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preface

Two years ago, I decided to write a book to teach deep learning for computer vision
from an intuitive perspective. My goal was to develop a comprehensive resource
that takes learners from knowing only the basics of machine learning to building
advanced deep learning algorithms that they can apply to solve complex computer
vision problems.

The problem: In short, as of this moment, there are no books out there that teach
deep learning for computer vision the way I wanted to learn about it. As a beginner
machine learning engineer, I wanted to read one book that would take me from point
Ato point Z. I planned to specialize in building modern computer vision applications,
and I wished that I had a single resource that would teach me everything I needed to
do two things: 1) use neural networks to build an end-to-end computer vision applica-
tion, and 2) be comfortable reading and implementing research papers to stay up-to-
date with the latest industry advancements.

I found myself jumping between online courses, blogs, papers, and YouTube
videos to create a comprehensive curriculum for myself. It’s challenging to try to
comprehend what is happening under the hood on a deeper level: not just a basic
understanding, but how the concepts and theories make sense mathematically. It was
impossible to find one comprehensive resource that (horizontally) covered the most
important topics that I needed to learn to work on complex computer vision applica-
tions while also diving deep enough (vertically) to help me understand the math that
makes the magic work.
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As a beginner, I searched but couldn’t find anything to meet these needs. So now
I’ve written it. My goal has been to write a book that not only teaches the content I
wanted when I was starting out, but also levels up your ability to learn on your own.

My solution is a comprehensive book that dives deep both horizontally and vertically:

Horizontally—This book explains most topics that an engineer needs to learn to
build production-ready computer vision applications, from neural networks
and how they work to the different types of neural network architectures and
how to train, evaluate, and tune the network.

Verticall)—The book dives a level or two deeper than the code and explains
intuitively (and gently) how the math works under the hood, to empower you
to be comfortable reading and implementing research papers or even invent-
ing your own techniques.

At the time of writing, I believe this is the only deep learning for vision systems
resource that is taught this way. Whether you are looking for a job as a computer
vision engineer, want to gain a deeper understanding of advanced neural networks
algorithms in computer vision, or want to build your product or startup, I wrote this
book with you in mind. I hope you enjoy it.
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about this book

Who should read this book

If you know the basic machine learning framework, can hack around in Python, and
want to learn how to build and train advanced, production-ready neural networks to
solve complex computer vision problems, I wrote this book for you. The book was
written for anyone with intermediate Python experience and basic machine learning
understanding who wishes to explore training deep neural networks and learn to
apply deep learning to solve computer vision problems.

When I started writing the book, my primary goal was as follows: “I want to write a
book to grow readers’ skills, not teach them content.” To achieve this goal, I had to
keep an eye on two main tenets:

Teach you how to learn. I don’t want to read a book that just goes through a set of
scientific facts. I can get that on the internet for free. If I read a book, I want to
finish it having grown my skillset so I can study the topic further. I want to learn
how to think about the presented solutions and come up with my own.

Go very deep. If I'm successful in satisfying the first tenet, that makes this one
easy. If you learn how to learn new concepts, that allows me to dive deep with-
out worrying that you might fall behind. This book doesn’t avoid the math
part of the learning, because understanding the mathematical equations will
empower you with the best skill in the AI world: the ability to read research
papers, compare innovations, and make the right decisions about implement-
ing new concepts in your own problems. But I promise to introduce only the
mathematical concepts you need, and I promise to present them in a way that
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doesn’t interrupt your flow of understanding the concepts without the math
part if you prefer.

How this book is organized: A roadmap

This book is structured into three parts. The first part explains deep leaning in detail
as a foundation for the remaining topics. I strongly recommend that you not skip this
section, because it dives deep into neural network components and definitions and
explains all the notions required to be able to understand how neural networks work
under the hood. After reading part 1, you can jump directly to topics of interest in the
remaining chapters. Part 2 explains deep learning techniques to solve object classifica-
tion and detection problems, and part 3 explains deep learning techniques to gener-
ate images and visual embeddings. In several chapters, practical projects implement
the topics discussed.

About the code

All of this book’s code examples use open source frameworks that are free to down-
load. We will be using Python, Tensorflow, Keras, and OpenCV. Appendix A walks you
through the complete setup. I also recommend that you have access to a GPU if you
want to run the book projects on your machine, because chapters 6-10 contain more
complex projects to train deep networks that will take a long time on a regular CPU.
Another option is to use a cloud environment like Google Colab for free or other paid
options.

Examples of source code occur both in numbered listings and in line with normal
text. In both cases, source code is formatted in a fixed-width font like this to sepa-
rate it from ordinary text. Sometimes code is also in bold to highlight code that has
changed from previous steps in the chapter, such as when a new feature adds to an
existing line of code.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (*»). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

The code for the examples in this book is available for download from the Man-
ning website at www.manning.com/books/deep-learning-for-vision-systems and from
GitHub at https://github.com/moelgendy/deep_learning_for_vision_systems.

liveBook discussion forum

Purchase of Deep Learning for Vision Systems includes free access to a private web
forum run by Manning Publications where you can make comments about the book,
ask technical questions, and receive help from the author and from other users. To
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access the forum, go to https://livebook.manning.com/#!/book/deep-learning-for-
vision-systems/discussion. You can also learn more about Manning’s forums and the
rules of conduct at https://livebook.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.
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Part 1

Deep learning foundation

Computer vision is a technological area that’s been advancing rapidly
thanks to the tremendous advances in artificial intelligence and deep learning
that have taken place in the past few years. Neural networks now help self-driving
cars to navigate around other cars, pedestrians, and other obstacles; and recom-
mender agents are getting smarter about suggesting products that resemble other
products. Face-recognition technologies are becoming more sophisticated, too,
enabling smartphones to recognize faces before unlocking a phone or a door.
Computer vision applications like these and others have become a staple in our
daily lives. However, by moving beyond the simple recognition of objects, deep
learning has given computers the power to imagine and create new things, like
art that didn’t exist previously, new human faces, and other objects. Part 1 of this
book looks at the foundations of deep learning, different forms of neural net-
works, and structured projects that go a bit further with concepts like hyper-
parameter tuning.






Welcome to
computer vision

This chapter covers

Components of the vision system
Applications of computer vision
Understanding the computer vision pipeline
Preprocessing images and extracting features
Using classifier learning algorithms

Hello! I'm very excited that you are here. You are making a great decision—to
grasp deep learning (DL) and computer vision (CV). The timing couldn’t be more
perfect. CV is an area that’s been advancing rapidly, thanks to the huge Al and DL
advances of recent years. Neural networks are now allowing self-driving cars to fig-
ure out where other cars and pedestrians are and navigate around them. We are
using CV applications in our daily lives more and more with all the smart devices in
our homes—from security cameras to door locks. CV is also making face recogni-
tion work better than ever: smartphones can recognize faces for unlocking, and
smart locks can unlock doors. I wouldn’t be surprised if sometime in the near
future, your couch or television is able to recognize specific people in your house
and react according to their personal preferences. It’s not just about recognizing
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objects—DL has given computers the power to imagine and create new things like art-
work; new objects; and even unique, realistic human faces.

The main reason that I'm excited about deep learning for computer vision, and
what drew me to this field, is how rapid advances in Al research are enabling new
applications to be built every day and across different industries, something not possi-
ble just a few years ago. The unlimited possibilities of CV research is what inspired me
to write this book. By learning these tools, perhaps you will be able to invent new prod-
ucts and applications. Even if you end up not working on CV per se, you will find
many concepts in this book useful for some of your DL algorithms and architectures.
That is because while the main focus is CV applications, this book covers the most
important DL architectures, such as artificial neural networks (ANNs), convolutional
networks (CNNs), generative adversarial networks (GANSs), transfer learning, and
many more, which are transferable to other domains like natural language processing
(NLP) and voice user interfaces (VUIs).

The high-level layout of this chapter is as follows:

Computer vision intuition—We will start with visual perception intuition and
learn the similarities between humans and machine vision systems. We will look
at how vision systems have two main components: a sensing device and an inter-
preting device. Each is tailored to fulfill a specific task.

Applications of CV—Here, we will take a bird’s-eye view of the DL algorithms
used in different CV applications. We will then discuss vision in general for dif-
ferent creatures.

Computer vision pipeline—Finally, we will zoom in on the second component of
vision systems: the interpreting device. We will walk through the sequence of
steps taken by vision systems to process and understand image data. These are
referred to as a compuler vision pipeline. The CV pipeline is composed of four
main steps: image input, image preprocessing, feature extraction, and an ML
model to interpret the image. We will talk about image formation and how com-
puters see images. Then, we will quickly review image-processing techniques
and extracting features.

Ready? Let’s get started!

Computer vision

The core concept of any Al system is that it can perceive its environment and take
actions based on its perceptions. Computer vision is concerned with the visual percep-
tion part: it is the science of perceiving and understanding the world through images
and videos by constructing a physical model of the world so that an Al system can then
take appropriate actions. For humans, vision is only one aspect of perception. We per-
ceive the world through our sight, but also through sound, smell, and our other
senses. It is similar with Al systems—vision is just one way to understand the world.
Depending on the application you are building, you select the sensing device that best
captures the world.
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What is visual perception?

Visual perception, at its most basic, is the act of observing patterns and objects through
sight or visual input. With an autonomous vehicle, for example, visual perception means
understanding the surrounding objects and their specific details—such as pedestrians,
or whether there is a particular lane the vehicle needs to be centered in—and detecting
traffic signs and understanding what they mean. That’s why the word perception is part
of the definition. We are not just looking to capture the surrounding environment.
We are trying to build systems that can actually understand that environment through
visual input.

Vision systems

In past decades, traditional image-processing techniques were considered CV systems,
but that is not totally accurate. A machine processing an image is completely different
from that machine understanding what’s happening within the image, which is not a
trivial task. Image processing is now just a piece of a bigger, more complex system that
aims to interpret image content.

HUMAN VISION SYSTEMS
At the highest level, vision systems are pretty much the same for humans, animals,
insects, and most living organisms. They consist of a sensor or an eye to capture the
image and a brain to process and interpret the image. The system then outputs a
prediction of the image components based on the data extracted from the image
(figure 1.1).

Let’s see how the human vision system works. Suppose we want to interpret the
image of dogs in figure 1.1. We look at it and directly understand that the image con-
sists of a bunch of dogs (three, to be specific). It comes pretty natural to us to classify

Human vision system

Interpretation

| Dogs
grass

Eye (sensing device Brain (interpreting device
responsible for capturing responsible for understanding
images of the environment) the image content)

Figure 1.1 The human vision system uses the eye and brain to sense and interpret an image.
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and detect objects in this image because we have been trained over the years to iden-
tify dogs.

Suppose someone shows you a picture of a dog for the first time—you definitely
don’t know what it is. Then they tell you that this is a dog. After a couple experiments
like this, you will have been trained to identify dogs. Now, in a follow-up exercise, they
show you a picture of a horse. When you look at the image, your brain starts analyzing
the object features: hmmm, it has four legs, long face, long ears. Could it be a dog?
“Wrong: this is a horse,” you're told. Then your brain adjusts some parameters in its
algorithm to learn the differences between dogs and horses. Congratulations! You just
trained your brain to classify dogs and horses. Can you add more animals to the equa-
tion, like cats, tigers, cheetahs, and so on? Definitely. You can train your brain to iden-
tify almost anything. The same is true of computers. You can train machines to learn
and identify objects, but humans are much more intuitive than machines. It takes
only a few images for you to learn to identify most objects, whereas with machines, it
takes thousands or, in more complex cases, millions of image samples to learn to
identify objects.

The ML perspective
Let’s look at the previous example from the machine learning perspective:

You learned to identify dogs by looking at examples of several dog-labeled
images. This approach is called supervised learning.

Labeled data is data for which you already know the target answer. You were
shown a sample image of a dog and told that it was a dog. Your brain learned
to associate the features you saw with this label: dog.

You were then shown a different object, a horse, and asked to identify it. At
first, your brain thought it was a dog, because you hadn’t seen horses before,
and your brain confused horse features with dog features. When you were
told that your prediction was wrong, your brain adjusted its parameters to
learn horse features. “Yes, both have four legs, but the horse’s legs are lon-
ger. Longer legs indicate a horse.” We can run this experiment many times
until the brain makes no mistakes. This is called training by trial and error.

Al VISION SYSTEMS

Scientists were inspired by the human vision system and in recent years have done an
amazing job of copying visual ability with machines. To mimic the human vision sys-
tem, we need the same two main components: a sensing device to mimic the function
of the eye and a powerful algorithm to mimic the brain function in interpreting and
classifying image content (figure 1.2).
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Computer vision system

Sensing device Interpreting device Output

Dogs
grass

Figure 1.2 The components of the computer vision system are a sensing device and an interpreting
device.

Sensing devices

Vision systems are designed to fulfill a specific task. An important aspect of design is
selecting the best sensing device to capture the surroundings of a specific environ-
ment, whether that is a camera, radar, X-ray, CT scan, Lidar, or a combination of
devices to provide the full scene of an environment to fulfill the task at hand.

Let’s look at the autonomous vehicle (AV) example again. The main goal of the
AV vision system is to allow the car to understand the environment around it and
move from point A to point B safely and in a timely manner. To fulfill this goal, vehi-
cles are equipped with a combination of cameras and sensors that can detect 360
degrees of movement—pedestrians, cyclists, vehicles, roadwork, and other objects—
from up to three football fields away.

Here are some of the sensing devices usually used in self-driving cars to perceive
the surrounding area:

Lidar, a radar-like technique, uses invisible pulses of light to create a high-
resolution 3D map of the surrounding area.

Cameras can see street signs and road markings but cannot measure distance.
Radar can measure distance and velocity but cannot see in fine detail.

Medical diagnosis applications use X-rays or CT scans as sensing devices. Or maybe
you need to use some other type of radar to capture the landscape for agricultural
vision systems. There are a variety of vision systems, each designed to perform a partic-
ular task. The first step in designing vision systems is to identify the task they are built
for. This is something to keep in mind when designing end-to-end vision systems.

Recognizing images

Animals, humans, and insects all have eyes as sensing devices. But not all eyes have
the same structure, output image quality, and resolution. They are tailored to the spe-
cific needs of the creature. Bees, for instance, and many other insects, have compound
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(continued)

eyes that consist of multiple lenses (as many as 30,000 lenses in a single compound
eye). Compound eyes have low resolution, which makes them not so good at recog-
nizing objects at a far distance. But they are very sensitive to motion, which is essen-
tial for survival while flying at high speed. Bees don’t need high-resolution pictures.
Their vision systems are built to allow them to pick up the smallest movements while
flying fast.

Compound eyes How bees see a flower

Compound eyes are low resolution but sensitive to motion.

Interpreting devices

Computer vision algorithms are typically employed as interpreting devices. The inter-
preter is the brain of the vision system. Its role is to take the output image from the
sensing device and learn features and patterns to identify objects. So we need to build
a brain. Simple! Scientists were inspired by how our brains work and tried to reverse
engineer the central nervous system to get some insight on how to build an artificial
brain. Thus, artificial neural networks (ANNs) were born (figure 1.3).

In figure 1.3, we can see an analogy between biological neurons and artificial sys-
tems. Both contain a main processing element, a neuron, with input signals (x;, x, ...,
x,) and an output.

The learning behavior of biological neurons inspired scientists to create a network
of neurons that are connected to each other. Imitating how information is processed
in the human brain, each artificial neuron fires a signal to all the neurons that it’s con-
nected to when enough of its input signals are activated. Thus, neurons have a very
simple mechanism on the individual level (as you will see in the next chapter); but
when you have millions of these neurons stacked in layers and connected together,
each neuron is connected to thousands of other neurons, yielding a learning behav-
ior. Building a multilayer neural network is called deep learning (figure 1.4).
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Figure 1.3 The similarities between biological neurons and artificial systems

Artificial neural network (ANN)

Input — X Output

N\

Layers of neurons

Figure 1.4 Deep learning involves layers of neurons in a network.

DL methods learn representations through a sequence of transformations of data
through layers of neurons. In this book, we will explore different DL architectures,
such as ANNs and convolutional neural networks, and how they are used in CV
applications.
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CAN MACHINE LEARNING ACHIEVE BETTER PERFORMANCE THAN THE HUMAN BRAIN?

Well, if you had asked me this question 10 years ago, I would’ve probably said no,
machines cannot surpass the accuracy of a human. But let’s take a look at the follow-
ing two scenarios:

Suppose you were given a book of 10,000 dog images, classified by breed, and
you were asked to learn the properties of each breed. How long would it take
you to study the 130 breeds in 10,000 images? And if you were given a test of
100 dog images and asked to label them based on what you learned, out of the
100, how many would you get right? Well, a neural network that is trained in a
couple of hours can achieve more than 95% accuracy.

On the creation side, a neural network can study the patterns in the strokes, col-
ors, and shading of a particular piece of art. Based on this analysis, it can then
transfer the style from the original artwork into a new image and create a new
piece of original art within a few seconds.

Recent Al and DL advances have allowed machines to surpass human visual ability in
many image classification and object detection applications, and capacity is rapidly
expanding to many other applications. But don’t take my word for it. In the next sec-
tion, we’ll discuss some of the most popular CV applications using DL technology.

Applications of computer vision

Computers began to be able to recognize human faces in images decades ago, but now
Al systems are rivaling the ability of computers to classify objects in photos and videos.
Thanks to the dramatic evolution in both computational power and the amount of data
available, Al and DL have managed to achieve superhuman performance on many com-
plex visual perception tasks like image search and captioning, image and video classifi-
cation, and object detection. Moreover, deep neural networks are not restricted to
CV tasks: they are also successful at natural language processing and voice user inter-
face tasks. In this book, we’ll focus on visual applications that are applied in CV tasks.

DL is used in many computer vision applications to recognize objects and their
behavior. In this section, I'm not going to attempt to list all the CV applications that are
out there. I would need an entire book for that. Instead, I'll give you a bird’s-eye view of
some of the most popular DL algorithms and their possible applications across different
industries. Among these industries are autonomous cars, drones, robots, in-store cam-
eras, and medical diagnostic scanners that can detect lung cancer in early stages.

Image classification

Image classification is the task of assigning to an image a label from a predefined set of
categories. A convolutional neural network is a neural network type that truly shines in
processing and classifying images in many different applications:

Lung cancer diagnosis—ILung cancer is a growing problem. The main reason lung
cancer is very dangerous is that when it is diagnosed, it is usually in the middle or
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late stages. When diagnosing lung cancer, doctors typically use their eyes to
examine CT scan images, looking for small nodules in the lungs. In the early
stages, the nodules are usually very small and hard to spot. Several CV compa-
nies decided to tackle this challenge using DL technology.

Almost every lung cancer starts as a small nodule, and these nodules appear
in a variety of shapes that doctors take years to learn to recognize. Doctors are
very good at identifying mid- and large-size nodules, such as 6-10 mm. But
when nodules are 4 mm or smaller, sometimes doctors have difficulty identify-
ing them. DL networks, specifically CNNs, are now able to learn these features
automatically from X-ray and CT scan images and detect small nodules early,
before they become deadly (figure 1.5).

Tumor

Tumor

CT scan X-ray

Figure 1.5 Vision systems are now able to learn patterns in X-ray images to identify tumors in earlier
stages of development.

Traffic sign recognition—Traditionally, standard CV methods were employed to
detect and classify traffic signs, but this approach required time-consuming man-
ual work to handcraft important features in images. Instead, by applying DL to
this problem, we can create a model that reliably classifies traffic signs, learning to
identify the most appropriate features for this problem by itself (figure 1.6).

NOTE Increasing numbers of image classification tasks are being solved with
convolutional neural networks. Due to their high recognition rate and fast
execution, CNNs have enhanced most CV tasks, both pre-existing and new.
Just like the cancer diagnosis and traffic sign examples, you can feed tens or
hundreds of thousands of images into a CNN to label them into as many
classes as you want. Other image classification examples include identifying
people and objects, classifying different animals (like cats versus dogs versus
horses), different breeds of animals, types of land suitable for agriculture, and
so on. In short, if you have a set of labeled images, convolutional networks can
classify them into a set of predefined classes.
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Figure 1.6 Vision systems can detect traffic signs with very high performance.

Object detection and localization

Image classification problems are the most basic applications for CNNs. In these prob-
lems, each image contains only one object, and our task is to identify it. But if we aim to
reach human levels of understanding, we have to add complexity to these networks so they
can recognize multiple objects and their locations in an image. To do that, we can build
object detection systems like YOLO (you only look once), SSD (single-shot detector),
and Faster R-CNN, which not only classify images but also can locate and detect each
object in images that contain multiple objects. These DL systems can look at an image,
break it up into smaller regions, and label each region with a class so that a variable num-
ber of objects in a given image can be localized and labeled (figure 1.7). You can imag-
ine that such a task is a basic prerequisite for applications like autonomous systems.

Generating art (style transfer)

Neural style transfer, one of the most interesting CV applications, is used to transfer the
style from one image to another. The basic idea of style transfer is this: you take one
image—say, of a city—and then apply a style of art to that image—say, The Starry Night
(by Vincent Van Gogh)—and output the same city from the original image, but look-
ing as though it was painted by Van Gogh (figure 1.8).

This is actually a neat application. The astonishing thing, if you know any painters,
is that it can take days or even weeks to finish a painting, and yet here is an application
that can paint a new image inspired by an existing style in a matter of seconds.



Applications of computer vision 13

_——

Pedestrian

Figure 1.7 Deep learning systems can segment objects in an image.

Original image Style Generated art

Figure 1.8 Style transfer from Van Gogh’s The Starry Night onto the original image, producing a piece of art that
feels as though it was created by the original artist

124

Creating images

Although the earlier examples are truly impressive CV applications of Al, this is
where I see the real magic happening: the magic of creation. In 2014, Ian Good-
fellow invented a new DL model that can imagine new things called generative
adversarial networks (GANs). The name makes them sound a little intimidating,
but I promise you that they are not. A GAN is an evolved CNN architecture that is
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considered a major advancement in DL. So when you understand CNNs, GANs will
make a lot more sense to you.

GANSs are sophisticated DL models that generate stunningly accurate synthesized
images of objects, people, and places, among other things. If you give them a set of
images, they can make entirely new, realistic-looking images. For example, StackGAN
is one of the GAN architecture variations that can use a textual description of an
object to generate a high-resolution image of the object matching that description.
This is not just running an image search on a database. These “photos” have never
been seen before and are totally imaginary (figure 1.9).

This small blue bird
has a short, pointy beak
and brown on its wings.

This bird is completely
red with black wings and
a pointy beak.

Figure 1.9 Generative adversarial networks (GANS) can create new, “made-up” images from a set of
existing images.

The GAN is one of the most promising advancements in machine learning in recent
years. Research into GANs is new, and the results are overwhelmingly promising. Most
of the applications of GANs so have far have been for images. But it makes you won-
der: if machines are given the power of imagination to create pictures, what else can
they create? In the future, will your favorite movies, music, and maybe even books
be created by computers? The ability to synthesize one data type (text) to another
(image) will eventually allow us to create all sorts of entertainment using only detailed
text descriptions.

GANSs create artwork

In October 2018, an Al-created painting called The Portrait of Edmond Belamy sold
for $432,500. The artwork features a fictional person named Edmond de Belamy,
possibly French and—to judge by his dark frock coat and plain white collar—a man
of the church.
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Al-generated artwork featuring a fictional
person named Edmond de Belamy sold for
$432,500.

The artwork was created by a team of three 25-year-old French students using
GANs. The network was trained on a dataset of 15,000 portraits painted between
the fourteenth and twentieth centuries, and then it created one of its own. The team
printed the image, framed it, and signed it with part of a GAN algorithm.

Face recognition

Face recognition (FR) allows us to exactly identify or tag an image of a person. Day-to-
day applications include searching for celebrities on the web and auto-tagging friends
and family in images. Face recognition is a form of fine-grained classification.

The famous Handbook of Face Recognition (Li et al., Springer, 2011) categorizes two
modes of an FR system:

Face identification—Face identification involves one-to-many matches that com-
pare a query face image against all the template images in the database to deter-
mine the identity of the query face. Another face recognition scenario involves
a watchlist check by city authorities, where a query face is matched to a list of
suspects (one-to-few matches).

Face verification—Face verification involves a one-to-one match that compares a
query face image against a template face image whose identity is being claimed
(figure 1.10).

Image recommendation system

In this task, a user seeks to find similar images with respect to a given query image.
Shopping websites provide product suggestions (via images) based on the selection of
a particular product, for example, showing a variety of shoes similar to those the user
selected. An example of an apparel search is shown in figure 1.11.



16 CHAPTER 1 Welcome to computer vision
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Figure 1.10 Example of face verification (left) and face recognition (right)
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Figure 1.11 Apparel search. The
leftmost image in each row is the
query/clicked image, and the
subsequent columns show similar
apparel. (Source: Liu et al., 2016.)
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Computer vision pipeline: The big picture

Okay, now that I have your attention, let’s dig one level deeper into CV systems.
Remember that earlier in this chapter, we discussed how vision systems are composed
of two main components: sensing devices and interpreting devices (figure 1.12 offers
areminder). In this section, we will take a look at the pipeline the interpreting device
component uses to process and understand images.

Computer vision system

Sensing device Interpreting device Output

Dogs
- g
grass

Figure 1.12 Focusing on the interpreting device in computer vision systems

Applications of CV vary, but a typical vision system uses a sequence of distinct steps to
process and analyze image data. These steps are referred to as a computer vision pipeline.
Many vision applications follow the flow of acquiring images and data, processing that
data, performing some analysis and recognition steps, and then finally making a pre-
diction based on the extracted information (figure 1.13).

1. Input data — 2. Preprocessing | 3. Feature extraction — 4. ML model
* Images Getting the data « Find distinguishing « Learn from the
« Videos (image ready: information about extracted features
frames) + Standardize images the image to predict and
« Color transformation classify objects
* More...

Figure 1.13 The computer vision pipeline, which takes input data, processes it, extracts
information, and then sends it to the machine learning model to learn

Let’s apply the pipeline in figure 1.13 to an image classifier example. Suppose we have
an image of a motorcycle, and we want the model to predict the probability of the
object from the following classes: motorcycle, car, and dog (see figure 1.14).
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1. Input data 2. Preprocessing 3. Feature extraction 4. Classifier
» Geometric
transforming - J
« Image blurring P(motorcycle) = 0.85
— P(car)=0.14
P(dog) = 0.01

Features vector

Figure 1.14 Using the machine learning model to predict the probability of the motorcycle object from the
motorcycle, car, and dog classes

DEFINITIONS An ¢mage classifieris an algorithm that takes in an image as input
and outputs a label or “class” that identifies that image. A class (also called a
calegory) in machine learning is the output category of your data.

Here is how the image flows through the classification pipeline:

A computer receives visual input from an imaging device like a camera. This
input is typically captured as an image or a sequence of images forming a video.
Each image is then sent through some preprocessing steps whose purpose is to
standardize the images. Common preprocessing steps include resizing an
image, blurring, rotating, changing its shape, or transforming the image from
one color to another, such as from color to grayscale. Only by standardizing the
images—for example, making them the same size—can you then compare
them and further analyze them.
We extract features. Features are what help us define objects, and they are usu-
ally information about object shape or color. For example, some features that
distinguish a motorcycle are the shape of the wheels, headlights, mudguards,
and so on. The output of this process is a feature vector that is a list of unique
shapes that identify the object.
The features are fed into a classification model. This step looks at the feature vec-
tor from the previous step and predicts the class of the image. Pretend that you
are the classifier model for a few minutes, and let’s go through the classification
process. You look at the list of features in the feature vector one by one and try
to determine what’s in the image:

First you see a wheel feature; could this be a car, a motorcycle, or a dog?

Clearly it is not a dog, because dogs don’t have wheels (at least, normal dogs,

not robots). Then this could be an image of a car or a motorcycle.

You move on to the next feature, the headlights. There is a higher probability

that this is a motorcycle than a car.

The next feature is rear mudguards—again, there is a higher probability that

it is a motorcycle.
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The object has only two wheels; this is closer to a motorcycle.
And you keep going through all the features like the body shape, pedal, and
so on, until you arrive at a best guess of the object in the image.

The output of this process is the probability of each class. As you can see in our exam-
ple, the dog has the lowest probability, 1%, whereas there is an 85% probability that
this is a motorcycle. You can see that, although the model was able to predict the right
class with the highest probability, it is still a little confused about distinguishing
between cars and motorcycles—it predicted that there is a 14% chance this is an
image of a car. Since we know that it is a motorcycle, we can say that our ML classifica-
tion algorithm is 85% accurate. Not bad! To improve this accuracy, we may need to do
more of step 1 (acquire more training images), or step 2 (more processing to remove
noise), or step 3 (extract better features), or step 4 (change the classifier algorithm
and tune some hyperparameters), or even allow more training time. The many differ-
ent approaches we can take to improve the performance of our model all lie in one or
more of the pipeline steps.

That was the big picture of how images flow through the CV pipeline. Next, we’ll
zoom in one level deeper on each of the pipeline steps.

Image input

In CV applications, we deal with images or video data. Let’s talk about grayscale and
color images for now, and in later chapters, we will talk about videos, since videos are
just stacked sequential frames of images.

Image as functions

An image can be represented as a function of two variables x and y, which define a two-
dimensional area. A digital image is made of a grid of pixels. The pixelis the raw build-
ing block of an image. Every image consists of a set of pixels in which their values rep-
resent the intensity of light that appears in a given place in the image. Let’s take a look
at the motorcycle example again after applying the pixel grid to it (figure 1.15).

Grayscale image (32 x 16)
0 X 31

F(20,7)=0
e = Black pixel

L — F(18,9) =190
Gray pixel

15 ] DA I I Figure 1.15 Images consists of raw

building blocks called pixels. The pixel

F(12, 13) = 255 values represent the intensity of light that
White pixel appears in a given place in the image.
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The image in figure 1.14 has a size of 32 x 16. This means the dimensions of the image
are 32 pixels wide and 16 pixels tall. The x-axis goes from 0 to 31, and the y-axis from
0 to 16. Overall, the image has 512 (32 x 16) pixels. In this grayscale image, each pixel
contains a value that represents the intensity of light on that specific pixel. The pixel val-
ues range from 0 to 255. Since the pixel value represents the intensity of light, the
value 0 represents very dark pixels (black), 255 is very bright (white), and the values in
between represent the intensity on the grayscale.

You can see that the image coordinate system is similar to the Cartesian coordinate
system: images are two-dimensional and lie on the x-y plane. The origin (0, 0) is at the
top left of the image. To represent a specific pixel, we use the following notations: [*as
a function, and x, y as the location of the pixel in x- and y-coordinates. For example,
the pixel located at x =12 and y = 13 is white; this is represented by the following func-
tion: F(12, 13) = 255. Similarly, the pixel (20, 7) that lies on the front of the motor-
cycle is black, represented as F(20, 7) = 0.

Grayscale => F(x, y) gives the intensity at position (x, y)

That was for grayscale images. How about color images?

In color images, instead of representing the value of the pixel by just one number,
the value is represented by three numbers representing the intensity of each color in
the pixel. In an RGB system, for example, the value of the pixel is represented by
three numbers: the intensity of red, intensity of green, and intensity of blue. There are
other color systems for images like HSV and Lab. All follow the same concept when
representing the pixel value (more on color images soon). Here is the function repre-
senting color images in the RGB system:

Color image in RGB => F(x, y) = [ red (x, y), green (x, y), blue (x, y) ]

Thinking of an image as a function is very useful in image processing. We can think of
an image as a function of F(x, y) and operate on it mathematically to transform it to a
new image function G(x, y). Let’s take a look at the image transformation examples in
table 1.1.

Table 1.1 Image transformation example functions

Application Transformation

Darken the image. G(x, y) = 0.5 * F(x, vy)
Brighten the image. G(x, y) =2 * F(x, V)
Move an object down 150 pixels. G(x, y) = F(x, y + 150)

Remove the gray in an image to trans- | G(x, y) = { 0 if F(x, y) < 130, 255 otherwise }
form the image into black and white.
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How computers see images

When we look at an image, we see objects, landscape, colors, and so on. But that’s not
the case with computers. Consider figure 1.16. Your human brain can process it and
immediately know that it is a picture of a motorcycle. To a computer, the image looks
like a 2D matrix of the pixels’ values, which represent intensities across the color spec-
trum. There is no context here, just a massive pile of data.

What we see What computers see

08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 46 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 99 30 03 49 13 36 65
52 90 95 23 04 60 11 42 69 24 48 56 01 32 54 71 37 02 34 91
22 31 14 71 51 67 43 59 41 92 34 54 22 40 40 28 44 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 64 20 35 09 12 80
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
47 24 20 68 02 62 12 20 95 63 94 39 63 04 49 91 44 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 94 83 14 88 34 89 63 72
21 36 23 09 75 00 74 44 20 45 35 14 00 41 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 42 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 34 29 85 57
84 56 00 48 35 71 89 07 05 44 44 37 44 40 21 58 51 54 17 58
19 80 61 68 05 94 47 49 28 73 92 13 86 52 17 77 04 09 55 40
04 52 08 83 97 35 99 14 07 97 57 32 16 26 26 79 33 27 98 44
04 36 68 81 57 62 20 72 03 16 33 67 46 55 12 32 43 93 53 69
04 42 14 73 38 25 39 11 24 94 72 18 06 46 29 32 40 62 74 36
20 49 34 41 72 30 23 88 34 62 99 69 82 47 59 85 74 04 34 24
20 23 35 29 78 31 90 01 74 31 49 71 48 86 81 14 23 57 05 54
01 70 54 71 83 51 54 49 16 92 33 48 61 43 51 01 89 19 67 48

Figure 1.16 A computer sees images as matrices of values. The values represent the intensity of
the pixels across the color spectrum. For example, grayscale images range between pixel values
of O for black and 255 for white.

The image in figure 1.16 is of size 24 x 24. This size indicates the width and height of
the image: there are 24 pixels horizontally and 24 vertically. That means there is a
total of 576 (24 x 24) pixels. If the image is 700 x 500, then the dimensionality of the
matrix will be (700, 500), where each pixel in the matrix represents the intensity of
brightness in that pixel. Zero represents black, and 255 represents white.

Color images

In grayscale images, each pixel represents the intensity of only one color, whereas
in the standard RGB system, color images have three channels (red, green, and
blue). In other words, color images are represented by three matrices: one represents
the intensity of red in the pixel, one represents green, and one represents blue
(figure 1.17).

As you can see in figure 1.17, the color image is composed of three channels: red,
green, and blue. Now the question is, how do computers see this image? Again, they
see the matrix, unlike grayscale images, where we had only one channel. In this case,
we will have three matrices stacked on top of each other; that’s why it’s a 3D matrix.
The dimensionality of 700 x 700 color images is (700, 700, 3). Let’s say the first matrix
represents the red channel; then each element of that matrix represents an intensity
of red color in that pixel, and likewise with green and blue. Each pixel in a color
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Color image RGB channels
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Figure 1.17 Color images are represented by red, green, and blue channels, and matrices can be
used to indicate those colors’ intensity.

image has three numbers (0 to 255) associated with it. These numbers represent
intensity of red, green, and blue color in that particular pixel.

If we take the pixel (0,0) as an example, we will see that it represents the top-left
pixel of the image of green grass. When we view this pixel in the color images, it looks
like figure 1.18. The example in figure 1.19 shows some shades of the color green and
their RGB values.

Green Blue (11, 102, 35)

Red

Figure 1.18 An image of green grass is actually made of three colors of varying intensity.

Forest Green

Forest Forest green Mint Mint green
Codes: Codes:

HEX #0B6623 HEX #0B6623 HEX #98FB98 HEX #98FB98

RGB 11 102 35 RGB 11 102 35 RGB 152 251 152 RGB 152 251 152

Olive Olive green Lime Lime green
Codes: Codes:

HEX #708238 HEX #708238 HEX #C7EA46 HEX #C7EA46

RGB 112 130 56 RGB 112 130 56 RGB 199 234 70 RGB 199 234 70

Jungle Jungle green Jade green
Codes: Codes:

HEX #29AB87 HEX #29AB87 HEX #00A86B

RGB 41 171 135 RGB 41 171 135 RGB 0 168 107

Figure 1.19 Different shades of green mean different intensities of the three image
colors (red, green, blue).
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How do computers see color?

Computers see an image as matrices. Grayscale images have one channel (gray);
thus, we can represent grayscale images in a 2D matrix, where each element rep-
resents the intensity of brightness in that particular pixel. Remember, O means black
and 255 means white. Grayscale images have one channel, whereas color images
have three channels: red, green, and blue. We can represent color images in a 3D
matrix where the depth is three.

We've also seen how images can be treated as functions of space. This concept
allows us to operate on images mathematically and change or extract information
from them. Treating images as functions is the basis of many image-processing tech-
niques, such as converting color to grayscale or scaling an image. Each of these
steps is just operating mathematical equations to transform an image pixel by pixel.

Grayscale: f(x, y) gives the intensity at position (x, y)
Color image: f(x, y) = [ red (x, y), green (x, y), blue (x, y) ]

Image preprocessing

In machine learning (ML) projects, you usually go through a data preprocessing or
cleaning step. As an ML engineer, you will spend a good amount of time cleaning up
and preparing the data before you build your learning model. The goal of this step is
to make your data ready for the ML model to make it easier to analyze and process
computationally. The same thing is true with images. Based on the problem you are
solving and the dataset in hand, some data massaging is required before you feed your
images to the ML model.

Image processing could involve simple tasks like image resizing. Later, you will learn
that in order to feed a dataset of images to a convolutional network, the images all have
to be the same size. Other processing tasks can take place, like geometric and color
transformation, converting color to grayscale, and many more. We will cover various
image-processing techniques throughout the chapters of this book and in the projects.

The acquired data is usually messy and comes from different sources. To feed it to
the ML model (or neural network), it needs to be standardized and cleaned up. Pre-
processing is used to conduct steps that will reduce the complexity and increase the
accuracy of the applied algorithm. We can’t write a unique algorithm for each of the
conditions in which an image is taken; thus, when we acquire an image, we convert it
into a form that would allow a general algorithm to solve it. The following subsections
describe some data-preprocessing techniques.

Converting color images to grayscale to reduce
computation complexity

Sometimes you will find it useful to remove unnecessary information from your
images to reduce space or computational complexity. For example, suppose you want
to convert your colored images to grayscale, because for many objects, color is not
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necessary to recognize and interpret an image. Grayscale can be good enough for rec-
ognizing certain objects. Since color images contain more information than black-
and-white images, they can add unnecessary complexity and take up more space in
memory. Remember that color images are represented in three channels, which
means that converting them to grayscale will reduce the number of pixels that need to

be processed (figure 1.20).

Clouds ———*
/

Pedestrian —

Figure 1.20 Converting color images to grayscale results in a reduced number of pixels that need
to be processed. This could be a good approach for applications that do not rely a lot on the color
information loss due to the conversion.

In this example, you can see how patterns of brightness and darkness (intensity) can
be used to define the shape and characteristics of many objects. However, in other
applications, color is important to define certain objects, like skin cancer detection,
which relies heavily on skin color (red rashes).

= Standardizing images—As you will see in chapter 3, one important constraint that
exists in some ML algorithms, such as CNNs, is the need to resize the images in
your dataset to unified dimensions. This implies that your images must be pre-
processed and scaled to have identical widths and heights before being fed to
the learning algorithm.

= Data augmentation—Another common preprocessing technique involves aug-
menting the existing dataset with modified versions of the existing images. Scal-
ing, rotations, and other affine transformations are typically used to enlarge
your dataset and expose the neural network to a wide variety of variations of
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When is color important?

Converting an image to grayscale might not be a good decision for some problems.
There are a number of applications for which color is very important: for example,
building a diagnostic system to identify red skin rashes in medical images. This appli-
cation relies heavily on the intensity of the red color in the skin. Removing colors from
the image will make it harder to solve this problem. In general, color images provide
very helpful information in many medical applications.

Another example of the importance of color in images is lane-detection applications
in a self-driving car, where the car has to identify the difference between yellow and
white lines, because they are treated differently. Grayscale images do not provide
enough information to distinguish between the yellow and white lines.

Grayscale-based image processors cannot differentiate between color images.

The rule of thumb to identify the importance of colors in your problem is to look at
the image with the human eye. If you are able to identify the object you are looking
for in a gray image, then you probably have enough information to feed to your model.
If not, then you definitely need more information (colors) for your model. The same
rule can be applied for most other preprocessing techniques that we will discuss.

25

your images. This makes it more likely that your model will recognize objects
when they appear in any form and shape. Figure 1.21 shows an example of image
augmentation applied to a butterfly image.

Other techniqgues—Many more preprocessing techniques are available to get your
images ready for training an ML model. In some projects, you might need to
remove the background color from your images to reduce noise. Other projects
might require that you brighten or darken your images. In short, any adjustments
that you need to apply to your dataset are part of preprocessing. You will select
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Original image

De-texturized

De-colorized

—| Data augmentation

Edge enhanced

Salient edge map

Flip/rotate

Figure 1.21 Image-augmentation techniques create modified versions of the input image
to provide more examples for the ML model to learn from.

the appropriate processing techniques based on the dataset at hand and the
problem you are solving. You will see many image-processing techniques through-
out this book, helping you build your intuition of which ones you need when

working on your own projects.

No free lunch theorem

This is a phrase that was introduced by David Wolpert and William Macready in “No
Free Lunch Theorems for Optimizations” (IEEE Transactions on Evolutionary Compu-
tation 1, 67). You will often hear this said when a team is working on an ML project.
It means that no one prescribed recipe fits all models. When working on ML proj-
ects, you will need to make many choices like building your neural network architec-
ture, tuning hyperparameters, and applying the appropriate data preprocessing
techniques. While there are some rule-of-thumb approaches to tackle certain prob-
lems, there is really no single recipe that is guaranteed to work well in all situations.
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You must make certain assumptions about the dataset and the problem you are try-
ing to solve. For some datasets, it is best to convert the colored images to grayscale,
while for other datasets, you might need to keep or adjust the color images.

The good news is that, unlike traditional machine learning, DL algorithms require min-
imum data preprocessing because, as you will see soon, neural networks do most of
the heavy lifting in processing an image and extracting features.

Feature extraction

Feature extraction is a core component of the CV pipeline. In fact, the entire DL model
works around the idea of extracting useful features that clearly define the objects in
the image. So we’ll spend a little more time here, because it is important that you
understand what a feature is, what a vector of features is, and why we extract features.

DEFINITION A feature in machine learning is an individual measurable prop-
erty or characteristic of an observed phenomenon. Features are the input that
you feed to your ML model to output a prediction or classification. Suppose
you want to predict the price of a house: your input features (properties)
might include square_foot, number of_ rooms, bathrooms, and so on, and
the model will output the predicted price based on the values of your fea-
tures. Selecting good features that clearly distinguish your objects increases
the predictive power of ML algorithms.

What is a feature in computer vision?

In CV, a feature is a measurable piece of data in your image that is unique to that spe-
cific object. It may be a distinct color or a specific shape such as a line, edge, or image
segment. A good feature is used to distinguish objects from one another. For example,
if I give you a feature like a wheel and ask you to guess whether an object is a motorcy-
cle or a dog, what would your guess be? A motorcycle. Correct! In this case, the wheel
is a strong feature that clearly distinguishes between motorcycles and dogs. However,
if I give you the same feature (a wheel) and ask you to guess whether an object is a
bicycle or a motorcycle, this feature is not strong enough to distinguish between those
objects. You need to look for more features like a mirror, license plate, or maybe a
pedal, that collectively describe an object. In ML projects, we want to transform the
raw data (image) into a feature vector to show to our learning algorithm, which can
learn the characteristics of the object (figure 1.22).

In the figure, we feed the raw input image of a motorcycle into a feature extraction
algorithm. Let’s treat the feature extraction algorithm as a black box for now, and we
will come back to it. For now, we need to know that the extraction algorithm produces
a vector that contains a list of features. This feature vector is a 1D array that makes a
robust representation of the object.
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Figure 1.22 Example input image fed to a feature-extraction algorithm to find
patterns within the image and create the feature vector

Feature generalizability

It is important to point out that figure 1.22 reflects features extracted from just one
motorcycle. A very important characteristic of a feature is repeatability. The feature
should be able to detect motorcycles in general, not just this specific one. So in real-
world problems, a feature is not an exact copy of a piece of the input image.

Feature after looking Feature after looking

at one image \ / at thousands of images

Features need to detect general patterns.

If we take the wheel feature, for example, the feature doesn’t look exactly like the
wheel of one particular motorcycle. Instead, it looks like a circular shape with some
patterns that identify wheels in all images in the training dataset. When the feature
extractor sees thousands of images of motorcycles, it recognizes patterns that define
wheels in general, regardless of where they appear in the image and what type of
motorcycle they are part of.

What makes a good (useful) feature?

Machine learning models are only as good as the features you provide. That means
coming up with good features is an important job in building ML models. But what
makes a good feature? And how can you tell?
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Let’s discuss this with an example. Suppose we want to build a classifier to tell the dif-
ference between two types of dogs: Greyhound and Labrador. Let’s take two features—
the dogs’ height and their eye color—and evaluate them (figure 1.23).

Greyhound Labrador

Figure 1.23 Example of Greyhound
and Labrador dogs

Let’s begin with height. How useful do you think this feature is? Well, on average,
Greyhounds tend to be a couple of inches taller than Labradors, but not always. There
is a lot of variation in the dog world. So let’s evaluate this feature across different val-
ues in both breeds’ populations. Let’s visualize the height distribution on a toy exam-

ple in the histogram in figure 1.24.

300 Labrador
Greyhound h

Number of dogs
o
o

0
10 15 20 25 30 35 40
Height

Figure 1.24 A visualization of the height distribution on a toy dogs dataset

From the histogram, we can see that if the dog’s height is 20 inches or less, there is
more than an 80% probability that the dog is a Labrador. On the other side of the his-
togram, if we look at dogs that are taller than 30 inches, we can be pretty confident
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the dog is a Greyhound. Now, what about the data in the middle of the histogram
(heights from 20 to 30 inches)? We can see that the probability of each type of dog is
pretty close. The thought process in this case is as follows:

if height < 20:
return higher probability to Labrador
if height = 30:
return higher probability to Greyhound
if 20 < height < 30:
look for other features to classify the object

So the height of the dog in this case is a useful feature because it helps (adds informa-
tion) in distinguishing between both dog types. We can keep it. But it doesn’t distin-
guish between Greyhounds and Labradors in all cases, which is fine. In ML projects,
there is usually no one feature that can classify all objects on its own. That’s why, in
machine learning, we almost always need multiple features, where each feature cap-
tures a different type of information. If only one feature would do the job, we could
just write 1f-else statements instead of bothering with training a classifier.

TIP  Similar to what we did earlier with color conversion (color versus gray-
scale), to figure out which features you should use for a specific problem, do a
thought experiment. Pretend you are the classifier. If you want to differentiate
between Greyhounds and Labradors, what information do you need to know?
You might ask about the hair length, the body size, the color, and so on.

For another quick example of a non-useful feature to drive this idea home, let’s look
at dog eye color. For this toy example, imagine that we have only two eye colors, blue
and brown. Figure 1.25 shows what a histogram might look like for this example.

Greyhound h

Figure 1.25 A visualization of
the eye color distribution in a toy
Blue eyes Brown eyes dogs dataset
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Itis clear that for most values, the distribution is about 50/50 for both types. So practi-
cally, this feature tells us nothing, because it doesn’t correlate with the type of dog.
Hence, it doesn’t distinguish between Greyhounds and Labradors.

What makes a good feature for object recognition?

A good feature will help us recognize an object in all the ways it may appear. Charac-
teristics of a good feature follow:

Identifiable

Easily tracked and compared

Consistent across different scales, lighting conditions, and viewing angles
Still visible in noisy images or when only part of an object is visible

Extracting features (handcrafted vs. automatic extracting)

This is a large topic in machine learning that could take up an entire book. It’s typi-
cally described in the context of a topic called feature engineering. In this book, we are
only concerned with extracting features in images. So I'll touch on the idea very
quickly in this chapter and build on it in later chapters.

TRADITIONAL MACHINE LEARNING USING HANDCRAFTED FEATURES

In traditional ML problems, we spend a good amount of time in manual feature selec-
tion and engineering. In this process, we rely on our domain knowledge (or partner
with domain experts) to create features that make ML algorithms work better. We
then feed the produced features to a classifier like a support vector machine (SVM) or
AdaBoost to predict the output (figure 1.26). Some of the handcrafted feature sets
are these:

Histogram of oriented gradients (HOG)
Haar Cascades

Scale-invariant feature transform (SIFT)
Speeded-Up Robust Feature (SURF)

Feature extraction Learning algorithm
Input (handcrafted) SVM or AdaBoost Output

oo - \_ﬁf.\'%‘ — &

Figure 1.26 Traditional machine learning algorithms require handcrafted feature
extraction.
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DEEP LEARNING USING AUTOMATICALLY EXTRACTED FEATURES

In DL, however, we do not need to manually extract features from the image. The net-
work extracts features automatically and learns their importance on the output by
applying weights to its connections. You just feed the raw image to the network, and
while it passes through the network layers, the network identifies patterns within the
image with which to create features (figure 1.27). Neural networks can be thought of
as feature extractors plus classifiers that are end-to-end trainable, as opposed to tradi-
tional ML models that use handcrafted features.

Input Feature extraction and classification Output

o & - EW — B

Figure 1.27 A deep neural network passes the input image through its layers to automatically
extract features and classify the object. No handcrafted features are needed.

How do neural networks distinguish useful features from non-useful features?

You might get the impression that neural networks only understand the most useful
features, but that’s not entirely true. Neural networks scoop up all the features avail-
able and give them random weights. During the training process, the neural network
adjusts these weights to reflect their importance and how they should impact the out-
put prediction. The patterns with the highest appearance frequency will have higher
weights and are considered more useful features. Features with the lowest weights
will have very little impact on the output. This learning process will be discussed in
deeper detail in the next chapter.

Weights

Output
Features —| o

Weighting different features to reflect their importance in identifying the object



1.7

Classifier learning algorithm 33

WHY USE FEATURES?

The input image has too much extra information that is not necessary for classifica-
tion. Therefore, the first step after preprocessing the image is to simplify it by extract-
ing the important information and throwing away nonessential information. By
extracting important colors or image segments, we can transform complex and large
image data into smaller sets of features. This makes the task of classifying images
based on their features simpler and faster.

Consider the following example. Suppose we have a dataset of 10,000 images of
motorcycles, each of 1,000 width by 1,000 height. Some images have solid backgrounds,
and others have busy backgrounds of unnecessary data. When these thousands of
images are fed to the feature extraction algorithms, we lose all the unnecessary data that
is not important to identify motorcycles, and we only keep a consolidated list of useful
features that can be fed directly to the classifier (figure 1.28). This process is a lot sim-
pler than having the classifier look at the raw dataset of 10,000 images to learn the
properties of motorcycles.

Images dataset of 10,000 images

Features vector

Classifier
algorithm

Feature
extraction

|
RRRRRRRRRRRRNN
l

Figure 1.28 Extracting and consolidating features from thousands of images in one feature vector
to be fed to the classifier

Classifier learning algorithm

Here is what we have discussed so far regarding the classifier pipeline:

Input image—We’ve seen how images are represented as functions, and that com-
puters see images as a 2D matrix for grayscale images and a 3D matrix (three
channels) for colored images.

Image preprocessing—We discussed some image-preprocessing techniques to clean
up our dataset and make it ready as input to the ML algorithm.

Feature extraction—We converted our large dataset of images into a vector of use-
ful features that uniquely describe the objects in the image.
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Now it is time to feed the extracted feature vector to the classifier to output a class
label for the images (for example, motorcycle or otherwise).

As we discussed in the previous section, the classification task is done one of these
ways: traditional ML algorithms like SVMs, or deep neural network algorithms like
CNNs. While traditional ML algorithms might get decent results for some problems,
CNN:s truly shine in processing and classifying images in the most complex problems.

In this book, we will discuss neural networks and how they work in detail. For now,
I'want you to know that neural networks automatically extract useful features from your
dataset, and they act as a classifier to output class labels for your images. Input images
pass through the layers of the neural network to learn their features layer by layer
(figure 1.29). The deeper your network is (the more layers), the more it will learn the
features of the dataset: hence the name deep learning. More layers come with some
trade-offs that we will discuss in the next two chapters. The last layer of the neural net-
work usually acts as the classifier that outputs the class label.

Deep learning classifier

Input image Network layers Output
|

Motorcycle J

Not motorcycle

Feature extraction layers Classification layer

(The input image flows through the (Looks at the feature vector
network layers to learn its features. extracted by the previous layer
Early layers detect patterns in the and fires the upper node if it sees
image, then later layers detect the features of a motorcycle or
patterns within patterns, and so on, the lower node if it doesn’t.)

until it creates the feature vector.)

Figure 1.29 Input images pass through the layers of a neural network so it can learn features
layer by layer.

Summary
Both human and machine vision systems contain two basic components: a sens-
ing device and an interpreting device.
The interpreting process consists of four steps: input the data, preprocess it, do
feature extraction, and produce a machine learning model.
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An image can be represented as a function of x and y. Computers see an image
as a matrix of pixel values: one channel for grayscale images and three channels
for color images.

Image-processing techniques vary for each problem and dataset. Some of these
techniques are converting images to grayscale to reduce complexity, resizing
images to a uniform size to fit your neural network, and data augmentation.
Features are unique properties in the image that are used to classify its objects.
Traditional ML algorithms use several feature-extraction methods.



Deep learning
and neural networks

This chapter covers

= Understanding perceptrons and multilayer
perceptrons

= Working with the different types of activation
functions

= Training networks with feedforward, error
functions, and error optimization

= Performing backpropagation

In the last chapter, we discussed the computer vision (CV) pipeline components:
the input image, preprocessing, extracting features, and the learning algorithm
(classifier). We also discussed that in traditional ML algorithms, we manually
extract features that produce a vector of features to be classified by the learning
algorithm, whereas in deep learning (DL), neural networks act as both the feature
extractor and the classifier. A neural network automatically recognizes patterns and
extracts features from the image and classifies them into labels (figure 2.1).

In this chapter, we will take a short pause from the CV context to open the DL
algorithm box from figure 2.1. We will dive deeper into how neural networks
learn features and make predictions. Then, in the next chapter, we will come

36
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Traditional machine learning flow
Features vector

Inout Feature ] Traditional ML Output
P extractor — algorithm P
Deep learning flow
Input Deep learning algorithm Output

Figure 2.1 Traditional ML algorithms require manual feature extraction. A deep neural network
automatically extracts features by passing the input image through its layers.

back to CV applications with one of the most popular DL architectures: convolutional
neural networks.
The high-level layout of this chapter is as follows:

We will begin with the most basic component of the neural network: the perceptron,
a neural network that contains only one neuron.
Then we will move on to a more complex neural network architecture that con-
tains hundreds of neurons to solve more complex problems. This network is
called a multilayer perceptron (MLP), where neurons are stacked in hidden layers.
Here, you will learn the main components of the neural network architecture:
the input layer, hidden layers, weight connections, and output layer.
You will learn that the network training process consists of three main steps:
Feedforward operation
Calculating the error
Error optimization: using backpropagation and gradient descent to select
the most optimum parameters that minimize the error function

We will dive deep into each of these steps. You will see that building a neural network
requires making necessary design decisions: choosing an optimizer, cost function, and
activation functions, as well as designing the architecture of the network, including
how many layers should be connected to each other and how many neurons should be
in each layer. Ready? Let’s get started!

Understanding perceptrons

Let’s take a look at the artificial neural network (ANN) diagram from chapter 1 (fig-
ure 2.2). You can see that ANNs consist of many neurons that are structured in layers
to perform some kind of calculations and predict an output. This architecture can be
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Artificial neural network (ANN)

N

Input —» X Output

N\

Layers of neurons

Figure 2.2 An artificial neural network consists of layers of nodes, or neurons connected with edges.

also called a multilayer perceptron, which is more intuitive because it implies that the net-
work consists of perceptrons structured in multiple layers. Both terms, MLP and ANN,
are used interchangeably to describe this neural network architecture.

In the MLP diagram in figure 2.2, each node is called a neuron. We will discuss how
MLP networks work soon, but first let’s zoom in on the most basic component of the
neural network: the perceptron. Once you understand how a single perceptron works,
it will become more intuitive to understand how multiple perceptrons work together
to learn data features.

2.1.1 Whatis a perceptron?

The most simple neural network is the perceptron, which consists of a single neuron.
Conceptually, the perceptron functions in a manner similar to a biological neuron
(figure 2.3). A biological neuron receives electrical signals from its dendrites, modu-
lates the electrical signals in various amounts, and then fires an output signal through
its synapses only when the total strength of the input signals exceeds a certain thresh-
old. The output is then fed to another neuron, and so forth.

To model the biological neuron phenomenon, the artificial neuron performs two
consecutive functions: it calculates the weighted sum of the inputs to represent the total
strength of the input signals, and it applies a step function to the result to determine
whether to fire the output 1 if the signal exceeds a certain threshold or 0 if the signal
doesn’t exceed the threshold.

As we discussed in chapter 1, not all input features are equally useful or important.
To represent that, each input node is assigned a weight value, called its connection
weight, to reflect its importance.
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Figure 2.3 Artificial neurons were inspired by biological neurons. Different neurons are connected
to each other by synapses that carry information.

Connection weights

Not all input features are equally important (or useful) features. Each input feature
(x4) is assigned its own weight (w4) that reflects its importance in the decision-making
process. Inputs assigned greater weight have a greater effect on the output. If the
weight is high, it amplifies the input signal; and if the weight is low, it diminishes the
input signal. In common representations of neural networks, the weights are repre-
sented by lines or edges from the input node to the perceptron.

For example, if you are predicting a house price based on a set of features like size,
neighborhood, and number of rooms, there are three input features (x4, xo, and x3).
Each of these inputs will have a different weight value that represents its effect on
the final decision. For example, if the size of the house has double the effect on the
price compared with the neighborhood, and the neighborhood has double the effect
compared with the number of rooms, you will see weights something like 8, 4, and
2, respectively.

How the connection values are assigned and how the learning happens is the core
of the neural network training process. This is what we will discuss for the rest of this
chapter.

In the perceptron diagram in figure 2.4, you can see the following:

Input vector—The feature vector that is fed to the neuron. It is usually denoted
with an uppercase X to represent a vector of inputs (xy, X, . . ., Xy).

Weights vector—Each x; is assigned a weight value w; that represents its impor-
tance to distinguish between different input datapoints.
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Neuron functions—The calculations performed within the neuron to modulate
the input signals: the weighted sum and step activation function.
Output—Controlled by the type of activation function you choose for your net-
work. There are different activation functions, as we will discuss in detail in this
chapter. For a step function, the output is either 0 or 1. Other activation func-
tions produce probability output or float numbers. The output node represents
the perceptron prediction.

Activation
Sum  function

> f

Output
Inputs —| uipu

Figure 2.4 Input vectors are fed to the neuron, with weights
assigned to represent importance. Calculations performed within
the neuron are weighted sum and activation functions.

Let’s take a deeper look at the weighted sum and step function calculations that hap-
pen inside the neuron.

WEIGHTED SUM FUNCTION

Also known as a linear combination, the weighted sum function is the sum of all inputs
multiplied by their weights, and then added to a bias term. This function produces a
straight line represented in the following equation:

z= in - w; + b (bias)
Z=X]c W X Wot Xg Wyt e + Xy W+ b
Here is how we implement the weighted sum in Python:

z = np.dot (w.T,X) + b w is the weights vector, and b is

Xiis the input vector (uppercase X),
the y-intercept.
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What is a bias in the perceptron, and why do we add it?

Let’s brush up our memory on some linear algebra concepts to help understand
what’s happening under the hood. Here is the function of the straight line:

X The equation of a straight line

The function of a straight line is represented by the equation (y = mx + b), where b is
the y-intercept. To be able to define a line, you need two things: the slope of the line
and a point on the line. The bias is that point on the y-axis. Bias allows you to move
the line up and down on the y-axis to better fit the prediction with the data. Without
the bias (b), the line always has to go through the origin point (0,0), and you will get
a poorer fit. To visualize the importance of bias, look at the graph in the above figure
and try to separate the circles from the star using a line that passes through the ori-
gin (0,0). It is not possible.

The input layer can be given biases by introducing an extra input node that always has
avalue of 1, as you can see in the next figure. In neural networks, the value of the bias
(b) is treated as an extra weight and is learned and adjusted by the neuron to minimize
the cost function, as we will learn in the following sections of this chapter.

Inputs

Net input Activation
function function

> =

Output

The input layer can be given biases by introducing an extra input that always has a value of 1.
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STEP ACTIVATION FUNCTION

In both artificial and biological neural networks, a neuron does not just output the
bare input it receives. Instead, there is one more step, called an activation function; this
is the decision-making unit of the brain. In ANNSs, the activation function takes the
same weighted sum input from before (z=Xx; - w; + b) and activates (fires) the neuron
if the weighted sum is higher than a certain threshold. This activation happens based
on the activation function calculations. Later in this chapter, we’ll review the different
types of activation functions and their general purpose in the broader context of neu-
ral networks. The simplest activation function used by the perceptron algorithm is the
step function that produces a binary output (0 or 1). It basically says that if the
summed input = 0, it “fires” (output = 1); else (summed input < 0), it doesn’t fire (out-
put = 0) (figure 2.5).

Step function

1.04

0.8

0.6
0 lfwex+b<0

Output =
1 fwex+b>0

0.4

0.2

0.0 T T T T T
-4 -3 -2 -1 0 1 2 3 4
z

¥ = g(x), where g is an activation function and z is the weighted sum = in cw;t+b

Figure 2.5 The step function produces a binary output (0 or 1). If the summed input > 0, it “fires”
(output = 1); else (summed input < 0) it doesn't fire (output = 0).

This is how the step function looks in Python:

def step function(z): QT zis the weighted

if oz <= 0: sum = Zx; - w; + b
return 0

else:
return 1
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2.1.2 How does the perceptron learn?

213

The perceptron uses trial and error to learn from its mistakes. It uses the weights as
knobs by tuning their values up and down until the network is trained (figure 2.6).
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/ = @ < process to optimize the value of
the loss function.

The perceptron’s learning logic goes like this:

The neuron calculates the weighted sum and applies the activation function to
make a prediction j. This is called the feedforward process:

3= activation(Zx,- - w;+ b)
It compares the output prediction with the correct label to calculate the error:
error = y—j

It then updates the weight. If the prediction is too high, it adjusts the weight to
make a lower prediction the next time, and vice versa.
Repeat!

This process is repeated many times, and the neuron continues to update the weights
to improve its predictions until step 2 produces a very small error (close to zero),
which means the neuron’s prediction is very close to the correct value. At this point,
we can stop the training and save the weight values that yielded the best results to
apply to future cases where the outcome is unknown.

Is one neuron enough to solve complex problems?

The short answer is no, but let’s see why. The perceptron is a linear function. This

means the trained neuron will produce a straight line that separates our data.
Suppose we want to train a perceptron to predict whether a player will be accepted

into the college squad. We collect all the data from previous years and train the
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perceptron to predict whether players will be accepted based on only two features
(height and weight). The trained perceptron will find the best weights and bias values
to produce the straight line that best separates the accepted from non-accepted (best
fit). The line has this equation:

z=height - w) +age - wo + b

After the training is complete on the training data, we can start using the perceptron
to predict with new players. When we get a player who is 150 cm in height and 12 years
old, we compute the previous equation with the values (150, 12). When plotted in a
graph (figure 2.7), you can see that it falls below the line: the neuron is predicting
that this player will not be accepted. If it falls above the line, then the player will be
accepted.
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Figure 2.7 Linearly separable data can be separated by a straight line.

In figure 2.7, the single perceptron works fine because our data was linearly separable.
This means the training data can be separated by a straight line. But life isn’t always
that simple. What happens when we have a more complex dataset that cannot be sep-
arated by a straight line (nonlinear dataset)?

As you can see in figure 2.8, a single straight line will not separate our training
data. We say that it does not fit our data. We need a more complex network for more
complex data like this. What if we built a network with two perceptrons? This would
produce two lines. Would that help us separate the data better?

Okay, this is definitely better than the straight line. But, I still see some color mis-
predictions. Can we add more neurons to make the function fit better? Now you are
getting it. Conceptually, the more neurons we add, the better the network will fit our
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Figure 2.8 In a nonlinear dataset, a single straight line cannot separate the training
data. A network with two perceptrons can produce two lines and help separate the
data further in this example.

training data. In fact, if we add too many neurons, this will make the network overfit
the training data (not good). But we will talk about this later. The general rule here is
that the more complex our network is, the better it learns the features of our data.

Multilayer perceptrons

We saw that a single perceptron works great with simple datasets that can be separated
by a line. But, as you can imagine, the real world is much more complex than that.
This is where neural networks can show their full potential.

Linear vs. nonlinear problems
= Linear datasets—The data can be split with a single straight line.
= Nonlinear datasets—The data cannot be split with a single straight line. We
need more than one line to form a shape that splits the data.

Look at this 2D data. In the linear problem, the stars and dots can be easily classified
by drawing a single straight line. In nonlinear data, a single line will not separate both
shapes.

Linear Nonlinear
(can be split by (need more than one
one straight line) line to split the data)

o K * x o Examples of linear data
O 0 and nonlinear data
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To split a nonlinear dataset, we need more than one line. This means we need to
come up with an architecture to use tens and hundreds of neurons in our neural net-
work. Let’s look at the example in figure 2.9. Remember that a perceptron is a linear
function that produces a straight line. So in order to fit this data, we try to create a
triangle-like shape that splits the dark dots. It looks like three lines would do the job.

Input features Hidden layer Output
o ~
’ .o ::*: y: : .o’l::’(:’:'\.:”/
° e - Bt . Figure 2.9 A perceptron is a linear
5 o ! A function that produces a straight line.

- ° So to fit this data, we need three
o :.* :: :' perceptrons to create a triangle-like
& enlSTol shape that splits the dark dots.

Figure 2.9 is an example of a small neural network that is used to model nonlinear data.
In this network, we used three neurons stacked together in one layer called a hidden layer,
so called because we don’t see the output of these layers during the training process.

Multilayer perceptron architecture

We’ve seen how a neural network can be designed to have more than one neuron.
Let’s expand on this idea with a more complex dataset. The diagram in figure 2.10 is
from the Tensorflow playground website (https://playground.tensorflow.org). We try
to model a spiral dataset to distinguish between two classes. In order to fit this dataset,
we need to build a neural network that contains tens of neurons. A very common neu-
ral network architecture is to stack the neurons in layers on top of each other, called
hidden layers. Each layer has n number of neurons. Layers are connected to each other
by weight connections. This leads to the multilayer perceptron (MLP) architecture in
the figure.
The main components of the neural network architecture are as follows:

Input layer—Contains the feature vector.

Hidden layers—The neurons are stacked on top of each other in hidden layers.
They are called “hidden” layers because we don’t see or control the input going
into these layers or the output. All we do is feed the feature vector to the input
layer and see the output coming out of the output layer.

Weight connections (edges)—Weights are assigned to each connection between the
nodes to reflect the importance of their influence on the final output predic-
tion. In graph network terms, these are called edges connecting the nodes.
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Figure 2.10 Tensorflow playground example representation of the feature learning in a deep neural network
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Output layer—We get the answer or prediction from our model from the output
layer. Depending on the setup of the neural network, the final output may be a
real-valued output (regression problem) or a set of probabilities (classification
problem). This is determined by the type of activation function we use in the
neurons in the output layer. We’ll discuss the different types of activation func-
tions in the next section.

We discussed the input layer, weights, and output layer. The next area of this architec-
ture is the hidden layers.

What are hidden layers?

This is where the core of the feature-learning process takes place. When you look at
the hidden layer nodes in figure 2.10, you see that the early layers detect simple pat-
terns to learn low-level features (straight lines). Later layers detect patterns within
patterns to learn more complex features and shapes, then patterns within patterns
within patterns, and so on. This concept will come in handy when we discuss convolu-
tional networks in later chapters. For now, know that, in neural networks, we stack hid-
den layers to learn complex features from each other until we fit our data. So when
you are designing your neural network, if your network is not fitting the data, the solu-
tion could be adding more hidden layers.

How many layers, and how many nodes in each layer?

As a machine learning engineer, you will mostly be designing your network and tun-
ing its hyperparameters. While there is no single prescribed recipe that fits all models,
we will try throughout this book to build your hyperparameter tuning intuition, as
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well as recommend some starting points. The number of layers and the number of
neurons in each layer are among the important hyperparameters you will be design-
ing when working with neural networks.

A network can have one or more hidden layers (technically, as many as you want).
Each layer has one or more neurons (again, as many as you want). Your main job, as a
machine learning engineer, is to design these layers. Usually, when we have two or
more hidden layers, we call this a deep neural network. The general rule is this: the
deeper your network is, the more it will fit the training data. But too much depth is
not a good thing, because the network can fit the training data so much that it fails to
generalize when you show it new data (overfitting); also, it becomes more computa-
tionally expensive. So your job is to build a network that is not too simple (one neu-
ron) and not too complex for your data. It is recommended that you read about
different neural network architectures that are successfully implemented by others to
build an intuition about what is too simple for your problem. Start from that point,
maybe three to five layers (if you are training on a CPU), and observe the network
performance. If it is performing poorly (underfitting), add more layers. If you see
signs of overfitting (discussed later), then decrease the number of layers. To build a
sense of how neural networks perform when you add more layers, play around with
the Tensorflow playground (https://playground.tensorflow.org).

Fully connected layers
It is important to call out that the layers in classical MLP network architectures are
fully connected to the next hidden layer. In the following figure, notice that each node
in a layer is connected to all nodes in the previous layer. This is called a fully con-
nected network. These edges are the weights that represent the importance of this
node to the output value.

n_units n_units n_out

Input features Hidden layer 1 Hidden layer 2 Output layer

A fully connected network
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In later chapters, we will discuss other variations of neural network architecture (like
convolutional and recurrent networks). For now, know that this is the most basic neu-
ral network architecture, and it can be referred to by any of these names: ANN, MLP,
fully connected network, or feedforward network.

Let’s do a quick exercise to find out how many edges we have in our example. Sup-
pose that we designed an MLP network with two hidden layers, and each has five
neurons:

Weights 0 1: (4 nodes in the input layer) x (5 nodes in layer 1) + 5 biases
[1 bias per neuron] = 25 edges

Weights 1 2: 5 x5 nodes + 5 biases = 30 edges

Weights 2 output: 5 x 3 nodes + 3 bias = 18 edges

Total edges (weights) in this network = 73

We have a total of 73 weights in this very simple network. The values of these
weights are randomly initialized, and then the network performs feedforward and
backpropagation to learn the best values of weights that most fit our model to the
training data.

To see the number of weights in this network, try to build this simple network in Keras
as follows:

model = Sequential ([
Dense (5, input_dim=4),
Dense (5) ,
Dense (3)

1)

And print the model summary:

model . summary ()

The output will be as follows:

Layer (type) Output Shape Param #
dense_1 (Dense) (None, 5) 30
dense 2 (Dense) (None, 3) 18

Total params: 73
Trainable params: 73
Non-trainable params: 0

49
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2.2.4 Some takeaways from this section
Let’s recap what we’ve discussed so far:

We talked about the analogy between biological and artificial neurons: both
have inputs and a neuron that does some calculations to modulate the input
signals and create output.

We zoomed in on the artificial neuron’s calculations to explore its two main
functions: weighted sum and the activation function.

We saw that the network assigns random weights to all the edges. These weight
parameters reflect the usefulness (or importance) of these features on the out-
put prediction.

Finally, we saw that perceptrons contain a single neuron. They are linear func-
tions that produce a straight line to split linear data. In order to split more com-
plex data (nonlinear), we need to apply more than one neuron in our network
to form a multilayer perceptron.

The MLP architecture contains input features, connection weights, hidden lay-
ers, and an output layer.

We discussed the high-level process of how the perceptron learns. The learning
process is a repetition of three main steps: feedforward calculations to produce
a prediction (weighted sum and activation), calculating the error, and back-
propagating the error and updating the weights to minimize the error.

We should also keep in mind some of the important points about neural network
hyperparameters:

Number of hidden layers—You can have as many layers as you want, each with as
many neurons as you want. The general idea is that the more neurons you have,
the better your network will learn the training data. But if you have too many
neurons, this might lead to a phenomenon called overfitting: the network
learned the training set so much that it memorized it instead of learning its fea-
tures. Thus, it will fail to generalize. To get the appropriate number of layers,
start with a small network, and observe the network performance. Then start
adding layers until you get satisfying results.

Activation function—There are many types of activation functions, the most pop-
ular being ReLU and softmax. It is recommended that you use ReLU activation
in the hidden layers and Softmax for the output layer (you will see how this is
implemented in most projects in this book).

Error function—Measures how far the network’s prediction is from the true
label. Mean square error is common for regression problems, and cross-entropy
is common for classification problems.

Optimizer—Optimization algorithms are used to find the optimum weight values
that minimize the error. There are several optimizer types to choose from. In
this chapter, we discuss batch gradient descent, stochastic gradient descent, and
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mini-batch gradient descent. Adam and RMSprop are two other popular opti-
mizers that we don’t discuss.

Baltch size—Mini-batch size is the number of sub-samples given to the network,
after which parameter update happens. Bigger batch sizes learn faster but
require more memory space. A good default for batch size might be 32. Also try
64, 128, 256, and so on.

Number of epochs—The number of times the entire training dataset is shown to the
network while training. Increase the number of epochs until the validation accu-
racy starts decreasing even when training accuracy is increasing (overfitting).
Learning rate—One of the optimizer’s input parameters that we tune. Theoreti-
cally, a learning rate that is too small is guaranteed to reach the minimum error
(if you train for infinity time). A learning rate that is too big speeds up the
learning but is not guaranteed to find the minimum error. The default 1r value
of the optimizer in most DL libraries is a reasonable start to get decent results.
From there, go down or up by one order of magnitude. We will discuss the
learning rate in detail in chapter 4.

More on hyperparameters

Other hyperparameters that we have not discussed yet include dropout and regular-
ization. We will discuss hyperparameter tuning in detail in chapter 4, after we cover
convolutional neural networks in chapter 3.

In general, the best way to tune hyperparameters is by trial and error. By getting your
hands dirty with your own projects as well as learning from other existing neural net-
work architectures, you will start to develop intuition about good starting points for
your hyperparameters.

Learn to analyze your network’s performance and understand which hyperparameter
you need to tune for each symptom. And this is what we are going to do in this book.
By understanding the reasoning behind these hyperparameters and observing the
network performance in the projects at the end of the chapters, you will develop a
feel for which hyperparameter to tune for a particular effect. For example, if you see
that your error value is not decreasing and keeps oscillating, then you might fix that
by reducing the learning rate. Or, if you see that the network is performing poorly in
learning the training data, this might mean that the network is underfitting and you
need to build a more complex model by adding more neurons and hidden layers.

Activation functions

When you are building your neural network, one of the design decisions that you will
need to make is what activation function to use for your neurons’ calculations. Activa-
tion functions are also referred to as transfer functions or nonlinearities because they
transform the linear combination of a weighted sum into a nonlinear model. An acti-
vation function is placed at the end of each perceptron to decide whether to activate
this neuron.



52

CHAPTER 2  Deep learning and neural networks

Why use activation functions at all? Why not just calculate the weighted sum of our
network and propagate that through the hidden layers to produce an output?

The purpose of the activation function is to introduce nonlinearity into the net-
work. Without it, a multilayer perceptron will perform similarly to a single perceptron
no matter how many layers we add. Activation functions are needed to restrict the out-
put value to a certain finite value. Let’s revisit the example of predicting whether a
player gets accepted (figure 2.11).
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Figure 2.11 This example revisits the prediction of whether a player gets
accepted from section 2.1.

First, the model calculates the weighted sum and produces the linear function (z):
z=height - w) +age - w9 + b

The output of this function has no bound. z could literally be any number. We use an
activation function to wrap the prediction values to a finite value. In this example, we
use a step function where if z > 0, then above the line (accepted) and if z < 0, then
below the line (rejected). So without the activation function, we just have a linear
function that produces a number, but no decision is made in this perceptron. The
activation function is what decides whether to fire this perceptron.

There are infinite activation functions. In fact, the last few years have seen a lot of
progress in the creation of state-of-the-art activations. However, there are still relatively
few activations that account for the vast majority of activation needs. Let’s dive deeper
into some of the most common types of activation functions.
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Linear transfer function

A linear transfer function, also called an identity function, indicates that the function
passes a signal through unchanged. In practical terms, the output will be equal to the
input, which means we don’t actually have an activation function. So no matter how
many layers our neural network has, all it is doing is computing a linear activation
function or, at most, scaling the weighted average coming in. But it doesn’t transform
input into a nonlinear function.

activation(z) = z=wx+ b

The composition of two linear functions is a linear function, so unless you throw a
nonlinear activation function in your neural network, you are not computing any
interesting functions no matter how deep you make your network. No learning here!

To understand why, let’s calculate the derivative of the activation z(x) = w - x + b,
where w=4 and b= 0. When we plot this function, it looks like figure 2.12. Then the
derivative of z(x) = 4x1is z'(x) = 4 (figure 2.13).

f(x) = 4x y
4 =+
3 =+
2 =+
1_-
4 3 22 1 2 3 4 x

Figure 2.12 The plot for the
activation function f(x) = 4x

The derivative of a linear function is constant: it does not depend on the input value
x. This means that every time we do a backpropagation, the gradient will be the same.
And this is a big problem: we are not really improving the error, since the gradient is
pretty much the same. This will be clearer when we discuss backpropagation later in
this chapter.
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f'(x) = g(x) = 4

Figure 2.13 The plot for the
derivative of z(x) = 4x is z'(x) = 4.

Heaviside step function (binary classifier)

The step function produces a binary output. It basically says that if the input x > 0, it
fires (output y = 1); else (input < 0), it doesn’t fire (output y = 0). It is mainly used in
binary classification problems like true or false, spam or not spam, and pass or fail

(figure 2.14).

Step function
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Figure 2.14 Step functions are commonly used in binary classification problems because they
transform the input into zero or one.
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2.3.3 Sigmoid/logistic function

This is one of the most common activation functions. It is often used in binary classifi-
ers to predict the probability of a class when you have two classes. The sigmoid squishes
all the values to a probability between 0 and 1, which reduces extreme values or out-
liers in the data without removing them. Sigmoid or logistic functions convert infinite
continuous variables (range between —ee to +eo) into simple probabilities between 0
and 1. It is also called the S-shape curve because when plotted in a graph, it produces
an S-shaped curve. While the step function is used to produce a discrete answer (pass
or fail), sigmoid is used to produce the probability of passing and probability of failing
(figure 2.15):

1
1+e™

o(z) =

Sigmoid
1.0

)
0=y o=
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Figure 2.15 While the step function is used to produce a discrete
answer (pass or fail), sigmoid is used to produce the probability of
passing or failing.

Here is how sigmoid is implemented in Python:

import numpy as np <1—‘ Imports numpy
def sigmoid (x) :

Sigmoid activation
return 1 / (1 + np.exp(-x))

function
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Just-in-time linear algebra (optional)

Let’s take a deeper dive into the math side of the sigmoid function to understand the
problem it helps solve and how the sigmoid function equation is driven. Suppose that
we are trying to predict whether patients have diabetes based on only one feature:
their age. When we plot the data we have about our patients, we get the linear model
shown in the figure:

z=Bo + Py age

1.5

0.5

The linear model we get when we
Age plot our data about our patients

In this plot, you can observe the balance of probabilities that should go from O to 1.
Note that when patients are below the age of 25, the predicted probabilities are neg-
ative; meanwhile, they are higher than 1 (100%) when patients are older than 43
years old. This is a clear example of why linear functions do not work in most cases.
Now, how do we fix this to give us probabilities within the range of O < probability < 17?

First, we need to do something to eliminate all the negative probability values. The
exponential function is a great solution for this problem because the exponent of any-
thing (and | mean anything) is always going to be positive. So let’s apply that to our
linear equation to calculate the probability (p):

p = exp(z) = exp(Bo + PB1 age)

This equation ensures that we always get probabilities greater than 0. Now, what
about the values that are higher than 1? We need to do something about them. With
proportions, any given number divided by a number that is greater than it will give us
a number smaller than 1. Let’s do exactly that to the previous equation. We divide
the equation by its value plus a small value: either 1 or a (in some cases very small)
value—let’s call it epsilon (g):

_exp(2)
T exp(z)+e
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If you divide the equation by exp(z), you get

~ 1
P= Ten(=)

When we plot the probability of this equation, we get the S shape of the sigmoid func-
tion, where probability is no longer below O or above 1. In fact, as patients’ ages
grow, the probability asymptotically gets closer to 1; and as the weights move down,
the function asymptotically gets closer to O but is never outside the O < p < 1 range.
This is the plot of the sigmoid function and logistic regression.

2
1.5
1
p
0.5
0 - : - - - - As patients get older, the
20 25 30 35 40 45 50 55 probability asymptotically gets
closer to 1. This is the plot of the
05 sigmoid function and logistic

Age regression.

Softmax function

The softmax function is a generalization of the sigmoid function. It is used to obtain
classification probabilities when we have more than two classes. It forces the outputs
of a neural network to sum to 1 (for example, 0 < output < 1). A very common use
case in deep learning problems is to predict a single class out of many options (more
than two).

The softmax equation is as follows:

e

et

I3

G(X]) =

Figure 2.16 shows an example of the softmax function.

1.2 0.46

Figure 2.16 The softmax function transforms
09 Soitiz: 0.34 the input values to probability values between
0.4 0.20 Oand1.
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TIP Softmax is the go-to function that you will often use at the output layer of
a classifier when you are working on a problem where you need to predict a
class between more than two classes. Softmax works fine if you are classifying
two classes, as well. It will basically work like a sigmoid function. By the end of
this section, I'll tell you my recommendations about when to use each activa-
tion function.

Hyperbolic tangent function (tanh)

The hyperbolic tangent function is a shifted version of the sigmoid version. Instead of
squeezing the signal values between 0 and 1, tanh squishes all values to the range -1 to 1.
Tanh almost always works better than the sigmoid function in hidden layers because it
has the effect of centering your data so that the mean of the data is close to zero
rather than 0.5, which makes learning for the next layer a little bit easier:

sinh(x) e*—e™

tanh (x) = cosh(x) e*+e™

One of the downsides of both sigmoid and tanh functions is that if (z) is very large or
very small, then the gradient (or derivative or slope) of this function becomes very
small (close to zero), which will slow down gradient descent (figure 2.17). This is
when the ReLLU activation function (explained next) provides a solution.

tanh (x)

1.0

Figure 2.17 If (z) is very large
or very small, then the gradient
(or derivative or slope) of this
function becomes very small
(close to zero).

Rectified linear unit

The rectified linear unit (ReLU) activation function activates a node only if the input
is above zero. If the input is below zero, the output is always zero. But when the input
is higher than zero, it has a linear relationship with the output variable. The ReLU
function is represented as follows:

f(x) =max (0, x)
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At the time of writing, ReLU is considered the state-of-the-art activation function
because it works well in many different situations, and it tends to train better than sig-
moid and tanh in hidden layers (figure 2.18).

Rectifier

0ifx<0

2 ReLU(x) = Xifx>=0

-2

-3

-4 2 0 2 4

Figure 2.18 The ReLU function eliminates all negative values of the input by transforming
them into zeros.

Here is how ReL.U is implemented in Python:

def rel : < ivati
ef relu(x) ReLU activation

if x < 0: .
function
return O

else:
return x

Leaky ReLU

One disadvantage of ReLLU activation is that the derivative is equal to zero when (x) is
negative. Leaky ReLLU is a ReLLU variation that tries to mitigate this issue. Instead of
having the function be zero when x < 0, leaky ReLU introduces a small negative slope
(around 0.01) when (x) is negative. It usually works better than the ReL.U function,
although it’s not used as much in practice. Take a look at the leaky ReLLU graph in fig-
ure 2.19; can you see the leak?

f(x) = max(0.01x, x)

Why 0.01? Some people like to use this as another hyperparameter to tune, but that
would be overkill, since you already have other, bigger problems to worry about. Feel
free to try different values (0.1, 0.01, 0.002) in your model and see how they work.



CHAPTER 2  Deep learning and neural networks

Leaky ReLU

10

0.01x forx<O

fx) = x forx=>0

Figure 2.19 Instead of having the function be zero when x < 0, leaky ReLU introduces a small
negative slope (around 0.01) when (x) is negative.

Here is how Leaky ReLLU is implemented in Python:

def leaky relu(x):
if x < 0:
return x * 0.01
else:
return x

Leaky ReLU
activation function
with a 0.01 leak

Table 2.1 summarizes the various activation functions we’ve discussed in this section.

Table 2.1 A cheat sheet of the most common activation functions

Activation o P
function Description Equation
Linear trans- The signal passes f(x) = x
fer function through it i
(identity unchanged. It ol
function) remains a linear 24
function. AImost 14
never used. = = A 5 i
2
3
4]
54
Heaviside Produces a binary Step function 0ifw-x+b<0
step function | output of O or 1. 10 outPUt =1, 4 b>0
(binary Mainly used in 08
classifier) binary classifica-
tion to give a dis- 06
crete value. 04
0.2
0.0
-4 -3 2 -1 0 1 2 3 4
z
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Table 2.1 A cheat sheet of the most common activation functions

Activation
function

Description Equation

Sigmoid/ Squishes all the _
logistic values to a probabil- ' T 1l+e?
function ity between O and 1,
which reduces
extreme values

or outliers in the
data. Usually

used to classify
two classes. z

?(2) 1.5

0.0}

Softmax A generalization of e
function the sigmoid func-
tion. Used to obtain
classification proba-
bilities when we
have more than

two classes.

B(z) 1.5

0.0}

Hyperbolic Squishes all values tanh x tanh(x) = sinh(x)
tangent func- | to the range of -1 1of cosh(x)
tion (tanh) to 1. Tanh almost e

always works better 05 T T trex

than the sigmoid
function in hidden 3 =) 3 rum
layers.

Rectified Activates a node Rectifier f(x) = max (0, x)
linear unit only if the input is
(ReLU) above zero. Always
recommended for
hidden layers.
Better than tanh.

Leaky ReLU Instead of having
the function be zero
when x < O, leaky
ReLU introduces a
small negative
slope (around 0.01)

when (x) is negative. | Clo—————— 5 10

f(x) = max(0.01x, x)
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Hyperparameter alert

Due to the number of activation functions, it may appear to be an overwhelming task
to select the appropriate activation function for your network. While it is important to
select a good activation function, | promise this is not going to be a challenging task
when you design your network. There are some rules of thumb that you can start with,
and then you can tune the model as needed. If you are not sure what to use, here
are my two cents about choosing an activation function:

For hidden layers—In most cases, you can use the RelLU activation function
(or leaky ReLU) in hidden layers, as you will see in the projects that we will
build throughout this book. It is increasingly becoming the default choice
because it is a bit faster to compute than other activation functions. More
importantly, it reduces the likelihood of the gradient vanishing because it does
not saturate for large input values—as opposed to the sigmoid and tanh acti-
vation functions, which saturate at ~ 1. Remember, the gradient is the slope.
When the function plateaus, this will lead to no slope; hence, the gradient
starts to vanish. This makes it harder to descend to the minimum error (we
will talk more about this phenomenon, called vanishing/exploding gradients,
in later chapters).

For the output layer—The softmax activation function is generally a good
choice for most classification problems when the classes are mutually exclu-
sive. The sigmoid function serves the same purpose when you are doing
binary classification. For regression problems, you can simply use no activa-
tion function at all, since the weighted sum node produces the continuous
output that you need: for example, if you want to predict house pricing based
on the prices of other houses in the same neighborhood.

The feedforward process

Now that you understand how to stack perceptrons in layers, connect them with
weights/edges, perform a weighted sum function, and apply activation functions, let’s
implement the complete forward-pass calculations to produce a prediction output.
The process of computing the linear combination and applying the activation func-
tion is called feedforward. We briefly discussed feedforward several times in the previ-
ous sections; let’s take a deeper look at what happens in this process.

The term feedforward is used to imply the forward direction in which the informa-
tion flows from the input layer through the hidden layers, all the way to the output
layer. This process happens through the implementation of two consecutive functions:
the weighted sum and the activation function. In short, the forward pass is the calcula-
tions through the layers to make a prediction.

Let’s take a look at the simple three-layer neural network in figure 2.20 and
explore each of its components:

Layers—This network consists of an input layer with three input features, and
three hidden layers with 3, 4, 1 neurons in each layer.
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Weights and biases (w, b)—The edges between nodes are assigned random
weights denoted as WS, where (n) indicates the layer number and (ab) indi-
cates the weighted edge connecting the ath neuron in layer (n) to the 4th neu-
ron in the previous layer (n —1). For example, Wss is the weight that connects
the second node in layer 2 to the third node in layer 1 (a3 to ai). (Note that
you can see different denotations of WS in other DL literature, which is fine as
long as you follow one convention for your entire network.)

The biases are treated similarly to weights because they are randomly initial-
ized, and their values are learned during the training process. So, for conve-
nience, from this point forward we are going to represent the basis with the
same notation that we gave for the weights (w). In DL literature, you will mostly
find all weights and biases represented as (w) for simplicity.

Activation functions 6(x)—In this example, we are using the sigmoid function
6(x) as an activation function.

Node values (a)—We will calculate the weighted sum, apply the activation func-
tion, and assign this value to the node a,, where n is the layer number and m is
the node index in the layer. For example, ag means node number 2 in layer 3.

Input layer Layer 1 Layer 2 Layer 3
n=3

n=3 n=4 n=1

Figure 2.20 A simple three-layer neural network
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2.4.1 Feedforward calculations

We have all we need to start the feedforward calculations:

(1) (1) (1) (1)
ay =G(w11 X1+1,U21 X2+Zl)31 xg)

1) _ (1 (1 (H
ay’ =o(wig X1 + wey Xo + W39 X3)

(1) (1)

) (1
ag’ =o(wjg x1 + wog X9 + W33 x3)

Then we do the same calculations for layer 2

(2) (2) (2)

2
asas ,as , and ai)

all the way to the output prediction in layer 3:

«_® ® @ L. @, 3 @, 6 2
y=ajy’ =o (wy]a; +wigay +wigag +wigay )

And there you have it! You just calculated the feedforward of a two-layer neural net-
work. Let’s take a moment to reflect on what we just did. Take a look at how many
equations we need to solve for such a small network. What happens when we have a
more complex problem with hundreds of nodes in the input layer and hundreds
more in the hidden layers? It is more efficient to use matrices to pass through multi-
ple inputs at once. Doing this allows for big computational speedups, especially when
using tools like NumPy, where we can implement this with one line of code.

Let’s see how the matrices computation looks (figure 2.21). All we did here is sim-
ply stack the inputs and weights in matrices and multiply them together. The intuitive
way to read this equation is from the right to the left. Start at the far right and follow
with me:

We stack all the inputs together in one vector (row, column), in this case (3, 1).
We multiply the input vector by the weights matrix from layer 1 (W) and then
apply the sigmoid function.

We multiply the result for layer 2 = ¢ - W® and layer 3 = ¢ - W,

If we have a fourth layer, you multiply the result from step 3 by 6 - W™, and so
on, until we get the final prediction output j!

Here is a simplified representation of this matrices formula:

j=o- W - W - W . (x)
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w(3) w(2) w)
(2 2 2] 1 1 1
Wi Wi Wi, Wiy Wiy Wis X
. 3 3 3 3 . 2 2 a2 | . 1 1 1
y=o0 |:W11 Wi Wiz W14] O Woy Wy Woa | -0 | Wy Wy Wy X5
2 2 2 1 1 1
Wiy Wiy Wi Wiy Wap Wi X3
2 2 2
Wy Wi Wi
| | | | | | |
I I I I
Layer 3 Layer 2 Layer 1 Input vector

Figure 2.21 Reading from left to right, we stack the inputs together in one vector, multiply
the input vector by the weights matrix from layer 1, apply the sigmoid function, and multiply
the result.

Feature learning

The nodes in the hidden layers (a;) are the new features that are learned after each
layer. For example, if you look at figure 2.20, you see that we have three feature
inputs (x1, xo, and x3). After computing the forward pass in the first layer, the net-
work learns patterns, and these features are transformed to three new features with

different values (a(ll),a(;),a;l)). Then, in the next layer, the network learns patterns

within the patterns and produces new features (a(12), aff), a(gg), and af), and so forth).
The produced features after each layer are not totally understood, and we don’t see
them, nor do we have much control over them. It is part of the neural network
magic. That’s why they are called hidden layers. What we do is this: we look at the
final output prediction and keep tuning some parameters until we are satisfied by
the network’s performance.

To reiterate, let’s see this in a small example. In figure 2.22, you see a small neural
network to estimate the price of a house based on three features: how many bedrooms
it has, how big it is, and which neighborhood it is in. You can see that the original
input feature values 3, 2000, and 1 were transformed into new feature values after
performing the feedforward process in the first layer (a® a(f), a” d?). Then they were
transformed again to a prediction output value (j). When training a neural network,
we see the prediction output and compare it with the true price to calculate the error
and repeat the process until we get the minimum error.

To help visualize the feature-learning process, let’s take another look at figure 2.9
(repeated here in figure 2.23) from the Tensorflow playground. You can see that the
first layer learns basic features like lines and edges. The second layer begins to learn
more complex features like corners. The process continues until the last layers of
the network learn even more complex feature shapes like circles and spirals that
fit the dataset.
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Input Output
features Hidden layer prediction (y)

New
feature

Bedrooms

Final
price

Square feet
estimate

Neighborhood
(mapped to

an ID number) Figure 2.22 A small neural network

to estimate the price of a house
feature based on three features: how many
a4 bedrooms it has, how big it is, and
Weights Weights which neighborhood it is in
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These are the new features that
are learned after each layer.

Figure 2.23 Learning features in multiple hidden layers

That is how a neural network learns new features: via the network’s hidden layers.
First, they recognize patterns in the data. Then, they recognize patterns within patterns;
then patterns within patterns within patterns, and so on. The deeper the network is,
the more it learns about the training data.
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Vectors and matrices refresher

If you understood the matrix calculations we just did in the feedforward discussion, feel
free to skip this sidebar. If you are still not convinced, hang tight: this sidebar is for you.

The feedforward calculations are a set of matrix multiplications. While you will not do
these calculations by hand, because there are a lot of great DL libraries that do them
for you with just one line of code, it is valuable to understand the mathematics that
happens under the hood so you can debug your network. Especially because this is
very trivial and interesting, let’s quickly review matrix calculations.

Let’s start with some basic definitions of matrix dimensions:

A scalar is a single number.

A vector is an array of numbers.

A matrix is a 2D array.

A tensor is an n-dimensional array with n > 2.

Scalar Vector Matrix Tensor Matrix dimensions: a scalar is a single
number, a vector is an array of numbers,
1 1 2 12 32
1 |: ] |: ] [12][32] a matrix is a 2D array, and a tensor is an
2 3 4 [17][54] n-dimensional array.
We will follow the conventions used in most mathematical literature:

Scalars are written in lowercase and italics: for instance, n.

Vectors are written in lowercase, italics, and bold type: for instance, x.
Matrices are written in uppercase, italics, and bold: for instance, X.
Matrix dimensions are written as follows: (row X column).

Multiplication:

Scalar multiplication—Simply multiply the scalar number by all the numbers in
the matrix. Note that scalar multiplications don’t change the matrix dimensions:

) 10 67] |2-10 2-6
4 3| |24 2-3
Matrix multiplication—When multiplying two matrices, such as in the case of

(rowq X columnyq) X (row, X column,), column4 and row, must be equal to each
other, and the product will have the dimensions (row4 X column,). For example,

13 9 7
|:3 4 2i| 8 7 4 =|:x y zi|
6 4 0
Same
P~
1%x3 3x3 1%x3

Product

67



68

2.5

CHAPTER 2  Deep learning and neural networks

where x=3-13+4 -8+ 2 - 6 =83, and the same for y = 63 and z = 37.

Now that you know the matrices multiplication rules, pull out a piece of paper and
work through the dimensions of matrices in the earlier neural network example. The
following figure shows the matrix equation again for your convenience.

w®3) w(2) w)
(2 2 2 | 1 1 1
Wi Wiy Wi Wi Wi Wis X
e 3 3,3 3 |, 2 w2 w2 | . 1 1 1
y=o9 |:W11 Wip Wis W14] O Woy Wop Wiz | 0| Wy Wy Wy X5
2 2 2 1 1 1
Way Wiy Wiy Wiy Wiy Wi X3
2 12 2
Wi Wi Wy
| | | | | |
[ [ [ [
Layer 3 Layer 2 Layer 1 Input vector

The matrix equation from the main text. Use it to work through matrix dimensions.

The last thing | want you to understand about matrices is transposition. With transpo-
sition, you can convert a row vector to a column vector and vice versa, where the
shape (m x n) is inverted and becomes (n x m). The superscript (A') is used for trans-
posed matrices:

[2

A=8] S AT=[2 8]
(1 2 3 147

A=|4 56| =AT=|2 5 8
(7 89 3 6 9
[0 1

acl2 4 =021
0 ] 1 4

Error functions

So far, you have learned how to implement the forward pass in neural networks to
produce a prediction that consists of the weighted sum plus activation operations.
Now, how do we evaluate the prediction that the network just produced? More
importantly, how do we know how far this prediction is from the correct answer (the
label)? The answer is this: measure the error. The selection of an error function is
another important aspect of the design of a neural network. Error functions can
also be referred to as cost functions or loss functions, and these terms are used inter-
changeably in DL literature.
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What is the error function?

The error function is a measure of how “wrong” the neural network prediction is with
respect to the expected output (the label). It quantifies how far we are from the cor-
rect solution. For example, if we have a high loss, then our model is not doing a good
job. The smaller the loss, the better the job the model is doing. The larger the loss,
the more our model needs to be trained to increase its accuracy.

Why do we need an error function?

Calculating error is an optimization problem, something all machine learning engi-
neers love (mathematicians, too). Optimization problems focus on defining an error
function and trying to optimize its parameters to get the minimum error (more on
optimization in the next section). But for now, know that, in general, when we are
working on an optimization problem, if we are able to define the error function for
the problem, we have a very good shot at solving it by running optimization algo-
rithms to minimize the error function.

In optimization problems, our ultimate goal is to find the optimum variables
(weights) that would minimize the error function as much as we can. If we don’t know
how far from the target we are, how will we know what to change in the next iteration?
The process of minimizing this error is called error function optimization. We will review
several optimization methods in the next section. But for now, all we need to know
from the error function is how far we are from the correct prediction, or how much
we missed the desired degree of performance.

Error is always positive

Consider this scenario: suppose we have two data points that we are trying to get our
network to predict correctly. If the first gives an error of 10 and the second gives an
error of —10, then our average error is zero! This is misleading because “error = 0”
means our network is producing perfect predictions, when, in fact, it missed by 10
twice. We don’t want that. We want the error of each prediction to be positive, so the
errors don’t cancel each other when we take the average error. Think of an archer
aiming at a target and missing by 1 inch. We are not really concerned about which
direction they missed; all we need to know is how far each shot is from the target.

A visualization of loss functions of two separate models plotted over time is shown
in figure 2.24. You can see that model #1 is doing a better job of minimizing error,
whereas model #2 starts off better until epoch 6 and then plateaus.

Different loss functions will give different errors for the same prediction, and thus
have a considerable effect on the performance of the model. A thorough discussion
of loss functions is outside the scope of this book. Instead, we will focus on the two
most commonly used loss functions: mean squared error (and its variations), usually
used for regression problems, and cross-entropy, used for classification problems.
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Figure 2.24 A visualization of the loss functions of two separate models plotted over time

Mean square error

Mean squared error (MSE) is commonly used in regression problems that require the
output to be a real value (like house pricing). Instead of just comparing the predic-
tion output with the label (§;—y;), the error is squared and averaged over the number
of data points, as you see in this equation:

I o
E(W, ) = 52 Gi=9)*
i=1

MSE is a good choice for a few reasons. The square ensures the error is always positive,
and larger errors are penalized more than smaller errors. Also, it makes the math
nice, which is always a plus. The notations in the formula are listed in table 2.2.

MSE is quite sensitive to outliers, since it squares the error value. This might not be
an issue for the specific problem that you are solving. In fact, this sensitivity to outliers
might be beneficial in some cases. For example, if you are predicting a stock price,
you would want to take outliers into account, and sensitivity to outliers would be a
good thing. In other scenarios, you wouldn’t want to build a model that is skewed by
outliers, such as predicting a house price in a city. In that case, you are more inter-
ested in the median and less in the mean. A variation error function of MSE called
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Table 2.2 Meanings of notation used in regression problems

Notation Meaning

E(W, b) The loss function. Is also annotated as J(W, b) in other literature.

w Weights matrix. In some literature, the weights are denoted by the theta sign (0).
b Biases vector.

N Number of training examples.

Vi Prediction output. Also notated as h,, ,(X) in some DL literature.

Yi The correct output (the label).

Wi—-v) Usually called the residual.

mean absolute error (MAE) was developed just for this purpose. It averages the absolute
error over the entire dataset without taking the square of the error:

1.
E(W, b) = NZ; 5= il

Cross-entropy

Cross-entropy is commonly used in classification problems because it quantifies the
difference between two probability distributions. For example, suppose that for a spe-
cific training instance, we are trying to classify a dog image out of three possible
classes (dogs, cats, fish). The true distribution for this training instance is as follows:

Probability (cat) P (dog) P(fish)
0.0 1.0 0.0

We can interpret this “true” distribution to mean that the training instance has 0%
probability of being class A, 100% probability of being class B, and 0% probability of
being class C. Now, suppose our machine learning algorithm predicts the following
probability distribution:

Probability (cat) P (dog) P(fish)
0.2 0.3 0.5

How close is the predicted distribution to the true distribution? That is what the cross-
entropy loss function determines. We can use this formula:

E(W, b) ==Y 5;log(p)
i=1
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where (y) is the target probability, (p) is the predicted probability, and (m) is the num-
ber of classes. The sum is over the three classes: cat, dog, and fish. In this case, the loss
is 1.2:

E=- (0.0 * 1og(0.2) + 1.0 * 1log(0.3) + 0.0 * log(0.5)) = 1.2

So that is how “wrong” or “far away” our prediction is from the true distribution.

Let’s do this one more time, just to show how the loss changes when the network
makes better predictions. In the previous example, we showed the network an image
of a dog, and it predicted that the image was 30% likely to be a dog, which was very far
from the target prediction. In later iterations, the network learns some patterns and
gets the predictions a little better, up to 50%:

Probability (cat) P (dog) P(fish)
0.3 0.5 0.2

Then we calculate the loss again:
E = - (0.0%¥log(0.3) + 1.0*1log(0.5) + 0.0*log(0.2)) = 0.69

You see that when the network makes a better prediction (dog is up to 50% from
30%), the loss decreases from 1.2 to 0.69. In the ideal case, when the network predicts
that the image is 100% likely to be a dog, the cross-entropy loss will be 0 (feel free to
try the math).

To calculate the cross-entropy error across all the training examples (n), we use
this general formula:

E(W, b) ==">" §;log(py))
i=1i=1

NOTE It is important to note that you will not be doing these calculations by
hand. Understanding how things work under the hood gives you better intu-
ition when you are designing your neural network. In DL projects, we usually
use libraries like Tensorflow, PyTorch, and Keras where the error function is
generally a parameter choice.

A final note on errors and weights

As mentioned before, in order for the neural network to learn, it needs to minimize
the error function as much as possible (0 is ideal). The lower the errors, the higher
the accuracy of the model in predicting values. How do we minimize the error?

Let’s look at the following perceptron example with a single input to understand
the relationship between the weight and the error:
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Suppose the input x = 0.3, and its label (goal prediction) y = 0.8. The prediction out-
put (9) of this perception is calculated as follows:

Yi=w-x=w-0.3

And the error, in its simplest form, is calculated by comparing the prediction j and
the label y:

error = | — y|

=[(w- %) -]

=|w-0.3-0.8]

If you look at this error function, you will notice that the input (x) and the goal predic-
tion (y) are fixed values. They will never change for these specific data points. The only
two variables that we can change in this equation are the error and the weight. Now, if
we want to get to the minimum error, which variable can we play with? Correct: the
weight! The weight acts as a knob that the network needs to adjust up and down until it
gets the minimum error. This is how the network learns: by adjusting weight. When we
plot the error function with respect to the weight, we get the graph shown in figure 2.25.
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Slope Goal weight Figure 2.25 The network
0.2 | learns by adjusting weight.
) When we plot the error function
0 >~ ¢ i i
5 0 5 10 15 20 25 30 35 20 wn.th respect to weight, we get
w this type of graph.

As mentioned before, we initialize the network with random weights. The weight lies
somewhere on this curve, and our mission is to make it descend this curve to its optimal
value with the minimum error. The process of finding the goal weights of the neural
network happens by adjusting the weight values in an iterative process using an optimi-
zation algorithm.
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Optimization algorithms

Training a neural network involves showing the network many examples (a training
dataset); the network makes predictions through feedforward calculations and com-
pares them with the correct labels to calculate the error. Finally, the neural network
needs to adjust the weights (on all edges) until it gets the minimum error value, which
means maximum accuracy. Now, all we need to do is build algorithms that can find
the optimum weights for us.

What is optimization?

Ahh, optimization! A topic that is dear to my heart, and dear to every machine learn-
ing engineer (mathematicians too). Optimization is a way of framing a problem to
maximize or minimize some value. The best thing about computing an error function
is that we turn the neural network into an optimization problem where our goal is to
minimaze the error.

Suppose you want to optimize your commute from home to work. First, you need
to define the metric that you are optimizing (the error function). Maybe you want to
optimize the cost of the commute, or the time, or the distance. Then, based on that
specific loss function, you work on minimizing its value by changing some parameters.
Changing the parameters to minimize (or maximize) a value is called optimization. If
you choose the loss function to be the cost, maybe you will choose a longer commute
that will take two hours, or (hypothetically) you might walk for five hours to minimize
the cost. On the other hand, if you want to optimize the time spent commuting,
maybe you will spend $50 to take a cab that will decrease the commute time to 20 min-
utes. Based on the loss function you defined, you can start changing your parameters
to get the results you want.

TIP In neural networks, optimizing the error function means updating the
weights and biases until we find the optimal weights, or the best values for the
weights to produce the minimum error.

Let’s look at the space that we are trying to optimize:

In a neural network of the simplest form, a perceptron with one input, we have only
one weight. We can easily plot the error (that we are trying to minimize) with respect
to this weight, represented by the 2D curve in figure 2.26 (repeated from earlier).
But what if we have two weights? If we graph all the possible values of the two
weights, we get a 3D plane of the error (figure 2.27).
What about more than two weights? Your network will probably have hundreds or
thousands of weights (because each edge in your network has its own weight value).
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Since we humans are only equipped to understand a maximum of 3 dimensions, it is
impossible for us to visualize error graphs when we have 10 weights, not to mention
hundreds or thousands of weight parameters. So, from this point on, we will study the
error function using the 2D or 3D plane of the error. In order to optimize the model,
our goal is to search this space to find the best weights that will achieve the lowest pos-
sible error.

Why do we need an optimization algorithm? Can’t we just brute-force through a
lot of weight values until we get the minimum error?

Suppose we used a brute-force approach where we just tried a lot of different possi-
ble weights (say 1,000 values) and found the weight that produced the minimum
error. Could that work? Well, theoretically, yes. This approach might work when we
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have very few inputs and only one or two neurons in our network. Let me try to con-
vince you that this approach wouldn’t scale. Let’s take a look at a scenario where we
have a very simple neural network. Suppose we want to predict house prices based on
only four features (inputs) and one hidden layer of five neurons (see figure 2.28).

Area (feetz)

Bedrooms

Distance to city (miles)

Age

-

Input layer Hidden layer Output layer

Figure 2.28 If we want to predict house prices based on only four features (inputs) and
one hidden layer of five neurons, we’ll have 20 edges (weights) from the input to the
hidden layer, plus 5 weights from the hidden layer to the output prediction.

As you can see, we have 20 edges (weights) from the input to the hidden layer, plus 5
weights from the hidden layer to the output prediction, totaling 25 weight variables
that need to be adjusted for optimum values. To brute-force our way through a simple
neural network of this size, if we are trying 1,000 different values for each weight, then
we will have a total of 107’ combinations:

1,000 x 1,000 x . . . x 1,000 = 1,000% = 10" combinations

Let’s say we were able to get our hands on the fastest supercomputer in the world: Sun-
way TaihuLight, which operates at a speed of 93 petaflops = 93 x 101 floating-point
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operations per second (FLOPs). In the best-case scenario, this supercomputer would
need

1075

S3x 105 - 1.08 x 10 seconds = 3.42 x 10°° years
X

That is a huge number: it’s longer than the universe has existed. Who has that kind of
time to wait for the network to train? Remember that this is a very simple neural net-
work that usually takes a few minutes to train using smart optimization algorithms. In
the real world, you will be building more complex networks that have thousands of
inputs and tens of hidden layers, and you will be required to train them in a matter
of hours (or days, or sometimes weeks). So we have to come up with a different
approach to find the optimal weights.

Hopefully I have convinced you that brute-forcing through the optimization pro-
cess is not the answer. Now, let’s study the most popular optimization algorithm for
neural networks: gradient descent. Gradient descent has several variations: batch gradi-
ent descent (BGD), stochastic gradient descent (SGD), and mini-batch GD (MB-GD).

Batch gradient descent

The general definition of a gradient (also known as a derivative) is that it is the function
that tells you the slope or rate of change of the line that is tangent to the curve at any
given point. It is just a fancy term for the slope or steepness of the curve (figure 2.29).

Slope at
point d

Slope at
Slope at point c /

point a

Slope at
point f

Slope at
Figure 2.29 A gradient is the function

point e
that describes the rate of change of the
Slqpe at line that is tangent to a curve at any
point b given point.

Gradient descent simply means updating the weights iteratively to descend the slope of
the error curve until we get to the point with minimum error. Let’s take a look at the
error function that we introduced earlier with respect to the weights. At the initial
weight point, we calculate the derivative of the error function to get the slope (direc-
tion) of the next step. We keep repeating this process to take steps down the curve
until we reach the minimum error (figure 2.30).
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Derivative
of cost Initial weight

/

Incremental
Cost

Gradient Figure 2.30 Gradient descent takes
incremental steps to descend the
Weight error function.

How DOES GRADIENT DESCENT WORK?

To visualize how gradient descent works, let’s plot the error function in a 3D graph
(figure 2.31) and go through the process step by step. The random initial weight
(starting weight) is at point A, and our goal is to descend this error mountain to the
goal w) and wy weight values, which produce the minimum error value. The way we do
that is by taking a series of steps down the curve until we get the minimum error. In
order to descend the error mountain, we need to determine two things for each step:

= The step direction (gradient)
= The step size (learning rate)

Starting weight \ e
7 1N

. 5 PR TR0
Tale oV ‘\37.“\\ .ﬂ‘-"',f" L X ‘\
80 ey e LI T A K
fnf'ftt@éq AN TS
60
Error
40
20
300
Goal weight

Figure 2.31 The random initial weight (starting weight) is at point A. We
descend the error mountain to the w; and w, weight values that produce the
minimum error value.
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THE DIRECTION (GRADIENT)
Suppose you are standing on the top of the error mountain at point A. To get to the
bottom, you need to determine the step direction that results in the deepest descent
(has the steepest slope). And what is the slope, again? It is the derivative of the curve.
So if you are standing on top of that mountain, you need to look at all the directions
around you and find out which direction will result in the deepest descent (1, 2, 3,
or 4, for example). Let’s say it is direction 3; we choose that way. This brings us to
point B, and we restart the process (calculate feedforward and error) and find the
direction of deepest descent, and so forth, until we get to the bottom of the mountain.
This process is called gradient descent. By taking the derivative of the error with
respect to the weight (g——i ), we get the direction that we should take. Now there’s one
thing left. The gradient only determines the direction. How large should the size of
the step be? It could be a 1-foot step or a 100-foot jump. This is what we need to deter-
mine next.

THE STEP SIZE (LEARNING RATE o)

The learning rate is the size of each step the network takes when it descends the error
mountain, and it is usually denoted by the Greek letter alpha (o). Itis one of the most
important hyperparameters that you tune when you train your neural network (more
on that later). A larger learning rate means the network will learn faster (since it is
descending the mountain with larger steps), and smaller steps mean slower learning.
Well, this sounds simple enough. Let’s use large learning rates and complete the neu-
ral network training in minutes instead of waiting for hours. Right? Not quite. Let’s
take a look at what could happen if we set a very large learning rate value.

In figure 2.32, you are starting at point A. When you take a large step in the direc-
tion of the arrow, instead of descending the error mountain, you end up at point B,
on the other side. Then another large step takes you to C, and so forth. The error will
keep oscillating and will never descend. We will talk more later about tuning the learn-
ing rate and how to determine if the error is oscillating. But for now, you need to
know this: if you use a very small learning rate, the network will eventually descend the
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Figure 2.32 Setting a very
large learning rate causes the
Goal weight error to oscillate and never

00 descend.
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mountain and will get to the minimum error. But this training will take longer (maybe
weeks or months). On the other hand, if you use a very large learning rate, the net-
work might keep oscillating and never train. So we usually initialize the learning rate
value to 0.1 or 0.01 and see how the network performs, and then tune it further.

PUTTING DIRECTION AND STEP TOGETHER
By multiplying the direction (derivative) by the step size (learning rate), we get the
change of the weight for each step:
ar
Aw;=—0——
t dwl'
We add the minus sign because the derivative always calculates the slope in the
upward direction. Since we need to descend the mountain, we go in the opposite
direction of the slope:

Wnext-step = Weurrent T Aw

Calculus refresher: Calculating the partial derivative

The derivative is the study of change. It measures the steepness of a curve at a par-
ticular point on a graph.

30

25 — f(x) = x2

— Gradientat x =2
20
15

10

—6 —4 -2 0 2 4 6

We want to find the steepness of the curve at the exact weight point.

It looks like mathematics has given us just what we are looking for. On the error graph,
we want to find the steepness of the curve at the exact weight point. Thank you, math!
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Other terms for derivative are slope and rate of change. If the error function is denoted
as E(x), then the derivative of the error function with respect to the weight is denoted as

d . dE(x)
CWE(X) or just aw

This formula shows how much the total error will change when we change the weight.

Luckily, mathematicians created some rules for us to calculate the derivative. Since
this is not a mathematics book, we will not discuss the proof of the rules. Instead,
we will start applying these rules at this point to calculate our gradient. Here are the
basic derivative rules:

Constant Rule: %( (c)=0 Difference Rule: %( [f(x) — 8(x)] = f'(x) — &' (x)

Constant Multiple Rule: %( [ef(x)] = cf'(x) | Product Rule: o% [f(x)8(X)] = f(x)g'(x) + g(x)f'(x)

. _d_ ny — yn-1 i i
Power Rule: o (x") = x Quotient Rule: R

£(x)

8(x)

X' (x) - fx)g"(x)
R

Sum Rule: % [f(x) —g8(x)] =f'(x) = &' (x) Chain Rule: (%( f(g(x)) = f'(g(x))g'(x)

Let’s take a look at a simple function to apply the derivative rules:

f(x) = 10x° + 4x" + 12x

We can apply the power, constant, and sum rules to get daf also denoted as f'(x):

dax
then, f'(x) = 50x* + 28x° + 12

To get an intuition of what this means, let’s plot f(x):

£(x)

Using a simple function to apply derivative rules. To get the slope at any
point, we can compute f'(x) at that point.
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(continued)
If we want to get the slope at any point, we can compute f'(x) at that point. So f'(2) gives
us the slope of the line on the left, and f'(6) gives the slope of the second line. Get it?

For a last example of derivatives, let’s apply the power rule to calculate the derivative
of the sigmoid function:

If you want to write out the derivative of the sigmoid

(%( o (x)= %{ |:1 +1e’x} activation function in code, it will look like this:
_d (1 + e def sigmoid(x) :
T dx power return 1/ (1l+np.exp (-x))
rule
— —X\—2 =X
= e def sigmoid derivative (x) :
e~ return sigmoid(x) * (1 - sigmoid(x))
(1+e™)2
1 e

=0(x)-(1-0x)

Note that you don’t need to memorize the derivative rules, nor do you need to calcu-
late the derivatives of the functions yourself. Thanks to the awesome DL community,
we have great libraries that will compute these functions for you in just one line of
code. But it is valuable to understand how things are happening under the hood.

PITFALLS OF BATCH GRADIENT DESCENT
Gradient descent is a very powerful algorithm to get to the minimum error. But it has
two major pitfalls.

First, not all cost functions look like the simple bowls we saw earlier. There may be
holes, ridges, and all sorts of irregular terrain that make reaching the minimum error
very difficult. Consider figure 2.33, where the error function is a little more complex
and has ups and downs.

Starting point

Local minima

Figure 2.33 Complex error functions are
represented by more complex curves with
many local minima values. Our goal is to
Global minima reach the global minimum value.
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Remember that during weight initialization, the starting point is randomly selected.
What if the starting point of the gradient descent algorithm is as shown in this figure?
The error will start descending the small mountain on the right and will indeed reach
a minimum value. But this minimum value, called the local minima, is not the lowest
possible error value for this error function. It is the minimum value for the local
mountain where the algorithm randomly started. Instead, we want to get to the lowest
possible error value, the global minima.

Second, batch gradient descent uses the entire training set to compute the gradi-
ents at every step. Remember this loss function?

I o
LW, b) = 52 Gi=9)*
i=1

This means that if your training set (N) has 100,000,000 (100 million) records, the
algorithm needs to sum over 100 million records just to take one step. That is computa-
tionally very expensive and slow. And this is why this algorithm is also called batch gra-
dient descent—because it uses the entire training data in one batch.

One possible approach to solving these two problems is stochastic gradient
descent. We’ll take a look at SGD in the next section.

Stochastic gradient descent

In stochastic gradient descent, the algorithm randomly selects data points and goes
through the gradient descent one data point at a time (figure 2.34). This provides
many different weight starting points and descends all the mountains to calculate
their local minimas. Then the minimum value of all these local minimas is the global
minima. This sounds very intuitive; that is the concept behind the SGD algorithm.

Starting point

Local minima

Figure 2.34 The stochastic gradient
descent algorithm randomly selects data
points across the curve and descends all
Global minima of them to find the local minima.

Stochastic is just a fancy word for random. Stochastic gradient descent is probably the
most-used optimization algorithm for machine learning in general and for deep
learning in particular. While gradient descent measures the loss and gradient over the
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full training set to take one step toward the minimum, SGD randomly picks one instance
in the training set for each one step and calculates the gradient based only on that sin-
gle instance. Let’s take a look at the pseudocode of both GD and SGD to get a better
understanding of the differences between these algorithms:

GD Stochastic GD

1 Take all the data. 1 Randomly shuffle samples in the training set.
2 Compute the gradient. 2 Pick one data instance.
3 Update the weights and take a step down. 3 Compute the gradient.
4 Update the weights and take a step down.
5 Pick another one data instance.
b 6 Repeat for n number of epochs (training iterations).
b
w
4 Repeat for n number of epochs (iterations).
A smooth path for the GD down the error curve w

An oscillated path for SGD down the error curve

Because we take a step after we compute the gradient for the entire training data in
batch GD, you can see that the path down the error is smooth and almost a straight line.
In contrast, due to the stochastic (random) nature of SGD, you see the path toward the
global cost minimum is not direct but may zigzag if we visualize the cost surface in a 2D
space. That is because in SGD, every iteration tries to better fit just a single training
example, which makes it a lot faster but does not guarantee that every step takes us a
step down the curve. It will arrive close to the global minimum and, once it gets there, it
will continue to bounce around, never settling down. In practice, this isn’t a problem
because ending up very close to the global minimum is good enough for most practical
purposes. SGD almost always performs better and faster than batch GD.

Mini-batch gradient descent

Mini-batch gradient descent (MB-GD) is a compromise between BGD and SGD.
Instead of computing the gradient from one sample (SGD) or all samples (BGD), we
divide the training sample into mini-batches from which to compute the gradient (a
common mini-batch size is k = 256). MB-GD converges in fewer iterations than BGD
because we update the weights more frequently; however, MB-GD lets us use vectorized
operations, which typically result in a computational performance gain over SGD.
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2.6.5 Gradient descent takeaways

There is a lot going on here, so let’s sum it up, shall we? Here is how gradient descent
is summarized in my head:

Three types: batch, stochastic, and mini-batch.

All follow the same concept:

— Find the direction of the steepest slope: the derivative of the error with
respect to the weight 5751

— Set the learning rate (or step size). The algorithm will compute the slope, but
you will set the learning rate as a hyperparameter that you will tune by trial
and error.

— Start the learning rate at 0.01, and then go down to 0.001, 0.0001, 0.00001.
The lower you set your learning rate, the more guaranteed you are to
descend to the minimum error (if you train for an infinite time). Since we
don’t have infinite time, 0.01 is a reasonable start, and then we go down
from there.

Batch GD updates the weights after computing the gradient of all the training

data. This can be computationally very expensive when the data is huge. It

doesn’t scale well.

Stochastic GD updates the weights after computing the gradient of a single

instance of the training data. SGD is faster than BGD and usually reaches very

close to the global minimum.

Mini-batch GD is a compromise between batch and stochastic, using neither all

the data nor a single instance. Instead, it takes a group of training instances

(called a mini-batch), computes the gradient on them and updates the weights,

and then repeats until it processes all the training data. In most cases, MB-GD is

a good starting point.

— batch size is a hyperparameter that you will tune. This will come up again
in the hyperparameter-tuning section in chapter 4. But typically, you can
start experimenting with batch_size = 32, 64, 128, 256.

— Don’t get batch_size confused with epochs. An epoch is the full cycle over all the
training data. The batch is the number of training samples in the group for
which we are computing the gradient. For example, if we have 1,000 samples
in our training data and set batch_size = 256, then epoch 1 = batch 1 of 256
samples plus batch 2 (256 samples) plus batch 3 (256 samples) plus batch 4
(232 samples).

Finally, you need to know that a lot of variations to gradient descent have been used
over the years, and this is a very active area of research. Some of the most popular
enhancements are

Nesterov accelerated gradient
RMSprop
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Adam

Adagrad
Don’t worry about these optimizers now. In chapter 4, we will discuss tuning tech-
niques to improve your optimizers in more detail.

I know that was a lot, but stay with me. These are the main things I want to you

remember from this section:

How gradient descent works (slope plus step size)

The difference between batch, stochastic, and mini-batch GD

The GD hyperparameters that you will tune: learning rate and batch_size
If you’ve got this covered, you are good to move to the next section. And don’t worry a

lot about hyperparameter tuning. I'll cover network tuning in more detail in coming
chapters and in almost all the projects in this book.

Backpropagation

Backpropagation is the core of how neural networks learn. Up until this point, you
learned that training a neural network typically happens by the repetition of the fol-
lowing three steps:

Feedforward: get the linear combination (weighted sum), and apply the activa-
tion function to get the output prediction (y):

Gz - W. o - W25 - WD . (x)
Compare the prediction with the label to calculate the error or loss function:
1 N
E(W. ) = 52 13-y
Use a gradient descent optimization algorithm to compute the Aw that opti-

mizes the error function:

- _odE
Aw; = adw,-

Backpropagate the Aw through the network to update the weights:

Derivative of error
0ld weight with respect to weight

oError
Whew = Woid — (a—WX

New weight Learning rate
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In this section, we will dive deeper into the final step: backpropagation.

2.7.1 What is backpropagation?

Backpropagation, or backward pass, means propagating derivatives of the error with
respect to each specific weight

dr

duw

from the last layer (output) back to the first layer (inputs) to adjust weights. By propa-
gating the Aw backward from the prediction node () all the way through the hidden
layers and back to the input layer, the weights get updated:

(wnext—step = Weurrent + Aw)

This will take the error one step down the error mountain. Then the cycle starts again
(steps 1 to 3) to update the weights and take the error another step down, until we get
to the minimum error.

Backpropagation might sound clearer when we have only one weight. We simply
adjust the weight by adding the Aw to the old weight wy ., = w— o o

But it gets complicated when we have a multilayer perceptron (MLP) network with

many weight variables. To make this clearer, consider the scenario in figure 2.35.

Layer 1 Layer 2 Layer 3 Layer 4

Figure 2.35 Backpropagation becomes complicated when we have a multilayer perceptron (MLP)
network with many weight variables.
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How do we compute the change of the total error with respect to wys 3%}1‘_ ? Remember
. « . 13
that E‘%— basically says, “How much will the total error change when we change the
13

parameter wys?”

We learned how to compute ZdwE— by applying the derivative rules on the error

function. That is straightforward because wg; is directly connected to the error func-
tion. But to compute the derivatives of the total error with respect to the weights all
the way back to the input, we need a calculus rule called the chain rule.

Calculus refresher: Chain rule in derivatives

Back again to calculus. Remember the derivative rules that we listed earlier? One of
the most important rules is the chain rule. Let’s dive deep into it to see how it is
implemented in backpropagation:

Chain Rule: % flg(x)) = f'(g(x))g'(x)

The chain rule is a formula for calculating the derivatives of functions that are com-
posed of functions inside other functions. It is also called the outside-inside rule.
Look at this:

_d . . JoRP. .
Tx f(g(x)) = outside function x X inside function

Fgl) X 2= g(x)

dx
g
dx
The chain rule says, “When composing functions, the derivatives just multiply.” That
is going to be very useful for us when implementing backpropagation, because feed-

forwarding is just composing a bunch of functions, and backpropagation is taking the
derivative at each piece of this function.

To implement the chain rule in backpropagation, all we are going to do is multiply
a bunch of partial derivatives to get the effect of errors all the way back to the input.
Here is how it works—but first, remember that our goal is to propagate the error
backward all the way to the input layer. So in the following example, we want to cal-
culate g—’i, which is the effect of total error on input (x):

O
O,
O,
(=)

All we do here is multiply the upstream gradient by the local gradient all the way until
we get to the target value.

Figure 2.36 shows how backpropagation uses the chain rule to flow the gradients in
the backward direction through the network. Let’s apply the chain rule to calculate
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the derivative of the error with respect to the third weight on the first input w{lg ,

where the (1) means layer 1, and w; 3 means node number 1 and weight number 3:

- - 4 3 2
dE dE _ duwy]  duw$)  duwi)
dwy  dwy)  dw$)  dwl) dufl)

Layer 1 Layer 2 Layer 3 Layer 4

Figure 2.36 Backpropagation uses the chain rule to flow gradients back through the network.

The equation might look complex at the beginning, but all we are doing really is mul-
tiplying the partial derivative of the edges starting from the output node all the way
backward to the input node. All the notations are what makes this look complex, but
once you understand how to read wlaf,); , the backward-pass equation looks like this:
The error backpropagated to the edge w{% = effect of error on edge 4 - effect on
edge 3 - effect on edge 2 - effect on target edge

There you have it. That is the backpropagation technique used by neural networks to
update the weights to best fit our problem.
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2.7.2 Backpropagation takeaways

Backpropagation is a learning procedure for neurons.

Backpropagation repeatedly adjusts weights of the connections (weights) in the
network to minimize the cost function (the difference between the actual out-
put vector and the desired output vector).

As a result of the weight adjustments, hidden layers come to represent import-
ant features other than the features represented in the input layer.

For each layer, the goal is to find a set of weights that ensures that for each
input vector, the output vector produced is the same as (or close to) the desired
output vector. The difference in values between the produced and desired out-
puts is called the error function.

The backward pass (backpropagation; figure 2.37) starts at the end of the net-
work, backpropagates or feeds the errors back, recursively applies the chain
rule to compute gradients all the way to the inputs of the network, and then
updates the weights.

To reiterate, the goal of a typical neural network problem is to discover a model
that best fits our data Ultimately, we want to minimize the cost or loss function
by choosing the best set of weight parameters.

Forward pass Backward pass

i
1
LodL dldz
X | —_— — —
\ i dx  dz dx
| dL
z 1 —_
! dz
'odl dldz
y " dy  dzady
1

Figure 2.37 The forward pass calculates the output prediction (left). The
backward pass passes the derivative of the error backward to update its
weights (right).

Summary

Perceptrons work fine for datasets that can be separated by one straight line
(linear operation).

Nonlinear datasets that cannot be modeled by a straight line need a more com-
plex neural network that contains many neurons. Stacking neurons in layers
creates a multilayer perceptron.

The network learns by the repetition of three main steps: feedforward, calculate
error, and optimize weights.
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Parameters are variables that are updated by the network during the training
process, like weights and biases. These are tuned automatically by the model
during training.

Hyperparameters are variables that you tune, such as number of layers, activa-
tion functions, loss functions, optimizers, early stopping, and learning rate. We
tune these before training the model.



Convolutional
neural networks

This chapter covers

= Classifying images using MLP

= Working with the CNN architecture to classify
images

= Understanding convolution on color images

Previously, we talked about artificial neural networks (ANNs), also known as multi-
layer perceptrons (MLPs), which are basically layers of neurons stacked on top of
each other that have learnable weights and biases. Each neuron receives some
inputs, which are multiplied by their weights, with nonlinearity applied via activa-
tion functions. In this chapter, we will talk about convolutional neural networks
(CNNs), which are considered an evolution of the MLP architecture that performs
a lot better with images.
The high-level layout of this chapter is as follows:

Image classification with MLP—We will start with a mini project to classify
images using MLP topology and examine how a regular neural network
architecture processes images. You will learn about the MLP architecture’s
drawbacks when processing images and why we need a new, creative neural
network architecture for this task.

92
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Understanding CNNs—We will explore convolutional networks to see how they
extract features from images and classify objects. You will learn about the three
main components of CNNs: the convolutional layer, the pooling layer, and the
fully connected layer. Then we will apply this knowledge in another mini proj-
ect to classify images with CNNs.

Color images—We will compare how computers see color images versus grayscale
images, and how convolution is implemented over color images.

Image classification project—We will apply all that you learn in this chapter in an
end-to-end image classification project to classify color images with CNNS.

The basic concepts of how the network learns and optimizes parameters are the same
with both MLPs and CNNss:

Architecture—MLPs and CNNs are composed of layers of neurons that are
stacked on top of each other. CNNs have different structures (convolutional
versus fully connected layers), as we are going to see in the coming sections.
Weights and biases—In convolutional and fully connected layers, inference works
the same way. Both have weights and biases that are initially randomly gener-
ated, and their values are learned by the network. The main difference between
them is that the weights in MLPs are in a vector form, whereas in convolutional
layers, weights take the form of convolutional filters or kernels.
Hyperparameters—As with MLPs, when we design CNNs we will always specify the
error function, activation function, and optimizer. All hyperparameters explained
in the previous chapters remain the same; we will add some new ones that are
specific to CNNs.

Training—Both networks learn the same way. First they perform a forward pass
to get predictions; second, they compare the prediction with the true label to
get the loss function (y - 9); and finally, they optimize parameters using gradi-
ent descent, backpropagate the error to all the weights, and update their values
to minimize the loss function.

Ready? Let’s get started!

Image classification using MLP

Let’s recall the MLP architecture from chapter 2. Neurons are stacked in layers on top
of each other, with weight connections. The MLP architecture consists of an input
layer, one or more hidden layers, and an output layer (figure 3.1).

This section uses what you know about MLPs from chapter 2 to solve an image
classification problem using the MNIST dataset. The goal of this classifier will be to
classify images of digits from 0 to 9 (10 classes). To begin, let’s look at the three
main components of our MLP architecture (input layer, hidden layers, and output
layer).
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Figure 3.1 The MLP architecture consists of layers of neurons connected by weight
connections.

3.1.1 Input layer

When we work with 2D images, we need to preprocess them into something the net-
work can understand before feeding them to the network. First, let’s see how comput-
ers perceive images. In figure 3.2, we have an image 28 pixels wide x 28 pixels high.
This image is seen by the computer as a 28 x 28 matrix, with pixel values ranging from
0 to 255 (0 for black, 255 for white, and the range in between for grayscale).
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Figure 3.2 The computer sees this image as a 28 x 28 matrix of pixel values ranging
from O to 255.
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Since MLPs only take as input 1D vectors with dimensions (1, n), they cannot take a
raw 2D image matrix with dimensions (x, y). To fit the image in the input layer, we first
need to transform our image into one large vector with the dimensions (1, n) that
contains all the pixel values in the image. This process is called image flattening. In this
example, the total number (n) of pixels in this image is 28 x 28 = 784. Then, in order
to feed this image to our network, we need to flatten the (28 x 28) matrix into one
long vector with dimensions (1, 784). The input vector looks like this:

x = [rowl, row2, row3, ..., row28]

That said, the input layer in this example will have a total of 784 nodes: x;, xo, ..., %784.

Visualizing input vectors
To help visualize the flattened input vector, let’s look at a much smaller matrix (4, 4):

The input (x) is a flattened vector with the dimensions (1, 16):

| Il I I J
Row 1 Row 2 Row 3 Row 4

So, if we have pixel values of O for black and 255 for white, the input vector will be
as follows:

Input = [0, 255, 255, 255, 0, O, O, 255, 0, 0, 255, O, O, 255, 0, 0]

Here is how we flatten an input image in Keras:

from keras.models import Sequential As before imports
from keras.layers import Flatten "
Defines the Keras library

the model L model = Sequential ()
model.add( Flatten (input shape = (28,28) )) T
SO

Imports a layer called
Flatten to convert the
image matrix into a

Adds the Flatten layer, al
vector

known as the input layer
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The Flatten layer in Keras handles this process for us. It takes the 2D image matrix
input and converts it into a 1D vector. Note that the Flatten layer must be supplied a
parameter value of the shape of the input image. Now the image is ready to be fed to
the neural network.

What’s next? Hidden layers.

Hidden layers

As discussed in the previous chapter, the neural network can have one or more hid-
den layers (technically, as many as you want). Each layer has one or more neurons
(again, as many as you want). Your main job as a neural network engineer is to design
these layers. For the sake of this example, let’s say you decided to arbitrarily design the
network to have two hidden layers, each having 512 nodes—and don’t forget to add
the ReLLU activation function for each hidden layer.

Choosing an activation function

In chapter 2, we discussed the different types of activation functions in detail. As a
DL engineer, you will often have a lot of different choices when you are building your
network. Choosing the activation function that is the most suitable for the problem
you are solving is one of these choices. While there is no single best answer that fits
all problems, in most cases, the ReLU function performs best in the hidden layers;
and for most classification problems where classes are mutually exclusive, softmax
is generally a good choice in the output layer. The softmax function gives us the prob-
ability that the input image depicts one of the (n) classes.

As in the previous chapter, let’s add two fully connected (also known as dense) layers,
using Keras:

Imports the Dense layer

from keras.layers import Dense

model.add (Dense (512, activation = 'relu')) Adds two Dense layers
model.add (Dense (512, activation = 'relu')) with 512 nodes each
Output layer

The output layer is pretty straightforward. In classification problems, the number of
nodes in the output layer should be equal to the number of classes that you are trying
to detect. In this problem, we are classifying 10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Then
we need to add one last Dense layer that contains 10 nodes:

model.add (Dense (10, activation = ‘softmax’))
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3.1.4 Putting it all together

When we put all these layers together, we get a neural network like the one in figure 3.3.

Hidden layers
Input layer T ] Output layer

Q = pro(image depicts a 0)
Q = pro(image depicts a 1)

= pro(image depicts a 9)

784 nodes 512 nodes 512 nodes 10 nodes

Figure 3.3 The neural network we create by combining the input, hidden, and output layers

Here is how it looks in Keras:

to convert the image
matrix into a vector

Imports the Keras library Imports a Flatten layer

from keras.models import Sequential
from keras.layers import Flatten, Dense

Defines the neural

Adds the model = Sequential () ¢ K hitect
Flatten network architecture
layer ; - . .
y model.add ( Flatten (input_shape = (28,28) )) Adds 2 hidden layers with 512 nodes
each. Using the ReLU activation

model.add (Dense (512, activation = 'relu')) function is recommended in
model.add (Dense (512, activation = 'relu')) hidden layers.

model .add (Dense (10, activation = 'softmax'))

Adds 1 output Dense layer with

model . summary () 10 nodes. Using the softmax

Prints a summary
of the model

architecture in the output layer for multiclass

classification problems.

When you run this code, you will see the model summary printed as shown in figure 3.4.

You can see that the output of the flatten layer is a vector with 784 nodes, as dis-
cussed before, since we have 784 pixels in each 28 x 28 images. As designed, the hid-
den layers produce 512 nodes each; and, finally, the output layer (dense_3) produces
a layer with 10 nodes.

activation function is recommended



98

CHAPTER 3  Convolutional neural networks

______________________________________________________________

iLayer (type) Output Shape Param #
I

iFlattenfl (Flatten) (None, 784) 0
idense_l (Dense) (None, 512) 401920
idense_Z (Dense) (None, 512) 262656
I

idense_3 (Dense) (None, 10) 5130

I

I

I

I

Figure 3.4 The model summary

The Param # field represents the number of parameters (weights) produced at each
layer. These are the weights that will be adjusted and learned during the training pro-
cess. They are calculated as follows:

Params after the flatten layer = 0, because this layer only flattens the image to a
vector for feeding into the input layer. The weights haven’t been added yet.
Params after layer 1 = (784 nodes in input layer) x (512 in hidden layer 1) +
(512 connections to biases) = 401,920.

Params after layer 2 = (512 nodes in hidden layer 1) x (512 in hidden layer 2) +
(512 connections to biases) = 262,656.

Params after layer 3= (512 nodes in hidden layer 2) x (10 in output layer) + (10
connections to biases) = 5,130.

Total params in the network = 401,920 + 262,656 + 5,130 = 669,706.

This means that in this tiny network, we have a total of 669,706 parameters (weights and
biases) that the network needs to learn and whose values it needs to tune to optimize
the error function. This is a huge number for such a small network. You can see how this
number would grow out of control if we added more nodes and layers or used bigger
images. This is one of the two major drawbacks of MLPs that we will discuss next.

MLPs vs. CNNs

If you train the example MLP on the MNIST dataset, you will get pretty good results
(close to 96% accuracy compared to 99% with CNNs). But MLPs and CNNs do not
usually yield comparable results. The MNIST dataset is special because it is very
clean and perfectly preprocessed. For example, all images have the same size and
are centered in a 28 x 28 pixel grid. Also, the MNIST dataset contains only grayscale
images. It would be a much harder task if the images had color or the digits were
skewed or not centered.



3.1.5

Image classification using MLP 99

If you try the example MLP architecture with a slightly more complex dataset like
CIFAR-10, as we will do in the project at the end of this chapter, the network will per-
form very poorly (around 30-40% accuracy). It performs even worse with more com-
plex datasets. In messy real-world image data, CNNs truly outshine MLPs.

Drawbacks of MLPs for processing images

We are nearly ready to talk about the topic of this chapter: CNNs. But first, let’s discuss
the two major problems in MLPs that convolutional networks are designed to fix.

SPATIAL FEATURE LOSS
Flattening a 2D image to a 1D vector input results in losing the spatial features of the
image. As we saw in the mini project earlier, before feeding an image to the hidden
layers of an MLP, we must flatten the image matrix to a 1D vector. This means throw-
ing away all the 2D information contained in the image. Treating an input as a simple
vector of numbers with no special structure might work well for 1D signals; but in 2D
images, it will lead to information loss because the network doesn’t relate the pixel val-
ues to each other when trying to find patterns. MLPs have no knowledge of the fact
that these pixel numbers were originally spatially arranged in a grid and that they are
connected to each other. CNNs, on the other hand, do not require a flattened image.
We can feed the raw image matrix of pixels to a CNN network, and the CNN will
understand that pixels that are close to each other are more heavily related than pix-
els that are far apart.

Let’s oversimplify things to learn more about the importance of spatial features in
an image. Suppose we are trying to teach a neural network to identify the shape of a
square, and suppose the pixel value 1 is white and 0 is black. When we draw a white
square on a black background, the matrix will look like figure 3.5.

Figure 3.5 If the pixel value 1 is white and 0
0 0 0 0 is black, this is what our matrix looks like for
identifying a square.

Since MLPs take a 1D vector as an input, we have to flatten the 2D image to a 1D vec-
tor. The input vector of figure 3.5 looks like this:

Input vector=1[1,1,0,0,1,1,0,0,0,0,0,0,0,0,0, 0]

When the training is complete, the network will learn to identify a square only when
the input nodes x;, xo, x5, and xg are fired. But what happens when we have new
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images with square shapes located in different areas in the image, as shown in fig-
ure 3.6?

0 0 0 0 0 0 0 0
0 o] o ol o] o] o
! ! 0 oo |1 1
1
0 0 0 0 0 0 1 1 Figure 3.6 Square shapes in
different areas of the image

The MLP will have no idea that these are the shapes of squares because the network
didn’t learn the square shape as a feature. Instead, it learned the input nodes that,
when fired, might lead to a square shape. If we want our network to learn squares, we
need a lot of square shapes located everywhere in the image. You can see how this
solution won’t scale for complex problems.

Another example of feature learning is this: if we want to teach a neural network to
recognize cats, then ideally, we want the network to learn all the shapes of cat features
regardless of where they appear on the image (ears, nose, eyes, and so on). This only
happens when the network looks at the image as a set of pixels that, when close to
each other, are heavily related.

The mechanism of how CNNs learn will be explained in detail in this chapter. But
figure 3.7 shows how the network learns features throughout its layers.

Later layers learn

Output prediction “Cat” more complex features
like ear, nose, and eye.

©®© ¥ /@)
ﬂ:mrpmc@ A1)

S e \
Input prediction ° &

Earlier layers learn Figure 3.7 CNNs learn
simple features like the image features
curves and edges. through its layers.
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FULLY CONNECTED (DENSE) LAYERS
MLPs are composed of dense layers that are fully connected to each other. Fully con-
nected means every node in one layer is connected to all nodes of the previous layer
and allnodes in the next layer. In this scenario, each neuron has parameters (weights)
to train per neuron from the previous layer. While this is not a big problem for the
MNIST dataset because the images are really small in size (28 x 28), what happens
when we try to process larger images? For example, if we have an image with dimen-
sions 1,000 x 1,000, it will yield 1 million parameters for each node in the first hidden
layer. So if the first hidden layer has 1,000 neurons, this will yield 1 billion parameters
even in such a small network. You can imagine the computational complexity of opti-
mizing 1 billion parameters after only the first layer. This number will increase drasti-
cally when we have tens or hundreds of layers. This can get out of control pretty fast
and will not scale.

CNN:s, on the other hand, are locally connected layers, as figure 3.8 shows: nodes are
connected to only a small subset of the previous layers’ nodes. Locally connected lay-
ers use far fewer parameters than densely connected layers, as you will see.

Fully connected neural net Locally connected neural net

— Sliding windows

Figure 3.8 (Left) Fully connected neural network where all neurons are connected to all pixels of the
image. (Right) Locally connected network where only a subset of pixels is connected to each neuron.
These subsets are called sliding windows.

WHAT DOES IT ALL MEAN?

The loss of information caused by flattening a 2D image matrix to a 1D vector and the
computational complexity of fully connected layers with larger images suggest that we
need an entirely new way of processing image input, one where 2D information is not
entirely lost. This is where convolutional networks come in. CNNs accept the full
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image matrix as input, which significantly helps the network understand the patterns
contained in the pixel values.

CNN architecture

Regular neural networks contain multiple layers that allow each layer to find succes-
sively complex features, and this is the way CNNs work. The first layer of convolutions
learns some basic features (edges and lines), the next layer learns features that are a
little more complex (circles, squares, and so on), the following layer finds even more
complex features (like parts of the face, a car wheel, dog whiskers, and the like), and
so on. You will see this demonstrated shortly. For now, know that the CNN architec-
ture follows the same pattern as neural networks: we stack neurons in hidden layers
on top of each other; weights are randomly initiated and learned during network
training; and we apply activation functions, calculate the error (y-j), and backpropa-
gate the error to update the weights. This process is the same. The difference is that
we use convolutional layers instead of regular fully connected layers for the feature-
learning part.

The big picture

Before we look in detail at the CNN architecture, let’s back up for a moment to see
the big picture (figure 3.9). Remember the image classification pipeline we discussed
in chapter 1?

1. Input data — 2. Preprocessing 3. Feature extraction — 4. ML model
* Images Getting the data « Find distinguishing * Learn from the
« Videos (image ready: information about extracted features
frames) « Standardize images the image to predict and
« Color transformation classify objects
* More...

Figure 3.9 The image classification pipeline consists of four components: data input, data
preprocessing, feature extraction, and the ML algorithm.

Before deep learning (DL), we used to manually extract features from images and
then feed the resulting feature vector to a classifier (a regular ML algorithm like
SVM). With the magic that neural networks provide, we can replace the manual work
of step 3 in figure 3.9 with a neural network (MLP or CNN) that does both feature
learning and classification (steps 3 and 4).

We saw earlier, in the digit-classification project, how to use MLP to learn features
and classify an image (steps 3 and 4 together). It turned out that our issue with fully
connected layers was not the classification part—fully connected layers do that very
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well. Our issue was in the way fully connected layers process the image to learn fea-
tures. Let’s get a little creative: we’ll keep what’s working and make modifications to
what’s not working. The fully connected layers aren’t doing a good job of feature
extraction (step 3), so let’s replace that with locally connected layers (convolutional
layers). On the other hand, fully connected layers do a great job of classifying the
extracted features (step 4), so let’s keep them for the classification part.

The high-level architecture of CNNs looks like figure 3.10:

Input layer

Convolutional layers for feature extraction
Fully connected layers for classification
Output prediction

Feature extraction Classification Prediction
[ I | [ |
Feature maps Feature maps
Input layer

maps D

Flattened /

1= N
20
Convolutional layers Fully connected layers Output layer

Figure 3.10 The CNN architecture consists of the following: input layer, convolutional layers, fully connected
layers, and output prediction.

Remember, we are still talking about the big picture. We will dive into each of these
components soon. In figure 3.10, suppose we are building a CNN to classify images
into two classes: the numbers 3 and 7. Look at the figure, and follow along with
these steps:

Feed the raw image to the convolutional layers.

The image passes through the CNN layers to detect patterns and extract fea-
tures called feature maps. The output of this step is then flattened to a vector of
the learned features of the image. Notice that the image dimensions shrink
after each layer, and the number of feature maps (the layer depth) increases
until we have a long array of small features in the last layer of the feature-
extraction part. Conceptually, you can think of this step as the neural network
learning to represent more abstract features of the original image.
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The flattened feature vector is fed to the fully connected layers to classify the
extracted features of the image.

The neural network fires the node that represents the correct prediction of the
image. Note that in this example, we are classifying two classes (3 and 7). Thus
the output layer will have two nodes: one to represent the digit 3, and one for

the digit 7.

DEFINITION The basic idea of neural networks is that neurons learn features
from the input. In CNNs, a feature map is the output of one filter applied to
the previous layer. It is called a feature map because it is a mapping of
where a certain kind of feature is found in the image. CNNs look for fea-
tures such as straight lines, edges, or even objects. Whenever they spot these
features, they report them to the feature map. Each feature map is looking
for something specific: one could be looking for straight lines and another
for curves.

A closer look at feature extraction

You can think of the feature-extraction step as breaking large images into smaller
pieces of features and stacking them into a vector. For example, an image of the digit
3 is one image (depth = 1) and is broken into smaller images that contain specific fea-
tures of the digit 3 (figure 3.11). If it is broken into four features, then the depth
equals 4. As the image passes through the CNN layers, it shrinks in dimensions, and
the layer gets deeper because it contains more images of smaller features.

-
© 4

Feature extraction

Figure 3.11 An image is broken
z into smaller images that contain
distinctive features.

Note that this is just a metaphor to help visualize the feature-extraction process. CNNs
don’t literally break an image into pieces. Instead, they extract meaningful features that
separate this object from other images in the training set, and stack them in an array
of features.
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A closer look at classification

After feature extraction is complete, we add fully connected layers (a regular MLP) to
look at the features vector and say, “The first feature (top) has what looks like an edge:
this could be 3, or 7, or maybe an ugly 2. I'm not sure; let’s look at the second feature.
Hmm, this is definitely not a 7 because it has a curve,” and so on until the MLP is con-
fident that the image is the digit 3.

How CNNs learn patterns

It is important to note that a CNN doesn’t go from the image input to the features
vector directly in one layer. This usually happens in tens or hundreds of layers, as you
will see later in this chapter. The feature-learning process happens step by step after
each hidden layer. So the first layer usually learns very basic features like lines and
edges, and the second assembles those lines into recognizable shapes, corners,
and circles. Then, in the deeper layers, the network learns more complex shapes
such as human hands, eyes, ears, and so on. For example, here is a simplified ver-
sion of how CNNs learn faces.

Overla Overl
Low-level V:p> Mid-level £> High-level
feature feature feature

=T

4]

A
(=
=
| |
=
| 7B

A simplified version of how CNNs learn faces

You can see that the early layers detect patterns in the image to learn low-level fea-
tures like edges, and the later layers detect patterns within patterns to learn more
complex features like parts of the face, then patterns within patterns within patterns,
and so on:

Input image

+ Layer 1 = patterns

+ Layer 2 = patterns within patterns

+ Layer 3 = patterns within patterns within patterns
.. and so on

This concept will come in handy when we discuss more advanced CNN architectures
in later chapters. For now, know that in neural networks, we stack hidden layers to
learn patterns from each other until we have an array of meaningful features to iden-
tify the image.
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3.3 Basic components of a CNN

Without further ado, let’s discuss the main components of a CNN architecture. There

are three main types of layers that you will see in almost every convolutional network
(figure 3.12):

Convolutional layer (CONV)
Pooling layer (POOL)
Fully connected layer (FC)

CNN text representation
The text representation of the architecture in figure 3.12 goes like this:

CNN architecture: INPUT = CONV = RELU = POOL = CONV = RELU = POOL = FC
= SOFTMAX

Note that the ReLU and softmax activation functions are not really standalone layers—
they are the activation functions used in the previous layer. The reason they are
shown this way in the text representation is to call out that the CNN designer is using
the RelLU activation function in the convolutional layers and softmax activation in the
fully connected layer. So this represents a CNN architecture that contains two convo-
lutional layers plus one fully connected layer. You can add as many convolutional and
fully connected layers as you see fit. The convolutional layers are for feature learning
or extraction, and the fully connected layers are for classification.

Feature learning Classification
I |

Flatten  Fully connected  Softmax

Input Convolution Pooling o i P(one) 0.01
(28 x 28) layer (24 x 24) layer o
(12 x 12) Convolution Pooling ° fo P
t 0.2
W layer layer o o
0
° e Pree 0.18
LN
o \sJ
o o
o o
& ° ° N\ 0.62
o (o) \‘
o (e}
° lo Plaine) | 0.008
Convolution Max pooling Convolution Max pooling  Fully connected layers

(5 % 5 kernel) 2x2) (5 X 5 kernel) 2x2)

Figure 3.12 The basic components of convolutional networks are convolutional layers and pooling layers to
perform feature extraction, and fully connected layers for classification.
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Now that we’ve seen the full architecture of a convolutional network, let’s dive deeper
into each of the layer types to get a deeper understanding of how they work. Then at
the end of this section, we will put them all back together.

Convolutional layers

A convolutional layer is the core building block of a convolutional neural network.
Convolutional layers act like a feature finder window that slides over the image pixel
by pixel to extract meaningful features that identify the objects in the image.

WHAT IS CONVOLUTION?

In mathematics, convolution is the operation of two functions to produce a third
modified function. In the context of CNNs, the first function is the input image, and
the second function is the convolutional filter. We will perform some mathematical
operations to produce a modified image with new pixel values.

Let’s zoom in on the first convolutional layer to see how it processes an image (fig-
ure 3.13). By sliding the convolutional filter over the input image, the network breaks
the image into little chunks and processes those chunks individually to assemble the
modified image, a feature map.

T3
Receptive /7 3 ﬁf
field B/{E;/f}/ (1 x3)+(0x0)+(1x1)+
3\‘0 /{}/4 } (~2x2)+(0x6)+(2x2)+
e l21s -T2 (1 x2)+(0x4)+(1x1)=-3
2| 4 1ol13 01
LT3 ‘// 0> > 0
2 = y 5 | —1 2 // //
—T1 o // 3 LT 1 “ A
3 2 }/ 3 // // //
L1 6 | “H 0 6 | — 3 6 g A | —1
2 | —1 1 . —1 0 // T // //
T 4 // 4| A 1 ’ L1
2 | A 2 4 LT 6| — | //
16 // 6 // Q 1 |
2 | 0] — L1 L
2 . L
= Convolution A LT 1
filter 3 X 3) T LT L+
L1 LT
Destination ] 1 =
. ] ol L
pixel sl = | —
|1
L] L —
Convolved —— ////
image |

Figure 3.13 A 3 x 3 convolutional filter is sliding over the input image.

Keeping this diagram in mind, here are some facts about convolution filters:

The small 3 x 3 matrix in the middle is the convolution filter, also called a kernel.
The kernel slides over the original image pixel by pixel and does some math
calculations to get the values of the new “convolved” image on the next layer.
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The area of the image that the filter convolves is called the receptive field (see fig-
ure 3.14).

Receptive
field

Figure 3.14 The kernel slides over the original image pixel by pixel and calculates the convolved
image on the next layer. The convolved area is called the receptive field.

What are the kernel values? In CNNs, the convolution matrix is the weights. This
means they are also randomly initialized and the values are learned by the network (so
you will not have to worry about assigning its values).

CONVOLUTIONAL OPERATIONS
The math should look familiar from our discussion of MLPs. Remember how we multi-
plied the input by the weights and summed them all together to get the weighted sum?

weighted sum = x) - w) + xo - wo + x5+ Wy + ... + Xy - Wy + b

We do the same thing here, except that in CNNs, the neurons and weights are struc-
tured in a matrix shape. So we multiply each pixel in the receptive field by the corre-
sponding pixel in the convolution filter and sum them all together to get the value of
the center pixel in the new image (figure 3.15). This is the same matrix dot product
we saw in chapter 2:

(93 x —1) + (139 x 0) + (101 x 1) + (26 x =2) + (252 x 0) + (196 x 2) + (135 x —1) +
(240 x 0) + (48 x 1) = 243

The filter (or kernel) slides over the whole image. Each time, we multiply every corre-
sponding pixel element-wise and then add them all together to create a new image
with new pixel values. This convolved image is called a feature map or activation map.
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Original image Convoluted image
Kernel -1 0 #
—{1
-2 0 +2 Escart 243
=1 o+

Figure 3.15 Multiplying each pixel in the receptive field by the corresponding pixel in the
convolution filter and summing them gives the value of the center pixel in the new image.

Applying filters to learn features

Let’s not lose focus of the initial goal. We are doing all this so the network extracts
features from the image. How does applying filters lead toward this goal? In image
processing, filters are used to filter out unwanted information or amplify features in
an image. These filters are matrices of numbers that convolve with the input image
to modify it. Look at this edge-detection filter:

o|-1]o0
1| 4|1
o|-1]o0

When this kernel (K) is convolved with the input image F(x,y), it creates a new con-
volved image (a feature map) that amplifies the edges.

Convolved image
Input image (feature map)

Convolution kernel
with optimized weights

of[-11|0
* 114 |- =]
of[-11]0

S I'.‘t.";\ JJ )

Applying an edge detection kernel on an image
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(continued)

To understand how the convolution happens, let’s zoom in on a small piece of the
image.

5 o Edge detection
Input image kernel
0of(-1]0
0 80 120140120
|:| 114 |-
170 |225 | 220 (205
0o|-1]0
255250230
Convolution
0x120+-1x140+0x 120 +
K —1x225+4%x220+-1x 205+
0 x 225 +—1 x 250 + 0 x 230 = 60

The new value of the middle pixel in

the convolved image is 60. The pixel
Calculations for applying an value is > 0, which means that a
edge kernel on an input image small edge has been detected.

This image shows the convolution calculations in one area of the image to compute
the value of one pixel. We compute the values of all the pixels by sliding the kernel
over the input image pixel by pixel and applying the same convolution process.

These kernels are often called weights because they determine how important a pixel
is in forming a new output image. Similar to what we discussed about MLP and
weights, these weights represent the importance of the feature on the output. In
images, the input features are the pixel values.

Other filters can be applied to detect different types of features. For example, some
filters detect horizontal edges, others detect vertical edges, still others detect more
complex shapes like corners, and so on. The point is that these filters, when applied
in the convolutional layers, yield the feature-learning behavior we discussed earlier:
first they learn simple features like edges and straight lines, and later layers learn
more complex features.

We are basically done with the concept of filter. That is all there is to it!
Now, let’s take a look at the convolutional layer as a whole: Each convolutional
layer contains one or more convolutional filters. The number of filters in each convo-
lutional layer determines the depth of the next layer, because each filter produces its
own feature map (convolved image). Let’s look at the convolutional layers in Keras to
see how they work:

from keras.layers import Conv2D

model.add (Conv2D (filters=16, kernel size=2, strides='1l', padding='same',

activation='relu'))
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And there you have it. One line of code creates the convolutional layer. We will see
where this line fits in the full code later in this chapter. Let’s stay focused on the con-
volutional layer. As you can see from the code, the convolutional layer takes five main
arguments. As mentioned in chapter 2, it is recommended that we use the ReL.U acti-
vation function in the neural networks’ hidden layers. That’s one argument out of the
way. Now, let’s explain the remaining four hyperparameters that control the size and
depth of the output volume:

Filters: the number of convolutional filters in each layer. This represents the
depth of its output.

Kernel size: the size of the convolutional filter matrix. Sizes vary: 2 x 2, 3 x 3,5 x 5.
Stride.

Padding.

We will discuss strides and padding in the next section. But now, let’s look at each of
these four hyperparameters.

NOTE Asyou learned in chapter 2 on deep learning, hyperparameters are the
knobs you tune (increase and decrease) when configuring your neural net-
work to improve performance.

NUMBER OF FILTERS IN THE CONVOLUTIONAL LAYER

Each convolutional layer has one or more filters. To understand this, let’s review MLPs
from chapter 2. Remember how we stacked neurons in hidden layers, and each hid-
den layer has n» number of neurons (also called hidden units)? Figure 3.16 shows the
MLP diagram from chapter 2.

n_units n_units n_out

Input features Hidden layer 1 Hidden layer 2 Output layer

Figure 3.16 Neurons are stacked in hidden layers, and each hidden layer has n
neurons (hidden units).
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Similarly, with CNNs, the convolutional layers are the hidden layers. And to increase
the number of neurons in hidden layers, we increase the number of kernels in convo-
lutional layers. Each kernel unit is considered a neuron. For example, if we have a 3 x 3
kernel in the convolutional layer, this means we have 9 hidden units in this layer.
When we add another 3 x 3 kernel, we have 18 hidden units. Add another one, and we
have 27, and so on. So, by increasing the number of kernels in a convolutional layer,
we increase the number of hidden units, which makes our network more complex
and able to detect more complex patterns. The same was true when we added more
neurons (hidden units) to the hidden layers in the MLP. Figure 3.17 provides a repre-
sentation of the CNN layers that shows the number-of-kernels idea.

Input Convolution Feature Convolution  Feature Convolution Feature Classification
image layer pooling layer pooling layer pooling layers
(Cy) layer (P,) (Cy) layer (P,) (Cpn_g)  layer (Py_,)
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Figure 3.17 Representation of the CNN layers that shows the number-of-kernels idea

KERNEL SIZE
Remember that a convolution filter is also known as a kernel. It is a matrix of weights
that slides over the image to extract features. The kernel size refers to the dimensions
of the convolution filter (width times height; figure 3.18).

kernel size is one of the hyperparameters that you will be setting when building
a convolutional layer. Like most neural network hyperparameters, no single best answer
fits all problems. The intuition is that smaller filters will capture very fine details of the
image, and bigger filters will miss minute details in the image.
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Figure 3.18 The kernel size refers to
3x3 5x5 the dimensions of the convolution filter.

Remember that filters contain the weights that will be learned by the network. So, the-
oretically, the bigger the kernel size, the deeper the network, which means the bet-
ter it learns. However, this comes with higher computational complexity and might
lead to overfitting.

Kernel filters are almost always square and range from the smallest at 2 x 2 to the
largest at 5 x 5. Theoretically, you can use bigger filters, but this is not preferred
because it results in losing important image details.

Tuning

| don’t want you to get overwhelmed with all the hyperparameter tuning. Deep learning
is really an art as well as a science. | can’t emphasize this enough: most of your work
as a DL engineer will be spent not building the actual algorithms, but rather building
your network architecture and setting, experimenting, and tuning your hyperparame-
ters. A great deal of research today is focused on trying to find the optimal topologies
and parameters for a CNN, given a type of problem. Fortunately, the problem of tuning
hyperparameters doesn’t have to be as hard as it might seem. Throughout the book,
| will indicate good starting points for using hyperparameters and help you develop
an instinct for evaluating your model and analyzing its results to know which knob
(hyperparameter) you need to tune (increase or decrease).

STRIDES AND PADDING
You will usually think of these two hyperparameters together, because they both con-
trol the shape of the output of a convolutional layer. Let’s see how:

Strides—The amount by which the filter slides over the image. For example, to
slide the convolution filter one pixel at a time, the strides value is 1. If we want
to jump two pixels at a time, the strides value is 2. Strides of 3 or more are
uncommon and rare in practice. Jumping pixels produces smaller output vol-
umes spatially.

Strides of 1 will make the output image roughly the same height and width of
the input image, while strides of 2 will make the output image roughly half of the
input image size. I say “roughly” because it depends on what you set the pad-
ding parameter to do with the edge of the image.
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Padding—Often called zero-padding because we add zeros around the border of
an image (figure 3.19). Padding is most commonly used to allow us to preserve
the spatial size of the input volume so the input and output width and height
are the same. This way, we can use convolutional layers without necessarily
shrinking the height and width of the volumes. This is important for building
deeper networks, since, otherwise, the height/width would shrink as we went to
deeper layers.

Padding = 2 Pad
-
0 0 0 0 0 0 0 0
Pad

0 0 0 0 0 0 0 0
0 0 |123| 94 | 2 4 0 0
0|0 |11]|3[22|192) 0| O
0|0 |12| 4 [23|34]|0 ]| 0
0| 0 |194|83(12|94]| 0| O

Figure 3.19 Zero-padding adds zeros
ofofojfojojojojo around the border of the image. Padding
olololololololo = 2 adds two layers of zeros around the

border.

NOTE The goal when using strides and padding hyperparameters is one of
two things: keep all the important details of the image and transfer them to
the next layer (when the strides value is 1 and the padding value is same); or
ignore some of the spatial information of the image to make the processing
computationally more affordable. Note that we will be adding the pooling
layer (discussed next) to reduce the size of the image to focus on the
extracted features. For now, know that strides and padding hyperparameters
are meant to control the behavior of the convolutional layer and the size of its
output: whether to pass on all image details or ignore some of them.

Pooling layers or subsampling

Adding more convolutional layers increases the depth of the output layer, which leads
to increasing the number of parameters that the network needs to optimize (learn).
You can see that adding several convolutional layers (usually tens or even hundreds)
will produce a huge number of parameters (weights). This increase in network dimen-
sionality increases the time and space complexity of the mathematical operations that
take place in the learning process. This is when pooling layers come in handy. Subsam-
pling or pooling helps reduce the size of the network by reducing the number of
parameters passed to the next layer. The pooling operation resizes its input by apply-
ing a summary statistical function, such as a maximum or average, to reduce the over-
all number of parameters passed on to the next layer.
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The goal of the pooling layer is to downsample the feature maps produced by the
convolutional layer into a smaller number of parameters, thus reducing computa-
tional complexity. It is a common practice to add pooling layers after every one or two
convolutional layers in the CNN architecture (figure 3.20).

< Z O O
< Z O O

- C TV Z

Figure 3.20 Pooling layers are
commonly added after every one
INPUT = CONV = POOL = CONV = POOL or two convolutional layers.

MAX POOLING VS. AVERAGE POOLING
There are two main types of pooling layers: max pooling and average pooling. We will
discuss max pooling first.

Similar to convolutional kernels, max pooling kernels are windows of a certain
size and strides value that slide over the image. The difference with max pooling is
that the windows don’t have weights or any values. All they do is slide over the fea-
ture map created by the previous convolutional layer and select the max pixel value
to pass along to the next layer, ignoring the remaining values. In figure 3.21, you see

a pooling filter with a size of 2 x 2 and strides of 2 (the filter jumps 2 pixels when
sliding over the image). This pooling layer reduces the feature map size from 4 x 4
down to 2 x 2.

Figure 3.21 A 2 x 2 pooling filter and strides of 2, reducing the feature map from 4 x 4 to 2 x 2

When we do that to all the feature maps in the convolutional layer, we get maps of
smaller dimensions (width times height), but the depth of the layer is kept the same
because we apply the pooling filter to each of the feature maps from the previous fil-
ter. So if the convolutional layer has three feature maps, the output of the pooling
layer will also have three feature maps, but of smaller size (figure 3.22).

Global average pooling is a more extreme type of dimensionality reduction. Instead
of setting a window size and strides, global average pooling calculates the average
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Figure 3.22 If the convolutional layer
has three feature maps, the pooling
CONV layer POOL layer layer’s output will have three smaller
(4 x4x3) (2x2x3) feature maps.

values of all pixels in the feature map (figure 3.23). You can see in figure 3.24 that the
global average pooling layer takes a 3D array and turns it into a vector.

Figure 3.23 Global average pooling
calculates the average values of all
the pixels in a feature map.

-

POOL layer
(1x1x3)

CONV layer
(4x4x3)

Figure 3.24 The global average pooling layer turns a 3D array into a vector.

WHY USE A POOLING LAYER?

As you can see from the examples we have discussed, pooling layers reduce the dimen-
sionality of our convolutional layers. The reason it is important to reduce dimensionality
is that in complex projects, CNNs contain many convolutional layers, and each has tens
or hundreds of convolutional filters (kernels). Since the kernel contains the parameters
(weights) that the network learns, this can get out of control very quickly, and the dimen-
sionality of our convolutional layers can get very large. So adding pooling layers helps
keep the important features and pass them along to the next layer, while shrinking image
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dimensionality. Think of pooling layers as image-compressing programs. They reduce
the image resolution while keeping its important features (figure 3.25).

Figure 3.25 Pooling layers reduce image
resolution and keep the image’s
Original Downsampled ~ important features.

Pooling vs. strides and padding

The main purpose of pooling and strides is to reduce the number of parameters in the
neural network. The more parameters we have, the more computationally expensive
the training process will be. Many people dislike the pooling operation and think that
we can get away without it in favor of tuning strides and padding the convolutional layer.
For example, “Striving for Simplicity: The All Convolutional Net”® proposes discarding
the pooling layer in favor of architecture that only consists of repeated convolutional
layers. To reduce the size of the representation, the authors suggest occasionally using
larger strides in the convolutional layer. Discarding pooling layers has also been found
helpful in training good generative models, such as generative adversarial networks
(GANSs), which we will discuss in chapter 10. It seems likely that future architectures
will feature very few to no pooling layers. But for now, pooling layers are still widely used
to downsample images from one layer to the next.

2 Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller, “Striving for Simplicity: The All
Convolutional Net,” https://arxiv.org/abs/1412.6806.

CONVOLUTIONAL AND POOLING LAYERS RECAP

Let’s review what we have done so far. Up until this point, we used a series of convolu-
tional and pooling layers to process an image and extract meaningful features that are
specific to the images in the training dataset. To summarize how we got here:

The raw image is fed to the convolutional layer, which is a set of kernel filters
that slide over the image to extract features.

The convolutional layer has the following attributes that we need to configure:

from keras.layers import Conv2D

model.add (Conv2D (filters=16, kernel size=2, strides='1l"',
padding='same', activation='relu'))

— filters is the number of kernel filters in each layer (the depth of the hid-
den layer).

— kernel_size is the size of the filter (aka kernel). Usually 2, or 3, or 5.

— strides is the amount by which the filter slides over the image. A strides
value of 1 or 2 is usually recommended as a good start.
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— padding adds columns and rows of zero values around the border of the
image to reserve the image size in the next layer.

— activation of relu is strongly recommended in the hidden layers.

The pooling layer has the following attributes that we need to configure:

from keras.layers import MaxPooling2D

model.add (MaxPooling2D (pool size=(2, 2), strides = 2))

And we keep adding pairs of convolutional and pooling layers to achieve the required
depth for our “deep” neural network.

Visualize what happens after each layer

After the convolutional layers, the image keeps its width and height dimensions (usu-
ally), but it gets deeper and deeper after each layer. Why? Remember the cutting-the-
image-into-pieces-of-features analogy we mentioned earlier? That is what's happen-
ing after the convolutional layer.

For example, suppose the input image is 28 x 28 (like in the MNIST dataset). When
we add a CONV_1 layer (with filters of 4, strides of 1, and padding of same), the
output will be the same width and height dimensions but with depth of 4 (28 x 28 x
4). Now we add a CONV_2 layer with the same hyperparameters but more filters (12),
and we get deeper output: 28 x 28 x 12.

CONV-2

Input image 4 kernels CONV-1 12 kernels

i

28 x 28 x 1 28 x 28 x 4 28 x 28 x 12

N

After the pooling layers, the image keeps its depth but shrinks in width and height:

Input image

POOL POOL POOL

5x5

10 x 10
14 x 14

28 x 28
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Putting the convolutional and pooling together, we get something like this:

+ CONV and + CONV and + CONV and + CONV and
POOL layers POOL layers POOL layers POOL layers

Feature Feature Feature Feature
maps 1 maps 2 maps 3 maps 4

This keeps happening until we have, at the end, a long tube of small shaped images
that contain all the features in the original image.

The output of the convolutional and pooling layers produces a feature tube (5 X 5 X
40) that is almost ready to be classified. We use 40 here as an example for the depth
of the feature tube, as in 40 feature maps. The last step is to flatten this tube before
feeding it to the fully connected layer for classification. As discussed earlier, the flat-
tened layer will have the dimensions of (1, m) where m =5 x 5 x 40 = 1,000 neurons.

Fully connected layers

After passing the image through the feature-learning process using convolutional and
pooling layers, we have extracted all the features and put them in a long tube. Now it
is time to use these extracted features to classify images. We will use the regular neural
network architecture, MLP, that we discussed in chapter 2.

WHY USE FULLY CONNECTED LAYERS?
MLPs work great in classification problems. The reason we used convolutional layers
in this chapter is that MLPs lose a lot of valuable information when extracting features
from an image—we have to flatten the image before feeding it to the network—
whereas convolutional layers can process raw images. Now we have the features
extracted, and after we flatten them, we can use regular MLPs to classify them.

We discussed the MLP architecture thoroughly in chapter 2: nothing new here. To
reiterate, here are the fully connected layers (figure 3.26):

Input flattened vector—As illustrated in figure 3.26, to feed the features tube to
the MLP for classification, we flatten it to a vector with the dimensions (1, n).
For example, if the features tube has the dimensions of 5 x 5 x 40, the flattened
vector will be (1, 1000).

Hidden layer—We add one or more fully connected layers, and each layer has
one or more neurons (similar to what we did when we built regular MLPs).
Output layer—Chapter 2 recommended using the softmax activation function for
classification problems involving more than two classes. In this example, we are
classifying digits from 0 to 9: 10 classes. The number of neurons in the output
layer is equal to the number of classes; thus, the output layer will have 10 nodes.
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Classification
[ |

Flattened
input vector FC layer Softmax
(1, 1000) (n=64) (n=10)

Flattened

(5 x 5 x 40)

Figure 3.26 Fully connected layers for an MLP

MLPs and fully connected layers

Remember from chapter 2 that multilayer perceptrons (MLPs) are also called fully
connected layers, because all the nodes from one layer are connected to all the
nodes in the previous and next layers. They are also called dense layers. The terms
MLP, fully connected, dense, and sometimes feedforward are used interchangeably
to refer to the regular neural network architecture.

n_units n_units n_out
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Input features Hidden layer 1 Hidden layer 2 Output layer
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Image classification using CNNs

Okay, you are now fully equipped to build your own CNN model to classify images. For
this mini project, which is a simple problem but which will help build the foundation
to more complex problems in the following chapters, we will use the MNIST dataset.
(The MNIST dataset is like “Hello World” for deep learning.)

NOTE Regardless of which DL library you decide to use, the concepts are
pretty much the same. You start with designing the CNN architecture in your
mind or on a piece of paper, and then you begin stacking layers on top of each
other and setting their parameters. Both Keras and MXNet (along with Tensor-
Flow, PyTorch, and other DL libraries) have pros and cons that we will discuss
later, but the concepts are similar. So for the rest of this book, we will be work-
ing mostly with Keras with a little overview of other libraries here and there.

Building the model architecture

This is the part in your project where you define and build the CNN model architec-
ture. To look at the full code of the project that includes image preprocessing, train-
ing, and evaluating the model, go to the book’s GitHub repo at https://github.com/
moelgendy/deep_learning_for_vision_systems and open the mnist_cnn notebook or
go to the book’s website: www.manning.com/books/deep-learning-for-vision-systems
or www.computerVisionBook.com. At this point, we are concerned with the code that
builds the model architecture. At the end of this chapter, we will build an end-to-end
image classifier and dive deeper into the other pieces:

from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout

: CONV_1: adds a convolutional

Builds th -
s layer with ReLU activation and
depth = 32 kernels

model.add (Conv2D (32, kernel size=(3, 3), strides=1, padding:‘same‘,

del = S tial .
fmoae equential () model object

activation='relu', input shape=(28,28,1) <
model .add (MaxPooling2D (pool_size=(2, 2))) POOL_1: downsamples the image
to choose the best features

model.add (Conv2D (64, (3, 3), strides=1, padding 'same', activation='relu'))
model .add (MaxPooling2D (pool_size=(2, 2)))

POOL_Z: more
model.add (Flatten()) downsampling

Flatten, since there are too
many dimensions; we only
want a classification output

model .add (Dense (64, activation='relu'))

model .add (Dense (10, activation='softmax'

model . summary () FC_2: Outputs a softmax FC_1: Fully connected to
to squash the matrix into get all relevant data
Prints the model output probabilities for

architecture summary the 10 classes
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Total params: 220,234
Trainable params: 220,234
Non-trainable params: 0

Layer (type) Output Shape Param # i
|
conv2d_1 (Conv2D) (None, 28, 28, 32) 320 i
max_pooling2d 1 (MaxPooling2 (None, 14, 14, 32) 0 i
I
conv2d 2 (Conv2D) (None, 14, 14, 64) 18496 i
I
max_pooling2d 2 (MaxPooling2 (None, 7, 7, 64) 0 i
flatten 1 (Flatten) (None, 3136) 0
I
dense 1 (Dense) (None, 64) 200768 i
dense_2 (Dense) (None, 10) 650 i
I
I
I
I
I
I
I
I
I

Figure 3.27 The printed model summary

When you run this code, you will see the model summary printed as in figure 3.27.

Following are some general observations before we look at the model summary:

We need to pass the input_shape argument to the first convolutional layer only.
Then we don’t need to declare the input shape to the model, since the output
of the previous layer is the input of the current layer—it is already known to the
model.

You can see that the output of every convolutional and pooling layer is a 3D ten-
sor of shape (None, height, width, channels). The height and width values
are pretty straightforward: they are the dimensions of the image at this layer.
The channels value represents the depth of the layer. This is the number of fea-
ture maps in each layer. The first value in this tuple, set to None, is the number
of images that are processed in this layer. Keras sets this to None, which means
this dimension is variable and accepts any number of batch_size.

As you can see in the Output Shape columns, as you go deeper through the net-
work, the image dimensions shrink and the depth increases, as we discussed
earlier in this chapter.

Notice the number of total params (weights) that the network needs to optimize:
220,234, compared to the number of params from the MLP network we created
earlier in this chapter (669,706). We were able to cut it down to almost a third.

Let’s take a look at the model summary line by line:

CoNv_1—We know the input shape: (28 x 28 x 1). Look at the output shape of
conv2d: (28 x 28 x 32). Since we set the strides parameter to 1 and padding to
same, the dimensions of the input image did not change. But depth increased
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to 32. Why? Because we added 32 filters in this layer. Each filter produces one
feature map.

POOL_1—The input of this layer is the output of its previous layer: (28 x 28 x
32). After the pooling layer, the image dimensions shrink, and depth stays the
same. Since we used a 2 x 2 pool, the output shape is (14 x 14 x 32).

CONV_2— Same as before, convolutional layers increase depth and keep dimen-
sions. The input from the previous layer is (14 x 14 x 32). Since the filters in this
layer are set to 64, the outputis (14 x 14 x 64).

POOL_2—Same 2 x 2 pool, keeping the depth and shrinking the dimensions.
The outputis (7 x 7 x 64).

Flatten—Flattening a features tube that has dimensions of (7 x 7 x 64) con-
verts it into a flat vector of dimensions (1, 3136).

Dense_1—We set this fully connected layer to have 64 neurons, so the output is 64.
Dense_2—This is the output layer that we set to 10 neurons, since we have 10
classes.

Number of parameters (weights)

Okay, now we know how to build the model and read the summary line by line to see
how the image shape changes as it passes through the network layers. One important
thing remains: the Param # column on the right in the model summary.

WHAT ARE THE PARAMETERS?

Parameters is just another name for weights. These are the things that your network
learns. As we discussed in chapter 2, the network’s goal is to update the weight values
during the gradient descent and backpropagation processes until it finds the optimal
parameter values that minimize the error function.

How ARE THESE PARAMETERS CALCULATED?

In MLP, we know that the layers are fully connected to each other, so the weight con-
nections or edges are simply calculated by multiplying the number of neurons in each
layer. In CNNs, weight calculations are not as straightforward. Fortunately, there is an
equation for this:

number of params = filters x kernel size x depth of the previous layer + number of fil-
ters (for biases)

Let’s apply this equation in an example. Suppose we want to calculate the parameters
at the second layer of the previous mini project. Here is the code for CONV_2 again:

model.add (Conv2D (64, (3, 3), strides=1, padding='same', activation='relu'))
Since we know that the depth of the previous layer is 32, then

= Params = 64 x 3 x 3 x 32 + 64 = 18,496
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Note that the pooling layers do not add any parameters. Hence, you will see the Param
# value is 0 after the pooling layers in the model summary. The same is true for the
flatten layer: no extra weights are added (figure 3.28).

Layer (type) Output Shape Param #
max_pooling2d 1 (MaxPooling2 (None, 14, 14, 32) 0
conv2d_2 (Conv2D) (None, 14, 14, 64) 18496
max _pooling2d 2 (MaxPooling2 (None, 7, 7, 64) 0
flatten 1 (Flatten) (None, 3136) 0

Figure 3.28 Pooling and flatten layers don’t add parameters, so Param # is 0 after pooling
and flattening layers in the model summary.

When we add all the parameters in the Param # column, we get the total number of
parameters that this network needs to optimize: 220,234.

TRAINABLE AND NON-TRAINABLE PARAMS

In the model summary, you will see the total number of params and, below it, the
number of trainable and non-trainable params. The trainable params are the weights
that this neural network needs to optimize during the training process. In this exam-
ple, all our params are trainable (figure 3.29).

Total params: 220,234
Trainable params: 220,234
Non-trainable params: 0

Figure 3.29 All of our params are trainable and need to be optimized during training.

In later chapters, we will talk about using a pretrained network and combining it with
your own network for faster and more accurate results: in such a case, you may decide
to freeze some layers because they are pretrained. So, not all of the network params
will be trained. This is useful for understanding the memory and space complexity of
your model before starting the training process; but more on that later. As far as we
know now, all our params are trainable.

Adding dropout layers to avoid overfitting

So far, you have been introduced to the three main layers of CNNs: convolution, pool-
ing, and fully connected. You will find these three layer types in almost every CNN
architecture. But that’s not all of them—there are additional layers that you can add
to avoid overfitting.
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What is overfitting?

The main cause of poor performance in machine learning is either overfitting or
underfitting the data. Underfitting is as the name implies: the model fails to fit the
training data. This happens when the model is too simple to fit the data: for example,
using one perceptron to classify a nonlinear dataset.

Overfitting, on the other hand, means fitting the data too much: memorizing the
training data and not really learning the features. This happens when we build a super
network that fits the training dataset perfectly (very low error while training) but fails
to generalize to other data samples that it hasn’t seen before. You will see that, in over-
fitting, the network performs very well in the training dataset but performs poorly in
the test dataset (figure 3.30).

Underfitting Just right! Overfitting

Figure 3.30 Underfitting (left): the model doesn’t represent the data very well. Just right (middle):
the model fits the data very well. Overfitting (right): the model fits the data too much, so it won’t
be able to generalize for unseen examples.

In machine learning, we don’t want to build models that are too simple and so under-
fit the data or are too complex and overfit it. We want to use other techniques to build
a neural network that is just right for our problem. To address that, we will discuss
dropout layers next.

What is a dropout layer?

A dropout layer is one of the most commonly used layers to prevent overfitting. Drop-
out turns off a percentage of neurons (nodes) that make up a layer of your network
(figure 3.31). This percentage is identified as a hyperparameter that you tune when
you build your network. By “turns off,” I mean these neurons are not included in a
particular forward or backward pass. It may seem counterintuitive to throw away a con-
nection in your network, but as a network trains, some nodes can dominate others or
end up making large mistakes. Dropout gives you a way to balance your network so
that every node works equally toward the same goal, and if one makes a mistake, it
won’t dominate the behavior of your model. You can think of dropout as a technique
that makes a network resilient; it makes all the nodes work well as a team by making
sure no node is too weak or too strong.
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Figure 3.31 Dropout turns off a percentage of the neurons that make up a network layer.

3.5.3 Why do we need dropout layers?

Neurons develop codependency among each other during training, which controls
the individual power of each neuron, leading to overfitting of training data. To
really understand why dropouts are effective, let’s take a closer look at the MLP in
figure 3.31 and think about what the nodes in each layer really represent. The first
layer (far left) is the input layer that contains the input features. The second layer
contains the features learned from the patterns of the previous layer when multi-
plied by the weights. Then the following layer is patterns learned within patterns,
and so on. Each neuron represents a certain feature that, when multiplied by a
weight, is transformed into another feature. When we randomly turn off some of
these nodes, we force the other nodes to learn patterns without relying on only one
or two features, because any feature can be randomly dropped out at any point. This
results in spreading out the weights among all the features, leading to more trained
neurons.

Dropout helps reduce interdependent learning among the neurons. In that sense,
it helps to view dropout as a form of ensemble learning. In ensemble learning, we
train a number of weaker classifiers separately, and then we use them at test time by
averaging the responses of all ensemble members. Since each classifier has been
trained separately, it has learned different aspects of the data, and their mistakes
(errors) are different. Combining them helps to produce a stronger classifier, which is
less prone to overfitting.

Intuition

An analogy that helps me understand dropout is training your biceps with a bar. When
lifting a bar with both arms, we tend to rely on our stronger arm to lift a little more
weight than our weaker arm. Our stronger arm will end up getting more training than
the other and develop a larger muscle:
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Too strong because it
received too much training

Dropout means mixing up our workout (training) a little. We tie our right arm and train
our left arm only. Then we tie the left arm and train the right arm only. Then we mix
it up and go back to the bar with both arms, and so on. After some time, you will see
that you have developed both of your biceps:

This is exactly what happens when we train neural networks. Sometimes part of the
network has very large weights and dominates all the training, while another part of
the network doesn’t get much training. What dropout does is turn off some neurons
and let the rest of the neurons train. Then, in the next epoch, it turns off other neu-
rons, and the process continues.

Where does the dropout layer go in the CNN architecture?

As you have learned in this chapter, a standard CNN consists of alternating convolu-
tional and pooling layers, ending with fully connected layers. To prevent overfitting,
it’s become standard practice after you flatten the image to inject a few dropout layers
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between the fully connected layers at the end of the architecture. Why? Because drop-
out is known to work well in the fully connected layers of convolutional neural nets. Its
effect in convolutional and pooling layers is, however, not well studied yet:

CNN architecture: ... CONV = POOL = Flatten = DO = FC = DO = FC

Let’s see how we use Keras to add a dropout layer to our previous model:

# CNN and POOL layers
#

4 o Flatten layer
model.add (Flatten()) Dropout layer with
30% probability

FC_1: fully connected
to get all relevant data

model . add (Dropout (rate=0.3))
model .add (Dense (64, activation='relu'))

model.add (Dropout (rate=0.5)) Dropout layer with

50% probability

model .add (Dense (10, activation='softmax'))
FC_2: outputs a softmax to squash
model . summary () Prints the model the matrix into output probabilities
ﬁ for the 10 classes

architecture summary
As you can see, the dropout layer takes rate as an argument. The rate represents the
fraction of the input units to drop. For example, if we set rate to 0.3, it means 30% of
the neurons in this layer will be randomly dropped in each epoch. So if we have 10
nodes in a layer, 3 of these neurons will be turned off, and 7 will be trained. The three
neurons are randomly selected, and in the next epoch other randomly selected neu-
rons are turned off, and so on. Since we do this randomly, some neurons may be
turned off more than others, and some may never be turned off. This is okay, because
we do this many times so that, on average, each neuron will get almost the same
treatment. Note that this rate is another hyperparameter that we tune when build-
ing our CNN.

Convolution over color images (3D images)

Remember from chapter 1 that computers see grayscale images as 2D matrices of pix-
els (figure 3.32). To a computer, the image looks like a 2D matrix of the pixels’ values,
which represent intensities across the color spectrum. There is no context here, just a
massive pile of data.

Color images, on the other hand, are interpreted by the computer as 3D matrices
with height, width, and depth. In the case of RGB images (red, green, and blue) the
depth is three: one channel for each color. For example, a color 28 x 28 image will
be seen by the computer as a 28 x 28 x 3 matrix. Think of this as a stack of three 2D
matrices—one each for the red, green, and blue channels of the image. Each of the
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Figure 3.32 To a computer, an image looks like a 2D
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they create a complete color image (figure 3.33).
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they are stacked,

NOTE For generalization, we represent images as a 3D array: height x width x
depth. For grayscale images, depth is 1; and for color images, depth is 3.

Color image RGB channels
_ Channel 3
F(0,0)=[11, 102, 35] Blue intensity (| 35 165|163 (165|158|
values " l166|166|164| 166|156
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Figure 3.33 Color images are represented by three matrices. Each matrix represents the value of its
color’s intensity. Stacking them creates a complete color image.

How do we perform a convolution on a color image?

Similar to what we did with grayscale images, we slide the convolutional kernel over
the image and compute the feature maps. Now the kernel is itself three-dimensional:
one dimension for each color channel (figure 3.34).
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To perform convolution, we will do the same thing we did before, except that now,
our sum is three times as many terms. Let’s see how (figure 3.35):

Each of the color channels has its own corresponding filter.

Each filter will slide over its image, multiply every corresponding pixel element-
wise, and then add them all together to compute the convolved pixel value of
each filter. This is similar to what we did previously.

We then add the three values to get the value of a single node in the convolved
image or feature map. And don’t forget to add the bias value of 1. Then we slide
the filters over by one or more pixels (based on the strides value) and do the
same thing. We continue this process until we compute the pixel values of all
nodes in the feature map.

What happens to the computational complexity?

Note that if we pass a 3 x 3 filter over a grayscale image, we will have a total of 9 param-
eters (weights) for each filter (as already demonstrated). In color images, every filter
is itself a 3D filter. This means every filter has a number of parameters: (height x width
x depth) = (3 x 3 x 3) = 27. You can see how the network complexity increases when
processing color images because it has to optimize more parameters; color images
also take up more memory space.

Color images contain more information than grayscale images. This can add
unnecessary computational complexity and take up memory space. However, color
images are also really useful for certain classification tasks. That’s why in some use
cases, you, as a computer vision engineer, will use your judgement as to whether to
convert your color images to grayscale where color doesn’t really matter. This is
because for many objects, color is not needed to recognize and interpret an image:
grayscale could be enough to recognize objects.
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Figure 3.35 Performing convolution

In figure 3.36, you can see how patterns of light and dark in an object (intensity) can
be used to define its shape and characteristics. However, in other applications, color is
important to define certain objects: for example, skin cancer detection relies heavily
on skin color (red rashes). In general, when it comes to CV applications like identify-
ing cars, people, or skin cancer, you can decide whether color information is import-
ant or not by thinking about your own vision. If the identification problem is easier in
color for us humans, it’s likely easier for an algorithm to see color images, too.
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Figure 3.36 Patterns of light and dark in an object (intensity) can be used to define its shape and
characteristics in a grayscale image.

Note that in figure 3.36, we added only one filter (that contains 3 channels), which
produced one feature map. Similarly to grayscale images, each filter we add will pro-
duce its own feature map. In the CNN in figure 3.37, we have an input image of
dimensions (7 x 7 x 3). We add two convolution filters of dimensions (3 x 3). The out-
put feature map has a depth of 2, since we added two filters, similar to what we did
with grayscale images.

An important closing note on CNN architecture

| strongly recommend looking at existing architectures, since many people have
already done the work of throwing things together and seeing what works. Practically
speaking, unless you are working on research problems, you should start with a CNN
architecture that has already been built by other people to solve problems similar to
yours. Then tune it further to fit your data.

In chapter 4, we will explain how to diagnose your network’s performance and dis-
cuss tuning strategies to improve it. In chapter 5, we will discuss the most popular
CNN architectures and examine how other researchers built them. What | want you
to take from this section is, first, a conceptual understanding of how a CNN is built;
and, second, that more layers lead to more neurons, which lead to more learning
behavior. But this comes with computational cost. So you should always consider
the size and complexity of your training data (many layers may not be necessary for
a simple task).
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Figure 3.37 Our input image has dimensions (7 x 7 x 3), and we add two convolution filters of
dimensions (3 x 3). The output feature map has a depth of 2.

3.7 Project: Image classification for color images

Let’s take a look at an end-to-end image classification project. In this project, we will
train a CNN to classify images from the CIFAR-10 dataset (www.cs.toronto.edu/
~kriz/cifar.html). CIFAR-10 is an established CV dataset used for object recognition. It
is a subset of the 80 Million Tiny Images dataset' and consists of 60,000 (32 x 32) color

! Antonio Torralba, Rob Fergus, and William T. Freeman, “80 Million Tiny Images: A Large Data Set for Non-
parametric Object and Scene Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence
(November 2008), https://doi.org/10.1109/TPAMI.2008.128.
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images containing 1 of 10 object classes, with 6,000 images per class. Now, fire up your
notebook and let’s get started.

STEP 1: LOAD THE DATASET

The first step is to load the dataset into our train and test objects. Luckily, Keras pro-
vides the CIFAR dataset for us to load using the load_data () method. All we have to
do is import keras.datasets and then load the data:

import keras
from keras.datasets import cifarlo

(x_train, y train), (x test, y test) = cifarl0.load data() Loads the

. preshuffled
import numpy as np train and tests
import matplotlib.pyplot as plt the data

$matplotlib inline

fig = plt.figure(figsize=(20,5))

for i in range(36):
ax = fig.add subplot (3, 12, i + 1, xticks=[], yticks=[])
ax.imshow (np.squeeze (x_train[i]))

STEP 2: IMAGE PREPROCESSING

Based on your dataset and the problem you are solving, you will need to do some data
cleanup and preprocessing to get it ready for your learning model. A cost function has
the shape of a bowl, but it can be an elongated bowl if the features have very different
scales. Figure 3.38 shows gradient descent on a training set where features 1 and 2
have the same scale (on the left), and on a training set where feature 1 has much
smaller values than feature 2 (on the right).

TIP  When using gradient descent, you should ensure that all features have a
similar scale; otherwise, it will take much longer to converge.
Gradient descent with and without feature scaling

Normalized features Non-normalized features

) Fa

Figure 3.38 Normalized features are on the same scale represented by a
uniform bowl (left). Non-normalized features are not on the same scale and
are represented by an elongated bowl (right). Gradient descent on a training
set with features that have the same scale (left) and on a training set where
feature 1’s values are much smaller than feature 2’s (right).
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Rescale the images
Rescale the input images as follows:

Rescales the images by dividing the

pixel values by 255: [0,255] => [0,1]

x_train = x_train.astype('float32') /255
x_test = x_test.astype('float32')/255

Prepare the labels (one-hot encoding)
In this chapter and throughout the book, we will discuss how computers process input

data (images) by converting it into numeric values in the form of matrices of pixel
intensities. But what about the labels? How are the labels understood by computers?
Every image in our dataset has a specific label that explains (in text) how this image is
categorized. In this particular dataset, for example, the labels are categorized by the
following 10 classes: ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog',
"frog', 'horse', 'ship', 'truck']. We need to convert these text labels into a form
that can be processed by computers. Computers are good with numbers, so we will do
something called one-hot encoding. One-hot encoding is a process by which categorical
variables are converted into a numeric form.
Suppose the dataset looks like the following:

Image Label

image_1 dog
image_2 automobile
image_3 airplane
image_4 truck
image_5 bird

After one-hot encoding, we have the following:

airplane  bird cat deer dog frog horse ship truck automobile

image_1 0 0 0 0 1 0 0 0 0 0
image_2 0 0 0 0 0 0 0 0 0 1
image_3 1 0 0 0 0 0 0 0 0 0
image_4 0 0 0 0 0 0 0 0 1 0
image_5 0 1 0 0 0 0 0 0 0 0

Luckily, Keras has a method that does just that for us:

One-hot encodes

from keras.utils import np utils
QJ the labels

num_classes = len(np.unique(y_train))
y_train = keras.utils.to_categorical (y_train, num classes)
y_test = keras.utils.to categorical (y_test, num classes)
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Split the dataset for training and validation
In addition to splitting our data into train and test datasets, it is a standard practice to

further split the training data into training and validation datasets (figure 3.39). Why?
Because each split is used for a different purpose:

Training dataset—The sample of data used to train the model.

Validation dataset—The sample of data used to provide an unbiased evaluation
of model fit on the training dataset while tuning model hyperparameters. The
evaluation becomes more biased as skill on the validation dataset is incorpo-
rated into the model configuration.

Test dataset—The sample of data used to provide an unbiased evaluation of final
model fit on the training dataset.

Train Validation Test

Figure 3.39 Splitting the data into training, validation, and test
subsets

Here is the Keras code:

(x_train, x_valid) = x_train[5000:], x_train[:5000] Breaks the training set into
(y_train, y valid) = y train[5000:], y train[:5000] training and validation sets
print ('x_train shape:', x_train.shape) <+—— Prints the shape of the training set
print (x_train.shape[0], 'train samples') Prints the number of

print (x_test.shape[0], 'test samples') training, validation,

print (x_valid.shape[0], 'validation samples') and test images

The label matrix

One-hot encoding converts the (1 X n) label vector to a label matrix of dimensions
(10 x n), where n is the number of sample images. So, if we have 1,000 images in
our dataset, the label vector will have the dimensions (1 x 1000). After one-hot
encoding, the label matrix dimensions will be (1000 x 10). That’s why, when we
define our network architecture in the next step, we will make the output softmax
layer contain 10 nodes, where each node represents the probability of each class
we have.
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Output layer

STEP 3: DEFINE THE MODEL ARCHITECTURE

You learned that the core building block of CNNs (and neural networks in general) is
the layer. Most DL projects consist of stacking together simple layers that implement a
form of data distillation. As you learned in this chapter, the main CNN layers are convo-
lution, pooling, fully connected, and activation functions.

How do you decide on the network architecture?

How many convolutional layers should you create? How many pooling layers? In my
opinion, it is very helpful to read about some of the most popular architectures (Alex-
Net, ResNet, Inception) and extract the key ideas leading to the design decisions.
Looking at how these state-of-the-art architectures are built and playing with your own
projects will help you build an intuition about the CNN architecture that most suits
the problem you are solving. We will discuss the most popular CNN architectures in
chapter 5. Until then, here is what you need to know:

The more layers you add, the better (at least theoretically) your network will
learn; but this will come at the cost of increasing the computational and memory
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space complexity, because it increases the number of parameters to optimize.
You will also face the risk of the network overfitting your training set.

As the input image goes through the network layers, its depth increases, and
the dimensions (width, height) shrink, layer by layer.

In general, two or three layers of 3 x 3 convolutional layers followed by a 2 x 2
pooling can be a good start for smaller datasets. Add more convolutional and
pooling layers until your image is a reasonable size (say, 4 x 4 or 5 x 5), and then
add a couple of fully connected layers for classification.

You need to set up several hyperparameters (like filter, kernel size, and
padding). Remember that you do not need to reinvent the wheel: instead, look
in the literature to see what hyperparameters usually work for others. Choose
an architecture that worked well for someone else as a starting point, and then
tune these hyperparameters to fit your situation. The next chapter is dedicated
to looking at what has worked well for others.

Learning to work with layers and hyperparameters

| don’t want you to get hung up on setting hyperparameters when building your first
CNNs. One of the best ways to gain an instinct for how to put layers and hyperparam-
eters together is to actually see concrete examples of how others have done it. Most
of your work as a DL engineer will involve building your architecture and tuning the
parameters. The main takeaways from this chapter are these:

Understand how the main CNN layers work (convolution, pooling, fully con-
nected, dropout) and why they exist.

Understand what each hyperparameter does (number of filters in the convolu-
tional layer, kernel size, strides, and padding).

Understand, in the end, how to implement any given architecture in Keras. If
you are able to replicate this project on your own dataset, you are good to go.

In chapter 5, we will review several state-of-the-art architectures and see what worked
for them.

The architecture shown in figure 3.40 is called AlexNet: it’s a popular CNN architec-
ture that won the ImageNet challenges in 2011 (more details on AlexNet in chapter 5).
The AlexNet CNN architecture is composed of five convolutional and pooling layers,
and three fully connected layers.

Let’s try a smaller version of AlexNet and see how it performs with our dataset (fig-
ure 3.41). Based on the results, we might add more layers. Our architecture will stack
three convolutional layers and two fully connected (dense) layers as follows:

CNN: INPUT = CONV_1l = POOL_1 = CONV_2 = POOL_2 = CONV_3 =
POOL_3 = DO = FC = DO = FC (softmax)
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Figure 3.41 We will build a small CNN consisting of three convolutional layers and two
dense layers.

Note that we will use the ReL.U activation function for all the hidden layers. In the last
dense layer, we will use a softmax activation function with 10 nodes to return an array
of 10 probability scores (summing to 1). Each score will be the probability that the
current image belongs to our 10 image classes:
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from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout

First convolutional and
pooling layers. Note
that we need to define
input_shape in the first
convolutional layer only.

model = Sequential ()

model.add (Conv2D (filters=16, kernel size=2, padding='same',
activation='relu', input shape=(32, 32, 3)))

model . add (MaxPooling2D (pool size=2))

model.add (Conv2D (filters=32, kernel size=2, padding='same', Second convolutional
activation='relu')) and pooling layers with a
model . add (MaxPooling2D (pool size=2)) ReLU activation function
model.add (Conv2D (filters=64, kernel size=2, padding='same', Third convolutional
activation='relu')) and pooling layers
model . add (MaxPooling2D (pool size=2)) i
Dropout layer to avoid
overfitting with a 30% rate
model.add (Dropout (0.3)) g ’

Flattens the last feature map

model.add (Flatten()) into a vector of features

model .add (Dense (500, activation='relu')) Addstheﬁrﬁfu"y
model.add (Dropout (0.4)) connected layer

model.add (Dense (10, activation='softmax')) Another dropout layer
with a 40% rate

model. summary ()

Prints a summary The output layer is a fully connected layer
of thF model with 10 nodes and softmax activation to
architecture give probabilities to the 10 classes.

When you run this cell, you will see the model architecture and how the dimensions
of the feature maps change with every successive layer, as illustrated in figure 3.42.

We discussed previously how to understand this summary. As you can see, our
model has 528,054 parameters (weights and biases) to train. We also discussed previ-
ously how this number was calculated.

STEP 4: COMPILE THE MODEL
The last step before training our model is to define three more hyperparameters—a
loss function, an optimizer, and metrics to monitor during training and testing:

Loss function—How the network will be able to measure its performance on the
training data.

Optimizer—The mechanism that the network will use to optimize its parameters
(weights and biases) to yield the minimum loss value. It is usually one of the
variants of stochastic gradient descent, explained in chapter 2.

Metrics—List of metrics to be evaluated by the model during training and test-
ing. Typically we use metrics=['accuracy'].

Feel free to revisit chapter 2 for more details on the exact purpose and different types
of loss functions and optimizers.
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Total params: 528,054
Trainable params: 528,054
Non-trainable params: 0

T i
| Layer (type) Output Shape Param # !
I I
I
:conv2d_l (Conv2D) (None, 32, 32, 16) 208
I
I I
:maxipooling2d71 (MaxPooling 2 (None, 16, 16, 16) 0 :
I I
I I
:conv2d_2 (Conv2D) (None, 16, 16, 32) 2080
I I
I
:max_poolingzd 2 (MaxPooling 2 (None, 8, 8, 32) 0 :
- I
I I
| conv2d_3 (ConvaD) (None, 8, 8, 64) 8256 |
I - I
I I
| max_pooling2d 3 (MaxPooling 2 (None, 4, 4, 64) 0 |
I I
I I
:dropout_l (Dropout) (None, 4, 4, 64) 0 :
I I
I
:flatten 1 (Flatten) (None, 1024) 0 :
- I
I I
| dense 1 (Dense) (None, 500) 512500 |
I I
I I
| dropout 2  (Dropout) (None, 500) 0 |
I I
I I
| dense_2  (Dense) (None, 10) 5010 !
i i
I I
I I
I I
I I
I I
I I
I I

Figure 3.42 Model summary

Here is the code to compile the model:

model.compile (loss='categorical crossentropy', optimizer='rmsprop',
metrics=['accuracy'])

STEP 5: TRAIN THE MODEL
We are now ready to train the network. In Keras, this is done via a call to the network’s
fit() method (as in fitting the model to the training data):

from keras.callbacks import ModelCheckpoint

checkpointer = ModelCheckpoint (filepath='model.weights.best.hdf5', verbose=1,
save_best only=True)

hist = model.fit(x train, y train, batch size=32, epochs=100,
validation data=(x_valid, y valid), callbacks=[checkpointer],
verbose=2, shuffle=True)

When you run this cell, the training will start, and the verbose output shown in fig-
ure 3.43 will show one epoch at a time. Since 100 epochs of display do not fit on one
page, the screenshot shows the first 13 epochs. But when you run this on your note-
book, the display will keep going for 100 epochs.
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Train on 45000 amples, validation 5000 samples

Epoch 1/100

Epoch 00000: val_loss improved from inf to 1.35820, saving model to model.weights.best.hdfs :
46s - loss: 1.6192 - acc: 0.4140 - val loss: 1.3582 - val_acc: 0.5166

Epoch 2/100

Epoch 00001: val_loss improved from 1.35820 to 1.22245, saving model to model.weights.best.hdf5 :
53s - loss: 1.2881 - acc: 0.5402 - val_loss: 1.2224 - val_acc: 0.5644

Epoch 3/100 i
Epoch 00002: val loss improved from 1.22245 to 1.12096, saving model to model.weights.best.hdf5 :
49s - loss: 1.1630 - acc: 0.5879 - val loss: 1.1210 - val_acc: 0.6046

Epoch 4/100 i
Epoch 00003: val_loss improved from 1.12096 to 1.10724, saving model to model.weights.best.hdf5 :
56s - loss: 1.0928 - acc: 0.6160 - val_loss: 1.1072 - val_acc: 0.6134

Epoch 5/100

Epoch 00004: val_loss improved from 1.10724 to 0.97377, saving model to model.weights.best.hdf5 :
52s - loss: 1.0413 - acc: 0.6382 - val_loss: 0.9738 - val_acc: 0.6596

Epoch 6/100 i
Epoch 00005: val_loss improved from 0.97377 to 0.95501, saving model to model.weights.best.hdfs :
50s - loss: 1.0090 - acc: 0.6484 - val loss: 0.9550 - val_acc: 0.6768

Epoch 7/100 i
Epoch 00006: val_loss improved from 0.95501 to 0.94448, saving model to model.weights.best.hdf5 :
49s - loss: 0.9967 - acc: 0.6561 - val loss: 0.9445 - val_acc: 0.6828

Epoch 8/100 i
Epoch 00007: val_loss did not improve :
61ls - loss: 0.9934 - acc: 0.6604 - val_loss: 1.1300 - val_acc: 0.6376

Epoch 9/100 i
Epoch 00008: val_loss improved from 0.94448 to 0.91779, saving model to model.weights.best.hdf5 1|
49s - loss: 0.9858 - acc: 0.6672 - val loss: 0.9178 - val_acc: 0.6882

Epoch 10/100

Epoch 00009: val loss did not improve 1
50s - loss: 0.9839 - acc: 0.6658 - val_loss: 0.9669 - val_acc: 0.6748

Epoch 11/100

Epoch 00010: val_loss improved from 0.91779 to 0.91570, saving model to model.weights.best.hdf5 |
49s - loss: 1.0002 - acc: 0.6624 - val loss: 0.9157 - val_acc: 0.6936

Epoch 12/100

Epoch 00011: val_loss did not improve 1
54s - loss: 1.0001 - acc: 0.6659 - val_loss: 1.1442 - val_acc: 0.6646

Epoch 13/100

Epoch 00012: val loss did not improve |
56s - loss: 1.0161 - acc: 0.6633 - val_loss: 0.9702 - val_acc: 0.6788

Figure 3.43 The first 13 epochs of training

Looking at the verbose output in figure 3.43 will help you analyze how your network is
performing and suggest which knobs (hyperparameter) to tune. We will discuss this in
detail in chapter 4. For now, let’s look at the most important takeaways:

loss and acc are the error and accuracy values for the training data. val_loss
and val_acc are the error and accuracy values for the validation data.

Look at the val loss and val_acc values after each epoch. Ideally, we want
val loss to be decreasing and val_acc to be increasing, indicating that the
network is actually learning after each epoch.

From epochs 1 through 6, you can see that the model is saving the weights after
each epoch, because the validation loss value is improving. So at the end of
each epoch, we save the weights that are considered the best weights so far.
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At epoch 7, val loss went up to 1.1300 from 0.9445, which means that it did
not improve. So the network did not save the weights at this epoch. If you stop

the training now and load the weights from epoch 6, you will get the best results

that you achieved during the training.

The same is true for epoch 8: val loss decreases, so the network saves the

weights as best values. And at epoch 9, there is no improvement, and so forth.

If you stop your training after 12 epochs and load the best weights, the network
will load the weights saved after epoch 10 at (val_loss =0.9157) and (val_acc
0.6936). This means you can expect to get accuracy on the test data close to 69%.

Keep your eye on these common phenomena

val loss is oscillating. If val loss is oscillating up and down, you might
want to decrease the learning-rate hyperparameter. For example, if you see
val loss going from 0.8 to 0.9, to 0.7, to 1.0, and so on, this might mean
that your learning rate is too high to descend the error mountain. Try decreas-
ing the learning rate and letting the network train for a longer time.

Big learning rate Small learning rate

If val loss oscillates, the learning rate may be too high.

val loss is not improving (underfitting). If val loss is not decreasing, this
might mean your model is too simple to fit the data (underfitting). Then you
may want to build a more complex model by adding more hidden layers to
help the network fit the data.

loss is decreasing and val loss stopped improving. This means your net-
work started to overfit the training data and failed to decrease the error for
the validation data. In this case, consider using a technique to prevent overfit-
ting, like dropout layers. There are other techniques to avoid overfitting, as
we will discuss in the next chapter.

STEP 6: LOAD THE MODEL WITH THE BEST VAL_ACC

Now that the training is complete, we use the Keras method load weights () to load

into our model the weights that yielded the best validation accuracy score:

model.load weights ('model.weights.best.hdf5")
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STEP 7: EVALUATE THE MODEL
The last step is to evaluate our model and calculate the accuracy value as a percentage
indicating how often our model correctly predicts the image classification:

score = model.evaluate (x_test, y test, verbose=0)
print ('\n', 'Test accuracy:', scorell])

When you run this cell, you will get an accuracy of about 70%. That is not bad. But we
can do a lot better. Try playing with the CNN architecture by adding more convolu-
tional and pooling layers, and see if you can improve your model.

In the next chapter, we will discuss strategies to set up your DL project and hyper-
parameter tuning to improve the model’s performance. At the end of chapter 4, we will
revisit this project to apply these strategies and improve the accuracy to above 90%.

Summary

MLPs, ANNs, dense, and feedforward all refer to the regular fully connected
neural network architecture that we discussed in chapter 2.

MLPs usually work well for 1D inputs, but they perform poorly with images for
two main reasons. First, they only accept feature inputs in a vector form with
dimensions (1 x n). This requires flattening the image, which will lead to losing
its spatial information. Second, MLPs are composed of fully connected layers
that will yield millions and billions of parameters when processing bigger
images. This will increase the computational complexity and will not scale for
many image problems.

CNN s really shine in image processing because they take the raw image matrix as
an input without having to flatten the image. They are composed of locally con-
nected layers called convolution filters, as opposed to the MLPs’ dense layers.
CNNs are composed of three main layers: the convolutional layer for feature
extraction, the pooling layer to reduce network dimensionality, and the fully
connected layer for classification.

The main cause of poor prediction performance in machine learning is either
overfitting or underfitting the data. Underfitting means that the model is too
simple and fails to fit (learn) the training data. Overfitting means that the
model is so complex that it memorizes the training data and fails to generalize
for test data that it hasn’t seen before.

A dropout layer is added to prevent overfitting. Dropout turns off a percentage
of neurons (nodes) that make up a layer of our network.



Structuring DL projects
and hyperparameter tuning

This chapter covers

= Defining performance metrics

= Designing baseline models

= Preparing training data

= Evaluating a model and improving its performance

This chapter concludes the first part of this book, providing a foundation for deep
learning (DL). In chapter 2, you learned how to build a multilayer perceptron
(MLP). In chapter 3, you learned about a neural network architecture topology
that is very commonly used in computer vision (CV) problems: convolutional neu-
ral networks (CNNs). In this chapter, we will wrap up this foundation by discussing
how to structure your machine learning (ML) project from start to finish. You will
learn strategies to quickly and efficiently get your DL systems working, analyze the
results, and improve network performance.

As you might have already noticed from the previous projects, DL is a very
empirical process. It relies on running experiments and observing model perfor-
mance more than having one go-to formula for success that fits all problems. We
often have an initial idea for a solution, code it up, run the experiment to see how
it did, and then use the outcome of this experiment to refine our ideas. When
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building and tuning a neural network, you will find yourself making many seemingly
arbitrary decisions:

What is a good architecture to start with?

How many hidden layers should you stack?

How many hidden units or filters should go in each layer?
What is the learning rate?

Which activation function should you use?

Which yields better results, getting more data or tuning hyperparameters?

In this chapter, you will learn the following:

Defining the performance metrics for your system—1In addition to model accuracy,
you will use other metrics like precision, recall, and F-score to evaluate your
network.

Designing a baseline model—You will choose an appropriate neural network archi-
tecture to run your first experiment.

Getting your data ready for training—In real-world problems, data comes in messy,
not ready to be fed to a neural network. In this section, you will massage your
data to get it ready for learning.

Evaluating your model and interpreting its performance—When training is complete,
you analyze your model’s performance to identify bottlenecks and narrow down
improvement options. This means diagnosing which of the network compo-
nents are performing worse than expected and identifying whether poor per-
formance is due to overfitting, underfitting, or a defect in the data.

Improving the network and tuning hyperparameters—Finally, we will dive deep into
the most important hyperparameters to help develop your intuition about
which hyperparameters you need to tune. You will use tuning strategies to make
incremental changes based on your diagnosis from the previous step.

TIP  With more practice and experimentation, DL engineers and researchers
build their intuition over time as to the most effective ways to make improve-
ments. My advice is to get your hands dirty and try different architectures and
approaches to develop your hyperparameter-tuning skills.

Ready? Let’s get started!

Defining performance metrics

Performance metrics allow us to evaluate our system. When we develop a model, we
want to find out how well it is working. The simplest way to measure the “goodness”
of our model is by measuring its accuracy. The accuracy metric measures how many
times our model made the correct prediction. So, if we test the model with 100
input samples, and it made the correct prediction 90 times, this means the model is

90% accurate.
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Here is the equation used to calculate model accuracy:

correct predictions

accuracy =
¥~ total number of examples

Is accuracy the best metric for evaluating a model?

We have been using accuracy as a metric for evaluating our model in earlier projects,
and it works fine in many cases. But let’s consider the following problem: you are
designing a medical diagnosis test for a rare disease. Suppose that only one in every
million people has this disease. Without any training or even building a system at all, if
you hardcode the output to be always negative (no disease found), your system will
always achieve 99.999% accuracy. Is that good? The system is 99.999% accurate, which
might sound fantastic, but it will never capture the patients with the disease. This
means the accuracy metric is not suitable to measure the “goodness” of this model. We
need other evaluation metrics that measure different aspects of the model’s predic-
tion ability.

Confusion matrix

To set the stage for other metrics, we will use a confusion matrix: a table that describes
the performance of a classification model. The confusion matrix itself is relatively sim-
ple to understand, but the related terminology can be a little confusing at first. Once
you understand it, you’ll find that the concept is really intuitive and makes a lot of
sense. Let’s go through it step by step.

The goal is to describe model performance from different angles other than pre-
diction accuracy. For example, suppose we are building a classifier to predict whether
a patient is sick or healthy. The expected classifications are either positive (the patient
is sick) or negative (the patient is healthy). We run our model on 1,000 patients and
enter the model predictions in table 4.1.

Table 4.1 Running our model to predict healthy vs. sick patients

Predicted sick (positive) Predicted healthy (negative)

100 30

Sick patients (positive) True positives (TP) False negative (FN)

70 800

Healthy patients (negative) False positives (FP) True negatives (TN)

Let’s now define the most basic terms, which are whole numbers (not rates):

= True positives (TP)—The model correctly predicted yes (the patient has the disease).
= True negatives (I'N)—The model correctly predicted no (the patient does not
have the disease).
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False positives (FP)—The model falsely predicted yes, but the patient actually
does not have the disease (in some literature known as a Type I error or error of the
Jirst kind) .

False negatives (FN)—The model falsely predicted no, but the patient actually
does have the disease (in some literature known as a Type II error or error of the sec-

ond kind).

The patients that the model predicts are negative (no disease) are the ones that the
model believes are healthy, and we can send them home without further care. The
patients that the model predicts are positive (have disease) are the ones that we will
send for further investigation. Which mistake would we rather make? Mistakenly diag-
nosing someone as positive (has disease) and sending them for more investigation is
not as bad as mistakenly diagnosing someone as negative (healthy) and sending them
home at risk to their life. The obvious choice of evaluation metric here is that we care
more about the number of false negatives (FN). We want to find all the sick people,
even if the model accidentally classifies some healthy people as sick. This metric is
called recall.

Precision and recall

Recall (also known as sensitivity) tells us how many of the sick patients our model incor-
rectly diagnosed as well. In other words, how many times did the model incorrectly
diagnose a sick patient as negative (false negative, FN)? Recall is calculated by the fol-
lowing equation:

true positive
Recall = P

true positive + false negative

Precision (also known as specificity) is the opposite of recall. It tells us how many of the
well patients our model incorrectly diagnosed as sick. In other words, how many times
did the model incorrectly diagnose a well patient as positive (false positive, FP)? Preci-
sion is calculated by the following equation:

. true positive
Precision = P

true positive + false positive

Identifying an appropriate metric

It is important to note that although in the example of health diagnostics we decided
that recall is a better metric, other use cases require different metrics, like precision.
To identify the most appropriate metric for your problem, ask yourself which of the
two possible false predictions is more consequential: false positive or false negative.
If your answer is FP, then you are looking for precision. If FN is more significant, then
recall is your answer.
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Consider a spam email classifier, for example. Which of the two false predictions
would you care about more: falsely classifying a non-spam email as spam, in which
case it gets lost, or falsely classifying a spam email as non-spam, after which it
makes its way to the inbox folder? | believe you would care more about the former.
You don’t want the receiver to lose an email because your model misclassified it as
spam. We want to catch all spam, but it is very bad to lose a non-spam email. In this
example, precision is a suitable metric to use.

In some applications, you might care about both precision and recall at the same
time. That's called an F-score, as explained next.

F-score

In many cases, we want to summarize the performance of a classifier with a single
metric that represents both recall and precision. To do so, we can convert precision
(p) and recall (r) into a single F-score metric. In mathematics, this is called the harmonic
mean of pand r.

F-score = 2pr

+r

The F-score gives a good overall representation of how your model is performing.
Let’s take a look at the health-diagnostics example again. We agreed that this is a Aigh-
recall model. But what if the model is doing really well on the FN and giving us a high
recall score, but it’s performing poorly on the FP and giving us a low precision score?
Doing poorly on FP means, in order to not miss any sick patients, it is mistakenly diag-
nosing a lot of patients as sick, to be on the safe side. So, while recall might be more
important for this problem, it is good to look at the model from both scores—precision
and recall—together:

Precision Recall F-score

Classifier A

Classifier B

NOTE Defining the model evaluation metric is a necessary step because it will
guide your approach to improving the system. Without clearly defined
metrics, it can be difficult to tell whether changes to a ML system result in
progress or not.

Designing a baseline model

Now that you have selected the metrics you will use to evaluate your system, it is time
to establish a reasonable end-to-end system for training your model. Depending on
the problem you are solving, you need to design the baseline to suit your network type
and architecture. In this step, you will want to answer questions like these:
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Should I use an MLP or CNN network (or RNN, explained later in the book)?
Should I use other object detection techniques like YOLO or SSD (explained in
later chapters)?

How deep should my network be?

Which activation type will I use?

What kind of optimizer do I use?

Do I need to add any other regularization layers like dropout or batch normal-
ization to avoid overfitting?

If your problem is similar to another problem that has been studied extensively, you
will do well to first copy the model and algorithm already known to perform the best
for that task. You can even use a model that was trained on a different dataset for your
own problem without having to train it from scratch. This is called transfer learning and
will be discussed in detail in chapter 6.

For example, in the last chapter’s project, we used the architecture of the popular
AlexNet as a baseline model. Figure 4.1 shows the architecture of an AlexNet deep
CNN, with the dimensions of each layer. The input layer is followed by five convolu-
tional layers (CONV1 through CONV5), the output of the fifth convolutional layer is
fed into two fully connected layers (FC6 through FC7), and the output layer is a fully
connected layer (FC8) with a softmax function:

INPUT = CONV1 = POOL1 = CONV2 = POOL2 = CONV3 = CONV4 = CONVbH
= POOL3 = FC6 = FC7 = SOFTMAX 8

CONV2
CONV3 CONV4 CONV5 FC6 FC7 FC8

27 Dense Dense
Dense

3

o 384 384 256
256 1000
Max 4096 4096
% Max pooling
pooling
Max
pooling
Stride
of 4

Figure 4.1 The AlexNet architecture consists of five convolutional layers and three FC layers.

Looking at the AlexNet architecture, you will find all the network hyperparameters
that you need to get started with your own model:
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Network depth (number of layers): 5 convolutional layers plus 3 fully con-
nected layers

Layers’ depth (number of filters): CONVI1 = 96, CONV2 = 256, CONV3 = 384,
CONV4 = 385, CONV5 = 256

Filter size: 11 x 11,5 x5,3%x3,3%x 3,3 x 3

ReLU as the activation function in the hidden layers (CONV1 all the way to FC7)
Max pooling layers after CONV1, CONV2, and CONV)

FC6 and FC7 with 4,096 neurons each

FC8 with 1000 neurons, using a softmax activation function

NOTE In the next chapter, we will discuss some of the most popular CNN
architectures along with their code implementations in Keras. We will look at
networks like LeNet, AlexNet, VGG, ResNet, and Inception that will build
your understanding of what architecture works best for different problems
and perhaps inspire you to invent your own CNN architecture.

Getting your data ready for training

We have defined the performance metrics that we will use to evaluate our model and
have built the architecture of our baseline model. Let’s get our data ready for train-
ing. It is important to note that this process varies a lot based on the problem and data
you have. Here, I’ll explain the basic data-massaging techniques that you need to per-
form before training your model. I'll also help you develop an instinct for what “ready
data” looks like so you can determine which preprocessing techniques you need.

Splitting your data for train/validation/test

When we train a ML model, we split the data into train and test datasets (figure 4.2).
We use the training dataset to train the model and update the weights, and then we
evaluate the model against the test dataset that it hasn’t seen before. The golden rule
here is this: never use the test data for training. The reason we should never show the test
samples to the model while training is to make sure the model is not cheating. We
show the model the training samples to learn their features, and then we test how it
generalizes on a dataset that it has never seen, to get an unbiased evaluation of its
performance.

Training Testing

Figure 4.2 Splitting the data into training and testing datasets
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WHAT IS THE VALIDATION DATASET?

After each epoch during the training process, we need to evaluate the model’s accu-
racy and error to see how it is performing and tune its parameters. If we use the test
dataset to evaluate the model during training, we will break our golden rule of never
using the testing data during training. The test data is only used to evaluate the final
performance of the model afier training is complete. So we make an additional split
called a validation dataset to evaluate and tune parameters during training (figure 4.3).
Once the model has completed training, we test its final performance over the test
dataset.

Training Cross validation Testing
| (@ @ o] (@ @0 @
Training your model Making decisions Test your model.

Figure 4.3 An additional split called a validation dataset to evaluate the
model during training while keeping the test subset for the final test after
training

Take a look at this pseudo code for model training:

for each epoch for each training data instance
propagate error through the network
adjust the weights
calculate the accuracy and error over training data
for each validation data instance
calculate the accuracy and error over the validation data

As we saw in the project in chapter 3, when we train the model, we get train loss,
train_acc, val_loss, and val_acc after each epoch (figure 4.4). We use this data to
analyze the network’s performance and diagnose overfitting and underfitting, as you
will see in section 4.4.

1/100

00000: val_loss improved from inf to 1.35820, saving model to model.weights.best.hdf5
loss: 1.6192 - acc: 0.4140 - val_loss: 1.3582 - val_acc: 0.5166

2/100

00001: val_loss improved from 1.35820 to 1.22245, saving model to model.weights.best.hdfs
loss: 1.2881 - acc: 0.5402 - val_loss: 1.2224 - val_acc: 0.5644

Figure 4.4 Training results after each epoch

WHAT IS A GOOD TRAIN/VALIDATION/TEST DATA SPLIT?

Traditionally, an 80/20 or 70/30 split between train and test datasets is used in ML
projects. When we add the validation dataset, we went with 60,/20/20 or 70/15/15.
But that was back when an entire dataset was just tens of thousands of samples. With



4.3.2

Getting your data ready for training 153

the huge amount of data we have now, sometimes 1% for both the validation and the
test set is enough. For example, if our dataset contains 1 million samples, 10,000 sam-
ples is very reasonable for each of the test and validation sets, because it doesn’t make
sense to hold back several hundred thousand samples of your dataset. It is better to
use this data for model training.

So, to recap, if you have a relatively small dataset, the traditional ratios might be
okay. But if you are dealing with a large dataset, then it is fine to set your train and val-
idation sets to much smaller values.

Be sure datasets are from the same distribution

An important thing to be aware of when splitting your data is to make sure your
train/validation/test datasets come from the same distribution. Suppose you are
building a car classifier that will be deployed on cell phones to detect car models.
Keep in mind that DL networks are data-hungry, and the common rule of thumb is that
the more data you have, the better your model will perform. So, to source your data,
you decide to crawl the internet for car images that are all high-quality, professionally-
framed images. You train your model and tune it, you achieve satisfying results on
your test dataset, and you are ready to release the model to the world—only to dis-
cover that it is performing poorly on real-life images taken by phone cameras. This
happens because your model has been trained and tuned to achieve good results on
high-quality images, so it fails to generalize on real-life images that may be blurry or
lower resolution or have different characteristics.

In more technical words, your training and validation datasets are composed of high-
quality images, whereas the production images (real life) are lower-quality images. Thus
it is very important that you add lower-quality images to your train and validate datasets.
Hence, the train/validate/test datasets should come from the same distribution.

Data preprocessing

Before you feed your data to the neural network, you will need to do some data
cleanup and processing to get it ready for your learning model. There are several
preprocessing techniques to choose from, based on the state of your dataset and the
problem you are solving. The good news about neural networks is that they require
minimal data preprocessing. When given a large amount of training data, they are
able to extract and learn features from raw data, unlike the other traditional ML
techniques.

With that said, preprocessing still might be required to improve performance or
work within specific limitations on the neural network, such as converting images to
grayscale, image resizing, normalization, and data augmentation. In this section, we’ll
go through these preprocessing concepts; we’ll see their code implementations in the
project at the end of the chapter.
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IMAGE GRAYSCALING

We talked in chapter 3 about how color images are represented in three matrices ver-
sus only one matrix for grayscale images; color images add computational complexity
with their many parameters. You can make a judgment call about converting all your
images to grayscale, if your problem doesn’t require color, to save on the computa-
tional complexity. A good rule of thumb here is to use the human-level performance
rule: if you are able to identify the object with your eyes in grayscale images, then a
neural network will probably be able to do the same.

IMAGE RESIZING

One limitation for neural networks is that they require all images to be the same
shape. If you are using MLPs, for example, the number of nodes in the input layer
must be equal to the number of pixels in the image (remember how, in chapter 3, we
flattened the image to feed it to the MLP). The same is true for CNNs. You need to set
the input shape of the first convolutional layer. To demonstrate this, let’s look at the
Keras code to add the first CNN layer:

model.add (Conv2D (filters=16, kernel size=2, padding='same',
activation='relu', input shape=(32, 32, 3)))

As you can see, we have to define the shape of the image at the first convolutional
layer. For example, if we have three images with dimensions of 32 x 32, 28 x 28, and 64
x 64, we have to resize all the images to one size before feeding them to the model.

DATA NORMALIZATION
Data normalization is the process of rescaling your data to ensure that each input fea-
ture (pixel, in the image case) has a similar data distribution. Often, raw images are
composed of pixels with varying scales (ranges of values). For example, one image
may have a pixel value range from 0 to 255, and another may have a range of 20 to
200. Although not required, it is preferred to normalize the pixel values to the range
of 0 to 1 to boost learning performance and make the network converge faster.

To make learning faster for your neural network, your data should have the follow-
ing characteristics:

Small values—Typically, most values should be in the [0, 1] range.

Homogenous—All pixels should have values in the same range.

Data normalization is done by subtracting the mean from each pixel and then divid-
ing the result by the standard deviation. The distribution of such data resembles a
Gaussian curve centered at zero. To demonstrate the normalization process, figure 4.5
illustrates the operation in a scatterplot.

TIP Make sure you normalize your training and test data by using the same
mean and standard deviation, because you want your data to go through the
same transformation and rescale exactly the same way. You will see how this is
implemented in the project at the end of this chapter.
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Figure 4.5 To normalize data, we subtract the mean from each pixel and divide the result by the standard
deviation.

In non-normalized data, the cost function will likely look like a squished, elongated
bowl. After you normalize your features, your cost function will look more symmetric.
Figure 4.6 shows the cost function of two features, F; and fs.

Gradient descent with and without feature scaling

Normalized features Non-normalized features

Fy )

Figure 4.6 Normalized features help the GD algorithm go straight
forward toward the minimum error, thereby reaching it quickly (left).
With non-normalized features, the GD oscillates toward the direction
of the minimum error and reaches the minimum more slowly (right).

As you can see, for normalized features, the GD algorithm goes straight forward
toward the minimum error, thereby reaching it quickly. But for non-normalized fea-
tures, it oscillates toward the direction of the minimum error and ends with a long
march down the error mountain. It will eventually reach the minimum, but it will take

longer to converge.

TIP  Why does GD oscillate for non-normalized features? If we don’t normal-
ize our data, the range of distribution of feature values will likely be different
for each feature, and thus the learning rate will cause corrections in each
dimension that differ proportionally from one another. This forces GD to
oscillate to the direction of the minimum error and ends up with a longer
path down the error.
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IMAGE AUGMENTATION

Data augmentation will be discussed in more detail later in this chapter, when we
cover regularization techniques. But it is important for you to know that this is
another preprocessing technique that you have in your toolbelt to use when needed.

Evaluating the model and interpreting its performance

After the baseline model is established and the data is preprocessed, it is time to train
the model and measure its performance. After training is complete, you need to deter-
mine if there are bottlenecks, diagnose which components are performing poorly, and
determine whether the poor performance is due to overfitting, underfitting, or a
defect in the training data.

One of the main criticisms of neural networks is that they are “black boxes.” Even
when they work very well, it is hard to understand why they work so well. Many efforts
are being made to improve the interpretability of neural networks, and this field is
likely to evolve rapidly in the next few years. In this section, I'll show you how to diag-
nose neural networks and analyze their behavior.

Diagnosing overfitting and underfitting

After running your experiment, you want to observe its performance, determine if
bottlenecks are impacting its performance, and look for indicators of areas you need
to improve. The main cause of poor performance in ML is either overfitting or under-
fitting the training dataset. We talked about overfitting and underfitting in chapter 3,
but now we will dive a little deeper to understand how to detect when the system is fit-
ting the training data too much (overfitting) and when it is too simple to fit the data
(underfitting):

Underfitting means the model is too simple: it fails to learn the training data, so it
performs poorly on the training data. One example of underfitting is using a
single perceptron to classify the @ and * shapes in figure 4.7. As you can see,
a straight line does not split the data accurately.

Figure 4.7 An example of underfitting

Overfitting is when the model is too complex for the problem at hand. Instead of
learning features that fit the training data, it actually memorizes the training
data. So it performs very well on the training data, but it fails to generalize when
tested with new data that it hasn’t seen before. In figure 4.8, you see that the



Evaluating the model and interpreting its performance 157

model fits the data too well: it splits the training data, but this kind of fitting will
fail to generalize.

Figure 4.8 An example of overfitting

We want to build a model that is just right for the data: not too complex, causing
overfit, or too simple, causing underfit. In figure 4.9, you see that the model
missed on a data sample of the shape O, but it looks much more likely to gener-
alize on new data.

Figure 4.9 A model that is just right for
the data and will generalize

TIP  The analogy I like to use to explain overfitting and underfitting is a stu-
dent studying for an exam. Underfitting is when the student doesn’t study
very well and so fails the exam. Overfitting is when the student memorizes the
book and can answer correctly when asked questions from the book, but
answers poorly when asked questions from outside the book. The student
failed to generalize. What we want is a student to learn from the book (train-
ing data) well enough to be able to generalize when asked questions related
to the book material.

To diagnose underfitting and overfitting, the two values to focus on while training are
the training error and the validation error:

If the model is doing very well on the training set but relatively poorly on the
validation set, then it is overfitting. For example, if train error is 1% and
val_error is 10%, it looks like the model has memorized the training dataset
but is failing to generalize on the validation set. In this case, you might consider
tuning your hyperparameters to avoid overfitting and iteratively train, test, and
evaluate until you achieve an acceptable performance.

If the model is performing poorly on the training set, then it is underfitting.
For example, if the train error is 14% and val_error is 15%, the model
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might be too simple and is failing to learn the training set. You might want to
consider adding more hidden layers or training longer (more epochs), or try
different neural network architectures.

In the next section, we will discuss several hyperparameter-tuning techniques to avoid
overfitting and underfitting.

Using human-level performance to identify a Bayes error rate

We talked about achieving a satisfying performance, but how can we know whether
performance is good or not? We need a realistic baseline to compare the training and
validation errors to, in order to know whether we are improving. Ideally, a 0% error
rate is great, but it is not a realistic target for all problems and may even be impos-
sible. That is why we need to define a Bayes error rate.

A Bayes error rate represents the best possible error our model can achieve (theoret-
ically). Since humans are usually very good with visual tasks, we can use human-level
performance as a proxy to measure Bayes error. For example, if you are working on
a relatively simple task like classifying dogs and cats, humans are very accurate. The
human error rate will be very low: say, 0.5%. Then we want to compare the train error
of our model with this value. If our model accuracy is 95%, that’s not satisfying per-
formance, and the model might be underfitting. On the other hand, suppose we are
working on a more complex task for humans, like building a medical image classifi-
cation model for radiologists. The human error rate could be a little higher here: say,
5%. Then a model that is 95% accurate is actually doing a good job.

Of course, this is not to say that DL models can never surpass human performance:
on the contrary. But it is a good way to draw a baseline to gauge whether a model is
doing well. (Note that the example error percentages are just arbitrary numbers for
the sake of the example.)

Plotting the learning curves

Instead of looking at the training verbose output and comparing the error numbers,
one way to diagnose overfitting and underfitting is to plot your training and validation
errors throughout the training, as you see in figure 4.10.

Figure 4.10A shows that the network improves the loss value (aka learns) on the
training data but fails to generalize on the validation data. Learning on the validation
data progresses in the first couple of epochs and then flattens out and maybe
decreases. This is a form of overfitting. Note that this graph shows that the network is
actually learning on the training data, a good sign that training is happening. So you
don’t need to add more hidden units, nor do you need to build a more complex
model. If anything, your network is too complex for your data, because it is learning so
much that it is actually memorizing the data and failing to generalize to new data. In
this case, your next step might be to collect more data or apply techniques to avoid
overfitting.
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Figure 4.10 (A) The network improves the loss value on the training data but fails to generalize on the validation
data. (B) The network performs poorly on both the training and validation data. (C) The network learns the training
data and generalizes to the validation data.

4.4.3

Figure 4.10B shows that the network performs poorly on both training and validation
data. In this case, your network is not learning. You don’t need more data, because the
network is too simple to learn from the data you already have. Your next step is to
build a more complex model.

Figure 4.10C shows that the network is doing a good job of learning the training
data and generalizing to the validation data. This means there is a good chance that
the network will have good performance out in the wild on test data.

Exercise: Building, training, and evaluating a network

Before we move on to hyperparameter tuning, let’s run a quick experiment to see how
we split the data and build, train, and visualize the model results. You can see an exer-
cise notebook for this at www.manning.com/books/deep-learning-for-vision-systems
or www.computervisionbook.com.

In this exercise, we will do the following:

= Create toy data for our experiment

Split the data into 80% training and 20% testing datasets
Build the MLP neural network

= Train the model

Evaluate the model
= Visualize the results

Here are the Steps: The scikit-learn Iibrary to
generate sample data
1 Import the dependencies:

Keras method that converts a
from sklearn.datasets import make blobs class vector to a binary class

from keras.utils import to_categorical matrix (one-hot encoding)
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from keras.models import Sequential Neural networks
from keras.layers import Dense and layers library

from matplotlib import pyplot . L N
Visualization library

2 Use make_blobs from scikit-learn to generate a toy dataset with only two fea-
tures and three label classes:

X, y = make_blobs (n_samples=1000, centers=3, n_ features=2,
cluster std=2, random_state=2)

2 Use to_categorical from Keras to one-hot-encode the label:
y = to_categorical (y)

4 Split the dataset into 80% training data and 20% test data. Note that we did not
create a validation dataset in this example, for simplicity:

n_train = 800

train X, test X = X[:n train, :], X[n train:, :]
train y, test_ y = yl[:n train], y[n train:]

print (train X.shape, test X.shape)

>> (800, 2) (200, 2)

5 Develop the model architecture—here, a very simple, two-layer MLP network
(figure 4.11 shows the model summary):

Two input dimensions because we
have two features. ReLU activation
function for hidden layers.
model = Sequential ()
model.add (Dense (25, input dim=2, activation='relu'))
model .add (Dense (3, activation='softmax'))
model.compile (loss='categorical crossentropy', optimizer='adam',
metrics=['accuracy'])
model. summary ()

Softmax activation for the
output layer with three

Cross-entropy loss function (explained in chapter 2) nodes because we have
and adam optimizer (explained in the next section) three classes
Layer (type) Output Shape Param #
dense 1 (Dense) (None, 25) 75

dense_2 (Dense) (None, 3) 78

Total params: 153
Trainable params: 153
Non-trainable params: 0

Figure 4.11 Model summary
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Train the model for 1,000 epochs:

history = model.fit(train X, train y, validation data=(test X, test y),
epochs=1000, verbose=1)

Evaluate the model:

_, train_acc = model.evaluate(train X, train y)
_, test_acc = model.evaluate(test X, test_y)
print ('Train: %.3f, Test: %.3f' % (train acc, test_acc))

>> Train: 0.825, Test: 0.819

Plot the learning curves of model accuracy (figure 4.12):

pyplot.plot (history.history['accuracy'], label='train')
pyplot.plot (history.history['val accuracy']l, label='test')
pyplot.legend ()

pyplot.show ()
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Figure 4.12 The learning curves: both train and test curves fit
the data with similar behavior.

Let’s evaluate the network. Looking at the learning curve in figure 4.12, you can see
that both train and test curves fit the data with a similar behavior. This means the net-
work is not overfitting, which would be indicated if the train curve was doing well but
the test curve was not. But could the network be underfitting? Maybe: 82% on a very
simple dataset like this is considered poor performance. To improve the performance
of this neural network, I would try to build a more complex network and experiment
with other underfitting techniques.
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Improving the network and tuning hyperparameters

After you run your training experiment and diagnose for overfitting and underfitting,
you need to decide whether it is more effective to spend your time tuning the net-
work, cleaning up and processing your data, or collecting more data. The last thing
you want to do is to spend a few months working in one direction only to find out that
it barely improves network performance. So, before discussing the different hyper-
parameters to tune, let’s answer this question first: should you collect more data?

Collecting more data vs. tuning hyperparameters

We know that deep neural networks thrive on lots of data. With that in mind, ML
novices often throw more data to the learning algorithm as their first attempt to
improve its performance. But collecting and labeling more data is not always a feasi-
ble option and, depending on your problem, could be very costly. Plus, it might not
even be that effective.

NOTE While efforts are being made to automate some of the data-labeling
process, at the time of writing, most labeling is done manually, especially in
CV problems. By manually, I mean that actual human beings look at each
image and label them one by one (this is called human in the loop). Here is
another layer of complexity: if you are labeling lung X-ray images to detect a
certain tumor, for example, you need qualified physicians to diagnose the
images. This will cost a lot more than hiring people to classify dogs and cats.
So collecting more data might be a good solution for some accuracy issues
and increase the model’s robustness, but it is not always a feasible option.

In other scenarios, it is much better to collect more data than to improve the learning
algorithm. So it would be nice if you had quick and effective ways to figure out
whether it is better to collect more data or tune the model hyperparameters.

The process I use to make this decision is as follows:

Determine whether the performance on the training set is acceptable as-is.
Visualize and observe the performance of these two metrics: training accuracy
(train_acc) and validation accuracy (val_acc).

If the network yields poor performance on the training dataset, this is a sign of
underfitting. There is no reason to gather more data, because the learning
algorithm is not using the training data that is already available. Instead, try tun-
ing the hyperparameters or cleaning up the training data.

If performance on the training set is acceptable but is much worse on the test
dataset, then the network is overfitting your training data and failing to general-
ize to the validation set. In this case, collecting more data could be effective.

TIP  When evaluating model performance, the goal is to categorize the high-
level problem. If it’s a data problem, spend more time on data preprocessing or
collecting more data. If it’s a learning algorithm problem, try to tune the network.
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Parameters vs. hyperparameters

Let’s not get parameters confused with hyperparameters. Hyperparameters are the vari-
ables that we set and tune. Parameters are the variables that the network updates with
no direct manipulation from us. Parameters are variables that are learned and updated
by the network during training, and we do not adjust them. In neural networks, parame-
ters are the weights and biases that are optimized automatically during the backpropa-
gation process to produce the minimum error. In contrast, hyperparameters are
variables that are not learned by the network. They are set by the ML engineer before
training the model and then tuned. These are variables that define the network struc-
ture and determine how the network is trained. Hyperparameter examples include
learning rate, batch size, number of epochs, number of hidden layers, and others dis-
cussed in the next section.

Turning the knobs

Think of hyperparameters as knobs on a closed box (the neural network). Our job is
to set and tune the knobs to yield the best performance:

Hyperparameter tuning

0.0001A0.1 0 1000 W0,000 w024
Data :;I> @ é @ [;J> Predictions

Learning rate Epochs Hidden units Mini-batch size

Neural network

The hyperparameters are knobs that
act as the network—human interface.

Neural network hyperparameters

DL algorithms come with several hyperparameters that control many aspects of the
model’s behavior. Some hyperparameters affect the time and memory cost of running
the algorithm, and others affect the model’s prediction ability.

The challenge with hyperparameter tuning is that there are no magic numbers
that work for every problem. This is related to the no free lunch theorem that we
referred to in chapter 1. Good hyperparameter values depend on the dataset and
the task at hand. Choosing the best hyperparameters and knowing how to tune them
require an understanding of what each hyperparameter does. In this section, you
will build your intuition about why you would want to nudge a hyperparameter one
way or another, and I’ll propose good starting values for some of the most effective
hyperparameters.
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Generally speaking, we can categorize neural network hyperparameters into three
main categories:

Network architecture

— Number of hidden layers (network depth)

— Number of neurons in each layer (layer width)
— Activation type

Learning and optimization

— Learning rate and decay schedule

— Mini-batch size

— Optimization algorithms

— Number of training iterations or epochs (and early stopping criteria)
Regularization techniques to avoid overfitting

— L2 regularization

— Dropout layers

— Data augmentation

We discussed all of these hyperparameters in chapters 2 and 3 except the regulariza-
tion techniques. Next, we will cover them quickly with a focus on understanding what
happens when we tune each knob up or down and how to know which hyperparame-
ter to tune.

Network architecture
First, let’s talk about the hyperparameters that define the neural network architecture:

Number of hidden layers (representing the network depth)
Number of neurons in each layer, also known as hidden units (representing the
network width)

Activation functions

DEPTH AND WIDTH OF THE NEURAL NETWORK
Whether you are designing an MLP, CNN, or other neural network, you need to
decide on the number of hidden layers in your network (depth) and the number of
neurons in each layer (width). The number of hidden layers and units describes the
learning capacity of the network. The goal is to set the number large enough for the
network to learn the data features. A smaller network might underfit, and a larger net-
work might overfit. To know what is a “large enough” network, you pick a starting
point, observe the performance, and then tune up or down.

The more complex the dataset, the more learning capacity the model will need to
learn its features. Take a look at the three datasets in figure 4.13.

If you provide the model with too much learning capacity (too many hidden
units), it might tend to overfit the data and memorize the training set. If your model is
overfitting, you might want to decrease the number of hidden units.
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Figure 4.13 The more complex the dataset, the more learning capacity the model will need to learn
its features.

Generally, it is good to add hidden neurons until the validation error no longer
improves. The trade-off is that it is computationally expensive to train deeper net-
works. Having a small number of units may lead to underfitting, while having more
units is usually not harmful, with appropriate regularization (like dropout and others
discussed later in this chapter).

Try playing around with the Tensorflow playground (https://playground.tensorflow
.org) to develop more intuition. Experiment with different architectures, and gradu-
ally add more layers and more units in hidden layers while observing the network’s
learning behavior.

ACTIVATION TYPE

Activation functions (discussed extensively in chapter 2) introduce nonlinearity to our
neurons. Without activations, our neurons would pass linear combinations (weighted
sums) to each other and not solve any nonlinear problems. This is a very active area of
research: every few weeks, we are introduced to new types of activations, and there are
many available. But at the time of writing, ReLU and its variations (like Leaky ReLU)
perform the best in hidden layers. And in the output layer, it is very common to use
the softmax function for classification problems, with the number of neurons equal to
the number of classes in your problem.

Layers and parameters

When considering the number of hidden layers and units in your neural network archi-
tecture, it is useful to think in terms of the number of parameters in the network and
their effect on computational complexity. The more neurons in your network, the more
parameters the network has to optimize. (In chapter 3, we learned how to print the
model summary to see the total number of parameters that will be trained.)
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(continued)

Based on your hardware setup for the training process (computational power and
memory), you can determine whether you need to reduce the number of parameters.
To reduce the number of training parameters, you can do one of the following:

Reduce the depth and width of the network (hidden layers and units). This will
reduce the number of training parameters and, hence, reduce the neural net-
work complexity.

Add pooling layers, or tweak the strides and padding of the convolutional
layers to reduce the feature map dimensions. This will lower the number of
parameters.

These are just examples to help you see how you will look at the number of training
parameters in real projects and the trade-offs you will need to make. Complex net-
works lead to a large number of training params, which in turn lead to high needs for
computational power and memory.

The best way to build your baseline architecture is to look at the popular architectures
available to solve specific problems and start from there; evaluate its performance,
tune its hyperparameters, and repeat. Remember how we were inspired by AlexNet
to design our CNN in the image classification project in chapter 3. In the next chapter,
we will explore some of the most popular CNN architectures like LeNet, AlexNet, VGG,
ResNet, and Inception.

4.6 Learning and optimization

Now that we have built our network architecture, it is time to discuss the hyperparam-
eters that determine how the network learns and optimize its parameter to achieve
the minimum error.

4.6.1 Learning rate and decay schedule

The learning rate is the single most important hyperparameter, and one should always
make sure that it has been tuned. If there is only time to optimize one hyperparameler,
then this is the hyperparameter that is worth tuning.

—Yoshua Bengio

The learning rate (Ir value) was covered extensively in chapter 2. As a refresher, let’s
think about how gradient descent (GD) works. The GD optimizer searches for the
optimal values of weights that yield the lowest error possible. When setting up our
optimizer, we need to define the step size that it takes when it descends the error
mountain. This step size is the learning rate. It represents how fast or slow the opti-
mizer descends the error curve. When we plot the cost function with only one weight,
we get the oversimplified U-curve in figure 4.14, where the weight is randomly initial-
ized at a point on the curve.
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Figure 4.14 When we plot the cost function with only one weight, we get
an oversimplified U-curve.

The GD calculates the gradient to find the direction that reduces the error (deriva-
tive). In figure 4.14, the descending direction is to the right. The GD starts taking
steps down after each iteration (epoch). Now, as you can see in figure 4.15, if we make
a miraculously correct choice of the learning rate value, we land on the best weight
value that minimizes the error in only one step. This is an impossible case that I'm
using for elaboration purposes. Let’s call this the ideal Ir value.

Figure 4.15 if we make a miraculously correct
choice of the learning rate value, we land on the
best weight value that minimizes the error in
w only one step.

If the learning rate is smaller than the ideal Ir value, then the model can continue to learn
by taking smaller steps down the error curve until it finds the most optimal value for the
weight (figure 4.16). Much smaller means it will eventually converge but will take longer.

Figure 4.16 A learning rate smaller than
the ideal Ir value: the model takes smaller
W steps down the error curve.
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If the learning rate is larger than the ideal Ir value, the optimizer will overshoot the
optimal weight value in the first step, and then overshoot again on the other side in
the next step (figure 4.17). This could possibly yield a lower error than what we
started with and converge to a reasonable value, but not the lowest error that we are
trying to reach.

E \
/
T Figure 4.17 A learning rate larger than the
ideal Ir value: the optimizer overshoot the
w optimal weight value.

If the learning rate is much larger than the ideal Ir value (more than twice as much),
the optimizer will not only overshoot the ideal weight, but get farther and farther
from the min error (figure 4.18). This phenomenon is called divergence.

E
Figure 4.18 A learning rate much larger
than the ideal Ir value: the optimizer gets
W farther from the min error.

Too-high vs. too-low learning rate

Setting the learning rate high or low is a trade-off between the optimizer speed versus
performance. Too-low Ir requires many epochs to converge, often too many. Theoret-
ically, if the learning rate is too small, the algorithm is guaranteed to eventually con-
verge if kept running for infinity time. On the other hand, too-high Ir might get us to a
lower error value faster because we take bigger steps down the error curve, but there
is a better chance that the algorithm will oscillate and diverge away from the mini-
mum value. So, ideally, we want to pick the Ir that is just right (optimal): it swiftly
reaches the minimum point without being so big that it might diverge.
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When plotting the loss value against the number of training iterations (epochs), you
will notice the following:

Much smaller Ir—The loss keeps decreasing but needs a lot more time to
converge.

Larger Ir—The loss achieves a better value than what we started with, but is
still far from optimal.

Much larger I—The loss might initially decrease, but it starts to increase as
the weight values get farther and farther away from the optimal values.

Good Ir—The loss decreases consistently until it reaches the minimum possi-
ble value.

Very high learning rate

lLeas Low learning rate

High learning rate

The difference between very high,

Epoch high, good, and low learning rates

Good learning rate

4.6.2 A systematic approach to find the optimal learning rate

The optimal learning rate will be dependent on the topology of your loss landscape,
which in turn is dependent on both your model architecture and your dataset.
Whether you are using Keras, Tensorflow, PyTorch, or any other DL library, using the
default learning rate value of the optimizer is a good start leading to decent results.
Each optimizer type has its own default value. Read the documentation of the DL
library that you are using to find out the default value of your optimizer. If your model
doesn’t train well, you can play around with the Ir variable using the usual suspects—
0.1, 0.01, 0.001, 0.0001, 0.00001, and 0.000001—to improve performance or speed up
training by searching for an optimal learning rate.
The way to debug this is to look at the validation loss values in the training verbose:
If val_loss decreases after each step, that’s good. Keep training until it stops
improving.
If training is complete and val_loss is still decreasing, then maybe the learn-

ing rate was so small that it didn’t converge yet. In this case, you can do one of
two things:
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— Train again with the same learning rate but with more training iterations
(epochs) to give the optimizer more time to converge.

— Increase the Ir value a little and train again.

If val loss starts to increase or oscillate up and down, then the learning rate is

too high and you need to decrease its value.

Learning rate decay and adaptive learning

Finding the learning rate value that is just right for your problem is an iterative pro-
cess. You start with a static Ir value, wait until training is complete, evaluate, and
then tune. Another way to go about tuning your learning rate is to set a learning
rate decay: a method by which the learning rate changes during training. It often
performs better than a static value, and drastically reduces the time required to get
optimal results.

By now, it’s clear that when we try lower learning values, we have a better chance to
get to a lower error point. But training it will take longer. In some cases, training takes
so long it becomes infeasible. A good trick is to implement a decay rate in our learn-
ing rate. The decay rate tells our network to automatically decrease the Ir throughout
the training process. For example, we can decrease the Ir by a constant value of (x) for
each (n) number of steps. This way, we can start with the higher value to take bigger
steps toward the minimum, and then gradually decrease the learning rate every (n)
epochs to avoid overshooting the ideal Ir.

One way to accomplish this is by reducing the learning rate linearly (linear decay).
For example, you can decrease it by half every five epochs, as shown in figure 4.19.

Learning rate

0.25 \

12 3 45 6 7 8 9 101 1213 14 15 16 17 18 19 20

Figure 4.19 Decreasing the Ir by half every five epochs

Another way is to decrease the Ir exponentially (exponential decay). For example, you
can multiply it by 0.1 every eight epochs (figure 4.20). Clearly, the network will con-
verge a lot slower than with linear decay, but it will eventually converge.
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Figure 4.20 Multiplying the Ir by 0.1 every eight epochs

Other clever learning algorithms have an adaptive learning rate (adaptive learning).
These algorithms use a heuristic approach that automatically updates the Ir when the
training stops. This means not only decreasing the Ir when needed, but also increas-
ing it when improvements are too slow (too-small Ir). Adaptive learning usually works
better than other learning rate—setting strategies. Adam and Adagrad are examples of
adaptive learning optimizers: more on adaptive optimizers later in this chapter.

Mini-batch size

Mini-batch size is another hyperparameter that you need to set and tune in the opti-
mizer algorithm. The batch size hyperparameter has a big effect on resource
requirements of the training process and speed.

In order to understand the mini-batch, let’s back up to the three GD types that we
explained in chapter 2—batch, stochastic, and mini-batch:

Batch gradient descent (BGD)—We feed the entire dataset to the network all at
once, apply the feedforward process, calculate the error, calculate the gradient,
and backpropagate to update the weights. The optimizer calculates the gradi-
ent by looking at the error generated after it sees all the training data, and the
weights are updated only once after each epoch. So, in this case, the mini-batch
size equals the entire training dataset. The main advantage of BGD is that it has
relatively low noise and bigger steps toward the minimum (see figure 4.21). The
main disadvantage is that it can take too long to process the entire training
dataset at each step, especially when training on big data. BGD also requires a
huge amount of memory for training large datasets, which might not be avail-
able. BGD might be a good option if you are training on a small dataset.

Stochastic gradient descent (SGD)—Also called online learning. We feed the network
a single instance of the training data at a time and use this one instance to do
the forward pass, calculate error, calculate the gradient, and backpropagate to
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Batch gradient descent (BGD)
Low noise on its path to the minimum error

Figure 4.21 Batch GD with low noise on its path to the minimum error

update the weights (figure 4.22). In SGD, the weights are updated after it
sees each single instance (as opposed to processing the entire dataset before
each step for BGD). SGD can be extremely noisy as it oscillates on its way to
the global minimum because it takes a step down after each single instance,
which could sometimes be in the wrong direction. This noise can be reduced
by using a smaller learning rate, so, on average, it takes you in a good direc-
tion and almost always performs better than BGD. With SGD you get to make
progress quickly and usually reach very close to the global minimum. The
main disadvantage is that by calculating the GD for one instance at a time,
you lose the speed gain that comes with matrix multiplication in the training
calculations.

Stochastic (GD)
High noise and oscillates on its
path to the minimum error

Figure 4.22 Stochastic GD with high noise that oscillates on its path
to the minimum error
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To recap BGD and SGD, on one extreme, if you set your mini-batch size to 1 (stochas-
tic training), the optimizer will take a step down the error curve after computing the
gradient for every single instance of the training data. This is good, but you lose the
increased speed of using matrix multiplication. On the other extreme, if your mini-
batch size is your entire training dataset, then you are using BGD. It takes too long to
make a step toward the minimum error when processing large datasets. Between the
two extremes, there is mini-batch GD.

Mini-batch gradient descent (MB-GD)—A compromise between batch and stochas-
tic GD. Instead of computing the gradient from one sample (SGD) or all train-
ing samples (BGD), we divide the training sample into mini-batches to compute
the gradient from. This way, we can take advantage of matrix multiplication for
faster training and start making progress instead of having to wait to train the
entire training set.

Guidelines for choosing mini-batch size

First, if you have a small dataset (around less than 2,000), you might be better off
using BGD. You can train the entire dataset quite fast.

For large datasets, you can use a scale of mini-batch size values. A typical starting
value for the mini-batch is 64 or 128. You can then tune it up and down on this scale:
32, 64, 128, 256, 512, 1024, and keep doubling it as needed to speed up training.
But make sure that your mini-batch size fits in your CPU/GPU memory. Mini-batch
sizes of 1024 and larger are possible but quite rare. A larger mini-batch size allows
a computational boost that uses matrix multiplication in the training calculations. But
that comes at the expense of needing more memory for the training process and gen-
erally more computational resources. The following figure shows the relationship
between batch size, computational resources, and number of epochs needed for neu-
ral network training:

Computational resources per epoch

>
Number of datapoints

Stochastic Mini-batch Batch

Epochs required to find good W, b values

The relationship between batch size, computational resources, and number of epochs
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Optimization algorithms

In the history of DL, many researchers proposed optimization algorithms and showed
that they work well with some problems. But most of them subsequently proved to not
generalize well to the wide range of neural networks that we might want to train. In
time, the DL. community came to feel that the GD algorithm and some of its variants
work well. So far, we have discussed batch, stochastic, and mini-batch GD.

We learned that choosing a proper learning rate can be challenging because a too-
small learning rate leads to painfully slow convergence, while a too-large learning rate
can hinder convergence and cause the loss function to fluctuate around the mini-
mum or even diverge. We need more creative solutions to further optimize GD.

NOTE Optimizer types are well explained in the documentation of most DL
frameworks. In this section, I’ll explain the concepts of two of the most popu-
lar gradient-descent-based optimizers—Momentum and Adam—that really
stand out and have been shown to work well across a wide range of DL archi-
tectures. This will help you build a good foundation to dive deeper into other
optimization algorithms. For more about optimization algorithms, read “An
overview of gradient descent optimization algorithms” by Sebastian Ruder

(https: //arxiv.org/pdf/1609.04747.pdf).

Gradient descent with momentum

Recall that SGD ends up with some oscillations in the vertical direction toward the
minimum error (figure 4.23). These oscillations slow down the convergence process
and make it harder to use larger learning rates, which could result in your algorithm
overshooting and diverging.

Unwanted oscillations

in the vertical direction - j\/\/\/\/\/\NWV\WNWQ

Progress toward
the minimum in the
horizontal direction

=== -= Target minimum

Figure 4.23 SGD oscillates in the vertical direction toward the minimum error.

To reduce these oscillations, a technique called momentum was invented that lets the
GD navigate along relevant directions and softens the oscillation in irrelevant direc-
tions. In other words, it makes learning slower in the vertical-direction oscillations and
faster in the horizontal-direction progress, which will help the optimizer reach the tar-
get minimum much faster.

This is similar to the idea of momentum from classical physics: when a snowball
rolls down a hill, it accumulates momentum, going faster and faster. In the same way,
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our momentum term increases for dimensions whose gradients point in the same
direction and reduces updates for dimensions whose gradients change direction. This
leads to faster convergence and reduces oscillations.

How the math works in momentum

The math here is really simple and straightforward. The momentum is built by adding
a velocity term to the equation that updates the weight:

g ..
aw, <+——— Original update rule
i i ; New rule after
= - X +
Whew = Woiq — learning rate x gradient + velocity term adding velocity

Whew = Wolg — O

The velocity term equals the weighted average of the past gradients.

Adam

Adam stands for adaptive moment estimation. Adam keeps an exponentially decaying
average of past gradients, similar to momentum. Whereas momentum can be seen as
a ball rolling down a slope, Adam behaves like a heavy ball with friction to slow down
the momentum and control it. Adam usually outperforms other optimizers because it
helps train a neural network model much more quickly than the techniques we have
seen earlier.

Again, we have new hyperparameters to tune. But the good news is that the default
values of major DL frameworks often work well, so you may not need to tune at all—
except for the learning rate, which is not an Adam-specific hyperparameter:

keras.optimizers.Adam(1lr=0.001, beta 1=0.9, beta 2=0.999, epsilon=None,
decay=0.0)

The authors of Adam propose these default values:

The learning rate needs to be tuned.

For the momentum term B1, a common choice is 0.9.
For the RMSprop term B2, a common choice is 0.999.
gis set to 1075,

Number of epochs and early stopping criteria

A training iteration, or epoch, is when the model goes a full cycle and sees the entire
training dataset at once. The epoch hyperparameter is set to define how many itera-
tions our network continues training. The more training iterations, the more our
model learns the features of our training data. To diagnose whether your network
needs more or fewer training epochs, keep your eyes on the training and validation
error values.



176

CHAPTER 4  Structuring DL projects and hyperparameter tuning

The intuitive way to think about this is that we want to continue training as long as
the error value is decreasing. Correct? Let’s take a look at the sample verbose output
from a network training in figure 4.24.

Epoch 1, Training Error: 5.4353, Validation Error: 5.6394

Epoch 2, Training Error: 5.1364, Validation Error: 5.2216 Figure 4.24 Sample verbose output of
the first five epochs. Both training and
Epoch 3, Training Error: 4.7343, Validation Error: 4.8337 validation errors are improving.

You can see that both training and validation errors are decreasing. This means the
network is still learning. It doesn’t make sense to stop the training at this point. The
network is clearly still making progress toward the minimum error. Let’s let it train for
six more epochs and observe the results (figure 4.25).

Epoch 6, Training Error: 3.7312, Validation Error: 3.8324

Epoch 7, Training Error: 3.5324, Validation Error: 3.7215 Figure 4.25 The training error is still

improving, but the validation error started
Epoch 8, Training Error: 3.7343, Validation Error: 3.8337  gscillating from epoch 8 onward.

Itlooks like the training error is doing well and still improving. That’s good. This means
the network is improving on the training set. However, if you look at epochs 8 and 9, you
will see that val_error started to oscillate and increase. Improving train error while
not improving val error means the network is starting to overfit the training data and
failing to generalize to the validation data.

Let’s plot the training and validation errors (figure 4.26). You can see that both
the training and validation errors were improving at first, but then the validation

Model complexity graph

Underfitting

Validation error
Error

Just right
Overfitting

Training error

2 7
Number of epochs

Figure 4.26 Improving train error while not improving val error
means the network is starting to overfit.
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error started to increase, leading to overfitting. We need to find a way to stop the
training just before it starts to overfit. This technique is called early stopping.

Early stopping

Early stopping is an algorithm widely used to determine the right time to stop the
training process before overfitting happens. It simply monitors the validation error
value and stops the training when the value starts to increase. Here is the early stop-
ping function in Keras:

EarlyStopping (monitor='val loss', min_delta=0, patience=20)

The EarlyStopping function takes the following arguments:

monitor—The metric you monitor during training. Usually we want to keep an
eye on val_loss because it represents our internal testing of model perfor-
mance. If the network is doing well on the validation data, it will probably do
well on test data and production.

min delta—The minimum change that qualifies as an improvement. There is
no standard value for this variable. To decide the min delta value, run a few
epochs and see the change in error and validation accuracy. Define min_delta
according to the rate of change. The default value of 0 works pretty well in
many cases.

patience—This variable tells the algorithm how many epochs it should wait
before stopping the training if the error does not improve. For example, if we
set patience equal to 1, the training will stop at the epoch where the error
increases. We must be a little flexible, though, because it is very common for the
error to oscillate a little and continue improving. We can stop the training if it
hasn’t improved in the last 10 or 20 epochs.

TIP The good thing about early stopping is that it allows you to worry less
about the epochs hyperparameter. You can set a high number of epochs and
let the stopping algorithm take care of stopping the training when error stops
improving.

Regularization techniques to avoid overfitting

If you observe that your neural network is overfitting the training data, your network
might be too complex and need to be simplified. One of the first techniques you
should try is regularization. In this section, we will discuss three of the most common
regularization techniques: L2, dropout, and data augmentation.

L2 regularization

The basic idea of L2 regularization is that it penalizes the error function by adding a
regularization term to it. This, in turn, reduces the weight values of the hidden units and
makes them too small, very close to zero, to help simplify the model.
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Let’s see how regularization works. First, we update the error function by adding
the regularization term:

error function,.,, = error functiongq + regularization term

Note that you can use any of the error functions explained in chapter 2, like MSE or
cross entropy. Now, let’s take a look at the regularization term

.. Iy
L2 regularization term = =~ x Y | w|?
g 5 2l
where lambda (A) is the regularization parameter, mis the number of instances, and w
is the weight. The updated error function looks like this:

error functiony,e,, = error functionyq + Ay Z:”w”2
2m

Why does L2 regularization reduce overfitting? Well, let’s look at how the weights are
updated during the backpropagation process. We learned from chapter 2 that the
optimizer calculates the derivative of the error, multiplies it by the learning rate, and
subtracts this value from the old weight. Here is the backpropagation equation that
updates the weights:

Derivative of error

Old weight with respect to weight
oError
Whew = Woig = o (<5
ew Id

/

New weight Learning rate

Since we add the regularization term to the error function, the new error becomes
larger than the old error. This means its derivative (dError/dW,) is also bigger, leading
to a smaller Wy, L2 regularization is also known as weight decay, as it forces the
weights to decay toward zero (but not exactly zero).

Reducing weights leads to a simpler neural network

To see how this works, consider: if the regularization term is so large that, when mul-
tiplied with the learning rate, it will be equal to W4, then this will make the new
weight equal to zero. This cancels the effect of this neuron, leading to a simpler neu-
ral network with fewer neurons.
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In practice, L2 regularization does not make the weights equal to zero. It just makes
them smaller to reduce their effect. A large regularization parameter (2) lead to neg-
ligible weights. When the weights are negligible, the model will not learn much from
these units. This will make the network simpler and thus reduce overfitting

L2 regularization reduces the weights and simplifies the network to reduce overfitting.

This is what L2 regularization looks like in Keras:

model.add (Dense (units=16, kernel regularizer=regularizers.12(X),

3 1 =" l Al
activation=trelut)) When adding a hidden layer to your
network, add the kernel_regularization

argument with the L2 regularizer

The lambda value is a hyperparameter that you can tune. The default value of your
DL library usually works well. If you still see signs of overfitting, increase the lambda
hyperparameter to reduce the model complexity.

Dropout layers

Dropout is another regularization technique that is very effective for simplifying a
neural network and avoiding overfitting. We discussed dropout extensively in chapter 3.
The dropout algorithm is fairly simple: at every training iteration, every neuron has a
probability p of being temporarily ignored (dropped out) during this training itera-
tion. This means it may be active during subsequent iterations. While it is counterintu-
itive to intentionally pause the learning on some of the network neurons, it is quite
surprising how well this technique works. The probability pis a hyperparameter that is
called dropout rate and is typically set in the range of 0.3 to 0.5. Start with 0.3, and if you
see signs of overfitting, increase the rate.

TIP Ilike to think of dropout as tossing a coin every morning with your team
to decide who will do a specific critical task. After a few iterations, all your
team members will learn how to do this task and not rely on a single member
to get it done. The team would become much more resilient to change.

Both L2 regularization and dropout aim to reduce network complexity by reducing its
neurons’ effectiveness. The difference is that dropout completely cancels the effect of
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some neurons with every iteration, while L2 regularization just reduces the weight val-
ues to reduce the neurons’ effectiveness. Both lead to a more robust, resilient neural
network and reduce overfitting. It is recommended that you use both types of regular-
ization techniques in your network.

Data augmentation

One way to avoid overfitting is to obtain more data. Since this is not always a feasible
option, we can augment our training data by generating new instances of the same
images with some transformations. Data augmentation can be an inexpensive way to
give your learning algorithm more training data and therefore reduce overfitting.

The many image-augmentation techniques include flipping, rotation, scaling, zoom-
ing, lighting conditions, and many other transformations that you can apply to your
dataset to provide a variety of images to train on. In figure 4.27, you can see some of
the transformation techniques applied to an image of the digit 6.

Data augmentation

0 5 10 15 20 25

Original image Augmented image

Figure 4.27 Various image augmentation techniques applied to an image of the digit 6

In figure 4.27, we created 20 new images that the network can learn from. The main
advantage of synthesizing images like this is that now you have more data (20x) that
tells your algorithm that if an image is the digit 6, then even if you flip it vertically or
horizontally or rotate it, it’s still the digit 6. This makes the model more robust to
detect the number 6 in any form and shape.

Data augmentation is considered a regularization technique because allowing the
network to see many variants of the object reduces its dependence on the original
form of the object during feature learning. This makes the network more resilient
when tested on new data.
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Data augmentation in Keras looks like this:

Imports ImageDataGenerator from Keras

from keras.preprocessing.image import ImageDataGenerator
datagen = ImageDataGenerator (horizontal flip=True, vertical flip=True)

datagen.fit (training set) Generates batches of new image data.
B ImageDataGenerator takes transformation types
as arguments. Here, we set horizontal and vertical
flip to True. See the Keras documentation (or your

DL library) for more transformation arguments.

Computes the data
augmentation on the training set

Batch normalization

Earlier in this chapter, we talked about data normalization to speed up learning. The
normalization techniques we discussed were focused on preprocessing the training set
before feeding it to the input layer. If the input layer benefits from normalization, why
not do the same thing for the extracted features in the hidden units, which are changing
all the time and get much more improvement in training speed and network resil-
ience (figure 4.28)? This process is called batch normalization (BN).

Input layer L1 L2 L3
Xy /31\ /8-12\ ay
o> > > 4
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These activations are essentially
the input to the following layers,
so why not normalize these values?

Figure 4.28 Batch normalization is normalizing the extracted features in hidden units.

The covariate shift problem

Before we define covariate shift, let’s take a look at an example to illustrate the prob-
lem that batch normalization (BN) confronts. Suppose you are building a cat classi-
fier, and you train your algorithm on images of white cats only. When you test this
classifier on images with cats that are different colors, it will not perform well. Why?
Because the model has been trained on a training set with a specific distribution
(white cats). When the distribution changes in the test set, it confuses the model (fig-
ure 4.29).
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Covariance shift
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Figure 4.29 Graph A is the training set of only white cats, and graph
B is the testing set with cats of various colors. The circles represent
the cat images, and the stars represent the non-cat images.

We should not expect that the model trained on the data in graph A will do very well
with the new distribution in graph B. The idea of the change in data distribution goes
by the fancy name covariate shift.

DEFINITION If a model is learning to map dataset X to label y, then if the dis-
tribution of X changes, it’s known as covariate shift. When that happens, you
might need to retrain your learning algorithm.

Covariate shift in neural networks

To understand how covariate shift happens in neural networks, consider the simple
four-layer MLP in figure 4.30. Let’s look at the network from the third-layer (L3) per-
spective. Its input are the activation values in L2 (af, a3, a3, and a}), which are the

L1 L2 L3 L4

° .“"é ‘\'Ié ‘\'I

O \'f .
@,‘0 o(‘é @',“ ';‘»‘ ». g
(& 75

\aj‘/ N
The activation values in

layer 2 are inputs to layer 3.

Figure 4.30 A simple four-layer MLP. L1 features are input to the L2 layer. The same is true for
layers 2, 3, and 4.
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features extracted from the previous layers. L3 is trying to map these inputs to j to
make it as close as possible to the label y. While the third layer is doing that, the net-
work is adapting the values of the parameters from previous layers. As the parameters
(w, b) are changing in layer 1, the activation values in the second layer are changing,
too. So from the perspective of the third hidden layer, the values of the second hidden
layer are changing all the time: the MLP is suffering from the problem of covariate
shift. Batch norm reduces the degree of change in the distribution of the hidden unit
values, causing these values to become more stable so that the later layers of the neu-
ral network have firmer ground to stand on.

NOTE It is important to realize that batch normalization does not cancel or
reduce the change in the hidden unit values. What it does is ensure that the
distribution of that change remains the same: even if the exact values of the
units change, the mean and variance do not change.

How does batch normalization work?

In their 2015 paper “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift” (https://arxiv.org/abs/1502.03167), Sergey loffe
and Christian Szegedy proposed the BN technique to reduce covariate shift. Batch
normalization adds an operation in the neural network just before the activation func-
tion of each layer to do the following:

Zero-center the inputs
Normalize the zero-centered inputs
Scale and shift the results

This operation lets the model learn the optimal scale and mean of the inputs for
each layer.

How the math works in batch normalization
To zero-center the inputs, the algorithm needs to calculate the input mean
and standard deviation (the input here means the current mini-batch: hence
the term batch normalization):

m
Ug < %Z“lx, <——— Mini-batch mean
i=
1 m
63« mzl(xi - ug)? <+—— Mini-batch variance
i=

where m is the number of instances in the mini-batch, ug is the mean, and cg
is the standard deviation over the current mini-batch.

Normalize the input:

. X—U
e JtB
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where X is the zero-centered and normalized input. Note that there is a vari-
able here that we added (g). This is a tiny number (typically 10-°) to avoid divi-
sion by zero if ¢ is zero in some estimates.

Scale and shift the results. We multiply the normalized output by a variable vy
to scale it and add (B) to shift it

Vi yXi+B

where y; is the output of the BN operation, scaled and shifted.

Notice that BN introduces two new learnable parameters to the network: y and . So
our optimization algorithm will update the parameters of yand B just like it updates
weights and biases. In practice, this means you may find that training is rather slow
at first, while GD is searching for the optimal scales and offsets for each layer, but it
accelerates once it’s found reasonably good values.

Batch normalization implementation in Keras

It is important to know how batch normalization works so you can get a better under-
standing of what your code is doing. But when using BN in your network, you don’t
have to implement all these details yourself. Implementing BN is often done by add-
ing one line of code, using any DL framework. In Keras, the way you add batch nor-
malization to your neural network is by adding a BN layer after the hidden layer, to
normalize its results before they are fed to the next layer.

The following code snippet shows you how to add a BN layer when building your
neural network:

Imports the

from keras.models import Sequential BatchNormalization

from keras.layers import Dense, Dropout layer from the
from keras.layers.normalization import BatchNormalization Keras library

model = Sequential () <+—— Initiates the model

model .add (Dense (hidden units, activation='relu')) <+—— Adds the first hidden layer

model.add (BatchNormalization()) Adds the batch norm
layer to normalize the

model.add (Dropout (0.5)) Gt results of layer 1

model.add (Dense (units, activation='relu')) If you are adding dropout to

your network, it is preferable
model.add (BatchNormalization()) to add it after the batch norm

Output layer because you don’t want
model

layer

.add (Dense (2, activation='softmax')) the nodes that are randomly
turned off to miss the

Adds the batch norm layer to normalization step.
normalize the results of layer 2
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Batch normalization recap

The intuition that I hope you’ll take away from this discussion is that BN applies the nor-
malization process not just to the input layer, but also to the values in the hidden layers
in a neural network. This weakens the coupling of the learning process between earlier
and later layers, allowing each layer of the network to learn more independently.

From the perspective of the later layers in the network, the earlier layers don’t get
to shift around as much because they are constrained to have the same mean and vari-
ance. This makes the job of learning easier in the later layers. The way this happens is
by ensuring that the hidden units have a standardized distribution (mean and vari-
ance) controlled by two explicit parameters, y and B, which the learning algorithm
sets during training.

Project: Achieve high accuracy on image classification
In this project, we will revisit the CIFAR-10 classification project from chapter 3 and
apply some of the improvement techniques from this chapter to increase the accu-
racy from ~65% to ~90%. You can follow along with this example by visiting the
book’s website, www.manning.com/books/deep-learning-for-vision-systems or www
.computervisionbook.com, to see the code notebook.

We will accomplish the project by following these steps:

Import the dependencies.

Get the data ready for training:

— Download the data from the Keras library.

— Splititinto train, validate, and test datasets.

— Normalize the data.

— One-hot encode the labels.

Build the model architecture. In addition to regular convolutional and pooling
layers, as in chapter 3, we add the following layers to our architecture:
— Deeper neural network to increase learning capacity

— Dropout layers

— L2 regularization to our convolutional layers

— Batch normalization layers

Train the model.

Evaluate the model.

Plot the learning curve.
Let’s see how this is implemented.

STEP 1: IMPORT DEPENDENCIES
Here’s the Keras code to import the needed dependencies:

Keras library to download
import keras the datasets, preprocess
from keras.datasets import cifarlo images, and network
from keras.preprocessing.image import ImageDataGenerator components
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from keras.models import Sequential

from keras.utils import np utils

from keras.layers import Dense, Activation, Flatten, Dropout, BatchNormalization,
Conv2D, MaxPooling2D

from keras.callbacks import ModelCheckpoint

from keras import regularizers, optimizers

Imports numpy for

HMpOTt numpy &S np math operations

Imports the matplotlib

from matplotlib import pyplot
library to visualize results

STEP 2: GET THE DATA READY FOR TRAINING
Keras has some datasets available for us to download and experiment with. These
datasets are usually preprocessed and almost ready to be fed to the neural network. In
this project, we use the CIFAR-10 dataset, which consists of 50,000 32 x 32 color train-
ing images, labeled over 10 categories, and 10,000 test images. Check the Keras docu-
mentation for more datasets like CIFAR-100, MNIST, Fashion-MNIST, and more.
Keras provides the CIFAR-10 dataset already split into training and testing sets. We
will load them and then split the training dataset into 45,000 images for training and
5,000 images for validation, as explained in this chapter:
(x_train, y_ train), (x_test, y test) = cifarl0.load data()

X _train = x train.astype('float32")
X_test = x_test.astype('float32")

Downloads and
splits the data

(x_train, x valid) = x train[5000:], x train[:5000] Breaks the training set into
(y _train, y valid) = y train[5000:], y train[:5000] training and validation sets

Let’s print the shape of x_train, x valid, and x_test:

print ('x train =', x train.shape)
print ('x valid =', x valid.shape)
print ('x_test =', x test.shape)

>> x_train = (45000, 32, 32, 3)
>> x _valid = (5000, 32, 32, 3)
>> x_test = (1000, 32, 32, 3)

The format of the shape tuple is as follows: (number of instances, width, height,
channels).

Normalize the data
Normalizing the pixel values of our images is done by subtracting the mean from each
pixel and then dividing the result by the standard deviation:

mean = np.mean(x_train,axis=(0,1,2,3))
std = np.std(x _train,axis=(0,1,2,3))
x_train = (x_train-mean)/(std+le-7)

x valid = (x valid-mean)/(std+le-7)

X _test = (x_test-mean)/(std+le-7)
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One-hot encode the labels
To one-hot encode the labels in the train, valid, and test datasets, we use the to_
categorical function in Keras:

num_classes = 10

y_train = np_utils.to_categorical (y_train,num classes)
y valid = np utils.to categorical(y valid,num classes)
y_test = np utils.to categorical (y test,num classes)

Data augmentation

For augmentation techniques, we will arbitrarily go with the following transforma-
tions: rotation, width and height shift, and horizontal flip. When you are working on
problems, view the images that the network missed or provided poor detections for
and try to understand why it is not performing well on them. Then create your
hypothesis and experiment with it. For example, if the missed images were of shapes
that are rotated, you might want to try the rotation augmentation. You would apply
that, experiment, evaluate, and repeat. You will come to your decisions purely from
analyzing your data and understanding the network performance:

datagen = ImageDataGenerator ( Data
rc.>tat 1onTrange:15 , augmentation
width shift range=0.1,
height_shift_ range=0.1,
horizontal flip=True,

vertical flip=False Computes Fhe data
) - augmentation on the

datagen.fit (x_train) training set

STEP 3: BUILD THE MODEL ARCHITECTURE
In chapter 3, we built an architecture inspired by AlexNet (3 CONV + 2 FC). In this
project, we will build a deeper network for increased learning capacity (6 CONV +
1 FC).

The network has the following configuration:

Instead of adding a pooling layer after each convolutional layer, we will add one
after every two convolutional layers. This idea was inspired by VGGNet, a popu-
lar neural network architecture developed by the Visual Geometry Group (Uni-
versity of Oxford). VGGNet will be explained in chapter 5.

Inspired by VGGNet, we will set the kernel_size of our convolutional layers to
3 x 3 and the pool_size of the pooling layer to 2 x 2.

We will add dropout layers every other convolutional layer, with (p) ranges from
0.2 and 0.4.

A batch normalization layer will be added after each convolutional layer to nor-
malize the input for the following layer.

In Keras, L2 regularization is added to the convolutional layer code.

Here’s the code:
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Number of hidden units variable. We

declare this variable here and use it

in our convolutional layers to make
32 it easier to update from one place.

L2 regularization

Notice that we define
hyperparameter (»)

the input_shape here
because this is the first
convolutional layer. We
don’t need to do that

base hidden units

weight decay = le-4 .
( Creates a sequential model

model = Sequential() (a linear stack of layers) for the remaining
layers.
# CONV1
model.add (Conv2D (base_hidden units, kernel size= 3, padding='same', R ——
kernel regularizer=regularizers.1l2(weight decay),
Addsqbaﬁh input_shape=x_train.shape[1l:]1)) ﬁ:;;:ﬁzaﬁonto
3 3 L} Al
normallzit:;zr: rm“zgi : Zgg Eg:t :ﬁ;ziﬁz{izi:; )( . Uses a ReLU activation the convolutional
: function for all hidden layer
layers
# CONV2
model.add (Conv2D (base hidden units, kernel size= 3, padding='same',
kernel regularizer=regularizers.1l2(weight decay)))
model.add (Activation('relu'))
model.add (BatchNormalization ())
Dropout
layer with # POOL + Dropout
%9% model . add (MaxPooling2D (pool_size=(2,2)))
probability model .add (Dropout (0.2)) Number of hidden
units = 64

# CONV3

model.add (Conv2D (base_hidden units * 2, kernel size= 3, padding='same',
kernel regularizer=regularizers.l2 (weight decay)))

model.add (Activation('relu'))

model.add (BatchNormalization () )

# CONV4

model.add (Conv2D (base _hidden units * 2, kernel size= 3, padding='same',
kernel regularizer=regularizers.l2(weight decay)))

model.add (Activation('relu'))

model.add (BatchNormalization () )

# POOL + Dropout
model . add (MaxPooling2D (pool size=(2,2)))
model.add (Dropout (0.3))

# CONV5

model.add (Conv2D (base_hidden units * 4, kernel size= 3, padding='same',
kernel regularizer=regularizers.1l2 (weight decay)))

model.add (Activation('relu'))

model.add (BatchNormalization () )

# CONV6

model.add (Conv2D (base_hidden units * 4, kernel size= 3, padding='same',
kernel regularizer=regularizers.1l2 (weight decay)))

model.add (Activation('relu'))

model.add (BatchNormalization () )

# POOL + Dropout
model .add (MaxPooling2D (pool_size=(2,2)))
model.add (Dropout (0.4))
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# FC7
model.add (Flatten())
model .add (Dense (10,

model . summary () QT

Prints the model
summary

activation='softmax"'))

The model summary is shown in figure 4.31.
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Flattens the feature map into a ID
features vector (explained in chapter 3)

10 hidden units because the

dataset has 10 class labels. Softmax
activation function is used for the
output layer (explained in chapter 2).

Layer (type) Output Shape Param #
conv2d_1 (Conv2D) (None, 32, 32, 32) 896
activation_1 (Activation) (None, 32, 32, 32) 0
batch normalization 1 (batch (None, 32, 32, 32) 128
conv2d_2 (Conv2D) (None, 32, 32, 32) 9248
activation_2 (Activation) (None, 32, 32, 32) 0
batch normalization 2 (batch (None, 32, 32, 32) 128
max_pooling2d 1 (MaxPooling2 (None, 16, 16, 32) 0
dropout_1 (Dropout) (None, 16, 16, 32) 0
conv2d_3 (Conv2D) (None, 16, 16, 64) 18496
activation 3 (Activation) (None, 16, 16, 64) 0
batch normalization_ 3 (batch (None, 16, 16, 64) 256
conv2d_4 (Conv2D) (None, 16, 16, 64) 36928
activation 4 (Activation) (None, 16, 16, 64) 0
batch normalization_4 (batch (None, 16, 16, 64) 256
max_pooling2d 2 (MaxPooling2 (None, 8, 8, 64) 0
dropout_2 (Dropout) (None, 8, 8, 64) 0
conv2d_5 (Conv2D) (None, 8, 8, 128) 73856
activation_ 5 (Activation) (None, 8, 8, 128) 0
batch normalization_5 (batch (None, 8, 8, 128) 512
conv2d_6 (Conv2D) (None, 8, 8, 128) 147584
activation 6 (Activation) (None, 8, 8, 128) 0
batch normalization 6 (batch (None, 8, 8, 128) 512
max_pooling2d 3 (MaxPooling2 (None, 4, 4, 128) 0
dropout_3 (Dropout) (None, 4, 4, 128) 0
flatten_1 (Flatten) (None, 2048 0
dense_1 (Dense) (None, 10) 20490 Figure 4.31

Model summary
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: TRAIN THE MODEL

Before we jump into the training code, let’s discuss the strategy behind some of the

hyperparameter settings:

batch size—This is the mini-batch hyperparameter that we covered in this
chapter. The higher the batch_size, the faster your algorithm learns. You can
start with a mini-batch of 64 and double this value to speed up training. I tried
256 on my machine and got the following error, which means my machine was
running out of memory. I then lowered it back to 128:

Resource exhausted: OOM when allocating tensor with shape[256,128,4,4]

epochs—I started with 50 training iterations and found that the network was
still improving. So I kept adding more epochs and observing the training
results. In this project, I was able to achieve >90% accuracy after 125 epochs. As
you will see soon, there is still room for improvement if you let it train longer.
Optimizer—I used the Adam optimizer. See section 4.7 to learn more about opti-
mization algorithms.

NOTE It is important to note that I'm using a GPU for this experiment. The
training took around 3 hours. It is recommended that you use your own GPU
or any cloud computing service to get the best results. If you don’t have access
to a GPU, I recommend that you try a smaller number of epochs or plan to
leave your machine training overnight or even for a couple of days, depend-

ing

Let’s s

learning rate

model.

in chapter 2)

batch size = 128

on your CPU specifications.

ec the training code:

Adam optimizer with a Path of the file where the best

=0.0001 weights will be saved, and a

Mini-batch size Boolean True to save the
weights only when there is an

epochs = 125 ] Number of training iterations improvement

checkpointer = ModelCheckpoint (filepath="'model.100epochs.hdf5', verbose=1,

save best only=True )

L—> optimizer = keras.optimizers.adam(lr=0.0001,decay=1e-6)

compile (loss="'categorical crossentropy', optimizer=optimizer,

— metrics=['accuracy'])

history = model.fit generator (datagen.flow(x_train, y train,
batch size=batch size), callbacks=[checkpointer],
steps _per epoch=x_train.shape[0] // batch size, epochs=epochs,
verbose=2, validation_data=(x _valid, y valid))

Cross‘-entropy !055 Allows you to do real-time data augmentation on images
function (explained on CPU in parallel to training your model on GPU. The

callback to the checkpointer saves the model weights; you
can add other callbacks like an early stopping function.
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When you run this code, you will see the verbose output of the network training for
each epoch. Keep your eyes on the loss and val_loss values to analyze the network
and diagnose bottlenecks. Figure 4.32 shows the verbose output of epochs 121 to 125.

Epoch 121/125 :
Epoch 00120: val_loss did not improve 1
30s - loss: 0.4471 - acc: 0.8741 - val_loss: 0.4124 - val_acc: 0.8886 :
Epoch 122/125 :
Epoch 00121: val_loss improved from 0.40342 to 0.40327, saving model to model.l25epochs.hdf5
31s - loss: 0.4510 - acc: 0.8719 - val_loss: 0.4033 - val_acc: 0.8934 :
Epoch 123/125 !
00122: val_loss improved from 0.40327 to 0.40112, saving model to model.l25epochs.hdf5
30s - loss: 0.4497 - acc: 0.8735 - val_loss: 0.4031 - val_acc: 0.8959 :
Epoch 124/125 :
Epoch 00122: val_loss did not improve 1
30s - loss: 0.4497 - acc: 0.8725 - val_loss: 0.4162 - val_acc: 0.8894 :
Epoch 125/125 :
Epoch 00122: val loss did not improve 1
30s - loss: 0.4471 - acc: 0.8734 - val_loss: 0.4025 - val_acc: 0.8959 !

=
g
o
Q
=3

Figure 4.32 Verbose output of epochs 121 to 125

STEP 5: EVALUATE THE MODEL
To evaluate the model, we use a Keras function called evaluate and print the results:

scores = model.evaluate(x_test, y test, batch size=128, verbose=1)
print ('\nTest result: %.3f loss: %.3f' % (scores[1]1*100,scores[0]))

>> Test result: 90.260 loss: 0.398

Plot learning curves
Plot the learning curves to analyze the training performance and diagnose overfitting
and underfitting (figure 4.33):

pyplot.plot (history.history['acc'], label='train')
pyplot.plot (history.history['val acc'], label='test')
pyplot.legend()

pyplot.show ()

0.9

0.8

0.7 1
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— Test
0.6 1
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0.4+

0 20 40 60 80 100 120 Figure 4.33 Learning curves
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Further improvements
Accuracy of 90% is pretty good, but you can still improve further. Here are some ideas
you can experiment with:

More training epochs—Notice that the network was improving until epoch 123.
You can increase the number of epochs to 150 or 200 and let the network train
longer.

Deeper network—Try adding more layers to increase the model complexity, which
increases the learning capacity.

Lower learning rate—Decrease the Ir (you should train longer if you do so).
Different CNN architecture—Try something like Inception or ResNet (explained
in detail in the next chapter). You can get up to 95% accuracy with the ResNet
neural network after 200 epochs of training.

Transfer lewrning—In chapter 6, we will explore the technique of using a pre-
trained network on your dataset to get higher results with a fraction of the
learning time.

Summary

The general rule of thumb is that the deeper your network is, the better it learns.
At the time of writing, ReLU performs best in hidden layers, and softmax per-
forms best in the output layer.

Stochastic gradient descent usually succeeds in finding a minimum. But if you
need fast convergence and are training a complex neural network, it’s safe to
go with Adam.

Usually, the more you train, the better.

L2 regularization and dropout work well together to reduce network complex-
ity and overfitting.



Part 2

Image classification
and detection

Rapid advances in Al research are enabling new applications to be built
every day and across different industries that weren’t possible just a few years
ago. By learning these tools, you will be empowered to invent new products and
applications yourself. Even if you end up not working on computer vision per se,
many concepts here are useful for deep learning algorithms and architectures.

After working our way through the foundations of deep learning in part 1, it’s
time to build a machine learning project to see what you've learned. Here,
we’ll cover strategies to quickly and efficiently get deep learning systems work-
ing, analyze results, and improve network performance, specifically by dig-
ging into advanced convolutional neural networks, transfer learning, and object
detection.






Advanced CNN

architectures

This chapter covers

= Working with CNN design patterns

= Understanding the LeNet, AlexNet, VGGNet,
Inception, and ResNet network architectures

Welcome to part 2 of this book. Part 1 presented the foundation of neural networks
architectures and covered multilayer perceptrons (MLPs) and convolutional neural
networks (CNNs). We wrapped up part 1 with strategies to structure your deep neu-
ral network projects and tune their hyperparameters to improve network perfor-
mance. In part 2, we will build on this foundation to develop computer vision (CV)
systems that solve complex image classification and object detection problems.

In chapters 3 and 4, we talked about the main components of CNNs and setting
up hyperparameters such as the number of hidden layers, learning rate, optimizer,
and so on. We also talked about other techniques to improve network perfor-
mance, like regularization, augmentation, and dropout. In this chapter, you will see
how these elements come together to build a convolutional network. I will walk you
through five of the most popular CNNs that were cutting edge in their time, and
you will see how their designers thought about building, training, and improving
networks. We will start with LeNet, developed in 1998, which performed fairly well
at recognizing handwritten characters. You will see how CNN architectures have
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evolved since then to deeper CNNs like AlexNet and VGGNet, and beyond to more
advanced and super-deep networks like Inception and ResNet, developed in 2014 and
2015, respectively.

For each CNN architecture, you will learn the following:

Novel features—We will explore the novel features that distinguish these networks
from others and what specific problems their creators were trying to solve.
Network architecture—We will cover the architecture and components of each
network and see how they come together to form the end-to-end network.
Network code implementation—We will walk step-by-step through the network imple-
mentations using the Keras deep learning (DL) library. The goal of this section
is for you to learn how to read research papers and implement new architec-
tures as the need arises.

Setting up learning hyperparameters—After you implement a network architecture,
you need to set up the hyperparameters of the learning algorithms that you
learned in chapter 4 (optimizer, learning rate, weight decay, and so on). We will
implement the learning hyperparameters as presented in the original research
paper of each network. In this section, you will see how performance evolved
from one network to another over the years.

Network performance—TFinally, you will see how each network performed on bench-
mark datasets like MNIST and ImageNet, as represented in their research papers.

The three main objectives of this chapter follow:

Understanding the architecture and learning hyperparameters of advanced
CNNs. You will be implementing simpler CNNs like AlexNet and VGGNet for
simple- to medium-complexity problems. For very complex problems, you
might want to use deeper networks like Inception and ResNet.

Understanding the novel features of each network and the reasons they were
developed. Each succeeding CNN architecture solves a specific limitation in the
previous one. After reading about the five networks in this chapter (and their
research papers), you will build a strong foundation for reading and under-
standing new networks as they emerge.

Learning how CNNs have evolved and their designers’ thought processes. This
will help you build an instinct for what works well and what problems may arise
when building your own network.

In chapter 3, you learned about the basic building blocks of convolutional layers,
pooling layers, and fully connected layers of CNNs. As you will see in this chapter, in
recent years a lot of CV research has focused on how to put together these basic build-
ing blocks to form effective CNNs. One of the best ways for you to develop your intu-
ition is to examine and learn from these architectures (similar to how most of us may
have learned to write code by reading other people’s code).

To get the most out of this chapter, you are encouraged to read the research
papers linked in each section before you read my explanation. What you have learned
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in part 1 of this book fully equips you to start reading research papers written by pio-
neers in the Al field. Reading and implementing research papers is by far one of the
most valuable skills that you will build from reading this book.

TIP Personally, I feel the task of going through a research paper, interpret-
ing the crux behind it, and implementing the code is a very important skill
every DL enthusiast and practitioner should possess. Practically implement-
ing research ideas brings out the thought process of the author and also helps
transform those ideas into real-world industry applications. I hope that, by
reading this chapter, you will get comfortable reading research papers and
implementing their findings in your own work. The fast-paced evolution in
this field requires us to always stay up-to-date with the latest research. What
you will learn in this book (or in other publications) now will not be the latest
and greatest in three or four years—maybe even sooner. The most valuable
asset that I want you to take away from this book is a strong DL foundation
that empowers you to get out in the real world and be able to read the latest
research and implement it yourself.

Are you ready? Let’s get started!

CNN design patterns

Before we jump into the details of the common CNN architectures, we are going to
look at some common design choices when it comes to CNNs. It might seem at first
that there are way too many choices to make. Every time we learn about something
new in deep learning, it gives us more hyperparameters to design. So it is good to be
able to narrow down our choices by looking at some common patterns that were cre-
ated by pioneer researchers in the field so we can understand their motivation and
start from where they ended rather than doing things completely randomly:

Pattern 1: Feature extraction and classification—Convolutional nets are typically
composed of two parts: the feature extraction part, which consists of a series of
convolutional layers; and the classification part, which consists of a series of
fully connected layers (figure 5.1). This is pretty much always the case with
ConvNets, starting from LeNet and AlexNet to the very recent CNNs that have
come out in the past few years, like Inception and ResNet.

Feature extraction Classification

FC FC EC
Conv Conv Conv

Figure 5.1 Convolutional nets generally include feature extraction and classification.
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Pattern 2: Image depth increases, and dimensions decrease—The input data at each
layer is an image. With each layer, we apply a new convolutional layer over a
new image. This pushes us to think of an image in a more generic way. First,
you see that each image is a 3D object that has a height, width, and depth.
Depth is referred to as the color channel, where depth is 1 for grayscale images
and 3 for color images. In the later layers, the images still have depth, but they
are not colors per se: they are feature maps that represent the features
extracted from the previous layers. That’s why the depth increases as we go
deeper through the network layers. In figure 5.2, the depth of an image is
equal to 96; this represents the number of feature maps in the layer. So, that’s
one pattern you will always see: the image depth increases, and the dimen-
sions decrease.

=H X W X channel Image volume = H X W X feature maps
Channel = {R, G, B,} =3 Feature maps = 96
55
27
13
224
1
‘\> 5 3 — 3
o7 13 -
11 5 3 Y
55 384
256
o4 9% Max Max
Stride pooling pooling
U of4

Figure 5.2 Image depth increases, and the dimensions decrease.

Pattern 3: Fully connected layers—This generally isn’t as strict a pattern as the pre-
vious two, but it’s very helpful to know. Typically, all fully connected layers in a
network either have the same number of hidden units or decrease at each layer.
Itis rare to find a network where the number of units in the fully connected lay-
ers increases at each layer. Research has found that keeping the number of
units constant doesn’t hurt the neural network, so it may be a good approach if
you want to limit the number of choices you have to make when designing your
network. This way, all you have to do is to pick a number of units per layer and
apply that to all your fully connected layers.

Now that you understand the basic CNN patterns, let’s look at some architectures that
have implemented them. Most of these architectures are famous because they per-
formed well in the ImageNet competition. ImageNet is a famous benchmark that
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contains millions of images; DL and CV researchers use the ImageNet dataset to com-
pare algorithms. More on that later.

NOTE The snippets in this chapter are not meant to be runnable. The goal is
to show you how to implement the specifications that are defined in a research
paper. Visit the book’s website (www.manning.com/books/deep-learning-for-
vision-systems) or Github repo (https://github.com/moelgendy/deep_learning
_for_vision_systems) for the full executable code.

Now, let’s get started with the first network we are going to discuss in this chapter:
LeNet.

LeNet-5

In 1998, Lecun et al. introduced a pioneering CNN called LeNet-5." The LeNet-5 archi-
tecture is straightforward, and the components are not new to you (they were new
back in 1998); you learned about convolutional, pooling, and fully connected layers in
chapter 3. The architecture is composed of five weight layers, and hence the name
LeNet-5: three convolutional layers and two fully connected layers.

DEFINITION We refer to the convolutional and fully connected layers as weight
layers because they contain trainable weights as opposed to pooling layers that
don’t contain any weights. The common convention is to use the number of
weight layers to describe the depth of the network. For example, AlexNet
(explained next) is said to be eight layers deep because it contains five convolu-
tional and three fully connected layers. The reason we care more about weight
layers is mainly because they reflect the model’s computational complexity.

LeNet architecture

The architecture of LeNet-5 is shown in figure 5.3:

INPUT IMAGE = C1 = TANH = S2 = C3 = TANH = S4 = C5 = TANH = FC6 =
SOFTMAXY7

where C is a convolutional layer, S is a subsampling or pooling layer, and FC is a fully
connected layer.

Notice that Yann LeCun and his team used tanh as an activation function instead
of the currently state-of-the-art ReLLU. This is because in 1998, ReL.U had not yet been
used in the context of DL, and it was more common to use tanh or sigmoid as an acti-
vation function in the hidden layers. Without further ado, let’s implement LeNet-5
in Keras.

LY. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning Applied to Document Recogni-
tion,” Proceedings of the IEEE 86 (11): 2278-2324, http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf.
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Figure 5.3 LeNet architecture

5.2.2 LeNet-5 implementation in Keras

To implement LeNet-5 in Keras, read the original paper and follow the architecture
information from pages 6-8. Here are the main takeaways for building the LeNet-5
network:

Number of filters in each convolutional layer—As you can see in figure 5.3 (and as
defined in the paper), the depth (number of filters) of each convolutional layer
is as follows: C1 has 6, C3 has 16, C5 has 120 layers.

Kernel size of each convolutional layer—The paper specifies that the kernel size
is 5 x 5.

Subsampling (pooling) layers—A subsampling (pooling) layer is added after each
convolutional layer. The receptive field of each unitis a 2 x 2 area (for example,
pool_sizeis 2). Note that the LeNet-5 creators used average pooling, which com-
putes the average value of its inputs, instead of the max pooling layer that we used
in our earlier projects, which passes the maximum value of its inputs. You can
try both if you are interested, to see the difference. For this experiment, we are
going to follow the paper’s architecture.

Activation function—As mentioned before, the creators of LeNet-5 used the tanh
activation function for the hidden layers because symmetric functions are believed
to yield faster convergence compared to sigmoid functions (figure 5.4).

v . v O
CONV ;\ogl CONV sogl % CONVH FC ’g‘ FC O
R - . ; 0 v
: U o
@)

5x5 f=2 5x5 f=2
s=1 s=2 s=1 =2

28 x 28 x 1 28 x 28 x 6 14x14%x6 10 x 10 x 16 5x5x16 84 10
120

Figure 5.4 The LeNet architecture consists of convolutional kernels of size 5 x 5; pooling layers; an activation
function (tanh); and three fully connected layers with 120, 84, and 10 neurons, respectively.
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Now let’s put that in code to build the LeNet-5 architecture:

from keras.models import Sequential Imports the Keras
from keras.layers import Conv2D, AveragePooling2D, Flatten, Dense model and layers

Instantiates an empty

model = Sequential() sequential model

# Cl Convolutional Layer
model.add(Conv2D(filters = 6, kernel size = 5, strides = 1, activation = 'tanh',
input shape = (28,28,1), padding = 'same'))

# S2 Pooling Layer
model.add (AveragePooling2D (pool size = 2, strides = 2, padding = 'valid'))

# C3 Convolutional Layer
model.add (Conv2D(filters = 16, kernel size = 5, strides = 1,activation = 'tanh',
padding = 'valid'))

# S4 Pooling Layer
model.add (AveragePooling2D (pool size = 2, strides = 2, padding = 'valid'))

# C5 Convolutional Layer

model.add(Conv2D(filters = 120, kernel size = 5, strides = 1,activation = 'tanh',
padding = 'valid'))

Flattens the CNN output to

model.add{Flatten()) feed it fully connected layers

# FC6 Fully Connected Layer
model.add (Dense (units = 84, activation = 'tanh'))

# FC7 Output layer with softmax activation
model.add (Dense (units = 10, activation = 'softmax'))

model . summary ()

: Prints the model summary (figure 5.5)

LeNet-5 is a small neural network by today’s standards. It has 61,706 parameters, com-
pared to millions of parameters in more modern networks, as you will see later in this
chapter.

A note when reading the papers discussed in this chapter

When you read the LeNet-5 paper, just know that it is harder to read than the others
we will cover in this chapter. Most of the ideas that | mention in this section are in
sections 2 and 3 of the paper. The later sections of the paper talk about something
called the graph transformer network, which isn’t widely used today. So if you do try
to read the paper, | recommend focusing on section 2, which talks about the LeNet
architecture and the learning details; then maybe take a quick look at section 3,
which includes a bunch of experiments and results that are pretty interesting.

| recommend starting with the AlexNet paper (discussed in section 5.3), followed by
the VGGNet paper (section 5.4), and then the LeNet paper. It is a good classic to look
at once you go over the other ones.
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Layer (type) Output Shape Param #
conv2d_1 (Conv2D) (None, 28, 28, 6) 156
average pooling2d 1 (Average (None, 14, 14, 6) 0
conv2d_2 (Conv2D) (None, 10, 10, 16) 2416
average pooling2d 2 (Average (None, 5, 5, 16) 0
conv2d_3 (Conv2D) (None, 1, 1, 120) 48120
flatten_1 (Flatten) (None, 120) 0
dense_1 (Dense) (None, 84) 10164
dense_2 (Dense) (None, 10) 850
Total params: 61,706

Trainable params: 61,706

Non-trainable params: 0

Figure 5.5 LeNet-5 model summary

Setting up the learning hyperparameters

LeCun and his team used scheduled decay learning where the value of the learning
rate was decreased using the following schedule: 0.0005 for the first two epochs,
0.0002 for the next three epochs, 0.00005 for the next four, and then 0.00001 thereaf-
ter. In the paper, the authors trained their network for 20 epochs.

Let’s build a 1r schedule function with this schedule. The method takes an inte-
ger epoch number as an argument and returns the learning rate (1r):

def 1lr schedule (epoch) :

if epoch <= 2: Ir is 0.0005 for the first two

. lr = 5e-4 epochs, 0.0002 for the next three
elif epoch > 2 and epoch <= 5: epochs (3 to 5), 0.00005 for the
lr = 2e-4 next four (6 to 9), then 0.00001
elif epoch > 5 and epoch <= 9: thereafter (more than 9).
lr = 5e-5
else:
lr = le-5

return lr

We use the 1r_schedule function in the following code snippet to compile the model:

from keras.callbacks import ModelCheckpoint, LearningRateScheduler

lr scheduler = LearningRateScheduler (lr schedule)

checkpoint = ModelCheckpoint (filepath='path to_save file/file.hdf5',
monitor='val_ acc',
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verbose=1,
save best only=True)

callbacks = [checkpoint, 1lr_ reducer]

model.compile (loss="'categorical crossentropy', optimizer='sgd',
metrics=['accuracy'])

Now start the network training for 20 epochs, as mentioned in the paper:

hist = model.fit (X train, y train, batch size=32, epochs=20,
validation data=(X_test, y test), callbacks=callbacks,
verbose=2, shuffle=True)

See the downloadable notebook included with the book’s code for the full code
implementation, if you want to see this in action.

LeNet performance on the MNIST dataset

When you train LeNet-5 on the MNIST dataset, you will get above 99% accuracy (see
the code notebook with the book’s code). Try to re-run this experiment with the
ReLU activation function in the hidden layers, and observe the difference in the net-
work performance.

AlexNet

LeNet performs very well on the MNIST dataset. But it turns out that the MNIST data-
set is very simple because it contains grayscale images (1 channel) and classifies into
only 10 classes, which makes it an easier challenge. The main motivation behind Alex-
Net was to build a deeper network that can learn more complex functions.

AlexNet (figure 5.6) was the winner of the ILSVRC image classification competi-
tion in 2012. Krizhevsky et al. created the neural network architecture and trained it
on 1.2 million high-resolution images into 1,000 different classes of the ImageNet
dataset.? AlexNet was state of the art at its time because it was the first real “deep” net-
work that opened the door for the CV community to seriously consider convolutional
networks in their applications. We will explain deeper networks later in this chapter,
like VGGNet and ResNet, but it is good to see how ConvNets evolved and the main
drawbacks of AlexNet that were the main motivation for the later networks.

As you can see in figure 5.6, AlexNet has a lot of similarities to LeNet but is much
deeper (more hidden layers) and bigger (more filters per layer). They have similar
building blocks: a series of convolutional and pooling layers stacked on top of each
other followed by fully connected layers and a softmax. We’ve seen that LeNet has
around 61,000 parameters, whereas AlexNet has about 60 million parameters and

2 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, “ImageNet Classification with Deep Convolutional
Neural Networks,” Communications of the ACM 60 (6): 8490, https://dl.acm.org/doi/10.1145/3065386.
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Figure 5.6 AlexNet architecture

650,000 neurons, which gives it a larger learning capacity to understand more complex
features. This allowed AlexNet to achieve remarkable performance in the ILSVRC

image classification competition in 2012.

ImageNet and ILSVRC

ImageNet (http://image-net.org/index) is a large visual database designed for use in
visual object recognition software research. It is aimed at labeling and categorizing
images into almost 22,000 categories based on a defined set of words and phrases.
The images were collected from the web and labeled by humans using Amazon’s
Mechanical Turk crowdsourcing tool. At the time of this writing, there are over 14 mil-
lion images in the ImageNet project. To organize such a massive amount of data, the
creators of ImageNet followed the WordNet hierarchy where each meaningful word/
phrase in WordNet is called a synonym set (synset for short). Within the ImageNet
project, images are organized according to these synsets, with the goal being to have
1,000+ images per synset.

The ImageNet project runs an annual software contest called the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC, www.image-net.org/challenges/LSVRC),
where software programs compete to correctly classify and detect objects and scenes.
We will use the ILSVRC challenge as a benchmark to compare different networks’
performance.
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AlexNet architecture

You saw a version of the AlexNet architecture in the project at the end of chapter 3.
The architecture is pretty straightforward. It consists of:

Convolutional layers with the following kernel sizes: 11 x 11,5 x 5, and 3 x 3
Max pooling layers for images downsampling

Dropout layers to avoid overfitting

Unlike LeNet, ReLU activation functions in the hidden layers and a softmax
activation in the output layer

AlexNet consists of five convolutional layers, some of which are followed by max-pooling
layers, and three fully connected layers with a final 1000-way softmax. The architec-
ture can be represented in text as follows:

INPUT IMAGE = CONVI1 = POOL2 = CONV3 = POOL4 = CONV5 = CONVb6 =
CONV7 = POOLS = FC9 = FC10 = SOFTMAX?7

Novel features of AlexNet

Before AlexNet, DL was starting to gain traction in speech recognition and a few
other areas. But AlexNet was the milestone that convinced a lot of people in the CV
community to take a serious look at DL and demonstrate that it really works in CV.
AlexNet presented some novel features that were not used in previous CNNs (like
LeNet). You are already familiar with all of them from the previous chapters, so we’ll
go through them quickly here.

RELU ACTIVATION FUNCTION

AlexNet uses ReLu for the nonlinear part instead of the tanh and sigmoid functions that
were the earlier standard for traditional neural networks (like LeNet). ReLLu was used in
the hidden layers of the AlexNet architecture because it trains much faster. This is
because the derivative of the sigmoid function becomes very small in the saturating
region, and therefore the updates applied to the weights almost vanish. This phenome-
non is called the vanishing gradient problem. ReLU is represented by this equation:

f(x) = max(0,x)

It’s discussed in detail in chapter 2.

The vanishing gradient problem

Certain activation functions, like the sigmoid function, squish a large input space into
a small input space between O and 1 (-1 to 1 for tanh activations). Therefore, a large
change in the input of the sigmoid function causes a small change in the output. As
a result, the derivative becomes very small:
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(continued)
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The vanishing gradient problem: a large change in the input of the sigmoid function causes a
negligible change in the output.

We will talk more about the vanishing gradient phenomenon later in this chapter when
we look at the ResNet architecture.

DROPOUT LAYER

As explained in chapter 3, dropout layers are used to prevent the neural network from
overfitting. The neurons that are “dropped out” do not contribute to the forward pass
and do not participate in backpropagation. This means every time an input is pre-
sented, the neural network samples a different architecture, but all of these architec-
tures share the same weights. This technique reduces complex co-adaptations of
neurons, since a neuron cannot rely on the presence of particular other neurons.
Therefore, the neuron is forced to learn more robust features that are useful in con-
junction with many different random subsets of the other neurons. Krizhevsky et al.
used dropout with a probability of 0.5 in the two fully connected layers.

DATA AUGMENTATION

One popular and very effective approach to avoid overfitting is to artificially enlarge
the dataset using label-preserving transformations. This happens by generating new
instances of the training images with transformations like image rotation, flipping,
scaling, and many more. Data augmentation is explained in detail in chapter 4.

LOCAL RESPONSE NORMALIZATION

AlexNet uses local response normalization. It is different from the batch normaliza-
tion technique (explained in chapter 4). Normalization helps to speed up conver-
gence. Nowadays, batch normalization is used instead of local response normalization;
we will use BN in our implementation in this chapter.



5.3.3

AlexNet 207

WEIGHT REGULARIZATION

Krizhevsky et al. used a weight decay of 0.0005. Weight decay is another term for the
L2 regularization technique explained in chapter 4. This approach reduces the over-
fitting of the DL neural network model on training data to allow the network to gener-
alize better on new data:

model.add (Conv2D (32, (3,3), kernel regularizer=12(X)))

The lambda (X) value is a weight decay hyperparameter that you can tune. If you still
see overfitting, you can reduce it by increasing the lambda value. In this case,
Krizhevsky and his team found that a small decay value of 0.0005 was good enough for
the model to learn.

TRAINING ON MULTIPLE GPUs

Krizhevsky et al. used a GTX 580 GPU with only 3 GB of memory. It was state-of-the-art
at the time but not large enough to train the 1.2 million training examples in the data-
set. Therefore, the team developed a complicated way to spread the network across
two GPUs. The basic idea was that a lot of the layers were split across two different
GPUs that communicated with each other. You don’t need to worry about these details
today: there are far more advanced ways to train deep networks on distributed GPUs,
as we will discuss later in this book.

AlexNet implementation in Keras

Now that you've learned the basic components of AlexNet and its novel features, let’s
apply them to build the AlexNet neural network. I suggest that you read the architec-
ture description on page 4 of the original paper and follow along.

As depicted in figure 5.7, the network contains eight weight layers: the first five are
convolutional, and the remaining three are fully connected. The output of the last
fully connected layer is fed to a 1000-way softmax that produces a distribution over the
1,000 class labels.

NOTE AlexNet input starts with 227 x 227 x 3 images. If you read the paper,
you will notice that it refers to a dimensions volume of 224 x 224 x 3 for the
input images. But the numbers make sense only for 227 x 227 x 3 images (fig-
ure 5.7). I suggest that this could be a typing mistake in the paper.

The layers are stacked together as follows:

CONVI—The authors used a large kernel size (11). They also used a large stride
(4), which makes the input dimensions shrink by roughly a factor 4 (from 227 x
227 to 55 x 55). We calculate the dimensions of the output as follows:

(227-11)

1=
1 + 55

and the depth is the number of filters in the convolutional layer (96). The out-
put dimensions are 55 x 55 x 96.
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Figure 5.7 AlexNet contains eight weight layers: five convolutional and three fully connected. Two contain 4,096
neurons, and the output is fed to a 1,000-neuron softmax.

POOL with a filter size of 3 x 3—This reduces the dimensions from 55 x 55 to
27 x 27:

(55-3)

5 +1=27

The pooling layer doesn’t change the depth of the volume. The output dimen-
sions are 27 x 27 x 96.

Similarly, we can calculate the output dimensions of the remaining layers:

CONV2—Kernel size = 5, depth = 256, and stride =1

POOL—Size = 3 x 3, which downsamples its input dimensions from 27 x 27 to
13 x13

CONV3—Kernel size = 3, depth = 384, and stride = 1

CONV4—Kernel size = 3, depth = 384, and stride = 1

CONV5—Kernel size = 3, depth = 256, and stride = 1

POOL—Size = 3 x 3, which downsamples its input from 13 x 13 to 6 x 6
Flatten layer—Flattens the dimension volume 6 x 6 x 256 to 1 x 9,216
FCwith 4,096 neurons

FCwith 4,096 neurons

Softmax layer with 1,000 neurons



AlexNet 209

NOTE You might be wondering how Krizhevsky and his team decided to
implement this configuration. Setting up the right values of network hyper-
parameters like kernel size, depths, stride, pooling size, etc., is tedious and
requires a lot of trial and error. The idea remains the same: we want to
apply many weight layers to increase the model’s capacity to learn more
complex functions. We also need to add pooling layers in between to down-
sample the input dimensions, as discussed in chapter 2. With that said, set-
ting up the exact hyperparameters comes as one of the challenges of CNNE.
VGGNet (explained next) solves this problem by implementing a uniform
layer configuration to reduce the amount of trial and error when designing
your network.

Note that all of the convolutional layers are followed by a batch normalization layer,
and all of the hidden layers are followed by ReLU activations. Now, let’s put that in
code to build the AlexNet architecture:

from keras.models import Sequential Imports the

from keras.regularizers import 12 Keras model,

from keras.layers import Conv2D, AveragePooling2D, Flatten, Dense, hyem,and
Activation,MaxPool2D, BatchNormalization, Dropout regularizers

Instantiates an empty

model = Sequential () .
sequential model

# 1st layer (CONV + pool + batchnorm)
model.add(Conv2D(filters= 96, kernel size= (11,11), strides=(4,4),
padding="'valid',

input_shape = (227,227,3))) The activation function can
model.add (Activation('relu')) be added on its own layer
model . add (MaxPool2D (pool size=(3,3), strides=(2,2))) or within the Conv2D
model . add (BatchNormalization()) function as we did in

previous implementations.
# 2nd layer (CONV + pool + batchnorm)
model.add (Conv2D (filters=256, kernel size=(5,5), strides=(1,1), padding="'same',
kernel regularizer=12(0.0005)))
model.add (Activation ('relu'))
model .add (MaxPool2D (pool_size=(3,3), strides=(2,2), padding='valid'))

1. B hN 11 i .
model . add (BatchNormalization () ) Note that the AlexNet authors did

ling | here.
# layer 3 (CONV + batchnorm) not add a pooling layer here

model.add (Conv2D (filters=384, kernel size=(3,3), strides=(1,1), padding='same',
kernel regularizer=12(0.0005)))

model.add (Activation ('relu'))

model.add (BatchNormalization())

Similar to layer 3
# layer 4 (CONV + batchnorm)

model.add (Conv2D (filters=384, kernel size=(3,3), strides=(1,1), padding='same',
kernel regularizer=12(0.0005)))

model.add (Activation ('relu'))

model.add (BatchNormalization())

# layer 5 (CONV + batchnorm)
model.add (Conv2D (filters=256, kernel size=(3,3)

, strides=(1,1), padding='same',
kernel regularizer=12(0.0005)))
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model.add (Activation('relu'))
model .add (BatchNormalization())
model . add (MaxPool2D (pool size=(3,3), strides=(2,2), padding='valid'))

model . add (Flatten ()) . Flatt?ns the CNN output to
feed it fully connected layers

# layer 6 (Dense layer + dropout)
model.add (Dense (units = 4096, activation = 'relu'))
model . add (Dropout (0.5))

# layer 7 (Dense layers)
model .add (Dense (units = 4096, activation = 'relu'))

model .add (Dropout (0.5))

# layer 8 (softmax output layer)

model.add (Dense (units = 1000, activation = 'softmax'))
model . summary () <+ Prints the
model summary

When you print the model summary, you will see that the number of total parameters
is 62 million:

Total params: 62,383, 848
Trainable params: 62,381, 096
Non-trainable params: 2,752

NOTE Both LeNet and AlexNet have many hyperparameters to tune. The
authors of those networks had to go through many experiments to set the ker-
nel size, strides, and padding for each layer, which makes the networks harder
to understand and manage. VGGNet (explained next) solves this problem
with a very simple, uniform architecture.

5.3.4 Setting up the learning hyperparameters

AlexNet was trained for 90 epochs, which took 6 days on two Nvidia Geforce GTX 580
GPUs simultaneously. This is why you will see that the network is split into two pipe-
lines in the original paper. Krizhevsky et al. started with an initial learning rate of 0.01
with a momentum of 0.9. The 1r is then divided by 10 when the validation error stops

improving:
Sets the SGD optimizer with Ir Reduces the learning rate by 0.1
of 0.01 and momentum of 0.9 when the validation error plateaus

reduce_lr = ReduceLROnPlateau(monitor='val loss', factor=np.sqrt(0.1))
optimizer = keras.optimizers.sgd(lr = 0.01, momentum = 0.9)

model.compile (loss="'categorical crossentropy', optimizer=optimizer,

metrics=['accuracy'])
Compiles the model
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model.fit (X train, y train, batch size=128, epochs=90,
validation data=(X_test, y test), verbose=2, callbacks=[reduce 1lr])

Trains the model and calls the reduce_Ir value
using callbacks in the training method

AlexNet performance

AlexNet significantly outperformed all the prior competitors in the 2012 ILSVRC
challenges. It achieved a winning top-5 test error rate of 15.3%, compared to 26.2%
achieved by the second-best entry that year, which used other traditional classifiers.
This huge improvement in performance attracted the CV community’s attention to
the potential that convolutional networks have to solve complex vision problems and
led to more advanced CNN architectures, as you will see in the following sections of
this chapter.

Top-1 and top-5 error rates?

Top-1 and top-5 are terms used mostly in research papers to describe the accuracy
of an algorithm on a given classification task. The top-1 error rate is the percentage
of the time that the classifier did not give the correct class the highest score, and the
top-5 error rate is the percentage of the time that the classifier did not include the
correct class among its top five guesses.

Let’s apply this in an example. Suppose there are 100 classes, and we show the net-
work an image of a cat. The classifier outputs a score or confidence value for each
class as follows:

Cat: 70%

Dog: 20%
Horse: 5%
Motorcycle: 4%
Car: 0.6%
Plane: 0.4%

This means the classifier was able to correctly predict the true class of the image in
the top-1. Try the same experiment for 200 images and observe how many times the
classifier missed the true label, and that’s your top-1 error rate.

The same idea holds for the top-5 error rate. In the example, if the true label is Horse,
then the classifier missed the true label in the top-1 but caught it in the first five pre-
dicted classes (for example, top-5). Calculate how many times the classifier missed
the true label in the top five predictions, and that’s your top-5.

Ideally, we want the model to always predict the correct class in the top-1. But top-5
gives a more holistic evaluation of the model’s performance by defining how close
the model is to the correct prediction for the missed classes.



212 CHAPTER 5 Advanced CNN architectures

5.4 VGGNet

VGGNet was developed in 2014 by the Visual Geometry Group at Oxford University
(hence the name VGG).? The building components are exactly the same as those in
LeNet and AlexNet, except that VGGNet is an even deeper network with more convo-
lutional, pooling, and dense layers. Other than that, no new components are intro-
duced here.

VGGNet, also known as VGG16, consists of 16 weight layers: 13 convolutional lay-
ers and 3 fully connected layers. Its uniform architecture makes it appealing in the DL
community because it is very easy to understand.

5.4.1 Novel features of VGGNet

We’ve seen how challenging it can be to set up CNN hyperparameters like kernel size,
padding, strides, and so on. VGGNet’s novel concept is that it has a simple architecture
containing uniform components (convolutional and pooling layers). It improves on
AlexNet by replacing large kernel-sized filters (11 and 5 in the first and second convolu-
tional layers, respectively) with multiple 3 x 3 pool-ize filters one after another.

The architecture is composed of a series of uniform convolutional building blocks
followed by a unified pooling layer, where:

All convolutional layers are 3 x 3 kernel-sized filters with a strides value of 1
and a padding value of same.
All pooling layers have a 2 x 2 pool size and a strides value of 2.

Simonyan and Zisserman decided to use a smaller 3 x 3 kernel to allow the network to
extract finer-level features of the image compared to AlexNet’s large kernels (11 x 11
and 5 x b). The idea is that with a given convolutional receptive field, multiple stacked
smaller kernels is better than a larger kernel because having multiple nonlinear layers
increases the depth of the network; this enables it to learn more complex features at a
lower cost because it has fewer learning parameters.

For example, in their experiments, the authors noticed that a stack of two 3 x 3
convolutional layers (without spatial pooling in between) has an effective receptive
field of 5 x 5, and three 3 x 3 convolutional layers have the effect of a 7 x 7 receptive
field. So by using 3 x 3 convolutions with higher depth, you get the benefits of using
more nonlinear rectification layers (ReLLU), which makes the decision function more
discriminative. Second, this decreases the number of training parameters because
when you use a three-layer 3 x 3 convolutional with C channels, the stack is parameter-
ised by 32C? = 27C? weights compared to a single 7 x 7 convolutional layer that
requires 7°C? = 49C2 weights, which is 81% more parameters.

¥ Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recog-
nition,” 2014, https://arxiv.org/pdf/1409.1556v6.pdf.
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Receptive field

As explained in chapter 3, the receptive field is the effective area of the input image
on which the output depends:

Receptive
field
RelU
v nonlinearity
\
\\\>©/
[

|+ L —

This unified configuration of the convolutional and pooling components simplifies the
neural network architecture, which makes it very easy to understand and implement.

The VGGNet architecture is developed by stacking 3 x 3 convolutional layers with
2 x 2 pooling layers inserted after several convolutional layers. This is followed by the
traditional classifier, which is composed of fully connected layers and a softmax, as
depicted in figure 5.8.
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Figure 5.8 VGGNet-16 architecture

5.4.2 VGGNet configurations

Simonyan and Zisserman created several configurations for the VGGNet architec-
ture, as shown in figure 5.9. All of the configurations follow the same generic design.
Configurations D and E are the most commonly used and are called VGGI6 and
VGG19, referring to the number of weight layers. Each block contains a series of 3 x 3
convolutional layers with similar hyperparameter configuration, followed by a 2 x 2
pooling layer.

Table 5.1 lists the number of learning parameters (in millions) for each configura-
tion. VGG16 yields ~138 million parameters; VGGI19, which is a deeper version of
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ConvNet configuration

A A-LRN B C D E
11 weight |11 weight |13 weight | 16 weight [ 16 weight | 19 weight
layers layers layers layers layers layers
Input (224 x 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 [ conv3-128 [ conv3-128 | conv3-128 | conv3-128 [ conv3-128
conv3-128 [ conv3-128 [ conv3-128 | conv3-128

maxpool
conv3-256 [ conv3-256 [ conv3-256 | conv3-256 | conv3-256 [ conv3-256
conv3-256 [ conv3-256 [ conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 [ conv3-256
conv3-256

maxpool
conv3-512 [ conv3-512 [ conv3-512 | conv3-512 | conv3-512 [ conv3-512
conv3-512 [ conv3-512 ( conv3-512 | conv3-512 | conv3-512 [ conv3-512
conv3-512 [ conv3-512 [ conv3-512
conv3-512

maxpool
conv3-512 [ conv3-512 [ conv3-512 | conv3-512 | conv3-512 | conv3-512

conv3-512 [ conv3-512 [ conv3-512 | conv3-512 | conv3-512 [ conv3-512
conv3-512 | conv3-512 [ conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

Figure 5.9 VGGNet architecture configurations

VGGNet, has more than 144 million parameters. VGG16 is more commonly used
because it performs almost as well as VGG19 but with fewer parameters.

Table 5.1 VGGNet architecture parameters (in millions)

Network

133

134

138

144

VGG16 IN KERAS

Configurations D (VGG16) and E (VGGI19) are the most commonly used configura-
tions because they are deeper networks that can learn more complex functions. So, in
this chapter, we will implement configuration D, which has 16 weight layers. VGG19
(configuration E) can be similarly implemented by adding a fourth convolutional
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layer to the third, fourth, and fifth blocks as you can see in figure 5.9. This chapter’s
downloaded code includes a full implementation of both VGG16 and VGG19.

Note that Simonyan and Zisserman used the following regularization techniques
to avoid overfitting:

L2 regularization with weight decay of 5 x 107, For simplicity, this is not added
to the implementation that follows.

Dropout regularization for the first two fully connected layers, with a dropout
ratio set to 0.5.

The Keras code is as follows:

model = Sequential () QT Instantiates an empty

sequential model
# block #1

model.add (Conv2D (filters=64, kernel size=(3,3), strides=(1,1),
activation='relu',
padding='same', input shape= (224,224, 3)))
model.add (Conv2D (filters=64, kernel size=(3,3), strides=(1,1),
activation='relu',
padding="'same'))
model .add (MaxPool2D((2,2), strides=(2,2)))

# block #2
model.add (Conv2D (filters=128, kernel size=(3,3), strides=(1,1),
activation='relu',
padding="'same"'))
model.add (Conv2D (filters=128, kernel size=(3,3), strides=(1,1),
activation='relu',
padding="'same"'))
model .add (MaxPool2D((2,2), strides=(2,2)))

# block #3
model.add (Conv2D (filters=256, kernel size=(3,3), strides=(1,1),
activation='relu',
padding="'same'))
model.add (Conv2D (filters=256, kernel size=(3,3), strides=(1,1),
activation='relu',
padding="'same'))
model.add (Conv2D (filters=256, kernel size=(3,3), strides=(1,1),
activation='relu',
padding="'same'))
model .add (MaxPool2D((2,2), strides=(2,2)))

# block #4
model.add (Conv2D (filters=512, kernel size=(3,3), strides=(1,1),
activation='relu',
padding="'same"'))
model.add (Conv2D (filters=512, kernel size=(3,3), strides=(1,1),
activation='relu',
padding="'same"'))
model.add (Conv2D (filters=512, kernel size=(3,3), strides=(1,1),
activation="'relu',
padding="'same"'))
model .add (MaxPool2D((2,2), strides=(2,2)))
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# block #5
model.add (Conv2D (filters=512, kernel size=(3,3), strides=(1,1),
activation='relu',
padding="'same'))
model.add (Conv2D (filters=512, kernel size=(3,3), strides=(1,1),
activation='relu',
padding="'same'))
model.add (Conv2D (filters=512, kernel size=(3,3), strides=(1,1),
activation='relu',
padding="'same'))
model.add (MaxPool2D((2,2), strides=(2,2)))

# block #6 (classifier)

model.add (Flatten())

model.add (Dense (4096, activation='relu'))
model.add (Dropout (0.5))

model .add (Dense (4096, activation='relu'))
model.add (Dropout (0.5))

model .add (Dense (1000, activation='softmax'))

Prints the model

model . summary ()
summary

When you print the model summary, you will see that the number of total parameters
is ~138 million:

Total params: 138,357, 544
Trainable params: 138,357, 544
Non-trainable params: 0

Learning hyperparameters

Simonyan and Zisserman followed a training procedure similar to that of AlexNet: the
training is carried out using mini-batch gradient descent with momentum of 0.9. The
learning rate is initially set to 0.01 and then decreased by a factor of 10 when the vali-
dation set accuracy stops improving.

VGGNet performance

VGG16 achieved a top-5 error rate of 8.1% on the ImageNet dataset compared to
15.3% achieved by AlexNet. VGG19 did even better: it was able to achieve a top-b
error rate of ~7.4%. It is worth noting that in spite of the larger number of parameters
and the greater depth of VGGNet compared to AlexNet, VGGNet required fewer
epochs to converge due to the implicit regularization imposed by greater depth and
smaller convolutional filter sizes.
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Inception and GoogLeNet

The Inception network came to the world in 2014 when a group of researchers at
Google published their paper, “Going Deeper with Convolutions.”* The main hall-
mark of this architecture is building a deeper neural network while improving the
utilization of the computing resources inside the network. One particular incarnation
of the Inception network is called GoogleNet and was used in the team’s submission
for ILSVRC 2014. It uses a network 22 layers deep (deeper than VGGNet) while reduc-
ing the number of parameters by 12 times (from ~138 million to ~13 million) and
achieving significantly more accurate results. The network used a CNN inspired by the
classical networks (AlexNet and VGGNet) but implemented a novel element dubbed
as the inception module.

Novel features of Inception

Szegedy et al. took a different approach when designing their network architecture.
As we’ve seen in the previous networks, there are some architectural decisions that
you need to make for each layer when you are designing a network, such as these:

The kernel size of the convolutional layer—We’ve seen in previous architectures that
the kernel size varies: 1 x 1, 3 x 3, 5 x 5, and, in some cases, 11 x 11 (as in Alex-
Net). When designing the convolutional layer, we find ourselves trying to pick
and tune the kernel size of each layer that fits our dataset. Recall from chapter 3
that smaller kernels capture finer details of the image, whereas bigger filters
will leave out minute details.

When to use the pooling layer—AlexNet uses pooling layers every one or two con-
volutional layers to downsize spatial features. VGGNet applies pooling after
every two, three, or four convolutional layers as the network gets deeper.

Configuring the kernel size and positioning the pool layers are decisions we make
mostly by trial and error and experiment with to get the optimal results. Inception
says, “Instead of choosing a desired filter size in a convolutional layer and deciding
where to place the pooling layers, let’s apply all of them all together in one block and
call it the inception module.”

That is, rather than stacking layers on top of each other as in classical architec-
tures, Szegedy and his team suggest that we create an inception module consisting of
several convolutional layers with different kernel sizes. The architecture is then devel-
oped by stacking the inception modules on top of each other. Figure 5.10 shows how
classical convolutional networks are architected versus the Inception network.

4

Christian Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumi-

tru Erhan, Vincent Vanhoucke, and Andrew Rabinovich, “Going Deeper with Convolutions,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 1-9, 2015, http://mng.bz/YryB.
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\ CONV CONV Y,

Classical CNN architecture Inception modules
Dense Dense
classifiers classifiers
4 POOL Inception modules A
CONV
Classical CNN Inception
feature extractors < CONV Inception modules > modules feature
extractors
POOL POOL

Figure 5.10 Classical convolutional networks vs. the Inception network

From the diagram, you can observe the following:

In classical architectures like LeNet, AlexNet, and VGGNet, we stack convolu-
tional and pooling layers on top of each other to build the feature extractors. At
the end, we add the dense fully connected layers to build the classifier.

In the Inception architecture, we start with a convolutional layer and a pooling
layer, stack the inception modules and pooling layers to build the feature
extractors, and then add the regular dense classifier layers.

We’ve been treating the inception modules as black boxes to understand the bigger
picture of the Inception architecture. Now, we will unpack the inception module to
understand how it works.

Inception module: Naive version
The inception module is a combination of four layers:

1 x 1 convolutional layer
3 x 3 convolutional layer
5 x 5 convolutional layer

3 x 3 max-pooling layer

The outputs of these layers are concatenated into a single output volume forming the
input of the next stage. The naive representation of the inception module is shown in
figure 5.11.

The diagram may look a little overwhelming, but the idea is simple to understand.
Let’s follow along with this example:
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Suppose we have an input dimensional volume from the previous layer of size

32 x 32 x 200.

We feed this input to four convolutions simultaneously:

— 1 x 1 convolutional layer with depth = 64 and padding = same. The output of
this kernel = 32 x 32 x 64.

— 3 x 3 convolutional layer with depth = 128 and padding = same. Output = 32 x

32 x 128.

— 5 x 5 convolutional layer with depth = 32 and padding = same. Output = 32 x
32 x 32,

— 3 x 3 max-pooling layer with padding = same and strides = 1. Output = 32 x
32 x 32.

We concatenate the depth of the four outputs to create one output volume of

dimensions 32 x 32 x 256.

Inception module 32 x 32 x 256

Filter concatenation

32><32><64| 32X32X128| 32><32><32| |32X32><32

3 x 3 convolutions

‘ 1 x 1 convolutions ‘ 5 x 5 convolutions ‘ 3 x 3 max pooling ’

Previous layer

32 x 32 x 200

Figure 5.11 Naive representation of an inception module

Now we have an inception module that takes an input volume of 32 x 32 x 200 and
outputs a volume of 32 x 32 x 256.

NOTE In the previous example, we use a padding value of same. In Keras,
padding can be set to same or valid, as we saw in chapter 3. The same value
results in padding the input such that the output has the same length as the
original input. We do that because we want the output to have width and
height dimensions similar to the input. And we want to output similar dimen-
sions in the inception module to simplify the depth concatenation process.
Now we can just add up the depths of all the outputs to concatenate them
into one output volume to be fed to the next layer in our network.
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Inception module with dimensionality reduction

The naive representation of the inception module that we just saw has a big computa-
tional cost problem that comes with processing larger filters like the 5 x 5 convolutional
layer. To get a better sense of the compute problem with the naive representation,
let’s calculate the number of operations that will be performed for the 5 x 5 convolu-
tional layer in the previous example.

The input volume with dimensions of 32 x 32 x 200 will be fed to the 5 x 5 convolu-
tional layer of 32 filters with dimensions = 5 x 5 x 32. This means the total number
of multiplications that the computer needs to compute is 32 x 32 x 200 multiplied
by 5 x 5 x 32, which is more than 163 million operations. While we can perform this
many operations with modern computers, this is still pretty expensive. This is when
the dimensionality reduction layers can be very useful.

DIMENSIONALITY REDUCTION LAYER (1 X 1 CONVOLUTIONAL LAYER)

The 1 x 1 convolutional layer can reduce the operational cost of 163 million opera-
tions to about a tenth of that. That is why it is called a reduce layer. The idea here is to
add a 1 x 1 convolutional layer before the bigger kernels like the 3 x 3 and 5 x 5 con-
volutional layers, to reduce their depth, which in turn will reduce the number of
operations.

Let’s look at an example. Suppose we have an input dimension volume of 32 x 32 x
200. We then add a 1 x 1 convolutional layer with a depth of 16. This reduces the
dimension volume from 200 to 16 channels. We can then apply the 5 x 5 convolu-
tional layer on the output, which has much less depth (figure 5.12).

Notice that the 32 x 32 x 200 input is processed through the two convolutional lay-
ers and outputs a volume of dimensions 32 x 32 x 32, which is the same as produced

Bottleneck layer

/

CONV 1 x 1 CONV 5 x5
16 filters 32 filters
32 x 32 x 200 32x32x16 32 x 32 x 32
| J | J
I I
Computational cost: Computational cost:

(32 x 32 x 16) x (1 x 1 x 200) = 3.2 million (32 x 32 x 32) x (5 x 5 x 16) = 13.1 million

Total computational cost:
16.3 million

Figure 5.12 Dimensionality reduction is used to reduce the computational
cost by reducing the depth of the layer.
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without applying the dimensionality reduction layer. But here, instead of processing
the 5 x 5 convolutional layer on the entire 200 channels of the input volume, we take
this huge volume and shrink its representation to a much smaller intermediate vol-
ume that has only 16 channels.

Now, let’s look at the computational cost involved in this operation and compare it
to the 163 million multiplications that we got before applying the reduce layer:

Computation
= operations in the 1 x 1 convolutional layer + operations in the 5 x 5 convolutional layer
= (32 x 32 x 200) multiplied by (1 x 1 x 16 + 32 x 32 x 16) multiplied by (5 x 5 x 32)

= 3.2 million + 13.1 million

The total number of multiplications in this operation is 16.3 million, which is a tenth
of the 163 million multiplications that we calculated without the reduce layers.

The 1 x 1 convolutional layer

The idea of the 1 x 1 convolutional layer is that it preserves the spatial dimensions
(height and width) of the input volume but changes the number of channels of the
volume (depth):

6 x 6 x 32 1 x 1 x #filters 6 x 6 x # filters
1 x 1 conv layers preserve the spatial dimensions but change the depth.
The 1 x 1 convolutional layers are also known as bottleneck layers because the bot-

tleneck is the smallest part of the bottle and reduce layers reduce the dimensionality
of the network, making it look like a bottleneck:

— — / Bottleneck layer

Input data ——| Output layer

1 x 1 convolutional layers are called bottleneck layers.
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IMPACT OF DIMENSIONALITY REDUCTION ON NETWORK PERFORMANCE
You might be wondering whether shrinking the representation size so dramatically hurts
the performance of the neural network. Szegedy et al. ran experiments and found that as
long as you implement the reduce layer in moderation, you can shrink the representa-
tion size significantly without hurting performance—and save a lot of computations.
Now, let’s put the reduce layers into action and build a new inception module with
dimensionality reduction. To do that, we will keep the same concept of concatenating the
four layers from the naive representation. We will add a 1 x 1 convolutional reduce
layer before the 3 x 3 and 5 x 5 convolutional layers to reduce their computational
cost. We will also add a 1 x 1 convolutional layer after the 3 x 3 max-pooling layer
because pooling layers don’t reduce the depth for their inputs. So, we will need to
apply the reduce layer to their output before we do the concatenation (figure 5.13).

Inception module with dimensionality reduction

Depth concatenation

‘ 3 x 3 convolutions ‘ 5 x 5 convolutions ‘ 1 x 1 convolutions

EE=m | T

‘ 1 x 1 convolutions ‘ 1 x 1 convolutions ‘ 3 x 3 max pooling ’

Previous layer

Figure 5.13 Building an inception module with dimensionality reduction

We add dimensionality reduction prior to bigger convolutional layers to allow for
increasing the number of units at each stage significantly without an uncontrolled
blowup in computational complexity at later stages. Furthermore, the design follows
the practical intuition that visual information should be processed at various scales
and then aggregated so that the next stage can abstract features from the different
scales simultaneously.

RECAP OF INCEPTION MODULES

To summarize, if you are building a layer of a neural network and you don’t want to
have to decide what filter size to use in the convolutional layers or when to add pool-
ing layers, the inception module lets you use them all and concatenate the depth of all
the outputs. This is called the naive representation of the inception module.
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We then run into the problem of computational cost that comes with using large
filters. Here, we use a 1 x 1 convolutional layer called the reduce layer that reduces
the computational cost significantly. We add reduce layers before the 3 x 3 and 5 x 5
convolutional layers and after the max-pooling layer to create an inception module
with dimensionality reduction.

5.5.4 Inception architecture
Now that we understand the components of the inception module, we are ready to
build the Inception network architecture. We use the dimension reduction represen-
tation of the inception module, stack inception modules on top of each other, and
add a 3 x 3 pooling layer in between for downsampling, as shown in figure 5.14.
We can stack as many inception modules as we want to build a very deep convolu-
tional network. In the original paper, the team built a specific incarnation of the
A
‘ DepthConcat ’
Inception
‘ CONV 1% 1+1(S) ’ ‘ CONV 3 x 3 + 1(S) ’ ‘ CONV 5 x 5 + 1(S) ’ ‘ CONV 1x1+1(S) ’ module
‘ CONV 1 x 1+ 1(S) ’ ‘ CONV 1 x 1+ 1(S) ’ ‘ MaxPool 3 x 3 + 1(S) ’
J
‘ MaxPool 3 x 3 + 2(S) I 3 x 3 pool layer
1 \
‘ DepthConcat ’
‘ CONV 1 x 1 +1(S) ’ ‘ CONV 3 x 3 + 1(S) ’ ‘ CONV 5 x 5 + 1(S) ’ ‘ CONV 1 x 1 +1(S) ’
Inception
module
‘ CONV 1 x 1+ 1(S) ’ ‘ CONV 1 x 1 +1(S) ’ ‘ MaxPool 3 x 3 + 1(S) ’
‘ DepthConcat ’
J

Figure 5.14 We build the Inception network by adding a stack of inception modules on top of each other.
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inception module and called it GoogLeNet. They used this network in their submission
for the ILSVRC 2014 competition. The GoogLeNet architecture is shown in figure 5.15.

Part C: The classifier

2x
Part B: Contains nine
5x | > inception blocks and
separated by 3 X 3
max pooling layers
2x

Part A: Identical to
AlexNet and LeNet;
contains a series of
convolutional and

max pooling layers Figure 5.15 The full GoogLeNet model

consists of three parts: the first part has the
classical CNN architecture like AlexNet and
LeNet, the second part is a stack of inceptions
modules and pooling layers, and the third part
is the traditional fully connected classifiers.

As you can see, Googl.eNet uses a stack of a total of nine inception modules and a max
pooling layer every several blocks to reduce dimensionality. To simplify this implementa-
tion, we are going to break down the GooglLeNet architecture into three parts:

Part A—Identical to the AlexNet and LeNet architectures; contains a series of
convolutional and pooling layers.

Part B—Contains nine inception modules stacked as follows: two inception
modules + pooling layer + five inception modules + pooling layer + five incep-
tion modules.

Part C—The classifier part of the network, consisting of the fully connected and
softmax layers.
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GooglLeNet in Keras

Now, let’s implement the GoogLeNet architecture in Keras (figure 5.16). Notice that
the inception module takes the features from the previous module as input, passes them
through four routes, concatenates the depth of the output of all four routes, and then
passes the concatenated output to the next module. The four routes are as follows:

1 x 1 convolutional layer
1 x 1 convolutional layer + 3 x 3 convolutional layer
1 x 1 convolutional layer + 5 x 5 convolutional layer

3 x 3 pooling layer + 1 x 1 convolutional layer

Inception module with dimensionality reduction

Depth concatenation

‘ 3 x 3 convolutions ’ ‘ 5 x 5 convolutions ‘ 1 x 1 convolutions
1 x 1 convolutions 1 1 ]
‘ 1 x 1 convolutions 1 x 1 convolutions ‘ 3 x 3 max pooling ’

Previous layer

Figure 5.16 The inception module of GooglLeNet

First we’ll build the inception module function. It takes the number of filters of each
convolutional layer as an argument and returns the concatenated output:

Creates the 1 X 1
convolutional
layer that takes
its input directly
from the
previous layer

def inception module(x, filters 1 x 1, filters 3x3 reduce, filters 3x3,
filters_5x5_ reduce,
filters_5x5, filters pool proj, name=None) :

conv_1x1l = Conv2D(filters_1x1, kernel size=(1, 1), padding='same',
activation='relu',
kernel initializer=kernel init, bias_initializer=bias init) (x)

# 3 x 3 route = 1 x 1 CONV + 3 x 3 CONV
pre conv 3x3 = Conv2D(filters 3x3 reduce, kernel size=(1, 1), padding='same',
activation='relu', kernel initializer=kernel init,
bias_initializer=bias init) (x)
conv_3x3 = Conv2D(filters 3x3, kernel size=(3, 3), padding='same',
activation='relu',
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kernel initializer=kernel init,
bias_initializer=bias init) (pre_conv 3x3)

# 5 x 5 route = 1 x 1 CONV + 5 x 5 CONV
pre_conv_5x5 = Conv2D(filters 5x5 reduce, kernel size=(1, 1), padding='same',
activation='relu', kernel initializer=kernel init,
bias initializer=bias init) (x)
conv_5x5 = Conv2D(filters 5x5, kernel size=(5, 5), padding='same',
activation='relu',
kernel initializer=kernel init,
bias initializer=bias_init) (pre_conv_5x5)

# pool route = POOL + 1 x 1 CONV
pool proj = MaxPool2D( (3, 3), strides=(1, 1), padding='same') (x)
pool proj = Conv2D(filters pool proj, (1, 1), padding='same', activation='relu',
kernel initializer=kernel init,
bias initializer=bias init) (pool proj)

output = concatenate([conv 1x1, conv 3x3, conv 5x5, pool projl], axis=3,

name=name)
Concatenates together the
depth of the three filters

return output

GOOGLENET ARCHITECTURE
Now that the inception module function is ready, let’s build the GoogLeNet architec-
ture from figure 5.16. To get the values of the inception module function’s argu-
ments, we will go through figure 5.17, which represents the hyperparameters set up as

type pat;rr} dsezd ogitgg t depth | #1x 1 f;ﬁ c?é #3x 3 fdﬁci #5x 5 g?gjl params | ops
convolution 7x 72 112 x 112 x 64 1 2.7K 34M
max pool 3x 32 56 x 56 x 64 0

convolution 3x3/1 56 x 56 x 192 2 2 2 2 2 2 112K 360M
max pool 3x 32 28 x 28 x 192 0

inception (3a) 28 x 28 x 256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28 x 28 x 480 2 128 128 192 32 96 64 | 380K | 304M
max pool 3x3/2 14 x 14 x 480 0

inception (4a 14 x 14 x 512 2 192 96 208 16 48 64 | 364K | 73M
inception (4b) 14 x 14 x 512 2 160 112 224 24 64 64 437K 88M
inception (4c) 14 x 14 x 512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14 x 14 x 528 2 112 144 288 32 64 64 580K 119M
inception (4€) 14 x 14 x 832 2 256 160 320 32 128 | 128 | 840K | 170M
max pool 3x 32 7x7x832 0

inception (5a) 7x7x832 2 256 160 320 32 128 128 | 1072K 54M
inception (5b) 7x7x 1024 2 384 192 384 48 128 128 | 1388K 7IM
avg pool 7x71 | 1x1x1024 | 0O

dropout (40%) 1x 1x 1024 0

linear 1x 1x 1000 1 1000K im
softmax 1x 1x 1000 0

Figure 5.17 Hyperparameters implemented by Szegedy et al. in the original Inception paper
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implemented by Szegedy et al. in the original paper. (Note that “#3 x 3 reduce” and
“#b x b reduce” in the figure represent the 1 x 1 filters in the reduction layers that are
used before the 3 x 3 and 5 x 5 convolutional layers.)

Now, let’s go through the implementations of parts A, B, and C.

PART A: BUILDING THE BOTTOM PART OF THE NETWORK

Let’s build the bottom part of the network. This part consists of a 7 x 7 convolutional
layer = 3 x 3 pooling layer = 1 x 1 convolutional layer = 3 x 3 convolutional layer =
3 x 3 pooling layer, as you can see in figure 5.18.

MaxPool 3 x 3 + 2(S)

T

LocalRespNorm

T

CONV 3 x 3 + 1(S)

T

CONV 1 x 1+ 1(V)

T

LocalRespNorm

T

MaxPool 3 x 3 + 2(S)

T

CONV 7 x 7 + 2(S)

Input
Figure 5.18 The bottom part of the network

In the LocalResponseNorm layer, similar to in AlexNet, local response normalization is
used to help speed up convergence. Nowadays, batch normalization is used instead.
Here is the Keras code for part A:

# input layer with size = 24 x 24 x 3
input layer = Input (shape=(224, 224, 3))

kernel init = keras.initializers.glorot uniform()
bias_init = keras.initializers.Constant (value=0.2)

x = Conv2D(64, (7, 7), padding='same', strides=(2, 2), activation='relu',
name='conv_1 7x7/2"',
kernel initializer=kernel init, bias_initializer=bias_init) (input_layer)

x = MaxPool2D( (3, 3), padding='same', strides=(2, 2), name='max pool 1 3x3/2'") (x)

x = BatchNormalization() (x)
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x = Conv2D(64, (1, 1), padding='same', strides=(1, 1), activation='relu') (x)
x = Conv2D (192, (3, 3), padding='same',6 strides=(1, 1), activation='relu') (x)

x = BatchNormalization () (x)

X = MaxPool2D( (3, 3), padding='same', strides=(2, 2)) (x)

PART B: BUILDING THE INCEPTION MODULES AND MAX-POOLING LAYERS
To build inception modules 3a and 3b and the first max-pooling layer, we use table 5.2
to start. The code is as follows:

Table 5.2 Inception modules 3a and 3b

#1x1 #3 x 3 reduce #3 x 3 #5 x 5 reduce #5x 5 Pool proj

Inception (3a) 64 96 128 16 32 32

Inception (3b) 128 128 192 32 96 64

x = inception module(x, filters 1x1=64, filters 3x3 reduce=96, filters 3x3=128,
filters 5x5 reduce=16, filters 5x5=32, filters pool proj=32,
name="'inception 3a')

x = inception module(x, filters 1x1=128, filters 3x3 reduce=128, filters 3x3=192,
filters 5x5 reduce=32, filters 5x5=96, filters pool proj=64,
name="'inception 3b')

X = MaxPool2D((3, 3), padding='same', strides=(2, 2)) (x)

Similarly, let’s create inception modules 4a, 4b, 4c, 4d, and 4e and the max pooling layer:

x = inception module(x, filters 1x1=192, filters 3x3 reduce=96, filters 3x3=208,
filters 5x5 reduce=16, filters 5x5=48, filters pool proj=64,
name="'inception 4a')

x = inception module(x, filters 1x1=160, filters 3x3_ reduce=112, filters 3x3=224,
filters 5x5 reduce=24, filters 5x5=64, filters pool proj=64,
name='inception 4b"')

x = inception module(x, filters 1x1=128, filters 3x3 reduce=128, filters 3x3=256,
filters 5x5 reduce=24, filters 5x5=64, filters pool proj=64,
name="'inception 4c')

X = inception module(x, filters 1x1=112, filters 3x3 reduce=144, filters 3x3=288,
filters 5x5 reduce=32, filters 5x5=64, filters pool proj=64,
name="'inception 4d'")

x = inception module(x, filters 1x1=256, filters 3x3 reduce=160, filters 3x3=320,
filters 5x5 reduce=32, filters 5x5=128, filters pool proj=128,

name='inception 4e')

x = MaxPool2D( (3, 3), padding='same', strides=(2, 2), name='max pool 4 3x3/2") (x)
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Now, let’s create modules ba and 5b:

X = inception module(x, filters 1x1=256, filters 3x3 reduce=160, filters 3x3=320,
filters_5x5_reduce=32, filters_5x5=128,
filters pool proj=128,
name="'inception 5a')

x = inception module(x, filters 1x1=384, filters 3x3 reduce=192, filters 3x3=384,
filters 5x5 reduce=48, filters 5x5=128,
filters_pool_ proj=128,
name="'inception Sb'")

PART C: BUILDING THE CLASSIFIER PART

In their experiments, Szegedy et al. found that adding an 7 x 7 average pooling layer
improved the top-1 accuracy by about 0.6%. They then added a dropout layer with
40% probability to reduce overfitting:

X = AveragePooling2D (pool_size=(7,7), strides=1, padding='valid') (x)

X Dropout (0.4) (x)
Dense (10, activation='softmax', name='output') (x)

X

Learning hyperparameters

The team used a SGD gradient descent optimizer with 0.9 momentum. They also
implemented a fixed learning rate decay schedule of 4% every 8 epochs. An example
of how to implement the training specifications similar to the paper is as follows:

epochs = 25 Implements the learning
initial lrate = 0.01 rate decay function

def decay (epoch, steps=100):
initial_ lrate = 0.01
drop = 0.96
epochs_drop = 8
lrate = initial lrate * math.pow(drop, math.floor ((l+epoch)/epochs drop))
return lrate

lr schedule = LearningRateScheduler (decay, verbose=1)
sgd = SGD(lr=initial lrate, momentum=0.9, nesterov=False)

model.compile (loss="'categorical crossentropy', optimizer=sgd,
metrics=['accuracy'])

model.fit (X train, y train, batch size=256, epochs=epochs,
validation data=(X_test, y test), callbacks=[lr_schedule], verbose=2,
shuffle=True)

Inception performance on the CIFAR dataset

GooglLeNet was the winner of the ILSVRC 2014 competition. It achieved a top-b error
rate of 6.67%, which was very close to human-level performance and much better
than previous CNNs like AlexNet and VGGNet.
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5.6 ResNet

The Residual Neural Network (ResNet) was developed in 2015 by a group from the
Microsoft Research team.” They introduced a novel residual module architecture with
skip connections. The network also features heavy batch normalization for the hidden
layers. This technique allowed the team to train very deep neural networks with 50,
101, and 152 weight layers while still having lower complexity than smaller networks
like VGGNet (19 layers). ResNet was able to achieve a top-5 error rate of 3.57% in the
ILSVRC 2015 competition, which beat the performance of all prior ConvNets.

5.6.1 Novel features of ResNet

Looking at how neural network architectures evolved from LeNet, AlexNet, VGGNet,
and Inception, you might have noticed that the deeper the network, the larger its
learning capacity, and the better it extracts features from images. This mainly happens
because very deep networks are able to represent very complex functions, which
allows the network to learn features at many different levels of abstraction, from edges
(at the lower layers) to very complex features (at the deeper layers).

Earlier in this chapter, we saw deep neural networks like VGGNet-19 (19 layers) and
GooglLeNet (22 layers). Both performed very well in the ImageNet challenge. But can
we build even deeper networks? We learned from chapter 4 that one downside of add-
ing too many layers is that doing so makes the network more prone to overfit the train-
ing data. This is not a major problem because we can use regularization techniques like
dropout, L2 regularization, and batch normalization to avoid overfitting. So, if we can
take care of the overfitting problem, wouldn’t we want to build networks that are 50,
100, or even 150 layers deep? The answer is yes. We definitely should try to build very
deep neural networks. We need to fix just one other problem, to unblock the capability
of building super-deep networks: a phenomenon called vanishing gradients.

Vanishing and exploding gradients

The problem with very deep networks is that the signal required to change the weights
becomes very small at earlier layers. To understand why, let’s consider the gradient
descent process explained in chapter 2. As the network backpropagates the gradient
of the error from the final layer back to the first layer, it is multiplied by the weight
matrix at each step; thus the gradient can decrease exponentially quickly to zero,
leading to a vanishing gradient phenomenon that prevents the earlier layers from
learning. As a result, the network’s performance gets saturated or even starts to
degrade rapidly.

In other cases, the gradient grows exponentially quickly and “explodes” to take very
large values. This phenomenon is called exploding gradients.

® Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep Residual Learning for Image Recognition,”
2015, http://arxiv.org/abs/1512.03385.
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To solve the vanishing gradient problem, He et al. created a shortcut that allows the
gradient to be directly backpropagated to earlier layers. These shortcuts are called skip
connections: they are used to flow information from earlier layers in the network to
later layers, creating an alternate shortcut path for the gradient to flow through.
Another important benefit of the skip connections is that they allow the model to
learn an identity function, which ensures that the layer will perform at least as well as
the previous layer (figure 5.19).

Without skip With skip
connection connection

O
E

Figure 5.19 Traditional network without skip connections (left);
network with a skip connection (right).

O
[OC

At left in figure 5.19 is the traditional stacking of convolutional layers one after the
other. On the right, we still stack convolutional layers as before, but we also add the orig-
inal input to the output of the convolutional block. This is a skip connection. We then
add both signals: skip connection + main path.

Note that the shortcut arrow points to the end of the second convolutional layer—
not after it. The reason is that we add both paths before we apply the ReLU activation
function of this layer. As you can see in figure 5.20, the X signal is passed along the
shortcut path and then added to the main path, f(x). Then, we apply the ReLU activa-
tion to f(x) + x to produce the output signal: relu( f(x) + x).

Shortcut path = x

/ Add both paths = f(x) +x

X——[ CONV I Relu ]—»[ CONV ]—»@—» relu(f(x) + x)

Main path = f(x)

Figure 5.20 Adding the paths and applying the ReLU activation function to solve the
vanishing gradient problem that usually comes with very deep networks
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The code implementation of the skip connection is straightforward:

Stores the value of the shortcut

X shortcut = X .
- to be equal to the input x

Performs the

main path
X = Conv2D(filters = F1, kernel _size = (3, 3), strides = (1,1)) (X) operations:
X = Activation('relu') (X) CONV + RelLU
X = Conv2D(filters = F1, kernel size = (3, 3), strides = (1,1)) (X) + CONV
X = Add() ([, X_shortcut]) <] Adds both paths together
X = Activation('relu') (X)

: Applies the ReLU activation function

This combination of the skip connection and convolutional layers is called a residual
block. Similar to the Inception network, ResNet is composed of a series of these resid-
ual block building blocks that are stacked on top of each other (figure 5.21).

Classical CNN architecture Inception modules Residual blocks

POOL

Residual block

Softmax

(¢}
m

iR

POOL Inception modules

CONV POOL

Inception modules Residual block
Residual block

CONV

POOL POOL

CONV CONV

Ce>

B

Figure 5.21 Classical CNN architecture (left). The Inception network consists of a set
of inception modules (middle). The residual network consists of a set of residual blocks
(right).

From the figure, you can observe the following:

Feature extractors—To build the feature extractor part of ResNet, we start with a
convolutional layer and a pooling layer and then stack residual blocks on top of
each other to build the network. When we are designing our ResNet network,
we can add as many residual blocks as we want to build even deeper networks.
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Classifiers—The classification part is still the same as we learned for other net-
works: fully connected layers followed by a softmax.

Now that you know what a skip connection is and you are familiar with the high-level
architecture of ResNet, let’s unpack residual blocks to understand how they work.

5.6.2 Residual blocks

A residual module consists of two branches:

Shorteut path (figure 5.22)—Connects the input to an addition of the second
branch.

Main path—A series of convolutions and activations. The main path consists of
three convolutional layers with ReLLU activations. We also add batch normaliza-
tion to each convolutional layer to reduce overfitting and speed up training.
The main path architecture looks like this: [CONV = BN = ReLU] x 3.

Residual blocks

Shortcut path = x

Add both

/ paths
Batch
- -

—>‘ CONV2D

Ba“’h‘ ReLu HCONV2D

norm norm

Bat‘:h’ ReLu }—‘ CONV2D

Main path f(x)

Figure 5.22 The output of the main path is added to the input value through the shortcut before they are fed to
the ReLU function.

Similar to what we explained earlier, the shortcut path is added to the main path right
before the activation function of the last convolutional layer. Then we apply the ReLLU
function after adding the two paths.

Notice that there are no pooling layers in the residual block. Instead, He et al.
decided to do dimension downsampling using bottleneck 1 x 1 convolutional layers,
similar to the Inception network. So, each residual block starts with a 1 x 1 convolu-
tional layer to downsample the input dimension volume, and a 3 x 3 convolutional
layer and another 1 x 1 convolutional layer to downsample the output. This is a good
technique to keep control of the volume dimensions across many layers. This configu-
ration is called a bottleneck residual block.

When we are stacking residual blocks on top of each other, the volume dimensions
change from one block to another. And as you might recall from the matrices intro-
duction in chapter 2, to be able to perform matrix addition operations, the matrices
should have similar dimensions. To fix this problem, we need to downsample the
shortcut path as well, before merging both paths. We do that by adding a bottleneck
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layer (1 x 1 convolutional layer + batch normalization) to the shortcut path, as shown
in figure 5.23. This is called the reduce shortcut.

Bottleneck residual block with reduce shortcut

Shortcut path = x + 1 x 1 conv + BN

Add both
paths

1x1 conv 3 % 3 conv 1x1 conv /
Batch | oLy }—‘ CONvzp | Bateh | gg }—‘ Convzp | Bateh }—-@—»

norm norm
Main path f(x)

X
CONV2D

Figure 5.23 To reduce the input dimensionality, we add a bottleneck layer (1 x 1 convolutional layer + batch
normalization) to the shortcut path. This is called the reduce shortcut.

Before we jump into the code implementation, let’s recap the discussion of residual
blocks:

Residual blocks contain two paths: the shortcut path and the main path.

The main path consists of three convolutional layers, and we add a batch nor-

malization layer to them:

— 1 x 1 convolutional layer

— 3 x 3 convolutional layer

— 1 x 1 convolutional layer

There are two ways to implement the shortcut path:

— Regular shortcut—Add the input dimensions to the main path.

— Reduce shortcut—Add a convolutional layer in the shortcut path before merg-
ing with the main path.

When we are implementing the ResNet network, we will use both regular and reduce
shortcuts. This will be clearer when you see the full implementation. But for now, we
will implement bottleneck residual_block function that takes a reduce Boolean
argument. When reduce is True, this means we want to use the reduce shortcut; other-
wise, it will implement the regular shortcut. The bottleneck_residual_block func-
tion takes the following arguments:

X—Input tensor of shape (number of samples, height, width, channel)
f—Integer specifying the shape of the middle convolutional layer’s window for
the main path

filters—Python list of integers defining the number of filters in the convolu-
tional layers of the main path
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= reduce—Boolean: True identifies the reduction layer
= s—Integer (strides)

The function returns X: the output of the residual block, which is a tensor of shape
(height, width, channel).
The function is as follows:

def bottleneck residual block (X, kernel size, filters, reduce=False, s=2):

F1l, F2, F3 = filters .
Unpacks the tuple to retrieve the
filters of each convolutional layer

Condition X shortcut = X
if reduce Saves the input value to use it later
is True if reduce: to add back to the main path
X_shortcut = Conv2D(filters = F3, kernel size = (1, 1), strides =
To reduce the { (s, 8)) (X_shortcut)
spatial size, X_shortcut = BatchNormalization(axis = 3) (X_shortcut)
appliesal x 1
convolutional X = Conv2D(filters = F1, kernel size = (1, 1), strides = (s,s), padding =
layer to the 'valid') (X)
shortcut path. X = BatchNormalization(axis = 3) (X) If reduce, sets the strides of the
To do that, we X = Activation('relu') (X) first convolutional layer to be
need both similar to the shortcut strides.
convolutional | else:
layers to have # First component of main path
similar strides. X = Conv2D(filters = F1, kernel size = (1, 1), strides = (1,1), padding =

'valid') (X)
X = BatchNormalization (axis = 3) (X)
X = Activation('relu') (X)

# Second component of main path

X = Conv2D(filters = F2, kernel size = kernel size, strides = (1,1), padding =
'same') (X)

X = BatchNormalization(axis = 3) (X)

X = Activation('relu') (X)

# Third component of main path

X = Conv2D(filters = F3, kernel size = (1, 1), strides = (1,1), padding =
'valid') (X)

X = BatchNormalization(axis = 3) (X)

# Final step Adds the shortcut value to
X = Add() ([X, X _shortcutl) main path and passes it

X = Activation('relu’) (X) through a ReLU activation
return X

5.6.3 ResNet implementation in Keras

You’ve learned a lot about residual blocks so far. Let’s add these blocks on top of each
other to build the full ResNet architecture. Here, we will implement ResNet50: a ver-
sion of the ResNet architecture that contains 50 weight layers (hence the name). You
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can use the same approach to develop ResNet with 18, 34, 101, and 152 layers by fol-
lowing the architecture in figure 5.24 from the original paper.

Layer name [Output size 18-layer | 34-layer | 50-layer | 101l-layer 152-layer
convl 112x112 7x7, 64, stride 2
3x3, maxpool, stride 2
conv2_x 56x56 -3X3, 6a -3x3’ 6a b 1x1, 64 1x1, 64 1x1, 64
x2 x3 3x3, 64 x3 3x3, 64 X3 3x3, 64 x3
3x3, 64 3x3, 64
- - - 1x1, 256 1x1, 256 1x1, 256
r - r - [1x1, 128 | [1x1, 128 | [1x1, 128 |
3x3, 128 3x3, 128
conv3_x 28x28 x2 x4 3x3, 128 | %3 3x3, 128 | x4 3x3, 128 x8
3x3, 128 3x3, 128
L A L A 1x1, 512 1x1, 512 1x1, 512
- - - - [1x1, 256 ] [1x1, 256 ] [1x1, 256 ]
3x3, 256 3x3, 256
conv4d x 14x14 x2 x6 3x3, 256 |X3 3x3, 256 |x23||3x3, 256 x36
- 3x3, 256 3x3, 256
L E L E 1x1, 1024 1x1, 1024 1x1, 1024
- - - - [1x1, 512 ] [1x1, 512 ] [1x1, 512
3x3, 512 3x3, 512
conv5_x 7x7 x2 x3 3x3, 512 X3 3x3, 512 | X3 3x3, 512 x3
3x3, 512 3x3, 512
L J L J 1x1, 2048 1x1, 2048 1x1, 2048
1x1 Average pool, 1000-d fc, softmax
FLOPs 1.8x10° 3.6x10° 3.8x10° 7.6%x10° 11.3x10°

Figure 5.24 Architecture of several ResNet variations from the original paper

We know from the previous section that each residual module contains 3 x 3 convolu-
tional layers, and we now can compute the total number of weight layers inside the
ResNeth0 network as follows:

Stage 1: 7 x 7 convolutional layer

Stage 2: 3 residual blocks, each containing [1 x 1 convolutional layer + 3 x 3
convolutional layer + 1 x 1 convolutional layer] = 9 convolutional layers

Stage 3: 4 residual blocks = total of 12 convolutional layers

Stage 4: 6 residual blocks = total of 18 convolutional layers

Stage 5: 3 residual blocks = total of 9 convolutional layers

Fully connected softmax layer

When we sum all these layers together, we get a total of 50 weight layers that describe
the architecture of ResNet50. Similarly, you can compute the number of weight layers
in the other ResNet versions.

NOTE In the following implementation, we use the residual block with reduce
shortcut at the beginning of each stage to reduce the spatial size of the output
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from the previous layer. Then we use the regular shortcut for the remaining
layers of that stage. Recall from our implementation of the bottleneck
residual block function that we will set the argument reduce to True to
apply the reduce shortcut.

Now let’s follow the 50-layer architecture from figure 5.24 to build the ResNetb0 net-
work. We build a ResNetb0 function that takes input shape and classes as argu-
ments and outputs the model:

def ResNet50 (input_ shape, classes):

X_input = Input (input_ shape) Defines the input as a tensor

with shape input_shape

# Stage 1

X = Conv2D (64, (7, 7), strides=(2, 2), name='convl') (X_input)

X = BatchNormalization(axis=3, name='bn convl') (X)

X = Activation('relu') (X)

X = MaxPooling2D( (3, 3), strides=(2, 2)) (X)

# Stage 2

X = bottleneck residual block (X, 3, [64, 64, 256], reduce=True, s=1)

X = bottleneck residual block (X, 3, [64, 64, 256])

X = bottleneck residual block (X, 3, [64, 64, 256])

# Stage 3

X = bottleneck residual block (X, 3, [128, 128, 512], reduce=True, s=2)
X = bottleneck residual block (X, 3, [128, 128, 512])

X = bottleneck residual block(X, 3, [128, 128, 512])

X = bottleneck residual block (X, 3, [128, 128, 512])

# Stage 4

X = bottleneck residual block(X, 3, [256, 256, 1024], reduce=True, s=2)
X = bottleneck residual block (X, 3, [256, 256, 1024])

X = bottleneck residual block (X, 3, [256, 256, 1024])

X = bottleneck residual block (X, 3, [256, 256, 1024])

X = bottleneck residual block (X, 3, [256, 256, 1024])

X = bottleneck residual block (X, 3, [256, 256, 1024])

# Stage 5

X = bottleneck residual block (X, 3, [512, 512, 2048], reduce=True, s=2)
X = bottleneck residual block (X, 3, [512, 512, 2048])

X = bottleneck residual block(X, 3, [512, 512, 2048])

# AVGPOOL

X = AveragePooling2D((1,1)) (X)
# output layer

X = Flatten() (X)
X = Dense(classes, activation='softmax', name='fc' + str(classes)) (X)

model = Model (inputs = X input, outputs = X, name='ResNet50'")
Creates the model

return model
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Learning hyperparameters

He et al. followed a training procedure similar to that of AlexNet: the training is car-
ried out using mini-batch GD with momentum of 0.9. The team set the learning rate
to start with a value of 0.1 and then decreased it by a factor of 10 when the validation
error stopped improving. They also used L2 regularization with a weight decay of
0.0001 (not implemented in this chapter for simplicity). As you saw in the earlier
implementation, they used batch normalization right after each convolutional and
before activation to speed up training:

from keras.callbacks import ReduceLROnPlateau
min_lr is the lower bound on

epochs = 200 Sets the training the learning rate, and factor is

batch_size = 256 parameters the factor by which the learning
- rate will be reduced.

reduce_lr= ReduceLROnPlateau(monitor='val loss',factor=np.sqrt(0.1),
patience=5, min 1lr=0.5e-6)

model.compile (loss="'categorical crossentropy', optimizer=SGD,
metrics=["'accuracy'])

model.fit (X train, Y train, batch size=batch size, validation data=(X_ test,
Y test),

epochs=epochs, callbacks=[reduce 1r]) Trﬁnsthelnodelcamngthe
i

reduce_Ir value using callbacks
in the training method

ResNet performance on the CIFAR dataset

Similar to the other networks explained in this chapter, the performance of ResNet
models is benchmarked based on their results in the ILSVRC competition. ResNet-152
won first place in the 2015 classification competition with a top-5 error rate of 4.49%
with a single model and 3.57% using an ensemble of models. This was much better
than all the other networks, such as GoogLeNet (Inception), which achieved a top-5
error rate of 6.67%. ResNet also won first place in many object detection and image
localization challenges, as we will see in chapter 7. More importantly, the residual
blocks concept in ResNet opened the door to new possibilities for efficiently training
super-deep neural networks with hundreds of layers.

Using open source implementations

Now that you have learned some of the most popular CNN architectures, | want to
share some practical advice on how to use them. It turns out that a lot of these neural
networks are difficult or finicky to replicate due to details of tuning hyperparameters
such as learning decay and other things that make a difference for performance. DL
researchers can even have a hard time replicating someone else’s polished work
based on reading their paper.
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Fortunately, many DL researchers routinely open source their work on the internet.
A simple search for the network implementation on GitHub will point you toward
implementations in several DL libraries that you can clone and train. If you can locate
the author’s implementation, you can usually get going much faster than by trying to
re-implement a network from scratch—although sometimes, re-implementing from
scratch can be a good exercise, like what we did earlier.

Summary

Classical CNN architectures have the same classical architecture of stacking
convolutional and pooling layers on top of each other with different configura-
tions for their layers.

LeNet consists of five weight layers: three convolutional and two fully connected
layers, with a pooling layer after the first and second convolutional layers.
AlexNet is deeper than LeNet and contains eight weight layers: five convolu-
tional and three fully connected layers.

VGGNet solved the problem of setting up the hyperparameters of the convolu-
tional and pooling layers by creating a uniform configuration for them to be
used across the entire network.

Inception tried to solve the same problem as VGGNet: instead of having to
decide which filter size to use and where to add the pooling layer, Inception
says, “Let’s use them all.”

ResNet followed the same approach as Inception and created residual blocks
that, when stacked on top of each other, form the network architecture. ResNet
attempted to solve the vanishing gradient problem that made learning plateau
or degrade when training very deep neural networks. The ResNet team intro-
duced skip connections that allow information to flow from earlier layers in the
network to later layers, creating an alternate shortcut path for the gradient to
flow through. The fundamental breakthrough with ResNet was that it allowed
us to train extremely deep neural networks with hundreds of layers.
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This chapter covers

Understanding the transfer learning technique
Using a pretrained network to solve your problem
Understanding network fine-tuning

Exploring open source image datasets for training
a model

Building two end-to-end transfer learning projects

Transfer learning is one of the most important techniques of deep learning. When
building a vision system to solve a specific problem, you usually need to collect and
label a huge amount of data to train your network. You can build convnets, as you
learned in chapter 3, and start the training from scratch; that is an acceptable
approach. But what if you could download an existing neural network that some-
one else has tuned and trained, and use it as a starting point for your new task?
Transfer learning allows you to do just that. You can download an open source
model that someone else has already trained and tuned and use their optimized
parameters (weights) as a starting point to train your model on a smaller dataset
for a given task. This way, you can train your network a lot faster and achieve
higher results.

240
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DL researchers and practitioners have posted many research papers and open
source projects of trained algorithms that they have worked on for weeks and months
and trained on GPUs to get state-of-the-art results on an array of problems. Often,
the fact that someone else has done this work and gone through the painful high-
performance research process means you can download an open source architecture
and weights and use them as a good start for your own neural network. This is transfer
learning: the transfer of knowledge from a pretrained network in one domain to your
own problem in a different domain.

In this chapter, I will explain transfer learning and outline reasons why using it is
important. I will also detail different transfer learning scenarios and how to use them.
Finally, we will see examples of using transfer learning to solve real-world problems.
Ready? Let’s get started!

What problems does transfer learning solve?

As the name implies, transfer learning means transferring what a neural network has
learned from being trained on a specific dataset to another related problem (figure 6.1).
Transfer learning is currently very popular in the field of DL because it enables you to
train deep neural networks with comparatively little data in a short training time. The
importance of transfer learning comes from the fact that in most real-world problems,
we typically do not have millions of labeled images to train such complex models.

Knowledge
(extracted features)

Figure 6.1 Transfer learning is the transfer of
the knowledge that the network has acquired
from one task to a new task. In the context of
neural networks, the acquired knowledge is the
extracted features.

The idea is pretty straightforward. First we train a deep neural network on a very large
amount of data. During the training process, the network extracts a large number of
useful features that can be used to detect objects in this dataset. We then transfer
these extracted features (feature maps) to a new network and train this new network on
our new dataset to solve a different problem. Transfer learning is a great way to short-
cut the process of collecting and training huge amounts of data simply by reusing the
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model weights from pretrained models that were developed for standard CV bench-
mark datasets, such as the ImageNet image-recognition tasks. Top-performing models
can be downloaded and used directly, or integrated into a new model for your own
CV problems.

The question is, why would we want to use transfer learning? Why don’t we just
train a neural network directly on our new dataset to solve our problem? To answer
this question, we first need to know the main problems that transfer learning solves.
We’ll discuss those now; then I’ll go into the details of how transfer learning works
and the different approaches to apply it.

Deep neural networks are immensely data-hungry and rely on huge amounts of
labeled data to achieve high performance. In practice, very few people train an
entire convolutional network from scratch. This is due to two main problems:

Data problem—Training a network from scratch requires a lot of data in
order to get decent results, which is not feasible in most cases. It is relatively
rare to have a dataset of sufficient size to solve your problem. It is also very
expensive to acquire and label data: this is mostly a manual process done by
humans capturing images and labeling them one by one, which makes it a
nontrivial task.

Computation problem—LEven if you are able to acquire hundreds of thousands
of images for your problem, it is computationally very expensive to train a
deep neural network on millions of images because doing so usually requires
weeks of training on multiple GPUs. Also keep in mind that training a neural
network is an iterative process. So, even if you happen to have the computing
power required to train a complex neural network, spending weeks experi-
menting with different hyperparameters in each training iteration until you
finally reach satisfactory results will make the project very costly.

Additionally, an important benefit of using transfer learning is that it helps the model
generalize its learnings and avoid overfitting. When you apply a DL. model in the wild,
it is faced with countless conditions it may never have seen before and does not know
how to deal with; each client has its own preferences and generates data that is differ-
ent from the data used for training. The model is asked to perform well on many tasks
that are related to but not exactly similar to the task it was trained for.

For example, when you deploy a car classifier model to production, people usu-
ally have different camera types, each with its own image quality and resolution.
Also, images can be taken during different weather conditions. These image nuances
vary from one user to another. To train the model on all these different cases, you
either have to account for every case and acquire a lot of images to train the net-
work on, or try to build a more robust model that is better at generalizing to new use
cases. This is what transfer learning does. Since it is not realistic to account for all
the cases the model may face in the wild, transfer learning can help us deal with
novel scenarios. It is necessary for production-scale use of DL that goes beyond tasks
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and domains where labeled data is plentiful. Transferring features extracted from
another network that has seen millions of images will make our model less prone to
overfit and help it generalize better when faced with novel scenarios. You will be
able to fully grasp this concept when we explain how transfer learning works in the
following sections.

What is transfer learning?

Armed with the understanding of the problems that transfer learning solves, let’s look
at its formal definition. Transfer learning is the transfer of the knowledge (feature
maps) that the network has acquired from one task, where we have a large amount of
data, to a new task where data is not abundantly available. It is generally used where a
neural network model is first trained on a problem similar to the problem that is
being solved. One or more layers from the trained model are then used in a new
model trained on the problem of interest.

As we discussed earlier, to train an image classifier that will achieve image
classification accuracy near to or above the human level, we’ll need massive amounts
of data, large compute power, and lots of time on our hands. I'm sure most of us
don’t have all these things. Knowing that this would be a problem for people with
little-to-no resources, researchers built state-of-the-art models that were trained on
large image datasets like ImageNet, MS COCO, Open Images, and so on, and then
shared their models with the general public for reuse. This means you should never
have to train an image classifier from scratch again, unless you have an exception-
ally large dataset and a very large computation budget to train everything from
scratch by yourself. Even if that is the case, you might be better off using transfer
learning to fine-tune the pretrained network on your large dataset. Later in this
chapter, we will discuss the different transfer learning approaches, and you will
understand what fine-tuning means and why it is better to use transfer learning even
when you have a large dataset. We will also talk briefly about some of the popular
datasets mentioned here.

NOTE When we talk about training a model from scratch, we mean that the
model starts with zero knowledge of the world, and the model’s structure and
parameters begin as random guesses. Practically speaking, this means the
weights of the model are randomly initialized, and they need to go through a
training process to be optimized.

The intuition behind transfer learning is that if a model is trained on a large and gen-
eral enough dataset, this model will effectively serve as a generic representation of the
visual world. We can then use the feature maps it has learned, without having to train
on a large dataset, by transferring what it learned to our model and using that as a
base starting model for our own task.
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In transfer learning, we first train a base network on a base dataset and task, and
then we repurpose the learned features, or transfer them to a second target network to
be trained on a target dataset and task. This process will tend to work if the features
are general, meaning suitable to both base and target tasks, instead of specific to the
base task.

—TJason Yosinski et al.!

Let’s jump directly to an example to get a better intuition for how to use transfer
learning. Suppose we want to train a model that classifies dog and cat images, and we
have only two classes in our problem: dog and cat. We need to collect hundreds of
thousands of images for each class, label them, and train our network from scratch.
Another option is to use transfer knowledge from another pretrained network.

First, we need to find a dataset that has similar features to our problem at
hand. This involves spending some time exploring different open source datasets
to find the one closest to our problem. For the sake of this example, let’s use
ImageNet, since we are already familiar with it from the previous chapter and it
has a lot of dog and cat images. So the pretrained network is familiar with dog and
cat features and will require minimum training. (Later in this chapter, we will explore
other datasets.) Next, we need to choose a network that has been trained on Image-
Net and achieved good results. In chapter 5, we learned about state-of-the-art
architectures like VGGNet, GoogLeNet, and ResNet. Any of them would work fine.
For this example, we will go with a VGG16 network that has been trained on Image-
Net datasets.

To adapt the VGGI16 network to our problem, we are going to download it with
the pretrained weights, remove the classifier part, add our own classifier, and then
retrain the new network (figure 6.2). This is called using a pretrained network as a fea-
ture extractor. We will discuss the different types of transfer learning later in this
chapter.

DEFINITION A pretrained model is a network that has been previously trained on
a large dataset, typically on a large-scale image classification task. We can
either use the pretrained model directly as is to run our predictions, or use
the pretrained feature extraction part of the network and add our own classi-
fier. The classifier here could be one or more dense layers or even traditional
ML algorithms like support vector machines (SVMs).

! Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson, “How Transferable Are Features in Deep Neural
Networks?” Advances in Neural Information Processing Systems 27 (Dec. 2014): 3320-3328, https://arxiv.org/
abs/1411.1792.
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To fully understand how to use transfer learning, let’s implement this example in
Keras. (Luckily, Keras has a set of pretrained networks that are ready for us to down-
load and use: the complete list of models is at https://keras.io/api/applications.)
Here are the steps:
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Download the open source code of the VGG16 network and its weights to cre-
ate our base model, and remove the classification layers from the VGG network

(FC_4096Z>FC_40962>SOftmax_1000ﬁ
Imports the VGG16
model from Keras
base model = VGG16 (weights = "imagenet", include top=False,

input_shape = (224,224, 3)) <
base model.summary ()

from keras.applications.vgglé import VGG1é

Downloads the model’s pretrained weights and saves them in the variable base_model.
We specify that Keras should download the ImageNet weights. include_top is false to
ignore the fully connected classifier part on top of the model.

When you print a summary of the base model, you will notice that we down-
loaded the exact VGGI16 architecture that we implemented in chapter 5. This is
a fast approach to download popular networks that are supported by the DL
library you are using. Alternatively, you can build the network yourself, as we
did in chapter 5, and download the weights separately. I'll show you how in the
project at the end of this chapter. But for now, let’s look at the base_model sum-
mary that we just downloaded:

Layer (type) Output Shape Param #
input_1 (Inputlayer)  (Nome, 224, 224, 3) o0
blockl convl (Conv2D) (None, 224, 224, 64) 1792
blockl conv2 (Conv2D) (None, 224, 224, 64) 36928
blockl pool (MaxPooling2D) (None, 112, 112, 64) 0
block2 convl (Conv2D) (None, 112, 112, 128) 73856
block2 conv2 (Conv2D) (None, 112, 112, 128) 147584
block2 pool (MaxPooling2D) (None, 56, 56, 128) 0
block3_convl (Conv2D) (None, 56, 56, 256) 295168
block3 conv2 (Conv2D) (None, 56, 56, 256) 590080
block3_conv3 (Conv2D) (None, 56, 56, 256) 590080
block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
block4 convl (Conv2D) (None, 28, 28, 512) 1180160
block4 conv2 (Conv2D) (None, 28, 28, 512) 2359808

block4 conv3 (Conv2D) (None, 28, 28, 512) 2359808
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block4 pool (MaxPooling2D) (None, 14, 14, 512) 0
block5 convl (Conv2D) (None, 14, 14, 512) 2359808
block5 conv2 (Conv2D) (None, 14, 14, 512) 2359808
block5 conv3 (Conv2D) (None, 14, 14, 512) 2359808
block5 pool (MaxPooling2D) (None, 7, 7, 512) 0

Total params: 14,714,688
Trainable params: 14,714,688
Non-trainable params: 0

Notice that this downloaded architecture does not contain the classifier part
(three fully connected layers) at the top of the network because we set the
include_top argument to False. More importantly, notice the number of train-
able and non-trainable parameters in the summary. The downloaded network
as it is makes all the network parameters trainable. As you can see, our base
model has more than 14 million trainable parameters. Next, we want to freeze
all the downloaded layers and add our own classifier.

Freeze the feature extraction layers that have been trained on the ImageNet
dataset. Freezing layers means freezing their trained weights to prevent them
from being retrained when we run our training:

for layer in base model.layers: Iterates through Iayers

and locks them to make them
non-trainable with this code

layer.trainable = False

base _model.summary ()

The model summary is omitted in this case for brevity, as it is similar to the pre-
vious one. The difference is that all the weights have been frozen, the trainable
parameters are now equal to zero, and all the parameters of the frozen layers
are non-trainable:

Total params: 14,714,688
Trainable params: 0
Non-trainable params: 14,714,688

Add our own classification dense layer. Here, we will add a softmax layer with
two units because we have only two classes in our problem (see figure 6.3):

Imports Keras modules

from keras.layers import Dense, Flatten

from keras.models import Model Uses the get_layer
method to save the last
last layer = base model.get layer ('block5 pool') layer of the network

last_output = last_layer.output Saves the output of the last layer

to be the input of the next layer
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x = Flatten() (last_output)

x = Dense (2, activation='softmax',6 name='softmax') (x)

Flattens the classifier input, which is the Adds our new softmax layer
output of the last layer of the VGG16 model with two hidden units
l Pool/2

N

Remove the
classifier.

[ /Softmax 1000\
+
Add a softmax layer the network, and add a softmax layer with

with 2 units. two hidden nodes.

Figure 6.3 Remove the classifier part of

Build a new_model that takes the input of the base model as its input and the
output of the last softmax layer as an output. The new model is composed of all
the feature extraction layers in VGGNet with the pretrained weights, plus our
new, untrained, softmax layer. In other words, when we train the model, we are
only going to train the softmax layer in this example to detect the specific fea-
tures of our new problem (German Shepherd, Beagle, Neither):

Instantiates a new_model using
Keras’s Model class
new_model = Model (inputs=base model.input, outputs=x)

new_model . summary () Prints the new_model summary

Layer (type) Output Shape Param #
input_1 (Tnputlayer)  (Nome, 224, 224, 3) 0
blockl convl (Conv2D) (None, 224, 224, 64) 1792
blockl conv2 (Conv2D) (None, 224, 224, 64) 36928
blockl pool (MaxPooling2D) (None, 112, 112, 64) 0
block2 convl (Conv2D) (None, 112, 112, 128) 73856
block2 conv2 (Conv2D) (None, 112, 112, 128) 147584

block2 pool (MaxPooling2D) (None, 56, 56, 128) 0
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block3 convl (Conv2D) (None, 56, 56, 256) 295168
block3 conv2 (Conv2D) (None, 56, 56, 256) 590080
block3 conv3 (Conv2D) (None, 56, 56, 256) 590080
block3 pool (MaxPooling2D) (None, 28, 28, 256) 0
block4 convl (Conv2D) (None, 28, 28, 512) 1180160
block4 conv2 (Conv2D) (None, 28, 28, 512) 2359808
block4 conv3 (Conv2D) (None, 28, 28, 512) 2359808
block4 pool (MaxPooling2D) (None, 14, 14, 512) 0
block5 convl (Conv2D) (None, 14, 14, 512) 2359808
block5 conv2 (Conv2D) (None, 14, 14, 512) 2359808
block5 conv3 (Conv2D) (None, 14, 14, 512) 2359808
block5 pool (MaxPooling2D) (None, 7, 7, 512) 0
flatten layer (Flatten) (None, 25088) 0
softmax (Dense) (None, 2) 50178

Total params: 14,789,955
Trainable params: 50,178
Non-trainable params: 14,714,688

Training the new model is a lot faster than training the network from scratch. To ver-
ify that, look at the number of trainable params in this model (~50,000) compared
to the number of non-trainable params in the network (~14 million). These “non-
trainable” parameters are already trained on a large dataset, and we froze them to
use the extracted features in our problem. With this new model, we don’t have to
train the entire VGGNet from scratch because we only have to deal with the newly
added softmax layer.

Additionally, we get much better performance with transfer learning because the
new model has been trained on millions of images (ImageNet dataset + our small
dataset). This allows the network to understand the finer details of object nuances,
which in turn makes it generalize better on new, previously unseen images.

Note that in this example, we only explored the part where we build the model, to
show how transfer learning is used. At the end of this chapter, I'll walk you through
two end-to-end projects to demonstrate how to train the new network on your small
dataset. But now, let’s see how transfer learning works.
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How transfer learning works

So far, we learned what the transfer learning technique is and the main problems it
solves. We also saw an example of how to take a pretrained network that was trained
on ImageNet and transfer its learnings to our specific task. Now, let’s see why transfer
learning works, what is really being transferred from one problem to another, and how
a network that is trained on one dataset can perform well on a different, possibly
unrelated, dataset.

The following quick questions are reminders from previous chapters to get us to
the core of what is happening in transfer learning:

What is really being learned by the network during training? The short answer
is: feature maps.

How are these features learned? During the backpropagation process, the
weights are updated until we get to the optimized weights that minimize the error
function.

What is the relationship between features and weights? A feature map is the
result of passing the weights filter on the input image during the convolution
process (figure 6.4).

Convolved image
Input image (feature map)

Convolution kernel
with optimized weights

0O(-1(0
D -11 4 |- =]
0o|-1]0

SN

Figure 6.4 Example of generating a feature map by applying a convolutional kernel to the input image

What is really being transferred from one network to another? To transfer fea-
tures, we download the optimized weights of the pretrained network. These
weights are then reused as the starting point for the training process and
retrained to adapt to the new problem.

Okay, let’s dive into the details to understand what we mean when we say pretrained net-
work. When we’re training a convolutional neural network, the network extracts fea-
tures from an image in the form of feature maps: outputs of each layer in a neural
network after applying the weights filter. They are representations of the features that
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exist in the training set. They are called feature maps because they map where a certain
kind of feature is found in the image. CNNs look for features such as straight lines,
edges, and even objects. Whenever they spot these features, they report them to the
feature map. Each weight filter is looking for something different that is reflected in
the feature maps: one filter could be looking for straight lines, another for curves, and
so on (figure 6.5).

Input

Feature map 1 Feature map 2 Feature map 3 Feature map 4 Feature map 5 Output

- - O
0

Figure 6.5 The network extracts features from an image in the form of feature maps. They are representations
of the features that exist in the training set after applying the weight filters.

Now, recall that neural networks iteratively update their weights during the training
cycle of feedforward and backpropagation. We say the network has been trained when
we go through a series of training iterations and hyperparameter tuning until the net-
work yields satisfactory results. When training is complete, we output two main items:
the network architecture and the trained weights. So, when we say that we are going to
use a pretrained nelwork, we mean that we will download the network architecture
together with the weights.

During training, the model learns only the features that exist in this training data-
set. But when we download large models (like Inception) that have been trained on
huge numbers of datasets (like ImageNet), all the features that have already been
extracted from these large datasets are now available for us to use. I find that really
exciting because these pretrained models have spotted other features that weren’t in
our dataset and will help us build better convolutional networks.

In vision problems, there’s a huge amount of stuff for neural networks to learn
about the training dataset. There are low-level features like edges, corners, round
shapes, curvy shapes, and blobs; and then there are mid- and higher-level features
like eyes, circles, squares, and wheels. There are many details in the images that
CNNs can pick up on—but if we have only 1,000 images or even 25,000 images in
our training dataset, this may not be enough data for the model to learn all those
things. By using a pretrained network, we can basically download all this knowledge
into our neural network to give it a huge and much faster start with even higher per-
formance levels.



252

6.3.1

CHAPTER 6 Transfer learning

How do neural networks learn features?

A neural network learns the features in a dataset step by step in increasing levels of
complexity, one layer after another. These are called feature maps. The deeper you go
through the network layers, the more image-specific features are learned. In figure 6.6,
the first layer detects low-level features such as edges and curves. The output of the first
layer becomes input to the second layer, which produces higher-level features like semi-
circles and squares. The next layer assembles the output of the previous layer into parts
of familiar objects, and a subsequent layer detects the objects. As we go through more
layers, the network yields an activation map that represents more complex features. As we
go deeper into the network, the filters begin to be more responsive to a larger region of
the pixel space. Higher-level layers amplify aspects of the received inputs that are
important for discrimination and suppress irrelevant variations.

Mid-level features:
combinations of edges and other
Low-level generic features features that are more specific to High-level features that are very
(edges, blobs, etc.) the training dataset specific to the training dataset

Labels

Jane
Alice
John
Max

Figure 6.6 An example of how CNNs detect low-level generic features at the early layers of the
network. The deeper you go through the network layers, the more image-specific features are learned.

Consider the example in figure 6.6. Suppose we are building a model that detects
human faces. We notice that the network learns low-level features like lines, edges,
and blobs in the first layer. These low-level features appear not to be specific to a
particular dataset or task; they are general features that are applicable to many data-
sets and tasks. The mid-level layers assemble those lines to be able to recognize
shapes, corners, and circles. Notice that the extracted features start to get a little
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more specific to our task (human faces): mid-level features contain combinations of
shapes that form objects in the human face like eyes and noses. As we go deeper
through the network, we notice that features eventually transition from general to
specific and, by the last layer of the network, form high-level features that are very
specific to our task. We start seeing parts of human faces that distinguish one person
from another.

Now, let’s take this example and compare the feature maps extracted from four
models that are trained to classify faces, cars, elephants, and chairs (see figure 6.7).
Notice that the earlier layers’ features are very similar for all the models. They repre-
sent low-level features like edges, lines, and blobs. This means models that are trained
on one task capture similar relations in the data types in the earlier layers of the net-
work and can easily be reused for different problems in other domains. The deeper
we go into the network, the more specific the features, until the network overfits its
training data and it becomes harder to generalize to different tasks. The lower-level
features are almost always transferable from one task to another because they contain
generic information like the structure and nature of how images look. Transferring
information like lines, dots, curves, and small parts of objects is very valuable for the
network to learn faster and with less data on the new task.

Elephants

Figure 6.7 Feature maps extracted from four models that are trained to classify faces, cars, elephants, and

chairs
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Transferability of features extracted at later layers

The transferability of features that are extracted at later layers depends on the similar-
ity of the original and new datasets. The idea is that all images must have shapes and
edges, so the early layers are usually transferable between different domains. We can
only identify differences between objects when we start extracting higher-level fea-
tures: say, the nose on a face or the tires on a car. Only then can we say, “OXkay, this is a
person, because it has a nose. And this is a car, because it has tires.” Based on the sim-
ilarity of the source and target domains, we can decide whether to transfer only the
low-level features from the source domain, or the high-level features, or somewhere in
between. This is motivated by the observation that the later layers of the network
become progressively more specific to the details of the classes contained in the origi-
nal dataset, as we are going to discuss in the next section.

DEFINITIONS The source domain is the original dataset that the pretrained net-
work is trained on. The target domain is the new dataset that we want to train
the network on.

Transfer learning approaches

There are three major transfer learning approaches: pretrained network as a classifier,
pretrained network as a feature extractor, and fine-tuning. Each approach can be
effective and save significant time in developing and training a deep CNN model. It
may not be clear which use of a pretrained model may yield the best results on your
new CV task, so some experimentation may be required. In this section, we will
explain these three scenarios and give examples of how to implement them.

Using a pretrained network as a classifier

Using a pretrained network as a classifier doesn’t involve freezing any layers or doing
extra model training. Instead, we just take a network that was trained on a similar
problem and deploy it directly to our task. The pretrained model is used directly to
classify new images with no changes applied to it and no extra training. All we do is
download the network architecture and its pretrained weights and then run the pre-
dictions directly on our new data. In this case, we are saying that the domain of our
new problem is very similar to the one that the pretrained network was trained on,
and it is ready to be deployed.

In the dog breed example, we could have used a VGG16 network that was trained
on an ImageNet dataset directly to run predictions. ImageNet already contains a lot
of dog images, so a significant portion of the representational power of the pre-
trained network may be devoted to features that are specific to differentiating
between dog breeds.

Let’s see how to use a pretrained network as a classifier. In this example, we will use
a VGGI16 network that was pretrained on the ImageNet dataset to classify the image of
the German Shepherd dog in figure 6.8.
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Figure 6.8 A sample image of a German Shepherd that we will use to run
predictions

The steps are as follows:

1 Import the necessary libraries:

from keras.preprocessing.image import load img

from keras.preprocessing.image import img_to_array

from keras.applications.vgglé import preprocess_input
from keras.applications.vgglé import decode predictions
from keras.applications.vgglé import VGG1é6

2 Download the pretrained model of VGG16 and its ImageNet weights. We set
include_top to True because we want to use the entire network as a classifier:

model = VGG16 (weights = "imagenet", include top=True, input shape =
(224,224, 3))

3 Load and preprocess the input image:

Loads an image from a file
image = load img('path/to/image.jpg', target size=(224, 224))

image = img to array (image) Cf)nverts the image
- = pixels to a NumPy array

image = image.reshape((1l, image.shape[0], image.shape[l], image.shape([2]))

Prepares the image

image = preprocess_input (image)
for the VGG model

Reshapes the data
for the model
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Now our input image is ready for us to run predictions:

Predicts the probability
across all output classes
vhat = model.predict (image)

Converts the probabilities

label = decode predictions (yhat) to class labels

Retrieves the most likely result
label = labello] [0] <'—‘ with the highest probability
print ('%$s (%.2£%%)' % (label[1l], label[2]*100)) Prints the

classification

When you run this code, you will get the following output:

>> German_shepherd (99.72%)

You can see that the model was already trained to predict the correct dog breed with a
high confidence score (99.72%). This is because the ImageNet dataset has more than
20,000 labeled dog images classified into 120 classes. Go to the book’s website to play
with the code yourself with your own images: www.manning.com/books/deep-learning-
for-vision-systems or www.computervisionbook.com. Feel free to explore the classes
available in ImageNet and run this experiment on your own images.

Using a pretrained network as a feature extractor

This approach is similar to the dog breed example that we implemented earlier in this
chapter: we take a pretrained CNN on ImageNet, freeze its feature extraction part,
remove the classifier part, and add our own new, dense classifier layers. In figure 6.9,
we use a pretrained VGG16 network, freeze the weights in all 13 convolutional layers,
and replace the old classifier with a new one to be trained from scratch.

We usually go with this scenario when our new task is similar to the original data-
set that the pretrained network was trained on. Since the ImageNet dataset has a lot
of dog and cat examples, the feature maps that the network has learned contain a
lot of dog and cat features that are very applicable to our new task. This means we
can use the high-level features that were extracted from the ImageNet dataset in this
new task.

To do that, we freeze all the layers from the pretrained network and only train the
classifier part that we just added on the new dataset. This approach is called using a
pretrained network as a feature extractor because we freeze the feature extractor part
to transfer all the learned feature maps to our new problem. We only add a new classi-
fier, which will be trained from scratch, on top of the pretrained model so that we can
repurpose the previously learned feature maps for our dataset.

We remove the classification part of the pretrained network because it is often
very specific to the original classification task, and subsequently it is specific to the
set of classes on which the model was trained. For example, ImageNet has 1,000
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Figure 6.9 Load a pretrained VGG16 network, remove the classifier, and add
your own classifier.
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classes. The classifier part has been trained to overfit the training data to classify
them into 1,000 classes. But in our new problem, let’s say cats versus dogs, we have
only two classes. So, it is a lot more effective to train a new classifier from scratch to
overfit these two classes.

Fine-tuning

So far, we’ve seen two basic approaches of using a pretrained network in transfer
learning: using a pretrained network as a classifier or as a feature extractor. We gener-
ally use these approaches when the target domain is somewhat similar to the source
domain. But what if the target domain is different from the source domain? What if it
is very different? Can we still use transfer learning? Yes. Transfer learning works great
even when the domains are very different. We just need to extract the correct feature
maps from the source domain and fine-tune them to fit the target domain.

In figure 6.10, we show the different approaches of transferring knowledge from a
pretrained network. If you are downloading the entire network with no changes and
just running predictions, then you are using the network as a classifier. If you are
freezing the convolutional layers only, then you are using the pretrained network as a
feature extractor and transferring all of its high-level feature maps to your domain.
The formal definition of fine-tuning is freezing a few of the network layers that are
used for feature extraction, and jointly training both the non-frozen layers and the
newly added classifier layers of the pretrained model. It is called fine-tuning because
when we retrain the feature extraction layers, we fine-tune the higher-order feature
representations to make them more relevant for the new task dataset.

In more practical terms, if we freeze features maps 1 and 2 in figure 6.10, the new
network will take feature maps 2 as its input and will start learning from this point to
adapt the features of the later layers to the new dataset. This saves the network the
time that it would have spent learning feature maps 1 and 2.

Classifier

Feature map 1 Feature map 2 Feature map 3 Feature map 4

Flatten

Retrain the ! - -
entire network. Freeze here? Or here? Or here?
Fine-tuning range Pretrained as a Pretrained as

feature extractor a classifier

Figure 6.10 The network learns features through its layers. In transfer learning, we make a decision to freeze
specific layers of a pretrained network to preserve the learned features. For example, if we freeze the network at
feature maps of layer 3, we preserve what it has learned in layers 1, 2, and 3.
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As we discussed earlier, feature maps that are extracted early in the network are
generic. The feature maps get progressively more specific as we go deeper in the net-
work. This means feature maps 4 in figure 6.10 are very specific to the source domain.
Based on the similarity of the two domains, we can decide to freeze the network at the
appropriate level of feature maps:

If the domains are similar, we might want to freeze the network up to the last
feature map level (feature maps 4, in the example).

If the domains are very different, we might decide to freeze the pretrained net-
work after feature maps 1 and retrain all the remaining layers.

Between these two possibilities are a range of fine-tuning options that we can apply.
We can retrain the entire network, or freeze the pretrained network at any level of
feature maps 1, 2, 3, or 4 and retrain the remainder of the network. We typically
decide the appropriate level of fine-tuning by trial and error. But there are guidelines
that we can follow to intuitively decide on the fine-tuning level for the pretrained net-
work. The decision is a function of two factors: the amount of data we have and the
level of similarity between the source and target domains. We will explain these fac-
tors and the four possible scenarios to choose the appropriate level of fine-tuning in
section 6.5.

WHY IS FINE-TUNING BETTER THAN TRAINING FROM SCRATCH?

When we train a network from scratch, we usually randomly initialize the weights and
apply a gradient descent optimizer to find the best set of weights that optimizes our
error function (as discussed in chapter 2). Since these weights start with random val-
ues, there is no guarantee that they will begin with values that are close to the desired
optimal values. And if the initialized value is far from the optimal value, the optimizer
will take a long time to converge. This is when fine-tuning can be very useful. The pre-
trained network’s weights have been already optimized to learn from its dataset. Thus,
when we use this network in our problem, we start with the weight values that it ended
with. So, the network converges much faster than if it had to randomly initialize the
weights. We are basically fine-tuning the already-optimized weights to fit our new prob-
lem instead of training the entire network from scratch with random weights. Even if
we decide to retrain the entire pretrained network, starting with the trained weights
will converge faster than having to train the network from scratch with randomly ini-
tialized weights.

USING A SMALLER LEARNING RATE WHEN FINE-TUNING

It’s common to use a smaller learning rate for ConvNet weights that are being fine-
tuned, in comparison to the (randomly initialized) weights for the new linear classi-
fier that computes the class scores of a new dataset. This is because we expect that the
ConvNet weights are relatively good, so we don’t want to distort them too quickly and
too much (especially while the new classifier above them is being trained from ran-
dom initialization).
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Choosing the appropriate level of transfer learning

Recall that early convolutional layers extract generic features and become more spe-
cific to the training data the deeper we go through the network. With that said, we can
choose the level of detail for feature extraction from an existing pretrained model.
For example, if a new task is quite different from the source domain of the pretrained
network (for example, different from ImageNet), then perhaps the output of the pre-
trained model after the first few layers would be appropriate. If a new task is similar to
the source domain, then perhaps the output from layers much deeper in the model
can be used, or even the output of the fully connected layer prior to the softmax layer.

As mentioned earlier, choosing the appropriate level for transfer learning is a func-
tion of two important factors:

Size of the target dataset (small or large)—When we have a small dataset, the net-
work probably won’t learn much from training more layers, so it will tend to
overfit the new data. In this case, we most likely want to do less fine-tuning and
rely more on the source dataset.

Domain similarity of the source and target datasets—How similar is our new problem
to the domain of the original dataset? For example, if your problem is to classify
cars and boats, ImageNet could be a good option because it contains a lot of
images of similar features. On the other hand, if your problem is to classify lung
cancer on X-ray images, this is a completely different domain that will likely
require a lot of fine-tuning.

These two factors lead to the four major scenarios:

The target dataset is small and similar to the source dataset.
The target dataset is large and similar to the source dataset.
The target dataset is small and very different from the source dataset.
The target dataset is large and very different from the source dataset.

Let’s discuss these scenarios one by one to learn the common rules of thumb for navi-
gating our options.

Scenario 1: Target dataset is small and similar
to the source dataset

Since the original dataset is similar to our new dataset, we can expect that the higher-
level features in the pretrained ConvNet are relevant to our dataset as well. Then it
might be best to freeze the feature extraction part of the network and only retrain the
classifier.

Another reason it might not be a good idea to fine-tune the network is that our
new dataset is small. If we fine-tune the feature extraction layers on a small dataset,
that will force the network to overfit to our data. This is not good because, by defini-
tion, a small dataset doesn’t have enough information to cover all possible features
of'its objects, which makes it fail to generalize to new, previously unseen, data. So in
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this case, the more fine-tuning we do, the more the network is prone to overfit the
new data.

For example, suppose all the images in our new dataset contain dogs in a specific
weather environment—snow, for example. If we fine-tuned on this dataset, we would
force the new network to pick up features like snow and a white background as dog-
specific features and make it fail to classify dogs in other weather conditions. Thus the
general rule of thumb is: if you have a small amount of data, be careful of overfitting
when you fine-tune your pretrained network.

Scenario 2: Target dataset is large and similar
to the source dataset

Since both domains are similar, we can freeze the feature extraction part and retrain
the classifier, similar to what we did in scenario 1. But since we have more data in the
new domain, we can get a performance boost from fine-tuning through all or part of
the pretrained network with more confidence that we won’t overfit. Fine-tuning
through the entire network is not really needed because the higher-level features
are related (since the datasets are similar). So a good start is to freeze approximately
60-80% of the pretrained network and retrain the rest on the new data.

Scenario 3: Target dataset is small and different
from the source dataset

Since the dataset is different, it might not be best to freeze the higher-level features of
the pretrained network, because they contain more dataset-specific features. Instead,
it would work better to retrain layers from somewhere earlier in the network—or to
not freeze any layers and fine-tune the entire network. However, since you have a
small dataset, fine-tuning the entire network on the dataset might not be a good idea,
because doing so will make it prone to overfitting. A midway solution will work better
in this case. A good start is to freeze approximately the first third or half of the pre-
trained network. After all, the early layers contain very generic feature maps that will
be useful for your dataset even if it is very different.

Scenario 4: Target dataset is large and different
from the source dataset

Since the new dataset is large, you might be tempted to just train the entire network
from scratch and not use transfer learning at all. However, in practice, it is often still
very beneficial to initialize weights from a pretrained model, as we discussed earlier.
Doing so makes the model converge faster. In this case, we have a large dataset that
provides us with the confidence to fine-tune through the entire network without hav-
ing to worry about overfitting.
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Recap of the transfer learning scenarios

We’ve explored the two main factors that help us define which transfer learning
approach to use (size of our data and similarity between the source and target data-
sets). These two factors give us the four major scenarios defined in table 6.1. Figure 6.11
summarizes the guidelines for the appropriate fine-tuning level to use in each of the
scenarios.

Table 6.1 Transfer learning scenarios

Size of the Similarity of the original

Scenaths target data and new datasets geeeasl

1 Small Similar Pretrained network as a feature extractor

2 Large Similar Fine-tune through the full network

3 Small Very different Fine-tune from activations earlier in the
network

4 Large Very different Fine-tune through the entire network

Scenario #1: You have a small dataset
that is similar to the source dataset.

Scenario #2: You have a large dataset
that is similar to the source dataset.

Scenario #3: You have a small dataset
that is different from the source dataset.

Scenario #4: You have a large dataset
that is different from the source dataset.

Figure 6.11 Guidelines for the appropriate fine-tuning level to use in each of the four scenarios

6.6

Open source datasets

The CV research community has been pretty good about posting datasets on the inter-
net. So, when you hear names like ImageNet, MS COCO, Open Images, MNIST,
CIFAR, and many others, these are datasets that people have posted online and that a
lot of computer researchers have used as benchmarks to train their algorithms and
get state-of-the-art results.
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In this section, we will review some of the popular open source datasets to help
guide you in your search to find the most suitable dataset for your problem. Keep in
mind that the ones listed in this chapter are the most popular datasets used in the CV
research community at the time of writing; we do not intend to provide a comprehen-
sive list of all the open source datasets out there. A great many image datasets are
available, and the number is growing every day. Before starting your project, I encour-
age you to do your own research to explore the available datasets.

MNIST

MNIST (http://yann.lecun.com/exdb/mnist) stands for Modified National Institute
of Standards and Technology. It contains labeled handwritten images of digits from 0
to 9. The goal of this dataset is to classify handwritten digits. MNIST has been popular
with the research community for benchmarking classification algorithms. In fact, it is
considered the “hello, world!” of image datasets. But nowadays, the MNIST dataset is
comparatively pretty simple, and a basic CNN can achieve more than 99% accuracy, so
MNIST is no longer considered a benchmark for CNN performance. We imple-
mented a CNN classification project using MNIST dataset in chapter 3; feel free to go
back and review it.

MNIST consists of 60,000 training images and 10,000 test images. All are grayscale
(one-channel), and each image is 28 pixels high and 28 pixels wide. Figure 6.12 shows
some sample images from the MNIST dataset.

Figure 6.12 Samples from the MNIST dataset
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Fashion-MINIST

Fashion-MNIST was created with the intention of replacing the original MNIST data-
set, which has become too simple for modern convolutional networks. The data is
stored in the same format as MNIST, but instead of handwritten digits, it contains
60,000 training images and 10,000 test images of 10 fashion clothing classes: tshirt/top,
trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot. Visit https://
github.com/zalandoresearch/fashion-mnist to explore and download the dataset. Fig-
ure 6.13 shows a sample of the represented classes.

1
=

Ankle boot T-shirt/top T-shirt/top Dress T-shirt/top
ﬁ q’
Erd
Pullover Sneaker Pullover J Sandal Sandal
I A G e
T-shirt/top Ankle boot Sandal Sandal Sneaker

| S
—a

Ankle boot Trouser T-shirt/top Shirt

o

Dress Trouser Coat Bag

Figure 6.13 Sample images from the Fashion-MNIST dataset

CIFAR

CIFAR-10 (www.cs.toronto.edu/~kriz/cifar.html) is considered another benchmark
dataset for image classification in the CV and ML literature. CIFAR images are more
complex than those in MNIST in the sense that MNIST images are all grayscale with
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perfectly centered objects, whereas CIFAR images are color (three channels) with dra-
matic variation in how the objects appear. The CIFAR-10 dataset consists of 32x32
color images in 10 classes, with 6,000 images per class. There are 50,000 training
images and 10,000 test images. Figure 6.14 shows the classes in the dataset.

Airplane

Automobile &

Bird

Figure 6.14 Sample images from the CIFAR-10 dataset

CIFAR-100 is the bigger brother of CIFAR-10: it contains 100 classes with 600 images
each. These 100 classes are grouped into 20 superclasses. Each image comes with a fine
label (the class to which it belongs) and a coarselabel (the superclass to which it belongs).

ImageNet

We’ve discussed the ImageNet dataset several times in the previous chapters and used it
extensively in chapter 5 and this chapter. But for completeness of this list, we are discuss-
ing it here as well. At the time of writing, ImageNet is considered the current bench-
mark and is widely used by CV researchers to evaluate their classification algorithms.
ImageNet is a large visual database designed for use in visual object recognition
software research. It is aimed at labeling and categorizing images into almost 22,000
categories based on a defined set of words and phrases. The images were collected
from the web and labeled by humans via Amazon’s Mechanical Turk crowdsourcing
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tool. At the time of this writing, there are over 14 million images in the ImageNet
project. To organize such a massive amount of data, the creators of ImageNet followed
the WordNet hierarchy: each meaningful word/phrase in WordNet is called a synonym
set (synset for short). Within the ImageNet project, images are organized according to
these synsets, with the goal being to have 1,000+ images per synset. Figure 6.15 shows
a collage of ImageNet examples put together by Stanford University.

Figure 6.15 A collage of ImageNet examples compiled by Stanford University

The CV community usually refers to the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) when talking about ImageNet. In this challenge, software pro-
grams compete to correctly classify and detect objects and scenes. We will be using the
ILSVRC challenge as a benchmark to compare the different networks’ performance.

MS coco

MS COCO (http://cocodataset.org) is short for Microsoft Common Objects in Con-
text. Itis an open source database that aims to enable future research for object detec-
tion, instance segmentation, image captioning, and localizing person keypoints. It
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contains 328,000 images. More than 200,000 of them are labeled, and they include 1.5
million object instances and 80 object categories that would be easily recognizable by
a 4-year-old. The original research paper by the creators of the dataset describes the
motivation for and content of this dataset.? Figure 6.16 shows a sample of the dataset
provided on the MS COCO website.

Dataset examples

Figure 6.16 A sample of the MS COCO dataset
(Image copyright © 2015, COCO Consortium, used by permission under Creative Commons Attribution 4.0
License.)

Google Open Images

Open Images (https://storage.googleapis.com/openimages/web/index.html) is an
open source image database created by Google. It contains more than 9 million images
as of this writing. What makes it stand out is that these images are mostly of complex
scenes that span thousands of classes of objects. Additionally, more than 2 million of
these images are hand-annotated with bounding boxes, making Open Images by far the
largest existing dataset with object-location annotations (see figure 6.17). In this subset
of images, there are ~15.4 million bounding boxes of 600 classes of objects. Similar to
ImageNet and ILSVRC, Open Images has a challenge called the Open Images Chal-
lenge (http://mng.bz/aRQz).

Kaggle

In addition to the datasets listed in this section, Kaggle (www.kaggle.com) is another
great source for datasets. Kaggle is a website that hosts ML and DL challenges where
people from all around the world can participate and submit algorithms for evaluations.
You are strongly encouraged to explore these datasets and search for the many
other open source datasets that come up every day, to gain a better understanding of
the classes and use cases they support. We mostly use ImageNet in this chapter’s proj-
ects; and throughout the book, we will be using MS COCO, especially in chapter 7.

2

Tsung-Yi Lin, Michael Maire, Serge Belongie, et al., “Microsoft COCO: Common Objects in Context” (Feb-

ruary 2015), https://arxiv.org/pdf/1405.0312.pdf.
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Figure 6.17 Annotated images from the Open Images dataset, taken from the Google Al Blog (Vittorio Ferrari,
“An Update to Open Images—Now with Bounding-Boxes,” July 2017, http://mng.bz/yyVG).

6.7

Project 1: A pretrained network as a feature extractor

In this project, we use a very small amount of data to train a classifier that detects
images of dogs and cats. This is a pretty simple project, but the goal of the exercise is
to see how to implement transfer learning when you have a very small amount of data
and the target domain is similar to the source domain (scenario 1). As explained in
this chapter, in this case, we will use the pretrained convolutional network as a feature
extractor. This means we are going to freeze the feature extractor part of the network,
add our own classifier, and then retrain the network on our new small dataset.

One other important takeaway from this project is learning how to preprocess cus-
tom data and make it ready to train your neural network. In previous projects, we used
the CIFAR and MNIST datasets: they are preprocessed by Keras, so all we had to do
was download them from the Keras library and use them directly to train the network.
This project provides a tutorial of how to structure your data repository and use the
Keras library to get your data ready.

Visit the book’s website at www.manning.com/books/deep-learning-for-vision-
systems or www.computervisionbook.com to download the code notebook and the
dataset used for this project. Since we are using transfer learning, the training does
not require high computation power, so you can run this notebook on your personal
computer; you don’t need a GPU.

For this implementation, we’ll be using the VGG16. Although it didn’t record the
lowest error in the ILSVRC, I found that it worked well for the task and was quicker to
train than other models. I got an accuracy of about 96%, but you can feel free to use
GoogLeNet or ResNet to experiment and compare results.
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The process to use a pretrained model as a feature extractor is well established:

Import the necessary libraries.

Preprocess the data to make it ready for the neural network.

Load pretrained weights from the VGG16 network trained on a large dataset.
Freeze all the weights in the convolutional layers (feature extraction part).
Remember, the layers to freeze are adjusted depending on the similarity of the
new task to the original dataset. In our case, we observed that ImageNet has a
lot of dog and cat images, so the network has already been trained to extract
the detailed features of our target object.

Replace the fully connected layers of the network with a custom classifier. You
can add as many fully connected layers as you see fit, and each can have as
many hidden units as you want. For simple problems like this, we will just add
one hidden layer with 64 units. You can observe the results and tune up if the
model is underfitting or down if the model is overfitting. For the softmax layer,
the number of units must be set equal to the number of classes (two units, in
our case).

Compile the network, and run the training process on the new data of cats and
dogs to optimize the model for the smaller dataset.

Evaluate the model.
Now, let’s go through these steps and implement this project:
Import the necessary libraries:

from keras.preprocessing.image import ImageDataGenerator
from keras.preprocessing import image

from keras.applications import imagenet utils

from keras.applications import vgglé

from keras.applications import mobilenet

from keras.optimizers import Adam, SGD

from keras.metrics import categorical_ crossentropy

from keras.layers import Dense, Flatten, Dropout, BatchNormalization
from keras.models import Model

from sklearn.metrics import confusion matrix

import itertools

import matplotlib.pyplot as plt

$matplotlib inline

Preprocess the data to make it ready for the neural network. Keras has an
ImageDataGenerator class that allows us to easily perform image augmentation
on the fly; you can read about it at https://keras.io/api/preprocessing/image.
In this example, we use ImageDataGenerator to generate our image tensors,
but for simplicity, we will not implement image augmentation.

The ImageDataGenerator class has a method called flow from directory()
that is used to read images from folders containing images. This method expects
your data directory to be structured as in figure 6.18.
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Data

Train Valid Test

Class_a Class_b Class_a Class_b Test_folder

1 ! ! !
==

1 1 1 1
Figure 6.18 The required directory structure for your dataset to use the . flow from directory () method
from Keras

class_a_1.jpg class_b_1.jpg class_a_500.jpg class_b_500.jpg

I have the data structured in the book’s code so it’s ready for you to use flow_
from directory (). Now, load the data into train path, valid path, and test
_path variables, and then generate the train, valid, and test batches:

ImageDataGenerator generates batches of
tensor image data with real-time data

tri%g—p ati i ,gaiajtr?g' augmentation. The data will be looped over
vatt _pah - ‘4 ata/va ? (in batches). In this example, we won’t be
test_path = 'data/test doing any image augmentation.

train batches = ImageDataGenerator().flow from directory(train path,
target size=(224,224),
batch size=10)

valid batches = ImageDataGenerator().flow from directory(valid path,
target_size=(224,224),
batch size=30)

test_batches = ImageDataGenerator ().flow from directory(test path,
target_size=(224,224),
batch size=50,
shuffle=False)

Load in pretrained weights from the VGG16 network trained on a large dataset.
Similar to the examples in this chapter, we download the VGG16 network from
Keras and download its weights after they are pretrained on the ImageNet data-
set. Remember that we want to remove the classifier part from this network, so

we set the parameter include_top=False:

base model = vgglé6.VGG1l6 (weights = "imagenet", include top=False,
input_shape = (224,224, 3))

Freeze all the weights in the convolutional layers (feature extraction part). We
freeze the convolutional layers from the base model created in the previous
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step and use that as a feature extractor, and then add a classifier on top of it in
the next step:

for layer in base model.layers:

) Iterates through layers and locks them to
layer.trainable = False

make them non-trainable with this code

Add the new classifier, and build the new model. We add a few layers on top of
the base model. In this example, we add one fully connected layer with 64 hid-
den units and a softmax with 2 hidden units. We also add batch norm and drop-
out layers to avoid overfitting:

Uses the get_layer method to save the last
layer of the network. Then saves the output of
the last layer to be the input of the next layer.

last_layer = base model.get layer('block5 pool')
last_output = last_layer.output

Flattens the classifier input, which is output
x = Flatten() (last_output)

of the last layer of the VGG16 model

x = Dense (64, activation='relu', name='FC_ 2') (x) Adds one fully

x = BatchNormalization() (x) connected layer

x = Dropout (0.5) (x) \| that has 64 units

x = Dense (2, activation='softmax', name='softmax') (x) and batchnorm,
dropout, and

new model = Model (inputs=base model.input, outputs=x) softmax layers

new_model . summary ()

Layer (type) Output Shape Param #
input_1 (Inputlayer) (Nome, 224, 224, 3) o0
blockl convl (Conv2D) (None, 224, 224, 64) 1792
blockl _conv2 (Conv2D) (None, 224, 224, 64) 36928
blockl pool (MaxPooling2D) (None, 112, 112, 64) 0
block2 convl (Conv2D) (None, 112, 112, 128) 73856
block2 conv2 (Conv2D) (None, 112, 112, 128) 147584
block2 pool (MaxPooling2D) (None, 56, 56, 128) 0
block3 convl (Conv2D) (None, 56, 56, 256) 295168
block3 conv2 (Conv2D) (None, 56, 56, 256) 590080
block3 conv3 (Conv2D) (None, 56, 56, 256) 590080

block3 pool (MaxPooling2D) (None, 28, 28, 256) 0
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block4 convl (Conv2D) (None, 28, 28, 512) 1180160
block4 conv2 (Conv2D) (None, 28, 28, 512) 2359808
block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808
block4 pool (MaxPooling2D) (None, 14, 14, 512) 0
block5 convl (Conv2D) (None, 14, 14, 512) 2359808
block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808
block5 conv3 (Conv2D) (None, 14, 14, 512) 2359808
block5 pool (MaxPooling2D) (None, 7, 7, 512) 0
flatten 1 (Flatten) (None, 25088) 0

FC_2 (Dense) (None, 64) 1605696
batch normalization 1 (Batch (None, 64) 256
dropout_1 (Dropout) (None, 64) 0
softmax (Dense) (None, 2) 130

Total params: 16,320,770
Trainable params: 1,605,954
Non-trainable params: 14,714,816

Compile the model and run the training process:

new _model.compile (Adam(lr=0.0001), loss='categorical crossentropy',
metrics=['accuracy'])

new _model.fit generator (train batches, steps_per epoch=4,
validation data=valid batches, validation steps=2,
epochs=20, verbose=2)

When you run the previous code snippet, the verbose training is printed after
each epoch as follows:

Epoch 1/20

- 28s - loss: 1.0070 - acc: 0.6083 - val_loss: 0.5944 - val_acc: 0.6833
Epoch 2/20

- 255 - loss: 0.4728 - acc: 0.7754 - val_loss: 0.3313 - val_acc: 0.8605
Epoch 3/20

- 30s - loss: 0.1177 - acc: 0.9750 - val_loss: 0.2449 - val_acc: 0.8167
Epoch 4/20

- 255 - loss: 0.1640 - acc: 0.9444 - val_loss: 0.3354 - val_acc: 0.8372
Epoch 5/20

- 29s - loss: 0.0545 - acc: 1.0000 - val loss: 0.2392 - val _acc: 0.8333
Epoch 6/20
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- 25s - loss: 0.0941 - acc: 0.9505 - val_loss: 0.2019 - val_acc:

Epoch 7/20

- 28s - loss: 0.0269 - acc: 1.0000 - val loss: 0.1707 - val_acc:

Epoch 8/20

- 26s - loss: 0.0349 - acc: 0.9917 - val loss: 0.2489 - val acc:

Epoch 9/20

- 28s - loss: 0.0435 - acc: 0.9891 - val_loss: 0.1634 - val_acc:

Epoch 10/20

- 26s - loss: 0.0349 - acc: 0.9833 - val loss: 0.2375 - val_acc:

Epoch 11/20

- 28s - loss: 0.0288 - acc: 1.0000 - val loss: 0.1859 - val acc:

Epoch 12/20

- 29s - loss: 0.0234 - acc: 0.9917 - val_loss: 0.1879 - val_acc:

Epoch 13/20

- 32s - loss: 0.0241 - acc: 1.0000 - val loss: 0.2513 - val_acc:

Epoch 14/20

- 29s - loss: 0.0120 - acc: 1.0000 - val loss: 0.0900 - val acc:

Epoch 15/20

- 36s - loss: 0.0189 - acc: 1.0000 - val_loss: 0.1888 - val_acc:

Epoch 16/20

- 30s - loss: 0.0142 - acc: 1.0000 - val loss: 0.1672 - val_acc:

Epoch 17/20

- 29s - loss: 0.0160 - acc: 0.9917 - val _loss: 0.1752 - val_acc:

Epoch 18/20

- 25s - loss: 0.0126 - acc: 1.0000 - val_loss: 0.1823 - val_acc:

Epoch 19/20

- 29s - loss: 0.0165 - acc: 1.0000 - val loss: 0.1789 - val_acc:

Epoch 20/20

- 25s - loss: 0.0112 - acc: 1.0000 - val loss: 0.1743 - val_acc:
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Notice that the model was trained very quickly using regular CPU computing

power. Each epoch took approximately 25 to 29 seconds, which means the

model took less than 10 minutes to train for 20 epochs.

Evaluate the model. First, let’s define the load dataset () method that we will

use to convert our dataset into tensors:

from sklearn.datasets import load files
from keras.utils import np utils
import numpy as np

def load_dataset (path) :
data = load files (path)
paths = np.array(data['filenames'])
targets = np utils.to_categorical (np.array(datal'target']))
return paths, targets

test_files, test targets = load dataset('small data/test')

Then, we create test_tensors to evaluate the model on them:

from keras.preprocessing import image
from keras.applications.vgglé import preprocess_input
from tgdm import tgdm
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def path _to_tensor(img path) :
img = image.load img(img path, target size=(224, 224)) R —
X = image.img_to_array (img)

: , Converts the PIL.Image.Image
—> return np.expand_dims (x, axis=0)

type to a 3D tensor with shape

(224, 224, 3)
def paths_to tensor (img_paths) :

list_of tensors = [path to_tensor(img_path) for img_path in
tgdm (img_paths)]
return np.vstack(list_of tensors)

test tensors = preprocess_input (paths to tensor(test files))

Converts the 3D tensor to a 4D tensor with shape

Loads an RGB image as
(1, 224, 224, 3) and returns the 4D tensor

PIL.Image.Image type

Now we can run Keras’s evaluate () method to calculate the model accuracy:

print ('\nTesting loss: {:.4f£}\nTesting accuracy:
{:.4f}' . format (*new model.evaluate (test tensors, test targets)))

Testing loss: 0.1042
Testing accuracy: 0.9579

The model has achieved an accuracy of 95.79% in less than 10 minutes of training.
This is very good, given our very small dataset.

6.8 Project 2: Fine-tuning

In this project, we are going to explore scenario 3, discussed earlier in this chapter,
where the target dataset is small and very different from the source dataset. The goal
of this project is to build a sign language classifier that distinguishes 10 classes: the
sign language digits from 0 to 9. Figure 6.19 shows a sample of our dataset.

[

Figure 6.19 A sample from
the sign language dataset
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Following are the details of our dataset:

Number of classes = 10 (digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9)
Image size = 100 x 100

Color space = RGB

1,712 images in the training set

300 images in the validation set

50 images in the test set

It is very noticeable how small our dataset is. If you try to train a network from scratch
on this very small dataset, you will not achieve good results. On the other hand, we
were able to achieve an accuracy higher than 98% by using transfer learning, even
though the source and target domains were very different.

NOTE Please take this evaluation with a grain of salt, because the network
hasn't been thoroughly tested with a lot of data. We only have 50 test images
in this dataset. Transfer learning is expected to achieve good results anyway,
but I wanted to highlight this fact.

Visit the book’s website at www.manning.com/books/deep-learning-for-vision-systems
or www.computervisionbook.com to download the source code notebook and the
dataset used for this project. Similar to project 1, the training does not require high
computation power, so you can run this notebook on your personal computer; you
don’t need a GPU.

For ease of comparison with the previous project, we will use the VGG16 network
trained on the ImageNet dataset. The process to fine-tune a pretrained network is
as follows:

Import the necessary libraries.

Preprocess the data to make it ready for the neural network.

Load in pretrained weights from the VGG16 network trained on a large dataset
(ImageNet).

Freeze part of the feature extractor part.

Add the new classifier layers.

Compile the network, and run the training process to optimize the model for
the smaller dataset.

Evaluate the model.
Now let’s implement this project:

Import the necessary libraries:

from keras.preprocessing.image import ImageDataGenerator
from keras.preprocessing import image

from keras.applications import imagenet utils

from keras.applications import vgglé

from keras.optimizers import Adam, SGD

from keras.metrics import categorical_ crossentropy
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from keras.layers import Dense, Flatten, Dropout, BatchNormalization
from keras.models import Model

from sklearn.metrics import confusion matrix

import itertools

import matplotlib.pyplot as plt

$matplotlib inline

Preprocess the data to make it ready for the neural network. Similar to proj-
ect 1, we use the ImageDataGenerator class from Keras and the flow from
directory () method to preprocess our data. The data is already structured for
you to directly create your tensors:

ImageDataGenerator generates batches of
tensor image data with real-time data

train path = 'dataset/train' ! "
valid path = 'dataset/valid' augmentation. The data will be looped over
test path = 'dataset/test’ (in batches). In this example, we won’t be

doing any image augmentation.

train batches = ImageDataGenerator().flow from directory(train path,
target size=(224,224),
batch size=10)

valid batches = ImageDataGenerator ().flow from directory(valid path,
target_ size=(224,224),
batch size=30)

test _batches = ImageDataGenerator().flow from directory(test path,
target_ size=(224,224),
batch size=50,
shuffle=False)

Found 1712 images belonging to 10 classes.
Found 300 images belonging to 10 classes.
Found 50 images belonging to 10 classes.

Load in pretrained weights from the VGG16 network trained on a large data-
set (ImageNet). We download the VGG16 architecture from the Keras library
with ImageNet weights. Note that we use the parameter pooling='avg' here:
this basically means global average pooling will be applied to the output of
the last convolutional layer, and thus the output of the model will be a 2D ten-
sor. We use this as an alternative to the Flatten layer before adding the fully
connected layers:

base _model = vgglé6.VGG1l6 (weights = "imagenet", include top=False,
input_shape = (224,224, 3), pooling='avg')

Freeze some of the feature extractor part, and fine-tune the rest on our new
training data. The level of fine-tuning is usually determined by trial and error.
VGG16 has 13 convolutional layers: you can freeze them all or freeze a few of
them, depending on how similar your data is to the source data. In the sign
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language case, the new domain is very different from our domain, so we will
start with fine-tuning only the last five layers; if we don’t get satisfying results,
we can fine-tune more. It turns out that after we trained the new model, we
got 98% accuracy, so this was a good level of fine-tuning. But in other cases, if
you find that your network doesn’t converge, try fine-tuning more layers.

for layer in base model.layers[:-5]:

layer.trainable = False Iterates through layers

and locks them, except

for the last five layers
base_model.summary () Y

Layer (type) Output Shape Param #
input_1 (Inputlayer) (None, 224, 224, 3) o0
blockl convl (Conv2D) (None, 224, 224, 64) 1792
blockl conv2 (Conv2D) (None, 224, 224, 64) 36928
blockl pool (MaxPooling2D) (None, 112, 112, 64) 0
block2 convl (Conv2D) (None, 112, 112, 128) 73856
block2 conv2 (Conv2D) (None, 112, 112, 128) 147584
block2 pool (MaxPooling2D) (None, 56, 56, 128) 0
block3 convl (Conv2D) (None, 56, 56, 256) 295168
block3 conv2 (Conv2D) (None, 56, 56, 256) 590080
block3 conv3 (Conv2D) (None, 56, 56, 256) 590080
block3 _pool (MaxPooling2D) (None, 28, 28, 256) 0
block4 convl (Conv2D) (None, 28, 28, 512) 1180160
block4 conv2 (Conv2D) (None, 28, 28, 512) 2359808
block4 conv3 (Conv2D) (None, 28, 28, 512) 2359808
block4 pool (MaxPooling2D) (None, 14, 14, 512) 0
block5 convl (Conv2D) (None, 14, 14, 512) 2359808
block5 conv2 (Conv2D) (None, 14, 14, 512) 2359808
block5 conv3 (Conv2D) (None, 14, 14, 512) 2359808
block5 pool (MaxPooling2D) (None, 7, 7, 512) 0

global_average pooling2d 1 ( (None, 512) 0
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Total params: 14,714,688
Trainable params: 7,079,424
Non-trainable params: 7,635,264

Add the new classifier layers, and build the new model:

Adds our new softmax layer

with 10 hidden units Saves the output of base_model
base_model.output

to be the input of the next layer
last_output =

x = Dense (10, activation='softmax', name='softmax') (last_output)

Instantiates new_model = Model (inputs=base model.input, outputs=x)

a new_model

. , Prints the new_model summary
using Keras’s

new_model.summary ()

Model class
Layer (type) Output Shape Param #
input_1 (Inputlayer)  (None, 224, 224, 3) 0
blockl convl (Conv2D) (None, 224, 224, 64) 1792
blockl conv2 (Conv2D) (None, 224, 224, 64) 36928
blockl pool (MaxPooling2D) (None, 112, 112, 64) 0
block2 convl (Conv2D) (None, 112, 112, 128) 73856
block2 conv2 (Conv2D) (None, 112, 112, 128) 147584
block2 pool (MaxPooling2D) (None, 56, 56, 128) 0
block3_convl (Conv2D) (None, 56, 56, 256) 295168
block3 conv2 (Conv2D) (None, 56, 56, 256) 590080
block3 conv3 (Conv2D) (None, 56, 56, 256) 590080
block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
block4 convl (Conv2D) (None, 28, 28, 512) 1180160
block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808
block4 conv3 (Conv2D) (None, 28, 28, 512) 2359808
block4 pool (MaxPooling2D) (None, 14, 14, 512) 0
block5_convl (Conv2D) (None, 14, 14, 512) 2359808

block5 conv2 (Conv2D) (None, 14, 14, 512) 2359808
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block5 conv3 (Conv2D) (None, 14, 14, 512) 2359808
block5 pool (MaxPooling2D) (None, 7, 7, 512) 0
global average pooling2d 1 ( (None, 512) 0
softmax (Dense) (None, 10) 5130

Total params: 14,719,818
Trainable params: 7,084,554
Non-trainable params: 7,635,264

Compile the network, and run the training process to optimize the model for
the smaller dataset:

new_model.compile (Adam(lr=0.0001), loss='categorical crossentropy',
metrics=['accuracy'])

from keras.callbacks import ModelCheckpoint

checkpointer = ModelCheckpoint (filepath='signlanguage.model.hdf5"',
save best only=True)

history = new model.fit generator (train batches, steps per epoch=18,
validation data=valid batches, validation steps=3,
epochs=20, verbose=1, callbacks=[checkpointer])

Epoch 1/150

18/18 [==============================] - 40s 2s/step - loss: 3.2263 - acc:
0.1833 - val loss: 2.0674 - val_acc: 0.1667

Epoch 2/150

18/18 [==============================] - 41s 2s/step - loss: 2.0311 - acc:
0.1833 - val loss: 1.7330 - val acc: 0.3000

Epoch 3/150

18/18 - 42s 2s/step - loss: 1.5741 - acc:
0.4500 - val loss: 1.5577 - val acc: 0.4000

Epoch 4/150

18/18 - 42s 2s/step - loss: 1.3068 - acc:
0.5111 - val_loss: 0.9856 - val acc: 0.7333

Epoch 5/150

18/18 [==============================] - 43s 2s/step - loss: 1.1563 - acc:
0.6389 - val loss: 0.7637 - val acc: 0.7333

Epoch 6/150

18/18 [==============================] - 41s 2s/step - loss: 0.8414 - acc:
0.6722 - val loss: 0.7550 - val acc: 0.8000

Epoch 7/150

18/18 [==============================] - 41s 2s/step - loss: 0.5982 - acc:
0.8444 - val loss: 0.7910 - val _acc: 0.6667

Epoch 8/150

18/18 [==============================] - 41s 2s/step - loss: 0.3804 - acc:
0.8722 - val loss: 0.7376 - val_acc: 0.8667

Epoch 9/150

18/18 [==============================] - 41s 2s/step - loss: 0.5048 - acc:
0.8222 - val loss: 0.2677 - val_acc: 0.9000
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Epoch 10/150

18/18 - 39s 2s/step loss: 0.2383 acc:
0.9276 - val loss: 0.2844 - val acc: 0.9000

Epoch 11/150

18/18 - 41s 2s/step loss: 0.1163 acc:
0.9778 - val loss: 0.0775 - val acc: 1.0000

Epoch 12/150

18/18 [==============================] - 41s 2s/step loss: 0.1377 acc:
0.9667 - val loss: 0.5140 - val acc: 0.9333

Epoch 13/150

18/18 [==============================] - 41s 2s/step loss: 0.0955 acc:
0.9556 - val loss: 0.1783 - val acc: 0.9333

Epoch 14/150

18/18 [==============================] - 41s 2s/step loss: 0.1785 acc:
0.9611 - val loss: 0.0704 - val acc: 0.9333

Epoch 15/150

18/18 == - 41s 2s/step loss: 0.0533 acc:
0.9778 - val loss: 0.4692 - val acc: 0.8667

Epoch 16/150

18/18 [==============================] - 41s 2s/step loss: 0.0809 acc:
0.9778 - val loss: 0.0447 - val acc: 1.0000

Epoch 17/150

18/18 [==============================] - 41s 2s/step - loss: 0.0834 - acc:
0.9722 - val loss: 0.0284 - val acc: 1.0000

Epoch 18/150

18/18 [==============================] - 41s 2s/step loss: 0.1022 acc:
0.9611 - val loss: 0.0177 - val acc: 1.0000

Epoch 19/150

18/18 [==============================] - 41s 2s/step - loss: 0.1134 - acc:
0.9667 - val loss: 0.0595 - val acc: 1.0000

Epoch 20/150

18/18 [==============================] - 39s 2s/step loss: 0.0676 acc:

0.9777 - val _loss: 0.0862 - val _acc:

0.9667

Notice the training time of each epoch from the verbose output. The model
was trained very quickly using regular CPU computing power. Each epoch took
approximately 40 seconds, which means it took the model less than 15 minutes
to train for 20 epochs.

Evaluate the accuracy of the model. Similar to the previous project, we create a
load dataset () method to create test targets and test tensors and then
use the evaluate () method from Keras to run inferences on the test images
and get the model accuracy:

print ('\nTesting loss: {:.4f}\nTesting accuracy:
{:.4f}' . format (*new model.evaluate (test tensors, test targets)))

Testing loss: 0.0574
Testing accuracy: 0.9800

A deeper level of evaluating your model involves creating a confusion matrix.
We explained the confusion matrix in chapter 4: it is a table that is often used
to describe the performance of a classification model, to provide a deeper
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understanding of how the model performed on the test dataset. See chapter 4
for details on the different model evaluation metrics. Now, let’s build the confu-
sion matrix for our model (see figure 6.20):

from sklearn.metrics import confusion matrix
import numpy as np

cm labels = [IOI,|1l,l2lll3l,l4|,l5l,|6l,l7|ll8l’|9|]

cm = confusion matrix(np.argmax(test_targets, axis=1),
np.argmax (new _model.predict (test tensors), axis=1)
plt.imshow(cm, cmap=plt.cm.Blues)
plt.colorbar()
indexes = np.arange (len(cm labels))
for 1 in indexes:
for j in indexes:
plt.text(j, i, em[i, JI)
plt.xticks (indexes, cm labels, rotation=90)
plt.xlabel ('Predicted label!')
plt.yticks (indexes, cm labels)
plt.ylabel ('True label')
plt.title('Confusion matrix")
plt.show ()

Confusion matrix
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Figure 6.20 Confusion matrix for the sign language classifier

To read this confusion matrix, look at the number on the Predicted Label axis
and check whether it was correctly classified on the True Label axis. For exam-
ple, look at number 0 on the Predicted Label axis: all five images were classified
as 0, and no images were mistakenly classified as any other number. Similarly,
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go through the rest of the numbers on the Predicted Label axis. You will notice
that the model successfully made the correct predictions for all the test images
except the image with true label = 8. In that case, the model mistakenly classi-
fied an image of number 8 as number = 7.

Summary

Transfer learning is usually the go-to approach when starting a classification and
object detection project, especially when you don’t have a lot of training data.
Transfer learning migrates the knowledge learned from the source dataset to
the target dataset, to save training time and computational cost.

The neural network learns the features in your dataset step by step in increasing
levels of complexity. The deeper you go through the network layers, the more
image-specific the features that are learned.

Early layers in the network learn low-level features like lines, blobs, and edges.
The output of the first layer becomes input to the second layer, which produces
higher-level features. The next layer assembles the output of the previous layer
into parts of familiar objects, and a subsequent layer detects the objects.

The three main transfer learning approaches are using a pretrained network as
a classifier, using a pretrained network as a feature extractor, and fine-tuning.
Using a pretrained network as a classifier means using the network directly to
classify new images without freezing layers or applying model training.

Using a pretrained network as a feature extractor means freezing the classifier
part of the network and retraining the new classifier.

Fine-tuning means freezing a few of the network layers that are used for feature
extraction, and jointly training both the non-frozen layers and the newly added
classifier layers of the pretrained model.

The transferability of features from one network to another is a function of
the size of the target data and the domain similarity between the source and
target data.

Generally, fine-tuning parameters use a smaller learning rate, while training the
output layer from scratch can use a larger learning rate.



Object detection with
R-CNN, SSD, and YOLO

This chapter covers

Understanding image classification vs. object
detection

Understanding the general framework of object
detection projects

Using object detection algorithms like R-CNN,
SSD, and YOLO

In the previous chapters, we explained how we can use deep neural networks for
image classification tasks. In image classification, we assume that there is only one
main target object in the image, and the model’s sole focus is to identify the target
category. However, in many situations, we are interested in multiple targets in the
image. We want to not only classify them, but also obtain their specific positions in
the image. In computer vision, we refer to such tasks as object detection. Figure 7.1
explains the difference between image classification and object detection tasks.
Object detection is a CV task that involves both main tasks: localizing one or
more objects within an image and classifying each object in the image (see table 7.1).
This is done by drawing a bounding box around the identified object with its pre-
dicted class. This means the system doesn’t just predict the class of the image, as in
image classification tasks; it also predicts the coordinates of the bounding box that

283



284

CHAPTER 7  Object detection with R-CNN, SSD, and YOLO

Object detection
Image classification (classification and localization)
® @®
s
AN
Cat Cat, Cat, Duck, Dog

Figure 7.1 Image classification vs. object detection tasks. In classification tasks,
the classifier outputs the class probability (cat), whereas in object detection tasks,
the detector outputs the bounding box coordinates that localize the detected
objects (four boxes in this example) and their predicted classes (two cats, one
duck, and one dog).

Table 7.1 Image classification vs. object detection

Image classification Object detection

The goal is to predict the type or class | The goal is to predict the location of objects in an image via

of an object in an image. bounding boxes and the classes of the located objects.
Input: an image with a single object Input: an image with one or more objects
Output: a class label (cat, dog, Output: one or more bounding boxes (defined by coordi-
etc.) nates) and a class label for each bounding box
Example output: class probability Example output for an image with two objects:
(for example, 84% cat) — box1 coordinates (x, y, w, h) and class probability

— box2 coordinates and class probability

Note that the image coordinates (x, y, w, h) are as follows:
(x and y) are the coordinates of the bounding-box center point,
and (w and h) are the width and height of the box.

fits the detected object. This is a challenging CV task because it requires both success-
ful object localization, in order to locate and draw a bounding box around each
object in an image, and object classification to predict the correct class of object that
was localized.

Object detection is widely used in many fields. For example, in self-driving technol-
ogy, we need to plan routes by identifying the locations of vehicles, pedestrians, roads,
and obstacles in a captured video image. Robots often perform this type of task to
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detect targets of interest. And systems in the security field need to detect abnormal
targets, such as intruders or bombs.
This chapter’s layout is as follows:

We will explore the general framework of the object detection algorithms.

We will dive deep into three of the most popular detection algorithms: the R-CNN
family of networks, SSD, and the YOLO family of networks.

We will use what we’ve learned in a real-world project to train an end-to-end
object detector.

By the end of this chapter, we will have gained an understanding of how DL is applied
to object detection, and how the different object detection models inspire and diverge
from one another. Let’s get started!

General object detection framework

Before we jump into the object detection systems like R-CNN, SSD, and YOLO, let’s
discuss the general framework of these systems to understand the high-level workflow
that DL-based systems follow to detect objects and the metrics they use to evaluate
their detection performance. Don’t worry about the code implementation details of
object detectors yet. The goal of this section is to give you an overview of how different
object detection systems approach this task and introduce you to a new way of think-
ing about this problem and a set of new concepts to set you up to understand the DL
architectures that we will explain in sections 7.2, 7.3, and 7.4.
Typically, an object detection framework has four components:

Region proposal—An algorithm or a DL model is used to generate regions of
interest (Rols) to be further processed by the system. These are regions that the
network believes might contain an object; the output is a large number of
bounding boxes, each of which has an objectness score. Boxes with large object-
ness scores are then passed along the network layers for further processing.
Feature extraction and network predictions—Visual features are extracted for each
of the bounding boxes. They are evaluated, and it is determined whether and
which objects are present in the proposals based on visual features (for exam-
ple, an object classification component).

Non-maximum suppression (NMS)—In this step, the model has likely found multi-
ple bounding boxes for the same object. NMS helps avoid repeated detection of
the same instance by combining overlapping boxes into a single bounding box
for each object.

Evaluation metrics—Similar to accuracy, precision, and recall metrics in image
classification tasks (see chapter 4), object detection systems have their own
metrics to evaluate their detection performance. In this section, we will explain
the most popular metrics, like mean average precision (mAP), precision-recall
curve (PR curve), and intersection over union (IoU).
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Now, let’s dive one level deeper into each one of these components to build an intu-
ition about what their goals are.

Region proposals

In this step, the system looks at the image and proposes Rols for further analysis. Rols
are regions that the system believes have a high likelihood of containing an object,
called the objectness score (figure 7.2). Regions with high objectness scores are passed to
the next steps; regions with low scores are abandoned.

Figure 7.2 Regions of interest (Rols) proposed by the system. Regions with high
objectness score represent areas of high likelihood to contain objects (foreground),
and the ones with low objectness score are ignored because they have a low likelihood
of containing objects (background).

There are several approaches to generate region proposals. Originally, the selective
search algorithm was used to generate object proposals; we will talk more about this
algorithm when we discuss the R-CNN network. Other approaches use more complex
visual features extracted from the image by a deep neural network to generate regions
(for example, based on the features from a DL model).

We will talk in more detail about how different object detection systems approach
this task. The important thing to note is that this step produces a lot (thousands) of
bounding boxes to be further analyzed and classified by the network. During this step,
the network analyzes these regions in the image and classifies each region as fore-
ground (object) or background (no object) based on its objectness score. If the object-
ness score is above a certain threshold, then this region is considered a foreground
and pushed forward in the network. Note that this threshold is configurable based on
your problem. If the threshold is too low, your network will exhaustively generate all
possible proposals, and you will have a better chance of detecting all objects in the
image. On the flip side, this is very computationally expensive and will slow down
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detection. So, the trade-off with generating region proposals is the number of regions
versus computational complexity—and the right approach is to use problem-specific
information to reduce the number of Rols.

Network predictions

This component includes the pretrained CNN network that is used for feature extraction
to extract features from the input image that are representative for the task at hand and
to use these features to determine the class of the image. In object detection frame-
works, people typically use pretrained image classification models to extract visual fea-
tures, as these tend to generalize fairly well. For example, a model trained on the MS
COCO or ImageNet dataset is able to extract fairly generic features.

In this step, the network analyzes all the regions that have been identified as
having a high likelihood of containing an object and makes two predictions for
each region:

= Bounding-box prediction—The coordinates that locate the box surrounding the
object. The bounding box coordinates are represented as the tuple (x, y, w, &),
where x and y are the coordinates of the center point of the bounding box and
wand / are the width and height of the box.

= Class prediction: The classic softmax function that predicts the class probability
for each object.

Since thousands of regions are proposed, each object will always have multiple bound-
ing boxes surrounding it with the correct classification. For example, take a look at
the image of the dog in figure 7.3. The network was clearly able to find the object
(dog) and successfully classify it. But the detection fired a total of five times because

Figure 7.3 The bounding-box detector
produces more than one bounding box for
an object. We want to consolidate these
boxes into one bounding box that fits the
object the most.
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the dog was present in the five Rols produced in the previous step: hence the five
bounding boxes around the dog in the figure. Although the detector was able to
successfully locate the dog in the image and classify it correctly, this is not exactly
what we need. We need just one bounding box for each object for most problems.
In some problems, we only want the one box that fits the object the most. What if we
are building a system to count dogs in an image? Our current system will count five
dogs. We don’t want that. This is when the non-maximum suppression technique
comes in handy.

Non-maximum suppression (NMS)

As you can see in figure 7.4, one of the problems of an object detection algorithm is
that it may find multiple detections of the same object. So, instead of creating only
one bounding box around the object, it draws multiple boxes for the same object.
NMS is a technique that makes sure the detection algorithm detects each object only
once. As the name implies, NMS looks at all the boxes surrounding an object to find

the box that has the maximum prediction probability, and it suppresses or eliminates the
other boxes (hence the name).

Predictions before NMS After applying non-maximum suppression

Figure 7.4 Multiple regions are proposed for the same object. After NMS, only the box
that fits the object the best remains; the rest are ignored, as they have large overlaps with
the selected box.

The general idea of NMS is to reduce the number of candidate boxes to only one
bounding box for each object. For example, if the object in the frame is fairly large
and more than 2,000 object proposals have been generated, it is quite likely that some
of them will have significant overlap with each other and the object.
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Let’s see the steps of how the NMS algorithm works:

Discard all bounding boxes that have predictions that are less than a certain
threshold, called the confidence threshold. This threshold is tunable, which
means a box will be suppressed if the prediction probability is less than the set
threshold.

Look at all the remaining boxes, and select the bounding box with the highest
probability.

Calculate the overlap of the remaining boxes that have the same class predic-
tion. Bounding boxes that have high overlap with each other and that predict
the same class are averaged together. This overlap metric is called intersection
over union (IoU). IoU is explained in detail in the next section.

Suppress any box that has an IoU value smaller than a certain threshold (called
the NMS threshold). Usually the NMS threshold is equal to 0.5, but it is tunable as
well if you want to output fewer or more bounding boxes.

NMS techniques are typically standard across the different detection frameworks, but
it is an important step that may require tweaking hyperparameters such as the confi-
dence threshold and the NMS threshold based on the scenario.

Object-detector evaluation metrics

When evaluating the performance of an object detector, we use two main evaluation
metrics: frames per second and mean average precision.

FRAMES PER SECOND (FPS) TO MEASURE DETECTION SPEED

The most common metric used to measure detection speed is the number of frames
per second (FPS). For example, Faster R-CNN operates at only 7 FPS, whereas SSD
operates at 59 FPS. In benchmarking experiments, you will see the authors of a paper
state their network results as: “Network X achieves mAP of Y% at Z FPS,” where X is
the network name, Y is the mAP percentage, and Z is the FPS.

MEAN AVERAGE PRECISION (MAP) TO MEASURE NETWORK PRECISION
The most common evaluation metric used in object recognition tasks is mean average
precision (mAP). It is a percentage from 0 to 100, and higher values are typically better,
but its value is different from the accuracy metric used in classification.

To understand how mAP is calculated, you first need to understand intersection
over union (IoU) and the precision-recall curve (PR curve). Let’s explain IoU and the
PR curve and then come back to mAP.

INTERSECTION OVER UNION (loU)

This measure evaluates the overlap between two bounding boxes: the ground truth
bounding box (Bground wuth) and the predicted bounding box (Bpredictea)- By applying
the IoU, we can tell whether a detection is valid (True Positive) or not (False Positive).
Figure 7.5 illustrates the IoU between a ground truth bounding box and a predicted
bounding box.
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Figure 7.5 The loU score is the overlap between the ground truth bounding box and
the predicted bounding box.

The intersection over the union value ranges from 0 (no overlap at all) to 1 (the two
bounding boxes overlap each other 100%). The higher the overlap between the
two bounding boxes (IoU value), the better (figure 7.6).

loU: 0.4034 loU: 0.7330 loU: 0.9264

Poor Good Excellent

Figure 7.6 loU scores range from 0 (no overlap) to 1 (100% overlap).
The higher the overlap (loU) between the two bounding boxes, the better.

To calculate the IoU of a prediction, we need the following:

* The ground truth bounding box (Bgound truth): the hand-labeled bounding box
created during the labeling process
= The predicted bounding box (Bpedicted) from our model

We calculate IoU by dividing the area of overlap by the area of the union, as in the fol-
lowing equation:

Bpredicted

Bpredicted

IoU = Bground truth 7

ground truth Y
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IoU is used to define a correct prediction, meaning a prediction (True Positive) that has
an IoU greater than some threshold. This threshold is a tunable value depending on
the challenge, but 0.5 is a standard value. For example, some challenges, like Micro-
soft COCO, use mAP@0.5 (IoU threshold of 0.5) or mAP@0.75 (IoU threshold of
0.75). If the ToU value is above this threshold, the prediction is considered a True Pos-
itive (TP); and if it is below the threshold, it is considered a False Positive (FP).

PRECISION-RECALL CURVE (PR CURVE)

With the TP and FP defined, we can now calculate the precision and recall of our
detection for a given class across the testing dataset. As explained in chapter 4, we cal-
culate the precision and recall as follows (recall that FN stands for False Negative):

TP
Recall = TP N
Precision = TP _
TP+ FP

After calculating the precision and recall for all classes, the PR curve is then plotted as
shown in figure 7.7.

Precision

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 7.7 A precision-recall curve is used to evaluate the performance of
an object detector.

The PR curve is a good way to evaluate the performance of an object detector, as the
confidence is changed by plotting a curve for each object class. A detector is consid-
ered good if its precision stays high as recall increases, which means if you vary the
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confidence threshold, the precision and recall will still be high. On the other hand, a
poor detector needs to increase the number of FPs (lower precision) in order to
achieve a high recall. That’s why the PR curve usually starts with high precision values,
decreasing as recall increases.

Now that we have the PR curve, we can calculate the average precision (AP) by cal-
culating the area under the curve (AUC). Finally, the mAP for object detection is the
average of the AP calculated for all the classes. It is also important to note that some
research papers use AP and mAP interchangeably.

RECAP
To recap, the mAP is calculated as follows:

Get each bounding box’s associated objectness score (probability of the box
containing an object).

Calculate precision and recall.

Compute the PR curve for each class by varying the score threshold.

Calculate the AP: the area under the PR curve. In this step, the AP is computed
for each class.

Calculate the mAP: the average AP over all the different classes.

The last thing to note about mAP is that it is more complicated to calculate than other
traditional metrics like accuracy. The good news is that you don’t need to compute
mAP values yourself: most DL object detection implementations handle computing
the mAP for you, as you will see later in this chapter.

Now that we understand the general framework of object detection algorithms,
let’s dive deeper into three of the most popular. In this chapter, we will discuss the
R-CNN family of networks, SSD, and YOLO networks in detail to see how object detec-
tors have evolved over time. We will also examine the pros and cons of each network
so you can choose the most appropriate algorithm for your problem.

Region-based convolutional neural networks (R-CNNs)

The R-CNN family of object detection techniques usually referred to as R-CNNs, which
is short for region-based convolutional neural networks, was developed by Ross Girshick et
al. in 2014.! The R-CNN family expanded to include Fast-RCNN? and Faster-RCN?® in
2015 and 2016, respectively. In this section, I'll quickly walk you through the evolution
of the R-CNN family from R-CNNs to Fast R-CNN to Faster R-CNN, and then we will
dive deeper into the Faster R-CNN architecture and code implementation.

Ross Girshick, Jeftf Donahue, Trevor Darrell, and Jitendra Malik, “Rich Feature Hierarchies for Accurate

Object Detection and Semantic Segmentation,” 2014, http://arxiv.org/abs/1311.2524.

Ross Girshick, “Fast R-CNN,” 2015, http://arxiv.org/abs/1504.08083.

® Shaoging Ren, Kaiming He, Ross Girshick, and Jian Sun, “Faster R-CNN: Towards Real-Time Object Detec-
tion with Region Proposal Networks,” 2016, http://arxiv.org/abs/1506.01497.
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25}

72.1 R-CNN

R-CNN is the least sophisticated region-based architecture in its family, but it is the basis
for understanding how multiple object-recognition algorithms work for all of them. It
was one of the first large, successful applications of convolutional neural networks to the

problem of object detection and localization, and it paved the way for the other
advanced detection algorithms. The approach was demonstrated on benchmark data-
sets, achieving then-state-of-the-art results on the PASCAL VOC-2012 dataset and the
ILSVRC 2013 object detection challenge. Figure 7.8 shows a summary of the R-CNN
model architecture.

;-*| Airplane? no.
1
i

CNN  {-~/ TV monitor? no

SN S

A pretrained CNN A classifier and
Warped )
) - - region to extract features bounding-box
Input image Extract regions of interest regressor

(ROI) using selective
search algorithm

Figure 7.8 Summary of the R-CNN model architecture. (Modified from Girshick et al., “Rich Feature Hierarchies
for Accurate Object Detection and Semantic Segmentation.”)

The R-CNN model consists of four components:

= Extract regions of interest—Also known as extracting region proposals. These regions
have a high probability of containing an object. An algorithm called selective
search scans the input image to find regions that contain blobs, and proposes
them as Rols to be processed by the next modules in the pipeline. The pro-
posed Rols are then warped to have a fixed size; they usually vary in size, but as
we learned in previous chapters, CNNs require a fixed input image size.

= Feature extraction module—We run a pretrained convolutional network on top of
the region proposals to extract features from each candidate region. This is the
typical CNN feature extractor that we learned about in previous chapters.

= Classification module—We train a classifier like a support vector machine (SVM),
a traditional machine learning algorithm, to classify candidate detections based
on the extracted features from the previous step.

= Localization module—Also known as a bounding-box regressor. Let’s take a step back
to understand regression. ML problems are categorized as classification or regres-
sion problems. Classification algorithms output discrete, predefined classes (dog,
cat, elephant), whereas regression algorithms output continuous value predic-
tions. In this module, we want to predict the location and size of the bounding
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box that surrounds the object. The bounding box is represented by identifying
four values: the x and y coordinates of the box’s origin (x, y), the width, and
the height of the box (w, k). Putting this together, the regressor predicts the
four real-valued numbers that define the bounding box as the following tuple:

(x, 5, w, ).

Selective search

Selective search is a greedy search algorithm that is used to provide region proposals
that potentially contain objects. It tries to find areas that might contain an object by
combining similar pixels and textures into rectangular boxes. Selective search com-
bines the strength of both the exhaustive search algorithm (which examines all possible
locations in the image) and the bottom-up segmentation algorithm (which hierarchically
groups similar regions) to capture all possible object locations.

The selective search algorithm works by applying a segmentation algorithm to find
blobs in an image, in order to figure out what could be an object (see the image on
the right in the following figure).

>

Segmentation

The selective search algorithm looks for blob-like areas in the image to
extract regions. At right, the segmentation algorithm defines blobs that
could be objects. Then the selective search algorithm selects these
areas to be passed along for further investigation.

Bottom-up segmentation recursively combines these groups of regions together into
larger ones to create about 2,000 areas to be investigated, as follows:

The similarities between all neighboring regions are calculated.
The two most similar regions are grouped together, and new similarities are
calculated between the resulting region and its neighbors.

3 This process is repeated until the entire object is covered in a single region.

Note that a review of the selective search algorithm and how it calculates regions’
similarity is outside the scope of this book. If you are interested in learning more
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HEW)|
]
il
o N e/l - L]
Input image Proposed regions After the first iteration After a few iterations

An example of bottom-up segmentation using the selective search algorithm. It combines similar
regions in every iteration until the entire object is covered in a single region.

about this technique, you can refer to the original paper.? For the purpose of under-
standing R-CNNs, you can treat the selective search algorithm as a black box that
intelligently scans the image and proposes Rol locations for us to use.

a

J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, and A.W.M. Smeulders, “Selective Search for Object
Recognition,” 2012, www.huppelen.nl/publications/selectiveSearchDraft.pdf.

Figure 7.9 illustrates the R-CNN architecture in an intuitive way. As you can see, the
network first proposes Rols, then extracts features, and then classifies those regions

4. The network produces
| Bhox reg | | SVMs | — bounding-box and classification
| Bbox reg || SVMs | \ L predictions.

| Bbox reg || SVMs |

3. Forward each region through
ConvNet *—_ the pretrained ConvNet to
ConvNet extract features.

ConvNet

2. Extracted regions are warped
before being fed to the ConvNet.

1. Selective search algorithm
is used to extract Rols from
the input image.

A
4y,
/o

Figure 7.9 Illlustration of the R-CNN architecture. Each proposed Rol is passed through the CNN

to extract features, followed by a bounding-box regressor and an SVM classifier to produce the
network output prediction.
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based on their features. In essence, we have turned object detection into an image
classification problem.

TRAINING R-CNNs

We learned in the previous section that R-CNNs are composed of four modules: selec-
tive search region proposal, feature extractor, classifier, and bounding-box regressor.
All of the R-CNN modules need to be trained except the selective search algorithm.
So, in order to train R-CNNs, we need to do the following:

Train the feature extractor CNN. This is a typical CNN training process. We
either train a network from scratch, which rarely happens, or fine-tune a pre-
trained network, as we learned to do in chapter 6.

Train the SVM classifier. The SVM algorithm is not covered in this book, but it is
a traditional ML classifier that is no different from DL classifiers in the sense
that it needs to be trained on labeled data.

Train the bounding-box regressors. This model outputs four real-valued num-
bers for each of the K object classes to tighten the region bounding boxes.

Looking through the R-CNN learning steps, you could easily find out that training an
R-CNN model is expensive and slow. The training process involves training three sepa-
rate modules without much shared computation. This multistage pipeline training is
one of the disadvantages of R-CNNss, as we will see next.

DISADVANTAGES OF R-CNN

R-CNN is very simple to understand, and it achieved state-of-the-art results when it
first came out, especially when using deep ConvNets to extract features. However, it is
not actually a single end-to-end system that learns to localize via a deep neural net-
work. Rather, it is a combination of standalone algorithms, added together to perform
object detection. As a result, it has the following notable drawbacks:

Object detection s very slow. For each image, the selective search algorithm pro-
poses about 2,000 Rols to be examined by the entire pipeline (CNN feature
extractor and classifier). This is very computationally expensive because it per-
forms a ConvNet forward pass for each object proposal without sharing computa-
tion, which makes it incredibly slow. This high computation need means R-CNN
is not a good fit for many applications, especially real-time applications that
require fast inferences like self-driving cars and many others.

Training is a multi-stage pipeline. As discussed earlier, R-CNNs require the training
of three modules: CNN feature extractor, SVM classifier, and bounding-box
regressors. Thus the training process is very complex and not an end-to-end
training.

Training is expensive in terms of space and time. When training the SVM classifier
and bounding-box regressor, features are extracted from each object proposal
in each image and written to disk. With very deep networks, such as VGG16, the
training process for a few thousand images takes days using GPUs. The training
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process is expensive in space as well, because the extracted features require
hundreds of gigabytes of storage.

What we need is an end-to-end DL system that fixes the disadvantages of R-CNN while
improving its speed and accuracy.

Fast R-CNN

Fast R-CNN was an immediate descendant of R-CNN, developed in 2015 by Ross Gir-
shick. Fast R-CNN resembled the R-CNN technique in many ways but improved on its
detection speed while also increasing detection accuracy through two main changes:

Instead of starting with the regions proposal module and then using the feature
extraction module, like R-CNN, Fast-RCNN proposes that we apply the CNN
feature extractor first to the entire input image and then propose regions. This
way, we run only one ConvNet over the entire image instead of 2,000 ConvNets
over 2,000 overlapping regions.

It extends the ConvNet’s job to do the classification part as well, by replacing
the traditional SVM machine learning algorithm with a softmax layer. This way,
we have a single model to perform both tasks: feature extraction and object
classification.

FAST R-CNN ARCHITECTURE

As shown in figure 7.10, Fast R-CNN generates region proposals based on the last fea-
ture map of the network, not from the original image like R-CNN. As a result, we can
train just one ConvNet for the entire image. In addition, instead of training many dif-
ferent SVM algorithms to classify each object class, a single softmax layer outputs the
class probabilities directly. Now we only have one neural net to train, as opposed to
one neural net and many SVMs.

The architecture of Fast R-CNN consists of the following modules:

Feature extractor module—The network starts with a ConvNet to extract features
from the full image.

Rol extractor—The selective search algorithm proposes about 2,000 region can-
didates per image.

Rol pooling layer—This is a new component that was introduced to extract a
fixed-size window from the feature map before feeding the Rols to the fully
connected layers. It uses max pooling to convert the features inside any valid
Rol into a small feature map with a fixed spatial extent of height x width (H x W).
The Rol pooling layer will be explained in more detail in the Faster R-CNN sec-
tion; for now, understand that it is applied on the last feature map layer extracted
from the CNN, and its goal is to extract fixed-size Rols to feed to the fully con-
nected layers and then the output layers.

Two-head output layer—The model branches into two heads:

— Assoftmax classifier layer that outputs a discrete probability distribution per Rol
— A bounding-box regressor layer to predict offsets relative to the original Rol
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Softmax Bounding-box Two output layers
classifier regressor

Fixed-size Rols after :I Fully connected layers

the Rol pooling layer — /
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Proposed Rols ] Rol pooling layer

have different sizes.
T & Rol extractor
: (selective search

Feature extractor
ConvNet

Input image

Figure 7.10 The Fast R-CNN architecture consists of a feature extractor ConvNet, Rol
extractor, Rol pooling layers, fully connected layers, and a two-head output layer. Note
that, unlike R-CNNs, Fast R-CNNs apply the feature extractor to the entire input image
before applying the regions proposal module.

MIULTI-TASK LOSS FUNCTION IN FAST R-CNNs

Since Fast R-CNN is an end-to-end learning architecture to learn the class of an object
as well as the associated bounding box position and size, the loss is multi-task loss. With
multi-task loss, the output has the softmax classifier and bounding-box regressor, as
shown in figure 7.10.

In any optimization problem, we need to define a loss function that our optimizer
algorithm is trying to minimize. (Chapter 2 gives more details about optimization and
loss functions.) In object detection problems, our goal is to optimize for two goals:
object classification and object localization. Therefore, we have two loss functions in
this problem: L for the classification loss and L, for the bounding box prediction
defining the object location.

A Fast R-CNN network has two sibling output layers with two loss functions:

Classification—The first outputs a discrete probability distribution (per Rol)
over K + 1 categories (we add one class for the background). The probability P
is computed by a softmax over the K+ 1 outputs of a fully connected layer. The
classification loss function is a log loss for the true class u

Lcls(ﬁ» u) = _logpu

where wis the true label, ue 0,1, 2, ... (K+ 1); where u = 0 is the background;
and p is the discrete probability distribution per Rol over K+ 1 classes.
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Regression—The second sibling layer outputs bounding box regression offsets
v = (x, y, w, h) for each of the K object classes. The loss function is the loss for
bounding box for class u

Ly (1", u) = ZLI smooth (" = ¥;)

where:
— wvis the true bounding box, v= (x, y, w, h).
— t"is the prediction bounding box correction:

= (8 B 1

— Llgnoow 18 the bounding box loss that measures the difference between ¢;*
and v; using the smooth L1 loss function. It is a robust function and is
claimed to be less sensitive to outliers than other regression losses like L2.

The overall loss function is
L= Lcls + Lloc

L(p) ua tu) U) = L(ls(p’ u) + [u 2 l]lbOX(tu’ 'U)

Note that [« = 1] is added before the regression loss to indicate 0 when the region
inspected doesn’t contain any object and contains a background. It is a way of ignor-
ing the bounding box regression when the classifier labels the region as a back-
ground. The indicator function [u = 1] is defined as

[u>1] = 1 ifuZlh
0 otherwise

DISADVANTAGES OF FAST R-CNN

Fast R-CNN is much faster in terms of testing time, because we don’t have to feed
2,000 region proposals to the convolutional neural network for every image. Instead, a
convolution operation is done only once per image, and a feature map is generated
from it. Training is also faster because all the components are in one CNN network:
feature extractor, object classifier, and bounding-box regressor. However, there is a big
bottleneck remaining: the selective search algorithm for generating region proposals
is very slow and is generated separately by another model. The last step to achieve a
complete end-to-end object detection system using DL is to find a way to combine the
region proposal algorithm into our end-to-end DL network. This is what Faster R-CNN
does, as we will see next.
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Faster R-CNN

Faster R-CNN is the third iteration of the R-CNN family, developed in 2016 by Shao-
qing Ren et al. Similar to Fast R-CNN, the image is provided as an input to a convolu-
tional network that provides a convolutional feature map. Instead of using a selective
search algorithm on the feature map to identify the region proposals, a region proposal
network (RPN) is used to predict the region proposals as part of the training process.
The predicted region proposals are then reshaped using an Rol pooling layer and
used to classify the image within the proposed region and predict the offset values for
the bounding boxes. These improvements both reduce the number of region propos-
als and accelerate the test-time operation of the model to near real-time with then-
state-of-the-art performance.

FASTER R-CNN ARCHITECTURE
The architecture of Faster R-CNN can be described using two main networks:
Region proposal network (RPN)—Selective search is replaced by a ConvNet that
proposes Rols from the last feature maps of the feature extractor to be consid-
ered for investigation. The RPN has two outputs: the objectness score (object or
no object) and the box location.
Fast R-CNN—It consists of the typical components of Fast R-CNN:
— Base network for the feature extractor: a typical pretrained CNN model to
extract features from the input image
— Rol pooling layer to extract fixed-size Rols
— Output layer that contains two fully connected layers: a softmax classifier to
output the class probability and a bounding box regression CNN for the
bounding box predictions

As you can see in figure 7.11, the input image is presented to the network, and its fea-
tures are extracted via a pretrained CNN. These features, in parallel, are sent to two
different components of the Faster R-CNN architecture:
The RPN to determine where in the image a potential object could be. At this
point, we do not know what the object is, just that there is potentially an object
at a certain location in the image.

Rol pooling to extract fixed-size windows of features.

The output is then passed into two fully connected layers: one for the object classifier
and one for the bounding box coordinate predictions to obtain our final localizations.
This architecture achieves an end-to-end trainable, complete object detection pipe-

line where all of the required components are inside the network:

Base network feature extractor

Regions proposal

Rol pooling

Object classification

Bounding-box regressor
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Region proposal network (RPN)
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Figure 7.11 The Faster R-CNN architecture has two main components: an RPN that identifies regions
that may contain objects of interest and their approximate location, and a Fast R-CNN network that
classifies objects and refines their location defined using bounding boxes. The two components share
the convolutional layers of the pretrained VGG16.

BASE NETWORK TO EXTRACT FEATURES

Similar to Fast R-CNN, the first step is to use a pretrained CNN and slice off its classifi-
cation part. The base network is used to extract features from the input image. We
covered how this works in detail in chapter 6. In this component, you can use any of
the popular CNN architectures based on the problem you are trying to solve. The
original Faster R-CNN paper used ZF* and VGG® pretrained networks on ImageNet;
but since then, there have been lots of different networks with a varying number of
weights. For example, MobileNet,® a smaller and efficient network architecture opti-
mized for speed, has approximately 3.3 million parameters, whereas ResNet-152 (152
layers)—once the state of the art in the ImageNet classification competition—has
around 60 million. Most recently, new architectures like DenseNet” are both improv-
ing results and reducing the number of parameters.

=

Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” 2013,
http://arxiv.org/abs/1311.2901.

Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recog-
nition,” 2014, http://arxiv.org/abs/1409.1556.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam, “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications,” 2017, http: //arxiv.org/abs/1704.04861.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger, “Densely Connected Convolu-
tional Networks,” 2016, http://arxiv.org/abs/1608.06993.
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VGGNet vs. ResNet

Nowadays, ResNet architectures have mostly replaced VGG as a base network for
extracting features. The obvious advantage of ResNet over VGG is that it has many
more layers (is deeper), giving it more capacity to learn very complex features. This
is true for the classification task and should be equally true in the case of object
detection. In addition, ResNet makes it easy to train deep models with the use of
residual connections and batch normalization, which was not invented when VGG was
first released. Please revisit chapter 5 for a more detailed review of the different CNN
architectures.

As we learned in earlier chapters, each convolutional layer creates abstractions based
on the previous information. The first layer usually learns edges, the second finds pat-
terns in edges to activate for more complex shapes, and so forth. Eventually we end up
with a convolutional feature map that can be fed to the RPN to extract regions that
contain objects.

REGION PROPOSAL NETWORK (RPN)

The RPN identifies regions that could potentially contain objects of interest, based on
the last feature map of the pretrained convolutional neural network. An RPN is also
known as an attention network because it guides the network’s attention to interesting
regions in the image. Faster R-CNN uses an RPN to bake the region proposal
directly into the R-CNN architecture instead of running a selective search algorithm
to extract Rols.

The architecture of the RPN is composed of two layers (figure 7.12):

A 3 x 3 fully convolutional layer with 512 channels

Two parallel 1 x 1 convolutional layers: a classification layer that is used to pre-
dict whether the region contains an object (the score of it being background or
foreground), and a layer for regression or bounding box prediction.

3 x 3 CONV
(pad 1, 512 output channels)

|
1 l

‘ 1 x 1 CONV ’ ‘ 1 x 1 CONV ’ Figure 7.12 Convolutional implementation

of an RPN architecture, where k is the

(2k output channels)
number of anchors

(4k output channels)
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Fully convolutional networks (FCNs)

One important aspect of object detection networks is that they should be fully convo-
lutional. A fully convolutional neural network means that the network does not contain
any fully connected layers, typically found at the end of a network prior to making out-
put predictions.

In the context of image classification, removing the fully connected layers is normally
accomplished by applying average pooling across the entire volume prior to using a
single dense softmax classifier to output the final predictions. An FCN has two main
benefits:

It is faster because it contains only convolution operations and no fully con-
nected layers.

It can accept images of any spatial resolution (width and height), provided the
image and network can fit into the available memory.

Being an FCN makes the network invariant to the size of the input image. However,
in practice, we might want to stick to a constant input size due to issues that only
become apparent when we are implementing the algorithm. A significant such prob-
lem is that if we want to process images in batches (because images in batches can
be processed in parallel by the GPU, leading to speed boosts), all of the images must
have a fixed height and width.

The 3 x 3 convolutional layer is applied on the last feature map of the base network
where a sliding window of size 3 x 3 is passed over the feature map. The output is then
passed to two 1 x 1 convolutional layers: a classifier and a bounding-box regressor.
Note that the classifier and the regressor of the RPN are not trying to predict the class
of the object and its bounding box; this comes later, after the RPN. Remember, the
goal of the RPN is to determine whether the region has an object to be investigated
afterward by the fully connected layers. In the RPN, we use a binary classifier to pre-
dict the objectness score of the region, to determine the probability of this region
being a foreground (contains an object) or a background (doesn’t contain an object).
It basically looks at the region and asks, “Does this region contain an object?” If the
answer is yes, then the region is passed along for further investigation by Rol pooling
and the final output layers (see figure 7.13).

How does the regressor predict the bounding box?

To answer this question, let’s first define the bounding box. It is the box that sur-
rounds the object and is identified by the tuple (x, y, w, h), where x and y are the
coordinates in the image that describes the center of the bounding box and % and
w are the height and width of the bounding box. Researchers have found that
defining the (x, y) coordinates of the center point can be challenging because we
have to enforce some rules to make sure the network predicts values inside the
boundaries of the image. Instead, we can create reference boxes called anchor boxes
in the image and make the regression layer predict offsets from these boxes called
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Low objectness score High objectness score
(background) (foreground)

Figure 7.13 The RPN classifier
predicts the objectness score,
which is the probability of an
image containing an object
(foreground) or a background.

deltas (Ay, Ay, Ay, Aj) to adjust the anchor boxes to better fit the object to get final

proposals (figure 7.14).

y Anchor box

. - A = offsets
hl A — A
)
N < Predicted
New height ® New (x, y) bounding box
AN w \\\ A \\\\
New width

Anchor boxes

Figure 7.14 lllustration of
predicting the delta shift from
the anchor boxes and the
bounding box coordinates

Using a sliding window approach, the RPN generates k regions for each location in
the feature map. These regions are represented as anchor boxes. The anchors are cen-
tered in the middle of their corresponding sliding window and differ in terms of scale
and aspect ratio to cover a wide variety of objects. They are fixed bounding boxes that
are placed throughout the image to be used for reference when first predicting object
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locations. In their paper, Ren et. al. generated nine anchor boxes that all had the
same center but that had three different aspect ratios and three different scales.

Figure 7.15 shows an example of how anchor boxes are applied. Anchors are at the
center of the sliding windows; each window has k anchor boxes with the anchor at
their center.

Anchors Sliding windows

The anchor is placed at the
center of the sliding window.
Each anchor has anchor boxes
with varying sizes.

The loU is calculated to choose
the bounding box that overlaps
the most with the ground-truth
bounding box.

Anchor boxes

Figure 7.15 Anchors are at the center of each sliding window. loU is calculated to select the
bounding box that overlaps the most with the ground truth.

Training the RPN

The RPN is trained to classify an anchor box to output an objectness score and to

approximate the four coordinates of the object (location parameters). Itis trained using

human annotators to label the bounding boxes. A labeled box is called the ground truth.
For each anchor box, the overlap probability value (p) is computed, which indi-

cates how much these anchors overlap with the ground-truth bounding boxes:

1 if IoU > 0.7
p=17 -1 if IoU < 0.3
0 otherwise

If an anchor has high overlap with a ground-truth bounding box, then it is likely that
the anchor box includes an object of interest, and it is labeled as positive with respect
to the object versus no object classification task. Similarly, if an anchor has small overlap
with a ground-truth bounding box, it is labeled as negative. During the training process,
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the positive and negative anchors are passed as input to two fully connected layers cor-
responding to the classification of anchors as containing an object or no object, and
to the regression of location parameters (four coordinates), respectively. Correspond-
ing to the k number of anchors from a location, the RPN network outputs 2k scores
and 4k coordinates. Thus, for example, if the number of anchors per sliding window
(k) 15 9, then the RPN outputs 18 objectness scores and 36 location coordinates (fig-
ure 7.16).

cls layer reg layer

| 2k scores | | 4k coordinates | «———  k anchor boxes

256-d Intermediate ) .=
f layer e

Sliding window

CONYV feature map

Figure 7.16 Region proposal network

RPN as a standalone application

An RPN can be used as a standalone application. For example, in problems with a
single class of objects, the objectness probability can be used as the final class prob-
ability. This is because in such a case, foreground means single class, and background
means not a single class.

The reason you would want to use RPN for cases like single-class detection is the
gain in speed in both training and prediction. Since the RPN is a very simple network
that only uses convolutional layers, the prediction time can be faster than using the
classification base network.

FULLY CONNECTED LAYER

The output fully connected layer takes two inputs: the feature maps coming from the
base ConvNet and the Rols coming from the RPN. It then classifies the selected
regions and outputs their prediction class and the bounding box parameters. The
object classification layer in Faster R-CNN uses softmax activation, while the location
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regression layer uses linear regression over the coordinates defining the location as a
bounding box. All of the network parameters are trained together using multi-task loss.

MULTI-TASK LOSS FUNCTION
Similar to Fast R-CNN, Faster R-CNN is optimized for a multi-task loss function that
combines the losses of classification and bounding box regression:

L= LCLY + Lloc
Hiphlud) - N% 2. Lalpr i) + N%— Db+ Llgnoom (4= 1)

The loss equation might look a little overwhelming at first, but it is simpler than it
appears. Understanding it is not necessary to be able to run and train Faster R-CNNs,
so feel free to skip this section. But I encourage you to power through this explana-
tion, because it will add a lot of depth to your understanding of how the optimization
process works under the hood. Let’s go through the symbols first; see table 7.2.

Table 7.2 Multi-task loss function symbols

Symbol Explanation

p; and p; p; is the predicted probability of the anchor (i) being an object and the ground, and p;
is the binary ground truth (O or 1) of the anchor being an object.

t;and t; t; is the predicted four parameters that define the bounding box, and t; is the ground-
truth parameters.

Nejs Normalization term for the classification loss. Ren et al. set it to be a mini-batch size
of ~256.
Nioc Normalization term for the bounding box regression. Ren et al. set it to the number

of anchor locations, ~2400.

Leis(Pir P7) The log loss function over two classes. We can easily translate a multi-class classifi-
cation into a binary classification by predicting whether a sample is a target object:

Leis(pi» p7) = —pj log p; — (1 - pj) log (1 - pj)

L1 smooth As described in section 7.2.2, the bounding box loss measures the difference
between the predicted and true location parameters (t;, t;) using the smooth L1 loss
function. It is a robust function and is claimed to be less sensitive to outliers than
other regression losses like L2.

A A balancing parameter, set to be ~10 in Ren et al. (so the L and L, terms are
roughly equally weighted).

Now that you know the definitions of the symbols, let’s try to read the multi-task loss func-
tion again. To help understand this equation, just for a moment, ignore the normaliza-
tion terms and the (¢) terms. Here’s the simplified loss function for each instance (i):

Loss = Ly (p, }b*) + }b* * Llnoom (1= t*)
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This simplified function is the summation of two loss functions: the classification loss
and the location loss (bounding box). Let’s look at them one at a time:

The idea of any loss function is that it subtracts the predicted value from the
true value to find the amount of error. The classification loss is the cross-entropy
function explained in chapter 2. Nothing new. It is a log loss function that
calculates the error between the prediction probability (p) and the ground
truth (p°):

Las(pi» pi) = —pilog pi— (1= p;) log (1 - p)

The location loss is the difference between the predicted and true location
parameters ({;, ¢;) using the smooth L1 loss function. The difference is then
multiplied by the ground truth probability of the region containing an object
#". If itis not an object, p" is 0 to eliminate the entire location loss for non-object
regions.

Finally, we add the values of both losses to create the multi-loss function:
L= LClS + Lloc

There you have it: the multi-loss function for each instance (7). Put back the (¢) and X
symbols to calculate the summation of losses for each instance.

Recap of the R-CNN family
Table 7.3 recaps the evolution of the R-CNN architecture:

R-CNN—Bounding boxes are proposed by the selective search algorithm. Each
is warped, and features are extracted via a deep convolutional neural network
such as AlexNet, before a final set of object classifications and bounding box
predictions is made with linear SVMs and linear regressors.

Fast R-CNN—A simplified design with a single model. An Rol pooling layer is
used after the CNN to consolidate regions. The model predicts both class labels
and Rols directly.

Faster R-CNN—A fully end-to-end DL object detector. It replaces the selective
search algorithm to propose Rols with a region proposal network that inter-
prets features extracted from the deep CNN and learns to propose Rols
directly.
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Table 7.3 The evolution of the CNN family of networks from R-CNN to Fast R-CNN to Faster R-CNN

mAP on the PASCAL
Visual Object
Classes Challenge
2007

Features

Limitations

Test time per image

Speed-up from
R-CNN

R-CNN

66.0%

Applies selective search to
extract Rols (~2,000) from
each image.

A ConvNet is used to extract
features from each of the
~2,000 regions extracted.
Uses classification and
bounding box predictions.

High computation time, as
each region is passed to the
CNN separately. Also, uses
three different models for
making predictions.

50 seconds

1x

Fast R-CNN

] T vt ayers

[ ———
]

Fixed-size Rols after

the Rol pooing layer
. v

Proposed Rols
have diferent sizes—___

7] Rolpooing layer

66.9%

Each image is passed only
once to the CNN, and feature
maps are extracted.

A ConvNet is used to
extract feature maps from
the input image.

Selective search is used
on these maps to generate
predictions.

This way, we run only one
ConvNet over the entire image
instead of ~2,000 ConvNets
over 2000 overlapping
regions.

Selective search is slow
and, hence, computation time
is still high.

2 seconds

25x

Faster R-CNN

Classifier

Rol pooling

Proposals / ‘

Region proposal "\

Feature
maps

Input image

66.9%

Replaces the selec-
tive search method
with a region pro-
posal network, which
makes the algorithm
much faster.

An end-to-end DL
network.

Object proposal takes
time. And as there
are different systems
working one after the
other, the perfor-
mance of systems
depends on how

the previous system
performed.

0.2 seconds

250x




310

7.3

CHAPTER 7  Object detection with R-CNN, SSD, and YOLO

R-CNN LIMITATIONS

As you might have noticed, each paper proposes improvements to the seminal work
done in R-CNN to develop a faster network, with the goal of achieving real-time
object detection. The achievements displayed through this set of work is truly amaz-
ing, yet none of these architectures manages to create a real-time object detector.
Without going into too much detail, the following problems have been identified
with these networks:

Training the data is unwieldy and takes too long.

Training happens in multiple phases (such as the training region proposal ver-
sus a classifier).

The network is too slow at inference time.

Fortunately, in the last few years, new architectures have been created to address the
bottlenecks of R-CNN and its successors, enabling real-time object detection. The most
famous are the single-shot detector (SSD) and you only look once (YOLO), which we
will explain in sections 7.3 and 7.4.

MULTI-STAGE VS. SINGLE-STAGE DETECTOR
Models in the R-CNN family are all region-based. Detection happens in two stages,
and thus these models are called two-stage detectors:

The model proposes a set of Rols using selective search or an RPN. The pro-
posed regions are sparse because the potential bounding-box candidates can be
infinite.

A classifier only processes the region candidates.

One-stage detectors take a different approach. They skip the region proposal stage
and run detection directly over a dense sampling of possible locations. This approach
is faster and simpler but can potentially drag down performance a bit. In the next two
sections, we will examine the SSD and YOLO one-stage object detectors. In general,
single-stage detectors tend to be less accurate than two-stage detectors but are signifi-
cantly faster.

Single-shot detector (SSD)

The SSD paper was released in 2016 by Wei Liu et al.® The SSD network reached new
records in terms of performance and precision for object detection tasks, scoring over
74% mAP at 59 FPS on standard datasets such as the PASCAL VOC and Microsoft
COCO.

8 Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander
C. Berg, “SSD: Single Shot MultiBox Detector,” 2016, http://arxiv.org/abs/1512.02325.
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Measuring detector speed (FPS: Frames per second)

As discussed at the beginning of this chapter, the most common metric for measur-
ing detection speed is the number of frames per second. For example, Faster R-CNN
operates at only 7 frames per second (FPS). There have been many attempts to build
faster detectors by attacking each stage of the detection pipeline, but so far, signifi-
cantly increased speed has come only at the cost of significantly decreased detection
accuracy. In this section, you will see why single-stage networks like SSD can achieve
faster detections that are more suitable for real-time detection.

For benchmarking, SSD300 achieves 74.3% mAP at 59 FPS, while SSD512 achieves
76.8% mAP at 22 FPS, which outperforms Faster R-CNN (73.2% mAP at 7 FPS).
SSD300 refers to an input image of size 300 x 300, and SSD512 refers to an input
image of size 512 x 512.

We learned earlier that the R-CNN family are multi-stage detectors: the network first
predicts the objectness score of the bounding box and then passes this box through a
classifier to predict the class probability. In single-stage detectors like SSD and YOLO
(discussed in section 7.4), the convolutional layers make both predictions directly in
one shot: hence the name single-shot detector. The image is passed once through the
network, and the objectness score for each bounding box is predicted using logistic
regression to indicate the level of overlap with the ground truth. If the bounding box
overlaps 100% with the ground truth, the objectness score is 1; and if there is no over-
lap, the objectness score is 0. We then set a threshold value (0.5) that says, “If the
objectness score is above 50%, this bounding box likely has an object of interest, and
we get predictions. If it is less than 50%, we ignore the predictions.”

High-level SSD architecture

The SSD approach is based on a feed-forward convolutional network that produces a
fixed-size collection of bounding boxes and scores for the presence of object class
instances in those boxes, followed by a NMS step to produce the final detections. The
architecture of the SSD model is composed of three main parts:

Base network to extract feature maps—A standard pretrained network used for
high-quality image classification, which is truncated before any classification
layers. In their paper, Liu et al. used a VGG16 network. Other networks like
VGG19 and ResNet can be used and should produce good results.

Multi-scale feature layers—A series of convolution filters are added after the base
network. These layers decrease in size progressively to allow predictions of
detections at multiple scales.

Non-maximum suppression—NMS is used to eliminate overlapping boxes and
keep only one box for each object detected.

As you can see in figure 7.17, layers 4_3, 7, 8_2,9_2, 10_2, and 11_2 make predictions
directly to the NMS layer. We will talk about why these layers progressively decrease in
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Figure 7.17 The SSD architecture is composed of a base network (VGG16), extra convolutional layers for object
detection, and a non-maximum suppression (NMS) layer for final detections. Note that convolution layers 7, 8, 9,
10, and 11 make predictions that are directly fed to the NMS layer. (Source: Liu et al., 2016.)

size in section 7.3.3. For now, let’s follow along to understand the end-to-end flow of
data in SSD.

You can see in figure 7.17, that the network makes a total of 8,732 detections per
class that are then fed to an NMS layer to reduce down to one detection per object.
Where did the number 8,732 come from?

To have more accurate detection, different layers of feature maps also go through a
small 3 x 3 convolution for object detection. For example, Conv4_3 is of size 38 x 38 x
512, and a 3 x 3 convolutional is applied. There are four bounding boxes, each of which
has (number of classes + 4 box values) outputs. Suppose there are 20 object classes plus 1
background class; then the output number of bounding boxes is 38 x 38 x 4 = 5,776
bounding boxes. Similarly, we calculate the number of bounding boxes for the other
convolutional layers:

Conv7: 19 x 19 x 6 = 2,166 boxes (6 boxes for each location)
Conv8_2: 10 x 10 x 6 = 600 boxes (6 boxes for each location)
Conv9_2: 5 x 5 x 6 = 150 boxes (6 boxes for each location)
Convl0_2: 3 x 3 x 4 = 36 boxes (4 boxes for each location)
Convll_2: 1 x 1 x4 =4 boxes (4 boxes for each location)

If we sum them up, we get 5,776 + 2,166 + 600 + 150 + 36 + 4 = 8,732 boxes produced.
This is a huge number of boxes to show for our detector. That’s why we apply NMS to
reduce the number of the output boxes. As you will see in section 7.4, in YOLO there are
7 x 7Tlocations at the end with two bounding boxes for each location: 7 x 7 x 2 = 98 boxes.
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What does the output prediction look like?
For each feature, the network predicts the following:

4 values that describe the bounding box (x, y, w, h)
1 value for the objectness score
C values that represent the probability of each class

That’s a total of 5 + C prediction values. Suppose there are four object classes in our
problem. Then each prediction will be a vector that looks like this: [x, y, w, h, object-
ness score, Cq, Cy, C3, C4].

LN

precicion x [ X[ 2 w] n ]G Gl el e (Z[v Wl n[e ] co] calrualf procicion v

An example visualization of the output prediction when we have four classes in our problem. The
convolutional layer predicts the bounding box coordinates, objectness score, and four class
probabilities: C4, C,, C3, and Cy.

Now, let’s dive a little deeper into each component of the SSD architecture.

Base network

As you can see in figure 7.17, the SSD architecture builds on the VGG16 architecture
after slicing off the fully connected classification layers (VGG16 is explained in detail
in chapter 5). VGGI16 was used as the base network because of its strong performance
in high-quality image classification tasks and its popularity for problems where trans-
fer learning helps to improve results. Instead of the original VGG fully connected lay-
ers, a set of supporting convolutional layers (from Conv6 onward) was added to
enable us to extract features at multiple scales and progressively decrease the size of
the input to each subsequent layer.

Following is a simplified code implementation of the VGG16 network used in SSD
using Keras. You will not need to implement this from scratch; my goal in including
this code snippet is to show you that this is a typical VGG16 network like the one
implemented in chapter 5:
convl 1 = Conv2D(64, (3, 3), activation='relu',6 padding='same')

convl 2 = Conv2D (64, (3, 3), activation='relu',6 padding='same') (convl 1)
pooll = MaxPooling2D(pool size=(2, 2), strides=(2, 2), padding='same') (convl_2)
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conv2_ 1 = Conv2D (128, (3, 3), activation='relu',6 padding='same') (pooll)

conv2 2 = Conv2D (128, (3, 3), activation='relu',6 padding='same') (conv2 1)

pool2 = MaxPooling2D(pool size=(2, 2), strides=(2, 2), padding='same') (conv2_ 2)
conv3_ 1 = Conv2D (256, (3, 3), activation='relu',6 padding='same') (pool2)

conv3_ 2 = Conv2D (256, (3, 3), activation='relu',6 padding='same') (conv3_1)
conv3_3 = Conv2D (256, (3, 3), activation='relu',6 padding='same') (conv3_2)

pool3 = MaxPooling2D (pool size=(2, 2), strides=(2, 2), padding='same') (conv3_ 3)
conv4_ 1 = Conv2D (512, (3, 3), activation='relu',6 padding='same') (pool3)

conv4 2 = Conv2D (512, (3, 3), activation='relu',6 padding='same') (conv4 1)
conv4 3 = Conv2D (512, (3, 3), activation='relu',6 padding='same') (conv4_ 2)

pool4 = MaxPooling2D(pool size=(2, 2), strides=(2, 2), padding='same') (conv4_3)
conv5_ 1 = Conv2D (512, (3, 3), activation='relu',6 padding='same') (pool4)

conv5_2 = Conv2D (512, (3, 3), activation='relu',6 padding='same') (conv5_1)
conv5 3 = Conv2D (512, (3, 3), activation='relu',6 padding='same') (conv5_ 2)

pool5 = MaxPooling2D(pool size=(3, 3), strides=(1, 1), padding='same') (conv5_3)

You saw VGGI16 implemented in Keras in chapter 5. The two main takeaways from

adding this here are as follows:

Layer conv4_3 will be used again to make direct predictions.
Layer poolb will be fed to the next layer (conv6), which is the first of the multi-
scale features layers.

How THE BASE NETWORK MAKES PREDICTIONS

Consider the following example. Suppose you have the image in figure 7.18, and the
network’s job is to draw bounding boxes around all the boats in the image. The pro-
cess goes as follows:

Similar to the anchors concept in R-CNN, SSD overlays a grid of anchors around
the image. For each anchor, the network creates a set of bounding boxes at its
center. In SSD, anchors are called priors.

The base network looks at each bounding box as a separate image. For each
bounding box, the network asks, “Is there a boat in this box?” Or in other
words, “Did I extract any features of a boat in this box?”

When the network finds a bounding box that contains boat features, it sends its
coordinates prediction and object classification to the NMS layer.

NMS eliminates all the boxes except the one that overlaps the most with the
ground-truth bounding box.

NOTE Liu et al. used VGG16 because of its strong performance in complex
image classification tasks. You can use other networks like the deeper VGG19
or ResNet for the base network, and it should perform as well if not better in
accuracy; but it could be slower if you chose to implement a deeper network.
MobileNet is a good choice if you want a balance between a complex, high-
performing deep network and being fast.

Now, on to the next component of the SSD architecture: multi-scale feature layers.
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Bounding boxes that Bounding boxes that
contain boat features contain no boat features

Figure 7.18 The SSD base network looks at the anchor boxes to find features of a
boat. Solid boxes indicate that the network has found boat features. Dotted boxes
indicate no boat features.

Multi-scale feature layers

These are convolutional feature layers that are added to the end of the truncated base
network. These layers decrease in size progressively to allow predictions of detections
at multiple scales.

MULTI-SCALE DETECTIONS
To understand the goal of the multi-scale feature layers and why they vary in size, let’s
look at the image of horses in figure 7.19. As you can see, the base network may be

Figure 7.19 Horses at different scales in
an image. The horses that are far from the
camera are easier to detect because they
are small in size and can fit inside the priors
(anchor boxes). The base network might fail
to detect the horse closest to the camera
because it needs a different scale of anchors
to be able to create priors that cover more
identifiable features.
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able to detect the horse features in the background, but it may fail to detect the horse
that is closest to the camera. To understand why, take a close look at the dotted
bounding box and try to imagine this box alone outside the context of the full image
(see figure 7.20).

Figure 7.20 An isolated horse feature

Can you see horse features in the bounding box in figure 7.20? No. To deal with
objects of different scales in an image, some methods suggest preprocessing the image
at different sizes and combining the results afterward (figure 7.21). However, by using
different convolution layers that vary in size, we can use feature maps from several dif-
ferent layers in a single network; for prediction we can mimic the same effect, while
also sharing parameters across all object scales. As CNN reduces the spatial dimension
gradually, the resolution of the feature maps also decreases. SSD uses lower-resolution
layers to detect larger-scale objects. For example, 4 x 4 feature maps are used for
larger scale objects.

To visualize this, imagine that the network reduces the image dimensions to be
able to fit all of the horses inside its bounding boxes (figure 7.22). The multi-scale fea-
ture layers resize the image dimensions and keep the bounding-box sizes so that they

8 x 8 feature map 4 x 4 feature map

Figure 7.21 Lower-resolution feature maps detect larger-scale objects (right);
higher-resolution feature maps detect smaller-scale objects (left).
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Figure 7.22 Multi-scale feature layers
. . reduce the spatial dimensions of the input
image to detect objects with different

¢ ° ¢ scales. In this image, you can see that the
R o . new priors are kind of zoomed out to cover

more identifiable features of the horse close
. . . . . . . . . . to the camera.

can fit the larger horse. In reality, convolutional layers do not literally reduce the size
of the image; this is just for illustration to help us intuitively understand the concept.
The image is not just resized, it actually goes through the convolutional process and
thus won’t look anything like itself anymore. It will be a completely random-looking
image, but it will preserve its features. The convolutional process is explained in detail
in chapter 3.

Using multi-scale feature maps improves network accuracy significantly. Liu et al.
ran an experiment to measure the advantage gained by adding the multi-scale feature
layers. Figure 7.23 shows a decrease in accuracy with fewer layers; you can see the
accuracy with different numbers of feature map layers used for object detection.

mAP use
Prediction source layers from: boundary boxes? | # boxes
conv4_3 conv7 conv8 2 conv9_ 2 conv10_2 conv11_2 Yes No
v v v v v v 743 634 8,732
v v v v v 746 631 8,764
v v v v 73.8 684 8,942
v v (V4 70.7  69.2 9,864
v 4 642 644 9,025
v 624  64.0 8,664

Figure 7.23 Effects of using multiple output layers from the original paper. The
detector’s accuracy (mAP) increases when the authors add multi-scale features.
(Source: Liu et al., 2016.)

Notice that network accuracy drops from 74.3% when having the prediction source
from all six layers to 62.4% for one source layer. When using only the conv7 layer for
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prediction, performance is the worst, reinforcing the message that it is critical to spread
boxes of different scales over different layers.

ARCHITECTURE OF THE MULTI-SCALE LAYERS
Liu et al. decided to add six convolutional layers that decrease in size. They did this
with a lot of tuning and trial and error until they produced the best results. As you saw
in figure 7.17, convolutional layers 6 and 7 are pretty straightforward. Conv6 has a ker-
nel size of 3 x 3, and conv7 has a kernel size of 1 x 1. Layers 8 through 11, on the other
hand, are treated more like blocks, where each block consists of two convolutional lay-
ers of kernel sizes 1 x 1 and 3 x 3.

Here is the code implementation in Keras for layers 6 through 11 (you can see the
full implementation in the book’s downloadable code):

# convée and conv7

convé = Conv2D(1024, (3, 3), dilation rate=(6, 6), activation='relu',
padding="'same') (pool5)

conv7 = Conv2D (1024, (1, 1), activation='relu',K padding='same') (convé)

# conv8 block

conv8_1 = Conv2D(256, (1, 1)

conv8_2 = Conv2D(512, (3, 3)
padding='valid') (conv8_1

, activation='relu', padding='same') (conv7)

, strides=(2, 2), activation='relu',

)

# conv9 block

conv9_1 = Conv2D (128, (1, 1)

conv9_2 = Conv2D(256, (3, 3)
padding='valid') (conv9 1

, activation='relu', padding='same') (conv8_2)
, strides=(2, 2), activation='relu',

)
# convl0 block

convl0_ 1 = Conv2D (128, (1,

1
convl0_2 = Conv2D(256, (3, 3

), activation='relu', padding='same') (conv9_2)
)
padding='valid') (conv10_1)

strides=(1, 1), activation='relu',

# convll block

convll 1 = Conv2D(128, (1, 1)

convll 2 = Conv2D (256, (3, 3)
padding='valid') (convll 1

, activation='relu', padding='same') (convl0_ 2)
, strides=(1, 1), activation='relu',

)
As mentioned before, if you are not working in research or academia, you most prob-
ably won’t need to implement object detection architectures yourself. In most cases,
you will download an open source implementation and build on it to work on your
problem. I just added these code snippets to help you internalize the information dis-
cussed about different layer architectures.

Atrous (or dilated) convolutions

Dilated convolutions introduce another parameter to convolutional layers: the dilation
rate. This defines the spacing between the values in a kernel. A 3 x 3 kernel with a
dilation rate of 2 has the same field of view as a 5 x 5 kernel while only using nine
parameters. Imagine taking a 5 x 5 kernel and deleting every second column and row.
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This delivers a wider field of view at the same computational cost.

A 3 x 3 kernel with a dilation rate of 2 has
the same field of view as a 5 x 5 kernel
while only using nine parameters.

Dilated convolutions are particularly popular in the field of real-time segmentation.
Use them if you need a wide field of view and cannot afford multiple convolutions or
larger kernels.

The following code builds a dilated 3 x 3 convolution layer with a dilation rate of 2
using Keras:

Conv2D (1024, (3, 3), dilation rate=(2,2), activation='relu', padding='same')

Next, we discuss the third and last component of the SSD architecture: NMS.

Non-maximum suppression

Given the large number of boxes generated by the detection layer per class during a
forward pass of SSD at inference time, it is essential to prune most of the bounding
box by applying the NMS technique (explained earlier in this chapter). Boxes with a
confidence loss and IoU less than a certain threshold are discarded, and only the top
N predictions are kept (figure 7.24). This ensures that only the most likely predictions
are retained by the network, while the noisier ones are removed.

How does SSD use NMS to prune the bounding boxes? SSD sorts the predicted
boxes by their confidence scores. Starting from the top confidence prediction, SSD
evaluates whether there are any previously predicted boundary boxes for the same
class that overlap with each other above a certain threshold by calculating their IoU.
(The IoU threshold value is tunable. Liu et al. chose 0.45 in their paper.) Boxes with
IoU above the threshold are ignored because they overlap too much with another box
that has a higher confidence score, so they are most likely detecting the same object.
At most, we keep the top 200 predictions per image.
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Dog Building Car

Figure 7.24 Non-maximum suppression reduces the number of bounding boxes to only one box for
each object.

7.4 You only look once (YOLO)

Similar to the R-CNN family, YOLO is a family of object detection networks developed
by Joseph Redmon et al. and improved over the years through the following versions:

= YOLOwvlI, published in 2016°—Called “unified, real-time object detection” because
it is a single-detection network that unifies the two components of a detector:
object detector and class predictor.

= YOLOv2 (also known as YOLO9000), published later in 2016'°—Capable of
detecting over 9,000 objects; hence the name. It has been trained on ImageNet
and COCO datasets and has achieved 16% mAP, which is not good; but it was
very fast during test time.

= YOLOu3, published in 2018'—Significantly larger than previous models and
has achieved a mAP of 57.9%, which is the best result yet out of the YOLO fam-
ily of object detectors.

The YOLO family is a series of end-to-end DL models designed for fast object detec-
tion, and it was among the first attempts to build a fast real-time object detector. It is
one of the faster object detection algorithms out there. Although the accuracy of the
models is close but not as good as R-CNNs, they are popular for object detection
because of their detection speed, often demonstrated in real-time video or camera
feed input.

9 Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi, “You Only Look Once: Unified, Real-Time
Object Detection,” 2016, http://arxiv.org/abs/1506.02640.

10 Joseph Redmon and Ali Farhadi, “YOLO9000: Better, Faster, Stronger,” 2016, http://arxiv.org/abs/
1612.08242.

I Joseph Redmon and Ali Farhadi, “YOLOV3: An Incremental Improvement,” 2018, http://arxiv.org/abs/
1804.02767.
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The creators of YOLO took a different approach than the previous networks.
YOLO does not undergo the region proposal step like R-CNNs. Instead, it only pre-
dicts over a limited number of bounding boxes by splitting the input into a grid of
cells; each cell directly predicts a bounding box and object classification. The result is

a large number of candidate bounding boxes that are consolidated into a final predic-
tion using NMS (figure 7.25).

Splits the image into grids Predicts bounding boxes Final predictions after

and classifications non-maximum suppression

Figure 7.25 YOLO splits the image into grids, predicts objects for each grid, and then uses NMS to finalize
predictions.

74.1

YOLOv1 proposed the general architecture, YOLOV2 refined the design and made
use of predefined anchor boxes to improve bounding-box proposals, and YOLOv3
further refined the model architecture and training process. In this section, we are
going to focus on YOLOV3 because it is currently the state-of-the-art architecture in
the YOLO family.

How YOLOv3 works

The YOLO network splits the input image into a grid of §x S cells. If the center of the
ground-truth box falls into a cell, that cell is responsible for detecting the existence of
that object. Each grid cell predicts B number of bounding boxes and their objectness
score along with their class predictions, as follows:

= Coordinates of B bounding boxes—Similar to previous detectors, YOLO predicts
four coordinates for each bounding box (b,, by, by, bj), where x and y are set to
be offsets of a cell location.

= Objectness score (Py)—indicates the probability that the cell contains an object.
The objectness score is passed through a sigmoid function to be treated as a
probability with a value range between 0 and 1. The objectness score is calcu-
lated as follows:

Py =Pr (containing an object) x IoU (pred, truth)
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= Class prediction—If the bounding box contains an object, the network predicts
the probability of Knumber of classes, where Kis the total number of classes in
your problem.

It is important to note that before v3, YOLO used a softmax function for the class
scores. In v3, Redmon et al. decided to use sigmoid instead. The reason is that soft-
max imposes the assumption that each box has exactly one class, which is often not
the case. In other words, if an object belongs to one class, then it’s guaranteed not to
belong to another class. While this assumption is true for some datasets, it may not
work when we have classes like Women and Person. A multilabel approach models the
data more accurately.

As you can see in figure 7.26, for each bounding box (B), the prediction looks like
this: [ (bounding box coordinates), (objectness score), (class predictions)]. We’ve learned that

Input image split into a 13 x 13 grid

«— Prediction feature
map of the center cell

Attributes of each bounding box
‘ tX ty tW th PO P1 P2 aea PC x B
Bounding box  Objectness Class
coordinates score predictions

Figure 7.26 Example of a YOLOv3 workflow when applying a 13 x 13
grid to the input image. The input image is split into 169 cells. Each
cell predicts B number of bounding boxes and their objectness score
along with their class predictions. In this example, we show the cell
at the center of the ground-truth making predictions for 3 boxes

(B = 3). Each prediction has the following attributes: bounding box
coordinates, objectness score, and class predictions.
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the bounding box coordinates are four values plus one value for the objectness score
and K values for class predictions. Then the total number of values predicted for all
bounding boxes is 5B + K multiplied by the number of cells in the grid $x S:

Total predicted values = S x S x (5B + K)

PREDICTIONS ACROSS DIFFERENT SCALES

Look closely at figure 7.26. Notice that the prediction feature map has three boxes.
You might have wondered why there are three boxes. Similar to the anchors concept in
SSD, YOLOV3 has nine anchors to allow for prediction at three different scales per cell.
The detection layer makes detections at feature maps of three different sizes having
strides 32, 16, and 8, respectively. This means that with an input image of size 416 x 416,
we make detections on scales 13 x 13, 26 x 26, and 52 x 52 (figure 7.27). The 13 x 13
layer is responsible for detecting large objects, the 26 x 26 layer is for detecting medium
objects, and the 52 x 52 layer detects smaller objects.

13 x13 26 x 26 52x 52

Figure 7.27 Prediction feature maps at different scales

This results in the prediction of three bounding boxes for each cell (B = 3). That’s
why in figure 7.26, the prediction feature map is predicting Box 1, Box 2, and Box 3.
The bounding box responsible for detecting the dog will be the one whose anchor has
the highest IoU with the ground-truth box.

NOTE Detections at different layers help address the issue of detecting small
objects, which was a frequent complaint with YOLOv2. The upsampling layers
can help the network preserve and learn fine-grained features, which are
instrumental for detecting small objects.

The network does this by downsampling the input image until the first detection
layer, where a detection is made using feature maps of a layer with stride 32. Further,
layers are upsampled by a factor of 2 and concatenated with feature maps of previous
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layers having identical feature-map sizes. Another detection is now made at layer with
stride 16. The same upsampling procedure is repeated, and a final detection is made
at the layer of stride 8.

YOLOV3 OUTPUT BOUNDING BOXES

For an input image of size 416 x 416, YOLO predicts ((52 x 52) + (26 x 26) + 13 x 13))
x 3 = 10,647 bounding boxes. That is a huge number of boxes for an output. In our
dog example, we have only one object. We want only one bounding box around this
object. How do we reduce the boxes from 10,647 down to 1?

First, we filter the boxes based on their objectness score. Generally, boxes having
scores below a threshold are ignored. Second, we use NMS to cure the problem of
multiple detections of the same image. For example, all three bounding boxes of the
outlined grid cell at the center of the image may detect a box, or the adjacent cells
may detect the same object.

YOLOv3 architecture

Now that you understand how YOLO works, going through the architecture will be
very simple and straightforward. YOLO is a single neural network that unifies object
detection and classifications into one end-to-end network. The neural network archi-
tecture was inspired by the GooglLeNet model (Inception) for feature extraction.
Instead of the Inception modules, YOLO uses 1 x 1 reduction layers followed by 3 x 3
convolutional layers. Redmon and Farhadi called this DarkNet (figure 7.28).

Input
image . .
Fully Fully x Btimes x K times

connected connected [ Il |

DarkNet
%, architecture (x, y, w, h, obj score) Class probability

XX

Length: 5B + K

Figure 7.28 High-level architecture of YOLO

YOLOV2 used a custom deep architecture darknet-19, an originally 19-layer network
supplemented with 11 more layers for object detection. With a 30-layer architecture,
YOLOV2 often struggled with small object detections. This was attributed to loss of
fine-grained features as the layers downsampled the input. However, YOLOV2’s archi-
tecture was still lacking some of the most important elements that are now stable in
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most state-of-the art algorithms: no residual blocks, no skip connections, and no upsam-
pling. YOLOV3 incorporates all of these updates.

YOLOVS3 uses a variant of DarkNet called Darknet-53 (figure 7.29). It has a 53-layer
network that is trained on ImageNet. For the task of detection, 53 more layers are
stacked onto it, giving us a 106-layer fully convolutional underlying architecture for
YOLOV3. This is the reason behind the slowness of YOLOv3 compared to YOLOv2—
but this comes with a great boost in detection accuracy.

Type Filters  Size Output

Convolutional 32 3x3 256 x 256
Convolutional 64 3x3/2 128 x 128
Convolutional 32 1x1

1% | Convolutional 34 3x3

Residual 128 x 128
Convolutional 128 3x3/2 64 x64
Convolutional 64 1x1

2x | Convolutional 128 3 x3

Residual 64 x 64
Convolutional 256 3x3/2 32x32
Convolutional 128 1 x1

8x | Convolutional 256 3x3

Residual 32 x 32
Convolutional 512 3x3/2 16x16
Convolutional 256 1 x1

8x | Convolutional 512 3x3

Residual 16 x 16
Convolutional 1024 3x3/2 8x8
Convolutional 512 1 x1

4x | Convolutional 1024 3 x3

Residual 8x8

Avgpool Global Figure 7.29 I_)arkNet-53 feature
Connected 1000 extractor architecture. (Source:
Softmax Redmon and Farhadi, 2018.)

FULL ARCHITECTURE OF YOLOV3
We just learned that YOLOv3 makes predictions across three different scales. This
becomes a lot clearer when you see the full architecture, shown in figure 7.30.

The input image goes through the DarkNet-53 feature extractor, and then the
image is downsampled by the network until layer 79. The network branches out and
continues to downsample the image until it makes its first prediction at layer 82. This
detection is made on a grid scale of 13 x 13 that is responsible for detecting large
objects, as we explained before.

Next the feature map from layer 79 is upsampled by 2x to dimensions 26 x 26 and
concatenated with the feature map from layer 61. Then the second detection is made by
layer 94 on a grid scale of 26 x 26 that is responsible for detecting medium objects.

Finally, a similar procedure is followed again, and the feature map from layer 91 is
subjected to few upsampling convolutional layers before being depth concatenated
with a feature map from layer 36. A third prediction is made by layer 106 on a grid
scale of 52 x 52, which is responsible for detecting small objects.
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36
61
91
” y /)
ﬁ Concatenation / Concatenation /
DarkNet Upsampling Upsampling
architecture @ layer layer
Scale: 1 i
Stride: 32 @ /

Scale: 2 /

Detection layers Stride: 16 U
at scale 1 /

Scale: 3
Stride: 8

Detection layers
at scale 2

Detection layers
at scale 3

Figure 7.30 YOLOv3 network architecture. (Inspired by the diagram in Ayoosh Kathuria’s post “What’s new in
YOLO v3?” Medium, 2018, http://mng.bz/IGN2.)

7.5

Project: Train an SSD network in a self-driving car

application

The code for this project was created by Pierluigi Ferrari in his GitHub repository
(https://github.com/pierluigiferrari/ssd_keras). The project was adapted for this chap-
ter; you can find this implementation with the book’s downloadable code.

Note that for this project, we are going to build a smaller SSD network called SSD7.
SSD7 is a seven-layer version of the SSD300 network. It is important to note that while an
SSD7 network would yield some acceptable results, this is not an optimized network
architecture. The goal is just to build a low-complexity network that is fast enough for
you to train on your personal computer. It took me around 20 hours to train this net-
work on the road traffic dataset; training could take a lot less time on a GPU.

NOTE The original repository created by Pierluigi Ferrari comes with imple-
mentation tutorials for SSD7, SSD300, and SSD512 networks. I encourage you
to check it out.



Project: Train an SSD network in a self-driving car application 327

In this project, we will use a toy dataset created by Udacity. You can visit Udacity’s
GitHub repository for more information on the dataset (https://github.com/udacity/
self-driving-car/tree/master/annotations). It has more than 22,000 labeled images
and 5 object classes: car, truck, pedestrian, bicyclist, and traffic light. All of the images
have been resized to a height of 300 pixels and a width of 480 pixels. You can down-
load the dataset as part of the book’s code.

NOTE The GitHub data repository is owned by Udacity, and it may be
updated after this writing. To avoid any confusion, I downloaded the dataset
that I used to create this project and provided it with the book’s code to allow
you to replicate the results in this project.

What makes this dataset very interesting is that these are real-time images taken while
driving in Mountain View, California, and neighboring cities during daylight condi-
tions. No image cleanup was done. Take a look at the image examples in figure 7.31.

Figure 7.31 Example images from the Udacity self-driving dataset
(Image copyright © 2016 Udacity and published under MIT License.)
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As stated on Udacity’s page, the dataset was labeled by CrowdAl and Autti. You can
find the labels in CSV format in the folder, split into three files: training, validation,
and test datasets. The labeling format is straightforward, as follows:

Xmax ymin ymax class_id

1478019952686311006.jpg 237 251 143 155 1

Xmin, xmax, ymin, and ymax are the bounding box coordinates. Class_id is the cor-
rect label, and frame is the image name.

Data annotation using Labellmg

If you are annotating your own data, there are several open source labeling applica-
tions that you can use, like Labellmg (https://pypi.org/project/labellmg). They are
very easy to set up and use.

Example of using the labellmg application to annotate images

Step 1: Build the model

Before jumping into the model training, take a close look at the build_model method
in the keras ssd7.py file. This file builds a Keras model with the SSD architecture. As
we learned earlier in this chapter, the model consists of convolutional feature layers
and a number of convolutional predictor layers that make their input from different
feature layers.

Here is what the build model method looks like. Please read the comments in the
keras_ssd7.py file to understand the arguments passed:

def build model (image size,
mode="'training',
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12_regularization=0.0,

min scale=0.1,

max_scale=0.9,

scales=None,

aspect ratios global=[0.5, 1.0, 2.0],
aspect_ratios_per layer=None,
two_boxes_ for_arl=True,

clip boxes=False,
variances=[1.0, 1.0, 1.0, 1.01,
coords="'centroids"',

normalize coords=False,
subtract_mean=None,
divide by stddev=None,
swap_channels=False,
confidence thresh=0.01,
iou_threshold=0.45,

top_ k=200,

nms_max_output size=400,
return predictor sizes=False)

Step 2: Model configuration

In this section, we set the model configuration parameters. First we set the height,
width, and number of color channels to whatever we want the model to accept as
image input. If your input images have a different size than defined here, or if your
images have non-uniform size, you must use the data generator’s image transforma-
tions (resizing and/or cropping) so that your images end up having the required
input size before they are fed to the model:

img_height = 300 Height, width,

img_width = 480 and channels of

img channels = 3 the input images

intensity mean = 127.5 Set to your preference (maybe None).

intensity range = 127.5 T!1e current settings transform the input
- pixel values to the interval [-1,1].

The number of classes is the number of positive classes in your dataset: for example,
20 for PASCAL VOC or 80 for COCO. Class ID 0 must always be reserved for the back-
ground class:

In case you’d like to set the step
sizes for the anchor box grids
manually; not recommended Number of classes An explicit list of anchor box
n classes = 5 in our dataset scaling factors. If this is passed,
- it overrides the min_scale and
scales = [0.08, 0.16, 0.32, 0.64, 0.96] max_scale arguments.
aspect_ratios = [0.5, 1.0, 2.0] thofaspectraﬁos
> steps = None for the anchor boxes
offsets = None
In case you’d like to set the offsets for the anchor
box grids manually; not recommended
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two_boxes_for arl = True ! Specifies whether to generate two

) anchor boxes for aspect ratio 1
—> clip boxes = False

List of variances by which the encoded
target coordinates are scaled

normalize _coords = True Specifies whether the model is supposed to
use coordinates relative to the image size

variances = [1.0, 1.0, 1.0, 1.0]

Specifies whether to clip the anchor
boxes to lie entirely within the image
boundaries

7.5.3 Step 3: Create the model

Now we call the build model () function to build our model:

model = build model (image size=(img height, img width, img channels),
n_classes=n_classes,
mode="'training"',
12_regularization=0.0005,
scales=scales,
aspect_ratios_global=aspect ratios,
aspect_ratios_per layer=None,
two_boxes for_ arl=two_boxes for arl,
steps=steps,
offsets=offsets,
clip boxes=clip boxes,
variances=variances,
normalize coords=normalize coords,
subtract mean=intensity mean,
divide by stddev=intensity range)

You can optionally load saved weights. If you don’t want to load weights, skip the fol-
lowing code snippet:

model.load weights ('<path/to/model.h5>', by name=True)

Instantiate an Adam optimizer and the SSD loss function, and compile the model.
Here, we will use a custom Keras function called SSDLoss. It implements the multi-
task log loss for classification and smooth L1 loss for localization. neg pos_ratio and
alpha are set as in the SSD paper (Liu et al., 2016):

adam = Adam(lr=0.001, beta 1=0.9, beta 2=0.999, epsilon=1e-08, decay=0.0)
ssd_loss = SSDLoss (neg pos_ratio=3, alpha=1.0)

model.compile (optimizer=adam, loss=ssd_loss.compute_ loss)
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7.5.4 Step 4: Load the data
To load the data, follow these steps:

Instantiate two DataGenerator objects—one for training and one for validation:

train dataset = DataGenerator (load images into memory=False,
hdf5_ dataset_ path=None)

val_dataset = DataGenerator (load images_into_memory=False,
hdf5 dataset path=None)

Parse the image and label lists for the training and validation datasets:

images_dir = 'path to downloaded directory'

train labels filename = 'path to dataset/labels train.csv' Ground
val labels filename = 'path to dataset/labels val.csv' <}_1 truth
train_dataset.parse csv(images dir=images dir,
labels filename=train labels filename,
input format=['image name', 'xmin', ‘'xmax', 'ymin',
'ymax', 'class_id'],
include_classes='all')
val dataset.parse csv(images dir=images dir,
labels filename=val labels filename,
input_ format=['image name', 'xmin', ‘'xmax', 'ymin',

'ymax', 'class_id'],
include_classes='all')

Gets the number
of samples in the
training and
validation datasets

train dataset size = train dataset.get dataset_size()
val dataset_size = val_dataset.get dataset_size()

print ("Number of images in the training
dataset:\t{:>6}".format (train dataset size))

print ("Number of images in the validation
dataset:\t{:>6}".format (val dataset size))

This cell should print out the size of your training and validation datasets as

follows:
Number of images in the training dataset: 18000
Number of images in the validation dataset: 4241

Set the batch size:

batch _size = 16

As you learned in chapter 4, you can increase the batch size to get a boost in the
computing speed based on the hardware that you are using for this training.
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Define the data augmentation process:

data_augmentation chain = DataAugmentationConstantInputSize (
random brightness=(-48, 48, 0.5),
random contrast=(0.5, 1.8, 0.5),
random_saturation=(0.5, 1.8, 0.5),
random hue= (18, 0.5),
random flip=0.5,
random_translate=((0.03,0.5),

(0.03,0.5), 0.5),

random_scale=(0.5, 2.0, 0.5),
n_trials_max=3,
clip boxes=True,
overlap criterion='area',
bounds_box filter=(0.3, 1.0),
bounds validator=(0.5, 1.0),
n_boxes min=1,
background= (0,0, 0)

Instantiate an encoder that can encode ground-truth labels into the format
needed by the SSD loss function. Here, the encoder constructor needs the
spatial dimensions of the model’s predictor layers to create the anchor boxes:

predictor_sizes = [model.get layer('classes4'

( .output_shape
model.get layer('classes5'

(

(

.output_shape
.output_shape
.output_shape

model .get_layer('classesé6'

model.get layer ('classes7'

w w w w

ssd_input encoder = SSDInputEncoder (img height=img height,
img_width=img width,
n_classes=n_classes,
predictor sizes=predictor sizes,
scales=scales,
aspect_ratios_global=aspect_ ratios,
two_boxes_for arl=two_boxes for_arl,
steps=steps,
offsets=offsets,
clip boxes=clip boxes,
variances=variances,
matching type='multi',
pos_iou threshold=0.5,
neg iou limit=0.3,
normalize_ coords=normalize_coords)

Create the generator handles that will be passed to Keras’s fit_generator ()
function:

train generator = train dataset.generate (batch size=batch size,
shuffle=True,
transformations=[
data augmentation chain],
label encoder=ssd_input encoder,
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returns:{'processed_images',
'encoded labels'}
keep images without gt=False)

val generator = val dataset.generate(batch size=batch size,
shuffle=False,
transformations=1[],
label encoder=ssd_input encoder,
returns:{‘processed_images‘,
'encoded labels'}
keep images without gt=False)

Step 5: Train the model

Everything is set, and we are ready to train our SSD7 network. We’ve already chosen
an optimizer and a learning rate and set the batch size; now let’s set the remaining
training parameters and train the network. There are no new parameters here that
you haven’t learned already. We will set the model checkpoint, early stopping, and
learning rate reduction rate:

model checkpoint =
ModelCheckpoint (filepath="'ssd7 epoch-{epoch:02d} loss-{loss:.4f} val loss-
{val loss:.4£f}.h5"',
monitor='val loss',
verbose=1,
save_best only=True,
save weights only=False,
mode="'auto',
period=1)

csv_logger = CSVLogger (filename='ssd7_training log.csv',
separator="',"',

append=True) Early stopping if val_loss
did not improve for 10

early stopping = EarlyStopping(monitor='val loss', consecutive epochs

min delta=0.0,
patience=10,
verbose=1)

reduce_learning rate = ReduceLROnPlateau (monitor='val loss',

Learning rate
factor=0.2,

reduction rate

patience=8, when it plateaus
verbose=1,

epsilon=0.001,
cooldown=0,
min 1r=0.00001)

callbacks = [model checkpoint, csv_logger, early stopping, reduce_ learning rate]

Set one epoch to consist of 1,000 training steps. I've arbitrarily set the number of
epochs to 20 here. This does not necessarily mean that 20,000 training steps is the
optimum number. Depending on the model, dataset, learning rate, and so on, you
might have to train much longer (or less) to achieve convergence:
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initial_epoch =0 If you’re resuming previous training, set

final epoch = 20 initial_epoch and final_epoch accordingly.

steps_per epoch = 1000

history = model.fit generator (generator=train generator, Starts
steps_per epoch=steps_per epoch, training

epochs=final epoch,
callbacks=callbacks,
validation data=val_ generator,
validation steps=ceil (
val dataset size/batch size),
initial epoch=initial_ epoch)

7.5.6 Step 6: Visualize the loss

Let’s visualize the loss and val_loss values to look at how the training and validation
loss evolved and check whether our training is going in the right direction (figure 7.32):

plt.figure(figsize=(20,12))

plt.plot (history.history['loss'], label='loss')
plt.plot (history.history(['val loss'], label='val loss')
plt.legend(loc="'upper right', prop={'size': 24})

4.00
loss

3.751 — val_loss
3.501
3.251
3.00
2.75+
2.501

2.25+

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5

Figure 7.32 Visualized loss and val loss values during SSD7 training for 20 epochs
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7.5.7 Step 7: Make predictions

335

Now let’s make some predictions on the validation dataset with the trained model. For
convenience, we’ll use the validation generator that we’ve already set up. Feel free to
change the batch size:

predict_generator = val dataset.generate(batch size=1,

1. Set the generator
for the predictions.

2. Generate samples.

shuffle=True,

transformations=1[],

label_encoder=None,

returns={'processed images',
'processed_labels',
'filenames'},

keep images without gt=False)

batch_images, batch_labels, batch filenames = next (predict_ generator)

y_pred = model.predict (batch images)

y_pred_decoded

4. Decode the raw
prediction y_pred.

np.set_printoptions(precision=2,

<+—— 3. Make a prediction.

= decode_detections(y pred,

confidence thresh=0.5,
iou_threshold=0.45,

top_ k=200,

normalize coords=normalize coords,
img_height=img height,
img_width=img width)

print ("Predicted boxes:\n")
conf xmin

print (' class

print (y_pred decoded[i])

ymin

suppress=True, linewidth=90)

xXmax ymax')

This code snippet prints the predicted bounding boxes along with their class and the

level of confidence for each one, as shown in figure 7.33.
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.93
.88
.88

r.r1r1r1r1r1rﬁ
N
coooooo
o

o Ul
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266.38

ymin
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151.
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116.

12
89

.26
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4

Xmax
159

87
286
267
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274
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.29
.44
.45
.19
.79
.15
.23

ymax
172.
179
164.
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175
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173.

3]

.34]

05]

.34]
.64]
.791] Figure 7.33 Predicted bounding

161] boxes, confidence level, and class

When we draw these predicted boxes onto the image, as shown in figure 7.34, each
predicted box has its confidence next to the category name. The ground-truth boxes
are also drawn onto the image for comparison.
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Figure 7.34 Predicted boxes drawn onto the image

Summary

Image classification is the task of predicting the type or class of an object in
an image.

Object detection is the task of predicting the location of objects in an image via
bounding boxes and the classes of the located objects.

The general framework of object detection systems consists of four main com-
ponents: region proposals, feature extraction and predictions, non-maximum
suppression, and evaluation metrics.

Object detection algorithms are evaluated using two main metrics: frame per
second (FPS) to measure the network’s speed, and mean average precision (mAP)
to measure the network’s precision.

The three most popular object detection systems are the R-CNN family of net-
works, SSD, and the YOLO family of networks.

The R-CNN family of networks has three main variations: R-CNN, Fast R-CNN,
and Faster R-CNN. R-CNN and Fast R-CNN use a selective search algorithm to
propose Rols, whereas Faster R-CNN is an end-to-end DL system that uses a
region proposal network to propose Rols.

The YOLO family of networks include YOLOv1, YOLOV2 (or YOLO9000), and
YOLOV3.
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R-CNN is a multi-stage detector: it separates the process to predict the object-
ness score of the bounding box and the object class into two different stages.
SSD and YOLO are single-stage detectors: the image is passed once through the
network to predict the objectness score and the object class.

In general, single-stage detectors tend to be less accurate than two-stage detec-
tors but are significantly faster.
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Generative models
and visual embeddings

At this point, we’ve covered a lot of ground about how deep neural net-
works can help us understand image features and perform deterministic tasks
on them, like object classification and detection. Now it’s time to turn our focus
to a different, slightly more advanced area of computer vision and deep learn-
ing: generative models. These neural network models actually create new con-
tent that didn’t exist before—new people, new objects, a new reality, like magic!
We train these models on a dataset from a specific domain, and then they create
new images with objects from the same domain that look close to the real data.
In this part of the book, we’ll cover both training and image generation, as well
as look at neural transfer and the cutting edge of what’s happening in visual
embeddings.






Generative adversarial

networks (GANS)

This chapter covers

= Understanding the basic components of GANs:
generative and discriminative models

= Evaluating generative models

= | earning about popular vision applications
of GANs

= Building a GAN model

Generative adversarial networks (GANs) are a new type of neural architecture
introduced by Ian Goodfellow and other researchers at the University of Montreal,
including Yoshua Bengio, in 2014." GANs have been called “the most interesting
idea in the last 10 years in ML” by Yann LeCun, Facebook’s Al research director.
The excitement is well justified. The most notable feature of GANs is their capacity
to create hyperrealistic images, videos, music, and text. For example, except for the
far-right column, none of the faces shown on the right side of figure 8.1 belong to
real humans; they are all fake. The same is true for the handwritten digits on the

! Tan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio, “Generative Adversarial Networks,” 2014, http://arxiv.org/abs/1406.2661.
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Figure 8.1 Illlustration of GANs’ abilities by Goodfellow and co-authors. These are samples generated
by GANSs after training on two datasets: MNIST and the Toronto Faces Dataset (TFD). In both cases, the
right-most column contains true data. This shows that the produced data is really generated and not
only memorized by the network. (Source: Goodfellow et al., 2014.)

left side of the figure. This shows a GAN’s ability to learn features from the training
images and imagine its own new images using the patterns it has learned.

We’ve learned in the past chapters how deep neural networks can be used to
understand image features and perform deterministic tasks on them like object classi-
fication and detection. In this part of the book, we will talk about a different type of
application for deep learning in the computer vision world: generative models. These
are neural network models that are able to imagine and produce new content that
hasn’t been created before. They can imagine new worlds, new people, and new reali-
ties in a seemingly magical way. We train generative models by providing a training
dataset in a specific domain; their job is to create images that have new objects from
the same domain that look like the real data.

For a long time, humans have had an advantage over computers: the ability to
imagine and create. Computers have excelled in solving problems like regression, classi-
fication, and clustering. But with the introduction of generative networks, researchers
can make computers generate content of the same or higher quality compared to that
created by their human counterparts. By learning to mimic any distribution of data,
computers can be taught to create worlds that are similar to our own in any domain:
images, music, speech, prose. They are robot artists, in a sense, and their output is
impressive. GANs are also seen as an important stepping stone toward achieving artifi-
cial general intelligence (AGI), an artificial system capable of matching human cogni-
tive capacity to acquire expertise in virtually any domain—from images, to language,
to creative skills needed to compose sonnets.

Naturally, this ability to generate new content makes GANs look a little bit like
magic, at least at first sight. In this chapter, we will only attempt to scratch the surface
of what is possible with GANs. We will overcome the apparent magic of GANs in order
to dive into the architectural ideas and math behind these models in order to provide
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the necessary theoretical knowledge and practical skills to continue exploring any
facet of this field that you find most interesting. Not only will we discuss the funda-
mental notions that GANSs rely on, but we will also implement and train an end-to-end
GAN and go through it step by step. Let’s get started!

GAN architecture

GANSs are based on the idea of adversarial training. The GAN architecture basically
consists of two neural networks that compete against each other:

The generator tries to convert random noise into observations that look as if they
have been sampled from the original dataset.

The discriminator tries to predict whether an observation comes from the origi-
nal dataset or is one of the generator’s forgeries.

This competitiveness helps them to mimic any distribution of data. I like to think
of the GAN architecture as two boxers fighting (figure 8.2): in their quest to win the
bout, both are learning each others’ moves and techniques. They start with less
knowledge about their opponent, and as the match goes on, they learn and become
better.

Generator
Generates images from
the features learned in

the training dataset

Discriminator
Predicts whether the
image is real or fake

Figure 8.2 A fight between two adversarial networks: generative and discriminative

Another analogy will help drive home the idea: think of a GAN as the opposition of a
counterfeiter and a cop in a game of cat and mouse, where the counterfeiter is learn-
ing to pass false notes, and the cop is learning to detect them (figure 8.3). Both are
dynamic: as the counterfeiter learns to perfect creating false notes, the cop is in train-
ing and getting better at detecting the fakes. Each side learns the other’s methods in a
constant escalation.
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Counterfeiters Police

a~=~

Figure 8.3 The GAN’s generator and discriminator models are like a counterfeiter and a police officer.

As you can see in the architecture diagram in figure 8.4, a GAN takes the following steps:

1 The generator takes in random numbers and returns an image.

2 This generated image is fed into the discriminator alongside a stream of images
taken from the actual, ground-truth dataset.

3 The discriminator takes in both real and fake images and returns probabilities:
numbers between 0 and 1, with 1 representing a prediction of authenticity and
0 representing a prediction of fake.

Training set

%

Random noise

Generator

Figure 8.4 The GAN architecture is composed of generator and discriminator networks. Note
that the discriminator network is a typical CNN where the convolutional layers reduce in size until
they get to the flattened layer. The generator network, on the other hand, is an inverted CNN that
starts with the flattened vector: the convolutional layers increase in size until they form the
dimension of the input images.

If you take a close look at the generator and discriminator networks, you will notice
that the generator network is an inverted ConvNet that starts with the flattened vector.
The images are upscaled until they are similar in size to the images in the training
dataset. We will dive deeper into the generator architecture later in this chapter—I just
wanted you to notice this phenomenon now.
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Deep convolutional GANs (DCGANSs)

In the original GAN paper in 2014, multi-layer perceptron (MLP) networks were used
to build the generator and discriminator networks. However, since then, it has been
proven that convolutional layers give greater predictive power to the discriminator,
which in turn enhances the accuracy of the generator and the overall model. This
type of GAN is called a deep convolutional GAN (DCGAN) and was developed by Alec
Radford et al. in 2016.2 Now, all GAN architectures contain convolutional layers, so
the “DC” is implied when we talk about GANS; so, for the rest of this chapter, we refer
to DCGANSs as both GANs and DCGANSs. You can also go back to chapters 2 and 3 to
learn more about the differences between MLP and CNN networks and why CNN is
preferred for image problems. Next, let’s dive deeper into the architecture of the dis-
criminator and generator networks.

The discriminator model

As explained earlier, the goal of the discriminator is to predict whether an image is
real or fake. This is a typical supervised classification problem, so we can use the tradi-
tional classifier network that we learned about in the previous chapters. The network
consists of stacked convolutional layers, followed by a dense output layer with a sig-
moid activation function. We use a sigmoid activation function because this is a binary
classification problem: the goal of the network is to output prediction probabilities
values that range between 0 and 1, where 0 means the image generated by the genera-
tor is fake and 1 means it is 100% real.

The discriminator is a normal, well understood classification model. As you can see in
figure 8.5, training the discriminator is pretty straightforward. We feed the discriminator

Training dataset Discriminator network

Convolutional
layers
Sigmoid

Real images — X
function

0.1

S — realness
probability output

Fake images —

Figure 8.5 The discriminator for the GAN

2 Alec Radford, Luke Metz, and Soumith Chintala, “Unsupervised Representation Learning with Deep Convo-
lutional Generative Adversarial Networks,” 2016, http://arxiv.org/abs/1511.06434.
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labeled images: fake (or generated) and real images. The real images come from the
training dataset, and the fake images are the output of the generator model.

Now, let’s implement the discriminator network in Keras. At the end of this chap-
ter, we will compile all the code snippets together to build an end-to-end GAN. We will
first implement a discriminator model function. In this code snippet, the shape of
the image input is 28 x 28; you can change it as needed for your problem:

Instantiates a
sequential model

def discriminator model () : and names it Adds a
discriminator = Sequential () discriminator convolutional
layer to the
Adds a discriminator.add(Conv2D (32, kernel size=3, strides=2, discriminator
leaky ReLU input shape=(28,28,1),padding="same")) model
activation
function

discriminator.add (LeakyReLU (alpha=0.2))

Adds a dropout layer with
a 25% dropout probability

Adds a second discriminator.add (Dropout (0.25))
convolutional
layer with zero discriminator.add (Conv2D (64, kernel size=3, strides=2, padding="same"))
padding discriminator.add (ZeroPadding2D (padding=((0,1), (0,1))))
Adds a batch

discriminator.add (BatchNormalization (momentum=0.8))

normalization layer
discriminator.add (LeakyReLU (alpha=0.2))

for faster learning

Adds a third discriminator.add (Dropout (0.25)) and higher accuracy
convolutional
|ayer with batch discriminator.add(Conv2D (128, kernel size=3, strides=2, padding="same"))
normalization, discriminator.add (BatchNormalization (momentum=0.8))
leaky RelLU, and discriminator.add (LeakyReLU (alpha=0.2))
a dropout discriminator.add (Dropout (0.25))
Adds the fourth discriminator.add (Conv2D (256, kernel size=3, strides=1, padding="same"))
convolutional discriminator.add (BatchNormalization (momentum=0.8))
layer with batch | | giscriminator.add (LeakyReLU (alpha=0.2))
normalization, " | Ggiscriminator.add (Dropout (0.25)) Flattens the
leaky ReLU, and network and adds
a dropout discriminator.add (Flatten()) the output dense

layer with sigmoid

discriminator.add (Dense (1, activation='sigmoid')) o N
activation function

Prints discriminator.summary ()

the model
summary img shape = (28,28,1) Sets the input
img = Input (shape=img shape) image shape

probability = discriminator (img) Runs the discriminator

. o model to get the output
return Model (img, probability) probability

Returns a model that takes the image as
input and produces the probability output
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The output summary of the discriminator model is shown in figure 8.6. As you might
have noticed, there is nothing new: the discriminator model follows the regular pat-
tern of the traditional CNN networks that we learned about in chapters 3, 4, and 5. We
stack convolutional, batch normalization, activation, and dropout layers to create our
model. All of these layers have hyperparameters that we tune when we are training the
network. For your own implementation, you can tune these hyperparameters and add
or remove layers as you see fit. Tuning CNN hyperparameters is explained in detail in
chapters 3 and 4.

Layer (type) Output Shape Param #
conv2d_1 (Conv2D) (None, 14, 14, 32) 320
leaky re lu 1 (LeakyReLU) (None, 14, 14, 32) 0
dropout_1 (Dropout) (None, 14, 14, 32) 0
conv2d_2 (Conv2D) (None, 7, 7, 64) 18496
zero_padding2d 1 (ZeroPaddin (None, 8, 8, 64) 0
batch normalization_1 (Batch (None, 8, 8, 64) 250
leaky re lu 2 (LeakyReLU) (None, 8, 8, 64) 0
dropout_2 (Dropout) (None, 8, 8, 64) 0
conv2d_3 (Conv2D) (None, 4, 4, 128) 73856
batch normalization 2 (Batch (None, 4, 4, 128) 512
leaky re lu 3 (LeakyReLU) (None, 4, 4, 128) 0
dropout_ 3 (Dropout) (None, 4, 4, 128) 0
conv2d 4 (Conv2D) (None, 4, 4, 256) 295168
batch normalization 3 (Batch (None, 4, 4, 256) 1024
leaky re lu 4 (LeakyReLU) (None, 4, 4, 256) 0
dropout_4 (Dropout) (None, 4, 4, 256) 0
flatten 1 (Flatten) (None, 4096 0
dense_1 (Dense) (None, 1) 4097

Total params: 393,729
Trainable params: 392,833
Non-trainable params: 896

Figure 8.6 The output summary for the discriminator model
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In the output summary in figure 8.6, note that the width and height of the output fea-
ture maps decrease in size, whereas the depth increases in size. This is the expected
behavior for traditional CNN networks as we’ve seen in previous chapters. Let’s see
what happens to the feature maps’ size in the generator network in the next section.

The generator model

The generator takes in some random data and tries to mimic the training dataset to
generate fake images. Its goal is to trick the discriminator by trying to generate images
that are perfect replicas of the training dataset. As it is trained, it gets better and bet-
ter after each iteration. But the discriminator is being trained at the same time, so the
generator has to keep improving as the discriminator learns its tricks.

As you can see in figure 8.7, the generator model looks like an inverted ConvNet.
The generator takes a vector input with some random noise data and reshapes it into
a cube volume that has a width, height, and depth. This volume is meant to be treated
as a feature map that will be fed to several convolutional layers that will create the

final image.

Upsampling

o @

7x7x128

Random noise
input vector

14 x 14 x 128

28 x 28 x 64 L
28 x 28 x 1

Figure 8.7 The generator model of the GAN

UPSAMPLING TO SCALE FEATURE MAPS
Traditional convolutional neural networks use pooling layers to downsample input
images. In order to scale the feature maps, we use upsampling layers that scale the
image dimensions by repeating each row and column of the input pixels.

Keras has an upsampling layer (Upsampling2D) that scales the image dimensions
by taking a scaling factor (size) as an argument:

keras.layers.UpSampling2D(size=(2, 2))

This line of code repeats every row and column of the image matrix two times,
because the size of the scaling factor is set to (2, 2); see figure 8.8. If the scaling factor
is (3, 3), the upsampling layer repeats each row and column of the input matrix three
times, as shown in figure 8.9.
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, 2
Input =
3.4 [[1. 1. 1. 2. 2. 2.]
[1. 1. 1. 2. 2. 2.]
1, 1, 2, 2
Output = 1, 1, 2, 2 [1. 1. 1. 2. 2. 2.]
3, 3, 4, 4 [3. 3. 3. 4. 4. 4.]
3,3, 4, 4 [3. 3. 3. 4. 4. 4.]
[3. 3. 3. 4. 4. 4.]1
Figure 8.8 Upsampling Figure 8.9 Upsampling
example when the scaling size example when scaling size
is (2, 2) is (3, 3)

When we build the generator model, we keep adding upsampling layers until the size
of the feature maps is similar to the training dataset. You will see how this is imple-
mented in Keras in the next section.

Now, let’s build the generator_model function that builds the generator network:

Instantiates a sequential
model and names it generator Adds a dense layer
that has a number of

Reshapes | gef generator model () : =128 X7 x 7
. the image generator = Sequential () neurons =
dimensions to generator.add (Dense (128 * 7 * 7, activation="relu", input dim=100))
7x7x128 L—> generator.add(Reshape((7, 7, 128))) -
Upsampling —1> generator.add (UpSampling2D(size=(2,2))) Adds a
layer to convolutional
double the size generator.add (Conv2D (128, kernel size=3, padding="same")) layer to run the
of the image generator.add (BatchNormalization (momentum=0.8)) convolutional
dimensions to generator.add (Activation ("relu")) process and batch
14 x 14 generator.add (UpSampling2D (size=(2,2))) normalization
# convolutional + batch normalization layers :lhis?g;glzs
generator.add (Conv2D (64, kernel size=3, padding="same")) dimensions
generator.add (BatchNormalization (momentum=0.8)) 028 X 28

generator.add (Activation ("relu"))

# convolutional layer with filters = 1
generator.add (Conv2D (1, kernel size=3, padding="same"))
generator.add (Activation ("tanh"))
generator.summary () <—— Prints the model summary

noise = Input(shape=(100,)) Generates the input noise vector

fake image = generator (noise) of length = 100. We use 100
return Model (noise, fake image) here to create a simple network.

We don’t add upsampling here because Returns a model that
the image size of 28 X 28 is equal to the takes the noise vector Runs the generator
image size in the MNIST dataset. You can as input and outputs model to create the

adjust this for your own problem. the fake image fake image
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The output summary of the generator model is shown in figure 8.10. In the code snip-
pet, the only new component is the Upsampling layer to double its input dimensions
by repeating pixels. Similar to the discriminator, we stack convolutional layers on top
of each other and add other optimization layers like BatchNormalization. The key
difference in the generator model is that it starts with the flattened vector; images are
upsampled until they have dimensions similar to the training dataset. All of these lay-
ers have hyperparameters that we tune when we are training the network. For your
own implementation, you can tune these hyperparameters and add or remove layers
as you see fit.

Layer (type) Output Shape Param #
dense_ 2 (Dense) (None, 6272 633472
reshape 1 (Reshape) (None, 7, 7, 128) 0
up_sampling2d 1 (UpSampling2 (None, 14, 14, 128) 0
conv2d 5 (Conv2D) (None, 14, 14, 128) 147584
batch normalization 4 (Batch (None, 14, 14, 128) 512
activation 1 (Activation) (None, 14, 14, 128) 0
up_sampling2d 2 (UpSampling2 (None, 28, 28, 128) 0
conv2d 6 (Conv2D) (None, 28, 28, 64) 73792
batch normalization 5 (Batch (None, 28, 28, 64) 256
activation 2 (Activation) (None, 28, 28, 64) 0
conv2d 7 (Conv2D) (None, 28, 28, 1) 577
activation 3 (Activation) (None, 28, 28, 1) 0

Total params: 856,193
Trainable params: 855,809
Non-trainable params: 384

Figure 8.10 The output summary of the generator model

Notice the change in the output shape after each layer. It starts from a 1D vector of
6,272 neurons. We reshaped it to a 7 x 7 x 128 volume, and then the width and height
were upsampled twice to 14 x 14 followed by 28 x 28. The depth decreased from 128 to
64 to 1 because this network is built to deal with the grayscale MNIST dataset project
that we will implement later in this chapter. If you are building a generator model to
generate color images, then you should set the filters in the last convolutional layer to 3.
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Training the GAN

Now that we’ve learned the discriminator and generator models separately, let’s put
them together to train an end-to-end generative adversarial network. The discrimina-
tor is being trained to become a better classifier to maximize the probability of assign-
ing the correct label to both training examples (real) and images generated by the
generator (fake): for example, the police officer becomes better at differentiating
between fakes and real currency. The generator, on the other hand, is being trained
to become a better forger, to maximize its chances of fooling the discriminator. Both
networks are getting better at what they do.
The process of training GAN models involves two processes:

Train the discriminator. This is a straightforward supervised training process. The
network is given labeled images coming from the generator (fake) and the
training data (real), and it learns to classify between real and fake images with a
sigmoid prediction output. Nothing new here.

Train the generator. This process is a little tricky. The generator model cannot be
trained alone like the discriminator. It needs the discriminator model to tell it
whether it did a good job of faking images. So, we create a combined network to
train the generator, composed of both discriminator and generator models.

Think of the training processes as two parallel lanes. One lane trains the discriminator
alone, and the other lane is the combined model that trains the generator. The GAN
training process is illustrated in figure 8.11.

As you can see in figure 8.11, when training the combined model, we freeze the
weights of the discriminator because this model focuses only on training the generator.

Discriminator training Generator training
Fake data from Real data Input vector
the generator
== Generator
IS Discriminator ;
Update the é l Update the ! Training data
model | weight i Fake Real
i Binary classification: 1

real/fake Discriminator

(freeze training)

Binary classification:
real/fake

Figure 8.11 The process flow to train GANs



352

Sample
noise

-

CHAPTER 8 Generative adversarial networks (GANs)

We will discuss the intuition behind this idea when we explain the generator training
proces. For now, just know that we need to build and train two models: one for the dis-
criminator alone and the other for both discriminator and generator models.

Both processes follow the traditional neural network training process explained in
chapter 2. It starts with the feedforward process and then makes predictions and cal-
culates and backpropagates the error. When training the discriminator, the error is
backpropagated back to the discriminator model to update its weights; in the com-
bined model, the error is backpropagated back to the generator to update its weights.

During the training iterations, we follow the same neural network training proce-
dure to observe the network’s performance and tune its hyperparameters until we see
that the generator is achieving satisfying results for our problem. This is when we can
stop the training and deploy the generator model. Now, let’s see how we compile the
discriminator and the combined networks to train the GAN model.

TRAINING THE DISCRIMINATOR

As we said before, this is a straightforward process. First, we build the model from the
discriminator_model method that we created earlier in this chapter. Then we com-
pile the model and use the binary crossentropy loss function and an optimizer of
your choice (we use Adam in this example).

Let’s see the Keras implementation that builds and compiles the generator. Please
note that this code snippet is not meant to be compilable on its own—it is here for
illustration. At the end of this chapter, you can find the full code of this project:

discriminator = discriminator model ()

discriminator.compile (loss='binary crossentropy',optimizer='adam',
metrics=['accuracy'])

We can train the model by creating random training batches using Keras’ train_on
_batch method to run a single gradient update on a single batch of data:

Generates a batch

noise = np.random.normal (0, 1, (batch size, 100)) .
- of new images

gen_imgs = generator.predict (noise)

# Train the discriminator (real classified as ones and generated as zeros)
d_loss_real = discriminator.train_on_batch(imgs, wvalid)
d loss_ fake = discriminator.train on batch(gen imgs, fake)

TRAINING THE GENERATOR (COMBINED MODEL)

Here is the one tricky part in training GANs: training the generator. While the dis-
criminator can be trained in isolation from the generator model, the generator needs
the discriminator in order to be trained. For this, we build a combined model that
contains both the generator and the discriminator, as shown in figure 8.12.

When we want to train the generator, we freeze the weights of the discriminator
model because the generator and discriminator have different loss functions pulling
in different directions. If we don’t freeze the discriminator weights, it will be pulled in the
same direction the generator is learning so it will be more likely to predict generated



GAN architecture 353

Feedback through backpropagation

=]

Random noise

Output

» Discriminator — (e.g. 0.3)

Generator

Figure 8.12 Illustration of the combined model that contains both the generator and discriminator
models

images as real, which is not the desired outcome. Freezing the weights of the discrimi-
nator model doesn’t affect the existing discriminator model that we compiled earlier
when we were training the discriminator. Think of it as having two discriminator
models—this is not the case, but it is easier to imagine.

Now, let’s build the combined model:

Builds the generator

generator = generator model ()

z = Input (shape=(100,))
image = generator(z)

The generator takes noise as
input and generates an image.

discriminator.trainable = False Freezes the weights of

the discriminator model
valid = discriminator (img)

The discriminator takes
generated images as

input and determines
their validity.

combined = Model (z, wvalid)

The combined model (stacked generator
and discriminator) trains the generator
to fool the discriminator.

Now that we have built the combined model, we can proceed with the training process
as normal. We compile the combined model with a binary crossentropy loss func-
tion and an Adam optimizer:

combined.compile (loss='binary crossentropy', optimizer=optimizer)
g _loss = self.combined.train on batch(noise, wvalid)

Trains the generator (wants the discriminator
to mistake images for being real)

TRAINING EPOCHS

In the project at the end of the chapter, you will see that the previous code snippet is
put inside a loop function to perform the training for a certain number of epochs. For
each epoch, the two compiled models (discriminator and combined) are trained
simultaneously. During the training process, both the generator and discriminator
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improve. You can observe the performance of your GAN by printing out the results
after each epoch (or a set of epochs) to see how the generator is doing at generating
synthetic images. Figure 8.13 shows an example of the evolution of the generator’s
performance throughout its training process on the MNIST dataset.
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Figure 8.13 The generator gets better at mimicking the handwritten digits of the MNIST dataset throughout its
training from epoch 0 to epoch 9,500.

8.1.5

In the example, epoch 0 starts with random noise data that doesn’t yet represent the
features in the training dataset. As the GAN model goes through the training, its gen-
erator gets better and better at creating high-quality imitations of the training dataset
that can fool the discriminator. Manually observing the generator’s performance is a
good way to evaluate system performance to decide on the number of epochs and
when to stop training. We’ll look more at GAN evaluation techniques in section 8.2.

GAN minimax function

GAN training is more of a zero-sum game than an optimization problem. In zero-
sum games, the total utility score is divided among the players. An increase in one
player’s score results in a decrease in another player’s score. In Al, this is called mini-
max game theory. Minimax is a decision-making algorithm, typically used in turn-
based, two-player games. The goal of the algorithm is to find the optimal next move.
One player, called the maximizer, works to get the maximum possible score; the other
player, called the minimizer, tries to get the lowest score by counter-moving against
the maximizer.

GANSs play a minimax game where the entire network attempts to optimize the
function V(D,G) in the following equation:

Mln Max V(D,G) = ~[)d [logD(x)] + E,_p,»[log(1 = D(G(2)))]
I_'_l

I_'_l
Discriminator output Discriminator output
for real data x for generated fake data G(z)

The goal of the discriminator (D) is to maximize the probability of getting the correct
label of the image. The generator’s (G) goal, on the other hand, is to minimize the
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chances of getting caught. So, we train D to maximize the probability of assigning the
correct label to both training examples and samples from G. We simultaneously train
G to minimize log(l — D(G(z))). In other words, D and G play a two-player minimax
game with the value function V(D,G).

Minimax game theory

In a two-person, zero-sum game, a person can win only if the other player loses. No
cooperation is possible. This game theory is widely used in games such as tic-tac-
toe, backgammon, mancala, chess, and so on. The maximizer player tries to get the
highest score possible, while the minimizer player tries to do the opposite and get
the lowest score possible.

In a given game state, if the maximizer has the upper hand, then the score will tend
to be a positive value. If the minimizer has the upper hand in that state, then the
score will tend to be a negative value. The values are calculated by heuristics that
are unique for every type of game.

Like any other mathematical equation, the preceding one looks terrifying to anyone
who isn’t well versed in the math behind it, but the idea it represents is simple yet pow-
erful. It’s just a mathematical representation of the two competing objectives of the
discriminator and the generator models. Let’s go through the symbols first (table 8.1)
and then explain it.

Table 8.1 Symbols used in the minimax equation

Symbol Explanation

G Generator.

D Discriminator.

z Random noise fed to the generator (G).

G(2) The generator takes the random noise data (z) and tries to reconstruct the real images.
D(G(2)) The discriminator (D) output from the generator.

log D(x) The discriminator’s probability output for real data.

The discriminator takes its input from two sources:

Data from the generator, G(z)—This is fake data (z). The discriminator output from
the generator is denoted as D(G(z)).

Real input from the real training data (x)—The discriminator output from the real
data is denoted as log D(x).

To simplify the minimax equation, the best way to look at it is to break it down into two
components: the discriminator training function and the generator training (combined
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model) function. During the training process, we created two training flows, and each
has its own error function:

One for the discriminator alone, represented by the following function that
aims to maximize the minimax function by making the predictions as close as
possible to 1:

Ex ~Pdata [IOgD( x) ]

One for the combined model to train the generator represented by the follow-
ing function, which aims to minimize the minimax function by making the pre-
dictions as close as possible to 0:

E.pz [log(1 - D(G(2)))]

Now that we understand the equation symbols and have a better understanding of
how the minimax function works, let’s look at the function again:

Mciln M%X V(D,G) =IEx~lfdam [logD(x)]I + IEZNPZ(Z)[log(l - D(G(z)))]I
T T
Error from the Error from the combined
discriminator model training
model training

The goal of the minimax objective function V(D, G) is to maximize D(x) from the true
data distribution and minimize D(G(z)) from the fake data distribution. To achieve
this, we use the log-likelihood of D(x) and 1 — D(z) in the objective function. The log
of a value just makes sure that the closer we are to an incorrect value, the more we are
penalized.

Early in the GAN training process, the discriminator will reject fake data from the
generator with high confidence, because the fake images are very different from
the real training data—the generator hasn’t learned yet. As we train the discriminator
to maximize the probability of assigning the correct labels to both real examples and
fake images from the generator, we simultaneously train the generator to minimize
the discriminator classification error for the generated fake data. The discriminator
wants to maximize objectives such that D(x) is close to 1 for real data and D(G(z)) is
close to 0 for fake data. On the other hand, the generator wants to minimize objec-
tives such that D(G(z)) is close to 1 so that the discriminator is fooled into thinking
the generated G(z) is real. We stop the training when the fake data generated by the
generator is recognized as real data.
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Evaluating GAN models

Deep learning neural network models that are used for classification and detection
problems are trained with a loss function until convergence. A GAN generator model,
on the other hand, is trained using a discriminator that learns to classify images as real
or generated. As we learned in the previous section, both the generator and discrimi-
nator models are trained together to maintain an equilibrium. As such, no objective
loss function is used to train the GAN generator models, and there is no way to objec-
tively assess the progress of the training and the relative or absolute quality of the
model from loss alone. This means models must be evaluated using the quality of the
generated synthetic images and by manually inspecting the generated images.

A good way to identify evaluation techniques is to review research papers and the
techniques the authors used to evaluate their GANs. Tim Salimans et al. (2016) evalu-
ated their GAN performance by having human annotators manually judge the visual
quality of the synthesized samples.? They created a web interface and hired annotators
on Amazon Mechanical Turk (MTurk) to distinguish between generated data and
real data.

One downside of using human annotators is that the metric varies depending on
the setup of the task and the motivation of the annotators. The team also found that
results changed drastically when they gave annotators feedback about their mistakes:
by learning from such feedback, annotators are better able to point out the flaws in
generated images, giving a more pessimistic quality assessment.

Other non-manual approaches were used by Salimans et al. and by other research-
ers we will discuss in this section. In general, there is no consensus about a correct way
to evaluate a given GAN generator model. This makes it challenging for researchers
and practitioners to do the following:

Select the best GAN generator model during a training run—in other words,
decide when to stop training.

Choose generated images to demonstrate the capability of a GAN generator
model.

Compare and benchmark GAN model architectures.

Tune the model hyperparameters and configuration and compare results.

Finding quantifiable ways to understand a GAN’s progress and output quality is still an
active area of research. A suite of qualitative and quantitative techniques has been
developed to assess the performance of a GAN model based on the quality and diver-
sity of the generated synthetic images. Two commonly used evaluation metrics for
image quality and diversity are the inception score and the Fréchet inception distance (FID).
In this section, you will discover techniques for evaluating GAN models based on gen-
erated synthetic images.

3 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. “Improved
Techniques for Training GANs,” 2016, http://arxiv.org/abs/1606.03498.
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Inception score

The inception score is based on a heuristic that realistic samples should be able to
be classified when passed through a pretrained network such as Inception on Image-
Net (hence the name inception score). The idea is really simple. The heuristic relies
on two values:

High predictability of the generated image—We apply a pretrained inception classi-
fier model to every generated image and get its softmax prediction. If the gen-
erated image is good enough, then it should give us a high predictability score.
Diverse generated samples—No classes should dominate the distribution of the
generated images.

A large number of generated images are classified using the model. Specifically, the
probability of the image belonging to each class is predicted. The probabilities are
then summarized in the score to capture both how much each image looks like a
known class and how diverse the set of images is across the known classes. If both
these traits are satisfied, there should be a large inception score. A higher inception
score indicates better-quality generated images.

Fréchet inception distance (FID)

The FID score was proposed and used by Martin Heusel et al. in 2017.* The score was
proposed as an improvement over the existing inception score.

Like the inception score, the FID score uses the Inception model to capture specific
features of an input image. These activations are calculated for a collection of real and
generated images. The activations for each real and generated image are summarized as
a multivariate Gaussian, and the distance between these two distributions is then calcu-
lated using the Fréchet distance, also called the Wasserstein-2 distance.

An important note is that the FID needs a decent sample size to give good results
(the suggested size is 50,000 samples). If you use too few samples, you will end up over-
estimating your actual FID, and the estimates will have a large variance. A lower FID
score indicates more realistic images that match the statistical properties of real images.

Which evaluation scheme to use

Both measures (inception score and FID) are easy to implement and calculate on
batches of generated images. As such, the practice of systematically generating
images and saving models during training can and should continue to be used to
allow post hoc model selection. Diving deep into the inception score and FID is out
of the scope of this book. As mentioned earlier, this is an active area of research, and
there is no consensus in the industry as of the time of writing about the one best

1 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter, “GANs
Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium,” 2017, http://arxiv.org/
abs/1706.08500.
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approach to evaluate GAN performance. Different scores assess various aspects of
the image-generation process, and it is unlikely that a single score can cover all
aspects. The goal of this section is to expose you to some techniques that have been
developed in recent years to automate the GAN evaluation process, but manual eval-
uation is still widely used.

When you are getting started, it is a good idea to begin with manual inspection
of generated images in order to evaluate and select generator models. Developing
GAN models is complex enough for both beginners and experts; manual inspection
can get you a long way while refining your model implementation and testing model
configurations.

Other researchers are taking different approaches by using domain-specific evalu-
ation metrics. For example, Konstantin Shmelkov and his team (2018) used two mea-
sures based on image classification, GAN-train and GAN-test, which approximated the
recall (diversity) and precision (quality of the image) of GANS, respectively.”

Popular GAN applications

Generative modeling has come a long way in the last five years. The field has devel-
oped to the point where it is expected that the next generation of generative models
will be more comfortable creating art than humans. GANs now have the power to
solve the problems of industries like healthcare, automotive, fine arts, and many oth-
ers. In this section, we will learn about some of the use cases of adversarial networks
and which GAN architecture is used for that application. The goal of this section is
not to implement the variations of the GAN network, but to provide some exposure to
potential applications of GAN models and resources for further reading.

Text-to-photo synthesis

Synthesis of high-quality images from text descriptions is a challenging problem in
CV. Samples generated by existing text-to-image approaches can roughly reflect the
meaning of the given descriptions, but they fail to contain necessary details and vivid
object parts.

The GAN network that was built for this application is the stacked generative
adversarial network (StackGAN).® Zhang et al. were able to generate 256 x 256 photo-
realistic images conditioned on text descriptions.

StackGANs work in two stages (figure 8.14):

Stage-I: StackGAN sketches the primitive shape and colors of the object based
on the given text description, yielding low-resolution images.

5 Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari, “How Good Is My GAN?” 2018, http://arxiv
.org/abs/1807.09499.

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dimitris Metaxas,

“StackGAN: Text to Photo-Realistic Image Synthesis with Stacked Generative Adversarial Networks,” 2016,
http://arxiv.org/abs/1612.03242.
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a) StackGAN Stage-|
64 x 64 images

b) StackGAN Stage-II
256 x 256 images
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This bird is white with some black This bird has a yellow belly and This flower has overlapping pink
on its head and wings, and has a tarsus, gray back, wings, and brown pointed petals surrounding a ring
long orange beak. throat, nape with a black face. of short yellow filaments.

Figure 8.14 (a) Stage-l: Given text descriptions, StackGAN sketches rough shapes and basic colors of objects,
yielding low-resolution images. (b) Stage-ll takes Stage-l results and text descriptions as inputs, and generates
high-resolution images with photorealistic details. (Source: Zhang et al., 2016.)

8.3.2

= Stage-II: StackGAN takes the output of stage-I and a text description as input
and generates high-resolution images with photorealistic details. It is able to
rectify defects in the images created in stage-I and add compelling details with
the refinement process.

Image-to-image translation (Pix2Pix GAN)

Image-to-image translation is defined as translating one representation of a scene into
another, given sufficient training data. It is inspired by the language translation anal-
ogy: just as an idea can be expressed by many different languages, a scene may be ren-
dered by a grayscale image, RGB image, semantic label maps, edge sketches, and so on.
In figure 8.15, image-to-image translation tasks are demonstrated on a range of appli-
cations such as converting street scene segmentation labels to real images, grayscale
to color images, sketches of products to product photographs, and day photographs to
night ones.

Pix2Pix is a member of the GAN family designed by Phillip Isola et al. in 2016 for
general-purpose image-to-image translation.” The Pix2Pix network architecture is
similar to the GAN concept: it consists of a generator model for outputting new syn-
thetic images that look realistic, and a discriminator model that classifies images as

7 Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros, “Image-to-Image Translation with Conditional
Adversarial Networks,” 2016, http://arxiv.org/abs/1611.07004.
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Black and white to color Edges to photos

Input Output Output

Day to night

Input

Figure 8.15 Examples of Pix2Pix applications taken from the original paper.

real (from the dataset) or fake (generated). The training process is also similar to
that used for GANSs: the discriminator model is updated directly, whereas the gener-
ator model is updated via the discriminator model. As such, the two models are
trained simultaneously in an adversarial process where the generator seeks to better
fool the discriminator and the discriminator seeks to better identify the counterfeit
images.

The novel idea of Pix2Pix networks is that they learn a loss function adapted to the
task and data at hand, which makes them applicable in a wide variety of settings. They
are a type of conditional GAN (cGAN) where the generation of the output image is
conditional on an input source image. The discriminator is provided with both a source
image and the target image and must determine whether the target is a plausible
transformation of the source image.

The results of the Pix2Pix network are really promising for many image-to-image
translation tasks. Visit https://affinelayer.com/pixsrv to play more with the Pix2Pix
network; this site has an interactive demo created by Isola and team in which you can
convert sketch edges of cats or products to photos and facades to real images.

Image super-resolution GAN (SRGAN)

A certain type of GAN models can be used to convert low-resolution images into high-
resolution images. This type is called a super-resolution generative adversarial networks
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(SRGAN) and was introduced by Christian Ledig et al. in 2016.% Figure 8.16 shows
how SRGAN was able to create a very high-resolution image.

Original SRGAN

Figure 8.16 SRGAN converting a low-resolution image to a high-resolution
image. (Source: Ledig et al., 2016.)

Ready to get your hands dirty?

GAN models have huge potential for creating and imagining new realities that have
never existed before. The applications mentioned in this chapter are just a few exam-
ples to give you an idea of what GANs can do today. Such applications come out every
few weeks and are worth trying. If you are interested in getting your hands dirty with
more GAN applications, visit the amazing Keras-GAN repository at https://github.com/
eriklindernoren/Keras-GAN, maintained by Erik Linder-Norén. It includes many
GAN models created using Keras and is an excellent resource for Keras examples.
Much of the code in this chapter was inspired by and adapted from this repository.

Project: Building your own GAN

In this project, you’ll build a GAN using convolutional layers in the generator and dis-
criminator. This is called a deep convolutional GAN (DCGAN) for short. The DCGAN
architecture was first explored by Alec Radford et al. (2016), as discussed in section 8.1.1,
and has seen impressive results in generating new images. You can follow along with
the implementation in this chapter or run code in the project notebook available with
this book’s downloadable code.

8 Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta,
Andrew Aitken, et al., “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Net-
work,” 2016, http://arxiv.org/abs/1609.04802.



Project: Building your own GAN 363

In this project, you’ll be training DCGAN on the Fashion-MNIST dataset (https://
github.com/zalandoresearch/fashion-mnist). Fashion-MNIST consists of 60,000 gray-
scale images for training and a test set of 10,000 images (figure 8.17). Each 28 x 28
grayscale image is associated with a label from 10 classes. Fashion-MNIST is intended
to serve as a direct replacement for the original MNIST dataset for benchmarking
machine learning algorithms. I chose grayscale images for this project because it
requires less computational power to train convolutional networks on one-channel
grayscale images compared to three-channel colored images, which makes it easier for
you to train on a personal computer without a GPU.

Figure 8.17 Fashion-MNIST dataset examples

The dataset is broken into 10 fashion categories. The class labels are as follows:

Label Description

T-shirt/top
Trouser
Pullover
Dress
Coat
Sandal
Shirt
Sheaker

Bag

© 0o N O o b~ W N =B O

Ankle boot
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STEP 1: IMPORT LIBRARIES
As always, the first thing to do is to import all the libraries we use in this project:

from  future  import print function, division
Imports the fashion_mnist

from keras.datasets import fashion mnist dataset from Keras

from keras.layers import Input, Dense, Reshape, Flatten, Dropout

from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced activations import LeakyReLU

from keras.layers.convolutional import UpSampling2D, Conv2D

from keras.models import Sequential, Model

from keras.optimizers import Adam

import numpy as np Imports numpy
import matplotlib.pyplot as plt and matplotlib

STEP 2: DOWNLOAD AND VISUALIZE THE DATASET

Keras makes the Fashion-MNIST dataset available for us to download with just one
command: fashion mnist.load data(). Here, we download the dataset and rescale
the training set to the range -1 to 1 to allow the model to converge faster (see the
“Data normalization” section in chapter 4 for more details on image scaling):

(training data, _), (_, _) = fashion mnist.load data() <+—— Loads the dataset
X_train = training data / 127.5 - 1. Rescales the training
X train = np.expand dims (X train, axis=3) data to scale -1 to 1

Just for the fun of'it, let’s visualize the image matrix (figure 8.18):

def visualize input (img, ax):
ax.imshow (img, cmap='gray')
width, height = img.shape
thresh = img.max() /2.5
for x in range(width) :
for y in range (height) :
ax.annotate (str (round (img[x] [y],2)), xy=(y,x),
horizontalalignment='center',
verticalalignment="'center',
color='white' if img[x] [y]l<thresh else 'black')

fig = plt.figure(figsize = (12,12))
ax = fig.add subplot (111)
visualize input (training datal[3343], ax)
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Figure 8.18 A visualized example of the Fashion-VMINIST dataset

STEP 3: BUILD THE GENERATOR
Now, let’s build the generator model. The input will be our noise vector (z) as explained

in section 8.1.5. The generator architecture is shown in figure 8.19.
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The first layer is a fully connected layer that is then reshaped into a deep, narrow
layer, something like 7 x 7 x 128 (in the original DCGAN paper, the team reshaped

the input to 4 x 4 x 1024). Then we use the upsampling layer to double the feature

map dimensions from 7 x 7 to 14 x 14 and then again to 28 x 28. In this network, we
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Upsampling ‘
'.".
Reshape
100 z ) 2
THTxA28 4 qax128
28 x 28 x 64
28 x 28 x 1
Figure 8.19 Architecture of the generator model
use three convolutional layers. We also use batch normalization and a ReL.U activa-
tion. For each of these layers, the general scheme is convolution = batch normaliza-
tion = ReLLU. We keep stacking up layers like this until we get the final transposed
convolution layer with shape 28 x 28 x 1:
Instantiates a sequential
model and names it generator
) Adds the dense layer
def build generator(): that has a number of
generator = Sequential () neurons = 128 X 7 X 7
Reshapes
. thglmage generator.add (Dense (128 * 7 * 7, activation="relu", input_ dim=100))
dimensions to
7x7x128 generator.add (Reshape ( (7, 7, 128))) Upsa.mpling Ia):er to double
the size of the image
generator.add (UpSampling2D()) dimensions to 14 x 14
generator.add (Conv2D (128, kernel size=3, padding="same",
activation="relu")) .
generator.add (BatchNormalization (momentum=0.8)) UPsmnPhsthelmage
generator.add (UpSampling2D()) dimensions to 28 X 28

and batch normalization

generator.

# convolutional layer with filters = 1
generator.

generator. summary () here because the image size of

. 28 X 28 is equal to the image

Adds a convolutional layer to Prints size in the MNIST dataset. You
run the convolutional process the model can adjust this for your

# convolutional + batch normalization layers
generator.

add (Conv2D (64, kernel size=3, padding="same",
activation="relu"))
add (BatchNormalization (momentum=0.8))

add (Conv2D (1, kernel size=3, padding="same",
activation="relu"))

We don’t add upsampling

summary own problem.
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Runs the generator
model to create the

fake image

noise = Input (shape=(100,))

fake image = generator (noise) Returns a model

that takes the noise

return Model (inputs=noise, outputs=fake image) vector as an input
. . and outputs the
Generates the input noise vector of length = 100. fake image

We chose 100 here to create a simple network.

STEP 4: BUILD THE DISCRIMINATOR

The discriminator is just a convolutional classifier like what we have built before (fig-
ure 8.20). The inputs to the discriminator are 28 x 28 x 1 images. We want a few convo-
lutional layers and then a fully connected layer for the output. As before, we want a
sigmoid output, and we need to return the logits as well. For the depths of the convolu-
tional layers, I suggest starting with 32 or 64 filters in the first layer, and then double
the depth as you add layers. In this implementation, we start with 64 layers, then 128, and
then 256. For downsampling, we do not use pooling layers. Instead, we use only strided
convolutional layers for downsampling, similar to Radford et al.’s implementation.

i de——— [

4 x4 x 256 1

4x4x128

8 x 8 x 64

FC 4096
14 x 14 x 32

28 x 28 x 1

Figure 8.20 Architecture of the discriminator model

We also use batch normalization and dropout to optimize training, as we learned in
chapter 4. For each of the four convolutional layers, the general scheme is convolu-
tion = batch normalization = leaky ReLU. Now, let’s build the build discriminator

function:
Instantiates a sequential
def build discriminator () : m.odgl Ef“d names it Adds a .
discriminator = Sequential () discriminator convolutional
layer to the
Adds a discriminator.add(Conv2D (32, kernel size=3, strides=2, dls:::lrlrlnator
Ieak.y Re.LU input shape=(28,28,1), padding="same")) mode

activation
function

discriminator.add (LeakyReLU (alpha=0.2))

Adds a dropout layer with
a 25% dropout probability

discriminator.add (Dropout (0.25))
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Adds a second
convolutional
layer with
zero padding

Adds a batch
normalization
layer for faster
learning and
higher accuracy

Flattens the
network and
adds the output
dense layer
with sigmoid
activation
function

Sets the
input image
shape

discriminator.

r
|

discriminator.
discriminator.

discriminator.
discriminator.

discriminator.
discriminator.
discriminator.
discriminator.

discriminator.
discriminator.
discriminator.
discriminator.

discriminator.
discriminator.

img
probability =

return Model (inputs=img,

Euns the discriminator model

Input (shape=(28,28,1))

CHAPTER 8 Generative adversarial networks (GANs)

Adds a zero-padding
layer to change the
dimension from
T7X7to8 X8

add (Conv2D (64, kernel size=3, strides=2,
padding="same") )

add (ZeroPadding2D (padding=( (0,1), (0,1))))

add (BatchNormalization (momentum=0.8)) . .
Adds a third convolutional

layer with batch
normalization, leaky
ReLU, and a dropout

add (LeakyReLU (alpha=0.2))
add (Dropout (0.25))

add (Conv2D (128, kernel size=3, strides=2, padding="same"))
add (BatchNormalization (momentum=0.8))

add (LeakyReLU (alpha=0.2))

add (Dropout (0.25))

add (Conv2D (256, kernel size=3, strides=1, padding="same"))
add (BatchNormalization (momentum=0.8))

add (LeakyReLU (alpha=0.2))

add (Dropout (0.25))

Adds the fourth
convolutional layer with
batch normalization,
leaky ReLU, and a dropout

add (Flatten())
add (Dense (1, activation='sigmoid'))

discriminator (img)

Returns a model that
takes the image as
input and produces
the probability output

outputs=probability)

to get the output probability

STEP 5: BUILD THE COMBINED MODEL
As explained in section 8.1.3, to train the generator, we need to build a combined net-
work that contains both the generator and the discriminator (figure 8.21). The com-
bined model takes the noise signal as input (z) and outputs the discriminator’s
prediction output as fake or real.

100 z«l:l

Reshape

>

TXT*128 14 x 14 x 128

Generator

Upsampling
—

Discriminator

—

P—~\m

Bxgxps 4X4x128 4x4x256 1

28 x 28 x 64 14 x 14 x 32

28 x28x1 28x28x1 FC 4096

Figure 8.21 Architecture of the combined model
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Remember that we want to disable discriminator training for the combined model,
as explained in detail in section 8.1.3. When training the generator, we don’t want
the discriminator to update weights as well, but we still want to include the discrimi-
nator model in the generator training. So, we create a combined network that
includes both models but freeze the weights of the discriminator model in the com-
bined network:

(—D optimizer = Adam(learning rate=0.0002, beta_1=0.5)

Builds and compiles
. - ) ) . the discriminator
discriminator = build discriminator ()

discriminator.compile (loss='binary crossentropy', optimizer=optimizer,
metrics=['accuracy'])
Freezes the discriminator weights because we

, .. . .
discriminator.trainable = False don’t want to train it during generator training

# Build the generator

TD generator - build generator () The generator takes noise as

input with latent_dim = 100
and generates images.

z = Input (shape=(100,))

img = generator(z)

The discriminator takes generated images
as input and determines their validity.

valid = discriminator (img)
combined = Model (inputs=z, outputs=valid)
combined.compile (loss="'binary crossentropy', optimizer=optimizer)

The combined model (stacked generator and discriminator)
trains the generator to fool the discriminator.

STEP 6: BUILD THE TRAINING FUNCTION

When training the GAN model, we train two networks: the discriminator and the com-
bined network that we created in the previous section. Let’s build the train function,
which takes the following arguments:

= The number of epochs
= The batch size

= save_ interval to state how often we want to save the results
def train(epochs, batch size=128, save_ interval=50) :

valid = np.ones((batch size, 1)) Adversaria
fake = np.zeros((batch size, 1)) ground truths

for epoch in range (epochs) :
## Train Discriminator network

Selects a random idx = np.random.randint (0, X_train.shape[0], batch_size)
half of images imgs = X_train[idx]
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SanuMenohe and noise = np.random.normal (0, 1, (batch size, 100))
’
generates a batch gen_imgs = generator.predict (noise)
of new images
d_loss_real = discriminator.train on batch(imgs, valid)
. d loss_ fake = discriminator.train on batch(gen imgs, fake)
o _TrmnSthe d loss = 0.5 * np.add(d _loss real, d loss_fake)
discriminator (real .
lassified as 1s and Trains the
classified as 1s an ## Train the combined network (Generator) generator (wants
generated as 0s) S
the discriminator
g_loss = combined.train_on _batch(noise, valid) to mistake images

Saves generated
image samples if
at save_interval

for real ones)
print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" %

(epoch, d_loss[0], 100*d_loss[1l], g_loss)) <k41 Prints

. progress

if epoch % save_interval == 0:
) plot_generated images (epoch, generator)

Before you run the train() function, you need to define the following plot_generated
_images () function:
def plot _generated images (epoch, generator, examples=100, dim=(10, 10),
figsize=(10, 10)):
noise = np.random.normal (0, 1, size=[examples, latent dim])

generated_images = generator.predict (noise)
generated images = generated images.reshape (examples, 28, 28)

plt.figure(figsize=figsize)
for i in range(generated images.shape[0]) :
plt.subplot (dim[0], dim[1], i+1)
plt.imshow (generated images[i], interpolation='nearest',
cmap='gray r')
plt.axis('off")
plt.tight layout ()
plt.savefig('gan generated image epoch %d.png' % epoch)

STEP 7: TRAIN AND OBSERVE RESULTS
Now that the code implementation is complete, we are ready to start the DCGAN
training. To train the model, run the following code snippet:

train(epochs=1000, batch size=32, save interval=50)

This will run the training for 1,000 epochs and saves images every 50 epochs. When
you run the train() function, the training progress prints as shown in figure 8.22.

I ran this training myself for 10,000 epochs. Figure 8.23 shows my results after 0,
50, 1,000, and 10,000 epochs.

As you can see in figure 8.23, at epoch 0, the images are just random noise—no
patterns or meaningful data. At epoch 50, patterns have started to form. One very
apparent pattern is the bright pixels beginning to form at the center of the image,
and the surroundings’ darker pixels. This happens because in the training data, all of
the shapes are located at the center of the image. Later in the training process, at
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0 [D loss: 0.963556, acc.: 42.19%] [G loss: 0.726341]
1 [D loss: 0.707453, acc.: 65.62%] [G loss: 1.239887]
2 [D loss: 0.478705, acc.: 76.56%] [G loss: 1.666347]
3 [D loss: 0.721997, acc.: 60.94%] [G loss: 2.243804]
4 [D loss: 0.937356, acc.: 45.31%] [G loss: 1.459240]
5 [D loss: 0.881121, acc.: 50.00%] [G loss: 1.417385]
6 [D loss: 0.558153, acc.: 73.44%] [G loss: 1.393961]
7 [D loss: 0.404117, acc.: 78.12%] [G loss: 1.141378]
8 [D loss: 0.452483, acc.: 82.81%] [G loss: 0.802813]
9 [D loss: 0.591792, acc.: 76.56%] [G loss: 0.690274]
10 [D loss: 0.753802, acc.: 67.19%] [G loss: 0.934047]
11 [D loss: 0.957626, acc.: 50.00%] [G loss: 1.140045]
12 [D loss: 0.919308, acc.: 51.56%] [G loss: 1.311618]
13 [D loss: 0.776363, acc.: 56.25%] [G loss: 1.041264]
14 [D loss: 0.763993, acc.: 56.25%] [G loss: 1.090716] Figure 8.22 Training
15 [D loss: 0.754735, acc.: 56.25%] [G loss: 1.530865] progress for the first
16 [D loss: 0.739731, acc.: 68.75%] [G loss: 1.887644]

16 epochs

epoch 1,000, you can see clear shapes and can probably guess the type of training data
fed to the GAN model. Fast-forward to epoch 10,000, and you can see that the gen-
erator has become very good at re-creating new images not present in the training
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Figure 8.23 Output of the GAN generator after 0, 50, 1,000, and 10,000 epochs
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dataset. For example, pick any of the objects created at this epoch: let’s say the top-left
image (dress). This is a totally new dress design that is not present in the training data-
set. The GAN model created a completely new dress design after learning the dress
patterns from the training set. You can run the training longer or make the generator
network even deeper to get more refined results.

IN cLOSING

For this project, I used the Fashion-MNIST dataset because the images are very small
and are in grayscale (one-channel), which makes it computationally inexpensive for
you to train on your local computer with no GPU. Fashion-MNIST is also very clean
data: all of the images are centered and have less noise so they don’t require much
preprocessing before you kick off your GAN training. This makes it a good toy dataset
to jumpstart your first GAN project.

If you are excited to get your hands dirty with more advanced datasets, you can try
CIFAR as your next step (https://www.cs.toronto.edu/~kriz/cifar.html) or Google’s
Quick, Draw! dataset (https://quickdraw.withgoogle.com), which is considered the
world’s largest doodle dataset at the time of writing. Another, more serious, dataset is
Stanford’s Cars Dataset (https://ai.stanford.edu/~jkrause/cars/car_dataset.html),
which contains more than 16,000 images of 196 classes of cars. You can try to train
your GAN model to design a completely new design for your dream car!

Summary

GANSs learn patterns from the training dataset and create new images that have
a similar distribution of the training set.

The GAN architecture consists of two deep neural networks that compete with
each other.

The generator tries to convert random noise into observations that look as if
they have been sampled from the original dataset.

The discriminator tries to predict whether an observation comes from the orig-
inal dataset or is one of the generator’s forgeries.

The discriminator’s model is a typical classification neural network that aims to
classify images generated by the generator as real or fake.

The generator’s architecture looks like an inverted CNN that starts with a nar-
row input and is upsampled a few times until it reaches the desired size.

The upsampling layer scales the image dimensions by repeating each row and
column of its input pixels.

To train the GAN, we train the network in batches through two parallel net-
works: the discriminator and a combined network where we freeze the weights
of the discriminator and update only the generator’s weights.
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To evaluate the GAN, we mostly rely on our observation of the quality of images
created by the generator. Other evaluation metrics are the inception score and
Fréchet inception distance (FID).

In addition to generating new images, GANs can be used in applications such
as text-to-photo synthesis, image-to-image translation, image super-resolution,
and many other applications.



DeepDream and
neural style transfer

This chapter covers

= Visualizing CNN feature maps
= Understanding the DeepDream algorithm and
implementing your own dream

= Using the neural style transfer algorithm to create
artistic images

In fine art, especially painting, humans have mastered the skill of creating unique
visual experiences through composing a complex interplay between the content
and style of an image. So far, the algorithmic basis of this process is unknown, and
there exists no artificial system with similar capabilities. Nowadays, deep neural net-
works have demonstrated great promise in many areas of visual perception such as
object classification and detection. Why not try using deep neural networks to cre-
ate art? In this chapter, we introduce an artificial system based on a deep neural
network that creates artistic images of high perceptual quality. The system uses neu-
ral representations to separate and recombine content and style of arbitrary
images, providing a neural algorithm for the creation of artistic images.

In this chapter, we explore two new techniques to create artistic images using
neural networks: DeepDream and neural style transfer. First, we examine how

374



9.1

How convolutional neural networks see the world 375

convolutional neural networks see the world. We’ve learned how CNNs are used to
extract features in object classification and detection problems; here, we learn how
to visualize the extracted feature maps. One reason is that we need this visualization
technique in order to understand the DeepDream algorithm. Additionally, this will
help us gain a better understanding of what our network learned during training;
we can use that to improve the network’s performance when solving classification
and detection problems.

Next, we discuss the DeepDream algorithm. The key idea of this technique is to
print the features we visualize in a certain layer onto our input image, to create a
dream-like hallucinogenic image. Finally, we explore the neural style transfer tech-
nique, which takes two images as inputs—a style image and a content image—and cre-
ates a new combined image that contains the layout from the content image and the
texture, colors, and patterns from the style image.

Why is this discussion important? Because these techniques help us understand
and visualize how neural networks are able to carry out difficult classification and
detection tasks and check what the network has learned during training. Being able to
see what the network thinks is an important feature to use when distinguishing objects
will help you understand what is missing from your training set and thus improve the
network’s performance.

These techniques also make us wonder whether neural networks could become
tools for artists, give us a new way to combine visual concepts, or perhaps even shed a
little light on the roots of the creative process in general. Moreover, these algorithms
offer a path forward to an algorithmic understanding of how humans create and per-
ceive artistic imagery.

How convolutional neural networks see the world

We have talked a lot in this book about all the amazing things deep neural networks
can do. But despite all the exciting news about deep learning, the exact way neural
networks see and interpret the world remains a black box. Yes, we have tried to
explain how the training process works, and we explained intuitively and mathemati-
cally the backpropagation process that the network applies to update weights through
many iterations to optimize the loss function. This all sounds good and makes sense
on the scientific side of things. But how do CNNs see the world? How do they see the
extracted features between all the layers?

A better understanding of exactly how they recognize specific patterns or objects
and why they work so well might allow us to improve their performance even further.
Additionally, on the business side, this would also solve the “Al explainability” prob-
lem. In many cases, business leaders feel unable to make decisions based on model
predictions because nobody really understands what is happening inside the black
box. This is what we do in this section: we open the black box and visualize what the
network sees through its layers, to help make neural network decisions interpretable
by humans.
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In computer vision problems, we can visualize the feature maps inside the convolu-
tional network to understand how they see the world and what features they think are
distinctive in an object for differentiating between classes. The idea of visualizing con-
volutional layers was proposed by Erhan et al. in 2009." In this section, we will explain
this concept and implement it in Keras.

Revisiting how neural networks work

Before we jump into the explanation of how we can visualize the activation maps (or
feature maps) in a CNN, let’s revisit how neural networks work. We train a deep neu-
ral network by showing it millions of training examples. The network then gradually
updates its parameters until it gives the classifications we want. The network typically
consists of 10-30 stacked layers of artificial neurons. Each image is fed into the input
layer, which then talks to the next layer, until eventually the “output” layer is reached.
The network’s prediction is then produced by its final output layer.

One of the challenges of neural networks is understanding what exactly goes on at
each layer. We know that after training, each layer progressively extracts image fea-
tures at higher and higher levels, until the final layer essentially makes a decision
about what the image contains. For example, the first layer may look for edges or cor-
ners, intermediate layers interpret the basic features to look for overall shapes or com-
ponents, and the final few layers assemble those into complete interpretations. These
neurons activate in response to very complex images such as a car or a bike.

To understand what the network has learned through its training, we want to open
this black box and visualize its feature maps. One way to visualize the extracted fea-
tures is to turn the network upside down and ask it to enhance an input image in such
a way as to elicit a particular interpretation. Say you want to know what sort of image
would result in the output “Bird.” Start with an image full of random noise, and then
gradually tweak the image toward what the neural net considers an important feature
of a bird (figure 9.1).

Input: random noise Output: visualized filter

Figure 9.1 Start with an image
consisting of random noise, and

tweak it until we visualize what

the network considers important
features of a bird.

! Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Visualizing Higher-Layer Features of
a Deep Network.” University of Montreal 1341 (3): 1. 2009. http://mng.bz/yyMq.
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We will dive deeper into the bird example and see how to visualize the network filters.
The takeaway from this introduction is that neural networks are smart enough to
understand which are the important features to pass along through its layers to be
classified by its fully connected layers. Non-important features are discarded along the
way. To put it simply, neural networks learn the features of the objects in the training
dataset. If we are able to visualize these feature maps at the deeper layers of the net-
work, we can find out where the neural network is paying attention and see the exact
features that it uses to make its predictions.

NOTE This process is described best in Francois Chollet’s book, Deep Learning
with Python (Manning, 2017; www.manning.com/books/deep-learning-with-
python): “You can think of a deep network as a multistage information-
distillation operation, where information goes through successive filters and
comes out increasingly purified.”

Visualizing CNN features

An easy way to visualize the features learned by convolutional networks is to display
the visual pattern that each filter is meant to respond to. This can be done with gradi-
ent ascent in input space. By applying gradient ascent to the value of the input image of
a ConvNet, we can maximize the response of a specific filter, starting from a blank
input image. The resulting input image will be one that the chosen filter is maximally
responsive to.

Gradient ascent vs. gradient descent

As a reminder, the general definition of a gradient is that it is the function that defines
the slope or rate of change of the line tangent to a curve at any given point. In simpler
words, the gradient is the slope of the line at that point. Here are some example gra-
dients at certain points on a curve.

Slope at
point d

Slope at
Slope at point c
point a

Slope at
point f

Slope at
point e

Slope at
point b

The gradient at different points on the curve
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(continued)

Whether we want to descend or ascend the curve is based on our project. We learned
in chapter 2 that GD is the algorithm that descends the error function to find the
local minimum (for example, minimize the loss function) by taking steps toward
the negative of the gradient.

To visualize feature maps, we want to maximize these features to make them show
on the output image. In order to maximize the loss function, we want to reverse the
GD process by using a gradient ascent algorithm. It takes steps proportional to the
positive of the gradient to approach a local maximum of that function.

Now comes the fun part of this section. In this exercise, we will see the visualized fea-
ture maps of a few examples at the beginning, middle, and end of a VGG16 network.
The implementation is straightforward, and we will get to it soon. Before we go to the
code implementation, let’s take a look at what these visualized filters look like.

From the VGGI16 diagram we saw in figure 9.1, let’s visualize the output feature
maps of the first, middle, and deep layers as follows: blockl_convl, block3_conv2,
and block5_conv3. Figures 9.2, 9.3, and 9.4 show how the features evolve throughout
the network layers.

As you can see in figure 9.2, the early layers basically just encode low-level, generic
features like direction and color. These direction and color filters then get combined
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Figure 9.2 Visualizing feature maps produced by blockl convl filters
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into basic grid and spot textures in later layers. These textures are gradually combined
into increasingly complex patterns (figure 9.3): the network starts to see some pat-
terns that create basic shapes. These shapes are not very identifiable yet, but they are
much clearer than the earlier ones.

Figure 9.3 Visualizing feature maps produced by block3 conv?2 filters

Now this is the most exciting part. In figure 9.4, you see that the network was able to
find patterns in patterns. These features contain identifiable shapes. While the net-
work relies on more than one feature map to make its prediction, we can look at
these maps and make a close guess about the content of these images. In the left
image, I can see eyes and maybe a beak, and I would guess that this is a type of bird
or fish. Even if our guess is not correct, we can easily eliminate most other classes
like car, boat, building, bike, and so on, because we can clearly see eyes and none of
those classes have eyes. Similarly, looking at the middle image, we can guess from
the patterns that this is some kind of a chain. The right image feels more like food
or fruit.

Figure 9.4 Visualizing feature maps produced by block5 conv3 filters
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How is this helpful in classification and detection problems? Let’s take the left feature
map in figure 9.4 as an example. Looking at the visible features like eyes and beaks, I
can interpret that the network relies on these two features to identify a bird. With this
knowledge about what the network learned about birds, I will guess that it can detect
the bird in figure 9.5, because the bird’s eye and beak are visible.

Figure 9.5 Example of a bird image with visible eye and beak features

Now, let’s consider a more adversarial case where we can see the bird’s body but the eye
and beak are covered by leaves (figure 9.6). Given that the network adds high weights

Figure 9.6 Example of an adversarial
image of a bird where the eye and
beak are not visible but the body is
recognizable by a human
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on the eye and beak features to recognize a bird, there is a good chance that it might
miss this bird because the bird’s main features are hidden. On the other hand, an
average human can easily detect the bird in the image. The solution to this problem is
using one of several data-augmentation techniques and collecting more adversarial
cases in your training dataset to force the network to add higher weights on other fea-
tures of a bird, like shape and color.

9.1.3 Implementing a feature visualizer

Now that you’ve seen the visualized examples, it is time to get your hands dirty and
develop the code to visualize these activation filters yourself. This section walks
through the CNN visualization code implementation from the official Keras docu-
mentation, with minor tweaking.2 You will learn how to generate patterns that maxi-
mize the mean activation of a chosen feature map. You can see the full code in Keras’s
Github repository (http://mng.bz/Md8n).

NOTE You will run into errors if you try to run the code snippets in this sec-
tion. These snippets are just meant to illustrate the topic. You are encouraged
to check out the full executable code that is downloadable with the book.

First, we load the VGG16 model from the Keras library. To do that, we first import
VGGI16 from Keras and then load the model, which is pretrained on the ImageNet
dataset, without including the classification fully connected layers (top part) of the

network:
Imports the VGG
. . . model from Keras
from keras.applications.vgglé import VGGlé

model = VGG16 (weights='imagenet', include top=False) <1—‘ Loads the model

Now, let’s view the names and output shape of all the VGG16 layers. We do that to pick
the specific layer whose filters we want to visualize:

Loops through the
for layer in model.layers: model layers

if 'conv' not in layer.name: Checks for a
continue convolutional layer

filters, biases = layer.get_weights()

print (layer.name, layer.output.shape) Gets the filter weights

When you run this code cell, you will get the output shown in figure 9.7. These are all
the convolutional layers contained in the VGG16 network. You can visualize any of
their outputs simply by referring to each layer by name, as you will see in the next
code snippet.

Let’s say we want to visualize the first conv layer: blockl_convl. Note that this layer
has 64 filters, each of which has an index from 0 to 63 called filter index. Now let’s

2 Francois Chollet, “How convolutional neural networks see the world,” The Keras Blog, 2016, https://blog
.keras.io/ category/demo.html.
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blockl_convl
blockl_conv2
block2_convl
block2_ conv2
block3_convl
block3 conv2
block3_conv3
block4 convl
block4_conv2
block4_conv3
block5_convl
block5_conv2
block5_conv3

(None, None, None, 64)
(None, None, None, 64)
(None, None, None, 128)
(None, None, None, 128)
(None, None, None, 256)
(None, None, None, 256)
(None, None, None, 256)
(None, None, None, 512)
(None, None, None, 512)
(None, None, None, 512)
(None, None, None, 512)
(None, None, None, 512)
( )

None, None, None, 512 Figure 9.7 Output showing convolution

layers in the downloaded VGG16 network

define a loss function that seeks to maximize the activation of a specific filter (filter
_index) in a specific layer (layer name). We also want to compute the gradient using
Keras’s backend function gradients and normalize the gradient to avoid very small
and very large values, to ensure a smooth gradient ascent process.

In this code snippet, we set the stage for gradient ascent. We define a loss function,
compute the gradients, and normalize the gradients:

Identifies the filter that we
want to visualize. This can
be any integer from 0 to
63, as there are 64 filters
in that layer.

from keras import backend as K Gets the symbolic
outputs of each key
layer (we gave them

unique names).

layer_name = 'blockl convl'
filter index = 0

layer dict = dict([(layer.name, layer) for layer in model.layers[1:]1])

layer output = layer dict[layer name] .output Builds a loss function that
loss = K.mean(layer output[:, :, :, filter index]) maximizes the activation
of the nth filter of the
grads = K.gradients(loss, input img) [0] < layer considered
grads /= (K.sqgrt (K.mean (K.square (grads))) + le-5) Computes the gradient
of the input picture with
iterate = K.function([input img], [loss, grads]) respect to this loss

This function returns the loss and
grads given the input picture.

We can use the Keras function that we just defined to do gradient ascent to our filter
activation loss:

Starts from a gray

import numpy as np image with some noise

input img data = np.random.random( (1, 3, img width, img height)) * 20 + 128
for i in range(20):
loss_value, grads_value = iterate([input_img data]l)
input img data += grads_value * step

Runs gradient ascent
for 20 steps
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Now that we have implemented the gradient ascent, we need to build a function that
converts the tensor into a valid image. We will call it deprocess_image (x). Then we
save the image on disk to view it:

from keras.preprocessing.image import save_ img

def deprocess image (x) :

X -= x.mean/() Normalizes the tensor:

x /= (x.std() + le-5) centers on 0. and ensures

x *= 0.1 that std is 0.1

X += 0.5 .

x = np.clip(x, 0, 1) Clips to [0, 1]

X *= 255

X = x.transpose( (1, 2, 0)) Converts to an
x = np.clip(x, 0, 255).astype('uint8') RGB array
return x

img = input img datal0]
img = deprocess image (img)

o

imsave ('%s filter %d.png' % (layer name, filter index), img)

The result should be something like figure 9.8.

blockl convl visualized

You can try to change the visualized filters to deeper layers in later blocks like block2
and block3 to see more defined features extracted as a result of the network recogniz-
ing patterns within patterns through its layers. In the highest layers (block5_conv2,
block5_conv3) you will start to recognize textures similar to those found in the objects
the network was trained to classify, such as feathers, eyes, and so on.
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9.2 DeepDream
DeepDream was developed by Google researchers Alexander Mordvintsev et al. in
2015.° It is an artistic image modification technique that creates dream-like, hallucino-
genic images using CNNs, as shown in the example in figure 9.9).

Figure 9.9 DeepDream
output image

For comparison, the original input image is shown in figure 9.10. The original is a sce-
nic image from the ocean, containing two dolphins and other creatures. DeepDream
merged both dolphins into one object and replaced one of the faces with what looks
like a dog face. Other objects were also deformed in an artistic way, and the sea back-
ground has an edge-like texture.

Figure 9.10 DeepDream
input image

¥ Alexander Mordvintsev, Christopher Olah, and Mike Tyka, “Deepdream—A Code Example for Visualizing
Neural Networks,” Google Al Blog, 2015, http://mng.bz/aROB.
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DeepDream quickly became an internet sensation, thanks to the trippy pictures it gen-
erates, full of algorithmic artifacts, bird feathers, dog faces, and eyes. These artifacts
are byproducts of the fact that the DeepDream ConvNet was trained on ImageNet,
where dog breeds and bird species are vastly overrepresented. If you tried another
network that was pretrained on a dataset with a majority distribution of other objects,
such as cars, you would see car features in your output image.

The project started as a fun experiment to run a CNN in reverse and visualize its
activation maps using the same convolutional filter-visualization techniques explained
in section 9.1: run a ConvNet in reverse, doing gradient ascent on the input in order
to maximize the activation of a specific filter in an upper layer of the ConvNet. Deep-
Dream uses this same idea, with a few alterations:

Input image—In filter visualization, we don’t use an input image. We start from
a blank image (or a slightly noisy one) and then maximize the filter activa-
tions of the convolutional layers to view their features. In DeepDream, we use
an input image to the network because the goal is to print these visualized fea-
tures on an image.

Maximizing filters versus layers—In filter visualization, as the name implies, we
only maximize activations of specific filters within the layer. But in DeepDream,
we aim to maximize the activation of the entire layer to mix together a large
number of features at once.

Octaves—In DeepDream, the input images are processed at different scales
called octaves to improve the quality of the visualized features. This process will
be explained next.

How the DeepDream algorithm works

Similar to the filter-visualization technique, DeepDream uses a pretrained network on
a large dataset. The Keras library has many pretrained ConvNets available to use:
VGGI16, VGG19, Inception, ResNet, and so on. We can use any of these networks in
the DeepDream implementation; we can even train a custom network on our own
dataset and use it in the DeepDream algorithm. Intuitively, the choice of network and
the data it is pretrained on will affect our visualizations because different ConvNet
architectures result in different learned features; and, of course, different training
datasets will create different features as well.

The creators of DeepDream used an Inception model because they found that in
practice, it produces nice-looking dreams. So in this chapter, we will use the Inception
v3 model. You are encouraged to try different models to observe the difference.

The overall idea with DeepDream is that we pass an input image through a pre-
trained neural network such as the Inception v3 model. At some layer, we calculate
the gradient, which tells us how we should change the input image to maximize the
value at this layer. We continue doing this for 10, 20, or 40 iterations until eventually,
patterns start to emerge in the input image (figure 9.11).
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Pretrained network

Layer0 |—| Layer1 —| Layer2 [|—| Layer3 [— :-.-

Repeat X number of iterations

Use gradient to update image

Figure 9.11 DeepDream algorithm

This works fine, except that if the pretrained network has been trained on fairly small
image sizes, like ImageNet, then when our input image is large (say, 1000 x 1000), the
DeepDream algorithm will print a lot of small patterns in the image that look noisy
rather than artistic. This happens because all the extracted features are small in size.
To solve this problem, the DeepDream algorithm processes the input image at differ-
ent scales called octaves.

Octaveis just a fancy word for an interval. The idea is to apply the DeepDream algo-
rithm on the input image through intervals. We first downscale the image several
times into different scales. The number of scales is configurable, as you will see soon.
For each interval, we do the following:

Inject details: to avoid losing a lot of image details after each successive scale-up,
we re-inject the lost details back into the image after each upscale process to
create a blended image.

Apply the DeepDream algorithm: send the blended image through the Deep-
Dream algorithm.

Upscale to the next interval.

As you can see in figure 9.12, we start with the large input image and then downscale
two times to get a small image in octave 3. For the first interval of applying Deep-
Dream, we don’t need to do detail injection because the input image is the source
image that hasn’t been upscaled before. We pass it through the DeepDream algo-
rithm and then upscale the output. After upscaling, details are lost, which results in
an increasingly blurry or pixelated image. This is why it is valuable to re-inject the
image details from the input image in octave 2 and then pass the blended image
through the DeepDream algorithm. We apply the same process of upscale, detail
injection, and DeepDream one more time to get the final result image. This process
is run recursively for an identified number of iterations until we are satisfied with
the output art.
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Input iImage
Octave 1 Octave 2

Octave 3

Downscale Downscale

Re-inject

Final result

Figure 9.12 The DeepDream process: successive image downscales called octaves, detail re-injection, and then
upscaling to the next octave

9.2.2

We set the DeepDream parameters as follows:

Number of scales

num_octave = 3

Size ratio between scales. Each successive
octave_scale = 1.4 scale is larger than the previous one by a
factor of 1.4 (40% larger).

Number of iterations

iterations = 20

Now that you understand how the DeepDream algorithm works, let’s take a look at
DeepDream in action using Keras.

DeepDream implementation in Keras

The DeepDream implementation that we are going to implement is based on Francois
Chollet’s code from the official Keras documentation (https://keras.io/examples/
generative/deep_dream/) and his book, Deep Learning with Python. We’ll explain this
code after adapting it to work on Jupyter Notebooks:
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import numpy as np

from keras.applications import inception v3 . .

from keras import backend as K Dmabﬁsauﬁrm“mg ,

from keras.preprocessing.image import save img opera.tlons SIce we won t

be doing any training with
K.set learning phase(0) the model
model = inception_v3.InceptionV3 (weights='imagenet', include_top=False)
Downloads the pretrained Inception
v3 model without its top part

Now, we need to define a dictionary that specifies which layers are used to generate

the dream. To do that, let’s print out the model summary to view all the layers and

select the layers names:

model . summary ()

Inception v3 is very deep, and the summary printout is long. For simplicity, figure 9.13

shows a few layers of the network.
Layer (type) Output Shape Param #
activation 20 (Activation) (None, None, None, 60 batch normalization 20[0] [0]
activation 22 (Activation) (None, None, None, 60 batch normalization 22[0] [0]
activation 25 (Activation) (None, None, None, 90 batch normalization 25[0] [0]
activation 26 (Activation) (None, None, None, 60 batch normalization 26[0] [0]
mixed2 (Concatenate) (None, None, None, 20 activation 20[0] [0]

activation 22[0] [0]
activation 25[0] [0]
activation 26[0] [0]

Figure 9.13 Part of the Inception v3 model summary

The exact layers you choose and their contribution to the final loss have an important
influence on the visuals you can produce in the dream image, so you want to make these
parameters easily configurable. To define the layers that we want to contribute to the
dream creation, we create a dictionary with the layer names and their respective weights.
The larger the weight of the layer, the higher its level of contribution to the dream:

layer contributions = {
'mixed2': 0.4,
'mixed3': 2.,
'mixed4': 1.5,
'mixed5': 2.3,
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These are the names of the layers for which we try to maximize activations. Note that
when you change the layers in this dictionary, you will produce different dreams, so
you are encouraged to experiment with different layers and their corresponding
weights. For this project, we will start with a somewhat arbitrary configuration by add-
ing four layers to our dictionary and their weights: mixed2, mixed3, mixed4, and
mixed5. As a guide, remember from earlier in this chapter that lower layers can be
used to generate edges and geometric patterns, while high layers result in the injec-
tion of trippy visual patterns, including hallucinations of dogs, cats, and birds.

Now, let’s define a tensor that contains the loss: the weighted sum of the L2 norm

of the activations of the layers:
Dictionary that maps layer
names to layer instances

layer dict = dict([(layer.name, layer) for layer in model.layers])

loss = K.variable(0.)

Defines the loss by adding
layer contributions to this

for layer name in layer contributions: scalar variable

coeff = layer contributions[layer name]
activation = layer dict[layer name] .output
scaling = K.prod(K.cast (K.shape (activation), 'float32'))

loss = loss + coeff *
K.sum(K.square (activation[:, 2: -2, 2: -2, :])) / scaling

Adds the L2 norm of the features of a layer to the loss. We avoid
border artifacts by only invelving non-border pixels in the loss.

Next, we compute the loss, which is the quantity we will try to maximize during the
gradient ascent process. In filter visualization, we wanted to maximize the value of a
specific filter in a specific layer. Here, we will simultaneously maximize the activation
of all filters in a number of layers. Specifically, we will maximize a weighted sum of the
L2 norm of the activations of a set of high-level layers:

Tensors that holds the
dream = model.input generated image Computes t.he gradl'ents of
the dream image with
d to the |
grads = K.gradients(loss, dream) [0] regard to the loss

Normalizes the gradients

grads /= K.maximum(K.mean (K.abs(grads)), le-7)
outputs = [loss, grads] Sets up a Keras function to
fetch_loss_and_grads = K.function([dream], outputs) } retrieve the value of the

T loss and gradients given an
def eval loss_and grads (x) : input image

outs = fetch loss_and grads ([x])

loss_value = outs[0]

grad values = outs[1]

return loss value, grad values Runs the gradient

- - ascent process for a

def gradient ascent (x, iterations, step, max_loss=None) : number of iterations

for i in range(iteratiomns):
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loss_value, grad values = eval_ loss_and grads (x)
if max loss is not None and loss_value > max loss:
break
print('...Loss value at', i, ':', loss_value)
X += step * grad values
return x

Now we are ready to develop our DeepDream algorithm. The process is as follows:

Load the input image.

Define the number of scales, from smallest to largest.

Resize the input image to the smallest scale.

For each scale, start with the smallest and apply the following:
— Gradient ascent function

— Upscaling to the next scale

— Re-injecting details that were lost during the upscale process

Stop the process when we are back to the original size.

First, we set the algorithm parameters:

we run gradient ascent
num_octave = 3

octave scale = 1 < Size ratio between scales
iterations = 20 4—1
max loss = 10. . .

- Number of iterations

Note that playing with these hyperparameters will allow you to achieve new effects.
Let’s define the input image that we want to use to create our dream. For this

example, I downloaded an image of the Golden Gate Bridge in San Francisco (see fig-

ure 9.14); feel free to use an image of your own. Figure 9.15 shows the DeepDream

Gradient ascent step size
step = 0.01 Number of scales at which
.4

output image.

Figure 9.14 Example input
image
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Figure 9.15
output
Here’s the Keras code:
base image path = 'input.jpg' Deﬁnesthepathto

img = preprocess_image (base_image path)

J - : the input image
original shape = img.shape[1:3]

successive shapes = [original_ shape]

for i in range(l, num octave):

shape = tuple([int(dim / (octave scale ** i)) for dim in original shape])

successive_shapes.append (shape)
successive shapes = successive shapes([::-1]
original img = np.copy (img)
shrunk original img = resize img(img, successive shapes[0])
for shape in successive_ shapes:
print ('Processing image shape', shape)
img = resize img(img, shape)

img = gradient ascent (img, iterations=iterations, step=step,
max_loss=max_loss)

DeepDream

upscaled shrunk original img = resize img(shrunk original img, shape)

same_size original = resize img(original img, shape)

lost _detail = same size original - upscaled shrunk original img

img += lost detail
shrunk original img = resize_ img(original img, shape)

phil img = deprocess_image (np.copy (img))

391

save_img('deepdream output/dream at scale ' + str(shape) + '.png', phil img)

Saves the

final img = deprocess image (np.copy (img)) .
N - result to disk

save_img('final dream.png', final img)
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9.3 Neural style transfer

So far, we have learned how to visualize specific filters in a network. We also learned
how to manipulate features of an input image to create dream-like hallucinogenic
images using the DeepDream algorithm. In this section, we explore a new type of artistic
image that ConvNets can create using neuwral style transfer: the technique of transfer-
ring the style from one image to another.

The goal of the neural style transfer algorithm is to take the style of an image (style
image) and apply it to the content of another image (content image). Stylein this con-
text means texture, colors, and other visual patterns in the image. And content is the
higher-level macrostructure of the image. The result is a combined image that con-
tains both the content of the content image and the style of the style image.

For example, let’s look at figure 9.16. The objects in the content image (like dol-
phins, fish, and plants) are kept in the combined image but with the specific texture
of the style image (blue and yellow brushstrokes).

Content image Style image Combined image

i )

Figure 9.16 Example of neural style transfer

The idea of neural style transfer was introduced by Leon A. Gatys et al. in 2015.* The
concept of style transfer, which is tightly related to texture generation, had a long his-
tory in the image-processing community prior to that; but as it turns out, the DL-based
implementations of style transfer offer results unparalleled by what had been previ-
ously achieved with traditional CV techniques, and they triggered an amazing renais-
sance in creative CV applications.

Among the different neural network techniques that create art (like DeepDream),
style transfer is the closest to my heart. DeepDream can create cool hallucination-like
images, but it can be disturbing sometimes. Plus, as a DL engineer, it is not easy to
intentionally create a specific piece of art that you have in your mind. Style transfer,
on the other hand, can use an artistic engineer to mix the content that you want from
an image with your favorite painting to create something that you have imagined. It is

* Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge, “A Neural Algorithm of Artistic Style,” 2015, http://
arxiv.org/abs/1508.06576.
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areally cool technique that, if used by an artist engineer, can be used to create beauti-
ful art on par with that produced by professional painters.

The main idea behind implementing style transfer is the same as the one central to
all DL algorithms, as explained in chapter 2: we first define a loss function to define
what we aim to achieve, and then we work on optimizing this function. In style-transfer
problems, we know what we want to achieve: conserving the content of the original
image while adopting the style of the reference image. Now all we need to do is to
define both content and style in a mathematical representation, and then define an
appropriate loss function to minimize.

The key notion in defining the loss function is to remember that we want to pre-
serve content from one image and style from another:

Content loss—Calculate the loss between the content image and the combined
image. Minimizing this loss means the combined image will have more content
from the original image.

Style loss—Calculate the loss in style between the style image and the combined
image. Minimizing this loss means the combined image will have style similar to
the style image.

Noise loss—This is called the total variation loss. It measures the noise in the
combined image. Minimizing this loss creates an image with a higher spatial
smoothness.

Here is the equation of the total loss:

total loss = [style(style image) - style(combined image)] +
[content (original_ image) - content (combined image)] + total variation loss

NOTE Gatys et al. (2015) on transfer learning does not include the total varia-
tion loss. After experimentation, the researchers found that the network gener-
ated better, more aesthetically-pleasing style transfers when they encouraged
spatial smoothness across the output image.

Now that we have a big-picture idea of how the neural style transfer algorithm works,
we are going to dive deeper into each type of loss to see how it is derived and coded in
Keras. We will then understand how to train a neural style transfer network to mini-
mize the total loss function that we just defined.

Content loss

The content loss measures how different two images are in terms of subject matter
and the overall placement of content. In other words, two images that contain similar
scenes should have a smaller loss value than two images that contain completely differ-
ent scenes. Image subject matter and content placement are measured by scoring
images based on higher-level feature representations in the ConvNet, such as dolphins,
plants, and waler. Identifying these features is the whole premise behind deep neural
networks: these networks are trained to extract the content of an image and learn the
higher-level features at the deeper layers by recognizing patterns in simpler features



394

CHAPTER 9 DeepDream and neural style transfer

from the previous layers. With that said, we need a deep neural network that has been
trained to extract the features of the content image so that we can tap into a deep
layer of the network to extract high-level features.

To calculate the content loss, we measure the mean squared error between the out-
put for the content image and the combined image. By trying to minimize this error,
the network tries to add more content to the combined image to make it more and
more similar to the original content image:

Content loss = % Y [content(original_image) — content(combined_image) ]?

Minimizing the content loss function ensures that we preserve the content of the orig-
inal image and create it in the combined image.

To calculate the content loss, we feed both the content and style images into a pre-
trained network and select a deep layer from which to extract high-level features. We
then calculate the mean squared error between both images. Let’s see how we calcu-
late the content loss between two images in Keras.

NOTE The code snippets in this section are adapted from the neural style trans-
fer example in the official Keras documentation (https://keras.io/examples/
generative/neural_style_transfer/). If you want to re-create this project and
experiment with different parameters, I suggest that you work from Keras’
Github repository as a starting point (http://mng.bz/GVzv) or run the adapted
code available for download with this book.

First, we define two Keras variables to hold the content image and style image. And we
create a placeholder tensor that will contain the generated combined image:

content image path = '/path to images/content image.jpg' Paths to the content
style image path = '/path to images/style image.jpg' and style images
content_image = K.variable (preprocess_image (content_ image path)) Gets tensor
style_image = K.variable (preprocess_image (style image path)) representations
combined image = K.placeholder((l, img nrows, img ncols, 3)) of our images

Now, we concatenate the three images into one input tensor and feed it to the VGG19
neural network. Note that when we load the VGG19 model, we set the include_ top
parameter to False because we don’t need to include the classification fully con-
nected layers for this task. This is because we are only interested in the feature-
extraction part of the network:

Combines the three

images into a single

input_tensor = K.concatenate([content image, style_ image,
Keras tensor

combined image], axis=0)
model = vggl9.VGG1l9 (input tensor=input tensor,
weights="'imagenet', include top=False)

Builds the VGG19 network with our three images as input.
The model will be loaded with pretrained ImageNet weights.
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Similar to what we did in section 9.1, we now select the network layer we want to use to
calculate the content loss. We wanted to choose a deep layer to make sure it contains
higher-level features of the content image. If you choose an earlier layer of the net-
work (like block 1 or block 2), the network won’t be able to transfer the full content
from the original image because the earlier layers extract low-level features like lines,
edges, and blobs. In this example, we choose the second convolutional layer in block
5 (block5 conv2):

outputs dict = dict([(layer.name, layer.output) for layer in model.layers])
layer features = outputs_dict['block5 conv2']

Gets the symbolic outputs of each key
layer (we gave them unique names)

Now we can extract the features from the layer that we chose from the input tensor:

content image features = layer features([0, :, :, :]
combined features = layer features[2, :, :, :]

Finally, we create the content_loss function that calculates the mean squared error
between the content image and the combined image. We create an auxiliary loss func-
tion designed to preserve the features of the content_image and transfer it to the
combined-image:

Mean square error function
def content loss(content image, combined image) : between the content image
return K.sum(K.square (combined - base)) output and the combined image

content loss = content weight * content loss(content image features,
combined features)

content_|loss is scaled by a
weighting parameter.

Weighting parameters

In this code implementation, you will see the following weighting parameters: content
_weight, style weight, and total variation weight. These are scaling param-
eters set by us as an input to the network as follows:

content_weight = content weight
total variation weight = tv_weight
style weight = style weight

These weight parameters describe the importance of content, style, and noise in our out-
put image. For example, if we set style weight = 100 and content weight = 1, we
are implying that we are willing to sacrifice a bit of the content for a more artistic style
transfer. Also, a higher total variation weight implies higher spatial smoothness.
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Style loss

As we mentioned before, style in this context means texture, colors, and other visual
patterns in the image.

MULTIPLE LAYERS TO REPRESENT STYLE FEATURES

Defining the style loss is a little more challenging than what we did with the content
loss. In the content loss, we cared only about the higher-level features that are
extracted at the deeper levels, so we only needed to choose onelayer from the VGG19
network to preserve its features. In style loss, on the other hand, we want to choose
multiple layers because we want to obtain a multi-scale representation of the image
style. We want to capture the image style at lower-level layers, mid-level layers, and
higher-level layers. This allows us to capture the texture and style of our style image
and exclude the global arrangement of objects in the content image.

GRAM MATRIX TO MEASURE JOINTLY ACTIVATED FEATURE MAPS
The gram matrix is a method that is used to numerically measure how much two fea-
ture maps are jointly activated. Our goal is to build a loss function that captures the
style and texture of multiple layers in a CNN. To do that, we need to compute the
correlations between the activation layers in our CNN. This correlation can be cap-
tured by computing the gram matrix—the feature-wise outer product—between the
activations.

To calculate the gram matrix of the feature map, we flatten the feature map and
calculate the dot product:

def gram matrix(x):
features = K.batch_ flatten(K.permute dimensions(x, (2, 0, 1)))
gram = K.dot (features, K.transpose (features))
return gram

Let’s build the style loss function. It calculates the gram matrix for a set of layers
throughout the network for both the style and combined images. It then compares
the similarities of style and texture between them by calculating the sum of squared
€rTors:

def style loss(style, combined) :
S = gram matrix(style)
C = gram matrix(combined)
channels = 3
size = img nrows * img ncols
return K.sum(K.square(S - C)) / (4.0 * (channels ** 2) * (size ** 2))

In this example, we are going to calculate the style loss over five layers: the first convo-
lutional layer in each of the five blocks of the VGG19 network (note that if you change
the feature layers, the network will preserve different styles):

feature layers = ['blockl convl', 'block2 convl',

'block3_convl', 'block4 convl',
'Block5 convl']
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Finally, we loop through these feature_layers to calculate the style loss:

Scales the style loss by a

for layer name in feature layers: weighting parameter and
layer features = outputs dict[layer name] thenumberofhymsovgr
style reference features = layer features[l, :, :, :] which the style loss is
combination features = layer features([2, :, :, :] calculated
sl = style loss(style reference features, combination features)

style loss += (style weight / len(feature_ layers)) * sl

During training, the network works on minimizing the loss between the style of the
output image (combined image) and the style of the input style image. This forces the
style of the combined image to correlate with the style image.

Total variance loss

The total variance loss is the measure of noise in the combined image. The network’s
goal is to minimize this loss function in order to minimize the noise in the output
image.

Let’s create the total variation loss function that calculates how noisy an
image is. This is what we are going to do:

Shift the image one pixel to the right, and calculate the sum of the squared
error between the transferred image and the original.
Repeat step 1, this time shifting the image one pixel down.

The sum of these two terms (a and b) is the total variance loss:

def total variation loss(x):
a = K.square (

x[:, :img nrows - 1, :img ncols - 1, :] - x[:, 1:, :img ncols - 1, :1])
b = K.square (
x[:, :img nrows - 1, :img ncols - 1, :] - x[:, :img nrows - 1, 1:, :1)

return K.sum(K.pow(a + b, 1.25))

tv_loss = total variation weight * total_ variation loss (combined_ image)

Scales the total variance loss by
the weighting parameter

Finally, we calculate the overall loss of our problem, which is the sum of the content,

style, and total variance losses:

total loss = content loss + style loss + tv_loss

Network training

Now that we have defined the total loss function for our problem, we can run the GD
optimizer to minimize this loss function. First we create an object class Evaluator that
contains methods that calculate the overall loss, as described previously, and gradients
of the loss with respect to the input image:
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class Evaluator (object) :
def  init (self):
self.loss_value = None
self.grads_values = None

def loss(self, x):
assert self.loss_value is None
loss_value, grad values = eval loss and grads(x)
self.loss_value = loss_value
self.grad values = grad_values
return self.loss value

def grads(self, x):
assert self.loss value is not None
grad_values = np.copy(self.grad values)
self.loss_value = None
self.grad values = None
return grad_values

evaluator = Evaluator()

Next, we use the methods in our evaluator class in the training process. To minimize
the total loss function, we use the SciPy (https://scipy.org/scipylib) based optimiza-
tion method scipy.optimize.fmin 1 bfgs b:

from scipy.optimize import fmin 1 bfgs b

Iterations = 1000 < Trains for 1,000 iterations The training process is initialized
with content_image as the first

. , iteration of the combined image.
X = preprocess_image (content_ image path)

—> for i in range (iterations) :
x, min _val, info = fmin 1 bfgs b(evaluator.loss, x.flatten(),
fprime=evaluator.grads, maxfun=20)
img = deprocess_ image (x.copy ())
fname = result prefix + ' at iteration %d.png' % i
save_img(fname, img)

Saves the current
generated image

Runs scipy-based optimization (L-BFGS)
over the pixels of the generated image to
minimize total_loss.

TIP When training your own neural style transfer network, keep in mind that
content images that do not require high levels of detail work better and are
known to create visually appealing or recognizable artistic images. In addi-
tion, style images that contain a lot of textures are better than flat style
images: flat images (like a white background) will not produce aesthetically
appealing results because there is not much texture to transfer.
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Summary

CNN s learn the information in the training set through successive filters. Each
layer of the network deals with features at a different level of abstraction, so the
complexity of the features generated depends on the layer’s location in the net-
work. Earlier layers learn low-level features; the deeper the layer is in the network,
the more identifiable the extracted features are.

Once a network is trained, we can run it in reverse to adjust the original image
slightly so that a given output neuron (such as the one for faces or certain ani-
mals) yields a higher confidence score. This technique can be used for visualiza-
tions to better understand the emergent structure of the neural network and is
the basis for the DeepDream concept.

DeepDream processes the input image at different scales called octaves. We pass
each scale, re-inject image details, pass it through the DeepDream algorithm, and
then upscale the image for the next octave.

The DeepDream algorithm is similar to the filter-visualization algorithm. It
runs the ConvNet in reverse to generate output based on the representations
extracted by the network.

DeepDream differs from filter-visualization in that it needs an input image and
maximizes the entire layer, not specific filters within the layer. This allows Deep-
Dream to mix together a large number of features at once.

DeepDream is not specific to images—it can be used for speech, music, and more.
Neural style transfer is a technique that trains the network to preserve the style
(texture, color, patterns) of the style image and preserve the content of the con-
tent image. The network then creates a new combined image that combines the
style of the style image and the content from the content image.

Intuitively, if we minimize the content, style, and variation losses, we get a new
image that contains low variance in content and style from the content and style
images, respectively, and low noise.

Different values for content weight, style weight, and total variation weight will
give you different results.
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BY RATNESH KUMAR

This chapter covers

= Expressing similarity between images via loss
functions

= Training CNNs to achieve a desired embedding
function with high accuracy

= Using visual embeddings in real-world
applications

Obtaining meaningful relationships between images is a vital building block for
many applications that touch our lives every day, such as face recognition and
image search algorithms. To tackle such problems, we need to build an algorithm
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has a Bachelor of Engineering from Manipal University, India, and a Master of Science from the University
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re-identifying objects in camera networks.
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that can extract relevant features from images and subsequently compare them using
their corresponding features.

In the previous chapters, we learned that we can use convolutional neural net-
works (CNNs) to extract meaningful features for an image. This chapter will use our
understanding of CNNs to train (jointly) a visual embedding layer. In this chapter’s con-
text, visual embedding refers to the last fully connected layer (prior to a loss layer)
appended to a CNN. Joint training refers to training both the embedding layer and the
CNN parameters jointly.

This chapter explores the nuts and bolts of training and using visual embeddings
for large-scale, image-based query-retrieval systems such as applications of visual embed-
dings (see figure 10.1). To perform this task, we first need to project (embed) our data-
base of images onto a vector space (embedding). This way, comparisons between images
can be performed by measuring their pairwise distances in this embedding space.
This is the high-level idea of visual embedding systems.

How do |
compare these
images?

Search the
database for images
similar to this.

Database
of images

Figure 10.1 Example applications we encounter in everyday life when working with
images: a machine comparing two images (left); querying the database to find images
similar to the input image (right). Comparing two images is a non-trivial task and is key
to many applications relating to meaningful image search.

DEFINITION An embedding is a vector space, typically of lower dimension than
the input space, which preserves relative dissimilarity (in the input space). We
use the terms vector space and embedding spaceinterchangeably. In the context
of this chapter, the last fully connected layer of a trained CNN is this vector
(embedding) space. As an example, a fully connected layer of 128 neurons
corresponds to a vector space of 128 dimensions.

For a reliable comparison among images, the embedding function needs to capture a
desired input similarity measure. This embedding function can be learned using vari-
ous approaches; one of the popular ways is to use a deep CNN. Figure 10.2 illustrates a
high-level process of using CNNs to create an embedding.
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CNN I—'

Figure 10.2 Using CNNs
I to obtain an embedding
Embedding from an input image

In the following section, we explore some example applications of using visual embed-
dings for large-scale query-retrieval systems. Then we will dive deeper into the different
components of the visual embedding systems: loss functions, mining informative data,
and training and testing the embedding network. Subsequently, we will use these con-
cepts to solve our chapter project on building visual embedding-based query-retrieval
systems. Thereafter, we will explore approaches to push the boundaries of the project’s
network accuracy. By the end of this chapter, you will be able to train a CNN to obtain a
reliable and meaningful embedding and use it in real-world applications.

Applications of visual embeddings

Let’s look at some practical day-to-day information-retrieval algorithms that use the
concept of visual embeddings. Some of the prominent applications for retrieving sim-
ilar images given an input query include face recognition (FR), image recommenda-
tion, and object re-identification systems.

Face recognition

FR is about automatically identifying or tagging an image with the exact identities of
persons in the image. Day-to-day applications include searching for celebrities on the
web, auto-tagging friends and family in images, and many more. Recognition is a form
of fine-grained classification. The Handbook of Face Recognition [1] categorizes two modes
of a FR system (figure 10.3 compares them):

Face identification—One-to-many matches that compare a query face image
against all the template images in the database to determine the identity of the
query face. For example, city authorities can check a watch list to match a query
to a list of suspects (one-to-few matches). Another fun example is automatically
tagging users to photos they appear in, a feature implemented by major social
network platforms.

Face verification—One-to-one match that compares a query face image against a
template face image whose identity is being claimed.
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Face verification Face identification

SR e N\

— Person
1

— Person

Face Face
verification identification —— Person
system system 2
Not
—— person
1 Haven't
seen her
before
~__ ~__

Figure 10.3 Face-verification and face-recognition systems: an example of a face-verification system
comparing one-on-one matches to identify whether or not the image is Sundar (left); an example of a face-
identification system comparing one-to-many matches to identify all images (right). Despite the objective-
level difference between recognition and identification, they both rely on a good embedding function that
captures meaningful differences between faces. (The figure was inspired by [2].)

Image recommendation systems

In this task, the user seeks to find similar images with respect to a given query image.
Shopping websites provide product suggestions (via images) based on the selection of
a particular product, such as showing all kinds of shoes that are similar to the ones a
user selected. Figure 10.4 shows an example in the context of apparel search.

Note that the similarity between two images varies depending on the context of
choosing the similarity measure. The embedding of an image differs based on the type
of similarity measure chosen. Some examples of similarity measures are color similarity
and semantic similarity:

Color similarity—The retrieved images have similar colors, as shown in figure 10.5.
This measure is used in applications like retrieving similarly colored paintings,
similarly colored shoes (not necessarily determining style), and many more.
Semantic similarity—The retrieved image has the same semantic properties, as
shown in figure 10.6. In our earlier example of shoe retrieval, the user expects
to see suggestions of shoes having the same semantics as high-heeled shoes. You
can be creative and decide to incorporate color similarity with semantics for
more meaningful suggestions.
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Retrievals

Figure 10.4 Apparel search. The
leftmost image in each row is the
query image, and the subsequent
columns show various apparel that
look similar to it. (Images in this
figure are taken from [3].)

Color similarity

Black cars

Bl

White cars

‘d cars mé‘\
oy =

)

Figure 10.5 Similarity example where cars are differentiated by their color. Notice that the
similarly colored cars are closer in this illustrative two-dimensional embedding space.
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Semantic similarity

Sports cars

T o

Trucks

Figure 10.6 Example of identity embeddings. Cars with similar features are
projected closer to each other in the embedding space.

10.1.3 Object re-identification

An example of object re-identification is security camera networks (CCTV monitor-
ing), as depicted in figure 10.7. The security operator may be interested in querying a
particular person and finding out their location in all the cameras. The system is
required to identify a moving object in one camera and then re-identify the object

across cameras to establish consistent identity.

Figure 10.7 Multi-camera dataset showing the presence of a person (queried) across
cameras. (Source: [4].)
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This problem is commonly known as person re-identification. Notice that it is similar to a
face-verification system where we are interested in capturing whether any two people
in separate cameras are the same, without needing to know exactly who a person is.

One of the central aspects in all these applications is the reliance on an embed-
ding function that captures and preserves the input’s similarity (and dissimilarity) to
the output embedding space. In the following sections, we will delve into designing
appropriate loss functions and sampling (mining) informative data points to guide
the training of a CNN for a high-quality embedding function.

But before we jump into the details of creating an embedding, let’s answer this
question: why do we need to embed—can’t we just use the images directly? Let’s review
the bottlenecks with this naive approach of directly using image pixel values as an
embedding. Embedding dimensionality in this approach (assuming all images are high
definition) would be 1920 x 1080, represented in a computer’s memory in double preci-
sion, which is computationally prohibitive for both storage and retrieval given any
meaningful time requirements. Moreover, most embeddings need to be learned in a
supervised setting, as a priori semantics for comparison are not known (thatis when we
unleash the power of CNNs to extract meaningful and relevant semantics). Any learn-
ing algorithm on such a high-dimensional embedding space will suffer from the curse
of dimensionality: as the dimensionality increases, the volume of the space increases
so fast that the available data becomes sparse.

The geometry and data distribution of natural data are non-uniform and concat-
enate around low-dimensional structures. Hence, using an image size as data
dimensions is overkill (let alone the exorbitant computational complexity and
redundancy). Therefore, our goal in learning embedding is twofold: learning the
required semantics for comparison, and achieving a low(er) dimensionality of the
embedding space.

Learning embedding

Learning an embedding function involves defining a desired criterion to measure a sim-
ilarity; it can be based on color, semantics of the objects present in an image, or purely
data-driven in a supervised form. Since a priori knowing the right semantics (for com-
paring images) is difficult, supervised learning is more popular. Instead of hand-crafting
similarity criteria features, in this chapter we will focus on the supervised data-driven
learning of embeddings wherein we assume we are given a training set. Figure 10.8
depicts a high-level architecture to learn an embedding using a deep CNN.
The process to learn an embedding is straightforward:

Choose a CNN architecture. Any suitable CNN architecture can be used. In
practice, the last fully connected layer is used to determine the embedding.
Hence the size of this fully connected layer determines the dimension of the
embedding vector space. Depending on the size of the training dataset, it may
be prudent to use pretraining with, for example, the ImageNet dataset.
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1. Classification

2. Contrastive

3. Triplet

4. Many more multiple views

CNN Loss

Embedding
layer

1 CNN |—>

Embedding

Figure 10.8 An illustration of learning machinery (top); the (test)
process outline (bottom).

Choose a loss function. Popular loss functions are contrastive and triplet loss.
(These are explained in section 10.3.)

Choose a dataset sampling (mining) method. Naively feeding all possible sam-
ples from the dataset is wasteful and prohibitive. Hence we need to resort to
sampling (mining) informative data points to train our CNN. We will learn vari-
ous sampling techniques in section 10.4.

During test time, the last fully connected layer acts as the embedding of the cor-
responding image.

Now that we have reviewed the big picture of the training and inference process for
learning embedding, we will delve into defining useful loss functions to express our
desired embedding objectives.

Loss functions

We learned in chapter 2 that optimization problems require the definition of a loss
function to minimize. Learning embedding is not different from any other DL prob-
lem: we first define a loss function that we need to minimize, and then we train a neu-
ral network to choose the parameter (weights) values that yield the minimum error
value. In this section, we will look more deeply at key embedding loss functions: ¢ross-
entropy, contrastive, and triplet.

First we will formalize the problem setup. Then we will explore the different loss
functions and their mathematical formulas.
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10.3.1 Problem setup and formalization

To understand loss functions for learning embedding and eventually train a CNN (for
this loss), let’s first formalize the input ingredients and desired output characteristics.
This formalization will be used in later sections to understand and categorize various
loss functions in a succinct manner. For the purposes of this conversation, our dataset
can be represented as follows:

X = {(x 91,

Nis the number of training images, x; is the input image, and yj; is its corresponding
label. Our objective is to create an embedding

f(x;0): R > RF

to map images in R” onto a feature (embedding) space in R”such that images of sim-
ilar identity are metrically close in this feature space (and vice versa for images of dis-
similar identities)

0* = argeminl:(f(e; X))

where 0 is the parameter set of the learning function.
Let

D(x; x) : R' XR' - R

be the metric measuring distance of images x; and x;in the embedding space. For
simplicity, we drop the input labels and denote D(x; x;) as Dj; - y;; = 1. Both samples
() and (j) belong to the same class, and the value y; = 0 indicates samples of different
classes.

Once we train an embedding network for its optimal parameters, we desire the
learned function to have the following characteristics:

An embedding should be invariant to viewpoints, illumination, and shape
changes in the object.

From a practical application deployment, computation of embedding and rank-
ing should be efficient. This calls for a low-dimension vector space (embed-
ding). The bigger this space is, the more computation is required to compare
any two images, which in turn affects the time complexity.

Popular choices for learning an embedding are cross-entropy loss, contrastive loss,
and triplet loss. The subsequent sections will introduce and formalize these losses.
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10.3.2 Cross-entropy loss

Learning an embedding can also be formulated as a fine-grained classification prob-
lem, and the corresponding CNN can be trained using the popular cross-entropy loss
(explained in detail in chapter 2). The following equation expresses cross-entropy
loss, where [J(y,~j| f(x; 0)) represents the posterior class probability. In CNN literature,
softmax loss implies a softmax layer trained in a discriminative regime using cross-
entropy loss:

N C
LX) ==Y yilogp(yl/(x; 6))
i=1k=1

During training, a fully connected (embedding) layer is added prior to the loss layer.
Each identity is considered a separate category, and the number of categories is equal
to the number of identities in the training set. Once the network is trained using clas-
sification loss, the final classification layer is stripped off and an embedding is
obtained from the new final layer of the network (figure 10.9).

Image classification Person re-identification
Images Images
ConvNets ConvNets
Features Features
fc fc

Probabilities § Probabilities ! Distance matrix

; ‘
| |
| |
‘ ‘
Y Y

Softmax loss Softmax loss

[ Predictions ] l Predictions ]

!
|
|
|

)

Test mode Train mode Train mode Test mode

Figure 10.9 An illustration of how cross-entropy loss is used to train an embedding layer
(fully connected). The right side demonstrates the inference process and outlines the
disconnect in training and inference in straightforward usage of cross-entropy loss for
learning an embedding. (This figure is adapted from [5].)

By minimizing the cross-entropy loss, the parameters (8) of the CNN are chosen such
that the estimated probability is close to 1 for the correct class and close to 0 for all
other classes. Since the target of the cross-entropy loss is to categorize features into
predefined classes, usually the performance of such a network is poor when com-
pared to losses incorporating similarity (and dissimilarity) constraints directly in the
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embedding space during training. Furthermore, learning becomes computationally
prohibitive when considering datasets of, for example, 1 million identities. (Imagine a
loss layer with 1 million neurons!) Nevertheless, pretraining a network with cross-
entropy loss (on a viable subset of the dataset, such as a subset of 1,000 identities) is a
popular strategy used to pretrain the CNN, which in turn makes embedding losses
converge faster. We will explore this further while mining informative samples during
training in section 10.4.

NOTE One of the disadvantages of the cross-entropy loss is the disconnect
between training and inference. Hence, it generally performs poorly when
compared with embedding learning losses (contrastive and triplet). These
losses explicitly try to incorporate the relative distance preservation from the
input image space to the embedding space.

Contrastive loss

Contrastive loss optimizes the training objective by encouraging all similar class
instances to come infinitesimally closer to each other, while forcing instances from
other classes to move far apart in the output embedding space (we say infinitesimally
here because a CNN can’t be trained with exactly zero loss). Using our problem for-
malization, this loss is defined as

Leontrastive (> J) = yi/DiQ;' + (1 =) [o - Dz'gj]+

Note that [.]; = max(0,.) in the loss function indicates hinge loss, and o. is a predeter-
mined threshold (margin) determining the max loss for when the two samples i and j
are in different classes. Geometrically, this implies that two samples of different classes
contribute to the loss only if the distance between them in the embedding space is less
than this magin. Dy,
samples ¢ and jin the embedding space.

This loss is also known as Siamese loss, because we can visualize this as a twin net-

as noted in the formulation, refers to the distance between two

work with shared parameters; each of the two CNNs is fed an image. Contrastive loss
was employed in the seminal work by Chopra et al. [6] for the face-verification prob-
lem, where the objective is to verify whether two presented faces belong to the same
identity. An illustration of this loss is provided in the context of face recognition in fig-
ure 10.10.

Notice that the choice of the margin o is the same for all dissimilar classes. Man-
matha et al. [7] analyze the impact: this choice of o implies that for dissimilar identities,
visually diverse classes are embedded in the same feature space as the visually similar
ones. This assumption is stricter when compared to triplet loss (explained next) and
restricts the structure of the embedding manifold, which subsequently makes learning
tougher. The training complexity per epoch is O(N?) for a dataset of Nsamples, as
this loss requires traversing a pair of samples to compute the contrastive loss.
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10.3.4 Triplet loss

Inspired by the seminal work on metric learning for nearest neighbor classification by
Weinberger et al. [8], FaceNet (Schroff et al. [9]) proposed a modification suited for
query-retrieval tasks called triplet loss. Triplet loss forces data points from the same class
to be closer to each other than they are to a data point from another class. Unlike con-
trastive loss, triplet loss adds context to the loss function by considering both positive
and negative pair distances from the same point. Mathematically, with respect to our
problem formalization from earlier, triplet loss can be formulated as follows:

ltriplet(ar b n) = [Dap_ Dy, + ol

Note that D, represents the distance between the anchor and a positive sample, while
D,, is the distance between the anchor and a negative sample. Figure 10.11 illustrates
the computation of the loss term using an anchor, a positive sample, and a negative
sample. Upon successful training, the hope is that we will get all the same class pairs
closer than pairs from different classes.

Because computing triplet loss requires three terms, the training complexity per
epoch is O(N?®), which is computationally prohibitive on practical datasets. High
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computational complexity in triplet and contrastive losses have motivated a host of sam-
pling approaches for efficient optimization and convergence. Let’s review the complex-
ity of implementing these losses in a naive and straightforward manner.

10.3.5 Naive implementation and runtime analysis of losses

Consider a toy example with the following specifications:

Number of identities (N): 100
Number of samples per identity (S): 10

If we implement the losses in a naive manner (see figure 10.12), it leads to per-epoch
(inner for loop,' in figure 10.12) training complexity:

Cross-entropy loss—This is a relatively straightforward loss. In an epoch, it just
needs to traverse all samples. Hence our complexity here is O(N x S) = O(10%).

! In practice, this step gets unwound into two for loops due to host memory limitations.
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Algorithm 1: Naive implementation of training for learning an embedding.

Result: A trained CNN with a desirable embedding size.
Initialization: Dataset, a CNN, aloss function, embedding dimension;
while numEpochs > 0 do
for all dataset samplesdo
Compute any one of the losses (from cross-entropy, contrastive,
triplet) over al possible data samples.
end

numEpochs —= 1 Figure 10.12 Algorithm 1,
end for a naive implementation

Contrastive loss—This loss visits all pairwise distances, so complexity is quadratic
in terms of number of samples (N x S): that is, O(100 x 10 x 100 x 10) = O(10°).
Triplet loss—For every loss computation, we need to visit three samples, so the
worst-case complexity is cubic. In terms of total number of samples, thatis O(10%).

Despite the ease of computing cross-entropy loss, its performance is relatively low
when compared to other embedding losses. Some intuitive explanations are pointed
out in section 10.3.2. In recent academic works (such as [10, 11, 13]), triplet loss has
generally given better results than contrastive loss when provided with appropriate
hard data mining, which we will explain in the next section.

NOTE In the following sections, we refer to triplet loss, owing to its high per-
formance over contrastive loss in several academic works.

One important point to notice is that not many of the triplets of the O(10°) contrib-
ute to the loss in a strong manner. In practice, during a training epoch, most of the
triplets are trivial: that is, the current network is already at a low loss on these, and
hence anchor-positive pairs of these trivial triplets are much closer (in the embedding
space) than anchor-negative pairs. These trivial triplets do not add meaningful infor-
mation to update the network parameters, thereby stagnating convergence. Further-
more, there are far fewer informative triplets than trivial triplets, which in turn leads
to washing out the contribution of informative triplets.

To improve the computational complexity of triplet enumeration and conver-
gence, we need to come up with an efficient strategy for enumerating triplets and feed
the CNN (during training) informative triplet samples (without trivial triplets). This
process of selecting informative triplets is called mining. Informative data points is the
essence of this chapter and is discussed in the following sections.

A popular strategy to tackle this cubic complexity is to enumerate triplets in the
following manner:

Construct a triplet set using only the current batch constructed by the dataloader.
Mine an informative triplet subset from this set.

The next section looks at this strategy in detail.
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Mining informative data

So far, we have looked at how triplet and contrastive losses are computationally pro-
hibitive for practical dataset sizes. In this section, we take a deep dive into understand-
ing the key steps during training a CNN for triplet loss and learn how to improve the
training convergence and computational complexity.

The straightforward implementation in figure 10.12 is classified under offline train-
ing, as the selection of a triplet must consider the full dataset and therefore cannot be
done on the fly while training a CNN. As we noted earlier, this approach of computing
valid triplets is inefficient and is computationally infeasible for DL datasets.

To deal with this complexity, FaceNet [9] proposes using online batch-based triplet
mining. The authors construct a batch on the fly and perform mining of triplets for
this batch, ignoring the rest of the dataset outside this batch. This strategy proved
effective and led to state-of-the-art accuracy in face recognition.

Let’s summarize this information flow during a training epoch (see figure 10.13).
During training, mini-batches are constructed from the dataset, and valid triplets are
subsequently identified for each sample in the mini-batch. These triplets are then
used to update the loss, and the process iterates until all the batches are exhausted,
thereby completing an epoch.

‘ Dataset }— Dataloader }— Find triplets }—‘ Train

Figure 10.13 Information flow during an online training process. The
dataloader samples a random subset of training data to the GPU.
Subsequently, triplets are computed to update the loss.

Similar to FaceNet, OpenFace [37] proposed a training scheme wherein the data-
loader constructs a training batch of predefined statistics, and embeddings for the batch
are computed on the GPU. Subsequently, valid triplets are generated on the CPU to
compute the loss.

In the next subsection, we look into an improved dataloader that can give us good
batch statistics to mine triplets. Subsequently, we will explore how we can efficiently
mine good, informative triplets to improve training convergence.

Dataloader

Let’s examine the dataloader’s setup and its role in training with triplet loss. The data-
loader selects a random subset from the dataset and is crucial to mining informative
triplets. If we resort to a trivial dataloader to choose a random subset (mini-batch) of
the dataset, it may not result in good class diversity for finding many triplets. For
example, randomly selecting a batch with only one category will not have any valid
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triplets and thus will result in a wasteful batch iteration. We must take care at the data-
loader level to have well distributed batches to mine triplets.

NOTE The requirement for better convergence at the dataloader level is to
form a batch with enough class diversity to facilitate the triplet mining step in
figure 10.11.

A general and effective approach to training is to first mine a set of triplets of size B, so
that B terms contribute to the triplet loss. Once set B is chosen, their images are
stacked to form a batch size of 3B images (B anchors, B positives, and B negatives),
and subsequently 3B embeddings are computed to update the loss.

Hermans et al. [11], in their impressive work on revisiting triplet loss, realize the
under-utilization of valid triplets in online generation presented in the previous
section. In a set of 3Bimages (B anchors, B positives, B negatives), we have a total of
6B? — 4B valid triplets, so using only B triplets is under-utilization.

Computing the number of valid triplets in stacked 3B images of B triplets
To understand the computation of the number of valid triplets in a stack of 3B images
(that is, B anchors, B positives, B negatives), let’s assume we have exactly one pair
of the same class. This implies we could choose 3B — 2 negatives for an (anchor,
positive) pair. There are 2B possible anchor-positive pairs in this set, leading to a
total of 2B (3B — 2) valid triplets. The following figure shows an example.

An example with B = 3. Circles with the same
pattern are of the same class. Since only the first
two columns have a possible positive sample, there
are a total of 2B (six) anchors. After selecting an

@ @ anchor, we are left with 3B — 2 (seven) negatives,

Anchor Positive Negative implying a sum total of 2B (3B - 2) triplets.

In light of the previous discussion, to use the triplets more efficiently, Hermans et al.
propose a key organizational modification at the dataloader level: construct a batch by
randomly sampling P identities from dataset X and subsequently sampling K images
(randomly) for each identity, thus resulting in a batch size of PK images. Using this
dataloader (with appropriate triplet mining), the authors demonstrate state-of-the-art
accuracy on the task of person re-identification. We look more at the mining tech-
niques introduced in [11] in the following subsections. Using this organizational
modification, Kumar et al. [10, 12] demonstrate state-of-the-art results for the task of
vehicle re-identification across many diverse datasets.
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Owing to the superior results on re-identification tasks, [11] has become one of
the mainstays in recognition literature, and the batch construction (dataloader) is
now a standard in practice. The default recommendation for the batch size is P= 18,
K =4, leading to 42 samples.

Computing the number of valid triplets

Let’s make this concept clearer with a working example of computing the number of
valid triplets in a batch. Assuming we have selected a random batch of size PK:

P = 10 different classes
K = 4 samples per class

Using these values, we have the following batch statistics:

Total number of anchors = 40 = (PK)
Number of positive samples per anchor =3 = (K - 1)
Number of negative samples per anchor = 9 x 4 = (K(P — 1))

Total number of valid triplets = products of the previous results = 40 x 3 X
(9 x 4)

Taking a peek at upcoming concepts on mining informative triplets, notice that for
each anchor, we have a set of positive samples and a set of negative samples. We
argued earlier that many triplets are non-informative, and hence in the subsequent
sections we look at various ways to filter out important triplets. More precisely, we
examine techniques that help filter out informative subsets of positive and negative
samples (for an anchor).

Now that we have built an efficient dataloader for mining triplets, we are ready to
explore various techniques for mining informative triplets while training a CNN. In
the following sections, we first look at hard data mining in general and subsequently
focus on online generation (mining) of informative triplets following the batch con-
struction approach in [11].

Informative data mining: Finding useful triplets

Mining informative samples while training a machine learning model is an important
problem, and many solutions exist in academic literature. We take a quick peek at
them here.

A popular sampling approach to find informative samples is hard data mining,
which is used in many CV applications such as object detection and action localiza-
tion. Hard data mining is a bootstrapping technique used in iterative training of a
model: at every iteration, the current model is applied on a validation set to mine
hard data on which this model performs poorly. Only this hard data is then presented
to the optimizer, which increases the ability of the model to learn effectively and con-
verge faster to an optimum. On the flip side, if a model is only presented with hard
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data, which could consist of outliers, its ability to discriminate outliers with respect
to normal data suffers, stalling the training progress. An outlier in a dataset could be a
result of mislabeling or a sample captured with poor image quality.

In the context of triplet loss, a hard negative sample is one that is closer to the
anchor (as this sample would incur a high loss). Similarly, a hard positive sample is one
that is far from an anchor in embedding space.

To deal with outliers during hard data sampling, FaceNet [9] proposed semi-hard
sampling that mines moderate triplets that are neither too hard nor too trivial for get-
ting meaningful gradients during training. This is done by using the margin parame-
ter: only negatives that lie in the margin and are farther from the selected positive for
an anchor are considered (see figure 10.14), thereby ignoring negatives that are too
easy and too hard. However, this in turn adds additional burden on training for tun-
ing an additional hyperparameter. This ad hoc strategy of semi-hard negatives is put
into practice in a large batch size of 1,800 images, thereby enumerating triplets on the
CPU. Notice that with the default batch size (42 images) in [11], it is possible to enu-
merate the set of valid triplets efficiently on the GPU.

Easy negative

Semi-hard negative

Hard negative
Anchor ‘

Positive

Margin

Figure 10.14 Margin: grading triplets into hard, semi-hard, and easy. This illustration
(in the context of face recoghnition) is for an anchor and a corresponding negative
sample. Therefore, negative samples that are closer to the anchor are hard.
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Figure 10.15 illustrates the hardness of a triplet. Remember that a positive sample is
harder if the network (at a training epoch) puts this sample far from its anchor in the
embedding space. Similarly, in a plot of distances from the anchor to negative data,
the samples closer (less distant) to the anchor are harder. As a reminder, here is the
triplet loss function for an anchor (a), positive (p), and negative (n):

ltriplet(a> b n) = [Dap_ Dcm + 0(]+

1.0
i
0.5
Anchor
T
f
S 00
2 3 4 5

[ Distances from anchor: positive samples

!

1.0

o

L
0.5 "ﬁ

i oL

g
1 2 3 4 5
[ Distances from anchor: negative samples

Figure 10.15 Hard-positive and hard-negative data. The plot shows the distances of positive
samples (top) and negative samples (bottom) with respect to an anchor (at a particular
epoch). The hardness of samples increases as we move from left to right on both plots.
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Having explored the concept of hard data and its pitfalls, we will now explore various
online triplet mining techniques for our batch. Once a batch (of size PK) is con-
structed by the dataloader, there are PK possible anchors. How to find positive and
negative data for these anchors is the crux of mining techniques. First we look at
two simple and effective online triplet mining techniques: baich all (BA) and baich
hard (BH).

Batch all (BA)

In the context of a batch, batch all (BA) refers to using all possible and valid triplets;
that is, we are not performing any ranking or selection of triplets. In implementation
terms, for an anchor, this loss is computed by summing across all possible valid triplets.
For a batch size of PK images, since BA selects all triplets, the number of terms updat-
ing the triplet loss is PK(K—-1) (K(P-1)).

Using this approach, all samples (triplets) are equally important; hence this is straight-
forward to implement. On the other hand, BA can potentially lead to information averag-
ing out. In general, many valid triplets are trivial (at a low loss or non-informative), and
only a few are informative. Summing across all valid triplets with equal weights leads to
averaging out the contribution of the informative triplets. Hermans et al. [11] experi-
enced this averaging out and reported it in the context of person re-identification.

Batch hard (BH)

As opposed to BA, batch hard (BH') considers only the hardest data for an anchor. For
each possible anchor in a batch, BH computes the loss with exactly one hardest posi-
tive data item and one hardest negative data item. Notice that here, the hardness of a
datapoint is relative to the anchor. For a batch size of PKimages, since BH selects only
one positive and one negative per anchor, the number of terms updating the triplet
loss is PK (total number of possible anchors).

BH is robust to information averaging out, because trivial (easier) samples are
ignored. However, it is potentially difficult to disambiguate with respect to outliers:
outliers can creep in due to incorrect annotations, and the model tries hard to converge
on them, thereby jeopardizing training quality. In addition, when a not-pretrained net-
work is used prior to using BH, the hardness of a sample (with respect to an anchor)
cannot be determined reliably. There is no way to gain this information during train-
ing, because the hardest sample is now any random sample, and this can lead to a stall
in training. This is reported in [9] and when BH is applied to train a network from
scratch in the context of vehicle re-identification in [10].

To visually understand BA and BH, let’s look again at our figure illustrating the dis-
tances of the anchor to all positive and negative data (figure 10.16). BA performs no
selection and uses all five samples to compute a final loss, whereas BH uses only the
hardest available data (ignoring all the rest). Figure 10.17 shows the algorithm outline
for computing BH and BA.
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Figure 10.16 lllustration of hard data: distances of positive samples from an anchor (at a particular epoch) (left);
distances of negative samples from an anchor (right). BA takes all samples into account, whereas BH takes
samples only at the far-right bar (the hardest-positive data for this mini-batch).

Algorithm 2: Algorithm outline for sampling information data points.

Result: A trained CNN with a desirable embedding size.
Initialization: Dataset, a CNN, aloss function, embedding dimension, batch
size (PK);
while A valid batch do
numAnchors = PK
while numAnchors > 0 do
Select an anchor in [0 . . . PK], without replacement;
BA: Compute loss over al possible valid triplets for this anchor;
OR
BH: Compute loss over al possible valid hard triplets for this
anchor;
numAnchors ——
end

Figure 10.17 Algorithm for
computing BA and BH

end

An alternative formalization of triplet loss

Ristani et al., in their famous paper on features for multi-camera re-identification
[13], unify various batch-sampling techniques under one expression. In a batch,
let a be an anchor sample and N(a) and P(a) represent a subset of negative and
positive samples for the corresponding anchor a. The triplet loss can then be writ-
ten as

lipiet(@) = [0+ Y. WyDap— > WpDanls
peP(a) neN(a)



10.4.5

10.4.6

Mining informative data 421

For an anchor sample a, w, represents the weight (importance) of a positive sample
p; similarly, w, signifies the importance of a negative sample n. The total loss in an
epoch is then obtained by

LO;X) == D, D lyipet(@)

all batches ae B

In this formulation, BA and BH could be integrated as shown in the following figure
(see also table 10.1 in the following section). The Y-axis in this figure represents
selection weight-age.

1.0 1.0
0.5 0.5
0.0 0.0
1 2 3 4 5) 1 2 3 4 5)
O Batch all: selection weights O Batch hard: selection weights
for anchor-positive pairs for anchor-positive pairs

Plot showing selection weights for positive samples with respect to an anchor. For BA, all samples
are equally important, while BH gives importance to only the hardest samples (the rest are
ignored).

Batch weighted (BW)

BA is a straightforward sampling that weights all samples uniformly. This uniform
weight distribution can ignore the contribution of important tough samples, as these
samples are typically outnumbered by trivial, easy samples. To mitigate this issue with
BA, Ristani et al. [13] employ a batch weighted (BW) weighting scheme: a sample is
weighted based on its distance from the corresponding anchor, thereby giving more
importance to informative (harder) samples than trivial samples. Corresponding
weights for positive and negative data are shown in table 10.1. Figure 10.18 demon-
strates the weighting of samples in this technique.

Batch sample (BS)

Another sampling technique is batch sample (BS); it is actively discussed in the imple-
mentation page of Hermans el al. [11] and has been used for state-of-the-art vehicle
re-identification by Kumar et al. [10]. BS uses the distribution of anchor-to-sample
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Table 10.1 Snapshot of various ways to mine good positive x, and negative x, [10]. BS and BW are
explored in the upcoming section with examples.
Mining Positive weight: w, Negative weight: w, Comments
All (BA) 1 1 All samples are
weighted uniformly.
Hard (BH) [xp == arg max D] [X, == arg min D] Pick one hardest
xeP(a) xeNa) sample.
Sample (BS) [xp== multinomial {D,,}] [X, == multinomial {-Day}] Pick one from
xeP(@) xeN@) the multinomial
distribution.
Weighted (BW) ePap e Dan Weights are sam- .
D.. .. pled based on their
z e Z e distance from the
XE P(a) X€N(a) anchor.
1.0 1.0
0.5 0.5
Anchor
4
.‘.d_..‘
E' = o0 0.0

2 3 4 5 ’ 1 2 3 4 5
[0 Distances from anchor: positive samples [0 Batch weighted: selection weights for
anchor-positive pairs

Figure 10.18 BW illustration of selecting positive data for the anchor in the left plot. In this case, all five
positive samples are used (as in BA), but a weight-age is assigned to each sample. Unlike BA, which weighs
every sample equally, the plot at right weighs each sample in proportion to the corresponding distance from
the anchor. This effectively means we are paying more attention to a positive sample that is farther from the
anchor (and thus is harder and more informative). Negative data for this anchor is chosen in the same manner,
but with reverse weight-age.

distances to mine? positive and negative data for an anchor (see figure 10.19). This tech-
nique thereby avoids sampling outliers when compared with BH, and it also hopes to
determine the most relevant sample as the sampling is done using a distances-to-anchor
distribution.

2 Categorically. For an example in Tensorflow, see http://mng.bz/zjvQ.
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Figure 10.19 BS illustration of selecting a positive data for an anchor. Similarly to BH, the aim is to find

one positive data item (for the anchor in the left plot) that is informative and not an outlier. BH would take the
hardest data item, which could lead to finding outliers. BS uses the distances as a distribution to mine a sample
in a categorical fashion, thereby selecting a sample that is informative and that may not be an outlier. (Note
that this is a random multinomial selection; we chose the third sample here just to illustrate the concept.)

10.5

Now, let’s unpack these ideas by working through a project and diving deeper into the
machinery required for training and testing a CNN for an embedding.

Project: Train an embedding network

In this project, we put our concepts into practice by building an image-based query
retrieval system. We chose two problems that are popular in the visual embedding lit-
erature and have been actively studied to find better solutions:

Shopping dilemma—TFind me apparel that is similar to a query item.
Re-identification—Find similar cars in a database; that is, identify a car from dif-
ferent viewpoints (cameras).

Regardless of the tasks, the training, inference, and evaluation processes are the same.
Here are some of the ingredients for successfully training an embedding network:

Training set—We follow a supervised learning approach with annotations under-
lining the inherent similarity measure. The dataset can be organized into a set of
folders where each folder determines the identity/category of the images. The
objective is that images belonging to the same category are kept closer to one
another in the embedding space, and vice versa for images in separate categories.
Testing set—The test set is usually split into two sets: query and gallery (often, aca-
demic papers refer to the gallery set as the test set). The query set consists of images
that are used as queries. Each image in the gallery set is ranked (retrieved) against
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every query image. If the embedding is learned perfectly, the top-ranked
(retrieved) items for a query all belong to the same class.

Distance metric—To express similarity between two images in an embedding
space, we use the Euclidean (Lo) distance between the respective embeddings.
Evaluation—To quantitatively evaluate a trained model, we use the top-k accu-
racy and mean average precision (mAP) metrics explained in chapters 4 and 7,
respectively. For each object in a query set, the aim is to retrieve a similar iden-
tity from the test set (gallery set). AP(q) for a query image ¢ is defined as

D P(k)x3,

_ _k
AP( q) - N, gt( f])

where P(k) represents precision at rank k, Ny (¢) is the total number of true retrievals
for g, and 8, is a Boolean indicator function. So, its value is 1 when the matching of
query image ¢ to a test image is correct at rank < k. Correct retrieval means the ground-
truth label for both query and test is the same.

The mAP is then computed as an average over all query images

2 AP(g)
mAP= 1
Q
where Qis the total number of query images. The following sections look at both tasks
in more detail.

Fashion: Get me items similar to this

The first task is to determine whether two images taken in a shop belong to the same
clothing item. Shopping objects (clothes, shoes) related to fashion are key areas of
visual search in industrial applications such as image-recommendation engines that
recommend products similar to what a shopper is looking for. Liu et al. [3] intro-
duced one of the largest datasets (DeepFashion) for shopping image-retrieval tasks.
This benchmark contains 54,642 images of 11,735 clothing items from the popular
Forever 21 catalog. The dataset comprises 25,000 training images and about 26,000
test images, split across query and gallery sets; figure 10.20 shows sample images.

Vehicle re-identification

Re-identification is the task of matching the appearance of objects in and across camera
networks. A usual pipeline here involves a user seeking all instances of a query object’s
presence in all cameras within a network. For example, a traffic regulator may be look-
ing for a particular car across a city-wide camera network. Other examples are person
and face re-identification, which are mainstays in security and biometrics.

This task uses the famous VeRi dataset from Liu et al. [14, 36]. This dataset encom-
passes 40,000 bounding-box annotations of 776 cars (identities) across 20 cameras in
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Figure 10.20 Each row indicates a particular category and corresponding
similar images. A perfectly learned embedding would make embeddings of
images in each row closer to each other than any two images across
columns (which belong to different apparel categories). (Images in this
figure are taken from the DeepFashion dataset [3].)

traffic surveillance scenes; figure 10.21 shows sample images. Each vehicle is captured
by 2 to 18 cameras in various viewpoints and varying illuminations. Notably, the
viewpoints are not restricted to only front/rear but also include side views, thereby

Figure 10.21 Each row indicates a vehicle class. Similar to the apparel task, the goal (training an
embedding CNN) here is to push the embeddings of the same class closer than the embeddings of
different classes. (Images in this figure are from the VeRi dataset [14].)
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making this a challenging dataset. The annotations include make and model of vehi-
cles, color, and inter-camera relations and trajectory information.

We will use only category (or identity) level annotations; we will not use attributes
like make, model, and spatio-temporal location. Incorporating more information
during training could help gain accuracy, but this is beyond the scope of this chapter.
However, the last part of the chapter references some cool new developments in
incorporating multi-source information for learning embeddings.

Implementation

This project uses the GitHub codebase of triplet learning (https://github.com/Visual-
ComputingInstitute/triplet-reid/tree/sampling) attached to [11]. Dataset preprocessing
and a summary of steps are available with the book’s downloadable code; go to the
project’s Jupyter notebook to follow along with a step-by-step tutorial of the project
implementation. TensorFlow users are encouraged to look at the blog post “Iriplet
Loss and Online Triplet Mining in TensorFlow” by Olivier Moindrot (https://omoin-
drot.github.io/triplet-loss) to understand various ways of implementing triplet loss.
Training a deep CNN involves several key hyperparameters, and we briefly discuss
them here. Following is a summary of the hyperparameters we set for this project:

Pre-training is performed on the ImageNet dataset [15].

Input image sizeis 224 x 224.

Meta-architecture: We use Mobilenet-vl [16], which has 569 million MACs and
measures the number of fused multiplication and addition operations. This
architecture has 4.24 million parameters and achieves a top-1 accuracy of
70.9% on ImageNet’s image classification benchmark, with input image size of
224 x 224,

Optimizer: We use the Adam optimizer [17] with default hyperparameters
(e=107 By =0.9, Bo=0.999). Initial learning rate is set to 0.0003.

Data augmentation is performed in an online fashion using a standard image-flip
operation.

Balch sizeis 18 (P) randomly sampled identities, with 4 (K) samples per identity,
for a total of 18 x 4 samples in a batch.

Margin: The authors replaced the hinge loss [.], with a smooth variation called soft-
plus: In(1 +.). Our experiments also apply softplus instead of using a hard margin.
Embedding dimension corresponds to the dimension of the last fully connected
layer. We fix this to 128 units for all experiments. Using a lower embedding size
is helpful for computational efficiency.

DEFINITION In computing, the multiply—accumulate operation is a common step
that computes the product of two numbers and adds that product to an accu-
mulator. The hardware unit that performs the operation is known as a multiplier—
accumulator (MAC, or MAC unit); the operation itself is also often referred to
as MAC or a MAC operation.
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A note on comparisons to state-of-the-art approaches

Before diving into comparisons, remember that training a deep neural network
requires tuning several hyperparameters. This may in turn lead to pitfalls while compar-
ing several algorithms: for example, an approach could perform better if the underlying
CNN performs favorably on the same pretrained dataset(s). Other similar hyperparam-
eters are the training algorithm choice (such as vanilla SGD or a more sophisticated
Adam) and many other parameters that we have seen throughout this book. You must
delve deeper into an algorithm’s machinery to see the complete picture.

10.5.4 Testing a trained model

To test a trained model, each dataset presents two files: a query set and a gallery set.
These sets can be used to compute the evaluation metrics mentioned earlier: mAP and
top-k accuracy. While evaluation metrics are a good summary, we also look at the
results visually. To this end, we take random images in a query set and find (plot) the
top-k retrievals from the gallery set. The following subsections show quantitative and
qualitative results of using various mining techniques from this chapter.

TAsK 1: IN-SHOP RETRIEVAL

Let’s look at sample retrievals from the learned embeddings in figure 10.22. The
results look visually pleasing: the top retrievals are from the same class as the query.
The network does reasonably well at inferring different views of the same query in the

top ranks.

Query Retrievals

-—

Figure 10.22 Sample
retrievals from the fashion
dataset using various

't‘\ embedding approaches.

, Each row indicates the
query image and top-5
retrievals for this query
image. An X indicates an
X incorrect retrieval.
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Table 10.2 outlines the performance of triplet loss under various sampling scenarios.
BW outperforms all other sampling approaches. Top-1 accuracy is quite good in this
case: we were able to retrieve the same class of fashion object in the very first retrieval,
with accuracy over 87%. Notice that with the evaluation setup, the top-k accuracy for
k> 1 is higher (monotonically).

Table 10.2 Performance of various sampling approaches on the in-shop retrieval task

Method top-1 top-2 top-5 top-10 top-20
Batch all 83.79 89.81 94.40 96.38 97.55
Batch hard 86.40 91.22 95.43 96.85 97.83
Batch sample 86.62 91.36 95.36 96.72 97.84
Batch weighted 87.70 92.26 95.77 97.22 98.09
Capsule embeddings 33.90 - - 75.20 84.60
ABE [18] 87.30 - - 96.70 97.90
BIER [19] 76.90 - - 92.80 95.20

Our results compare favorably with the state-of-the-art results. Using attention-based
ensemble (ABE) [18], a diverse set of ensembles are trained that attend to parts of the
image. Boosting independent embeddings robustly (BIER) [19] trains an ensemble of
metric CNNs with a shared feature representation as an online gradient boosting
problem. Noticeably, this ensemble framework does not introduce any additional
parameters (and works with any differential loss).

TASK 2: VEHICLE RE-IDENTIFICATION

Kumar et al. [12] recently performed an exhaustive evaluation of the sampling vari-
ants for optimizing triplet loss. The results are summarized in table 10.3 with com-
parisons from several state-of-the-art approaches. Noticeably, the authors perform
favorably compared to state-of-the-art approaches without using any other informa-
tion sources, such as spatio-temporal distances and attributes. Qualitative results are
shown in figure 10.23, demonstrating the robustness of embeddings with respect to
the viewpoints. Notice that the retrieval has the desired property of being viewpoint-
invariant, as different views of the same vehicle are retrieved into top-5 ranks.

Table 10.3 Comparison of various proposed approaches on the VeRi dataset. An asterisk (*) indicates
the usage of spatio-temporal information.

Method

Batch sample 67.55 90.23 96.42
Batch hard 65.10 87.25 94.76
Batch all 66.91 90.11 96.01
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Table 10.3 Comparison of various proposed approaches on the VeRi dataset. An asterisk (*) indicates
the usage of spatio-temporal information. (continued)

Method mAP top-1 top-5
Batch weighted 67.02 89.99 96.54
GSTE [20] 59.47 96.24 98.97
VAMI [21] 50.13 77.03 90.82
VAMI+ST * [21] 61.32 85.92 91.84
Path-LSTM * [22] 58.27 83.49 90.04
PAMTRI (RS) [23] 63.76 90.70 94.40
PAMTRI (All) [23] 71.88 92.86 96.97
MSVR [24] 49.30 88.56 -
AAVER [25] 61.18 88.97 94.70

Retrievals

Figure 10.23 Sample retrievals

on the VeRi dataset using various
embedding approaches. Each row
indicates a query image and the
top-5 retrievals for it. An X indicates
an incorrect retrieval.
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To gauge the pros and cons of various approaches in the literature, let’s conceptually
examine the competing approaches in vehicle re-identification:

Kanaci et al. [26] proposed cross-level vehicle re-identification (CLVR) on the basis
of using classification loss with model labels (see figure 10.24) to train a fine-
grained vehicle categorization network. This setup is similar to the one we saw
in section 10.3.2 and figure 10.9. The authors did not perform an evaluation on
the VeRi dataset. You are encouraged to refer to this paper to understand the
performance on other vehicle re-identification datasets.
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Figure 10.24 Cross-level vehicle re-identification (CLVR). (Source: [24].)

Group-sensitive triplet embedding (GSTE) by Bai et al. [20] is a novel training pro-
cess that clusters intra-class variations using K-Means. This helps with more
guided training at the expense of an additional parameter, K-Means clustering.
Pose aware multi-task learning (PAMTRI) by Zheng et al. [23] trains a network for
embedding in a multi-task regime using keypoint annotations in conjunction with
synthetic data (thereby tackling keypoint annotation requirements). PAMTRI
(All) achieves the best results on this dataset. PAMTRI (RS) uses a mix of real
and synthetic data for learning embedding, and PAMTRI (All) additionally uses
vehicle keypoints and attributes in a multi-task learning framework.

Adaptive attention for vehicle re-identification (AAVER) by Khorramshahi et al. [25]
is a recent work wherein the authors construct a dual-path network for extract-
ing global and local features. These are then concatenated to form a final
embedding. The proposed embedding loss is minimized using identity and key-
point orientation annotations.

A training procedure for viewpoint attentive multi-view inference (VAMI) by Zhou
et al. [21] includes a generative adversarial network (GAN) and multi-view
attention learning. The authors’ conjecture that being able to synthesize (gen-
erate using GAN) multiple viewpoint views would help learn a better final
embedding.
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With Path-LSTM, Shen et al. [22] employ a generation of several path proposals
for their spatio-temporal regularization and require an additional LSTM to
rank these proposals.

Kanaci et al. [24] proposed multi-scale vehicle representation (MSVR) for re-
identification by exploiting a pyramid-based DL method. MSVR learns vehi-
cle re-identification sensitive feature representations from an image pyramid
with a network architecture of multiple branches, all of which are optimized
concurrently.

A snapshot summary of these approaches with respect to the key hyperparameters is
summarized in table 10.4.

Table 10.4 Summary of some important hyperparameters and labeling used during training

Method ED Annotations
Ours 128 ID
GSTE [20] 1024 ID
VAMI [21] 2048 ID+A
PAMTRI (All) [23] 1024 D+K+A
MSVR [24] 2048 ID
AAVER [25] 2048 ID + K

Note: ED = embedding dimension; K = keypoints; A = attributes.

Usually, license plates are a global unique identifier. However, with the standard instal-
lation of traffic cameras, license plates are difficult to extract; hence, visual-based fea-
tures are required for vehicle re-identification. If two cars are of the same make,
model, and color, then visual features cannot disambiguate them (unless there are
some distinctive marks such as text or scratches). In these tough scenarios, only spatio-
temporal information (like GPS information) can help. To learn more, you are
encouraged to look into recent proposed datasets by Tang et al. [27].

Pushing the boundaries of current accuracy

Deep learning is an evolving field, and novel approaches to training are being intro-
duced every day. This section provides ideas for improving the current level of embed-
dings and some recently introduced tips and tricks to train a deep CNN:

Re-ranking—After obtaining an initial ranking of gallery images (to an input
query image), re-ranking uses a post-processing step with the aim of improving
the ranking of relevant images. This is a powerful, widely used step in many re-
identification and information-retrieval systems.

A popular approach in re-identification is by Zhong et al. [28] (see figure
10.25). Given a probe p and a gallery set, the appearance feature (embedding)
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Figure 10.25 Re-ranking proposal by Zhong et al. (Source: [28].)

and k-reciprocal feature are extracted for each person. The original distance
d and Jaccard distance J; are calculated for each pair of a probe person and a
gallery person. The final distance is then computed as the combination
of dand J; and used to obtain the proposed ranking list.

A recent work in vehicle re-identification, AAVER [25] boosts mAP accuracy
by 5% by post-processing using re-ranking.

DEFINITION The Jaccard distance is computed among two sets of data and
expresses the intersection over the union of the two sets.

Tips and tricks—Luo et al. [29] demonstrated powerful baseline performance
on the task of person re-identification. The authors follow the same batch con-
struction from Hermans et al. [11] (studied in this chapter) and use tricks for
data augmentation, warm-up learning rate, and label smoothing, to name a few.
Noticeably, the authors perform favorably compared to many state-of-the-art
methods. You are encouraged to apply these general tricks for training a CNN
for any recognition-related tasks.

DEFINITIONS The warm-up learning rate refers to a strategy with a learning rate
scheduler that modulates the learning rate linearly with respect to a pre-
defined number of initial training epochs. Label smoothing modulates the
cross-entropy loss so the resulting loss is less overconfident on the training set,
thereby helping with model generalization and preventing overfitting. This is
particularly useful in small-scale datasets.
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Attention—In this chapter, we focused on learning embedding in a global fash-
ion: that is, we did not explicitly guide the network to attend to, for exam-
ple, discriminative parts of an object. Some of the prominent works employing
attention are Liu et al. [30] and Chen et al. [31]. Employing attention could
also help improve the cross-domain performance of a re-identification network,
as demonstrated in [32].
Guiding training with more information—The state-of-the-art comparisons in
table 10.3 briefly touched on works incorporating information from multiple
sources: identity, attributes (such as the make and model of a vehicle), and spatio-
temporal information (GPS location of each query and gallery image). Ideally,
including more information helps obtain higher accuracy. However, this comes
at the expense of labeling data with annotations. A reasonable approach for
training with a multi-attribute setup is to use multi-task learning (MTL). Often,
the loss becomes conflicting; this is resolved by weighting the tasks appropri-
ately (using cross validation). A MTL framework to resolve this conflicting loss
scenario using multi-objective optimization is by Sener al. [32].

Some popular works of MTL in the context of face, person, and vehicle cate-
gorization are by Ranjan et al. [34], Ling et al. [35], and Tang [23].

Summary

Image-retrieval systems require the learning of visual embeddings (a vector
space). Any pair of images can be compared using their geometric distance in
this embedding space.

To learn embeddings using a CNN, there are three popular loss functions:
cross-entropy, triplet, and contrastive.

Naive training of triplet loss is computationally prohibitive. Hence we use
batch-based informative data minings: batch all, batch hard, batch sample, and
batch weighted.
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appendix A
Getting set up

All of the code in this book is written in Python 3, Open CV, Keras, and TensorFlow.
The process of setting up a DL environment on your computer is fairly involved
and consists of the following steps, which this appendix covers in detail:

Download the code repository.

Install Anaconda.

Set up your DL environment: install all the packages that you need for proj-
ects in this book (NumPy, OpenCV, Keras, TensorFlow, and others).
[Optional] Set up the AWS EC2 environment. This step is optional if you
want to train your networks on GPUs.

Downloading the code repository

All the code shown in this book can be downloaded from the book’s website
(www.manning.com/books/deep-learning-for-vision-systems) and also from GitHub
(https://github.com/moelgendy/deep_learning for_vision_systems) in the form
of a Git repo. The GitHub repo contains a directory for each chapter. If you're
unfamiliar with version control using Git and GitHub, you can review the boot-
camp articles (https://help.github.com/categories/bootcamp) and/or beginning
resources (https://help.github.com/articles/good-resources-for-learning-git-and-
github) for learning these tools.
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A2

Installing Anaconda

Anaconda (https://anaconda.org) is a distribution of packages built for data science
and ML projects. It comes with conda, a package and environment manager. You’ll be
using conda to create isolated environments for your projects that use different ver-
sions of your libraries. You'll also use it to install, uninstall, and update packages in

your environments.

Note that Anaconda is a fairly large download (~600 MB) because it comes with
the most common ML packages in Python. If you don’t need all the packages or need
to conserve bandwidth or storage space, there is also Miniconda, a smaller distribu-
tion that includes only conda and Python. You can still install any of the available

APPENDIX A Getting set up

packages with conda; it just doesn’t come with them.
Follow these steps to install Anaconda on your computer:

Anaconda is available for Windows, macOS, and Linux. You can find the install-
ers and installation instructions at www.anaconda.com/distribution. Choose the
Python 3 version, because Python 2 has been deprecated as of January 2020.
Choose the 64-bit installer if you have a 64-bit operating system; otherwise, go

with the 32-bit installer. Go ahead and download the appropriate version.

Follow the installation through the graphical interface installer shown in fig-

ure A.1.

» Introduction

Read Me
License
Destination Select
Installation Type
Installation
PyCharm IDE

@ Summary

{7) ANACONDA.

‘e Install Anaconda3

The installation was completed successfully.

Thank you for installing Anaconda Individual Edition.
Here are some helpful tips and resources to get you started. We

recommend you bookmark these links so you can refer back to
them later.

Quick Start Guide

Anaconda Individual Edition Tutorial

Anaconda Cloud Edition

Learn More About Anaconda

Figure A.1 Anaconda installer on macOS
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After installation is complete, you’re automatically in the default conda envi-
ronment with all packages installed. You can check out your own install by
entering conda list into your terminal to see your conda environments.

Setting up your DL environment

Now you will create a new environment and install the packages that you will use for
your projects. You will use conda as a package manager to install libraries that you
need. You are probably already familiar with pip; it’s the default package manager for
Python libraries. Conda is similar to pip, except that the available packages are
focused around data science, while pip is for general use.

Conda is also a virtual environment manager. It’s similar to other popular envi-
ronment managers like virtualenv (https://virtualenv.pypa.io/en/stable) and pyenv
(https://github.com/pyenv/pyenv). However, conda is not Python-specific like pip is:
it can also install non-Python packages. It is a package manager for any software stack.
That being said, not all Python libraries are available from the Anaconda distribution
and conda. You can (and will) still use pip alongside conda to install packages.

Setting up your development environment manually

Follow these steps to manually install all the libraries needed for the projects in this
book. Otherwise, skip to the next section to install the environment created for you in
the book’s GitHub repo.

On your terminal, create a new conda environment with Python 3 and call it
deep_learning for vision systems:

conda create -n deep_ learning for vision systems python=3

Note that to remove a conda environment, you use conda env remove -n
<env_names.

Activate your environment. You must activate the environment before installing
your packages. This way, all packages are installed only for this environment:

conda activate deep learning for vision systems

Note that to deactivate an environment, you use conda deactivate <env_names.

Now you are inside your new environment. To see the default packages
installed in this environment, type the following command: conda list. Next,
you will install the packages used for the projects in this book.

Install NumPy, pandas, and Matplotlib. These are very common ML packages
that you will almost always use in your projects for math operations, data manip-
ulation, and visualization tasks:

conda install numpy pandas matplotlib
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Note that throughout these installs, you will be prompted to confirm to pro-
ceed (Proceed ([y]/n)?). Type Y and press Enter to continue the installation.

Install the Jupyter notebooks. We use Jupyter notebooks in this book for easier
development:

conda install jupyter notebook

Install OpenCV (the most popular open source CV library):
conda install -c conda-forge opencv

Install Keras:

pip install keras

Install TensorFlow:

pip install tensorflow

Now everything is complete and your environment is ready to start developing.
If you want to view all the libraries installed in your environment, type the fol-
lowing command:

conda list

These packages are separate from your other environments. This way, you can avoid
any version-conflict issues.

A.3.2 Using the conda environment in the book’s repo

Clone the book’s GitHub repository from https://github.com/moelgendy/
deep_learning_for_vision_systems. The environment is located in the installer/
application.yaml file:

cd installer

Create the conda deep_learning environment:
conda env create -f my environment.yaml
Activate the conda environment:

conda activate deep learning

Launch your Jupyter notebook (make sure you are located in the root of the
deep_learning for vision systems repository):

jupyter notebook

Now you are ready to run the notebooks associated with the book.
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Saving and loading environments

It is best practice to save your environment if you want to share it with others so that
they can install all the packages used in your code with the correct version. To do that,
you can save the packages to a YAML (https://yaml.org) file with this command:

conda env export > my environment.yaml

This way, others can use this YAML file to replicate your environment on their
machine using the following command:

conda env create -f my environment.yaml

You can also export the list of packages in an environment to a .txt file and then
include that file with your code. This allows other people to easily load all the depen-
dencies for your code. Pip has similar functionality with this command:

pip freeze > requirements.txt

You can find the environment details used for this book’s projects in the downloaded
code in the installer directory. You can use it to replicate my environment in your
machine.

Setting up your AWS EC2 environment

Training and evaluating deep neural networks is a computationally intensive task
depending on your dataset size and the size of the neural network. All projects in this
book are specifically designed to have modes-sized problems and datasets to allow you
to train networks on the CPU in your local machine. But some of these projects could
take up to 20 hours to train—or even more, depending on your computer specifica-
tions and other parameters like the number of epochs, neural network size, and other
factors.

A faster alternative is to train on a graphics processing unit (GPU), which is a type
of processor that supports greater parallelism. You can either build your own DL rig
or use cloud services like Amazon AWS EC2. Many cloud service providers offer equiv-
alent functionality, but EC2 is a reasonable default that is available to most beginners.
In the next few sections, we’ll go over the steps from nothing to running a neural net-
work on an Amazon server.

Creating an AWS account
Follow these steps:

Visit aws.amazon.com, and click the Create an AWS Account button. You will
also need to choose a support plan. You can choose the free Basic Support Plan.
You might be asked to provide credit card information, but you won’t be
charged for anything yet.
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Launch an EC2 instance:

Go to the EC2 Management Console (https://console.aws.amazon.com/ec2/

v2/home), and click the Launch Instance button.

Click AWS Marketplace.

Search for Deep Learning AMI, and select the AMI that is suitable for your envi-

ronment. Amazon Machine Images (AMI) contains all the environment files

and drivers for you to train on a GPU. It has cuDNN and many other packages
required for projects in this book. Any additional packages required for spe-
cific projects are detailed in the appropriate project instructions.

Choose an instance type:

— Filter the instance list to only show GPU instances.

— Select the p2.xlarge instance type. This instance is powerful enough for
our projects and not very expensive. Feel free to choose more powerful
instances if you are interested in trying them out.

— Click the Review and Launch button.
Edit the security group. You will be running Jupyter notebooks in this book,
which default to port 8888. To access this port, you need to open it on AWS by
editing the security group:
— Select Create a New Security Group.
— Set Security Group Name to Jupyter.
— C(Click Add Rule, and set a Custom TCP Rule.
— Set Port Range to 8888.
— Select Anywhere as the Source.
— Click Review and Launch.
Click the Launch button to launch your GPU instance. You’ll need to specify
an authentication key pair to be able to access your instance. So, when you are
launching the instance, make sure to select Create a New Key Pair and click
the Download Key Pair button. This will download a .pem file, which you’ll
need to be able to access your instance. Move the .pem file to a secure and eas-
ily remembered location on your computer; youw’ll need to access your
instance through the location you select. After the .pem file has been down-
loaded, click the Launch Instances button.

WARNING From this point on, AWS will charge you for running this EC2
instance. You can find the details on the EC2 On-Demand Pricing page
(https://aws.amazon.com/ec2/pricing/on-demand). Most important, always
remember to stop your instances when you are not using them. Otherwise,
they might keep running, and you’ll wind up with a large billl AWS charges
primarily for running instances, so most of the charges will cease once you
stop the instance. However, smaller storage charges continue to accrue until
you terminate (delete) the instance.
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A.4.2 Connecting remotely to your instance

Now that you have created your EC2 instance, go to your EC2 dashboard, select the
instance, and start it, as shown in figure A.2. Allow a minute or two for the EC2
instance to launch. You will know it is ready when the instance Status Check shows
“checks passed.” Scroll to the Description section, and make a note of the IPv4 Public
IP address (in the format X.X.X.X) on the EC2 Dashboard; you will need it in the
next step to access your instance remotely.

Actions ~

Create Template From Instance bility Zone ~
Launch More Like This

Insta ate

Instance Settings

Image

Networking Reboot

CloudWatch Monitoring Terminate Figure A.2  How to remotely
connect to your instance

On your terminal, follow these steps to connect to your EC2 server:

Navigate to the location where you stored your .pem file from the previous
section.

Type the following:
ssh -i YourKeyName.pem user@X.X.X.X

user could be ubuntu@ or ec2-usere. X.X.X.X is the IPv4 Public IP that you just
saved from the EC2 instance description. And YourKeyName . pem is the name of
your .pem file.

TIP If you see a “bad permissions” or “permission denied” error message
regarding your .pem file, try executing chmod 400 path/to/YourKeyName.pem
and then running the ssh command again.

A.4.3 Running your Jupyter notebook

The final step is to run your Jupyter notebook on the EC2 server. After you have
accessed the instance remotely from your terminal, follow these steps:

Type the following command on your terminal:

jupyter notebook --ip=0.0.0.0 --no-browser
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When you press Enter, you will get an access token, as shown in figure A.3. Copy
this token value, because you will use it in the next step.

Figure A.3 Copy the token to run the notebook.

On your browser, go to this URL: http://<IPv4 Public IP>:8888. Note that the
IPv4 public IP is the one you saved from the EC2 instance description. For
example, if the public IP was 25.153.17.47, then the URL would be http://
25.153.17.47:8888.

Enter the token key that you copied in step 1 into the token field, and click
Log In (figure A.4).

Z Jupyter

Password or token: | | Log in

Figure A.4 Logging in

Install the libraries that you will need for your projects, similarly to what you did
in section A.3.1. But this time, use pip install instead of conda install. For
example, to install Keras, you need to type pip install keras.

That’s it. You are now ready to start coding!



mdex

Numerics
1 x 1 convolutional layer 220-221
A

AAVER (adaptive attention for vehicle re-
identification) 430
acc value 142
accuracy 431-433
as metric for evaluating models 147
improvements to 192
of image classification 185-192
building model architecture 187-189
evaluating models 191-192
importing dependencies 185
preparing data for training 186-187
training models 190-191
activation functions 51-60, 63, 200, 205
binary classifier 54
heaviside step function 54
leaky ReLU 59-60
linear transfer function 53
logistic function 55
ReL.U 58-59
sigmoid function 55
softmax function 57
tanh 58-59
activation maps 108, 252
activation type 165
Adam (adaptive moment estimation) 175
Adam optimizer 190, 352
adaptive learning 170-171
adversarial training 343
AGI (artificial general intelligence) 342
Al vision systems 6

AlexNet 203-211

architecture of 205

data augmentation 206

dropout layers 206

features of 205-207

in Keras 207-210

learning hyperparameters in 210
local response normalization 206
performance 211

ReLu activation function 205
training on multiple GPUs 207
weight regularization 207

algorithms

classifier learning algorithms 33-34
in DeepDream 385-387

alpha 330

AMI (Amazon Machine Images) 442

Anaconda 438-439

anchor boxes 303-305

AP (average precision) 292

artificial neural networks (ANNs) 4, 8, 37, 42, 49,

92

atrous convolutions 318
attention network 302

AUC (area under the curve) 292
augmenting

data 180-181
for image classification 187
in AlexNet 206

images 156

average pooling 115-116, 200
AWS EC2 environment

445

creating AWS account 441-442
Jupyter notebooks 443-444
remotely connect to instance 443
setting up 441-444



446

background region 286, 306
backpropagation 86-90
backward pass 87
base networks 313-314
predicting with 314
to extract features 301-302
baseline models 149-150
base_model summary 246-247, 270
batch all (BA) 419
batch gradient descent (BGD) 77-85, 171
derivative 80
direction 79-80
gradient 79
learning rate 80
pitfalls of 82-83
step size 79-80
batch hard (BH) 419
batch normalization 181-185
covariate shift
defined 181-182
in neural networks 182-183
in Keras 184
overview 183
batch normalization (BN) 206, 227, 230,
350
batch sample (BS) 421-423
batch weighted (BW) 421
batch_size hyperparameter 51, 85, 190
Bayes error rate 158
biases 63
BIER (boosting independent embeddings
robustly) 428
binary classifier 54
binary_crossentropy function 352-353
blockl_convl layer 378, 381
block3_conv2 layer 378
block5_conv2 layer 383, 395
block5_conv3 layer 378, 383
blocks. See residual blocks
bottleneck layers 221
bottleneck residual block 233
bottleneck_residual_block function
234, 237
bottom-up segmentation algorithm
294-295
bounding box coordinates 322
bounding box prediction 287
bounding boxes
in YOLOvV3 324
predicting with regressors 303-304
bounding-box regressors 293, 296-297
build_discriminator function 3867
build_model() function 328, 330

INDEX

Cc

Cars Dataset, Stanford 372
categories 18
CCTV monitoring 405
cGAN (conditional GAN) 361
chain rule 88
channels value 122
CIFAR dataset 264-265
Inception performance on 229
ResNet performance on 238
CIFAR-10 dataset 99, 133, 185-186
class predictions 287, 322
classes 18
classes argument 237
Class_id label 328
classification 105
classification loss 308
classification module 18, 293, 298
classifier learning algorithms 33-34
classifiers 233
binary 54
in Keras 229
pretrained networks as 254-256
CLVR (cross-level vehicle re-identification)
430
CNNs (convolutional neural networks)
adding dropout layers to avoid overfitting
124-128
advantages of 126
in CNN architecture 127-128
overview of dropout layers 125
overview of overfitting 125
architecture of 102-105, 195-239
AlexNet 203
classification 105
feature extraction 104
GoogLeNet 217-229
Inception 217-229
LeNet-5 199-203
ResNet 230-238
VGGNet 212-216
color images 128-132
computational complexity
130-132
convolution on 129-130
convolutional layers 107-114
convolutional operations 108-111
kernel size 112-113
number of filters in 111-112
overview of convolution 107-108
padding 113-114
strides 113-114
design patterns 197-199
fully connected layers 119



INDEX 447

CNNs (convolutional neural networks) (continued)
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features
advantages of 33
overview 27-31
image input 19-22
color images 21-22
computer processing of images 21
images as functions 19-20
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DarkNet 324 underfitting 156-158
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for image classification 187 220-223
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loading 331-332 direction 79-80
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BH 419 discriminator_model method 346, 352
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GANSs (generative adversarial networks) (continued)
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object detection (continued) gradient 79
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performance metrics (continued) object detection with 283-297, 310-337
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