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ABSTRACT
This paper describes a system that takes as input GPS data
streams generated by users’ phones and creates a searchable
database of locations and activities. The system is called
iDiary and turns large GPS signals collected from smart-
phones into textual descriptions of the trajectories. The
system features a user interface similar to Google Search
that allows users to type text queries on their activities (e.g.,
“Where did I buy books?”) and receive textual answers based
on their GPS signals.

iDiary uses novel algorithms for semantic compression
(known as coresets) and trajectory clustering of massive
GPS signals in parallel to compute the critical locations of
a user. Using an external database, we then map these lo-
cations to textual descriptions and activities so that we can
apply text mining techniques on the resulting data (e.g. LSA
or transportation mode recognition).

We provide experimental results for both the system and
algorithms and compare them to existing commercial and
academic state-of-the-art. This is the first GPS system that
enables text-searchable activities from GPS data.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Experimentation

Keywords
GPS, text query, semantic compression, activity recognition,
mobile device

1. INTRODUCTION
Mobile devices such as smart phones are playing an in-

creasingly important role in our lives and can be the source
of very large and useful data about the users carrying them.
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Our goal is to develop systems and algorithms that take sig-
nals generated from sensors such as GPS streams and con-
vert them into text-searchable systems. For an individual
user, such a system would automatically create a textual di-
ary that captures the spatio-temporal activities of the user.
For example, the user could pose the query “What are the
restaurants I visited during SenSys 2013?” or “What are the
roads I drove on today?” For groups of users, such a sys-
tem captures their spatio-temporal interactions, for example
“Where did I meet with X during SenSys 2013?”, or “When
did Y and X meet for the first time?”

Translating massive amounts of raw GPS data points into
useful human-understandable information is not currently
possible because (a) compared to fields such as machine
learning and text mining, very little is known about han-
dling these kinds of data sets, both in theory and practice,
(b) the user interface of existing GPS applications, such as
“Google Latitude,” targets map-navigation over text search,
and (c) the data is huge (e.g., a single smart phone can
generate on the order of 1GByte of data per day).

We have developed a system called “iDiary” that collects,
stores, and processes GPS data signals generated by mobile
phones and converts this data into spatio-temporal textual
descriptions of trajectories and locations of the users. The
locations are further correlated to businesses and activities
associated with those businesses using text analysis on Yelp
reviews.

In a small pilot study we demonstrate the end-to-end ca-
pabilities of this system. Users carry a smart phone enabled
with an app that collects their GPS data stream. The GPS
signal is analyzed to identify a set of critical data points in
it, thus greatly reducing the amount of data stored by the
system (for example, for a user’s traversal of a particular
street, the relevant points are the location and time when
the user entered the street, the location and time when the
user exited the street, and the locations and times when the
user entered buildings on the street). This small number of
critical points are then converted to text using reverse geo-
coding. Users can then input text queries into an interface
similar to “Google Search” and receive summaries of their
recorded activities or recommendations for alternate activi-
ties based on the data gleaned from the rest of the network.
iDiary allows users to search and manage their data without
having to deal with maps or databases, and it provides one
of the first systems to enable text-searchable activities from
GPS data.

The capabilities of the iDiary system are enabled by novel
algorithms for (1) analyzing and compressing massive stream-



(a) A text query and its search results (b) GPS-browser

Figure 1: Snapshots from our system on real GPS data. The application has two modes: (a) The user can
type a query such as “restaurant” on the screen and get a map with textual descriptions of visited restaurants.
(b) The user can view a summary of his activities and can use the time-frame or resolution slider to change
the number of output points in the summary.

ing GPS signals and (2) for extracting activity information
from existing text repositories such as Yelp reviews. This
paper describes the iDiary system, the enabling algorithms,
and the experimental results from a pilot study with data
generated using smart phones carried by several users over a
period of over one year. The main innovation of this system
is mapping GPS data into a text searchable database in a
computationally effective way.

1.1 Our Contributions

1. iDiary system and iPhone application that allow users
to collect their GPS points (traces) through their smart-
phone and search over the data using text queries in
free form (“Where did I buy books”). Snapshots from
the application’s user interface are shown in Fig. 1
and 2.

2. New algorithms for analyzing and clustering the sig-
nals and converting them into a semantic database of
the underlying patterns.

3. Novel ways of combining text mining techniques with
GPS data to allow text search on GPS signals.

4. Experimental results for our system and algorithms.

This paper is organized as follows: Section 2 describes pre-
vious work on activity recognition and GPS data analysis.
Section 3 gives an overview of the iDiary system. Section 4
describes the algorithms used in more detail. Section 5 con-
tains the results of experiments on our system. We conclude
with final thoughts in Section 6.

2. RELATED WORK
Mobile information retrieval analytics was identified at

the Second Strategic Workshop in Information Retrieval in
Lorne [5] as one of the six most interesting directions for fu-
ture research. While applications exist to track users’ mobile

data and some effort has been made to analyze this infor-
mation for certain types of activities (e.g. [15]), no system
yet exists that combines these two research efforts to allow
users to browse and query their recent activities.

Systems for Analyzing Location Data. The idea of col-
lecting location data using the mobile phone is not new. For
example, [24] outlines a framework for collecting and storing
mobile sensor data for analysis. PEIR [22] uses this frame-
work to collect users’ GPS data from their mobile phones
and determine their common transportation modes and en-
vironmental impact. Applications for tracking user activities
and locations have also appeared in the commercial realm.
Foursquare allows users to check-in to locations [1] and pro-
duces a searchable timeline [2]; however, data collection in
this system is not automated. Google Latitude [25] can track
where a user has been automatically and shows the user’s
activity on a high-level scale (i.e., work, home, out), as well
as a list of previously visited locations. However, the ap-
plication lacks low-level activity recognition (e.g., “drinking
coffee”) and searchable history. To our knowledge, no pre-
vious system provides text search capabilities over raw GPS
data.

Textual Description of Activity. Recent work in sensor
data analysis has demonstrated the possibility of recognizing
human activities from raw data streams. For example, [6]
used accelerometer data collected from different parts of
the body to identify different activities typically performed
around the household. The work most similar to our system
is [19], which addressed the challenge of determining a user’s
activity based on location information alone. However, this
approach required activities to be labeled manually. In [23,
26], GPS traces were automatically labeled with activities
based on the character of nearby businesses, but the labels
themselves were chosen by humans. To our knowledge, no
methods exist that allow fully automated labeling of human
activities.

Semantic Compression. The work above generally as-
sume small data sets or store GPS data only long enough



Figure 2: (left) An auto-generated text that describes the user trajectories as a diary. The user can change
the relevant time interval, and details resolution of the map using the sliders. (middle) Text summary of
places that were visited on a given time interval. The pie-chart above the list represents the fraction of time
each place was visited. (right) The summary of visited businesses can be replaced by summary of activities
(Food, Leisure, etc), using the category that is assigned to each business by Yelp.

to extract activity information. The growing availability of
mobile devices and the large amount of data produced would
overwhelm any system that attempts to store the data for fu-
ture re-analysis. Thus real-life implementation of any such
system requires some sort of semantic compression of the
data. Gonzalez et al. [17] demonstrated that human mo-
tions follow spatial and temporal patterns, indicating that
GPS data can be compressed by recording the small map
of a user’s frequently traversed locations. This idea has led
to an explosion of methods (see [16, 18, 7] and references
therein) aimed at extracting this map from trajectories, but
few can accommodate the large amounts of data that are
expected for the iDiary system.

Coresets are frequently used to compress data and allow
more efficient processing while providing guarantees on the
optimality of the output. Coresets for approximating tra-
jectories by line segments have been proposed [13, 4] under
a variety of assumptions. The coreset we use for iDiary is
based on [14] and uses the fact that GPS signals, unlike
general sets of points, are usually sampled at constant fre-
quency. Hence, a set of points that are lying on a segment
can be represented exactly by its end-points. Our coreset
contains a large set of GPS points (actually, larger than the
input), but since most of them lie on segments, it can be
stored using constant space.

Text Search. We use Latent Semantic Analysis (LSA) to
produce the“semantic space” for our text search (see Fig. 7).
When the database is small enough, a straightforward ap-
plication of SVD to the data suffices. For larger and on-line
corpus (e.g., Wikipedia and blogs), we use coresets for LSA.
Such coresets were suggested in [11, 12] for computing low-
dimensional semantic space that is spanned by few input
points. Since the rows of document-term matrix are sparse,
this semantic space takes much less space than the regular
SVD factorization that is usually used for LSA. Our coreset
construction is inspired by their construction and also uses
weighted random sampling.

3. FROM GPS POINTS TO TEXT-SEARCH
INTERFACE

A user Bob goes from home to work and back everyday
on weekdays, and on weekends he visits the park near his
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Figure 3: The code architecture of the system and
the data flow associated with it. A rounded rect-
angle represents a section of code, and the arrows
show the input and outputs for each such section.
The language used to write a section of code is in
parentheses.

home. Sometimes on the way to work, Bob uses the train
and sometimes his car. Occasionally he must drop his child
off at the kindergarten. On the way to work, Bob sometimes
stops at the gas station. He sometimes goes to a location
he never visits again, but in general his movements occur
among these five main locations: home, work, park, kinder-
garten, and gas station.

Fig. 4 shows Bob’s semantic map, a graph whose edges
correspond to the trajectories that Bob takes. A node ap-
pears when trajectories converge or diverge (e.g, Home and
Junction). These can be considered as Bob’s decision states.
Each edge represents several routes (roads, streets) that
are approximated in the figure as linear segments between
the nodes. For example, a trajectory from the node Home
to node Work might go through routes labeled a, b, . . . , i
in Fig 4. Each trajectory is usually used more than once
over time, at different speed (car, foot, bicycle, etc). The
car/man icon near an edge of the graph in the figure refers
to the common mode transportation that is used on the cor-
responding trajectory.

Figure 3 shows the code architecture of the system we
have built to extract this kind of semantic map and story
from a user’s GPS signal. The computation flow consists
of three main parts: data storage, activity recognition, and
user interaction.



Figure 4: Semantic map of a user’s trajectories.

Handling GPS-noise.
The key component of our system is the mapping of GPS

locations to points of interest. A number of papers (e.g., [8,
27]) have discussed how correctly assigning a place based on
GPS observation is difficult because multiple places are often
within the margin of error in the GPS. For example, using
GPS points that were received from the modern smartphone
of Bob, it might still be hard to tell if he is drinking coffee
at Starbucks or shopping in the store nextdoor.

We use Barabási’s observation on repeated visits to reduce
this problem. Roughly speaking, according to the law of
large numbers, the mean of a collection of (GPS) sample
points from a single ground-truth position, say, Starbucks,
will become closer to the ground-truth over time. Of course,
if the variance of the GPS noise is too large, and Bob does
not stay in Starbucks long enough, the mean of the sample
would still be a bad approximation to Starbucks. However,
if Bob visits Starbucks frequently or several times, we can
use his repeated visits to refine the esimate of his location.
iDiary uses a (k,m)-segment mean algorithm to recognize
and cluster the points of these visits over time. It then
computes the mean for all these points in the cluster, from all
the visits in Starbucks. After either frequent or long enough
visits in the same place, this mean should approximate well
the actual place. The same idea holds for general segments
in this space, as frequently visited roads. Places that Bob
visits very rarely and for a very short time might not be
approximated well, but in some sense are also less relevant
to the map of Bob’s common trajectories.

Energy saving.
The system can be used for saving energy and battery

life, based on two simple observations. First, if the user

stays in the same place, the corresponding signal in the
(latitude, longitude, time) space will be approximately hor-
izontal. In this case, we can sample the GPS less frequently.
In general, smaller sampling rate helps very little to save
energy as most of the consumed energy is due to the con-
nection of the device to the satellites. However, when the
frequency is low enough, depending on the specification of
the device, the GPS sensor can be turned off until the next
sample. This would make sense, for example, during night
when the user is sleeping and the device standing still.

The second observation is that, based on our clustering
algorithms and semantic map, we can predict the trajectory
of Bob, even if he is not standing still. For example, if
he goes to work using approximately the same route every
morning, or if there is a single path in the semantic map from
the current location to the next vertex (e.g., along the path
a . . . f in Fig. 4), it might be easy to extrapolate the GPS
points from historical data and turn off the GPS device.

3.1 GPS Data Storage
Collecting the signal. After Bob installs our applica-
tion on his mobile device, the application collects his GPS
points (traces/signal) and transmits them to our lab’s server.
This is done in the background using the location services
of the iPhone. Since these services consume large amounts
of power, we save battery by switching off the GPS (and
consequently, data collection) when the user is stationary
for ten minutes. The GPS is switched back on and begins
collecting data once the user moves approximately half a
kilometer, which is detected using wi-fi and/or cell towers.
Bob’s GPS data is shown in Fig. 5(a).

Compressing the signal. When the server receives Bob’s
GPS points, it compresses them for efficient storage and
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Figure 5: Top: Images of Bob’s trajectory and
approximations in 3-D (time, latitude, longitude)
space. Bottom: Projections on R2 (latitude, lon-
gitude). (a) Bob’s raw GPS signal P , consisting of
n ∼ 5000 GPS points sampled at times t = 1, · · · , n.
(b) The coreset of the GPS signal, consisting of
the k-segments mean of the signal, together with a
few sampled weighted representative from the GPS
points. (c) Clustering of the k segments that approx-
imate the 3D-signal in time with m motion patterns,
shown in m different colors; the 2-D projection is
Bob’s semantic map.

to speed up our following algorithms. In order to do this,
we observe that the signal contains a lot of redundant in-
formation that can be removed. In particular, when peo-
ple move from place to place (by foot, car, train, etc.),
their trajectories can usually be described using simple lin-
ear routes. Hence, given an observed GPS signal, we ap-
proximate the trajectory by a small sequence of k segments
(linear routes). We use this linear simplification of the signal
to construct its semantic compression (coreset); see Defini-
tion 4.4. Our coreset consists of the k-segment mean with a
“smart” non-uniform sample of weighted representative GPS
points. Since the size of the coreset is constant, this pro-
vides an effective compression of Bob’s signal for storage in
a database. Fig. 5(b) is a visualization of the coreset of Bob’s
signal. See Section 4 for details on the coreset construction.

Compressing the coresets. Since Bob will continually
be uploading new data points to the server, we require some
method of calculating a coreset in a streaming setting (rather
than recalculating the coreset every time new points come
in). To do this, we compress the coresets that have already
been computed together while reading the streaming signal.
Fig. 6 outlines this approach. The result is that a constant-
sized coreset for Bob’s data can be maintained using only
O(log2 n) time per point insertion.

Using the same ideas from the streaming model, a non-
parallel coreset construction can be transformed into a par-
allel one (that we run on our network). This allows us to
merge trajectory information from many different users and
analyze group activity patterns as well as those of a single
individual.

3.2 Textual Description of Activity
Trajectory clustering on coresets. While the n GPS
points of Bob’s (and most of our) everyday GPS signal can
be partitioned into k � n routes that we use over time,
we usually visit these routes more than once. That is, our
routes correspond to only m� k different projections on the
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Figure 6: (a) Tree construction for generating core-
sets in parallel or from data streams [13]. Black ar-
rows indicate “merge-and-reduce” operations. The
intermediate coresets C1, . . . , C7 are numbered in the
order in which they would be generated in the
streaming case. In the parallel case, C1, C2, C4 and C5

would be constructed in parallel, followed by C3 and
C6, finally resulting in C7. (b) Example construction
of C3 on a GPS signal that recorded a trajectory of
6 routes over time. The first (left) half of the input
contains the first 3 routes. The second half (right)
contains routes 4-6.

(latitude, longitude) space (geographic locations), which we
call motion patterns.

For extracting the motion patterns from the GPS signal,
we approximate the signal by k-segments (as above) with the
further constraint that the k-segments consist of only m mo-
tion patterns. This k segments are called the (k,m)-segment
mean, and approximation algorithms to solve it were previ-
ously suggested in [14]. Both the extraction of the k routes
over time and their clustering to m routes is done simultane-
ously by our trajectory clustering algorithm. This trajectory
clustering algorithm is applied to the coreset and outputs the
estimated semantic trajectories of the user. Fig. 5(c) shows
an example output.

Trajectories as database tables. The output of our clus-
tering algorithm consists of two database tables. The first
table has fields“begin time,”“end time,”“route code,”“direc-
tion,” and “average speed.” This table partitions the signal
into k � n estimated linear routes (rows in the table) that
the user took. Since routes are usually repeated over time
and we want to use this information, a route code (integer
index from 1 to m� k) is saved instead of the coordinates
of the route. A second table consists of a list of these m
routes. Its fields are “route code,” “begin point,” and “end
point.” That is, each route is represented by its two end-
points, which are (longitude, latitude) pairs.

From numeric tables to text. Each route code that
is output by the clustering algorithm consists of (latitude,
longitude) coordinates in space. In order to turn these co-
ordinates into human-readable and searchable text, we use
reverse geo-coding which turns the coordinates into their
textual description (“Starbucks,”“Elm Street,” etc.) and as-
signs this text to the coordinates. We obtain this informa-
tion from external services: Yelp’s reviews [3] for businesses
and Google Maps [21] for other locations.

From text to activities. Searching on the reverse geo-



coding text alone would not allow us to find activities or,
more generally, words that are related to a place but do not
appear in its description. For example, we want the query
“sandwich” to also return “Subway” (the sandwich store).
We use Latent Semantic Analysis (LSA) [20] to construct a
“semantic space.” Intuitively, we extract j kinds of activities
(topics, concepts) from a database of text about the loca-
tions Bob visits, where each activity is a linear combination
of words in the corpus. More generally, instead of assign-
ing just the geo-coding of the user’s location, we can add
additional text words such as activity based on speed (‘driv-
ing’), an SMS that the user entered at this place, or even
a snapshot that the user took in some appropriate feature
space.

In the traditional usage of LSA, the corpus itself is now
projected on the semantic space. We use LSA differently:
we use reverse geo-coding on each GPS point of Bob’s routes
codes as described above and project the corresponding vec-
tor of terms on our semantic j-dimensional space. This
yields j numbers for each GPS point which represent its
correlation with each of the j activities. We add these j
correlations as association fields for each GPS point’s entry
in the database. See Section 4 for more details.

3.3 User Interface
After Bob sends his GPS points to the server via our

iPhone or Android application, he can browse his data by
logging to our web site using the iPhone or any other inter-
net browser at “http://moovector.com/diary/”. Figures 1
and 2 show snapshots from the web application.

Diary. After logging in, Bob gets the screen that appears in
Fig. 2. The map on the left corresponds to GPS coordinates
that are sent to a “Google Maps” object [21]. To the right
of the map is a list of visited places, sorted by visiting time.

Books
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Espresso
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Figure 7: The j = 3 dimensional space that is pro-
duced by running LSA on Yelp’s reviews database
and corresponding projections of terms (words in
the reviews) and businesses (based on reverse geo-
coding of GPS points). Only specific terms have
been labeled to reduce clutter. Terms related to a
given business are closer in angle (relative to the ori-
gin) to the business. For example, sandwich is near
“Jimmy John’s” and “Subway”.

The mode of transportation (walking, driving, or flying) is
based on simple thresholds on the distances between the
GPS points. The user can browse through the diary using
the arrows above the text, or by pressing the date box and
choosing a new date from a pop-up calender. The interface
includes a resolution slider that allows users to control the
number of points shown on the map and a time frame slider
for changing the start/end time of the descriptions.

Query search.
In addition to viewing his diary, Bob can input text queries

on the GPS data in free form (“Where did I last buy books?”).
The output is a list of relevant locations that he has visited.
When Bob submits such a text query search on the top of the
screen, the terms in the query are translated into a (sparse)
vector of code words. This vector is projected on the se-
mantic space and replaced by its (dense) semantic j-vector
of activities. On the semantic space, the application com-
putes the similar locations (closest vectors) to the query and
returns them.

In Fig. 1 we see the results after typing the query “restau-
rants” in the search text box. The word “restaurant” is pro-
jected onto the semantic space that was constructed off-line,
as explained in the previous paragraph, and is replaced by
a vector in this space. This vector assigns high weights for
words in English that have strong correlation to“restaurant”
in Yelp reviews. Each business in Yelp also corresponds to
a point in the semantic space. The output of the query are
the four businesses that correspond to the four points which
are closest to the query point. Note that none of the restau-
rants, except for the last, contain the word “restaurant” in
their names.

Summary of visited places. When Bob presses the“Sum-
mary” button, the output results are aggregated according
to locations rather than time; see Fig. 2. The sum of vis-
ited hours is displayed for every place in the list. Based on
this list, a pie-chart shows the fraction of time spent in each
place. The fraction is with respect to the time interval that
is defined above the chart, which can be modified using a
slider bar.

Summary of activities. Each Yelp business also contains
a category of related activity in the Corpus: “Food”, “En-
tertainment”, etc. When Bob checks the “Collapse activi-
ties” check box, our system aggregates the visited businesses
in the previous paragraph according to their activities and
shows them in a list or a pie-chart. See Fig 2. If the user
checks the “Collapse activities” box while in the “Diary” tab,
a similar aggregation appears as text on the diary.

3.4 Server Architecture
We use a Twisted web server to handle incoming http re-

quests, which compose 100% of the external communications
of this server. Twisted gives us the flexibility to add asyn-
chronous communication in the future. These http requests
are sent to the Django web framework, which processes the
data from requests and returns query results. The Django
function takes in arguments (such as GPS data) from the
http requests and publishes them to the messaging back-
bone, ØMQ, which is a lightweight transport layer that has
libraries written in many languages. This data published to
ØMQ is then received by subscribers, which include scripts
that perform analyses on the data. The algorithms used for
these analyses were implemented in MATLAB and Python.



Figure 8: A signal of n = 11 GPS points p1, . . . , p11
at times t = 1, · · · , 11, and a k-segment function f(t)
where k = 5. The squared distance ‖p10 − f(10)‖2 be-
tween the point p10 and f(10) is the error of approx-
imating p10 by f . The projection of f on the (lati-
tude, longitude) space yields only m = 4 projected
segments, since the two segments s and r have the
same projection (the same route with two different
speeds). Hence, f is also a (5, 4)-segment.

4. ALGORITHMS
In this section we summarize the algorithms for clustering

and learning the “big data” signals that are used by iDiary.
Due to lack of space, we only give the main results and omit
the proofs, which can be found in [14]. Our algorithms sup-
port both the parallel computation model and the streaming
model, which we define as follows:

Definition 4.1 (Parallel Streaming Algorithm).
We call an algorithm Parallel and Streaming if, with high
probability, it can process on-line a signal of n points using:

• O(log2 n) space (memory)

• O(log2 n) update time per point insertion

• O(n/M · log2 n) overall running time using M ≥ 1
processors

Linear Simplification. We solve the following k-segment
mean in order to get a linear routes description from a GPS
signal (see Figs. 4 and 8).

Definition 4.2 (k-segment mean). For an integer k ≥
1, a k-segment is a piecewise linear function f : R→ Rd of
k segments. Given a signal (sequence of points) p1, · · · , pn
in Rd, the k-segment mean minimizes the error∑n

t=1‖f(t)− pt‖2 among every possible k-segment f . Here,

‖x− y‖ is the Euclidean distance between x and y in Rd.

We use the (1+ε)-approximation parallel streaming algo-
rithm from [14] to solve the k-segment mean.

Theorem 4.3 ([14]). Let P be a signal in Rd, k ≥ 1
and ε > 0. There is a parallel streaming algorithm that
returns a (1 + ε)-approximation to the k-segment mean of P
(see Definition 4.2).

Semantic Compression. Given a signal P , an integer
k ≥ 1 and ε > 0, a coreset of P ε-approximates its fitting
error by any query k-segment, as formally defined below.

Algorithm 1: Coreset(P, k, ε)

Input: A sequence P = p1, · · · , pn ∈ Rd,
an integer k ≥ 1, and ε ∈ (0, 1).

Output: A (k, ε)-coreset (C,w) for P with high probability

1 Compute the k-segment mean f of P /* See

Theorem 4.3 */

2 Set P ′ ← {f(t) | pt ∈ P}, the projection of P on f
3 foreach pt ∈ P do

4 s(p)← ‖f(t)−pt‖2∑
p∈P ‖f(t)−pt‖2)

5 Pick a non-uniform random sample T of d16dk/ε2e
points from P , where for every p ∈ P and q ∈ T we
have p = q with probability s(p)

6 C ← P ′ ∪ T ∪ {f(t) | pt ∈ T}
7 for each pt ∈ T do
8 w(p)← 1

|T |·s(p)
9 w(f(pt))← −w(p)

10 for each p ∈ P ′ do
11 w(p)← 1
12 return (C,w).

Definition 4.4 ((k, ε)-coreset). Let p1, · · · , pn ∈ Rd

be a signal. Let k ≥ 1 be an integer and ε > 0. A se-
quence of points C = c1, · · · , cm ∈ Rd with a weight function
w : C → R is a (k, ε)-coreset for this signal if:

(1− ε)
n∑

t=1

‖f(t)− pt‖2 ≤
m∑
t=1

wt‖f(t)− ct‖2 ≤

(1 + ε)

n∑
t=1

‖f(t)− pt‖2.

We use Algorithm 1 and its implementation from [14] to
construct a (k, ε)-coreset for any given signal. To begin,
the algorithm computes an approximation to the k-segment
mean f of P as a rough approximation of the signal. How-
ever, with only the k-segment mean, points that are far away
will be approximated badly. We therefore add a sample of
points to the approximation. In particular, we sample points
that are far from f with high probability and those that are
closer with low probability. See Fig 4 and Fig. 9 for exam-
ples. Since the sample is small and the k-segment mean can
be represented by its O(k) = O(1) endpoints, the coreset
can be represented using constant space. The correctness of
the algorithm was proved in [14].

Theorem 4.5 ([14]). Let P be a signal in Rd, and let
ε > 0, k ≥ 1 be constants. Let (C,w) be the output of a
call to Coreset(P, k, ε) (Algorithm 1). Then the following
holds:

• (C,w) is a (k, ε)-coreset for P , with high probability

• Coreset is a Parallel Streaming algorithm

• (C,w) can be stored using constant space

Trajectory Clustering. A (k,m)-segment is a k-segment
in time that corresponds to only m projected segments in
space (see Fig. 8). Similarly to the k-segment mean, the
(k,m)-segment mean of a signal minimizes the sum of squared
distances to the signal, under this additional constraint. Un-
fortunately, the problem of computing the (k,m)-segment



Figure 9: The output coreset in Algorithm 1 consists of the k-segment mean f of P , together with sample of
points T of positive weight, and their projection f(T ) with negative weights. At each step, the new entities
are shown in color (segments in blue, points in red) and pre-existing structures are shown in light gray

.

Algorithm 2: EM-km-mean(P, k,m, iend)

Input: A signal P ⊆ Rd, two integers k ≥ m ≥ 1,
and number iend of iterations.

Output: A (k,m)-segment Siend .

/* Initialization: */

1 Compute the k-segment mean f0 of P
/* See Theorem 4.3 */

2 Q← k points in R4 that corresponds to the
concatenated k vertices of f

3 Compute the m-means (points) clustering Q1, · · · , Qm

of Q (using EM)
4 for j ← 1 to m do
5 P1,j ← the points of P whose projection is on a

segment p, q where p, q ∈ Qj

6 for i← 1 to iend do
/* Maximization step: */

7 for j ← 1 to m do
8 ai,j ← the 1-segment mean of Pi,j

9 Ai ← {ai,1, · · · , ai,m}
/* Expectation step: */

10 fi ← The optimal (k,m)-segment f of P whose
projection is Ai

11 for j ← 1 to m do
12 Pi+1,j ← points whose projections are closest to

the jth projected segment of fi, among its m
projected segments

mean of a signal is NP-hard [14] if m is part of the input (not
a constant). We use the practical algorithm from [14] that
takes time linear inm, and uses the expectation-maximization
technique for the clustering. The cost decreases in every it-
eration and the solution converges to a local minimum, as
in the EM-version of k-means [10]; see Alg. 2.

Geo-Text Search. In order to obtain a semantic space of
Yelp’s reviews, we first number every one of the m English
terms in the corpus (Yelp). Every document in the corpus is
then translated into a sparse vector in Rm whose ith entry
is the frequency of the ith term in the document. We de-
crease this number for words that appear too often (known
as “stop words”) in the corpus, such as “the” and “is,” using
a simple formula called tf-idf (term frequency-inverse docu-
ment frequency), which is the number of appearance in the
document divided by number of appearance in the corpus
for a given word. From the n filtered document vectors, we

construct an n×m term-document matrix A, and compute
the Singular Value Decomposition (SVD) of A. This is a
factorization A = UDV T , where U ∈ Rn×m and V ∈ Rm×m

are orthogonal matrices and D ∈ Rm×m is a diagonal ma-
trix with non-decreasing diagonal entries. The base of our
j-dimensional semantic space is then defined to be the first
j columns of V . See Fig. 7 for our results for j = 3.

Recall that our algorithms return selected points from the
GPS signal, which are translated to text descriptions using
reverse geo-coding; see Section 3.2. Each description of s
terms is converted to an s-sparse vector u ∈ Rm. We project
u on our semantic space to get a dense mixture u′ = V Tu ∈
Rj of j topics, which intuitively tells us how the query is
related to each of the main j topics in our corpus (Yelp).

When users enter a query of h terms (corresponding to an
h-sparse vector q ∈ Rm), we project q to obtain the semantic
representation q′ = V · q ∈ Rj . In order to find the locations
that are most similar to the query q, we define the semantic
relevancy between a query and a location as the correlation
between their mixture of topics. Mathematically, this is the
cosine of the angle between the vectors u and q,

relevancy(u, q) :=
|u′ · q′|
‖u′‖‖q′‖ .

For a given query q we then return the location u that max-
imizes this similarity.

5. EXPERIMENTAL RESULTS
We have implemented the iDiary system according to Fig. 3

and collected data from 6 users and a fleet of taxis using
our smartphone application for a period of a year, giving us
about 9GB of data. In this section, we illustrate the system
capabilities using several small pilot studies.

5.1 GPS to text for iDiary
We tested our system’s ability to translate GPS data into

a list of visited businesses. For these experiments, we used
trajectory data collected by a single user over a period of
5.5 hours. The resulting data set consisted of 20,031 points
during which the user made 14 stops at 6 locations. The des-
tinations and routes were pre-designed (to generate ground
truth for evaluation) and the user spent about 15 minutes
at each stop. For textual description of the activity, we used
the businesses and reviews in the Yelp academic dataset [3].

Coreset Quality. We tested the quality of the coreset by
computing the total cost of the optimal 30-segment mean
of the coreset and comparing it to the optimal 30-segment



0 200 400 600 800 1000 1200
10-4

10-3

10-2

10-1

Size of Coreset

T
o

ta
l C

o
st

 (
d

e
g

.2
)

 

 

Coreset
Uniform Random Sampling

(a) Vs. Uniform Sampling

0 200 400 600 800 1000 1200

3.02 x 10-3

Size of Coreset

T
o

ta
l C

o
st

 (
d

e
g

.2
)

3.09 x 10-3

3.16 x 10-3

3.23 x 10-3

3.31 x 10-3

3.39 x 10-3

3.47 x 10-3

3.55 x 10-3

(b) Close-up of (a)

Figure 10: Comparison of absolute error resulting
from running the optimal 30-segment mean algo-
rithm on coresets of varying sizes versus uniform
random sampling. Individual trial runs are shown
as lightened points, and the mean over trials as solid
lines.

mean of a equivalently sized uniform random sample of the
input. The cost was the sum of squared distances between
the 30-segment mean of the compressions and the optimal
30-segment mean on the original dataset. We maintained
f to contain 50 segments and varied the size of the non-
uniform random sample T . For comparison with the uniform
random sample, we took the size of the coreset to be 50+|T |.
For all tests, we used the streaming procedure outlined in
Section 4, processing the data in blocks of 1000 points.

The results, shown in Fig. 10, demonstrate that both the
coreset and uniform random sampling yield improvements
in cost as size increases, and the two methods appear to be
converging to the same error value. However, for small sizes,
using the coreset yields significantly better results than the
uniform random sample.

We also compared our k-segments mean approximation to
Douglas-Peucker [9], a commonly-used heuristic for finding
the k-segment mean. For this test, we found the optimal
k-segments mean on varying-sized subsets of the user’s tra-
jectory and computed the relative cost, the ratio of the cost
of the approximation to the optimal cost. A relative cost of
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Figure 11: (a) Comparison of relative error resulting
from running the optimal k-segment mean algorithm
on a coreset versus Douglas-Peucker, as compared
to the optimal k-segment mean of the entire input.
Individual trials are shown as lightened points and
the mean over trials as a solid line. Note that be-
cause of the large difference in performance between
the optimal algorithm and Douglas-Peucker, there
is a change in scale between the gray shaded por-
tion of the graph and the white. (b) Comparison
of runtimes for the optimal algorithm, the optimal
algorithm on a coreset, and Douglas-Peucker.

1 indicates that the result had the same cost as the optimal
solution. For all trials, we used a coreset of 50 segments and
100 samples.

The results in Fig. 11 show that computing the optimal
k-segments mean of the coreset yields a solution much closer
to the optimal in terms of cost than using Douglas-Peucker.
In addition, the runtimes for these trials (Fig. 11) show that
using the coreset-based approximation is only about a con-
stant factor slower than Douglas-Peucker. The power fits to
the data (dotted lines) indicate a runtime that is approxi-
mately linear in the size of the input for both approximation
schemes, but cubic for the optimal algorithm. The majority
of the time for the coreset approximation was spent con-
structing the coreset itself.

Overall our experiments confirm that compression via core-
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EM-(k,m)-mean algorithm with m held constant at
15. The dotted line shows the relationship kout = kin.
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set provides outputs of quality vastly better than currently-
used heuristics without a large increase in runtime.

Trajectory Clustering for Detecting Movement Rep-
etitions. We implemented the EM algorithm in Section 4
for use in our system. An issue of interest when applying
algorithms for k-segment mean and (k,m)-segment mean is
what the values of k and m should be. We found that for
m small relative to k, the output was not always an exact
(k,m)-segments approximation but rather had a smaller k
than the permitted value (see Fig. 12). In addition, this
output k value leveled off approximately to a constant de-
spite further increases in the input k. This indicates that for
a given data set and m value, the EM algorithm will find the
optimal k naturally. Therefore, a user need not choose a k
value but may merely choose m and, inputting a sufficiently
large k, leave determination of true k to the algorithm.

Extracting Business Names. To extract business names
from the GPS points, we used the following procedure. For
each point in the dataset, businesses within 64 meters were
found. We used 64 meters as the radius because the iPhone
GPS is generally accurate up to this distance. Once these
businesses were found, the recall and precision were calcu-
lated. If the point’s timestamp was within 15 minutes of
a start time and the business that was actually visited at
the given GPS point appears on the list of businesses, then
recall was 100% for that point and the precision was one di-
vided by the number of businesses on the list. These values
for recall and precision were also used if the timestamp was
after 15 minutes of a start time and the last business visited
was not on the list of businesses. Otherwise, the recall and
precision for that point was 0.

Average recall and precision were found for each dataset,
shown in Table 1. To verify that the correct stop points
appear in our compressed representation of the data, we
performed this experiment on the original dataset, on the
points in the coreset, and on the endpoints of the k seg-
ments in the (k,m)-mean. The recall and precision are not
significantly different between the three datasets, and the
precision is consistently low on all of the datasets.

Recall for all the datasets is over 50%, which means the
system correctly recalls the true location over half the time.

Dataset # of Points Recall Precision Runtime

Raw Data 5526 59% 8% 103 sec
Coreset 679 65% 8% 14 sec

Clusters 60 63% 8% 1 sec

Table 1: Results of the end-to-end experiment. The
number of points, recall, precision, and runtime are
shown for each representation of the dataset.

The poor recall is due to inaccurate GPS measurements from
the phone. We expect that as a user visits the same location
more often, the endpoints of the (k,m)-segment mean will
converge (by the law of large numbers) to the true location
that the user visited. We therefore suspect that as we collect
longer data sets, the recall should improve.

The low precision is due to two sources of error. First, the
inaccuracy of the phone GPS forces us to report all busi-
nesses within a 64 meter radius, of which there are large
number. Second, business locations in the Yelp academic
dataset are not accurate. Businesses that are not placed at
their true location in the dataset or are placed in the same
location of another landmark can greatly decrease the pre-
cision. This means that the precision can be increased with
better phone GPS technology and further analysis on the
user’s history to predict where the user would go.

The significant reduction in computation shows that se-
mantically compressing the data to make it easier to store
and analyze is not only feasible, but effective. Both the
number of points and time taken can be reduced by a factor
of 100 while maintaining similar results. The computational
complexity of the function performed is O(n) time. If the
key algorithm required to deliver the desired results has run-
ning time greater than O(n) time, the effect of applying our
coreset methodology is even greater.

5.2 Diary Search
In this section, we discuss experiments for correlating busi-

nesses with terms and querying GPS data for activities.

Searchable Businesses. We experimented with LSA on
a matrix A of tf-idf values generated using the entire Yelp
academic dataset [3]. In our case, a “document” was all
reviews corresponding to a specific business. For initial
tests, the dataset was limited to two book stores (“Univer-
sity Book Store” and “Bank Street Book Store”), two sand-
wich places (“Subway” and “Jimmy John’s”), and two coffee
shops (“Starbucks” and “Ithaca Coffee Company”). The re-
sulting A matrix contained elements for 4799 terms and 6
businesses.

We performed the geo-text search procedure outlined in
Section 4 using k = 3. A visualization of the resulting matri-
ces U and V is shown in Fig. 7. We performed three search
queries using the search terms coffee, books, and sandwich.
We expect coffee to have a high relevancy value with the
two coffee shops, books to have a high relevancy value with
the two book stores, and sandwich to have a high relevancy
value with the two sandwich shops.

The procedure was tested 1000 times for each term and
the average computation time was .007 seconds for the query
of a given term, regardless of the term. The actual relevancy
matrices u are shown in Table 2 for each of the three search
terms. Each of the search terms has a high relevancy value
with the associated two businesses. Also, the other four
businesses that should not be associated with the term have



Books Coffee Sandwich

University Book Store 0.500 0.012 -0.007
Bank Street Book Store 0.500 -0.001 0.001

Starbucks 0.004 0.493 0.011
Ithaca Coffee Company -0.012 0.506 -0.026

Jimmy John’s -0.003 -0.022 0.501
Subway -0.001 0.000 0.498

Table 2: Relevancy values of a business (row) given
a search term (column). Relevancy values are de-
rived from the multiplication of matrix V with the
query vector. Relevancy values greater than 0.1 are
highlighted in gray.

query Starbucks Bank Street Book Store

1st starbucks (0.310) books (0.384)
2nd coffee (0.175) bookstore (0.180)
3rd ithaca (0.059) children’s (0.035)

Table 3: Relevancy values of the 3 highest rank-
ing terms in response to the business queries “Star-
bucks” and “Bank Street Book Store.” Each cell
contains the term, with the relevancy value in paren-
theses.

a low relevancy value. This confirms that using LSA can
successfully perform a search query to retrieve businesses
associated with a search term.

The results from this experiment show that it is possible
to use LSA to make businesses searchable by term, which
allows for a diary created by a coreset of GPS locations
to become searchable. The same tests were performed on
the entire Yelp academic dataset (157796 terms, 6898 busi-
nesses) with k = 100 with similar results. For example,
searching businesses related to sandwich resulted in “Sub-
way,”“Jolly Roger Cafe,”and“Jimmy John’s”with relevancy
values of 0.018, 0.016, and 0.015 respectively. The lower rel-
evancy values come from the greater number of terms and
businesses, which when normalized, leads to lower values.

Activity Recognition. For activity recognition, we used
LSA in the reverse direction; that is, we used businesses as
search terms and retrieved the most relevant terms. We per-
formed a search for activities associated with the businesses
“Starbucks” and “Bank Street Book Store.” The search was
performed 1000 times for each business and the average com-
putation time was .008 seconds for the query of a given busi-
ness, regardless of the business. The top three relevant terms
for each of the two business searches are shown in Table 3.
The top results (those with relevancy value > 0.1) are terms
that are clearly semantically associated with the business
that was searched. For example, “Bank Street Book Store”
resulted in the top results books and bookstore. By using the
relevancy values found by LSA, we are successfully able to
determine what terms are associated with a business.

The results from this test reveal that using LSA allows
us to find terms that are most relevant to a given business.
This allows for more semantic activity recognition in which
we can predict not only where people have visited based on
their GPS data but also what activities they performed while
at those locations. As with the previous experiment, this
one was also performed on the larger dataset with promising
results. Searching for terms relevant to “Starbucks” leads to
coffee as the top hit, with a relevancy value of 0.341.

Queries on GPS Data. For this experiment, we used two

5 users 1 user

books Harvard Book and Binding MIT Press Bookstore
Harvard Book Store The MIT Coop

food Cafe Spice Cafe Spice 65
Cafe China Cafe China

subway Subway Subway
Sola Cafe and Catering Quiznos

Table 4: Results of the end-to-end diary search re-
sults for each of three queries on the two different
datasets. The top two results are shown for each
query.

different datasets. The first dataset contained 46,478 GPS
points collected by one user over 6 months. The second
dataset contained 115,562 GPS points collected by 5 differ-
ent users, including the user from the first dataset, over 6
months. The data was compressed into a coreset, but tra-
jectory clustering was not performed. While the theoretical
bounds guarantee that our system is scalable, additional fine
tuning and techniques might be needed in future research for
large community of users.

We performed queries using the search interface in Fig. 1.
In the search bar, a user was specified using the format
of “user:name” with search terms. Three different types of
search terms were used on each of the datasets. These in-
cluded a full question (“Where did I last buy books?”), a
noun (“food”), and a name of a business (“Subway”).

Table 4 shows the results of performing the queries on the
data from all 5 users, as well as the results for a single user.
The search results in each case are sorted by relevancy and
the top two results are shown.

Both of the queries pertaining to books return bookstores
as results. Likewise, both of the queries pertaining to food
return restaurants, and the two queries about Subway both
return Subway as the most relevant result. From these re-
sults, we conclude that this system is functional and suc-
cessfully allows for a user to search her history of activities.

6. CONCLUSION
In this paper we consider the creation of a text search-

able diary system. We show how GPS data can be mapped
to geo-referenced locations and activities described as text.
We describe efficient coreset-based algorithms that achieve
semantic data compression to cope with large volumes of
data generated by phone sensors. We use the coreset algo-
rithm to identify critical semantic points along a user’s tra-
jectory. We then show how reverse geo-coding, trajectory
clustering, and signal latent semantic analysis coupled with
reviews repositories such as Yelp can be used to go from GPS
location to business description to a more abstract descrip-
tion of the user’s activity. We present experimental results
of our system and algorithms in small pilot studies.

We believe this work provides first steps towards the excit-
ing vision of creating text searchable data bases from sensor
data. The key insight is to semantically compress the data
into small number of critical points that can be mapped to
text by reverse geo-coding. This creates a human-understandable
and text-searchable description. Much work remains to be
done, especially in the areas of applying scalable informa-
tion retrieval techniques to accommodate large sensor data
sets, and using other external text resources (beyond Yelp)
to make sense of the data. Our goal for the near future is
more extensive data collection and evaluation of the system
we have begun to create.
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