)∆Wt

with given functions a(t) and b(t). The problem with taking the limit ∆t → 0 in this
equation is that, contrary to normal differential equations, we do not possess any sensi-
ble recipe for defining the ‘derivative’ lim∆t→0 ∆Wt/∆t. This fact has two main conse-
quences. The first one is rather formal. The standard notation of stochastic differential
equation corresponding to the ∆t → 0 limit of the above discretised process is

dXt = a(t)dt+ b(t)dWt,
which may seem peculiar at first sight but it is actually both rigorous and useful in
practice.
The second consequence is deeper. The quantity ∆Wt does not behave as an ordinary
differential in the limit ∆t → 0. Instead, its square is exactly [dWt]

2 = D dt where D,
the diffusion constant, is the only parameter characterising the noise dWt. (We neglect
the further complication that the constant D may in fact depend on t.) This looks really
odd. But as soon as we get used to such ridiculous behaviour from the independent in-
crements dWt, we have essentially all the machinery of stochastic differential equations
in our hands. For more details we refer the reader to the books [575, 576].

prices did occur in various obscure privatisation campaigns in ex-communist countries
in the East, in a normal economy it is sheer nonsense. Random walk could perhaps
describe a short-time price evolution, but we must look for more adequate modelling
on a wider time horizon.

Logarithm of price

Let us now remember M. F. M. Osborne, a physicist who worked on the superfluid-
ity of thin films of liquid helium. In 1959 he suggested [111] that it is the logarithm
of the price of a commodity which performs a random walk, not the price itself. He
supported the idea with two complementary arguments. From an empirical point of
view, he showed that the distribution of changes in log prices is symmetric around its
maximum and that its shape is nearly Gaussian. From an abstract stance, Osborne
claimed the applicability of the Weber-Fechner law, which states that equal ratios of
physical stimuli, like sound frequency or light intensity, correspond to equal intervals
of subjective sensation. If it is commonly accepted in physiological optics and acous-
tics, why not use the same principle when we describe the subjective impact of price
changes?

If Zt is the price at time t, Osborne’s assumption implies that it is the difference of
price logarithms Xt = lnZt− lnZ0 that is normally distributed, which in turn means,
by trivial substitution, that the price itself has log-normal distribution
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Fokker-Planck equation Box 2.5

is a partial differential equation governing time evolution of the one-time probability
density Pt(x) =

d
dx

Prob{Xt ≤ x} = 〈δ(Xt − x)〉 for the process generated by a stochas-
tic differential equation. A more precise notation for this function would be PX,t(x),
indicating that the probability density in question corresponds to the random variable
X. We shall in most cases omit the index X, unless it is necessary to avoid ambiguity.
Let us show the derivation of the Fokker-Planck equation for the equation dX(t) = a dt+
dW (t), where the noise Wt has the diffusion constant D. For any twice-differentiable
function φ(x) we have, in Itô convention, dφ(Xt) = φ′(Xt) dXt +

1
2
φ′′(Xt) [dXt]

2 =

φ′(Xt) dWt +
[
a φ′(Xt) +

1
2
D φ′′(Xt)

]
dt. So, ∂t 〈φ(Xt)〉 =

∫
φ(x) ∂tPt(x) dx =∫ (

aφ′(x) + 1
2
Dφ′′(x)

)
Pt(x) dx =

∫
φ(x)

(
−a ∂x + 1

2
D(∂x)

2
)
Pt(x) dx. As this identity

should hold for any function φ(x), we obtain
∂tPt(x) = −a ∂xPt(x) +

1
2
D (∂x)

2 Pt(x),
which is the Fokker-Planck equation for the above stochastic differential equation.

PZ(z) =
1√

2π σz
exp

(
− (ln z − ln z0)2

2σ2

)
. (2.12)

Nowadays, knowing all about fat tails and other subtle stylised facts, this result may
seem irrelevant, but historically it had an enormous impact. The beginnings of almost
all mathematical finance can be traced to Osborne’s result, expressed formally as Eq.
(2.12).

Stochastic differential equations

In the decades following the work of Osborne, continuous time finance modelling grew
enormously [110]. The underlying mathematical apparatus relies on the very powerful
machinery of stochastic differential equations (see Box 2.4).

Let us first investigate the simpler case advocated by Bachelier, which is the random
walk. In the continuous time setup it becomes the Brownian motion. Denote Zt the
price at time t. The underlying stochastic differential equation is perhaps the simplest
ever possible

dZt = σ dWt, (2.13)

where we supposed that the diffusion constant for the noise dWt is D = 1 and we
introduced instead the parameter σ, quantifying the amplitude of the price fluctua-
tions. Then, obviously, 〈dZt〉 = 0 and 〈[dZt]2〉 = σ2dt. We can write the corresponding
Fokker-Planck equation for the distribution of the price at time t (see Box 2.5 if un-
clear)

∂

∂t
Pt(z) =

σ2

2

∂2

∂z2
Pt(z). (2.14)

A trained physicist immediately recognises the diffusion equation. No wonder, indeed,
for Brownian motion is the microscopic mechanism of the macroscopic effect we call
diffusion. Solving Eq. (2.14) requires specification of initial conditions, which depend
on the particular question we pose to ourselves. If we want to know the probability
that the price changes by a certain amount from time 0 to time t, the appropriate
initial condition is P0(z) = δ(z − z0), where z0 is the assumed price at time 0. We
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immediately get the solution, which is again the well-known normal (or Gaussian)
distribution

Pt(z) =
1√

2πt σ
exp

(
− (z − z0)2

2σ2 t

)
. (2.15)

This is Bachelier’s result, as we expected.
The noise in Eq. (2.13) appears as an additive term. In each time interval it adds

something to the random variable in question, in our case to the price. The price
process suggested by Osborne is different. The change in price is proportional to the
price itself, and the stochastic differential equation describing such situation is

dZt = σZt dWt. (2.16)

We call this random influence multiplicative noise, as opposed to additive noise in Eq.
(2.13).

Now we cannot avoid choosing between the Itô and Stratonovich conventions (see
Box 2.6). It is generally accepted that stochastic differential equations describing eco-
nomic processes should use the former convention. This leads to the following Fokker-
Planck equation

∂

∂t
Pt(z) =

σ2

2

∂2

∂z2

(
z2 Pt(z)

)
. (2.17)

Before solving it, we shall try to extract some information directly from Eq. (2.16).
Quite trivially, the average price 〈Z〉 does not change in time due to the Itô convention
we adopted. Indeed, d〈Z〉 = σ〈Zt dWt〉 = 〈Zt〉 〈dWt〉 = 0. On the other hand, the
logarithm of price does change, as

d〈lnZ〉 =
〈 1

Z
dZ − 1

2Z2
(dZ)2

〉
= σ〈dW 〉 − σ2

2
dt = −σ

2

2
dt. (2.18)

This implies a (downward) trend in the logarithm of price. Such trend modifies the
normal distribution we expect for the logarithm of price. In fact, the trend can be
tuned by hand, introducing an additional term µZdt on the right-hand side of Eq.
(2.16). However, such modification does not bring anything essentially new and we
omit it for the sake of simplicity. The explicit solution of the Fokker-Planck equation
(2.17) is then

Pt(z) =
1√

2πt σz
exp

(
−
(

ln z + σ2

2
t
)2

2σ2t

)
. (2.19)

We recovered the distribution postulated by Osborne, justifying to a large extent the
assumption that the process underlying price fluctuations can be adequately modelled
by multiplicative stochastic differential equations.

The conclusion we have just reached is the point of departure for a large segment
of classical mathematical finance. The gem amongst its results is the Black-Scholes
equation and the whole option pricing theory built around it. However, this topic is so
well and amply covered in finance books [110] that we feel quite comfortable skipping
it here.
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Itô vs Stratonovich convention Box 2.6

Imagine a simple stochastic differential equation dXt = Xt dWt, with noise dWt char-
acterised by the diffusion constant D. The problem we encounter here is that it is
not clear in the right-hand side of the equation whether Xt and dWt should be con-
sidered independent or not. To understand what is happening here we must return
to the discretised equation and write the difference ∆Wt ≡ Wt+∆t − Wt in place of
dWt. Then if the factor Xt is taken exactly at time t even before taking the limit
∆t → 0, then it is independent of dWt and, e.g. 〈Xt dWt〉 = 〈Xt〉〈dWt〉 = 0. This
is the Itô convention. However, there are other possibilities. If we take Xt+∆t/2 in-
stead of Xt, we might naively expect the same result for ∆t → 0. This is wrong,
though. Expanding in the Taylor series, we have Xt+∆t/2 ≃ Xt + 1

2
dXt ∆t/dt, so

〈Xt dWt〉 ≡ lim∆t→0〈Xt+∆t/2∆Wt〉 = 〈Xt〉〈dWt〉 + 1
2
〈Xt [dWt]

2〉 = 1
2
D〈Xt〉 dt. This

is the Stratonovich convention. Jumping back and forth between the two conventions is
a large part of the job in solving stochastic differential equations. Which convention is
appropriate for a particular situation cannot be decided a priori by mathematics alone
but needs some physical or practical insight into the problem in question.

2.1.3 Continuous-time random walk

Time is granular

There is an obvious reason why the continuous-time finance formalism presented above
is principally flawed. The use of stochastic differential equations relies on the assump-
tion that the source of the noise emits independent increments for arbitrarily small
time intervals ∆t. However, in reality the independence cannot persist taking the limit
∆t → 0, and a certain time scale ∆tc, on which the actions of economic agents are
correlated, comes into play. To be sure, when we observe the stock market at times
much longer than ∆tc, the ‘granularity’ of time has a negligible effect, and stochastic
differential equations do the financial experts a pretty good service. However, in re-
cent decades the focus of the analysts moved to high-frequency and tick-by-tick data,
where the time is measured in seconds. On this scale of resolution the assumption of
independent increments breaks down, and stochastic differential equations are of little
use.

One might try to overcome this obstacle by using a discrete time variable, postu-
lating the correlation time ∆tc as the length of a single time step. We shall see later
how this idea works in the so-called GARCH models. On the other hand, physical
time is indeed continuous, and a formalism would be welcome that would reconcile
the continuity of time with the non-negligible correlation in increments. We shall show
here how it can be implemented within the formalism of the continuous-time random
walk [197, 200, 201, 577–583].

The walker is supposed to perform instantaneous jumps of lengths Xi, at moments
Ti, i = 1, 2, . . .. The waiting times ∆Ti = Ti − Ti−1 are independent and identically
distributed random variables, and so are the jump lengths. However, we admit there is
a dependence between a waiting time and the jump occurring immediately afterwards.
All input information on the process is then contained in the joint probability density
PX∆T (x, t) for Xi and ∆Ti. We have seen in Sec. 1.2.3 the empirical data on waiting
time distributions. In most reported cases the distribution seems to decay considerably
faster than a power law.
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Fourier and Laplace transforms Box 2.7

In this book, we use the following notation

f̂(z) =
∫∞
0

e−zt f(t) dt
for the Laplace transform of a function f(t), and

f̃(p) =
∫∞
−∞ eipx f(x) dx

for the Fourier transform of a function f(x). We also use the notation

f̃(p) =
∑

x∈Λ eipx f(x)
for the Fourier transform on d-dimensional hypercubic lattice Λ = {(L − 1)/2, . . .
. . . ,−1, 0, 1, . . . , (L− 1)/2}d. Its inverse is, for L → ∞,

f(x) = 1
(2π)d

∫ π

−π
e−ipx f̃(p) ddp.

Among the elementary properties of the Laplace transform we shall need the following

if g(t) = e−atf(t), then ĝ(z) = f̂(z + a)

limt→∞ f(t) = limz→0+ zf̂(z)

f̂ ′ (z) = zf̂(z)− f(0+).
The behaviour of f(t) for t → ∞ is related to the position and type of the singular-

ity of f̂(z) closest to the point z = 0. Roughly speaking f̂ (z) ∼ (z + z0)
α means that

f(t) ∼ t−1−αe−z0t. Some examples are shown in the following table.

f(t) 1 t t−1/2 (t+ 1)−3/2

f̂(z) z−1 z−2 (π/z)1/2 2
(
1− ez erfc(

√
z)
√
πz

)

We also need the Laplace transform of various Bessel functions (assume ν ∈ N).
f(t) I0(t) Iν(t) I20 (t)

f̂(z) 1/
√
z2 − 1 (z −

√
z2 − 1 )ν/

√
z2 − 1 2K(2/z)/(πz)

The number of jumps Nt in the time interval [0, t] is also a random number. The
distance travelled meanwhile is then

Yt =

Nt∑

i=1

Xi (2.20)

and we would like to interpret the stochastic process Yt as change in the logarithm
of price from time 0 to t. It is easy to write a recurrence equation for its probability
density PY,t(y). Two cases must be distinguished. Either Nt = 0, i.e. the price never
changed, or Nt > 0 and we can relate the distribution to the state of one jump earlier.
These two cases combined make the following equation

PY,t(y) = δ(y)r(t) +

∫ t

0

∫ ∞

−∞
PX∆T (x, t′)PY,t−t′(y − x) dxdt′ (2.21)

where r(t) =
∫∞
t

∫∞
−∞ PX∆T (x, t′) dxdt′ relates to the probability of no-jump. A formal

solution of this equation is possible using the Laplace transform in time domain and
the Fourier transform in ‘space’, i.e. along the log-price axis (see Box 2.7 for notation).
We get

̂̃
P Y,z(p) = r̂(z)

1

1 − ̂̃
P X∆T (p, z)

. (2.22)

Now, all that remains is to (numerically) invert both the Fourier and Laplace trans-
forms.
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A more explicit expression is found in the decoupled case: suppose that Xi and ∆Ti
are independent, so PX∆T (x, t) = PX (x)P∆T (t). Then, we can separately calculate the
probability PN,t(n) that the price makes n jumps from time 0 to t and the probability
density PY (y|n) of the sum of lengths over the n jumps, for n fixed. Combining the
two quantities we get

PY,t(y) =

∞∑

n=0

PY (y|n)PN,t(n). (2.23)

The ingredients can be calculated by the n-fold convolution

PY (y|0) = δ(y)

PY (y|n) =

∫ ∞

−∞
PY (y − x|n− 1)PX(x)dx

PN,t(0) = r(t)

PN,t(n) =

∫ t

0

PN,t−t′(n− 1)P∆T (t′)dt′.

(2.24)

As a typical and solvable example, let us investigate the case of normally distributed
jump lengths and exponentially distributed waiting times

P∆T (t) = ρ e−ρ t

PX(x) = (2πσ2)−1/2e−x
2/(2σ2).

(2.25)

The multiple convolutions can be obtained explicitly and the expression (2.23) becomes

PY,t(y) = e−ρ tδ(y) +

∞∑

n=1

e−ρ t
(ρ t)n

n!
(2πnσ2)−1/2e−y

2/(2nσ2). (2.26)

We are mainly interested in the tails of the distribution. For large y and t the sum can
be approximated by an integral, namely

PY,t(y) ≃
∫ ∞

1

e−ρ t
(ρ t)n

n!
(2πnσ2)−1/2e−y

2/(2nσ2)dn = e−ρ t
∫ ∞

1

e−ψ(n) dn (2.27)

where ψ(n) ≃ n
(

ln n
ρt
−1
)
+ 1

2
lnn+ y2

2nσ2 . The integral can be approximately computed

by the saddle-point method (see Box 2.9). We find that the exponent has a unique
minimum, ψ′(n∗) = 0 for n∗ ≃ ρt, and at the end of the calculations we recover the
normal distribution for the change of price logarithm

PY,t(y) ≃ 1√
2πσ2ρt

e
− y2

2σ2ρt , t→ ∞. (2.28)

The continuous-time random walk, at least for the simple choice of waiting-time dis-
tribution (2.25), has the same long-time behaviour as both the usual random walk
and the Brownian motion. We can easily guess why it is so. The exponential dis-
tribution (2.25) exhibits a characteristic time scale ts = ρ−1, and if we observe the
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Anomalous diffusion Box 2.8

In genuinely physical systems it can occur due to a lack of characteristic scale in the
inter-event times. A textbook example is the movement of a particle trapped in the
regular lattice of eddies in a liquid. Convective cells formed in a not-too-thick layer of oil
in a saucepan heated from below may serve for demonstration. If we drop a little ground
pepper into the oil we can observe that the small pepper particles remain for a long time
within the same convective cell before they jump to the next, only to be imprisoned
there for another length of time. The overall movement of such particles is therefore
anomalously slow, and the mean distance x from the original to the final position does
not scale with time according to x ∼ t1/2 as in ordinary diffusion but obeys a different
law x ∼ tτ with τ < 1/2. For a thorough review of the phenomenon, see Ref. [194].

system at much longer times, t ≫ ts, the difference between random walk in dis-
crete time, continuous-time random walk, and Brownian motion becomes irrelevant.
The same conclusion would hold for any distribution of waiting times, on the con-
dition a single typical finite time scale ts can be identified. Trivially it applies if all
waiting times are equal, and a slightly less trivial example is provided by the distribu-
tion P∆T (t) = ρ3

√
2/π t2e−(ρt)2/2, which again has the characteristic scale ts = ρ−1.

Mathematically it is reflected by the fact that in such cases the distribution PN,t(n)
resulting from the many-times-repeated convolution develops a sharp peak around the
value n∗ ≃ t/tc for large enough times t; hence the applicability of the saddle-point
method in the integral (2.27).

Anomalous diffusion

However, as soon as the waiting times do not possess a characteristic scale, the situation
becomes quite different. Instead of ordinary diffusion of price we encounter anomalous
diffusion (see Box 2.8 and Ref. [194]). Such a situation occurs if the waiting time
distribution has a power-law tail with exponent 1 + µ < 2, resulting in a divergent
average.

In technical language, the difference consists in the fact that the multiple convo-
lutions in (2.24) approach a Lévy distribution with a power-law tail, rather than a
narrow peak. The use of the saddle-point method is no longer justified. Nevertheless,
we can guess at least some features of the continuous-time random walk in this case.
Indeed, the distribution PN,t(n) is essentially the n-fold convolution of the distribu-
tion of waiting times P∆T (t), and if P∆T (t) is a Lévy distribution with parameter
µ < 1, making convolutions with itself yields back the Lévy distribution with the
same parameter µ. Therefore, it behaves like PN,t(n) ≃ n−1/µP∆T (tn−1/µ).

Now we must distinguish the regimes of large and small n. In so doing we keep in
mind that we are interested in long-time behaviour, so the argument tn−1/µ is large
for a fixed and not too big n. Here, the power-law tail of the Lévy distribution prevails,
and we have PN,t(n) ≃ A+n

−1/µ(tn−1/µ)−1−µ = A+t
−1−µn. On the other hand, the

Lévy distribution P∆T (t) approaches a constant (let us denote it B) for t → 0, so
for a large enough n we have PN,t(n) ≃ Bn−1/µ. We can estimate the position n∗ of
the maximum of the distribution PN,t(n) by equating the just-established asymptotic
regimes

B(n∗)−1/µ ≃ A+t
−1−µn∗. (2.29)
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Saddle-point method Box 2.9

is an approximation used for calculation of integrals like
I =

∫
e−Nf(x)dx

for large N . The trick consists in expanding the function f(x) around its minimum, for
this is just the region which dominates the integral. We proceed by first solving the
equation f ′(x∗) = 0 for the location of the minimum (with condition f ′′(x∗) > 0), then
neglecting the terms of order (x−x∗)3 and higher, and performing the remaining Gaus-
sian integration. The result is

I =
∫
e−N

[
f(x∗)+ 1

2
f ′′(x∗)(x−x∗)2+...

]
dx ≃ e−Nf(x∗)

√
2π

N f ′′(x∗)
≃ e−Nf(x∗).

The last approximate equality is based on the observation that, for large N , the expo-
nential factor varies much faster than the algebraic factor N1/2. Indeed, the saddle-point
method works better the larger N is. What is ‘large N ’ in a particular case mostly de-
pends on the value of the second derivative f ′′(x∗), but rigorous analysis of this question
may become a surprisingly difficult problem.

Hence the most probable number of jumps performed in time t is

n∗ ≃
(
B

A+

) µ
1+µ

tµ. (2.30)

Since the length of the jumps is normally distributed, the variance of the price change
is scaled with the number of jumps as 〈Y 2

t 〉 ≃ σ2n. Assuming that the typical number
of jumps coincides with the most probable value n∗ given by (2.30), we find that the
price change is scaled anomalously with time

〈Y 2
t 〉 ∼ tµ. (2.31)

For example, if the tail of the waiting time distribution decays as P∆T (t) ∼ t−3/2, we
have µ = 1/2, and the typical price change perceived after time t behaves like t1/4, so
the price diffusion is slower compared to the ordinary random walk. This observation
holds for continuous-time random walk in general. If the waiting times are anomalously
long, which is mathematically expressed by their power-law distribution, the price
movements become subdiffusive, i.e. anomalously slower than ordinary diffusion. We
have 〈Y 2

t 〉 ∼ t2H with H = µ/2 for µ < 1 and H = 1/2 for µ ≥ 1. On the other hand,
in reality we observe rather the opposite. The stock-market prices are superdiffusive,
and H ≃ 0.6 in most measurements, as we have seen in Sec. 1.2.2. To account for this
phenomenon, we must keep trying to get something else.

2.2 GARCH and related processes

2.2.1 Markovian or not? Bad question

In all models described so far we have assumed that the change in price in a certain
interval of time (t, t+ ∆t) does not influence the later price change, from time t+ ∆t
to t+ 2∆t; or, at least, the influence is ‘weak’. In mathematical parlance, we assumed
that the price fluctuations are described by a Markov process, which is memoryless, or
at least the memory is finite and of fixed length. The consecutive price differences are
independent random variables, and the underlying stochastic process has independent
increments.
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Markov process Box 2.10

is a special type of stochastic process. Roughly speaking, a stochastic process has the
Markov property if it does not remember its past. More precisely, the multi-time condi-
tional probabilities can be simplified to two-time ones:

Prob{Xt ≤ x|Xt1 ≤ x1 ∧Xt2 ≤ x2 ∧ . . . ∧Xtn ≤ xn} =
= Prob{Xt ≤ x|Xt1 ≤ x1}

for any n ∈ N and any ordered collection of times t > t1 > t2 > . . . > tn.
A Markov process for which Xt takes values in a finite or countable set is called a Markov
chain. All information on a Markov process is in principle contained in the initial con-
dition X0 and the transition probabilities (for discrete time) or rates (for continuous
time). The transition probabilities from state x1 to x2 are simply

W (x1, x2) = Prob{Xt+1 = x2|Xt = x1}.
The transition rates w(x1, x2) are defined for x1 6= x2 by

Prob{Xt+τ = x2|Xt = x1} = w(x1, x2) τ + o(τ )
as τ → 0+. In general, the transition probabilities/rates may depend on the time t, but
we shall not come across a model with that feature in this book.
The one-time probability for the process to be in the state x, which is Pt(x) ≡ Prob{Xt =
x}, satisfies a master equation, which for discrete time has the form

Pt+1(x) =
∑

y W (y, x)Pt(y)
while for continuous time it is

d
dt
Pt(x) =

∑
y( 6=x)

[
w(y, x)Pt(y)−w(x, y)Pt(x)

]
.

Besides practical simplicity there are good principal reasons to build the theory of
stock-market fluctuations on Markov processes, or processes with independent incre-
ments. And we can equally well find principal reasons against that choice. So, what are
the pros and cons? First, as we remarked in Chap. 1, when we look at the correlations
between price changes at different times, we find values below the inevitable statistical
noise. We can consider it proved that the price increments are uncorrelated. As a men-
tal shortcut we may deduce that the increments are also independent. Alas! As every
student of elementary probability remembers, examples of random variables which are
uncorrelated but not independent can be constructed (quite easily, after all), and the
stock-market fluctuations are a real-life incarnation of such a phenomenon. Moving
swiftly from an apparent pro to a marked con, we must notice that not only do the
price increments exhibit mutual dependence, but this dependence is very protracted.
The correlation function of absolute returns decays very slowly, showing the effect
we usually call volatility clustering. It is not crucial now whether the decay follows a
power law with a small exponent, or is logarithmic, or assumes yet another form. In
any case, the decay is much slower than exponential, which means that not only is
there a non-negligible memory effect, but this memory is very long, maybe potentially
infinite. The idea of modelling the stock prices directly by a Markov process, however
ingeniously designed, must be abandoned. On the other hand, however complex the in-
trinsic dynamics of the economy may be, the driving forces of the stochastic behaviour,
as opposed to deterministic chaos, if there is any, are random external ‘shocks’, usu-
ally very small, sometimes large, but much less mutually correlated than the resulting
movements of the price. It is quite reasonable to suppose that the external influences
are represented by independent random variables, but the response of the stock market
to these influences is far from straightforward and produces strong dependence in the
prices even when there was no statistical dependence in the input. We may formalise
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the idea by saying that the stochastic model of the stock market is a kind of a thermal
processor. At the input, there is a random, completely featureless noise with normal
distribution; and at the output, we obtain a signal with many non-trivial properties,
including fat tails, scaling, volatility clustering, or even multifractality.

To be sure, one may say that the external influences themselves can have behaviour
as complex as the price fluctuations. But even if it were so, the argument does not
bring us any closer to answering the question ‘why?’ Indeed, if the price only mechan-
ically follows the complex dynamics of the outside world, then we should embark on
modelling the outside world. Most probably, if we remain within the realm of stochas-
tic processes, the thermal processor will again be our No. 1 choice. Simplicity in,
complexity out: that is the goal.

2.2.2 Heteroskedasticity

The phenomenon of volatility clustering implies that the variance of price increments is
not constant but changes in time. This feature is called heteroskedasticity (sometimes
spelled heteroscedasticity), as opposed to homoskedasticity, characterised by constant
finite variance of the increments. One may be tempted to simply choose the variance
in each step anew, from some well-suited distribution. But the long memory present in
the economic signals disqualifies such a simple idea. The variance is indeed a random
variable, but should depend strongly on the past development. Imagine yourself in
the skin of a nervous investor (investors are always nervous). You observe large price
movements in yesterday’s listings. Stress is mounting: does it mark the beginning of
a bubble or is it the first sign of a crash? You do not know. Surely you will be even
more vigilant and most probably increase your trading activity. This way you will
contribute to the rising turmoil in the market. The volatility will grow. The mechanism
we have just described motivates the study of the so-called Autoregressive Conditional
Heteroskedasticity (ARCH) and Generalised ARCH (GARCH) processes [172, 422,
532, 584–589].

ARCH process

In 1982 Robert F. Engle introduced a stochastic process commonly referred to by its
acronym ARCH [584]. The process runs in discrete time t and in fact consists of two
coupled processes, the price increment Xt of an asset at time t and its instantaneous
variance St. The past prices influence the present variance. To be specific, the new
variance is the sum of an a priori contribution with a linear combination of squares of
the past price changes. If we go q steps back (but not more), the process belongs to
the category denoted ARCH(q). Formally, we write

Xt =
√
StWt

St = α0 +

q∑

l=1

αlX
2
t−l

(2.32)

where Wt are independent and equally distributed random variables with zero mean,
〈Wt〉 = 0, and unit variance 〈W 2

t 〉 = 1. A normal (i.e. Gaussian) distribution is often
chosen for them, but other distributions may serve equally well. If we recall our idea
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of the thermal processor, the trivial process Wt can be considered the input and the
process Xt describing the price movements the output. The volatility St appears as an
auxiliary variable, or a hidden internal layer, providing us with the desired complexity.
Sophisticated designs may include many such hidden layers, but for our purpose one
is enough.

Of these processes, the simplest one is ARCH(1). It exposes all typical behaviours
of the whole ARCH family, and we shall now show its essential properties. The second
equation of (2.32) is simplified to

St = α0 + α1X
2
t−1. (2.33)

The first quantity we are interested in is the volatility. We must distinguish between
the conditional volatility, calculated for a given St

〈X2
t |St〉 = St (2.34)

and unconditional volatility, calculated from the former by averaging over St. This is
easy to perform and a straightforward calculation leads to a linear equation for this
quantity

〈X2
t 〉 = 〈St〉 = α0 + α1〈St−1〉 . (2.35)

If α1 < 1, the stationary state exists and the volatility is

σ2 ≡ lim
t→∞

〈X2
t 〉 =

α0

1 − α1
. (2.36)

Higher moments are slightly more involved. Again, we start with the conditional av-
erage

〈X2k
t |St〉 = ck S

k
t . (2.37)

The set of constants ck = 〈W 2k
t 〉, k = 1, 2, . . . depends on the distribution of the

variable Wt. If it is Gaussian, we have ck = 1 · 3 · 5 · . . . · (2k − 1), while for Wt = ±1
with equal probabilities, we obtain ck = 1 for all k. In any case, c1 = 1. Following
the steps which lead to the expression for volatility, we obtain the set of equations
for averages in stationary state am ≡ limt→∞〈Smt 〉. In fact, it is rather a sequence of
recursion formulae

am =
m∑

l=0

(
m

l

)
αm−l
0 αl1 cl al (2.38)

which can be solved iteratively. The first variable a1 = σ2 was already calculated in
(2.36). The next two are

a2 = α2
0

1 + α1(
1 − α1

)(
1 − α2

1 c2
)

a3 = α3
0

1 + 2α1 + 2α2
1 c2 + α3

1 c2(
1 − α1

)(
1 − α2

1 c2
)(

1 − α3
1 c3
) ,

(2.39)

and we could, in principle, calculate as many moments as we wish. All of them are
rational functions of the parameter α1. The most important piece of information is
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contained in the denominators, showing that the 2k-th moment ak has poles at values

α1 = 1 and α1 = c
−1/l
l , for l = 2, 3, . . . , k. To get some idea about the position of the

poles, assume that Wt is normally distributed. For a large enough l we approximate

the factorial by the Stirling formula and obtain c
−1/l
l ≃ e/(2 l). Thus, the smallest pole

in the 2k-th moment behaves like ∼ k−1, and we can find an arbitrarily small pole if
we go to a high enough moment.

What can be inferred about the return distribution averaged over all times

P>X (x) ≡ lim
T→∞

1

T

T∑

t=0

Prob{|Xt| > x} (2.40)

from what we know about the moments ak? Unfortunately, the precise form is not yet
accessible, but we can still say something about the tail of the distribution.

Suppose we slowly increase the value of the parameter α1 and observe the behaviour
of a fixed moment ak. The simplest example is the volatility σ2 = a1. As long as α1

remains smaller than 1, volatility stays finite. Therefore, the distribution of returns
is certainly not described by a Lévy distribution. Those who would hastily conclude
that the distribution lacks a power-law tail would be wrong, though. Higher moments

testify to the error. The poles indicate that 2k-th moment is finite only for α1 < c
−1/k
k

and there will always be a moment which diverges, together with all higher ones. The
source of the diverging moments is in fact the power-law tail of the return distribution,

which is always there. For special values α1 = c
−1/k
k we can conclude that

P>X (x) ∼ x−γ (2.41)

with γ = 2k. Although the analytic form of the return distribution is not known
exactly, it is extremely easy to check the power-law tails in a numerical implementation
of the ARCH process. In Fig. 2.1 we can see an example of the outcome of such a
simulation. In this case the variable Wt was allowed to assume one of the four values
±g, ±2g, with equal probability 1

4
. The parameter g is adjusted to g =

√
2/5 in order

that Wt has unit variance. Hence we calculate the constants ck and obtain the following
expression which relates the exponent γ in the distribution (2.41) to the value of the
parameter α1 of the ARCH(1) process

α1 =
5

2

( 2

1 + 2γ

) 2
γ

. (2.42)

The calculation of moments guarantees validity of the formula (2.42) only for an even
integer γ, but there seems to be no hindrance for analytical continuation to all real
values. Indeed, the inset in Fig. 2.1 confirms that the power-law tails seen in computer
realisations of the ARCH(1) process do obey Eq. (2.42).

Besides the return distribution, we are also interested in the volatility autocorrela-
tion. It can be calculated, provided that the fourth moment is finite. The key ingredient
is the conditional probability density for the variable Xt if the value Xt−1 of one step
earlier is prescribed. That is

PXt|Xt−1
(x|x′) =

1√
α0 + α1 x′ 2

PW

(
x√

α0 + α1 x′ 2

)
(2.43)
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Fig. 2.1 Results of the simulation of ARCH(1) process. In the left panel, return distribution

for the values of the parameter α1 = 5/
√
34 (2), 0.9 (▽), 0.95 (◦), and 0.999 (△). The lines

are the power laws ∝ x−2 (solid) and ∝ x−4 (dashed). The inset shows the values of the tail

exponent γ obtained from the simulations. The line is the analytical prediction (2.42). In the

right panel we show the Hurst plot for the price fluctuations. The line is the power ∝ (∆t)1/2

where PW (z) is the (time-independent) probability density for the variableWt. Because
the ARCH(1) process is Markovian in the variable Xt, the conditional probability
density (2.43) bears all necessary information.

To see the trick, let us first calculate the volatility autocorrelation at time separa-
tion ∆t = 1. In a stationary state, using (2.36), we get

〈X2
t X

2
t−1〉 =

∫
PXt|Xt−1

(x|x′) x2 x′ 2 PXt−1(x′) dxdx′

= α0〈X2
t−1〉 + α1〈X4

t−1〉
= (1 − α1)〈X2

t 〉〈X2
t−1〉 + α1〈X4

t−1〉.

(2.44)

Hence

〈X2
t X

2
t−1〉c ≡ 〈X2

t X
2
t−1〉 − 〈X2

t 〉〈X2
t−1〉 =

(
〈X4

t−1〉 − 〈X2
t 〉〈X2

t−1〉
)
α1, (2.45)

and we can easily generalise the calculation to any ∆t. We apply the chain of condi-
tional probabilities from time t− ∆t to t and obtain

〈X2
t X

2
t−∆t〉 = α0

(
1 + α1 + . . .+ α∆t−1

1

)
〈X2

t−∆t〉 + α∆t
1 〈X4

t−∆t〉; (2.46)

and finally we get

〈X2
t X

2
t−∆t〉c =

(c2 − 1)α2
0

(1 − α1)2(1 − c2 α2
1)
α∆t
1 . (2.47)

The autocorrelation of square returns decays exponentially, and the same should also
be expected from absolute returns. The characteristic time is determined solely by the
parameter α1, and is tc ≃ (lnα1)−1. This is a serious discrepancy with the empirical
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data. We might expect that the agreement becomes somehow better when the param-
eter α1 approaches 1 and the characteristic decay time blows up. But before that, the

fourth moment of the distribution of returns diverges for α1 → c
−1/2
2 and so does the

amplitude of the square returns autocorrelation. Within the ARCH(1) process, we are
unable to consistently model the power-law decay of autocorrelations.

Let us now turn to the question of how the typical size of price fluctuations depends
on the time scale at which we make the observations. To this end, we combine the
process Xt indicating the returns, into a process describing the logarithm of price

Yt =

t∑

t′=0

Xt′ . (2.48)

The scale of fluctuations of the signal Yt at time distances ∆t is described by the
Hurst plot, i. e. the dependence of the quantity R(∆t) on the time difference ∆t (if
unclear, see Box 4.3 for definition). Unfortunately, it is not accessible analytically, but
numerical simulations of the ARCH process provide quite unambiguous results. We
can see an example in Fig. 2.1, indicating that the Hurst exponent is exactly H = 1/2,
the same as in the random walk and below the empirical value. Once again, we can
testify how difficult it is to set up a process with realistic fluctuation properties.

GARCH process

We have seen that all important properties of the ARCH(1) process are determined
by the single parameter α1. The other one, α0, only plays a very marginal role. The
general ARCH(q) process is more plastic, but not enough. The memory is q steps long,
so the set of q subsequent returns is subject to a Markov process. There is a way to
extend the memory effectively to infinity (although only apparently, as we shall soon
see). Instead of coupling the volatility with past returns, we may also couple it with
past volatilities. This way we arrive at the generalised ARCH, or GARCH, process,
introduced by Bollerslev [585]. The simplest variant, the GARCH(1,1) process, replaces
the recursion (2.32), (2.33) by the pair

Xt =
√
StWt

St = α0 + α1X
2
t−1 + β1St−1.

(2.49)

The generalisation to GARCH(p,q) process is obvious; one should go q steps into the
past returns Xt−l, l = 1, . . . , q and p steps into the past volatilities St−l, l = 1, . . . , p.
As we did with the ARCH process, here we also limit our analysis to the simplest case
defined by (2.49). Repeating the already familiar steps, we obtain for the moments in
the stationary state, limt→∞〈X2m

t 〉 = cm am, that

a1 =
α0

1 − α1 − β1

a2 = α2
0

1 + α1 + β1(
1 − α1 − β1

)(
1 − c2 α2

1 − 2α1 β1 − β2
1

)

....

(2.50)
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We can see that the moments diverge for specific combinations of parameters α1 and
β1. We find the same situation as in the ARCH process. The return distribution
exhibits generic power-law tails, fatter or thinner, depending on the adjustment of the
free parameters.

And similar to what we did in the case of ARCH process, we compute the volatil-
ity autocorrelation function. A little thought reveals that GARCH(1,1) is a Markov
process for the pair of stochastic variables (Xt, St). Therefore, in the calculation of
the autocorrelation function we can proceed through a chain of conditional probability
densities

PXt,St|Xt−1,St−1
(x, s|x′, s′) =

1√
s
PW

( x√
s

)
PSt|Xt−1,St−1

(s|x′, s′)

PSt|Xt−1,St−1
(s|x′, s′) = δ

(
α0 + α1 x

′ 2 + β1 s
′ − s

)
.

(2.51)

The correlation between times t and t− ∆t is then

〈X2
t X

2
t−∆t〉 =

∫
w2

0 s0 w
2
∆t s∆t

[∆t−1∏

t′=0

PW (wt′)PSt|Xt−1,St−1
(st′ |wt′+1

√
st′+1, st′+1)

]

× PW (w∆t)PSt−∆t(s∆t)

∆t∏

t′=0

dwt′ dst′ ,

(2.52)

and in the stationary state we find

〈X2
t X

2
t−∆t〉c =

[c2 α1 + β1
α1 + β1

a2 − a21

]
(α1 + β1)∆t. (2.53)

The decay of volatility autocorrelations is again exponential, as it was in the ARCH
process. We gained some more degrees of freedom, but the principal disagreement with
the empirical data is not lifted.

The reason why the correlations remain exponentially dampened is that both
ARCH and GARCH processes are essentially Markovian. The consequences are even
deeper. In all main characteristics, ARCH and GARCH processes behave in a qual-
itatively very similar way. To obtain something fundamentally new, it is necessary
to generalise the ARCH process in a much more drastic way than the GARCH pro-
cess does. Indeed, many more variants were tried [252, 590–592]. We shall not go into
details and instead limit ourselves to citation of the fractionally integrated GARCH
(FIGARCH) process [593], which successfully reproduces the power laws in volatility
autocorrelation. It is reasonable to expect that constructing smart enough generalisa-
tions of the ARCH process, we may finally reproduce most of the known stylised facts
about price fluctuations. However, two lessons should simultaneously fuel our optimism
and damp it down. First, various stylised facts seem to be independent. Power-law re-
turn distribution with a specific exponent seems to be totally unrelated to the value
of the Hurst exponent. The same holds also for the volatility autocorrelation. Second,
there seems to be no obstacle for constructing phenomenological stochastic models
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with many, if not all, features imitating reality. But still, having these models at hand,
do we indeed understand more about the processes running not in a computer but
on a trading floor? Perhaps here we touch the limits of stochastic modelling of the
stock market. If we want to do better, we must inevitably resort to models we called
‘involved’ at the beginning of this chapter, i.e. the models including the details of the
microscopic mechanisms of price formation.

Nevertheless, if we want to simply use a reasonably working phenomenological
model of stock market fluctuations, for example when we are asked to estimate the
investment risks, we might be faced with in the next month, the GARCH type models
can be an excellent choice.

2.3 Cascades

Looking for explanations of various stylised facts, we often end up exhausted. Not only
do we feel tired, but sometimes we run out of ideas. For example, we have seen how
difficult it is to reproduce volatility clustering in a model without very special features
which are difficult to justify. Long memory in the volatility signal, quantified by power-
law (or maybe logarithmic) decay of autocorrelations cannot, for principal reasons, be
found in any model with the Markov process at its core. Completely different ideology
is indispensable. It will come now under the name of cascade processes. We shall
proceed by a long detour through multifractals, and the slow decay of autocorrelations
will come at the end as a bonus.

2.3.1 Motivation

Multifractality in price signals

Yet another empirical feature of fluctuations of economic indicators is multifractality
[594]. Often it is ignored as something, well, real and, yes, interesting, but certainly
marginal. There are also some arguments that the multifractality seen in price signals
may be a spurious by-product of the analysis of incomplete data [217]. However, here
we adopt the view that it is a real phenomenon, measured through the moments of the
price increments. Let Zt be the price at time t. We have seen in Sec. 1.2.3 the empirical
data [209, 211, 212] indicating that the returns Xt(δt) = lnZt− lnZt−δt realised during
the time δt behave as

〈|Xt(δt)|q〉 ≃ bq (δt)ζ(q), δt→ ∞. (2.54)

Note that Xt(δt) is a stochastic process in time t, while δt is a fixed parameter.
The average runs over the complete realisation of the process and all times t; bq are
parameters independent of the time lag δt. Of course, if the probability density for
the quantity Xt(δt) has a power-law tail with exponent α + 1, the coefficients bq are
finite only for q < α. Therefore, ζ(q) is also defined only for q < α. Ordinary fractal
behaviour with Hurst exponent H corresponds to ζ(q) = qH . Any nonlinearity in
the function ζ(q) is an unmistakable signal of multifractality. And this is just what is
observed empirically.

Let us have a slightly deeper look at it. For a single realisation of the process Zt,
i.e. for one given time series of prices, we try to classify the time instants t according
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to how violently the price fluctuates around the time t. Let Ω(h) be the set of all
such times t where the dependence of the size of the fluctuations on the time lag δt
is characterised by the exponent h, i.e. |Xt(δt)| ∼ (δt)h. These sets corresponding to
different h may be fractals. Denote d(h) the fractal dimension of the set Ω(h). The
function d(h) is called a multifractal spectrum. How can we relate it to the empirically
measured exponents ζ(q)?

Imagine that the investigated time range is divided into N intervals of length l,
centred at times ti, i = 1, 2, . . . , N . We want to know the extent to which the prices
fluctuate in the vicinity of these times. To this end, we fix one of the times, say, tj,
increase the length l′ of the interval length around this time, and observe the size
of the price change over that interval. If it is scaled as |Xtj (l′)| ∼ (l′)hj when l′

increases, then hj is the local exponent corresponding to the time tj . As the next step,
let us identify the ensemble of the sets of times characterised by the same exponent,
Ωl(h) = {tj |hj = h}. We want to know how the sizes of these sets depend on how
refined the division of the whole time interval is, i.e. how they change with l. In so
doing, we tacitly assume that the limit of the sets Ωl(h) exists in some sense with h fixed
and l → 0. If |Ωl(h)| ∼ l−d(h), when l → 0, then the limiting set Ω(h) = liml→0 Ωl(h)
has the fractal dimension d(h). Of course, if we sum the sizes of all the sets, we should
get

∑
h |Ωl(h)| = N ∝ l−1.

The moments introduced in (2.54) can be estimated as

〈|Xt(l)|q〉 ≃
1

N

N∑

i=1

|Xti(l)|q =
1

N

∑

h

[ ∑

t∈Ωl(h)

|Xt(l)|q
]

∼ 1

N

∑

h

|Ωl(h)| lqh ∼
∑

h

lqh+1−d(h).

(2.55)

If the discretisation is fine-grained enough, the last sum in (2.55) can be replaced by
an integral over h, and this is, in turn, easily computed by the saddle-point method,
giving

〈|Xt(l)|q〉 ∼ lζ(q) (2.56)

where

ζ(q) = min
h

(
qh+ 1 − d(h)

)
. (2.57)

The minimum is sought over a range of h for which the set Ω(h) is non-empty, or
d(h) > 0. For example, for an ordinary fractal, put d(h) = D ≤ 1 for h = H and
d(h) = 0 otherwise. From (2.57) we obtain the linear dependence ζ(q) = 1 −D + qH
as expected.

The equation (2.57) relating the moment exponents ζ(q) with the multifractal
spectrum d(h) is called the Legendre transform. The reader may perhaps remember
that from a mathematical point of view it is the same Legendre transform as that
which occurs in rational thermodynamics to relate various thermodynamic potentials
to each other, or in quantum field theory where it connects the generating function
of the connected correlation functions (the free energy) and the generating function
of the vertex functions. It is also important to notice that the inverse of the Legendre
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Turbulence Box 2.11

is the mechanism of energy dissipation in fluids [595, 596]. The kinetic energy of macro-
scopic movement of the fluid on large scales (e.g. the Gulf Stream) is converted into
energy of eddies on smaller and smaller scales, until it is transformed into heat at the
smallest scale, determined by the viscosity. Mathematically, understanding turbulence
amounts finding stable solutions of the Navier-Stokes equations for the velocity vector
v(x, t) as a function of space and time, v̇ + v · ∇v = −∇p + ν∆v, where p is the
pressure and ν the viscosity. (The difficulty of the problem may be quantified by the
$106 prize offered by the Clay institute for solving the Navier-Stokes equations.) The
first significant insight into the complex structure of eddies within the several orders of
magnitude separating the largest scale, on which energy is supplied, from the viscous
scale, on which the energy is dissipated, was provided by Kolmogorov in 1941 [597] (the
so-called K41 theory). In essence, it is based on the idea of scale invariance. On the
assumption that at every intermediate scale no energy is dissipated but everything that
flows in from a larger scale flows homogeneously out to a lower scale, the law for typical
velocity difference on the length scale l is δv ∼ l1/3. The most important statement of
the K41 theory says that the energy contained in velocity fluctuations with wavevector
k is scaled as E(k) ∼ k−5/3 [596].

transform can be written in exactly the same form, except that the role of the functions
ζ(q) and d(h) is interchanged

d(h) = min
q

(
qh+ 1 − ζ(q)

)
. (2.58)

As a real-life example, recall the work [209], where moments are computed from
empirical data in the range −1 ≤ q ≤ 4 and the multifractal spectrum is non-zero
at least in the interval h ∈ (0.3, 0.6) for stock prices and h ∈ (0.25, 0.9) for com-
modity prices. Therefore, the multifractality is so marked a feature that it should not
be disregarded in modelling. Let us see now what physical systems may provide an
inspiration.

Turbulence

Incidentally, multifractality is extensively studied and relatively well understood in the
field of fully developed turbulence [595, 596] (see Box 2.11). The word ‘turbulence’ is
used frequently in economics on a rather superficial level, denoting up-and-down price
movements larger than usual. Perhaps the discomfort felt by business-class travellers
when the aircraft enters the area of developed atmospheric turbulence is the source
of the metaphoric use of the term. Indeed, turbulence is characterised by very large
spatio-temporal changes in the velocity field v(x, t) (hence the jumps of the plane),
measured, e.g. by anemometry. At a fixed time, we can analyse the moments of the
velocity differences, which are supposed to be scaled with distance as [602, 603]

〈|v(x) − v(x− l)|q〉 ∼ lζ(q) (2.59)

in full analogy with the moments (2.54) measured in the price signal. This observation
led very early to attempts to base the models for price fluctuations on the theory of
turbulence [604, 605]. The rather superficial analogies met immediate deep criticism
[248, 606, 607]. Since then, the matter has been fairly clarified, and useful concepts,
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Turbulence: beta- and random beta-models Box 2.12

In reality the dissipation in turbulent flow is not homogeneous in space, as assumed
in the K41 theory, but takes place on a complicated set of singularities with a fractal
dimension lower than 3. To account for this fact, the beta-model was introduced by Frisch
et al [598] and further exposed from a multifractal perspective by Frisch and Parisi [599].
It consists in a simple regular cascade of scales. On the n-th level of the cascade, the
largest scale l0 is divided into boxes of sizes l0/2

n. Boxes containing singularities are
called active. Going from level n to n + 1, every active box is divided into 23 smaller
boxes, the fraction β of which is now active. By iteration, a classical fractal emerges, with
a definite fractal dimension of D < 3, on which the singularities are located. This scheme
was later developed into the random beta-model [600, 601], which also reproduces in a
schematic way the multifractality of the set of singularities. The point is that, allowing
β random from a fixed distribution, we obtain a whole family of singularities which can
be classified according to their ‘strengths’. In both K41 and the beta-model the velocity
is scaled as δv ∼ l1/3 everywhere in the singular set. However, we can investigate sets
with singularities of a more general type, δv ∼ lh. More precisely, we require that on
such a set liml→0 |δv|/lh 6= 0. Its fractal dimension is denoted d(h). In K41 theory we
have d(h) = 3 θ(h−1/3), while in the beta-model d(h) = Dθ(h− (D−2)/3). (Here, θ(h)
is the Heaviside function.) The function d(h) characterises the multifractal spectrum. In

practice it is extracted from the moments 〈(δv)q〉 ∼ lζ(q). Their relation is provided by
the Legendre transform ζ(q) = minh

(
hq + 3− d(h)

)
. The term ‘3’ here comes from the

fact that the space is three-dimensional.

first used in turbulence, have been adapted to adequately reflect the different reality
of stock markets [249, 253]. We especially have in mind the random-beta model of
fully developed isotropic turbulence [598, 600] (see Box 2.12), which can be seen as a
three-dimensional variant of the Mandelbrot multifractal cascade described below.

2.3.2 Realisation

In multifractal models of price fluctuations, the starting point is the ordinary Brownian
motion, or random walk. The new ingredient added is the deformation of time. Time
is not homogeneous, but sometimes it is stretched, sometimes compressed. In reality
it corresponds to the varying overall frequency of trading. At each trade, the return
distribution is the same (e.g. Gaussian with fixed variance), but the number of trades
in the given time interval δt may vary substantially. Intervals with a high frequency of
trades mark high-volatility periods and vice versa. This way the complexity of the price
signal is traced back to the complex pattern of human activity, with steady ‘business
as usual’ periods punctuated by bursts of fever not unlike the gold rush.

Replacing the physical time t by the deformed time Θ(t), the logarithm of price
follows the compound stochastic process YΘ(t), where Yt is the ordinary Brownian
motion. Given a particular realisation θ(t) of the process Θ(t) the distribution of log-
price changes from time t1 to t2, denoted Xt1(t2 − t1) = YΘ(t2) − YΘ(t1), is

Pt1,t2(x|θ) =
1√

2π(θ(t2) − θ(t1))σ
exp

(
− x2

2σ2 (θ(t2) − θ(t1))

)
. (2.60)

Thus, the only non-trivial point consists in a smart choice of the time deformation Θ(t).
It is also a stochastic process, and various models of the multifractal price fluctuations
differ by the method of constructing the process Θ(t).
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M0 M1

M00 M01 M10 M11

M000 M001 M010 M011 M100 M101 M110 M111

Fig. 2.2 Scheme of the Mandelbrot binary cascade at level k = 3. Each endpoint of the tree

represents one of the 2k = 8 intervals. Its measure is computed by multiplying all M ’s we

meet when we go from the root of the tree to the endpoint.

Regular Mandelbrot cascade

The easiest procedure carrying multifractal properties is the binary cascade introduced
by Mandelbrot, Calvet, and Fisher [608–610]. It is directly related to the random beta-
model used in the theory of fully developed turbulence.

Let us observe the price fluctuations on the time interval [0, T ]. For simplicity we
set the units of time so that T = 1. The deformed time will be anchored at the starting
and ending point, Θ(0) = 0, and Θ(1) = 1 for all realisations. We may alternatively
interpret the time deformation in terms of a measure. Indeed, the measure of the
interval [t1, t2] can be defined as µ([t1, t2]) = Θ(t2)−Θ(t1). Reverting the procedure, we
start with constructing the (random) measure on the interval [0, 1] and then deduce the
random process Θ(t) uniquely determined by it. The measure is constructed iteratively.
Initially, we set the measure of the entire interval to 1, so µ([0, 1]) = 1. Next, we divide
the interval into two equal parts and attribute measures M0 and M1 to the left and
right half, respectively. In order to preserve the measure of the whole, the measure of
the parts must sum to 1, so M0 +M1 = 1. Apart from this constraint, M0 and M1 are
random non-negative numbers.

We proceed further by doing the same with the halves what we did with the whole
interval. The interval [0, 1] is now divided into four quarters with measures M0M00,
M0M01, M1M10, and M1M11, respectively. This process can then be repeated as long
as we please. We illustrate it using a binary tree in Fig. 2.2. Generally, at the k-th level,
we express the measure of the interval [t, t + 2−k] using the binary notation for the

first point t =
∑k

i=1 ai 2−i, ai ∈ {0, 1}, as µ
(
[t, t + 2−k]

)
= Ma1 Ma1a2 · · ·Ma1a2...ak .

The measure-conservation condition is Ma1a2...ak−10 + Ma1a2...ak−11 = 1, for any k.
Except for that, all coefficients Ma1a2... are assumed to be independent and identi-
cally distributed. In the following, we shall, as the simplest choice, use the bimodal
distribution

Prob{M = m} = Prob{M = 1 −m} =
1

2
(2.61)

with m ∈ (0, 1
2
) the only parameter of the model. We show in Fig. 2.3 an example of

the random measure after k = 15 iterations for m = 0.4.
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...

t

k = 15

T0

k = 2

k = 1

Fig. 2.3 An example of a random measure realisation on the interval [0, T ]. It is a result of

a random binary cascade with k = 15 levels and the parameter m = 0.4. In the top two rows,

there is the measure after the first and second step of the iteration, and in the bottom, the

final measure.

The construction can be generalised in several obvious ways. Binary divisions of the
intervals give rise to a binary cascade. Equally well we can construct n-ary cascades
by iteratively dividing the intervals into more than two parts. At this point it is per-
haps opportune to note that in the random beta-model of turbulence, the number of
parts at each branching of the cascade must be at least three to get non-trivial results.
Furthermore, the number of divisions may itself be a random number. The probability
distribution for M ’s can assume various forms. For example choosing log-normal dis-
tribution has the advantage that all the products of the Ms again have the log-normal
distribution, only with a different average and width. All of these modifications bring
nothing but computational complications without conceptual novelty and we shall not
discuss them any more.

Let us now see how multifractality arises in the cascade. We start assuming the
normal distribution (2.60) for the difference of the logarithm of price. The deformation
of time Θ(t) is given by the random measure µ on the interval [0, 1]. For a given random
measure µ we compute the moments of the change in log-price from time t to t + δt,
with δt = 2−k and t equal to an integer multiple of 2−k. Then we average over the
realisations of the measure and over all starting times t. The fact that Ms at different
levels are all independent and equally distributed facilitates the calculation. The result
is

〈|X(δt)|q〉 = cq σ
q
(
δt
)ζ(q)

(2.62)

where cq = Γ(q+1)

2q/2 Γ(1+q/2)
originates from the moments of the normal distribution with

unit variance. The most important part is the q-dependence of the exponent, which is
generally
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Fig. 2.4 Multifractality in the Mandelbrot binary cascade. In the left panel, the moment

exponents are shown; in the right panel, the multifractal spectrum. The distribution of factors

was bimodal with parameter m = 0.2 (solid lines) and m = 0.4 (dashed lines).

ζ(q) = − ln〈M q/2〉
ln 2

; (2.63)

and in the simplest case of the bimodal distribution (2.61) we have

ζ(q) = 1 − ln
(
mq/2 + (1 −m)q/2

)

ln 2
. (2.64)

It is easy to invert the Legendre transform and calculate the multifractal spectrum
using (2.58). We leave it to the reader as Problem 3. In Fig. 2.4 we show an example of
both the exponents according to (2.64) and the corresponding multifractal spectrum
for two values of m. Clearly, the multifractality is the more pronounced the more m
differs from the value m = 0.5, corresponding to the ordinary Brownian motion.

Further we shall look at the autocorrelation function of returns. The returns them-
selves will be calculated at the time distance δt, and we shall observe correlations of
two returns separated by time ∆t. Therefore, two other scales enter the calculation
besides the global time scale T . However, at the end of the calculation we shall assume
that δt ≤ ∆t ≪ T , so that only the fraction ∆t/δt remains relevant. For simplicity we
assume that both time scales are powers of two, say δt = 2−k and ∆t = 2s−k, with
0 ≤ s < k. We define the average autocorrelation

Cq(∆t) =
1

2k − 2s

2k−2s−1∑

i=0

〈|Xiδt(δt)Xiδt+∆t(δt)|q〉, (2.65)

keeping in mind that eventually we shall take the limit k → ∞.
The value of the average under the summation sign depends on times t = iδt and

t+ ∆t. The tree structure of the cascade implies that the value depends only on the
number of levels one should climb up the tree if we want to get from time instant
t = i 2−k to t + ∆t = j 2−k. This number is called ultrametric distance u(i, j) [363].
For example, in our binary cascade u(0, 2) = u(0, 3) = u(1, 3) = 2, u(0, 4) = u(3, 4) =
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u(2, 7) = 3, and so on, as can be seen in Fig. 2.2. The sum over the time t reduces to
a sum over all possible ultrametric distances, with factors indicating how many times
a given ultrametric distance occurs in (2.65). The correlation function can be then
expressed as

Cq(∆t) =
1

2k − 2s

k∑

m=1

as(m)Kq(m). (2.66)

The number of time pairs t, t+ ∆t at distance m is

as(m) =

{
0 for 1 ≤ m ≤ s
2k−m+s for s < m ≤ k

(2.67)

and the correlation at exactly this distance,

Kq(m) ≡ 〈|X0(2−k)X(2m−1)2−k(2−k)|q〉, (2.68)

can be calculated after noticing that, among the factors M hidden in the correlation
function, which are all independent at levels > m, we have once M and once 1−M at
level m, and we have in total m − 1 mutually independent factors M2 at levels < m.
Finally, we get

Kq(m) = c2q σ
2q 〈M q/2(1 −M)q/2〉

〈M q/2〉2 〈M q〉k
( 〈M q/2〉2

〈M q〉

)m
. (2.69)

The exponential dependence on m already indicates that the autocorrelation function
may decay as a power of the time difference ∆t. To confirm this intuition we must
perform the sum in Eq. (2.66). Finally, after taking the limit k → ∞, we conclude
that the autocorrelation function relative to same-time correlation Cq(0) decays as a
power when time is measured in units of δt, namely

Cq(∆t) = Cq(0)
c2q
c2q

〈M q/2(1 −M)q/2〉
2〈M q〉 − 〈M q/2〉2

[∆t

δt

]− ln(〈Mq〉/〈Mq/2〉2)/ ln 2

. (2.70)

This is the promised feature of the multifractal cascade model. By construction,
the cascade comprises correlations at all time scales. The long-time memory manifested
in the volatility clustering as in Eq. (2.70) follows automatically.

Are there fat tails?

Another feature we would like to check in the cascade model is the presence of power-
law tails in the return distribution. A clear indication would be the divergence of
certain moments of the distribution. However, as shown in Eq. (2.62), when we keep
δt fixed, all moments remain finite as long as M ≥ 0 and Prob{M > 0} > 0. This looks
bad, but a small modification of the cascade improves things. We shall relax the condi-
tion of strict conservation of measure, requiring only that it is conserved on average. At
each branching of the tree (see again Fig. 2.2) the factors going to the right and to the
left are now independent. Therefore, all factors M within the cascade are independent
and equally distributed random variables with average 〈M〉 = 1

2 . The result is that the
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measure of an interval is modified to µ
(
[t, t+2−s]

)
= Ωa1a2...as Ma1 Ma1a2 · · ·Ma1a2...as

and the moments of the distribution of returns realised during the time δt = 2−s are
now

〈|Xt(δt)|q〉 = cq σ
q〈Ωq/2a1a2...as

〉〈M q/2〉s. (2.71)

The divergence of the moments of the return distribution can originate solely from the
divergence of the moments of the additional factor Ωa1a2...as . Let us look at it now.

Suppose that the tree has in total k levels. The distribution of the factor Ωa1a2...as
depends on how many levels there are below the s-th, i.e. on the number k − s. All
factors on the same level are independent random variables. Denote by Ω(k−s) the
generic factor on this level. We can compute its arbitrary moment iteratively. Clearly,
at the lowest level the factor is non-random, Ω(0) = 1. Proceeding one level upwards

we have Ω(1) = M0 + M1 and the moments are 〈Ωq/2(1) 〉 =
∑q/2
j=0

(
q/2
j

)
〈M j〉〈M q/2−j〉.

Generally, when climbing the tree we obtain the following sequence of formulae

〈Ωq/2(m+1)〉 =

q/2∑

j=0

(
q/2

j

)
〈M j〉〈M q/2−j〉〈Ωj(m)〉〈Ω

q/2−j
(m) 〉. (2.72)

Note that 〈Ω(m)〉 = 1 for any m. This is the mathematical expression of the measure
conservation on average.

We are interested in the limit k → ∞ with δt = 2−s kept fixed. The variables Ω(m)

approach to a limit Ω = limm→∞ Ω(m) and its moments can be inferred recursively
from (2.72) for any even q. We get

〈Ω〉 = 1

〈Ω2〉 =
1

2

1

1 − 2〈M2〉
...

〈Ωq/2〉 =
1

1 − 2〈M q/2〉

q/2−1∑

j=1

(
q/2

j

)
〈M j〉〈M q/2−j〉〈Ωj〉〈Ωq/2−j〉;

(2.73)

and therefore the q-th moment of the return distribution diverges if q > 2 and 〈M q/2〉 =
1
2 . From (2.63) we can see that this is equivalent to the condition ζ(q) = 1. It never
happens for the bimodal distribution (2.61), but it is possible if we assume a log-
normal distribution for M . It is characterised by two parameters, say 〈M〉 and 〈M2〉.
As 〈M〉 = 1

2 , all properties of the cascade can be expressed in terms of 〈M2〉. For

example, we find that the diverging moment determined by ζ(qc) = 1 is qc = 4 ln 2
ln(4〈M2〉) .

The most probable empirical value qc ≃ 3 implies 〈M2〉 ≃ 0.63. Furthermore, the
exponent in the power-law decay of the autocorrelation function C2(∆t) ∝ (∆t)−τ is,
according to (2.70), τ = 4/qc ≃ 1.33. Alas! This value is much too large compared
to empirical results. Moreover, the value of the multifractal exponent ζ(3) ≃ 1 is also
refuted by the actual price data [209]. We must conclude that the cascade process alone
cannot serve as an explanation of the fat tails in the return distribution. Multifractality,
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volatility clustering, and power-law tails do not have one common cause, or at least the
cause does not reside in the hierarchical cascade-like structure of the time in economic
processes [611]. A cheap way out is to simply suppose that the normal distribution of
the a priori price changes (2.60) is replaced by a Lévy distribution. This would work
fine, but instead of getting the power-law tails in result, we would enter them by hand.
Certainly, this makes the model much less attractive from a theoretical point of view,
although it may become rather useful in practice.

Lux and Markov-switching models

The most important disadvantage of the regular cascade model we have presented
so far is the limitation of the time to the fixed interval [0, T ]. What happens beyond
the point T ? Of course, we could stack many identical cascades one after the other,
but it is rather strange to suppose that at certain times T , 2T , 3T , . . . everything is
forgotten and the price evolution starts anew. To cure this flaw and continue the price
evolution within the cascade model to an indefinite future, two very similar models
were suggested.

Again, the definition of the stochastic process is reduced to the construction of
the random time stretching Θ(t). It is influenced by events on several time scales,
1, 2, . . . , k, where level 1 is the slowest and k the fastest. On level j we sow random
breakpoints at times tjs < tjs+1, s = 0, 1, 2, . . ., where at level j the breakpoints are
on average more distant than on level j+1. We use the convention tj0 = 0 for all levels
j. We assign a random number Mjs to the interval between breakpoints [tjs, tjs+1].
The independent and identically distributed variables Mjs play a role similar to the
Ms in the Mandelbrot cascade, but now we assume that their average is 〈Mjs〉 = 1.

In the Markov-switching multifractal model [223, 612–621] of Calvet and Fisher
the breakpoints are chosen at each level j independently according to the Poisson point
process with intensity λj . This means that the average number of breakpoints in the
interval of length δt is λjδt, and the probability that there are exactly n breakpoints
in this interval is given by the Poisson distribution

Pbreak j(δt;n) = e−λj δt

(
λj δt

)n

n!
. (2.74)

The second of the models we present here was introduced by Thomas Lux [622].
(Attention! This stochastic Lux model must not be confused with the agent-based
Lux-Marchesi model we shall discuss in Sec. 3.2.3.) The breakpoints are determined
in a slightly more complicated manner. First, we randomly scatter the breakpoints
according to the Poisson distribution (2.74). Then, for each breakpoint at time tjs
at level j we add other breakpoints at the same time on all lower levels j′ > j.
This feature makes the Lux model more similar to the Mandelbrot cascade than the
Markov-switching model. On the other hand, we lose the advantage of having the levels
mutually independent.

The stretching process Θ(t) is again defined through the measure µ
(
[t, t′]

)
= Θ(t′)−

Θ(t). Suppose now that none of the breakpoints at any level fall inside the interval [t, t′],
although we allow that the endpoints t and t′ may coincide with some breakpoints.
Any general interval on the time axis can be constructed as a union of non-overlapping
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(except common endpoints) intervals with such property, so for definition of Θ(t) it is
sufficient to establish the measure of such special intervals. Thus, at each level we find
the breakpoints closest to the interval, tjr ≤ t < t′ ≤ tjr+1 and relate the measure to
the product of the corresponding M -factors

µ
(
[t, t′]

)
= (t′ − t)

k∏

j=1

Mjr. (2.75)

In addition to the measure (2.75) we introduce partial measures, comprising only levels
from j to k. Again, for an interval [t, t′] which does not contain any breakpoints, we

define µj
(
[t, t′]

)
=
∏k
j′=jMj′r, and we extend the definition to a general interval in

such a way that the measure µ satisfies the additivity property. Of course, µ
(
[t, t′]

)
=

(t′− t)µ1

(
[t, t′]

)
. The partial measures depend on each other recursively. Suppose that

the interval [t, t′] contains l breakpoints tj1, tj2, . . . , tjl on the j-th level and denote
tj0 = t and tjl+1 = t′. Let us also introduce the relative positions of the breakpoints
ujr = (tjr− t)/(t′− t). Then, the j-th partial measure of this interval is a combination
of the j + 1-th measures of the intervals between the adjacent breakpoints

µj
(
[t, t′]

)
=

l∑

r=0

(ujr+1 − ujr)Mjr µj+1

(
[tjr, tjr+1]

)
(2.76)

where for convenience we defined µk+1

(
[t, t′]

)
= 1 for any t and t′.

In the following, we shall use the notation for the moments of the partial measures
µpj (t

′ − t) = 〈(µj
(
[t, t′]

)
)p〉. Then, the moments of the return distribution are

〈|X(δt)|q〉 = cq σ
q
(
δt
)q/2

µ
q/2
1 (δt) (2.77)

and the deviation from the ordinary Brownian motion behaviour is concentrated in

the non-trivial dependence of µ
q/2
1 (δt) on the time difference δt. If it is a constant, the

Brownian regime is recovered.
The exact calculation of it is rather tricky, as we must take into account that

within the time interval of length δt there can be an arbitrary number of breakpoints
tj1, tj2, . . . , tjl at any level j. In some cases the situation is simplified. For example if
q = 2, we start with µk+1(δt) = 1, and using (2.76) we show that µj(δt) = 1 at any
level j, because 〈uj1Mj0+(uj2−uj1)Mj1+ . . . (1−ujl)Mjl〉 = 1. This implies ζ(2) = 1,
which is exactly the same exponent as for an ordinary Brownian motion. Other values
of q can be treated in the limit of a large number of levels, k → ∞ and accepting a
certain assumption about the waiting times between breakpoints. We shall show how
it works in the case of the Lux model [229, 623].

We suppose that the frequency of the breakpoints increases in a geometric sequence,
λj = λ0Q

j . The Lux model with quotient Q = 2 can then be considered a random
counterpart of the Mandelbrot binary cascade. If we also suppose that the number
of levels is very high, k → ∞, or at least k ≫ j, the partial measures possess an
important discrete scaling symmetry. Indeed, when we multiply all times by the factor
Q, it is the same as advancing one level down. The measure µj [Qt,Qt

′] must have the
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same statistical properties as µj+1[t, t′]. It is possible to show by induction that the
moments of these measures obey

µpj (Qδt) = µpj+1(δt) (2.78)

for any p, as long as the limit k → ∞ exists.

The q-th moment of the return distribution is proportional to the function µ
q/2
1 (δt).

Let us restrict the calculation to the intervals of the lengths increasing by powers of
Q, δt = t0Q

m and look at the moments of an arbitrary partial measure. The interval
[t, t+ δt] may contain a variable number n of the breakpoints at level j. Thus

µ
q/2
j (δt) =

∑

n

Pbreak j(δt;n)
∑

p0 p1...pn

(
q/2

p0 p1 . . . pn

)

×
n∏

r=0

〈Mpr〉
〈

(ujr+1 − ujr)
prµprj+1

(
(ujr+1 − ujr)δt

)〉
over u

.

(2.79)

The average 〈. . .〉over u on the right-hand side is taken over random positions of the
points ujr within the interval [0, 1]. The situation is considerably simplified if the
probability of having n > 0 breakpoints at level j is negligible, Pbreak j(δt; 0) ≃ 1. This
happens if δt ≪ 1/λj. In that case the sum in (2.79) contains only one term, and we
have a very simple expression of the measure at level j in terms of the measure at

level j + 1 in the form µ
q/2
j (δt) ≃ 〈M q/2〉µq/2j+1(δt). We can use it for j = 1 together

with the discrete scale invariance (2.78) and the relation (2.77) to relate the moments
of the return distribution at time interval δt with those at time interval Qδt:

〈|X(δt)|q〉
〈|X(Qδt)|q〉 = Q−q/2 〈M q/2〉. (2.80)

Assuming that the moments of the return distribution behave like 〈|X(δt)|q〉 ∝
(
δt
)ζ(q)

we conclude that the exponents are

ζ(q) =
q

2
− ln〈M q/2〉

lnQ
. (2.81)

This should hold for times not exceeding the characteristic time of the slowest level of
the cascade, i.e. δt ≪ 1/λ1. For longer times, the random-walk behaviour is restored.
This is in fact compatible with the empirical observation that the multifractality holds
for a fairly extended, but still limited time span. Thus, the frequency of the slowest
level can be directly read off from the empirical data. As for the frequencies of the
subsequent levels, it may prove difficult, but not impossible, to fit them on the data
[613, 615].

Note that for Q = 2 this is exactly the same dependence (2.63) as in the case of
the Mandelbrot cascade, if we only take into account the difference in the notation
(〈M〉 = 1 here, 〈M〉 = 1/2 there). This coincidence stems from the particular choice
of the breakpoint frequencies λj as a geometric sequence.
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Now we turn to volatility clustering. We shall show the calculation within the
Markov-switching model. As for the Lux model, the procedure is only slightly more
difficult and the reader may try her fortune herself or look at Refs. [622, 623].

We shall relate the returns realised during time intervals of length δt, separated by
time distance ∆t. The autocorrelation function is

Cq(∆t) = 〈|Xt(δt)Xt+∆t(δt)|q〉

= c2q σ
2q (δt)q

〈(
µ1

(
[t, t+ δt]

)
µ1

(
[t+ ∆t, t+ ∆t+ δt]

))q/2〉
.

(2.82)

We suppose that the scale δt is sufficiently small so that we have many levels with no
breakpoints within intervals of length δt. In other words, we can identify the level j∗

so that Pbreak j(δt; 0) ≃ 1, that is δt≪ 1/λj , for all j < j∗. We can estimate such level
as j∗ ≃ − ln(λ0 δt)/ lnQ. An important point is that j∗ is independent of ∆t. So, we
can afford some level of ambiguity in the determination of what the proper level j∗ is
if we just investigate the dependence of the correlation function on the time distance
∆t without bothering about the dependence on δt.

What we do need to suppose is that ∆t is large enough to have some breakpoints
at level j∗ within the time ∆t, so ∆t ≫ 1/λj∗ . But this is safely satisfied if ∆t ≫ δt.
With all of this in mind, we can write

Cq(∆t) ≃ c2q σ
2q (δt)q

j∗−1∏

j=1

〈(
Mj0Mj1

)q/2〉(
µ
q/2
j∗ (δt)

)2
(2.83)

where we used the independence of M ’s at different levels, so the average is done
at each level separately. In this formula, each Mj0 comes from the measure on the
interval [t, t+ δt], while Mj1 originates from the interval [t+ ∆t, t+ ∆t+ δt]. If there
is a breakpoint in between, these two are different, Mj0 6= Mj1; otherwise they are
equal. The latter case occurs with the probability Pbreak j(∆t; 0) = e−∆t λj . Thus,

〈(
Mj0Mj1

)q/2〉
= 〈M q/2〉2 + e−∆t λj

(
〈M q〉 − 〈M q/2〉2

)
, (2.84)

and the correlation function is proportional to the product

Cq(∆t) ∝
j∗−1∏

j=1

1 +mq e−∆t λj

1 +mq
(2.85)

where mq = 〈M q〉/〈M q/2〉2 − 1. To compute it, we should note that for large ∆t
the factor e−∆t λj jumps swiftly around the level j = j+ from a value very close
to 1 for j < j+ to a very small value for j > j+. The transition level is about
j+ ≃ − ln(λ0 ∆t)/ lnQ. Therefore, the product is well approximated by (1+mq)

j+−j∗ .
This consideration works only if j+ ≥ 0, which imposes the upper bound ∆t . 1/λ0 on
the time difference. Now we can express j∗ and j+ in terms of δt and ∆t, respectively,
and obtain power-law decay of the autocorrelations

Cq(∆t) ≃ Cq(0)
c2q

(
µ
q/2
j∗ (δt)

)2

c2q µ
q
j∗(δt)

[∆t

δt

]− ln
(
〈Mq〉/〈Mq/2〉2

)
/ lnQ

, (2.86)
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which should hold for time differences in the range δt≪ ∆t≪ 1/λ0. For times larger
than the characteristic time of the slowest level, i.e. for ∆t ≫ 1/λ0, the correlation
function relaxes exponentially to its asymptotic value.

Comparing this result with (2.70) we can see that for Q = 2 the exponent coincides
with the regular Mandelbrot binary cascade. This is again due to the special choice of
the frequencies λj . Other choices may naturally lead to a variety of different laws for
the decrease of the autocorrelation function. This makes the Markov-switching model
a much more flexible tool when we try to mimic real price data using a cascade model.
To see how the parameters λj can be inferred from empirical observations, look at
Refs. [613, 615].

2.4 Stochastic volatility models

In the preceding sections we elaborated in various ways on the concept that volatility is
not constant but varies in time in a random manner. In Sec. 2.2.2 we a priori discarded
the idea that volatility at each time may be an independent random variable drawn
from a prescribed distribution. However, if we think it over, we should admit that the
idea was not so bad, if only we could abandon the requirement of independence. We
can rather prescribe a stochastic process governing the time evolution of the volatility.
The important thing is that the stochastic process for the volatility affects the process
describing the price, but not the other way round. The properties of the volatility
may then be studied independently; for example its probability distribution can be
found; then, the properties of price fluctuations are computed on top of the known
properties of the volatility. In the design of the model, we can be led by the empirically
known distribution of volatility, which fluctuates much less wildly than the returns
[19, 178, 180, 182].

This is the basic setup of the family of processes called stochastic volatility models.
Although it would be possible to formulate them in discrete time, as it is done for the
GARCH model, almost all implementations rely on stochastic differential equations.
We shall adopt this approach here as well. In all that follows, the Itô convention is
assumed.

2.4.1 Systematics

Vasicek model

In 1977 Oldřich Vaš́ıček, a Czech-born mathematical economist, introduced a diffusion
process describing the evolution of interest rates, Rt [624]. As a simple solvable example
he used an Ornstein-Uhlenbeck process in the form

dRt = a (r −Rt) dt+ g dWt (2.87)

where r, a, and g are the parameters of the model. The solution is indeed simple, and
in the stationary state the interest rate R has Gaussian distribution with average r
and width governed by the quantity g2/(2a). The approach to equilibrium, as well as
the decay of correlations, follows an exponential law with rate a (be patient, we shall
show the calculations in a while).
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Ornstein-Uhlenbeck process Box 2.13

After the groundbreaking paper of A. Einstein on Brownian motion [628] there was a
great surge of interest in the movement of small colloidal particles suspended in water, in
an attempt to make the analysis neat and clear. In one of such efforts, L. S. Ornstein [629]
together with G. E. Uhlenbeck [630] wrote a stochastic differential equation properly
describing the velocity of the colloidal particle. The viscous environment damps the
velocity to zero, but incessant impacts of surrounding water molecules sum up to a
random force which drives the colloidal particle out from the rest. This idea is embodied
into the stochastic differential equation

dVt = −aVt dt+ g dW
fully—and relatively easily—solvable using the Fokker-Planck equation. The two main
results are, first, that velocity is normally distributed in the stationary state and,
second, that the average velocity exponentially decays from its initial value to zero,
i.e. if 〈V0〉 = v0 6= 0, then 〈Vt〉 = v0 e

−a t.

If you look at Eq. (2.87) more closely, you will quickly find a bit of nonsense, which
may seem of minor relevance, but it is there. The Gaussian distribution extends from
minus to plus infinity, whatever the mean and variance may be. But a negative interest
rate hardly makes sense in modern economics. Cox, Ingersoll, and Ross [625] suggested
a remedy, consisting of suppressing the fluctuations when the interest rate approaches
zero. Therefore, it is dynamically prevented from entering the range of negative values.
The modified stochastic differential equation describing the Cox-Ingersoll-Ross model
is

dRt = a (r −Rt) dt+ g
√
Rt dWt. (2.88)

In fact, the same problem was investigated, on the level of the Fokker-Planck equation,
much earlier by Feller [626], so sometimes you may find it called the Feller process.

To add more plasticity, Hull and White [627] formulated a very general process

dRt =
(
b(t) + a(t) (r −Rt)

)
dt+ g(t)Rβt dWt (2.89)

with β = 0 or β = 1/2. The functions a(t), b(t), and g(t) are determined using addi-
tional assumptions in combination with fitting to empirical data. We shall not employ
such a sophisticated model and concentrate on equations with constant coefficients,
exemplified by Eqs. (2.87) and (2.88).

Stein-Stein model

It is tempting to reinterpret the Vasicek model as describing the evolution of price
volatility, instead of the interest rate, and people did pursue this track [631, 632]. A
problem remains here: how to treat the negative values of the quantity for which an
equation like (2.87) is written. In the model of Stein and Stein [633–635] a natural
solution is adopted, saying that the volatility is the square of the process described
by Eq. (2.87), not the process itself. Thus we arrive at a set of two coupled stochastic
equations, together describing the evolution of the logarithm of price Yt. They are

dYt = St dW1t

dSt = a (σ − St) dt+ g dW2t

(2.90)
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where the two sources of noise W1t and W2t are mutually independent and (dW1t)
2 =

(dW1t)
2 = dt. The momentary volatility in the Stein-Stein model is S2

t , and it is
obviously positive. That is good. A less welcome thing comes out only after we solve
the equations and find that the stationary probability density for the volatility diverges
at small values, in stark contrast with the empirical findings. Nevertheless, the Stein-
Stein model can serve as a useful starting point and a paradigm for all other stochastic
volatility models. We shall analyse it in more depth later.

Heston model

In a similar manner as the Vasicek model serves as a basis for the Stein-Stein stochastic
volatility model, we can start with the Cox-Ingersoll-Ross version (2.88) and adapt
it to price evolution. This way we get the Heston model [636], which became very
popular [176, 634, 637–640]. Since there is no need to bypass negative volatilities, we
can identify the volatility with just St, instead of S2

t as Stein and Stein did. This way
we avoid the nuisance with the diverging probability density at small volatilities. The
set of equations for the Heston model is then

dYt =
√
St dW1t

dSt = a (σ − St) dt+ g
√
St dW2t.

(2.91)

Very generally, we can study a whole family of stochastic volatility models, param-
eterised by the exponents α, β, and γ and described by the equations

dYt = Sγt dW1t

dSt = a (σ − St)S
α
t dt+ g Sβt dW2t.

(2.92)

Besides the two special sets of exponents mentioned so far, several other combinations
are of special interest. We make their overview in the following table.

α β γ name or acronym of the model
0 0 1 Stein-Stein
0 0 1/2 ‘Ornstein-Uhlenbeck’
0 1/2 1/2 Heston
0 1 1/2 ‘GARCH’
1 1 1/2 ‘geometric Ornstein-Uhlenbeck’
0 3/2 1/2 3/2-model

(The names in quotation marks ‘ ’ are somewhat abuses of notation, because properly
speaking they are already in use in a more or less different sense.) In the next two
sections we shall show the properties of most, if not all, of the items in the above
table. As a historical remark, let us note that probably the first who investigated the
Stein-Stein model was L. O. Scott [631], and the pioneers of the ‘Ornstein-Uhlenbeck’
model were Hull and White [632].

2.4.2 Price fluctuation moments

There are essentially two ways to look at the process defined by (2.92). We can either
compute the moments, or the joint probability density for the processes Yt and St.
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The first method leads to solving the set of coupled ordinary differential equations,
the second requires solution of a partial differential equation. We shall see that for
the long-time behaviour of the stochastic volatility model the former method is more
appropriate, while for short times we can proceed more conveniently using the latter
way.

One-time quantities

The general moment is defined as µm,n(t) = 〈Y mt Snt 〉, and its time evolution according
to the process (2.92) is contained in the equation

d

dt
µm,n(t) =na

(
σ µm,n+α−1(t) − µm,n+α(t)

)

+
1

2
m(m− 1)µm−2,n+2γ(t) +

g2

2
n(n− 1)µm,n−2+2β(t).

(2.93)

There is no closed-form solution in a general case, but we can investigate each model
separately. We shall essentially follow the order in which the models are listed in the
table above.

Let us start with the Stein-Stein model and proceed from small values of m and n
to higher ones. For m = 0 the equation is

µ̇0,n + naµ0,n = naσ µ0,n−1 +
g2

2
n(n− 1)µ0,n−2, (2.94)

and we can see that knowing µ0,n−1 and µ0,n−2 we obtain µ0,n by trivial integration.
The starting point µ0,0(t) = 〈1〉 = 1 is obvious. The next two moments are

µ0,1(t) = σ +
(
µ0,1(0) − σ

)
e−at

µ0,2(t) = σ2 +
g2

2a
+
[
µ0,2(0) −

(
σ2 +

g2

2a

)]
e−2at

+ 2σ
(
µ0,1(0) − σ

) (
e−at − e−2at

)
,

(2.95)

and we can continue as far as we please. The generic feature of the time evolution of
moments, seen in (2.95), is an exponential relaxation to a stationary value. Setting
µ̇0,n = 0 in (2.94) we obtain a chain of equations for the stationary values of the
moments µ0,n(∞). The first two of them, µ0,1(∞) = σ, µ0,2(∞) = σ2 + g2/(2a) can
be seen in the result (2.95); the next two are

µ0,3(∞) = σ3 + 3σ
g2

2a

µ0,4(∞) = σ4 + 6σ2 g
2

2a
+ 3
( g2

2a

)2
;

(2.96)

and again, we can continue iteratively.
The moments with m > 0 are just a bit more complicated. We need to only

investigate even m, because all moments are zero for odd values of m. Integrating
Eq. (2.93) we can get the moments for higher and higher m systematically. The most
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interesting part of the result is the behaviour of the moments for large time values.
For example, we find, using (2.95), that

µ2,0(t) = µ2,0(0) +

∫ t

0

µ0,2(τ) dτ ≃
(
σ2 +

g2

2a

)
t , as t→ ∞. (2.97)

Generally, it is possible to show that
(

d
dt

)l
µ2l,n(t) has a finite limit when t→ ∞, and

after some easy algebra we arrive at a formula summarising the long-time behaviour
of all moments:

lim
t→∞

t−l µ2l,n(t) =
(2l)!

2l l!

(
σ2 +

g2

2a

)l
µ0,n(∞). (2.98)

We recognise very well the factor (2l!)/(2l l!) = 1 · 3 · 5 . . . (2l − 1). It is the 2l-th
moment of the normal distribution with unit variance, and therefore the result (2.98)
indicates that for long time intervals the returns have Gaussian distribution with
variance

(
σ2 + g2/(2a)

)
t.

Analogous steps ought to be taken when we want to find the moments in the
case of the ‘Ornstein-Uhlenbeck’ model. Note that the moments including only the
process St, i.e. those with m = 0, are identical to the Stein-Stein model. Therefore,
the formulae (2.95) and (2.96) remain in force. The long-time asymptotic behaviour
of the remaining moments is obtained in the same way as in Eq. (2.98). This time, the
result is

lim
t→∞

t−l µ2l,n(t) =
(2l)!

2l l!
σl µ0,n(∞) (2.99)

and again suggests a Gaussian distribution of the returns. One must be very careful,
though. The trouble lies in the already mentioned problem of negative volatilities,
which cannot be excluded, as long as the volatility is described by the pure Ornstein-
Uhlenbeck process. The increment of the price logarithm Yt is proportional to the
square root of the volatility, hence it can acquire a non-zero imaginary part. This is
certainly something beyond real-world economy. In the calculation of the moments the
imaginary part is averaged out to zero, so the problem is concealed.

We can avoid it entirely if we impose a reflecting boundary at St = 0. If the
volatility process St comes close to zero it never drops below it, but bounces back
to positive values. We shall see in the next section that in this case we can easily
find the stationary distribution of volatility and also the short-time properties of the
log-price. However, the moments are not subordinated to simple linear equations like
(2.93). What, then, is the information contained in the result (2.99)? The error we
make when neglecting the negative volatilities is small if 2a σ2 ≫ g2. In that case we
can consider (2.99) a good approximation to the ‘Ornstein-Uhlenbeck’ model with a
reflecting boundary.

The next in line is the Heston model. The moments evolve according to the set of
equations

µ̇m,n + naµm,n = na
(
σ +

g2

2a
(n− 1)

)
µm,n−1 +

1

2
m(m− 1)µm−2,n+1; (2.100)

and solving them for the lowest non-trivial moments we get
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µ0,1(t) = σ +
(
µ0,1(0) − σ

)
e−at

µ2,0(t) = µ2,0(0) + σ t +
1

a

(
µ0,1(0) − σ

)(
1 − e−at

)
.

(2.101)

The long-time behaviour is again obtained assuming that the derivatives
(

d
dt

)l
µ2l,n(t)

have a finite limit for t→ ∞ and checking a posteriori that this assumption does not
contain any contradiction. We can do even better than we could for the Stein-Stein
and ‘Ornstein-Uhlenbeck’ models. The limits of the moments are expressed by the
closed formula

lim
t→∞

t−l µ2l,n(t) =
(2l)!

2l l!
σl
( g2

2a

)n Γ
(
2aσ
g2 + n

)

Γ
(
2aσ
g2

) , (2.102)

showing again without any doubt that the long-time distribution of returns is Gaus-
sian.

At this moment the reader surely has a question on the tip of her tongue: Is it
a generic feature of all stochastic volatility models that, if we wait long enough, the
return distribution becomes Gaussian? Well, the answer is no! The same calculations
as shown above, when done for the ‘GARCH’ stochastic volatility model, reveal a
power-law tail of the return distribution through exponential divergence of certain
moments when t→ ∞. To leave the reader some fun, we suggest that she performs all
of the algebra herself (Problem 6).

Autocorrelations

On the level of moments, it is much more difficult to calculate the autocorrelation
function of log-price increments Xt(δt) = Yt − Yt−δt. The expression

Cq(∆t) = 〈|Xt(δt)Xt+∆t(δt)|q〉 (2.103)

depends on four different time instants, and, even if we take time homogeneity into
account, the number of independent time variables is three. The calculation thus in-
volves solving a partial differential equation in three variables. This is no less difficult
than solving directly the Fokker-Planck equation, which in principle contains com-
plete information, including the ingredients needed for determination of the general
autocorrelation function (2.103).

Instead of pursuing this painful path, we simplify the task and suppose that we are
interested only in autocorrelation of returns realised over infinitesimally small times,
i.e. δt→ 0. But for short times we can approximately write |Yt−Yt−δt| ∝ |St|γ . Thus,
we scratch the definition (2.103) and below we use

Cq(∆t) = 〈|St St+∆t|γq〉 (2.104)

instead. Continuing the series of definitions, we also introduce more general correla-
tions, which will be useful in the course of the computation, Cr,s(∆t) = 〈Srt Sst+∆t〉.
Of course, Cq(∆t) = Cqγ,qγ(∆t) if qγ is an even integer. (For the Heston model it
also holds for qγ odd, because St ≥ 0.)

It is easy to see that the set of functions Cr,s(∆t) obeys the same differential
equations as the moments µ0,s. We have solved several of them already. The difference
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from the present case consists only in the initial conditions. Because we assume time
homogeneity, i.e. independence of the autocorrelation function on the time t, we should
have Cr,s(0) = µ0,r+s(∞). We have collected many results for these asymptotic values
of the moments, so we can readily combine them into results for the function Cr,s(∆t).
For example, for the Stein-Stein model, as well as for the ‘Ornstein-Uhlenbeck’ model,
we get

C1,1(∆t) = σ2 +
g2

2a
e−a∆t

C2,2(∆t) =
(
σ2 +

g2

2a

)2
+ 4σ2 g

2

2a
e−a∆t + 2

( g2
2a

)2
e−2a∆t.

(2.105)

A common feature of the autocorrelation functions is exponential relaxation, just
as it was observed in the ARCH and GARCH models. Volatility clustering is present,
but significantly weaker than what is observed in actual data. This was to be expected,
as it is the direct consequence of the Markov property characteristic for all finite sets
of stochastic differential equations.

2.4.3 Volatility and return distributions

The long-time properties of the stochastic volatility models studied so far seem some-
what boring. The return distribution is mostly Gaussian, with the exception of the
‘GARCH’ model, where power-law tails develop. At short times, however, more di-
versity emerges. In this section we shall look at short-time return distribution. An
ingredient needed for these investigations will be the stationary distribution for the
volatility process St. Recall that the instantaneous volatility influences the price pro-
cess Xt, but is not affected by it, so we can find the distribution for St separately.

Fokker-Planck equation

We would be happy if we could obtain full information on the coupled pair of
processes (2.92) for price and volatility. In principle, the straightforward way is to
solve the Fokker-Planck equation for the joint probability density for both quantities
PY S, t(y, s) = 〈δ(Yt − y)δ(St − s)〉. In our case, we obtain

∂

∂t
PY S, t(y, s) =a

∂

∂s

[
(s − σ)sα PY S, t(y, s)

]

+
1

2

∂2

∂y2
[
s2γ PY S, t(y, s)

]

+
g2

2

∂2

∂s2
[
s2β PY S, t(y, s)

]
.

(2.106)

Because the volatility process St is not influenced by the price process Yt, we
can easily write the equation for the distribution of St alone. It can be viewed as
the marginal probability density derived from PY S, t as PS, t(s) =

∫
PY S, t(y, s) dy.

The equation in question is obtained from (2.106) by omitting the term containing
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derivatives with respect to y. (It vanishes upon integration over y.) Thus, the equation
is

∂

∂t
PS, t(s) =a

∂

∂s

[
(s − σ)sα PS, t(s)

]

+
g2

2

∂2

∂s2
[
s2β PS, t(s)

]
.

(2.107)

While the solution of (2.106) cannot be given in a closed form, except for a few special
values of the parameters α, β, and γ, it is vastly easier to solve the equation (2.107),
especially if we are interested only in the stationary state, where ∂PS, t/∂t = 0. In the
next paragraph we shall see what can be inferred from this partial information.

Short-time limit

The study of autocorrelations in the preceding section showed that the instantaneous
volatility changes with typical time ≃ 1/a. We shall investigate the price change during
a much shorter time interval ∆t≪ 1/a, so that the volatility process St stays approx-
imately constant. Of course, the magnitude of the price fluctuations in the interval
(t1, t1 + ∆t) may differ for different starting times t1, according to the value of the
volatility process at that time St1 . Therefore, the method of computing the short-time
return distribution consists of three steps.

First, we calculate the stationary distribution PS(s) of the variable St by solving the
Fokker-Planck equation (2.107). Second, from the first equation of (2.92), we calculate
the distribution of log-price change Xt = Yt − Yt−∆t during time interval of length
∆t, with St replaced by a constant s. This step is trivial, since the result is just the
normal distribution

PX(x|s) =
1

|sγ |
√

2π∆t
exp

(
− x2

2 s2γ ∆t

)
. (2.108)

Finally, we average over the distribution of St,

PX(x) =

∫
PX(x|s)PS(s) ds. (2.109)

This kind of approach is sometimes related [641] to the Born-Oppenheimer approxi-
mation used in quantum chemistry.

We shall show the calculation explicitly for some of the combinations of the pa-
rameters α, β, γ.

As a first case, let us examine again the Stein-Stein model, α = β = 0, γ = 1.
We cannot avoid solving the Fokker-Planck equation, but this is the easier step. We
shall show it here once in more detail. The reader should be able to easily repeat this
procedure for any other values of α and β. In a stationary state the left-hand side
of (2.107) is zero. The right-hand side can be written as the derivative of a function.
Hence, that function must be a constant c. This reduces the partial differential equation
into an ordinary differential equation of the first order

g2

2

d

ds
PS(s) + a (s− σ)PS(s) = c. (2.110)
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We naturally suppose that PS(s) tends toward zero for both s → ∞ and s → −∞.
The only value of c compatible with both of these requirements is c = 0. Then, the
solution of (2.110) is trivial:

PS(s) =

√
a

πg2
e
− a

g2
(s−σ)2

, (2.111)

and proves the already-mentioned fact that the Ornstein-Uhlenbeck process in a sta-
tionary state has a Gaussian distribution. Substituting it into (2.109) we get the short-
time return distribution in the form

PX (x) =

√
a

2π2 g2 ∆t

∫
exp

(
− x2

2 s2 ∆t
− a

g2
(s− σ)2

)
1

|s| ds. (2.112)

There is no simple closed formula for this integral, except for σ = 0. This case may
become relevant if we are interested in the distribution of very large returns, when x
is typically much larger than σ. Indeed, we shall compute here the shape of the tails
of the distribution PX (x), with the hope of seeing something that resembles the fat
tails known from empirical studies.

Before doing that, we cannot help noticing that the opposite limit of very small x re-
veals a pathology of the Stein-Stein model. The factor |s|−1 makes the integral (2.112)
divergent for x = 0. For x non-zero but small, the factor exp(−x2/(2 s2 ∆t)) ensures
convergence, but implies that the return distribution develops a logarithmic singular-
ity PX(x) ∼ ln(|x|/

√
∆t) as x → 0. Surely in reality the minuscule price changes are

not infinitely more probable than the large ones, as the Stein-Stein model tries to tell
us. That is one of the reasons why the Stein-Stein model, despite its mathematical
appeal, fell into disfavour among the people modelling the price fluctuations.

We shall ignore this problem when investigating the distribution of large returns.
This is what we are going to do now. The formula (2.112) is considerably simplified if
we introduce new parameters

ξ =

√
2a x2

g2 ∆t

η = σ 4

√
2a∆t

g2 x2

(2.113)

and change the integration variable appropriately. The return distribution is then

PX(x) =

√
a

2π2 g2 ∆t
e−

1
2 ξ η

2 ∑

ρ=±1

∫ ∞

−∞
e−

1
2 ξ ψρ(u,η) du (2.114)

where
ψρ(u, η) = e−2u + e2u − 2ρ η eu. (2.115)

Note that the single integral in Eq. (2.112) is transformed into the sum of two integrals
in Eq. (2.115), distinguished by the sign ρ = ±1, due to the presence of the absolute
value |s| of the integration variable in the formula (2.112).
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A large return implies a large value of the parameter ξ. Therefore, we can calculate
the integrals in (2.115) by the saddle-point method. At the same time, the other
parameter η becomes small, and we can safely expand all quantities in powers of
η and retain only the lowest-order terms. This is first used when we calculate the
position of the saddle point u∗ by solving the equation ∂ψρ(u

∗, η)/∂u = 0. We can
easily find that eu

∗

= 1 + η/4 + O(η2) and hence ψρ(u
∗, η) = 2 − 2ρη + O(η2) and

∂2ψρ(u
∗, η)/∂u2 = 8 − 2ρη + O(η2). Putting everything together and neglecting the

terms of the order O(η2) we obtain the following asymptotic formula for large returns:

PX(x) ≃
√

a

π g2 ∆t
e−ξ(1+η

2/2) ξ−1/2 cosh ξη , ξ → ∞. (2.116)

If the formula (2.116) is still not very transparent to the reader, note that it implies
the following type of large-return distribution:

PX(x) ∼ 1√
|x|

e−|x| (2.117)

where we omitted all the dependence on various parameters of the model. The funda-
mental conclusion is that the Stein-Stein stochastic volatility model is characterised
by exponentially decaying tails of the return distribution. Therefore, no true fat tails
are present, but on the other hand the tails are considerably fatter than that of
the Gaussian distribution predicted by a simple random walk with fixed volatility.
This may seem a considerable improvement and indeed it may be, and was used
to predict investment risks with higher precision than the bare diffusion models
do [631, 632, 634, 636, 642, 643].

Encouraged by this progress, let us look at other species of stochastic volatility
models. Perhaps they will work even better. At a minimum, we want to get rid of the
pathological behaviour of the Stein-Stein model at |x| → 0. Thus, let us look at the
‘Ornstein-Uhlenbeck’ model. Formally, it differs from the Stein-Stein model by setting
γ = 1/2 instead of γ = 1. In words, the volatility is assumed equal to random variable
St instead of S2

t . There is a practical problem here; namely, St can take positive as well
as negative values in the Ornstein-Uhlenbeck process. To avoid negative volatilities,
we can impose a reflecting boundary at the point St = 0. It was difficult to implement
the boundary when we investigated the process using the moments, so we decided to
sweep the problem under the carpet. Now we approach the process through the Fokker-
Planck equation, and it turns out that the introduction of the reflecting boundary is
trivial. We just solve the Fokker-Planck equation without the boundary and then cut
out the part corresponding to negative volatilities. This is possible because of the
mirror symmetry of the stationary distribution for St. In so doing, we must not forget
that the normalisation of the distribution is now changed. In fact, the Fokker-Planck
equation for the volatility was already solved a few paragraphs above, since it is
identical to the Stein-Stein case. Therefore, the solution will be a slight modification
of the distribution (2.111), namely

PS(s) =

√
a

πg2
2 θ(s)

erfc(−σ
√
a/g2)

e
− a

g2
(s−σ)2

(2.118)
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where θ(s) is the Heaviside function, and the short-time return distribution, in analogy
with (2.112), is

PX(x) =
N√
∆t

∫ ∞

0

exp

(
− x2

2 s∆t
− a

g2
(s − σ)2

)
ds√
s
. (2.119)

We absorbed all the necessary but bothersome normalisation into the constant N .
Note that for ∆x → 0 the integral converges, so the peculiarity of the Stein-Stein
model is indeed cured. This will be true for all models with γ = 1/2.

Now we are ready to proceed in the same way we did with the Stein-Stein model.
We introduce the following new variables

ξ =

(
2a

g2

) 1
3
(
x2

∆t

) 2
3

η = σ 3

√
2a∆t

g2 x2

(2.120)

then we make an appropriate substitution in the integration variable and perform the
saddle-point approximation, together with the expansion in powers of η. The result is

PX (x) ≃ N
3
√

∆t |x|

× exp
[
− 3ξ

25/3

(
1 − 24/3

3
η +

25/3

9
η2
)]
, |x| → ∞

(2.121)

where we again gathered all normalisation into a (new) constant N . Schematically, we
can say that the tail of the return distribution behaves like a stretched exponential

PX(x) ∼ 1

|x|1/3 e−|x|4/3. (2.122)

The same procedure can now be repeated for the Heston model, for ‘GARCH’
and as many other variants of the stochastic volatility models one might like. For the
Heston model, the tail of the return distribution is exponential

PX(x) ∼ 1

|x|1−2a σ/g2
e−|x| (2.123)

while the ‘GARCH’ features the power-law tail

PX (x) ∼ 1

|x|1+4a/g2
. (2.124)

In fact, compared to the Stein-Stein or ‘Ornstein-Uhlenbeck’ models, the Heston and
‘GARCH’ models are even easier to deal with, as the integrals analogous to (2.112) and
(2.119) can be computed explicitly. We encourage the reader to look up the formulae,
e.g. in Ref. [644].
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To summarise the results we have so far obtained for the stochastic volatility mod-
els, we can say that they are so plastic that it may be fairly easy to find agreement with
the empirical return distribution. We can also easily perform an independent check of
the obtained volatility distribution against the empirical data, [19, 178, 180, 182, 488].
On the other hand, we must constantly keep in mind that the real data are much more
rich, and especially that the long-time correlations are missing in any of the stochastic
volatility models.

2.5 What remains

The view of price fluctuations as a Brownian motion must resound in the physicist’s
mind, and various associations pop up. First, we already mentioned that the Fokker-
Planck equation for such a process is just the heat conduction equation. Or, it might
be considered to be like the Schrödinger equation in imaginary time. Suddenly we are
in the realm of the quantum!

When we want to deal with quantum mechanics on an advanced level, we resort to
path-integral formalism. Although it is fully equivalent to the standard treatment via
the Schrödinger equation, in practice it brings some advantages. The way initiated by
Bachelier finds natural continuation in the use of path integrals to the study of the
stock market.

Perhaps the first pioneer in this direction was J. W. Dash, a former particle physi-
cist. In a series of three technical reports [645–647] he adapted the idea of path integrals
to the language of finance and showed how it may be useful in one of the central is-
sues, pricing of financial derivatives. Several followers picked up the baton in the late
1990s [648–651], and the methods based on path integrals have kept being developed
through the present day [652–663]. There are also at least three books describing the
technique [664–666].

Without denying the achievements of the ‘continuous-time finance’, i.e. modelling
based on stochastic differential equations, the approach using continuous-time ran-
dom walk is superior by at least one grade. The basic-level continuous-time random
walk described in Sec. 2.1.3 was developed in many directions. For example, there is
an analogy of the Fokker-Planck equation where the usual derivatives are replaced
by fractional ones. This seemingly formal algebraic acrobatics finds natural interpre-
tations, describing certain continuous-time random walks; and, conversely, fractional
derivatives seem to be a natural manipulating tool for continuous-time random walk.
The advantage is that non-trivial power-law dependences immediately follow [197, 578].

The continuous-time random walks can be coupled and mixed in various ways
[667, 668]. One should also not forget that so far the waiting times were prescribed by
hand. For a more reliable results it is necessary to make a more fundamental model
which would produce these waiting times and would be based on a simple mechanism,
as in Refs. [669–671].

Another important ramification consists of applying many time scales in
continuous-time random walk. Several independent sequences of jump times are pro-
duced, each sequence having its own characteristic waiting times and characteristic
lengths of jumps. The sequences are then combined to make up the price-movement
process. Its properties crucially depend on the distribution of time scales and on the
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relation between the characteristic waiting time and the characteristic jump length. It
was shown [672] that such a model can provide a superdiffusive (H > 1/2) price move-
ment. The relation of this multiple-scale model to a Markov-switching multifractal
cascade immediately comes into mind.

There are also direct ways to obtain the power-law distributions found empirically
in return distributions. Unfortunately, these paths to success usually lack a deeper
understanding of the mechanisms behind the scene. One of the direct approaches is
the use of multiplicative-additive random processes, already shown by Kesten [673]
to exhibit power-law tails [674, 675]. The application of the idea to finance and eco-
nomics is rather straightforward, and there are many works developing it to a consid-
erable level of complexity [170, 173, 676–692]. Another such approach is based on the
non-extensive statistical physics introduced by Tsallis [693], which is appropriate for
non-equilibrium systems and is also characterised by power-law distributions [694] re-
placing the common exponential Boltzmann factors appearing in ordinary equilibrium
statistical mechanics. Its relation to economics is investigated, e.g. in [695–698].

There have also been attempts to relate the non-extensive statistical physics to
GARCH-like stochastic processes [699]. The GARCH process and relatives derived
from it would deserve an entire book. For example, the simplest GARCH we pre-
sented here does not show power-law autocorrelations of absolute returns. But it is
possible to have this feature if we postulate that the coefficients in the GARCH re-
currence formula decay themselves as a power law [700]. From the opposite direction,
people tried to ‘derive’ the ARCH or GARCH processes from more fundamental mi-
croscopic models [701]. Let us also mention the possibility of introducing multiple
time scales here [702], just as it was done in continuous-time random walk, mentioned
above. Again, the tempting possibility arises of uniting GARCH-based models with
multifractal cascades. Of practical importance is the problem of fitting the GARCH
parameters to the empirical data [703]. Comparison with the S&P500 Index can be
found, e.g. in Ref. [422], and the work [532] compares the predictions of GARCH mod-
els with the observed behaviour of prices after a crash. In Ref. [704] the relation to
the best linear forecast problem is investigated.

The physics of multifractal cascades is especially interesting and extends beyond
econophysics modelling (see, e.g. Ref. [705]). It also poses non-trivial mathematical
problems of intrinsic value, like the proper definition of a multifractal random walk
and the use of wavelets in a more precise formulation of the cascades [253–255,706–
708]. On the other hand, it is not clear how to justify the cascade starting from a
microscopic description of the market. An investigation of generic multifractality can
be found, e.g. in Ref. [709].

With the section on stochastic volatility models we returned back to the ‘con-
tinuous finance’ methodology, albeit on a more sophisticated level. We do not have
enough space to show all developments. Moreover, an encyclopedia of solved stochas-
tic volatility models would very soon become boring. The interested reader may look
at Ref. [488] for a systematic comparison of wide range of stochastic volatility mod-
els. An interesting comparison of volatility autocorrelations in stochastic volatility
and ARCH-like models can be found in [710]. From the plethora of variants [711–
719], let us mention explicitly only the works on the exponential Ornstein-Uhlenbeck
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process [488, 631, 643, 720–722] and the explanation of the leverage effect, using two
correlated sources of noise for the price and the volatility processes [256, 258–260,723].
A related approach also provides the basis for the ‘string’ theory of the forward inter-
est rate curve [724, 725]. Finally, there is also a book on option pricing with stochastic
volatility models [726].

Problems

1. The key ingredient of continuous-time random walks is the waiting time distri-
bution. One should always make some hypothesis about how these waiting times
occur. If we must wait for a single random event which happens with average
frequency λ, the distribution is exponential with characteristic time λ−1. We can
imagine a slightly more involved scenario. Two events must happen one after the
other before the price changes. The first event has a larger frequency λ1, and the
other is slower, with the frequency λ2 < λ1. The distribution of waiting times is
then P∆T (t) = λ1 λ2

λ1−λ2

(
e−λ2 t − e−λ1 t

)
. Investigate this case.

2. The Mandelbrot binary cascade is assumed symmetric, i.e. M and 1 −M have
the same distribution. Show that it implies that 〈M〉 = 1

2 , and hence ζ(2) = 1.
Conclude that observing only the second moment of the returns, it is impossible
to distinguish this multifractal signal from an ordinary random walk. Generalise
the argument for multinomial cascades.

3. Calculate the multifractal spectrum produced in the binary cascade with expo-
nents given by (2.64). Show that maxh d(h) = 1.

4. Show that in the cascade model, the autocorrelation function of the logarithms
of volatility decays logarithmically with the time difference [707]. Note: this fact
was observed empirically, see, e.g. Refs. [253–255].

5. What is the decay of absolute return autocorrelations in the Markov-switching
multifractal model if we suppose that the breakpoint frequencies λj increase lin-
early with j? What if they increase quadratically?

6. Calculate the moments µ2l,n for the ‘GARCH’ stochastic volatility model and
show that they diverge exponentially when t → ∞ for large enough l + n. Con-
clude that the return probability distribution has a power-law tail. What is the
dependence of the tail exponent on parameters a and g?

7. The short-time limit for the return distribution in a stochastic volatility process
can in principle be found for an arbitrary combination of parameters α, β, and
γ. Complications arise from the fact that the argument of the exponential in
the integral analogous to (2.112) and (2.119) contains several different powers of
s, and the saddle point cannot be found explicitly. However, there are certain
combinations of α, β, and γ for which s occurs only in two different non-zero
powers, the saddle point is easily found, and the tail of the return distribution
can be calculated exactly. What are these combinations? Show that the Heston
and ‘GARCH’ models belong to these special cases.
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Basic agent models

3.1 Aggregation models

In the classical view of an efficient market there are two sources of price fluctuations.
First, there are randomly arriving items of news, indicating that the price should rise or
go down. This is the component of price movements which one may call deterministic.
Indeed, knowing the mechanism of the rational price adjustment, provided the news is
known, there is no ambiguity as to the value of the new price. Second, the individual
differences between the economic agents and imperfection of their actions contribute
to a stochastic element.

However, both of these contributions have in common that they result, after a
sufficiently long time, in normal distribution of price changes, due to the central limit
theorem. But how does it go with the observed fat tails of the return distribution?
It is evident that some of the assumptions should be replaced by more sophisticated
ones. The problem is how to justify the new principles, and how to see that they are
more sensible than the classical efficient market hypothesis.

The first attempt to fix this weak point is the idea that the external news influencing
price changes itself has a distribution with power-law tails, and this distribution is
automatically transferred into the distribution of returns. This is the path Mandelbrot
followed in his suggestion [727] that the returns follow the Lévy-stable distribution.
We can equally well suppose that it is not the external influence but the uncertainty
about the agent’s reaction that is Lévy-distributed. However, it is no less troublesome
to explain to an unbiased curious audience why we consider it a success to be explaining
fat tails by other fat tails.

Perhaps it is wiser to add one more level of complexity into our system and suppose
that the agents do not act independently. Instead, they can form aggregates of various
sizes, and the agents within the same aggregate perform an identical action. Formally,
we can say that the assumption of independent random variables, which leads to
normal distribution according to the central limit theorem, is lifted. Thus, we may
expect a much wider variety of distributions, and, if we are lucky, the power-law tails
of return distributions will follow.

The ways the agents can aggregate with each other are multiple. We shall present
several possibilities in the following sections.
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Self-organised criticality Box 3.1

is a concept introduced in 1987 as an attempt to explain the so-called 1/f noise, which
was observed in many different systems but whose origin was unclear [728]. Self-organised
criticality occurs in open dynamical systems with infinitesimally small external driving
and is generally connected with the existence of one or more absorbing states, i.e. states
which remain unchanged in the model dynamics. In the kinetic Ising model in 1 dimen-
sion the absorbing states are the two configurations with all spins identical (either all +1
or all −1). Analogically, in the voter model it is the homogeneous state. In the sandpile
model (see Box 3.2) it is any of the stable configurations in which no site exceeds the
threshold height. If we kick off the system by an infinitesimal perturbation (in the 1D
Ising model by flipping a single spin, in the sandpile model by adding one grain on a
randomly chosen site, etc.), we may observe what is going on before the system gets
stuck in an absorbing state again, or, as we call it, during an avalanche. We can measure
the duration of the avalanche t, its size s, defined as the number of elementary changes in
the course of the avalanche (such as flipping a single spin, toppling on a single site), etc.
The system is self-organised critical if the distribution of avalanche sizes (and durations)
has a power-law tail, P (s) ∼ s−τ , s → ∞. For example in the 1D kinetic Ising model,
or the sandpile model above its upper critical dimension, the exponent is τ = 3/2.
Many real systems were supposed to be self-organised critical in the above-mentioned
sense, and models exhibiting power-law distributions of avalanche sizes were devel-
oped for their description. Examples include earthquakes [729, 730], biological evolu-
tion [731], dislocation dynamics in solids [732], internal mechanical collapse [733], traffic
jams [734, 735], friction [736], and many more.

3.1.1 Economic sandpile

Every child knows sand very well. If wet, it so easily obeys our desire of form that
children play with it indefinitely. If dry, it is much less exciting, but still one can heap
up large piles of sand, observing how the grains added at the top roll down the slope.

The dynamic of the sandpile is highly nonlinear. Adding one grain usually does not
make any change. Occasionally, however, the grain can trigger an avalanche involving
a large number of grains sliding down. The point is that there is a threshold slope,
and if exceeded locally, the configuration of the grains is no longer stable and prompts
reorganisation of the surface of the sandpile.

What if we identify the economic system with the sandpile and avalanches with
bursts of activity resulting in the change of price? The distribution of avalanche sizes
would then be reflected in the distribution of price changes. The ensemble of grains
moving side by side can be compared to the concerted action of several, or many agents
forming dynamical aggregates which act together as large super-individuals and then
break up again, only to wait until another economic avalanche emerges.

Self-organised criticality

This idea was first put forward in 1993 by Per Bak and his coworkers [737, 738] as a
ramification of the earlier work [728] of Bak et al introducing an incredibly fruitful
concept of self-organised criticality (see Box 3.1). In the theory of self-organised crit-
icality, the power-law distributions emerge spontaneously without need of parameter
tuning, and there was a time when econophysicists shouted with joy when hearing this
good news. The sandpile model was the first and became the most typical abstract
modelling scheme in self-organised criticality.
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Fig. 3.1 Sketch of the economic sandpile model. The activity proceeds from the top to the

bottom. The example of an avalanche starting at the point (1, 3) is shown by filled circles. The

lines delimiting the area covered by the avalanche can be regarded as traces of two random

walkers annihilating at the end. Note that the ‘columns’ numbered by index j are in fact

tilted by 45 degrees.

There is its simplified version, also called the directed sandpile model [739], and
we shall now formulate it in the language of economics. For details on the original
sandpile model, we refer the reader to Box 3.2.

Imagine that the function of the economic agents consists in sending items of goods
to their customers and ordering goods from their suppliers. The agents sit on the nodes
of an oriented production network where the edges are oriented from the customers
to the suppliers. For simplicity we shall assume that the network has the form of a
regular square lattice rotated by 45 degrees, as depicted in Fig. 3.1. So, the rows in
the production networks are the diagonals in a square lattice.

The topmost row represents the final consumers. One layer below we have the
agents who send their products to final consumers and order the material from their
suppliers on the next row below. The crucial assumption making the model non-trivial
is the nonlinear response of the agents to the orders they receive. Denote zij the number
of unsatisfied orders the agent in row i and column j has in her agenda. She remains
idle until the heap of orders on her desk reaches a threshold value zc = 2. If that
happens, she wakes up and solves the situation by sending one order to each of her
2 suppliers. After that, she considers 2 orders in her business resolved and her state
variable diminishes by 2. Such event is called toppling and is formally described by
the following update rules for the numbers of waiting orders
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Sandpile model Box 3.2

of Per Bak, Chao Tang, and Kurt Wiesenfeld was the first example of a self-organised
critical system [728, 740]. It is an infinitesimally slowly driven cellular automaton with
open boundaries. It is defined on a d-dimensional hypercubic lattice (d ≥ 2) generated
by elementary translation vectors eα, α = 1, . . . , d. The state of each lattice point x
is determined by the time-dependent height variable zx(t). The lattice is supposed to
be large but finite: if xα are the coordinates of the point x, we work within the cube
0 ≤ xα < L. Outside the cube we fix zx(t) = 0 for all times, which implements the
free boundary conditions. There is a threshold zc determining whether the site is active
(zx ≥ zc) or idle. These dynamics proceed in a sequence of avalanches, according to the
following two rules.
1. External driving. If ∀x : zx(t) < zc holds, the system is in a static (absorbing)
state. If there had been an avalanche active in the last step t− 1, it is terminated now.
Then, we choose a lattice point x0 at random and drop a ‘grain’ there:

zx0(t+ 1) = zx0(t) + 1.
If the threshold is reached at the selected site, zx0(t + 1) ≥ zc, a new avalanche starts,
and we proceed to rule 2. Otherwise we repeat rule 1.
2. Cellular automaton updating. If ∃x : zx(t) ≥ zc, we are in an avalanche. We
update the state of all sites:

zx(t+ 1) = zx(t)− 2d θ(zx(t)− zc) +
∑d

α=1

∑
σ∈{+1,−1} θ(zx+σeα(t)− zc)

with the notation θ(z) = 1 if z ≥ 0 and θ(z) = 0 if z < 0. The second term on the right-
hand side accounts for redistribution of 2d grains from the site x to its 2d neighbours, if
the threshold zc is reached or exceeded. Such an event is called toppling. The last term
corresponds to the grains received from all toppling neighbours.
The number of topplings during one avalanche is called the size s of the avalanche.
Numerically it was found that the distribution of avalanche sizes satisfies a power law,
P (s) ∼ s−τ with exponent τ = 1.27±0.01 in d = 2 [741]. The mean-field approximation,
based on the theory of branching processes, gives the value τ = 3/2 [742–748].

zi j → zi j − 2

zi+1 j → zi+1 j + 1

zi+1 j+1 → zi+1 j+1 + 1
(3.1)

Now, the suppliers on the next row must do their job, but they react in the same
nonlinear way, considering it worthless to switch on before they have enough, i.e. at
least zc = 2, items of work to do. If they reach the value 2, they become active, send
the orders to their suppliers, and the turn is now on the next layer of agents. An
important point is that the production chain is open and finite, however large it might
be, so the agents in the last layer, who produce the most basic raw materials, do not
have anybody to send their orders to. When they become active, they diminish their
state variable by 2 as everybody else, but without passing the order further. We can
imagine that they dig into the earth and find oil. This guarantees that the activity will
eventually stop, at most at the lowest layer. Only after all agents become inactive (we
call that configuration an absorbing state), a new order is sent to a randomly chosen
agent in the topmost layer.
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Avalanches and price changes

The picture which follows is characterised by avalanches of activity propagating down
the production chain. We can view the avalanches as longer or shorter jumps from
one absorbing state to another. The activity wave travels in a specific direction and
never returns within a single avalanche. That is why the model is also called the
directed sandpile model. As usual in the self-organised critical models, the distribution
of avalanche sizes obeys a power law. Before proceeding with details on the power-law
distribution, we must say a few more words on the economic interpretation of the
model.

Each of the avalanches can be interpreted as a temporary coalition of agents re-
sponding to a single external stimulus. Such a response will influence the prices of
various goods and the price impact will be larger as the avalanche becomes larger. For
simplicity we can assume that the relative price difference, or return, is proportional
to the avalanche size s, defined as the number of agents which were active during the
avalanche. To avoid confusion, we should note that we distinguish between two sepa-
rate time scales. From the viewpoint of the sandpile dynamics, some topplings occur
in each time step until the absorbing state is reached; and the avalanche stops after
some time ta, which is the duration of the avalanche. On the other hand, from the
perspective of somebody who observes the price changes, the avalanches occur instan-
taneously and in each time the size of the avalanche s(t) (which might also be zero) is
determined. We might say that the time is measured in the number of grains dropped
on the sandpile from the outside, because each avalanche is triggered by dropping a
single grain.

This way we can prescribe how much the logarithm of price Yt = lnZt should
change due to the avalanche. As for the sign ǫt = ±1 of the price difference, we assume
it is random and uncorrelated from time to time, 〈ǫtǫt′〉 = δtt′ . Hence the return is
assumed to be

Xt = Yt − Yt−1 = b ǫt
s(t)

N
(3.2)

where s(t) is the size of the avalanche that occurred at time t, N is the total number
of agents, and the parameter b quantifies the strength of the price impact. With such
simple relationship, the distribution of returns will be a copy of the distribution of
avalanche sizes. We may begin to feel satisfaction: the autocorrelation of returns is
zero by definition, and the distribution of returns obeys the power-law characteristic
for self-organised critical systems. This agrees perfectly with the empirical data, but
this agreement is only qualitative. We would like to be more specific and know, for
example, the value of the exponent in the power law.

Exact solution

Fortunately, the model is exactly solvable based on a straightforward consideration.
First, we should note that the avalanche always covers a compact set of lattice points,
free of any voids. To formalise this observation, we state that for each avalanche there
are two sequences of column indices l1, l2, l3, . . . , lt, and r1, r2, . . . , rt, such that all sites
(i, j) with 1 ≤ i ≤ t and li ≤ j ≤ ri toppled exactly once and all other sites never
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Discrete Laplace transform Box 3.3

of a function f(s) of an integer variable s ≥ 0 is defined as

f̂(z) =
∑∞

s=0 z
s f(s) (*)

for z ∈ C. If f(s) is a probability distribution, then the normalisation
∑

s f(s) = 1

ensures f̂(1) = 1. The behaviour of f(s) for s → ∞ corresponds to the behaviour of

f̂(z) at z → 1. For example, the power-law tail f(s) ∼ s−γ , s → ∞ is translated to the

singularity 1−f̂(z) ∼ (1−z)γ−1, z → 1−, as can be hinted by approximating the discrete
sum (*) by an integral. The exponentially truncated power-law tail f(s) ∼ s−γ exp(−hs)

occurs when the singularity is shifted to the point z = eh, i.e. f̂(eh)− f̂(z) ∼ (eh−z)γ−1.
In many cases investigated in this book the singularity is a square root, γ − 1 = 1/2,
which corresponds to the tail with exponent γ = 3/2. In probability theory, the discrete
Laplace transform is usually called a characteristic function.

toppled during the avalanche. These sequences are paths delimiting the avalanche from
the left and right sides, as we also show schematically in Fig. 3.1.

To prove that, we proceed by induction. Indeed, the avalanche starts on a single
point (1, j0) in the first layer, so l1 = r1 = j0. Supposing that the statement is true for
row i, we prove that it also holds for i+1 by constructing the appropriate li+1, ri+1. We
know that all sites in columns li ≤ j ≤ ri toppled. Therefore all columns li+1 ≤ j′ ≤ ri
in the row i + 1 received 2 grains from the row i and therefore also toppled. Four
cases are possible now, depending on the height variables in columns li and ri + 1. If
zi+1 li = zi+1 ri+1 = 0, then li+1 = li + 1, and ri+1 = ri; if zi+1 li = zi+1 ri+1 = 1, then
li+1 = li, and ri+1 = ri+1. In the latter case the avalanche widens on both sides, while
in the former it shrinks from both the left and the right. We are sure the reader gets
the idea and already knows the result in the remaining two cases. This completes the
proof, but we are not yet ready to determine the statistic of avalanches. To this end,
we must know more about the sequences determining the two edges of the avalanche.
Clearly, both of them can be considered as walks on a square lattice, with steps of
length 0 or 1. Both of the walks start at the same point (1, j0). It is evident from the
proof above that they must also end at the same point (or at the bottom of the lattice;
we ignore this finite-size effect for now, since it occurs very rarely in a large system),
and the avalanche is therefore delimited by the paths of two walkers who departed
from one point and annihilated each other when they first met. The next crucial piece
of the whole picture is the fact that they are in fact random walkers, because all four
possibilities of continuing with the left and right edges of the avalanche to the next
row are equally probable. This follows from the finding that all inactive configurations
zij ∈ {0, 1} of the economic sandpile occur with the same probability values. We shall
not prove this property here and refer to the original literature [739] presenting an
exact solution of the directed sandpile model.

Random walker returning to the origin

Calculating properties of the avalanches equals to investigation of paths traced by
pairs of random walkers starting at the same point at time 0 and annihilating each
other at later time t. When we observe the second walker relative to the position of
the first walker, the situation is equivalent to calculating the distribution of times the
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walker spends up to her first return to the point of departure. Now, our aim will be
to prove that the distribution of first-return times, i.e. as well as the duration of the
avalanches, obeys a power law

Pdur(t) ∼ t−3/2, t→ ∞. (3.3)

From this result it follows that the distribution of avalanche sizes is

Psiz(s) ∼ s−τ , s→ ∞

τ =
4

3
.

(3.4)

Indeed, if the walker spent time t before returning back, her typical departure from
the origin was ∼ t1/2, and the area covered by the avalanche is therefore s ∼ t3/2.
Substitution in the result (3.3) immediately gives (3.4).

We describe the position of the walker at time t by random integer-valued variable
Nt ∈ Z. Our single walker representing the original pair of walkers can make a step
to the left or right with equal probabilities 1/4, or remain at the same point with
probability 1/2. This is exactly the same as if we let a walker move only left or right,
but observe her position every second step.

So, we investigate the first return times of a simple random walk with probabilities
Prob{Nt+1 − Nt = ±1} = 1/2. Initial condition is N0 = 0, and the time of the first
return to origin is also a random variable, denoted T . So, NT = N0 = 0 and Nt 6= 0
for 0 < t < T . Denoting P (n; t) ≡ Prob{Nt = n,N0 = 0, Nt′ 6= 0 for 0 < t′ ≤ t} the
probability that the walker who started at the origin arrived to point n at time t but
never visited the origin again, we can write the following recursive relation

P (n; t) = δt0δn0 +
1

2
(1 − δt0)(1 − δn0) (P (n− 1; t− 1) + P (n+ 1; t− 1)) . (3.5)

The Kronecker deltas ensure the obvious initial and boundary conditions P (0; t) = 0
for t > 0 and P (0; 0) = 1. Knowing P (n; t) we can immediately deduce the distribution
of first return times to origin, as

Pf.r.(t) =
1

2
(P (1; t− 1) + P (−1; t− 1)) . (3.6)

It is easier to work with the discrete Laplace transform (see Box 3.3). After a bit of
algebra on equations (3.5) and (3.6) we get the following simple expression

P̂f.r.(z) = 1 −
√

1 − z2. (3.7)

The time dependence can be recovered by expanding it into a power series in z. Re-
calling that the time of the avalanche proceeds twice as fast compared to the walker
described by the relation (3.5), we deduce the exact distribution of avalanche durations

Pdur(t) =
(2t)!

22t+1 t! (t+ 1)!
. (3.8)

The Stirling formula (see Box 3.5 if obscure) for large t yields the asymptotic behaviour
(3.3). In fact, the asymptotic power behaviour with exponent 3/2 follows immediately
from the square-root singularity of P̂f.r.(z) at z → 1−.



Aggregation models 99

One may ask how the result would change if we put the economic agents on a
different supply network. The obvious generalisation is to use a d-dimensional hyper-
cubic lattice instead of the planar square network investigated so far. It turns out
that the directed sandpile model is exactly solvable in any dimension [739], but for all
dimensions d ≥ 3 we get the same exponent in the distribution of avalanche durations,
Pdur(t) ∼ t−2 and avalanche sizes Psiz(s) ∼ s−3/2.

Results and objections

The list of questions posed by empirical econophysics always start with the problem
of fat tails in the return distributions. The self-organised critical model of economic
activity seems to provide a transparent explanation of the power-law tails in terms
of avalanches of various sizes spreading through the economy. The economic sandpile
model exhibits the return distribution according to the law

PX (x) ∼ x−1−α, for x→ ∞ (3.9)

with the return exponent α related to the avalanche size exponent τ by

α = τ − 1 =
1

3
. (3.10)

A smart enough researcher would come up with many more variants of the theme
exemplified by us with the directed sandpile model. All of them would result in the
same power-law behaviour (3.9), only differing in the value of the exponent τ . For
example, as already mentioned, if we only increase the dimensionality of the supply
network in the economic sandpile model to 3 or more, the exponent changes to τ = 3/2.
It is therefore vital to discriminate between the candidate models by comparing the
return distribution quantitatively with the real data.

Unfortunately, it must be stated that the sandpile model does not pass this simple
test. Indeed, as we have seen in Sec. 1.2.2, the exponents found in reality are much
higher, with values around α ≃ 3. Even worse, it was found that all self-organised criti-
cal models are generically characterised by avalanche exponents τ ≤ 3/2, the maximum
value 3/2 being reached in the mean-field approximation, or above the upper critical
dimension (if the latter exists). The conclusion is that despite the qualitative success,
the self-organised criticality cannot serve as a direct explanation of the observed price
fluctuations. The exponent is too far from the data. Even if we used a different pre-
scription for the price impact of avalanches, i.e. we postulate a nonlinear function,
e.g. X ∝ √

s instead of the linear relation (3.2), the situation would be only slightly
improved.

On the other hand, it does not mean that self-organised criticality should be
judged irrelevant for describing economic phenomena. Actually the framework of self-
organised criticality helps to understand some of the models of social organisation, as
will be shown in Chap. 8. It is also possible that other power-law dependencies found
in economics, such as distribution of transaction volumes, can be traced to avalanche
phenomena pertinent to self-organised criticality. Finally, let us mention one open
question connected to our economic sandpile model. It is expected that all types of
supply networks result in exponent τ not exceeding the mean-field value 3/2. But
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Percolation Box 3.4

is a phenomenon occurring in various physical systems. As an example of site percolation
we can consider a container full of closely packed balls, some of them being metallic,
some of them insulating. Voltage is applied to the opposite sides of the container, and we
ask whether the particular configuration of the balls is conducting or not. An affirmative
answer means that we have here a cluster of mutually touching metallic balls extending
from one side of the sample to the opposite side. The probability P that a given site
belongs to such a spanning cluster depends on the concentration p ∈ [0, 1] of the metallic
balls. In the thermodynamic limit there exists a critical concentration pc called the
percolation threshold, such that P = 0 for p < pc, P > 0 for p > pc, and the function
P (p) is continuous at p = pc. So, the percolation threshold marks a second-order phase
transition with the density as a control parameter.
Completely analogous is the dual phenomenon of bond percolation. Here, we may think
of molecules sitting in the nodes of a regular lattice (but any graph can be used as well).
Each pair of neighbours on the lattice is connected by a bond with probability p. The
mechanical properties of the system change dramatically at a critical concentration pc
of bonds, when a cluster occurs extending from one side of the sample to the other side.
In this case the system becomes stiff. Otherwise it is a viscous liquid.
The critical behaviour at the percolation threshold, p → pc, is described by a host of
critical exponents. For example the number of clusters of size s is scaled as ns ∼ s−τe−bs,
where b ∼ |p − pc|1/σ ; the fraction of nodes contained in the largest cluster behaves as
P ∼ (p−pc)

β; the mean cluster size as S ∼ |p−pc|−γ , etc. Scaling relations hold for the
values of the exponents: β = (τ − 2)/σ, γ = (3− τ )/σ. Both bond and site percolation
are exactly solvable in one dimension and on the Bethe lattice. In the latter case τ = 5/2
and σ = 1/2, and these values are exact in dimensions d ≥ 6. For regular lattices in
dimensions d ≥ 2 the renormalisation group methods are applied to calculate the critical
exponents. Many results are obtained only thanks to numerical simulations. In d = 2
the hypothetically exact values are τ = 187/91 and σ = 36/91. A detailed account of
percolation can be found, e.g. in the textbook [751] or the review article [752].

what will happen if we allow the topology of the network to evolve in response to the
activity of the agents? A motivated reader can take inspiration, for example, from the
work [749].

3.1.2 Cont-Bouchaud model

In the sandpile model the agents are grouped dynamically, each time anew. Sometimes,
however, we can find long-lasting coalitions, which act together as large meta-agents.
Alternatively, we can imagine herds of agents imitating each other and forming large
clusters bound together by strong pairwise ties. To mimic this herding effect, Rama
Cont and Jean-Philippe Bouchaud introduced a model [750] closely related to the effect
known in physics as bond percolation, while mathematicians speak about Erdős-Rényi
random graphs.

Random graphs and bond percolation

When cooked gelatin cools down and forms a gel, when cement paste thickens so that
the builders can remove the formwork, or latex vulcanises due to sulphur being added,
we are always witnesses to the phenomenon of percolation (see Box 3.4). The units
making up our system bind gradually one to the other, and when the number of bonds
exceeds a certain critical threshold, the fluid assembly of particles turns into a solid,
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though spongiform, body. If we let the process continue, the concentration of bonds
increases further and the material hardens more and more, resulting in quality rubber
or in a first-class concrete.

A similar mechanism can also be at work when investors on the stock market are
herding under the influence of a rumour or a collective panic. We can imagine that
bonds are added between agents, and once bonded, agents always perform identical
actions. All agents bound together form a single herd, or cluster. Generally, many
clusters of various sizes are formed this way. To asses the influence of the herds on
the movements of the stock market we must know something about the sizes of the
clusters.

First of all we must determine which bonds between agents are a priori allowed.
We assume there is a virtual social network connecting the agents, and it is only on
the links of that network where the bonds can be placed. Then, as the clusters are
determined by the configuration of bonds, we speak about bond percolation on that
network. For example, one can consider a very unrealistic, but theoretically appealing
case of agents placed on the nodes of a regular network, be it a linear chain, a square
lattice or a hypercube. Or, one can give up the complications of the social structure and
assume the network is a complete graph, which means that everybody is connected
to everybody else, and the bonds can be established between any pair of agents. The
latter case corresponds to bond percolation on the complete graph, and that is the
case we shall develop below.

So, let us have N nodes, and each pair of nodes be connected by a bond with
probability p ∈ [0, 1]. The average number of bonds is therefore NB = pN (N − 1)/2.
It is also evident that the average degree (number of attached bonds) for any of the
nodes is k̄ = p (N − 1).

In fact, the structure created by bonds distributed randomly among the pairs of
nodes was investigated in late 1950s by the Hungarian mathematicians Pál Erdős and
Alfréd Rényi. The concept they introduced was called a random graph [753]. We shall
return to various ramifications of the theory of random graphs in Chap. 6. For now,
we mention only a few results relevant to our percolation problem.

Indeed, we asked about the distribution of cluster sizes. Certainly it will depend
on the parameter p. The first thing we should clarify is the size N1 of the largest
cluster. We assume that the number of agents N is large, thus we need to know what
happens with the cluster sizes in the limit N → ∞. We also suppose that p depends
on N as p = c/N , with a certain constant c independent of N . The largest cluster
can comprise a finite fraction of nodes, N1/N → g(c) > 0. In this case it is called
a giant component. Or, its size can grow only logarithmically with the number of
nodes, N1 = O(logN). The former case happens for c > 1, the latter for c < 0. The
value c = 1 marks the percolation threshold, characterised by the emergence of a giant
cluster which extends over a macroscopic part of the system. In fact, the relative size
of the giant component g(c) is the order parameter of the percolation transition.

It is not realistic to assume that a very large portion of the market participants
herd together and buy or sell unanimously. If that happens, the market crash seems
inevitable, which in turn shakes all opinions, and coalitions have to be rebuilt from
scratch. This implies that we can exclude the situation above the percolation threshold,
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Fig. 3.2 An example of a finite Bethe lattice with node degree k = 3. Note that there are

12 nodes on the surface and only 10 nodes in the bulk of the lattice. It is a common feature

of all Bethe lattices that the surface contributes by a finite fraction of the nodes even when

the overall size goes to infinity.

c > 1, from our considerations. However, it is not too silly to suppose that the traders
hazard approaching the percolation transition as much as possible. So, we want to
calculate the distribution of cluster sizes below but close to the percolation threshold.

Loops and Bethe lattices

To find exact information on cluster sizes is not an easy task. The treatment is sub-
stantially simplified if we acknowledge that the percolation clusters are essentially
trees. Indeed, a tree is characterised by the absence of closed loops, and it was shown
that the length of typical cycles grows with the number of the nodes as lnN (see Sec.
6.1.2). So, we shall not be much mistaken if we ignore the loops entirely.

The cleanest way to avoid cycles in our clusters is to study the percolation problem
on a regular tree structure, that is, the Bethe lattice. An example of the Bethe lattice
is depicted in Fig. 3.2. We suppose that all nodes, except those at the extremities of
the graph, have a fixed degree k. Let us now compute the probability that a randomly
chosen node i belongs to a cluster of size s, i.e. containing s nodes connected by s− 1
bonds. The central node i can be connected to l ≤ k of its neighbours. If we now cut off
the node i, the graph splits into k disconnected branches and so does the percolation
cluster. Now we have l sub-clusters, each of them headed by one of the neighbours
of the central node i. The sub-clusters are independent of each other. Knowing the
probabilities Psub(s1j) that the sub-clusters headed by the neighbour j of site i contain
s1j nodes, we combine the probability that the entire cluster contains s nodes

P (s) =
k∑

l=0

(
k
l

)
pl(1 − p)k−l

×
∑

s11

∑

s12

. . .
∑

s1l

l∏

j=1

Psub(s1j) δ


1 +

l∑

j=1

s1j − s


 .

(3.11)

Using the discrete Laplace transform we obtain the more compact expression
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P̂ (z) = z (1 − p+ p P̂sub(z))k. (3.12)

In a similar way we proceed one step further and remove the heading node from each
of the sub-clusters. They in turn split into disjoint sub-subclusters, and if we suppose
our system is large enough, the size distribution for sub-clusters coincides with the
distribution of sub-subclusters. We therefore get a closed equation for Psub(s), which
in Laplace transform reads

P̂sub(z) = z (1 − p+ p P̂sub(z))k−1. (3.13)

Obviously P̂sub(1) = 1. The tail of the cluster size distribution corresponds to the
behaviour of P̂ (z) for z → 1, and close to the point z = 1 we can expand Eq. (3.13)
in powers of P̂sub(z) − 1. This leads to the approximate quadratic equation

z − 1 + (zp(k − 1) − 1)(P̂sub(z) − 1) + zp2
(k − 1)(k − 2)

2
(P̂sub(z) − 1)2

+O((P̂sub(z) − 1)3) = 0,

(3.14)

implying a square-root singularity in P̂sub(z) located at a certain point z0. For the
percolation transition the singularity occurs at z0 = 1; hence the percolation threshold
is

pc =
1

k − 1
. (3.15)

Below the transition we find z0 − 1 ≃ (p − pc)
2/
(
2 pc(1 − pc)

)
. Using the expression

(3.12) the location and the square-root type of the singularity in P̂sub(z) is directly
inherited also in P̂ (z). So, the probability that a given node is contained within a
cluster of size s follows an exponentially truncated power law with exponent 3/2. Note
that we get the same value of the exponent as when we investigated the first returns
of the random walker to the origin. In both cases the value 3/2 can be traced to the
square-root singularity of the discrete Laplace transform, which is a typical feature
of various exactly solvable models.

We are now close to the end of our calculations, but we still need to make a
few additional steps before we can write the cluster size distribution for our original
percolation problem on a complete graph. First, the degree of nodes in our Bethe
lattice is k, but in the original graph it was N − 1; so we must substitute k = N − 1 in
our formulae. Next, in the thermodynamic limit the size of the graph goes to infinity,
and so does also the degree k. To keep relevant quantities finite, we must rescale the
probability of establishing a bond p = c/N , as suggested before. Then, in the limit
N → ∞ the percolation threshold occurs at c = 1 (and we can start breathing again,
as we are compatible with the Erdős-Rényi rigorous result). The probability that a
given site happens to fall within a cluster of size s is proportional to s; therefore we can
conclude that the distribution of cluster sizes slightly below the percolation threshold
is

Pclu(s) ∼ s−
5
2 exp

(
−1

2
(1 − c)2 s

)
, s→ ∞. (3.16)
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Herds in a stock market

Now we know how large the herds of market sheep are, but we still keep watching with
curiosity, to see what the animals are going to do. To teach them something simple
enough, we shall prescribe the following rule of conduct.

Suppose there are Nc clusters of sizes sl, l = 1, . . . , Nc. In each step of trading every
cluster of agents decides either to buy a unit of stock with probability a, or sell a unit
of stock with the same probability a, or stay inactive with probability 1−2a. Denoting
σl(t) ∈ {−1, 0,+1} the action of the cluster l at time t (with obvious meaning of the
values 0,±1), we assume that the change in the logarithm of price due to the excess
demand or supply is given by the same linear impact function

Xt = Yt − Yt−1 = b

Nc∑

l=1

σl(t) sl, (3.17)

as was postulated in the economic sandpile model.
If the overall trading activity is very small, a → 0, the return (3.17) is dominated

by the action of a single cluster. The distribution of returns therefore truly reproduces
that of the cluster sizes (3.16). The most important finding is that for the intermediate
returns, i.e. large enough for the validity of the asymptotic formula (3.16) but not too
large, so that the exponential cut-off is not yet effective, the return distribution follows
a power law

PX(x) ∼ x−1−α (3.18)

with a specific value of the return exponent

α =
3

2
. (3.19)

As we can see, we are now much closer to the empirical value of the return exponent
than in the economic sandpile model, but still not quite at the desired number. In fact,
the linear price impact (3.17) is not very realistic, and the square root dependence,
based on both theoretical speculation [129] and empirical evidence [279, 289], seems to
be a better hypothesis. Supposing still that only one cluster is active at the moment
and that the return is scaled as X ∝ √

s with the size s of the active cluster, we get
the return exponent

α = 3, (3.20)

in perfect accordance with the empirical data we saw in Chap. 1.
It seems we have a good reason to be happy with that result. After all, we were

able to quantitatively reproduce the power-law return distribution without excessive
ad hoc assumptions, and certainly the resulting exponent was not arbitrarily tuned by
hand. However, we cannot be satisfied, for multiple reasons. First, it is not fully clear
why the agents must keep the game close to the percolation threshold. The argument
that the higher volatility provided by such attitude can bring them more opportunities
for profit is rather shaky and remains on verbal level only. Second and perhaps the
most important flaw is the absence of long-time correlations in volatility. Indeed, in
the Cont-Bouchaud model not only are the returns uncorrelated from time to time,
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but so are the absolute returns, because in each step the choice of active cluster(s) is
made independently of the actions taken one step before. The model does not have
any memory mechanism which would lead to volatility clustering. Finally, the herds
in real markets, if they form, are dynamical objects. The model can be considered
realistic only provided we introduce a mechanism of cluster formation and dissolution,
based on some plausible assumptions about the behaviour of the agents. Let us now
show how some of the above-mentioned difficulties can be alleviated.

Introducing fluidity

The power-law distributions are not always signs of being in a critical state. It is
quite sufficient if the control parameter fluctuates within a region which contains
the critical point. The system can be rather fluid, sometimes coming close to the
threshold and sometimes wandering far from it. Such a mechanism has been called the
‘sweeping of an instability’ [754] and intuitively can be well understood. Supposing in
our percolation problem that the probability p goes randomly down and up, reaching as
far as the percolation threshold pc; the return distribution will be a weighted mixture
of distribution with various values of p. When we are closer to the critical point at pc,
the tails of the return distribution are fatter, because the exponential cutoff is shifted
beyond the cluster size about ∼ (p − pc)

−2. Therefore, the power-law behaviour will
dominate on average. The value of the exponent will change, from α = 3/2 to α = 2,
which is good, though, because it brings us even closer to the empirical numbers. We
leave the detailed calculations as an exercise for the reader (Problem 3).

The fluidity of the system can also manifest itself in rearranging bonds between
agents, thus allowing them to leave old alliances and build new ones. In the original
Cont-Bouchaud model we had two possibilities. Either we dissolve all the bonds and
create the clusters anew after each trade (annealed case), or keep the clusters fixed
during the price evolution but average the statistical properties of the price evolution
over all configurations of the percolation clusters (quenched case). Indeed, we were
interested mostly in the return distribution, where the two approaches give the same
results.

However, when we start investigating the time correlations, especially the volatility
clustering, we must decide how fast the cluster configurations are changing on the time
scale of individual trades. If the changes in the herding structures are much slower, we
can suppose the cluster is fixed. On the contrary, if the herds are formed quickly for
each single trade, the cluster structure is annealed. In either case, however, the effect
of slowly-decaying volatility correlations is missing.

So, we introduce slow evolution in the cluster structure. After each trading step we
randomly choose a pair of agents (or a link on the underlying network, e.g. the Bethe
lattice), break the bond connecting them, if it exists, and connect them by a new bond
with probability p. The quantity of interest is the autocorrelation of absolute returns.
Again assuming linear price impact (3.17) and small activity a → 0, the absolute
returns correspond to cluster sizes, so the quantity we need is the autocorrelation of
the mean cluster size

S(t) =
1

Nct

Nct∑

l=1

sl(t) (3.21)
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where Nct is the number of clusters at time t, and sl(t), l = 1, . . . , Nct are the sizes of
the clusters at that moment. Note that the logic of the Cont-Bouchaud model dictates
that the agents who are not connected to anybody else form clusters of size 1, while in
the standard formulation of bond percolation a cluster must contain at least two sites
connected by a bond. The equation (3.21) is therefore simplified to S(t) = N/Nct,
and instead of the mean cluster size we can examine the number of clusters, which is
significantly easier. Of course, as bonds are added and removed, Nct fluctuates and
the volatility clustering in the modified Cont-Bouchaud model is indirectly expressed
through the autocorrelation of the number of clusters

Cc(∆t) = 〈NctNct−∆t〉 − 〈Nct〉〈Nct−∆t〉. (3.22)

The situation is exceptionally simple on the Bethe lattice with a fixed node degree.
Indeed, in the absence of loops any bond decreases the number of clusters by one, and
denoting Nbt the number of bonds at time t we have Nct = N −Nbt. The evolution of
the number of bonds is a Markov process with transition probabilities

Prob {Nb → Nb + 1} = p
N − 1 −Nb
N − 1

Prob {Nb → Nb} = (1 − p)
N − 1 −Nb
N − 1

+ p
Nb

N − 1

Prob {Nb → Nb − 1} = (1 − p)
Nb

N − 1
.

(3.23)

Those who wonder where the term N − 1 comes from should recall that N − 1 is
the maximum number of bonds on a Bethe lattice with N nodes. We may proceed
with the solution by writing the master equation for the distribution of the number
of bonds Pbond(n; t) ≡ Prob{Nbt = n}. One may verify explicitly that the stationary
distribution is the binomial one

Pbond(n) ≡ lim
t→∞

Pbond(n; t) = pn (1 − p)N−1−n
(
N − 1
n

)
. (3.24)

To obtain the full time dependence of the probability distribution is a more difficult
task. To do that, we write the master equation in the form Pbond(n; t+1)−Pbond(n; t) =
−∑n′ Ann′ Pbond(n′; t). Then, we can determine, at least in principle, the eigenvalues
of the matrix Ann′ . The lowest eigenvalue is always λ0 = 0, and the lowest positive
eigenvalue λ1 determines the rate of asymptotic exponential relaxation toward the
stationary state (3.24). The autocorrelation of the number of clusters decays with the
same rate

Cc(∆t) ∼ e−λ1 ∆t , ∆t→ ∞ (3.25)

and so does the autocorrelation of absolute returns. We can conclude on a qualita-
tive basis that the volatility clustering in the Cont-Bouchaud model with fluid bonds
does exist, but the decay is exponential. Indeed, it was confirmed in numerical simu-
lations [755], showing a slow, although only exponential, decay of the volatility auto-
correlation, in contrast to the empirically observed power-law decrease.
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The result (3.24) is worth looking at in the limit of a large number of agents
N → ∞. With p fixed, the density of bonds nb = Nb/(N − 1) becomes sharply peaked
around its average value p and the relative fluctuations in all three quantities Nb, Nc,
and S̄ decrease as 1/

√
N . Thus, the fluctuations in the volatility must decrease in a

similar manner when the number of agents increases, and the very existence of the
phenomenon of volatility clustering appears related to the finiteness of the number of
agents on the stock market. The latter conclusion can surprise us, but we shall see
on several additional occasions that many intriguing economic phenomena are most
probably ‘mere’ finite-size effects.

From Eq. (3.24) it also follows that in the limit N → ∞ the concentration of bonds
becomes normally distributed. Therefore the distribution of volatility also becomes
Gaussian and the Cont-Bouchaud model with fluid bonds can be considered as one
of the possible implementations of the simplest stochastic volatility model described
by Eq. (2.92).

The Cont-Bouchaud model has been simulated numerically on several types of
lattices [756]. It has also been modified in many ways; for example, the trading prob-
ability a was coupled by a feedback mechanism to the price movements [757–759],
or the clusters were formed through spin-spin interaction instead of the uncorrelated
percolation [760, 761]. However, it turned out that the basic features are quite robust
when subjected to such variations, which makes the Cont-Bouchaud model a solid
starting point for further ramifications [691, 762–770].

3.1.3 Egúıluz-Zimmermann model

Still taking inspiration from the percolation model of Cont and Bouchaud, we can
try a substantially different mechanism of herd formation. Consider agents who are
hesitating for quite a long time before they sell or buy. They are not waiting passively,
though. In the meantime they ask the opinions of the others, assess the odds of var-
ious strategies, and form coalitions with those who seem to be the next winners. We
can observe the buildup of a complicated social structure, as when a soccer team sur-
rounded by coaches, doctors, and managers prepares for a final match. When the time
comes to make a deal, the cluster of agents grown during the formation period acts as
a single herd and dissolves afterwards. Therefore, as in the Cont-Bouchaud model, the
distribution of returns will reflect that of the cluster sizes, but now the clusters will
be dynamical objects instead of static percolation clusters. Note that this mechanism
is much more dramatic than the bare fluidity of bonds described at the end of the
preceding section. Therefore this model deserves special attention and was also given
a special name after its inventors V. M. Egúıluz and M. G. Zimmermann [771].

Coalescing and dissolving herds

We do not assume any a priori social structure among people. Anybody can be paired
with anyone else. The configuration of our ensemble of N agents is fully described by
a vector g = [g1, g2, . . . , gN ] where gs is the number of clusters of size s. An obvious

normalisation condition
∑N
s=1 s gs = N restricts the set of allowed configurations.
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Dissolution Coalescence

s

r +

r + s

s

︸ ︷︷ ︸
s × 1

Fig. 3.3 Scheme of the two processes making up the dynamics of the Egúıluz-Zimmermann

model. Dissolution occurs with probability 2a, coalescence with probability 1− 2a.

The clusters evolve either by coalescence or by breakup into isolated agents, as
shown schematically in Fig. 3.3. The frequency of these two types of events is tuned
by the parameter a ≤ 1/2, as in the Cont-Bouchaud model. With probability 2a an
agent is chosen at random and then induces all agents within the same cluster to
perform the same action. All of them either sell a unit of stock or buy a unit of stock
with the same probability. After the trade is completed, the cluster would dissolve
into sets of isolated agents. If the state vector was g before the move and the size
of the active cluster was s, the new state would be denoted g(−s) with components

g
(−s)
r = gr − δsr + sδ1r. (The symbol δij here is the usual Kronecker delta.) The

dynamics is reversible in the sense that, knowing the final configuration and the size s
of the cluster affected, we can reconstruct the original configuration. So, we also denote
by g(+s) the original configuration which resulted in g after breakup of a cluster of

size s. Explicitly we have g
(+s)
r = gr + δsr − sδ1r. This property will be useful when

we turn to an analytic solution of the Egúıluz-Zimmermann model.
With the complementary probability 1−2a, a pair of agents is chosen at random and

if they belong to different clusters, the two clusters merge. If the two agents share the
same cluster, nothing happens. This move is not accompanied by a trade. The stock
market remains idle. If the sizes of the two distinct clusters were r and s, the new

configuration, denoted g(+rs), would have components g
(+rs)
k = gk− δrk− δsk + δr+s k.

Again, the original configuration can be deduced from the result, provided we know
the sizes of the affected clusters. In our notation g was preceded by g(−rs) where

g
(−rs)
k = gk + δrk + δsk − δr+s k.

We could, of course, implement the dynamics of the model on a computer, and
indeed, the numerical simulations [771] would show interesting features of the price
fluctuations due to herd trading, especially the power-law distribution of returns oc-
curring for small activity a. However, the model is analytically tractable without much
difficulty [772–774], and we shall assault it now with the well-tried master equation
approach.
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Origin of the power-law distribution

The model has no memory beyond the last step, so the dynamics of cluster configura-
tions is a Markov process with transition probabilities

Prob
{
g → g(+rs)

}
=

1 − 2a

N(N − 1)
rs gr (gs − δrs)

Prob
{
g → g(−s)

}
=

2a

N
s gs.

(3.26)

The probability P (g; t) that we find the configuration g at time t evolves according to
the master equation

P (g; t+ 1)−P (g; t)

=
1 − 2a

N(N − 1)

N∑

r,s=1

(
rs (gr + 1 + δrs) (gs + 1)P (g(−rs); t)

− rs gr (gs − δrs)P (g; t)

)

+
2a

N

N∑

s=2

(
s (gs + 1 − δs1)P (g(+s); t) − s gs P (g; t)

)
.

(3.27)

The full distribution function contains far more information than we could actually use.
We shall need the average numbers of clusters of size s and as will be clear a few lines
later, as well as the averages of various products of such numbers. For convenience,
we normalise them with respect to the total number of agents N . Thus we define

ns(t) =
1

N

∑

g

gs P (g; t)

nrs(t) =
1

N 2

∑

g

gr gs P (g; t)

. . .

ns1s2...sm(t) =
1

Nm

∑

g

(
m∏

l=1

gsl

)
P (g; t).

(3.28)

In principle, the full set of functions ns1s2...sm(t) at all orders m = 1, 2, 3, . . . bears as
much information as the distribution P (g; t). A chain of equations emerges, reminis-
cent of the Born-Bogoliubov-Green-Kirkwood-Yvon equations very well known in the
physics of fluids, and in order to calculate the functions up to order m, we need the
functions at order m+1. Fortunately, in the the limit N → ∞ with a kept fixed (more
precisely we need a

√
N → ∞, see [773]), the averages of products are factorised into

a product of averages. So, we can write a closed equation for the average number of
clusters ns(t), using nrs(t) = nr(t)ns(t). Rescaling the time t→ Nt and omitting the
terms of order O(1/N), we get the set of equations
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Stirling formula Box 3.5

estimates the value of the factorial for large arguments. The exact statement is that [775]

x! = Γ(x + 1) = xx e−x
√
2π x er(x), with 1

12x+1
< r(x) < 1

12 x
.

Another good approximation for a factorial is

x! ≃ xx e−x
√

(2x+ 1
3
)π,

which also gives a reasonable estimate for small values of x, e.g. for x = 0 the formula
suggests 0! ≃

√
π/3 = 1.0233267 . . . .

d

d t
ns(t) = −2(1 − a) s ns(t) + (1 − 2a)

s−1∑

r=1

r(s − r)nr(t)ns−r(t) for s > 1 (3.29)

accompanied by the ‘boundary’ equation

d

d t
n1(t) = 2a

∞∑

r=2

r2 nr(t) − 2(1 − 2a)n1(t). (3.30)

The stationary state ns ≡ limt→∞ ns(t) can be found using the discrete Laplace trans-
form of the function s ns. Indeed, from (3.29) it follows that ŷ(z) =

∑∞
s=1 z

s s ns obeys
a quadratic equation, implying a square-root singularity, already a good old friend of
ours (see Eq. (3.7)). We can easily find that

ŷ(z) =
1 − a

1 − 2a

(
1 −

√
1 − 1 − 2a

(1 − a)2
z

)
, (3.31)

and expanding in powers of z we have

ns =
1 − a

1 − 2a

1

22s−1

(2s− 2)!

(s!)2

(
1 −

(
a

1 − a

)2
)s

. (3.32)

For large s, applying the Stirling formula (see Box 3.5) to the result (3.32) gives
the exponentially truncated power law

ns ∼ s−5/2 e−s/s0 (3.33)

where the characteristic scale s0 = 1/ ln
(

1 + a2

1−2a

)
≃ a−2 diverges for a → 0. For

a very small frequency of trades the distribution of cluster sizes becomes power-law
with the exponent τ = 5/2, as in the Cont-Bouchaud model just at the percolation
threshold. The power-law behaviour is then also translated to the power-law distribu-
tion of returns. We again assume a linear price impact as in Eq. (3.17), but, contrary
to the Cont-Bouchaud model, only a single cluster is active now; and for any value
of a the distribution of returns is PX(x) ∝ sns. We suppose again a linear impact
X ∝ s. Therefore, in the limit of very low activity, a → 0, the returns are power-law
distributed with the exponent

α =
1

2
. (3.34)

If you wonder why the exponent in the Egúıluz-Zimmermann model is smaller by
one compared to the Cont-Bouchaud model, you should recall that in the Egúıluz-
Zimmermann model we randomly choose an agent, while in the Cont-Bouchaud model
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we choose an entire cluster. Therefore the probability of choosing a cluster of size s
and causing a price change proportional to s gets an extra factor s in the Egúıluz-
Zimmermann model.

Before assessing the real utility of the Egúıluz-Zimmermann model, we want to raise
the question of principal interest. Comparing the Egúıluz-Zimmermann model with
models based on percolation, such as the Cont-Bouchaud one, we immediately notice
the absence of any conventional critical point. To obtain a power-law distribution of
cluster sizes in percolation, we need to tune the probability of establishing a bond
so that we are at the percolation threshold. We shall not repeat here the arguments
justifying the assumption that reality keeps it close to the critical point. Instead,
we should note that in the Egúıluz-Zimmermann model the situation is conceptually
much simpler. It is enough to stay at infinitesimally small activity a, or, if you wish,
the critical point is exactly at a = 0. Now, the question is whether the Egúıluz-
Zimmermann model has anything in common with self-organised criticality, where
the power-law distributions also arise in the limit of infinitesimally weak external
perturbation, be it adding a single grain of sand or kicking a random walker out of
the origin and waiting an arbitrarily long time before it returns home.

Indeed, the general scheme of self-organised criticality as a dynamical system with
absorbing state(s) which are infinitesimally weakly disturbed can also be adapted for
the Egúıluz-Zimmermann model. Frankly, we have not spoken about what happens if
we fix a = 0 strictly. The reason is that the dynamics is quick and trivial. The clusters
never dissolve but always merge. Very soon the state is reached with a single cluster
containing all agents, and this is the absorbing state of the dynamics. For any small but
non-zero a the absorbing state is broken from time to time, however long we need to
wait for such a breakup. Then, the dynamics starts again, wandering randomly in the
complicated space of cluster configurations, until the absorbing state is hit again. From
this point of view the power-law distribution of cluster sizes corresponds to the long-
living, but still non-stationary state of the system dominated by the absorbing state.
This makes the connection to more conventional self-organised critical systems more
transparent, although it does not seem to bring much practical help for calculation of
the properties of the Egúıluz-Zimmermann model.

Now it is time to compare the results of the Egúıluz-Zimmermann model with stock
market data. Unfortunately, there is little agreement with real price fluctuations. One
problem is that the return exponent (3.34) is much too small to even roughly describe
the market dynamics. A more important flaw becomes apparent when we try to figure
out what the volatility clustering would look like in the Egúıluz-Zimmermann model.
Indeed, there is a memory in the system, but unfortunately the absolute returns, i.e.
the sizes of the active clusters are negatively, instead of positively, correlated. To see
this, it is enough to consider what happens after a large cluster is selected to be active.
After the trade is over, the cluster breaks into isolated agents, and the average cluster
size drops significantly. After a big price change one should expect a much smaller
change. No extended periods of large volatility are observed.

As a stock-market model the Egúıluz-Zimmermann scheme does not seem to bring
much success. But we should not be too strict. First, neither the sandpile nor the
Cont-Bouchaud models were much closer to reality in their original formulations. It



112 Basic agent models

is only a smart modification that makes them more attractive. One suggestion of how
to improve the Egúıluz-Zimmermann model is left to the reader as Problem 4 at the
end of this chapter; other variants can be found in the literature [776–782]. Also note
that introducing a feedback mechanism relating the value of a with the size of the
last dissociated cluster in the form a ∝ s−1 does lead to positive volatility correlations
decaying as a power, as shown in numerical simulations [783].

Second, there may be other, originally unexpected applications. Indeed, it is quite
possible that the aggregation models, including the sandpile and Cont-Bouchaud mod-
els treated above, can do a better job in modelling the growth, splitting, and merging
of companies. Indirectly they can serve to explain the power laws in the return dis-
tributions too, if we only ascribe the return distribution to the size distribution of
investors acting on the stock market. Let us turn to an example of such a model now.

Sizes of businesses

Let us have N agents who wish to conduct business together. They can aggregate into
clusters of various sizes. Any cluster of size s > 1 will be called a business. Clusters
of size 1 are individual agents with the tendency to cluster with other agents. We do
not consider mergers of two businesses of differing sizes, but only growth of businesses
by adding individuals. From time to time, a business can go bankrupt and dissolve,
leaving a set of separate agents behind.

The evolution of the model proceeds as follows [784]. At each step, an agent is
chosen at random. If she belongs to a cluster of size s > 1, the cluster dissolves with
probability a(s). We let now the probability depend on the cluster size and among
possible choices we focus on power laws in the form a(s) = b n1 s

−β with 0 < bn1 < 1
and β ≥ 0. The concentration n1 of individual agents is incorporated into the factor for
further convenience. If the chosen agent is an independent individual, another agent
is chosen at random, and the first agent joins the cluster the second agent belongs to.
If the second agent is also an individual, a new business of size 2 is created by joining
the two.

When solving this model we can proceed in the same way as we did in the case of
the Egúıluz-Zimmermann model. The situation is even simpler due to the absence of
mergers. The equation for the normalised cluster numbers is

d

dt
ns = −a(s) s ns − n1 (s ns − (s− 1)ns−1) (3.35)

for s > 1, while for the number of individual agents we have

d

dt
n1 =

∞∑

s=2

a(s) s2 ns − n1 (
∞∑

s=1

s ns + n1). (3.36)

The formal solution of (3.35) for the stationary state is straightforward and, compared
with the original Egúıluz-Zimmermann model, we can do well without the discrete
Laplace transform. By iteration we obtain

s ns = n1

s∏

r=2

1

1 + a(r)
n1

= n1

s∏

r=2

1

1 + b r−β
, (3.37)
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and for large s we first make a logarithm and then replace the discrete sum by an
integral. We thus get

ns ∼ s−1 exp(− b
1−β s

1−β) for β < 1

ns ∼ s−1−b for β = 1
(3.38)

for s→ ∞. Contrary to the Egúıluz-Zimmermann model, the cluster distribution obeys
a power law only under special conditions. Moreover, the exponent in the power-law
regime is not universal, but depends on the parameter quantifying the tendency of
clusters to break into individuals.

The dynamics of businesses and economic aggregation is a vast area on its own, as
yet unexplored to a large extent. We stop our journey in this wilderness now, leaving
the reader a handful of road signs in Refs. [785–788].

3.2 Agent-based models

While in the preceding section we concentrated mainly on analytically obtained re-
sults, now we enter the proper realm of computer simulations. The approaches we
will present in the rest of this chapter were often deliberately designed as numerical
laboratories, where the researcher may play with values of numerous parameters or
even include additional new features. Such an attitude naturally precludes using ana-
lytical tools, but on the other hand provides immense intellectual freedom, eventually
leading to many discoveries never anticipated by paper-and-pen mathematics. Here
the computational science of complex systems plays an invaluable role, which does not
fade away even when analytical description of some of the features revealed in artificial
computer economies finally becomes available.

3.2.1 Early attempts

Stigler 1964

It is quite exciting to realise that the first numeric experiments with stock-market
models appeared soon after the computer became a tool used by the wider scientific
community. In 1964 George J. Stigler devised a model which implements a random
trading schedule [789], neglecting any strategic reasoning of the buyers and sellers. In
his scheme, blind agents place their orders within a specified price interval, and the
bids and asks are stored until they are cleared or until they expire. When an agent
places her bid at a price larger or equal to any of the existing asks, a trade takes place,
and the corresponding bid and ask are removed. And vice versa: a newly placed ask
order is cleared in a symmetric manner with an appropriate bid, if it exists.

In Fig. 3.4 we reprint one of the original simulation results published in Ref. [789].
Although the simulations involved only a very few (by our standards) time steps, they
showed how it is possible to generate a fluctuating price sequence, much like the one
observed in reality, with minimum assumptions. Stigler himself used his simulated price
evolution under various conditions as an argument against strict regulation imposed
on stock market practices. While nowadays such strong argumentation backed by so
little numerical evidence would rather provoke a smile, in the mid-1960s the idea was
revolutionary.
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Fig. 3.4 Stigler’s original simulations. Reprinted from [789], with permission of the Univer-

sity of Chicago Press.

In fact, the model introduced by Stigler involves on the most basic level all the
substantial ingredients a successful stock market model should have. Indeed, its core
idea is far more realistic than many other stock-market models cooked up later with
powerful PC-workstations at hand.

The Stigler model can be defined as follows. The price logarithm Yt can fluctuate
within fixed bounds; for simplicity let us assume the interval [0, 1]. The system evolves
in discrete time, and in each step one order of unit volume is placed randomly within
the allowed price interval. Buy and sell orders are issued with equal probability. The
expiration time of all orders is limited to texp time steps. Unsatisfied orders older
than texp are removed. Therefore, at each instant there are at a maximum texp waiting
orders. The state of the system is described by the positions and types of all unsatisfied
orders. Of course, all waiting sell orders lie above all remaining buy orders.

When a new order arrives, a deal may be transacted, depending on the position
of the incoming order. If it is a buy order and happens to be placed below or at the
lowest unsatisfied sell order, the two orders are matched and removed from the system.
Otherwise the new order is stored in the waiting list. Conversely, if a sell order comes,
it is cleared if it is lower than or equal to the highest unsatisfied buy order; otherwise
it is added to the actual order list. In our simulation the transaction price is set as the
position of the older of the two cleared orders, although other rules (e.g. the mean of
the two) can also be used.

The basic properties of the Stigler model can be seen in Fig. 3.5, where we show a
typical time series for the prices and returns, defined here as price increments
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Fig. 3.5 Simulation of the Stigler model. In the upper panel, we show the log-price fluc-

tuations, in the lower panel the corresponding returns. The orders expire after texp = 5000

steps.

Xt = Yt − Yt−1. (3.39)

The price does not depart far from the centre of the allowed interval, which may
be interpreted as fluctuations around the constant fundamental price. A glimpse at
the return time-series reveals signs of volatility clustering, which is quantified in the
autocorrelation functions of the returns and absolute returns defined as

〈XtXt−∆t〉c ≡ 〈XtXt−∆t〉 − 〈Xt〉〈Xt−∆t〉
〈|XtXt−∆t|〉c ≡ 〈|XtXt−∆t|〉 − 〈|Xt|〉〈|Xt−∆t|〉

(3.40)

where 〈At〉 =
∑T

t=1At/T denotes the time average of a process At over the simulation
that lasted T time steps.

We can see in Fig. 3.6 that the returns have a short negative autocorrelation, decay-
ing exponentially, while the correlation of absolute returns decays much more slowly,
and for large time differences it decreases as a power ∼ (∆t)−1.3. This finding grasps
some of the basic features of a real time series: uncorrelated returns and volatility
clustering. However, the distribution of the returns does not exhibit fat tails, so from
this point of view the Stigler model is unrealistic. However, we will see later in Chap.
4 how Stigler’s idea was revived in more sophisticated order-book models.

Kirman’s ants

Everybody knows ants: they come in thousands of species and inhabit all corners of the
planet. With all their variability they have one important feature in common. When
foraging for food, an ant most of the time follows the path marked by pheromones laid
by other ants from the same colony. With relatively small probability, the ant sets on
an unexplored path. This way the colony struggles to exploit the discovered sources
of food to a maximum extent, but at the same time it is able to find an alternative
source before the first one is completely exhausted.

In the paper [790] Alan Kirman cited results of experiments with ants choosing two
trails for food. The geometry was carefully designed to be symmetric in order to avoid
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Fig. 3.6 Correlations in price fluctuations in the Stigler model. In the left panel we show the

autocorrelation function of returns. The straight line is the exponential fit ∝ exp(−∆t/2.66).

In the right panel, we show the autocorrelation of absolute returns. The line is the power

decay ∝ (∆t)−1.3. The orders expire after texp = 5000 steps.

any bias toward one of the trails. It was found that the ants preferred one of the trails
most of the time but that after some time they swapped paths without any perceptible
reason. There is no equilibrium or stationary state characterising the behaviour of the
colony. Instead, the colony keeps switching between the two metastable states.

Kirman used the collective intelligence of ants to illustrate his views on the na-
ture of economic processes. In opposition to standard economic theory, concentrated
on finding and characterisation of the equilibrium state, Kirman suggested that the
apparent equilibria could be mere long-lasting metastable states. The system keeps
jumping from one metastable state to another, instead of settling into an equilibrium.
That nightmare of the equilibrium theorists, the excessive fluctuations which should
not be there but the existence of which is undeniable, can now be attributed to the
jump process between several distinct quasi-equilibria.

To investigate the process manifested by the experiment with ants, Kirman intro-
duced a stochastic model of binary choice [790]. There are N agents (ants) choosing
one of two options (trails), denoted by +1 and −1. The dynamics is driven by two
tendencies. First, the agents tend to imitate each other, i.e. choose the same option
as some other agent already chose. It corresponds to following the pheromone track.
Second, with a small probability ǫ, the choice of the agent changes spontaneously. In
the economic context the choices ±1 can be interpreted as two investment strategies,
e.g. holding asset A or asset B, selling vs buying, etc. Therefore, we strip the economic
agents of all signs of rationality and let them decide by pure imitation and random
swap of preference. The strategies spread through the population by contagion, much
like an infectious disease.

Before entering the discussion of the relevance of such a decision-making mecha-
nism for human behaviour in the market, let us see what qualitative and quantitative
features can be expected from the model. To this end, we first provide a more formal
definition of Kirman’s ant model. The state of the agent i at time t is described by
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Fig. 3.7 Simulation of Kirman’s ant model. We show the time evolution of the fraction of

ants choosing the +1 option. The parameters of the model are N = 103, ǫ = 2 · 10−4.

the Ising variable σit ∈ {+1,−1} Denote by N+t the number of agents choosing +1

at time t, i.e. N+t =
∑N
i=1

1
2
(σit + 1). The evolution proceeds in discrete time. In

each step, we perform an elementary update, defined as follows. First, we randomly
choose one agent i and flip her preferred choice with probability ǫ: σi → −σi. With
the complementary probability 1 − ǫ we also randomly choose a second agent, j, and
the first agent adopts the choice of the second agent: σi → σj .

We do not suppose any social structure determining the links between the agents.
Anybody can be influenced by anybody else with equal probability. Therefore, the
state of the system is fully described by the variable N+t and its dynamics is governed
by the transition probabilities

Prob{N+ → N+ + 1} =
N −N+

N

(
ǫ+ (1 − ǫ)

N+

N − 1

)

Prob{N+ → N+ − 1} =
N+

N

(
ǫ+ (1 − ǫ)

N −N+

N − 1

)
.

(3.41)

For convenience we measure the time t in such a way that an advance from t to
t+ 1 includes N updates according to (3.41). In Figure 3.7, we can see a typical time
sequence of the fractions of agents choosing +1. We can observe periods in which
the fraction is close to either 0 or 1, interrupted by rapid jumps between the two
extremes, accompanied by wild fluctuations. The absence of a specific equilibrium is
apparent. Closer inspection reveals that the existence of an equilibrium and nature of
the fluctuations depend on the frequency of spontaneous change in mind, quantified by
the parameter ǫ. For ǫ large compared to 1/N , the fraction N+t/N fluctuates around
the mean value 1/2, while the behaviour exemplified in Fig. 3.7 occurs in the opposite
case, ǫ . 1/N .

We can also look at the correlations in the time sequence N+t. To this end we
extract the autocorrelation function of the differences ∆N+t = N+t −N+t−1 and the
absolute difference |∆N+t| defined analogously to (3.40). In Fig. 3.8 we can see that
the changes in N+t are uncorrelated, while the absolute values of the changes exhibit
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Fig. 3.8 In the left panel, we show the autocorrelation function of the differences ∆N+t; in

the right panel we show the autocorrelation function of the absolute differences |∆N+t|. The
parameters of the model are N = 103, ǫ = 2 · 10−4.

long-time, although exponentially dampened, positive correlations. This is a sign of
a weak form of ‘volatility clustering’. However, we should be careful with drawing
conclusions from the Kirman’s ant model, as there is no trading and no price defined
in the model. On the other hand, the idea of spreading the trading strategies by simple
contagion is implemented in a very transparent way within the Lux-Marchesi model,
discussed in Sec. 3.2.3.

Experiments with humans

It is often repeated that the main difference between natural sciences and economics
lies in the freedom physicists, biologists, and the like enjoy in carrying out their exper-
iments. Indeed, it is difficult to imagine that economists could do anything comparable
to the production of anti-matter in supercolliders. On the other hand, human beings
have long been subject to sophisticated experiments, ranging from NMR imaging of
active zones corresponding to specific emotions in the brain, to drastic sociological
experiments forcing innocent subjects to behave as sadistic guards in an experimental
concentration camp.

In fact, experiments with human behaviour in an economic environment do take
place quite often, and pedagogic practice at universities, where students have to ex-
change virtual money for virtual stocks, is a common example of such modelling.
Indeed, it is obviously more natural to model the behaviour of humans (e.g. stock-
brokers) based on the behaviour of other humans (e.g. students) than modelling an
animate human world using inanimate computer machinery. Among various economic
experiments, let us focus on one example.

When Jasmina Arifovic tried to explain the persistent fluctuations of foreign ex-
change rates significantly exceeding any rational reactions to news arrival [791], she
used groups of students trading, through a network of computers, three virtual items:
goods, currency A, and currency B. The trading scheme was based on the overlapping
generations model, defined as follows [792]. In each time step, one round of trading
takes place. Every generation lasts two time steps: you might call them youth and
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adult age, if you like, and we denote them by I and II, respectively. The traders are
divided into two equal-sized groups: members of the first group are ‘young’ at odd time
steps and ‘adult’ at even time steps, while members of the other group are ‘young’ at
even time steps and ‘adult’ at odd time steps. Hence the name overlapping generations
model. Let us first explain the situation with only one currency.

Each trader in each generation receives a certain amount of goods. It is possible to
buy or sell goods on the free market. The market price at time t is Zt. We shall return
to the question of establishing the price later. The important point is that the amount
received in youth, mI, is larger than the one received in adult age, mII. Therefore, to
ensure a more equilibrated consumption, some goods should be passed from youth to
the adult period. But it is supposed that the goods are spoiled after one time step, so
the only way to spare something for later use is to sell a certain fraction of goods in
the first step and use the money for buying some goods in the second step. So, in the
first step, happening at time t, mI −m units of goods are consumed and m sold at
price Zt, and the trader pockets mZt units of the currency, which is then used in the
second step, at time t+ 1, to buy mZt/Zt+1 goods at the current price Zt+1.

Arifovic assumes that the gained utility is measured as the sum of the logarithms of
the goods consumed in the first and second steps, U = ln(mI−m)+ln(mII+mZt/Zt+1).
The experimental subjects are instructed to try to maximise this function.

So far, the traders’ only strategy is given by choosing the amount m of the goods
sold in the first step. All the rest follows from the choice of this number by all traders.
Arifovic enriched the basic scheme of the overlapping generations model by allowing
the agents to exchange the goods partially for currency A and partially for currency
B. Therefore, the agent has one more degree of freedom, namely the fraction l ∈ (0, 1)
of the goods to be sold in the market of currency A. Let the price of the goods at time
t, expressed in currencies A and B, be ZAt and ZBt , respectively. The exchange rate
between the two currencies is Et = ZAt /Z

B
t . Then the utility is modified to

U(m, l) = ln(mI −m) + ln

(
mII +m

(
l
ZAt
ZAt+1

+ (1 − l)
ZBt
ZBt+1

))
. (3.42)

In each step, the price is set by a formula which mimics the dynamics due to the
demand-supply disequilibrium. If there are N traders selling goods at time t, with
strategies [mi, li], i = 1, . . . , N , then

ZAt = MN/

N∑

i=1

limi

ZBt = MN/

N∑

i=1

(1 − li)mi

(3.43)

where M is a certain constant which only sets the global price scale and has no effect
on the exchange rate. We can note the somewhat unrealistic feature of the model that
the price is determined only by the supply and not by the demand for the goods.

The traders can observe the price movements on their computer screens in each
generation and decide on the strategy, which is a pair of numbers [m, l]. This choice
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Fig. 3.9 Exchange rate fluctuations observed in the experiments by Arifovic; reprinted from

[791], with permission of the University of Chicago Press. The amounts of goods provided in

youth and adult age were mI = 10, mII = 1, respectively.

relies entirely on the rational (or maybe irrational) reasoning of the human agents. The
software then collects the choices of all agents, recalculates the price, and displays the
results; the trading then proceeds to the next step. Arifovic conducted many sessions
of the experiment and consistently found that while the mean consumption rate in the
first step, m, converges toward a specific stationary state with only minor fluctuation,
the exchange rate does not exhibit any tendency to approach the equilibrated value.
An example of the exchange rate fluctuations observed in the experiment is shown in
Fig. 3.9.

. . . and genetic algorithms

In order to better understand the results, Arifovic also modelled the agents’ behaviour
on a computer, using the genetic algorithm method. The reader will learn more about
genetic algorithms in Box 3.7. For now, it is enough to know that genetic algorithm
acts much like Darwinian evolution. The strategies are mutated at a small rate, and
the agents who possess more successful strategies are replicated with higher probability
than the agents whose strategies lead them to failure. Such a mutation-selection process
results in self-organised optimisation of the performance of the system. Let us sketch
briefly the explanation of persistent fluctuations proposed by Arifovic. In the case of
a single currency, an equilibrium is established with only small fluctuations reflecting
the spontaneous mutations of the strategies. If we interpret the mutations as rational
adaptations to external stimuli, news arrival, etc. the model nicely satisfies the wishes
of the equilibrium theory of economics. However, the picture changes completely when
two currencies are introduced. Because there is no a priori equilibrium value of the
exchange rate, the system is free to fluctuate incessantly along a continuous line of
equilibria, instead of settling around one equilibrium point in the space of parameters.
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Again, as in the toy example of Kirman’s ants, the excessive fluctuations are at-
tributed to the absence of a specific economic equilibrium, or to multiplicity of equi-
libria. Closer inspection reveals even more features in common with the ants choosing
their trail.

The genetic algorithm dynamics drives the system in principle to the state in which
all agents share an identical optimal strategy. If that happens, the offers of goods are
the same in group I as in group II; therefore the prices are unchanged from one step
to the other, and the exchange rate is constant. In this case ∂U(m, l)/∂l = 0, while
∂U(m, l)/∂m = 1/(m−mI)+1/(m+mII). Therefore the value of m still tends toward
its optimum value mopt = (mI −mII)/2, but l can change arbitrarily, because such a
change does not alter the expected utility.

This can be achieved in practice only if all agents change their l simultaneously,
which can hardly occur due to mutations alone. However, there is also reproduction in
play: if one agent changes its l, its strategy may proliferate before the selection pressure
brings the value of l back, thus invading the system with a large sub-population with
uniform l, different from the original one. Such a sub-population can eventually prevail
by mechanical reproduction, completing the jump of the entire system from one quasi
equilibrium characterised by a certain l to another quasi-equilibrium with a different
l. Such jumps were indeed observed in simulations presented in [791].

The dynamics closely resembles the behaviour of Kirman’s ants. The role of imita-
tion or pheromone following is now replaced by reproduction of strategies, and instead
of two possible choices of the trail we have a continuum of choices for l. A small differ-
ence remains: the two ants’ trails were symmetric, while strategies with a higher utility
are reproduced more often. But as we have already seen, when approaching the theo-
retical equilibrium state the exchange rate fluctuations are suppressed, implying that
all strategies differing by only l are equally good and the agents can arbitrarily switch
between them. The ensuing large fluctuations of the exchange rate are purely due to
switching between equivalent equilibrium values of l. The theoretical equilibrium state
remains purely virtual, and the system never reaches a stationary state. The overlap-
ping generations model with genetic algorithm dynamics was subsequently investigated
using more computing power [793–795], and features compatible with empirically ob-
served fat tails and volatility clustering were found. Unfortunately, the data do not
seem to show robust power-law tails in the return distribution, so a closer comparison
with real data is hardly possible.

More developments

Let us briefly mention several other models suggested for explaining the stylised facts
of economic signals. Not all of them lead to fruitful ends, but we want to include
here a note for the sake of completeness. Still many more works lie buried in journal
repositories.

The EMH says that market dynamics is essentially deterministic. The market re-
acts to any external influence so that it very quickly returns to a new equilibrium.
Then, as already pointed out, a serious problem arises, as prices and other parameters
fluctuate much more violently than any external source of perturbation might explain.
One way out of this paradox is based on the theory of catastrophes (also called the
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theory of singularities), which states that continuous change of a control parameter
induces a discontinuous jump in the controlled quantity [796]. In the 1970s and 1980s
it was indeed a very popular theory, invoked to explain virtually all conceivable abrupt
changes in nature, the human body, and society. Naturally, it attracted the economists
too.

Zeeman [797] considers a purely deterministic dynamical model with two types of
agents. The first type, the naive trader, assumes that the price level reached in the
last step of the evolution is the fundamental price of the asset. The second type, the
momentum trader, expects that the price trend will essentially be repeated in the next
step but modified by a nonlinear signal function, or Zt+1,expected−Zt = S(Zt −Zt−1)
where a typical realisation of the signal function can be S(u) = tanh(u). Under these
assumptions it is found that the price follows the deterministic dynamics

Zt+1 = Zt + F +MS(Zt − Zt−1) (3.44)

characterised by the set of attractors, depending on the two model parameters F and
M . The nonlinearity introduced through the signal function causes bi-stable ‘catas-
trophic’ behaviour within a certain range of parameters; in such a regime there are
two stable fixed points of the dynamics (3.44), and the system discontinuously jumps
from the one to the other when the parameters are continuously tuned. The accompa-
nying hysteresis is reminiscent of a first-order phase transition. However intellectually
appealing, the Zeeman model does not seem to comply with real observations, as the
price sequence in speculative bubbles and crashes does not look very similar to switch-
ing between only two potential states of a bi-stable system. Let us also note that
the model has been revisited, introducing a stochastic change of parameters F and
M [798].

Another way of avoiding the excessive volatility paradox is based on looking for
deterministic but chaotic models of economic dynamics. Let us mention only a few
examples of results pointing in this direction.

Based on their earlier simulations of economic cycles [799], Youssefmir and Hu-
berman [800] introduced a model in which agents choose between two resources. The
utility of the resource depends on the number of agents who are currently using it.
The dependence of utility on usage introduces nonlinearity into the system. The agents
can have various strategies, taken from a pre-defined set. The probability of choosing
a strategy is proportional to the past utility provided by that strategy. This leads
to deterministic equations for the concentration of strategies, which were studied by
numerical integration, revealing persistent fluctuations in the resource usage and ex-
hibiting volatility clustering. More thorough investigation shows that the turbulent
periods correspond to switching between various different but equally efficient strategy
mixtures. This is again the recurrent theme already seen in the toy model of Kirman
and in the currency exchange model of Arifovic: the volatility is due to switching be-
tween multiple optima regardless of whether we work with deterministic or stochastic
dynamics.

In a similar spirit, Brock and Hommes [801] tried to reconcile the deterministic view
on market dynamics with an underlying stochastic microstructure within a model of
heterogeneous agents trading an asset. The authors suppose the population of traders
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Logistic map Box 3.6

generates a sequence of numbers xt ∈ [0, 1], t ∈ N, according to the equation
xt+1 = r xt(1− xt). (*)

Viewed as a dynamical process, the sequence has a point attractor for r < r1 = 3, a cyclic
attractor of the length 2 for r1 < r < r2 = 1 +

√
6, and generally a cycle of the length

2n for rn < r < rn+1. The limit of the growing sequence rn is r∞ = 3.569945672 . . . and
for generic r > r∞ the process is chaotic. It is perhaps the simplest and most popular
example of deterministic chaos. John von Neumann suggested in the late 1940s that the
equation (*) with r = 4 could be used as a source of computer-generated pseudo-random
numbers.

is again endowed with a pool of different strategies or predictors of the future price
movements. Each strategy in the pool has a certain success rate according to the profit
it provides to its users. The strategy with the score U is then used by the agents with
probability ∼ eβ U , where β is the parameter called by the authors ‘intensity of choice’.
Of course, a physicist recognises in it the inverse temperature. The probabilities then
determine the fraction of agents using that strategy in the next time step, and for a
large number of agents we get the set of deterministic equations for concentrations of
the strategies in the population. Brock and Hommes examined several simple examples
using only two strategies, which may be identified as ‘fundamentalist’ and ‘chartist’
(see below). They found that the dynamics is nonlinear with a bifurcation diagram
reminiscent of that present in the logistic map (see Box 3.6). Consequently, they argued
in favour of deterministic chaos in market dynamics.

A keystone in the construction of the EMH is the assumption of the agents’ ratio-
nality. As EMH is empirically wrong, one may also try to lift the assumption of full
rationality.

Frankel and Froot [802] admitted a deviation from an orthodox rational expectation
theory in their attempt to explain the dollar bubble in the early 1980s. They postulated
that there are three main types of agents on the market: fundamentalists, chartists, and
portfolio managers. All three are completely rational within the bounds of their basic
behavioural type. Fundamentalists try to rationally predict the fundamental value
of the asset, chartists deduce the trends on a rational basis, and portfolio managers
adjust their strategy as a weighted mixture of the expectations of fundamentalists
and chartists, depending on which of the two groups is (rationally) perceived as more
successful. Yet the whole system does not behave rationally, for none of the three
groups takes into account either the mutual influence of the group or the impact of its
own decisions.

In the model of Frankel and Froot, both fundamentalists and chartists behave
mechanically in the sense that they never change their prediction algorithms. The
adaptive element consists in the presence of portfolio managers, who attribute different
weights to the first two groups according to their measured performance. However, the
adaptation is not fully rational, as the portfolio managers learn about the state of the
market more slowly than they are changing it. They do not keep pace with the effect
of their own actions. Based on this observation, the model was able to qualitatively
reproduce the bubble behaviour seen in the data.
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Day and Huang [803] devised a similar model, showing qualitatively realistic fea-
tures. They also suppose the agents are of two types, called in this context α- and
β-investors. The former ones expend effort on finding the fundamental value. They
sell if the price is above, and buy if the price is below. In our previous terminology
these agents would be called fundamentalists. The latter group of agents behaves dif-
ferently: as finding the fundamental value is a costly process which may not pay off
after all, they simply chase the trend. Day and Huang used a somewhat distorted
version of these ‘chartists’, prescribing them to sell if the price were above a certain
value (fixed forever) and buy if it were lower.

Even farther in the direction of heterogeneity and limited rationality goes the at-
tempt to simulate the diversity and evolution of decision-making algorithms using the
idea of genetic programming [804–806]. Every agent is equipped with a program for
predicting the future price return Xt+1 based on past returns Xt−τ , τ = 0, 1, . . ..
More specifically, the program is represented by a formula assembled in a syntac-
tically correct way from the set of operations {+,−, ∗, /, . . .}, numerical constants,
and operands {Xt, Xt−1, . . .}. An example of such a formula can be the predictor
Xt+1 = 3Xt (1 −Xt−1).

Similar in essence to the genetic algorithms mentioned above (see also Box 3.7),
genetic programming regards the set of agents’ algorithms as an ecosystem subject to
Darwinian evolution. Fitness of an algorithm is given by its success in predicting the
future, which is reflected by the increase (or decrease) of wealth in agent’s pocket. More
successful predictors are replicated with larger probability, so the overall performance
of the ensemble of agents is improved by adaptation.

In the first simulations [804] the agents were trained on a portion of a real price
series. Then it was checked how well the agents predict the rest of the price series. As
expected, some of the predictors performed quite well, but the overall capability of
learning and predicting was far from satisfactory.

In subsequent work [805, 806] the agents were allowed to play in an artificial market
and learn from the other agents’ actions. The time series for prices produced within
these simulations exhibited excess kurtosis, but the probability distribution for returns
was not investigated.

3.2.2 Levy-Levy-Solomon model

Participants in economic life can behave in various ways, depending on the scale of their
business, their social and material background, local customs, and many other features
we are perhaps not yet aware of. Very often the precise motivation and mechanisms
behind their decisions are obscure to the agents themselves. A ‘realistic’ model of
decision-making in the economy remains an unreachable dream and probably needs the
intervention of other disciplines such as social psychology or cultural history. We can
speculate that the structuralist approach, when taken seriously, can lead to significant
progress [28].

For now, we are left with bare hypotheses, and among them the prominent position
is occupied by the classical view of people as rational optimising machines, who always
know what is good for them, and always select the best one from among all possible
choices. Even if we accept a certain possibility of error, and take into account the
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Genetic algorithms Box 3.7

were invented in the 1970s by John H. Holland [807]. The aim was to provide new solu-
tions to notoriously difficult optimisation problems, like the travelling salesman problem.
Holland’s idea originated from observing how well living creatures are adapted to various
tasks they face in their lives. The algorithm for such optimisation is well-known: it is
Darwinian evolution. Holland implemented Darwinism for evolution of good solutions
in optimisation problems. As in nature, the solution is encoded in the genome. Instead
of DNA, a string of binary digits is used, each meaning presence (1) or absence (0) of
a specific trait characterising the solution. The whole ensemble, or ecosystem, of solu-
tions is then subject to evolution. In each step, the quality of the solutions is calculated
and a pair of genomes is selected for sexual reproduction, preferring those which encode
better solutions. Some of the poorly performing solutions are replaced by the newborn
individuals. The offspring has part of the genome from one parent and the rest from the
other parent. This operation, mixing the two genomes, is called crossover. Moreover, the
offspring genome can be altered with a small probability by flipping some of the bits.
This represents point mutations. The combination of mutation, selection, and crossover
leads, after some time, to the emergence of some very good genomes. The best one is
then the desired solution of the original problem.
Closely related is the method of genetic programming, devised by John R. Koza
for finding optimal algorithms, or programs, for performing various calculations [808].
Again, an ensemble of programs is allowed to evolve according to Darwinian rules, and
the good ones are expected to emerge spontaneously. Technically it is more complicated
than genetic algorithms, as crossover and mutations must preserve syntactically correct
code.

definite imprecision in the input information, the general idea stays unchanged. It is
supposed that one-dimensional thinking, the search for an extreme of a single quantity,
is the driving force of all manoeuvres in the productive lives of all human beings.

However ridiculous it may seem, such a hypothesis must be taken seriously. First, it
is evident that avoiding harm and seeking good is hard-wired in our minds. The ques-
tion is how we know what is good and what is harm in a specific situation. Second, if a
person is taught long enough that normality means maximising a predefined quantity,
she can hardly resist. People maximise profit because they believe in their hearts that
this is the way normal people behave. This belief was conveyed them by social pres-
sure. All apparent exceptions constitute a problem which needs special explanation
and in most cases such one is readily found, e.g. within the selfish gene paradigm. It is
not our task here to discuss how much this paradigm is descriptive and to what extent
it is rather a prescriptive and regulative instrument. Instead, let us present the third
and most important argument.

Indeed, it may well be that although individuals never strictly obey the orders the
proponents of maximisation impose on them, on average and effectively they behave
as if they were maximising something which can be a posteriori read off and identified
with the quantity called profit. We cannot help recalling classical mechanics, where
massive bodies hardly care about minimising the action functional but their trajec-
tories are still exactly described by the principle of minimum action. The particles
behave as rational minimisers of the quantity called action, despite being inanimate
pieces of passive matter.
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Utility function Box 3.8

Realistic utility function must have two properties. It is an increasing function, U(w1) >
U(w2) if w1 > w2, and moreover, it is concave, i.e. U

(
1
2
(w1+w2)

)
> 1

2

(
U(w1)+U(w2)

)

for any w1, w2. The concavity is the mathematical expression of the obvious fact that
people try to avoid risk; therefore changes in wealth are more important for them if their
starting wealth is low. You can very often see these two conditions stated in the more
concise form using the first and the second derivative of the utility function, namely,
U ′(w) > 0 and U ′′(w) < 0. However, such a formulation neglects the fact that there
is no guarantee that an empirical U(w) is a differentiable function. On the contrary,
if U(w) were measured point-to-point by a smart sociological experiment, the result
would most probably be a piecewise linear function, a feature which can only partially
be ascribed to bias from the experimental setup, since people often do like to judge
the inputs in a jumpy manner. In model situations, the favourite forms of the utility
function are logarithmic, U(w) = lnw, exponential, U(w) = 1 − e−aw, a > 0, or power,
U(w) = w1−ν/(1 − ν), 0 < ν < 1. Lacking empirical guidance, we shall use one or
the other according to convenience for the model in question. However, it would be too
pessimistic to claim that the form of the utility function is arbitrary. Empirical studies
do exist that measure risk aversion in human decisions [809], which is quantitatively
expressed by the second derivative U ′′(w). This enables fitting the free parameter of the
utility function, once we have decided on its general shape.

However unproductive the academic debate may be on whether humans really
do or do not maximise profit in their everyday lives, it is sensible to investigate the
consequences of such an assumption. This brings us back to a more solid scientific
ground, even if we remain within a hypothetical sphere. At least we shall know the
enemy better.

Optimal investment

It is impossible to give here an account of the theory of optimal investing in the stock
market, and after all, it is not the goal of this book. We shall only pick an example of
an optimisation strategy which will be useful for our later discussion on a microscopic
market model.

Greater wealth will certainly imply a better situation than less wealth. On the
other hand, this simple observation does not mean that the quantity to be optimised
is necessarily the wealth itself. The only prerequisite is that this quantity is a non-
decreasing function of wealth. In fact, various paradoxes were invented to show that
wealth cannot be sensibly considered as the quantity to be optimised. Instead, it is
supposed that a so-called utility function U(w) exists and every agent struggles to
make it as large as possible. (See Box 3.8.) The variable w is usually assumed to be
the wealth itself (which is what we will do in this section too), although one can imagine
a utility function depending on other quantities, or even on ensembles of variables.

In standard economic theory, people are supposed to rationally maximise their
utility function. In practice it means that the economic agents parameterise their
behaviour by a set of numbers f1, f2, . . . , fn on which wealth w depends and then try
to tune these parameters so that the expected utility U(w(f1, . . . , fn)) is the largest
possible. A classical example is a merchant selling a mixture of both good and bad
wine. The parameter f is the fraction of the quality ingredient. When f is close to 1,
the profit is low, as few people can afford an expensive beverage. If f approaches 0,
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the profit from selling distasteful swill is also low. The optimum lies somewhere in the
middle.

Here we have in mind an optimising strategy for buying, selling, or holding stocks.
A very transparent presentation of the problem stems from the work of J. L. Kelly [810–
818].

Suppose you have some capital and you want to invest it. You may either buy a
riskless asset, e.g. a government bond, or some shares, which promise more gain but
you may also lose a lot when the price of the shares drops unexpectedly. Your strategy
will be to divide your capital and invest only a fraction f ∈ [0, 1] into risky shares,
while the rest will be kept safe in bonds. To see how the investor’s wealth Wt evolves
due to the price fluctuations of the shares, we assume that the price Zt performs a
geometric random walk in discrete time t, i.e. the next price will be Zt+1 = (1 + ηt)Zt
where ηt > −1 for all times t are random variables which are independent and whose
probability distribution does not depend on time. Therefore, in the next time the
wealth is

Wt+1 =
(
1 + fηt

)
Wt. (3.45)

For reasons which originate partially from information theory, Kelly uses the logarith-
mic utility function. The investor wants to know what fraction f she should keep in
the stock in order to gain maximum utility in the long run at time t → ∞. The task
is therefore reduced to finding the maximum of the expression

L(f) = 〈ln
(
1 + f ηt

)
〉 (3.46)

where the angle brackets denote the average over the random factor ηt. Because

L′′(f) = −
〈[
ηt/(1 + f ηt)

]2〉
< 0, the maximum can be either inside the interval

(0, 1) or at its edges. In Fig. 3.10 we can see how it works. The fluctuations in ηt
compete with the trend. If 〈ηt〉 > 0 the wealth grows nominally, but it may effectively
decrease due to occasionally low value of the random factor ηt. It is important to note
the sensitivity of the maximum of L(f) with respect to the value of the average 〈ηt〉. A
tiny change may bring the location of the maximum from f = 0 to f = 1 or vice versa,
and only in a narrow range of parameters of the noise ηt is the maximum found inside
the interval (0, 1). We shall see in next paragraph that this sensitivity determines the
generic behaviour of the Levy-Levy-Solomon model. It was also noticed that such an
unrealistic feature of the Kelly method prevents its direct use in everyday practice, as
was demonstrated, e.g. on empirical data from the New York Stock Exchange [819].
But even though the Kelly method is ruled out as a means for earning money, it may
well serve as a toy example of how true optimisation of an investment works.

Artificial optimisers

In the model of Levy, Levy and Solomon [820–823] the simulated agents perform just
the optimisation according to Kelly. The only deviation from the basic Kelly scheme
is that it uses a wider range of utility functions in order to allow the agents to differ
in their investment preferences. Specifically, we assume the power-law form

U(w) =
w1−ν

1 − ν
(3.47)
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Fig. 3.10 Illustration of the Kelly optimisation. In this example, the noise ηt assumes values

m ± s with equal probability 1
2
. The values of the parameters are s = 0.1 and m = 0.005

(dotted line), m = 0.013 (full line), or m = −0.005 (dashed line). We can see how a slight

change in m shifts the maximum from the right to the left edge of the interval f ∈ [0, 1].

and complete the specification postulating that ν = 1 implies U (w) = lnw. Thus we
have a one-parametric set of utility functions at our disposal. The quantity ν measures
the risk aversion of the agent. Indeed, the larger the value of ν, the more the poor
agents feel the fluctuations in their wealth and the less the fluctuations are perceived
by the rich agents.

The state of the i-th of the N agents at time t is determined by her wealth Wit

and by the fraction Fit of the wealth kept in the risky asset. The price of the stock at
time t is Zt, so the agent i owns Sit = FitWit/Zt shares. The total number of shares

S =

N∑

i=1

FitWit

Zt
(3.48)

is conserved, which plays a decisive rule in calculation of the change in the asset’s
price.

The wealth of the agents evolves due to changes in the price of the asset and thanks
to the dividend d distributed among the shareholders. Suppose the transactions at
time t + 1 are performed at a hypothetical price zh, which will be determined in the
negotiation according to demand and offer. Then the new, still hypothetical, wealth
of the agent i is

whi = Wit

[
1 + Fit

zh − Zt + d

Zt

]
. (3.49)

The transactions occur because the agents want to update their investment fractions
Fit so that their expected utility is maximum. In the Kelly method we tacitly assumed
we have full information on the probability distribution of the noise ηt. Here we are
in a more complicated situation, for the agents have to guess the probability of future
movements only based on their previous experience. The best thing they can do is to
watch the price series and estimate the future return, including the dividend

ηt+1 =
Zt+2 − Zt+1 + d

Zt+1
(3.50)
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from the returns in M previous steps, ηt−τ , τ = 1, 2, . . . ,M . In other words, the
agents’ memory is M steps long, and for the future they predict that any of the M
past values may repeat itself with equal probability. Note that the quantities ηt are
not random numbers supplied from outside, as in the Kelly optimisation, but result
from the dynamics of the Levy-Levy-Solomon model.

Let us denote by angle brackets 〈φ(ηt+1)〉M = 1
M

∑M
τ=1 φ(ηt−τ ) the average over

expected return, for any function φ(η). If the agent i has hypothetical wealth whi
at time t + 1 and at the same time she chooses a hypothetical investment fraction
fhi, her wealth at the next time t+ 2 will be whi

[
1 + fhi ηt+1

]
. The optimal strategy

should maximise the expected utility
〈
U
(
whi[1 + fhi ηt+1]

)〉
M

with respect to the
hypothetical fraction fhi. Now we can appreciate the convenient choice of a power-law
utility function (3.47), because the expected utility is factorised; and we can find the
optimum by maximising the quantity

L(fhi) =
〈(1 + fhi ηt+1

)1−ν

1 − ν

〉
M
. (3.51)

If all of the agents were equal and followed fully rationally the suggestions resulting
from the optimisation, there would be no trade, as everybody would insist on holding
the same proportion of her wealth in stock. Such a conclusion contradicts the most
basic observation of busy economic life. It also casts serious doubts on the very concept
of economic agents as rational optimisers. We can see that the very existence of trade
relies on heterogeneity of their expectations and strategies. If there was a unique
optimum strategy and everybody followed it, the economy would crash. But if there is
no global optimum, why should we look for any? We do not undervalue this question,
and if we do not venture an answer, it is because we feel it goes much deeper than this
book may ever reach.

Of course, there are some more or less standard and more or less expensive ways
out of this dilemma. One of them says that it is the beneficial action of pure chance
that saves us from an impasse and keeps the trade going. This is the stance adopted
in the Levy-Levy-Solomon model. If f∗ ∈ [0, 1] is the value of fhi maximising the
expression (3.51), the actual investment fraction the agent i chooses in time t+ 1 will
be

Fit+1 = f∗ + ǫit (3.52)

where the random term ǫit accounts for uncertainty and subjective error in the de-
cisions of agent i at time t. In practice we take the random variables ǫit as indepen-
dent and uniformly distributed in the interval (−b/2, b/2), with the restriction that
f∗ + ǫit ∈ [0, 1]. Knowing the investment fractions, we can compute the actual price
at time t+ 1 from conservation law (3.48). The result is

Zt+1 =
Zt
∑N

i=1 Fit+1Wit − (Zt − d)
∑N
i=1 Fit+1 FitWit

Zt S −∑N
i=1 Fit+1 FitWit

. (3.53)

From here the actual return at time t and the new wealth values of the agents are
computed
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Fig. 3.11 Simulation of the Levy-Levy-Solomon model. In the left panel, time series of the

price in a typical run, for N = 1000 agents with memory M = 10 and aversion exponent

ν = 0.5. The dividend is d = 0.001 and the noise in the agents’ decisions b = 0.05. In the right

panel, wealth distribution in a typical run with a heterogeneous population, after 500 steps.

The N = 1000 agents are distributed into 50 groups according to the value of the exponent

ν, which ranges from 0 to 1.5. Each point in the graph represents the geometric mean of the

wealth values of the agents within one group.

ηt =

∑N
i=1 Fit+1Wit − (Zt − d)S

ZtS −∑N
i=1 Fit+1 FitWit

(3.54)

and

Wit+1 = Wit[1 + Fit ηt]. (3.55)

Eqs. (3.51) through (3.55) define the dynamics of the Levy-Levy-Solomon model.
We can load it onto a computer and look at its behaviour. A typical example of the
time evolution of the price is shown in Fig. 3.11. The most characteristic feature of the
price series is the periodic oscillation between low and high price levels. The period
is determined by the length of the agents’ memory M , and the oscillations can be
understood if we recall the sensitivity of the Kelly method to the parameters of the
noise.

Initially, the sequence of returns kept in the agents’ memory is generated randomly,
centred around the dividend d. The initial price is set to 1. When the agents start trad-
ing, they feel encouraged by the dividend and try to buy the asset. Their investment
fractions are close to 1. As a result, the price rises and stays high for some time. But
the dividend being constant, it loses importance at a higher price level, and the noise
generated by the random component of the agents’ decision prevails. The investment
fraction drops quickly to a value close to 0; therefore the price falls substantially. In
Fig. 3.11 we can see that the higher and lower price levels are as far as four orders of
magnitude from each other, which is certainly much exaggerated compared to reality.
The negative return perceived in the price drop remains in memory for M steps and
screens out the encouragement from the dividend, now important again, as the price is
relatively lower. As soon as the bad experience from the drop is forgotten, the investors
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become optimistic again, the price jumps up to about the same level as before; and this
periodic movement keeps going on and on. At later times, the oscillations become less
regular due to the random distribution of the agents’ wealth, but the general feature of
periodicity persists. We can see that the general character of the time series, exhibit-
ing jumps between two well-separated price levels, is caused by the sudden switching
between investment fractions close to 0 and 1. The intermediate values are very rare in
the Kelly method; therefore the intermediate prices in the Levy-Levy-Solomon model
are also rarely visited.

Role of heterogeneity

In its most basic form the Levy-Levy-Solomon model is absolutely unrealistic. Does
that mean that it should be discarded, or is there any useful lesson it can teach us?
To see what is closer to the truth we can make the agents heterogeneous. We have
already discussed the influence of the memory span M on the period of the oscillations.
The larger M is, the longer the agents remember the last price jump and keep the
investment close to the extreme investment fraction, be it 0 or 1. But if the agents differ
in their capacity to remember past returns, various periods interfere in the price series
and make it more realistic. If there are several, or even many different memory lengths
at play, the price signal would be as irregular as the real stock market fluctuation.

Another kind of heterogeneity may be the varied risk aversion of the agents. Some of
them accept the risk more willingly, some are rather reluctant. We quantify the effort
to avoid risk by the exponent ν. In the population of agents with several different
values of ν the various groups compete among themselves, and we can ask what level
of risk aversion results in the highest gain.

We can see a typical result in Fig. 3.11. If we divide the agents into groups according
to their value of ν, we observe a non-trivial dependence of the wealth averaged within
the group on the risk-aversion exponent ν. If we increase the value from ν = 0, the
average wealth first decreases, because risk averters invest less into the asset and
therefore gain less dividend. However, the trend reverses around ν ≃ 0.5, and the
more careful investors win. The reason for this behaviour, which somewhat contradicts
intuition, lies in the details of the investors’ reactions to the abrupt drops in price.
While the risk-averters sell their shares immediately, contributing to further collapse,
the risk-prone agents keep holding their assets for a longer time and suffer a significant
loss.

Although the Levy-Levy-Solomon model is too simplistic to be able to reproduce
the complexity of stock market fluctuations, some basic mechanisms are present in
it. Most importantly, it demonstrates how the imprecision in agents’ actions is vital
for the liquidity of the market. Second, it shows how sudden price changes, booms
and crashes, can result from endogenous sources. In fact, it is the delayed response
to past events, kept in the finite memory of only M steps, that makes the market
unstable and leads to collective switching from optimistic to pessimistic investments
and back. Although no real booms and crashes can be periodic, as this would imply
perfect predictability, the basic mechanism, a synchronous response of the investing
crowd to certain configurations of past and present information, may be the same in
reality as in the model. Moreover, the spurious periodicity can be avoided in more
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sophisticated versions of the Levy-Levy-Solomon model which were investigated in
depth in [822, 824, 825].

3.2.3 Lux-Marchesi model

Soon after economists started to abandon the orthodox EMH view, it became clear
that heterogeneity of the agents’ behaviour is essential to understand the stylised facts.
The immediate question is, how far we must go with the heterogeneity in order to get
a realistic-looking model. Thomas Lux came up with the idea that three groups of
agents are enough [826–828]. The first of them are the fundamentalists, who observe
deviations of the actual price from what they perceive as a fundamental value of
the asset. If the price is higher, they sell, as they expect a price drop in the future.
And vice versa: if the price is lower, they buy, since their logic predicts the price will
rise towards the fundamental value. The second and third group taken together are
chartists, people with different talents than fundamentalists. They rely on their ability
to predict the price movements in the near future based on the observation of the past
price series. We may think they are modern shamans gazing at structureless chaos
of rugged lines of turbulent prices, and suddenly—pop!—they know the good or bad
fortune. In practice, of course, it is not fortune telling, but implementing sophisticated
analytic software that chartists do. In the simplified view of Lux, they are much less
smart, though. They are either optimists, who always buy as they constantly expect
the price to rise, or pessimists who, on the contrary, keep selling because they think the
price must go down. To sum up, the agents are either fundamentalists, or optimists,
or pessimists.

So far, the scheme is similar to earlier attempts by Day and Huang [803], Frankel
and Froot [802], and Brock and Hommes [801], as explained in Sec. 3.2.1. All of these
schemes share the classification of agents as fundamentalists and chartists. However,
Lux combined it with Kirman’s idea of spreading the behaviour by imitation or con-
tagion. The type of the agent’s strategy is not attributed forever; instead, the agents
tend to follow other agents and form a herd. The herding effect is even strengthened if
the individuals imitate more apparently successful mates. The idea of agents flowing
dynamically between three uniformly acting groups was embodied in the model of Lux
and Marchesi [826–837]. The three groups can be viewed as three strategies used by
the market participants. The sizes of the groups determine the price changes, and the
flow of the agents among the three strategies is also influenced by the current price
and its trend. But while the price changes are fully deterministic as soon as the group
sizes are known, the dynamics of the group sizes themselves is stochastic. Let us first
look at the evolution of the prices and later investigate the flow of the strategies.

Price dynamics

The virtual stock market we shall create and animate in the computer will be inhabited
by N agents who are offered three possible types of behaviour. The choices are denoted
by the symbols 0 for fundamentalists, + for optimists, and − for pessimists. There
are Nσ agents in the group σ ∈ {−, 0,+}. Logarithm of the price of the traded asset
at time t is denoted Yt = lnZt. (For brevity, in the following we shall call Yt ‘price’,



Agent-based models 133

although ‘log-price’ would be the precise name.) The return is defined simply as the
difference Xt = Yt − Yt−1.

The agents’ actions lead to price changes, which in turn influence the composition
of the strategy mixture in the population. This feedback effect is the main cause of
the complex behaviour of the model. What is the response of the price to the agents’
actions? To answer that question we need to know how much of the asset the members
of the three strategy groups will buy or sell. We assume the ability to buy/sell is not
limited either by the financial resources the agents possess or by the amount of the
asset available on the market. The price dynamics will be determined purely by the
disequilibrium between demand and offer.

The strategies of the three agent types are rather simplistic. The optimists buy
in each time step one unit of the asset; the pessimists sell one unit of the asset; the
fundamentalists first compare the actual price Yt with the fundamental level yf . Then,
they buy if the price is higher and sell if the price is lower. We assume that the amount
to buy or sell is proportional to the difference Yt − yf . In principle, we could choose
any increasing function of Yt, equal to zero if Yt = yf , but we adopted the simplest
choice. Altogether, the excess demand is

D = N+ −N− −N0 c (Yt − yf ) (3.56)

where the parameter c quantifies the relative aggressiveness of the fundamentalists with
respect to the chartists. The response of the price on the excess demand is deterministic

Xt+1 = Yt+1 − Yt = b
D

N
. (3.57)

The price impact depends on the so-called market depth, represented here by the
factor b. We can freely choose b = 1, thus fixing the unit of price.

Two remarks are due here. First, we entirely neglected the complicated job of the
fundamentalists when establishing their most desired quantity, which is the fundamen-
tal price. Most of their time, skill, and resources are spent in this effort and properly
speaking, their strategies should be modelled in various ways to obtain a reliable esti-
mate for yf . On the other hand, we admit validity of the EMH to such an extent that
the fundamentalists are capable of translating all incoming news and external influence
into the fundamental price and do that fully rationally and instantly. As the news is
coming randomly, the evolution of the fundamental price is most naturally modelled
by a random walk. However, if we want to separate the influence of fluctuations in the
fundamental price from the fluctuations induced by the intrinsic agents’ dynamics, it
is wiser to forget the external influence entirely and keep yf constant. Because Yt is
interpreted as the logarithm of price, which assumes both positive and negative values,
we can choose the fundamental price yf = 0 without loss of generality.

Having discussed the dynamics of price, we must also specify how the sizes of
the three groups of agents evolve. Here we apply the idea of opinion spreading by
contagion. (We shall discuss opinion spreading in much more detail in Chap. 8.) When
two agents meet, the first one can adopt the opinion of the second, like Kirman’s ants
adopting the trail established by other ants. However, unlike the ant, the agent is
able to assess (at least partially) the success of the strategies and to compare her own
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strategy with the other agent’s. This may seem straightforward, but in practice it may
prove difficult to say in a given moment whether the fundamentalist or the chartist
strategy is superior, because they operate at different time scales. The fundamentalists
hope that the deviation from the fundamental price will be rectified and that they will
gain the difference when it does so in some uncertain distant future. On the contrary,
the chartists bet on the trend followed in the next step, so they live on a very short
time horizon.

Strategy flow

Let us see now how the idea of strategy choice by contagion can be implemented in
the most simplified manner. If two agents meet, the first can adopt the strategy of
the second. The agents can also change their strategy spontaneously and randomly
with a small probability ǫ. So far, the dynamics would be a trivial generalisation of
the Kirman’s ants model to three groups instead of two. But suppose that the agents
are not completely blind imitators and take into account the quality of the strategies,
as far as they are able to estimate it. The chartists believe in the trend they observe.
If the price has risen since the last update, they suppose it will rise again, and vice
versa. Therefore, the current optimists, who believed in the price increase and therefore
bought a unit of the asset, may convert to pessimists if they observe a price drop.

Thus, switching between optimism and pessimism is based only on the sign of the
price change. A change from chartist to fundamentalist strategy and back is based on
a slightly more subtle consideration. The fundamentalists sell if the price is above the
fundamental value and buy if the price is lower, as they believe that the market forces
must sooner or later bring the price back to its fundamental. The catch in it resides in
the words ‘sooner or later’. In fact, before the price returns, the reward from playing
the fundamentalist strategy is not collected, and we have little knowledge about when
it will happen. But if a 1 Euro investment pays back only after 10 years, there is
something rotten in the state of your finances, isn’t there? Contrary to the chartists
who gain or lose immediately, depending only on whether their one-step prediction
was correct, the fundamentalists must discount the potential gain |Yt − yf |, taking
into account the estimated time before the gain becomes real. In the Lux-Marchesi
model, we implement this feature introducing a single discount parameter d. Then the
fundamentalist strategy is considered superior to the pessimist if d |Yt − yf | > −Xt

and superior to the optimist if d |Yt − yf | > Xt. Thus, we can always order the three
strategies according to their estimated success.

Now we are ready to describe one step in updating the strategies of the N agents.
To fix the time scale, we assume that the update of a single agent’s strategy takes
time 1/N . This update proceeds as follows. We pick one agent at random. She may
change strategy spontaneously, with probability ǫ, to any of the remaining 2 possibil-
ities. Otherwise, we pick another agent and compare her strategy with the first. With
probability q, the first agent simply copies the strategy from the second, as if she were
a pure imitator. But with probability 1− q the first agent compares the quality of her
own strategy with the strategy of the second agent and adopts the latter only if it is
better.
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To put the definition on a more formal basis, let us first denote by gσ the expected
gain of the strategy σ ∈ {−, 0,+} on the condition that the current price is Y and the
return per unit time is X , as prescribed by (3.57). Using the simplification yf = 0, we
have

g± = ±X

g0 = d |Y |. (3.58)

The state of the system is fully described by the price Y and the numbers of agents
in each of the three groups Nσ. Only two of them are independent though, and it will
be convenient later to describe the state in terms of the number of fundamentalists
N0 and the imbalance between optimists and pessimists N∆ = N+ − N−. The dy-
namics is a Markov process, so it is fully determined by transition probabilities from
state (N+, N0, N−, Y ) to state (N ′

+, N
′
0, N

′
−, Y

′). In fact, the only allowed transitions
correspond to the decrease of a group σ1 by 1 and the simultaneous increase of an-
other group σ2 6= σ1 by 1; so N ′

σ1
= Nσ1 − 1, N ′

σ2
= Nσ2 + 1, and N ′

σ3
= Nσ3 , where

σ3 = −σ1−σ2 is the index of the third, unaffected group. The corresponding transition
probability can be expressed as

w
[
(Nσ1 ,Nσ2 , Y ) → (Nσ1 − 1, Nσ2 + 1, Y ′)

]

=
{
ǫ
Nσ1

2N
+ (1 − ǫ)

Nσ1Nσ2

N(N − 1)

[
q + (1 − q) θ(gσ2 − gσ1)

]}

× δ
(
Y +

1

N2
(N ′

+ −N ′
− −N ′

0 c Y ) − Y ′
)

(3.59)

where we used the notation θ(g) = 1 for g > 0 and θ(g) = 0 otherwise; δ(0) = 1 and
δ(y) = 0 for y 6= 0. The first term in the curly brackets comes from a spontaneous
change of strategy, while the second comes from contagion. The factor containing the
δ-function accounts for the change in price, which is deterministic as soon as the new
sizes of the three groups are fixed. Note the extra factor 1/N in the price change,
compared to Eq. (3.57), which is due to the fact that the elementary update takes
time 1/N .

Simulation results

The reader is certainly eager to see how the model works in practice. First let us look
at the time evolution of the number of fundamentalists and both types of chartists.
In Fig. 3.12 we can see the concentrations N0/N and N∆/N in a typical run with
N = 1000 agents. Most of the time, the fundamentalists make up a decisive majority
of the population. Their action on the price is reverting to the fundamental value, and
comparing the upper and middle panels of Fig. 3.12 we can see that the periods with a
high percentage of fundamentalists are marked by fairly small deviations of the price
from yf = 0. As a result, the return is also small, as can be seen in the lower panel of
Fig. 3.12.

But from time to time, more chartists emerge. While the fundamentalists act as
negative feedback on the price, the action of the chartist is just the opposite. The
optimists are reinforced if the price rises, which leads to a further immediate increase
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Fig. 3.12 Typical time series for the Lux-Marchesi model. In the upper panel, evolution of

the concentration N0/N of fundamentalists (upper curve) and the relative imbalance N∆/N

between optimists and pessimists (lower curve). The corresponding price and return are

shown in the middle and lower panels, respectively. The number of agents is N = 1000, and

the parameters of the model are q = 0.9, d = 0.1, ǫ = 0.001, and c = 0.8. Note that the

periods of higher volatility coincide with the lower fraction N0/N of fundamentalists and

larger fluctuations in the imbalance N∆.

in price. Conversely, the pessimists feed on the decrease, and at the same time they
cause a decrease in the price. There is positive feedback induced by the chartists.

For a certain limited time the positive feedback can prevail. In such periods, the
number of fundamentalists drops, and the imbalance between optimists and pessimists
starts fluctuating violently, which causes high volatility in price, as can be seen from
the series of the returns. Such a state lasts for some time before the fundamentalists
take over again; so the periods of high volatility punctuate the low-volatility ones. On
a qualitative level, we observe the effect of volatility clustering.

Also qualitatively, we observe that the returns are usually small, with relatively
rare large spikes. This is rather different from Gaussian noise and suggests fat tails in
the return distribution. In a simulation, we measure the cumulative return distribution
in the run of length T

P>(x) =
1

T

T∑

t=1

θ(|Xt| − x). (3.60)

The typical result is shown in Fig. 3.13, and the fat tails are indeed very well visible.
However, it is not so clear whether the tail can be characterised by a power law; most
probably not, and even if it did obey a power law, the exponent does not seem to be
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Fig. 3.13 In the left panel, cumulative distribution of returns in the Lux-Marchesi model

with N = 1000 agents. The statistics were taken in the last two-thirds of a single run taking

the time 108. The parameters common to all curves are q = 0.9, ǫ = 0.001, and c = 0.8. The

values of d for the seven curves shown are (from top to bottom) d = 0.06, 0.07, 0.08, 0.09,

0.1, 0.11, and 0.15. The dashed line is the power law ∼ x−3. In the right panel, distribution of

returns P (x) = − d
dr
P>(x) in a semi-logarithmic scale, for d = 0.09 with the other parameters

the same as in the left panel.

universal. On the other hand, the tail is certainly fatter than an exponential, as the
inset in Fig. 3.13 shows. For certain values of the parameters, the distribution is also
fairly similar to the empirical one, with tail behaviour close to P>(x) ∼ x−3. Note
that the decisive parameter for the falloff of the probability at the tail is the discount
parameter d, comparing the expected time horizons for the gain of fundamentalists
and chartists. The values giving the most realistic results range from d ≃ 0.09 to
d ≃ 0.1, suggesting that fundamentalists are ready to wait about ten times longer for
their profit than chartists.

The return and volatility correlations provide us with quantitative information
about the predictability and the volatility clustering. In Fig. 3.14 we can see that the
returns themselves have a short, exponentially decaying anticorrelation. The volatility,
measured as absolute return, is positively correlated on a much longer time scale, but
the decay is still exponential, as in Kirman’s ant model. In fact, it is not so surprising,
as the Lux-Marchesi model is a Markov process, and exponentially fast (or slow)
forgetting is a generic feature of Markov processes. Therefore, the effect of volatility
clustering is present here, but is not strong enough to reproduce the empirical data.

An interesting feature of the Lux-Marchesi model is weak sensitivity to the values of
its parameters. There is no abrupt change in behaviour, and the generic features shown
in Figs. 3.12 through 3.14 are observed in more or less clear form for all parameter
choices. However, it was noted that increasing the number of agents suppresses the
fluctuations and makes the fat tails and other features less pronounced. At first sight
this observation may seem disappointing, because it makes difficult the usual procedure
of statistical physics, which is the thermodynamic limit N → ∞. On the other hand,
this finding is compatible with other approaches to price fluctuations, for example in
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Fig. 3.14 Autocorrelations of return (left panel) and volatility (right panel) in the Lux–

Marchesi model are shown, for N = 1000 agents. The parameters are q = 0.9, α = 0.1,

ǫ = 0.001, and γ = 0.8. In the inset, detail of the data shown in the main plot.

the Cont-Bouchaud model discussed in Sec. 3.1.2 or in the models based on order-book
dynamics, as we shall see in Chap. 4. Perhaps all the complexity of the stock market
is a finite-size effect.

Analytical insight

The transition probabilities (3.59) can be used to derive a master equation for the
probability density function PN0N∆ t(n0, n∆). (For brevity, we shall drop the subscripts
N0 and N∆ in the rest of this section.) Then we make the thermodynamic limit
N → ∞. In doing so we find that the time derivative on the left-hand side bears the
factor 1/N , as we supposed that one update lasts 1/N time units. On the right-hand
side we get several drift terms, containing first derivatives of the concentrations. All
of them are of the order 1/N , while the diffusive terms, containing second derivatives,
happen to be of the higher order 1/N2. So, in the thermodynamic limit the dynamics
of the Lux-Marchesi model is effectively deterministic. Explicitly, we get

∂

∂ t
Pt(n0, n∆)

=
ǫ

2

[ ∂

∂ n∆

(
3n∆ Pt(n0, n∆)

)
+

∂

∂ n0

(
(3n0 − 1)Pt(n0, n∆)

)]

+
(1 − ǫ)(1 − q)

2

[ ∂

∂ n∆

((
− ((1 − n0)2 − n2

∆)G+−

− n0(1 − n0 + n∆)G+0 + n0(1 − n0 − n∆)G−0

)
Pt(n0, n∆)

)

+
∂

∂ n0

((
n0(1 − n0 + n∆)G+0

+ n0(1 − n0 − n∆)G−0

)
Pt(n0, n∆)

)]
+O

( 1

N

)

(3.61)
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where the factors Gσσ′ = sign(gσ − gσ′) determine the orientation of the drift, de-
pending on the expected quality of the three strategies. If the initial condition is non-
random, i.e. P0(n0, n∆) = δ(n0−n0(0))δ(n∆−n∆(0)), the probability density does not
spread out but keeps its δ-function form Pt(n0, n∆) = δ(n0−n0(t))δ(n∆−n∆(t)), and
no fluctuations appear. We can therefore fully describe the dynamics by differential
equations for the trajectories n0(t) and n∆(t). They are complemented by the equa-
tion for the price dynamics, which follows from Eqs. (3.57) and (3.56). The stochastic
process Yt then becomes a non-random function y(t). Altogether we have

d

d t
n∆(t) = −3ǫ

2
n∆ +

(1 − ǫ)(1 − q)

2

[
((1 − n0)2 − n2

∆)G+−

+ n0(1 − n0 + n∆)G+0 − n0(1 − n0 − n∆)G−0

]

d

d t
n0(t) = − ǫ

2
(3n0 − 1) − (1 − ǫ)(1 − q)

2

[
n0(1 − n0 + n∆)G+0

+ n0(1 − n0 − n∆)G−0

]

d

d t
y(t) = n∆ − c n0 y(t).

(3.62)

These equations must be completed by three comparisons of the expected gains

G+− = sign(n∆ − c n0 y(t))

G+0 = sign(n∆ − c n0 y(t) − d |y(t)|)
G−0 = sign(−n∆ + c n0 y(t) − d |y(t)|).

(3.63)

(For notational simplicity, we dropped the explicit time dependence of n0(t) and n∆(t)
everywhere on the right-hand side.) The above equations (3.62) and (3.63) fully de-
scribe the dynamics of the Lux-Marchesi model for N = ∞. Of course, it is impossible
to solve this set of nonlinear equations analytically. However, there are some special
cases in which the solution is feasible and provides useful insight into the complexity
of the model.

Provided we know the densities n0(t) and n∆(t), we can write the evolution of the
price explicitly as

y(t) =

∫ t

0

n∆(t′) e−c
∫

t
t′
n0(t

′′) dt′′ dt′ + y(0) e−c
∫

t
0
n0(t

′) dt′ . (3.64)

Now we should ask under what conditions we are able to compute the desired densities
analytically.

Let us forbid the spontaneous changes of strategy with ǫ = 0. If the concentra-
tion of fundamentalists is zero at the beginning, there is no mechanism which could
turn it non-zero at any later time. (And this would remain true even if we kept the
diffusive terms of order 1/N). So, we get a single equation for the quantity n∆(t),
which can be easily solved as it does not depend on the price y(t). There is a trivial
stationary solution n∆(t) = 0 with a constant price. However, if we perturb the ini-
tial state n∆(t) = 0 by an infinitesimal amount, the perturbation amplifies and n∆(t)
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steadily grows towards 1 or decreases towards −1, depending on the sign of the initial
perturbation. The explicit solution is

n∆(t) = ± tanh
(1 − q

2
t
)
, (3.65)

and when we insert it into Eq. (3.64), we can see that the price grows or decreases
linearly without bound. This solution shows that the system is hopelessly unstable
without fundamentalists. Therefore, it is impossible to build a sensible market model
with less than three strategies.

To get something sensible, we must start with non-zero n0(0). Then we get into
trouble, because the equations for n0(t) and n∆(t) depend on the price through the
factors (3.63). But these factors can assume only discrete values ±1, so our strategy
now might be to find specific solutions with these factors fixed and then ‘glue’ these
solutions together at the points where the factors change sign. In fact, there are only
four possible combinations of the values (G+−, G+0, G−0), namely the following: I
(1, 1,−1), II (1,−1,−1), III (−1,−1,−1), and IV (−1,−1, 1). Closer inspection of
Eqs. (3.62) reveals that the behaviour of the model in region III differs from II just
by inverting the sign of n∆(t), and the same holds true for the mutual relationship
between regions IV and I. So, it is sufficient to solve Eqs. (3.62) in regions I and II,
and fortunately it is possible to write these solutions explicitly. However, this is not
a full victory, because gluing the solutions at the borders between regions I to IV is
beyond the reach of analytical methods and must be done numerically.

Let us now list the already announced solutions. For simplicity, we set q = 0.
Solutions with arbitrary q differ only by rescaling the time t by the factor 1 − q. In
the region I we get

n0(t) =
4A et(

(B − 2) et + A
)(

(B + 2) et +A
)

n∆(t) =
(B2 − 4) e2t −A2

(
(B − 2) et + A

)(
(B + 2) et + A

)
(3.66)

and in region II the solution is

n0(t) =
et

C + et

n∆(t) = − (2D − C) et + CD

(et + C)(et +D)

(3.67)

where A, B, C, and D are integration constants to be determined from the initial and
gluing conditions.

These partial solutions can provide some qualitative yet exact information on the
dynamics of the Lux-Marchesi model, as described by Eqs. (3.62). Suppose we start
from region I. We can see that within the solution (3.66) the concentration of funda-
mentalists decreases to zero, while the disequilibrium between optimists and pessimists
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is saturated at its maximum value n∆ = 1. This also means that the price grows with-
out limits. Therefore, at a certain time the factor G+0 must become negative, and we
enter region II, where solution (3.67) applies. Here, on the contrary, the fundamental-
ists take over, and their concentration eventually saturates at value n0 = 1. At the
same time, the disequilibrium vanishes. From the general formula for price evolution
(3.64), we can see that for n∆ = 0 the price relaxes to zero from any initial condition
and irrespective of the detailed form of n0(t). This means that a time must come
when the increase of price reverts and we pass from region II to region III, where the
pessimist strategy is taken as superior to the optimist one, but fundamentalists are
still the best, as the price is high enough. But the drop in price is further strengthened
by the growing pessimists, and soon we find ourselves entering region IV. The further
evolution is then a mirror image of what we have just described, and we end with a
picture of quasi-periodic oscillations of price and the concentrations n0(t) and n∆(t).
The complexity is implied by the nonlinear character of these oscillations, which very
probably have a chaotic nature [827].

Thus we arrive at a somewhat paradoxical situation. We stressed earlier that the
evolution of the stock market is much closer to a purely stochastic process than to de-
terministic chaos, as was believed some 20 years ago. Now we can see that the stochastic
model we developed brings us back to a deterministic evolution with chaotic features.
The stochasticity is recovered if we take into account the effect of a finite number
of agents N , but its role consists rather in resetting, from time to time, the initial
conditions for otherwise deterministic dynamics. It is highly probable that in reality
the finite-size effects are so strong that the deterministic nature of the Lux-Marchesi
model is buried deep under the noise. This is another example of the peculiar nature
of econophysical models, which consists in the fact that the interesting phenomena
are very often finite-size effects, and introducing limits of infinite number of agents
is methodologically misleading. Even though the Lux-Marchesi model deviates from
empirical data in some important aspects (most notably, it underestimates volatility
clustering), generally it seems to grasp the coarse-grained mechanism of stock-market
fluctuations.

3.3 What remains

It is better to stop here and conclude this chapter by mentioning several interesting
approaches the reader can study from the (immense!) journal literature on microscopic
market models.

First, we should note that the Cont-Bouchaud model is not the only scheme in
which the concept of percolation was applied. There are also very interesting models
of social percolation introduced in Refs. [838, 839].

One of the first significant attempts in the direction of agent models was the Santa
Fe artificial market [840–845], developed by the joint group of economists and physicists
at the Santa Fe Institute. The model is rather involved, and its bare simplification later
gained much more fame under the label of minority game. We shall devote our entire
Chap. 5 to minority game, so we limit ourselves here to a few basic ideas of the Santa
Fe artificial market model.
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The agents observe the price movements and react according to their respective
strategies. There are three possible actions: to buy a unit of stock, to sell, or to
do nothing. The strategy of an agent consists in comparing the sequence of price
movements in M last steps with a set of patterns. Each pattern has an action attached
to it, and if the agent finds that a pattern matches the actual price history, she performs
the action attached to that pattern. The set of patterns and actions is different for each
of the agents, and in the computer simulation it is chosen randomly at the beginning.
Some of the agents have better strategies than the others and their wealth grows.
On the other hand, the worst-performing agents are periodically wiped out from the
system and are replaced by fresh agents with new randomly generated strategies. The
price fluctuations emerging in this model are leptokurtic, i.e. the tails are heavier than
Gaussian. Unfortunately, a detailed comparison with empirical data is not available.

The model introduced by Caldarelli, Marsili, and Zhang [846] is close in spirit to
the Santa Fe artificial market but the implementation is substantially different. The
agents are given certain predictors, the function of which is to guess future price change
on the basis of past prices. In contrast to the Santa Fe market, the Caldarelli-Marsili-
Zhang model uses various combinations of first, second or even higher derivatives of the
price and their powers to predict the future. Again, the worst agents are replaced by
randomly created newcomers. It was found that the price fluctuations exhibit scaling
and power-law tails. The Hurst exponent H = 0.62 is close to the empirical value.
However, the results were considered poorly reproducible by some authors [32].

Another model worth mentioning studies the market ecology of producers and
speculators [847]. In a heat engine the energy comes in at a higher temperature and
flows out at a lower one, producing useful work and increasing entropy. Similarly, in
the stock market the producers must follow the natural rhythm of their work, injecting
a large amount of information into the system. Indeed, everybody knows the seasons
of wheat, grapes, or olives, and the speculator can count on her fingers when it pays
to buy and when to sell the agricultural commodities. Part of the profit ends in the
pockets of those who did not actually work in the fields, but the farmers are happy
that somebody is ready to buy their goods immediately. By buying at a high offer
and selling at high demand, the speculators themselves dampen the oscillations of the
price. We might say that they feed on the information contained in the price signal,
thus increasing entropy. Producers and speculators can be compared to the parts of
the heat engine attached to high- and low-temperature reservoirs, respectively. The
machine can work because it is an open system and therefore can steadily produce
entropy.

The model implemented in [847] is close to the Santa Fe or Caldarelli-Marsili-Zhang
market models, as it again assumes that the agents decide according to their strategies,
or predictors. Here the worst performing agents in both speculators’ and producers’
groups are also replaced by fresh blood. The new feature is the possibility that the
agents take no action if they feel that the conditions on the market are not favourable.
This can be compared to the grand-canonical ensemble, where the particles can also
go in and out of the system. In the context of a stock-market model, this idea was
first advocated by Zhang [75], and the two-component model [847] was subsequently
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purified and elaborated into a very elegant and rich model called the grand-canonical
minority game, which will be discussed at length in Chap. 5.

Another very interesting model was developed by Donangelo and Sneppen [848, 849]
showing how money emerges spontaneously from mutual exchange of goods. Finally,
we leave the model of Iori [850–853], the models seeking Nash equilibria [854, 855], the
Langevin approach [856], as well as a number of others [854, 857–882] to the self-study
of the interested reader.

Problems

1. Investigate the following variant of the supply network. The agents are divided
into layers i = 1, 2, . . . , L, containing M agents each. The agents in the first layer
receive orders randomly from the outside. An agent at level i becomes active and
topples if she has z ≥ 2 orders to deal with. If that happens, she chooses randomly
two agents on the lower level i+ 1 and sends each of them 1 order. Her own heap
of orders therefore decreases by 2. The orders sent off by the agents at the lowest
layer are lost. Find the distribution of avalanche sizes if L and M are large. What
happens if M = 2? And what if the orders from the lowest layer are not lost but
return back to the system at the top layer?

2. Write your own computer code implementing the Cont-Bouchaud model on addi-
tional special social networks: 2D square lattice, 3D cubic lattice, randomly con-
nected graph with a fixed node degree k (use small values, e.g. k = 2 or k = 3),
etc. For more examples of networks, look at Chap. 6. An efficient algorithm for
counting the size of clusters arising in the simulations can be found in [751].

3. Distribution of sizes of the percolation clusters in the Cont-Bouchaud model close
to the percolation threshold is given by the general formula

Pclu(s) ∼ s−τ e−b s |p−pc|
1/σ

, s→ ∞ (3.68)

with a certain constant b. Assume a linear price impact (3.17) and very low activity
a→ 0. Find the distribution of returns if the percolation probability p fluctuates
randomly within the interval [0, pc] with smooth distribution Pp(p).

4. Consider the following modification of the Egúıluz-Zimmermann model. With
probability 2a an agent is picked at random. Provided the agent is contained
in a cluster of size s, the cluster dissociates with probability s−δ, δ ≥ 0, or
remains intact with probability 1 − s−δ . With the complementary probability
1 − 2a two agents are chosen randomly, and if their clusters have sizes r and s,
the two clusters merge with the probability (rs)−δ or remain separated with the
probability 1− (rs)−δ. Find the stationary distribution of cluster sizes ns. For an
inspiration, you can look at [778].

5. Find the stationary distribution for Kirman’s ants, i.e. asymptotic probability
distribution P (k) for the process defined by transition probabilities (3.41). Hint:
in the limit N → ∞, introduce the continuous variable x = k/N and write the
Fokker-Planck equation for probability density P (x).
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Order-book dynamics

When your naive curiosity in the ways people gain and lose wealth crosses the first
level of initiation, you probably glimpse the vertiginous hierarchy of insiders, not unlike
Dante’s circles within circles of the Inferno. Or else you may think of multiple skins of
an onion and believe, unless you are a devout post-modernist, that there is something
in the centre which dominates the subordinate peripheral layers.

Indeed, if you decide to invest your idle savings into shares of a company, you must
visit an agency which will do the job for you. The time when you met the brokers in
coffee-houses has been long gone. Your agent will probably contact other specialists,
and your desired transaction will proceed through several intermediaries, get trans-
formed, sliced into chunks of a convenient size, and mingled with other transactions,
until it reaches the very person whose occupation it is to issue, register, and execute
elementary orders to buy and sell. After all those steps have been done, the result
goes back through the same chain of middle-persons to get decoded and reassembled
so that eventually you pay the agreed-on amount and become the share-owner.

It would be very difficult to model this process in complete detail. Too many
inessential features appear there. Every single securities market has some unique mech-
anisms. By including them in the model we would lose the clear view of generic func-
tions common to all places and times. Moreover, the tendency to make trading more
and more computer-based eliminates some of the intermediaries and attributes new
roles to the others.

Already in the 1960s Osborne [883] suggested handing the execution of trades over
to an electronic calculator. He depicts the stock market as a black box, whose inputs
are the issued orders and output is the price. As a next step, he formulates an equation
connecting the input and output. It is not a fundamental problem to program that
formula on a computer, so one human layer (perhaps even more) can be replaced by
a machine. There are arguments for why automated trading via limit order books is
the inevitable future (which is quickly becoming the present) of stock markets [884].

Our main objective is to formulate models which can reproduce reasonably well
the stylised facts on stock market fluctuations. But which of the layers at work are
responsible? Is it the most external community of speculators, freely using the wildest
strategies they could invent? Is it the layer below, still pursuing their own goals and
procedures but limited to the assignments from their clients? Or, is it the most internal
core of those who execute the elementary orders? Or, perhaps it is a combination of
all? We do not yet know. The typical scheme investigated in Chap. 3 was the Lux-
Marchesi model. The driving forces are the speculators, i.e. the peripheral layer, and
the whole rest of the stock-market machinery is considered a mechanism responding
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Reaction-diffusion processes Box 4.1

are abstract models for chemical reactions between substances which are not stirred,
e.g. within a gel. In the absence of convection the reaction is diffusion-limited, for the
molecules must diffuse individually within the close vicinity of each other to react. Per-
haps the first important experimental discovery pertaining to reaction-diffusion pro-
cesses appeared in 1896, the observation of Liesegang rings formed when silver nitrate
is dropped in the centre of a Petri dish containing a gel with the solution of potassium
dichromate. Concentric patterns of precipitated silver are observed after a few hours.
In a model, we have a certain number of particles of different species, A, B, C, . . . , per-
forming a random walk. The diffusion constant may also be species-dependent. Various
reactions may occur, for example, a binary one written as A + B → C, which means
that when two particles of type A and B happen to be at the same site, they produce a
new particle C with a certain reaction probability k. Other examples of reactions include
catalysis A +D → C +D, annihilation A + A → ∅, replication A → 2A, autocatalysis
A+B → 2A, and many more.
The reaction-diffusion processes were most intensively studied in the context of pattern
formation, where they help us understand where the zebra’s stripes and leopard’s spots
come from, or why insects’ bodies as well as our backbone are segmented [888].

in a simple deterministic way to the speculators’ activity. The complexity is produced
at the outer shell.

In this chapter we invert the perspective. What if the fat tails, scaling, etc. emerge
from the very mechanism of placing and clearing the most elementary orders, whatever
random flux of orders the speculators send towards the centre? If that were true,
strategic thinking would be irrelevant, at least for the universal phenomenology of
the market, and the only thing to investigate would be the innermost machinery. For
example, one should study Osborne’s equation or the behaviour of the software used
now in electronic markets. Humans are largely excluded.

At least we do not count on human intelligence. Indeed, experiments were per-
formed [885–887], where ‘zero-intelligence’ agents implemented by simple computer
programs with no strategy traded together with humans (business students, as usual
in this kind of experiments). Surprisingly, zero-intelligence agents showed as much effi-
ciency as living people. Individual rationality of the agents had no effect. This finding
provides another argument against the universal validity of the efficient market hy-
pothesis. Indeed, if rationality has no observable impact on the market data, why do
we need the assumption that people behave like rational optimisers of their individual
profits? The hypothesis of rationality may be as superfluous in the economy as the
hypothesis of ether in the theory of electromagnetic waves.

We shall see in this chapter that such an extreme formulation goes much too
far. However, it is very instructive to see how much of the empirical findings can be
explained supposing that people have no soul and no brain.

4.1 Reaction-diffusion and related processes

We have seen basic empirical facts about order books in Chap. 1. Supposing for simplic-
ity that all orders have the same volume, or that larger orders are effectively composed
of several orders of unit size, we may think of the orders as particles placed on a line,
i.e. on the price axis. The most elementary fact is that we must distinguish between
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Reaction-diffusion processes: mean-field approach Box 4.2

On a basic level the reaction-diffusion processes are described by partial differential
equations describing the space-time variations of the concentrations cA, cB , . . . of all
species involved. E.g. for one species with a diffusion constant D subject to the annihi-
lation A+A → ∅ with a reaction constant k, the equation is

∂
∂t

cA = D ∂2

∂x2 cA − k c2A. (*)
The complexity originates from the nonlinear terms occurring generically in equations
describing the reaction-diffusion processes, as is clearly seen in the example of equa-
tion (*). However, a full description is even harder than that, because the differential
equations provide only a mean-field approximation of the process. As they do not trace
individual particles, the information about the fluctuations around the average concen-
tration is lost. To proceed further, more advanced techniques are necessary, which fall
far beyond the scope of this book [889].

buying and selling orders. Accordingly, we have also two types of particles, asks (A)
and bids (B). A trade occurs when A and B happen to be in the same place. The two
orders of opposite type are executed and removed from the book. We may represent
such an event as an annihilation reaction

A+B → ∅. (4.1)

To complete the model, we must specify how the particles can come to the same place
to interact and how new particles are supplied, replacing the annihilated ones.

4.1.1 Instantaneous execution

Stigler again

Perhaps the simplest variant is embodied in the model of Stigler [789], investigated
in Sec. 3.2.1. Let us translate it into the language of the reaction-annihilation process
[890]. There is a fixed interval of allowed prices. The particles are deposited one by one
at random points within this interval. Immediately after deposition the particle tries
to annihilate another particle of the opposite type. So, when A is deposited at price
z, we check if there is any B at price z′ ≥ z. When found, the new A reacts according
to Eq. (4.1) with B placed at the highest price of those exceeding z. The position of
such B is then the actual price. If no such B can be found, A remains where it was.
We may also imagine the process in an alternative way. The particles do not fall on
the interval from above, but rather they are pushed horizontally from the edges of the
interval. So, the newly deposited A moves swiftly from the right edge of the allowed
interval to the left, towards its random but predestined position. If it meets any B on
its way, these A and B annihilate each other. If no B is met, the new A reaches its
destination and gets stuck there.

We have seen in Sec. 3.2.1 that the Stigler model quite reasonably reproduces
the phenomenon of volatility clustering. The autocorrelation of absolute values of
price changes decays as a power law, although the exponent is much higher than the
empirical value. On the other hand, when we look at the distribution of price changes,
no sign of power-law tails is observed. This is a serious flaw of the Stigler model and
we must look for alternatives.
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Genoa artificial market

A rather involved modification of the Stigler model appeared much later under the
name of the Genoa artificial market [890–898]. The model contains many ingredients,
and therefore it is very plastic. We show here a reduced version, keeping only the most
significant (in our view) new features.

First, the new orders, either bids or asks, will not be placed at an arbitrary position
within the allowed price interval, but close to the current price. We introduce two
parameters into the model. The first parameter d is the width of the price interval
into which the new order is deposited. The second parameter s measures the distance
of the centre of this interval from the current price. This way we allow the price to
fluctuate without any a priori bounds. To avoid the obvious problem that the price
may sometimes wander into negative numbers, we interpret the coordinate on which
orders are placed as the logarithm of price y = ln z, instead of the price itself. Then,
if the position of the last transaction was y0, we deposit a new ask at a point chosen
arbitrarily within the interval [y0 + s − d/2, y0 + s + d/2], or a new bid within the
interval [y0 − s − d/2, y0 − s + d/2]. We can see that the asks are, on average, put
higher than the current price, while bids are put below it on average. Indeed this is
the behaviour to be expected from sensible investors. However, the allowed intervals
for bids and asks may overlap as long as s < d/2, so transactions are possible.

The second and most important improvement over the Stigler model is the feedback
from the past volatility to the actual value of the parameters s and d. Principally, there
is no clue how large these parameters should be. However, a posteriori their values can
be compared with the scale of typical price fluctuations, measured by the volatility.
Denoting by yt the price logarithm at (discrete) time t and xt = yt − yt−1 the return,
we define the instantaneous volatility as absolute price changes averaged using an
exponentially decaying kernel

vt = λ

∞∑

t′=0

(1 − λ)t
′ |xt−t′ |. (4.2)

Then, the feedback means introducing time-dependent parameters st, dt, instead of
fixed s and d, and keeping them proportional to the instantaneous volatility:

st =
g

b
vt

dt = g vt.
(4.3)

The newly introduced constants b and g are parameters of the simplified Genoa market
model. The ratio between the width of the allowed interval and its shift off the current
price is kept fixed and equal to b. Thus, the pattern of order placement is zoomed in
and out according to the actual volatility, with proportionality factor g.

At each step, one order is placed and, depending on its position relative to other
orders, it is either executed immediately or remains in the order book. As in the
Stigler model, we discard orders sitting in the book for too long. So, at each step
we first check whether there is an order placed N steps ago and if we find one, we
remove it. Therefore, the maximum number of orders of both types simultaneously
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Fig. 4.1 Genoa market model. All data correspond to N = 1000, b = 7, and λ = 0.001. In

the left panel, the dependence is shown of the average volatility on the width-to-volatility

ratio g. The points for 〈v〉 exceeding about 108 should be considered as effectively infinite.

The finite value is due to the hard limits on volatility imposed by computer implementation.

The hysteresis curve, indicated by lines with arrows, which apparently suggests first-order

phase transition, is a subtle effect due to fluctuations in a finite-size system. It should vanish

in the thermodynamic limit; actually the transition is of a second order. In the inset, the

same data are plotted differently to confirm the type of behaviour predicted by Eq. (4.5).

The solid line is the dependence ∝ (52.4 − g). In the right panel, we show the distribution

of returns. Different symbols correspond to g = 51 (◦), 52 (△) and 52.36 (2). The lines are

the power laws ∝ x−1−α with the exponents (from left to right) α = 5.5, 2.5, and 1.2. In the

inset, the values of exponents extracted from the power-law tails of price-change distributions

are shown for various values of g. The solid line is the dependence (α− 1) ∝ (52.4− g). Both

panels show consistently that gc ≃ 52.4 for this choice of parameters.

present in the book is N . Clearly, the behaviour of the model is sensitive to the value
of N , because it essentially determines the density of orders. Because the trade occurs
at the place of an extremal order, i.e. the lowest ask or the highest bid, the typical
spacing between adjacent orders determines the scale of the one-step price changes
and therefore the volatility. Higher N implies lower volatility and vice versa.

Suppose for a while that we switch off the feedback from the volatility to the
parameters s and d. Instead, we fix their ratio b and look how the average volatility
〈v〉 in the simulation depends on the value of d. For large d this parameter selects just
the scale on the axis of log prices y, so it is natural to expect that the volatility is
proportional to d. For smaller d the maximum number of orders N is decisive for the
volatility, and the linear dependence on d breaks down. Therefore, we can suppose

〈v〉 ≃ 1

gc
d+ A (4.4)

with some constants A and gc, depending on b and N .
Now, if the feedback is effective, the average volatility in a stationary state should

be compatible with Eq. (4.4), which produces a divergence when g approaches to gc
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〈v〉 ≃ gcA

gc − g
, g → gc. (4.5)

Such a behaviour is confirmed in the simulations, as documented in Fig. 4.1. A second-
order phase transition occurs at g = gc, and we can consider the inverse average
volatility 〈v〉−1 as an order parameter, vanishing linearly at the critical point.

The distribution of returns is of central importance, and we can see in Fig. 4.1 its
shape for several choices of parameters. The power-law tail P (x) ∼ x−1−α develops
when we approach the critical point. This seems to be good news, but there are
features which calm down our optimism. First of all, the power-law behaviour is not
limited to the critical point or its close vicinity. So, it does not seem to be related
to critical behaviour but rather results from the generic mechanisms of power-law
distributions produced in multiplicative processes [899, 900]. And most importantly,
the tail exponent α is not universal. It decreases continuously when we approach gc
from below, until it reaches the value α = 1 at the critical point.

On the other hand, such a behaviour helps us understand the origin of the phase
transition. The feedback between order placement and volatility, prescribed by (4.3),
results in a power-law distribution of returns, with a parameter-dependent exponent.
If we suppose that the system is ergodic in the sense that the initial conditions are
not remembered forever, the time-average of volatility 〈v〉 should coincide with the
average computed from the return distribution

v =

∫ ∞

0

xP (x) dx. (4.6)

Now, v is finite only if α < 1 and diverges as the exponent α approaches 1. Therefore,
the critical point is reached for the combination of control parameters b and g that
leads to the exponent α = 1 in the price-change distribution. The phase transition is
the consequence of a special type of power-law distribution, not the other way round.

Tuning the parameters, we can easily get distributions of price changes with expo-
nents close to the empirical ones. Too easy, alas! We do not know why the parameters
should have this rather than that value. However, the observation that the feedback
between actual volatility and order placement leads to power-law distribution has great
value, for it proves to be a generic feature common to a wide range of other models
too.

4.1.2 Bak-Paczuski-Shubik model

Diffusion

Another possibility of how A and B can be allowed to meet is to let them walk
randomly. We can imagine that the trader places an order at a certain price, but
after a while she feels that the price was not quite good. She takes the order out and
redeposits it somewhere else. In the model of Bak, Paczuski and Shubik [901], the new
position is next to the old one, shifted randomly up or down. The movement of the
order can be viewed as diffusion. The model then comes close to the very thoroughly
studied class of reaction-diffusion processes.
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Fig. 4.2 Scheme of the Bak-Paczuski-Shubik model. Particles representing asks (A) and bids

(B) perform a random walk. When they meet, a trade occurs and the orders are removed.

To keep the number of orders constant, new particles are immediately supplied at the ends

of the allowed price segment.

Let us first look at the computer simulation of the model. The particles are placed
on discrete points within the segment of allowed log-prices y = 1, 2, . . . , L, and in
each time step they can move one unit up or down. There are N/2 particles of either
species. When two particles A and B meet, they are taken out and redeposited, as
illustrated in Fig. 4.2. The point where the reaction took place determines the current
price. The simplest rule for the redeposition of the particles is to move them to the
ends of the segment, i.e. A is placed at y = L and B at y = 1. In Fig. 4.3 we can
see the typical evolution of the configuration of orders, as well as the price changes.
The first impression is that the transactions occur rather rarely, so the price remains
unchanged for a relatively long time and then makes a rather long jump. This way,
the Bak-Paczuski-Shubik model produces a stochastic process for the price, described
by transaction times Ti, and transaction prices yi, numbered by discrete indices i =
1, 2, . . . Alternatively, we can describe it by waiting times ∆Ti = Ti − Ti−1 and price
jump lengths xi = yi − yi−1. When we discussed the continuous-time random walks
in Sec. 2.1.3, the waiting times and jump lengths were postulated. Here we have a
mechanism which generates them. Now, let us look at the properties of the process,
as revealed in numerical simulations. We denote M the number of price jumps in the
simulation.

The distribution P (x) of the price jumps is shown in Fig. 4.4. We do not observe
any signs of fat tails. Instead, the distribution can be fitted very well on a slightly
distorted Gaussian, P (x) ≃ ae−b x−c x

2

, with appropriate constants a, b, and c. As we
already noted, quite a long time may pass from one transaction to another, while the
order book undergoes many internal reorganisations. We can measure the distribution
of the waiting times

P>(∆t) =
1

M

M∑

i=1

θ(∆Ti − ∆t), (4.7)

and as shown in Fig. 4.4, the distribution is exponential. This suggests that the times
of transaction constitute a Poisson point process, at least approximately. We should
also ask how much the waiting times and price jumps are correlated. To this end, we
measure the average jump conditioned to the waiting time
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Fig. 4.3 Typical evolution of the Bak-Paczuski-Shubik model. The total number of particles

is N = 10, and the width of allowed prices L = 20. The time is measured so that each particle

moves on average once per unit time. Full circles represent bids, empty circles asks. The line

traces the current price.

〈x|∆t〉 =

∑M
i=1 |xi| δ(∆Ti − ∆t)
∑M
i=1 δ(∆Ti − ∆t)

. (4.8)

As we can see in Fig. 4.4, on average, a longer wait is followed by a longer jump. This
finding is quite natural, as longer reorganisation of the order book may finally bring
the new price much farther from the original one.

In order to see the scaling of the price fluctuations and determine the Hurst ex-
ponent, we usually draw the quantity R(∆t), as defined in Box 4.3. However, in the
Bak-Paczuski-Shubik model it is more convenient to use a simpler quantity, measuring
the amplitude of the price fluctuations during time interval ∆t as

〈|∆y|max〉 =
〈

max
Ti,Tj∈[t,t+∆t]

|yi − yj |
〉
t

(4.9)

where 〈. . .〉t means the average over all times t in the course of the simulation. In
principle, both quantities should behave the same, 〈|∆y|max〉 ∼ R(∆t) ∼ (∆t)H in
the asymptotic regime ∆t→ ∞. However, in practice factors like statistical noise and
the finiteness of the system make the former or the latter quantity more suitable,
depending on the model under consideration.

In the Bak-Paczuski-Shubik model, we can observe two regimes, as shown in Fig.
4.5. For short time distances ∆t, the price moves ballistically, 〈|∆y|max〉 ∼ ∆t. There
is a crossover at a typical scale ∆tc, and for larger time distances the movement is
subdiffusive, 〈|∆y|max〉 ∼ (∆t)1/4, so that the Hurst exponent is

H =
1

4
. (4.10)

The initial transient regime with ballistic motion of price can be understood taking
into account the distribution of waiting times shown in Fig. 4.4. If the time distance
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Fig. 4.4 Simulation results for the Bak-Paczuski-Shubik model. In the left panel, dis-

tribution of price jumps is shown for N = 100, L = 250. The solid line is the fit

0.09 exp
[
− x/28 − (x/19)2

]
. The right panel shows the distribution of waiting times be-

tween trades. In the inset we can see the average price jump conditioned to the waiting time

just before the jump. The straight line is the power dependence ∝ (∆t)0.4.

∆t is shorter than the average waiting time, it is not likely that more than one jump
occurs during the interval ∆t. Supposing that the jumps have a typical length, the
quantity (4.9) is proportional to the probability that a jump does occur, which is in
turn proportional to ∆t. Hence the observed ballistic behaviour of prices.

For extremely long times, the amplitude of the price fluctuations is determined by
the system size L rather than by the process itself. Figure 4.5 shows that the quantity
〈|∆y|max〉 gets saturated and approaches a constant when ∆t → ∞. It is especially
well visible for a small system size L, where the ballistic regime is directly followed
by the saturated regime. Therefore, the relevant regime characterised by the Hurst
exponent H = 1/4 can be observed only for L large enough to open a time window
between the initial ballistic transient and the final saturation. This is a point we must
keep in mind when making our simulations.

Density of orders

The reaction-diffusion character of the Bak-Paczuski-Shubik model suggests that we
could directly employ the approximate analytical tools which are successfully used in
many other models of this kind. For basic information, see Boxes 4.1 and 4.2. The
reaction described by (4.1) leads to a set of coupled partial differential equations for
the concentrations cA, cB of the particles A and B, respectively. This way we get the
average densities of bids and asks within the order book.

Assume for the moment that the reaction (4.1) may not occur always and imme-
diately after the particles meet. In this case the reaction constant k is finite and the
equations describing the evolution of the concentrations are
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Fig. 4.5 Dependence of the amplitude of price fluctuations on the time interval. The pa-
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the powers ∝ (∆t)1/4 (solid) and ∝ ∆t (dashed).

∂

∂t
cA = D

∂2

∂y2
cA − k cA cB

∂

∂t
cB = D

∂2

∂y2
cB − k cA cB.

(4.11)

They must be supplemented by appropriate boundary conditions reflecting the way
the new particles are added to the system. The orders keep flowing in, replacing the
annihilated ones, and it is natural to assume that their average number is kept con-
stant. In our case we suppose that the reaction occurs on a segment of prices [0, L]
and there are as many bids as there are asks, namely

∫ L

0

cA(y)dy =

∫ L

0

cB(y)dy =
N

2
. (4.12)

Furthermore, we require that the concentrations are non-negative cA,B ≥ 0. It is
convenient to express the concentrations in terms of the difference, c− = cA − cB and
the sum, c+ = cA + cB. For the difference, we immediately have the equation

∂

∂t
c− = D

∂2

∂y2
c− (4.13)

which is linear and therefore easily solvable for any value of the reaction constant. The
sum of the concentrations obeys the equation

∂

∂t
c+ = D

∂2

∂y2
c+ − k

2

(
c2+ − c2−

)
(4.14)

which is nonlinear; but we can bypass this difficulty by assuming that the reaction
constant is very large. Indeed, in the Bak-Paczuski-Shubik model the particles react



154 Order-book dynamics

and annihilate whenever they meet. This exactly corresponds to the limit k → ∞,
simplifying the equation (4.14) into the bare relation

|c+| = |c−| (4.15)

ensuring that the regions where cA and cB are non-zero do not overlap. Indeed, the
infinite reaction rate implies that the particles are annihilated immediately upon en-
counter and we cannot find a finite concentration of both A and B at the same place.
Therefore, we only need to solve the equation for the difference c− and equate the den-
sity of asks and bids with its positive and negative parts, respectively, i.e. cA = c− θ(c−)
and cB = −c− θ(−c−).

It is easy to find the stationary solution of Eq. (4.13) subject to condition (4.12).
We have

c−(y) =
4N

L2

(
y − L

2

)
(4.16)

and the resulting particle concentrations, i.e. the average densities of bids and asks
are shown in Fig. 4.6.

Price fluctuations

To see how the price fluctuates we must go beyond the description of the process
using particle densities cA,B. The actual price is determined by the position where
the last reaction took place. The sequences of reaction times t1, t2, . . . and prices
y1, y2, . . . are random processes reflecting the (much more complicated) dynamics of
reactions between diffusing bids and asks. Unfortunately, little is known analytically
about the price fluctuations produced this way [902]. However, we can learn quite
enough from a closely related problem, which does have an analytical solution. Imagine
that initially the particles of the two types reside in opposite halves of the segment
[0, L], with uniform density. We suppose now that the reaction constant k is finite, so
the particles of type A and B can mix. The reaction will happen around the centre of
the segment. The product of the concentrations measures the intensity of the reaction
under way, and we describe the profile of the reaction front using the quantity χ(y) =
cA(y) cB(y). The time dependence of the width of the reaction front w =

[ ∫
(y −

L/2)2χ(y) dy/
∫
χ(y) dy

]1/2
will bear some information about the fluctuations. It was

found [903] that it grows rather slowly,

w(t) ∼ t1/4
√

ln
t

t0
(4.17)

with parameter t0 depending on the details of the model. The critical exponent 1/4
occurring in this formula was obtained by several independent paths [904–907], so the
value is quite well established.

Translating this result into our original problem of price fluctuations, we conclude
that the typical amplitude of price fluctuations within a time interval of length ∆t
grows asymptotically as (∆t)1/4. Thus, the Hurst exponent in the Bak-Paczuski-Shubik
model is expected to be

H =
1

4
. (4.18)
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In this consideration we disregarded the logarithmic factor, which may turn out to be
quite important when we want to check the result (4.18) with numerical simulations.

How to guess the Hurst exponent from the book profile

The value 1/4 of the Hurst exponent can be obtained by a simple heuristic argument.
However poorly justified from a mathematical point of view, it elucidates why the
value 1/4 is so general that many other models investigated further in this chapter
will also share the same Hurst exponent as the Bak-Paczuski-Shubik model.

Change of price ∆y realised over the time interval ∆t is due to a temporary im-
balance between the supply of bids and asks within that time interval. If we assume
that bids and asks arrive randomly, the actual imbalance, measured from a starting
time instant, follows a random walk. Therefore, the magnitude of the imbalance ∆v
is scaled with time as

∆v ∼ (∆t)1/2. (4.19)

On the other hand, suppose n(y) is the average order-book profile, i.e. the average
density of bids or asks. Here the variable y is the distance from the current price. The
change in price ∆y due to the imbalance of orders is related to the volume of the

imbalance ∆v as ∆v =
∫∆y

0
n(y)dy. Coming back to the Bak-Paczuski-Shubik model,

we identify n(y) with the concentration of either bids or asks

n(y) = c+(y +
L

2
) =

4N

L2
|y|. (4.20)

The vital ingredient is the linear dependence n(y) ∼ y, which implies that the volume
eaten off the book profile is ∆v ∼ (∆y)2; together with the random-walk assumption
(4.19) it gives

∆y ∼ (∆t)1/4. (4.21)

Hence the value H = 1/4 for the Hurst exponent. We can see immediately that this
value is related only to the linearity of the order-book profile in the vicinity of the price.
Other details of the profile are irrelevant, and the Hurst exponent is universal. More
generally, if the order-book profile close to the current price behaves like n(y) ∼ yβ−1,
then the Hurst exponent becomes

H =
1

2β
. (4.22)

Note, however, that this argument may hold only for short enough times ∆t. When
the volume imbalance is too big, the profile can no longer be considered linear and the
Hurst plot ceases to be universal.

Imitation and drift

Let us consider an example of a modification which significantly changes the book
profile, but without a change in the Hurst exponent. In the original setup, the particles-
orders were allowed to diffuse freely left or right without any bias. In reality, the change
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Fig. 4.6 Profiles of the order book in the Bak-Paczuski-Shubik model (left panel) and in

the same model but with drift and imitation included (right panel) are shown. The full line

denotes the concentration of bids, the dashed line the concentration of asks.

in the order position, which we describe here as diffusion, is due to the change in the
investor’s strategy. The price is perhaps inadequate, so let us shift the order lower or
higher. Naturally, the asks will be mostly shifted low, while the bids are shifted high.
This induces a drift in the particles’ diffusion. The particles A will drift downwards,
the particles B upwards.

At the same time, we shall also introduce another unrelated ingredient, which is
imitation [908]. The investors may look where other investors place their orders and
put their own close to the imitated ones. In the language of reaction-diffusion processes
it corresponds to proliferation:

A→ A+ A

B → B +B.
(4.23)

The partial differential equations describing the evolution of the concentrations of the
particles A and B are now

∂

∂t
cA = D

∂2

∂y2
cA + b

∂

∂y
cA + a cA − k cA cB

∂

∂t
cB = D

∂2

∂y2
cB − b

∂

∂y
cB + a cB − k cA cB .

(4.24)

The parameters a and b quantify the rates of imitation and the drift, respectively.
Again, it is possible to introduce the sum and difference of the concentrations, c+ =
cA + cB and c− = cA − cB. The equation we obtain is slightly more complicated
than (4.13), because c− does not decouple completely from c+. However, for instant
annihilation, i.e. k → ∞, we can again use the relation (4.15) to get

∂

∂t
c− = D

∂2

∂y2
c− + b

∂

∂y
|c−| + a c−. (4.25)
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The stationary solution is then found independently in the regions where c− > 0 (only
particles A are present there) and where c− < 0 (just particles B). As a result, we
finally get

c−(y) = R exp
(
− b

2D

∣∣y − L

2

∣∣
)

sinh

[√
b2 − 4aD

2D

(
y − L

2

)]
. (4.26)

Again, the concentrations of A and B are extracted as positive and negative parts of
c−, respectively. The order-book profile is just n(y) =

∣∣c−(y+L/2)
∣∣. The parameter R

is fixed by the condition that there are on average N/2 particles of either type, which
is the same as before, Eq. (4.12).

In Fig. 4.6 we can compare the order-book profiles in the original Bak-Paczuski-
Shubik model and in the same model with imitation and drift. The latter is clearly
more realistic, because the empirical data (see Sec. 1.3) show decaying density of orders
when we get farther from the actual price. On the other hand, the behaviour close to
the price is qualitatively the same in both variants of the Bak-Paczuski-Shubik model.
The density of orders is proportional to the distance from price, which implies the
universal value of the Hurst exponent H = 1/4. Modifications of the model have no
impact on the value of the Hurst exponent as long as the essence of the Bak-Paczuski-
Shubik model remains unchanged.

4.2 Reactions of limit and market orders

In the models discussed so far we have not distinguished between limit and market
orders. In reality, this distinction is a fundamental issue in all computerised stock
markets. Limit orders are placed in the book at a fixed price and wait there until they
are executed or cancelled. Cancellations occur when the owner of the order decides
that the price is not adequate, or it has been waiting too long already, or for any
other subjective reason. Therefore, the limit orders never move, contrary to the Bak-
Paczuski-Shubik model. They just come in and go out.

Market orders do not specify any price. The incoming market order to buy matches
with the limit order to sell that is placed at the lowest price. (By analogy, we see how
it works for sell orders.) This results in immediate execution of both orders involved.
This transaction fixes the actual price.

Because the orders never move but are just placed and removed, we can classify the
models of this type under the label of deposition-evaporation processes. Placements
of orders amount to deposition of particles, while evaporation corresponds to both
cancellation of orders (evaporation from the bulk of the material) and their execution
(evaporation from the extreme edge of the material).

There is a wide variety of models differing in the way the limit orders are placed, in
the rules for cancellation of orders, and so on. We shall show only two basic variants.
The first is the Maslov model, and the second stems from several works of the group
of Farmer and his collaborators. To fix simple names, we call the latter the uniform
deposition model. In all the models described here, all orders have the same volume,
considered unity.
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Fig. 4.7 Example of the evolution of the Maslov model with cancellations. Each horizontal

segment represents an order, placed where the segment starts and cancelled or executed where

the segment ends. The rugged line is the time dependence of the price. The parameters of

the model for this plot are N = 100 and q = 0.05.

4.2.1 Maslov model

Deposition, execution, cancellation

The limit orders are preferably placed near the price. As an extreme situation, we can
imagine the (logarithm of the) price as an integer number and always place the new
orders at distance 1 from the price. All the orders have the same unit volume. This is
the principal feature of the model introduced by Maslov [909].

The model evolves in discrete time t. The order book contains NAt asks and NBt
bids. The state of the book is described by the positions of the asks a1t ≤ a2t ≤ . . .
and bids b1t ≥ b2t ≥ . . . and by the current price yt. The lowest ask always stays above
the highest bid, b1t < a1t and the price lies between them, b1t ≤ yt ≤ a1t.

In the simplest situation, the only actions we can take at each step are deposition
and execution. We can deposit a single bid one unit below the current price, i.e. at
position yt − 1, or we can deposit one ask at the position yt + 1. Another possibility
is to issue one market order. It can be an order to buy, resulting in execution of the
highest bid at position b1t. The executed order is removed from the book, and the new
price is set to the position of the executed order, yt+1 = b1t. Similarly, we can issue an
order to sell. Then, the lowest ask is removed and the new price is yt+1 = a1t. Each
of these four actions occurs with identical probability 1/4.

If we allow cancellation of orders, the process becomes more complicated. Two
new parameters enter the definition of the model. The probability of cancellation will
be quantified by the parameter q ∈ [0, 1], and the average number of orders present
in the order book will be tuned by the parameter N . The actual probability that
cancellation of an order will happen at time t is proportional to the number of existing
orders Nt = NAt +NBt.

At each step of the process, we first decide which of the three types of events will
occur. The probabilities that, at time t, deposition, execution, and cancellation of an
order takes place are
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Hurst plot Box 4.3

provides one of the ways to quantify the fluctuations in a time series. In econophysics,
we have in mind the time series of price, either empirical or obtained in numerical
simulations. Suppose the price at time t is yt. We specify some discrete unit of time δt.
For simplicity, let δt = 1. We define the one-step price changes xt = yt − yt−1. In the
Hurst plot, we draw the dependence of the quantity

R(∆t) =

〈
maxt′,t′′∈[t,t+∆t]

∣∣yt′−yt′′

∣∣
√〈

x2
t′

〉
t′

−
〈
xt′

〉2

t′

〉

t

(*)

on the time difference ∆t. The average 〈. . .〉t is taken over all times t in the course of
the time series, while the average 〈. . .〉t′ is taken over the interval t′ ∈ (t, t+∆t).
The definition (*) looks rather complex and needs some explanation. In the numerator,
we put the maximum price difference observed within the time interval [t, t + ∆t]. It
quantifies the amplitude of price fluctuations, and its dependence on the length of the
time interval ∆t should yield the Hurst exponent. However, in practice the dependence
is obscured by the effect of volatility clustering. Indeed, the maximum price difference
must be averaged over all times t in the empirical or simulated data. Time periods with
high volatility dominate this average, while periods with low volatility are suppressed. If
we had as long a time series as we would please, this would have little effect eventually,
because the long-time correlations in absolute value of price changes would be superseded
by even longer times than our data cover. If that were the case, we could easily use the
simpler quantity

〈|∆y|max〉 =
〈
maxt′,t′′∈[t,t+∆t] |yt′ − yt′′ |

〉

t
. (**)

In reality the correlation time is not negligible compared to the length of the time series.
Therefore, to counterbalance the volatility clustering, we divide the maximum price
difference in the numerator of (*) by the average volatility within the same interval
[t, t+∆t]. That is the quantity in the denominator. Only after that do we average over
all times t. For long time differences ∆t, both quantities (*) and (**) should behave in
the same manner 〈|∆y|max〉 ∼ R(∆t) ∼ (∆t)H . Here, H is the Hurst exponent, i.e. the
principal quantity we want to extract from the Hurst plot analysis.

W dep
t =

1

2 + q
(
Nt

N
− 1
)

W exe
t =

1 − q

2 + q
(
Nt

N
− 1
)

W can
t =

q Nt

N

2 + q
(
Nt

N
− 1
) ,

(4.27)

respectively. Furthermore, we must decide if the event touches bids or asks. In the
first two of the three cases, we select bid or ask with equal probability. In the case of
cancellation, we choose any of the existing orders with equal probability; therefore the
probability to cancel a bid is proportional to the number of bids, and the probability
to cancel an ask is proportional to the number of asks. In deposition and cancellation
events, the current price remains unchanged, yt+1 = yt. At execution, the price changes
according to the same rule as described above.
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Fig. 4.8 Properties of the Maslov model. In the left panel, the rescaled distribution of price

changes is shown, according to Eq. (4.28). The symbols correspond to time distances δt = 1

(◦), 100 (2), and 104 (△). The straight line is the power dependence ∝ x̃−3. In the right

panel we can see autocorrelation of the absolute values of one-step price changes without

cancellations (2) and with cancellations, using parameters q = 0.01 and N = 1000 (◦). The
straight lines are power laws ∝ (∆t)−0.5 (solid) and ∝ (∆t)−0.62 (dashed).

We can see a typical space-time diagram of the evolution of the Maslov model in
Fig. 4.7. The price wanders erratically, surrounded by a cloud of orders. Periods of low
volatility alternate with periods of high volatility, suggesting that volatility clustering
is present here. As we shall soon see, it can be confirmed quantitatively.

Price changes and scaling

The first quantity to investigate is the distribution of price changes xt = yt − yt−δt
during a fixed time interval δt. This distribution will be denoted P (δt;x).

Let us first look at the properties of the Maslov model without cancellations. This
case is special, as it exhibits scaling behaviour. The distribution of price changes can
be rescaled so that

P (δt; x) = (δt)−1/4P̃ (x̃) (4.28)

where the rescaled price change is x̃ = (δt)−1/4 x. This behaviour is documented in
Fig. 4.8. The exponent −1/4 in this scaling law implies that the Hurst exponent is
H = 1

4
. The simulation data in Fig. 4.8 also show that the scaling function has a

power-law tail P̃ (x̃) ∼ x̃−1−α with exponent α = 2.
If we allow cancellations of orders, the situation changes [890]. In Fig. 4.9 we can

see that the distribution of one-step price changes, i.e. P (δt;x) for δt = 1, behaves
differently. For a small value of the evaporation probability, the tail of the distribution
is still close to a power law. For example, the special values of the parameters q = 0.01
and N = 100 lead to the distribution with a power-law tail characterised by exponent
α = 3. However, this behaviour is highly non-universal. Not only does the effective
exponent in the tail of the distribution depend on the model parameters, but for
larger q it loses the power-law character completely. In the model with cancellations,
the power-law-looking tail for small but positive q is a coincidence, a remnant of the
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power-law behaviour observed for q = 0 rather than a generic feature. This is also
supported by the loss of scaling as soon as we allow cancellations. While for q = 0 the
scaling (4.28) is confirmed very well, for q > 0 it breaks down.

Autocorrelations

Besides the distribution of price changes we are eager to see the autocorrelation of ab-
solute values of price changes, as it measures the effect of volatility clustering, already
glimpsed within the sample evolution in Fig. 4.7. We measure the autocorrelation
function of one-step price changes xt = yt − yt−1 defined as

〈|xt xt+∆t|〉c = 〈|xt xt+∆t|〉t − 〈|xt|〉t〈|xt+∆t|〉t. (4.29)

where again, 〈. . .〉t means average over all times t in the course of the simulation.
The result is shown in Fig. 4.8. We can clearly see the power-law decay of the

autocorrelations
〈|xt xt+∆t|〉c ∼ (∆t)−τ (4.30)

with the exponent very close to the value τ = 1/2 in the case without cancellations.
Contrary to the difference in the price-change distribution, the autocorrelations change
only very weakly if we allow cancellations of orders. As is also seen in Fig. 4.8, the only
effect of cancellations is a mild increase in the value of the exponent τ . Cancellations
have nearly no influence on volatility clustering.

Hurst exponent

We have already noticed the value of the Hurst exponent H = 1/4 which results from
the scaling (4.28). It is instructive to look at the Hurst plot, where the quantity R(∆t),
defined in Box 4.3 is drawn. Without cancellations, the dependence R(∆t) ∼ (∆t)1/4
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is extended over the whole range of time differences, confirming the value H = 1/4
for the Hurst exponent. The cancellations of orders change the situation dramatically.
For short time differences ∆t shorter than the average time, an order survives without
being cancelled; the behaviour seen in the Hurst plot is still compatible with the power
law R(∆t) ∼ (∆t)1/4. For longer times it breaks down, and for ∆t much longer than
the lifetime of orders a different power law sets on, namely R(∆t) ∼ (∆t)1/2, which
corresponds to the price wandering like a random walk.

An important quantity to compare with the empirical data is the order-book profile
n(y), i.e. the average number of limit orders found at the distance y from the current
price. We can see in Fig. 4.12 what it looks like both in the case with cancellations
and without them. In the latter case, the profile is a decreasing function for y > 0,
while in the former case there is a pronounced maximum at a certain distance from the
price, while close to the price the density of orders is small. This result is somewhat
counter-intuitive. Naively, one would expect that cancellations affect mostly the orders
far from the price; therefore close to the price the profile would be the same as without
cancellations. But the simulations show just the opposite. Comparing the results with
the empirical findings of Sec. 1.3, we conclude that the introduction of cancellations
makes the model much closer to reality.

Mutually comparing the Maslov model with and without cancellations, we certainly
perceive the aesthetic qualities of the latter case. No cancellations imply absence of
further free parameters q and N ; the price-change distribution is scaled perfectly
according to (4.28); the power-law tail in the scaled distribution is governed by a
nice integer exponent α = 2; and a clear-cut Hurst plot confirms the simple value
H = 1/4 of the Hurst exponent already known from the scaling analysis. All of it
is lost as soon as we allow cancellations of orders. On the other hand, the loss of
beauty is compensated by the fact that the Maslov model with cancellations is much
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Fig. 4.11 In the left panel, one-step price changes in the uniform deposition model are shown
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(△). The allowed price range is L = 106. The straight line is the power decay ∝ x−3/4 In the

right panel, the autocorrelation of absolute values of one-step price changes. The parameters

are L = 103, q = 0.9, N = 100 (◦) and N = 103 (△).

more realistic. First, cancellations are part of reality. We cannot simply ignore them.
Furthermore, the exponent found in empirical data is much closer to the value α = 3,
which may be achieved by tuning the parameters of the cancellations. The Hurst
exponent H = 1/4 is completely wrong, as we have seen in Sec. 1.2.2. Therefore,
insisting on its value H = 1/4 would be somewhat perverse. Also the order-book
profile becomes much more realistic as soon as we introduce cancellations. Finally, the
scaling found in the empirical price-change distribution does not extend to arbitrarily
long times. For longer times it breaks down, just as it breaks down in the Maslov
model with cancellations. All of this makes the Maslov model with cancellations a
good candidate for order-book dynamics.

4.2.2 Uniform deposition model

Deposition arbitrarily far from price

The model, which is, to a certain extent, complementary to the Maslov model, but
also shares a great many common features with it, was developed in a series of works
by Farmer and collaborators [910–914]. Many variants were investigated from several
points of view. The plasticity of the scheme makes it very attractive for experimenting
with various features of the model. Here, we shall look at the most fundamental core
of the whole family of models, and we shall especially stress its differences from the
Maslov model treated in the last section. To set the names, we shall call the core model
we describe here the uniform deposition model.

At first sight, the only difference between the uniform deposition model and the
Maslov model consists in the deposition rule for incoming orders. In the Maslov model,
new orders are always placed within a fixed distance δy from the current price. We
used just the distance δy = 1, but any variant in which the orders are placed randomly
but not farther than δy from the current price shares the same universal features.
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On the contrary, if we allow the orders to be deposited arbitrarily far from the
price, the situation changes. In the uniform deposition model, the deposition proba-
bility is uniform on the whole range of prices. The only exception is that we do not
allow deposition exactly at the current price. Formally, the probabilities of deposition,
execution, and cancellation events are given by the same formulae (4.27) as in the
case of the Maslov model. There are differences, though. First, in a simulation the
price axis cannot extend to infinity. Therefore, we limit the range of allowed prices
to the segment of length L. We suppose L is even. As we already said, deposition at
the current price yt is forbidden. Thus, the new orders are deposited at any of the L
points −L/2,−L/2 + 1, . . . , yt − 1, yt + 1, . . . , L/2 with equal probability. The order
deposited at a point below yt is interpreted as a bid, and the order deposited above
yt is interpreted as an ask.

Execution of orders works exactly the same as in the Maslov model, so it is un-
necessary to discuss it further. But in cancellations, there is an important conceptual
difference. The probability given by (4.27) is the same as in the Maslov model, but
in the Maslov model the orders are clustered around the price, and the cancellation
events are somehow a complement or correction to the natural execution of the limit
orders by incoming market orders. Thus, in the Maslov model, q is typically a small
number compared to 1. In contrast, in the uniform deposition model cancellations are
essential, because orders are deposited in the whole allowed segment and ought to
also be removed from areas where the price rarely wanders; otherwise the density of
orders would quickly blow up. Therefore, q is comparable to, although smaller than,
1. Typically, the simulations are performed in a regime in which 1− q is much smaller
than 1.

An example of the typical evolution of the state of the order book in uniform depo-
sition model is shown in Fig. 4.10. It looks as if the price ‘crawled’ in a homogeneous
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sea of orders. A closer look again reveals traces of volatility clustering, as large price
changes are often followed by other large price changes, and vice versa. Superficially,
the price fluctuations are not much different from the Maslov model.

Price changes and volatility clustering

Quantitative analysis shown in Fig. 4.11 corrects this view. We can first look at the
distribution of one-step price changes P (1; x). It is interesting that, in contrast to the
Maslov model, the tail of the distribution is completely insensitive to the probability
of cancellations q. It also looks nice that the tail follows a power-law decay P (1;x) ∼
x−1−α. However, the value of the exponent α = −1/4 is completely wrong compared
to the empirical data.

Also in Fig. 4.11 we can see the autocorrelation function of absolute values of one-
step price changes defined in Eq. (4.29). Compared to the Maslov model, the memory
seen in the autocorrelations is shorter and the decay faster than a power law, although
at the same time it is slower than exponential, as can be checked by plotting the
same data as in Fig. 4.11 in a semi-logarithmic scale instead of a double-logarithmic
one. This means that in uniform deposition model we also observe strong volatility
clustering, but it is still weaker than in the Maslov model.

Book profile

As we did with the Maslov model, we also look at the average density of orders in
uniform deposition model. The order-book profile is shown in Fig. 4.12, in parallel
with the results for the Maslov model. In fact, the only important difference from the
Maslov model is that the order density approaches a constant when we go very far from
the current price. Of course, this is dictated by the uniform probability of deposition.
Clearly, if we postulated a deposition probability which vanishes far away from the
price, we would get a much more realistic order density. The problematic point of
such an approach is that we do not a priori know how the deposition probability
should decrease as a function of distance from the price. In such a situation, it is
straightforward to take just the probability found in the empirical studies. This is a
successful strategy and has been applied, e.g. in Refs. [261, 915].

4.3 Schematic models

Every model attempts to grasp important features of reality. Big differences may arise
according to what ‘important’ means. We can try to fit the empirical data as close
as possible and become satisfied only after all exponents, distributions, etc., agree up
to a level of statistical errors. Alternatively, we can try to concentrate on generic and
universal features and investigate a model which may look odd when compared to
reality but is able to mimic just these generic features. These are the kind of models
we call schematic. They do not aim at a thorough description, but rather they try to
elucidate one single feature separately, isolated from the rest of the complex reality.
That is why schematic models can hardly be used for the prediction of the future in
the stock market. Instead, they provide some insight into what and why.
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respect to the new order (with probability p).

4.3.1 Interacting gaps

Gaps instead of particles

When a physicist looks at an order book, she almost immediately translates it into a
system of particles on a line. The particles are added and removed according to rules
which are specific to this or that order-book model. The state of the book is described
by the positions of the particles, accompanied by the current price. However, the
same information is also contained in the difference variables. Instead of coordinates
of the particles, we can describe the state using the distances between them. We shall
call these distances gaps. Some care must be taken in order to correctly translate
the information on the price position, but essentially, this is the idea behind the gap
models of order-book dynamics.

When orders are deposited, executed, or cancelled, the lengths of the gaps are
changed, but such change affects only at most two neighbouring gaps, as if the two
gaps in contact underwent a reaction producing one or two new gaps in place of the
old ones. Indeed, if an order is executed or evaporated, two adjacent gaps collapse
into one. When an order is placed, one gap is split into a pair of adjacent gaps. To
mimic such dynamics, Solomon introduced the interacting gaps model, which was first
investigated in [916] and then in [917].

The model is built upon three gross simplifications. First, we do not make any
difference between bids and asks. Therefore, all gaps are treated on an equal basis. In
reality, the gap between the highest bid and lowest ask, i.e. the spread, is certainly
different from all other gaps. Similarly, the gap between the lowest and second lowest
ask has different properties than the gap between the second and third lowest ask, and
so on. None of these subtleties are considered in the interacting gaps model. We also
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insist that at most one order can lie at one place. Therefore, all gaps have positive
lengths.

The second simplification consists in imposing strict conservation of orders. In
reality, the number of orders fluctuates around an average value. In the interacting
gaps model, the number of orders is always constant. This is guaranteed by two things.
First, we do not have any cancellations. Second, deposition of an order is immediately
followed by execution of another order. Both actions are united in a single step of the
dynamics.

The third simplification concerns the position of the price. We would like the
price to coincide with the position of one of the existing orders. The correct place for
setting the price would be the position of the order which was executed in the last
step. However, in this way the price would lie somewhere in the empty space between
a pair of orders. Therefore, if an order is executed, the price is set at either the right
or the left neighbouring order. We take left and right randomly with equal probability
1/2. Thus, the price change is always equal to the length of one of the gaps. This
definition anticipates that we shall later equate the distribution of gap lengths with
the distribution of price changes.

The dynamics is illustrated in Fig. 4.13, where one step is sketched in detail,
including the intermediate states. The configuration 1 is the initial state. In 1a, a new
order is placed next to the order i representing the position of the current price. On
the side opposite from than i with respect to the new order, there is another order,
denoted j. One of the old orders is then executed. There are two possibilities, shown
at the intermediate state 1b. With probability p, the order j is executed, while i is
executed with probability 1 − p. In the language of gaps, two reactions are possible.
The neighbouring gaps can change so that one of them shrinks by one unit and the
second becomes longer by one unit. This happens with probability 1 − p. Or, one of
the gaps shrinks up to the minimum length 1, while the second is lengthened by as
much as the first one was shortened. Such a collapse has probability p. We shall not go
into details, for example about what we should do if the place where we want to put
the new order is occupied. Instead, we define now the model more formally in terms
of gap dynamics.

Gap dynamics

We have N + 1 orders of unit volumes placed at integer positions. The state of the
order book is described by the lengths of the gaps gi > 0, i = 1, 2, . . . , N separating
the orders. In order to specify which pair of gaps is affected at time t, we introduce the
index kt, so that the gap number kt interacts with the gap number kt+1. The extreme
values kt = 0 and kt = N are special, and what happens there will be explained later.
As for the dynamics of the index kt, we take the simplest assumption that it performs
a random walk, i.e. kt+1 = kt ± 1 with equal probability 1/2, only keeping in mind
that there are bounds 0 ≤ kt ≤ N .

The interaction goes as follows. For brevity, we denote kt = j. First, we generate a
random number σ = ±1, representing the left or the right side, with equal probability
1/2 for both signs. Then, with probability p the collapse of one of the gaps occurs.
The gap lengths are updated according to the rule
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Fig. 4.14 Example of the evolution of the interacting gaps model. The horizontal lines

represent the positions of the orders, the rugged line is the time dependence of the price. The

parameters of the model are N = 10, g = 5, p = 0.3.

(1, gj(t) + gj+1(t) − 1) for σ = +1
(gj , gj+1)(t+ 1) =

{

(gj(t) + gj+1(t) − 1, 1) for σ = −1.
(4.31)

Otherwise, there is a shift in the gap lengths, which occurs with complementary prob-
ability 1 − p and the gaps are updated as

(gj , gj+1)(t+ 1) = (gj(t) + σ, gj+1(t) − σ) (4.32)

on condition that both gj(t) + σ ≥ 1 and gj+1(t)− σ ≥ 1. If either of these conditions
is not satisfied, the gaps do not change.

Some modifications must be employed at the left and right ends of the sequence
of gaps, i.e. for j = 0, or j = N . If, for example, j = N , the gap gN has no neighbour
gap to interact with according to rules (4.31) and (4.32). Then, we choose σ = ±1 as
before. The collapse occurs only if σ = +1 and it affects only one gap

gj(t+ 1) = 1. (4.33)

For σ = −1, nothing happens. The shift also affect only one gap, but otherwise the
rule is the same as before, i.e.

gj(t+ 1) = gj(t) + σ (4.34)

only if gj(t) + σ ≥ 1.
The remaining piece to be specified is the movement of price. In fact, it is enough to

specify the price change at each step of the dynamics. The most realistic prescription
for the location of the current price yt is the position of the order separating the
two gaps after their interaction, i.e. at order number kt. In the previous step, the
interacting pair was specified by the index kt−1. Because kt performs a simple random
walk, kt−1 was either one unit above or below kt. Accordingly, the previous price yt−1
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Fig. 4.15 Properties of the interacting gaps model for parameters N = 1000, g = 50, and

p = 0.1. In the left panel, distribution of one-step price changes is shown. The straight line

is the power dependence ∝ x−5/2. In the right panel, autocorrelation of absolute values of

one-step price changes is shown. The straight line is the power law ∝ (∆t)−1/2.

was either at the order number kt+1 or at the order number kt+1. In the former case
the price goes down, in the latter it goes up. Therefore, the one-step price change is

xt+1 = yt+1 − xt =

{
gkt−1(t+ 1) for kt > kt−1

−gkt(t+ 1) for kt < kt−1.
(4.35)

We can see that the absolute value of the price change equals one of the gaps. This
is just the feature we wanted to incorporate into the model, because the statistics of
price changes is translated into the statistics of gap lengths.

Simulations

In practical implementations, one more parameter enters the model. It is the initial
value of the average length of the gaps g. Usually, the initial condition is chosen such
that all gaps are equal, gi(0) = g for all i. Thorough studies show that in the long-
time limit, the initial condition is forgotten, and moreover, in the stationary state, the
results are independent of the value of g. Nevertheless, in the results we shall show,
we also specify the value of g used.

Let us first look at an example of the evolution of the order book in the interacting
gaps model, as shown in Fig. 4.14. At first sight, the evolution looks very similar to
the Maslov model. The volatility clustering seems to be present as well. The main
difference in the visual impression is that the price is much less surrounded by orders.
In the interacting gaps model, we found much too often most of the orders on the
same side of the price. This is certainly not a realistic feature.

Quantitatively, we can easily measure distribution of gap lengths and distribution
of one-step price changes. It is very satisfactory that both of these quantities follow a
power law with the same exponent

P (g) ∼ g−1−α

P (1; x) ∼ x−1−α (4.36)
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where α = 3/2. The price-change distribution is shown in Fig. 4.15. This way we
are able to mimic the coincidence of price-change and first gap distribution found in
empirical data [290]. The power-law tail in the distribution is quite satisfactory itself,
as is the coincidence of gap and price-change distributions. In fact, this coincidence is
deliberately built in into the model. On the worse side, as in the Maslov model, we
must admit that the numerical value of the exponent α is significantly smaller than the
empirical one. Moreover, contrary to the Maslov model, the interacting gaps model is
so rigid that the change of the exponent towards the correct value cannot be achieved
by tuning an appropriate parameter.

We can also look at the volatility clustering. The autocorrelation function of one-
step price changes is shown in Fig. 4.15. We can see the power-law decay which closely
matches the result for the Maslov model without cancellations, including the same
value of the exponent τ = 1/2. Thus, we observe a certain universality in this value.
On the other hand, if we make the Hurst plot for the interacting gaps model, we extract
the Hurst exponent H = 1/2, equal to the random-walk value and strikingly different
from the Maslov model. The reason for such behaviour is that at long times the price
dynamics is dominated by the random-walk movement of the index kt. There is an
area open for experimenting with more sophisticated prescriptions for the process kt.

Mean-field solution

One of the features which make the interacting gaps model attractive, despite its
weaknesses, is the possibility of solving it within the mean-field approximation. Unlike
other models, here the mean-field solution provides miraculously accurate results.

In the one-dimensional version, only adjacent gaps can interact. The essence of the
mean-field approximation is to allow interaction between any pair of gaps, chosen at
random, in the same spirit as in Refs. [918–921]. Thus, in each step we first choose
two gaps j and l. There is no reason to consider j first and l second or the converse;
therefore the random choice of σ = ±1 is now superfluous. The update rules (4.31)
and (4.32) are simplified so that the collapse

(gj, gl)(t+ 1) = (1, gj(t) + gl(t) − 1) (4.37)

occurs with probability p and shift

(gj, gl)(t+ 1) = (gj(t) + 1, gl(t) − 1) (4.38)

with probability 1 − p, on the condition that gl(t) > 1. There is a subtle but fun-
damental difference from the original interacting gaps model. In the one-dimensional
case, the sum of the lengths of interacting gaps is conserved in all events except those
occurring at the edges. This leads to slowly but inevitably forgetting the initial value
of the average gap length g. On the contrary, in the mean-field version the sum of gap
lengths is strictly conserved, so g is a parameter of the model which does not change.
We shall soon see how this fact somewhat complicates the solution. Note, however,
that the conservation of the sum of gaps can also be imposed on the one-dimensional
version if we change the boundary conditions. Indeed, putting the model on a ring of
a finite length, instead of an infinite line, the first gap would interact with the last
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one, and the conservation would hold. However, it would look rather strange if the
coordinate along the ring were interpreted as a price. That is why we prefer to avoid
the periodic boundary conditions. There is yet another consequence. The realistic price
axis has no strict bounds from either above or below (recall that actually we always
speak of the logarithm of price, not the price itself, so that there is indeed no lower
bound). In the simulations of the interacting gaps model we have seen that all the
orders are concentrated in a very narrow interval compared to the potentially infinite
price axis. If we translate this finding into the mean-field version of the model, it means
that the average gap length g should be very large, because the average is dominated
by a single but enormously large ‘gap’, measured over an imaginary circle: going from
the highest ask to +∞ then jumping to −∞, thus closing the circle, and then reaching
the lowest bid. Later we shall see that this fact is important for interpretation of the
results of the mean-field approximation.

Let us proceed with the solution of the mean-field variant of the model. All infor-
mation on the state of the process at a specific time t is contained in the distribution
function of all configurations of gap lengths P ({gi}; t). We shall need only the dis-
tribution of one gap (for example the first one) because all of them are statistically
equivalent: P1(g; t) =

∑
{gi} δ(g1 − g)P ({gi}; t). As an auxiliary quantity we shall also

need the joint distribution of two gaps (for example the first and the second one)
P12(g, g′; t) =

∑
{gi} δ(g1 − g)δ(g2 − g′)P ({gi}; t).

From the elementary moves (4.37) and (4.38), we derive the following exact equa-
tion for the evolution of the one-gap distribution

N
[
P1(g; t+ 1) − P1(g; t)

]
= −2P1(g; t)

+ (1 − p)
[
δ(g − 1)P1(1; t) + P1(g + 1; t) + P1(g − 1; t)

+ P12(g, 1; t) − P12(g − 1, 1; t)
]

+ p
[
δ(g − 1) +

g∑

u=1

P12(u, g + 1 − u; t)
]
.

(4.39)

We are interested in the stationary distribution P1(g) = limt→∞ P1(g; t). It is possible
to show that in the limit of large number of gaps, N → ∞, the stationary two-gap
distribution is factorised

lim
t→∞

P12(g, g′; t) = P1(g)P1(g′). (4.40)

However, when taking the thermodynamic limit N → ∞ we miss certain essential
features of the distribution. Later we shall discuss how to bring these features back,
for otherwise we fall into annoying inconsistencies.

In the stationary state the left-hand side of (4.39) vanishes, and using the factori-
sation (4.40) we get a closed equation for the distribution of gaps P1(g). It can be

easily solved using the discrete Laplace transform P̂1(z) =
∑∞

g=1 z
gP1(g). The point

is that the difference equation (4.39) turns into a trivially solvable quadratic equation
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−2P̂1(z)+ p
[
z +

1

z

(
P̂1(z)

)2]

+ (1 − p)
[(
z +

1

z

)
P̂1(z) − (1 − z)

(
1 − P̂1(z)

)
P1(1)

]
= 0.

(4.41)

Once we have P̂1(z), we can deduce the behaviour of P1(g) for large g, because it

is related to the behaviour of P̂1(z) at z → 1. If P̂1(z) is analytical, i.e. it has all
derivatives and they are finite at z = 1, the distribution P1(g) has an exponential tail.

A power-law singularity in P̂1(z) at z = 1 implies a power-law tail in P1(g). This is
exactly what happens in the solution of (4.41), as we shall now show.

The missing piece in the puzzle is the still unknown number P1(1), the probability
that the gap has the minimum size 1. It should be established from the condition that
the initial value of the average gap length g is conserved forever; therefore it can be
calculated from the stationary distribution. This leads to the relation between g and
P1(1) in the form

g = lim
z→1−

d

dz
P̂1(z)

= 1 +
1 − p

2p
P1(1) −

√[1 − p

2p
P1(1)

]2
− 1 − p

p

(
1 − P1(1)

)
.

(4.42)

As a function of P1(1) this expression reaches maximum at P1(1) = P c1 (1) ≡
2p
1−p
(
1/

√
p − 1

)
. The maximum value of the average gap size is then

gmax =
1√
p
. (4.43)

We must distinguish three regimes. For g < p−1/2 the one-gap distribution has
an exponential tail, because P̂1(z) is analytic at z → 1−. The second regime occurs
exactly at the critical value g = p−1/2. We denote P c1 (g) the one-gap distribution at
this critical point. If we insert the value P c1 (1) into the solution of the equation (4.41),
we obtain

P̂ c1 (z) = 1 − 1√
p

(1 − z) − (1 −√
p)2

2p
(1 − z)2

+
(1 −√

p)

p3/4
|1 − z|3/2

√
1 +

(1 −√
p)2

4
√
p

(1 − z) .

(4.44)

The (1 − z)3/2 singularity at z → 1 is the fingerprint of the power-law tail in the
distribution of gap sizes, with exponent 5/2, so

P c1 (g) ∼ g−5/2, for g → ∞. (4.45)

The third regime with g > p−1/2 is the most subtle, but it is precisely the relevant
one to be compared with the simulations. In an infinite system, there is no stationary
state. However, it is easy to understand what type of non-stationarity we face. As the
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time goes on, the gap distribution is split into two substantially different contributions.
First, there is a portion proportional to the critical gap distribution P c1 (g). Its Laplace
transform is given by (4.44). Second, there is a δ-function part, which shifts to larger
and larger values, but its weight is shrinking. This gives us a hint for the behaviour of
a finite system. For very large but finite N , the ultimate stationary state is essentially
equal to the combination of the critical gap distribution P c1 (g) and a delta-function
which comes from a single huge gap. This is a kind of condensation phenomenon. The
total sum of gap lengths is conserved in the dynamics, but in the stationary state most
of the sum is gathered by one single gap. It is worth noting that a similar condensation
phenomenon was observed in quite different branches of econophysics, for example in
the theory of wealth distribution [922].

We already explained why the single huge gap is irrelevant for the comparison with
either simulations or the empirical data on order books. Therefore, we disregard it and
take as our result the critical distribution

P1(g) = P c1 (g) ∼ g−5/2, for g → ∞. (4.46)

This also means that this distribution is universal, independent of p and the number
of gaps N . The agreement with the simulation results (4.36) is excellent. This is one of
the few but important examples of the systems where the results for one-dimensional
and mean-field variants of the model coincide [748, 923–925]. Finally, let us note that
models of this kind have been investigated for a long time in various branches in
physics, starting from the classical works of Smoluchowski on coagulation [926] and
continuing to the current day [919–921,924, 927–932]. That is why it deserves to be
studied on its own.

4.3.2 Crippled order book

One side only

The order book has two sides. There are bids on the left from the current price and
there are asks on the right from the price. The two sides evolve to some extent inde-
pendently. Certainly, the deposition and cancellation on one side does not influence
the other, at least in the models like Maslov and uniform deposition model. If that is
also the case in reality is another question, and we shall not touch upon it here. The
independence, however partial and approximate, suggests studying the dynamics of
one side only, regardless of what is happening with the other side.

Such a crippled order book, deprived of one of its legs, cannot reveal all of the
information hidden in the full order book, but it still keeps many interesting structures
which are helpful in studying the order dynamics. The orders reside on the half-line
of non-negative numbers. We can interpret it so that we look only at asks, and the
origin of the half-line denotes the position of the highest bid, which never changes.
The distance of the lowest ask from the origin is the spread. The orders are deposited
with an uniform density and they can be cancelled in the same way as in the uniform
deposition model. The arrival of a market order results in execution of the lowest ask,
i.e. the order closest to the origin.
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We cannot expect to get the fluctuations of price in this model. However, we can
obtain the average density of orders and the probability distribution of the spread.
The calculation is quite easy, as we shall see now.

Orders in a bin

The trick consists in counting the number of orders present in the interval [0, L]. Let
us denote their number at time t by Nt. During the infinitesimal time interval dt this
number can increase by 1 due to deposition, with probability αL dt. The deposition
rate is proportional to the length of the interval, because the deposition is uniform.
We could also postulate a non-trivial spatial dependence of the deposition rate. The
results we shall show can easily be generalised to that case.

The number Nt can also decrease by 1, due to two mechanisms. With probability
β Nt dt one order is cancelled and with probability γ dt one order (the lowest one) is
executed, on the condition that there is something to be executed, i.e. if Nt > 0. The
dynamics is equivalent to the random walk on a semi-infinite linear chain. The sites
are indexed by non-negative integer numbers n. The hopping rates to neighbouring
sites are

wn→n+1 = αL

wn+1→n = (n + 1)β + γ.
(4.47)

The information on this process is contained in the probability distribution P (n; t) =
Prob{Nt = n}. It obeys the master equation

d

dt
P (n; t) =αLP (n− 1; t) +

(
(n+ 1)β + γ

)
P (n + 1; t)

−
(
nβ + γ + αL

)
P (n; t)

(4.48)

which holds for all n ≥ 0, with the condition at the boundary P (−1; t) = 0 for all
times t. All we need is the stationary solution P (n) = limt→∞ P (n; t) of Eq. (4.48). As
the problem is one-dimensional, the solution can be found by a recursive application
of Eq. (4.48) with zero on the left-hand side. The result is

P (n) =
(αL)n

Z (γ + β)(γ + 2β) . . . (γ + nβ)
. (4.49)

The normalisation factor Z ensures that
∑∞
n=0 = 1 and can be expressed using the

confluent hypergeometric function

Z = 1F1

(
1;
γ

β
+ 1;

αL

β

)
(4.50)

(see Box 4.4 if unclear).
The average density of orders, or the order-book profile, can be computed by dif-

ferentiation of the average number of orders inside the interval [0, L] with respect of
its length L. Thus

n(y) =
d

dL

∞∑

n=0

nP (n)

∣∣∣∣∣
L=y

. (4.51)
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Hypergeometric and confluent hypergeometric functions Box 4.4

are some of the most frequently used special functions in physics and applied mathemat-
ics [933]. The hypergeometric function of variable z and parameters a,b, and c is defined
by the series

F (a, b; c; z) = 1 +
∑∞

k=1
a(a+1)...(a+k−1)b(b+1)...(b+k−1)

c(c+1)...(c+k−1) k!
zk.

Similar but slightly less complicated is the series defining the confluent hypergeometric
function of variable z and parameters a and c

1F1(a; c; z) = 1 +
∑∞

k=1
a(a+1)...(a+k−1)

c(c+1)...(c+k−1) k!
zk.

For some special values of the parameters the hypergeometric and confluent hypergeo-
metric functions are reduced to expressions containing only elementary functions. For
example

(1− z)ν = F (−ν,1; 1; z)
ln(1− z) = −zF (1, 1; 2; z)
1F1(1; 2; z) = (ez − 1)/z.

Other special values of the parameters lead to various special functions. For example,
the Bessel function of an imaginary argument, which we use in Sec. 8.2.1 and Sec. 8.2.3,
is

Iν(z) =
(z/2)ν

Γ(ν+1)
e−z

1F1(ν + 1
2
; 2ν + 1; 2z),

and the elliptic integral we encounter in Sec. 8.2.1 is
K(z) = π

2
F ( 1

2
, 1
2
; 1; z2).

There are various identities connecting these functions. For example, the differentiation
is performed according to

d
dz 1F1(a; c; z) =

a
c 1F1(a+ 1; c+ 1; z).

Using the formula for differentiation of confluent hypergeometric functions we obtain a
seemingly complicated result. To make the formula simpler, we introduce the notation

fk(y) = 1F1

(
k;
γ

β
+ k;

α y

β

)
. (4.52)

Using that, we can write

n(y) =
α

β + γ

f2(y)

f1(y)
+

α2 y

γ + β

2
γ+2β f3(y) f1(y) − 1

γ+β f
2
2 (y)

f2
1 (y)

. (4.53)

An example of the order-book profile calculated in this way is shown in Fig. 4.16.
We can see that it agrees qualitatively very well with the density of orders in the
uniform deposition model as shown in Fig. 4.12. Far from the current price, the profile
is constant, in contrast to the empirical data; but this feature can easily be cured if
we suppose that the deposition rate decays with the distance from the origin. Another
quantity the crippled order-book model offers is the probability distribution of the
spread b. It is related to the probability that the interval [0, L] is empty. The probability
distribution for the spread is again obtained by differentiation

P (b) = − d

dL
P (0)

∣∣∣∣
L=b

. (4.54)

A calculation similar to that of the order-book profile leads us to the result

P (b) =
α

β + γ

f2(b)

f2
1 (b)

. (4.55)
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Fig. 4.16 Properties of the crippled order book model are shown for α = β = γ. The full

line is the average density of orders n(y); the dashed line is the probability density of the

spread, P (b).

In Fig. 4.16 we can see the results for the special values of the parameters, α = β = γ.
In this case, the confluent hypergeometric functions arising in the formulae (4.53) and
(4.55) can be expressed using exponentials. However, the main qualitative features are
generic and hold for all values of the parameters. The density of orders is finite at y = 0
and increases with increasing y, eventually reaching saturation at a non-zero value for
y → ∞. This is just the behaviour we observed in uniform deposition model. As we
already stressed, the model can be made more realistic assuming that the deposition
rate decreases with y. In that case, the density of orders would exhibit a maximum
and approach zero for large y, in accordance with the empirical data. The probability
distribution for the spread is always a decreasing function.

Two bins

To conclude the discussion of the crippled order book, let us note that the model can
be developed further considering two intervals instead of one. We can trace the time
evolution of the number N1t of orders in the interval [0, L1], and the number N2t of
orders in the interval [L1, L2]. The process in question would be a two-dimensional
random walk on a set of pairs of non-negative integers. The complication which makes
this process less trivial is the dependence of transition rates on the position of the
walker. The jumps in the variable N2 are influenced by the value of the variable N1.
This precludes separating the movements in the two Cartesian directions.

The information we could gain in this analysis would tell us the distribution of
distances between the lowest and second lowest asks. We have already pointed out
several times that this is the quantity which essentially copies the distribution of
the price changes. It could be extracted from the probability that in the stationary
state we find N1 = 1 and N2 = 0. Unfortunately, a compact analytic formula for the
distribution of occupation in the two intervals is not available, but the problem can
be solved numerically, imposing hard finite bounds on the numbers N1 and N2.
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4.3.3 Order-book dynamics as a matrix multiplicative process

Simplified configurations

The most complicated feature of all order-book models we have discussed so far is the
fluctuating number of orders at all distances from the current price. It would be much
simpler if the instantaneous configuration of the order book was parameterised by a
small number of variables. As an example we can imagine that the configuration of
bids, i.e. orders lying below the current price, is represented by their average density
ρ−, and similarly, the configuration of all asks by the density ρ+. It is clearly an
oversimplification, because the configuration is wildly fluctuating, and, moreover, the
average density depends on the distance from the current price.

One can expect that this simple model would be adequate if the average order
density satisfactorily reflects the instantaneous configuration of the orders on the book.
This would hold if the spatial fluctuations in the instantaneous configuration were
small, or, alternatively, if the empty spaces separating the points at which orders are
concentrated are not very wide. This means that the granularity of the order book can
be neglected, and the configuration can be replaced with a smooth function.

Let us check how far we can go in assuming such a gross simplification [934]. The
configuration of the order book is given by two numbers. Instead of average densities
ρ±, it will be more convenient to work with potential shifts of price x±, defined simply
as

x± =
1

ρ±
. (4.56)

How to understand this definition? Suppose the density of orders is ρ+ above the
current price, and a market order arrives to buy one unit of volume. Then, if the
density is truly uniform, the executed limit orders lie up from the current price as
far as the point lying 1/ρ+ above it. And this is just the position of asks below the
price, hence the definition (4.56). Thus, we simplified the state of the order book to
the two-component vector

X =

(
x+
x−

)
. (4.57)

To specify the dynamics, we must establish how this vector is changed upon the arrival
of market and limit orders. The method will always be the same. After the arrival of
an order O1, we try to calculate anew the potential change in price that would occur
if a market order O2 arrived immediately after the order O1. This will be the effect of
the order O1 on the vector (4.57).

Let us first take the market orders. If the order O1 is an order to buy a unit volume,
the price is shifted upwards by x+. Then, if the order O2 is again an order to buy,
the second price shift is again x+; while if it is an order to sell, the downward price
movement can be decomposed into two parts. First, the shift due to the order O1 has
left an empty space of width x+. The price must travel this void. Second, on the left
side of this void there are orders with density ρ−; therefore price is shifted leftwards
by x−. In total, the price shift is x+ + x−. In terms of the state vector X the effect of
a market order to buy can be expressed as the matrix multiplication

X → X ′ = T+X (4.58)
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where

T+ =

(
1 0
1 1

)
. (4.59)

Similarly, a market order to sell transforms the state as X → X ′ = T−X , where

T− =

(
1 1
0 1

)
. (4.60)

The effect of limit orders is more tricky. We assume that the limit and market orders
may not be of the same size. One of them may be taken as the unit of measurement,
so let the market orders have unit volume, while the limit orders have volume v < 1.
In order to keep the average number of orders constant, we tune the probability to
put a limit order to p = 1/(1 + v) and the probability to issue a market order to
1 − p = v/(1 + v).

We also suppose that the limit orders are placed at a small but finite distance
from the current price. Let this distance be d. The model will work well in the regime
of potential price changes x± larger than d. When x± and d become comparable,
the details of order placement become relevant, and a more detailed model would be
necessary.

So, suppose there is a buy limit order (a bid) placed at distance d below the
current price. This is the order O1. Now, if O2 is a buy market order, it does not feel
the presence of the new order O1, and the price change is x+ as before. If O2 is a
sell market order, the situation is somewhat more complicated. The market order has
volume 1 and is partially matched by the volume v of the new limit order. The rest,
volume 1− v, is satisfied via the orders which were present before. It is supposed that
these orders have density ρ− = 1/x−, so that the shift in the price due to the order
O2 is (1 − v)/ρ− = (1 − v)x−. To sum up, the effect of the new bid is expressed by
the matrix multiplication X → S−X , where

S− =

(
1 0
0 2 − 1

p

)
. (4.61)

In this expression we used the relation p = 1/(1 + v). Similarly, the effect of a new
limit order to sell (an ask) is X → S+X , where

S+ =

(
2 − 1

p 0

0 1

)
. (4.62)

Therefore, the dynamics of the order book is modelled by a matrix multiplicative
process

Xt+1 = MtXt (4.63)

where at each time t the matrix Mt is one of the four matrices S+, S−, T+, and T−.
The first two possibilities are taken with the same probability p/2, and the remaining
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Fig. 4.17 Cumulative distribution of one-step price changes in the matrix multiplicative

process for order-book dynamics. The line is the power x−1.

two occur with probability (1−p)/2 each. Along with the evolution of the state vector,
we can define the changes of the current price yt as

yt = yt−1 + xt (4.64)

where the one-step increments are xt = 0 if Mt = S± and xt = ±x± if Mt = T±. The
components x± of the state vector Xt are positive at all times. They never decrease
when a market order is issued, i.e. when the state vector is multiplied by one of the
matrices T±. On the other hand, arrival of a limit order leads to a decrease of one of
the components of the state vector. However, we stressed in advance that the orders
are placed at minimum distance d. This is the remnant of the inherent discreteness of
the price axis. Price changes cannot be indefinitely small. Therefore, we require that
neither x+ nor x− can be smaller than d. If multiplication by the matrices S± results
in the decrease of x+ or x− below d, it is set to the value d by definition.

In this way we implement the feature of repulsion from zero. The multiplicative
processes repelled from zero have been studied thoroughly [170, 173, 676–679,682, 690,
691, 899, 900, 935, 936], and the generic feature which emerges is the power-law tail in
the distribution of the values of the process. That will also be the case here.

Distribution of price changes

The process (4.63) can be very easily simulated on computer. We show in Fig. 4.17
the cumulative distribution of one-step price changes. As we can see, it clearly has a
power-law tail

P≥(1;x) ≡ Prob{x+ ≥ x} ∼ x−α (4.65)

with exponent α = 1. The value of the exponent is too small, both in comparison with
the Maslov model (α = 2) and with the empirical data (α ≃ 3), but this discrepancy
can be cured. It turns out that the value α = 1 is related to the assumption that
the order density is uniform on average, so that the average order-book profile does
not depend on the distance from the price. But we can do better. For example, we
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can assume that the average profile is linear, or even that the density is proportional
to the distance from the price. The model remains essentially unchanged; only the
matrices T± and S± will be given by expressions other than (4.59) to (4.62). With such
freedom in the model definition, the exponent α can be tuned within wide range. We
shall not proceed further in this direction. The simulations are easy enough. Instead,
we shall show purely analytical arguments which lead to the value α = 1 we obtained
numerically.

How to find the exponent analytically

Mathematically, the problem is reduced to the investigation of the product of random
matrices

T∏

t=0

Mt. (4.66)

If we had scalars instead of matrices, we could take the logarithm of the product and
apply the well-known theory of sums of random variables [775], including the central
limit theorem and other results. Here, the problem is much more complicated and
despite much effort, few results are known rigorously [937, 938]. The complexity stems
from the fact that the matrices Mt do not commute, and the order in which they
appear in the product (4.66) matters. There is a formal similarity to time-ordered
products of operators, which arise in quantum mechanics and field theory [939].

We shall proceed by an approximation, which nevertheless gives correctly the value
of the exponent. The first step is the change of variables. Instead of the potential price
changes in positive and negative directions x±, we shall use the combinations

x̃+ =
1

2
(x+ + x−)

x̃− =
1

2
(x+ − x−).

(4.67)

The interesting variable will be the first one, x̃+, which is the average potential price
change. The other variable, x̃−, measures the instantaneous disequilibrium between
asks and bids in the order book. The transformed state vector

X̃ =

(
x̃+
x̃−

)
(4.68)

evolves in the same way as X , except the matrices T± and S± are replaced with their
transformed counterparts:

T̃+ =
1

2

(
3 1

−1 1

)

T̃− =
1

2

(
3 −1
1 1

)

S̃+ =
1

2

(
3 − 1

p 1 − 1
p

1 − 1
p 3 − 1

p

)

S̃− =
1

2

(
3 − 1

p
1
p
− 1

1
p
− 1 3 − 1

p

)
.

(4.69)
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Now we apply an approximation. The change of the variable x̃+ depends on this
variable itself and on the value of the other variable x̃−. The approximation consists
in replacing the actual value of x̃− with its average over all realisations. We thus
neglect correlations between x̃+ and x̃−. This is the same idea as that of the mean-
field approximation, used in various disguises throughout all disciplines of physics.
Here the mean-field approximation makes things even simpler than usual. Due to the
symmetry between bids and asks in the matrix multiplicative process, the average of
the difference variable x̃− must be zero. The approximate process for the variable x̃+
is then

x̃+(t+ 1) = mt x̃+(t) (4.70)

where the multiplicative factors are given by the upper left corners of the matrices T̃±
and S̃±; therefore

mt =

{
3
2 − 1

2p with probability p

3
2

with probability 1 − p .
(4.71)

The process x̃+(t) is now the usual scalar multiplicative process repelled from zero,
which we mentioned earlier. We can directly apply the results known to be valid for
such processes. First, it can be shown that the precise way the variable is repelled
from zero is immaterial as long as we are only interested in the tail of the distribution
for x̃+. The stationary distribution P (x̃+) for a large enough x̃+ obeys the equation

P (x̃+) =
2p

3 − 1
p

P

(
2 x̃+

3 − 1
p

)
+

2(1 − p)

3
P
(2 x̃+

3

)
. (4.72)

Second, the tail has the form of a power law. If we insert

P (x̃+) ≃ A (x̃+)−1−α, x̃+ → ∞ (4.73)

into Eq. (4.72), we get the equation for the exponent α in the form

1 = p
(3

2
− 1

2p

)α
+ (1 − p)

(3

2

)α
. (4.74)

There is always the trivial solution α = 0, which follows from the conservation of
probability in the process (4.70). The second, non-trivial solution of the equation
(4.74) is

α = 1 (4.75)

as can be easily checked. The mean-field approximation gives the same result we have
seen in the numerical simulations.

It is interesting to note that the same consideration cannot be used for the difference
variable x̃−. The argument we used above now fails because the average of x̃+ is not
zero. Even worse, the average of x̃+ is not well defined, because its distribution decays
too slowly for x̃+ → ∞.

The matrix multiplication process is indeed a very rudimentary model of the order
book. Amazingly, it provides a very simple explanation of the power-law tail in the
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distribution of price changes. Quantitatively, the exponent is not very realistic, but,
as we already said, this aspect can be considerably improved by taking more realistic
functions for the average order density instead of the homogeneous one.

4.4 What remains

The modelling of order-book dynamics follows the line of studies on market microstruc-
ture [940–944]. However, the older works were concerned mostly with the existence of
equilibrium and in choosing the optimal strategy. The agents are classified into three
groups, the uninformed (or noise) traders, the informed traders (the insiders), and the
market makers (or specialists). The agents should decide whether to issue a market
order or to place a limit order and, if the latter is chosen, at what price. Given the rules
of the market, the optimal action for informed traders and market makers is looked
for [331, 945–949]. The heterogeneity in the agents’ expectations plays a crucial role.
The equilibrium is reached assuming that the agents think strategically and optimise
their actions [950–955]. The question which is often asked is what the optimal strat-
egy is for execution of orders, especially the large ones [956–965]. On the other hand,
physical thinking advocates description in terms of inert bodies. That is why we did
not spend time with these theories, although we acknowledge their importance.

There are many other works we do not have space to describe in detail. The com-
puter simulations of order books were performed as early as 1976 by Garman [940].
Among the ‘modern’ approaches, we should especially mention the models based on
queueing theory [575]. The price axis is supposed to be discrete, and at each site there
is a queue of orders. These orders arrive and are cancelled or executed as usual. In the
simplest setting, we consider only two queues, one for bids and one for asks. These
queues are those closest to the actual price. New orders are deposited only in these
queues. If one of the queues is emptied, say, on the ask side, the price is shifted one unit
upwards (or downwards, if it were bids). Suddenly, on the bid side there is an empty
queue and on the ask side there is a queue of a random length, which has been hidden
deep in the book until now. Within this model, many quantities can be calculated
analytically [84, 966, 967], including the distribution of waiting times between succes-
sive price changes and the diffusive behaviour of price at very large times. The model
was further improved by considering deposition farther from the price, according to
empirical data [968] and by considering correlations in the order flow [969]. Alternative
queueing models also exist [970–972].

As we have seen, the dynamics of the full order book is so complex that analytic
results are scarce. One of the attempts to tackle the problem mathematically is based
on a set of coupled stochastic differential equations [973]. The information on the
equilibrium state is thus obtained. We also amply discussed the schematic models,
which do provide us with some analytical insight. A very nice approach in this direction
is the application of the asymmetric exclusion process much studied in physics in the
context of surface growth and transport phenomena very far from equilibrium [974].
Adapted to the dynamics of the order book, it gives the value of the Hurst exponent
H = 2/3 exactly [975]. Another approach, analogous to the matrix multiplicative
process of Sec. 4.3.3 was suggested, using stochastic differential equations with additive
noise [324].
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We have already mentioned that the uniform deposition model can be made more
realistic and in fact connected with the Maslov model by taking deposition probability
as a function of the distance from the price. Such studies have actually been done, for
example supposing exponential [976–978] or power-law [261] decay of the deposition
probability. Even closer to reality is the ‘empirical behavioural’ model of Mike and
Farmer [915, 979] in which the deposition probability is adjusted according to empirical
data and has a power-law dependence on the distance. Similarly, the cancellation
rates are also chosen according to empirics. Moreover, the correlations in the signs of
incoming orders (say, buy is sign +1, sell is sign −1), which are known to have very
long memory, are implemented in the model, also to closely follow the empirical data.
The model reproduces reality very well and was further developed [980]. One of the
most notable improvements is the feedback from the volume present at the best bid
or ask to the volume of incoming orders of the opposite type [289]. Another kind of
feedback is obtained if the limit orders are deposited at a distance proportional to the
spread [981, 982]. Interesting features emerge if the rates of deposition, cancellation,
and execution are themselves fluctuating quantities [983].

The question why the deposition probability decreases as a power when we go
farther from the price remains open. The mechanism responsible for this power law
is probably related to the optimisation of investments performed by agents working
at widely dispersed time horizons [263]. Actually it is reasonable to expect that the
distribution of time horizons and (related to it) distribution of distances is maintained
by equilibration, so that all agents expect just the same average gain, irrespective
of the time horizon on which they act. This idea would certainly deserve a better
formalisation.

Although we mentioned the opposition of agents thinking strategically vs zero-
intelligence agents, these two approaches can be combined. For example, we can mix
fundamentalist and chartist behaviour types in agents that compute where to place
the limit order based on observation of past prices [984–986]. The agents can also learn
from their past experience [986] and imitate each other [987].

The order book can also be modelled rather phenomenologically, introducing (di-
rectly unobservable) response functions [988] or assuming probability distributions
behind the scene, which are then calibrated with respect to empirical data [312].

We shall leave the study of various other models [976, 989–1001] to the reader. She
may find help in some review articles [890, 1002, 1003] or in a proceedings volume [47].
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Problems

1. Consider, as a toy model, the one-queue order book. Suppose that only one side,
with respect to the price, can evolve, for example the asks. Denote Nt the number
of orders in the queue at time t. New orders arrive at rate α per unit time. If
Nt > 0, one order is executed at rate γ or cancelled at rate βNt. The execution of
the last remaining order results in resetting the queue. Simultaneously, the price
changes by one unit. The sign of the change will be clarified soon.
With probability 1/2 the number of orders in the queue after such an event
remains zero. It means that from now on, the opposite side of the order book will
evolve, e.g. whereas the queue represented asks before, now it will represent bids.
It also implies that the sign of the next price move will be the opposite of the sign
of the change which has just occurred.
Or, with a complementary probability 1/2, the length of the queue is set to a
random number from a Poisson probability distribution P (n) = e−λ λn/n!. In
this case, bids remain bids and asks remain asks. Also the sign of the next price
change remains the same as the sign now.
What is the distribution of waiting times between price changes? Imagine that
you wait a fixed time interval after a price change. You wait until another price
change occurs or until the time expires, whatever comes first. Thus, three cases
can happen, namely no price change, price change of the same sign as the first
one, and price change of the opposite sign. What are the probabilities of these
cases? For inspiration, look at Ref. [575], Chap. 5, and at papers [966, 967].

2. Modify the matrix multiplicative process so that, instead of constant order density
on either side of the price, it assumes linear dependence. What is the value of
exponent α?
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Minority game

5.1 Rules of the game

Imagine you make a winter trip to the Alps with two of your friends who are econom-
ists. The weather is terrible, falling snow prevents you from seeing more than a few
steps ahead, and the wind and frost are exhausting. Finally you reach the chalet,
happy to be alive, and soon the fire and hot, thick soup make you feel like you are
in heaven. But if the foul weather continues for some days, you will need to invent
another form of excitement.

Soon you recourse to your eternal theme, the origin of stock market fluctuations.
You start playing a tiny Wall Street next to your fireplace. In each round, each of you
three decides in secret whether she wishes to buy or sell a single share to or from an
inexhaustible share-owning institution. Then the decisions are revealed, and virtual
trading takes place. The price of the shares evolves, depending on whether there are
more of you wishing to buy than to sell, or vice versa. For example, you can agree
that the price rises by 1 per cent if the majority buys, and drops by 1 per cent if the
majority sells.

Obviously, if one of you manages to do the opposite action than the remaining
two, she gains an advantage. Indeed, either she sells at a higher price, because the
other two caused excess demand, or she buys at lower price if the majority decided
to sell. You soon realise that the winning strategy is to be in the minority, and you
simplify the rules of the game you have just invented so that those in the majority
group lose a point while the one in the minority receives a point. On average, you are
always losing, but the one of you who is smart enough can gain at the expense of the
other two. You will probably repeat the game again and again and try to guess the
actions of the others by observing the outcomes of the past rounds. As time passes,
you will probably learn some skills, or at least you should not lose as much as in the
beginning. When the sun reappears, you shall wake up as experts in this bad-weather
entertainment.

The story I have just told you should be sufficient for you to capture everything
about how the game, now called minority game, is played. As with all good models
in physics and economics, it is extremely simply formulated and gives extremely rich
and unexpected behaviour. This chapter will reveal some of its mysteries.

5.1.1 Inductive thinking

To believe in a human guided by totally rational reasoning requires a good deal of
abstraction. Fully rational decisions simply cannot be found in reality. Yet the idea
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is so deeply rooted in orthodox economic theory that it is assumed at least as a
benchmark or a starting point of developing a corrected theory.

Types of irrationality

Very often the limits imposed by Nature on our rational capabilities are described as
deficient information. If we knew what the governor of the central bank decided just
an hour ago, we would be better off than those of our colleagues who have to wait
until tomorrow morning for the official communication. Indeed, more transparency in
the business environment would likely be beneficial. The analysts, including empiri-
cal econophysicists, would certainly be happy if they knew all the details about the
myriads of transactions, from huge to tiny, which are now veiled by business secrecy.

Sometimes the information is missing because no one has ever had the idea to store
it. Historical commodity prices from times before newspapers with regular records were
established have been lost. Even now lots of communication goes by phone (but note
that mobile calls are archived, at least temporarily, in case the police need them later!),
and the precise timing of many events escapes human attention.

Even when the information is there, it may not be enough to imply a reliable state-
ment on, e.g. the probability that a business will fail next month. Of course, human
actions are also influenced by random noise, weather, car accidents, falling rocks, and
the like. In short, the sources of irrational aspects in our decisions are multiple. But
we can still hope that in principle we can improve our ability of deduction by accu-
mulating more and more new information. Such an attitude relies on an essentially
static worldview, as if there were an objective, universally valid optimal decision, and
a supernatural being possessing all the information about the system would be able
to rationally deduce the best solution. Our corrupted terrestrial bodies can never be
so smart, but we can still approach the ideal state almost indefinitely. This caricature
depicts the optimistic programme of the Enlightenment. We can classify it as bound-
edly rational deductive thinking. Modelling such a situation implies ‘simply’ adding
an extra stochastic element into an optimisation problem corresponding to a fully ra-
tional choice. However, the fact that the rationality in our decisions is bounded does
not mean mere noise in our decisions. The lack of information makes some decisions
impossible and changes the economic setup, as shown by Akerlof in his famous article
on the market of ‘lemons’ [127] and also stressed by other important economists [854].

On the other hand, there is a deeper hindrance to our rational aspiration. Everyone
must agree that all economic decisions are made for the future, while all the information
they are based upon resides in the past. Inferring future events from past ones is an
inductive rather than a deductive procedure.

However the induction may seem equivalent to deduction with limited information,
especially to those who strive to describe dynamics as statics in one more dimension,
we believe such a view misses an essential distinction.

Indeed, while in ‘space’ dimensions there may be multiple instances of the same
process, e.g. many customers buying cars, and we can build statistics on such an en-
semble, the time course is always unique. Surely, nobody can average over several
alternative French Revolutions to set bounds on the likelihood of Napoleon’s takeover.
Back to our example of a car market, the customers viewed as realisations of a stochas-
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tic process are so strongly correlated in the time domain (virtually none will buy a
Porsche before 1900!) that the story of adding time as a mere extra dimension is hardly
productive.

History never repeats itself exactly; and if we want to relate causes with conse-
quences, we face a much more severe shortage of data than if we, for example, sta-
tistically analyse customer preferences at a given period of time. Moreover, if we are
lucky and succeed in distilling a causal chain in the course of economic events, such
knowledge obviously changes the future, further weakening the effect as more people
know of its existence. On the contrary, knowing the distribution of products sold in
one country can by no means change the distribution in another country measured at
the same time.

To sum up, inductive thinking is a much more difficult endeavour than mere de-
duction with limited information. That is why induction requires specific approaches
and specially designed models.

Looking more closely at how inductive thinking works in real situations, we soon
notice that the decisions are based on pattern recognition. Humans possess certain
ensembles of ‘images’ stored in their memories, associating certain outcomes with pre-
ceding situations. The images are not collected systematically nor are they rationally
classified. We cannot be too far wrong if we consider them random. The images, or
patterns, are then used to make decisions by matching them with reality and choosing
among those which are compatible with the current situation. This implies that we
can attribute a quality to the images, highlighting those which suggested a beneficial
decision in the past. The important point in inductive thinking is that we constantly
assess and re-assess the mental images we carry in our heads, and this way we continu-
ously react to the changing rules of the world around us. Even if the teacher at a high
school taught us a virtually random collection of facts, as soon as we master the art
of selecting among them what is most likely useful now, and even more importantly,
if we are capable of constant updating of the usefulness of what we know, we cannot
fail totally in our adaptation for life.

El Farol bar

W. Brian Arthur deserves merit for bringing inductive thinking into the economy in
terms of a simple model [1004]. It was inspired by the El Farol bar in Santa Fe, which
attracted fans of live Irish music every Thursday night. Suppose there are 100 people
who consider going to the bar, but there are only 60 seats available. It is annoying to
go to the bar if it is overcrowded, and it is also a pity to stay home while vacant chairs
are longing for us there. Should we stay or should we go?

But how can the individuals coordinate so that the bar attendance is close to its
capacity if they cannot communicate with each other before they decide about their
night programme? We would expect that the number of visitors will be completely
random, and the source of entertainment will be used ineffectively. But if the people are
given the record of the number of visitors in the past weeks, they may infer inductively
how many are likely to be there next time. If the prediction is below 60, the decision
is to go; if it exceeds 60, it is better to stay.
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Arthur’s pioneering idea was that we can model the situation supposing each person
has a certain fixed, and relatively small, number of predictors. Based on the past
sequence of attendances, say . . . , 51, 36, 82, 45, 66, 49, the predictors compute the
next attendance. Predictors can process the information of the past attendances in
many ways. For example they can say that next time the attendance will be a) the
same as the last one, or b) take a rounded average of the last three attendances, or
c) the same as p weeks ago (detecting cycles of period p), and d) many more rules
the reader can surely invent herself. If the predictor expects attendance below 60, it
suggests that the agent go to the bar; otherwise it suggests she should stay home.

An important point is that the agents are given several such predictors and in each
step attribute plus or minus points to the predictors, depending on their success in
suggesting the correct action. The agent then decides to use the predictor which has
maximum points. Such a mechanism emulates the bounded intelligence of the music
fans. They will never know for sure what to do, but they will adapt to the conditions
of the world. Let us stress again that the predictors are random and do not contain
anything that could be a priori useful to guess the correct answer.

In a computer simulation, Arthur showed that the agents soon self-organise so that
the attendance fluctuates around the optimal value 60. It is a good result for computer
boxes who do not know anything about the optimum and whose ‘education’ is in fact
randomly acquired garbage!

The equilibrium is not found by a predefined algorithm, and the imprecision in the
inference is not due to an external noise. The correct answer emerges spontaneously
from the collective action of the agents. The setup is very close in spirit to solving
problems by genetic algorithms or genetic programming (see Box 3.7). Indeed, the
genetic algorithm selects good answers from a pool of arbitrary shots by an artificial
selection process, while in the El Farol problem the solution emerges among random
and individually senseless predictors.

Moreover, the agents themselves provide both the signal to be deciphered and the
noise obscuring it. Thus, they constitute a complete self-sustained ecology, much the
same as humans themselves provide the environment and determine conditions of life
for humankind. The microcosm of El Farol is a distillate of the whole human society.

5.1.2 The algorithm

Arthur’s analysis of the El Farol bar problem was a lucid demonstration of how the
agents find the equilibrium by induction. When we turn to the investigation of the
fluctuations around the stationary state, things become much more complicated. The
complexity stems from the intrinsic frustration (see Box 5.1 for a precise definition).
Indeed, it is impossible to find a general optimum strategy for the El Farol bar visitor,
as this would imply that all people would take the same action, and the attendance
would be either zero or full. Surely that is not close to optimum resource utilisation.
The idea of a representative agent is of no use here.

Instead, we need to know how the agents adapt to each other, keeping in mind
that their strategies are better or worse only conditioned to other agents’ actions.
This way we can investigate the crucial question of how close the system can approach
the optimum or how large are the fluctuations are around the equilibrium.
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Frustration Box 5.1

Let us explain the concept of frustration using a simple example of a spin system, as
shown in the following figure.

+1

+1 +1

+1

+1 −1

+1

+1 −1

+1

+1 −1

Ferromagnetic case: 1 × 2 = 2
groundstates. All bonds satisfied.

Frustrated case: 3 × 2 = 6 groundstates.
Unsatisfied bond is shown as a dotted line.

If three Ising spins are bound together by ferromagnetic interaction so that the Hamil-
tonian is H = s1s2+s2s3+s3s1, the ground state is obviously the uniform configuration
s1 = s2 = s3. All three bonds can be considered ‘satisfied’, because all three pairs of
spins individually are in their lowest-energy configuration. The groundstate is twice de-
generate due to the global symmetry; the energy does not change if we flip all spins
simultaneously. On the other hand, if one of the bonds is antiferromagnetic, so that
H = s1s2 + s2s3 − s3s1, there is no configuration in which all three bonds are satisfied.
Such a situation is called frustration. Since there are three equivalent choices for the
unsatisfied bond, there are three different groundstate spin configurations (taking into
account the spin-flip symmetry, we have altogether six groundstates).
Frustration is the source of complex behaviour of many systems, especially disordered
ones. As already seen in our example, frustration leads to proliferation of equilibrium
states. For example in spin glasses the number of equilibria increases exponentially with
the number of spins.

Minority wins

To this end, in the work of Challet and Zhang the rules were further simplified
[1005, 1006]. To keep the optimum state trivial, we assume that the agents can take
one of two possibilities. Just as the bar visitors could go out or stay home, here we let
the agents go one step up or down. To keep in touch with reality we can imagine the
step up to be an order to buy a unit of a commodity, and conversely the step down to
be an equal-sized sell order.

Having N agents, denote by ai(t) ∈ {−1,+1} the action of the i-th agent at time
t. The aggregate movement of the whole ensemble of agents

A(t) =

N∑

i=1

ai(t) (5.1)

will be called attendance, in analogy with the El Farol bar model, although now it is
rather related to the shift in the commodity price. If the attendance is positive, the
price rises and those who decided to sell, i.e. agents who acted as ai(t) = −1, can feel
rewarded, as they get a better price than one step before. On the contrary, buyers,
ai(t) = +1, suffer a loss, as they spent more money than they would if they had bought
one step earlier. Conversely, negative attendance rewards buyers and punishes sellers.
Therefore, it is always beneficial to go against the trend and stay in the minority. This
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is why the model was named ‘minority game’. To avoid ambiguity in telling which
group makes up the minority, we always expect that the number of agents N is odd.
Obviously, the optimal situation is reached when the size of the minority group is as
large as possible, or, equivalently, when the attendance is as close as possible to zero.

The minority reward rule is expressed formally as the prescription for the update
of agents’ wealth Wi(t) as follows

Wi(t) −Wi(t− 1) = −ai(t) signA(t). (5.2)

Different variants of the rule can be implemented, replacing the function signA(t) by a
more general form G(A(t)), where G(x) is an arbitrary anti-symmetric non-decreasing
function, G(x) = −G(−x). It can be interpreted as the impact of the demand-offer
disequilibrium on the commodity price. A very natural choice is the linear price impact
G(x) = x, and we will use it in the analytical solution of the minority game. As will
be stressed later, the precise form of G(x) is of little importance, and one may choose
one or another depending on the particular question asked.

The reward rule in the minority game is very transparent and simple to implement
because of its immediacy. The players collect their points at the same moment (or, to
be more precise, an infinitesimally short time after) they make their actions. This is
perfectly appropriate for bar attendance; but if we want to interpret the minority game
as a trading model, a complication arises. We should note that the gain expressed by
Eq. (5.2) is potential, rather than actual. Indeed, in order to know how much the seller
really earned we would need to know at which price she acquired the commodity in a
more or less distant past. Similarly, the buyer will know the outcome only after she
sells the commodity back in the future. To compute the financial effect of an action at
time t, it is necessary to know the price movements within a longer time span, not just
the immediate change suggested by the attendance A(t) right at the same step as the
action was taken. In the minority game, such multitemporal nature of stock-market
activity is drastically simplified.

Multiple strategies

So far we have dealt with the gain the agents receive or the loss they must suffer for
their actions. Obviously, they want to act so that they get rewarded, but how to choose
what to do? To this end, each agent is given a set of S strategies (mostly S = 2 will
be enough) predicting the right action in the next game, based on the outcomes in the
last M steps. The parameter M measures the length of the agent’s memory. As the
game goes on, the agents learn which of the S strategies is worth using. We shall soon
explain how they manage that, but now let us see how the strategies are devised.

To reduce the information content to a manageable amount, we shall not store the
full sequence of attendances A(t′), but only the series telling us which choices were
the profitable ones

χ(t′) = −signA(t′) (5.3)

for t′ = t− 1, t− 2, . . . , t −M . We shall call χ(t) the outcome of the game at time t.
A strategy is a prescription which predicts the next profitable action from the binary
string of M past outcomes
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µ(t) = [χ(t− 1), . . . , χ(t−M)] (5.4)

kept in the agents’ memory. Therefore, the strategy is a map {−1,+1}M → {−1,+1}.
Distinguishing among the S strategies of the agent i by index s (we can especially
choose s ∈ {−1,+1} for S = 2) we denote aµs,i the action suggested by s-th strategy
of agent i, provided the sequence of past outcomes is µ.

The number of possible sequences of outcomes is P = 2M , and the number of

all possible strategies is a very large number 22
M

already for a moderate memory
length M . This means that the collection of agents is indeed very heterogeneous, and
it is practically impossible to find two agents equipped with the same strategies. On
the other hand, the strategies, albeit different, may be significantly correlated. The
strategies in a pair can, for example, differ only in a few cases of the past outcomes
µ, which may never even occur in the course of the game. If that happens, the agent
effectively has only one strategy. If we imagine each a strategy as a P -component
vector, there can be at most P mutually orthogonal, i.e. uncorrelated strategies. The
effective size of the strategy space P should then be compared with the number of
agents N among whom the strategies are distributed. So, we can anticipate that the
properties of the minority game will depend on the scaling parameter

α =
P

N
=

2M

N
(5.5)

when both the number of agents and the memory length go to infinity.

Dynamics of scores

We have just understood that the strategies take responsibility for the agents’ be-
haviour, and every agent has to choose somehow which of her S strategies is the best
at that moment. Now we must decide how to measure the quality of the strategies.
A very simple method is comparing the outcomes of the game with the predictions of
all strategies. Every strategy of each agent keeps a record of its score Ss,i and receives
+1 or −1 points depending on whether it suggested the right or wrong action, respec-
tively. The strategy with maximum points is then actually used by the agent. Another
important thing is that the strategies which are not currently used are continuously
tested, so that the player learns which of her patterns of behaviour is better suited to
current circumstances.

We can formalise this rule for S = 2 by introducing the difference qi(t) = (S+,i −
S−,i)/2 in scores of the two strategies of the agent i. (The factor 1/2 is used for future
convenience). First, we introduce some notation which will be useful throughout the
rest of this chapter. We denote

ωµi =
1

2

(
aµ+,i + aµ−,i

)

ξµi =
1

2

(
aµ+,i − aµ−,i

)

Ωµ =

N∑

i=1

ωµi .

(5.6)
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Ergodicity breaking Box 5.2

A dynamical system is considered ergodic if, starting from a random initial configuration,
sooner or later it visits all configurations allowed a priori. In that case, the time-averaged
quantities do not depend on the initial condition. Knowing the time spent at individual
configurations, we can replace the time average by the statistical average governed by
an appropriate measure on the configuration space. The measure assigns to each set of
states a probability that is proportional to the time spent in these states during the
evolution of the system.
If, on the contrary, there are configurations which are a priori allowed but dynamically
inaccessible from a given starting point, the ergodicity is broken. In a non-ergodic system,
the time averages do depend on the initial conditions.

Given the scores’ differences, the agents choose from among their strategies ac-
cording to

si(t) = sign qi(t) (5.7)

and their actions are
ai(t) = a

µ(t)
si(t)

= ω
µ(t)
i + si(t)ξ

µ(t)
i . (5.8)

The attendance follows immediately from (5.8)

A(t) = Ωµ(t) +
N∑

i=1

ξ
µ(t)
i si(t). (5.9)

The score differences are updated in each step according to

qi(t+ 1) − qi(t) = −ξµ(t)i signA(t) (5.10)

which can be written, using (5.7), and (5.9), in a compact form

qi(t+ 1) − qi(t) = −ξµ(t)i sign

(
Ωµ(t) +

N∑

j=1

ξ
µ(t)
j sign qj(t)

)
. (5.11)

Eq. (5.11), together with the prescriptions (5.3) and (5.4) for the memories µ(t), fully
describes the minority game.

To summarise, the minority game consists of the coupled dynamical processes qi(t)
and µ(t) defined above. Note that the actual wealth of the agents collected according
to (5.2) does not enter the dynamics. It is rather a secondary by-product, while the
virtual points attributed to the strategies play the primary role.

Initial conditions

The last piece completing the picture of the minority game is the question of its initial
conditions. The question is less trivial than one might think. Indeed, we shall soon see
that the most intriguing feature of the basic minority game is the presence of a phase
transition from an efficient but non-ergodic regime to an inefficient ergodic phase. The
ergodicity breaking implies dependence on an initial condition which persists for an
infinitely long time (see Box 5.2).
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The canonic choice of the initial conditions is randomly drawn µ(0) with uniform
probability distribution, and all strategies have the same (e.g. zero) score. It means
qi(0) = 0 for all agents i. All the results of numerical simulations presented in the next
section will use these initial conditions. We shall briefly comment on the influence of
non-zero initial values for qi in due course.

Given the assignment of strategies aµs,i and initial conditions, the dynamics of
the minority game is fully deterministic. In actual simulations we must average the
results over a very small subset of all possible strategy assignments and choices of
initial memory string µ(0). This introduces a casual element into the otherwise non-
random dynamics. We shall see later that adding some stochasticity into the minority
game rules, especially to the strategy choice (5.7), makes the game ‘softer’ and more
amenable to analytic investigation.

5.1.3 Phase transition

It is indeed very easy and straightforward to embody the algorithm of the canonic
minority game, as expressed by Eqs. (5.3), (5.4), and (5.11), in computer code and
observe the results. The minority game owes much of its appeal to the simplicity of
the code and the ease with which a newcomer can touch and feel the behaviour of the
agents.

Adaptation

The first thing to observe is the evolution of attendance A(t). Already, on a very
qualitative level we can distinguish between two types of behaviour, as seen in Fig.
5.1. Let us fix the memory length M and vary the number of agents N . If N is large
enough, the time series sweeps through an initial transient state and then becomes
periodic. On the contrary, if N is small, the attendance follows a rather chaotic course.
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The most important quantitative measure in the minority game is the volatility

σ2 = lim
T→∞

1

T

T∑

t=1

A2(t). (5.12)

It tells us how efficiently the agents utilise the available resources. Indeed, if exactly
half of the population is in the minority, the average gain of all agents is maximum
(zero), and the volatility reaches its minimum value, which is zero. In the simulations,
we always observe positive volatility, and it is easy to check that σ2 grows when the
average gain decreases.

The principal question is whether the agents are able to adapt online to the be-
haviour of other agents so that the volatility is kept as small as possible. To examine
that question, we introduce a time-local version of the volatility, computed during the
simulations, as 〈A2〉t = λA2(t) + (1 − λ)〈A2〉t−1. This means averaging the volatility
over roughly (1 − λ)−1 last steps, with the weight decreasing exponentially when we
go deeper into the past. In the example shown in Fig. 5.1 we can clearly see how the
initially large volatility decreases, until it is saturated at a certain level, which de-
pends on the parameters N and M . The suppression of the volatility is clear evidence
of self-organisation due to individual learning of the agents.

Minimum of volatility

The greatest surprise of minority game comes when we plot the dependence of sta-
tionary volatility on the memory length M . We can see a pronounced minimum, in-
dicating that there is a certain optimum size of the memory, beyond which the agent
does not become more ‘intelligent’. On the contrary, too much information leads to
confusion [1007, 1008].

Interestingly, if we plot the volatility per agent σ2/N against the scaling variable
α = 2M/N , all results fall onto a single curve, as shown in Fig. 5.2. The minimum
sharpens as we increase the system size and eventually approaches a singularity at the
critical value αc ≃ 0.34. This marks a dynamic phase transition of a rather unusual
character. To learn more about it, we must first determine the corresponding order
parameter.

Efficiency and order parameters

The market is considered efficient if there is no information left in the price signal.
This means that you cannot use some freely accessible information and make a profit
from it. In a similar spirit, we can investigate the efficiency of the agents in extracting
and destroying the information stored in the sequence of attendance. More precisely,
we shall ask what the average sign of the attendance is, with fixed memory pattern µ

〈signA|µ〉 = lim
T→∞

∑T
t=1 δµµ(t)signA(t)
∑T
t=1 δµµ(t)

. (5.13)

If for a pattern µ the average is significantly different from zero, it is possible to predict
which will be the most probable winning side. If the non-zero average persists, it means
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that the agents are not able to use this information, and the system as a whole is not
efficient [1008]. The global measure of efficiency is the average over all 2M memory
patterns

θ2 =
1

2M

2M−1∑

µ=0

〈signA|µ〉2. (5.14)

It may be appropriately called predictability, as it measures the amount of remaining
information in the time series [1009].

The data shown in Fig. 5.3 demonstrate that in the crowded phase, α < αc,
the system is efficient, as all information is eliminated from the signal. We can see
it qualitatively, observing rather large deviations from zero in 〈signA|µ〉 when the
number of agents is relatively small, and also quantitatively, in the dependence of θ2

on the scaling parameter α. In the crowded and efficient phase, the predictability is
virtually zero, while for α > αc it continuously grows. Therefore, θ2 can be considered
as an order parameter.

Frozen agents

It often happens in dynamic phase transitions that the order parameter is not unique.
It is also the case here. Let us look at the way an agent uses her two strategies. She
can alter them more or less regularly, so that both strategies are used equally often.
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But it may also happen that one of the strategies is chosen more often than the other.
After a long enough time the preference for one strategy should be clearly visible in the
statistics. We can call this effect polarisation of the agents. The quantitative measure
of the polarisation of agent i is the time-averaged difference in the scores of the two
strategies

vi = lim
t→∞

1

t
|S+,i(t) − S−,i(t)|. (5.15)

In Fig. 5.4 we can see a histogram of the agents’ polarisation. For α > αc it has
two pronounced peaks, showing that there are indeed two types of agents, the first
switching strategies all the time, the other having one preferred strategy that is used
all the time. The pressure induced by the difference in scores need not be very high,
but in the histogram it is clearly visible. The latter agents are called frozen, and we
should ask how many of them are there. Looking again at Fig. 5.4 we observe that
the higher peak in the histogram vanishes in the efficient phase α < αc, so there
are no frozen agents. Quantitative statistics are shown in the right panel of Fig. 5.4.
Surprisingly, the fraction of frozen agents φ grows when we decrease α, reaching its
maximum at α = αc, and then drops discontinuously to zero.

The fraction of frozen agents, too, can be chosen as an order parameter, as it
vanishes in one phase and stays non-zero in the other. And we should not be confused
by the fact that the transition looks continuous, i.e. second order, from the point of view
of order parameter θ2, while the second order parameter φ indicates a discontinuous,
i.e. first-order transition. The classification pertinent to equilibrium order transitions
has limited applicability when the transition is a dynamic one and should not be taken
too seriously.

How many patterns occur?

There is also a third characteristics that distinguishes between the efficient and in-
efficient phases. If we measure the frequency with which a certain memory pattern
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appears, we find that it is quite homogeneous in the efficient phase, while in the inef-
ficient one it is increasingly uneven.

Denoting pµ = lim T→∞
∑T
t=1 δµ(t)µ/T the relative frequency with which µ is found

in true dynamics, we can measure the entropy of the distribution established in the
course of the dynamics

Σ = −
∑

µ

pµ ln pµ (5.16)

and compare it with the entropy Σ0 = M ln 2 of the uniform distribution. We can
see in Fig. 5.5 that the difference Σ0 − Σ is indeed negligible in the symmetric phase,
α < αc, while in the asymmetric phase it is positive and grows with α. It means that
the space of memories is visited non-homogeneously. For very long memory M , the
effective number of actually occurring µ’s can even be rather small, as shown in the
inset of Fig. 5.5. The data suggest that for fixed N the effectively visited volume is
scaled as eΣ ∼ 2γM with γ ≃ 1

2 ; so the relative fraction of visited µ’s shrinks to zero

as 2−(1−γ)M for M → ∞.

5.2 Towards an analytical solution

While numerical experiments with the minority game are readily accessible to anybody
who has elementary skills in computer programming, some of the principal questions
can be answered only by analytical approaches. Are the efficient and inefficient phases
separated by a true phase transition, or is it only a crossover phenomenon? Is the
efficiency in the low-α phase perfect or just very high? Can we give an exact proof
of the scaling property, i.e. that in the thermodynamic limit M,N → ∞, all relevant
quantities depend on the memory length and the number of agents only through the
parameter α = 2M/N?
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It turns out that tackling the minority game analytically requires special and rather
sophisticated techniques. Despite the big challenges posed by the novelty of the dy-
namic process underlying minority game, a large part of the physics behind it is now
understood. There are essentially two approaches being used in the analytical study
of minority game. The first one is the replica method (see Boxes 5.4 and 5.5; for more
information, see Ref. [1010]), starting from a mapping of the dynamical process on an
effective equilibrium problem. The other one fully accounts for the dynamics using the
generating functional method [1011, 1012]. Here we deal with the replica method only.
As for the generating functional method, we recommend the book [34], devoted to its
use in the minority game.

But before proceeding further, we must introduce some simplifications and modifi-
cations of the canonical minority game, which do not change the essence of the model,
but make it more amenable to solution.

5.2.1 A few modifications

Quasi-irrelevance of memory

Historically, the first important step forward was the observation that in numerical
simulations the results remain (nearly) the same if we replace the true dynamics of
the memorised outcomes µ(t) as in (5.4), by memories µ drawn randomly from the set
of all P = 2M possibilities [1013, 1014]:

Prob{µ(t) = µ} =
1

P
. (5.17)

This seemingly formal step constitutes a fundamental change of view. We may
interpret µ(t) as an external information, unrelated to the previous results of the
game and essentially random. The only important point is that all agents are given
identical information. We can also consider µ(t) as a task or requirement the agents
have to fulfil. The complexity of the game stems from the fact that all agents must
solve the same task simultaneously, individual agents’ solutions interfere with each
other, and there is no general solution available for all. That is the built-in frustration
in minority game, as we alluded to previously.

The independence of µ(t) on the real history is indeed a crucial simplification,
because the processes qi(t) are now decoupled from the process µ(t). The original
dynamics turns into a Markov process, and all memory effects are washed out. When
we find it convenient, we shall call this modification the Markovian minority game.

As the original minority game gives nearly the same results as the Markovian
version, we can indeed say that the memory in the minority game is (nearly) irrelevant.
However, claims about the irrelevance of memory cannot go too far, since the true
dynamics of memories does not visit all points in the space of µ’s with equal probability,
as we saw in the previous paragraph.

Nevertheless, replacing the true dynamics µ(t) by randomly drawn µ’s, we keep
all essential complexity of the minority game in place. The Markovian process we get
is quantitatively slightly different from the original minority game, but we gain much
better access to analytical tools.
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Besides the technical advantage, there is an interesting lesson we can learn im-
mediately. At the beginning we assumed the agents learn inductively how to predict
future attendance. In the Markovian minority game there is no future to predict, or
more precisely, there is no past on which such a prediction could be based. Instead,
the agents simply adapt to each other under various external circumstances, embodied
in the binary strings µ. We started with inductively thinking individuals, but we find
that their behaviour looks very much like they were optimising their position within
an environment made up of all the remaining population. Deductive thinking regains
a part of its credit.

Thermal minority game with linear payoff

So far, the strategy was chosen in a deterministic way according to the difference in
strategy scores (5.7). A technically useful modification consists in allowing probabilistic
choice of the strategy, giving smaller or larger preference to the one with a higher
score. Similarly as in Monte Carlo simulations of equilibrium systems, we introduce a
parameter Γ, analogous to the inverse temperature [1019–1026]. If the difference of the
strategies’ scores for the agent i is qi(t), she chooses the strategy s with probability

Prob{si(t) = s} =
esΓ qi(t)

2 cosh Γ qi(t)
. (5.18)

The value of parameter Γ measures the level of randomness in the choices. For Γ →
∞ the dynamics becomes deterministic, and we recover the original minority game
prescription. If the strategy was selected many times with the same score difference,
we would get the following average choice

〈si(t)〉 = tanh Γqi(t). (5.19)
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Spin glasses and neural networks Box 5.3

are now classical examples of systems where quenched randomness plays a fundamental
role [1010]. Spin glasses as real systems are typically noble metals (Au, Ag, or Cu) alloyed
with a small percentage (one to five per cent) of a magnetic impurity, like Fe or Mn.
They exhibit a peculiar magnetic state below a critical temperature, where ergodicity is
broken in a large number of different stable states unrelated to each other by any obvious
transformation. The most studied model of a spin glass is the Sherrington-Kirkpatrick
model [1015] described by the Hamiltonian

H = −∑
i,j JijSiSj (*)

where Si ∈ {−1,+1} are Ising spins, and Jij are quenched random couplings drawn
from a normal distribution.
Neural network models represent a drastic simplification of the function of the brain,
but can serve as an effective technical basis for devising artificial neural circuits. The
neurons are described by Ising spins, where the value −1 is interpreted as an inactive
and +1 as an active state of the neuron. In the Hopfield model [1016] of the neural
network we can identify the Hamiltonian, which has a formally identical form as (*),
but the couplings have the following form

Jij =
∑

µ ξµi ξ
µ
j (**)

where ξµj ∈ {−1,+1} are chosen randomly. The canonical interpretation says that ξµj are
patterns stored in the memory of the neural network which can be retrieved by suitable
dynamics imposed on the neurons [1017].
Comparing the Hamiltonian (*) with (5.27) and the expression for the couplings (**)
with (5.24), we discover a close analogy with the minority game. The replica solution of
the minority game took direct inspiration from the paper [1018] on neural networks.

We shall soon see how and why this average becomes the central quantity in the replica
approach to minority game.

Further simplification can be achieved if we change the payoff rule. Instead of
adding or subtracting one point depending on the bare fact that the agent was in the
minority or majority, we can provide a payoff proportional to the departure from the
ideal equilibrium half-to-half state. Therefore, the payoff will not be proportional to
the sign of the attendance as in (5.10), but to the attendance A(t) itself. The formula
for the update of the scores’ differences is now linear and has the form

qi(t+ 1) − qi(t) = −ξµ(t)i

(
Ωµ(t) +

N∑

j=1

ξ
µ(t)
j sj(t)

)
(5.20)

where the Markov processes µ(t) and si(t) are governed by the probabilities (5.17) and
(5.18). Note that the expression in parentheses in Eq. (5.20) is just the attendance
A(t).

Batch minority game

Both in the standard minority game and in the modifications described above, the
scores, i.e. variables qi(t), are changed in every step, after each choice of the external
information µ(t). However, we can expect that for large systems the evolution of qi(t)
is rather slow, and significant changes occur only on the timescale comparable with the
total number of possible µ’s, which is P = 2M . This observation suggests a modification
which is called the batch minority game.
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Instead of updating the scores in each step, the variables qi are changed only after
the agents are given all of the P possible µ’s (in arbitrary order). The agents react
according to the rules of the thermal minority game explained above, but during such
round of P steps the choice of the strategy is always governed by the same distribution
(5.18). The change in qi from the round l to l+1, i.e. from the time t = Pl to t′ = Pl+P
is

qi(l + 1) − qi(l) = − 1

P

P−1∑

µ=0

ξµi

(
Ωµ +

N∑

j=1

ξµj sj(t)

)
. (5.21)

The factor 1/P was introduced for further convenience. This expression can be further
simplified, because in thermal minority game the choice of sj(t) is independent of µ,
and for large P we can write

P−1∑

µ=0

ξµj sj(t) ≃
P−1∑

µ=0

ξµj 〈sj(t)〉, (5.22)

and the thermal average 〈sj(t)〉 is given by Eq. (5.19). So, we conclude that the dy-
namics is given in a compact form by

qi(l + 1) − qi(l) = −hi −
N∑

j=1

Jij tanh Γ qj(l) (5.23)

where we denote

hi =
1

P

P−1∑

µ=0

ξµi Ωµ

Jij =
1

P

P−1∑

µ=0

ξµi ξ
µ
j .

(5.24)

5.2.2 Replica solution

Dynamics of magnetisation

For replica calculations [1027–1030] it is more convenient to express the dynamics in
terms of the magnetisation values, mi = tanh Γqi, instead of the score differences qi.
The time evolution is particularly simple in the limit for small Γ. This is what we shall
develop in the following.

In the limit Γ → 0 we can expand the change of the magnetisation from one round
to the other as

mi(l + 1) −mi(l) = Γ (1 −m2
i (l))(qi(l + 1) − q(l))

− Γ2mi(l)(1 −m2
i (l))(qi(l + 1) − q(l))2 +O(Γ3)

(5.25)

and, keeping only the lowest order in Γ, we get the following dynamics of the mag-
netisation values,
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mi(l + 1) −mi(l) ≃ − Γ
(

1 −m2
i (l)
)[
hi +

N∑

j=1

Jijmj

]

= − Γ
(

1 −m2
i (l)
) 1

2

∂

∂mi
H(m1,m2, . . . ,mN )

(5.26)

where we have denoted

H(m1,m2, . . . ,mN )

=
1

P

P−1∑

µ=0

(Ωµ)2 + 2
N∑

i=1

himi +
N∑

i,j=1

Jijmimj

=
1

P

P−1∑

µ=0

[ N∑

i=1

(1

2
(aµ+,i + aµ−,i) +

1

2
(aµ+,i − aµ−,i)mi

)]2
,

(5.27)

a function which plays a central role in the subsequent calculations. Indeed, the evo-
lution according to (5.26) closely follows a gradient descent in the ‘potential’ H. The
stationary state corresponds to the minimum of H, which can be considered as a
Lyapunov function for the dynamics (5.26).

Before we proceed to solving the minimisation problem, we should clarify the re-
lationship of the Hamiltonian H with observable quantities. In the original minority
game the agents were rewarded according to the sign of the attendance, while now the
gain is proportional to the attendance itself. So, the definition of the predictability
according to Eq. (5.14) is less appropriate if we want to be consistent, and we should
rather use the quantity

θ2A =
1

P

P−1∑

µ=0

〈A|µ〉2 (5.28)

as a measure of the information content. We can see in Fig. 5.6 that it behaves qual-
itatively very similar to θ2, shown above in Fig. 5.3. Most notably, both θ2 and θ2A
vanish in the symmetric phase α < αc, indicating that all information contained in
the signal was used by the agents and thus disappeared.

The attendance provided the external information µ is given by Eq. (5.9). Averag-
ing the variables si(t) in a stationary state is performed according to the probability
distribution (5.18), so 〈si(t)〉 = mi, and, inserting the definitions (5.6), we can see that
the expression for predictability coincides with the Hamiltonian (5.27). This means
that the measured predictability is equal to the minimum of the Hamiltonian because
the stationary magnetisation values mi are exactly those which minimise H .

The relation between the Hamiltonian and the volatility σ2 is less straightforward.
We can write

σ2 =
1

P

P−1∑

µ=0

〈A2|µ〉 (5.29)
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and express the attendance, again using Eq. (5.9). The problem arises when we come
to averaging the products of si(t), because in general they cannot be factorised,
〈si(t)sj(t)〉 6= 〈si(t)〉〈sj(t)〉 = mimj . We obtain

σ2 =
1

P

P−1∑

µ=0

( N∑

i=1

(ωµi + ξµi mi)

)2

+
1

P

P−1∑

µ=0

N∑

i=1

(
ξµi
)2

(1 −m2
i )

+
1

P

P−1∑

µ=0

N∑

i,j=1

(1 − δij)ξ
µ
i ξ

µ
j 〈(si(t) −mi)(sj(t) −mj)〉.

(5.30)

In the first term we recognise the Hamiltonian (5.27), and the second term can easily
be computed once we obtain the magnetisation values, by minimisation of H. However,
the third term cannot be obtained only from the dynamics of magnetisation according
to Eq. (5.26). More detailed studies [1031] show that in the ergodic phase α > αc, the
product averages can be factorised, and therefore the third term in Eq. (5.30) can safely
be neglected. On the other hand, in the non-ergodic phase the factorisation breaks
down, and the value of the third term depends on the thermal parameter Γ. However,
in the limit Γ → 0 it vanishes again, so for infinitesimally small Γ we can calculate σ2 for
all values of the parameter α by studying only the static properties of the Hamiltonian
H. The price to pay will be the quantitative disagreement between σ2 as calculated
in the non-ergodic regime and numerical simulations of the original minority game,
because the latter corresponds to the opposite limit Γ → ∞. To placate the nervous
reader we can say that, qualitatively, the analytic results from the minimisation of the
Hamiltonian H give a reasonably true picture of what is seen in the simulations, not
only in the ergodic phase but also in the low-α phase, where ergodicity is broken. For
the exact treatment we would need to resort to the generating functional method [34].
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Replica trick I: generalities Box 5.4

The replica trick is a technique for computing averaged properties of a random system
in thermodynamic equilibrium. Let us have a Hamiltonian H(s, a) depending on state
variables s (e.g. spins) and moreover on random parameters a (e.g. randomly placed
impurities). As a are random variables, so are the Hamiltonian, the partition function
Z =

∑
s e

−H , the free energy F = − lnZ, and all other thermodynamic quantities (for
brevity we fix the inverse temperature at β = 1). Physically relevant results are the
averages over the disorder, most notably the mean free energy F ≡

∫
P (a)Fda. From

probability theory we know that all information on a random variable F is contained

in its characteristic function Z(n) = e−nF = Zn, depending on the complex variable
n ∈ C. For example, the average F = − limn→0

d
dn

Z(n) and the fluctuations related to

the second moment F 2 = limn→0
d2

dn2Z(n) can readily be obtained.
The difficulty arises when we want to actually compute Z(n) for a given model. It turns
out that we are unable to get it for a general n, except for positive integer values n ∈ N.
We are saying that we have n ‘replicas’ of the original system. To calculate the derivatives
and the limit n → 0, we must first extend the analytic continuation of the function Z(n)
from N to the rest of the complex plane, or at least to a certain neighbourhood of
the point n = 0. To prove the existence and uniqueness of this continuation is one of
the hardest open problems in contemporary mathematical physics. The best we can do
here is to assume that the continuation does exist and that it is unique. Some general
features can be stated, though. The continuation must always be extended around an
accumulation point of the set on which Z(n) is known. Here the only accumulation point
is n = ∞, so we should effectively work with infinitely many replicas. The continuation
in fact goes from the neighbourhood of n = ∞ to the neighbourhood of n = 0.

Finally, we can also learn an important general feature of the agents’ behaviour in
minority game. Each of them tries hard to maximise her individual profit, and that is
why she assesses the quality of the strategies and chooses the best one. However, we
have just seen that it is not the overall loss, measured by the volatility σ2, but the
information content, or H, that is minimised in the dynamics. In short, the agents are
not fully aware of the collective effect of their actions. Instead of optimising the global
performance, they merely devour as much information as they can.

Effective spin model

We have seen that we can formulate the problem as finding the ground state for the
system of soft spins mi ∈ [−1, 1] described by the Hamiltonian H. To this end we
shall first investigate its behaviour at finite temperature β and eventually determine
the ground-state properties by sending β → ∞. To pursue such a program we need to
overcome a serious hindrance. The Hamiltonian depends on the strategies aµs,i, which
are selected randomly at the beginning and introduce the quenched disorder into the
Hamiltonian.

In fact, such a problem is nothing really new in statistical physics. Spin glasses and
neural networks (see Box 5.3) are very well described by very similar Hamiltonians. The
presence of quenched randomness is the feature all of these models have in common,
and it can be very effectively tackled using the replica method. (See Boxes 5.4 and
5.5.) The quantity of prime interest is
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Replica trick II: a toy example Box 5.5

One can hardly imagine a simpler system than one Ising spin in a random magnetic
field. The Hamiltonian is

H = −h s
with s ∈ {−1,+1}, and the random variable h has normal distribution

P (h) = (2πσ2)−1/2 exp(−h2/2σ2). For a positive integer n we have

Z(n) = Zn =
(∑

s e
hs
)n

=
∑

s1

∑
s1

. . .
∑

sn
eh

∑n
a=1 sa . The disorder average is

elementary and yields Z(n) =
∑

{sa} e
1
2
σ2(

∑n
a=1 sa)

2
=

∑
{sa} e

∑n
a<b σ2 sa sb+nσ2/2.

We can see that our disordered system is effectively described by the Hamiltonian
Hn = −σ2 ∑n

a<b sa sb −nσ2/2 representing n interacting replicas of the original model.
This is a generic property of all the replica calculations: n non-interacting replicas of
the disordered system are transformed to n interacting replicas, but without disorder.
The following figure is a sketch of that transform.

Z
n

Z(n) = Zn

The minus sign in the Hamiltonian Hn means that the interaction between replicas
is effectively attractive. This is also a generic feature. The replicas always attract
each other and the strength of the attraction, here measured by the parameter σ, is
larger as the disorder becomes stronger, i.e. as the random ingredients in the original
Hamiltonian fluctuate more.
We may proceed with calculating Z(n) with the aid of the Hubbard-
Stratonovich transform, introducing an auxiliary field Q. We get Z(n) =∑

{sa}
∫

dQ√
2π

exp
(
− 1

2
Q2 +Qσ

∑n
a=1 sa

)
=

∫
dQ√
2π

e−
1
2
Q2(

2 coshQσ
)n

,

hence the free energy has the mean value F = −
∫

dQ√
2π

e−
1
2
Q2

ln
(
2 coshQσ

)
.

Z(n) =
(∫ 1

−1

d[mi] e−βH
)n

(5.31)

where the overbar denotes the disorder average, i.e. the average over realisations of
the strategies aµs,i, and we introduced a shortcut notation for multiple integrations∫ 1

−1
d[mi] ≡

∫ 1

−1
dm1

∫ 1

−1
dm2 . . .

∫ 1

−1
dmN which will be used in various modifications

throughout the calculation.
To perform the disorder average in Eq. (5.31) for a positive integer n we formally

introduce n replicas of the system with state variables ma
i , a = 1, 2, . . . , n. Then we

can see that the Hamiltonian (5.27) consists of P = 2M terms, each of them being
the sum of n squares. The squares in exponents are conveniently simplified using the
Hubbard-Stratonovich transform (see Box 5.6), introducing in return nP new auxiliary
fields zµa . But it turns out that all contributions for different µ are disorder-averaged
independently of the others, and we end with a product of P identical factors, each of
them containing only n auxiliary fields za. Explicitly, we find
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Hubbard-Stratonovich transform Box 5.6

is based on the identity∫∞
−∞ exp

(
− 1

2
x2 +Ax

)
dx√
2π

= exp
(
1
2
A2

)
.

It is used quite often to convert four-spin interactions into two-spin ones and terms
which are quadratic in state variables into linear terms, at the expense of introducing a
new auxiliary continuous variable. A posteriori, such a variable is usually identified with
certain equilibrium characteristics of the model.
For example, the fully connected Ising model with Hamiltonian H = − 1

N

∑N
i<j J sisj ,

where si ∈ {−1,+1}, is solved as follows. The partition function is Z =∑
{si} e

−H =
∑

{si} exp
(

J
2N

(
∑N

i=1 si)
2 − J

2

)
and, introducing an auxiliary vari-

able m̃ we have Z =
∑

{si} e
−J/2

∫
dm̃√
2π

exp
(
− 1

2
m̃2 + m̃

√
J/N

∑N
i=1 si

)
=

e−J/2
∫

dm̃√
2π

e−
1
2
m̃2 (

2 cosh m̃
√

J/N
)N

.

Changing the variable to m = m̃/
√
JN , we get Z = e−J/2

∫
e−NF(m)

√
JN
2π

dm with

F(m) = 1
2
Jm2 − ln

(
2 cosh Jm

)
. In the thermodynamic limit N → ∞ we apply the

saddle-point method for the evaluation of the integral and arrive at the following ex-
pression for the free energy density f = − limN→∞(lnZ)/N = F(m∗), where m∗ is
determined by the minimality condition d

dm
F(m)|m=m∗ = 0. Explicitly, it satisfies the

equation m∗ = tanh Jm∗ which leads to the interpretation of the value m∗ as average
magnetisation, m∗ = 〈si〉.

Z(n) =

∫ 1

−1

d[ma
i ]

{∫ ∞

−∞
d

[
za√
2π

]
e−

1
2

∑n
a=1 z

2
a

×
N∏

i=1

exp
(

i

√
β

2P

n∑

a=1

za (1 +ma
i ) a+,i

)

× exp
(

i

√
β

2P

n∑

a=1

za (1 −ma
i ) a−,i

)}P
.

(5.32)

The averages over the variables as,i are performed using the following simple trick,
which works for P → ∞

exp
(

i
C√
P
as,i
)

=
1

2

∑

a=±1

eiCa/
√
P = cos

( C√
P

)
≃ 1 − 1

2P
C2 ≃ exp

(
− C2

2P

)
. (5.33)

This way we get in the exponent terms of the typema
im

b
i indicating interaction between

replicas. A short exercise in algebra yields

Z(n) =

∫ 1

−1

d[ma
i ]

{∫ ∞

−∞
d

[
za√
2π

]
e−

1
2

∑n
a=1 z

2
a

× exp
(
−1

2

β

α

n∑

a,b=1

zazb
(
1 +

1

N

N∑

i=1

ma
im

b
i

))
}P

.

(5.34)

The pivotal parameter α = P/N appears for the first time here. For the integration

over magnetisation values, ma
i it is very inconvenient that the term

∑N
i=1m

a
im

b
i ap-
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pears inside the bracket {. . .}P . To take it out, we introduce another set of n(n+ 1)/2

variables qab, a ≤ b, with δ-functions guaranteeing that qab = 1
N

∑N
i=1m

a
im

b
i . Thus

Z(n) =

∫ 1

−1

d[ma
i ]

∫ ∞

−∞
d[qab]

( n∏

a≤b
δ
(
qab −

1

N

N∑

i=1

ma
im

b
i

))

×
{∫ ∞

−∞
d

[
za√
2π

]
e−

1
2

∑n
a=1 z

2
a exp

(
−1

2

β

α

n∑

a,b=1

zazb(1 + qab)
)}P

.

(5.35)

The δ-functions are then expressed by integral representation δ(x) =
∫∞
−∞

dy
2π

eixy. Fur-
thermore, in the exponent we recognise a quadratic form in the variables za, so the
integration over these variables is straightforward in principle. We complete the defini-
tion of quantities qab by symmetrisation, qab = qba, and define a n×n matrix M with
elements Mab = δab+ β

α(1 + qab). The Gaussian integration over za gives (detM)−1/2.
Therefore

Z(n) =

∫ ∞

−∞
d[qab]

∫ i∞

−i∞
d

[−iN rab
2π

]
exp

(
−N

n∑

a≤b
rab qab

)

× (detM)−P/2
[ ∫ 1

−1

d[ma] exp

(∑

a≤b
rabm

amb

)]N

=

∫ ∞

−∞
d[qab]

∫ i∞

−i∞
d

[−iN rab
2π

]
exp

(
−NβnF

)

(5.36)

with effective replicated free energy

F(qab, rab) =
1

nβ

n∑

a≤b
rab qab +

α

2nβ
ln detM

− 1

nβ
ln

∫ 1

−1

d[ma] exp

(∑

a≤b
rabm

amb

)
.

(5.37)

The last integral in Eq. (5.36) can be taken by the saddle-point method (see Box 2.9
if unclear), as in the thermodynamic limit N → ∞ we have

Z(n) ≃ exp
(
−NβnF(q∗ab, r

∗
ab)
)
, (5.38)

and the calculation reduces to finding the position q∗ab, r
∗
ab of the minimum of F , i.e.

solving the set of n(n+ 1) equations

∂

∂qab
F(q∗ab, r

∗
ab) =

∂

∂rab
F(q∗ab, r

∗
ab) = 0. (5.39)

Fortunately, we can look for the solution in a very simple replica-symmetric form

q∗ab = q + (Q− q)δab

r∗ab = r + (R− r)δab,
(5.40)

reducing the number of free parameters to only four. Replica symmetry means that
a matrix does not change under any permutation of its indices. The most general
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form of such matrices is just given by (5.40). It is possible to prove that this solution
is thermodynamically stable, which fact justifies the replica symmetry [1032]. The
effective free energy becomes

F =
1

β

(
RQ− 1

2
rq

)
+

α

2β
ln

(
1 +

β(Q − q)

α

)
+

α(1 + q)

2(α + β(Q− q))

− 1

β

∫ ∞

−∞

dz√
2π

e−
1
2 z

2

ln

∫ 1

−1

e(R− 1
2 r)m

2+z
√
r mdm+O(n).

(5.41)

The last term, containing integrals over m and z, looks like the free energy of a
particle in potential Vz(m) = −

(
R − 1

2
r
)
m2 − z

√
r m, averaged over Gaussian-

distributed random external field z. We shall use that analogy in practical calcu-
lations, introducing z-dependent averages with respect to the potential Vz(m) as

〈. . .〉z =
∫ 1

−1
. . . e−Vz(m)dm/

∫ 1

−1
e−Vz(m)dm. Note also that the dependence on n oc-

curs only in a term of higher order O(n), so we can safely perform the limit n→ 0 now.
The minimum of the effective free energy is found by differentiating F with respect to
the four free parameters. After a short calculation we get four coupled transcendental
equations

R− r

2
= −αβ

2

1

α+ β(Q − q)

r = αβ2 1 + q

(α+ β(Q − q))2

Q− q =
1√
r

∫ ∞

−∞

dz√
2π

e−
1
2 z

2

z〈m〉z

Q =

∫ ∞

−∞

dz√
2π

e−
1
2 z

2 〈m2〉z .

(5.42)

Let us recall that we are looking for the minimum of the Hamiltonian (5.27), so we
need the solution of (5.42) in the limit β → ∞. We should distinguish between two
cases. First, the difference Q− q can approach a finite limit, so that the quantity

χ ≡ β(Q − q) (5.43)

diverges. This is the case of the symmetric, non-ergodic phase with α < αc. Indeed, χ
can be interpreted as susceptibility, measuring sensitivity to initial conditions. Diverg-
ing susceptibility implies that an arbitrarily small change in initial conditions persists
infinitely long, marking the non-ergodic behaviour.

The second solution is characterised by finite susceptibility, so Q − q → 0 for
β → ∞. This is the asymmetric phase, α > αc and we shall now spend some time
analysing the results we can infer from the solution of (5.42).

Properties of the ergodic phase

The most technically difficult part of the set (5.42) is calculation of the averages 〈m〉z
and 〈m2〉z and then integrating over z. However, in the limit β → ∞ the algebraic
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manipulations are significantly simplified, as we can see from the first two equations
in set (5.42) that r ∼ β2 and R − 1

2
r ∼ β; so the potential Vz(m) ∼ β for β → ∞.

The averages with respect to such potential are dominated by its single minimum at
a point m = m∗, which can be readily obtained. To simplify the notation we write
Vz(m) =

√
r
(
1
2ζ m

2 − z m
)
, where ζ = − 2√

r

(
R − 1

2r
)
. For β → ∞ the parameter ζ

approaches a finite limit,

ζ =

√
α

1 +Q
. (5.44)

According to the value of z the minimum lies either inside the interval (−1, 1) or at the
endpoints −1 or 1. We list the results in the following table, showing the values of the
averages in each of the three ranges of z, together with the results of the integration
over z in the corresponding intervals.

z ∈ (−ζ, ζ) (−∞,−ζ] [ζ,∞)
m∗ z/ζ −1 1

〈m〉z z/ζ −1 1

〈m2〉z z2/ζ2 1 1
∫

dz e−z2/2
√
2π

z〈m〉z 1
ζ erf

(
ζ√
2

)
−
√

2
π e−

ζ2

2

√
2
π e−

ζ2

2

∫
dz e−z2/2

√
2π

〈m2〉z 1
ζ2 erf

(
ζ√
2

)
−
√

2
π

1
ζ e−

ζ2

2 1 − erf
(
ζ√
2

)

(5.45)

Putting together the pieces contained in (5.45) and the relation between ζ, α and
Q given by (5.44), we obtain the following expressions for Q and the susceptibility χ,
parameterised by ζ.

α = 2ζ2 + (1 − ζ2) erf
( ζ√

2

)
−
√

2

π
ζ e−

ζ2

2

Q = 1 − erf
( ζ√

2

)
+

1

ζ2
erf
( ζ√

2

)
−
√

2

π

1

ζ
e−

ζ2

2

χ =
α erf

(
ζ√
2

)

α− erf
(
ζ√
2

) .

(5.46)

This solution breaks down when the susceptibility diverges, i.e. for α → erf
(
ζ√
2

)
.

This condition fixes the critical value of the control parameter α through the pair of
equations

2ζc = ζc erf
( ζc√

2

)
+

√
2

π
e−

ζ2c
2

αc = erf
( ζc√

2

)
.

(5.47)

The numerical solution gives

ζc = 0.43632656 . . . , αc = 0.33740018 . . . (5.48)

which agrees very well with the value observed in simulations, αc ≃ 0.34.
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Now we are ready to compare the analytical results with simulations in the ergodic
regime, α > αc. The predictability (5.28), corresponds to the minimum of the Hamil-
tonian (5.27), and in our calculation it is just the minimum of the free energy (5.41)
in the limit β → ∞. We find

θ2A =
α2

2

1 +Q

(α + χ)2
. (5.49)

From Eq. (5.30) it follows that the volatility, averaged over the realisations of the
strategies, is related to the predictability as

σ2 = θ2A +
1 −Q

2
. (5.50)

As a brief comparison of the analytical results with numerical data, look at Fig.
5.6. Clearly, the original minority game is slightly off the analytical prediction, which
is due to the fact that we assumed all memory patterns to be equally probable. If we
implement this assumption in simulations, the agreement is excellent.

We can also look at the volatility in Fig. 5.2. The agreement is rather satisfactory,
and even more, we can see that it is better the closer we are to the critical point. Indeed,
this is due to the fact that the distribution of memory patterns becomes uniform at
αc. This leads us to conjecture that the analytically-found critical value (5.48) of αc
is in fact an exact result.

5.3 Minority game as a market model

The original ambition of the minority game, and its predecessor, the El Farol bar
problem, was to explore the capabilities of inductive reasoning. The scope is much
broader than mere market modelling and touches virtually on all aspects of human
life. The task is to survive in a dangerous and nearly unpredictable world. We have
seen that the method incorporated in the minority game is to identify and partially
utilise the fragments of information contained in past data. Extraction of the hidden
information is an essentially collective effect, and the principles of the minority game
do not allow reduction of the dynamics to the behaviour of a representative agent.
An economically thinking person must ask immediately if the minority game can
reproduce the observed behaviour of market and if it can be used for predicting future
market movements, or, in short, to earn money. Several remarks are worth making
before we set out on this track. First, one must always bear in mind that predicting
the future price and understanding how the market works are two different, perhaps
even mutually exclusive, things. The minority game may function very well as a heart
of a software package, someone can even think of patenting it, but the contribution to
our knowledge can be close to nil. On the other hand, minority game can teach us a
lot of things about agents’ coordination and information ecology which may never be
translated into net financial profit.

Besides these general observations, one should also notice several practical prob-
lems in interpreting the minority game as a market model. Despite the often used
pedagogical motivation of minority game as a toy model of stock trading, minority
game as such went much too far with abstraction, and we must return some steps
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back. First, we must reintroduce price, money, and capital. Then, we run into a far-
reaching problem of calculating the payoff. The immediate rewarding in the minority
game algorithm was soon judged unrealistic and multitemporality has to be taken
into account. And most importantly, the standard minority game does not exhibit any
signs of the basic stylised facts, which is a minimum requirement for a market model
to be taken seriously. Now we turn to several variants of the minority game introduced
to cope with the just-mentioned imperfections.

5.3.1 Producers and speculators

In the standard minority game, all agents are essentially equal. They differ only in
their randomly chosen strategies. An important step towards reality is to include two
types of behaviour, which we call producers and speculators [847]. Suppose there are
Np and Ns agents of each type, respectively.

Contrary to speculators, producers are quite limited in their speculation ability.
They largely follow the circumstances induced by the logic of production. Any change
in their behaviour occurs at a much longer time interval than the decisions of specula-
tors. In the minority game, we can model this fact by giving just one strategy to each
producer, while the speculators will have two, as ordinary minority game agents have.

This formalism closely follows the scheme of ordinary minority game [1033–1035].
Speculators indexed by i = 1, 2, . . . , ns are endowed with pairs of strategies aµs,i, s =
±1, depending on P memory patterns µ. Similarly, the unique strategies of producers
j = 1, 2, . . . , Np are aµprod,j. We have already seen that the only dynamic variables
of the game are differences in the scores of the strategies. Now, these differences are
attributed only to speculators, but the formula for the differences also contains the
strategies of producers. This formula is formally identical to (5.20) with a small change
in the definition

ξµi =
1

2

(
aµ+,i − aµ−,i

)

Ωµ =

Np∑

j=1

aµprod,j +
1

2

Ns∑

i=1

(
aµ+,i + aµ−,i

)
.

(5.51)

The solution of this version of minority game is straightforward using the replica
method. We can write the Hamiltonian

H(m1,m2, . . . ,mNs)

=
1

P

P−1∑

µ=0

[ Np∑

j=1

aµprod,j

+

Ns∑

i=1

(1

2
(aµ+,i + aµ−,i) +

1

2
(aµ+,i − aµ−,i)mi

)]2
(5.52)

and closely follow the steps described in Sec. 5.2.2.
It turns out [1033] that the main feature, which is the presence of phase transition,

also remains valid in the presence of speculators, but the location of the critical points
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Fig. 5.7 Typical realisation of the time series of attendance in the grand-canonical minority

game. The parameters are Np = 16, Ns = 481, M = 4, and ǫ = 0.01.

is shifted. The ruling parameter is the ratio α = P/Ns. As producers increase the
information content, the critical value of the parameter α decreases with increasingNp.
It is interesting to observe how the gain of the two groups changes when the number of
speculators and producers is varied. In the symmetric phase the producers always have
zero gain, and the gain of speculators is large and negative. We can cross the critical
point in two ways. First, we can keep the number of speculators constant and increase
the number of producers. This way the gain of producers decreases deeper and deeper
below zero with increasing Np, while the gain of speculators increases and eventually
becomes positive. Second, we can fix the number of producers and decrease the number
of speculators. In so doing, the gain of producers always decreases. On the other hand,
the speculators’ gain depends on the number of producers. If Np is large enough,
the speculators’ gain increases when their number decreases, but if Np is small, there
is a maximum in the dependence of the speculators’ gain on their number. What is
small/large Np depends on the number of memory patterns P among which the agents
are able to distinguish. Therefore, we can consider this model an example of a market
ecosystem consisting of two species of agents, namely producers and speculators. The
speculators are like plants, producing information instead of glucose. The speculators
can be compared to herbivorous animals, feeding on the information created. However
superficial this analogy might be, it helps us understand the coexistence of various
types of market participants.

5.3.2 Grand-canonical minority game

Fluctuating number of participants

The classical minority game is a negative-sum game. The agents are forced to play
even if they lose constantly. We can modify the rules so that the losers can leave the
game, at least for a while, if the losses are too severe. The point is that generically in
minority game the strategies which are not used have overall better performance than
those which are used. We expect that the absence of a player affects the adaptation
of other agents in such a manner that after a while, the strategy which was absent
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Fig. 5.8 Properties of the time series of attendance in the grand-canonical minority game.

In the left panel, cumulative distribution of the absolute attendance. The symbols distinguish

between two typical situations: realisation with high kurtosis (◦) and with low kurtosis (△).

The line is the power law ∝ |A|−1.7. In the right panel, the autocorrelation of absolute

attendance is shown. Again, we show typical realisation with strong (◦) and weak (△)

volatility clustering. The line is the power law ∝ (∆t)−1/2. In both panels, the parameters

are Np = 16, M = 4, and ǫ = 0.01. In the left panel, we have Ns = 1601, while in the right

panel Ns = 481.

becomes profitable again. The player joins the game, and adaptation changes again.
In analogy with the grand-canonical ensemble of statistical physics [1036], where the
particles may enter and leave the system freely, this variant of the game is called the
grand-canonical minority game [75].

Again, the agents are divided into producers and speculators. The producers have
one strategy and always play. The speculators differ slightly from those of Sec. 5.3.1.
They have only one strategy, but they can choose whether to use it or not to play at all.
The decision of the speculator i at time t is denoted di(t) ∈ 0, 1. Let us denote aµprod,j
and aµspec,i the strategies of producers and speculators, respectively. The attendance is

A(t) =

Np∑

j=1

a
µ(t)
prod,j +

Ns∑

i=1

a
µ(t)
spec,idi(t). (5.53)

Instead of a difference in scores for a speculator, we have a single score of the only
strategy the speculator owns. We shall denote it by qi(t), as it plays the same role as
the scores’ difference in ordinary minority game. The score is updated as

qi(t+ 1) − qi(t) = −aµ(t)i A(t) − ǫ (5.54)

where the positive parameter ǫ represents the threshold for agents’ participating or not.
As in the thermal minority game, the choice of action the agent takes is probabilistic,
rather than deterministic. A parameter Γ, playing the role of inverse temperature, is
introduced. The probability of participation is
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Fig. 5.9 Histogram of the excess kurtosis of the attendance distribution in grand-canonical

minority game for Np = 16, M = 4, ǫ = 0.01, Ns = 801 (solid line), and Ns = 321 (dashed

line). The data are collected from 1000 independent realisations.

Prob{di(t) = 1} =
(

1 + e−Γ qi(t)
)−1

. (5.55)

It is possible to work out the same procedure using the replica trick, as used for the
standard minority game. The behaviour of the model is governed by three parameters.
Two of them generalise the parameter α = P/N of the usual minority game and are
defined as ns = Ns/P and np = Np/P . As usual, P = 2M , and M is the memory
length. The remaining parameter is the threshold ǫ. The role of magnetisation is taken
by the averages mi = 〈di(t)〉 ∈ [0, 1]. The Hamiltonian to be minimised is

H(m1,m2, . . . ,mNs)

=
1

P

P−1∑

µ=0

[ Np∑

j=1

aµprod,j +
Ns∑

i=1

aµspec,imi

]2
+ 2ǫ

Ns∑

i=1

mi.
(5.56)

It turns out that the behaviour is substantially different for positive and negative
values of ǫ. There is a first-order transition exactly at ǫ = 0. The more interesting
region is ǫ > 0. We can look at the number Ns,act of active speculators, i.e. those who
have mi > 0 in the state that minimises the Hamiltonian (5.56). When we increase
ns, the number nact = Ns,act/P first increases, then reaches a maximum, and then
decreases to a finite limit when ns → ∞. This means that adding more speculators
does not increase the number of active ones. The newcomers remain out of business
anyway, at least in the statistical sense.

Note that all of these results hold in the thermodynamic limit P → ∞, with ns
and np fixed. It is possible to show that in this limit the distribution of attendance
is Gaussian [1037]. This is not good news. We wanted a model which would give
us fat tails, but none are obtained. However, the model is more complex than the
replica analysis in thermodynamic limit reveals. For an alternative view on the grand-
canonical minority game, see Refs. [1038–1040].
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Are stylised facts compatible with minority game?

It comes as sort of a surprise that the behaviour seen in the simulations is not quite
the same as predicted by the replica treatment. As for the average volatility, fraction
of active agents and similar quantities, the agreement is good. However, when we start
to look at the time series of the attendance, more complex features emerge. We can
glimpse some of it in the sample time series of attendance shown in Fig. 5.7. Due
to speculators coming in and out, the attendance fluctuates much more than in the
classical minority game. The occasional spikes seen in the figure should warn us that
the fluctuations are far from Gaussian as predicted by replica calculation. It turns
out [1037, 1041, 1042] that the inconsistency is due to finiteness of the set of agents
used in the simulations. This is an intriguing finding. All the interesting features of
grand-canonical minority game are in fact finite-size effects.

To assess the properties of the time series quantitatively, we plot in Fig. 5.8 the
cumulative distribution of the attendance

P>(|A|) = lim
T→∞

1

T

T∑

t=1

θ

(
|
N∑

i=1

ai(t)| − |A|
)

(5.57)

where θ(x) = 1 for x > 0 and θ(x) = 0 for x ≤ 0.
There is a surprise in the data. In fact, we observe two types of behaviour: either

the attendance is distributed as power law, P>(|A|) ∼ |A|−α with exponent α ≃ 1.7, or
the distribution is exponential. Which of these two cases is realised in a particular time
series depends on the specific choice of the strategies. Similarly, we also investigate the
autocorrelation function of absolute values of the attendance. It is also shown in Fig.
5.8. Again, we observe that the time series fall into two groups. In some realisations
the autocorrelation function falls off exponentially and in others it decreases slowly as
a power law 〈|A(t)A(t− ∆t)|〉 ∼ (∆t)−τ with the exponent close to τ ≃ 0.5. So, what
is the generic behaviour of the game?
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As a partial but well-defined quantitative measure, we can calculate the kurtosis
of the distribution if the attendances

κ =

〈(
A(t) − 〈A(t)〉

)4〉

〈(
A(t) − 〈A(t)〉

)2〉2 . (5.58)

If the distribution were Gaussian, the kurtosis would be κ = 3, so the excess kurtosis,
defined as |κ−3|, tells us how much the distribution deviates from the Gaussian shape.
We expect that the distribution which is close to a power law will have a very large
excess kurtosis, while slight modifications of the Gaussian will exhibit a much smaller
value.

In Fig. 5.9 we plot the histogram of the excess kurtosis found in many realisations of
the grand-canonical minority game. We can clearly observe two distinct peaks, proving
that there are indeed two qualitatively different types of behaviour. The key parameter
for the appearance of the peak with high kurtosis is the reduced number of speculators
ns. The peak starts to emerge at about ns ≃ 10, and for larger ns the position of the
peak shifts to a fairly high kurtosis value. Simultaneously, the high-kurtosis peak gains
in weight.

In Fig. 5.10 we plot the average position of the low- and high-kurtosis peaks through
the excess kurtosis averaged over low- and high-kurtosis realisations separately. We
find that in the high-kurtosis samples the kurtosis grows as a power |κ− 3| ∼ nγS with
exponent γ ≃ 1.5. In the same Fig. 5.10 we also plot the fractions of high-kurtosis and
low-kurtosis realisations. It shows that for large enough ns most of the realisations have
very large kurtosis and therefore can be characterised by fat tails in the distribution
of attendance.

Deeper analysis of the coexistence of the two types of realisations traces the effect
back to the presence of the first-order transition at ǫ = 0. This is an analogy of the
coexistence of liquid and solid phases (ice and water) occurring just at the melting
temperature. In finite systems, there is a region around the point ǫ = 0 where the
coexistence can be observed. When the size of the system goes to infinity, the width
of this region shrinks to zero. It is unrealistic to assume that the threshold ǫ would be
precisely equal to zero. That is why the interesting phenomena are observed just as a
finite-size effects.

We can conclude this section with a positive answer to the question raised in
its title. Yes, there is a quite natural way to reproduce basic stylised facts, namely
power-law return distribution and power-law absolute return autocorrelation, in a
variant of the minority game. The unexpected observation that all the stylised facts
observed in grand-canonical minority game are in fact finite-size effects is not a flaw.
Just the opposite is true. It reveals that the finite and discrete natures of the real
stock market might be vital characteristics behind its complex features. Recall that
we arrived to similar conclusions also when studying the Cont-Bouchaud and Lux-
Marchesi models in Chap. 3. This observation also puts in doubt various attempts
to establish a continuum limit in models of economic behaviour. The fluctuations are
substantially influenced by unavoidable granularity of the economic systems. We can
also hardly be expect that a kind of macroscopic thermodynamics of economy can be
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developed, as it always involves a limit to the infinite number of particles or agents.
The proper theory should work on a mesoscopic, rather than macroscopic scale, in the
sense that the number of agents is neither very small nor very large.

5.4 What remains

Since its introduction in 1997, the minority game has grown into a diversified branch
of non-equilibrium statistical physics. As such, it has started its independent life, only
partially related to its original purpose of a model for agents’ behaviour in socio-
economic systems. There are good reviews [1043, 1044] and books [22, 33, 34] which
cover most of the developments. Let us briefly comment on further important devel-
opments which we could not include in this chapter.

One of the fundamental issues of the theory of minority game is the full account of
the coupled dynamics of memories and scores. This is achieved using the generating
functional method [1045–1051]. We omitted it in this chapter because the approach is,
in our opinion, too technical to be exposed here. But the reader does not lose much,
because there is an excellent book [34] entirely devoted to this method.

Besides the replica and generating functional methods, we should also mention the
analytical procedure based on crowd-anticrowd theory, developed by Johnson et al in
an ample series of papers [778, 1052–1077] investigating in depth various aspects of the
minority game and its ramifications.

An original approach avoiding both analytical work and numerical simulations
was applied in the interactive minority game [1078, 1079] . Instead of formulae and
computer codes, people are used as testing animals. A web page
(www3.unifr.ch/econophysics/minority/game/) was created, where anybody can come
and play as an agent against a group of other players embodied in a Java applet. Quite
surprisingly, people differ very much in their ability to compete with the program. Some
users outperform the computerised agents quite a lot, other users lose constantly. One
day, perhaps, the interactive minority game will be used as a unified test of intelligence.
Who knows?

The minority rule is so intimately tied to the whole ensemble of problems treated
using minority game that it seems paradoxical for one to switch and study the major-
ity game instead. Yet the majority game reveals a surprisingly rich structure [1080].
Formally, the only difference consists in replacing the minus signs on the right-hand
sides of equations (5.11) and (5.20) with plus signs. The most interesting setup is
a mixture of majority and minority games. The players differ according to the rule
used for updating the scores of their strategies. Those using the minority rule can be
compared with market fundamentalists, believing that there is a correct market price
and, whenever the actual price deviates, it should come back soon. On the contrary,
the players using the majority rule are like trend followers, doing mostly what the
majority does. Depending on the relative fractions of fundamentalists and chartists,
the global features of the game look different. The most interesting finding is that
there is an intermediate range of the ratio of the fraction in which autocorrelations
of the attendance are extremely close to zero. This means that the time series of
attendance behaves very much like the price fluctuations in real markets [1081]. On
the other hand, both pure majority and minority games exhibit strong correlations
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or anticorrelations, respectively, in the attendance. Analytical solution of the mixed
majority-minority game can be found in Refs. [1082, 1083] and further simulations in
Refs. [1084–1086].

Including the majority rule is not the only possible way to change the reward
attributed to the strategies. A very interesting idea is implemented in the so-called $-
game [1087, 1088]. It is based on the observation that the agent in a stock market must
predict the price two steps ahead, not just one, as assumed in standard minority game.
Indeed, if we decide to buy a stock at time t, it will influence the price at the next
time t+ 1. We shall assume that from the time t+ 1 it will gain value until a certain
future time t′ > t + 1. This introduces the feature of multitemporality. The second
time t′ can lie in an a priori unknown instant in future. This is the time the investor
will sell back the asset and pocket the financial gain. The simplest hypothesis on the
occurrence of this second time instant will be t′ = t + 2. Based on such reasoning,
it was suggested that, instead of the prescription (5.11), the scores of the strategies
should be updated as

qi(t+ 1) − qi(t) = ξ
µ(t−1)
i A(t). (5.59)

It turns out [1087, 1088] that the $-game behaves like a mixture of majority and
minority agents, thus accomplishing something similar to what was set up artificially
in the mixed majority-minority game.

A similar multi-temporal structure is also present in the so-called escape game
[1089]. At each time, the agents can decide to hold (ai(t) = 1) or not to hold (ai(t) = 0)
an asset. It is assumed that the value of the asset is proportional to the attendance
A(t) =

∑
i ai(t), i.e. to the number of agents holding the asset. We can say that the

asset is as valuable as it is popular among the agents. Those who hold the asset are
rewarded each time the others decide to acquire it and punished if the others decide
to get rid of the asset. The strategy is easy to formulate here: be first to buy, and
be first to sell. Those who are at the tail of the herd are losers. In order to stimulate
the players, a premium is divided among those who hold the asset. If the premium
is sufficiently large, the behaviour is very similar to the ordinary minority game. But
if the premium is small, the dynamics becomes increasingly complex. A multitude of
metastable states occurs, and the system performs intermittent hops from one to the
other. In this sense, the dynamics is reminiscent of spin glasses [1010], or glasses in
general.

The classical minority game can also be developed in other directions. For exam-
ple, the agents can take into account their own impact on the system [1032]. In this
case, the replica solution reveals that the replica symmetry is broken and many stable
equilibrium states coexist. The agents can undergo an evolutionary process inspired
by natural selection [1090–1092]. The agents can also trade in several assets, i.e. sev-
eral sets of memories µ1(t), µ2(t), . . . are supplied to the agents simultaneously [1093].
The agents can have more than two choices [1094, 1095]. The agents can live in a
non-stationary environment [1096]. The scores of strategies do not remember their
performance forever but fade away [1097]. Surprisingly, it was found that both replica
and generating-functional methods fail to account for this fadeout [1098]. New analyt-
ical tools are required here.
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In the standard minority game, all agents are equal. In reality, however, the traders
act at different time scales and with different weights. These features can be relatively
easily incorporated into the mechanism of minority game, and analytical solutions for
such situations are available [1035, 1099–1102]. Under certain conditions, it can be
shown that the heterogeneity is beneficial for the system as a whole [1102].

Another way to introduce inequality is the following. In the standard minority
game, every agent interacts with all others via the common memory pattern µ. What
if we place the agents into a space and allow them interact locally? This is the basic
idea of various species of local minority games [1103–1106]. The agents may also copy
each other [1107]. Here we arrive at the problem of the emergence of leadership in the
community of economic subjects. This was studied within the framework of minority
game by allowing the agents either to use the best of their own strategies or to look
at their local neighbourhood and imitate the best of their neighbours [1108]. The
basic topology under the agents’ community can be either a simple chain [1108, 1109]
or a random network [1110, 1111]. This substrate network tells us which agents can
communicate with each other. It was found that the imitation structures create a
second-layer network of dependence among the agents, on top of the substrate network.
The imitation network falls generically into the class of scale-free networks [1110, 1111].
This is in agreement with empirical studies of networks of dependence among economic
entities [364]. (See Chap. 6 for more information on networks). The idea was further
developed in Refs. [1112–1123].

We do not have space here to go deeper in the various literature [1124–1163].
Instead, as a dessert, the reader can taste how introducing quantum strategies [1164,
1165] leads to the even richer and more wonderful world of quantum minority game
[1166–1168].
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Problems

1. The case M = 1, N = 3, S = 2 is just small enough to be investigated by complete
enumeration. Write your own program to accomplish that task and look at the
periodicity of the attendance, and distributions of the quantities σ2, θ2 and φ.
How fast does the number of possible assignments of strategy pairs to agents grow
with M and N?

2. Imagine what happens with minority game if there are no memories at all, and
each agent has the same pair of strategies a+,i = +1, a−,i = −1. The dynamics
of the scores’ differences (5.23) defines a dynamical system. Show that a critical
value Γc exists so that for Γ < Γc the attractor is a point, while for Γ > Γc it is a
limit cycle of length 2 steps. What is the average σ2 in the first and second cases?
How does it depend on the number of agents N? For a hint, look at [1160].

3. The agents in minority game can have different weights [1035, 1102]. Divide the
set of agents into G groups, g-th group containing Ng agents acting with weight

Ig, so that the attendance is A(t) =
∑

g Ig
∑Ng

ig=1 ag,ig (t). Solve this variant using
the replica method. Using for simplicity just two groups, show that the sum of
gains of all agents is still negative as in the standard minority game, but the
average gain of the group with lower weight can be positive.
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Network economy

When physicists think of elementary entities in their theories, be it atoms, spins,
molecules or elementary particles, they like to place them regularly in space or let
them move freely with no preference for any place or direction. This intuition is em-
bodied into the assumption of translational and rotational invariance, either continu-
ous (shifting all particles by any distance does not matter) or discrete (displacement
by an integer multiple of an elementary distance does not make any change), and
mathematically expressed in terms of symmetry groups.

The mental inclination toward highly symmetric spaces and arrangements seems
to be supported by beautiful structures of crystals as well as by the achievements of
fundamental physics, which to a large extent consists in looking for the appropriate
symmetry group underlying the observed phenomena. Indeed, the crystal symmetry
allows us to speak of energy bands in solids and provides a sound basis for the notion
of quasi-particles. It is the symmetry of space-time that renders us the images of
distant galaxies through freely travelling photons, for no symmetry would mean no
photons, and no photons would mean no vision whatsoever. All of this is true despite
the indisputable fact that the world surrounding us is full of structures lacking any
trace of symmetry. Think of the long knotted molecule of DNA in every cell, a fragment
of pumice, or hair on your head when you wake up early in the morning. To describe
these structures we need more advanced techniques, and most of the problems related
to them still await an effective tool for solution. Although it is rather inappropriate
to recourse here into the realms of science fiction, one may imagine creatures adapted
to living in spaces with no symmetry at all, which are able to process information
transmitted by complex elementary excitations replacing the ordinary photons. This
idea is very relevant in some contemporary technological applications, and the theory
of random networks is one of valuable tools used there.

A complementary attitude seems to have pervaded the social sciences and econ-
omy. Here, the ‘elementary particles’ are human beings or companies, contracts, or
pieces of information. Recognising the intractable complexity of the tangled web of
mutual contacts and influences, we often forget it completely and think in terms of
representative agents and aggregate quantities. A physicist would perhaps recognise
in such approach to reality a kind of ‘mean-field approximation’, a beloved instrument
of physicists themselves.

So, we can see that the two approaches are not so distant from each other as
one may think at first glance. Either we constrain the universe into a regular, highly
symmetric framework or forget any structure at all. Both ways are extremely efficient
and successful, but answer only some specific questions. As we shall see, sometimes
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they completely miss the real phenomena, for example, if we ask how measles is spread.
To go further, we need to know details on the disordered structure of our universe. And
as the material subject of study in this book is human society in its various aspects, we
have to collect information on how the society is actually shaped and investigate how
the peculiarities of the social structure affect its functioning. The basic assumption
throughout this chapter will be that the numerous interdependences we find in society
can be expressed in terms of a collection of networks, each of them mapping a certain
aspect of pairwise interactions among humans or human collectives, or even products
of human activity, for example, books like the one you are currently reading.

6.1 Random graphs

6.1.1 About graphs

The mathematical fabric for the scientific description of social and other networks is
provided by the graph theory [1169]. Let us quickly review its basic concepts.

A graph consists of vertices and edges. Every edge connects two (not necessarily
distinct) vertices. We may or may not distinguish the order in which we take the
two vertices connected by an edge. Accordingly, we say that the edge is oriented or
unoriented, respectively. An oriented graph has all edges oriented, and similarly the
unoriented graph consists only of unoriented edges. (We do not consider the case in
which both oriented and unoriented edges are present in one graph, although it would
be quite possible.) Formally, a graph is a pair of sets, G = (V, E), where V is the set
of vertices and E ⊂ V × V the set of edges. For an unoriented graph we require that
for any v, w ∈ V such that (v, w) ∈ E we also have (w, v) ∈ E , but the two pairs
are considered as one edge. If not stated differently, throughout this chapter NG will
stand for the number of vertices in the graph G. We shall often omit the index G if
the graph in question will be evident from the context. An example of an unoriented
graph is given in Fig. 6.1.

The structure of a graph can be conveniently described by the adjacency matrix.
Let us number the vertices vi ∈ V by indices i = 1, 2, . . . , N . We define the N × N
matrix with elements

aij(G) =
{

1 if vi, vj ∈ V and (vi, vj) ∈ E
0 elsewhere

. (6.1)

The adjacency matrix of an unoriented graph is symmetric. Any oriented graph G
can be converted into the corresponding unoriented graph GS by symmetrisation of
the edges. The adjacency matrix of the symmetrised graph is aij(G

S) = 1 − (1 −
aij(G))(1 − aji(G)). Note that we can allow loops, i.e. edges starting and ending at
the same vertex. This corresponds to a 1 on the diagonal of the adjacency matrix. The
definition of a graph can be further generalised if we want to model multiply connected
vertices. In this case aij(G) is the number of edges going from vertex vi to vj .

Graphs are characterised in a great many ways. The first characteristics we shall
work with will be related to the degrees of the vertices in a graph. The degree of a
vertex v is the number of edges attached to that vertex. Note that if the edge makes
a loop, it is counted twice, taking contribution from both ends of the edge. With this
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V =
{

1, 2, 3, 4, 5, 6
}

E =
{

(1, 3), (1, 4), (1, 6), (2, 2),
(2, 4), (2, 5), (3, 3), (3, 1),
(3, 4), (3, 6), (4, 1), (4, 2),
(4, 3), (4, 5), (4, 6), (5, 2),
(5, 4), (6, 1), (6, 3), (6, 4)

}

a =




0 0 1 1 0 1
0 1 0 1 1 0
1 0 1 1 0 1
1 1 1 0 1 1
0 1 0 1 0 0
1 0 1 1 0 0




1

2

3

4

5

6

Fig. 6.1 An example of an unoriented graph with 6 vertices and 11 edges. The sets of

vertices and edges are shown, as well as the adjacency matrix a. Degrees of the vertices are,

for example, d(1) = d(6) = 3 or d(3) = 5. The distances are d(1, 6) = 1, d(1, 5) = 2 etc. The

degree sequence of this graph is [5, 5, 4, 3, 3, 2].

definition the sum of degrees of all vertices is twice the number of all edges. Formally,
in an unoriented graph G = (V , E) we define

d
G

(v) = |{v′ ∈ V : (v, v′) ∈ E}| + |{(v, v)} ∩ E| (6.2)

or, in terms of the corresponding adjacency matrix

d
G

(vi) =
∑

j

(1 + δij) aij(G). (6.3)

The second term in Eq. (6.2) and the Kronecker δ appearing in Eq. (6.3) account for
the double counting of edges in loops, as explained above.

The reason for that double counting becomes clear when we introduce analogous
quantities for oriented graphs. As the order of vertices adjacent to an edge matters,
we distinguish the in-degree, i.e. the number of edges coming toward the vertex, from
the out-degree, which is the number of edges going away from the vertex. We give the
definitions in terms of the adjacency matrix; the reader can easily formulate it herself
in a way analogous to (6.2). Thus

din
G

(vi) =
∑

j

aji(G)

dout
G

(vi) =
∑

j

aij(G).
(6.4)

We can see that the edge which is a loop is counted as both in-degree and out-degree.
Therefore, the sum of in-degree and out-degree is just the (ordinary) degree of the
vertex in the symmetrised graph, dGS (v) = din

G
(v) + dout

G
(v).

Although a graph may be a very intricate object, a good deal of important infor-
mation is already provided by the degree sequence, which is the ordered list of degrees
of all vertices [d1, d2, . . . , dN ], di ≥ di+1.
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For example, all vertices can have the same order k. Such graphs are called k-
regular, or simply regular, if we do not care about the specific value of k. In the
special case of a 3-regular graph we speak of a cubic graph. A simple example are the
corners of a cube connected by the adjacent edges, hence the name.

Not every N -tuple of natural numbers makes a degree sequence of a graph. For
example [1, 0] is obvious nonsense, because the sum of all degrees must be an even
number (each edge has two ends!). A slightly less trivial example is the sequence [4, 2],
which is impossible if we forbid multiple edges connecting the same pair of vertices.

The degree sequence provides a very crude description of the graph. If we need
more detailed information, we need more sophisticated means. One of the typical
approaches used in graph theory is to look for specific types of subgraphs in a graph.
The meaning of the word is self-explaining. G′ = (V ′, E ′) is a subgraph of G = (V , E),
denoted G′ ⊂ G, if V ′ ⊂ V and E ′ ⊂ E. Less formally, we also say that G contains G′.

Which kinds of subgraphs will be of interest for us? To know some, we define several
special types of graphs. A complete graph is an unoriented graph containing all (N −
1)N/2 possible edges connecting its N vertices. Complete subgraphs of a larger graph
are often called cliques. A path of length l connecting vertices u and v is a graph which
contains just vertices v0 = u, v1, v2, . . . , vl = v and edges (v0, v1), (v1, v2), . . . , (vl−1, vl).
A graph G is called connected, if for all pairs of its vertices u and v we find a path
connecting u and v and contained in G. There may be more such paths, with different
lengths. The minimum of these lengths is called the distance of vertices u and v in
the graph G, and denoted d

G
(u, v). It can be expressed in terms of the powers of the

adjacency matrix

d
G

(ui, uj) = min{n : (an)ij 6= 0}. (6.5)

A cycle of length l contains l vertices and as many edges. Numbering the vertices
1, 2, . . . l, the edges are (1, 2), (2, 3), . . . (l−1, l), (l, 1). Very often we ask if a given graph
contains cycles, and if it does, how large they are and how many of them there are. A
connected graph which does not contain any cycle is called a tree. We can see that a
path is a special case of a tree. Note that all trees have one less edge than there are
vertices. Interestingly, the opposite is also true: any connected graph with N vertices
and N−1 edges is a tree. If a graph does contain cycles, they can have various lengths.
We shall be especially interested in triangles, i.e. the cycles of length 3, which is the
minimum possible. If there are only a few short cycles, we can consider the graph as
locally tree-like and use this property in various approximate calculations. We shall
see later that this is often the case.

Another important class of graphs is that of bipartite graphs. Their set of vertices
can be decomposed into two disjoint sets, V = V1 ∪ V2, V1 ∩ V2 = 0, so that all edges
have their ends in different sets, i.e. if (u, v) ∈ E , then either u ∈ V1 and v ∈ V2 or
u ∈ V2 and v ∈ V1. Real examples of bipartite graphs abound. For example, V1 can
be the set of articles in scientific journals, V2 the set of their authors and the edges
denote authorships. For a given graph, it may not be obvious at first glance whether or
not it is bipartite. Fortunately, they are characterised by the absence of cycles of odd
lengths. For example, every tree is a bipartite graph, because it does not contain any
cycles at all. To see it easily, pick any vertex of the tree as its root and put all vertices
at odd distance from the root in the set V1 and all vertices at even distances (including
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the root itself) in the set V2. If a bipartite graph contains all allowed edges, so that
any vertex from V1 is connected by an edge to each vertex in V2, the graph is called
a complete bipartite graph. If the numbers of vertices in the two subsets are m = |V1|
and n = |V2|, we denote the corresponding complete bipartite graph as Km,n.

Quantitative measures of some subgraphs of a graph G are reflected in several
important numbers characterising the graph. The diameter of the graph G is the
maximum of distances between all pairs of vertices in G, diam

G
= max{d

G
(u, v) :

u, v ∈ G}. If the graph is not connected, the diameter is considered infinite. For a
connected graph, we also define the average distance,

l
G

=
1

N(N − 1)

∑

u,v∈V,u6=v
d

G
(u, v). (6.6)

In generic situations the diameter and the average distance behave similarly as func-
tions of the number of vertices. The length of the shortest cycle contained in the graph
is called its girth. Unlike the diameter, the girth bears less relevant information, be-
cause we are more interested in how many cycles there are of a certain length, or how
probable it is that a given vertex belongs to a cycle of a certain length. So, instead of
girth, we shall try to establish a more vague but at the same time more useful quantity,
which is the typical cycle length.

As we already said, the cycles of length 3, or triangles, are especially interesting.
Their concentration tells us how many vertices connected to a chosen vertex are also
connected among themselves. Locally, it is measured by the clustering coefficient of a
vertex v, which is the number of edges between neighbours of v, (there are d

G
(v) of

them), divided by the number of all possible edges between these neighbours. Using
the adjacency matrix, we express the clustering coefficient of vertex vi in the graph G
as

CG(vi) =

∑′
j,k aijaikajk∑′
j,k aijaik

(6.7)

where the prime in the summation symbol means that the sum is restricted to indices
satisfying i 6= j, i 6= k, j 6= k. As a global characteristic, we introduce the clustering
coefficient of the graph

CG =

∑′
i,j,k aijaikajk∑′
i,j,k aijaik

(6.8)

which compares the number of triangles in the graph with one third of the number
of ‘vees’, i.e. pairs of edges which have exactly one vertex in common. Indeed, each
triangle contains three ‘vees’, and the numerator in (6.8) counts each triangle 6 times
(number of permutations of the three vertices) while the denominator counts each
‘vee’ twice. Note that (6.8) is not the vertex clustering coefficient (6.7) averaged over
all vertices vi, as one might naively think.

6.1.2 Graph ensembles

Erdős and Rényi

Graphs are tricky enough, but the objects we shall study in this chapter are even
more complicated. What we have in mind are random graphs, and in mathematical
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language they are sets of graphs endowed with a probability measure [753]. The first
construction of random graphs we mention here is based on graph ensembles, which are
simply sets of graphs G with at mostN vertices, together with probability P(G) defined
for any element G ∈ G. They were first introduced in the late 1950s by Hungarian
mathematicians Pál Erdős and Alfréd Rényi [1170, 1171], who also proved most of the
essential theorems on them, although some important forerunners and people working
simultaneously along similar lines should not be forgotten [1172–1175].

The first graph ensemble, studied by Erdős and Rényi, is denoted GN,M and con-
sists of all graphs with N vertices and M edges, each of them taken with the same
probability

P(G) =

(
N(N − 1)/2

M

)−1

. (6.9)

The second graph ensemble is perhaps even simpler, consisting again of graphs with
N vertices, where each of the possible N(N − 1)/2 edges is present with probability
p ∈ [0, 1] and absent with probability 1−p. The ensemble is denoted GN, p. The choice
p = 1 corresponds to the complete graph, while for 0 < p < 1 the ensemble contains
all possible graphs with N vertices (there are 2N(N−1)/2 of them), with a probability
depending on the actual number of edges. If there are M edges in graph G ∈ GN, p,
then P(G) = pM (1 − p)N(N−1)/2−M . In informal colloquial jargon, the graphs from
both ensembles GN,M and GN, p are referred to as Erdős-Rényi graphs, and indeed the
properties of the two are very similar.

Another prominent graph ensemble GN, k−reg consists of all k-regular graphs with
N vertices, each of them with equal probability. Seemingly simple, such random graphs
turn out to be much harder to study than the Erdős-Rényi graphs.

Most of the properties of the graph ensembles refer to the limit of large size,
N → ∞. As all statements on a property P of random graphs have probabilistic
content, we shall always understand them as saying that the probability that property
P is satisfied goes to 1 in the limit N → ∞.

In this sense we ask the first question about Erdős-Rényi graphs, namely how large
the connected components are in such a graph. Let us concentrate on the ensemble
GN, p. Intuitively, if p is very small, the vertices will rarely be connected at all, and the
graph will consist of many small connected components. On the contrary, if p is close
to 1, nearly all possible edges will be present, and there will be one big component
comprising all vertices, except for maybe a few of them. There is a strong rigorous
result on the size of the largest component in a graph from the ensemble GN, p, stated
as follows [1176]. Suppose c = pN stays constant as N → ∞. Then for c < 1 every
component has O(lnN) vertices, while for c > 1 there is a number α(c) > 0 so that the
largest component has α(c)N + o(N ) vertices, and all other components have O(lnN)
vertices. In the latter case the largest component contains a finite fraction of all the
vertices and it is called the giant component.

How should we understand this result? For given p = c/N there will be on average
pN(N − 1)/2 edges out of the total N (N − 1)/2. So, there is on average c(1− 1/N )/2
edges per vertex, and as each edge has two ends, and for large N , the average degree
of a vertex in such random graph is c. The above theorem says that if the average
degree is larger than 1, there is a giant component containing a non-negligible fraction
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of the vertices, while if the average degree drops below the critical value 1 the graph
breaks up into many parts, each containing an infinitesimal fraction of the size of the
graph. We used the word ‘critical’ on purpose. Indeed, the problem is closely related
to the mean-field version of a bond percolation problem, which was mentioned in Sec.
3.1.2 in the context of the Cont-Bouchaud model of the stock market. The value c = 1
marks the percolation threshold, which is the critical point of a second-order phase
transition.

Another important result for the Erdős-Rényi graphs concerns their degree se-
quence. Quite trivially, the average degree is

d
G

= (N − 1)p. (6.10)

Selecting one vertex at random, there are N − 1 potential edges leading from it, and
each of them is present with probability p. Consequently the vertex has degree k with
probability given by the binomial distribution

Pdeg(k) =

(
N − 1
k

)
pk(1 − p)N−1−k, (6.11)

which goes to the Poisson distribution if N → ∞ with fixed average degree c = pN .
The result can be formulated in a stronger way. Indeed, we spoke about only a single
randomly chosen vertex, which tells us little about the entire degree sequence. Instead,
we shall now ask how many vertices in a given random graph have degree k. We denote
this (random) number Nk. The degree distribution (6.11) bears the information on the
average, 〈Nk/N 〉 = Pdeg(k), but the point is that we can say more. Let us formulate
the theorem first and discuss it afterwards.

If Nk is the number of vertices of degree k in a graph from the ensemble GN, p,
c = pN is constant as N → ∞, and fk = ck e−c/k!, k ≥ 0 is the mass function of the
Poisson distribution, then for any ǫ > 0

lim
N→∞

Prob
{

(1 − ǫ)fk ≤
Nk
N

≤ (1 + ǫ)fk

}
= 1. (6.12)

This result means that a sufficiently large graph has almost surely Nfk vertices of
degree k, not more and not less. Not only do we know the average properties of the
graph, but in the limit N → ∞ all Erdős-Rényi graphs look the same, at least with
regard to their degree sequence. Later we shall see that many more graph properties
reveal the same finding: if the number of vertices grows to infinity, all graphs in the
ensemble GN, p are equal.

Now, how is the structure of Erdős-Rényi graphs described in terms of various
subgraphs they contain? The most important subgraphs are cycles, and we should ask
how many of them there are. The answer is that the average number of cycles of length
k in a graph from GN, p is

〈Nk−cyc〉 =
N !

2k (N − k)!
pk, (6.13)

which can easily be seen. Indeed, if we choose a sequence of k vertices, then the
probability that they are connected by a cycle is pk, because each of the k edges is
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placed independently of the others with probability p. How many of such sequences
are there? After choosing one vertex out of N , we have N − 1 possibilities to choose
the next, etc. giving the total N(N − 1)(N − 2) . . . (N − k + 1). Not all of them are
different, though. There are k possibilities for where to start the sequence for a given
cycle and two directions in which to proceed along it. Combining the pieces, we get
the result (6.13).

In many calculations we consider the presence of short loops as an undesired nui-
sance. To assess how serious it is, we would like to estimate the length of the shortest
cycle we must take into account. For a given vertex v in the graph G the relevant
quantity will be the length of the shortest cycle going through the vertex v, or

g
G

(v) = min{k : there is a cycle Gk ⊂ G of length k and v ∈ Gk}. (6.14)

The girth of the graph G is the minimum of gG(v) over all v ∈ G, but as we already
noted, this is not the quantity which interests us here. Instead, we would like to know
the average g

G
=
∑
v gG

(v)/N . The formula (6.13) will help us to estimate its value.
As each cycle of length k goes through k vertices, the average number of k-cycles which
go through a given vertex is k〈Nk−cyc〉/N . For large N and c = pN > 1 it is a growing
function of k, so larger cycles are more frequent. The length l of the shortest cycle
can be estimated by requiring that there is on average only one cycle of the length l,
i.e. l〈Nl−cyc〉/N = 1. The value obtained this way will serve as an approximation for
the average shortest cycle, gG ≃ l. Using (6.13) and assuming that l ≪ N we get the
estimate

gG ≃ lnN

ln c
. (6.15)

We can see that the cycle length grows with N , so that we can claim that locally
the graph looks like a tree if N is large enough. On the other hand, the growth is
logarithmic, i.e. rather slow, and a graph with a thousand vertices and c ≃ 2 can have
cycles of typical lengths of about ten. We can also see that if c decreases to the critical
value, equal to one, the length of the shortest cycles diverges, limc→1+ g

G
= ∞, which

is yet another sign of the fact that the graph breaks into many small disconnected
pieces.

A similar line of thought will lead us to the estimate of the average distance between
vertices in the Erdős-Rényi graph. Choosing vertices u, v ∈ G, a path of length l
connecting u and v requires l edges and l− 1 intermediate vertices. The latter can be
chosen in (N − 2)(N − 3) . . . (N − l) ways while the set of l necessary edges is here
with probability pl. From here we can deduce a formula analogous to (6.13) for the
average number of paths between u and v having length l. Fixing again c = pN > 1
and requiring that the average number of shortest paths is approximately 1 we get the
result

l
G
≃ lnN

ln c
(6.16)

showing that the shortest cycles and shortest paths have about the same length!
It is instructive to compare these findings for the Erdős-Rényi graphs with the

results we can obtain in a similar manner for the regular graphs. As the average degree
in the Erdős-Rényi graph is d

G
= c, we should compare it with the c-regular graph for
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integer c. If we try to compute the probability that edges exist among the prescribed
l − 1 intermediaries v1, v2, . . . , vl−1, we place the edges one by one starting from the
vertex u. Suppose that the first edge (u, v1) is placed with probability p = c/N . Then,
the second edge (v1, v2), going from the first to the second intermediary, is not placed
with the same probability p, because the vertex v1 has a definite degree c, and the fact
that it already has one edge attached to it changes the probability for the other edges.
A simple consideration shows that the second edge is present with probability c−1

c
p,

and the same will hold for all other edges in the path from u to v. This leads us to the
estimate lG ≃ lnN

ln(c−1) , which looks similar to that for the Erdős-Rényi graph if we are

interested only in the dependence on the number of vertices; but the dependence on c
is different. In terms of cycles and paths, the structures of Erdős-Rényi and c-regular
graphs are mutually similar for large c, but definitely different if c is small. In fact,
speaking of diameter instead of average distance, one can prove rigorously that for the
c-regular graph, c ≥ 3, diamG = lnN/ ln(c− 1) in the limit N → ∞ [1177].

To compute the clustering coefficient, it is sufficient to consider one triple of ver-
tices. They form a triangle if all three edges are present, i.e. with probability p3. There
are three possibilities to have a ‘vee’ within the triple, each of them with probability
p2. So, the average number of triangles in the graph is

(
N
3

)
p3, and the average number

of ‘vees’ correspondingly 3
(
N
3

)
p2. Hence

CG = p =
c

N
, (6.17)

and we can see that in the Erdős-Rényi graphs with a fixed average degree, the clus-
tering coefficient vanishes as the size of the graph grows.

The Erdős-Rényi graphs are frequently said to have the ‘small-world’ property
together with low clustering. Vaguely, this means the distances in the graph are short,
but the vertices do not form densely connected cliques, characterised by many triangles.
More precisely, the graph is considered a ‘small-world’ one if the average distance grows
logarithmically with the number of vertices; and indeed, this is the case of the Erdős-
Rényi graph, as demonstrated in (6.16). The motivation for this concept is provided
by hypercubic lattices in d dimensions. Considered as graphs, these lattices have an
average distance which grows with the number of vertices as power ∼ N1/d; thus the
typical distances in the small-world graphs are shorter than on a hypercube in however
large a dimension. If the vertices were people placed on a two-dimensional regular grid,
reminiscent of Manhattan, they would be separated by distances of ∼

√
N steps; but

if they are dispersed over an Erdős-Rényi graph, they are much closer to each other,
only ∼ lnN steps from each other.

There is a certain inconsistency in considering the logarithmic increase with the
number of vertices. If we look at the average distance, we say that it is ∼ lnN , i.e.
rather small. At the same time, computing the shortest cycle going through a given
vertex, we find that it grows as ∼ lnN , i.e. it is large. This short-though-long paradox
reveals that we are looking at the graph from different perspectives. Having in mind
local properties like the average number of first or second neighbours, lnN is a large
number, and we say that the graph is tree-like. If we investigate global properties such
as distance, lnN is considered small, and we speak of small worlds.



230 Network economy

Graphs with prescribed properties

The random graphs of the Erdős-Rényi ensembles GN,M and GN, p, as well as the reg-
ular graphs, are intriguing mathematical objects, but they provide too little versatility
to be used for modelling real situations. Most notably, the degree sequence is always
the same, Poissonian for Erdős-Rényi, or constant for regular graphs. Networks we
shall encounter for which the random graphs serve as models, exhibit various types of
degree sequences, but rarely, if ever, is Poissonian found. This leads us to the ques-
tion of how to construct a graph ensemble with a prescribed degree sequence which
could be taken, e.g. from some concrete empirical data. Such an ensemble would be
the model of the specific real situation.

We have already noted that not every degree sequence D = [d1, d2, . . . , dN ] can be
realised in a graph. However, if we allow for loops and multiple edges between pairs
of vertices, the only requirement is that the sum of degrees

∑
i di is even. There is a

construction which shows that a graph corresponds to any degree sequence satisfying
this small constraint. Simultaneously it provides a clue for calculating probabilities
of graphs in the corresponding ensemble, which we denote GD. A graph from this
ensemble is obtained as follows [1178]. Imagine that each vertex puts out as many
hands as the degree sequence dictates, i.e. d1 for vertex 1, d2 for vertex 2, etc. Now
randomly choose a pair of hands and let them join. Then, choose another pair out of
the remaining free hands and repeat the procedure until no uncoupled hands remain.
For a more formal description, look at Box 6.1.

To see the basic properties of the graphs from the ensemble GD, we proceed in
similar way as with Erdős-Rényi graphs. The results are, to a large extent, qualitatively
equal, but modifications arise due to the heterogeneity in the degrees. Given the degree
sequence D, denote by Nk the number of vertices with degree k and 2L =

∑
k kNk =∑N

i=1 di. The simplest quantities are the averages

k =
1

N

∑

k

k Nk

k2 =
1

N

∑

k

k2Nk,

(6.18)

and the rest mostly relies on them. The average distance in the graph is estimated by
calculating the average number of paths of length l connecting a pair of vertices v0, vl ∈
V having degrees k0 and kl, respectively. A path of length l has l − 1 intermediaries
v1, v2, . . . , vl−1. Let us denote by ki the degree of the vertex vi. With these degrees
fixed, start by looking at the probability that v0 and v1 are connected by an edge.
There are k0 k1 possible ways to join one of the k0 hands of the vertex v0 with any
of the k1 hands stemming from the vertex v1. The remaining hands can be paired in
1 · 3 . . . (2L− 3) ways out of the total 1 · 3 . . . (2L− 1) possible pairings. This gives the
probability

Prob{v0 and v1 connected by an edge} =
k0 k1

2L− 1
. (6.19)

Supposing now that v0 and v1 are mutually connected, what is the probability that
v2 is also connected to v1? The same consideration can be applied, with one simple
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Graphs with prescribed degree sequence Box 6.1

A graph with multiple edges connecting the same pair of vertices is a slightly more
complicated object G = (V, E , ε). In addition to the vertex and edge sets V and E ,
respectively, there is an incidence function ε : E → V × V saying which vertices are
connected by which edge. We consider identical two graphs which differ only in the
permutation of the elements of E . LetD = [d1, d2, . . . , dN ] be the desired degree sequence,
and 2L =

∑
i di. For a graph from the ensemble GD, we use V = {1, 2, . . . , N} and E =

{1, 2, . . . , L}. To construct the incidence function, consider the set S = {1, 2, . . . , 2L},
and the map f(a) from S to V such that f(a) = v if

∑v−1
i=1 di < a ≤ ∑v

i=1 di. Now
let {{a1, b1}, {a2, b2}, . . . {aL, bL}} be the partitioning of S into disjunct two-element

subsets, ai 6= bi, {ai, bi}∩{aj , bj} = ∅ and
L⋃

i=1

{ai, bi} = S . For each such partitioning we

set ε(i) = (f(ai), f(bi)). It is interesting to note that the number of ways the partitioning
can be done is 1 · 3 · · · · (2L− 1), which is exactly the number of all Feynman diagrams
containing L propagators for a scalar field theory. This correspondence can be pursued
in depth to formulate a field theory of random graphs, see, e.g. Refs. [1179–1184].

but far-reaching modification that there are only k1 − 1 hands available to pair with
k2 hands of the vertex v2. Hence,

Prob{v1 and v2 connected |v0 and v1 connected} =
(k1 − 1) k2

2L− 3
, (6.20)

and the same procedure can be repeated until the end of the path. Now we need to
take into account how many choices of the intermediaries there are. We assume the
graph is large and so is the number of vertices of each degree in question, Nki ≫ l,
i = 0, 1, . . . , l (otherwise the combinatorics would be much harder). Then, the number

of choices is ≃ ∏l−1
i=1Nki . Eventually we sum over all choices of the degrees of all

vertices in the path, i.e. the intermediaries as well as the ends v0 and vl, and we get a
closed expression for the average number of paths of length l between two randomly
chosen vertices

〈Nl−path〉 =
k

N

(k2 − k

k

)l−1

. (6.21)

The average distance follows immediately:

l
G
≃ 1 +

(
ln
N

k

)(
ln
k2 − k

k

)−1

≃
(

ln
k2 − k

k

)−1

lnN. (6.22)

At first sight it is only a slight modification of the result (6.16) for the Erdős-Rényi
graphs, as the dependence on the graph size is again logarithmic. For nearly homoge-
neous networks, where both k and k2 converge to a finite limit when N → ∞, it is
indeed so. However, if the degree sequence contains many vertices with a large degree,
things can differ substantially. For example, as we shall soon see, the degree distribu-
tion for many real-world graphs has a power-law tail Nk ∼ k−γ , and for γ = 2 we
have k ∼ lnN , k2 ∼ N , and the average distance approaches a finite limit, instead of
diverging for increasing graph size.
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The clustering coefficient can be obtained by repeating the same consideration for
the case of triangles and ‘vees’. The result is

CG ≃
(
k2 − k

)2

Nk
3 . (6.23)

This result is again similar to but not quite the same as the expression (6.17) for
the Erdős-Rényi graph. In a generic situation with finite k2 the clustering coefficient
decreases as N−1 with the graph size, but taking once more the example of power-
law distributed degrees, now with exponent γ = 3, we have k2 ∼ lnN and CG ∼
N−1 ln2N , so that the decrease of the clustering coefficient is significantly slower than
for the Erdős-Rényi graph. When we use the formula (6.23) for the case of exponent
γ = 2, we find, to our great surprise, that the clustering coefficient increases as ∼ N ,
which is obviously wrong because CG cannot exceed 1 by definition. The contradiction
is clarified when we realise that Eq. (6.19) for the probability of two vertices to be
connected tacitly assumes that k0k1 ≪ kN . To see it on a simple example, let us
imagine a graph with degree sequence [N − 1, N − 1, 2, 2, . . . , 2]. The first two vertices
are connected to all remaining ones, while the third, fourth, etc. vertices are connected
just to the first two. The formula (6.19) estimates the probability of the first two being
connected as (N − 1)2/(4N − 5), which is larger than 1. This is absurd.

If there are many vertices with a degree comparable to N , as happens for power-law
distributions with exponent γ < 3, the whole line of thought leading to (6.23) must be
rectified to give sensible results. The reader is encouraged to try it herself (Problem 1).
Nevertheless, the general conclusion can be drawn that the random graphs with a given
degree sequence can have a large clustering coefficient, if only the tail of the degree
distribution is fat enough. This makes them significantly different from Erdős-Rényi
graphs.

Small worlds of Watts and Strogatz

There is a sound reason for the quest for graph models with a large clustering. It was
found empirically, for example in the pioneering work of Duncan J. Watts and Steven
H. Strogatz [1185], that the clustering in real-world networks is high—much higher
than in the Erdős-Rényi graphs of comparable size. At the same time, the small-world
property, i.e. logarithmic growth of the average distance, which is typical of random
graphs, is also well documented empirically, at least on a qualitative level.

We have already seen that the small-world property and high clustering coexist in
graphs with power-law degree distribution if the exponent is small enough. A more
transparent recipe for high-clustered small-world networks was suggested in the pre-
viously mentioned work [1185]. The idea is to merge a regular lattice, for example a
cycle with second-nearest-neighbour connections, with an Erdős-Rényi random graph.
The hybrid will inherit the clustering from the lattice and the average distance from
the Erdős-Rényi graph.

There are several ways to implement this scheme. Let us present the most typical
one. We have N vertices on a ring and each of them is connected by an edge to its 2k
neighbours, from the nearest up to the k-th nearest ones. Moreover, other edges are
added, with probability p

WS
per each edge in the ring, i.e. randomly chosen pairs of
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=+

Fig. 6.2 Illustration of the Watts-Strogatz construction. The ring with N = 8 and k = 2 is

combined with an Erdős-Rényi random graph with 3 edges; thus pWS = 3/16.

vertices are mutually connected with probability p = NkpWS/
(
N
2

)
, making shortcuts

between vertices which would have been quite distant from each other. The additional
edges correspond to an Erdős-Rényi graph from the ensemble GN,p superimposed
on the regular ring we started with. Therefore, there are on average Nk(1 + pWS )
edges in the graph and the average degree is 〈d

G
〉 = 2k(1 + p

WS
). More formally,

the vertex set is V = {0, 1, . . . , N − 1}, and the edge set is the union of the edge set
of an Erdős-Rényi graph from the ensemble GN, p and the edges in the ring Ering =⋃
i∈V

{(i, i−k), (i, i+k), . . . , (i, i−1), (i, i+1)}. In the latter expression, periodic boundary

conditions are assumed, so i < 0 is identified with i + N , etc. An illustration of the
construction is shown in Fig. 6.2.

As with the other graph ensembles, we ask again what the average distance is on
the Watts-Strogatz graph. It turns out that the relevant control parameter is the total
number of shortcuts Ns = NkpWS . Let us see what happens if Ns is either very small
or very large.

Clearly, the distance between vertices i and j on the ring is min{⌈ |i−j|/k⌉, ⌈ |i−j−
N |/k⌉}. (For those who are not familiar with the notation we recall that ⌈x⌉ denotes
the ceiling function, i.e. the least integer which is ≥ x.) Therefore, the average distance
is lG = N/(4k) for a large enough N . This is the case of pWS = 0, or Ns = 0.

On the other hand, for large Ns the shortcuts determine the distance in a decisive
way. However, it would be a mistake to simply copy the expression (6.16) for the Erdős-
Rényi graph, as the path is composed of alternating shortcuts with the passages along
the ring. The latter have an average length ξ/2k, where ξ = 1/(kp

WS
), also called

correlation length, is the inverse of the concentration of the shortcuts on the ring.
Imagine now that the graph is collapsed in such a manner that only 2Ns vertices

which are ends of the shortcuts are left, and the passages connecting the shortcut
ends along the ring are replaced by single edges. The result is a random graph with an
average degree equal to c = 3. On such a graph, the average distance is ≃ ln 2Ns/ ln 3 ≃
ln 2Ns, according to (6.16). When we translate this finding to the original Watts-
Strogatz graph, we should take into account that every second step corresponds to
a passage of length ξ/2k, so we find that its average distance is lG ≃ 1

4k ξ ln 2Ns =
N
4k

(Nkp
WS

)−1 ln(2Nkp
WS

).
The expressions we have just found in the opposite limits of small and large num-

bers of shortcuts suggest a scaling formula for the average distance
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lG =
N

k
f(Nkp

WS
) (6.24)

where the scaling function f(x) has the following limits

1
4 for x≪ 1

f(x) ≃
{

(6.25)
1
4x

ln 2x for x≫ 1.

The scaling behaviour is indeed confirmed by numerical simulations and analytical
approximations. We shall quote without proof the result of a mean-field approximation
[1186]

f(x) =
1

2
√
x2 + 2x

arctanh
x√

x2 + 2x
, (6.26)

and it can be easily checked that the limit behaviour (6.26) indeed holds. In practice,
however, the expression (6.26) does not provide an agreement with numerical data
which could be deemed satisfactory. One can do better using computer-assisted enu-
meration of graphs with a fixed small number of shortcuts. Hence, we can construct
Padé approximants and the third-order one [1187]

f(x) =
1

4

1 + 1.825x

1 + 1.991x+ 0.301x2
(6.27)

works quite well, although it does not have the exact asymptotic behaviour for x→ ∞.

6.1.3 Graph processes

Instead of considering the graph ensembles as static objects, we can think of building
a graph by adding its constitutive elements, vertices, edges or even larger pieces, one
by one. In some cases it is just a suitable way of looking at graphs which are otherwise
fairly static, as Erdős-Rényi graph ensembles are, but sometimes the graph process
emulates creation of the real network we are modelling.

Adding edges

Let us start with the definition. Suppose we have the vertex set V of N . The graph
process is a sequence Gt, t = 0, 1, 2, . . ., in the space of graphs with the same vertex
set Gt = (V , Et), so that the edge sets grow monotonously, Et ⊂ Et+1. This means
that the edges are added in the course of the process, but never removed or replaced.
Strictly speaking, the sequence Gt is just a single realisation of the graph process, and
to have complete description of it we must prescribe a probability to each realisation.

If we start with an empty graph, E0 = ∅ and a single edge is added in each step so
that Et contains t edges, and furthermore, if all such realisations are equally probable,
then the state of the process at time M is exactly equivalent to the Erdős-Rényi graph
ensemble GN,M .

How can the other basic ensemble GN,p be regarded as a graph process? There are
N(N − 1)/2 pairs of vertices which can be potentially joined by an edge. Assign to all
these pairs independent random variables with a uniform distribution in interval [0, 1],
so that p(i,j) belongs to the pair (i, j). Given a realisation of these random numbers,
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Threshold functions Box 6.2

We consider only monotone properties P of graphs, which means that if P holds for a
graph Gt, then it also holds for any Gt′ if t

′ > t. Intuitively, a property is monotone if it
cannot be spoilt by the addition of edges. For example if there exists a giant component
containing a finite fraction of nodes, it can only be larger when an edge is added, but
never smaller. In physical terms, it is related to a phase transition, namely crossing the
percolation threshold. If we look at other monotone properties of graphs, we find many
other phase transitions, occurring at different times. It is important to note that the
critical points of these transitions depend on the number of vertices N . To describe this
dependence we introduce for each property P a threshold function τ (N) such that

1 if t/τ(N) → ∞ as N → ∞
limN→∞ Prob

{
Gt has property P

}
=

{
0 if t/τ(N) → 0 as N → ∞

which means, translated into human language, that if the graph is large enough, then
the property almost surely holds for graphs with more than ∼ τ (N) edges while it is
almost surely violated for graphs with less than ∼ τ (N) edges. In terms of the parameter
p, the property P first emerges at the (size dependent) critical value pc = 2τ(N)/N2.
Obviously, different graph properties can have different threshold functions and different
critical values pc.
We have seen that the threshold function for the existence of the giant component is
τ (N) = 1

2
N . Some other examples follow. For a graph being connected it is τ (N) =

1
2
N lnN ; for existence of a cycle of length k in the graph it is τ (N) = N , for any

k ≥ 3; for existence of a complete subgraph with k vertices it is τ (N) = N2(k−2)/(k−1);

for existence of a tree of k vertices within the graph it is τ (N) = N (k−2)/(k−1). The
notion of the threshold function can be even more refined, introducing the hitting time
for a graph property. While cτ (N) can serve as a threshold function as well as τ (N),
independently of the constant factor c > 0, the hitting times contain the information on
the proper value of the factor c. In fact, the functions τ(N) given above for the emergence
of a giant component and for connectedness are hitting times, with the correct factors
1/2 in front.

put them in an ascending order up to the value p, so that 0 ≤ p(i1,j1) ≤ p(i2,j2) ≤ · · · ≤
p(iK ,jK) ≤ p. Then, at time t ≤ K the edge set will consist of edges (i1, j1) through
(it, jt), and then the evolution stops, Et = EK for t > K.

We can also invert the logic and consider the parameter p as time-dependent.
Again ordering all the random numbers assigned to vertex pairs, at time t we add
the edge (it, jt) and have p(t) = p(it,jt). The motivation comes from a surprising
observation made by Erdős and Rényi, namely, that many properties of the graphs
change abruptly at a certain value of p, or, in the language of graph processes, at a
certain time t. We have already seen an example, when we explained the emergence
of the giant component at p ≃ 1/N or at time t ≃ N/2. Similarly, it was proved that
first cycles appear in the graph around time ∼ N , independently of their length, and
the graph becomes connected around time ≃ 1

2
N lnN . For more information see Box

6.2.

Barabási and Albert

When modelling the properties of the World Wide Web, Albert-László Barabási and
Réka Albert introduced a simple though incredibly rich model, which marked a small
revolution in the field of random graphs. The Barabási-Albert graph process differs
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from what we have seen up to now, as it adds not only edges but also vertices. There-
fore, it describes a growing network [1188–1191].

First we expose this idea on an intuitive level. In each step we add a web page
with a fixed number m of links on it. The links point to already existing pages, and we
suppose that the probability that a new link refers to a specific old page is proportional
to the number of links already leading to that page. The principle that ‘popular’ pages
gain even more popularity in this way is called preferential attachment. This model
was devised in order to reproduce the power-law distribution of degrees in the graph
corresponding the structure of the WWW, and we shall now show that growth and
preferential attachment are indeed sufficient to produce these power laws.

When we want to formalise the above-outlined idea in a well-defined graph process,
we must first answer a few technical questions. Perhaps the simplest is what vertex
set we should choose. As we think of graphs growing without limitation, it is natural
to take the vertex set infinite; we use the set of all natural numbers, V = {0, 1, 2, . . .}.
When calculating any properties of the graph process at time t, we shall consider only
the properties of the vertices 0 through t. Another problematic issue is the proper
initial condition. If there are no edges whatsoever at the beginning, and all degrees
are zero, how could we proceed by adding edges with a probability proportional to the
degree? Moreover, what should the m edges going from the first vertex be attached to
if no other vertices are present? There are several ways to go round this problem, and
each of them leads to slightly different graphs. Unfortunately, the choice cannot be
deemed irrelevant, and we must be careful to specify which one we are using. Before
stating the precise initial condition we consider here, we mention the last remaining
problem. When more than one new edge is added with one new vertex, i.e. m ≥
2, the preferential attachment principle formulated above does not tell us what the
correlation is among degrees of the m old vertices. The level and type of this correlation
matters a lot. Although the most natural assumption is that of maximum independence
among the m vertices chosen, we shall see that graphs where the dependence is strong
are equally important and interesting.

Let us describe our preferred version of the Barabási-Albert graph process. Note
that the edges in the Barabási-Albert graph are naturally ordered, as they always
join the ‘new’ vertex t with some of the ‘older’ vertices s < t; so we shall distinguish
between the out-degree, which is always m, and the in-degree, which has non-trivial
behaviour. We shall use a slightly generalised form of preferential attachment, where
the probability of joining a vertex by a new edge is a linear function of its actual
in-degree. The absolute term of this dependence is a crucial parameter determining
the structure of the network, besides the number m of edges added in one step. It
is convenient to express the absolute term as bm, with b > 0. The vertex set being
fixed, the process implies only growth of the edge sets; so at time t we have graph
Gt = (V , Et), with edge sets increasing in time, Et ⊂ Et+1.

Suppose at first thatm = 1. At time t = 0 there are no edges, E0 = ∅. At later times,
t ≥ 1, one edge connecting vertex t ∈ V with another vertex which was connected to
the rest of the graph at some earlier time. Let us denote et the edge added at time
t, so that Et = Et−1 ∪ {et}. The choice of which edge is to be added is based on the
in-degrees of already connected vertices. We denote kt−1(s) = dinGt−1

(s) the in-degree
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Fig. 6.3 Illustration of the Barabási-Albert graph process. The vertices are added, proceed-

ing from the left to the right. Every new vertex contributes by m = 2 edges going from itself

to 2 distinct older vertices, according to the preferential attachment principle. We can clearly

see that older vertices have on average a higher degree.

of the vertex s at time t−1. According to the principle of preferential attachment, the
probability that the vertex t is joined to vertex s < t is a linear function of kt−1(s), so

Prob
{
et = (t, s)

}
=
kt−1(s) + b

(b + 1)t− 1
. (6.28)

In the denominator we recognise the sum
∑t−1
s′=0

(
kt−1(s′) + b

)
, ensuring the proper

normalisation of the probability.
The graphs produced in this way are trees. It is relatively easy to calculate prop-

erties of their degree sequences. We can write the master equation for the probability
Ps, t(k) = Prob

{
dinGt

(s) = k
}

that at time t the vertex s has in-degree k,

Ps, t+1(k) =
k − 1 + b

(1 + b)t− 1
Ps, t(k − 1) +

[
1 − k + b

(1 + b)t− 1

]
Ps, t(k) (6.29)

where we completed the definition for negative k by requiring Ps, t(k) = 0 for k < 0.
The boundary condition for the equation (6.29) is Pt, t(k) = δ0k, expressing the fact
that the ‘newest’ vertex has no incoming edges yet.

It is easier to work with averaged quantities, namely, to calculate the global degree
distribution at time t, which is Pt(k) = 1

t+1

∑t
s=0 Ps, t(k). We obtain the following

difference equation

(t+ 1)
[
Pt+1(k) − Pt(k)

]
= −Pt(k)

+
t

(1 + b)t− 1

[
(k − 1 + b)Pt(k − 1) − (k + b)Pt(k)

]
+ δ0k.

(6.30)

If there is a stationary distribution P∞(k) = limt→∞ Pt(k), it must obey the recurrence
formula
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k + 2b+ 1

1 + b
P∞(k) = δ0k +

k − 1 + b

1 + b
P∞(k − 1) (6.31)

with the obvious condition P∞(k) = 0 for k < 0. We can easily solve Eq. (6.31) by
iteration, so

P∞(0) = (1 + b)
1

2b+ 1

P∞(1) = (1 + b)
b

(2b+ 1)(2b+ 2))

P∞(2) = (1 + b)
b(b+ 1)

(2b+ 1)(2b+ 2)(2b+ 3))

...

(6.32)

and generalising the pattern you have surely spotted in (6.32), we obtain the final
formula for the degree distribution in the Barabási-Albert graph with m = 1:

P∞(k) = (1 + b)
Γ(2b+ 1)Γ(k + b)

Γ(b)Γ(k + 2b+ 2)
. (6.33)

Using the Stirling formula (see Box 3.5 if unclear) we can deduce that at large k the
degree distribution obeys the power law

P∞(k) ∼ k−2−b , k → ∞. (6.34)

Having solved the case m = 1 we turn to a slightly more complex situation with
m ≥ 2. At least two new edges emanate from every new vertex, and the graph is
no longer a tree. There are several recipes for where to send the m new edges, all of
them compatible with the principle of preferential attachment. Let us first show three
recipes, in which the edges are as independent as possible.

The first two of them are very similar, but differ in whether we do or do not allow
multiple edges joining the same pair of vertices. If we do allow multiple connections,
then all of the m edges added at time t are connected to some of the t−1 older vertices
according to the probability

pt(s) =
kt−1(s) +mb

m
(
(b+ 1)t− 1

) , (6.35)

analogous to the expression (6.28). The initial condition is the same as in the m = 1
case, i.e. E0 = ∅; and at later times the probability that the vertex s < t is joined to
vertex t by l edges, out of the total m, is

Prob
{
kt(s) − kt−1(s) = l

}
=

(
m

l

)
(pt(s))

l(1 − pt(s))
m−l. (6.36)

A similar line of thought as in the case m = 1 leads us to the expression for the
stationary distribution of in-degrees [1190]
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P∞(k) = (1 + b)
Γ
(
(m+ 1)b+ 1

)
Γ(k +mb)

Γ(mb) Γ
(
k + (m+ 1)b+ 2

) . (6.37)

We can see that the tail of the distribution again has a power-law form with the same
exponent as in the m = 1 case. Thus, the asymptotic behaviour (6.34) holds indepen-
dently of the value of m and the only crucial parameter is b, the ‘initial attractiveness’
of the vertices. To sum up, the exponent describing the power-law of the in-degree
distribution in the Barabási-Albert graph is

γin = 2 + b. (6.38)

As we shall see later, the empirically-found values of this exponent usually lie in the
interval [2, 3]; therefore we can adjust the Barabási-Albert graph to the particular
situation by appropriate choice of the parameter b > 0.

The fact that we allowed multiple edges facilitated the solution and ensured com-
plete independence of the m edges added at the same time. If we forbid that multi-
plicity, the edges are no longer independent, but the correlation becomes very weak at
larger times. So, in the limit t → ∞ it does not matter if we allow multiple edges or
not, and the properties of the two variants of the Barabási-Albert graphs are identical.
To see an example of a graph produced in this way look at Fig. 6.3.

To see precisely how we proceed, we first specify the initial condition. The first m-
tuple of edges must be connected to at least m different vertices, so in the first m− 1
steps no edges are added, and the edge sets are empty, Et = ∅ for t = 0, 1, . . . ,m− 1.

In the following steps, t ≥ m, the vertex t is iteratively connected to m older
vertices, by edges e1t , e

2
t , . . . , e

m
t . For the first edge, the attachment probability is a

direct generalisation of the formula (6.28), but the placement of any further edge must
take into account where the other edges have already been attached. In any case,
however, Prob

{
elt = (t, s)

}
∝ kt−1(s) +mb, although the proper normalisation of the

probability is not as simple as in Eq. (6.28).
The third way to construct Barabási-Albert graphs with m > 1 is also possible.

We can first create a realisation of the Barabási-Albert graph process with m = 1,
stop at some time t = mu−1, u = 1, 2, . . ., and let every m-tuple of vertices {ml,ml+
1, . . . ,m(l − 1) − 1}, l = 0, 1, . . . , u − 1, coalesce into one ‘bigger’ vertex. The edges
are brought together, so that each bigger vertex has exactly m edges going from it.
The advantage of such an approach is that all properties of these graphs can be, in
principle, deduced directly from the Barabási-Albert graph process with m = 1. The
disadvantage, on the other hand, is that the m edges going from one vertex are not
completely equivalent. Moreover, loops can be created when coalescing the vertices,
which sometimes is not desirable.

Adding triangles

The m simultaneously added edges in the Barabási-Albert graphs being independent,
they do not contribute much to the clustering coefficient of the graph. We shall quote
without proof the estimate for the clustering in the Barabási-Albert graphs defined in
the last paragraph [1176]

CG ≃ m− 1

8

(ln t)2

t
(6.39)
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showing that the clustering is nearly as small as for the Erdős-Rényi graphs. For-
tunately, it is relatively easy to tune the Barabási-Albert graph process so that it
produces graphs with larger or smaller clustering, according to our wishes. Of course,
there are some strict bounds we cannot surpass, and one of the purposes of this para-
graph will be to estimate these bounds.

Let us see how it works for m = 2. We also forbid multiple edges now. Clearly,
adding two new edges at time t connected to vertices s1 and s2 can produce a triangle
or not, depending on whether there was an edge connecting s1 with s2. It is possible
to create a triangle in each step, starting with two vertices connected by an edge, so
E1 = {(1, 0)}. Then, in each subsequent step t ≥ 2, we choose an existing edge e ∈ Et−1

with uniform probability, and connect the two new edges to the endpoints of e, i.e. if
e = (s1, s2), s1 > s2, then Et = Et−1 ∪ {(t, s1), (t, s2)}. This construction satisfies the
preferential attachment principle, although in a specific form. The edges are naturally
oriented, even if we do not take the orientation into account explicitly. The newer
of the two vertices, s1, is chosen uniformly from among the t − 1 vertices available
(obviously, the vertex 0 must be excluded), but the older vertex, s2, is chosen with
probability proportional to its in-degree, just due to the random choice of the edge.
Therefore, the probability that a vertex s will be joined to t by an edge is equal to
Prob{kt(s) − kt−1(s) = 1} = 1/(t− 1) + kt−1(s)/(2t− 1), so that it is linear function
of the in-degree of s, as required. The preferential attachment emerges automatically.
Moreover, we can see that the corresponding parameter is b = 1; hence the exponent
in the power-law tail is γin = 3.

We are now ready to estimate the clustering coefficient. The number of triangles
at time t is exactly t− 1, and we only need to calculate the number of ‘vees’. In this
respect we shall ignore the orientation of the edges. The edge (t, s1) creates on average
as many ‘vees’ as is the average total degree, which is 2(2t − 1)/t ≃ 4 (for large t
we neglected the fact that s1 6= 0). The other edge, when connected to a vertex with
in-degree k, which happens with probability k/(2t− 1), creates k+ 2 ‘vees’. Summing

over all vertices, we have on average
∑t−1

s=0 kt−1(s)
(
kt−1(s) + 2

)
/(2t− 1) new ‘vees’.

Now we can see that the dominant contribution comes from the sum in which the
square of the in-degree is not bounded as t → ∞. Instead, the power-law tail of the
in-degree distribution Pin(k) ∼ k−3 leads to logarithmic divergence. Therefore, the
total number of ‘vees’ added at step t behaves like ln t and the clustering coefficient
decreases as

CG ∼ 1

ln t
(6.40)

i.e. much more slowly than for the Erdős-Rényi graph, although it still does not ap-
proach a finite limit when the size of the graph increases. We cannot add more than
one triangle at a time, and the number of ‘vees’ added also cannot be made smaller
than ln t as it follows from the preferential attachment, which we want to keep at any
cost. So, we conclude that (6.40) represents the highest clustering we can ever attain
in a Barabási-Albert graph of this sort. One possibility to get a finite clustering in
a graph process with preferential attachment would be to choose the parameter b in
such a way that the sum

∑t−1
s k2(s) would converge for t → ∞, i.e. prescribe b > 1

by hand. We leave the discussion of this possibility to the reader.
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Instead, we shall mention the opposite situation. Up to now, we have tried to add
as many triangles as possible, to ensure high clustering. But it is also possible to avoid
adding triangles at all, keeping the clustering at zero by definition. One simple method
for making the avoidance of triangles compatible with preferential attachment is just
to invert the procedure of adding triangles. Again, we choose one vertex s1 < t with
uniform probability among those already present, exclude the two vertices which are
connected to s1 by an edge, and choose among the remaining t− 3 vertices according
to the preferential attachment rule like that of Eq. (6.28). The probability that a
randomly chosen vertex s receives an edge from t is then a linear function of its in-
degree, which is all we want. Thus, the clustering coefficient of Barabási-Albert graphs
has a natural upper bound, but the lower bound is zero. An interesting alternative to
get highly-clustered graphs with power-law degree distribution is described in Refs.
[1192, 1193].

We have seen that the Barabási-Albert graph process can be modified and tuned
in many ways, producing graphs with variable properties. This very fruitful ground
has been explored from many points of view [1194–1215], but we stop here and turn
to even simpler processes generating graphs with power-law degree distributions.

Adding copies of the graph itself

Most of this chapter is devoted to random graphs and their real embodiments, random
networks. However, some of their properties can be well demonstrated on graphs which
are deterministic, with no random element. These graphs are very easy to handle;
therefore, they provide a helpful tool for various analytical calculations, although the
lack of randomness also brings about some unnatural features.

One of the main motivations is to model strongly heterogeneous graphs, namely
those with power-law degree distribution. The Barabási-Albert graph process is the
prominent model, but still too complicated for some purposes. It is possible to con-
struct a graph with power-law degree distribution iteratively, at each step making
several identical copies of the entire graph and then joining them in a specific way. In
fact, there is experimental evidence that metabolic networks, describing the chemical
reactions in the cells of our body, look very much like that. They consist of hierar-
chically assembled modules [1216–1218]. Something similar was also observed in the
structure of the internet [1219].

Let us see one possible way to make the model in practice [1220]. At the time t = 0
the graph consists of a single vertex and no edges. At the time t = 1 we add p new
vertices and join them to the first vertex. In what follows, we shall call the first vertex
of the graph its root. At the next time, t = 2, we make additional p copies of the
existing graph and join all vertices in the copies to the root in the original. At time t
the graph contains Nt = (p+1)t vertices. We can see an illustration of the construction
for p = 2 in Fig. 6.4. The graph thus obtained is usually called a deterministic scale-
free graph. A formal description of the process can be conveniently formulated in
terms of the adjacency matrix. Denote by A(t) the adjacency matrix at time t, with
initial condition A11(0) = 0. At time t + 1 we make a direct sum of p + 1 times the
matrix A(t) itself and then add the new edges to the root. We denote B(t + 1) the
matrix corresponding to the new edges, Bmn(t + 1) = Bnm(t + 1) = 1 for n = 1,
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t = 0 t = 1 t = 2

Fig. 6.4 Illustration of the deterministic scale-free graph. At each step, p = 2 new copies

of the graph are created, and links are added, joining the root vertex in the original to all

vertices in the copies. In the graph created at step t = 2, nodes in grey are type [112], and

nodes in black are type [122].

(p+ 1)t < m ≤ (p+ 1)t+1, and zero otherwise. Thus,

A(t+ 1) = A(t) ⊕ A(t) ⊕ · · · ⊕A(t)︸ ︷︷ ︸+B(t+ 1)

p+1 times

. (6.41)

As in the Barabási-Albert graph process, the edges are naturally ordered, leading
from the copies to the root in the original. We already used this ordering in the
definition of the matrix B(t). Now we would like to find the degree sequence. We
first classify the vertices according to how and when they emerged in the graph. The
classes will be formally described by sequences [s0s1 . . . st] characterising the types of
the vertices. Initially, there is only one vertex, and its type is denoted by [1]. Next,
at time t = 1 there is the root with type [11] and p copies of type [1p]. We proceed
iteratively further. At time t + 1, we make p new copies of the graph. Let us look
what happens with vertices which were of type [s1 . . . st] at time t. At the next time
step, t+ 1, we denote [s1s2 . . . st1] the type of the same vertices in the original, while
[s1s2 . . . stp] is the type of the vertices in any of the p copies. An example can be seen
in Fig. 6.4. The reason for using 1’s and p’s in the type sequence is simple: there are
exactly

∏t
i=0 si vertices of type [s1 . . . st].

To see what the degree is of a vertex with a specified type, we look first at the
in-degree. Vertices receive incoming edges as long as they are roots. We can easily read
for how long the vertex had been the root from its type sequence, because the first
appearance of a p in the sequence means that the vertex appeared in the copy and
thus stopped receiving any more edges. If si = 1 for i ≤ l, but sl+1 = p (or l = t, if
the vertex is still the root at time t), then its in-degree is (p + 1)l − 1, because it is
connected to (p+1)l vertices existing at time l, except itself. There are (p+1)t−l such
vertices, so, denoting N in

t (k) the number of vertices with in-degree k, we have

N in
t ((p+ 1)l − 1) = (p+ 1)t−l (6.42)

for discrete values l = 0, 1, . . . , t. To compare this result with the degree distribution
in Barabási-Albert and other random graphs, we need to calculate the cumulative
number N in≥

t (k) =
∑
k′≥kN

in
t (k′). We get

N in≥
t (k) =

1

p

[ (p+ 1)Nt
k + 1

− 1
]
, (6.43)
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Fig. 6.5 Results of Milgram’s experiment demonstrating the small world phenomenon. The

plot shows the number N(l) of letters which reached the target person in l steps. Data for

this plot are taken from [1239].

and with Pin(k) ≃ 1
Nt

d
dkN

in≥
t (k) we conclude that the probability distribution approx-

imately decays as a power law
Pin(k) ∼ k−2, (6.44)

i.e. the degree exponent is γin = 2 independently of p.
The out-degree is also easy to obtain. A vertex sends an edge out each time it is

in one of the p copies. So, the out-degree of a vertex is equal to the number of p’s in
its type. There are

(
t
k

)
different types containing k times p, and there are pk vertices

of each of these types. So, the number of vertices with a given out-degree is given by
binomial distribution

Nout
t (k) =

(
t

k

)
pk. (6.45)

The number of edges can be obtained easily, Et = tp(p + 1)t−1, and recalling the
number of vertices, Nt = (p + 1)t, we have that the averaged in- and out-degree is

kin = kout =
tp

p+ 1
=

p

(p+ 1) ln(p + 1)
lnNt. (6.46)

By similar considerations, one can obtain the exact formulae for the clustering coef-
ficient, average distance, and other properties of the graph. In all cases, the procedure
relies on iterative construction of the graph. Knowing its properties at time t, we can
compute, with not too much effort, the properties at time t + 1. The same path can
also be used, at least in principle, for several other iterative constructions known in
literature [1221–1229] or for the so-called Apollonian networks [1230–1232].

6.2 Statistics of real networks

The theory of random graphs started as an abstract discipline, although it was soon
realised that it might serve as a mathematical basis for modelling social networks and
various other real structures. The boom actually started at the end of the 1990s, when



244 Network economy

Robots and crawlers Box 6.3

are specialised pieces of software whose purpose is to automatically download web pages,
analyse their content, store pertinent information on disk, and then proceed to download
other pages. It is relatively easy to write a very simple robot which recognises all URLs
on a page and downloads recursively all URLs it comes across. Such activity of the robot
is sometimes called a crawl. The business of large internet search engines mainly consists
in crawling as large a portion of the Web as possible and copying down the content of the
pages. Thus, the owners of the engine have their own copy of (nearly) all relevant files
ever published on the WWW and digest the data in various ways to make the response
to your search request as quick as possible. Although an individual or a small research
group can hardly compete in general, it is possible to write, without an extreme effort,
a specialised robot designed to answer a specific question on the Web. See Ref. [1242]
for programming hints.

the first thorough empirical studies on the structure of the internet and the WWW
were published [1188, 1189, 1233–1238].

6.2.1 Milgram’s letters

It is fair to point out that the complexity of social networks has been the subject of
intense study among sociologists since the 1960s [1239–1241]. Stanley Milgram espe-
cially made the subject popular through the term ‘six degrees of separation’, which
is the colloquial summary of his study on letters blindly making their way from one
corner of the United States to the other.

Milgram distributed letters among 296 volunteers, 196 of them in Nebraska and
the rest in Boston. The instruction was to help to deliver the letter to the target,
who was a person living in Sharon, Massachusetts, a suburb of Boston. The condition
was that the letter could be sent directly only to a person known to the sender on a
personal basis. So, the letter was to proceed toward the target through a chain of per-
sonal acquaintances. By measuring the lengths of these chains, Milgram obtained some
information on the distances between vertices in the social network of the inhabitants
of the USA.

We can see in Fig. 6.5 the result of his experiment. For each of the 64 letters
which arrived at the addressee, the sequence of people (v0, v1, . . . , vl) was registered,
where v0 is the first sender and vl the target person. The number of letters N (l) going
along a path of length l exhibited a two-peak structure, which was traced back to
the social group of the people involved. Shorter paths, around l = 5, were composed
of people related to the target’s work, while longer paths, around l = 7, reached the
target through his hometown. The average length of all completed paths was l = 6.16.
Hence the term ‘six degrees of separation’. This is a very low number, considering the
hundreds of millions of inhabitants living in the United States. The conclusion is that
the graph representing the structure of the social network of North Americans has a
very low average vertex distance. We already know that the models of random graphs,
beginning with those of Erdős and Rényi, indeed have an average distance which can
be considered small, more precisely growing as a logarithm of the size. Therefore, the
Erdős-Rényi graphs, as well as other more elaborate models presented in the preceding
section, grasp quite well this ‘small-world’ feature of real networks.
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Fig. 6.6 Degree distributions on the WWW. In the left panel, cumulative in-degree dis-

tribution. The straight line is the power-law dependence ∝ k−1.2. In the right panel,

the cumulative out-degree distribution, the line indicating the power law ∝ k−1.7. The

symbols distinguish between the two crawls considered. The crawl of nd.edu domain,

containing 325, 729 pages, is denoted by ◦. The data were downloaded from the page

www.nd.edu/∼networks/resources.htm. The Alta Vista crawl, comprising 271 million pages

[1238], is denoted by △. Note the jumps in the data from the smaller sample, which are due

to occasional regularities in the structure of the webpages. In the larger sample, most of these

accidental features are averaged out. Data from Ref. [1238] replotted with permission of Ravi

Kumar.

6.2.2 Degree distributions

However, the average distance is only one of many important features of real networks
we are interested in. The next is the degree sequence, and here the Erdős-Rényi graphs
completely fail to account for the observed data. The most important finding which
aroused the interest of physicists in the field of random networks was the power-law
degree distribution in many real-world systems. Such networks are called scale-free,
although their self-similar nature is rather subtle [1243].

Technological

Let us look at some typical examples. The first one is the WWW. Fig. 6.6 shows the
cumulative distribution of in- and out-degrees, P≥

in and P≥
out(k), respectively, i.e. the

fraction of nodes with an in- or out-degree larger than or equal to k. Two data sets are
shown there. The smaller one, of ≃ 3 · 105 documents, comes from the crawl (see Box
6.3 if unclear) performed by A.-L. Barabási and coworkers on the nd.edu domain of
the University Notre Dame [1189]. The larger set, based on an Alta Vista crawl [1238],
contained ≃ 2 · 108 documents.

We can clearly see the power-law dependence,

P≥
in,out(k) ∼ k1−γin,out

γin ≃ 2.2

γout ≃ 2.7,

(6.47)
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Fig. 6.7 Degree distribution of the bipartite graph of actors-movies network. The edges

point from actors to movies. In the left panel, the distribution of in-degrees (actors per

movie). The central part should be compared with the line indicating the power law ∝ k−2.1.

The right panel shows the out-degree distribution (movies per actor). The distribution is

consistent with the exponentially damped power law, with cutoff value kc = 90. The line

is the power law ∝ k−1.7. The data, published in [1188], were downloaded from the page

www.nd.edu/∼networks/resources.htm.

extending over more than two orders of magnitude. It is also clear that, besides the
accidental effects and noise, the distribution is fairly robust when we increase the size
of the sample.

Many other real networks have been analysed in the same way. Table 3.7 in
the book [1244] lists 37 studies, most of them giving power-law degree distribu-
tions with exponents in the range 2 . γ . 3. The most important examples in-
clude the physical structure of the internet on the autonomous systems level, with
γ ≃ 2.2 [1237, 1245, 1246]; the citation network of scientific papers [1191, 1247, 1248],
where the tail of the distribution was fitted on power laws, with exponent ranging—
depending on the method used—from γ ≃ 3 [1247] to γ ≃ 1.9 [1248]; the network
of e-mail communication, with exponent γ ≃ 1.8 [1249]; the acquaintance network
in the private web club www.wiw.hu was shown to have power-law degree distribu-
tion, with exponent γ ≃ 2 in the tail [1250]; the wiring scheme of a large digital
circuit [1251] with exponent γ ≃ 3. It is very reasonable to model these networks
using the Barabási-Albert graph process, but modifications are surely needed to ac-
count for details in the structure of the networks. For example, we skipped the very
important discussion of the empirically found degree-degree correlations, betweenness
and other. All of these features require some specialities in the models used. Instead
of going into a deep discussion on them, we refer the reader to dedicated network
literature [1177, 1244, 1252–1258] and proceed with a little more empirical data.

Social

Fig. 6.7 shows the degree distribution in the oriented bipartite graph of actor collabo-
rations. The edges lead from actors to movies, according to the cast. So, the in-degree
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is the number of actors who played in a specific movie, and the out-degree is the num-
ber of movies the actor in question played in. The in-degree exhibits a power law in
the central part of the distribution, with exponent γin ≃ 2.1, but the out-degree has a
significant exponential cut-off, Pout(k) ∼ k−γout e−k/kc with exponent γout ≃ 1.7 and a
cutoff value of kc ≃ 90. Here it is much less clear if we can call the network scale-free,
as there is, in fact, no power-law tail. Nonetheless, the degree distribution is still very
broad.

Clearly, it would be overstated to claim that all social networks are scale-free.
Other studies on social networks have, for example, shown that the network of sexual
contacts in Sweden has a clear power-law degree distribution with an exponent around
γ ≃ 3 [1259], while the acquaintance network in the Mormon community was well
fitted on a single-peak Gaussian distribution [1260]. We must be very careful when we
decide to ‘model the society’: for different places, different times and different questions
require different graphs to be used.

The network of linguistic relationships exhibits yet other specific network features
[1261–1263]. The degree distribution shows a clear distinction between two subsets of
the lexicon, the frequent and less-frequent words. The former contribute to the tail
of the distribution and are described by a power law with exponent γ ≃ 2.7, while
the latter is apparent for lower degrees, where power law with a different exponent,
γ′ ≃ 1.5, holds. A modification of the Barabási-Albert graph process was developed
to account for this behaviour [1264].
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Fig. 6.9 Simplified scheme of the eBay auction site. The bidders 1, 2,. . . compete for buying

the items to be sold a, b,. . . , which are offered by the sellers A, B,. . . . The full lines with

arrows indicate who places a bid for what item and what item is offered by whom. Besides

that, a user can act as both seller and bidder (not for the same item, of course!) so the

double line in the figure indicates that 5 and B are in fact the same person. Moreover, the

participants can rate each other, writing a report and giving some points to the other side.

These second-level relations are indicated by dashed lines with arrows. The reports may also

be bilateral, for example both A and 2 in the figure reported on the behaviour of the partner.

Biological

Let us also mention the networks studied by biologists. Two typical situations are
shown in Fig. 6.8. The protein-protein interaction network expresses the relationships
between various proteins present in the cell. The vertices of the corresponding graph are
the proteins themselves, and they are joined by an edge if they come into contact for a
chemical reaction. To establish such a network of interactions is a subtle experimental
problem [1265–1267] and we can imagine the method used as attaching a lock to one
protein, and a key to the other one. If the two interact, they come close to each
other; the key fits in the lock, and a signal reaction is triggered, announcing that the
interaction has taken place. The data systematically collected in this way have been
analysed from the point of view of their graph structure [1268]. The first information
is the degree distribution, and we show it in Fig. 6.8 for three organisms: the fruit
fly, baker’s yeast, and the human. As we can see, in all three cases shown here the
distribution has rather fat tails, though it is definitely not a power law. The stretched
exponential function

Pdeg(k) ∝ e−ck
α

(6.48)

fits the data much better. It is interesting to note that, independent of the organism,
we find α ≃ 0.3, while the parameter c does depend on the species in question. Models
trying to account for the observed distributions can be found in Refs. [1269–1271].

Another well-studied case of a biological network is the neural system of a tiny
worm Caenorhabditis elegans [1272]. When the degree distribution was extracted
[1260], it was found that it obeys quite well an exponential law, at least in the middle
part of the distribution, as can be seen in Fig. 6.8.

We should also mention the food webs [1273–1276], where it is somewhat disputable
as to whether the degree distribution is exponential or power law. The samples are
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Fig. 6.10 Degree distributions in the tripartite graph of Aukro sellers, auctions, and bidders.

In the left panel, we show the distribution of auctions per seller (◦) and auctions per bidder

(△). The latter distribution was shifted rightwards by the factor 10, for better clarity of the

plot. The lines are the functions ∝ exp(−7.5 k0.12) (solid line) and ∝ exp(−3.5 (k/10)0.21)

(dashed line). In the right panel, we show distribution of bidders per auction. The line is

the function ∝ exp(−0.38 x). The data were collected from the aukro.cz site during the years

2010 and 2011. In total, the graph consists of about 106 bidders, 5 · 105 sellers, and 5 · 107
auctions.

rather small to give a definite answer. However, some other features, e.g. the extremely
small average distance about lG ≃ 2, are reproduced in several interesting models
[749, 1277–1281].

To sum up, a variety of real-world networks can be classified into several groups
according to their degree distributions. Most of them are rather broad, with maxima
at very small degrees, but allowing much larger degrees with a relatively high probabil-
ity. None of the networks mentioned here exhibited the Poisson distribution of degrees
predicted for the Erdős-Rényi random graphs. This underlies the necessity to use alter-
native models of random graphs, closer to empirical data. The Barabási-Albert model
is a very good candidate for some networks, like the WWW or citation network, as it
splendidly reproduces the power-law degree distribution. But many other situations,
notably the biological networks, do not obey the power law and alternative models
must be looked for. This direction remains to a large extent unexplored yet.

But if we remain within the scope of economic and social phenomena, the power-law
distributed, or scale-free, networks seem to prevail, and very often the Barabási-Albert
graph is chosen as a ‘canonical’ model of the social network we want to implement
within the model.

6.3 Electronic commerce networks

Let us now look in more detail at a specific group of real-world networks, with specific
importance placed on economic activities. With the advent of the WWW, a large
portion of trade moved to electronic media [1282]. While the substance of commerce
remains largely unchanged, the means used are completely new, and still newer ones
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are being invented. Both producers and customers look happy and, what is most
important to us, scientists rejoice as well, because through the web they have access
to an immense amount of data on the transaction details, which can be analysed and
processed in a plenty of ways. One of the key questions is how the agents in electronic
commerce are tied to each other and to their products and services, i.e. what the
structure of the underlying commercial network is. We shall discuss two examples
where the network is readily accessible to a scientific investigation.

6.3.1 Auctions

One of the biggest WWW sites is eBay, the prominent provider of online auctions. A
great many inhabitants of the Earth have used it at least once. The network structure
behind that site is sketched in Fig. 6.9. The sellers, A, B,. . . offer the items a, b,
c,. . . for auctions. The potential buyers 1, 2, 3,. . . place their bids. When the auction
ends, the highest offer wins, and the bidder becomes the buyer of that item. Both
sellers and bidders have unique IDs; the participants of each transaction may publish
their comments on the reliability of their partner, and each user gains some reputation.
Therefore, there is strong feedback encouraging fairness and marginalising those who
have committed a fraud. The effect of reputation was studied theoretically [1283], and
it was found that it leads to a substantial increase in the overall activity, for users
trust the market much more.

Although the bidding process is extremely interesting at all levels of descrip-
tion [1284–1288] and inspires various numerical models as well [1289, 1290], here we are
interested only in its network structure. It can be investigated in various ways, since
the relationships between nodes in the whole structure of eBay are multiple. We can
see in Fig. 6.9 that it is rather intricate, with edges of several kinds. The simplest ap-
proach considers the tripartite graph where vertices are bidders on one side, individual
auctions are in the middle, and sellers are on the other side. The basic characteristics
of this graph are the degree distributions, calculated separately on the bidders’ side
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(auctions per bidder) and on the sellers’ side (auctions per seller). The third degree
distribution concerns auctions as connected to bidders (bidders per auction). We can
see the results in Fig. 6.10. (The data actually plotted there were collected from the
auction site aukro.cz, which is a part of the multinational Allegro group [1291]. The
functioning is nearly identical to eBay.)

Both the distributions of auctions per seller Paps(k) and auctions per bidder Papb(k)
seem to be close to a power law, but more careful inspection shows that much better
fit to the empirical data is provided by stretched-exponential laws Paps(k) ∼ e−a k

0.12

and Papb(k) ∼ e−b k
0.21

with appropriate constants a and b. The third of the degree
distributions describes the number of bidders per auction. As we can see in Fig. 6.10,
it is exponential for not too large degrees, but develops a fatter tail for large k. It is
impossible to determine the precise form of the tail using just the currently available
data.

It is also interesting to see what happens with the network when we ‘collapse’ the
tripartite graph in such a way that we retain just one of the three types of vertices,
i.e. either sellers, or auctions, or bidders only. For example, we can focus on bidders.
Within the collapsed bidder graph, we draw an edge connecting a pair of bidders if
both of them participated in the same auction (or auctions).

An important feature to investigate is the correlation between degrees in the col-
lapsed graph. The simplest way to do it is to fix one vertex v with degree k and
calculate the average of degrees of all vertices connected to v. Moreover, we average
this quantity over all such vertices v having the same degree k. The resulting condi-
tional average for a general graph G = (V , E) is defined as

〈knn|k〉 =
∑

v∈V
dG(v)=k

∑

u∈V
(v,u)∈E

dG(u)
/ ∑

v∈V
dG(v)=k

k. (6.49)

We can see in Fig. 6.11 that in the collapsed bidder graph this quantity grows with
k, indicating that vertices with higher degree have neighbours which have themselves
higher degree, and vice versa. Graphs of this type, with positive correlations between
degrees of neighbouring vertices, are called assortative; and in the opposite case of
negative correlation we speak of disassortative graphs. The empirical investigations
[1214, 1292–1295] of various networks have shown that social networks are mostly
assortative, while technological (power grid, internet, WWW) or biological (protein
interactions, metabolic networks, etc.) are disassortative. As the networks emerging
from the online bidding reflect social mechanisms, the assortativity of the collapsed
bidders graph is entirely consistent with findings on other social networks.

6.3.2 Reviewers’ networks

An essential ingredient for proper functioning of electronic commerce is the immediate
feedback from the users. We have already mentioned that in the last paragraph in the
context of the eBay auctions, and it is perhaps the site where the reactions of both
sellers and buyers have been most developed. To see how it works elsewhere we shall
jump now to another prominent site, amazon.com. With Amazon, you typically buy
books or music, but effectively all kinds of not too heavy goods are offered, including
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Fig. 6.12 Properties of the reviewer-item network at the amazon.com site. In the left panel,

the in-degree and in the right panel, the out-degree distribution is plotted for the bipar-

tite reviewer-item network. The straight lines are powers ∝ k−2.2 (out-degree) and ∝ k−2.4

(in-degree).

tyres and hand tools. Quality of every item can be reported by anyone who registers
herself as a reviewer. People who read the reviews can vote on their usefulness so that
abuse of the refereeing system is discouraged.

The reviewers and the items they write about form a bipartite network, with links
going from reviewers to items, much like the bidders-items network in eBay. The
reviewer-item network at Amazon is quite large, the number of reviewers exceeding
1.7 million in August 2005. The first information about its structure is provided by
the degree distribution, as shown in Fig. 6.12 [1296]. Both in- and out-degree are
distributed as power laws with exponents γin ≃ 2.4 and γout ≃ 2.2. This holds for a
vast majority of the vertices, but there are some outliers in the tails, with a very large
degree. For example the Amazon No. 1 reviewer has written more than 11 thousand
reviews.

As with the auctions network, we can also study the collapsed reviewer network. We
shall apply a different path here, using spectral analysis, to show how this specialised
tool for studying networks [1219, 1228, 1297–1315] reveals new features.

There are several ways to define the collapsed network. One of them, used in the
analysis of the eBay (or Aukro) network, assumes a single edge between two reviewers
if there is at least one item on which both of them wrote a review. Denoting aiu the
adjacency matrix of the bipartite network, with index i denoting a reviewer and u an
item, the following matrix results from the collapse

M
(1)
ij = (1 − δij) θ

(∑

u

aiuaju
)
. (6.50)

The Kronecker δ is here to suppress loops connecting the reviewer with herself. Another
way is to take into account how many items the two reviewers have in common. It
amounts to placing multiple edges between pairs of vertices. We get the following
matrix:
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Fig. 6.13 Spectrum of the segment containing the first N = 5000 reviewers from the col-

lapsed reviewer network at the amazon.com site. The left panel shows the histogram of eigen-

values of the matrix M (3). There are 5000 equal-sized bins starting at the lowest and ending

at the highest eigenvalue. The largest eigenvalue is emphasised by the circle. In the inset,

detail of the same histogram is plotted. In the right panel we show the tail of the integrated

density of eigenvalues. The straight line is the power law ∝ (λ− 1)−1.7.

M
(2)
ij = (1 − δij)

∑

u

aiuaju. (6.51)

However, for the sake of spectral analysis it is useful to normalise the matrix elements
with respect to the number of reviews the reviewers wrote, so we arrive at yet another
matrix:

M
(3)
ij =

∑
u aiuaju√(∑

u aiuaiu
)(∑

u ajuaju
) . (6.52)

The entire matrix M (3) is too large to be diagonalised using standard procedures.
Indeed, we have already noted that the number of reviewers exceeds one million.
Special techniques, like the Lanczos algorithm [1316], should be used instead. However,
even a tiny subset of first 5000 reviewers (in the order Amazon itself attributes them
a rank) exhibits the essence of the spectral properties; and that is what we show
here [412].

In Fig. 6.13 we can see the histogram of eigenvalues. The fraction PΛ(λ) of eigen-
values within a bin centred at λ mimics the density of eigenvalues, and we can see
that it has a sharp maximum at λ = 1. It also seems that there is a singularity in the
density of eigenvalues at λ = 1, characterised by different left and right derivatives
at this point. Such a ‘cusp’ was also observed in the spectra of Barabási-Albert net-
works [1300] and it is believed that it is one of the consequences of power-law degree
distribution. An attentive look at the histogram reveals that most of the eigenval-
ues are concentrated within a relatively narrow interval (0.1, 1.5), but there are some
eigenvalues which lie much farther; and the largest eigenvalue, highlighted by a circle
in Fig. 6.13, is equal to λ = 13.87 . . . But there are also large intervals between neigh-
bouring eigenvalues, suggesting that the eigenvalue density may be a slowly-decaying
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function. Indeed, when we plot in Fig. 6.12 the integrated density of states P>Λ (λ), i.e.
the fraction of eigenvalues larger than λ, we can see that the right tail is well described
by a power law

P>Λ (λ) ∼ (λ− 1)−η , λ→ ∞ (6.53)

with exponent η ≃ 1.7.
The power-law tail of the density of eigenvalues has important implications for the

global structure of the network. To see that, consider the adjacency matrix aij of a
certain graph and look at the trace of its powers. The quantity Tr a is the number of
loops, i.e. vertices connected to themselves. Looking at the square of the matrix, Tr a2

is number of cycles of length 2, which can be composed either of two loops or of a step
along an edge connecting two distinct vertices, and back. In a loop-less graph this is
twice the number of edges, therefore 1

2

(
Tra2 − Tr a

)
is just the number of edges, not

counting loops. If we go further to larger powers, we see that Tr al counts the number
of cycles of length l. For example, in a graph without loops Tr a3 is the number of
triangles. The traces are easily calculated if we know the spectrum of the matrix.
Indeed, the l-th moment of the density of eigenvalues PΛ(λ) is exactly the trace of the
l-th power of the matrix, so

Tr al =

∫
λl PΛ(λ) dλ. (6.54)

For a finite number of vertices N the latter expression is always finite, but when
the size of the network grows, N → ∞, it may or may not approach a finite limit,
depending on the behaviour of the tail of the density of eigenvalues. In our case the tail
follows a power law, PΛ(λ) ∼ λ−1−η; and hence the moments diverge for l ≥ η. The
particular value of the exponent found in the collapsed reviewer network on Amazon
already implies divergence for l = 2 and more for larger moments. How to understand
this result? The second moment is related to the density of edges, and its divergence
means that the number of edges grows faster than the number of nodes when the size
of the network increases. In other words, the average degree of a vertex becomes larger
and larger. Similarly, one could deduce that in a network whose spectrum satisfies
2 < η ≤ 3, the average degree remains finite but the density of triangles is divergent
for increasing number of vertices.

The interesting point about this finding is that, from a purely static feature as the
spectrum is, we can make a prognosis as to the evolution of the network. The hidden
assumption which makes this prediction feasible is the invariability of the basic features
of the spectrum when the network grows, namely the fact that the tail obeys a power
law, and the exponent remains the same, within statistical errors.

6.4 What remains

Random graphs provide an immense field of study, and physical approaches have been
proved useful in many areas. We deliberately skipped some of them, and the reader
can consult several good books [55, 1177, 1244, 1252, 1253, 1317–1324] or specialised
review articles [1254–1257] to complete her education in this area. Also the collection
of original papers is now available in book format [1325]. The ‘canonic’ mathematical
monograph on the subject is the previously mentioned book by Béla Bollobás [753].
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The topics omitted in this chapter are most notably the questions of resilience
and vulnerability to damage. Essentially, it is a percolation problem and was studied
thoroughly [1326–1330] with the result that scale-free graphs are very robust to removal
of vertices, because they possess zero percolation threshold. On the other hand, if the
vertices are removed in decreasing order of their degree, i.e. the most connected nodes
of the network are annihilated first, the percolation threshold is low, signalling a high
sensitivity to this type of damage.

Another top-importance practical problem is epidemic spreading in random graphs,
be it a sexually transmitted disease in a social network or computer-virus infections
affecting the whole internet [1331–1334]. It was found that the networks with power-
law degree distributions have negligible epidemic threshold, meaning that even the
least contagious disease spreads rapidly.

The physics of small-world networks gained immediate popularity when the first
article of Watts and Strogatz appeared [1185], but soon the attention of the com-
munity shifted to the more dynamic field of scale-free networks [1188]. Indeed, the
effect of power-law degree distribution is much deeper than the mere addition of long-
range links to regular structures. Nevertheless, many interesting results have been
obtained [1260, 1333, 1335–1348], and the work still continues, for example, in the field
of synchronisation of coupled nonlinear oscillators [1257, 1349], to cite only one of
the applications. Studying the small-world properties of scale-free graphs, it has been
found that their diameter is scaled as diam ∼ ln lnN with the number of vertices,
if the degree exponent lies in the interval γ ∈ (2, 3). This means that they are even
‘smaller’ than ordinary small-world graphs, and the notion of ultra-small graphs was
introduced to describe this phenomenon [1350].

Another very important question is to find communities inside random networks.
The community structure determines, for example, interest groups in the WWW, com-
mercial sectors in the ensemble of stocks traded at the stock exchange, etc. From the
graph perspective, we can roughly define communities as subgraphs which are more
densely connected inside than among each other. The clearest examples of communities
are cliques. i.e. complete subgraphs within the graph in question. Most communities are
less pronounced, though, and to find them, several smart algorithms are used, including
iterative and spectral approaches [342, 386, 412–415,418, 1216, 1293, 1311, 1315, 1351–
1375]. The structure of the networks of electronic commerce influence the information
filters and recommendation systems, which are indispensable tools in web-based econ-
omy [1283, 1376–1387].

Finally, let us also mention the study of topological phase transitions in random
graphs, either static [1388–1393] or dynamic [1394–1396]. For example, when we require
that the network provides a service, we also desire that it is somehow optimised to
do that [1397–1399]. Therefore, we can identify the quantity to be extremalised with
an effective ‘Hamiltonian’ and try to develop the statistical physics of such a system.
Varying the free parameters of the model, we can identify the existence and type
of a phase transition, which marks the sudden change of the structure of the graph
in question. That is what we call a topological phase transition. For a student of
econophysics, there is plenty of room for new discoveries here.
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Problems

1. Take the graph ensemble GD and find a more accurate formula for the probability
that two vertices with degrees k0 and k1 are connected by an edge. Show that Eq.
(6.19) is valid provided k0k1 ≪ kN .

2. Consider the Barabási-Albert graph process with m ≥ 2.
a) For the case of multiple edges allowed, generalise the steps leading to expression
(6.37) and thus prove the formula (6.38).
b) Repeat analogous steps for the case without multiple edges between pairs of
vertices and show that for large times the degree distribution is the same, whether
we allow multiple edges or not.

3. In the Barabási-Albert graph process, the preferential attachment principle is
vital for the power-law tail in the degree distribution. Show that by calculating
the degree distribution under assumption that the probability of joining vertex t
with vertex s < t is a constant independent of the degree of vertex s.



7

Wealth, poverty, and growth

The perspective for survival in a modern capitalist economy is often reduced to various
measures of individual and corporate wealth. Disproportions in wealth distribution
across society are also causes, either virtual or actual or both, of social tensions,
resulting in incessant dynamics affecting the whole social structure. The distribution of
wealth (expressed by diverse indicators) was therefore the first concern in quantitative
analyses started in 19th century. Explanation of the empirical facts has remained a
serious challenge until now. Very often wealth is confounded with income, although
in principle these two quantities are much different. We will mostly be interested in
income distributions, but we shall skip to wealth distribution when it will be more
convenient. As the actual models work equally well (or poorly) for income and wealth,
we shall not make much distinction between the two terms.

This chapter will first review the empirical facts on income distributions, starting
with historical discoveries marked by the names of Pareto, Gibrat, and Mandelbrot.
Then we turn to numerical and analytical approaches, stressing the importance of the
ubiquitous random multiplicative process modified by a small additive term.

7.1 Laws of Pareto and Gibrat

7.1.1 Power-law distribution

Formulation

If there were a gallery of founding fathers of what is now econophysics, surely it would
include Vilfredo Pareto. In his book Cours d’économie politique [117], published in
1897, he formulated the law for income distribution stating that the number N of
individuals having an income greater than v is

N =
A

(v + b)α
(7.1)

where b is a constant very close to zero and the value of the exponent α lies between
1 and 2 [1400]. Pareto also stressed that the law holds only for incomes higher than a
certain threshold, and the distribution of lower incomes escaped the statistics (at his
times). In most of the subsequent studies the constant b was set to 0.

So, we may formulate the Pareto law as follows. The probability distribution for
individual income v is asymptotically described by a power law

P>(v) ≡ Prob{income > v} ∼ v−α, v → ∞. (7.2)
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(1918–1919).

Empirical evidence

In spite of its very careful original formulation, many heated debates have been con-
ducted about the validity of the Pareto law. Much data has been collected in support
of it and essentially the same numbers have served as demonstrations of its break-
down [1401–1404]. Let us look at some of the historical data on income distribution
in Great Britain, shown in Fig. 7.1. For three tax-collecting periods within more than
a century, we plot the distribution P>(v) where the income v is expressed in pounds.
Data like those shown are, in principle, easily accessible from taxation records.

First, we note that, in a double logarithmic plot, all three data sets fall approxi-
mately on parallel straight lines, indicating power-law dependence P>(v) ∼ v−α which
confirms the Pareto law with α ≃ 1.5. Moreover, the slope does not seem to change
much over time, so all the spectacular developments in economics and society which
took place in the course of the 19th century left the exponent α essentially unaffected.
This is analogous to the property of universality exhibited by physical systems in a
critical state.

A closer look reveals, unfortunately, small but systematic deviations from the
power-law dependence, which are more pronounced at low incomes. Eventually, a con-
sensus grew that the universal Pareto law is indeed applicable for a small fraction of
society enjoying high incomes, while the rest of society is governed by non-universal
laws, i.e. distribution of lower incomes is sensitive to the details of the actual social
situation [1405–1415]. In fact, it is not so much the functional form of the Pareto law
but its spatial and temporal stability that is intriguing. Indeed, while the value of the
exponent α may slightly vary from one society to another, the very fact of the power-
law tail in the distribution is valid almost everywhere. Some investigations suggest
that the range of validity of the Pareto law may extend as far in the past as to ancient
Egypt of the Pharaohs [1416].
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Fig. 7.2 Probability distribution of individual income in the USA in 1997. In the left panel,

the complete distribution. The power-law tail is demonstrated by linear dependence in double

logarithmic scale. The line is the dependence ∝ v−2.3. In the inset, the same data in semilog-

arithmic scale, showing exponential behaviour for medium and lower incomes. The line is the

dependence ∝ e−v/26. Data were extracted from [1419]. In the right panel, the lower end of

the household income distribution in the USA in 1997. The line is the dependence ∝ v1.4.

Data were extracted from [1423].

So, the issue of ‘wealth’ distribution seems to be settled. More recent investigations
shed more light into the ‘poverty’ distribution, observing regular behaviour in the lower
income range. The medium part of the distribution pertinent to a large majority of
the population was found to obey a simple exponential distribution [1410, 1417–1422]

P>(v) ∼ e−v/v0 (7.3)

while the probability density for the lowest incomes follow a power law with a positive
exponent [1411, 1423]

P<(v) ≡ Prob{income < v} ∼ vβ , v → 0. (7.4)

These findings are demonstrated in Fig. 7.2. For the year 1997 in the USA the highest
incomes are power-law distributed according to (7.2) with α ≃ 2.3, medium incomes
are governed by an exponential distribution (7.3) with v0 ≃ 2.6 × 104 USD, and the
lowest end of the income scale satisfies a power-law dependence (7.4) with β ≃ 1.4.

More detailed investigations of the Pareto law were carried out for individual and
company incomes in several Asian countries [1407–1409,1412, 1424–1430]. The Pareto
index α was found to fluctuate quite dramatically within certain bounds, as seen in
Fig. 7.3.

Measures of economic inequality

The Pareto index α measures the width of the distribution, and was used by Pareto
himself as a measure of inequality. However, as the Pareto law describes only the
tail of the income distribution, other tools have been developed to characterise the
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Fig. 7.3 Time dependence of the Pareto index α in Japan during the period from 1887 to

1998. Data were extracted from [1409].

income distribution globally. One of them is the Lorenz curve, which is a particular
way of plotting wealth distribution. The horizontal coordinate is the cumulative pop-
ulation x =

∫ v
0
P (v′)dv′, and the vertical one is the fraction of cumulative income,

y =
∫ v
0
v′P (v′)dv′/

∫∞
0
v′P (v′)dv′. For exponential income distribution, the Lorenz

curve has the form

y = x+ (1 − x) ln(1 − x). (7.5)

The Gini coefficient, defined as G = 2
∫ 1

0
(x − y)dx, measures the inequality in terms

of the deviation of the Lorenz curve from the diagonal y = x. It varies from 0 (full
equality) to 1 (maximum inequality). Exponential distribution gives G = 1/2. Empir-
ical data for the Lorenz curve and time dependence of the Gini coefficient are shown
in Fig. 7.4.

7.1.2 Independent growth rates

After Pareto, the study of wealth distributions and economic inequality in society was
marked by the important contribution of Robert Gibrat, a French engineer with a
wide range of interests including, among other things, tidal power plants. In his thesis,
entitled Les inégalités économiques [1431], he formulated a principle which nowadays
bears the name Gibrat law, or the law of proportionate effect.

Gibrat law

The Gibrat law states that the rate of income growth is independent of the actual
income, and the rates at different times are uncorrelated. But applicability of the
Gibrat law is broader than just income statistics. We will proceed with a more general
and technical formulation.

Let us consider an economic indicator Xt, which may be income, wealth, size,
number of employees, etc. Relative growth of the indicator from time t to t′ is R(t, t′) =
Xt′/Xt. The Gibrat law requires that two conditions are satisfied
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1. The growth rate R(t, t′) and the initial value Xt are independent, i.e.
〈Rk(t, t′)X l

t〉 = 〈Rk(t, t′)〉〈X l
t〉 for any integer k, l.

2. Growth from time t to t′ is independent of growth from t′ to t′′, i.e.
〈Rk(t, t′)Rl(t′, t′′)〉 = 〈Rk(t, t′)〉〈Rl(t′, t′′)〉 for any integer k, l and t < t′ < t′′.

Multiplicative process

Assuming the Gibrat law holds true, we can model the dynamics of income Vt of a
selected individual by a multiplicative stochastic process

Vt+1 = eWt Vt (7.6)

where Wt for all times t are independent and equally distributed random variables with
mean 〈Wt〉 = C and variance 〈(Wt)

2〉 − 〈Wt〉2 = D. We may map the process onto a
simple random walk by substituting Yt = lnVt. Starting from a deterministic initial
condition Y0 = ln v0 the position of the walker at time t is a sum of t independent and
identically distributed random variables

Yt =

t∑

t′=1

Wt′ + ln v0, (7.7)

and the central limit theorem tells us that for large times the probability density for
Yt is normally distributed, i.e. it does not depend on the details of the distribution for
Wt and assumes a Gaussian form with mean ln v0 +Ct and variance Dt. This implies,
by substitution, a log-normal distribution for the income at time t

Pt(v) =
1√

2πDt

1

v
exp

(
− 1

2Dt

(
ln

v

v0
− Ct

)2)
. (7.8)
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An equivalent result can be obtained in a more elegant fashion if we describe the
multiplicative process using a stochastic equation with multiplicative noise

dVt = Vt dWt (7.9)

where the Stratonovich convention is assumed (see Boxes 2.4 and 2.6 for explanation)
and the external noise Wt is determined by 〈dWt〉 = C dt and 〈(dWt)

2〉 = D dt. Then
the following Fokker-Planck equation (see Box 2.5 if unclear) can be derived for the
probability density of Vt

∂

∂t
Pt(v) =

D

2

( ∂
∂v
v
)2
Pt(v) − C

∂

∂v
vPt(v). (7.10)

The solution with initial condition limt→0+ Pt(v) = δ(v−v0) is given by the log-normal
distribution, Eq. (7.8).

Are Pareto and Gibrat laws compatible?

As we have seen, strict application of the Gibrat law results in log-normal distribution
of wealth. The upper tail is very far from the empirically observed power-law depen-
dence. Moreover, the distribution is not stationary, because its width increases in time.
It seems that the Gibrat law was falsified by real facts.

However, that would be too quick a judgement. Indeed, the derivation of the log-
normal distribution (7.8) relied on various assumptions, which may not always be true.
We shall examine them in more depth in the next section. For the moment, we shall
only check whether Pareto’s power law tails might be compatible with the Gibrat law
under fairly general conditions. The argument essentially says that if the the Gibrat
law holds true; and if the distribution is stationary, it must be a power law. Let us
show it in a slightly more formal way.

To this end, we investigate the joint probability density for the initial value of the
income Xt and for the growth R(t, t′) = Xt′/Xt, which is

Pt,t′(r, x) =
∂2

∂r∂x
Prob{R(t, t′) < r,Xt < x}. (7.11)

The conditional probability density is Pt,t′(r|x) = Pt,t′(r, x)/
∫
Pt,t′(r

′, x) dr′. The first
of the requirements of the Gibrat law implies that this conditional probability in fact
does not depend on x and is therefore equal to the probability density for sole R, i.e.
Pt,t′(r|x) = PR t,t′(r) ≡

∫
Pt,t′(r, x

′) dx′.
Let us also assume that the income distribution is stationary. This can be formu-

lated as time-reversal symmetry of the joint probability density of incomes at times t
and t′:

Pt,t′(x, x
′) = Pt,t′(x

′, x) (7.12)

and simultaneously as time independence of the densities for R and X ,
∫
Pt,t′(r, x)dr = PX(x)

∫
Pt,t′(r, x)dx = PR(r)

(7.13)



Laws of Pareto and Gibrat 263

for all t, t′ (for an empirical check of these conditions see [1432]). Under these assump-
tions we can express the densities through conditional distribution

Pt,t′(x, x
′) =

1

x
PR
(x′
x

)
PX (x) = PR(r)PX (x)

1

x
, (7.14)

and we obtain
PX(x)

PX(x′)
=

1

r

PR(1
r
)

PR(r)
≡ eg(r). (7.15)

Suppose that the times t and t′ are close to each other. Then r is close to 1, and we can
expand (7.15) around the point r = 1. Using substitutions x = ey, p(y) = lnPX(ey),
we arrive at the differential equation for the function p(y)

dp(y)

dy
= −g′(1); (7.16)

therefore p(y) = a − yg′(1), and the density for X assumes a power-law form

PX(x) = Ax−g
′(1) (7.17)

in full accordance with the Pareto law [1432].
However, it must be noted that the derivation of (7.17) was based on local (in terms

of the values of Xt) properties of the joint probability density. If the time-reversal
symmetry, as well as the Gibrat law, holds for x and x′ within a certain, narrow
enough, interval I, i.e. for a limited range of r, the power-law distribution (7.17) will
approximately hold in the interval I. In another short interval I′ we may again find
that (7.17) is satisfied, but the exponents may differ. This observation should warn us
about vaulting to unfounded conclusions based on spurious power laws observed only
within a limited interval of incomes.

7.1.3 Lévy distributions

Although we have just seen that the Gibrat law and the Pareto law are not con-
tradictory in principle, the actual calculations in Sec. 7.1.2 still give a log-normal
distribution, independent of the details of the distribution of instantaneous changes in
income, prescribed by the stochastic function Wt. This fact follows from the central
limit theorem and holds for any Wt provided the variance 〈(Wt)

2〉 − 〈Wt〉2 is finite.
And here comes Benôıt B. Mandelbrot with his breakthrough idea [727]. What if

the variance is not finite? What is the distribution of a sum of many independent and
equally distributed random variables with diverging variance?

This problem had been encountered previously by mathematicians, and the answer
leads us to the family of Lévy-stable distributions. Mandelbrot’s crucial contribution
was that he brought this abstract subject to the attention of economists and physicists
by showing numerous appealing examples.

To see the difference, imagine two pairs of independent and identically distributed
random variables. The first pair, G1 and G2, will be normally distributed, with Gaus-
sian density PG(g) = exp(−g2/2D)/

√
2πD, while the density for second pair, H1 and

H2, is the Cauchy distribution
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Formula for Lévy distribution Box 7.1

Except for the Cauchy (or Lorentz) distribution (7.18) with µ = 1, β = 0, there is no
closed expression for the Lévy distributions. The most straightforward representation
is through inverse Fourier transform of a stretched exponential. In the symmetric case,
β = 0, we have

L0
µ(x) = (2π)−1

∫
exp(−aµ|ω|µ − iωx)dω

where aµ is a certain constant, and the general case is
Lβ

µ(x) = (2π)−1
∫
exp

[
−aµ|ω|µ(1− iβ sgn(ω) tan( 1

2
πµ)))− iωx

]
dω.

For more information see [19] or initial sections and appendix in Ref. [194], where many
physical examples can be found.

PH(h) =
1

π

a

a2 + h2
(7.18)

(also called the Lorentz distribution by physicists). The probability density of a sum
of independent variables is the convolution of their densities; so G3 = G1 + G2 is
distributed according to PG3(g) =

∫
PG(g − g′)PG(g) dg′, and similarly for H3 =

H1 +H2. Performing the integrals we find that PG3(g) = exp(g2/4D)/
√

4πD; i.e. the
form of the function remained unchanged, only the variance was rescaled, D → 2D.
The same conclusion is reached for the other pair. Indeed, PH3(h) = 2a/(π(4a2 +h2)),
and the sum again has Cauchy probability density with parameter a doubled. The
essential difference between the Gaussian and Cauchy distributions is that the former
has finite variance, while the latter not. Therefore, for a sum of Cauchy-distributed
random variables, the central limit theorem cannot hold. Instead, the sum will keep
its Lorentzian shape.

Random variables whose distribution preserves its form with respect to additions
are said to have stable distributions. While Gaussian is the only stable distribution
with a finite variance, there is an entire family of distributions with a diverging second
moment, called Lévy-stable distributions. One of them is the Cauchy distribution dis-
cussed above. Their common feature is that they decay as a power for large arguments,
and that is why Mandelbrot used them to explain the Pareto law.

Generally the Lévy distribution Lβµ(x) is characterised by two parameters, µ ∈
(0, 2) and β ∈ [0, 1] and behaves like

Lβµ(x) ∼ 1 ± β

|x|1+µ for x → ±∞. (7.19)

We can see that the parameter µ corresponds to the Pareto index α. The parame-
ter β measures the asymmetry of the distribution. The Cauchy distribution (7.18)
corresponds to µ = 1 and β = 0. For more information see Box 7.1.

Therefore, the central limit theorem is generalised to variables with infinite variance
so that the distribution for their sum converges to a certain Lévy distribution. If
X =

∑n
i=1Wi then limn→∞ PX(x) → Lβµ(x) for some µ, β.

While random variables with finite variance give rise to only a single limit distri-
bution, the normal one, here we have a two-parametric set of distributions. Each of
them has a certain basin of attraction, i.e. a set of distributions, all of which approach
the same Lévy distribution when their corresponding random variables are summed
many times.
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Coming back to Mandelbrot, his idea was that individual incomes are in fact in-
fluenced by large shocks, which may be modelled by random variables with infinite
variance. The impact of such shocks on the income is expressed by a sum of these
variables. Supposing all individuals started with equal income in some very distant
past, the distribution of incomes now follows some of the family of Lévy distributions,
characterised by power-law tails. This explains the emergence of the Pareto law and
reconciles it with the idea that what we observe in reality is an accumulated effect of
many independent random events. Since then, the term Pareto-Lévy distributions has
frequently been used for power-law tailed functions.

If we thought that the problem of incomes is now solved, we would be very far from
reality. First, it is very reasonable to think that the dynamics of income is essentially
a multiplicative process, while Mandelbrot takes us back to additive processes. It is
reasonable because it is generally expected that investments will have effects propor-
tional to their sizes; and the same apparently holds for all economic movements. It
is also reasonable because it preserves invariance with respect to a change of units in
which we measure the income. Finally, additive processes can easily result in negative
incomes, while real individual incomes are always positive.

The second reason why the Lévy distributions are not satisfactory is the behaviour
at moderate and low incomes. If the empirical distributions consistently differ in a
certain range from the Lévy ones, the result certainly cannot be due to summing inde-
pendent random contributions, the more so because the approach to Lévy distribution
is faster in the central part and slower at the tails; so one would expect agreement
for smaller incomes and deviation for large ones. As we already know, the opposite is
true.

Finally, Mandelbrot does not say anything about the source of the assumed strong
random shocks. If we want understand more, we must go deeper. The models presented
in the following two sections improve the situation at least partially.

7.2 Individual income

7.2.1 Stochastic modelling

Let us now turn to more modern approaches to income distributions. First of all,
we shall make an essential assumption that income (or wealth) distribution is the
result of a dynamical process with well-defined laws. Our task will be to find these
laws and set up a dynamical model which will reproduce the observed distributions.
This apparently obvious assumption excludes, e.g. explanations based on particular
historical circumstances as well as static theories considering wealth inequality as
imprinted at dark origins by an external force and reproduced since then, generation
after generation, by a kind of heredity, be it familial, genetic, social, or maybe some
other cause.

As randomness will play major role in the dynamics of income, the process will be
a stochastic one. Two types of models can be distinguished from the beginning. First,
we can model the dynamics of a representative individual and consider the probability
density obtained for that individual as valid for the whole ensemble composing the
society. Or, second, we can model the society as a whole, taking into account a strong
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interaction between individuals. Eventually, we shall see that these two views are not
mutually exclusive.

Multiplicative random process with a lower bound

Let us imagine particles in a very tall cylindrical container, kept at a fixed temperature,
under the influence of a homogeneous force acting along the axis of the cylinder.
An example is a gas in a gravitational field. Without the field the particles would
perform a Brownian walk and eventually all escape, but gravitation pushes them to the
bottom. What would be the density of the particles in different parts of the cylinder?
The answer is given by the well-known barometric formula. Supposing the particles
mutually interact only very weakly, the density of particles will be proportional to the
probability of finding a chosen particle at a given place.

The motion of a representative particle is described by the stochastic differential
equation

dXt = dWt − fdt (7.20)

where Xt is the position of the particle at time t. The movement of the particle
is influenced by the constant force f and stochastic perturbations, represented by
the differential of the pure Brownian motion dWt, which has the following property
〈(dWt)

2〉 = Ddt, where D is the diffusion constant. The corresponding Fokker-Planck
equation is

∂

∂t
Pt(x) =

D

2

∂2

∂x2
Pt(x) + f

∂

∂x
Pt(x). (7.21)

We are interested in the stationary state P (x) = limt→∞ Pt(x). It satisfies a simple
equation 1

2
DP ′(x) = −fP (x) + c; however, it must be complemented by a boundary

condition forbidding the particle from escaping from the container. The boundary
conditions also fix the constant c. Taking the coordinate of the bottom of the container
at X = 0, the solution is

P (x) = θ(x)
2f

D
e−

2f
D x (7.22)

with, as usual, θ(x) = 1 for x > 0, and θ(x) = 0 otherwise. This is the barometric
formula, describing dependence of the density of isothermal ideal gas in a gravitational
field on its height. Mandelbrot [727] was perhaps the first who tried to use this analogy
for income distributions, noting, though, that the exponential distribution disagrees
with the empirical findings.

Imagine now a similar process in discrete time, in which a particle can hop over the
set of non-negative integers. If the coordinate X of the particle is positive, in one step
it is increased by 1 with probability p and decreased by 1 with probability 1 − p. The
boundary point X = 0 is special: with probability 1, the particle jumps to the next
point X = 1. The probability distribution Pt(x) = Prob{Xt = x} satisfies a master
equation

Pt+1(x) = pPt(x− 1) + (1 − p)Pt(x + 1) for x > 1

Pt+1(1) =Pt(0) + (1 − p)Pt(2)

Pt+1(0) = (1 − p)Pt(1).

(7.23)
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The stationary distribution P (x) = limt→∞ Pt(x) exists for p < 1/2 and can easily be
found. For x ≥ 1 we have

P (x) =
1 − 2p

2p(1 − p)

( p

1 − p

)x
. (7.24)

The exponential stationary distribution results from two competing mechanisms. The
random walk with p < 1/2 has a net drift towards lower coordinates, while the fixed
boundary at X = 0 does not allow the drift to push the particle further. We obtain a
discrete analogy of the barometric formula.

Let us see how this model can be adapted to the distribution of incomes [170, 676–
678, 681, 687, 1433, 1434]. The idea is to replace the arithmetic sequence of possible
positions by a geometric sequence. Suppose a discrete ‘income ladder’ made of non-
negative powers of the number 1 + ǫ, where ǫ > 0, applies to the society so the allowed
incomes at time t are Vt ∈ {(1 + ǫ)n;n = 0, 1, 2, . . .} [1433]. This corresponds to a
society with a built-in mechanism keeping all members above a fixed poverty level,
but with no other constraints. Suppose also, following Gibrat, that the income evolves
in discrete time according to a multiplicative process, namely

Vt+1 = eWtVt (7.25)

as in process (7.6), where for simplicity we assume Wt = ln(1 + ǫ) with probability p
andWt = − ln(1+ǫ) with probability 1−p. There is an exception to these probabilities,
though. As nobody is allowed to have income below 1, we have Wt = ln(1 + ǫ) with
probability 1 if Vt = 1. Note that this seemingly marginal modification introduces
dependence among the quantities Vt and Wt. The central limit theorem for the sum of
the random variables Wt does not apply, because they are not all independent. This
is why the stationary distribution for Vt may deviate from the log-normal distribution
(7.8).

Now, the process Vt can obviously be mapped onto process Xt by the substitution
Xt = lnVt/ ln(1 + ǫ) with the same transition probabilities. Therefore, the stationary
distribution of incomes can be expressed as

P>(v) = lim
t→∞

Prob{Vt > v ≡ (1 + ǫ)n}

=
1

2(1 − p)

( p

1 − p

)n
.

(7.26)

We can make the income ladder denser and eventually continuous in the limit ǫ→ 0,
p → 1/2, while keeping the combination α =

(
ln(1 − p) − ln p

)
/ ln(1 + ǫ) constant.

The result is

P>(v) = θ(v − 1) v−α (7.27)

so that the income distribution follows a power law for all v > 1 and is sharply cut off
for v ≤ 1.

In the latter calculation we measured the income in terms of the poverty level
v0 (set here as v0 = 1). In fact, if the Pareto law holds strictly, the ratio of the
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average income and the lower cutoff uniquely determines the exponent of the power
law. Indeed, v̄ = −

∫∞
v0

v dP>(v) = v0 α/(α − 1), so

α =
1

1 − v0
v̄

. (7.28)

This relation provides a straightforward explanation of relative stability of the value of
Pareto index α: it is fixed by the social consensus which keeps essentially all individual
incomes above a certain fraction of the total income of the society [683].

Multiplicative-additive stochastic process

It seems that a plausible mechanism generating the power-law tailed distributions
was successfully identified. Two problems remain open, though. First, the sharp drop
of probability density at the lowest income level is completely unrealistic. We must
improve the model so that it grasps, at least qualitatively, the empirical findings on the
lower income distribution. Second, the hard wall impeding the individuals from falling
too low may sound quite arbitrary. Could we find a detailed mechanism implementing
such a wall? Or is the existence of the low income limit a mere by-product of some
microscopic dynamics?

The simplest model generating the lower bound is the combined multiplicative-
additive stochastic process [673]. It can be realised by simply adding a constant term
to the multiplicative process (7.9), writing, again in the Stratonovich convention, the
equation

dVt = Vt dWt + adt (7.29)

with a positive constant a and again 〈dWt〉 = C dt and 〈(dWt)
2〉 = D dt. The additive

term can be interpreted as a subsidy from a central authority, which helps unfortunate
individuals to survive periods when their income falls below a certain level.

Let us first look at the evolution of average income. Changing to the Itô convention,
Eq. (7.29) becomes dVt = Vt dWt +

[
D
2
Vt + a

]
dt and the average evolves according

to
d

dt
〈Vt〉 = 〈Vt〉

(
C +

D

2

)
+ a. (7.30)

In absence of the additive term, the average growth rate would be C̃ = C+D/2. We are

interested in the regime C̃ < 0. Without the additive term the average would shrink
indefinitely, but positive a ensures that equilibrium value limt→∞〈Vt〉 = −a/C̃ is ap-
proached. This is the first positive sign: non-stationarity of the log-normal distribution
(7.8) is cured.

To compute the full probability distribution we need the corresponding Fokker-
Planck equation. We obtain

∂

∂t
Pt(v) =

D

2

( ∂
∂v
v
)2
Pt(v) − C

∂

∂v
vPt(v) − a

∂

∂v
Pt. (7.31)

As a first step toward a solution we try to find out whether a power-law tail can be
expected in the stationary solution P (v) = limt→∞ Pt(v). Inserting as a trial function
the Pareto distribution P (v) ≃ Av−1−α, we get
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How to solve Eq. (7.31)? Box 7.2

The stationary solution P (v) satisfies the following ordinary differential equation
D
2
v2P ′′(v) + ( 3D

2
v − Cv − a)P ′(v) + (D

2
− C)P (v) = 0 ;

and the first step is to take into account the known power-law behaviour for large v. So,
we substitute P (v) = Q(v) v−1−α and obtain

D
2
vQ′′(v) +

(
D
2
+ C − a v−1

)
Q′(v) + a

(
1− 2C

D

)
v−2 Q(v) = 0.

Substituting again v = 1/y, R(y) = Q(1/y) we have[
d
dy

+ 1
y

(
1− 2C

D

)] (
D
2
R′(y) + aR(y)

)
= 0.

The latter equation will be satisfied if
D
2
R′(y) + aR(y) = 0

which leads to the solution
R(y) = A exp

(
− 2a

D
y
)
.

Substituting back and fixing the constant A by normalisation
∫
P (v)dv = 1 eventually

leads to (7.34).

D

2
α2 + Cα+ a(1 + α) v−1 ≃ 0, (7.32)

and neglecting the last term on the right hand side from v → ∞ we obtain the solution

α = −2C

D
(7.33)

for the Pareto index, apart from the trivial solution α = 0 which is to be discarded
because it leads to a non-normalisable distribution.

Next, we can obtain the stationary solution of (7.31) explicitly. The details can be
found in Box 7.2. The result is

P (v) =
1

Γ(α)

(
2a

D

)α
v−1−α exp

(
− 2a

Dv

)
(7.34)

and obviously behaves in the desired way in both the high-income and low-income
regions. Indeed, for v → ∞ it has a power-law tail and for low incomes the probability
density is depleted, implying a kind of a soft lower bound for the incomes.

The procedure can be generalised by replacing the constant a with a stochas-
tic additive noise [674, 675, 688, 690, 900, 936, 1426, 1435]. It was found that essentially
identical results hold, and only the low-income part of the density P (v) is affected
by the specific properties of the additive noise. Generalisation to the broader family
of processes described by equation dVt = g(Vt) dWt + h(Vt) dt has also been stud-
ied [1436].

As already mentioned, the additive term can be understood as social subsidies.
Alternatively, we may think of a redistribution strategy which actually takes place
through public expenses covered by the collected tax. It would be interesting to rede-
fine the incomes of the individuals in such a way that they include indirect benefits
like elementary education, clean and illuminated streets, environment protection, or
even the internal and external security guaranteed by the police and armed forces.
Unfortunately, it is hardly possible to carry out such a study quantitatively.
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Killed multiplicative process

There is an alternative way of producing distributions with power-law tails from mul-
tiplicative random processes. Imagine first a deterministic growth process for income.
It is described by an ordinary, non-stochastic, differential equation

d

dt
v(t) = b v(t) (7.35)

where b is now a fixed constant. Solution of this equation with initial condition
v(0) = v0 is straightforward, v(t) = v0 exp(bt). Suppose the same process applies
to all individuals in a large ensemble. The randomness will be added in the following
way. The individuals may enter and exit the ensemble at different times, so at a given
instant the duration of the growth T is a random variable, as is the income reached,
V = v(T ) = v0 exp(bT ). Assuming an exponential probability density for T , namely
PT (t) = γ exp(−γt) θ(t), we obtain a power-law distribution of incomes above the
minimum v0

PV (v) =

∫ ∞

0

δ
(
v − v0 ebt

)
γ e−γt dt =

γ

b
v0
γ/bθ(v − v0) v−1−γ/b (7.36)

which corresponds exactly to the result (7.27) obtained for a multiplicative process
with a lower bound.

Such a random process is called a killed multiplicative process [1411, 1423] and can
be further modified to comply better with the empirical observations. Assuming the
individuals’ incomes evolve according to the multiplicative random process (7.9), killed
again after a random, exponentially distributed time T , the density for the logarithm
of income relative to the initial condition Y = ln(V/v0) becomes

PY (y) =

∫ ∞

0

γ e−γt√
2πDt

e−
1

2Dt (y−Ct)
2

dt

=
γ√

2γD + C2
exp

(
C

D
y −

√
2γD+ C2

D
|y|
)
,

(7.37)

which means that the income is distributed according to power laws in both lower and
higher ends

PV (v) ∼
{
vβ−1 for v < v0
v−1−α for v > v0

(7.38)

where the exponents are given by α = 1
D (
√

2γD+ C2−C) and β = 1
D (
√

2γD+ C2 +
C). The cusp at the level of initial income v0 is due to an identical initial condition
v(0) = v0 for all individuals. Assuming randomness also in the initial conditions, the
singularity would be washed out.

We can see that killing the stochastic multiplicative growth at random times ex-
plains both the old Pareto law for high incomes and the recently discovered power-law
behaviour at the lowest incomes [1423]. The same mechanism was also invoked to ex-
plain the power-law distribution of settlement sizes, family name frequency, and other
phenomena [1411].
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Verhulst equation Box 7.3

It was originally devised in order to amend the model of exponential (geometric) growth
of the population, envisioned by Thomas Malthus. For one variable and deterministic
growth rate a > 0 it reads

v̇(t) = a (1− v(t))v(t),
and from a mathematical point of view it belongs to the (solvable) family of Riccati
equations. Its solution is

v(t) = 1/(1 + c exp(−at))
with c being a constant depending on initial conditions. Starting with a very small initial
value 0 < v(0) ≪ 1, the general behaviour is characterised by an initial exponential
increase, then followed by saturation at time t ≃ −(ln v(0))/a.

7.2.2 Many-particle approaches

The models treated so far were concentrated on the income dynamics of a representa-
tive individual. In reality, however, the income varies largely due to mutual interactions
between many individuals within a society. In previous sections the stochastic elements
were taken from the outside world. It is similar to observing a tagged molecule in a
gas where all the rest of the gas is replaced by a stochastic reservoir. We know that
this works well for ideal gas or weakly interacting systems, but if the interaction grows
stronger, the approach may prove inappropriate.

Such a situation was treated in non-equilibrium statistical mechanics, where the
projector techniques have been developed. They provide exact tools to study dynamics
of a selected particle (or another small section of the system) strongly interacting with
its surroundings. For description of these methods in the context of econophysics see
Ref. [29].

Let us now turn to many-particle models of income dynamics. The questions we
shall address concern several holes in the stochastic approach used above. First, the
noise Wt was so far quite arbitrary. What is the microscopic source of that noise?
Can we say anything about its properties beyond its mean and variance? Second,
are there features which cannot be reasonably explained by stochastic modelling of
a representative individual and require interactions to be considered explicitly? And
finally, could we gain more understanding of the remaining empirical facts, namely,
the exponential distribution of moderate incomes?

Lotka-Volterra systems

Perhaps the first many-particle (or multi-agent) system introduced in the context of
income dynamics was the model based on generalised Lotka-Volterra equations [677].
The Lotka-Volterra equations, originally used in ecology, are themselves generalisations
of the Verhulst equation (see Box 7.3). Let us consider a dynamical system composed
of N agents, each with income Vit. The average income is the random variable V t =∑
i Vit/N . The changes in income are influenced by the incomes of other individuals

according to the equation

dVit = Vit dWit + a V tdt− c V t Vitdt (7.39)

with all dWit independent of each other. Measuring the incomes relative to the en-
semble average, we introduce reduced variables Uit = Vit/V t. It is easy to write a
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Directed polymers in random media Box 7.4

A directed polymer is an elastic spatial object with one preferred direction. All (hy-
per)planes perpendicular to that direction cut the polymer in at most one point. The
energy of the directed polymer is composed of an elastic part due to bending, and a
potential part, as some of the spatial positions can have lower potential energy than
others. If we consider our wealth-exchange network embedded in space and add an extra
coordinate representing time t, then each elementary exchange of wealth can be seen
as bending a line tracing the chunk of wealth from one space point to another. Going
from i to j costs energy aijdt, while arriving at point i in time t gains energy dWit. As
expected, lines tend toward configurations with the lowest energy, which may be very
complex due to the randomness, and this tendency is also countered by an entropic
effect. Wit can be viewed as a sum of Boltzmann factors accumulated along these lines,
over all possible realisations of the lines arriving to site i at time t. See Refs. [1442–1448]
for more information.

stochastic equation for the collection of Uit, but a technical complication arises here.
From summation over all individuals, we get, among others, the term

Vit

V
2

t

1

N

∑

i

Vit dWit. (7.40)

However, this term is a sum of N independent random variables, and we expect that
it decreases as N−1/2 for large N . Therefore, we neglect it in the thermodynamic limit
N → ∞. So, within this limit we find that the coupled system of stochastic differential
equations (7.39) leads to decoupled equations for the reduced incomes

dUit = Uit dWit + a(1 − Uit) dt (7.41)

which has exactly the form (7.29) investigated in Sec. 7.2.1, and we can use the results
derived there without significant change [173, 679, 680, 682–686,711, 935, 1434, 1437–
1441]. Especially it follows that the income distribution is given by Eq. (7.34), with
appropriate re-definition of the parameters therein.

It is important, and far from trivial, that a nonlinear set of equations for strongly
coupled quantities is reduced to a set of equations describing independent evolution
of reduced variables. This fact a posteriori substantiates the use of representative
individuals in stochastic models formulated in Sec. 7.2.1.

Wealth-redistribution models and directed polymers

Surprisingly (at first sight), we can arrive at equivalent results from a completely
unrelated perspective. In this context it is common to speak about individual wealth
instead of income, so we too shall adopt this language in this section. Of course,
in reality the difference between total wealth owned by a person and her income is
substantial, but formally both quantities can be described using the same dynamical
model.

We suppose N individuals have wealth values Vit evolving in time by a random
multiplicative increase accompanied by an exchange with other individuals. The ex-
change goes along established links of a social network, quantified by a symmetric
matrix aij . If individuals i and j are disconnected, then aij = 0; if they are connected,
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aij assumes a positive value. In principle we allow for more or less intensely used links,
corresponding to a larger or smaller value of aij . The wealth values evolve according
to the set of equations [813, 1449]

dVit = Vit dWit +
∑

j(6=i)
aij (Vjt − Vit) dt. (7.42)

It is interesting that this economic problem can be mapped onto the well-studied
problem of directed polymers in random media [1448] (see Box 7.4).

Assuming for simplicity that aij = a for all i 6= j and repeating the steps leading
to (7.41), we arrive again at a set of decoupled equations for the relative wealth values
Uit = N Vit/

∑
j Vjt, in full analogy with Eq. (7.41). Therefore, the distribution (7.34)

also applies here.
The model can be further elaborated to investigate the transition to a state where

the wealth is ‘condensed’ in the hands of a single extremely rich individual [407, 922,
1449–1451] and to assess the influence of the non-trivial structure of the economic
network. First, it was noticed that on hypercubic networks in lower dimensions (at
least lower than 3) the tail of the wealth distribution is no longer power-law, but
rather a stretched exponential [813, 1449]. Small-world and scale-free networks were
also investigated by numerical simulations [1452–1454], and it seems that the power-
law tail is peculiar to networks with enough long-range links; but a final conclusion
has not yet been reached.

7.2.3 Agent models

We may proceed further in understanding income or wealth dynamics if we go deeper
into microscopic mechanisms underlying wealth production and redistribution. We are
led by the analogy with particles in a gas. Indeed, it was Mandelbrot [727] who first
suggested that economic exchange can be compared to energy transfer in binary colli-
sions of molecules. However, the well-known Boltzmann distribution P (e) = e−e/(kBT )

for a particle with energy e contradicted the Pareto law, and the idea was abandoned
for forty years.

After the discovery that medium incomes are indeed distributed according to ex-
ponential law [1410, 1418, 1419], the analogy between economic activity and binary
collisions was resuscitated. Indeed, the exponential form of the Boltzmann distribu-
tion is a consequence of a very general feature of inter-particle interaction, which is
the conservation of energy. In his pioneering article [1455], J. C. Maxwell introduced
the model of ideal gas composed of weakly interacting molecules and showed how
conservation of an additive quantity (energy) in each collision, together with assumed
statistical independence of particles, expressed by factorisation of the probability den-
sity, naturally leads to exponential distribution. With revived interest in modelling
economic interactions as a scattering process, the Maxwell model became one of the
favourite tools.

Conservative exchanges

Let us first investigate a model where individuals with wealth values Vit and Vjt meet
each other randomly, and at each meeting they exchange a certain proportion of their
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wealth. The total wealth Vit + Vjt is conserved and redistributed randomly, so after
the ‘scattering’ we have

(
Vi t+1

Vj t+1

)
=

(
β β

1 − β 1 − β

)(
Vit
Vjt

)
. (7.43)

If for simplicity we suppose that the random parameter β is distributed uniformly on
the interval (0, 1), we obtain a master equation for one-particle probability density.
This master equation is a very simplified analogue of the Boltzmann kinetic equation
governing scattering in classical (and after appropriate modification, also quantum)
gases. The equation is

∂

∂t
Pt(v) + Pt(v)

=

∫ 1

0

∫ ∞

0

∫ ∞

0

δ((v1 + v2)β − v)Pt(v1)Pt(v2) dv1 dv2 dβ,

(7.44)

and it can easily be verified that its stationary solution is exponential:

lim
t→∞

Pt(v) =
1

v0
e−v/v0 . (7.45)

We can conclude that the exponential part of the income distribution corresponds to
the regime in which any advantage gained by one individual is compensated by a loss
suffered by another individual.

One may wonder if all types of conservative pairwise wealth exchange lead to
the same stationary distribution. Surprisingly, it was found that it is not the case
[1456, 1457], and especially the behaviour at v → 0 is sensitive to the details of the
process. Various modifications of the process (7.43) can be tried, changing the matrix

which multiplies the vector of wealth values
(Vit
Vjt

)
. Therefore, the requirement of

wealth conservation is not strong enough to guarantee the Boltzmann-like exponential
distribution.

The models in which a certain amount of wealth is saved before the rest is re-
distributed deserve special attention [1457–1475]. Although the wealth is conserved,
numerical simulations have shown that randomness in the fraction of money saved
gives rise to distributions with power-law tails. These findings were confirmed analyt-
ically in Ref. [1476].

Non-conservative exchanges

The situation becomes more complicated if we allow wealth production in each inter-
action between the individuals. A similar situation, but with the opposite sign, occurs
in shaken systems of granular particles, where energy is dissipated in each collision of
the grains. Without energy loss the granular gas, as it is called, would be a macro-
scopic counterpart of ordinary molecular gasses. But inelastic scattering brings about
completely new physical phenomena.



Individual income 275

Besides complex effects related to spatial structures which emerge in low (1, 2, 3,
. . . ) Euclidean dimensions [1477], the most important fact is that the velocity distri-
bution does not follow the universal Maxwell-Boltzmann distribution, but generically
has fatter tails, either exponential or power-law ones [1478–1482].

As a simple model for granular gasses, the Maxwell model was adapted to inelastic
scattering [1479, 1480, 1482–1494]. The rate of dissipation is measured by restitution
coefficient 1 + ǫ, with ǫ < 0. Power-law tails in energy distribution were observed and
within the mean-field approximation, equivalent to infinite spatial dimensionality, an
exact solution was found for an arbitrary level of dissipation ǫ.

It is tempting to translate the results known for inelastic gases to the language
of wealth exchange. Here, however, instead of dissipating the energy the wealth is
produced, corresponding to positive ǫ. Unfortunately the results for ǫ < 0 cannot be
used directly in the region ǫ > 0. Production is not a simple inverse of dissipation.

The model of wealth production and exchange in pairwise interactions can be
described by a process similar to (7.43) [918]. We shall fix the redistributed fraction β
and production rate ǫ > 0 and in each step randomly choose a pair of agents. Requiring
that the interaction is symmetric with respect to exchange of agents, (i, j) → (j, i),
we have the following rule

(
Vi t+1

Vj t+1

)
=

(
1 + ǫ− β β

β 1 + ǫ− β

)(
Vit
Vjt

)
. (7.46)

Again, the distribution function for the wealth of a single individual obeys a master
equation

∂

∂t
Pt(v) + Pt(v)

=

∫
Pt(v1)Pt(v2) δ((1 − β + ε)v1 + βv2 − v) dv1 dv2.

(7.47)

The solution of this equation is not straightforward. First, we note that the average
wealth v(t) =

∫
v Pt(v) dv grows indefinitely, v(t) = v(0) eεt; so strictly speaking there

is no stationary solution. This is not a serious obstacle, though, for we encountered
a similar situation with Lotka-Volterra and wealth-exchange models. We avoided the
problem by introducing variables measured with respect to the mean; and the same will
also be done here. We shall look for the solution in the form Pt(v) = Φ(v/v(t))/v(t).

Moreover, we shall use the Laplace transform Φ̂(z) =
∫∞
0

Φ(u) e−zu du. This way we
arrive at a non-local differential equation

ǫzΦ̂′(z) + Φ̂(z) = Φ̂((1 − β + ǫ)z) Φ̂(βz). (7.48)

The tail of the distribution Φ(u) can be deduced from the behaviour of its Laplace

transform at z → 0. Assuming Φ̂(z) = 1 − z + Azα + . . . we have Φ(u) ∼ u−1−α

for u → ∞. We have only to check that the assumed behaviour of Φ̂(z) is consistent
with Eq. (7.48) (it is, indeed) and find the value of the exponent α. This leads to the
following equation

(1 + ε− β)α + βα − 1 − εα = 0 (7.49)

which fixes the exponent of the power-law tail, depending on the parameters β and ǫ.
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We have shown that power-law tailed distributions of wealth are generated on con-
dition that wealth is not conserved but produced at each step of the dynamics. Next,
it would be desirable to deduce the full form of the distribution Φ(u). Unfortunately,
it is not possible in general, due to the non-local nature of Eq. (7.48). However, we can
see that the non-locality is due to finite values of parameters ǫ and β. The smaller the
parameters, the closer we are to a well-behaved ordinary differential equation. This
suggests making the limit ǫ → 0 and β → 0 with the hope that we get a differential
equation amenable to an exact solution. Physically this limit means that the trading
is performed in smaller and smaller packets, and we call that the limit of continuous
trading.

When doing that, we must carefully choose the way to perform the limit; otherwise
all relevant physics would be lost. As the measurable parameter here is the Pareto index
α, the proper way is to proceed along the line of constant α. From Eq. (7.49) we find
that this line is given by β = α−1

2 ε2 + . . .
This is sufficient to derive the equation for the distribution

−1

2
zΦ̂′′(z) +

α− 1

2

(
Φ̂′(z) + Φ̂(z)

)
= 0, (7.50)

which can be explicitly solved using Bessel functions. Inverting the Laplace transform,
we arrive at the result we have already seen in Eq. (7.34). Let us repeat it again in
the current notation [918]

Φ(u) =
(α− 1)α

Γ(α)
u−1−α exp

(
− α − 1

u

)
. (7.51)

It is indeed worth noting that several apparently unrelated approaches lead to not
just qualitatively similar but truly identical results. Surely there is a whole family
of models which implement the same basic mechanism in different disguises. Let us
list those which have been discussed in this chapter: multiplicative-additive process
(Sec. 7.2.1), generalised Lotka-Volterra systems, wealth redistribution models, and
non-conservative wealth exchange (studied just now). Looking for the common ingre-
dients among them, we can see there is, first, the multiplicative character of these
processes, either scalar or matrix; and second, a stabilising mechanism acting against
the geometric increase (or decrease) normally observed in pure multiplicative pro-
cesses. The stabilising force can be applied either explicitly, as a wall or through an
additive term, or implicitly, redistributing the wealth in an essentially uniform fashion
among all individuals in the system.

7.3 Corporate growth

7.3.1 Scaling in empirical data

So far, the Gibrat law was regarded as an auxiliary principle with a certain limited
validity. It was used to develop the first models for income dynamics, which have
subsequently been improved and tuned to accommodate the empirical findings. Now
we turn to the very subject touched by the Gibrat law, the statistical properties of
growth.



Corporate growth 277

(r − r̄)/σ

σ
P

(r
)

6420−2−4−6

1

0.1

0.01

(r − r̄)/σ

σ
P

(r
)

420−2−4

1

0.1

0.01

Fig. 7.5 In the left panel, rescaled probability density for annual company growth mea-

sured in the period 1974–1993. Different symbols correspond to three bins of initial size:

87 < S0 < 88 (◦), 88 < S0 < 89 (△), and 89 < S0 < 810 (2). Data were extracted from

Ref. [1498]. In the right panel, rescaled distribution of country growth for countries with low

GDP (◦) and high GDP (△). Data extracted from Ref. [1503]. In both panels, the solid line

denotes the exponential distribution (7.52). The dashed line is the power ∝ |r − r|−3.1.

Companies

For historical and practical reasons, most studies on economic growth were performed
on companies and other complex entities [1495], while growth of individual income
was much less covered [1412]. Let us first present some empirical findings. Like distri-
bution of individual incomes, it is possible to analyse data for firm sizes. A problem
arises here as to how to properly define the firm size. Several measures are available
to choose from: number of employees, annual sales, total assets, and several others.
Unfortunately they do not always give compatible results. While power-law distribu-
tion was reported for the number of employees [1496], sales were better reproduced by
log-normal distribution [1497–1500] followed by a power-law tail [1432, 1501, 1502].
Interestingly enough, log-normal distribution was also observed for the GDP of entire
nations [1503]. We shall see that the analogy between companies and countries goes
even farther.

The distribution of annual growth was studied for various times and geographi-
cal areas [1412, 1425, 1426, 1432, 1495, 1497–1500,1504–1507]. Usually the logarithmic
growth rate R = ln(S1/S0) is analysed, where S0 and S1 are company sizes in two
consecutive years, measured in the quantity selected to study (sales, employees, etc.).
In terms of growth distribution, little difference is found between the various mea-
sures. The first important observation was that, except far in the tail, the variance of
growth rates systematically depends on company size; but after subtracting the aver-
age growth r and rescaling relative to the variance σ, all data for the rescaled quantity
(R− r)/σ for various sizes fall onto the same curve (within statistical errors).

Typical data for the distribution P (r) for the quantity R are shown in Fig. 7.5.
The striking feature is the cusp at zero growth and the exponential behaviour in the
central part. Indeed, it was successfully fitted on the following dependence
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P (r) =
1

σ
√

2
exp

(
−
√

2|r − r|
σ

)
. (7.52)

The tails of the distribution are more difficult to analyse, but they seem to be compat-
ible with the power-law behaviour. Thus, we encounter a situation similar to that pre-
vailing in income distribution: power-law tails accompanied by exponential distribution
for lower values of the quantity in question. More thorough investigations also found
clear asymmetry of the tails for positive and negative growth [1432]. This asymmetry
is even more pronounced in the distribution of individual income growth [1412, 1508].

Countries

A similar study on GDP growth of countries yielded essentially the same results [1503].
We can see the data in Fig. 7.5. If we plotted the data from the left and right panels
of Fig. 7.5 in the same graph, they would hardly be distinguishable.

Very interesting results appeared when the variance of the distribution of growth
was plotted against initial size (or GDP in the case of countries). While in the tail,
where company sizes are power-law distributed, the variance was nearly constant (in
accordance with the Gibrat law), in the bulk of the distribution, where log-normal de-
pendence is applicable, the variance decreases with size (contrary to Gibrat) according
to

σ ∼ S−β
0 (7.53)

where exponent β varies between 0.15 and 0.2, as can be seen in Fig. 7.6. Such a
dependence contradicts the usual scaling of fluctuations in common physical systems
like gases, where, for system size N , we have σ ∼ N−1/2. This means that companies
as well as states fluctuate significantly more than they would if they were composed
of independent units.

7.3.2 Hierarchical model of an organisation

There is an elegant explanation for the anomalous fluctuations in growth rate, based on
the hierarchical internal structure of the organisation. Normal scaling of fluctuations
depending on their size, described by an inverse square root, holds on the condition
that the system is composed of independent units whose number is proportional to
the size of the entire system. In fact, it is not necessary that individual particles in the
system are nearly free. If that were the case, the inverse square root behaviour would
only apply to ideal gases, while in reality it holds for virtually any system not too close
to a critical point. We may think of the particles as effectively independent units, which
may themselves comprise very many particles. The important point is that each unit
behaves as a whole and yet simultaneously the units are mutually quasi-independent.
The system is organised in only two levels: the lowest level of particles and the level
one step higher, which belongs to the units. There is no more structure above them.

We may generalise the latter idea, introducing many levels in our system [1495,
1509, 1510]. In fact, adding any finite number of levels would not help because the
behaviour is then qualitatively the same as with two levels. You can either have only
two levels, or you need arbitrarily many of them.
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Fig. 7.6 Size dependence of the standard deviation for countries (◦) and companies (△).
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Data extracted from Ref. [1503].

Imagine that at each level a manager directs k people at a lower level, each of
whom directs again k people at an even lower level, etc. The company is organised as
a big tree. Now suppose a manager issues an order to subordinated employees. They
will obey that order with probability p and behave independently with probability
1−p. It is possible to show that the fluctuations in such a system decrease as σ ∼ S−β

with the exponent

β =

{
− ln p

ln k
for p > k−1/2

1
2 for p < k−1/2 .

(7.54)

So, hierarchical organisation generically leads to exponents β ≤ 1/2, in accordance
with empirical findings.

7.4 What remains

Despite numerous models and important progress achieved in understanding income
and wealth distributions [43, 1511], some questions are still unanswered. The emergence
of the Paretian power-law tail seems to be consistently ascribed to the multiplicative
character of income dynamics, countered by a stabilising mechanism. On the other
hand, each of the middle and lower incomes has its own explanation, different from
the one valid for the tail. Such a state of affairs is certainly unsatisfactory. A theory
is desirable which would smoothly interpolate between the three regimes. The theory
of killed multiplicative processes seems to us the closest to this goal, but it is not yet
clear which microscopic mechanisms may lie behind it. Without deeper insight, the
killed multiplicative processes look somewhat arbitrary.

It is also not clear why the various conservative models based on pairwise exchange
lead to such different results. We should ask whether it would be possible to devise
a plausible model which would give Boltzmann-like exponential distribution for lower
values, followed by a power-law tail. The feasibility of such a model is highly probable,
recalling the sudden change of behaviour, namely, from exponential for conservative to
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power-law for non-conservative exchanges. Such an abrupt change may be an artifact
of the existing models, and a more realistic one might pass smoothly from one regime
to the other. For those interested in possible alternatives, we provide the following
references [774, 1512–1539]. In Refs. [1540–1542] the ideas of pure rational thermody-
namics are applied.

We must stress again the generic importance of the generalised Lotka-Volterra
equations. To see the problem in wider context, the reader is encouraged to consult
Ref. [1543]. For various specific applications, see Refs. [561, 818, 1544].

Let us also recall what was mentioned when discussing the wealth-redistribution
models in Sec. 7.2.2. The effect of the complex topology of the social network on wealth
dynamics has as yet been poorly explored. Finally, a totally untouched question is the
source and properties of fluctuations in the Pareto index, which were shown in Fig.
7.3.

The study of growth is relatively less developed with respect to distribution of
income and wealth. There have been attempts to explain the tent-shaped exponential
distribution (7.52) with the assumption that each company tends towards an intrinsic
optimal size despite random fluctuations [1509]. However, this solution is far from
being complete. For example, it cannot explain the tails in the growth distribution,
which are fatter than those of the exponential one. We should also note that there are
explanations based on preferential attachment principle [1545, 1546].

It is probable that the hierarchical model is not the only one that can explain
the observed data. For a promising alternative see Refs. [1547–1549]. Indeed, any
mechanism which would relate the size of effective units with the size of the whole
system would be as good in predicting anomalous scaling of fluctuations. However,
it may serve as a transparent phenomenological model even if we are not able to
unambiguously determine positions of individuals in our tree. Indeed, for example
it may be a daunting task to reliably identify for entire countries who is the one
really making the important decisions and who is simply a puppet in front of the TV
cameras. It seems that much more data is necessary before we have a reliable model
of the internal structures of complex organisations.
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Problems

1. Introduce noise in the additive term in Eq. (7.29), so that the dynamics is de-
scribed by

dVt = Vt dW1t + dW2t. (7.55)

Derive the corresponding Fokker-Planck equation and deduce the exponent of the
power-law tail.

2. Using the idea of killed multiplicative processes, consider the following model
with discrete-time dynamics. The society is composed of a variable number Nt of
individuals with incomes Vit. At each time step, each of the incomes is multiplied
by a random number

Vi t+1 = eWit Vit (7.56)

where all Wit are independent and equally distributed. After this change of in-
come, but still at the same time step, each individual can die with probability p
or give birth to an offspring with probability 1 − p. A newly born individual has
an income of 1 while the parent’s income is unchanged (but also imagine other
possibilities!).
What will the distribution be of the income of a randomly chosen individual in the
society? How does this result depend on the parameter p and on the properties
of the noise Wit?

3. For the one-variable stochastic Lotka-Volterra equation

dVt = Vt dWt − V 2
t dt (7.57)

with noise characterised by 〈dWt〉 = dt, 〈(dWt)
2〉 = D dt, D ≪ 1, find the

corresponding Fokker-Planck equation. Can you guess the general features of the
solution?

4. We can modify the conservative pair-exchange model (7.43) so that it describes
the dynamics of income for families with two earners. Our ‘particles’ therefore
have an internal structure, and their income is a sum of two contributions, Vit =
Via t + Vib t. Suppose that in each interaction two such pairs of earners scatter, so
that each family member in one pair interacts independently of the other with
the corresponding member in the second pair. The resulting process is therefore
a combination of two independent instances of the processes described by (7.43).
First write the matrix multiplication formula corresponding to (7.43), then find
the equation analogous to the master equation (7.44). Are you able to solve it?
Hint: use the Laplace transform.

5. How will the equation for the Pareto index (7.49) be modified if we allow ǫ and
β to fluctuate randomly? (You may look at Ref. [1550] for inspiration.)
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Social organisation

If a storm had taken you from your quiet university office, far off your desk full of
piles of reprints, preprints, and books; two or three cups with remnants of yesterday’s
coffee; and abstract ideas dreaming, perhaps, of solving exactly the three-dimensional
Ising model. . . if the storm had tossed you into a factory, amidst workers dissatisfied
with their low salary and threatening to go on strike, you would most probably feel
rather lost with your wits. But after a while you would start to breathe again, recover
your mental equilibrium, Ising model still in mind, and try to figure out what was
happening and what would be best to do now.

You will probably notice that the pending strike is certainly a collective phe-
nomenon. Indeed, it would never happen without a large level of coordination among
workers. Next, the strike occurs as a sort of singularity in the otherwise smooth op-
eration of the factory. These two features must make a short circuit in your head,
producing a spark and illuminating the scene. It is so simple. The phenomenon of a
strike is yet another example of a phase transition (so you think). People behave like
Ising spins, having two choices: to work (denote it +1) or to strike (−1). And they
not only have binary options like Ising spins, but they also interact with each other in
a manner familiar from the Ising model, following more or less their close neighbours
within the crowd. The extent to which an individual obeys the surrounding opinion is
one of crucial parameters determining the fate of the factory. A physicist would call it
temperature. The last ingredient is the incentive to work, quantified by the salary. If
it is lower than the labour force considers fair, it results in a tendency to strike. If it
is higher than the subjectively acceptable level, it motivates people to work.

We can formalise the idea by introducing a dissatisfaction function, summing con-
tributions from the mutual influence between employees and pressure exerted by the
management. We can write it as H = −∑<ij> JijSiSj − h

∑
i Si. The meaning of the

symbols is straightforward. Si ∈ {−1,+1} is the state of the i-th worker, Jij measures
the strength of interaction between workers i and j, and h parameterises the incentive
to work. It is an increasing function of the salary and equals 0 when the salary is
exactly the (subjectively) fair one.

Of course, every physicist instantaneously recognises H as the Hamiltonian (i.e.
energy) of the Ising model with couplings’ strengths measured by the numbers Jij and
immersed into external magnetic field h. Assuming all workers being in touch with
all others, and all relations being equally intense, we can set Jij = J for all pairs of
individuals, and the model is reduced to a mean-field version of the Ising model. Its
solution is well-known and straightforward [1551]. Below a certain critical temperature
there are two ordered phases: one with the majority working (+1) and the other with
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the majority striking (−1). Varying the external stimulus h, the ‘magnetisation’, or
fraction of working people, performs a sudden jump. In other words, there is a first
order phase transition with control parameter h. On the other hand, for a temperature
above the critical point the magnetisation behaves smoothly when changing h.

What is important for us here is the response of the labourers to the change in
salary the manager can offer to the rebellious employees. The results for the mean-
field Ising model can be directly translated to the language of the ongoing social
conflict. Indeed, if the coordination between labourers is higher, it amounts to a lower
temperature and strong cooperation emerges. If the factory is on strike, increasing
wages has little effect until it reaches a threshold where the will to go back to work
suddenly jumps up. Conversely, the social cohesion prevents the workers from going on
strike individually immediately after the payments were lowered; but when the salary
drops below a certain unbearable value, the strike begins instantaneously.

An important finding is that the salary at which people jump from work to strike
is lower than the salary which forces the striking employees to return to work. This is
the effect of hysteresis, common in magnetic materials, where the Ising model rules.
Finding the same behaviour in human society was an exciting achievement in 1982,
when Serge Galam et al published one of the first articles [1552] in the field of socio-
physics [1553, 1554]. We shall devote this chapter to some of the multitude of socio-
physical models which emerged since then, or even before [12, 13], maybe much before,
as the first person to speak of social physics was Auguste Comte all the way back in
the first half of 19th century [1, 2]. Apparently we are in good company.

8.1 Cooperation

People never earn their living alone. From the darkest pre-historical past they stuck to-
gether to form gangs, stalking and hunting their prey. Without communication within
the band, our ancestors would hardly have been able to catch a mammoth, language
would never have evolved, and human brain capacities probably would never have ex-
ceeded that of a lemur. In short, cooperation between humans was decisive for shaping
the world around us. A tendency toward cooperation is an inherent feature of human
nature.

It was not until the middle of 18th century or so that a different view started
to spread. People are presented as selfish profit-seekers, and, if any cooperation is
observed, it occurs despite the natural tendency to gain the maximum for self, or as
a by-product of such a tendency. Under the vague names of neo-liberalism and social
Darwinism these and related ideas pervade current thinking on human society.

On the other hand, viewed empirically, the cooperation has much evolved now
and assumed more sophisticated and complex forms than in the old times when it was
considered self-evident. The situation is rather paradoxical: the more people need each
other, the more they proclaim selfishness a norm, or even a desirable behaviour. The
evidence from reality, however pungent, is not any more evident in itself but needs
external explanation. The facts require proof from a theory. Here, we have no other
choice than to proceed the same way. We shall start from the zero hypothesis of no-
cooperation and regain cooperation by a non-trivial mechanism we need to discover.
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8.1.1 Prisoner’s dilemma

Games

There is a very fertile ground to model the starting assumption of selfish individuals,
provided by game theory [1555, 1556], introduced in the 1940s by John von Neumann
and Oskar Morgenstern. In fact, the agents are supposed to be not only utterly selfish,
but also absolutely rational. In a typical setup agents meet in pairs, and each of them
chooses one of S possible strategies. If the first agent adopts strategy i and the second
agent strategy j, then the first one gains an amount denoted Aij , while the other’s
gain is Aji. The matrix A is called a payoff matrix and various types of games are
distinguished according to its properties. For example, if the gain of one agent equals
the loss of the other agent, that is, Aij+Aji = 0 for all i and j, we speak of a zero-sum
game. If the gain of the wining party is always smaller than the loss of the adversary,
the game is a negative-sum one, and we have Aij +Aji < 0 for all i and j.

We suppose that the rules of the game, quantified in the matrix A, are known
to both players. Therefore, they can build their strategies on rational analysis of the
payoff matrix. It may happen that one strategy gives the highest gain irrespective of
the action taken by the opponent. Formally, it means that the strategy k of the first
player is such that Aij ≤ Akj for any strategy i of the first player and any strategy
j of the second player. The same may also hold for the second agent. Suppose that l
is her best strategy, irrespective of the action of the first player. Obviously then, the
first person always plays k while the second always plays l. If either of them changes
her strategy unilaterally, she is instantly worse off. Such a situation, if it happens, is
called a Nash equilibrium, after John F. Nash, a mathematician who devoted much of
his career to applications of game theory in economics [1557, 1558].

It is vital to realise that the notion of the Nash equilibrium differs fundamentally
from the usual equilibrium studied in various branches of physics. Whether we think of
an equilibrium of solid bodies on a lever, equilibrium configuration of an ensemble of
balls tied together by rubber springs, or of thermodynamic equilibrium in the system
of steam, water, and ice, we formalise the situation by finding a unique function to be
minimised (or maximised, if you like working with entropy). On the contrary, Nash
equilibrium means that every player maximises her own function, with the state of all
other players fixed, as if the movement of every single molecule in a bottle of wine was
governed by an individual Hamilton function, instead of having one Hamiltonian for
the whole system [855, 1559].

But if we look around, we do find physical systems in which Nash equilibrium
is decisive. For example take a cardboard box and pour a bag of marbles into it.
An irregular packing of small spheres will emerge, despite the fact, now proved rig-
orously [1560], that the most compact configuration is either the face-centred cubic
or hexagonal close packed lattice (both of them are equally good, as is any mixture
of them). You may try to shake the box, expecting that it would help the beads to
get to their optimal arrangement, but you are highly unlikely to enjoy success. The
point is that with gentle shaking any of the marbles finds its optimum position with
respect to the surrounding marbles, but as a whole the ensemble of the balls is not
ordered as well as it could be. Finding the global optimum would require simultaneous
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rearrangement of many spheres, which is an extremely rare event. The best one can
expect is that every ball finds its private optimum, much like the players finding the
Nash equilibrium.

Two prisoners

Collaboration was studied in a very simple two-player game with two strategies, called
the prisoner’s dilemma game. As a classical motivation, imagine that the police caught
two accomplices for a suspected burglary, but do not have enough evidence to prove
that the two are guilty. The prisoners are kept well separated and the investigator
offers a deal to each of them independently. The criminal is given a promise that if he
breaks company with the other and confesses the robbery they committed together, he
will be rewarded. So, if both of them confess, they will be jailed only for a short period;
if one confesses and the other does not, then the first one is released and rewarded and
the other gets a severe punishment; and if neither of them confesses, both are released.
The point is that each has to choose without knowing the other’s choice.

The strategy of collaboration (C) dictates not to confess. In fact, it would be most
beneficial to them, if both collaborate. However, individually it is more tempting to
defect (D) and confess to the police, as it prevents the situation that the one confesses
and the other is punished alone. Because both prisoners reckon in the same way, the
result is that both defect and have to suffer some time in prison. Hence the dilemma.

The payoff matrix of this prisoner’s dilemma game is characterised by four numbers:
the gain if both defect, ADD = P , the gain if both cooperate, ACC = R, and the gains
of the defector, ADC = T , and of the collaborator, ACD = S, if one of them defects
and the other does not. So,

C D

R S C
APD =

( )

T P D.

(8.1)

In order for the prisoner’s dilemma to work as described above, the values must satisfy
the inequalities T > R > P > S and 2R > S + T . The most studied values of the
parameters are

T = 5, R = 3, P = 1, S = 0. (8.2)

It is easy to see that there is a single Nash equilibrium, in which both players
defect. Intuitively it was exposed before, and an exact check is even quicker. If the
second player collaborates, the rewards of the first are R and T if he collaborates or
defects, respectively, and because T > R, defection is better. Similarly, if the second
player defects, the gains are S and P and as P > S, it is again preferable to defect.
So, defection is the optimal strategy anyway.

Mixed strategies

The full potential of the game theory is developed introducing the so-called mixed
strategies. Intuitively, they mean that the strategies i are not chosen deterministically
but are played randomly with prescribed probabilities pi. If the first player uses a mixed
strategy with probabilities p1i, while the second plays according to probabilities p2i,
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the average gain of the first is G1 =
∑
ij p1iAijp2j and that of the second is G2 =∑

ij p2iAijp1j . For example, in the prisoner’s dilemma game it is G1 = p1CRp2C +
p1CS(1 − p2C) + (1 − p1C)Tp2C + (1 − p1C)P (1 − p2C). To be precise, the notion of
the Nash equilibrium was formulated for mixed strategies. The point is that the n
probabilities pi are restricted to the interval [0, 1]; their sum is always 1, and therefore
the set of possible mixed strategies form a (n−1)-dimensional polyhedron. If the Nash
equilibrium exists, it must lie in one corner of the polyhedron.

In prisoner’s dilemma, the analysis of mixed strategies is simple. Differentiating
G1 with respect to p1C , we find that the gain of the first agent always decreases with
p1C regardless of the strategy of the second player, quantified by the parameter p2C .
Therefore, the optimum lies at p1C = 0, which means deterministic strategy of a
defector. The same holds for the second player; so we recover the result that defecting
is the best choice even if we allow mixed strategies.

The Nash equilibrium in the prisoner’s dilemma game is symmetric, i.e. both agents
choose the same strategy. Generally it may not be so, even though the game itself is
symmetric. The Nash equilibrium may be accompanied by spontaneous symmetry

breaking. To see it on a toy example, let us consider the payoff matrix A =
(

0 1
1 0

)
. It

has a simple interpretation: the player gets a point if she manages to play a different
strategy than her opponent. The mixed strategies of the two parties are characterised
by probabilities p1 and p2 that the first strategy is chosen by players 1 and 2, respec-
tively. The average gain G1 = p1(1 − p2) + (1 − p1)p2 is a decreasing function of p1 if
p2 > 1/2 and increasing for p2 < 1/2; therefore the Nash equilibrium is either p1 = 0
and p2 = 1, or, conversely, p1 = 1 and p2 = 0. The multiplicity of Nash equilibria is a
natural consequence of the spontaneous symmetry breaking.

8.1.2 Playing repeatedly

Evolutionarily stable strategies

Game theory proved extremely useful in evolutionary biology. The strategies can be
understood as patterns of behaviour the living beings choose, either on the basis of
previous experience or according to their genetic code. The framework of game theory
is combined with replicator dynamics in the strategy space. The individuals who gain
more in the repeated games give birth to more offspring, while those who mostly
lose are doomed to extinction. This is the basic setting of evolutionary game theory,
elaborated mainly by John Maynard Smith and others [1561–1565].

The basic new concept of this theory is the notion of evolutionarily stable strategy.
To explain it briefly, imagine a population of individuals, each playing a certain strat-
egy which is encoded in their genes. As the mutations are always present, we should
admit that a small change in strategy may occur in one or a few individuals. Now
it may happen that the mutated strategy gains more if played against the old strat-
egy. This leads to proliferation of the mutated genome, until the new strategy invades
the whole system. The defeated strategy was not evolutionarily stable. If, instead, all
mutated strategies perform worse, the original strategy is called evolutionarily stable,
because mutations plus selection cannot overhaul it.
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In the prisoner’s dilemma game, we can think of the parameter pC characterising
the mixed strategy as being encoded in the genes. Elementary mutations cause very
small changes in that parameter, which would smoothly move within the interval [0, 1],
provided there was no selection pressure. The latter acts as an optimising machine,
choosing defection as an evolutionarily stable strategy.

It can happen that there is no evolutionarily stable strategy at all but that the
strategies keep replacing each other indefinitely. A nice example of such a situation is
the rock-paper-scissors game. Every child knows this game: the rock makes the scissors
blunt, the scissors cut the paper, and the paper wraps the rock. The following payoff
matrix describes the game entirely:

R P S

0 − 1 1 R
ARSP =

(
1 0 − 1

)
P

− 1 1 0 S.

(8.3)

In a population where all individuals play rock, the gain of each is zero. But if a random
mutation makes one of them play paper, that individual has an instant advantage,
which is translated in abundant offspring, quickly displacing all rock players. But
evolution does not stop here. Another random mutation can create a scissors agent,
repeating the takeover once more. The scissors population is, in its turn, defeated
by ‘rockers’, and the cycle keeps rotating forever. There is no evolutionarily stable
strategy, but a cyclic attractor sets in instead.

At this point it is perhaps appropriate to stress that the rock-paper-scissors game
is not a mere pastime. Biology provides examples where rock-paper-scissors fits the
observations quite well. One of them consists of three different competing strains of
the bacterium Escherichia coli [1566]. The first is a common strain, without special
abilities. The second strain is able to produce a toxin called colicin, thus killing normal
bacteria, and produces an immunity protein for its own protection. The third strain
only produces the immunity protein, being resistant against the second strain and
at the same time saving resources. This causes its victory over the toxic strain. But
now, in the absence of the toxin, the normal strain has an advantage, as it may invest
energy into reproduction instead of producing the unnecessary immunity protein. The
rock-paper-scissors game is immediately recognised. Another example of cyclic changes
was observed in California lizards, which use three different mating strategies, each
winning compared to one of the remaining two, but losing when matched to the other.
As a result, six-year period oscillations emerge [1567].

Now that we have started our biological digression, we should mention that the
prisoner’s dilemma game is also realised in nature. There are several examples of
fish social behaviour that very closely resemble prisoner’s dilemma [1568, 1569], as
well as examples from studies on other animals. However, it is very difficult to prove
quantitatively that the corresponding payoffs, if they do exist, satisfy the prisoner’s
dilemma inequalities. A better prospect is provided by the study of viral infections in
which two different virus strains attack the same cell. They may cooperate by both
manufacturing the products necessary for their replication, or one of them can defect,
profiting from the other virus producing most of the chemicals needed. Experiments
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were carried out on phages φ6 (cooperating) and φH2 (defecting) [1570, 1571]. For the
sake of the reader’s curiosity we show here the experimentally measured payoff matrix,

A =
(

1 0.65
1.99 0.83

)
.

As a final remark concerning the concept of evolutionarily stable strategy, note that
it is very close, but not exactly equal, to the Nash equilibrium. While an agent looking
for the Nash equilibrium may skip to a distant point in the strategy space when
driven by external conditions, the individuals undergoing the evolutionary struggle
can change their strategies only smoothly, by gradual accumulation of mutations. It
depends on the particular game in question as to whether that difference matters or
not.

The evolution of cooperation

After spending some time with biology, let us return to modelling human behaviour.
We have explained that the Nash equilibrium excludes cooperation a priori, coinciding
with the neo-liberalist view on society. What, then, is the mechanism behind the
cooperation seen in reality? If there is a way for emergence of cooperation in prisoner’s
dilemma, perhaps the reality will follow a similar path.

It was Robert Axelrod who investigated this question in depth [1572–1574]. His
approach was certainly inspired by the use of game theory in biology, as explained in
the preceding paragraph. It would be a very strange world if every person would get
only one unique chance to play a round of the prisoner’s dilemma game in her life.
Instead, the games are played repeatedly, which opens a much wider space for possible
strategies. For example, one can regularly alternate cooperation with defection, or
cooperate every third round, etc. If the players are able to recognise each other, they
can base their strategies on the observation of the opponent’s past actions. As the
history is in principle unlimited, the space of all possible strategies is infinite as well.
But even if the agents have finite memory, say, M steps, the task to explore all of their
strategies is enormous even for moderate values of M .

To test at least a small subset of all strategies Axelrod organised a computer tourna-
ment [1572]. Researchers from several disciplines were invited to send their algorithms
for intelligent decisions in an iterated prisoner’s dilemma game. The tournament was
carried out as a round robin, i.e. every algorithm was allowed to play against every
other. Moreover, every strategy also played against itself and against the random strat-
egy, which cooperates and defects randomly with equal probabilities. Together with
the random strategy, there were 15 participants on the tournament. The scores of all
matches played by a strategy were added, and the rank was established according
to average score. The winner was the strategy called tit-for-tat (TFT), submitted by
Anatol Rapoport. Its idea is simple: cooperate with those willing to cooperate, defect
otherwise. It starts with cooperation, and then does what the opponent did in the last
step. The cooperation from the other side is rewarded by cooperation, while defection
is punished by defection in the next step.

From this first tournament it was still unclear if the victory of the TFT strategy was
only a happy coincidence or if it really was the best strategy. To be truthful, TFT was
not the absolute best strategy. Certainly not, because other strategies often got a larger
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score with the same opponent. There was only one opponent against which TFT scored
more than any other strategy; and with 5 opponents the best 8 strategies, including
TFT, got the same highest score. This means that there were several strategies nearly
as good as TFT. Moreover, the organisers of the tournament themselves proposed
a strategy in the invitation, which nobody submitted, but when it was tested after
the tournament was over, it turned out that it would have been the winner if it had
participated! This strategy, called tit-for-two-tats (TFTT), works similarly to TFT,
but the agent only defects if the opponent defected in two consecutive steps.

The result being inconclusive, Axelrod organised a second tournament [1573]. This
time there were 63 contestants, including TFT and some of the other good strategies
from the first tournament. The TFTT strategy was also submitted, as were some
other ones which were supposed to win if they had faced only those 15 from the
first tournament. Quite surprisingly, under these changed conditions, TFT gained the
highest score and won the tournament again.

What is the mystery behind the success of such a simple strategy as TFT? As al-
ready shown, and as was seen once more in the second tournament, TFT is rarely the
best strategy if the opponent is fixed. There are better specialised strategies tailored
to beat a given enemy. However, in a combined and unpredictable environment, TFT
performs on average better than any other known strategy. A detailed analysis of the
tournament showed that the key to success lies in two features of the TFT strategy.
First, it is ‘nice’, as it is never the first to defect. Two nice strategies always cooper-
ate with each other. Their quality can be distinguished only when they play against
non-nice strategies. If the strategy forgives defection too easily, it sooner or later gets
exploited by some clever parasitic strategies. That is why the TFTT finally scored sig-
nificantly lower than it was expected to after the first tournament. On the other hand,
the TFT strategy is easily provoked, i.e. defection is its immediate response to the de-
fection of the partner. No forgiveness means no chance to be exploited. As a side effect
of the role of ability to be provoked we realise that there are very important strategies,
Axelrod calls them kingmakers, which themselves score rather low, but affect crucially
the scores of the ‘good’ strategies. The final order of the best few strategies in the
tournament was determined by their performance against the kingmakers. Summarily,
the victory of the TFT strategy was due to its niceness and its good average score with
the kingmakers as well. Much of its force resides in its universality, as it is capable of
competing well in a broad variety of situations.

To complete the evolutionary picture, Axelrod simulated the ecology of strategies.
A population of agents evolved so that better-performing strategies got more offspring.
It was no surprise that TFT ultimately achieved the highest percentage, but it was
also interesting to note that it never dominated entirely, having been closely followed
by a few other nearly-as-good strategies.

Competing with noise

Up to now the players were perfect in that they always did what their strategy dictated.
But humans are not robots and make errors frequently. This fact brings a certain
(possibly rather high) level of noise into the course of the iterated prisoner’s dilemma
game and makes a big difference in the success of the strategies involved. For example,
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an occasional defection makes the TFT strategy defect in retaliation. Two agents
playing TFT against each other switch into a regime of alternating defection and
collaboration, instead of collaborating all the time. A second error may either bring
the two to collaboration again, or, with the same probability, to mutual defection.
However small the noise is, the TFT strategy loses much of its advantage. There
were several attempts to cope with noise in iterated prisoner’s dilemma [1575], but
the systematic way is provided by numerical simulations of evolving populations of
agents, which allow mutations of strategies. Therefore, the strategy space is explored
with minimum bias, and certain subsets of possible strategies can be investigated in
their entirety [1576, 1577].

The formalism generalises Axelrod’s tournaments in an ecological language. The
ecosystem consists of N agents, each playing its own strategy; but instead of tracing
all the agents individually, we shall follow the population dynamics of the strategies,
which can be viewed as various species. If strategies i = 1, 2, . . . , S are present with
concentrations ci, we first calculate their mutual scores, i.e. the average gain gij of the
agent using strategy i if she plays for an infinitely long time against the strategy j.
We suppose that due to the presence of noise, the initial conditions are irrelevant. The
score of the strategy i is then

ui =
S∑

j=1

gijcj , (8.4)

and the average score in the whole ecosystem is u =
∑S
i=1 uici. The evolution proceeds

in continuous time t. The increase of the subpopulation playing strategy i is the larger
the more the score of i is above the average, so

d

dt
ci(t) = (ui − u) d ci(t) (8.5)

where d is a constant specifying the a priori growth rate. Combining Eqs. (8.4) and
(8.5), we get a closed set of evolution equations for the concentrations

d

dt
ci(t) =

(
S∑

j=1

gijcj(t) −
S∑

j,k=1

gjkcj(t)ck(t)

)
d ci(t) (8.6)

which fully describes the population dynamics once the matrix of the parameters gij
is given.

A good thing about the equations (8.6) is that they manifestly conserve the normal-

isation condition
∑S
i=1 ci(t) = 1. We also see that if the concentration of the strategy

i vanishes at a certain time t′, i. e. ci(t
′) = 0, it remains zero at any later time t > t′.

First, it means that in an evolution governed by (8.6) it is dynamically impossible for
the concentrations to go outside the allowed interval 0 ≤ ci(t) ≤ 1. This is an impor-
tant consistency check. Second, it means that the absorbing states of the dynamics
are uniform populations of only one strategy. (A state is called absorbing if there is
no way of escape from it. A system which jumps into an absorbing state remains in
this state forever.) However, they are a rather theoretical possibility, as they cannot
be reached from a generic initial condition by the dynamics (8.6) in finite time.



Cooperation 291

We have arrived at a theory described by a set of nonlinear differential equations,
which is complicated enough by itself, but we must add some more complexity on
top of it. Two things are still missing in equations (8.6). The first one is the fact
that there are only a finite number N of players in the ecosystem. Therefore, if the
concentration of strategy i calculated from (8.6) drops below the level ci(t) = 1/N ,
it must be artificially set to zero. Doing so, the concentrations of the other strategies
must be rescaled in order that the proper normalisation

∑
i ci = 1 be satisfied. This

appears to be a marginal change in the evolution rules, and most of the time it is
indeed so, but the eventual consequences are profound. The originally perfectly smooth
evolution starts exhibiting occasional singularities, marking the complete extinction of
a certain strategy. The number of strategies can decrease in time, while in the evolution
according to (8.6) it always remains constant.

The second missing ingredient concerns just the opposite process: increasing the
number of strategies present in the system. They may appear by mutations of the
strategies actually present. To describe the process formally, we first need to encode
the strategies in such a way that the mutations make sense. The decisions will be made
according to the history of the game, recorded in a bit string. We denote 0 defection
and 1 collaboration of an agent. The length of the agent’s memory will be M . It
means that the agent remembers M past decisions, both by the opponent and by the
agent herself. No memory, M = 0, means unconditional decisions by the agents: either
defection, strategy 0, or collaboration, strategy 1. The shortest non-trivial memory
M = 1 means that each agent remembers one past step by the opponent. There are
2M = 2 past histories, and for each of them the strategy should prescribe the action to
be taken. So, the strategy is a 2-bit string. For example, [00] and [11] are the already
known strategies of unconditional defection (also called ALLD) and unconditional
cooperation (alias ALLC). There are two other possible strategies. The first is [01],
meaning action 0 if the history was 0 and action 1 if the history was 1; or, in simple
terms, do what the opponent did in the last step. Clearly, we recognise the TFT
strategy. The last remaining strategy is [10], which is just the opposite of the TFT
strategy; it suggests acting contrary to what the opponent did. This strategy is called
anti-tit-for-tat (ATFT); and although it seems counter-intuitive, it is rather successful
in our ecology.

For a larger M the notation for strategies proceeds in the same way. The history is
an M -bit number (we must be careful when M is odd, as in this case the two players
do not remember the same thing: namely the actions of both in the last (M − 1)/2
steps plus the action of the other party in the (M + 1)/2-th step in the past), and
an action is given for each of them. So, the strategy is a 2M -bit string, and there are

22
M

different strategies. The reader perhaps remembers the minority game discussed
in Chap. 5, where essentially the same notation for strategies was used. For example,
the M = 2 strategy written as [1001] prescribes cooperation (1) if either both players
defected or both cooperated in the last step. If the two took different actions, the
suggested action is 0, i.e. defection. We shall see that this particular strategy is rather
good, but not the most successful one.

The mutations will occur instantaneously at times ti, i = 1, 2, . . . where the waiting
times ∆ti = ti+1−ti > 0 are independent, exponentially distributed random variables.
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b) (10)

(11) (00)
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c) (10)
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Fig. 8.1 Three examples of transitions between states in the iterated prisoner’s dilemma for

strategies with memory M = 1. Each of the four states is represented by the actions of the two

players in the last step. Solid arrows indicate transitions in the absence of noise, and dotted

arrows show additional transitions due to weak noise. In panels b) and c) the noise-driven

transitions are not shown, as they are identical to those in panel a). The strategies of the

opponents are a) both [01], b) [10] and [01], c) [11] and [01].

In fact, the choice of the times to mutate is not crucial as long as they have more or
less regular intervals between them. What is crucial, though, is the recipe for the
mutations themselves. Three types of mutations will be allowed. The first of them are
point mutations, which is the flip of a single bit in the string representing the strategy.
An example is the change [1101] → [0101]. The second type is gene duplication, which
corresponds to attaching an exact copy of the strategies string at the end of itself, e.g.
[10] → [1010]. The meaning of this mutation is simple. The memory length is formally
increased by one, but the action of the agent is the same regardless of the information
contained in the extra bit. As such, the gene duplication does not make any change
in the behaviour of the ecosystem, but it is extremely important because it opens the
door for longer and more complex strategies which then evolve through a sequence
of point mutations. The third and last type of allowed mutations splits off randomly
either the first or the second half of the genome, as if the memory was shortened by
one. An example is the replacement [1101] → [01].

In terms of the concentrations, the mutations are implemented as follows. If the
strategy i′ was created by mutation of strategy i, we replace ci(t) → ci(t) − 1/N and
ci′(t) → ci′(t) + 1/N , or ci′(t) = 1/N if the strategy i′ was absent before.

We have almost all the pieces in place now. The missing information is the matrix
of the average gain gij . When calculating it, we make two assumptions. First, we
suppose that the strategies i and j play against each other for an infinitely long time.
This is reasonable if the population dynamics is much slower than the dynamics of
the game. Second, we introduce a weak noise in the actions of the players. As already
explained, this is the ingredient which makes a big difference in the dynamics even if
the noise is infinitesimally small. The reason lies in the non-ergodicity of the dynamics
in the absence of noise. The state space of our system is the set of possible histories,
i.e. sequences of 1s and 0s, with length M if M is even, and M + 1 if M is odd.
Starting from certain initial conditions, we can explore only a certain part of the state
space. The noise reintroduces the ergodicity, as it allows the system to jump from one
invariant subspace to another.

Fig. 8.1 explains the idea. In the case of M = 1 the state space has 4 elements,
corresponding to the 4 combinations of the actions of the two players in the last step.



Cooperation 293

t/1000

c i

6420

1

0.8

0.6

0.4

0.2

0

t/1000

c i

1007550250

1

0.8

0.6

0.4

0.2

0

Fig. 8.2 Iterated prisoner’s dilemma. Evolution of populations of strategies with memory

M = 1, found by numerical solution of Eqs. (8.6) with parameters given by (8.7). The strate-

gies considered here are i = [01] (solid line), [10] (dashed line), [11] (dot-dashed line), and [00]

(dotted line). Mutations are not allowed. The initial conditions are c[01] = c[10] = c[11] = 0.1,

and c[00] = 0.7. In the right panel we show the long-time behaviour, leading eventually to a

stationary mixture of about 70 per cent of the TFT strategy and about 30 per cent of the

ATFT strategy. In the left panel we can see the short-time detail of the same data. The initial

oscillations gradually disappear.

In the case a), both players use the TFT strategy. Without noise, the dynamics is not
ergodic and the state space is split into three invariant subsets: {(11)}, {(10), (01)}, and
{(00)}. While in the first one where both agents always cooperate, their gain per step
is R; in the second one they alternate cooperation and defection, the gain is on average
(T + S)/2; and in the third subset they always defect, with gain P . An infinitesimal
noise adds transitions as shown by dotted lines in Fig. 8.1. (We ignore much less
frequent transitions which involve two errors simultaneously, like (00) → (11)). The
effect of the noise can be equivalently taken into account by averaging the gain of the
players over all possible initial conditions. Therefore, still having in mind the TFT
strategy, the corresponding element in the matrix g is g[01][01] = (R + P + T + S)/4.

The panel b) in Fig. 8.1 shows how the situation is changed when TFT and ATFT
play against each other. We can see that the system is ergodic, so the noise plays no
role. All four states are visited cyclically, and eventually they are equally probable. The
gain is g[01][10] = (R+P+T+S)/4, the same as with both agents playing TFT. We can
also easily check that two ATFT players gain the same average amount, which leads
to a rather surprising result that in a mixed population of TFT and ATFT players
nobody has an advantage over any other agent. Such a population would remain stable
forever, irrespective of the proportion of the two strategies.

However, the occasional mutations may contaminate the mixture with other strate-
gies, e.g. unconditional cooperation. The panel c) in Fig. 8.1 illustrates the dynamics
of the strategy [11] playing against [01]. The system is ergodic again, but the attractor
of the dynamics is the single state (11), and the gain is g[11][01] = R.

A similar analysis can be done for all pairs of strategies. For memory M = 1 it is
rather simple, and for a larger M we can automate the calculation of the elements of
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Fig. 8.3 Iterated prisoner’s dilemma. Example of the evolution of populations with unlimited

memory subject to mutations of the strategies. The strings of 0s and 1s denote the strategies

corresponding to the lines shown. Note that the scale of the time used here differs from Fig.

8.2. The figure is reprinted from Ref. [1576], with permission of Kristian Lindgren.

matrix gij on a computer. The result then serves as an input for the solution of the
population equations (8.6). To keep things on the simpler side, we show the result for
M = 1 and the canonical values of the parameters (8.2)

g =




3 3 0 0
3 9/4 1 9/4
5 1 1 5
5 9/4 0 9/4


 (8.7)

where the rows and columns are labelled by strategies [11], [01], [00], and [10] (in this
order).

We can consider the matrix g the payoff matrix of a new game, which is the
prisoner’s dilemma played on a higher level. We shall call it the memory-1 iterated
prisoner’s dilemma game. Note that this game and its generalisations to longer mem-
ories (memory-M iterated prisoner’s dilemma) are the key pieces of the evolutionary
process discussed here, but they must be complemented by the mutations in order
to get the full picture. The mutations provide us with the transitions from memory-
M iterated prisoner’s dilemma to memory-(M + 1) iterated prisoner’s dilemma, thus
making the space of strategies infinite in principle.

But in the memory-1 iterated prisoner’s dilemma level there is already complex-
ity enough. A glance at the matrix (8.7) immediately reveals that there is no pure
evolutionary-stable strategy, and the setting resembles the rock-paper-scissors game
rather than the original prisoner’s dilemma. However, the oscillations are much more
complex than in rock-paper-scissors. Let us first investigate them rather verbally. If the
TFT strategy (recall that it is [01]) was absent, unconditional defection ([00]) would be
the stable strategy, as seen from (8.7). So, it must eventually win the evolutionary race
and pervade the system. But if a random mutation does create an agent playing TFT,
it does not feel any disadvantage compared to [00], as the latter cannot exploit it. The
mutant is not extinct, although it may disappear by reverse mutation, with extremely
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Fig. 8.4 Spatial prisoner’s dilemma. In the left two panels, the configuration is drawn in

times t1, t2, t1 < t2 on the lattice with L = 50. Cooperating agents are shown in grey and the

defectors in black. In the right panel, time evolution of the density of cooperators nC (solid

line), density of agents changing their state from one step to the next nch (dotted line), and

density of interfaces nCD (dashed line). System size is L = 100, and data are averaged over

100 realisations. The incentive to defect is b = 1.05. The initial condition is a random spatial

distribution of cooperators with density nC = 0.5. In the inset we show the detail for short

times.

small probability. Furthermore, other mutants playing TFT may appear, and, if they
are more numerous, they rapidly gain an advantage compared to unconditional defec-
tion because TFT playing against TFT gains more, namely 9/4. The TFT strategy
multiplies and seems to be destined to win. But in the environment composed of all
TFT players, unconditional cooperation performs even better, so that [11] takes over.
But this is in turn exploited by the mutant [10] followed by the even more aggressive
[00]. The cycle closes. We are back at the beginning.

However, this is only a part of the story. In practice these cycles do not last forever,
but eventually lead to a stationary state. We have seen that a mixture of TFT and
ATFT is internally stable for any concentration because both strategies have the same
gain. The addition of some [00] or [11] players may destabilise the mixture, but there
is a concentration where this destabilisation is suppressed. We can easily check, using
the matrix (8.7), that for 11/16 < c[01] < 3/4, c[10] = 1 − c[01], the mixture is stable
against intrusion of any other strategy with memory M = 1.

The evolution we have just described is illustrated in Fig. 8.2, showing the nu-
merical solution of equations (8.6). We can see both the initial oscillations and the
stationary state with concentrations within the bounds predicted theoretically.

The main message from this calculation is that there is no single strategy which can
be considered the winner. This finding a posteriori justifies our hesitation to proclaim
TFT the best strategy ever found. But the existence of an asymptotic stationary state
also bears another lesson. None of the two remaining strategies can survive alone, as
each needs the other to beat the intruders. If we consider the binary sequence encoding
the strategy as a kind of a ‘gene’ (and people indeed think in this way [1576, 1577]),
then the iterated prisoner’s dilemma game does not offer a ground for selfish genes.
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Fig. 8.5 Same as Fig. 8.4, but with b = 1.5.

Instead, the best thing the genes [01] and [10] can do is to leave the partner a well-
defined share. Unlimited replication of itself does not pay. If you wish, you may call it
altruism.

There should be no surprise now that the situation is even less clear-cut when
going to general memory-M iterated prisoner’s dilemma games with mutations. In
numerical simulations it was shown that the evolution never stabilises. An example,
taken from the work of Kristian Lindgren [1576], is shown in Fig. 8.3. New, even more
complicated strategies emerge all the time, wiping out the predecessors, only to be
superseded by some other rivals. We are witness to an open-ended evolution, much
like the one that rages in Nature.

To sum up, we have seen that if we allow the players to meet repeatedly and
recognise that they inevitably make occasional errors, the simple game of prisoner’s
dilemma exhibits much of the complexity of human collaborative behaviour. Simple
answers should be abandoned. Neither the simple-minded conclusion that defection is
always the best choice, nor the slightly less naive belief in the superiority of the TFT
strategy survive the test.

8.1.3 Playing in space

We have seen how the trivial prisoner’s dilemma game becomes complex if we allow
playing again and again with the same opponent. But how it could be that among bil-
lions of people you would find the same person you already met? If you were molecules
in a well-stirred container, your chance to meet repeatedly would be virtually nil. Some
compartmentalisation of the agents must be imposed so that the iterated prisoner’s
dilemma works as expected. But the influence of compartmentalisation can also be
studied independently, preferably in its extreme version, in which the immobile agents
are fixed at the vertices of a network, for example, a two-dimensional square lattice.
The latter is the structure we shall have in mind throughout this subsection.

Imitate the best

Each agent on the square lattice has eight neighbours, counting also those along the
diagonal. The agent plays the usual prisoner’s dilemma game with all of them. The
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Fig. 8.6 Same as Fig. 8.4, but with b = 1.6.

complexity stems from the possibility of changing the strategy from one step to the
next [1578]. For simplicity, we allow only the memory-0 strategies, collaboration and
defection. In each round, the agent adds together her gain from the eight plays with
her neighbours, who do the same in their turn. Every agent then decides about the
strategy for the next step. She looks at the gains of her neighbours and compares
these numbers with her own gain. If any of the neighbours earns more than herself,
the agent adopts the current strategy of the most successful neighbour for the next
step. Otherwise the agent preserves her actual strategy for the next time. The evolution
of the strategies proceeds by imitation.

We simplify the payoff matrix so that we have only one control parameter, the
temptation to defect b; we set T = b > 1, R = 1, and P = S = 0. The spatial pris-
oner’s dilemma game is then simulated, starting from a random configuration, and
every agent chooses cooperation or defection with equal probability. Further evolution
proceeds by deterministic parallel dynamics, as described above. In fact, the system
is a cellular automaton [1579] with specific, relatively complicated, update rules. The
resulting configurations are exemplified in Figs. 8.4 to 8.6. We can see that the coop-
erators survive in significant proportion even if the temptation for defection b is large.
However, their spatial arrangement strongly depends on the value of b. Fig. 8.4 shows
the situation for the value of b = 1.05, only slightly above the lowest limit compatible
with prisoner’s dilemma inequalities. We observe small islands of defectors within a
large sea of cooperators. Most of the defector groups are stable or change cyclically
within a short period. When we increase the temptation to b = 1.5, isolated islands of
defectors grow into strings joined together at some places, as seen in Fig. 8.5. Coopera-
tion still prevails, but only within patches encircled by defectors. The spatial structure
exhibits only small variations in time. This feature is changed when we further increase
the temptation. In Fig. 8.6, where b = 1.6, we already observe more defectors than
collaborators, and the arrangement changes chaotically.

Dependence on temptation

It is possible to investigate the dependence on b systematically. In Fig. 8.7 we show the
data from simulations, averaged over many realisations of the initial conditions. First,
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Fig. 8.7 Spatial prisoner’s dilemma. Various parameters of the stationary state depending on

the incentive to defect b. All data are calculated for lattice with L = 100; initial configuration

is random spatial distribution of cooperators with density nC = 0.5; data are averaged over

100 realisations. In the left panel, the density of cooperators (solid line), density of sites

changing their state from one step to the next (dotted line; note that these data are scaled by

factor 4), and density of bonds connecting cooperators with defectors (dashed dine). In the

right panel, the fraction of realisations reaching static configuration (solid line) and fractions

reaching cyclic attractors with period 2 (dotted line), 3 (dot-dashed line), and 4 (dashed line).

we note that the fraction of cooperators, nC, remains quite high, above 80 per cent,
up to about b = 1.6, where it drops suddenly to about 40 per cent; the cooperators
vanish only above b = 1.7. Clearly, the repeated games induced by the fixed spatial
arrangement of the players strongly encourages cooperation. Note that the players do
not follow any strategy based on observation of the past behaviour of the agents. The
cooperation emerges spontaneously.

Closer inspection of the dependence of nC on b reveals sudden jumps at specific
values of the temptation parameter. The jumps are even more pronounced in some
other parameters characterising the stationary state. We observe the concentration nch

of sites changing their state from one step to the next and the concentration of bonds
(neighbour pairs) connecting a defector and a cooperator, nCD, which is the measure
of the density of interfaces between cooperating and defecting domains. Furthermore,
we find that some realisations end in static configurations, while others reach a cyclic
attractor with short periods 2, 3, or 4. The fraction of realisations corresponding to
these four types are denoted c1, c2, c4, and c4, respectively. Of course, some initial
conditions may also lead to longer stationary periods or to a quasi-chaotic state with
barely identifiable periodicity. Interestingly, the quantities ci depend on b in a very
irregular fashion. For example, the period-2 states dominate in an interval from b = 1
to about b = 1.14, but are rare elsewhere. In contrast, the period-3 states occur almost
only in the interval 5/4 < b < 4/3.

Stability analysis

To understand these features we must perform an analysis of various spatial struc-
tures produced in the dynamics [1580]. For example, an isolated defector in the sea
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a) b) c) d) e)

Fig. 8.8 Several configurations of the defectors (black) and cooperators (grey) in the spatial

prisoner’s dilemma game on a square lattice. Their stability is discussed in the text.

of cooperators, as shown in Fig. 8.8, has 8 cooperating neighbours, so its gain is
gD = 8p. The neighbours themselves have 7 cooperating neighbours, resulting in a
gain of gC = 7. This means that for p < 7/8 the defector becomes a cooperator in
the next step, but for p ≥ 7/8 it survives. Similar analysis shows that an isolated
cooperator surrounded by defectors, Fig. 8.8, is never stable. Indeed, the cooperator
gains 0, but each of the neighbouring defectors gains p.

We can proceed further to more and more complicated geometries, but we show
only some of them here. For example, a 2 × 2 square of cooperators, Fig. 8.8c, is
much more stable than an isolated cooperator. Each of the four gains gC = 3 from
its three cooperating neighbours. The defecting neighbours are of two types. At the
corners, each of them has one cooperator to exploit, so their gain is p. Each of the
defectors adjacent to the edges of the square has two cooperating neighbours, yielding
the higher gain gC = 2p. Therefore, the square persists for p ≤ 3/2; but not only
that: the defecting neighbours see that the cooperators gain more, so they become
cooperators themselves in the next step. For p < 3/2 the initial 2 × 2 square grows
into a 4×4 square of cooperators, Fig. 8.8d, which in turn expands into a 6×6 square
and so on. Cooperation spreads despite the relatively large value of the temptation to
defect!

We encourage the reader to check the stability and evolution of other configura-
tions, for example, the transition from the square Fig. 8.8d, to the ‘cross’, Fig. 8.8e.
Some configurations may exhibit periodic changes, for example, those offered for your
attention in Problem 1. A multitude of possible generalisations can be found in the
literature, either concerning the update rules [1581–1585] or the geometry of the links
connecting the interacting neighbours [1586–1591]. However, the general features of
the spatial prisoner’s dilemma game remain in force: namely the fact that repeated
plays against the same agents, which are dictated by the geometry of the social net-
work, naturally lead to coexistence of large patches of collaborators alternated with
various arrangements of defectors.

Cooperation is viable!

To sum up, spontaneous emergence of cooperation seems to be reproduced in model
situations, on the condition that the game is played repeatedly. The overall picture of
cooperation is typically very complex, discarding any simplistic ideology-based con-
clusions.
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(++) (++)

(+−)
(−+)

}
(++)
(−−)

(−−) (−−)

Fig. 8.9 Illustration of the dynamics of opinions in the voter model. The diagram shows

how the pairs of neighbouring sites are updated. If the two sites have identical states, they

remain unchanged. If the single-site states differ, they can become either both + or both −
with equal probability. Conservation of average magnetisation follows directly.

8.2 Consensus

8.2.1 Voter model

People can make up their minds by just looking around and picking the opinion of a
randomly chosen neighbour. That is the idea behind the stochastic process introduced
in the 1970s [1592, 1593] and called the voter model. It plays a special role among
other models of opinion spreading and consensus formation, because it is exactly solv-
able in any spatial dimension, while showing highly non-trivial dynamics [1594–1603].
Physicists were interested in the voter model, as it can say something about spinodal
decomposition [1597] and catalytic reactions [1598, 1599, 1604].

Formulation

In fact, there is a whole family of diverse voter models [1595], and the exactly solvable
class consists of the so-called linear voter models. We further limit ourselves to a linear
voter model with nearest-neighbour interaction.

We shall mostly work on a d-dimensional hypercubic lattice Λ = {0, 1, . . . , L− 1}d
with periodic boundary conditions. The coordinates of the point x ∈ Λ will be denoted
xα, α = 1, 2, . . . , d.

On each lattice site we imagine an agent whose state can be either +1 or −1. These
two choices can represent a person’s political preferences in a two-party system; hence
the name voter model. The configuration of the entire system is described by a point
in the configuration space σ ∈ S = {−1,+1}Λ. The state of the site x ∈ Λ is denoted
σ(x).

The dynamics of the model is very simple. In each step we randomly choose one
site x and its neighbour y. Then x adopts the state of y, so σ(x) is replaced by σ(y),
as illustrated in Fig. 8.9. This scheme also demonstrates one important property of
the voter model. We can see that the magnetisation defined as m = 1

|Λ|
∑

x∈Λ σ(x) is

conserved when we average over all possible realisations of the process, even though
in individual realisations it may fluctuate. It is also evident that the uniform states
where all sites are either +1 or −1 never change. These two configurations are the
absorbing states of the voter model.

In one dimension the dynamics can be easily understood. The configuration is
determined by the sequence of ‘domain walls’, separating regions uniformly populated
by +1 or −1. The configuration can change just by flipping the state of the sites beside
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the domain wall. Either the agent on the left from the wall adopts the state of the
agent on the right side or vice versa. In the former case the domain wall moves one
step leftwards, and in the latter case it jumps rightwards. Both possibilities have the
same probability, so the domain wall performs a random walk. Moreover, when two
domain walls meet, the region bordered by them disappears, and the domain walls
themselves annihilate. So, the one-dimensional voter model is exactly mapped onto a
system of annihilating random walkers. Alternatively, we can say that in one dimension
the voter model is equivalent to the kinetic Ising model with Glauber dynamics at zero
temperature, which is characterised by exactly the same dynamics of domain walls.
This model is quite well understood [1605]. Unfortunately, in any dimension larger
than one, such equivalence is no longer valid. One of the reasons lies in the difference
in surface tension. While the domain walls in the Ising and related models exhibit
positive surface tension at all temperatures except the critical point, in the voter
model the surface tension is zero [1601]. On the other hand, the voter dynamics is
essentially zero-temperature, because there are no spontaneous flips of the state of
a site. So, Ising and the voter model can resemble each other only when the critical
temperature is T = 0, which happens only in the one-dimensional lattice. In fact,
the zero-temperature kinetic Ising model in higher dimensions exhibits much more
complex dynamics [1606, 1607] than the voter model.

Let us now proceed to a slightly more formal description. The voter model is a
continuous-time Markov process (see Box 2.10) denoted σt which takes values in the
configuration space S = {−1,+1}Λ. For any σ ∈ S denote as σx the state which is
obtained from σ by flipping the state of site x ∈ Λ, so σx(y) = (1 − 2δxy) σ(y). We
need to know the set of nearest neighbours of x on the lattice Λ. In the case of a d-
dimensional hypercubic lattice there are 2d neighbours obtained by shifting the point
x by either +1 or −1 along the d Cartesian axes. We shall denote the µ-th neighbour
of x by xµ. The transition rates describing a single flip are

w(σ, σx) =
1

2

[
1 − σ(x)

1

2d

2d∑

µ=1

σ(xµ)

]
(8.8)

while all other transition rates are zero:

w(σ, σ′) = 0, if |{x ∈ Λ : σ(x) 6= σ′(x)}| 6= 1. (8.9)

The dynamics proceeds according to the master equation

d

dt
pt(σ) =

∑

x∈Λ

[
w(σx, σ) pt(σ

x) − w(σ, σx) pt(σ)
]
. (8.10)

Exact solvability

We can directly write the equation for the average state on a single site S(x, t) ≡
〈σt(x)〉 =

∑
σ∈S pt(σ)σ(x), starting with the master equation (8.10). The result is

d

dt
S(x, t) = ∆xS(x, t) (8.11)

where we used the notation ∆xf(x) = −f(x)+ 1
2d

∑2d
µ=1 f(xµ) for the discrete Laplace

operator on the d-dimensional hypercubic lattice. We recognise in (8.11) the discrete
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diffusion equation, describing the movement of a random walker over the lattice. The
mapping of the voter model on Brownian motion assumes a mathematical form.

We are extremely lucky. Usually, in models with interacting particles the equations
for one-site averages contain two-site correlation functions. If we attempt to write down
the evolution of two-site correlations, we find three- or four-site correlations emerging
in the formulae, so we end up with an infinite chain of coupled equations. There is no
hope for an exact solution. However, in the voter model, higher correlation functions
disappear ‘miraculously’. For two-site correlations R(x− y, t) ≡ 〈σt(x)σt(y)〉, we get

d

dt
R(x, t) = 2∆xR(x, t) (8.12)

for x 6= 0. If the two points coincide, we have trivially R(0, t) = 1 for all times t ≥ 0.
Technically, this is the boundary condition for the solution of the discrete diffusion
equation (8.12).

We could continue this way to get closed equations for correlations of all orders.
The deep reason why the evolution of correlation functions at order k does not involve
the correlation functions at higher orders k′ > k is the duality property, valid for all
linear voter models [1594]. Without going into detail we can describe the duality as
equivalence of the voter model to the evolution of annihilating random walks backward
in time. We have already noted that the single-site correlation, i.e. the average single-
site state, is mapped exactly onto a random walk. Generally, any k-site correlation
function can be mapped to k such walkers, annihilating when they meet, and the
actual value of the correlation function at time t should be traced back to the state of
the walkers at earlier times. As the number of annihilating walkers can only decrease
in the evolution, higher correlation functions never occur, while lower ones do, just at
the points where some of the k coordinates coincide [1597].

The equation (8.11) is solved easily by the Fourier transform in space and the
Laplace transform in time domain (see Box 2.7). As the initial condition we impose
the state +1 at the origin, while all other sites are +1 or −1 with equal probability,
so S(x, 0) = δx0. We obtain

̂̃
S (p, z) =

[
z + 1 − 1

d

d∑

α=1

cos pα

]−1

, (8.13)

and for Re z > 0 we can use the trick

̂̃
S (p, z) =

∫ ∞

0

exp

[
− λ
(
z + 1 − 1

d

d∑

α=1

cos pα

)]
dλ. (8.14)

When we Fourier-invert the expression (8.14), we can recognise the integral representa-
tion of the modified Bessel functions (see Box 8.1). This leads to a compact expression
for the solution

S(x, t) = e−t
d∏

α=1

Ixα

( t
d

)
. (8.15)

Using the asymptotic behaviour of the Bessel function, we find that for large times
the average state of any site decays to zero as S(x, t) ∼ t−d/2, t→ ∞. Recall that the
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Modified Bessel functions Box 8.1

or the so-called Bessel functions of imaginary argument, are defined by (see Ref. [933])

Iν(z) =
∑∞

k=0
(z/2)ν+2k

Γ(k+1)Γ(k+ν+1)
.

For integer ν, they can be expressed by the very useful integral representation
Iν(z) =

1
2π

∫ π

−π
ez cosφ−iνφ dφ.

Often we need the behaviour of the Bessel function for a large argument. The following
asymptotic formula holds in this case

Iν(z) = ez (2πz)−1/2
[
1− 4ν2−1

4
1
2z

+O(|z|−2)
]
.

initial condition was S(x, 0) = δx0. So, the average state of the site at the origin decays
to zero monotonously, while the other sites, x 6= 0 exhibit first an increase in S(x, t)
and start decaying at later times. It can be understood as propagating a diffusive wave
of +1’s from the origin to the rest of the lattice, eventually vanishing at large times.

More information on the dynamics is contained in the two-site correlation function
R(x, t). Apart from the factor 2, it obeys the same equation as S(x, t). However,
there is an important difference. Eq. (8.12) holds only for x 6= 0; and besides the
initial condition R(x, 0) = δ0x, the solution must also satisfy the boundary condition
R(0, t) = 1. Nevertheless, we can proceed again by Fourier- and Laplace-transforming
Eq. (8.12). The boundary condition enters through the yet unknown function

n+−(t) =
1

2

(
1 − 1

2d

2d∑

µ=1

R(x− xµ, t)

)
(8.16)

which is just the concentration of interfaces, i.e. the fraction of the bonds connecting
sites with unequal state, also called active bonds. This quantity is an important mea-
sure of the level of activity in the system, as changes of the configuration can occur
only at sites adjacent to the active bonds. For the correlation function we get

̂̃
R (p, z) =

1 + 4 n̂+−(z)

z + 2 − 2
d

∑d
α=1 cos pα

. (8.17)

The density of interfaces must be computed self-consistently, and the result should be
inserted back in (8.17). After a short algebra we obtain

n̂+−(z) =
1

4

([z
2
Ŝ
(
0,
z

2

)]−1

− 1
)

(8.18)

and

R̂(x, z) =
1

z

Ŝ
(
x, z

2

)

Ŝ
(
0, z

2

) . (8.19)

Let us now discuss separately the latter results in dimensions d = 1, d = 2, and
d ≥ 3. In one dimension, the density of interfaces can be expressed in a closed form

n+−(t) =
1

2
e−2t[I0(2t) + I1(2t)] (8.20)
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Elliptic integral Box 8.2

more precisely said, the complete elliptic integral of the first kind, is defined as [933]

K(x) =
∫ π/2

0

(
1− x2 sin2 φ

)−1/2
dφ.

Close to the point x = 1 it has the following expansion
K(1− z) = 1

2
ln(8/z) +O(z ln z).

and for the correlation function we obtain

R̂(x, z) =
1

z

(
1 +

1

2
z +

1

2

√
(z + 4) z

)−|x|
. (8.21)

For large times we have n+−(t) ≃ (4πt)−1/2 and limt→∞R(x, t) = 1. This means that
the activity measured by n+−(t) slowly decays to zero, and eventually all the agents
become fully correlated. Both features are signatures of complete ordering, which is
the fate of the voter model in one dimension. From Eq. (8.21) it is also possible to
estimate how the correlation function approaches its asymptotic value. For small z
we can approximate R̂(x, z) ≃ 1

z e−|x|√z, and inverting the Laplace transform we get

R(x, t) ≃ erfc
( |x|
2
√
t

)
. This formula confirms our intuition mentioned earlier, that the

coordination between agents in the voter model proceeds as a diffusive wave. Indeed,
after time t the system is fully ordered up to distances ∼

√
t.

For d = 2 the situation is similar. Again, the density of interfaces decays to zero
and the correlation function approaches 1 for large times. However, the evolution is
much slower. We have

n̂+−(z) =
1

4

([
z

π

2

z + 2
K
( 2

z + 2

)]−1

− 1

)
(8.22)

where K(x) is the elliptic integral (see Box 8.2). From the behaviour at z → 0 we can
deduce the asymptotic decay of the interface density

n+−(t) ≃ π

2

1

ln(16 t)
. (8.23)

The behaviour changes dramatically for d ≥ 3. The duality property can tell us why
it is so. For example, when we compute the two-site correlation function at distance x,
i.e. R(x, t), we effectively investigate what would happen with two annihilating random
walkers starting at position x relative to each other, until time t. The correlation
function arises from the average over all realisations of the pair of walks. If the walkers
meet (and vanish) at time not later than t, the realisation contributes by value 1 to the
average; otherwise the contribution is 0. So, the asymptotic value of the correlation
function R(x,∞) is related to the probability that the two walkers meet at some time.
It is well known [1608] that this probability is equal to 1 in dimensions d ≤ 2, but for
d > 2 there is a finite probability that the walkers never meet. This has the effect that
R(x,∞) → 0 for |x| → ∞, and n+−(t) has a positive limit for t → ∞. In short, the
activity never ceases, and the voter model never reaches a totally ordered state.
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Let us now support this intuition by more explicit calculations. The stationary
density of interfaces becomes

n+−(∞) =

(
2d

∫ ∞

0

[
e−tI0(t)

]d
dt

)−1

. (8.24)

The asymptotic behaviour of the Bessel function guarantees that the integral converges
for d > 2 and n+−(∞) > 0. Numerical values for some values of d are listed in the
table below. We can also find how the density of interfaces approaches its asymptotic
value. From Eq. (8.18) we have n̂+−(z)− n+−(∞)/z ∼ z

d
2−2, which implies n+−(t) −

n+−(∞) ∼ t1−
d
2 .

The behaviour of the correlation function in stationary state R(x,∞) can be easily
obtained for large distances, x → ∞. In this regime we can replace the discrete coor-
dinate x by a continuous variable and the correlation function is obtained from the
Laplace equation ∆R(x,∞) = 0 with a unit source at the origin of coordinates, which
is an elementary problem from electrostatics [1609]. The solution is R(x,∞) ∝ |x|2−d,
but we must keep in mind that this is valid only for large |x|; in particular at the
origin we have the universally valid condition R(0,∞) = 1.

All of the above results for the voter model tacitly assumed an infinitely large
lattice. In practice, e.g. in numerical simulations, the system always consists of a finite
number N = Ld of sites. This implies that the dynamics eventually leads to one of the
two absorbing states, even for d ≥ 3, where the infinite system never gets ordered.
We call the time needed to reach any of the absorbing states in a particular realisation
of the process the stopping time τst. The typical scale for the stopping time, called
consensus time τ(N), diverges in the thermodynamics limit. It is possible to show
rigorously [1610] that the consensus time grows as τ(N) ∼ N2 in d = 1, ∼ N lnN in
d = 2 and ∼ N for d ≥ 3. These formulae can be understood on an intuitive level, at
least in one dimension, where the dynamics is equivalent to the diffusion of domain
walls, annihilating upon encounter. The size of homogeneous areas grows therefore
as the mean displacement of a random walk, ∼ t−1/2. The time needed to cover the
whole system of size N is therefore ∼ N2. Similar consideration is also feasible in
higher dimensions [1598], but we skip it here.

We can summarise the asymptotic behaviour of the voter model on a d-dimensional
hypercubic lattice in the following table. Where the behaviour is indicated by ‘∼’, we
intend t→ ∞, or x→ ∞, or N → ∞, according to the context.

d n+−(∞)
n+−(t)
−n+−(∞)

R(x,∞) τ(N) d n+−(∞)

1 0 ∼ t−1/2 1 ∼ N2 3 0.329731 . . .
2 0 ∼ (ln t)−1 1 ∼ N lnN 4 0.403399 . . .

≥ 3 > 0 ∼ t1−
d
2 ∼ |x|2−d ∼ N 5 0.432410 . . .

∞ 1/2

On a complete graph

Let us now look at the voter model on a complete graph, which can be considered a
kind of mean-field approximation [1611, 1612]. This is not just an approximation to a
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Linear operator Box 8.3

is a prescription which takes a function f from a set A and makes from f a new function
g. For a linear operator L we use the notation L : f → g, or g = Lf . In order that an
operator L was called linear it must satisfy the property

L(af + bg) = aLf + bLg
for all numbers a and b and all functions f, g ∈ A. As an example, we can take as A the
set of functions which can be differentiated arbitrarily many times and as L the operator
of differentiation, so Lf(x) = d

dx
f(x).

There may be special functions which are called eigenvectors or eigenfunctions of the
linear operator L. The action of a linear operator on its eigenvector is the same as mul-
tiplication by a number. Thus, if

Lf = λf
then the function f is called an eigenvector and the number λ the corresponding eigen-
value of the operator L. The eigenvectors are very useful in solving linear partial differ-
ential equations, such as the Fokker-Planck equation.

finite-dimensional model, but it bears a relevance in itself. The reader may remember
Kirman’s ant model [790] discussed in Sec. 3.2.1. The insects imitated each other’s
choice just as the agents in the voter model do, with the only difference being that
the ants were allowed to change their option spontaneously. Moreover, the mechanism
of copying strategies of the other agents is the main ingredient of the Lux-Marchesi
model of stock-market fluctuations, as we have seen in Sec. 3.2.3. The voter model on
a complete graph is therefore a good starting point for understanding a broader range
of econophysical models.

The completeness of the graph implies that every agent is a neighbour of every
other one, and the evolution amounts to randomly choosing two agents and copying
the state of the second agent as the new state of the first one. As all geometric structure
is gone, the state of the system with N agents at time t is completely described by
the number of ‘pluses’, which we denote N+t. In the thermodynamic limit N → ∞
the most convenient variable to work with is the magnetisation Mt = 2N+t/N − 1.
When one site is flipped, the magnetisation changes by ± 2

N , and the rate for such
change is proportional to 1 − M2

t . Hence we guess that the magnetisation wanders
diffusively within the allowed interval Mt ∈ [−1, 1], but the diffusion constant depends
on the position. Indeed, we can easily obtain the Fokker-Planck equation for the time-
dependent probability density of the magnetisation

N
∂

∂t
PMt(m) =

∂2

∂m2

[
(1 −m2)PMt(m)

]
. (8.25)

This equation is quite well understood [1596, 1613–1616]. It describes the so-called
Fisher-Wright process and finds applications in areas as distant as catalysis [1604] and
genetics [1613].

The solution can we be written as an expansion in eigenvectors of the linear oper-
ator L : f(x) → [(x2 − 1)f(x)]′′, which appears on the right-hand side of Eq. (8.25).
(For explanations of linear operators and their eigenvectors, see Box 8.3) Denoting by
Φc(x) the eigenvector of L corresponding to the eigenvalue c, we have the following
equation

(1 − x2) Φ′′
c (x) − 4xΦ′

c(x) + (c− 2) Φc(x) = 0. (8.26)
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The full solution of (8.25) can then be expanded as

PMt(m) =
∑

c

Ace
−c t/N Φc(m) (8.27)

with coefficients Ac determined from the initial condition. For large times only the
lowest eigenvalues in the expansion (8.27) are relevant, because they contribute to the
sum (8.27) by the most slowly decaying exponentials. The lowest eigenvalue is always
c = 0, due to the conservation of probability that every Fokker-Planck equation must
satisfy. The stationary regime corresponds to this ‘ground state’ Φ0(m).

It turns out that the eigenvectors are composed of two δ-functions located at +1
and −1 and a continuous part on support (−1, 1); thus

Φc(x) = φc+ δ(x− 1) + φc− δ(x+ 1) + φc(x) θ(x − 1) θ(x+ 1). (8.28)

(We denote by θ(x) the Heaviside function, equal to 1 for x > 0 and 0 otherwise.) For
the lowest eigenvalue c = 0 we have φ0(x) = 0, and the weights φ0± of the δ-functions
are arbitrary, i.e. the ground state is twice degenerate.

For c > 0 we must solve the equation for φc(x), which has a form identical to Eq.
(8.26), but the solution is looked for within the set of double-differentiable functions on
[−1, 1]. We find that the eigenvalues form a sequence cl = (l+ 1)(l+ 2), l = 0, 1, 2, . . .
and the functions φcl(x) are proportional to the so-called Gegenbauer polynomials
[644, 933]

C
3/2
l (x) =

⌊l/2⌋∑

k=0

(−1)k 2−l−1

(
2(l − k + 1)

)
!

k! (l − k + 1)! (l − 2k)!
xl−2k. (8.29)

Having the continuous part of the eigenvector, we complete the solution by determining
the coefficients φc± in Eq. (8.28) from the conditions

lim
x→±1

φc(x) = − c

2
φc±. (8.30)

Let us now interpret the results obtained. The stationary solution of Eq. (8.25) is
the mixture of δ-functions located at m = ±1. Each of the δ-functions represents one
of the two absorbing states, and the weights φ0± are just the probabilities of reaching
the corresponding absorbing state. Since the magnetisation averaged over realisations
of the process is conserved, we easily deduce that the probability P+ = φ0+ of hitting
the absorbing state with m = +1, starting from the configuration with magnetisation
M0 = m0, is P+ = (m0 + 1)/2, i.e. the initial concentration of agents in state +1. In
fact, this property also holds on the hypercubic lattice of any dimension because it
relies only on the conservation of the average magnetisation.

Often we need to know how long we shall wait before we reach the absorbing state.
The probability distribution of stopping times τst can be deduced from the solution
(8.27). Indeed, the probability P>st (τ) that the stopping time is larger than τ is equal
to the weight of the continuous component of the distribution PMτ (m). This is in turn
the complement to the weight of the δ-functions, so

P>st (τ) =
∑

c>0

2

c

(
φc(−1) + φc(1)

)
Ac e−cτ/N . (8.31)
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We can see that the distribution has an exponential tail P>st (τ) ∼ e−2τ/N , τ →
∞. The full distribution (8.31) depends, of course, on the initial condition through
the coefficients Ac. If the process starts with fixed magnetisation M0 = m0 for all
realisations, we can compute the average stopping time using a general technique
of backward Fokker-Planck equation [1596, 1604, 1617], which in our case implies the
differential equation for the average stopping time as the function of m0

1

N

(
1 −m0

2
) d2

dm0
2
〈τst〉 (m0) = −1 (8.32)

which has a straightforward solution:

1

N
〈τst〉 (m0) = −m0

2
ln

1 +m0

1 −m0
− 1

2
ln

1 −m0
2

4
. (8.33)

Having dealt with the paths leading into absorbing states, we turn now to the subset
of such realisations of the process which have not hit any absorbing state until time
t. The continuous component on the probability density PMt(m) carries the desired
information, i.e.

Pnot absorbed(m, t) =

∑
c>0Ace

−c t/N φc(m)∑
c>0 2Ac e−c t/N (φc(+1) + φc(−1))/c

. (8.34)

For large times the lowest non-zero eigenvalues are dominant, and we shall keep
only two terms with eigenvalues c0 = 2 and c1 = 6. From Eq. (8.29) we can see that
the lowest Gegenbauer polynomial is constant and the next one is proportional to x;
so we can choose φ2(x) = 1 and φ6(x) = x. Then,

Pnot absorbed(m, t) ≃ 1

2
+

A6

2A2
m e−4t/N , t→ ∞. (8.35)

Interestingly, for large times the probability density for non-absorbed realisations
is uniform; and if we average the magnetisation over only these non-absorbed cases,
we obtain 0 independently of the initial condition! How can we understand this result?
If we look at the evolution of the density of interfaces, which is here n+−(t) = (1 −
〈M2

t 〉)/2, we can compute its average over the set of non-absorbed realisations using the
distribution (8.35). This provides the limit n+−not absorbed(∞) = 1/3. However, if we
calculate from (8.35) not just the average, but the entire distribution of asymptotic
values of the density of interfaces, we find that the most probable value is 1/2, as
opposed to 1/3 for the average.

It means that in a typical realisation, after time ∼ N/4, the density of interfaces
either has already dropped to zero, reaching an absorbing state, or fluctuates around
the plateau value 1/2. If we instead take the average of the interface density over all
realisations, we get exponential decay n+−(t) ∼ e−2t/N without an apparent plateau.
Such behaviour should be compared with what we have seen on the hypercubic lattice.
Here the non-zero asymptotic value of the density of interfaces is also a sign of incessant
activity and lack of ordering. The ultimate hit to the absorbing state is rather a finite-
size effect. Note, however, a subtle difference between the complete graph and the
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hypercubic lattice in high dimensions. If we make the limit d → ∞ in the formula
(8.24) for asymptotic density of interfaces on a d-dimensional hypercubic lattice, we
get the value 1/2, at odds with the average value 1/3, but coinciding with the most
probable value obtained in this paragraph. What is more important, the time needed
to reach the plateau value on the complete graph is itself proportional to N , while on
the hypercubic lattice it stays finite when N → ∞. That is why the plateau cannot
be seen in the quantity n+−(t).

Network effects

To think of people sitting quietly on the nodes of a hypercubic lattice requires a certain
level of perversity. Having everybody interacting with everybody else seems slightly
more sound but still is not very realistic. Obviously, social contacts are tangled in a
much more complex network. So, it is natural to put the voter model on some of the
many sorts of random graphs we have learnt about in Chap. 6.

A principal difference between either a hypercubic lattice or complete graph and
a heterogeneous network, i.e. such that the degree of all nodes is not equal, is that
the voter model on the latter geometries may not conserve the average magnetisation
[1618]. Let us now report some specific results.

As a first step beyond the complete graph we can choose a complete bipartite
graph Ka,b which consists of two disjoint sets Na and Nb of nodes, and every node
from Na is connected to every node from Nb. We denote by Na, Nb the numbers of
nodes, by ma, mb the magnetisation values in the respective sets, and by N = Na+Nb
the total system size. We can proceed a manner similar to that applied in a complete
graph [1619]. The first result is that the evolution quickly (characteristic time stays
finite when N → ∞) reaches the equilibrium magnetisation in the two sets, namely,
their common value m. For the mean stopping time we obtain an equation similar to
Eq. (8.32), namely [1619]

(
1

Na
+

1

Nb

)
(1 −m2)

d2

dm2
〈τst〉(m) = −1. (8.36)

Thus, the solution has the same form as Eq. (8.33), except the number N of nodes is
replaced with NaNb/(Na + Nb), and instead of the initial magnetisation we have the
common magnetisation m of the two sets. Note that on the star graph Na = 1 and
Nb = N−1, the mean stopping time is thus of order O(1), while if both Na and Nb are
of order ∼ N , then the average stopping time also grows as 〈τst〉 ∼ N . The analysis can
be broadened to bipartite graphs with power-law degree distribution Pdeg(k) ∼ k−γ .
The behaviour of the stopping time depends on the exponent γ. Specifically, 〈τst〉 ∼ N
for γ > 3, ∼ N/ lnN for γ = 3 and ∼ N2(γ−2)/(γ−1) for 2 < γ < 3 [1619].

Analytical results are also available for the Watts-Strogatz small-world network in
annealed approximation, i.e. the long-range links are rewired randomly at each step
of the evolution of the voter model [1620]. In this case the system does not reach
the ordered state asymptotically, but the correlation length, i.e. the typical size of the
ordered domains, diverges as p−1/2 when the Watts-Strogatz parameter p goes to zero.
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Numerical simulations on small-world, Barabási-Albert, and several other types of
networks have been performed [1621–1624], with the generic conclusion that the ran-
dom character of these networks, including long-range bonds, prevents complete order-
ing, and the overall behaviour resembles those of the hypercubic lattices in dimensions
d ≥ 3. The details depend on the parameters of the network, e.g. the asymptotic value
of the interface density grows with the average node degree.

8.2.2 Galam, Sznajd, and related models

Hierarchical majority voting

In democracy, consensus on an issue is rarely achieved by simply waiting until one
of the options pervades the whole system through pairwise contact of individuals.
Instead, there are various hierarchical levels of decision making, each of which comes
to a conclusion based on the principle of majority. This is supposed to lead to a state in
which most people are satisfied, for the opinion of the majority of those who participate
in the decision process is always declared a law. If there was only a single hierarchical
level, namely a popular referendum (Switzerland may serve as a model example), one
could be quite sure that the outcome really represents the majority opinion in the
society. However, as soon as there are more levels and decisions made on a lower level
are passed on to the level above, there is no obvious guarantee that the opinions are
not distorted or even reversed. Serge Galam devised a simple model demonstrating
that the distortions may not be an exception but rather a rule [1625–1630].

The reason for breaking a society into several hierarchical levels is that the cost of
communication in a too-large collective is prohibitive. It is interesting that this is also
the main technical obstacle hindering the introduction of secure electronic elections.
One can imagine voting for your presidential candidate from your home computer over
the Internet, but to make the protocol reliable to ensure proper secrecy and resistance
to any attempt of fraud on the scale of a whole nation seems to be beyond the currently
available technical capabilities [1631].

So, we take for granted that society is organised hierarchically, and on each level the
decision is made within a small group, say, of 3 people. Within each group, the majority
rule tells us what opinion shall be held by the representative of the group when sent
to make decision on the upper level. Now, suppose there are only two possible choices,
A and B, and the fraction of people with opinion A on level l is nA(l). On the basic
level, nA(0) represents the concentration of A in the entire population.

Supposing that people are not correlated in any way, the concentrations nA(l)
provide full information on the system. Essentially we make a kind of mean-field ap-
proximation, neglecting any social structure or network within one hierarchical level.
Anticipating the results, we can say that the model of majority decisions on a com-
plete graph, introduced later, [1612, 1632] is to a large extent equivalent to the Galam
model.

The dynamics of the model is given by determining the fraction of A at level n+1 on
the basis of the concentration on level n. For groups of size 3 it leads to the recurrence
relation

nA(l + 1) = n3
A(l) + 3

(
1 − nA(l)

)
n2
A(l). (8.37)
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Fig. 8.10 Galam model. In the left panel, graph of the recurrence relation for groups of

size 3. The ‘stairs’ indicate how the iterations of the relation drive the system away from the

unstable fixed point nA fix = 1/2. In the right panel, an analogous scheme for groups of size

4 with infinitesimal bias in favour of option B. Note the shift of the unstable fixed point to

value nA fix = (1 +
√
13)/6.

The evolution according to this rule is depicted in Fig. 8.10. We can see that there
are three fixed points at values nA fix = 0, 1, and 1/2, which can be easily checked by
insertion into Eq. (8.37). The two extremal values are stable, while the central point is
an unstable fixed point. This reminds us of physical systems with a phase transition,
treated by the renormalisation group technique [1633]. In such formalism, the unstable
fixed point corresponds to the critical value of a control parameter and the stable fixed
points represent the various possible phases. In the Galam model there are two phases,
populated uniformly by either all A or all B opinions, marking total consensus on the
issue.

The transition occurs at the symmetric point nA fix = 1/2, where exactly half of
the people have opinion A. In this sense the decision making is ‘fair’ because it leads
to consensus according to the initial majority. However, a surprise is waiting for us
if we make a seemingly minor modification. Imagine that the groups formed at each
level are composed of an even number of persons, e.g. 4. We must decide what to do if
exactly half of the group pushes for decision A but the rest pushes for B. No majority
emerges and we must resolve the tie. If there is an arbitrary small bias towards one of
the choices, say, B, the recurrence relation for the concentrations of opinion A is

nA(l + 1) = n4
A(l) + 4

(
1 − nA(l)

)
n3
A(l). (8.38)

In Fig. 8.10 we can see what happens. The unstable fixed point is shifted significantly
to higher values of nA, namely to

nA fix =
1 +

√
13

6
= 0.76759 . . . (8.39)

which means that the opinionB may win even if it was initially in a minority! Note that
similar phenomenon of single ‘zealots’ was studied within the voter model [1634, 1635].
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The situation can be even more complicated if some of the people systematically
vote against the majority instead of following the crowd. We call such agents contrar-
ians [573, 1636, 1637]. For simplicity, again take groups of size 3. First, we find which
is the majority option within the group in question. Then, minority option is chosen
with probability pc, which is to be interpreted as the concentration of contrarians in
the population. The recursion relation is modified to

nA(l + 1) = (1 − pc)
[
n3
A(l) + 3

(
1 − nA(l)

)
n2
A(l)

]

+ pc
[
(1 − nA(l))3 + 3

(
1 − nA(l)

)2
nA(l)

] (8.40)

and results in a shift of the stable fixed points away from the endpoints of the interval
[0, 1]. This means that a total consensus is never reached; the contrarians always
introduce a certain level of dissidence, but generally the final decision respects the
initial majority opinion in the society. For pc < 1/6 this picture remains valid, as
there are three fixed points, with the unstable one keeping its position at nA fix = 1/2.
However, if the concentration of contrarians rises above the value pc = 1/6, the three
fixed points coalesce into a single stable fixed point at nAfix = 1/2. No consensus is ever
reached, and the distribution of opinions tends toward a precisely equilibrated state
of equally represented opinions A and B. Several recent cases of popular referenda or
presidential elections ending in extremely narrow victories surface in our memories,
showing that the presence of contrarians may have palpable consequences for our
lives [1638].

A natural question arises as to how fast we approach the consensus when we climb
higher and higher on the ladder of hierarchies. It is evident that if we start closer to
the unstable fixed point, it takes more time to approach one of the stable ones. To
get a quantitative estimate, we turn to the simplest case described by Eq. (8.37) and
replace the discrete level index l by a continuous variable l which can be interpreted
as time elapsed during the formation of the consensus. Thus, we get the differential
equation

d

d l
nA(l) = −nA(l)

(
nA(l) − 1

)(
2nA(l) − 1

)
(8.41)

which can be solved relatively easily:

nA(l) =
1

2

(
1 ± 1√

1 + b e−l

)
(8.42)

where the parameter b and the choice of sign depends on the initial condition.
The solution for several initial conditions is shown in Fig. 8.11. Of course, starting

from any point nA(0) inside the interval (0, 1), the time to reach either of the stable
fixed points 0 or 1 is infinite. However, in reality we do not need to come infinitely
close to it, because the population consists of a finite number N of people and the full
consensus is reached if we stop at the distance 1/N from the fixed point. The time to
achieve that situation diverges for increasing N as ∼ lnN , as we shall see from the
explicit calculation.

To be more precise, the stopping time tst as a function of the initial concentration
n0 ≡ nA(0) < 1/2 will be defined by the formulae nA(0) = n0 and nA(tst(n0)) = 1/N
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expressing the initial and final conditions. The case n0 > 1/2 differs only in the final
condition, which is nA(tst(n0)) = 1−1/N . Knowing the general solution (8.42) we get

tst(n0) = ln
(1 − n0)n0

(2n0 − 1)2
+ ln

(N − 2)2

N − 1
. (8.43)

Hence, the already announced logarithmic divergence of the stopping time for N → ∞
occurs. We can see the N -independent part of the stopping time in Fig. 8.11. Note the
divergence for n0 → 1/2, which can be regarded as a sign of a certain kind of dynamic
phase transition.

The Galam model has potential for extensions in various directions, and indeed it
was further generalised [1639–1649]. The book [1554] is largely devoted to it.

For us, the most physically relevant question is how the dynamics changes if we
distribute the people on a fixed lattice or network [1650–1652]. After all, the Galam
model has all the attributes of a mean-field version of some more complicated model,
even though it may not be obvious which one [1653]. The next section will make the
point clearer.

Local majority rule

Let us return to the set of agents on a hypercubic lattice, with possible opinions
+1 or −1, as in the voter model. The configuration of the system changes according
to local majorities. In each step, we first randomly choose a group of neighbouring
sites, and then all members adopt the opinion which prevails among the agents in
that group. This defines the dynamics of the majority-rule model [1632, 1654–1657].
Contrary to the voter model, for an agent to flip her opinion it is necessary that at
least two neighbouring agents are in the same state. This means that the agents must
be sufficiently correlated at a short distance before they can significantly influence
others. Recall that the voter model does not require any such correlation because any
single agent can influence its neighbour.
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Fig. 8.12 Illustration of the dynamics of opinions in the majority-rule model. The minority

spin in the triple is flipped.

The simplest case is a one-dimensional chain. Assume groups of size 3 and choose
a site x and its two neighbours x ± 1. The triple (σ(x − 1), σ(x), σ(x + 1)) is then
updated according to the local majority, as illustrated in Fig. 8.12.

The mathematical description of the majority-rule model closely follows the con-
cepts introduced in the voter model. The configuration evolves according to a Markov
process with transition rates for flipping the state of site x as

w(σ, σx)

=
1

12

[
σ(x− 2)σ(x− 1) + σ(x − 1)σ(x+ 1) + σ(x+ 1)σ(x+ 2)

− σ(x)
(
σ(x− 2) + 2σ(x− 1) + 2σ(x+ 1) + σ(x+ 2)

)
+ 3
]
.

(8.44)

In principle, the strategy for solution of this model seems simple. First, we write
down the master equation and then deduce from it the equations for the evolution
of the average state of a single site 〈σt(x)〉 and the correlation function 〈σt(x)σt(y)〉.
However, we immediately realise that the happy coincidence leading to an exact solu-
tion for the voter model is absent here. The equations do not close, and in order to
find the single-site average we need the two-site correlation function, which in turn
requires knowledge of the four-point correlations, etc. Why is this so?

The basic answer is simple. What we called the voter model in the preceding
section was an example of linear voter models, a class which is characterised by linear
dependence of the transition rates for a single flip at site x on the state of neighbours
of x. (There are also some more subtle additional requirements, but they are of little
interest here.) A short look at Eq. (8.44) immediately reveals that in the majority-
rule model the dependence on neighbours’ states is quadratic; thus there is no hope
that the equations for the correlations would close. The majority-rule model belongs
to a wider class of nonlinear voter models, about which very little is known, with the
exception of the so-called threshold voter models [1595]. They can be briefly described
by saying that the site flips its state if the number of sites in its fixed neighbourhood
which are in the opposite state exceed a certain fixed threshold. Unfortunately, this is
not the case with the majority rule model. Eventually we have to resort to simulations
and some approximations, which are quite good, after all.

We suppose that on average the state of the system is invariant with respect
to translations. Then all correlation functions depend only on the differences of
the coordinates, and in particular the one-site average is just the magnetisation
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a function of the initial condition. The points are obtained by numerical simulation, the line

is the analytical result (8.48) following from the Kirkwood approximation.

m(t) = 〈σt(x)〉. We also need the two-, three- and four-site correlations R(x− y, t) =
〈σt(y)σt(x)〉, R(x − z, y − z, t) = 〈σt(z)σt(y)σt(x)〉, and R(x − u, y − u, z − u, t) =
〈σt(u)σt(z)σt(y)σt(x)〉. Using the transition rates (8.44) we get the exact evolution
equations

d

dt
m(t) =

1

2

[
m(t) −R(1, 2, t)

]

d

dt
R(1, t) =

1

3

[
2 +R(2, t) +R(3, t) − 3R(1, t) −R(1, 2, 3, t)

]
.

(8.45)

Now comes the promised approximation. First we assume that the two-point correla-
tions decay slowly in space, so R(1, t) ≃ R(2, t) ≃ R(3, t). This is surely wrong shortly
after the start of the dynamics from a random uncorrelated initial condition, but we
assume that the correlations over a few lattice steps quickly develop close to their
stationary values, which only weakly depend on the distance.

The next approximation provides a closure of the evolution equations. It decou-
ples the set of sites at which the correlation is calculated into two subsets which are
considered approximately independent. The higher correlation functions are then ap-
proximated as products of two lower correlation functions. This approach is called the
Kirkwood approximation and often provides very good results, although the procedure
is in principle ill-defined and uncontrollable.

In our case, the Kirkwood approximation assumes that R(1, 2, t) ≃ m(t)R(1, t) and

R(1, 2, 3, t) ≃
(
R(1, t)

)2
. If you are about to ask why we use just this decoupling and

not something else, you are on a good track to understanding why the approximation
is deemed uncontrollable. As it often happens, the choice is justified only a posteriori
when it proves successful.

Then, the evolution of the magnetisation and the nearest-neighbour correlation
function is described by a closed set of two nonlinear differential equations
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d

dt
m(t) =

1

2
m(t)

(
1 −R(1, t)

)

d

dt
R(1, t) =

1

3

(
1 −R(1, t)

)(
R(1, t) + 2

) (8.46)

with the only fixed point determining the asymptotic value of the correlation function,
limt→∞R(1, t) = 1. Unfortunately, the knowledge of the fixed point is not enough to
calculate the long-time limit of the magnetisation. To this end, we must explicitly solve
the equations (8.46). We find

R(1, t) =
ρ et − 2

ρ et + 1

m(t) = m(0)

[
ρ+ 1

ρ+ e−t

] 3
2

(8.47)

where we introduced the parameter ρ =
(
R(1, 0) + 2

)
/
(
1 − R(1, 0)

)
depending on

the initial condition for the correlation function. Usually we assume that the initial
state has prescribed magnetisation but otherwise it is completely random, so R(1, 0) =
m2(0). From the solution (8.47) we read off the asymptotic value the magnetisation
approaches for large times

m(∞) = m(0)

[
3

2 +m2(0)

] 3
2

. (8.48)

In Fig. 8.13 we can compare the formula (8.48) with the results of numerical sim-
ulations; and we dare to conclude that the agreement is excellent despite the crude
approximations we made.

As in the one-dimensional voter model, the final state of the dynamics is one of the
two absorbing states, i.e. the configuration with either all sites +1 or all −1. The result
(8.48) should be interpreted as giving the probability of reaching the ultimate state
of all +1, given the concentration of +1 in the initial configuration. The result differs
from the voter model in the sense that the dependence is not a linear function, but
shares the property that it is continuous everywhere, namely at the symmetric point
m(0) = 0. This means that there is no dynamical phase transition like that observed
in the Galam model.

It turns out that this is a peculiarity of the one-dimensional case. In any higher
dimension the final magnetisation m(∞) as a function of m(0) jumps from the value
−1 to +1 at m(0) = 0. Thus, the dynamic phase transition is present in dimensions
d ≥ 2.

Influencing neighbours

Clearly, a group of people puts stronger pressure on an individual than all members of
the group separately. Humans are designed so that they follow the crowd. If you see
two or more people sharing an opinion on a certain issue, you are tempted to join. This
is the basic idea behind the model invented by Katarzyna Sznajd-Weron and Józef
Sznajd (daughter and father) [1658]. In its first version, the model was defined on a
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model of Ref. [1658]
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( · − − · ) (−−−−)
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Sznajd model

Fig. 8.14 Illustration of the dynamics of opinions in the model of Sznajd-Weron and Sznajd,

as it appears in the first paper [1658] and as it was subsequently modified and named the

‘Sznajd model’. The dots replace any state of the site.

one-dimensional lattice of length N . Each site is inhabited by an agent which can be
in one of the two states, denoted +1 and −1, as in the voter or majority-rule models.
We may think of people choosing between two dominant brands of a certain product
in the market or voting in a two-party political system. In each step of the dynamics, a
pair of neighbours is randomly chosen. If they are in the same state, say, +1, then the
two sites adjacent to the pair adopt the same opinion +1, propagating the consensus
outwards. Conversely, if they differ in opinion, they propagate the dissent. We can see
the rule schematically in Fig. 8.14.

Formally, suppose the chosen pair is in the state (σ(x), σ(x + 1)), at time t. If
σ(x) = σ(x+1), the neighbours of the pair are updated as σt+1/N (x−1) = σt+1/N (x+
2) = σ(x), while for σ(x) 6= σ(x + 1) the update rule is σt+1/N (x − 1) = σ(x + 1),
σt+1/N (x+ 2) = σ(x). We can see that, unlike the voter or majority-rule model, there
are three absorbing states. Besides the obvious ‘ferromagnetic’ states of all +1 or all
−1, there is the ‘antiferromagnetic’ state where the sites in states +1 and −1 alternate
regularly. Strictly speaking, there are two such states, one characterised by +1 at sites
with odd coordinates and the other by +1 at even sites.

Looking at the rules more thoroughly we can see that the linear chain can be divided
into two sublattices, one of them containing all odd coordinates x, the other all even
sites. The states of the agents in one sublattice are never influenced by the agents in
the other one. Moreover, the dynamics within one sublattice is a trivial modification of
the voter model. The only difference is that in the voter model one site induces change
of the state of one of its neighbours, while here the agent makes both of its neighbours
adopt its state. Indeed, the update rule can be written as σt+1/N (x − 1) = σ(x + 1),
σt+1/N (x+ 2) = σ(x), irrespectively of the relation between σ(x) and σ(x+ 1) [1659].
This observation trivialises the model to a large extent. Indeed, it is equivalent to
two copies of the voter models evolving in parallel, and the only coupling between
them comes from the fact that the sites to be updated are neighbours on the original
lattice. We can say that the two voter models evolve so that the update occurs at
the same place in both copies. However, the initial state of both sublattices is chosen
randomly and independently, and many properties, for example the concentrations of
+1 in either of the sublattices, remain uncorrelated forever.

Restricting the study to only one sublattice, we can follow the way we used success-
fully for the voter model. We can write the flipping rates analogous to (8.8), only to
see that they differ in factor 2, originating from the fact that a site induces a change in
state of its two neighbours. This factor only means rescaling of time, so we can safely
neglect it. The result known for the voter model can be translated directly to our case.
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As a first application, let us look at the asymptotic states. The probability to reach
the state of all +1 is just the concentration of the +1 opinions in the initial state. This
holds for both sublattices independently. From here, we easily deduce the probabilities
P+, P−, and PAF such that the system ends in the absorbing states with all +1, all −1,
and the antiferromagnetic state, respectively, as a function of the initial concentration
of +1 opinions. Indeed, the state with all +1 means that both sublattices reached the
uniform +1 state (and similarly for −1) while the antiferromagnetic state is obtained
if one of the sublattices ended in +1 state and the other in −1 state. Hence,

P+(n+) = n2
+

P−(n+) = (1 − n+)2

PAF (n+) = 2(1 − n+)n+.

(8.49)

Now we focus on a single agent. During the evolution it may change its state several
(including zero) times. The time elapsed between two subsequent changes of state is
called decision time tdec, and it is natural to ask what the probability distribution is
of decision times of all agents. The answer relies on mapping the evolution of the voter
model to diffusive motion of domain walls. As explained in Sec. 8.2.1, the domain walls
separating the regions of +1 and −1 opinions evolve in time like annihilating random
walkers. Selecting an agent at site x, its state is flipped if and only if the domain
wall crosses the point x. The decision time is nothing else than the time between
two successive visits of the random walker at the same position x, or, using language
familiar to experts in random walks, the decision time is the time of first return of
the random walk to the origin. Calculation of this quantity is a standard exercise of
probability textbooks [575], and the reader may remember that we did it already in
Sec. 3.1.1. The decision time distribution behaves asymptotically as a power law

P>dec(t) ≡ Prob{tdec > t} ∼ t−1/2, t→ ∞, (8.50)

and this is exactly what was found numerically in the founding work of the Sznajds.
Everything having been solved by mapping in the voter model, the story seems

to be over. But just the opposite is true. Things start to be exciting again when we
‘simplify’ the dynamic rules introduced above by allowing only neighbour pairs with
equal states to influence their neighbourhood. If the two agents in the pair do not
agree in their opinions, nothing happens. In the scheme in Fig. 8.14 it corresponds to
taking only the first two rows as allowed updates. It is this modification that has been
widely studied afterwards, and common consensus assigned it the name Sznajd model
(although calling it ‘Sznajds’ would perhaps do more justice to the authors).

As a first step in the analysis of the Sznajd model, we note that there are again
three absorbing states, all +1, all −1, and the antiferromagnetic one. But now the
antiferromagnetic state is unstable, because randomly flipping a single site results in
a nucleus of three sites in the same state, which irresistibly invades the whole system.
But, although unstable, the existence of such an absorbing state leaves important
traces in the dynamics, as will be clearer later.

Following the customary route, we write the transition rates for the underlying
Markov process,
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w(σ, σx)

=
1

8

[
σ(x − 2)σ(x− 1) + σ(x+ 1)σ(x+ 2)

− σ(x)
(
σ(x− 2) + σ(x− 1) + σ(x + 1) + σ(x+ 2)

)
+ 2
]
.

(8.51)

The similarity with Eq. (8.44) describing the majority-rule dynamics is striking. The
Sznajd model is yet another member of the family of nonlinear voter models, and the
difference between the transition rates (8.51) and (8.44) stems from the flip induced to
a site if the left and the right neighbours agree, which is possible in the majority-rule,
but not in the Sznajd model.

We can again use the Kirkwood approximation and calculate the probability for
ending in the state of all +1

P+(n+) =
n2
+

(1 − n+)2 + n2
+

. (8.52)

Fig. 8.15 compares this result with numerical simulations, again showing very good
agreement [923, 1660], as in the case of the majority-rule model. We leave to the reader
the pain of showing how the result (8.52) is obtained (Problem 5).

Two more questions were asked about the one-dimensional Sznajd model. The first
is the decision time, as we introduced it a short while ago. It was found numerically
[1659] that it follows the same power law (8.50) as in the previous case, where it
resulted from the underlying linear voter dynamics. For the Sznajd model we do not
have any proof at hand showing that this is the exact result, but we can still understand
this result on an intuitive level. Although the transition rates (8.51) correspond to a
nonlinear rather than a linear voter model, the evolution of domain walls, responsible
for the behaviour of the decision time, remains very similar. If the domain walls are far
from each other, they again perform a random walk. The nonlinearity comes into play
only when the domain walls come close together; more precisely, when they are just
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one lattice-spacing apart. Then they cannot move freely anymore; they can only make
one step towards the other domain wall, thus annihilating each other. The dynamics
is again a diffusion-annihilation process, but the domain walls are not independent; in
addition to annihilation, they interact at short distance.

The interaction is in fact a trace of the unstable antiferromagnetic absorbing state.
Two walls at a distance of one lattice unit form a small nucleus of the antiferromag-
netic state, thus slowing down the dynamics with respect to free annihilating random
walkers. If by chance several domain walls come so close that the distance between
neighbouring walls is 1, they form an antiferromagnetic ordered cluster, where the
walls squeezed between two other walls from both left and right sides cannot move at
all and the dynamics is hindered even more.

However, for large times the density of domain walls is low, and the influence of
such antiferromagnetic islands can be neglected. Therefore, it is not so big a surprise
that the power-law dependence of the decision time remains unaffected, at least for
large times.

The second interesting question we ask is, how many agents have never changed
their opinion up to a certain time t? In this context, we speak of persistence in the
dynamics of the Sznajd model. In the voter model in one dimension, and equivalently
the Ising model with Glauber zero-temperature dynamics, there is an exact analytical
solution [1605] showing that the fraction of sites which retain their initial opinion
at least to time t decays as ∼ t−3/8. It may seem quite surprising that the same
behaviour has been found numerically in the one-dimensional Sznajd model [1661,
1662]. However, applying the same arguments as above and showing that the long-
time dynamics is essentially dominated by annihilating random walks of the domain
walls, we come to the conclusion that it is quite plausible that the long-time behaviour
of the persistence is governed by the same exponent 3/8 both in the voter and the
Sznajd models in one dimension.

Having understood the agents lined up in a chain, we may ask what gets changed if
we arrange them in a two-dimensional mesh, like people scattered on the surface of the
Earth (neglecting skyscrapers). For example, on a square lattice, we can generalise the
one-dimensional dynamics in such a way that a pair of neighbouring agents is chosen;
and if the two are in the same state, they make all their 6 nearest neighbours share
their state [1663, 1664]. Slightly more formally, let x be a random coordinate on the
square lattice with N = L2 sites and y = xν one of the 4 neighbours of x. If σt(x) =
σt(y), then we update the configuration as σt+1/N (xµ) = σt+1/N (yµ) = σt(x) for all
µ ∈ {1, 2, 3, 4}. Numerical simulations show an interesting difference from the one-
dimensional case. The probability P+(n+) has discontinuity at n+ = 1/2, indicating
a dynamic phase transition, while, as we remember, the dependence is smooth in
one dimension. More strongly, the data suggest that P+(n+) = 0 for n+ < 1/2 and
P+(n+) > 0 in the opposite case n+ > 1/2. This result is equally valid in any dimension
larger than 1. In the limit of infinite dimension the behaviour should coincide with
the mean-field approximation, which implies putting the Sznajd model on a complete
graph [1612]. Such modification is analytically solvable, as we shall show now.

As in the case of the voter model on a complete graph with N vertices, the con-
figuration of the system is fully described by the number N+t of agents in state +1 or
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by the magnetisation Mt = 2N+t/N − 1. The evolution of the latter is governed by
transition rates which in the limit N → ∞ yield the Fokker-Planck equation

∂

∂t
PMt(m) = − ∂

∂m

[
1

2
(1 −m2)mPMt(m)

]
(8.53)

for the probability density PMt(m) of the magnetisation at time t. Before proceeding
further we note that the average magnetisation 〈Mt〉 =

∫
mPMt(m) dm satisfies the

equation
d

dt
〈Mt〉 =

1

2

(
〈Mt〉 − 〈M3

t 〉
)

(8.54)

which has a similar structure as the equation (8.41) describing the dynamics of the
Galam model. Indeed, if we equate Mt = 2nA − 1, identify the level index with time,
l = t, and take the approximation 〈M3

t 〉 ≃ 〈Mt〉3, thus neglecting the fluctuations, the
equations (8.41) and (8.54) coincide. This is not the last coincidence we find within
this section. If we try to solve the majority vote model on a complete graph, we get
a virtually identical Fokker-Planck equation as (8.53), the only difference consisting
in rescaling the time variable. So, we are solving Galam, majority-rule, and Sznajd
models in one shot.

It can be easily verified that the general solution of Eq. (8.53) has the form

PMt(m) =
1

(1 −m2)m
f

(
e−t/2

m√
1 −m2

)
(8.55)

for an arbitrary function f(y). The latter has to be determined from the initial condi-
tion, and assuming that in the beginning the magnetisation was m0 for all realisations
of the process, we have f(m/

√
1 −m2 ) = (1 −m2)mδ(m−m0). Clearly, in this case

the probability density consists of a single δ-function which moves, as time passes,
towards one of the ends of the allowed interval for the magnetisation, m ∈ [−1, 1].
The dynamics is a pure deterministic drift, and no diffusion ever blurs the evolving
probability packet, as can immediately be seen from the absence of a second-derivative
term in the equation (8.53). Clearly, this is due to the limit of infinite system size,
and for finite N there is an additional diffusive term in the Fokker-Planck equation,
proportional to N−1.

The deterministic nature of the evolution of opinions has profound consequences.
First, as we have seen, the initial sharp δ-function distribution of magnetisation re-
mains sharp until the end, thus justifying the neglect of fluctuations and the replace-
ment 〈M3

t 〉 = 〈Mt〉3. The fluctuations only set in at times which diverge when N → ∞,
and the equivalence to the Galam model is exact in the thermodynamic limit. In
a finite system of size N we can estimate the typical time tst needed to reach the
absorbing state, starting from magnetisation m0, by the requirement that the drift
brings the magnetisation to the distance of order ∼ 1/N from either of the extremal
points m = ±1. Expressed in terms of the initial concentration of the +1 opinion,
n+ = (m0 + 1)/2, it is

tst ≃ ln

(
(1 − n+)n+N

(2n+ − 1)2

)
. (8.56)
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Now, when we understand the close relation to the Galam model, we are not surprised
that the equations (8.56) and (8.43) coincide for large N .

For any positive initial magnetisation, the final state is always the uniform con-
figuration of all agents in state +1 and vice versa. The probability of ending in the
all +1 state is the step function P+ = θ(n+ − 1

2 ). As we have seen, this is consistent
with simulations of the Sznajd model in dimensions larger than 1 and confirms the
existence of dynamic phase transition at n+ = 1/2. It also shows that in a society
where everybody interacts with everybody else but no person changes her opinion un-
less she occasionally meets at least two other people who make her want to do so, the
initial majority, however narrow it is, always takes all. No chance is left to minorities.
Fortunately enough, reality is more complex. In the next paragraph we shall see how
it is possible to implement in a model one common ‘complication’ so that the number
of choices is not limited to two but can be large, or even very large.

Can we predict election results?

The rule of people in a democracy becomes explicit on periodic occasions: in elections.
In our days they have become large festivals where cheerful people meet on squares
listening to popular singers rather than to candidates’ speeches. Newspapers are filled
with piquancies more than serious proposals of how to solve the crises of the medical
system. The campaign is run by the same experts and in exactly the same way as
marketing of soap. The very mechanism of competition has two effects. The open and
fair elections prevent an evidently malicious individual from getting into power and
at the same time they equalise the programmes of the candidates to such an extent
that they become hardly distinguishable. The same is true for soap or cars. Due to
competition, a really bad product has zero chance of being sold, and the qualities are
so close to each other that your choice is based mostly on irrational or random factors.

Such a state of affairs may not please our desire for an ideal world, but from the
scientific point of view it largely simplifies the description. People who are thinking
too much can hardly be modelled as inanimate particles, but the stochastic nature of
choice in the political marketplace promises at least partial scientific success.

Imagine now that N agents choose from among q alternatives, for example parties,
candidates or commercial products. Suppose that everybody interacts with everybody
else, so the underlying social structure is our familiar complete graph. Besides the
usual assumption that N is large, we also consider a large number q of options. The
dynamics will be that of the voter model and the underlying social network will again
be the complete graph, i.e. in each step a randomly picked agent adopts the state of
another randomly chosen agent. The configuration of the system is fully described by
the numbers Nσ of agents choosing option σ ∈ {1, 2, . . . , q}. We define the distribution
of votes

D(n) =
1

q

q∑

σ=1

δ(n−Nσ/N ) (8.57)

where in this formula we denote δ(x) = 1 for x = 0 and δ(x) = 0 elsewhere. It would
be rather difficult to solve the evolution equation for the quantity D(n) (among others,
it is not Markovian), so we make an approximation, replacing the distribution of votes
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Fig. 8.16 Election results for the federal deputies in Brazil in 2002. In this plot, n is the

percentage of votes a candidate obtained in her or his district. The distribution Pvotes(n) is

calculated as the numerical derivative of the cumulative distribution N≥(n)/N , where N is

the total number of candidates and N≥(n) the number of candidates who gained at least the

fraction n in their districts. The straight line is the power ∼ n−1.1 The data were downloaded

from the web page of the Tribunal Superior Eleitoral, www.tse.gov.br.

with its average Pn(n) = 〈D(n)〉. In the limit N → ∞ and q → ∞ we arrive at the
equation

N
∂

∂t
Pn(n, t) =

∂2

∂n2
[(1 − n)nPn(n, t)] (8.58)

which we know very well from the analysis of the voter model on complete graph, Eq.
(8.25). We found yet another occasion where the Fisher-Wright process is at work!
However, we must note that the similarity is rather formal and the interpretation of
the solution is different here. There is no need to solve Eq. (8.58) if we only want to
know the stationary state. There are q absorbing states, in which all agents choose
the same option. The distribution of votes is the same for any of the q possibilities,
D(n) =

(
1 − 1

q

)
δ(n) + 1

q δ(n−N).
In real life it would mean that all people vote for the same party. The society

reaches consensus on a one-party system, and further evolution of the political system
is inhibited. But this picture not only contradicts the everyday experience of a citizen
in a democratic country but it is also internally inconsistent with the model itself. If
we try to estimate the time needed to reach one of the absorbing states, we find that
it is scaled proportionally to the number of agents N , and the time is measured with
respect to the typical rate of opinion change of an agent who is exposed to an opinion
different from her own. Guessing that people do not change their views more often than
once per day, we conclude that a medium-sized country with 60 million inhabitants
would need about 105 years to reach the uniform state if the opinions evolved according
to our model. Clearly it means that the absorbing states are irrelevant for description
of the reality. What we see are rather some long-lived quasi-stationary states, and we
should try to identify them among the solutions of the equation (8.58).
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It can be easily seen that the time-independent distributions Pn,0(n) = 1/n and
Pn,1(n) = 1/(1− n) satisfy Eq. (8.58). They cannot constitute the stationary solution
of the original problem, as they cannot be normalised and therefore cannot be reached
from any normalised initial state. But they can be interpreted as stationary states of
an open variant of the model. We can calculate the probability current j = − ∂

∂n

[
(1 −

n)nPn(n)
]

which is +1 and −1 for the solutions Pn,0(n) and Pn,1(n), respectively. For
us, the relevant distribution is the former one,

Pn,0(n) =
1

n
(8.59)

exhibiting a uniform flux towards a larger number of votes n. It means that there is
a source in the system, located at n = 0, constantly adding parties with a very small
number of votes. Indeed, new parties join politics all the time, but their initial support
is negligible and mostly remains negligible all the time. So, we conclude that formula
(8.59) describes a snapshot of the distribution of votes in an open political system.

It is fine to see that the empirical data are in quite a good agreement with the
formula (8.59). It would be difficult to check it in a country with two-party system,
as it relies on the assumption q ≫ 1, i.e. existence of very large number of competing
options. On the other hand, for example in Brazil, the number of candidates is large
and reasonable statistics can be gathered [1665–1668]. We show some results in Fig.
8.16, demonstrating that the distribution of votes obeys the power law

Pvotes(n) ∝ n−1.1 (8.60)

close to the analytical result, at least in the middle part of the distribution, i.e. except
for the very popular and very unpopular candidates.

To answer the question in the title of this subsection: no, of course we cannot
predict who will win the elections, but nevertheless we can identify the regularities
in the distribution of support people give to the politicians, whatever the names and
labels attached to them might be.

8.2.3 Axelrod model

Culture is not a disease

Sometimes the spreading of opinions is compared to waves of infection propagating
across a society. Both viruses and views cannot live without their human bearers and
both phenomena rely on contacts between individuals, be it touch, speech, newspa-
per or e-mail. But while for any disease there exists a more or less clearly defined
healthy situation to which an individual struggles to return, it is hardly possible to
find such an indisputable reference state when we deal with cultural tastes. In formal
parlance, we expect that the disease spreading models would be characterised by a
single absorbing state, all people being healthy and no viruses circulating around. On
the contrary, opinion-spreading models have typically at least two absorbing states,
and dissemination of culture should take into account the multitude of possible stable
configurations; and an extensive number of possible absorbing states should be no
surprise.
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But there is another, even deeper difference from the mere spread of epidemics.
When we look at the ways culture is shared and propagated around the globe as well
as inside tight Caucasian valleys, we cannot miss the observation that similar cultures
are much more prone to mutual convergence, while incompatible lifestyles often coexist
side by side without visibly influencing each other. Robert Axelrod introduced a model
[1669] nicely describing such a situation.

Limited confidence

In the Axelrod model, contrary to the voter or Sznajd model, the character of each
of the agents is given by more than one feature. One can think of tastes regarding
food, sports, music, etc. These categories represent the features. For each feature the
taste can assume various values, e.g. somebody likes eating raw vegetables, spending
whole days in a fitness centre and listening to Mozart in the evenings, while somebody
else feeds on French fries, watches football on TV and adores the pop star of the
season. If two neighbours do not agree on any of the features, they do not find any
common theme for conversation. No conversation implies no spread of ideas. The two
are so much different that they do not influence each other. Conversely, if they find
at least one feature where they share the same preference, they talk to each other.
One day one of them perhaps looks up a second feature in which they do differ and
changes the preference on that second feature so that it agrees with the preference of
the neighbour. We call the fact that the agents do not always interact but only if they
have something in common limited confidence.

More precisely, there are N = Ld agents placed again on the d-dimensional hyper-
cubic lattice Λ = {0, 1, . . . , L− 1}d with periodic boundary conditions. Each agent is
characterised by F > 1 features, which are represented by integer numbers. There-
fore, the state of the agent at site x ∈ Λ is described by a vector with coordinates
σ(x, i) ∈ Z, i = 1, 2, . . . , F . The configuration space of the model is ZΛ×{1,...,F} and
the evolution of the configuration σt is a Markov process determined by transition
rates

w(σ, σx,f,a) =
1

2d

2d∑

µ=1

θ
(
A(x, xµ)

)[
F −A(x, xµ)

]−1

δa,σ(xµ,f) (8.61)

where the summation goes over the set of 2d neighbours xµ of the site x. We denoted
by σx,f,a the configuration which differs from σ only in feature f of the agent at site x,
so σx,f,a(x, f) = a and σ(x, f) 6= a. The function A(x, y) =

∑F
g=1 δσ(x,g),σ(y,g) counts

the number of features on which the agents at positions x and y agree, and θ(x) is the
Heaviside function, θ(x) = 1 for x > 0 and zero otherwise. The first factor after the
sum in (8.61) accounts for the condition that the neighbours must agree in at least one
feature, and the second factor is here due to the fact that in each update each agent
chooses randomly from among F−A

(
σ(x), σ(xµ)

)
features in which she disagrees with

her neighbour. Finally, the last factor with the Kronecker delta function assures that
the new value of the feature f of the agent at site x is the same as the value of the
same feature f of the neighbour at site xµ.
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Fig. 8.17 Typical evolution of the Axelrod model on a square lattice with periodic

boundary conditions. In each row, we show snapshots of the configuration in four times

t1 < t2 < t3 < t4, from left to right, where the last configuration is the absorbing state.

The active bonds are drawn in grey, the bonds with full consensus in black, the bonds with

absolute disagreement are left white. The initial condition is drawn from Zq with the uniform

probability. The parameters are, from top to bottom, F = 3 and q = 2; F = 3 and q = 14;

F = 2 and q = 2. The frame in light grey around each configuration is there only for visual

convenience.

Simulations

If the two factors after the sum in Eq. (8.61) were absent, the transition rates would
depend linearly on the states of the neighbours, and we would recover a certain gen-
eralisation of the linear voter model, with all its beautiful solvability. However, the
nonlinearity is there and makes the model non-trivial. Lacking suitable analytical
tools, we resort to numerical simulations.

For a computer-minded reader we repeat once again the rules of the dynamics of
the Axelrod model, as they are implemented in simulations. On a lattice of size N = Ld

the time t is discrete and proceeds in chunks of 1/N , so from time t to t+ 1 we make
as many elementary updates as there are sites. One update step goes as follows:

1. Choose a site x at random; choose randomly one of its neighbours xµ. Count number
A of features in which the agent at x agrees with the chosen neighbour.
2. If A = 0 or A = F , do nothing. If 0 < A < F , choose randomly a feature f from
among those in which the agent and the neighbour differ. Then set equal the value of
the feature f , i.e. σt+1/N (x, f) = σt(x

µ, f).

One of the principal quantities of interest will be the density of active bonds, which
is a generalisation of the density of interfaces we investigated in the voter model. A
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Fig. 8.18 Phase transition in the Axelrod model on a square lattice of size L×L, for F = 3,

when changing the localisation parameter q of the initial state. In the left panel, relative size

of the largest cluster; in the right panel, the average stopping time relative to the system size.

Different symbols correspond to sizes L = 50 (⋄), L = 100 (▽), and L = 200 (△). Where

not shown, the error bars are smaller than the symbol size. In the insets, dependence of the

corresponding quantities on the system size L2. Symbols correspond to parameters q = 5 (⋄),
14 (▽), 15 (2), 16 (△), 20 (◦), and 30 (•). The straight line is the power ∝ L−4/3.

bond connecting agents at sites x and y is called active if the agents differ in at least
one feature and also agree in at least one feature, i.e. 0 < A(σ(x), σ(y)) < F . Their
fraction relative to the total number of bonds in the lattice will be denoted nA(t).

When the number of active bonds drops to zero (the time at which it occurs is
called stopping time and denoted τst), the evolution freezes and the system reaches one
of its absorbing states. It means that all neighbours are either identical or absolutely
incompatible, and we can identify clusters of agents who share the same values of all
features, while the borders of such clusters are marked by bonds with no shared value.
Even for the simplest case of two features F = 2 and the set of allowed values for these
features constrained to only two elements, there are infinitely many possible absorbing
states characterised by various cluster configurations. (For a finite lattice this number
is of course finite, but grows very fast with the system size.) This reminds us of what
we have said at the beginning of this subsection: speaking of culture, there might be
a good many stable configurations, and we must not be too discriminative and say
which is the best one.

The full characterisation of the set of absorbing states would be rather difficult.
We limit ourselves to a rough measure, which is the number of agents in the largest
cluster smax compared to the total number of agents N . When it is close to the total
system size, it means that the absorbing state is uniform, or very close to it. If the size
of the largest cluster is small, or even remains finite when N → ∞, the absorbing state
is ‘multicultural’ or fragmented into many isolated islands without mutual interaction,
much like the hundreds of villages in Papua New Guinea, each of them having its own
particular language.

We shall see that the evolution and the shapes of the eventual absorbing states
depend critically on the initial condition. First, note that if all the values of the features
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belonged to certain subset V ⊂ Z of integers at the beginning, all features would remain
within the set V forever. The most important thing is how large the set V is. But even
if V is infinite, the values may be mostly concentrated on a finite subset of V , very
rarely going beyond it. We would need a simple but reliable measure of the effective
size of the set V , taking into account how often each member is actually present.
Suppose that in the initial state the probability for a chosen feature of a randomly
picked agent to have i-th value from the set V is pi. The simplest measure of the
localisation of values within V is the inverse participation ratio

q−1 =

|V |∑

i=1

p2i . (8.62)

It is the same quantity we already used for measuring the localisation of eigenvectors
of correlation matrices in Sec. 1.4.1. The definition (8.62) is motivated by a simple
consideration. If the set V consists of q lowest non-negative integers, i.e. V = Zq ≡
{0, 1, . . . , q − 1}, and all members have the same probability pi = 1/q, the inverse
participation ratio is exactly q−1. The integer q is just the number of elements which
are participating; hence the name. Of course, the same result holds for any set of q
equally probable elements. Even the fact that they are integers is unessential. We shall
soon see that q is the most important parameter of the initial condition, and it would
be desirable to be able to tune it continuously. Therefore, besides the choice of Zq

with uniform probability for the starting configuration, the initial state is often drawn
from non-negative integers with Poisson distribution, i ∈ {0, 1, . . .}, pi = e−λ λi/i!.
The calculation of the corresponding inverse participation ratio is an exercise from the
theory of Bessel functions. The result is

q−1 = e−2λI0(2λ) ≃ 1√
4πλ

for λ→ ∞, (8.63)

and the reader can easily recognise it in Box 8.1. The simulations show [1670] that
all relevant properties of the Axelrod model depend on the quantity q only, for initial
condition distributed either uniformly in Zq or according to Poisson distribution.

Phase transition

Let us look at how the Axelrod model behaves on a two-dimensional square lattice.
Recall that the linear size of the lattice is L, so there are N = L2 agents. The initial
condition will set the values of all features for all agents independently from the same
uniform distribution on Zq. In Fig. 8.17 we can see how the configurations typically
evolve. For larger F and q the absorbing state is very fragmented, but when q decreases
it becomes totally uniform, and a single cluster covers all the lattice. On the contrary,
for small F the absorbing state contains a few clusters of moderate size.

These vague observations are put on a quantitative basis in Figs. 8.18 and 8.19. Let
us first look at the behaviour of the average size of the largest cluster, 〈smax〉, when we
change the parameter q. The most important finding is that at a certain value q = qc
there is a phase transition separating the regime q < qc in which the maximum cluster
makes up a finite fraction of the whole lattice, from the phase with q > qc where
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Fig. 8.19 Phase transition in the Axelrod model on a square lattice of size L×L, for F = 2,

when changing the localisation parameter q of the initial state. In the left panel, relative size

of the largest cluster; in the right panel, the average stopping time relative to the system size.

In both panels, results for the uniform initial distribution are plotted for sizes L = 50 (⋄),
100 (▽), and 200 (△). Where not shown, the error bars are smaller than the symbol size. In

the insets, dependence of the corresponding quantities on the system size, for q = 5 (◦), 6
(△), 7 (▽), and 8 (⋄). The straight lines are power laws ∝ L−4/3.

the fraction of sites within the largest cluster goes to zero for N → ∞. The quantity
〈smax〉/N can serve as an order parameter. If you wonder how the clusters on the
lattice can be quickly found and their size measured, look at the book on percolation
theory [751], where the beautiful Hoshen-Kopelman algorithm [1671] is explained.

Another quantity which indicates the phase transition is the average stopping time,
i.e. the time to reach the absorbing state. Generically, it grows with the system size
as 〈τst〉 ∼ Nη(q); but below the transition it is proportional to the system size, so
η(q) = 1, while for q > qc it grows more slowly, with the exponent η(q) ≃ 1/3. Inter-
estingly, comparing the stopping time with the size of the largest cluster, we conclude
that for F = 3 the two quantities are roughly proportional, 〈τst〉 ∝ 〈smax〉, both of
them exhibiting a jump at the transition, suggesting that the clusters grow linearly
in time until they reach the absorbing state. On the contrary, we do not observe such
proportionality for F = 2. Instead, the average maximum cluster decreases continu-
ously to zero when we approach qc from below, and at the same time the stopping
time seems to diverge.

With discrete q it is impossible to determine the position of the phase transition
with high precision, but in practice we can make a reasonable estimate based on the
dependence of 〈smax〉/N on N , as shown in the insets. For F = 3 the critical value of
the parameter q lies somewhere close to qc ≃ 15, while for F = 2 the estimated value
is qc ≃ 5.

A more important difference between the cases of F = 2 and F = 3 than the
numerical value of the transition point qc is the very nature of the phase transition.
We have already seen that the stopping time normalised to the system size blows up
at the transition only for F = 2, remaining finite for F = 3. We can say with fair
trustworthiness that for F = 2 the transition is continuous, i.e. second-order, while
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for F = 3 the transition is clearly a first-order one. Although it may be dangerous to
rely only on the numerical data for the order parameter, the conclusion on the nature
of the phase transition has also been supported by the results for the distribution of
cluster sizes close to the transition. We can see in Fig 8.20 that the probability of
finding in the absorbing state a cluster of a size larger than s, decays as a power, i.e.
P>clust(s) ∼ s−α, with an obvious cutoff at large s due to the finiteness of the lattice.
The value of the exponent α plays a critical role. For F = 2 we estimate αF=2 ≃ 0.6
and for F = 3 we obtain αF=3 ≃ 1.65. It has been shown that the exponent does not
depend on the number of features as long as F ≥ 3 [1670]. How does the distribution
of cluster sizes relate to the type of phase transition? Denoting Nclust(N) the total
number of clusters and Pclust(s,N ) = P>clust(s) − P>clust(s + 1) the fraction of clusters
of size s on a lattice with N sites, we must have

N = Nclust(N)
N∑

s=1

sPclust(s,N ). (8.64)

If Pclust(s,N ) ∼ s−1−α and α ≤ 1, the sum on the right hand side diverges when
N → ∞. But the sum is just the average cluster size, in other words, the quantity
which plays the role of correlation length. The behaviour resembles the percolation
transition, and the diverging correlation length is an unmistakable sign of a second-
order phase transition.

On the other hand, if Pclust(s,N) ∼ s−1−α with α > 1, the sum converges; and to
keep the equality in (8.64) for N → ∞, we need that either the number of clusters
is proportional to the system size, or, in addition to the power-law component, there
is an additional term in the distribution of cluster sizes, accounting for the largest
cluster of size smax ≃ N , i.e.

Pclust(s,N) ≃ as−1−α + b δs,smax . (8.65)

The former possibility occurs for q > qc and the latter for q < qc. Indeed, the simulation
data in Fig. 8.20 show the presence of δ-function part in (8.65), with positive weight
b > 0. Below the transition, the largest cluster spans essentially the whole system,
and at qc its size drops discontinuously to a value negligible with respect to N . This
is typical of first-order transitions.

These considerations are also compatible with the behaviour of the stopping time
as function of q. For F = 2 the data indicate that 〈τst〉/N diverges as q → qc, while for
F = 3 it remains constant. Interpreting the stopping time as the correlation time of
the dynamics, we have exactly the behaviour commonly observed in the second- and
first-order phase transitions, respectively.

To conclude, the phase transition in the Axelrod model is driven by the parameter
q, measuring the localisation of values in the initial condition, and belongs to the class
of first-order transitions if the number of features is at least 3, while for only F = 2
features the transition is second-order. Interestingly, the same dependence in terms
of number of components is known in the Potts model. However, one should bear in
mind that the transition in the Axelrod model has a purely dynamical origin. There
is no equilibrium besides the absorbing states, so the analogy with phase transitions
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Fig. 8.20 Axelrod model on a square lattice. In the left panel, distribution of cluster sizes

close to the transition q ≃ qc, averaged over 100 realisations. The parameters are F = 2,

q = 5, L = 200 (2), and F = 3, q = 15, L = 100 (⋄). The straight lines are the power

laws ∝ s−0.6 (dashed) and ∝ s−1.65 (solid). In the data corresponding to F = 3 (symbol ⋄),
note the isolated points around s ≃ 104 = L2 indicating that the distribution is composed of

a power-law part plus a δ-function located close to L2. In the right panel, time dependence

of the number of active bonds, averaged over realisations of the process. The lattice size is

L = 100, number of features F = 3, and different lines correspond to q = 5, 9, 14, 15, 16,

and 18, from top to bottom. In the inset, the dynamics is shown for F = 3, q = 5, and three

lattice sizes, L = 30 (dotted line), 50 (dashed line), and 100 (solid line).

in equilibrium statistical physics must be taken cautiously and with a certain reserve.
You may recall that a similar warning was also made in Sec. 5.1.3 when we dealt with
the dynamic phase transition in the minority game model.

Although we spend most of the time analysing the absorbing states, it is instructive
to also see how the system approaches them. In Fig. 8.20 we can see the evolution of
the average number of active bonds. The averages are taken only over realisations
which have not yet reached the absorbing state (recall a similar point of view when
we analysed the voter model in Sec. 8.2.1). Around the time t ≃ 1, i.e. after as many
updates on the computer as there are lattice sites, the density of interfaces decreases
drastically. For q > qc it quickly brings the system to the absorbing state, while in
the opposite case q < qc the activity rises again and nA increases to a value close
to nA ≃ 0.5. Then, a very slow evolution follows. Mostly the evolution ends due
to an occasional hit into an absorbing state, but this is rather a finite size effect,
as demonstrated in the inset in Fig. 8.20. When the system size increases, the slow
evolution is more and more prolonged. It is very difficult to see the behaviour at these
very long times on a computer, but it seems that the density of active bonds decays
very slowly to zero, resembling the logarithmic decay in the density of interfaces in
the two-dimensional voter model.

One-dimensional case

The two-dimensional square lattice is just one of the possible geometries the agents can
sit on. The one-dimensional case is also very interesting, [1672, 1673] as the dynamics
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has the special property that we can define a Lyapunov function, i.e. the quantity
which never increases during the evolution [1674, 1675].

Indeed, summing the number of equal featuresA(x, y) over all pairs of neighbouring
agents, and changing the sign, we get the number

H = −
∑

x

A(x, x1) (8.66)

where x1 is the right neighbour of the site x, in accordance with the general notation
xµ we introduced for the neighbours of x on any lattice. The proof that H is the
Lyapunov function relies on the fact that each site has exactly 2 neighbours. Thus, it
is not the question of dimensionality but connectivity. The same would be true on any
lattice where all sites have at most two neighbours, for example on a regular graph
with all vertices having order 2, but not on a one-dimensional lattice with interactions
between next-nearest neighbours.

Let us see how H changes in one update. Choose a site x and one of its neighbours,
which we denote y. When comparing the features of agents at x and y the number of
agreements either remains unchanged or increases by 1. The latter case occurs if one of
the features of x has changed its value. If x does not have any other neighbour besides
y, the change in H is accordingly either 0 or −1. If x does have another neighbour,
say z, the value of A(x, z) may be affected too. But as only one feature is changed,
A(x, z) cannot increase more than by 1. The change in H is the negative of the sum
of changes in A(x, y) and A(x, z), but as we have seen, it cannot exceed 0. Therefore
H is the Lyapunov function of the Axelrod model dynamics.

The quantity (1−H)/N ∈ [0, 1] vanishes in the totally uniform state, and in several
studies it was used as an alternative order parameter [1674, 1675]. Interestingly, the
simulation shows that the transition can be discontinuous in the order parameter
〈smax〉/N while (1 − H)/L exhibits a continuous transition [1674]. The discrepancy
can be attributed to the dynamic nature of the phase transition, where the usual
distinction between first- and second-order transitions may not be fully appropriate,
as we have already pointed out.

Topological and thermal disorder

As with the voter and Sznajd model, we naturally ask what happens if the agents are
placed on a more realistic social network than on a two-dimensional lattice or a linear
chain [1676]. The two choices which are first at hand are the Watts-Strogatz small-
world networks; the second class are the scale-free networks created via the Barabási-
Albert process. In the former case, the main finding is that the phase transition occurs
at a value qc which grows with the probability of rewiring, pWS. In the latter case, it
was found that the transition shifts to larger and larger values of q when the size of
the network grows. More precisely, on the Barabási-Albert network of N nodes, with
degree exponent γ = 3, the dependence is well fitted on a power law qc ∼ N0.39. As a
third network topology, the so-called structured scale-free networks were used, which
have effectively a one-dimensional topology [1676]. Contrary to the Barabási-Albert
network, the transition occurs at a value independent of the network size.
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Fig. 8.21 Illustration of the dynamics of opinions in the Axelrod model with F = 2 and

q = 2. Allowed transitions between states of an agent are indicated by arrows. The dashed

and dotted ovals denote groupings of the 4 states according to the values of σ(1) and σ(2).

The evolution of the Axelrod model exposed here does not allow spontaneous
changes of the state of individual agents due to random perturbations. This corre-
sponds to a zero-temperature dynamics. One may ask what new effects can arise if we
‘heat up’ the system a little.

There are several ways of implementing the perturbations. Let us look what hap-
pens if they are infinitesimally small. We let the Axelrod model evolve until an ab-
sorbing state is reached, then change the value of one feature in one agent and let
the evolution proceed. When the dynamics stops at another absorbing state, we per-
turb it again and repeat these perturbation cycles again and again. The interesting
conclusion from simulations of this process is [1674, 1677] that the average size of the
maximum cluster grows until it reaches the uniform configuration with 〈smax〉 = N .
The fragmented states achieved for q > qc in one run, starting from a random initial
configuration, are rather metastable ‘traps’, and the system escapes from them if it
gets a chance to do so.

We can also introduce a noise of finite strength. With the rate r > 0, a random
change in a single feature is made. We naturally expect that the phase transition at
q = qc is blurred, and this was actually confirmed in simulations [1674, 1677, 1678].
Moreover, on a two-dimensional lattice, a scaling form 〈smax〉/N = g((1−q−1)r N lnN)
with a universal, smoothly decreasing function g(x) was found.

A (partially) solvable case

The case F = 2 and q = 2 is special as it yields several exact results [1679–1681].
There are four possible states for each agent, and the transitions between the states
can go along the arrows indicated in Fig. 8.21.

The structure of the diagram in Fig. 8.21 allows us to group the agents in state (11)
together with agents in state (00) into a larger group, with the common parameter
+1. Similarly agents in states (01) and (10) form a group labelled by −1. Formally,
the agent at site x, who has σ(x, f) as the value of f -th feature, is given a new scalar
variable σ(1)(x) calculated as

σ(1)(x) = 1 − 2|σ(x, 1) − σ(x, 2)|. (8.67)
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Now it is easy to see that the new state variable σ(1)(x) evolves according to the
standard rules of the voter model. Indeed, any of the agents in the state (01) or (10)
can force her neighbour in state (00) or (11) to adopt her state, and vice versa. This
way the Axelrod model is simplified to what we already know. For example, the active
bonds are just those which connect an agent from group +1 with a neighbour from
the group −1. The active bonds are equivalent to interfaces in the voter model, and
their time evolution, starting from a totally random initial configuration, decays as
nA ∼ t−1/2 in one dimension, as nA ∼ (ln t)−1 in two dimensions and nA ∼ t1−d/2 in
d ≥ 3 dimensions. As the voter model eventually reaches an ordered state in dimensions
d = 1 and 2, we conclude that the Axelrod model in these dimensions also evolves
into a state in which all agents are either from group −1 or from group +1. What we
do not know, though, is the dynamics within the groups, for example the density of
inactive bonds connecting states (00) and (11). But we can get some information on
it by refining our division into groups.

In fact, because of the symmetry, it is enough to distinguish between the states
in one of the two groups +1, or −1. Exchanging values 0 ↔ 1 in the second feature
we get information on the internal dynamics inside the other group, which must be
statistically identical. So, we define yet another state variable

σ(2)(x) = σ(x, 1) + σ(x, 2) − 1 (8.68)

with possible values ±1 and 0. We may think of them as representing three opinions on
an issue, namely two extremes and a centrist position. The rules of the Axelrod model
imply that the neighbouring agents interact only if the difference in their opinions
is at most 1, i.e. the extremists do not interact among themselves but only with the
centrists.

Such mapping can be done in any spatial dimension, but in dimension one the
dynamics may be conveniently represented in terms of interacting interfaces, or domain
walls. The bonds separating an opinion +1 or −1 from 0 are the usual active bonds of
the original Axelrod model, or the interfaces in the voter model. Let us denote these
two types of walls by M+ and M−, respectively. They evolve as the usual annihilating
random walkers, and their density decays in the way already mentioned previously,
namely ∼ t−1/2. On the contrary, the domain walls separating the extremists, +1 and
−1, cannot move, as the agents do not have influence over each other. We denote
these stationary walls as S. Their spatial configuration can change only via their
interaction with the moving walls of the two other types. Schematically, we can denote
the interaction of the three species of walls as M± + M± → ∅, M± + M∓ → S, and
M± + S →M∓.

Contrary to the moving walls, the density of the stationary walls nS(t) decays in
time in a non-universal way. Numerical simulations [1679] show that

nS(t) ∼ t−ψ, for t→ ∞ (8.69)

where the exponent ψ depends on the initial concentration n0 of centrists, and for the
small and high concentrations it approaches ψ(n0) → 0 for n0 → 0 and ψ(n0) → 0.5
for n0 → 1. An approximate mapping on kinetic q-state Potts model with effective
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number of components q = 1/(1−n0) was proposed, resulting in the following formula
[1605, 1679]

ψ(n0) = −1

8
+

2

π2
arccos2

(
1 − 2n0√

2

)
(8.70)

which agrees well with the simulations in the range n0 . 0.4.
More exact results are available in the mean-field approximation, where the agents

are placed on a complete graph [1680]. The calculation goes essentially along the lines
presented for the voter model on a complete graph (see Sec. 8.2.1), but the analysis
is a lot more complicated because there are infinitely many absorbing states. Indeed,
in addition to the three obvious uniform states when all agents have either +1 or −1
or 0 opinion, also all mixtures of the extremists, i.e. configurations with no centrists
but with arbitrary concentration of the +1 and −1 opinions, are absorbing states. In
essence, we have again a diffusion problem, analogous to Eq. (8.25), but instead of
being bound to an interval with absorbing endpoints, we are limited to a triangle with
absorbing corners and one edge.

Due to the length of the calculations we present here only the results [1680]. Denote
n+ and n− the concentration of the opinions +1 and −1 in the initial state. The
easiest quantity to calculate is the probability P0(n+, n−) that the final absorbing
state consists of all centrists. It is

P0(n+, n−) = 1 − n+ − n− (8.71)

which can be seen directly from mapping on the voter model. The probabilities P± of
reaching the homogeneous ±1 states can be obtained in closed form as an infinite series,
but we show here the result only in the simpler case of symmetric initial condition
n+ = n−. Then

P+(n+, n−) = P−(n+, n−) = n+ − 1

2
+

1 − 4n2
+

2
√

1 + 4n2
+

. (8.72)

On the same condition, the probability of reaching any frozen state with mixed +1
and −1 opinions is

P+−(n+, n−) = 1 − 1 − 4n2
+√

1 + 4n2
+

. (8.73)

It would be tempting to extend this approach to a general case of Axelrod model with
an arbitrary number of components F and for any q. We encourage the reader to try
her luck.

8.2.4 Bounded confidence with continuous opinions

There may be a different view on consensus formation, supposing that the opinions
on a certain issue can vary continuously, but a discussion on that subject and possible
convergence of the opinions cannot take place unless the actual opinions are close
enough. It the people differ too much, they may even avoid mutual contact completely
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or decide to use ‘different means’, an often used euphemism for killing the opponent.
If, on the contrary, the difference in their opinions, measured by a continuous variable,
does not exceed certain threshold, then the difference may be further diminished by
discussions and peaceful persuasion. This idea is called bounded confidence and we
already encountered a kind of it when we discussed the Axelrod model.

Linear dynamics

Modelling the consensus formation using continuous variables has been around for
quite a long time. Let us denote by Fi the variable describing the opinion of the indi-
vidual i. The simplest way to implement the convergence of opinions, introduced by
DeGroot [1682], is to assume that in the next period the opinions are linear combina-
tions of the current opinions of all individuals

Fi(t+ 1) =
∑

AijFj(t) (8.74)

where all of the elements of the matrix A are non-negative, Aij ≥ 0, and the sum of
each of its row’s entries is one,

∑
j Aij = 1. We call it a confidence matrix. We shall

also suppose that the diagonal elements are strictly positive, Aii > 0, which means
that the individuals have at least some non-vanishing belief in their own opinions. The
new values of Fi are weighted averages of the previous opinions, the weights being
stored in the matrix A. As such, the dynamics is very simple, and it is equivalent to
a Markov chain with transition probabilities Aij .

The bounded confidence is missing in this model, but it is worth studying, as it can
teach us an important lesson about when a consensus can be reached and when it is
not possible [1682, 1683]. The latter question is answered by the so-called stabilisation
theorems, which rely on the notion of zero pattern of the confidence matrix. The
zero pattern of the matrix A is another matrix A0 of the same dimensionality whose
elements are zero at the same places where A has zero elements, and one elsewhere.
Thus

1 if Aij 6= 0
A0 ij =

{
0 if Aij = 0.

(8.75)

The zero pattern can be interpreted as an adjacency matrix for a graph representing
direct interactions of the individuals.

Starting with the vector of opinions F (0), after t steps of the dynamics the opinions
will be given by t-th power of the confidence matrix, F (t) = AtF (0). For large times,
the opinions should converge to an eigenvector of the matrix A, corresponding to the
eigenvalue 1. The fact that A is a stochastic matrix guarantees existence of at least one
such eigenvector. If it is unique, it is also uniform, as can easily be checked. Indeed,
if Fi = f for all i, then

∑
j AijFj = f

∑
j Aij = f = Fi, so Fi is an eigenvector with

eigenvalue 1. The interpretation of such a state is straightforward. Since all individuals
have the same value of Fi, they all share the same opinion, and a complete consensus
is reached.

So far it has seemed that full consensus is an inevitable outcome, but this is not
the case. The problem is that there may be several linearly independent eigenvectors
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for the same eigenvalue 1, and all of them may be the asymptotic states, together
with any linear combination of them. They form a vector subspace of dimensionality
at least two. We can choose the basis vectors in this subspace so that they do not
have any non-zero elements in common. Let us denote them Fαi, where α = 1, . . . , r
numbers the r eigenvectors. Their non-zero elements must again be uniform, and we
may freely set them equal to 1. This way we have identified r communicating subgroups
of individuals, which are the sets Gα = {i : Fαi 6= 0}. Now, the consensus is guaranteed
inside each communicating subgroup, but not necessarily across them.

It is fairly easy to determine whether there are more than one communicating
subgroup and eventually to find all of them. The point is that the zero pattern of
the matrix At is equal to the zero pattern of t-th power of the zero pattern of A, i.e.
(At)0 = ((A0)t)0. But this means that the non-zero elements in At correspond to such
pairs of individuals for which there is a path of length t connecting them in the graph
of direct interactions. The requirement of positive diagonal elements introduces loops
on each vertex of the graph, so if there is a path of length t between two individuals,
we can construct also a path of any larger length t′ > t.

What does it mean for the evolution of our model? As time passes, the zeros in the
matrix At can only disappear; they never occur at those matrix elements that were
non-zero before. If diam

G
is the diameter of the graph of direct interaction, for times

t > diam
G

the zero pattern of the matrix At will not change anymore. (See Sec. 6.1.1
for the definition of graph diameter.)

If the graph is connected, for sufficiently large t the zero-pattern of At contains
no zeros, and the eigenvector corresponding to eigenvalue 1 is unique. In the opposite
case, each connected component of the graph is just composed of the individuals from
the corresponding communicating subgroup Gα.

The question of reaching a consensus or not in DeGroot’s model is reduced to the
study of connected components of the graph of direct interactions. When the graph is
composed of several connected components, each of them reaches its own consensus,
independent of the others. This is quite simple. Now we shall see how the bounded
confidence complicates the thing.

Hegselmann and Krause

The new opinion of the individual i takes into account the others’ opinions with weights
Aij . What if these weights are not constant, but depend on the current opinions
themselves? Although some attempts in this direction had been made earlier [1684],
the principle of bounded confidence was first applied in the models developed by the
groups of Deffuant et al [1685] and Krause and Hegselmann [1686, 1687]. Let us discuss
the latter model first.

The Hegselmann-Krause model [1687] considers opinion formation as a fully de-
terministic process, as in DeGroot’s model investigated in the last section. The new
opinion of an individual is the average of current opinions of those individuals (includ-
ing the individual herself), whose opinions lie within a fixed confidence bound ǫ > 0
from her own opinion.

For those pairs of individuals who do not differ more than ǫ in their opinions the
weights Aij are uniform, so



338 Social organisation

t

F
i

86420

1

0.8

0.6

0.4

0.2

0

t

F
i

86420

1

0.8

0.6

0.4

0.2

0

t

F
i

50403020100

1

0.8

0.6

0.4

0.2

0

Fig. 8.22 Evolution of the Hegselmann-Krause model. Each point represents one or more

agents with a specified value Fi. The total number of agents is N = 200. In the upper left

panel, the confidence bound is ǫ = 0.3, while in the upper right panel it is ǫ = 0.1. In the

lower panel we show how the approach to consensus is slowed down when the confidence

bound is close to its critical value. Here we have ǫ = 0.24.

0 for |Fi − Fj | > ǫ
Aij =

{

1

Ni ǫ
for |Fi − Fj | ≤ ǫ.

(8.76)

Obviously, the normalisation constant is the number of individuals within the confi-
dence bound Ni ǫ = |{j : |Fi − Fj | ≤ ǫ}|. Note that the dependence of the confidence
matrix on the current opinions is very strongly nonlinear. From the formal point of
view the most important thing is that also the zero-pattern of the confidence matrix
can change in time. We may interpret it as changing the structure of the graph of
directly communicating individuals. To see if we are going to reach the consensus, it
is important to watch if the graph remains connected during evolution. Clearly, once
it splits into disconnected parts, they will never get joined together again, and the
consensus will not be achieved.

To get an impression of how the evolution of the Hegselmann-Krause model pro-
ceeds, look at Fig. 8.22. For large enough confidence bound ǫ the system approaches



Consensus 339

full consensus, while lower values of ǫ induce several stable communicating subgroups,
which do not interact with each other, and the system splits into several clusters with
different opinions. The number of such clusters grows as 1/ǫ when the confidence bound
shrinks. The numerical simulations show that the critical value ǫc at which the full
consensus breaks down approaches the value ǫc ≃ 0.2 when the number of individuals
increases. Interestingly, when the confidence bound comes close to the critical value
ǫc, the number of steps needed to reach consensus increases, suggesting that we indeed
come across a kind of a dynamic phase transition [1688]. This behaviour is rather
robust, as it persists in various modifications of the Hegselmann-Krause model, most
notably if we allow the individuals to communicate only through a regular lattice or
a random network [1689–1692]. It was confirmed both by simulations and by solution
of a corresponding partial integro-differential equation [1689–1700]. For this purpose,
a smart way of discretisation of the integro-differential equation, called the interactive
Markov chain, was developed [1698–1702].

The detailed analysis of the transition [1688] reveals the decisive role of a handful
of agents who can be called mediators [1688, 1702]. Imagine that the agents separate
into two big groups of about the same size plus a single agent located at about the
middle between the big groups. Suppose the groups are at a distance larger than ǫ,
so that they do not directly influence each other, but the single agent in the middle
has distance smaller than ǫ from both the first and the second group. This is the
mediator, as that agent transmits the influence from the first big group to the other
one. Because the groups are of comparable size, the position of the mediator does not
change substantially. However, the mediator very slowly attracts both of the groups
towards the middle. An example can be seen in the lower panel of Fig. 8.22. Such very
slow evolution lasts until the groups come close enough to overcome the confidence
bound ǫ. Then, all agents collapse into one single group, and consensus is reached.
One single mediator decided the fate of the entire system. Certainly there is a lesson
we can translate into real life.

Deffuant et al

Apart from the initial condition, the model of Hegselmann and Krause is fully deter-
ministic and the opinions are updated in parallel. A similar model, but with random
sequential update was introduced by G. Deffuant et al [1685].

We have again N individuals with opinions Fi. In each update step, we randomly
choose two of them, say, i and j, and see if their opinions differ less than (or equal to)
the confidence bound ǫ. In a positive case, their opinions are slightly shifted towards
each other

Fi(t+ 1/N) = (1 − µ)Fi(t) + µFj(t)
}

for |Fi(t) − Fj(t)| ≤ ǫ
Fj(t+ 1/N) = µFi(t) + (1 − µ)Fj(t)

(8.77)

where µ is a parameter fixing the rate of convergence.
For a very large number of individuals, N → ∞, the dynamics can be expressed in

terms of the continuous distribution of opinions PFt(f), which can be written formally

as
∫ f
0
PFt(f

′)df ′ = limN→∞
1
N

∑
j θ(f −Fj(t)). We get the following innocent-looking

rate equation [1703]
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∂

∂t
PFt(f) =

∫

|f1−f2|≤ǫ
PFt(f1)PFt(f2)

×
[
δ((1−µ)f1 + µf2 − f) − δ(f1 − f)

]
df1df2.

(8.78)

which exhibits a fairly complex behaviour. Starting from the uniform initial condition
PF0(f) = 1 for f ∈ [0, 1] the configuration evolves into a stationary state composed
of one or several δ-functions, each of them corresponding to one cluster of individuals
sharing the same opinion.

To see it on a trivial example, consider the case ǫ > 1. All individuals interact with
each other, so their opinions converge to a common limit limt→∞ Fi(t) = 1/2. We
can see it from Eq. (8.78) when we investigate the time evolution of the moments of
the distribution. Obviously d

dt
〈F 〉 = 0, so the average opinion is independent of time,

〈F 〉 = 1/2. The dispersion from the mean 〈F 2〉c = 〈F 2〉 − 〈F 〉2 obeys

d

dt
〈F 2〉c = −2µ(1 − µ)〈F 2〉c (8.79)

which means that the dispersion decays exponentially to zero with a rate of 2µ(1−µ).
This confirms our intuition noted earlier that µ determines the speed of the evolution
towards the stationary state.

The behaviour in the complementary regime of very small ǫ can be guessed if we
suppose that PFt(f) does not vary too wildly at scales comparable to ǫ or shorter.
This also means that f is assumed to be farther than ǫ from the extremal values 0 and
1. In this case we expand PFt(f1, t) and PFt(f2, t) in the Taylor series and perform the
integral on the right-hand side of Eq. (8.78) explicitly. Finally we get partial differential
equation

∂

∂t
PFt(f) = − ǫ

3

3
µ(1 − µ)

∂2

∂f2
P 2
Ft(f). (8.80)

There is a trivial homogeneous solution PFt(f) = C, independent of f and t, which
is however unstable at all length scales. To see it, we can linearise (8.80) close to
the uniform solution, PFt(f) = C + D(f, t), where |D(f, t)| ≪ C, and express the

result in terms of the Fourier transform D̃(k, t) of the small perturbation. We obtain
∂
∂tD̃(k, t) = 2

3k
2ǫ3Cµ(1 − µ)D̃(k, t), indicating that perturbations are amplified more

the larger is the wavevector k, i. e. the shorter is their wavelength. On the other hand,
if a stationary state is reached, the structures created either collapse into a single point
or are at distance larger than ǫ. This feature is lost in the derivation of Eq. (8.80), as
we supposed that the probability is smooth on scale comparable with ǫ. Therefore, Eq.
(8.80) describes well the initial stage of the breakdown of the uniform solution, but
does not apply to the ultimate state of the evolution. Nevertheless we can conclude
that for small ǫ the stationary state will be composed of more or less regularly spaced
δ-functions with the period proportional to ǫ.

To see explicitly how the stationary state is approached for a general value of the
confidence bound ǫ, the solution of Eq. (8.78) should be found numerically. Examples
of such evolution are shown in Fig. 8.23. For large enough ǫ, all opinions converge
to the common value 1/2, as in the case ǫ > 1. However, low ǫ produces two or
more distinct peaks. Detailed analysis [1703, 1704] reveals that a series of bifurcations
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Fig. 8.23 Evolution of the Deffuant model with µ = 0.5. In the left panel, approach to

consensus for confidence bound ǫ = 0.27, slightly larger than the critical value ǫc1. In the

right panel, two peaks are formed in the distribution of opinions, for ǫ = 0.25.

occurs in the system when we decrease the confidence bound. The consensus breaks
into separated groups suddenly at a critical value of ǫc1. The groups themselves break
up into more groups at ǫc2 < ǫc1, and so forth. The numerically found value of the
first critical point is ǫc1 = 0.269 . . .. But how do the peaks emerge from the originally
homogeneous distribution? In Fig. 8.23 we can observe that they are triggered by
the original inhomogeneity at the edges of the interval [0, 1]. A structure of gradually
sharpening peaks propagates towards the centre of the interval, where the nonlinear
waves from the opposite endpoints meet and form the resulting pattern.

We can translate this observation into common language by saying that the ul-
timate fate of the opinions in the society is largely in the hands of the extremists.
Indeed, the individuals close to the edges of the scale of possible opinions are from the
very beginning drawn towards the middle of the interval [0, 1], i.e. close to the centrist
position, while those who are farther from the edges than ǫ keep their opinions un-
changed for some finite time. The crucial question is: how far from the extreme will the
former extremists move before they settle? It may happen that they will drift so close
to the midpoint that the centrists will attract them all. Full consensus follows. But
the extremists themselves can attract enough centrists, and instead of creating one
peak at the centre, two (or even more) peaks occur. The resulting society lives with
polarised (or diversified) opinions. The parameter which decides about the outcome is
the confidence bound ǫ. Higher confidence leads to an overwhelming consensus among
people, while lower confidence causes the society split into several non-communicating
communities.

Stabilisation theorem

As you may have noticed, the rigorous analysis of the models of Hegselmann and
Krause and Deffuant et al would be very difficult, but there is a very interesting,
although partial, result [1705–1708].
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The Hegselmann-Krause and Deffuant models differ from the linear dynamics of
DeGroot in two ways. First, the confidence matrix Aij depends on the current configu-
ration of the opinions Fi; and second, it may depend explicitly on time. In the Deffuant
model, the explicit time dependence is due to the stochastic choice of interacting pairs
of individuals. For each realisation of the dynamics we get a sequence of confidence
matrices Aij(t), where under the argument t we hide both the direct explicit time de-
pendence and the indirect dependence through the current opinion configuration. For
the stabilisation theorem, there is no need to distinguish between these two sources of
the time dependence.

What does matter, on the other hand, are three properties the confidence matrix
must fulfil at all times. First, we need that all of its diagonal elements are positive,
Aii(t) > 0. It means that each individual has some self-confidence. Second, the zero-
pattern is a symmetric matrix, so if Aij(t) > 0, then also Aji(t) > 0. This requirement
is interpreted so that the confidence is mutual, even though it may not be as strong
in one direction as it is in the other. Third, there is a fixed lower bound for positive
elements of the confidence matrix, i.e. there is a constant c > 0 such that either
Aij(t) = 0 or Aij(t) > c for all times t. This is a necessary requirement to avoid
certain pathological situations.

A theorem can be proved provided the latter three properties are satisfied. In their
formulation we shall use the notation A(t2, t1) = A(t2 − 1) . . . A(t1 + 1)A(t1) for the
product of confidence matrices. We shall also call the square matrix K with all non-
negative elements a consensus matrix if all its rows are equal and the sum of elements
in every column is 1. Leaving aside the proof, here is the theorem.

Theorem. For any realisation of the sequence of matrices A(t) there is a finite time t0
such that A(t, 0) converges to the product of A(t0, 0) and a block-diagonal matrix, so

lim
t→∞

A(t, 0) =




K1 0
K2

. . .

0 Km


A(t0, 0) (8.81)

where K1, K2,. . . ,Km are consensus matrices.

The meaning of the theorem is that after a certain finite time t0 the process defi-
nitely tends towards a consensus within each of the m groups on which the matrices
Ki are acting, but each of the subgroups reaches a different opinion. To be sure, the
consensus is not reached at time t0, nor at any finite time whatsoever, but at time
t0 it is already decided what individuals shall form the m consensus groups. In this
sense, t0 can be considered a consensus time in Hegselmann-Krause and Deffuant et al
models, even though for the full convergence of opinions within the consensus groups
we must wait longer, and in the model of Deffuant et al with µ ≤ 1/2 the consensus
is not achieved before infinity.
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8.3 Stratification

People are not equal. They not only differ in the colour of their eyes and in their
capabilities to play chess or to run a marathon race, but even individuals with very
similar talents may find themselves at very different social statuses. All human at-
tempts to bring more justice into such evident disequilibrium have ended in desperate
or even catastrophic failure. Perhaps the best one can do is to make the diaphragms
separating the social levels as permeable as possible, so that no one is a priori dis-
qualified. The ubiquity of social stratification in animal as well as human collectives is
certainly a phenomenon which calls for an explanation, and the fact that rabbits, dogs,
apes, and Homo sapiens all exhibit similar behaviour patterns suggests some common
mechanisms which may not be too complicated after all, although they produce highly
complex outcomes. We shall show two very simple but appealing models, at the same
time bearing in mind that this means merely groping on a very uncertain ground.

8.3.1 Emerging hierarchies

Bonabeau model

A newcomer in an animal group always has to undergo some fighting before its position
in the social ladder is commonly accepted. If, on the other hand, an individual leaves
the group for a prolonged period and then returns, it has to fight again, as the pre-
viously established level has faded away. These two observations motivated Bonabeau
et al [1709] to introduce a model of self-organised hierarchies [1709–1715].

To be clear, we do not speak of hierarchies in the sense of trees with a king or
a marshal on the top and lesser ranks below. We rather have in mind an ordering,
in which each individual bears a single number we shall call strength, indicating its
position among others. When two of them meet, the stronger one has a higher prob-
ability to be strengthened, while the weaker is most likely pushed down even more.
The strengths of the agents who do not meet at this time relax towards zero by a fixed
fraction. More formally, the configuration of the system at time t is described by a
collection of strengths Fi(t) of the agents i = 1, 2, . . . , N . In each step, a pair of agents
is chosen to fight. The strength of the winner is increased by 1, while the strength of
the loser is decreased by 1. Moreover, all strengths relax to the reference (zero) level
deterministically. Thus

Fi

(
t+

1

N

)
=
(

1 − µ

N

)
Fi(t) + ∆ij

Fj

(
t+

1

N

)
=
(

1 − µ

N

)
Fj(t) − ∆ij

Fk

(
t+

1

N

)
=
(

1 − µ

N

)
Fk(t), k 6= i, k 6= j

(8.82)

with

Prob
{

∆ij = ±1
}

=
1

1 + e∓η(Fi(t)−Fj(t))
(8.83)

expressing the probability that i is the winner and j the looser. The parameter η
tunes the level of randomness in the dynamics, where η → ∞ corresponds to purely
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deterministic outcomes, the stronger agent always beating the weaker, while η = 0
means that the strengths are increased and decreased by mere chance.

So far we have not touched upon the question of which pairs of agents do interact
and when. The most natural choice is to place the individuals on a network, or simply
on a square lattice, leaving some sites empty, and allow the agents to diffuse along
the edges of the network. When two agents happen to meet at the same site, they
fight. More than two agents on a site are not allowed. They behave like hard hemi-
spheres, each site being able to accommodate one full sphere. Numerical simulations
of such system show [1709–1713] that, if we change the density of agents, or, equiv-
alently, the relaxation rate µ, there is a phase transition from an uniform state with
all agents’ strength close to 0 to a hierarchical state where the strengths are highly
non-homogeneous. As an order parameter we choose the dispersion of the number of

fights won by the agents, i.e. σ =
√

1
N

∑N
i=1(wi − 1

2)2 , where wi = n+
i /(n

+
i + n−

i )

and n+
i , n−

i are number of encounters won and lost by the agent i, respectively. In the
homogeneous phase σ = 0 while in the hierarchical phase it gets a finite value.

Mean-field solution

Analytical study is possible in mean-field approximation. Indeed, suppose that the
diffusion is fast enough to ensure many encounters with various agents during the
typical time given by the speed of relaxation of the strengths towards zero. Then, the
spatial structure of the lattice on which the diffusion takes place becomes irrelevant. In
other words, at each time step we choose two agents at random and let them fight. In
this case the dynamics is much simpler, and for a large system we obtain deterministic
evolution equations for the strengths

dFi
dt

= −µFi +
1

N

N∑

j=1

sinh η(Fi − Fj)

1 + cosh η(Fi − Fj)
. (8.84)

We neglected here the stochastic term which decreases as 1/N for large N . It can easily
be seen that the average strength F = 1

N

∑
i Fi relaxes exponentially to 0 according

to dF
dt

= −µF . So, it is sufficient to consider only stationary states with zero mean,

F = 0. The simplest of them, satisfying Eq. (8.84), is the trivial uniform state Fi = 0.
It can be unstable, though, and we shall investigate its linear stability now.

Using the notation dFi

dt = Ri(F1, . . . , FN ) for the expression occurring in Eq. (8.84),

we need to investigate the eigenvalues of the matrix Hij = ∂
∂Fj

Ri(0, . . . , 0). We have

Hij =
(
− µ+

η

2

)
δij −

η

2N
. (8.85)

One of the eigenvectors is uniform, xi = 1, corresponding to eigenvalue −µ, which is
always negative. The remaining N − 1 eigenvectors have the forms xi = 1 −Nδik for
some k, and they all belong to the same eigenvalue η

2 − µ. If the latter is positive, the
uniform solution of Eq. (8.84) is unstable. This happens for

2µ < η, (8.86)
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and we are naturally led to a question: what are the stationary configurations beyond
this critical point? If we go just a short distance beyond the critical point, the linear
stability analysis can offer a useful hint, but it needs to be complemented by the
influence of the lowest nonlinear terms. Therefore, we expand the right-hand side of
Eq. (8.84) up to the third order in the differences Fi−Fj , and for the stationary state
we obtain

(η − 2µ)Fi =
η3

12N

∑

j

(Fi − Fj)
3. (8.87)

We look for a solution in the form

Fi = aδik − b (8.88)

suggested by the eigenvectors of Hij corresponding to unstable modes. Inserting a trial
solution (8.88) into Eq. (8.87) we obtain a set of equations for the parameters a and
b which can be solved easily. Finally we have

0 for 2µ ≥ η

Fi =



 ±

√
12(η − 2µ)

η3
(Nδik − 1) for 2µ < η.

(8.89)

Hence we obtain the order parameter σ. We should note that in the stationary state
the fraction wi of fights won by the agent i should be balanced by the relaxation of
her strength. Indeed, 2wi − 1 is the average increase of the strength of agent i in one
step, which should be equal to µFi. So, σ = µ

√∑
i F

2
i /N /2, and inserting the result

(8.89) we have

0 for 2µ ≥ η

σ =





µ

η3/2

√
3

N

(
1 − 1

N

)
(η − 2µ) for 2µ < η.

(8.90)

How can we interpret this solution? One can compare it to a situation in a society
with one master and many servants, a single emperor while all the rest are servants,
equal to each other in their subordination. This looks nice but the enthusiasm fades
away when we realise from the formulae (8.89) that this ‘realistic’ solution always
comes together with a mirror image of itself, a society of a single servant subject to
many equal masters. This is an absurd situation, revealing something artificial in the
Bonabeau model itself. Indeed, the dynamics is invariant with respect to inversion of
all strengths, Fi → −Fi, because we never introduced explicitly any a priori advantage
of being stronger. The only thing we supposed was that strong grow stronger and weak
become weaker.

Let us now turn back to mathematical aspects of the model. Recall that the results
(8.89) and (8.90) were obtained assuming that we are not far from the critical point,
i.e. for small value of the parameter η−2µ. It can be shown that a solution of the type
(8.88) exists for any value of µ and η, with the only complication that the equations
for a and b become transcendental, and thus analytically insolvable (Problem 7). This
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would be too simple, though. In fact, we can easily find a stable solution in the limit
η → ∞, with µ kept finite, and see that it differs completely from (8.88). The expression
within the sum in (8.84) becomes the sign function of the difference Fi − Fj , and the
set of equations for the stationary state becomes

µFi =
1

N

N∑

j=0

sign(Fi − Fj). (8.91)

If we reorder the agents so that their strengths make an increasing sequence F1 <
F2 < · · · < FN , we get

Fi =
1

µN
(2i−N − 1), (8.92)

a society organised as a regular ladder of ranks. The order parameter corresponding
to such a state,

σ =
1

2

√
1

3

(
1 − 1

N2

)
(8.93)

approaches a non-zero limit for N → ∞, contrary to the configuration (8.88), which
is appropriate only in a close vicinity of the critical point and whose order parameter
decreases as N−1/2, which can be seen from (8.90).

Despite the obvious criticism that the essential mirror symmetry Fi → −Fi is un-
realistic and leads to unacceptable solutions, the Bonabeau model quite well manifests
the basic idea of how the various social classes emerge. Within this framework, the hi-
erarchies are due to dynamic instabilities of the uniform state, and we believe that the
same general mechanism is (at least partially) also responsible for the stratification of
human society. Any departure from the mean, be it positive or negative, is amplified.
Any accidental misfortune sends you almost invariably even deeper. That is the whole
mystery.

8.3.2 Dynamics of social classes

It is also possible to break explicitly the non-realistic mirror symmetry of the Bonabeau
model and allow only positive integer strengths, with a reflecting wall at Fi = 0
[1716, 1717]. The non-trivial features of the model stem from the interplay between
advancement in pairwise competitions and decline due to inactivity. Thus, two pro-
cesses are at work in the ensemble of N agents. With probability 1/(1 + r) we choose
a pair of agents i and j at random and let them compete. If Fi(t) ≥ Fj(t), then

Fi(t+ 1/N ) =Fi(t) + 1

Fj(t+ 1/N ) =Fj(t)
(8.94)

and vice versa. This means that the stronger agent is strengthened, while the weaker
one remains at its current position. With a complementary probability r/(1 + r) we
randomly choose an agent i and decrease its strength by one,

Fi(t+ 1/N ) = Fi(t) − 1, (8.95)

provided that it is positive. If Fi(t) = 0, nothing happens. This way we implement a
reflecting wall, prohibiting negative strengths.
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Let us denote by Nk =
∑N
i=1 δk,Fi the number of agents with strength k and by

nk = Nk/N their fraction among all the agents. In the limit of largeN we can make the

time continuous and write a master equation for the cumulative fraction gk =
∑k
l=0 nl,

d

dt
gk(t) = r

(
gk+1(t) − gk(t)

)
+
(
gk−1(t) − gk(t)

)
gk(t). (8.96)

The presence of the reflecting wall is implemented as a boundary condition g−1(t) = 0,
and an initial condition is chosen so that all agents have zero strength, so that gk(0) = 1
for all k ≥ 0.

We can safely suppose that the values of strength will not typically be small num-
bers, so we can make a continuum limit in Eq. (8.96) and obtain a partial differential
equation

∂g(k, t)

∂t
= (r − g(k, t))

∂g(k, t)

∂k
. (8.97)

For large times we must distinguish between two cases. The strengths of some agents
remain finite when t→ ∞, while strengths of the others can grow linearly with t. We
shall call the former ‘lower class’ while the latter will be referred to as ‘middle class’.
We can restrict the treatment to the lower class by requiring that k is finite in the

stationary solution of (8.97). It is only possible if g(k,∞) = r or ∂g(k,∞)
∂k

= 0. Because
g(k, t) ≤ 1 by definition, we conclude that the solution is g(k,∞) = min(1, r). This
means that the lower class comprises all agents for r ≥ 1, while for r < 1 only the
fraction r belongs to the lower class, and the rest consists of agents whose strengths
diverge with increasing time. To grasp the behaviour of these middle-class agents, we
assume that Eq. (8.97) has a scaling solution in the form g(k, t) = h(k/t). The equation
for the scaling function h(x) is obtained by substitution into Eq. (8.97), which results
in a very simple equation

xh′(x) = (h(x) − r)h′(x). (8.98)

This is satisfied if either h(x) = x+ r or h′(x) = 0, hence

h(x) = min(x+ r, 1). (8.99)

This is a very interesting result. The finite jump at x = 0 justifies the distinction
between lower and middle classes. Indeed, the height of the jump is equal to the fraction
of the lower class, while the rest of the population has strengths linearly increasing
with time. As we have already seen, for r < 1 both the lower and middle classes
comprise finite fractions, and we can speak of a hierarchical society. Besides the poor,
who do not perceive any change in their status, there is an entire hierarchy of different
linearly growing strengths in the middle class. Interestingly, the occupation of each
hierarchical level is the same, as can be immediately seen from the linear dependence
of the scaling function on x. On the other hand, we observe a lower-class society for
r > 1. There is no growth, and all population stagnates. The crucial parameter which
determines the fate of the people is the decay rate of the social status r. If every
victory is very soon neutralised by unfavourable overall conditions, the middle class
never emerges. This mimics the phenomenon of pauperisation.
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8.4 What remains

Some readers will probably miss certain important older approaches which we decided
to skip—not because we do not recognise their value, but because we feel they follow a
slightly different way of thinking. Most importantly, they include many sociophysical
applications based on synergetics [15]. There are also innumerable variants of the Ising
model applied to the human society [1718–1720]. The analogy is so appealing, and it
is so easy to explain the idea even to a layman, that now (but not in the early times of
sociophysics) the use of the Ising model in social modelling is perhaps too widespread.

We do not have enough space to speak of modelling via active Brownian parti-
cles [1721, 1722], but enthusiasts will certainly be satisfied by an excellent monograph
written by Frank Schweitzer [35].

The prisoner’s dilemma game attracts ever-growing attention, but there are also
other games of similar type, showing yet different dilemmas. One of them is the snow-
drift game [1723–1725]. The emergence of cooperation was also studied within different
frameworks [1726], so it would be short-sighted to limit our attention to only the pris-
oner’s dilemma game.

Much of the physics of models investigated in this chapter is dominated by absorb-
ing states. More general treatment of absorbing states can be found in [1727–1730].

The voter model is not the only possible way to treat the mechanisms of elections.
There are alternative approaches, backed also by empirical data [1731–1734]. Many
extensions of the Sznajd model are possible. For example, we may put the agents on
various kinds of networks [1735–1744] or introduce long-range influence [1745–1747].
Network effects were also studied in the majority-rule model [1748–1753]. There is
also a so-called Ochrombel simplification of the Sznajd model [1754] which brings it
back to the linear voter model regime. Sznajd model has also been tried as a model
for stock-market dynamics [1755, 1756]; people have asked what happens if we include
advertising effects in it [1757–1759]; and on a more formal level, implications of parallel
updating was studied [1760, 1761], as well as various other modifications [1762–1785].
An interesting ramification was a model of a network with evolving topology according
to Sznajd-like rules [1786, 1787]. The implications of the absence of detailed balance
was investigated in Ref. [1788].

Network effects have also been thoroughly investigated [1675] in the Axelrod model,
as well as the role of finite temperature (i.e. noise) [1674, 1677, 1678], influence of mass
media [1789, 1790], and other variations [1791–1796]. Other exact results on Axelrod
model can be found in [1797].

As for the bounded confidence models, various modifications of Deffuant et al and
Hegselmann-Krause models were investigated. For example, a model which interpolates
between Deffuant et al and Hegselmann-Krause was introduced [1798]. Heterogeneous
confidence thresholds [1699, 1799], influence of extremists [1800, 1801], and presence
of a ‘true truth’ [1697, 1802] were studied. Introduction of multi-dimensional opinion
space [1696, 1701, 1704, 1803] is also a natural generalisation. Interestingly, introduc-
tion of noise into the dynamics alters the behaviour profoundly [1804]. This might be
interpreted so that Hegselmann-Krause and Deffuant et al models follow a strictly zero-
temperature dynamics, which is unstable with respect to noise. For further information
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we refer the reader to papers [1704, 1800, 1805–1821]. For a comparison of the models of
Hegselmann-Krause and Deffuant et al with the Sznajd model, see [1694, 1695, 1822].

Instead of adding more and more items into the list of achievements of sociophysics,
let us conclude our treatise with a few words about a work that has made a really wide
impact. This work is Garrett Hardin’s classical essay The Tragedy of the Commons

[1823].
The article can be (and has been) read from many perspectives, but roughly it can

be said that Hardin questions the fundamentals of the prevailing neo-liberal doctrine
rooted in Adam Smith’s idea of an ‘invisible hand’ of the market. He is mainly con-
cerned with the overpopulation of the planet and the consequences of free access of
too many people to resources which belong to ‘nobody’, as were open pastures in a
not very distant past. Letting people self-organise in the trivial meaning of the word—
argues Hardin—has disastrous consequences: pollution in the third world, extinction
of whales, etc. All these examples show that the invisible hand has failed. To quote:
‘Freedom in a commons brings ruin to all.’ This is the tragedy of the commons. At this
point, humankind must consider what the word ‘freedom’ really means. If it brings
ruin to all, should we discard it? Or should we rather make its meaning clearer? For
example: does it imply the freedom to pick somebody’s pocket? Or does it mean the
freedom to rationally maximise profit by cutting down tropical rainforests? Or does it
include the freedom to start a family and to bring up children? Or to have free access
to water? The answers are not as simple as one might naively think.

Faced with new problems, humankind must agree on creating new structures, pre-
viously unknown. In order to promote the public interest, it is necessary to institute
certain social arrangements, such as issuing a law against robbers, who act as if a
bank was a commons, and organising an armed squadron to persecute the perpetra-
tors. The robber is not caught by an invisible hand of the market, but by a fairly
visible police officer. It does not mean that self-organisation is futile; it means it must
be accomplished on a more sophisticated level.

The overall moral of the tragedy of the commons is that a society grows increasingly
complex as it faces increasingly difficult problems. Many of them can be described in
terms of a commons, i.e. a place void of any social structure. For the survival of
humankind it is absolutely necessary to fill the void by a functional dispositif, as the
French would say. It is the mission of scientists, sociophysicists included, to provide
considered professional judgement on the available technical solutions and warn us
when the technical solution is impossible for profound, rationally justified reasons.
Science must provide the knowledge, and at the same time say where the knowledge
has its principal limits. Science must also resist the eternal temptation to confuse
knowledge with power. The rest is politics. And in politics all people have an equal
right to speak and to take part in decisions, whether they are scientists or not.

We think that this idea may be the summary not only of this chapter, but of the
entire book.
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Problems

1. In the spatial prisoner’s dilemma game, establish the range of the parameter b in
which the following cyclic attractors are stable.

a) The ‘blinker’, periodically exchanging a single
defector surrounded by all cooperators, with 3 ×
3 square of defectors surrounded by cooperators.
Look right for a pictorial representation.

b) The cycle of period 3, going as shown in the
sequence of pictures on the right.

2. When we define the voter model on heterogeneous graphs, we distinguish between
site-initiated and bond-initiated dynamics. In the former case we first choose
agent 1 and then choose agent 2 among neighbours of 1. In the latter version we
randomly choose a bond and then decide, again randomly, which of the agents
attached at the end of the bond is 1 and which is 2. In both cases we complete
the update by taking the state of 2 as a new state of 1, as usual. Show that the
average magnetisation is conserved in the bond-initiated dynamics, while in the
site-initiated one the conservation breaks down.

3. Analyse more general versions of the Galam model.
a) Derive the formula for concentration of opinion A at level l, supposing that the
size of the groups is a general number which may even depend on l. What if the
society is divided into groups of many different sizes? See [1640] if obscure.
b) Assume the agents choose from among three possible choices A, B, and C
[1649]. With groups of size 3 we resolve the situation in which all three members
have different opinions introducing probabilities pA, pB, pC = 1 − pA − pB that
the group adopts conclusion A, B, or C, respectively. What is the final state in
different situations?

4. The majority rule can be combined with the minority rule into one model [1654],
where each triple as a whole adopts the majority opinion with a probability of p
and the minority opinion with a probability of 1 − p. For which value of p do the
evolution equations for average magnetisation and two-site correlation function
not contain higher-order correlations, thus enabling exact analytical solution?
With the experience from the voter model, try to find as explicit a solution as
you can.

5. For the one-dimensional Sznajd model, perform explicitly the calculations lead-
ing from the transition rates (8.51) through the Kirkwood approximation to the
formula (8.52).

6. Consider a variant of the Axelrod model. In each step, choose a pair of neigh-
bouring agents at sites x and y, and a pair of features f and g (we admit
f = g). If the agents agree in the first feature, then the first agent copies the
value of the second feature from the second agent, i.e. if σt(x, f) = σt(y, f), then
σt+1/N (x, g) = σt(y, g). Find the transition rates analogous to (8.61) and write
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down the equation for the correlation function Rf,a(x−y, t) = 〈δσt(x,f),a δσt(y,f),a〉.
Try to solve it using the Kirkwood approximation.

7. Show that for the Bonabeau model in the mean-field approximation, a stationary
solution always exists in the form (8.88). Discuss the stability of this solution.

8. Examine a model of people aggregating in political parties [1824]. There are N
agents, each of them with an opinion quantified by an integer number. Denote by
Nk(t) the number of agents with opinion k at time t. In each step of the dynamics,
perform one of the following two alternatives. With a probability of r ∈ [0, 1]
choose two agents at random, and if the difference in their opinions is exactly 2,
they reach consensus at their average opinion, i.e. (k + 1, k − 1) → (k, k). If the
difference is not 2, nothing happens. With a complementary probability of 1 − r,
choose instead one agent and change her opinion by +1 or −1, i.e. k → k ± 1.
Write the equation for the evolution of the average number of agents in each
opinion group 〈Nk(t)〉. Show that it allows for a uniform stationary solution and,
using the linear stability analysis, show at which value of r the uniform solution
breaks into separate peaks (if you like, these peaks can be interpreted as political
parties).
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[36] J. Šesták, Science of Heat and Thermophysical Studies: A Generalized Approach to Thermal
Analysis (Elsevier, Amsterdam, 2005).

[37] L. T. Wille (Ed.), New Directions in Statistical Physics. Econophysics, Bioinformatics, and
Pattern Recognition (Springer, Berlin, 2004).

[38] M. F. M. Osborne, The Stock Market and Finance from a Physicist’s Viewpoint (Published
by the author, Temple Hills, 1977).

[39] J. Kertész and I. Kondor (Eds.), Econophysics: An Emergent Science. Proceedings of the 1st
Workshop on Econophysics, Budapest, 1997,
http://newton.phy.bme.hu/∼kullmann/Egyetem/konyv.html (Budapest, 2002).

[40] H. Takayasu (Ed.), Empirical Science of Financial Fluctuations: The Advent of Econophysics
(Springer, Berlin, 2002).

[41] H. Takayasu (Ed.), Application of Econophysics. Proceedings of the Second Nikkei Econo-
physics Symposium (Springer, Berlin, 2004).

[42] H. Takayasu (Ed.), Practical Fruits of Econophysics. Proceedings of The Third Nikkei Econo-
physics Symposium (Springer, Berlin, 2006).

[43] A. Chatterjee, S. Yarlagadda, and B. K. Chakrabarti (Eds.), Econophysics of Wealth Distri-
butions. Proceedings of the Econophys-Kolkata I (Springer, Milan, 2005).

[44] A. Chatterjee and B. K. Chakrabarti (Eds.), Econophysics of Stock and other Markets.
Proceedings of the Econophys-Kolkata II (Springer, Milan, 2006).

[45] A. Chatterjee and B. K. Chakrabarti (Eds.), Econophysics of Markets and Business Networks.
Proceedings of the Econophys-Kolkata III (Springer, Milan, 2007).

[46] B. Basu, B. K. Chakrabarti, S. R. Chakravarty, and K. Gangopadhyay, Econophysics and
Economics of Games, Social Choices and Quantitative Techniques (Springer, Milan, 2010).

[47] F. Abergel, B. K. Chakrabarti, A. Chakraborti, and M. Mitra (Eds.), Econophysics of Order-
driven Markets (Springer, Milan, 2011).

[48] W. B. Arthur, S. N. Durlauf, and D. A. Lane (Eds.), The Economy as an Evolving Complex
System II (Perseus, Reading, 1997).

[49] L. Blume and S. Durlauf (Eds.), The Economy as an Evolving Complex System III (Oxford
University Press, Oxford, 2005).

[50] A. Kirman and J.-B. Zimmermann (Eds.), Economics with Heterogeneous Interacting Agents
(Springer, Berlin, 2001).

[51] M. Gallegati, A. P. Kirman, and M. Marsili (Eds.), The Complex Dynamics of Economic
Interaction (Springer, Berlin, 2004).

[52] M. Salzano and A. Kirman (Eds.), Economics: Complex Windows (Springer, Milan, 2005).
[53] T. Lux, S. Reitz, and E. Samanidou (Eds.), Nonlinear Dynamics and Heterogeneous Inter-

acting Agents (Springer, Berlin, 2005).
[54] B. K. Chakrabarti, A. Chakraborti, and A. Chatterjee (Eds.), Econophysics and Sociophysics:

Trends and Perspectives (Wiley-VCH, Weinheim, 2006).
[55] A. Namatame, T. Kaizoji, and Y. Aruka (Eds.), The Complex Networks of Economic Inter-

action (Springer, Berlin, 2006).
[56] M. Faggini and T. Lux (Eds.), Coping with the Complexity of Economics (Springer, Milan,

2009).
[57] M. Takayasu, T. Watanabe, and H. Takayasu (Eds.), Econophysics Approaches to Large-Scale

Business Data and Financial Crisis. Proceedings of the Tokyo Tech-Hitotsubashi Interdisci-
plinary Conference + APFA7 (Springer, Tokyo, 2010).

[58] J.-P. Bouchaud, M. Marsili, B. M. Roehner, and F. Slanina (Eds.), Physica A 299, Issues
1–2 (2001).

[59] F. Schweitzer, S. Battiston, and C. J. Tessone (Eds.), Eur. Phys. J. B 71, Issue 4 (2009).
[60] T. Di Matteo and T. Aste (Eds.), Eur. Phys. J. B 55, Issue 2 (2007).
[61] J. A. Ho lyst and M. A. Nowak (Eds.), Physica A 344, Issues 1–2 (2004).
[62] A. Carbone, G. Kaniadakis, and A. M. Scarfone (Eds.), Physica A 382, Issue 1 (2007).
[63] T. Kaizoji, A. Namatame, and E. Scalas (Eds.), Physica A 383, Issue 1 (2007).
[64] D. A. Mendes, O. Gomes, and R. Menezes (Eds.), Physica A 387, Issue 15 (2008).
[65] J. D. Farmer and T. Lux (Eds.), Journal of Economic Dynamics and Control 32, Issue 1

(2008).
[66] Acta Physica Polonica B 36, Issue 8 (2005).



354 References

[67] M. Takayasu, T. Watanabe, Y. Ikeda, and H. Takayasu (Eds.), J. Phys.: Conf. Ser. 221,
Number 1 (2010).
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[117] V. Pareto, Cours d’économie politique (Lausanne, F. Rouge, 1897).



References 355

[118] G. K. Zipf, Human Behavior and the Principle of Least Effort, (Addison-Wesley, Cambridge,
1949).
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[237] Z. Xu and R. Gençay, Physica A 323, 578 (2003).
[238] A. Bershadskii, J. Phys. A: Math. Gen. 34, L127 (2001).
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[445] S. Drożdż, M. Forczek, J. Kwapień, P. Oświȩcimka, and R. Rak, Physica A 383, 59 (2007).
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[490] L. Gillemot, J. Töyli, J. Kertész, and K. Kaski, Physica A 282, 304 (2000).
[491] S. Pafka and I. Kondor, Eur. Phys. J. B 27, 277 (2002).
[492] J. Kertész and Z. Eisler, in: Practical Fruits of Econophysics. Proceedings of The Third Nikkei

Econophysics Symposium, ed. H. Takayasu, p. 19 (Springer, Berlin, 2006).
[493] Z. Eisler and J. Kertész, Eur. Phys. J. B 51, 145 (2006).
[494] Z. Eisler and J. Kertész, Phys. Rev. E 73, 046109 (2006).
[495] Z. Eisler and J. Kertész, Physica A 382, 66 (2007).
[496] P. Gopikrishnan, V. Plerou, X. Gabaix, and H. E. Stanley, Phys. Rev. E 62, R4493 (2000).
[497] V. Plerou, P. Gopikrishnan, X. Gabaix, L. A. N. Amaral, and H. E. Stanley, Quant. Finance

1, 262 (2001).
[498] L. Gillemot, J. D. Farmer, and F. Lillo, Quant. Finance 6, 371 (2006).
[499] K. Ivanova, M. Ausloos, Physica A 265, 279 (1999).
[500] M. Bartolozzi, D. B. Leinweber, and A. W. Thomas, Physica A 350, 451 (2005).
[501] S. Gluzman and V. I. Yukalov, arXiv:cond-mat/9803059.
[502] S. Gluzman and V. I. Yukalov, Mod. Phys. Lett. B 12, 61 (1998).
[503] S. Gluzman and V. I. Yukalov, Mod. Phys. Lett. B 12, 75 (1998).
[504] S. Gluzman and V. I. Yukalov, Mod. Phys. Lett. B 12, 575 (1998).
[505] V. I. Yukalov and S. Gluzman, Int. J. Mod. Phys. B 13, 1463 (1999).
[506] J. Kertész and Z. Eisler, arXiv:physics/0512193.
[507] M. Wyart and J.-P. Bouchaud, Journal of Economic Behavior and Organization 63, 1 (2007).
[508] O. V. Precup and G. Iori, Physica A 344, 252 (2004).
[509] B. Tóth and J. Kertész, Physica A 383, 54 (2007).
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[512] J. Mískiewicz and M. Ausloos, Int. J. Mod. Phys. C 17, 317 (2006).
[513] J.-P. Bouchaud, N. Sagna, R. Cont, N. El-Karoui, M. Potters, arXiv:cond-mat/9712164.
[514] W.-X. Zhou and D. Sornette, Physica A 387, 243 (2008).
[515] P. Richmond, Physica A 375, 281 (2007).
[516] T. Kaizoji and M. Kaizoji, Physica A 336, 563 (2004).
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[673] H. Kesten, Acta Mathematica 131, 207 (1973).
[674] J. M. Deutsch, Physica A 208, 433 (1994).
[675] I. T. Drummond, J. Phys. A: Math. Gen. 25, 2273 (1992).
[676] M. Levy and S. Solomon, Int. J. Mod. Phys. C 7, 595 (1996).
[677] S. Solomon and M. Levy, Int. J. Mod. Phys. C 7, 745 (1996).
[678] M. Levy and S. Solomon, Int. J. Mod. Phys. C 7, 65 (1996).
[679] O. Biham, O. Malcai, M. Levy, and S. Solomon, Phys. Rev. E 58, 1352 (1998).
[680] S. Solomon, in: Application of Simulation to Social Sciences, ed. G. Ballot and G. Weisbuch,

(Hermes Science Publications, Oxford, 2000).
[681] O. Malcai, O. Biham, and S. Solomon, Phys. Rev. E 60, 1299 (1999).



366 References

[682] A. Blank and S. Solomon, Physica A 287, 279 (2000).
[683] S. Solomon and P. Richmond, Physica A 299, 188 (2001).
[684] P. Richmond and S. Solomon, Int. J. Mod. Phys. C 12, 333 (2001).
[685] S. Solomon and P. Richmond, Eur. Phys. J. B 27, 257 (2002).
[686] Z.-F. Huang and S. Solomon, Physica A 306, 412 (2002).
[687] O. Biham, Z.-F. Huang, O. Malcai, and S. Solomon, Phys. Rev. E 64, 026101 (2001).
[688] H. Takayasu, A.-H. Sato, and M. Takayasu, Phys. Rev. Lett. 79, 966 (1997).
[689] U. Frisch and D. Sornette, J. Phys. I France 7, 1155 (1997).
[690] D. Sornette, arXiv:cond-mat/9708231.
[691] D. Sornette, D. Stauffer, and H. Takayasu, in: The Science of Disasters, ed. A. Bundle, J.

Kropp, and H. J. Schellnhuber, p. 411 (Springer, Berlin 2002).
[692] A. Krawiecki, J. A. Ho lyst, and D. Helbing, Phys. Rev. Lett. 89, 158701 (2002).
[693] C. Tsallis, J. Stat. Phys. 52, 479 (1988).
[694] C. Tsallis, S. V. F. Levy, A. M. C. Souza, and R. Maynard, Phys. Rev. Lett. 75, 3589 (1995).
[695] C. Tsallis, Physica A 324, 89 (2003).
[696] S. M. D. Queirós, Europhys. Lett. 71, 339 (2005).
[697] S. M. D. Queirós, C. Anteneodo, and C. Tsallis, Proc. SPIE 5848, 151 (2005).
[698] S. M. D. Queirós, L. G. Moyano, J. de Souza, and C. Tsallis, Eur. Phys. J. B 55, 161 (2007).
[699] S. M. D. Queirós and C. Tsallis, Eur. Phys. J. B 48, 139 (2005).
[700] B. Podobnik, D. Horvatic, A. Lam Ng, H. E. Stanley, and P. C. Ivanov, arXiv:0709.0838.
[701] A.-H. Sato and H. Takayasu, arXiv:cond-mat/0109139.
[702] L. Borland and J.-P. Bouchaud, arXiv:physics/0507073.
[703] S. R. Bentes, R. Menezes, and D. A. Mendes, arXiv:0709.2178.
[704] M. I. Krivoruchenko, Phys. Rev. E 70, 036102 (2004).
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Phys. Rev. E 65, 026102 (2002).
[923] F. Slanina, K. Sznajd-Weron, and P. Przyby la, Europhys. Lett. 82, 18006 (2008).
[924] R. Rajesh and S. N. Majumdar, Phys. Rev. E 63, 036114 (2001).
[925] S. N. Coppersmith, C.-H. Liu, S. N. Majumdar, O. Narayan, and T. A. Witten, Phys. Rev.

E 53, 4673 (1996).
[926] M. von Smoluchowski, Phys. Z. 17, 557 (1916).
[927] H. Takayasu, I. Nishikawa, and H. Tasaki, Phys. Rev. A 37, 3110 (1988).
[928] H. Takayasu, Phys. Rev. Lett. 63, 2563 (1989).
[929] S. N. Majumdar and C. Sire, Phys. Rev. Lett. 71, 3729 (1993).
[930] D. ben-Avraham, M. A. Burschka, and C. R. Doering, J. Stat. Phys. 60, 695 (1990).
[931] S. N. Majumdar and D. A. Huse, Phys. Rev. E 52, 270 (1995).
[932] S. N. Majumdar, S. Krishnamurthy, and M. Barma, Phys. Rev. Lett. 81, 3691 (1998).
[933] N. N. Lebedev, Special Functions and Their Applications (Dover, New York, 1972).
[934] F. Slanina, Phys. Rev. E 64, 056136 (2001).
[935] Z.-F. Huang and S. Solomon, Eur. Phys. J. B 20, 601 (2001).
[936] D. Sornette, Physica A 250, 295 (1998).
[937] A. Crisanti, G. Paladin, and A. Vulpiani, Products of Random Matrices in Statistical Physics

(Springer-Verlag, Berlin, 1993).
[938] M. Weigt, J. Phys. A: Math. Gen. 31, 951 (1998).
[939] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill,

New York, 1971).
[940] M. B. Garman, Journal of Financial Economics 3, 257 (1976).



References 371

[941] H. Mendelson, Econometrica 50, 1505 (1982).
[942] A. S. Kyle, Econometrica 53, 1315 (1985).
[943] L. R. Glosten and P. R. Milgrom, Journal of Financial Economics 14, 71 (1985).
[944] K. Back and S. Baruch, Econometrica 72, 433 (2004).
[945] A. S. Kyle, Review of Economic Studies 56, 317 (1989).
[946] S. Chakravarty and C. W. Holden, Journal of Financial Intermediation 4, 213 (1995).
[947] T. Foucault, Journal of Financial Markets 2, 99 (1999).
[948] C. A. Parlour, Rev. Financ. Stud. 11, 789 (1998).
[949] B. Hollifield, R. A. Miller, P. Sand̊as, and J. Slive, Journal of Finance 6, 2753 (2006).
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[975] R. D. Willmann, G. M. Schütz, and D. Challet, Physica A 316, 430 (2002).
[976] T. Preis, S. Golke, W. Paul, and J. J. Schneider, Europhys. Lett. 75, 510 (2006).
[977] T. Preis, S. Golke, W. Paul, and J. J. Schneider, Phys. Rev. E 76, 016108 (2007).
[978] T. Preis, J. Phys.: Conf. Ser. 221, 012019 (2010).
[979] S. Mike and J. D. Farmer, arXiv:physics/0509194.
[980] G.-F. Gu and W.-X. Zhou, Eur. Phys. J. B 67, 585 (2009).
[981] A. Zaccaria, M. Cristelli, V. Alfi, F. Ciulla, and L. Pietronero, Phys. Rev. E 81, 066101

(2010).
[982] M. Cristelli, V. Alfi, L. Pietronero, and A. Zaccaria, Eur. Phys. J. B 73, 41 (2010).
[983] D. Challet and R. Stinchcombe, arXiv:cond-mat/0208025.
[984] C. Chiarella and G. Iori, Quant. Finance 2, 346 (2002).
[985] C. Chiarella, G. Iori, and J. Perelló, Journal of Economic Dynamics and Control 33, 525

(2009).
[986] B. LeBaron and R. Yamamoto, Physica A 383, 85 (2007).
[987] G. Tedeschi, G. Iori, and M. Gallegati, Eur. Phys. J. B 71, 489 (2009).
[988] Z. Eisler, J.-P. Bouchaud, and J. Kockelkoren, in: Market Microstructure: Confronting Many

Viewpoints, ed. F. Abergel, J.-P. Bouchaud, T. Foucault, and C.-A. Lehalle, p. 115 (Willey,
Chichester, 2012).

[989] T. Hirabayashi, H. Takayasu, H. Miura, and K. Hamada, Fractals 1, 29 (1993).
[990] H. Takayasu, H. Miura, T. Hirabayashi, and K. Hamada, Physica A 184, 127 (1992).
[991] A.-H. Sato and H. Takayasu, Physica A 250, 231 (1998).



372 References

[992] J. Maskawa, Physica A 382, 172 (2007).
[993] M. Bartolozzi, Eur. Phys. J. B 78, 265 (2010).
[994] J.-J. Tseng, C.-H. Lin, C.-T. Lin, S.-C. Wang, and S.-P. Li, Physica A 389, 1699 (2010).
[995] F. Franci and L. Matassini, arXiv:cond-mat/0008466.
[996] L. Matassini and F. Franci, arXiv:cond-mat/0103106.
[997] L. Matassini and F. Franci, Physica A 289, 526 (2001).
[998] F. Franci, R. Marschinski, and L. Matassini, Physica A 294, 213 (2001).
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[1275] J. Camacho, R. Guimerà, and L. A. N. Amaral, arXiv:cond-mat/0103114.
[1276] R. J. Williams, N. D. Martinez, E. L. Berlow, J. A. Dunne, and A.-L. Barabási, Proc. Natl.

Acad. Sci. USA 99, 12913 (2002).
[1277] B. Drossel and A. J. McKane, in: Handbook of Graphs and Networks, ed. S. Bornholdt and

H. G. Schuster, p. 218 (Wiley-VCH, Weinheim, 2003).
[1278] F. Slanina and M. Kotrla, Phys. Rev. Lett. 83, 5587 (1999).
[1279] R. J. Williams and N. D. Martinez, Nature 404, 180 (2000).
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[1334] Z. Dezső and A.-L. Barabási, Phys. Rev. E 65, 055103 (2002).
[1335] A. Barrat and M. Weigt, Eur. Phys. J. B 13, 547 (2000).
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[1374] A. Lancichinetti, M. Kivelä, J. Saramäki, and S. Fortunato, PLoS ONE 5, e11976 (2010).
[1375] J. Leskovec, K. J. Lang, and M. W. Mahoney, arXiv:1004.3539.
[1376] A. Capocci, F. Slanina, and Y.-C. Zhang, Physica A 317, 259 (2003).
[1377] A. Nagurney and K. Ke, Quant. Finance 3, 71 (2003).
[1378] G. Bianconi, P. Laureti, Y.-K. Yu, and Y.-C. Zhang, Physica A 332, 519 (2004).
[1379] P. Laureti, J. Mathiesen, and Y.-C. Zhang, Physica A 338, 596 (2004).
[1380] P. Laureti, L. Moret, Y.-C. Zhang, and Y.-K. Yu, Europhys. Lett. 75, 1006 (2006).
[1381] M. Blattner, Y.-C. Zhang, and S. Maslov, Physica A 373, 753 (2007).
[1382] Y.-C. Zhang, M. Blattner, and Y.-K. Yu, Phys. Rev. Lett. 99, 154301 (2007).
[1383] T. Zhou, J. Ren, M. Medo, and Y.-C. Zhang, Phys. Rev. E 76, 046115 (2007).
[1384] Y.-C. Zhang, M. Medo, J. Ren, T. Zhou, T. Li, and F. Yang, Europhys. Lett. 80, 68003

(2007).
[1385] M. Medo, Y.-C. Zhang, and T. Zhou, Europhys. Lett. 88, 38005 (2009).
[1386] T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J. R. Wakeling, and Y.-C. Zhang, Proc. Natl. Acad.

Sci. USA 107, 4511 (2010).
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[1410] A. Drăgulescu and V. M. Yakovenko, Physica A 299, 213 (2001).
[1411] W. J. Reed and B. D. Hughes, Phys. Rev. E 66, 067103 (2002).
[1412] H. Aoyama, W. Souma, and Y. Fujiwara, Physica A 324, 352 (2003).
[1413] E. P. Borges, Physica A 334, 255 (2004).
[1414] F. Clementi and M. Gallegati, arXiv:cond-mat/0408067.
[1415] O. S. Klass, O. Biham, M. Levy, O. Malcai, and S. Solomon, Economics Letters 90, 290

(2006).
[1416] A. Y. Abul-Magd, Phys. Rev. E 66, 057104 (2002).
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[1612] F. Slanina and H. Lavička, Eur. Phys. J. B 35, 279 (2003).
[1613] S. Wright, Proc. Natl. Acad. Sci. USA 31, 382 (1945).
[1614] D. Dorninger and H. Langer, Discrete Appl. Math. 6, 209 (1983).
[1615] C. Muller and R. Tribe, Probab. Theory Rel. 102, 519 (1995).
[1616] R. Tribe, Probab. Theory Rel. 102, 289 (1995).
[1617] C. W. Gardiner, Handbook of Stochastic Methods (Springer, Berlin, 1985).



384 References
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[1774] M. S. de la Lama, J. M. López, and H. S. Wio, Europhys. Lett. 72, 851 (2005).
[1775] S. Krupa and K. Sznajd-Weron, Int. J. Mod. Phys. C 16, 177 (2005).
[1776] K. Sznajd-Weron and S. Krupa, arXiv:cond-mat/0603680.
[1777] S. Y. Kim, C. H. Park, and K. Kim, Int. J. Mod. Phys. C 18, 1429 (2007).
[1778] N. G. F. Medeiros, A. T. C. Silva, and F. G. Brady Moreira, Phys. Rev. E 73, 046120 (2006).
[1779] M. S. de la Lama, I. G. Szendro, J. R. Iglesias, and H. S. Wio, Eur. Phys. J. B 51, 435 (2006).
[1780] G. Raffaelli and M. Marsili, Phys. Rev. E 72, 016114 (2005).
[1781] J. Shao, S. Havlin, and H. E. Stanley, Phys. Rev. Lett. 103, 018701 (2009).



References 387

[1782] P. Curty and M. Marsili, J. Stat. Mech. P03013 (2006).
[1783] C. Schulze, Int. J. Mod. Phys. C 16, 351 (2005).
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Černý, J. [999]
Ceva, H. [1104], [1105], [1152], [1153], [1154],
[1155], [1156], [1157], [1158]
Chae, S. [149], [360]
Chakrabarti, B. K. [30], [43], [44], [45], [46],
[47], [54], [1457], [1459], [1460], [1461], [1465],
[1466], [1467], [1470], [1471], [1472], [1474]
Chakraborti, A. [30], [47], [54], [71], [72], [73],
[74], [338], [339], [355], [767], [1457], [1458],
[1463], [1464], [1473], [1475]
Chakravarty, S. [946]
Chakravarty, S. R. [46]
Challet, D. [33], [262], [267], [315], [321], [322],
[561], [975], [983], [1005], [1006], [1009], [1014],
[1020], [1027], [1028], [1029], [1030], [1031],
[1033], [1034], [1035], [1037], [1042], [1084],
[1097], [1098], [1101], [1160], [1161], [1162]
Champernowne, D. G. [1433]
Chan, F. [313]
Chan, H. Y. [1115], [1123]
Chang, I. [757], [758], [759]
Chang, K.-H. [148]
Chao, L. [1571]
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Rácz, E. [429]
Radicchi, F. [1355]
Radomski, J. P. [849]
Raffaelli, G. [868], [1780]
Raghavan, P. [1233], [1238]
Raghavendra, S. [872]
Rain, J.-C. [1267]
Rajagopalan, S. [1233], [1238]
Rajan, U. [951]
Rajesh, R. [924]
Rak, R. [226], [229], [391], [445]
Rakocy, K. [1544]
Ramasco, J. J. [1531]
Ramaswamy, R. [739]
Rammal, R. [363]
Rapisarda, A. [1692], [1696]

Rapoport, A. [1172]
Rasoolizadeh, A. [163]
Raspaud, A. [1225]
Ravasz, E. [1216], [1220], [1222], [1305]
Rawal, S. [788]
Redelico, F. O. [388], [518]
Redner, D. [1198]
Redner, S. [906], [920], [1191], [1199], [1247],
[1271], [1456], [1596], [1604], [1606], [1619],
[1632], [1635], [1654], [1655], [1656], [1660],
[1679], [1680], [1681], [1703], [1716], [1717],
[1748]
Reed, B. [1178]
Reed, W. J. [1411], [1423]
Reents, G. [1131]
Regnault, J. [103]
Reichardt, J. [1285], [1323], [1354], [1368]
Reinhart, C. M. [100]
Reitz, S. [53]
Ren, F. [320], [328], [329], [782], [783], [1141]
Ren, J. [1383], [1384], [1725]
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altruism, 296
Amazon, 251
analytic continuation, 204
Anderson, Philip Warren, 3
anemometry, 67
annihilating random walkers, 97, 301, 302,

318, 320, 334
anomalous diffusion, 22, 56
anti-tit-for-tat strategy, 291
antiferromagnetic state, 189, 317
ants, 115, 116, 121
Apollonian network, 243
ARCH process, 59
Arifovic, Jasmina, 118
Arrow, Kenneth, 3
Arthur, William Brian, 187, 188
assortative graph, 251
asymmetric exclusion process, 182
ATFT, see anti-tit-for-tat strategy
attendance, 189
Aukro, 251
avalanche, 93, 95, 96, 99
avalanche duration, 98
avalanche size, 98
average distance in graph, 225
Axelrod model, 324–326, 328, 330, 332–336
Axelrod, Robert, 288–290, 325

Bachelier, Louis, 11, 46–49, 51, 52, 89
backward Fokker-Planck equation, 308
Bak, Per, 93, 95, 149
Bak-Paczuski-Shubik model, 149
Bak-Tang-Wiesenfeld model, 93, 95
Bank of England, 8, 9
Barabási, Albert-László, 235, 245
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Boltzmann equation, 274
Born-Bogoliubov-Green-Kirkwood-Yvon

equations, 109
Born-Oppenheimer approximation, 85
Bouchaud, Jean-Philippe, 100
bounded confidence, 335, 336
bounded rationality, 186
Bourse, 46, 47
Brazil, 324
Brownian motion, 12, 19, 51, 55, 56, 68, 71
Buquoy, Georg Franz August von, 2
business sectors, 39

Caenorhabditis elegans, 248
Calcul des chances et philosophie de la

bourse, 11
Caldarelli-Marsili-Zhang model, 142
Calvet, Laurent, 69, 74
cascade, 65, 69

binary, 70
multifractal, 68–75, 90

Castaing, John, 8
catalytic reactions, 300
Cauchy distribution, 14, 48, 263, 264
ceiling function, 233
cellular automata, 95, 297
cement, 100
central limit theorem, 48, 49, 92, 180, 261,

263, 264, 267
Challet, Damien, 189
characteristic function, 97
chartists, 123, 124, 132–137
Clay institute, 67



406 Subject Index

clique, 224
clustering coefficient, 225
communicating subgroup, 337
Compagnie des Indes, 8
company size, 277
compartmentalisation, 296
complete bipartite graph, 225, 309
complete graph, 101, 103, 224, 305, 306, 309,

310, 320–322, 335
complex systems, 1
compound stochastic process, 68
Comte, Auguste, 1, 11, 283
confidence matrix, 336
confluent hypergeometric function, 175
connected component, 226, 337
consensus formation, 300, 310, 312, 323, 335,

336
consensus matrix, 342
consensus time, 305
Cont, Rama, 100
Cont-Bouchaud model, 100, 104–108,

110–112, 138, 216, 227
contagion, 116, 118, 132–135
continuous-time finance, 51, 89
continuous-time random walk, 24, 53, 56, 57,

89
contrarians, 312
cooperation, 283, 287, 288
correlation length, 330
Course of the Exchange, 8–10
Cox-Ingersoll-Ross model, 79, 80
crawler, 244
cubic graph, 224
cycle in a graph, 35, 36, 224, 225, 227–229,

232, 235, 254

Darwinism, 120, 124, 125
Dash, Jan W., 89
Day-Huang model, 124
decision time, 318
decoupling, 315
deduction, 186
Deffuant model, 339, 341
Defoe, Daniel, 8, 10
degree of vertex, 222
degree sequence, 223, 227, 237
DeGroot’s model, 336, 337, 342
deposition-evaporation processes, 157
deterministic chaos, 141
deterministic scale-free graph, 241
detrended fluctuation analysis, 24, 25
DFA, see detrended fluctuation analysis
diameter, 337
diameter of a graph, 225
directed polymer, 272, 273
directed sandpile model, 94
disassortative graph, 251
discrete Laplace transform, 97, 98, 102, 103,

110, 112, 171
discrete random variable, 45

disease, 324
distribution

bimodal, 69
binomial, 49
Cauchy, 14, 48, 263, 264
exponential, 55, 259, 260, 266, 267, 270,

271, 273–275, 277–280
Gaussian, 46–50, 52, 59, 60, 68, 78, 79,

82–84, 86, 87, 107, 142
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Egúıluz, Victor M., 107
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