
Chapter 1

Introduction

1.1 Objectives

? Financial processes are known to exhibit a combination of properties includ-

ing semi-heavy-tailed marginal distributions, short- or long-range dependence,

volatility and scaling. Current models of their non-Gaussian behaviour relies

on a form of Lévy-type distributions such as an α-stable or log normal dis-

tribution. These distributions have heavy tails, hence would not be suitable

for financial data, which have high volatility but usually not to the extent

of turbulence processes. Some variants, such as a truncated stable process,

have been suggested, but their implementation is still involved. The first part

of the thesis aims to investigate a new way to describe the semi-heavy-tailed

behaviour of financial processes. We treat these processes as continuous-time

random walks characterised by a transition probability density governed by a

fractional diffusion equation. This equation extends the Feller fractional heat

equation, which generates α-stable processes, in the sense that the Riesz op-

erator in the Feller equation is composed with the Bessel operator to yield a

faster decay in the diffusion. The processes generated by the resulting frac-

tional Riesz-Bessel equation will have semi-heavy tails, which are more suitable

for financial data.
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? Many financial time series are now confirmed to possess correlations. On

the other hand, most current market models allow no form of correlations.

Another major aim of the thesis is to investigate a mechanism to incorporate

memory into a class of market models. In particular, the traditional Black-

Scholes model will be expanded to incorporate memory in such a way that the

model still preserves the completeness and arbitrage-free conditions needed for

replication of contingent claims. This approach will be used to estimate the

historical and implied volatility of the resulting model.

? Financial processes are also known to display scaling, in other words, a por-

tion of the data has the same behaviour as the entire data set when zoomed

in and rescaled. We aim to model this scaling behaviour explicitly via a well-

known technique in fractal geometry, namely iterated function systems. The

model will be demonstrated in the problem of market classification.

? The final aim of the thesis is to apply the new methodology developed to

analyse some stock prices, stock indices, foreign exchange rates and other fi-

nancial time series of some major markets. The tools will be shown to work

well for these time series.

1.2 Motivation and literature review

1.2.1 Long-memory in financial processes

Long memory or long-range dependence (LRD) has been investigated exten-

sively in a variety of applied fields, especially in finance (Willinger et al. 1999,

Baillie 1996, Granger and Ding 1996, Comte and Renault 1996, 1998, Heyde

and Liu 2001). Since the concept of long-range dependence is incompatible

with the efficient market hypothesis, a key assumption in mathematical fi-

nance, it is still a controversial issue whether market models should include

long memory (Lo 1991, Baillie 1996, Willinger et al. 1999).

A second-order stationary process ξ (t) with discrete time is said to possess
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long-range dependence if its covariance function R (s) = cov (ξ (t) , ξ (t + s)) ,

s ∈ Z+ decays at a hyperbolic rate as s → ∞. In particular, the covariance

function R (s) of a process with LRD can be approximated as

R (s) ∼ Ks2d−1, |d| < 1

2
, s →∞ (1.1)

for some constant K > 0, or

R (s) ∼ Ks2d−1 cos (κs) , s →∞, (1.2)

where K > 0, |d| < 1/2, κ = cos−1 φ ∈ [0, π] , |φ| ≤ 1. Here, ∼ means the limit

of the ratio of the left-hand side to the right-hand side is equal to 1 as s →∞.

The covariance function (1.1) decays slowly at a hyperbolic rate, while the

covariance function (1.2) resembles a hyperbolically damped cosine wave.

The simplest model of a stationary process with LRD and covariance func-

tion (1.1) was first proposed by Granger and Joyeux [1980] and Hosking [1981].

This process can be defined by the difference equation

(1−B)d ξ (t) = ε (t) , t ∈ Z, |d| < 1

2
, (1.3)

where ε (t) is white noise with Eε (t) = 0, Eε2 (t) = σ2 > 0. The backshift

operator B is defined by Bkξ (t) = ξ (t− k) , k = 0, 1, 2, ..., and

(1−B)d =
∞∑

j=0

ajB
j, a0 = 1, aj =

Γ (j − d)

Γ (j + 1) Γ (−d)
, j = 1, 2, ....

For its application to empirical data, see, for example, Beran [1992, 1994].

A unique stationary solution of the difference equation (1.3) has the moving-

average representation

ξ (t) = (1−B)−d ε (t) =
∞∑

j=0

ψjε (t− j) , ψj =
Γ (j + d)

Γ (d) Γ (1 + j)
,

with coefficients ψj, j = 0, 1, ..., satisfying
∑∞

j=0 ψ2
j < ∞, but

∑∞
j=0 ψj = ∞.

The covariance function of this process can be approximated by (1.1) and the

spectral density has the form

fd (λ) =
σ2

2π
|1− exp (−iλ)|−2d =

σ2

2π

(
2 sin

λ

2

)−2d

, λ ∈ [−π, π) . (1.4)
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Note that for −1/2 < d < 0, we have

fd (0) =
1

2π

∑

s∈Z
R (s) = 0,

but for 0 < d < 1/2,

fd (0) =
1

2π

∑

s∈Z
R (s) = ∞. (1.5)

More general models can be proposed via spectral densities of the form g (λ) =

f0 (λ) f (λ) , λ ∈ [−π, π) , where f (λ) is as defined in (1.4) or (1.5) and f0 (λ) is

a rational spectral density of the ARMA type (see Granger and Joyeux 1980,

Hosking 1981, Samarov and Taqqu 1988, Gray et al. 1989, Viano et al. 1995,

Giraitis and Leipus 1995, Chung 1996a,b Leipus and Viano 2000).

In continuous time, a fundamental process which may exhibit long memory

is fractional Brownian motion. For any H in (0, 1), fractional Brownian motion

(FBM) with Hurst index H is a centered Gaussian process BH =
{
BH

t , t ≥ 0
}

with covariance

E
(
BH

s BH
t

)
=

VH

2
(s2H + t2H − |t− s|2H),

where VH is a normalizing constant given by

VH =
Γ(2− 2H) cos(πH)

πH(1− 2H)

(Mandelbrot and Ness 1968). It is a process starting from zero with stationary

increments, E(BH
t −BH

s )2 = VH |t− s|2H , and is self-similar, that is , BH
αt has

the same distribution as αHBH
t (Decreusefond and Üstünel 1998, Alòs et al.

2000). The constant H determines the sign of the covariance of the future

and past increments. This covariance is positive when H > 1
2

and negative

when H < 1
2
. The case H = 1

2
corresponds to the ordinary Brownian motion.

Furthermore, as the covariance between increments at a distance u decreases

to zero as u2H−2, FBM exhibits long-range dependence when H > 1
2
.

An approach to model financial processes with long memory is via the the-

ory of stochastic differential equations driven by fractional Brownian motion
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(Comte and Renault 1996, 1998, Dai and Heyde 1996, Norros et al. 1999, Iglói

and Terdik 1999a,b, Alòs et al. 2000). In this approach, the effect of LRD can

be obtained from the noise term. However, such models have inherent difficul-

ties because FBM is not a semimartingale and the resulting Black-Scholes mar-

ket contains arbitrage opportunities (Rogers 1997). Recently, Hu and Øksendal

[1999] have shown that fractional Black-Scholes markets offer no arbitrage if

stochastic integrals with respect to FBM are defined via the Wick product.

This opens new opportunities for application of FBM to financial modelling.

A generalization of FBM is fractional Riesz-Bessel motion (FRBM) proposed in

Anh et al. [1999]. A stochastic calculus for FRBM including the corresponding

Itô formula was developed in Anh and Nguyen [2000]. Recently, Heyde [1999]

proposed a risky asset model with LRD through fractal activity time. The idea

is to replace Brownian time in geometric Brownian motion by some process

with stationary LRD increments and heavy tails.

Another approach is to incorporate LRD by replacing ordinary differential

operators by fractional differential operators in differential or partial differen-

tial equations driven by white noise (Gay and Heyde 1990, Inoue 1993, Viano

et al. 1994, Chambers 1996, Anh et al. 1999, Anh and Leonenko 2000). The

main advantage of this approach is that LRD can be effected via the Green

function of the fractional operator involved, hence freeing up the noise term to

represent the effects of non-Gaussianity. This approach will be further explored

in Subsection 1.2.3.

1.2.2 Heavy tails in financial processes

We first recall some properties of Lévy processes and particularly α-stable

processes. These processes have played an important role in modelling the tail

behaviour of financial processes.

Let L = {L (t) = L (t, ω) , t ≥ 0} be a stochastic process defined on a com-

plete probability space (Ω,F , P ) . We say that the process has independent
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increments if, for each n ∈ N and 0 ≤ t1 < t2 < ... < tn+1 < ∞, the random

variables

L (tj+1)− L (tj) , 1 ≤ j ≤ n,

are independent, and it has stationary increments if the random variables L (t)

satisfy

L (tj+1)− L (tj)
d
= L (tj+1 − tj)− L (0) .

Here
d
= denotes equality in finite-dimensional distribution. We say that L is a

Lévy process if

(L1) L (0) = 0 almost surely;

(L2) L has independent and stationary increments;

(L3) L is stochastic continuous, i.e. for all a > 0 and for all s ≥ 0

lim
t→s

P {|L (t)− L (s)| > a} = 0.

Recall that the sample paths of a process are the maps t → L (t) (ω) from R+

into R, for each ω ∈ Ω. A Lévy process has a càdlàg modification, that is, its

sample paths are right-continuous and possess limits to the left, and we will

always assume that the càdlàg version is used (see Protter 1992, p. 21).

A random variable Y is said to be stable, hence have a stable distribution,

if there exist σ ≥ 0, −1 ≤ β ≤ 1 and µ ∈ R such that, for all ζ ∈ R, its

characteristic function φY satisfies

1) φY (ζ) = exp
{
iµζ − 1

2
σ2ζ2

}
when α = 2;

2) φY (ζ) = exp
{
iµζ − σα |ζ|α (

1− iβ sgn (ζ) tan πα
2

)}
when α 6= 1, 2;

3) φY (ζ) = exp
{
iµζ − σ |ζ| (1− iβ 2

π
sgn (ζ) log |ζ|)} when α = 1.

The parameter α is the index of stability of the stable law, while β is the

skewness of the stable law, γ = σα is the scale parameter and µ is the location

parameter. All stable random variables have densities fY , which in general can

be expressed in the form of series expansion (Feller 1971, Chapter 17, Section

6). In three important cases, these densities have a closed form:
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The normal distribution

α = 2, Y ∼ N (
µ, σ2

)
, fY (u) =

1√
2πσ

e−(u−µ)2/(2σ2), u ∈ R1;

The Cauchy distribution

α = 1, Y ∼ C (
µ, σ2

)
, fY (u) =

σ

π
[
(u− µ)2 + σ2

] , u ∈ R1;

The Lévy distribution

α =
1

2
, Y ∼ L (

µ, σ2
)
, fY (u) =

( σ

2π

)1/2 1

(u− µ)3/2
e−σ/(2(u−µ)), u > µ.

One of the reasons why these processes are important in applications is that

they display self-similarity:

L (at)
d
= aHL (t)

for all t, a ≥ 0 and H = 1/α, 0 < α < 2. The symmetric stable Lévy process

is also called the α-stable Lévy motion (see Samrodnitsky and Taqqu 1994,

Section 7.5). In the case α = 2, its tail behaviour is given by

P (Y > u) ∼
e−u2/2

√
2πu

, u →∞

(see Feller 1971, Chapter 7, Section 1). When α 6= 2, there is a weaker poly-

nomial decay as expressed in the following results:

lim
u→∞

uαP (Y > u) = cα
1 + β

2
σα;

lim
u→∞

uαP (Y < −u) = cα
1− β

2
σα,

where cα > 1 (see Samrodnitsky and Taqqu 1994, pp. 16-18 for the proof and

an explicit expression for the constant cα).

Many large data sets exhibit heavy tails and skewness. The strong empirical

evidence for these features combined with the generalized central limit theorem

is used by many researchers to justify the use of stable models in economics

and finance (see Mandelbrot 1967, Fama 1965a,b, Roll 1970, Embrechts et al.
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1997, Cheng and Rachev 1993, McCulloch 1996, Adler et al. 1998). Generalised

hyperbolic forms with finite moments of all orders have been used to fit these

stable laws (see Eberlein and Keller 1995, Bibby and Sørensen 1997, Barndorff-

Nielsen 1998, 2001, Eberlein and Raible 1999, Rydberg 1999, Barndorff-Nielsen

and Shepard 2001). However, sample paths of Lévy processes, particularly

those of α-stable processes, may be too irregular to be able to represent the

tail nature of financial processes. Their marginal distributions have semi-heavy

tails rather than Lévy-type heavy tails. This analysis is detailed in Voit [2001],

where rescaling has been used to demonstrate the faster decay of financial time

series. In this thesis, we will develop a new class of distributions, which we

call the Riesz-Bessel distributions. These distributions, which are defined by

a fractional diffusion equation, have semi-heavy tails as required.

1.2.3 Volatility in financial processes

Hobson [1998, 2004] described the volatility of a financial asset as the variance

per unit time of the logarithm of the price of the asset. Volatility is an impor-

tant tool to investigate a risk in the valuation of options and other derivative

securities. In the well-known Black-Scholes model, volatility is a crucial pa-

rameter of the underlying price process. Empirical analyses of the volatility

of many stock prices indicated that volatility is not constant (Blattberg and

Gonedes 1974, Scott 1987). In fact, Scott [1997] found that the volatility of

stock returns changes randomly over time, and on occasions there are large,

rapid price movements resembling jumps.

In the current literature, volatility has been learned by (i) fitting paramet-

ric econometric models such as ARCH (Engle 1982) and GARCH (Bollerslev

1986, Duan 1995); (ii) modelling stochastic volatility; or (iii) studying volatil-

ity implied by options prices in conjunction with specific option pricing models

such as the Black-Scholes model.

Figure 1.1 shows the volatility of the SET index from 4 August 1997 to 17
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Figure 1.1: the volatility of the SET index from 4 August 1997 to 17 June 2004 by a

GARCH(1,1)

June 2004 estimated by a GARCH (1,1) model. In this thesis, we will not pay

attention to this approach, which is extensively developed.

Stochastic volatility modelling was first introduced by Hull and White

[1987], Scott [1987], and Wiggins [1987] to price options where the volatility

of the underlying asset price S (t) is believed to be stochastic:

dS = rdt + S
√

V dWs

dV = a(b− V )dt + ξV αdWv

where a, b, ξ and α are constants, V is variance rate of the stock, which is the

square of its volatility, and Ws and Wv are Wiener processes. The variance rate

is assumed to revert to a level b at a rate a (Hull 1997). Hull and White [1987]

showed that the volatility is stochastic but uncorrelated with the stock price,

the price of a European option is the Black-Scholes price integrated over the

probability distribution of average variance rate during the life of the option.

This means that the price of European call option is given by
∫

c(v)g(v)dv,
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where v is the average value of the variance rate σ2, c is the Black-Scholes

price expressed as a function of v and g is the probability density function of

v in a risk neutral world (Hull 1997). When Hull and White [1987] compared

the price given by their stochastic volatility model with the price given by the

Black-Scholes model with the variance rate equal to the average value v , they

found that the Black-Scholes model overprices in or deep out of the money.

The pricing bias caused by a stochastic volatility depends on the correlation

between the volatility and the asset price. When the correlation is significantly

positive, the Black-scholes model tends to underestimate the price for out-of-

the-money call options and overestimate the price for out-of-the-money put

options. The reason for this (Hull 1997) is that when the stock price increases,

volatility tends to increase. This means that very high stock prices are more

likely than those under geometric Brownian motion. When the stock price

decreases, volatility tends to decrease. This means that very low stock prices

are less likely than those under geometric Brownian motion.

In this thesis, we will pay attention to approach (iii), namely, studying

volatility implied by options prices in conjunction with specific option pricing

models.

We first recapture some elements of the Black-Scholes model in the theory

of option pricing. Options are financial instruments designed to protect in-

vestors from the stock market randomness. A European option is a financial

instrument giving to its owner the right but not an obligation to buy (Euro-

pean call) or to sell (European put) a share at the maturity time T . Therefore,

the purchaser of a European call option on an asset with strike price K and

expiry T has the right, but not an obligation, to buy one unit of the asset

at time T for a price K. On the other hand, the seller of a European put

option on an asset with strike price K and expiry T has the right, but not an

obligation, to sell one unit of the asset at time T for a price K. However, this

right will only be exercised if the price Pt of the asset at time T is above K;

otherwise at expiry the option is worthless (Hobson 1998, Perelló et al. 2000)
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The Black-Scholes pricing formula for stock options assumes that the price

(Pt)t≤T of a stock is the solution to a stochastic differential equation

dPt = Pt(σdBt + τdt),

where σ is the volatility parameter and Bt is a Brownian motion. The Black-

Scholes price C of a call is given explicitly by

C(Pt, t; K,T ; σ, τ) ≡ C = Ke−τ(T−t)(Mtφ(d1)− φ(d2)),

where Mt ≡ (Pt/Ke−τ(T−t)) is the moneyness of the option and d1 and d2 are

given by

d1 =
ln(Mt) + 1

2
σ2(T − t)

σ
√

T − t
,

d2 = d1 − σ
√

T − t

respectively. The term moneyness refers to the fact that if Mt > 1 the option is

said to be in-the-money and Mt < 1 is said to be out-of-the money. Moreover,

the option price depends on the volatility only through the quantity σ2(T − t),

which is the integrated squared volatility over the remaining lifetime of the

option (Hull and White 1987, Hobson 1998).

A well-known drawback of the Black–Scholes model is that it does not

explain the difference between historical volatility HV and implied volatility

IV. Anh and Inoue [2005] introduced a dynamic model of complete financial

markets, in which the prices of European calls and puts are given by the

Black–Scholes formula but HV and IV may be different. The price process

(S(t) : t ∈ R) of this model is defined via an AR(∞)-type equation for the

log-price process Z(t) := log S(t). In the simplest case, this equation takes the

form

dZ

dt
(t)−m = −

∫ t

−∞
pe−q(t−s)

{
dZ

dt
(s)−m

}
ds + σ

dW

dt
(t)

where m ∈ R, σ, q ∈ (0,∞), p ∈ (−q,∞) and (W (t) : t ∈ R) is a one-

dimensional standard Brownian motion on a probability space (Ω,F , P ). The

above equation can be explicitly solved to obtain, for t ∈ R,
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S(t) = S(0) exp

{
mt− σ

∫ t

0

(∫ s

−∞
pe−(p+q)(s−u)dW (u)

)
ds + σW (t)

}
.

Compared with the Black–Scholes model, the above equation defined by has

two additional parameters p and q which describe the memory of the market .

When p = 0, the following equation produces the Black–Scholes price process

given by

S(t) = S(0) exp (mt + σW (t))

This solution is known as geometric Brownian motion. We will develop a new

method to estimate the implied volatility based on this class of models and

apply the theory to estimate the historical volatility of the S&P500 index.

Although there are many stock indices in the American stock market

such as the Dow Jones (DJ) index, the Standard & Poor 500 (S&P500) index,

the Nasdaq index, we will consider the daily data of the S&P500 index in

particular to estimate its historical volatility for 90 days in April and May

2002. The S&P500 index is constructed based on 500 companies chosen for the

market size, liquidity, and industry group representation in the United States

of America. So the S&P500 index is one of the most widely used benchmarks

of the U.S. equity performance.

1.2.4 Scaling in financial processes

As noted above, many macroeconomic and financial time series or their trans-

forms apparently display the characteristics of anomalous diffusion, namely

long-range dependence and heavy-tailed marginal distributions. Barndorff-

Nielsen [1998, 1999] used discrete or continuous-type superposition of Ornstein-

Uhlenbeck processes with Lévy motion input to obtain a class of random pro-

cesses with LRD and infinitely divisible marginal distributions, while Iglói and

Terdik [1999b] and Oppenheim and Viano [1999] obtained long memory by
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aggregating continuous-time short-memory Gaussian processes with random

coefficients.

We next recall some basic definitions on the local scaling properties of

the paths of a process X (t) on some interval [0, T ]; for further details see, for

example, Jaffard [1997a,b] or Riedi [1999]. A typical feature of a scaling process

X (t) is that it has a non-integer degree of differentiability, characterised by its

local Hölder exponent h (t) defined by

h (t) := sup
l

{
l : |X (t′)− Pt (t′)| < C |t′ − t|l

}

for t′ sufficiently close to t, Pt (.) being the Taylor polynomial of X at t, and

C is a positive constant. The sets

Eh := {t : h (t) = h} , (1.6)

which form a decomposition of the support of X according to its singularity

exponents, can be highly interwoven and dense on [0, T ]. The singularity spec-

trum of X is then defined as d (h) = dim (Eh) where dim is the Hausdorff

dimension. A process X is said to be multifractal/multiscaling if the support

of its singularity spectrum has a non-empty interior. A classical example of a

multifractal process is the multiplicative cascade on the interval [0, 1] (Man-

delbrot 1974). However, such multiplicative cascades are not suitable models

for financial time series as they do not possess stationary increments and are

only defined on some finite interval. An example of a stochastic process with

stationary increments and defined on [0,∞) which is also a multifractal is Lévy

motion. Jaffard [1999a,b] showed that all Lévy motions are multifractal with

the exception of Brownian motion, compound Poisson processes, deterministic

motion and their convolutions. The singularity spectrum of a Lévy motion

without Brownian component was shown to be

d (h) =





γh, h ∈ [0, 1/γ] ,

−∞, elsewhere,
(1.7)
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where γ is given by

γ = inf

{
η :

∫

|x|<1

|x|η ν (dx)

}
(1.8)

and is called the upper index of the Lévy measure ν.

The increasing availability of intraday (high-frequency) data opens new

frontiers for financial market research (Lee and Ready 1991). For example,

Holthausen et al. [1987] used a buy-sell classification to examine the differential

effect of buyer-initiated and seller-initiated block trades. Hasbrouck [1988]

used the classification of trades as buy or sell to test asymmetric-information

and inventory-control theories of specialist behaviour. Harries [1989] used an

increase in the ratio of buys and sells to explain the anomalous behaviour of

closing prices. Lee and Ready [1991] used intraday trade and quote data to

classify individual trades as market buy or market sell. Ait-Sahalia [1998] used

intraday data of the New York Stock Exchange to study the behaviour of the

market.

In this thesis, we are interested in the scaling behaviour of high-frequency

data via their tick-test form. A tick test is a technique which infers the direction

of a trade by comparing its price to the price of the preceding trades (Lee and

Ready 1991). The test classifies each trade into four categories: an uptick, a

downtick, a zero-uptick, and a zero-downtick. A trade is an uptick (downtick)

if the price is higher (lower) than the price of the previous trade. When the

price is the same as the previous trade (a zero tick), if the last price change was

an uptick, then the trade is a zero-uptick. Similarly, if the last price change

was a downtick, then the trade is a zero-downtick. A trade is classified as a

buy if it occurs on an uptick or a zero-uptick; otherwise it is classified as a sell.

The tick test has been used by many academic researchers and practitioners

(see Holthausen et al. 1987, Lee and Ready 1991, Ait-Sahalia 1998).

An intraday time series is first transformed into a tick-test series, which is

then converted into a measure representation. The scaling behaviour, possi-

bly multifractal, of this representation is then modelled and analysed via an
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iterated function system.

1.3 Approach and contributions of the thesis

Chapter 2 of the thesis will investigate the semi-heavy-tailed behaviour of fi-

nancial processes. We will treat these processes as continuous-time random

walks characterised by a transition probability density governed by the frac-

tional Riesz-Bessel equation

∂p

∂t
= − (−∆)α (I −∆)γ p (t, x) , p (0, x) = δ (x) , (1.9)

where ∆ is the Laplace operator, the operators− (I −∆)
γ
2 , γ ≥ 0, and (−∆)

α
2 ,

α > 0, are inverses of the Bessel and Riesz potentials respectively, and δ (x) is

the Dirac delta function. The solution p (t, x) of the above equation is given

in terms of its spatial Fourier transform

p̂ (t, λ) = exp
[−t |λ|2α (1 + |λ|2)γ

]
, λ ∈ Rd.

The function p̂ (t, z) is the characteristic function of a distribution for all t ≥ 0

if and only if α ∈ (0, 1] , α + γ ∈ [0, 1], in which case, the resulting process is

called the Riesz-Bessel Lévy motion (RBLm). Since there is no closed form for

the density function of the Riesz-Bessel distribution, it must be computed via

numerical inversion of p̂ (t, z) using the Fast Fourier Transform.

We establish that, for α + γ < 1/2, the density of the Lévy measure of

RBLm is completely monotone on (0,∞). This implies that RBLm can be

written as the difference of two subordinators whose distribution belongs to

the class of generalized convolutions of mixtures of exponentials. As a result,

simulation of a general Riesz-Bessel Lévy motion can be carried out by simu-

lating an appropriate stable subordinator. The algorithms for this simulation

are provided for two special but important cases.

The next component develops a method for statistical estimation of the

15



RBLm. We will do this via the empirical characteristic function

φ̂n (λ) =
1

n

n∑
j=1

cos (λXj) ,

since a closed form for the density function of the Riesz-Bessel distribution

is not available, hence the maximum likelihood approach is not feasible. The

minimal distance estimate can be written as the solution to an estimating

equation of the form

∑
i

a (λi; θ)
(
φ̂n (λi)− φ (λi; θ)

)
= 0

for particular choices of a (λ; θ). The theory of quasi-likelihood provides a

framework in which an optimal choice for a (λ; θ) can be made within a given

class of estimating functions. The optimal estimating equation is given by

Z (θ)T V −1 (θ)
(
φ̂n − φ (θ)

)
= 0,

where

Z (θ)ij =
∂φ (λi; θ)

∂θj

, V (θ)ij = cov
(
φ̂n (λi) , φ̂n (λj)

)
.

The above estimating equation can be solved iteratively given a good initial

estimate θ0 as

Z (θm)T V (θm)−1 Z (θm) δm = Z (θm)T V (θm)−1
(
φ̂n − φ (θm)

)
,

θm+1 = θm + δm.

The resulting estimator is consistent, asymptotically normal (Heyde 1997, p.

15) with covariance matrix given by

E (θ̂ − θ)(θ̂ − θ)T =
[
Z (θ)T V −1 (θ) Z (θ)

]−1

.

The solution is just generalised least squares and so the method can be easily

implemented in most statistical packages.

This estimation method is performed on a number of financial time series

such as stock prices and exchange rates to verify and model their non-Gaussian
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behaviour. The method works very well and give insights into the scaling

behaviour of these financial processes.

Chapter 3 provides a method to estimate the historical volatility of a finan-

cial time series based on the Anh-Inoue dynamic model of complete financial

markets in which the prices of European calls and puts are given by the Black-

Scholes formula. This model incorporates a crucial aspect, namely, memory,

into the Black–Scholes model, without losing its usefulness and simplicity, par-

ticularly, the Black-Scholes formula. Furthermore, the model can distinguish

between historical volatility (HV) and implied volatility (IV). The price pro-

cess (S(t) : t ∈ R) of this model is defined via an AR(∞)-type equation for

the log-price process Z(t) := log S(t). In the simplest case, this equation takes

the form

dZ

dt
(t)−m = −

∫ t

−∞
pe−q(t−s)

{
dZ

dt
(s)−m

}
ds + σ

dW

dt
(t), (1.10)

where m ∈ R, σ, q ∈ (0,∞), p ∈ (−q,∞) and (W (t) : t ∈ R) is a one-

dimensional standard Brownian motion on a probability space (Ω,F , P ). Equa-

tion (1.10) can be solved explicitly to obtain, for t ∈ R,

S(t) = S(0) exp

{
mt− σ

∫ t

0

(∫ s

−∞
pe−(p+q)(s−u)dW (u)

)
ds + σW (t)

}
.

(1.11)

Compared with the Black–Scholes model, the model defined by (1.10) has two

additional parameters p and q which describe the memory of the market. When

p = 0, Eq. (1.11) produces the Black–Scholes price process given by

S(t) = S(0) exp (mt + σW (t)) . (1.12)

The log-price process (Z(t) : t ∈ R) of (1.10) is a Gaussian process with

stationary increments which has memory. In this model, the constant σ of

(1.10) is equal to the implied volatility of the model, defined via the Black–

Scholes formula. In this setting, we show that the historical volatility is given

explicitly as

HV(t) = σ

√
q2

(p + q)2
+

p(2q + p)

(p + q)3
· (1− e−(p+q)t)

t
(t > 0).
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We estimated HV(t) (t = 1, 2, 3, . . . ) from real market data such as closing

values of S&P 500 index via nonlinear least squares. Our finding is that HV(t)

is not constant, and very often reveals features in agreement with market

conditions. This work provides clear evidence that financial markets have

memory and that the model defined above can capture some movement of

stock indices reasonably well.

Chapter 4 presents a new method to study the scaling behaviour of stock

markets based on their high-frequency data and the theory of iterated function

systems. High-frequency data are first converted to the tick-test form, then

their measure representation is next generated. We call any string made of K

letters from the set {0, 1} a K-string. Letting s = s1 · · · sK , si ∈ {0, 1}, i =

1, · · · , K, be a substring with length K, we define

xleft(s) =
K∑

i=1

si

2i
,

and

xright(s) = xleft(s) +
1

2K
.

We then use the subinterval [xleft(s), xright(s)) to represent substring s. Let

NK(s) be the number of times that substring s with length K appears in the

tick test time series. If the number of bases in the time series is L, we define

FK(s) = NK(s)/(L−K + 1)

to be the frequency of substring s. It follows that
∑

{s} FK(s) = 1. Now we

can define a measure µK on [0, 1[ by dµK(x) = YK(x)dx, where

YK(x) = 2KFK(s), x ∈ [xleft(s), xright(s)).

It is easy to see
∫ 1

0
dµK(x) = 1 and µK([xleft(s), xright(s))) = FK(s). We call

µK the measure representation of the intraday stock data corresponding to

the given K. We demonstrate that these probability measures can be modelled

as recurrent iterated function systems. Each RIFS consists of N contractive
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maps S = {S1, S2, · · · , SN} with an associated matrix of probabilities P = (pij)

which satisfy
∑

j pij = 1, i = 1, 2, · · · , N . A sample can be generated from an

RIFS via the scheme

xn+1 = Sσn(xn), n = 0, 1, 2, 3, · · · ,

where x0 is any starting point. The indices σn are not chosen independently,

but rather with a probability that depends on the previous index σn−1:

P (σn+1 = i) = pσn,i.

For the data at hand, we find that a suitable RIFS can be constructed from two

contractive similarities whose parameters are estimated from tick test data by

the method of moments. Each market is then represented by a two-dimensional

vector constructed from the estimated RIFS. We then classify the markets

using the Euclidean distance of these vectors. In this chapter, we provide an

application of the RIFS technique on tick test data of the Stock Exchanges

of Singapore, Shanghai, Shenzhen and New York. We find that the vectors

of the time series from the same market are very close to each other based

on the Euclidean distance. This application demonstrates the power of the

RIFS technique in modeling the multiple scaling of high-frequency data and

in market classification via this scaling.

Chapter 5 pays attention to some key indices of the Stock Exchange of

Thailand. In particular, we model the non-Gaussian behaviour of its SET

index, SET50 index and MAI index. We demonstrate that the Riesz-Bessel

density provides good fit for 1-day returns. We then look at the behaviour

of these time series at small lags via rescaling. We find that there appears

to be departure from the assumption of a Lévy motion for the SET index.

In fact, the rescaled results, where the probability density p is rescaled and

plotted as τ 2(α+γ)p (Xrescaled) against Xrescaled = X(t,τ)

τ1/(2(α+γ)) , with X (t, τ) =

log S (t)− log S (t− τ) , S (t) being any of the given time series, indicate that

convergence to the symmetric 2 (α + γ)-stable distribution holds for the series
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SET50 and MAI studied, while SET presents a clear departure from it. This

provides evidence of second- and/or higher-order correlations in the SET series

and gives a clear example in which a model which exhibits both Lévy-type

behaviour and short- or long-range dependence of the process is needed.
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Chapter 2

Estimation and simulation of

the Riesz-Bessel distribution

2.1 Introduction

Bochner [1949] and Feller [1952] demonstrated the connection between the

stable distribution and fractional calculus by proposing a Cauchy problem

whose solution is in the class of stable distributions. Specifically, the Cauchy

problem studied by Bochner [1949] was

∂p

∂t
= − (−∆)α p (t, x) , p (0, x) = δ (x) , (2.1)

where α ∈ (0, 1] , δ (x) is the Dirac delta function and the operator (−∆)α is

understood as the inverse of the Riesz potential defined by the kernel

Jα (x) =
Γ (n/2− α)

πn/24αΓ (α)
|x|2α−n . (2.2)

The solution is the symmetric 2α-stable distribution. The operator − (−∆)α

and its generalization by Feller [1952] are part of a general theory concerning

infinitesimal generators of Lévy semigroups, that is, the transition probabil-

ity density functions of Lévy motions. Despite a large number of fractional

operators (see Samko et al. 1993) and the connection established by Bochner

[1949], there remain few specific examples of Cauchy problems generating Lévy
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semigroups. Most of the works in this direction concentrated on the stable

distribution (see Gorenflo and Mainardi 1998, 1999). In Anh and McVinish

[2004], the Riesz-Bessel distribution is proposed as the solution to the Cauchy

problem
∂p

∂t
= − (−∆)α (I −∆)γ p (t, x) , p (0, x) = δ (x) , (2.3)

where the operator (I −∆)γ is understood as the inverse of the Bessel potential

defined by the kernel

Iγ (x) =
(4π)γ

Γ (γ)

∫ ∞

0

e−π|x|2/s−s/4πsγ−n/2ds

s
. (2.4)

The solution of (2.3) is given in terms of its spatial Fourier transform

p̂ (t, λ) = exp
[−t |λ|2α (1 + |λ|2)γ

]
, λ ∈ Rd, (2.5)

and p̂ (t, λ) is a characteristic function under certain conditions on α and γ.

As with the stable and Linnik distributions, despite the simple form of the

characteristic function, there is no closed form expression for the probability

density function of the Riesz Bessel distribution. When there is no closed

form expression for the density, the problem of simulating random variables

is sometimes addressed via special representations. An example of this is the

simulation algorithm proposed by Kozubowski [2000] which makes use of the

mixture representation of the Linnik distribution derived by Kotz and Ostro-

vskii [1996]. Also, the method of simulating stable random variables proposed

by Chambers et al. [1976] (see also Weron 1996) is based on an integral repre-

sentation due to Zolotarev [1966].

In the estimation problem, the lack of a closed form for the density means

direct maximum likelihood estimation is usually abandoned. Numerous meth-

ods have been proposed for the stable and Linnik distributions, though they can

be applied more generally. An incomplete list of these methods include the frac-

tional moment estimation (Nikias and Shao 1995, Kozubowski 2001), method

of moment type (Press 1972, Anderson 1992), minimal distance method (Paul-

son et al. 1975, Anderson and Arnold 1993), log-log regression of characteristic
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function (Koutrouvelis 1980) and the k–L procedure of Feuerverger and Mc-

Dunnough [1981a,b]. The use of these methods is usually supported by some

asymptotic results together with a simulation study to suggest their accuracy

on small samples.

In this chapter, further properties of the Riesz-Bessel distribution are pro-

vided. These properties allow for the simulation of random variables from

the Riesz-Bessel distribution. Estimation is addressed by nonlinear general-

ized least squares on the empirical characteristic function. The estimator is

shown to approximate the maximum likelihood estimator. The Riesz-Bessel

distribution is then illustrated with financial data.

The chapter is organized as follows: In section 2.2, properties of the Riesz-

Bessel distribution are reviewed and two new properties are presented. In

Section 2.3, based on one of the new properties, a method for simulating a

random variable from the Riesz-Bessel distribution is proposed. In Section

2.4, the estimation problem for the Riesz-Bessel distribution is studied within

the quasi-likelihood framework (see Heyde 1997). This enables us to see the

k–L procedure as an approximate maximum likelihood approach. The chapter

concludes with an illustration of the fitting method by application to some

financial data.

2.2 The Riesz-Bessel distribution

A Lévy motion such that the characteristic function of its distribution at time

t is given by (2.5) is called a Riesz-Bessel-Lévy motion (RBLm) and will be

denoted by RB (t). As stated in the Introduction, (2.5) is a characteristic

function, but only for a specific range of values of α and γ. The conditions for

p (t, x) to be a probability distribution are given in the following theorem.

Theorem 2.2.1. The function p̂ (t, z) is the characteristic function of a dis-

tribution for all t ≥ 0 if and only if α ∈ (0, 1] , α + γ ∈ [0, 1].
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This class of distributions can be made strictly type equivalent by setting

p̂ (t, λ) = exp
[−t |λ|2α (c2 + |λ|2)γ

]
, λ ∈ Rd, (2.6)

with c > 0. However, it will be assumed throughout that c = 1, unless

stated otherwise. Theorem 2.1 was proved in Anh and McVinish [2004] by

first showing that

φ (λ) = exp [−tλα(1 + λ)γ] , λ > 0. (2.7)

is the Laplace-Stieltjes transformation of a probability distribution for all t >

0, α ∈ (0, 1] , α+γ ∈ [0, 1]. The Lévy motion whose distribution at time t has

Laplace-Stieltjes transform (2.7) is called the Riesz-Bessel-Lévy subordinator

(RBLs) and will be denoted by RBS (t). Simple conditioning arguments then

show that

RB (t)
d
= W (RBS (t)) , (2.8)

where W (t) is a Brownian motion with variance 2t and equality is in the sense

of finite dimensional distributions. A distribution whose Lévy motion can be

written in the form (2.8) is said to be of Type-G. Type-G distributions were

introduced in Marcus [1987] and defined on R1 as being the distribution of a

random variable that is equal in law to σZ, where Z is a standard normal and

σ2 is a non-negative infinitely divisible random variable. An extension to Rd

is given in Barndorff-Nielsen and Pérez-Abreu [2000]. It should be noted that

representation (2.8) can also be interpreted in terms of a transformation of the

heat (Gaussian) semigroup to a new semigroup.

The role of the parameters α, γ in RBLm is clear from (2.5): The parameter

α determines which moments are finite and so, as t →∞, the distribution can

be re-scaled to converge to a symmetric 2α-stable distribution. The parameter

γ acts together with α to determine the small time behaviour, that is, as t → 0

the distribution can be re-scaled to converge to a symmetric 2 (α + γ)-stable

distribution. A similar interpretation of the parameters can be applied to

RBLs. This type of behaviour is consistent with experience in applying stable
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distributions to financial returns data. Taylor [1986] notes that the index

of stability estimated from returns data tend to increase with time horizon

from ∼ 1.6 to near 2. By taking α = 1 and γ < 0, the RBLm is able to

incorporate this observation in a parsimonious manner. Simulated sample

paths demonstrating this property are given in Section 2.3.

The Laplace-Stieltjes transform of the RBLs has the Lévy representation

E
(
e−λRBS(t)

)
= exp

[
−atλ− t

∫ ∞

0

(
1− e−xλ

)
νS (dx)

]
, (2.9)

where νS (dx) is called the Lévy measure. The Lévy measure can be expressed

in terms of Kummer’s confluent hypergeometric function

1 F1 (a; b; x) =
∞∑

k=0

xk

k!

(a)k

(b)k

(2.10)

and

(a)k =





1 k = 0

a (a + 1) . . . (a + k) k ≥ 1
(2.11)

(see Andrews et al. 1999 for details). For α + γ ∈ [0, 1) , a = 0 and

νS (dx) =

[
α 1 F1 (1− γ; 2− α− γ;−x)

Γ (2− α− γ) xα+γ
+

(α + γ) 1 F1 (1− γ; 1− α− γ;−x)

Γ (1− α− γ) x1+α+γ

]
dx, (2.12)

and for α + γ = 1, a = 1 and

νS (dx) = αx−1 [ 1 F1 (α; 1;−x)− 1 F1 (α + 1; 2;−x)] dx. (2.13)

The qualitative behaviour of the paths of RBLs changes with the value of

α + γ: when α + γ = 0, the process is a compound Poisson process; when

α + γ ∈ (0, 1), the process is a pure jump process with jumping times dense in

(0,∞); when α + γ = 1, the process is a compound Poisson process with drift.

The characteristic function of RBLm has Lévy representation

E
(
eiλRB(t)

)
= exp

[
−atλ2 − t

∫

R

(cos (λx)− 1) ν (dx)

]
, (2.14)
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where ν (dλ) is the Lévy measure. As RBLm is a subordinated Brownian

motion, its Lévy measure is of the form

ν (dx) =

∫ ∞

0

(4πs)−1/2 exp

(−x2

4s

)
νS (ds) dx, (2.15)

with νS (dx) given by either (2.12) or (2.13). As with RBLs, the qualitative

behaviour of the paths of RBLm changes with the value of α+γ. For α+γ < 1,

RBLs and RBLm display similar behaviour. For α + γ = 1, RBLm is the sum

of a compound Poisson process and an independent Brownian motion.

Despite there being no closed form for the density function of the Riesz-

Bessel distribution, it is still possible to visualize the density by numerical

inversion of the characteristic function. In Figures 2.1 and 2.2, the density of

the Riesz-Bessel distribution is plotted for t = 1, α = 1 and γ varying. The

graphs were generated using the method described in Mittnik et al. [1999] for

the stable distributions. Note that in these plots the variance of the distribu-

tion is held constant.

2.2.1 Generalized convolutions of mixtures of exponen-

tials

We now consider the problem of determining if RBLs is a member of the class

of generalized convolutions of mixtures of exponentials (GCMED), that is, can

RBLs be obtained as a weak limit of sums of random variables with completely

monotone densities. These results rely on chapter nine of Bondesson [1992]. A

distribution of the class of GCMED is a distribution on [0,∞) with Laplace-

Stieltjes transform

φ (λ) = exp

[
−aλ +

∫

(0,∞)

(
1

x + λ
− 1

x

)
Q (dx)

]
, λ ≥ 0, (2.16)

where a ≥ 0 and the non-negative measure Q on (0,∞) satisfies

∫

(0,∞)

1

x (1 + x)
Q (dx) < ∞. (2.17)
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Figure 2.1: The Riesz-Bessel density calculated by numerical inversion of the Fourier

transform, t = 1, α = 1; γ = −0.8,−0.6, . . . , 0. As γ ↓ −1 the density becomes more peaked

at x = 0. Note we have not included that case of α + γ = 0 as in this case the distribution

possess an atom at x = 0.

−8 −6 −4 −2 0 2 4 6 8
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Figure 2.2: Densities from Figure 2.1 plotted on the semi-log scale. As γ ↓ −1 the tails of

the distribution become heavier which can also be seen from the Lévy density.
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This class of distributions can be characterized as those infinitely divisible

distributions whose Lévy measure has a completely monotone derivative, in

which case the Lévy measure is given by νS (x) dx =
∫

e−xyQ (dy) dx, (Theorem

9.1.2 of Bondesson [1992]). It is noted that this class is closed under weak

limits (Theorem 9.1.1 of Bondesson [1992]). A special subclass is obtained

by restricting Q (dx) to have an increasing density. The resulting class is

the generalized Gamma convolutions (GGC), that is the class of distributions

obtained as weak limits of sums of Gamma random variables. As GGC contain

a large number of interesting distributions, such as positive stable, Mittag-

Leffler, log-normal and generalized inverse Gaussian to name a few, it is also

of interest to establish if RBLs is a member of GGC.

Proposition 2.2.1. The Riesz-Bessel-Lévy subordinator is a member of the

generalized convolutions of mixtures of exponentials.

Proof. Assume α + γ ∈ (0, 1) and γ > 0. The inverse Laplace transform of

the Lévy density can be obtained from Equation 3.33.1.3 of Prudnikov et al.

[1992] and basic properties of the Laplace transform as

1

π

∫ x

0

[
sin (απ) uα (1− u)γ−1

+

(α

u
− α− γ

)
+

sin (π (α + γ)) uα (u− 1)γ−1
+

(
α + γ − α

u

)]
du. (2.18)

The first term of the integrand is positive for u ∈ [0, α/ (α + γ)) and negative

for u ∈ (α/ (α + γ) , 1] and zero for u > 1. The second term of the integrand

is zero for u ∈ [0, 1] and positive for all u > 1. It follows that if the integral

is non-negative at x = 1 then the integral is non-negative for all x > 0. From

elementary properties of the Gamma function, the integral at x = 1 is zero and

hence the Lévy density is completely monotone on (0,∞). Now we assume that

α + γ ∈ (0, 1) and γ < 0. The inverse Laplace transform of the Lévy density

is given in Equation 3.33.1.2 of Prudnikov et al. [1992] as

xα

Γ (α) Γ (1− α)

[
2 F1 (1− γ; α; 1 + α; x)
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− α + γ

1 + α
2 F1 (1− γ; 1 + α; 2 + α; x)

]
1(0<x≤1) (2.19)

+
xα+γ−1

Γ (α + γ) Γ (2− α− γ)
[α 2 F1 (1− γ; 1− α− γ; 2− α− γ; 1/x) (2.20)

+ (1− α− γ) x 2 F1 (1− γ;−α− γ; 1− α− γ; 1/x)] 1(x>1). (2.21)

For x ∈ [0, 1], taking the series expansion of the Gaussian hypergeometric

function yields

2 F1 (1− γ, α; 1 + α; x)− α + γ

1 + α
2 F1 (1− γ, 1 + α; 2 + α; x)

=
∞∑

k=0

(1− γ)k (α)k

(1 + α)k

xk

k!
− α + γ

1 + α

∞∑

k=0

(1− γ)k (1 + α)k

(2 + α)k

xk

k!

= 1− α + γ

1 + α
+

∞∑

k=1

α (1− γ)k

k + α

xk

k!
−

∞∑

k=1

(α + γ) (1− γ)k

k + 1 + α

xk

k!

=
1− γ

1 + α
+

∞∑

k=1

(1− γ)k

(
α

α + k
− α + γ

k + 1 + α

)
xk

k!
.

As γ < 0 it follows that (2.19) is non-negative for x ∈ [0, 1]. For x > 1, the

series expansion of the Gaussian hypergeometric function yields,

α2F1 (1− γ, 1− α− γ; 2− α− γ; x)

− (1− α− γ) x 2 F1 (1− γ,−α− γ; 1− α− γ; x)

= α + (1− α− γ) x + α

∞∑

k=1

(1− α− γ) (1− γ)k

k + 1− α− γ

x−k

k!

+ (1− α− γ)
∞∑

k=1

(−α− γ) (1− γ)k

k − α− γ

x1−k

k!

= α + (1− γ) (−α− γ) + (1− α− γ) x

+
∞∑

k=1

{
α +

(−α− γ) (k + 1− γ)

(k + 1)

}
(1− α− γ) (1− γ)k x−k

k! (k + 1− α− γ)

= (−γ) (1− α− γ) + (1− α− γ) x

+ (−γ) (1− α− γ)
∞∑

k=1

(1− γ)k x−k

k! (k + 1− α− γ)

(
1− α + γ

k + 1

)
.

As γ < 0 and α + γ < 1 it follows that (2.20)-(2.21) is positive for x > 1.

Hence, the Lévy density is completely monotone for this range of parameters.

The remaining cases, α + γ = 1 and α + γ = 0, are members of GCMED as

this class is closed under weak limits. This completes the proof.
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The functions (2.18) and (2.19)-(2.21) give the density q of the measure Q

in the respective parameter ranges. For γ > 0, α + γ < 1, it is clear that q

is not increasing and from Theorem 9.1.4 of Bondesson [1992] it follows that

RBLs is not a member of the class GGC. Furthermore, q is not bounded as

x →∞ and hence from Theorem 9.1.5 of Bondesson [1992] it follows that the

distribution of RBLs does not have a completely monotone derivative for any

t > 0. These statements also hold for γ < 0. Recall the following property due

to Gauss of the hypergeometric function. If < (c− a− b) < 0, then

lim
x→1−

2 F1 (a; b; c; x)

(1− x)c−a−b
=

Γ (c) Γ (a + b− c)

Γ (a) Γ (b)
, (2.22)

(see Andrews et al. 1999 for details). For γ < 0, q satisfies

lim
x→1−

q (x)

(1− x)γ =
1

Γ (α) Γ (1− α)
, (2.23)

thus, q cannot be increasing and so RBLs is not a member of GGC. Further-

more, as q is unbounded, the distribution of RBLs does not have a completely

monotone derivative for any t > 0. The remaining case of α+ γ = 1 cannot be

a member of GGC as RBLs is a compound Poisson process with drift in this

case and hence is not self-decomposable. However, the distribution of RBLs

does have a completely monotone derivative for some t > 0 in this case.

Proposition 2.2.2. Let Yt = RBS (t)− t and assume α + γ = 1. The distri-

bution function of Yt has an atom at zero with mass e−t(1−α). The absolutely

continuous component of the distribution has a density given by

1

π

∫ 1

0

{
exp

[−ux− t
(
uα (1− u)1−α cos (απ) + u

)]
.

sin
(
t sin (απ) uα (1− u)1−α)}

du, x ≥ 0, (2.24)

provided t ≤ α−α (1− α)α−1 π/ sin (απ).

Proof. The Laplace-Stieltjes transform of the distribution of Yt is given by

φ (λ) = exp
{−t

[
λα (1 + λ)1−α − λ

]}
. (2.25)
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From Proposition 2.2.1 it is known that Yt is a member of the class of GCMED.

By application of some elementary properties of the Laplace transform to

(2.13), the density of the Q measure in this case is given by

q (x) =
t

Γ (α) Γ (1− α)

∫ x

0

(1− u)−α
+ uα−1 (α− u) du.

The above integral is bounded by tαα (1− α)1−α π/ sin (απ) for all α ∈ (0, 1)

and hence, the density q (x) is finite for all x > 0. Application of Theorem 9.1.5

of Bondesson [1992] gives that the density of RBLs is completely monotone on

x > t, t ∈ (
0, α−α (1− α)α−1 π/ sin (απ)

]
for α + γ = 1. It follows that (2.25)

is the Stieltjes transform of a Borel measure µ (du) which may be obtained by

application of the Stieltjes complex inversion formula (Widder 1941, Chapter

VIII, Theorem 7a). Now,

lim
η→0+

1

2πi

∫ u

0

[φ (−σ − iη)− φ (−σ + iη)] dσ =
µ (u+) + µ (u−)

2
−µ (0+) + µ (0)

2
(2.26)

for λ > 0. The integrand in (2.26) remains bounded as η → 0. Applying the

Lebesgue dominated convergence theorem we see that µ is absolutely continu-

ous and hence has representation (2.24). This completes the proof.

From (2.15) and Proposition 2.2.1 it follows that the density of the Lévy

measure of RBLm is completely monotone on (0,∞). This implies that RBLm

for α + γ < 1/2 (this condition ensures RBLm has paths of bounded varia-

tion) can be written as the difference of two subordinators whose distribution

belongs to the class of GCMED. Geman et al. [2001] provide the following

interpretation of these processes in a financial setting: Let St be the price of

some traded asset. The log price process is given by

log (St/S0) = U (t)− V (t) (2.27)

where U (t) , V (t) are the prevailing buy/sell orders which are modeled as in-

dependent subordinators. The representation of a Lévy measure with a com-

pletely monotone derivative as the Laplace transform of some measure is in-

terpreted as an economy populated by individuals who submit prevailing price
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buy or sell orders with an exponential distribution. The measure from the rep-

resentation of the Lévy measure relates to the number of orders per unit time

at a particular mean level, with exponential size distribution. A further prop-

erty of subordinators with GCMED distributions is that by solely observing

small jumps information can be obtained on the larger jumps of the process.

2.3 Simulation

It is noted that subordination of a Riesz-Bessel motion by a stable subordinator

is again a Riesz-Bessel motion with a change of its parameters. Precisely,

if RB (t) is a Riesz-Bessel motion with characteristic function (2.3) and St

is a stable subordinator with Laplace transform exp
(−tzβ

)
then RB (St) is

a Riesz-Bessel motion with α := αβ and γ := γβ. Thus, all Riesz-Bessel

motions can be reduced to the subordination of one of the two following cases:

If γ < 0 then it can be obtained by subordination of a Riesz-Bessel motion with

β := α, γ := γ/β and α := 1. If γ > 0 then it can be obtained by subordination

of a Riesz-Bessel motion with β := α + γ, α := α/β and γ := γ/β.

Simulation of a general Riesz-Bessel motion can be carried out by simulat-

ing an appropriate stable subordinator and one of the special cases. Simulation

of stable random variables is detailed in Weron [1996]. Details on the simula-

tion of stable processes can be found in Janicki and Weron [1994]. Simulation

of the two special cases of Riesz-Bessel motion is discussed below.

First we consider the case of α + γ = 1. From Proposition 2.2.2 it follows

that for t ≤ α−α (1− α)α−1 π/ sin (απ) a Riesz-Bessel random variable with

α + γ = 1 can be represented by

RBt
d
= σtZ, σ2

t
d
= t + δW/A, (2.28)

where Z ∼ N (0, 2) , δ is a Bernoulli random variable with Pr (δ = 0) =

exp (−tγ) , W is a exponential random variable with unit mean and A is a
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random variable with density

exp
[−t

(
uα (1− u)1−α cos (απ) + u

)]
sin

(
t sin (απ) uα (1− u)1−α)

u−1.

(2.29)

To use representation (2.28) it is necessary that t ≤ α−α (1− α)α−1 π/ sin (απ).

If t > α−α (1− α)α−1 π/ sin (απ) , then we can use the property that the Riesz-

Bessel distribution is closed under convolution, that is,

RB (t) =
M∑

k=1

RBk (tk) , t =
M∑

k=1

tk (2.30)

with tk ≤ α−α (1− α)α−1 π/ sin (απ) for all k and RBk (t) are independent.

Simulation from a density proportional to (2.29) can be achieved by a rejec-

tion sampling algorithm. The algorithm for simulating RB (t) with α + γ = 1

is given below:

Algorithm 1: Case of α + γ = 1.

1. Repeat

– Generate two independent random variates U1, U2 from the uniform

distribution on [0, 1].

– Set V ← U
1/α
1 .

– Set G ← t sin (απ) V α−1×max
u∈[0,1]

exp
[−t

(
uα (1− u)1−α cos (απ) + u

)]
.

– Set g ← sin
(
t sin (απ) V α (1− V )1−α)×

exp
[−t

(
V α (1− V )1−α cos (απ) + V

)]
/V .

– Until U2 < g/G.

2. Generate an exponential random variable W with unit mean and a

Bernoulli random variable δ such that Pr (δ = 0) = exp (−tγ).

3. Set V = t + δW/V .

4. Generate a Gaussian random variable Z with mean zero and variance 2.
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Figure 2.3: Sample paths of Riesz-Bessel motion with α + γ = 1. Note that as α → 1 the

size of the jumps in the process becomes smaller.

5. Return Z
√

V .

The expected number of iterations required to generate a single random

variable is given by

t sin (απ)

απ (1− exp (−t (1− α)))
max
u∈[0,1]

exp
[−t

(
uα (1− u)1−α cos (απ) + u

)]
.

It is seen that for moderate values of t the efficiency of the algorithm increases

with α while for t small the efficiency is symmetric about α = 1/2 and increases

as α approaches 1 and 0. The sample paths of Figure 2.3 were generated using

Algorithm 1 and time increments of 0.1.

Now we consider the case of α = 1. This was briefly considered in Anh and

McVinish [2004] where it was noted that the Lévy measure is given by

ν (dx) =
1

Γ (−γ)

(
x(1+γ)e−x + (1 + γ) x−(2+γ)e−x

)
dx

from which it can be seen that RBLs is the sum of a tempered stable (TS)

subordinator, also called a CGMY process (see Carr et al. 2002 for details) and
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an independent compound Poisson process with Gamma distributed jumps. In

this chapter, the TS component will be simulated using a rejection sampling

algorithm. The algorithm for simulating RB (t) with α = 1 is given below.

Algorithm 2: Case of α = 1.

1. Generate a Poisson random variable N with mean t.

2. Generate a Gamma random variable G with shape parameter −γN and

scale parameter 1.

3. Repeat

– Generate a positive stable random variable V , with index 1+γ and

scale parameter t cos (π (1 + γ) /2).

– Generate a random variable U from the uniform distribution of [0, 1].

– Until U < exp (−V ).

4. Generate a Gaussian random variable Z with mean zero and variance 2.

5. Return Z
√

V + G.

In this algorithm most computation is required for the rejection step which

generates the TS component. The efficiency of the rejection algorithm will

decrease quickly as t increase, through for t small the efficiency is near one.

The sample paths of Figure 2.4 were generated using this algorithm with time

increments of 0.1.

How to simulate random variables from the Riesz-Bessel distribution for

the case of {α 6= 1} ∩ {α + γ 6= 1} from these special cases was described at

the beginning of this section. The efficiency of these algorithms will only be

reasonable when the parameter values are near these special cases, that is, only

if α or α + γ are not too far from 1. Further research will hopefully provide

more efficient algorithms.
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Figure 2.4: Sample paths of Riesz-Bessel motion with α = 1. Note that as γ → −1 RBLm

approaches a compound Poisson process.

2.4 Parameter estimation

For distributions which lack a closed form for the density function, maximum

likelihood estimation of parameters is generally not feasible and so one needs an

alternative approach. For the stable and Linnik distributions, estimates based

on the empirical characteristic function have proven useful. For a symmetric

distribution, the empirical characteristic function is defined as

φ̂n (λ) =
1

n

n∑
j=1

cos (λXj) , (2.31)

from which it is clear that

E φ̂n (λ) = φ (λ) ,

cov
(
φ̂n (λ1) , φ̂n (λ2)

)
=

1

2n
[φ (λ1 − λ2) + φ (λ1 + λ2)− 2φ (λ1) φ (λ2)] .

(2.32)

The strong law of large number implies that φ̂n (λ) → φ (λ), almost surely,

and hence estimators based on the empirical characteristic function are usually
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strongly consistent.

A number of estimators based on the empirical characteristic function are

described in the literature. In the context of the stable distribution, Koutrou-

velis [1980] proposed the least squares regression of log(− log |φ̂n(λ)|2) on log |t|,
Press [1972] suggested a method of moments, Paulson et al. [1975] gave a min-

imal distance method of estimation, where the estimate is given by

min
θ

∫ ∞

−∞

∣∣∣φ̂n (λ)− φ (λ)
∣∣∣
2

e−λ2

dλ (2.33)

and the integral is approximated by Gauss-Hermite quadrature, and Feuerverger

and McDunnough [1981a,b] proposed the k–L procedure. The method of mo-

ments type estimate, minimal distance estimate and k–L procedure can be

written as the solution to an estimating equation

∑
i

a (λi; θ)
(
φ̂n (λi)− φ (λi; θ)

)
= 0 (2.34)

for particular choices of a (λ; θ). The theory of quasi-likelihood provides a

framework in which an optimal choice for a (λ; θ) can be made within a given

class of estimating functions such as (2.34) (see Heyde 1997). Taking the

sequence {λi} as fixed, the optimal estimating equation within the class (2.34)

is

Z (θ)T V −1 (θ)
(
φ̂n − φ (θ)

)
= 0, (2.35)

where

Z (θ)ij =
∂φ (λi; θ)

∂θj

, V (θ)ij = cov
(
φ̂n (λi) , φ̂n (λj)

)
(2.36)

(Heyde 1997, p. 15), which is precisely the estimator obtained from the k–L

procedure. It was proved by Feuerverger and McDunnough [1981a] that this

estimator can be made to have arbitrarily high asymptotically efficiency. Using

the quasi-likelihood framework it is possible to see that for any finite sample

size the estimator is an approximate maximum likelihood estimator. Note that

Equation (2.35) can be written in the form

1

n

n∑
j=1

∑
i

a (λi; θ) (cos (λiXj)− φ (λi; θ)) = 0. (2.37)
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The quasi-score function minimises the distance to the true score function,

that is, it minimises

E




(
∂ log f (X; θ)

∂θ
−

∑
i

a (λi; θ) (cos (λiXj)− φ (λi; θ))

)2

 , (2.38)

(see Heyde 1997, p. 13 for details). Now consider the space L2 (f) of functions

which are square integrable with respect to f (x; θ). This Hilbert space can

be decomposed into the subspace of functions that are constant almost ev-

erywhere, denoted by H, and the subspace of functions orthogonal to it, that

is

L2 (f) = H ⊕H⊥. (2.39)

Clearly, the score function belongs to the subspace H⊥. It is known that the

space of trigonometric functions is dense in L2 (f). The function cos (λx) −
φ (λ; θ) is in H⊥ as it is the result of cos (λx) being made orthogonal to H. It

follows that the functions cos (λx)− φ (λ; θ) are dense in H⊥ and hence (2.38)

can be made arbitrarily small. In summary, the estimating equation (2.35) can

be made arbitrarily close to the true score function by taking a sufficiently fine

sequence of {λi}.
The estimating equation (2.35) can be solved iteratively given a good initial

estimate θ0 as follows:

Z (θm)T V (θm)−1 Z (θm) δm = Z (θm)T V (θm)−1
(
φ̂n − φ (θm)

)
, (2.40)

θm+1 = θm + δm. (2.41)

The resulting estimator is consistent, asymptotically normal with covariance

matrix given by

E (θ̂ − θ)(θ̂ − θ)T =
[
Z (θ)T V −1 (θ) Z (θ)

]−1

. (2.42)

Equation (2.40) is just generalised least squares and so the method can be

easily implemented in most statistical packages. As the parameters of the
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Riesz-Bessel distribution need to satisfy certain constraints, it is advisable to

transform the parameters to remove these constraints. For example, set

α∗ = log

(
α

1− α

)
, γ∗ = log

(
α + γ

1− α− γ

)
, t∗ = log (t) , (2.43)

and the appropriate changes made to the matrix Z.

The only choice to be made is the sequence {λi} , which is a common prob-

lem to the other methods previously mentioned. A large number of ordinates

at which the empirical characteristic function is computed will lead to more

efficient estimates; however there is also an increase in computational cost, and

stability problems may arise with a near singular matrix. A simulation study

was performed to assess the method in small samples for the Riesz-Bessel dis-

tribution. For each value of the parameter, the estimation scheme was applied

50 times to a sample of size 250. The {λi} was taken to be a sequence from

0.1 to 5 with spacing of 0.1 The results of the simulation study are reported

in Table I.

Table I: Performance of estimator in the simulation study.

(α, γ, t) Average Standard Error

(0.9,-0.8,1) (0.9050, -0.7936, 0.9930) (0.0766, 0.1210, 0.1764)

(0.9,-0.6,1) (0.9229, -0.6045, 0.9933) (0.0673, 0.1406, 0.1712)

(0.9,-0.4,1) (0.9524, -0.4247, 1.0001) (0.0653, 0.1855, 0.1587)

(0.9,-0.2,1) (0.9637, -0.2497, 1.0008) (0.0526, 0.1879, 0.1431)

(0.7,-0.6,1) (0.7276, -0.6253, 1.0083) (0.0884, 0.1369, 0.1709)

(0.7,-0.4,1) (0.7579, -0.4476, 1.0176) (0.0797, 0.1513, 0.1553)

(0.7,-0.2,1) (0.8269, -0.3072, 1.0080) (0.0611, 0.1698, 0.1717)

(0.7,0.2,1) (0.7098, 0.1376, 1.0482) (0.0661, 0.1958, 0.1617)

(0.5,0.2,1) (0.4826, 0.2672, 0.9589) (0.0664, 0.2142, 0.1808)

(0.5,0.4,1) (0.5181, 0.3335, 1.0633) (0.0739, 0.2074, 0.1889)

We note that the bias appears to be considerable for small negative values

of γ. The bias does not appear to be as great for small positive values of γ.
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2.5 Application to financial data

In this application, the Riesz-Bessel distribution is fitted to six typical financial

time series, namely the time series of the Japanese yen (JY), the Deutsche mark

(DM), the British pound (BP) and the French franc (FF), all against the US

dollar, the Dow Jones index (DJ) and the IBM stock price (IBM), using the

method described in the previous section. We will also look at the scaling

behaviour of these time series based on the results of the estimation.

The above daily time series cover the following periods, yielding the sample

sizes cited in brackets:

JY, 12 December 1983 - 8 October 2001 (n = 4511);

DM, 4 January 1971 - 8 April 1996 (n = 6334) ;

BP, 12 December 1983 - 8 October 2001 (n = 4511) ;

FF, 4 January 1971 - 31 December 1998 (n = 6429) ;

DJ, 2 January 1990 - 27 August 2002 (n = 3193) ;

IBM, 2 January 1990 - 3 September 2002 (n = 3197) .

The FF time series together with its returns log FF (t)− log FF (t− τ) at

different lag lengths τ are plotted in Figures (2.5)-(2.8) as illustrative examples.

It is observed that 1-day returns have dense fluctuations with many large

spikes. When τ increases, the paths thin out (i.e., the time series display

more correlation due to overlapping information), and have larger spikes; these

properties result in longer tails and a higher peak at 0 in the respective sample

density functions. This observation confirms that a non-Gaussian model is

more appropriate to fit the probability density functions of returns data as

commonly reported in the literature.

We assume that the financial processes are exponential transformations of

a Riesz-Bessel-Lévy motion whose distribution is parameterised as

p̂ (t, λ) = exp
[−κt |λ|2α (c2 + λ2)γ

]
, λ ∈ R,
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Figure 2.5: The daily time series FF(t) of French franc over the period 4 January 1971 to

31 December 1998
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Figure 2.6: The 1-day returns of log FF(t)- log FF(t-1) of the time series of FF
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Figure 2.7: The 8-day returns of log FF(t)- log FF(t-8) of the time series of FF
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Figure 2.8: The 16-day returns of log FF(t)- log FF(t-32) of the time series of FF
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where the additional parameter κ is introduced to allow t to be a time param-

eter. The method of Section 2.4 is then performed to estimate the parameters

κ, α, γ and c for the daily returns with t = 1. Admittedly, this ignores certain

dependencies that financial data are known to display, however, the aim of

this application is to demonstrate the fit of the distribution to some real data.

Applying the estimation method described above the following parameter es-

timates were obtained with t = 1:

Financial time series κ α γ c

DJ 0.0115 0.9590 −0.4878 198.0287

DM 0.0908 0.9809 −0.7270 282.4812

FF 0.1300 0.9380 −0.7158 331.0499

BP 0.0004 0.9999 −0.2587 130.9644

IBM 0.0011 0.9999 −0.2295 32.4711

JY 0.0057 0.9999 −0.4869 181.1382

The standard errors are also given in the following table which corresponds

to the table above:

Financial time series κ α γ c

DJ 0.0040 0.0183 0.1397 57.1182

DM 0.0183 0.0101 0.0551 26.9374

FF 0.0288 0.0148 0.0669 39.9615

BP 0.0001 0.0018 0.0461 23.2543

IBM 0.0001 0.0032 0.0322 6.6078

JY 0.0015 0.0015 0.0703 24.1096

It is noted that the values of α are close to 1 in all cases, those of α+ γ are

less than 1, and the values of γ for DM and FF are closer to −1 than the other

time series. The value of α being very close to 1 indicates that the distribution

appears to have finite variance but not Gaussian as γ is significantly different

from 0. These scenarios agree quite well with those depicted in Figure 2.4.

Especially, the DM and FF time series seem to approach a compound Poisson
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process. A plot of the fitted Riesz-Bessel density with a non-parametric density

estimate of the data is given below.

As noted in Section 2.2, the parameters α and γ act together to indicate

the behaviour of the time series at small lags τ. Under the hypothesis of a

Riesz-Bessel-Lévy motion, the distribution can be rescaled to converge to a

symmetric 2 (α + γ)-stable distribution. To evaluate this hypothesis, we com-

pute the histograms, of the FF and JY series in particular, and the correspond-

ing Riesz-Bessel densities, which are obtained by inverting the characteristic

function with the parameter estimates from daily returns and letting t change.

The results are plotted in Figures 2.9 and 2.10. It is seen that the hypothesis

seems consistent with the JY series. On the other hand, for the FF series,

while the Riesz-Bessel density provides good fit for 1-day returns, there ap-

pears to be departure from the assumption of a Lévy motion. Due possibly to

second- and/or higher-order correlations in the data, 4-, 8- and 16-day returns

of the FF series are, on average, more concentrated at 0 than predicted by

Lévy motion with Riesz-Bessel density.

The rescaled results, where the probability density p is rescaled and plotted

as τ 2(α+γ)p (Xrescaled) against Xrescaled, are displayed in Figures 2.11 and 2.12

for the FF series and the JY series respectively. Here,

Xrescaled =
X (t, τ)

τ 1/(2(α+γ))
,

with X (t, τ) = log S (t)− log S (t− τ) , S (t) being any of the given time series.

If the time series follows a Riesz-Bessel-Lévy motion, the probability densities

of their returns at different lags will collapse to a limiting density, namely, that

of the symmetric 2 (α + γ)-stable distribution. This pattern seems to hold for

the series JY, BP, DJ and IBM studied, while FF and DM present a clear

departure from it. As noted above for the FF series, which is also apparent in

the DM series, there is evidence of second- and/or higher-order correlations.

In this case, a model which exhibits both Lévy-type behaviour and short- or

long-range dependence of the process is warranted.
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(c) 8-day returns of FF

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

5

10

15

20

25

30
16−day returns

(d)16-day returns of FF

Figure 2.9: The sample densities(rugged curves) of the returns of French franc

series at the different lags and their estimation (smooth curves)
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Figure 2.10: The sample densities(rugged curves) of the returns of Japanese

Yen series at the different lags and their estimation (smooth curves)
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Figure 2.11: The rescaled sample densities of the returns of FF at 8, 16 days based on the

estimates of the Riesz-Bessel distribution
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Figure 2.12: The rescaled sample densities of the returns of JY at 8, 16 days based on the

estimates of the Riesz-Bessel distribution
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Chapter 3

Incorporation of memory into

the Black-Scholes-Merton

theory and estimation of

volatility

3.1 Introduction

This chapter considers a dynamic model of complete financial markets in which

the prices of European calls and puts are given by the Black-Scholes formula.

The model has memory and can distinguish between historical volatility HV

and implied volatility IV. A new method is then provided to estimate the

implied volatility from the model. Our IV estimate for real data such as S&P

500 is almost always larger than the value obtained from traditional methods,

namely HV(1). Since IV>HV(1) more often than IV<HV(1) in real markets,

our result has the effect of narrowing the gap between HV and IV, and making

the Black-Scholes-Merton theory more consistent with empirical data.

A well-known drawback of the Black–Scholes model is that it does not

explain the difference between historical volatility HV and implied volatility
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IV. In Anh and Inoue [2005] (see also Anh, Inoue, and Kasahara [2005]), a

dynamic model of complete financial markets was introduced, in which the

prices of European calls and puts are given by the Black–Scholes formula but

HV and IV may be different. The price process (S(t) : t ∈ R) of this model is

defined via an AR(∞)-type equation for the log-price process Z(t) := log S(t).

In the simplest case, this equation takes the form

dZ

dt
(t)−m = −

∫ t

−∞
pe−q(t−s)

{
dZ

dt
(s)−m

}
ds + σ

dW

dt
(t), (3.1)

where m ∈ R, σ, q ∈ (0,∞), p ∈ (−q,∞) and (W (t) : t ∈ R) is a one-

dimensional standard Brownian motion on a probability space (Ω,F , P ). Equa-

tion (3.1) can be solved explicitly to obtain, for t ∈ R,

S(t) = S(0) exp

{
mt− σ

∫ t

0

(∫ s

−∞
pe−(p+q)(s−u)dW (u)

)
ds + σW (t)

}
. (3.2)

Compared with the Black–Scholes model, the model defined by (3.1) has two

additional parameters p and q which describe the memory of the market . When

p = 0, Eq. (3.2) produces the Black–Scholes price process given by

S(t) = S(0) exp (mt + σW (t)) . (3.3)

The log-price process (Z(t) : t ∈ R) of (3.1) is a Gaussian process with

stationary increments which has memory. In view of some recent studies, it is

unlikely that observed stock prices and stock indices are log-normal (Eberlein

and Keller 1995, Bibby and Sørensen 1997, Barndorff-Nielsen 1998, Rydberg

1999, Barndorff-Nielsen and Shepard 2001). However, Anh and Inoue [2005]

neglected such a consideration, recalling the fact that, after all, the Black–

Scholes model, which is log-normal, is still dominant among a large number of

market models used by practitioners. Their intention was to incorporate a cru-

cial aspect, namely, memory, into the Black–Scholes model, without losing its

usefulness and simplicity, particularly, the Black–Scholes formula. This chap-

ter continues this work and will provide clear evidence that financial markets

have memory and that the model defined by (3.1) can capture some movement

of stock indices reasonably well.
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By Theorem 3.3 in Anh and Inoue [2005] (see also Theorem 3.3.1 below),

the constant σ of (3.1) is equal to the implied volatility of the model, defined

via the Black–Scholes formula. Notice that, in the model defined by (3.1), the

prices of European calls and puts are given by the Black-Scholes formula as in

the Black–Scholes model. We now define

HV(t− s) :=

√
Var{log(S(t)/S(s))}

t− s
(t > s ≥ 0). (3.4)

If (S(t)) is Black–Scholes, then we have HV(t) = σ for every t > 0. However,

in the present model, we have HV(t) = f(t), where the function f(t) is given

by

f(t) = σ

√
q2

(p + q)2
+

p(2q + p)

(p + q)3
· (1− e−(p+q)t)

t
(t > 0) (3.5)

(see Examples 4.3 and 4.5 in Anh and Inoue 2005). We see that if p > 0, then

f(t) is decreasing, while if p < 0, then f(t) is increasing. Moreover, we have

lim
t→0+

f(t) = σ, lim
t→∞

f(t) =
σq

p + q
.

We estimated HV(t) (t = 1, 2, 3, . . . ) from real market data such as closing

values of S&P 500 index. Our finding is that HV(t) is not constant, and very

often reveals features in agreement with those described above (Section 3.2).

We fitted the function f(t) by using nonlinear least squares, and found that

f(t) approximates HV(t) rather well when the market is stable (Section 3.4).

This model suggests a new method for historical estimation of implied

volatility (Section 3.4). In fact, in the traditional method, it is HV(1) that

is regarded as the historical estimate of volatility (see, e.g., Hull 1997). The

choice of time lag 1 (day) has been adopted because it can be conveniently

computed from closing data; after all, in the Black–Scholes model, HV(t) is

constant, whence the choice of t is not so relevant. Thus, in this traditional

method, only one value of HV(t) is used to estimate volatility. However, as

stated above, since observed market data show that HV(t) is not constant, such

a method would give only a partial description of the market. We propose a

new method for the estimation of implied volatility based on the model defined
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by (3.1), in which we use several values of HV(t). As stated above, we can fit

f(t) to HV(t) rather well by using nonlinear least squares, and in so doing we

obtain estimated values of σ, p and q. Since σ is equal to the implied volatility

in the model defined by (3.1), this estimated value of σ is our historically

estimated value of implied volatility .

3.2 Estimating HV(t) from historical data

The definition of HV(t) is given by (3.4). It should be noted that the variance

in (3.4) is not defined with respect to the equivalent martingale measure but

with respect to the physical probability measure P . To estimate HV(t), we use

stock prices observed at a fixed time interval. Let N be the number of trading

days in the interval. For i = 1, 2, . . . , N , let Si be the closing price on the i-th

day. We fix t ∈ {1, 2, . . . , }, which is reasonably smaller than N . We define

ui = ui,t by

ui := log (Si+t/Si) (i = 1, 2, . . . , N − t).

Then the estimate of HV(t), for which we write as hv(t), is given by

hv(t) = 100

√√√√ 252

t(N − t− 1)

N−t∑
i=1

(ui − u)2, (3.6)

where u is the sample mean of ui defined by

u :=
1

N − t

N−t∑
i=1

ui.

The number 252 in (3.6) is the number of trading days in one year, and has

the effect of converting the return into that per annum. On the other hand,

the number 100 in (3.6) gives the return in terms of percentage.

Figure 1 shows the plotting of (t, hv(t)) (t = 1, 2, . . . , 25) for S&P 500

closing indices from 14 January through 22 May 2002, for which we have

N = 90 trading days. We remark that the market was relatively stable during

this period. If the market followed the Black–Scholes model (3.3), then hv(t)
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would be approximately a constant, that is, the implied volatility. However,

Figure 1 clearly shows that this is not the case; we cannot regard hv(t) as

constant here. Thus considering the market as Black–Scholes and hv(1) as the

historical estimate of implied volatility, as still in common practice, are both

problematic.

3.3 A financial market model with memory

We briefly recall from Anh and Inoue [2005] some basic results on the financial

market model defined by (3.1). We also refer to Anh, Inoue, and Kasahara

[2005], where the expected log-utility maximization problem for the model is

solved using a new method in prediction theory.

Let m ∈ R, σ, q ∈ (0,∞), p ∈ (−q,∞) and (W (t) : t ∈ R) be a Brownian

motion defined on (Ω,F , P ) such that W (0) = 0. We consider a price process

S(t) of the form

S(t) = S(0) exp Z(t) (t ∈ R), (3.7)

where S(0) is a positive constant and (Z(t) : t ∈ R) is a mean-square con-

tinuous process with stationary increments defined on (Ω,F , P ) such that

Z(0) = 0. We also assume that the process (Z(t)) is the solution to Eq. (3.1)

in the random distribution sense. Then (S(t) : t ∈ R) is given by (3.2).

The integral on the right-hand side of (3.1) describes the memory of the

market. For a rough interpretation of this concept, let us put a(t) = pe−qt for

t > 0. Then for ε sufficiently small, we would have approximately
∫ u+ε

u

a(t− s)

{
dZ

dt
(s)−m

}
ds ≈ a(t− u){Z(u + ε)− Z(u)−mε}.

Thus, in this model, if p > 0, then a good performance of past prices, especially

the most recent one, makes the market cautious of the next price fall.

Let T ∈ (0,∞) be the maturity date. To define the financial market, we

use the following filtration:

Gt := σ(σ(S(u) : 0 ≤ u ≤ t) ∪N T ) (0 ≤ t ≤ T ),
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where N T is the class of all P -negligible sets from σ(S(u) : 0 ≤ u ≤ T ).

Thus, in this model, we consider only GT -measurable contingent claims and

(Gt)-adapted strategies. This setting is the same as that of the Black–Scholes

model. Also, as in the Black–Scholes model, we suppose that we are in a

market in which the riskless asset price S0(t) follows S0(t) = exp(rt) for t ≥ 0,

where r is a nonnegative constant instantaneous rate. We put

FT :=
⋂
ε>0

σ [σ(W (s) : −∞ < s ≤ T + ε) ∪N ] ,

where N is the class of all P -negligible sets from F .

We have the following theorem.

Theorem 3.3.1 (Anh and Inoue 2005, Theorem 3.3). The market

{(Ω,FT , P ), (Gt)0≤t≤T , (S(t))0≤t≤T , (S0(t))0≤t≤T}

as defined above is complete. In this market, the prices of European calls and

puts with maturity T are given by the Black–Scholes formula, and the constant

σ serves as the implied volatility.

By Theorem 3.3.1, we can define the implied volatility of the financial

market model above by the Black–Scholes formula, as in the Black–Scholes

model. Also we see that the constant σ in (3.1) is equal to the implied volatility

of the market model.

3.4 Model fitting and estimation of implied

volatility

If a financial market could be regarded as following the model defined by (3.1),

then, by the results stated in Section 3.3, we may use the estimate of σ as that

of the implied volatility. To estimate σ, we can use HV(t) defined by (3.4). By

Examples 4.3 and 4.5 in Anh and Inoue [2005], we have HV(t) = f(t), where

the function f(t) = f(t; σ, p, q) is given by (3.5). We fit f(t) to the estimate
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Figure 3.1: Plotting of hv(t) for S&P500, 14 Jan 02- 22 May 02, 90 trading days. Here

Dmax = 25

hv(t) of HV(t) by using nonlinear least squares, and, in this way, we obtain

the estimated values of σ, p and q.

For example, as in Section 3.2, we consider the S&P 500 closing indices of

90 trading days from 14 January through 22 May 2002, and use the values of

hv(t) plotted in Figure 3.1 By numerically calculating the triple (σ, p, q) that

minimizes
25∑

t=1

{hv(t)− f(t; σ, p, q)}2 ,

we obtain the following result:

σ = 21.7 (%) , p = 0.384, q = 0.660.

Figure 3.2 plots the fitted function f(t) = f(t; 21.7, 0.384, 0.660) and hv(t).

It is seen that f(t) approximates hv(t) very well. In this case, we have ARN =

0.195, where ARN is the average residue norm given by

ARN =

√√√√ 1

Dmax

Dmax∑
t=1

{hv(t)− f(t; σ0, p0, q0)}2, (3.8)
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Figure 3.2: Fitting of f(t)(solid line) to hv(t)(dashed line)for S&P500,14 Jan 02 - 22 May

02, 90 trading days. Here Dmax = 25

with (σ0, p0, q0) = (21.7, 0.384, 0.660) and Dmax = 25. The value of ARN

describes how close f(·) is to hv(·) in average. We remark that, in the Black–

Scholes framework, f(t) = σ, whence we cannot reasonably fit it to such hv(t).

Our historical estimate of implied volatility is 21.7%, while the traditional one

based on the Black–Scholes model is hv(1) = 18.8%. Thus the former is larger

than the latter by 21.7− 18.8 = 2.9%.

In general, the procedure to estimate σ, p and q can be described as follows:

1. For the closing prices Si (i = 1, 2, . . . , N), we calculate hv(t) by (3.6) up

to sufficiently large t.

2. We choose a suitable positive integer Dmax.

3. We numerically calculate the triple (σ, p, q) that minimizes

Dmax∑
t=1

{hv(t)− f(t; σ, p, q)}2 . (3.9)
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Figure 3.3: Fitting of f(t)(solid line) to hv(t)(dashed line)for S&P500,24 Dec 01 - 03 May

02, 90 trading days. Here Dmax = 10

Figure 3.3 shows the plotting of the fitted function f(t) = f(t; 17.6, 0.176, 0.514)

to hv(t) for the S&P 500 closing index data, 24 December 2001–3 May 2002,

90 trading days, with Dmax = 10.

Table 1 provides the resulting values of σ, p, q and ARN for the 90-day

data sets of S&P 500 closing indices ending in May 2002. Thus N = 90, while

we choose Dmax = 25. For example, the period 14Jan02–22May02 in Table 1

means that we use the closing indices of the 90 trading days from 14 January

2002 through 22 May 2002. Each value of ARN in the table is given by (3.8)

with Dmax = 25, where σ0, p0 and q0 are the corresponding estimates of σ, p

and q, respectively.

The estimates of σ, p and q depend on the choice of Dmax. In Table 2,

we provide the estimates obtained by using the same S&P 500 index data as

those in Table 1 but using Dmax = 10 instead of Dmax = 25. As Tables 1 and

2 suggest, the estimate of σ tends to increase as we increase Dmax. Choosing a

suitable value for Dmax may be regarded as a model selection problem, which
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is not easy. If we choose a small value of Dmax, the fitting tends to be good.

On the other hand, by choosing a large value of Dmax, we can incorporate the

global shape of the graph of hv(t), which is likely to be closely related to the

option pricing, into consideration. So here we have two contradicting goals,

and this situation is similar to that of usual model selection.

Tables 3 and 4 provide the results for 90-day data sets of S&P 500 indices

ending in April 2002, with Dmax = 25 and Dmax = 8, respectively. As Tables 1–

4 suggest, we almost always have p > 0 for the market data under investigation.

We remark that f(t) is decreasing if p > 0. Since f(0+) = σ and f(1) ≈ hv(1),

our historical estimate of implied volatility is almost always larger than the

traditional one, that is, hv(1). Since IV> hv(1) much more often than IV<

hv(1) in real markets, this has the effect of narrowing the gap between HV and

IV.
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Period hv(1)(%) σ(%) p q ARN

20Dec01–01May02 16.4 19.1 0.487 1.303 0.309

21Dec01–02May02 16.4 18.8 0.447 1.265 0.327

24Dec01–03May02 16.5 19.6 0.641 1.590 0.325

26Dec01–06May02 16.7 21.2 0.981 1.971 0.337

27Dec01–07May02 16.7 20.3 0.764 1.834 0.365

28Dec01–08May02 17.9 22.9 1.021 1.686 0.393

31Dec01–09May02 17.9 22.9 0.984 1.612 0.415

02Jan02–10May02 18.1 23.1 0.996 1.620 0.462

03Jan02–13May02 18.3 23.3 1.000 1.583 0.448

04Jan02–14May02 18.6 23.6 0.866 1.299 0.430

07Jan02–15May02 18.6 23.1 0.718 1.110 0.406

08Jan02–16May02 18.7 22.3 0.539 0.901 0.353

09Jan02–17May02 18.7 21.6 0.408 0.732 0.293

10Jan02–20May02 18.8 21.7 0.405 0.711 0.235

11Jan02–21May02 18.8 21.8 0.399 0.686 0.212

14Jan02–22May02 18.8 21.7 0.384 0.660 0.195

15Jan02–23May02 18.9 21.7 0.379 0.649 0.220

16Jan02–24May02 18.8 21.5 0.359 0.623 0.229

17Jan02–28May02 18.8 21.3 0.334 0.585 0.241

18Jan02–29May02 18.7 21.1 0.297 0.528 0.220

22Jan02–30May02 18.7 20.8 0.262 0.472 0.212

23Jan02–31May02 18.7 20.7 0.251 0.459 0.210

Average 18.1 21.6 0.587 1.085 0.311

Table 1. The results for S&P 500 closing index data sets of 90 trading days

ending in May 2002. Here Dmax = 25.
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Period hv(1)(%) σ(%) p q ARN

20Dec01–01May02 16.4 17.3 0.142 0.434 0.082

21Dec01–02May02 16.4 17.3 0.141 0.422 0.080

24Dec01–03May02 16.5 17.6 0.176 0.514 0.050

26Dec01–06May02 16.7 18.2 0.218 0.571 0.102

27Dec01–07May02 16.7 18.0 0.179 0.480 0.189

28Dec01–08May02 17.9 20.5 0.394 0.705 0.187

31Dec01–09May02 17.9 20.5 0.373 0.652 0.232

02Jan02–10May02 18.1 21.0 0.427 0.696 0.263

03Jan02–13May02 18.3 21.5 0.476 0.741 0.193

04Jan02–14May02 18.6 21.6 0.406 0.607 0.256

07Jan02–15May02 18.6 21.1 0.335 0.508 0.253

08Jan02–16May02 18.7 20.8 0.286 0.446 0.208

09Jan02–17May02 18.7 20.7 0.264 0.442 0.204

10Jan02–20May02 18.8 21.1 0.308 0.522 0.168

11Jan02–21May02 18.8 21.2 0.320 0.531 0.207

14Jan02–22May02 18.8 21.3 0.326 0.543 0.218

15Jan02–23May02 18.9 21.5 0.346 0.576 0.254

16Jan02–24May02 18.8 21.4 0.340 0.573 0.267

17Jan02–28May02 18.8 21.2 0.318 0.541 0.298

18Jan02–29May02 18.7 21.0 0.293 0.509 0.284

22Jan02–30May02 18.7 20.9 0.265 0.473 0.281

23Jan02–31May02 18.7 20.8 0.268 0.491 0.275

Average 18.1 20.3 0.300 0.544 0.207

Table 2. The results for S&P 500 closing index data sets of 90 trading days

ending in May 2002. Here Dmax = 10.
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Period hv(1)(%) σ(%) p q ARN

19Nov01–01Apr02 16.3 17.6 0.154 0.326 0.246

20Nov01–02Apr02 16.4 17.6 0.153 0.327 0.232

21Nov01–03Apr02 16.4 17.7 0.153 0.325 0.250

23Nov01–04Apr02 16.3 17.5 0.136 0.305 0.277

26Nov01–05Apr02 16.3 17.4 0.130 0.301 0.303

27Nov01–08Apr02 16.2 17.2 0.124 0.305 0.303

28Nov01–09Apr02 16.0 16.9 0.106 0.287 0.321

29Nov01–10Apr02 16.0 17.0 0.123 0.336 0.348

30Nov01–11Apr02 16.5 17.8 0.185 0.446 0.356

03Dec01–12Apr02 16.5 18.0 0.215 0.549 0.370

04Dec01–15Apr02 16.4 17.8 0.232 0.659 0.361

05Dec01–16Apr02 16.4 17.9 0.244 0.682 0.359

06Dec01–17Apr02 16.4 18.4 0.330 0.842 0.374

07Dec01–18Apr02 16.4 18.9 0.459 1.086 0.391

10Dec01–19Apr02 16.2 18.7 0.491 1.217 0.387

11Dec01–22Apr02 16.4 19.3 0.597 1.333 0.363

12Dec01–23Apr02 16.4 19.2 0.534 1.240 0.338

13Dec01–24Apr02 16.2 18.5 0.415 1.103 0.317

14Dec01–25Apr02 16.2 18.5 0.427 1.131 0.299

17Dec01–26Apr02 16.3 18.7 0.461 1.206 0.290

18Dec01–29Apr02 16.3 18.3 0.352 1.056 0.292

19Dec01–30Apr02 16.4 18.4 0.374 1.121 0.299

Average 16.3 18.1 0.291 0.736 0.322

Table 3. The results for S&P 500 closing index data sets of 90 trading days

ending in April 2002. Here Dmax = 25.
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Period hv(1)(%) σ(%) p q ARN

19Nov01–01Apr02 16.3 17.2 0.109 0.086 0.158

20Nov01–02Apr02 16.4 17.2 0.110 0.097 0.145

21Nov01–03Apr02 16.4 17.3 0.114 0.115 0.168

23Nov01–04Apr02 16.3 17.1 0.105 0.065 0.147

26Nov01–05Apr02 16.3 17.0 0.116 0.020 0.148

27Nov01–08Apr02 16.2 16.8 0.101 0.035 0.079

28Nov01–09Apr02 16.0 16.6 0.108 0.005 0.115

29Nov01–10Apr02 16.0 16.7 0.092 0.075 0.139

30Nov01–11Apr02 16.5 17.5 0.143 0.284 0.115

03Dec01–12Apr02 16.5 17.7 0.172 0.378 0.149

04Dec01–15Apr02 16.4 17.8 0.220 0.586 0.035

05Dec01–16Apr02 16.4 17.7 0.205 0.534 0.068

06Dec01–17Apr02 16.4 17.8 0.206 0.465 0.087

07Dec01–18Apr02 16.4 17.9 0.244 0.537 0.137

10Dec01–19Apr02 16.2 17.7 0.254 0.599 0.150

11Dec01–22Apr02 16.4 18.2 0.306 0.665 0.153

12Dec01–23Apr02 16.4 18.0 0.257 0.559 0.153

13Dec01–24Apr02 16.2 17.3 0.165 0.368 0.157

14Dec01–25Apr02 16.2 17.2 0.157 0.356 0.099

17Dec01–26Apr02 16.3 17.2 0.160 0.415 0.078

18Dec01–29Apr02 16.3 17.1 0.134 0.406 0.058

19Dec01–30Apr02 16.4 17.4 0.178 0.590 0.056

Average 16.3 17.4 0.166 0.329 0.118

Table 4. The results for S&P 500 closing index data sets of 90 trading days

ending in April 2002. Here Dmax = 8.
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Chapter 4

Classification of financial

markets via recurrent iterated

function systems

4.1 Introduction

This chapter presents the basic theory of iterated function systems (IFS) and

an application of this theory to study the scaling behaviour of stock markets.

A measure representation is proposed for prices of the stock exchanges of Sin-

gapore, Shanghai, Shenzhen and New York. We first demonstrate that these

probability measures can be modelled as recurrent iterated function systems

(RIFS) consisting of two contractive similarities whose parameters are esti-

mated from tick test data by the method of moments. Each market is then

represented by a two-dimensional vector constructed from the estimated RIFS.

We then classify the markets using the Euclidean distance of these vectors. It

will be seen that stock prices of the same market tend to have the same shape,

hence will be closer to each other in the above Euclidean distance.

In current practice, daily or weekly financial time series have been modelled

in the ARIMA framework popularised by Box and Jenkins [1976], and their
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volatility has been captured via an autoregressive conditionally heteroskedastic

(ARCH) model introduced by Engle [1982]. Nowadays, the increasing availabil-

ity of intraday trade and quote data has had an important impact on research

in finance, economics and mathematics including financial market microstruc-

ture theory. These intraday data are now available for most exchanges such

as the Singapore stock exchange (SGSE), Shanghai stock exchange (SHSE),

Shenzen stock exchange (SZSE), New York stock exchange (NYSE), and so

on. An important form of intraday data is that of the so-called tick-test data.

The improved ability to discern whether a trade is a buy order or a sell or-

der is of particular importance. Most studies have classified trades as buys or

sells by comparing the trade prices to the quote prices in effect at the time of

the trade (Lee and Ready 1991). The intraday trade and quote data do not

identify whether a trade was triggered by a market buy or sell order, so this

information must be inferred from the data. One of the general approach to

infer the direction of a trade is to compare the trade price to adjacent trades,

a technique commonly known as a “tick test” (Lee and Ready 1991). A trade

is an uptick (downtick) if the price is higher (lower) than the price of the pre-

vious trade. A trade is classified as a buy if it occurs on an uptick; otherwise

it is classified as a sell. The tick test has been used by many reasearchers

(e.g. Holthausen et al. 1987; Lee and Ready 1991; Ait-Sahalia 1998) and by

market regulators. In this chapter, we simplify the tick test to the following:

A financial time series ti, i = 1, 2, · · · , L + 1, is converted to another time

series Xi, i = 1, 2, · · · , L, where Xi = 1 if ti+1 ≥ ti and Xi = 0 if ti+1 < ti.

The converted time series Xi is called the tick-test time series of the original

financial time series ti.

To pursue analogies between stock market dynamics and stochastic models

commonly used in statistical physics of complex systems have attracted consid-

erable interest for many years (Anderson et al. 1988). In 1900, the first stochas-

tic and scaling model in finance, Brownian motion, was proposed by Bachelier.

Almost seven decades later, some generalisations were made by Madelbrot and
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his followers involving either fractional Brownian motion (Mandelbrot and Ness

1968) or Lévy motion (e.g. Mandelbrot 1967). Multiple scaling/multifractality

is an important property related to the correlations and heavy-tailed marginal

distributions of financial processes. Fractal geometry provides a mathematical

formalism for describing complex spatial and dynamical structures with multi-

ple scaling (Mandelbrot 1983; Feder 1988; Barnsley and Hurd 1993; Peruggia

1993; Lu 1997). Multifractal analysis has been used to study stock prices

(Canessa 2000; Bouchaud et al. 2000) and foreign exchange rates (Anh et al.

2000; Schmitt et al. 1999). In fractal geometry, the iterated function system is

a useful model to generate fractal and multifractal structures. The recurrent

iterated function system is an extension of an IFS in which memory is allowed.

In this chapter, we will demonstrate the technique of RIFS on tick test

data of four different stock exchanges (SGSE, SFSE, SZSE and NYSE). We

first give the measure representation of the intraday data in Section 4.2. We

then demonstrate that these probability measures of the K-strings can be

modelled by RIFS consisting of two contractive similarities in Section 4.3.

Each of these RIFS is specified by a matrix of incidence probabilities P = (pij)

,i, j = 1, 2 with pi1 + pi2 = 1 for i = 1, 2. It is our hypothesis that the measure

representation of stock data can be captured by the matrix P . If we denote

p11 = p1 and p21 = p2 in the matrix P , then each stock series can be represented

by a vector (p1, p2) in R2 . We will see in Section 4.4 that the vectors of the

time series from the same market are very close to each other based on the

Euclidean distance. Some conclusions are drawn in Section 4.5.

4.2 Measure representation of intraday stock

data

Following Yu et al. [2001, 2003], we first derive the measure representation

of intraday stock data. We call any string made of K letters from the set
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{0, 1} a K-string. For a given K, there are in total 2K different K-strings.

In order to count the number of each kind of K-strings in a given tick test

time series, 2K counters are needed. We divide the interval [0, 1) into 2K

disjoint subintervals, and use each subinterval to represent a counter. Letting

s = s1 · · · sK , si ∈ {0, 1}, i = 1, · · · , K, be a substring with length K, we define

xleft(s) =
K∑

i=1

si

2i
, (4.1)

and

xright(s) = xleft(s) +
1

2K
. (4.2)

We then use the subinterval [xleft(s), xright(s)) to represent substring s. Let

NK(s) be the number of times that substring s with length K appears in the

tick test time series. If the number of bases in the time series is L, we define

FK(s) = NK(s)/(L−K + 1) (4.3)

to be the frequency of substring s. It follows that
∑

{s} FK(s) = 1. Now we

can define a measure µK on [0, 1[ by dµK(x) = YK(x)dx, where

YK(x) = 2KFK(s), when x ∈ [xleft(s), xright(s)). (4.4)

It is easy to see
∫ 1

0
dµK(x) = 1 and µK([xleft(s), xright(s))) = FK(s). We call

µK the measure representation of the intraday stock data corresponding to

the given K. As an example, the histogram of substrings in the tick test data

of the intraday stock prices of the NYSE for K = 10 is given in the upper-right

panel of Figure 4.1. Self-similarity is apparent in the measure.

For simplicity of notation, the index K is dropped in FK(s), etc. from now

on, where its meaning is clear.

4.3 RIFS model and the moment method for

parameter estimation

We propose to model the measure representation of intraday stock data by an

RIFS. We consider a system of N contractive maps S = {S1, S2, ..., SN}. This

65



0 1 2 3 4 5

x 10
4

32

34

36

38

40

42

  Trade number

P
ric

e 
of

 S
to

ck

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

Representation of substrings with length K

P
ro

ba
bi

lit
y 

of
 s

ub
st

rin
gs

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

Position of small interval B in [0,1]

M
ea

su
re

 µ
(B

)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Position of small interval B in [0,1]

W
al

k 
re

pr
es

en
ta

tio
n

Normalized measure
RIFS Simulation

ADI Measure representation, K=10 

RIFS Simulation, K=10 ADI, K=10 

Figure 4.1: ADI of New York stock exchange.

system is called an iterated functions system (Peruggia 1993). Letting E0 be

a compact set in a compact metric space, we define Eσ1σ2···σn = Sσ1 ◦Sσ2 ◦ · · · ◦
Sσn(E0) and

En = ∪σ1,··· ,σn∈{1,2,··· ,N}Eσ1σ2···σn .

Then E = ∩∞n=1En is called the attractor of the IFS. Given a set of probabilities

Pi > 0,
∑N

i=1 Pi = 1, pick an x0 ∈ E and define the iteration sequence

xn+1 = Sσn(xn), n = 0, 1, 2, 3, · · · , (4.5)

where the indices σn are chosen randomly and independently from the set

{1, 2, · · · , N} with probabilities P (σn = i) = Pi. Then every orbit {xn} is

dense in the attractor E (Vrscay 1991; Anh et al. 2002). For n large enough,

we can view the orbit {x0, x1, · · · , xn} as an approximation of E. This process

is called a chaos game.

Given a system of contractive maps S = {S1, S2, · · · , SN} on a compact

metric space E∗, we associate with these maps a matrix of probabilities P =

(pij) which is row stochastic, i.e.
∑

j pij = 1, i = 1, 2, · · · , N . Consider a
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random chaos game sequence generated by

xn+1 = Sσn(xn), n = 0, 1, 2, 3, · · · ,

where x0 is any starting point. The fundamental difference between this process

and the usual chaos game Eq. (4.5) is that the indices σn are not chosen

independently, but rather with a probability that depends on the previous

index σn−1:

P (σn+1 = i) = pσn,i

Then (E∗, w,P) is called a recurrent IFS. The flexibility of RIFS permits the

construction of more general sets and measures which do not have to exibit

the strict self-similarity of IFS. This would offer a more suitable framework to

model fractal-like objects and measures in nature.

Let µ be the invariant measure on the attractor E of an IFS or RIFS, χB

the characteristic function for the Borel subset B ⊂ E; then from the ergodic

theorem for IFS or RIFS (Barnsley and Hurd 1993),

µ(B) = lim
n→∞

[
1

n + 1

n∑

k=0

χB(xk)].

In other words, µ(B) is the relative visitation frequency of B during the chaos

game. A histogram approximation of the invariant measure may then be ob-

tained by counting the number of visits made to each pixel on the computer

screen.

The coefficients in the contractive maps and the probabilities in the IFS or

RIFS model are the parameters to be estimated for a real measure which we

want to simulate. Vrscay [1991] introduced a moment method to perform this

task. If µ is the invariant measure and E the attractor of IFS or RIFS in R,

the moments of µ are

gi =

∫

E

xidµ, g0 =

∫

E

dµ = 1. (4.6)

If Si(x) = cix + di, i = 1, · · · , N , then the following well-known recursion

67



relations hold for the IFS model:

[1−
N∑

i=1

pic
n
i ]gn =

n∑
j=1


 n

j


 gn−j(

N∑
i=1

pic
n−j
i dj

i ). (4.7)

Thus, setting g0 = 1, the moments gn, n ≥ 1, may be computed recursively

from a knowledge of g0, · · · , gn−1 (Vrscay 1991).

For the RIFS model, we have

gn =
N∑

j=1

g(j)
n , (4.8)

where g
(j)
n , j = 1, · · · , N , are given by the solution of the following system of

linear equations:

N∑
j=1

(pjic
n
i − δij)g

(j)
n = −

n−1∑

k=0


 n

k


 [

N∑
j=1

ck
i d

n−k
i pjig

(j)
k ], i = 1, · · · , N, n ≥ 1.

(4.9)

For n = 0, we set g
(i)
0 = mi, where mi are given by the solution of the linear

equations

N∑
j=1

pjimj = mi, i = 1, 2, · · · , N, and g0 =
N∑

i=1

mi = 1. (4.10)

If we denote by Gk the moments obtained directly from the real measure using

(4.6), and gk the formal expression of moments obtained from (4.7) for IFS

model and from (4.8-4.10) for RIFS model, then through solving the optimal

problem

min
ci,di,pi or pij

n∑

k=1

(gk −Gk)
2, for some chosen n, (4.11)

we will obtain the estimates of the parameters in the IFS or RIFS model.

4.4 Results and discussion

From the measure representation of stock data, it is natural to choose N = 2

and S1(x) = x/2, S2(x) = x/2 + 1/2 in the IFS or RIFS model. Based on the
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estimated values of the probabilities, we can use the chaos game to generate a

histogram approximation of the invariant measure of the IFS or RIFS , which

then can be compared with the given measure of the intraday stock data.

We analyse several intraday stock prices of the SGSE from 17 May 2002 to

24 June 2002, the SHSE from 1 April 2002 to 12 April 2002, the SZSE from 1

April 2002 to 12 April 2002 and the NYSE from 1 May 2002 to 15 May 2002.

As an example, we plot in Figure 4.1 (upper-left) the ADI price in the NYSE

whose sample size is 48,487.

A measure representation of each tick test time series for a given K = 10

is then obtained. There are in total 210 = 1024 different 10-strings; hence we

devide the interval [0, 1) into 1024 disjoint subintervals, and use each subinter-

val to represent a counter as can be seen in Figure 4.1 (upper right) for ADI

of the NYSE.

We then estimate an RIFS model for each measure using the moment

method. The resulting RIFS models are used to simulate the measures of

the selected stocks. The RIFS simulation for the measure representation of

ADI in the NYSE is shown in Figure 4.1 (lower-left). The results shown in

Figure 4.1 indicate that the RIFS simulation fits the original measure of intra-

day stock data very well. In order to clarify how close the simulated measure

is to the original measure, we convert a measure to its walk representation: We

denote by {tj, j = 1, 2, · · · , 2K} the density of a measure and tave its average,

then define the walk Tj =
∑j

k=1(tk − tave), j = 1, 2, · · · , 2K . The two walks of

the given measure and the measure generated by the chaos game of RIFS are

then plotted in the same figure for comparison. The walk representation for the

original measure representation and its RIFS simulation of ADI in the NYSE

are shown in Figure 4.1 (lower-right). It is seen that the two curves in the

walk representations are very close to each other. This provides evidence that

the RIFS model is a good model to fit the measure representation of intraday

data.

The walk representations for different stocks in the same market are com-
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Figure 4.2: Normalized and simulated measure for the same market.

pared. We just show the results for several stocks in the SGSE in Figure 4.2.

We found that the walk representations have similar shapes for stocks in

the same market. Then we can compare the walks of normalized measure

representations and the corresponding simulated measures by the RIFS models

between the different stock exchanges in Figure 4.3.

We found that the walk representations have different shapes for different

markets. Moreover, it will be useful to know the scaling behaviour of a market

via the RIFS model. The parameters in the RIFS model estimated for the

selected stocks are shown in Table 1.

The classification of the markets by the Euclidean distance is shown in

Figure 4.4, which shows that stock prices of the same market tend to be closer

to each other in the Euclidean distance.

From our analysis, once we know the parameters p1 and p2 for each stock,

we can generate the RIFS measure by the chaos game algorithm, which then

yields the probability of all K-strings. Then we can use this information to

predict whether the price of the next trade for this stock would go up or down
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Figure 4.3: Normalized and simulated measure for the different market.
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Table 4.1: Parameters from RIFS model for different stocks.

Market Company Number of ticks p1 p2

New York Stock Exchange ADI 48487 0.70680 0.76936

New York Stock Exchange AOL 61299 0.67117 0.88243

New York Stock Exchange GE 52892 0.64715 0.86990

New York Stock Exchange IBM 62744 0.61632 0.82195

New York Stock Exchange LU 65365 0.75113 0.98014

New York Stock Exchange PFE 63512 0.63507 0.83687

Shanghai Stock Exchange SH60198 2511 0.35846 0.85823

Shanghai Stock Exchange SH60813 2436 0.35225 0.91080

Shanghai Stock Exchange SH60839 2376 0.33077 0.90622

Shenzen Stock Exchange SZ0036 2748 0.41032 0.64488

Shenzen Stock Exchange SZ0592 1884 0.40504 0.65036

Singapore Stock Exchange BIL 5086 0.92193 0.99989

Singapore Stock Exchange SIA 2938 0.91070 0.99977

Singapore Stock Exchange OCBC 3605 0.92876 0.99999

Singapore Stock Exchange SINGTEL 4791 0.91575 0.99982

Singapore Stock Exchange ASIAMED 1721 0.94269 0.99998

Singapore Stock Exchange DATACRFT 8906 0.89936 0.95756

Singapore Stock Exchange LEONGHIN 1677 0.97809 0.99999

Singapore Stock Exchange CHARTERED 6990 0.89420 0.99953
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depending on the price pattern of the previous few trades. For example, if

the probabilities of the strings “011011” and “011010” are 0.012 and 0.035

respectively, and the pattern of the previous five trades is “01101”, meaning

the “down, up, up, down, up” pattern, then the price of next trade tends to

go down because this resulting pattern has probability 0.035, which is larger

than 0.012.

4.5 Conclusions

The results of the above sections provide support to the following assertions:

1. The tick test time series is a useful characteristic of the price of a stock.

2. The measure representation can be used to characterise the information

from a tick test time series.

3. An RIFS model fits the measure representation of intraday data very

well.

4. The parameters estimated from the RIFS can be used to classify the

stocks from different stock exchange markets.

5. The RIFS simulation can be used to predict the movement of the next

trade based on the pattern of the previous few trades.
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Chapter 5

Analysis of the Stock Exchange

of Thailand

5.1 Introduction

The inception of the Thai stock market began in July 1962 with the cre-

ation of the Bangkok Stock Exchange (BSE) as a limited company by private

investors. However, the BSE was rather inactive due to non-professional man-

agement. Its annual turnover was only 160 million baht in 1968, and 114

million baht in 1969. Moreover, the trading volumes were only 46 million baht

in 1970, and then 28 million baht in 1971. Although the turnover reached 87

million baht in 1972, the stock continued to perform poorly with the turnover

dropped to 26 million baht as shown in Figure 5.1.

The BSE finally stopped operations in the early 1970s when it was dis-

banded as a result of inactivity (see Banks 1996,Centre 2004). It is generally

accepted that the BSE failed to succeed because of a lack of official govern-

ment support and a limited investor understanding of the equity market. In

1974 the Thai government passed legislation to create a new trading centre,

the Securities Exchange of Thailand, and formal trading of equities began on

the Securities Exchange in 1975. Then the Exchange was renamed in the lat-
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Figure 5.1: BSE performance from 1968 to 1973.

ter part of the 1980s and is now known as the Stock Exchange of Thailand

(SET). However, Banks [1996] described the Thai financial market as in the

early stages of diversification and expansion because of limitations in cash mar-

kets. Moreover the Thai fixed income market also remains relatively small in

comparison with other Asia Pacific debt markets.

As an example, Figure 5.2 shows a data set, S (t) , of the SET from 4

August 1997 to 17 June 2004. Figure 5.3 shows the log returns, R(t, τ), at

time t of the SET time series in the form

R (t, τ) = log S (t)− log S (t− τ)

where τ=1-day interval, derived from the SET data set in this period. As

can be seen in Figure 5.3, the first half of the time series has higher volatility

with high (positive and negative) returns than the second half of the SET time

series.

In this chapter, we will use the Riesz-Bessel distribution to fit the SET
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Figure 5.2: SET index values from 4 August 1997 to 17 June 2004.
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Figure 5.3: The 1-day Log Returns of SET index from 4 August 1997
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index, the SET50 index and the MAI index of the Thai market, to be defined

below. This model fits the time series DJ, DM, FF, BP, IBM and JY very well

in Chapter two.

5.2 Definitions of some indices

The SET Index is a composite index calculated from prices of common stocks

(including Property Fund) on the main board. It is a market capitalization

weighted price index of the current market values of all listed common shares

with the value on the base date 1975, which was when the SET Index was

established, set at 100 points. The SET calculation is adjusted in line with

new listings, delistings, and capitalization changes with other effects beyond

price movement eliminated from the index (see Centre 2004).

The SET50 Index is a market capitalization weighted index, calculated

from share prices of the top 50 listed companies on the SET. These 50 com-

panies have capitalization and high levels of liquidity. The base date used is

16 August 1995. The component stocks in the SET50 Index are revised every

6 months. Since the Thai stock market had an objective to accommodate the

issuing of index futures and index options in the future and to benchmark for

measuring the performance of mutual funds invested in the SET, the SET50

Index was launched on 17 June 1996 to reach the goal (see Centre 2004).

Calculation of the SET50 Index. Normally, the SET50 Index is a

market capitalization weighted average index calculated by using the same

method for the existing SET Index. While the SET Index is calculated from

all of the companies listed on the SET, the SET50 Index is calculated from

the 50 common stocks. The basic formula is

SET50 Index = (CMV/BMV ) ∗ 100 (5.1)
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where CMV=Current Market Value of 50 Component Stocks and BMV= Base

Market Value of 50 Component Stocks. The SET50 Index has been available

since 16 August 1995 (see Centre 2004).

The MAI Index. The Market for Alternative Investment (MAI) is a

business unit of the Stock Exchange of Thailand, which was established on 11

November 1998. It officially commenced operation on 21 June 1999. The ob-

jective is to create new fund-raising opportunities for Small and Medium-sized

Enterprises (SMEs) as well as provide a greater range of investment alterna-

tives for investors. Since the recent economic crisis in 1997 has conclusively

demonstrated the advantage of selling equity over debt as a means of raising

funds, MAI has therefore been established to answer the need. Moreover, MAI

has been set to suit the character of the SME businesses as well. Therefore,

the MAI index was launched on 3 September 2002 to serve as a center for the

trading of listed securities. It was calculated from the trading value of listed

securities based on 2 September 2002 (see Centre 2004).

The Stock Exchange of Thailand fully recognizes the importance of Small

and Medium-sized Enterprises along with large firms in supporting the full de-

velopment of economic growth. One of the major problems faced by Thailand

currently is how to establish businesses efficiently at the lowest cost possible

in order to maximize returns.

5.3 Modelling the SET indices

In this application, the Riesz-Bessel distribution as described in Chapter 2

is fitted to the SET index, the SET50 index and the MAI index. We will also

look at the scaling behaviour of these time series based on the results of the

estimation.

The above daily time series cover the following periods, yielding the sample

sizes cited in brackets.

SET, 4 August 1997 - 17 June 2004 (n = 1685);
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SET50, 19 December 2001 - 17 June 2004 (n = 608) ;

MAI, 3 September 2002 - 22 October 2004 (n = 528) ;

The SET time series together with its returns log SET (t)−log SET (t− τ)

at different lag lengths τ are plotted in Figure 5.4(b) and Figure 5.4(c) . As

can be seen in Figure 5.4, distinctive periods with high returns appear in the

first half of the SET time series, i.e., high volatility, with moderate returns in

the second half, i.e. low volatility.

Similarly, we plot the log returns of the SET50 time series as log SET50 (t)−
log SET50 (t− τ) at different lag lengths τ and the log returns of the MAI time

series as log MAI (t) − log MAI (t− τ) at different lag lengths τ . It is seen

in Figures 5.4 and 5.5, when τ increases from 1-day to 32-day, that the paths

thin out but have larger spikes since the time series display more correlation

due to overlapping information. These properties result in longer tails and a

higher peak at 0 in the respective sample density functions. This observation

confirms that a non-Gaussian model is more appropriate to fit the probability

density functions of returns data as commonly reported in the literature.

We assume that the above time series are exponential transformations of

a Riesz-Bessel-Lévy motion whose distribution is characterised by the Fourier

transform of its density function:

p̂ (t, λ) = exp
[−κt |λ|2α (c2 + λ2)γ

]
, λ ∈ R,

where the additional parameter κ is introduced to allow t to be a time parame-

ter. The method of Section 2.3 is then performed to estimate the parameters κ,

α, γ and c for the daily returns with t = 1. They are reported in the following

table:
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Figure 5.4: The time series and the Log Returns of SET Index
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Figure 5.5: The Log Returns of SET Index
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Financial time series κ α γ c

SET 5.5743 0.9307 −0.9307 3.9802

SET50 0.8984 0.9999 −0.3070 2.5728

MAI 0.7676 0.9999 −0.5629 1.4529

The standard errors are given in the following table which corresponds to

the above table:

Financial time series κ α γ c

SET 19.1266 0.0241 0.8230 2.5670

SET50 2.1914 0.0022 0.8047 3.9191

MAI 0.3167 0.0041 0.1545 0.4310

The estimation of α is precise while that of the other parameters has too

high standard errors, which may be due to the relatively short length of these

time series. The values of α are close to 1 in all cases and those of α + γ are

less than 1; also the value of γ for the SET time series is closer to −1 than

the other time series. Therefore, the SET time series seems to approach a

compound Poisson process, while the SET50 and the MAI seem to be pure

jump processes.

For the SET time series, the Riesz-Bessel density provides good fit for 1-

day returns. There appears to be departure from the assumption of a Lévy

motion. Due possibly to second- and/or higher-order correlations in the data,

4-day, 8-day, and 16-day returns of the SET time series are, on average, more

concentrated at 0 than predicted by Lévy motion with Riesz-Bessel density.

The hypothesis seems consistent with the SET time series in Figures 5.6 and

5.7. But this does not seem to hold for the SET50 in Figures 5.8 , 5.9 and the

MAI time series in Figures 5.10 and 5.11.

As noted in Chapter two, the parameters α and γ act together to indi-

cate the behaviour of the time series at small lags τ. Under the hypothesis

of a Riesz-Bessel-Lévy motion, the distribution can be rescaled to converge

to a symmetric 2 (α + γ)-stable distribution. To evaluate this hypothesis, we
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(a) Fitting the sample density of 1-day returns of SET Index
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Figure 5.6: The sample densities(solid curves) of the returns of the SET Index

series at different lags and their estimation(dashed curves)by the method of

Section 3

83



−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

1

2

3

4

5

6

7

8

(a) Fitting the sample density of 8-day returns of SET Index
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(b) Fitting the sample density of 16-day returns of SET Index

Figure 5.7: The sample densities(solid curves) of the returns of the SET Index

series at different lags and their estimation(dashed curves)by the method of

Section 3
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(a) Fitting the sample density of 1-day returns of SET50 Index
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(b) Fitting the sample density of 4-day returns of SET50 Index

Figure 5.8: The sample densities(rugged curves) of the returns of the SET50

Index series at different lags and their estimation(smooth curves)by the method

of Section 3
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(a) Fitting the sample density of 8-day returns of SET50 Index
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(b) Fitting the sample density of 16-day returns of SET50 Index

Figure 5.9: The sample densities(rugged curves) of the returns of the SET50

Index series at different lags and their estimation(smooth curves)by the method

of Section 3
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(a) Fitting the sample density of 1-day returns of MAI Index
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(b) Fitting the sample density of 4-day returns of MAI Index

Figure 5.10: The sample densities(rugged curves) of the returns of the MAI

Index series at different lags and their estimation(smooth curves)by the method

of Section 3
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(a) Fitting the sample density of 8-day returns of MAI Index
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(b) Fitting the sample density of 16-day returns of MAI Index

Figure 5.11: The sample densities(rugged curves) of the returns of the MAI

Index series at different lags and their estimation(smooth curves)by the method

of Section 3
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compute the histograms of the SET, SET50 and MAI time series, and the cor-

responding Riesz-Bessel densities, which are obtained by inverting the charac-

teristic function with the parameter estimated from daily returns.

The rescaled results, where the probability density p is rescaled and plotted

as τ 2(α+γ)p (Xrescaled) against Xrescaled, are displayed in Figures 5.12 and 5.13 for

the SET50 series and in Figures 5.14 and 5.15 for the MAI series respectively.

Here,

Xrescaled =
X (t, τ)

τ 1/(2(α+γ))
,

with X (t, τ) = log S (t)− log S (t− τ) , S (t) being any of the given time series.

If the time series follows a Riesz-Bessel-Lévy motion, the probability densities

of their returns at different lags will collapse to a limiting density, namely,

that of the symmetric 2 (α + γ)-stable distribution. This pattern seems to hold

for the series SET50 and MAI studied, while SET presents a clear departure

from it. This indicates that there is evidence of second- and/or higher-order

correlations in the SET series. In this case, a model which exhibits both

Lévy-type behaviour and short- or long-range dependence of the process is

warranted.
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(a) The rescaled sample density,2-day(solid curve)&4-day(dashed curve)
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(b) The rescaled sample density,4-day(solid curve)&8-day(dashed curve)

Figure 5.12: The rescaled sample density of the SET50 Index based on the

estimates of the Riesz-Bessel distribution.
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(a) The rescaled sample density,8-day(solid curve)&16-day(dashed curve)

−0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

10

20

30

40

50

60

70

80

(b) The rescaled sample density,16-day(solid curve)&32-day(dashed curve)

Figure 5.13: The rescaled sample density of the SET50 Index based on the

estimates of the Riesz-Bessel distribution.
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(a) The rescaled sample density,2-day(solid curve)&4-day(dashed curve)
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Figure 5.14: The rescaled sample density of the MAI Index based on the

estimates of the Riesz-Bessel distribution.
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(a) The rescaled sample density,8-day(solid curve)&16-day(dashed curve)
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(b) The rescaled sample density,16-day(solid curve)&32-day(dashed curve)

Figure 5.15: The rescaled sample density of the MAI Index based on the

estimates of the Riesz-Bessel distribution.
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Chapter 6

Conclusions and some open

problems

This thesis has detailed a theory of the Riesz-Bessel distribution. This provides

a parsimonious yet versatile setting to model the semi-heavy tailed behaviour

of financial processes. This distribution can be selected to model, for example,

a compound Poisson process, a pure jump process, or a compound Poisson

process with drift. The Riesz-Bessel distribution can be rescaled to converge

to a stable distribution. For some range of its parameters, there exists a Lévy

process corresponding to a Riesz-Bessel distribution, which we call a Riesz-

Bessel Lévy motion. The density of the Lévy measure of RBLm is completely

monotone on (0,∞). This implies that RBLm for α + γ < 1/2 can be written

as the difference of two subordinators whose distribution belongs to the class

of generalized convolutions of mixtures of exponentials. These results lead to

efficient algorithms to simulate paths of RBLm in some special but important

cases. Furthermore, a quasilikelihood-type method has been developed to es-

timate the two key parameters of the Riesz-Bessel distribution. This method

uses the empirical characteristic function and can be conveniently implemented

via generalised least squares.

The methods and techniques of this development have been applied to a
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number of financial time series including some important exchange rates such

as the Japanese yen, the Deutche mark, the British pound and the French franc,

and stock prices such as the IBM, the Dow Jones, and several stock indices such

as those from the Stock Exchange of Thailand. The Riesz-Bessel distribution

has been found to model very well the seme-heavy tailed behaviour of these

processes. However, when a process possesses significant correlation, such as

in the case of the French franc or the Deutche mark, it seems that the Riesz-

Bessel model is not adequate in capturing the behaviour of the distribution at

the origin. A further extension to the following setting is promising:

∂βp

∂tβ
== − (−∆)α (I −∆)γ p (t, x) , p (0, x) = δ (x) .

Here, the fractional-in-time derivative is the regularized fractional derivative

or fractional derivative in the Caputo-Djrbashian sense :

∂βu

∂tβ
=





∂mu
∂tm

(t, x) , if β = m ∈ N,

1
Γ(m−β)

∫ t

0
(t− τ)m−β−1 ∂mu(τ,x)

∂τm dτ, if m− 1 < β < m

Some preliminary simulation of this extended model indicates that it captures

reasonably well the behaviour of the distribution at the origin. Statistical

estimation of the model is therefore warranted.

An analysis of the time series of the French franc and the Deutche mark

provided evidence of long memory in these data sets. This has led to a consid-

eration of market models with memory. In financial applications, such models

must preserve the completeness and arbitrage-free conditions needed for repli-

cation of contingent claims. The Anh-Inoue model provides such a framework.

It has a mechanism to incorporate memory (short or long) and yields a means

to compute the implied volatility. Via this setting, the parameters of the

model can be estimated using nonlinear least squares. It is still observed that

the volatility is characteristic of the period in which it is estimated; in other

words, volatility changes its character over time. This change may be the result

of an underlying scaling mechanism. It seems possible to model volatility as a
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stochastic process with multiple scaling. Incorporating this volatility process

into a market model will be challenging.

The classification of financial markets using high-frequency data was an-

other objective that we emphasized in the thesis. We transformed the intraday

or minute data into tick data in the form of measure representation, then mod-

elled them as recurrent iterated function systems. A measure representation

is an extension of the concept of the histogram: We look at the probability

for a k-string instead of the probability for a single value, hence uncover more

patterns in the data, particularly their multiple scaling. This new methodol-

ogy provides a convenient framework for market classification. It also yields

a mechanism for short-term prediction, in fact for the next few ticks. Some

preliminary results indicate its potential, hence warrant further investigations.
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//This program simulates Fractional Brownian process 
//This algorithm is written by Saupe 
// 
#include <iostream.h> 
#include <math.h> 
#include <stdlib.h> 
#include <fstream.h> 
#include <iomanip.h> 
ofstream output4; 
 
// Functions to be used in the program 
 
int fbm(int maxlevel,double H,double sigma,double delta[],double X[]); 
double boxmuller(double mu,double sigma); 
int main() 
{ 
 double X[513]; 
    double delta[9]; 
    int maxlevel=9; 
 double sigma=1.0; 
 double fracdim=0.5; 
 int i; 
 int j=0; 
 for  (i=0; i<513; i++) 
  X[i]=0.0; 
 for (i=0; i<8; i++) 
  delta[i]=0.0; 
 double t=fbm(maxlevel,fracdim,sigma,delta,X); 
 return 0; 
} 
 
//The following procedure will make the fractional brownian motion 
int fbm(int maxlevel,double H,double sigma, double delta[],double X[]) 
{ 
 int i; 
 double D; 
 int d; 
 int level; 
 int N; 
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 output4.open("fbm5.txt"); 
 { 
  for (i=1; i <= maxlevel; i++) 
   delta [i-1] =sigma*pow(0.5,1.0*i*H)*sqrt(0.5)*sqrt(1.0- 
   pow(2.0,2.0*H-2.0)); 
  N = pow(2.0,1.0*maxlevel); 
  X[0]=0.0; 
  X[N]=sigma*boxmuller(0.0,1.0); 
  D=N; 
  d=D/2; 
  level=1; 
  while (level <= maxlevel) 
  { 
   for (i=d; D<0.0 && N-d-i <=0.0 || -D<=0.0 && D<=0.0 || -D 
    < 0.0 && i-N+d <= 0.0 ;i += D) 
   X[i] =0.5*X[i-d]+0.5*X[i+d]; 
   for (i=0;D <0.0 && N-i<=0.0 || -D <=0.0 && D<=0.0 || -D< 
    0.0 && i-N <= 0.0 ; i +=D) 
   X[i] +=delta[level-1]*boxmuller(0.0,1.0); 
   D=D/2.0; 
   d=d/2; 
   level ++; 
  } 
  double retx[513]; 
  for (i=0; i<512; i++) 
  { 
   retx[i]=X[i]; 
   cout<< X[i] << "\n"; 
   output4<< X[i] << "\n"; 
  } 
        output4.close(); 
  return retx[1]; 
 } 
} 
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// This procedure will simulate random Normal R.V. 
// ,Gaussian R.V. using the box-muller method 
double boxmuller (double mu,double sigma) 
{ 
 double rmax=RAND_MAX; 
 double u1=rand()/rmax; 
 double u2=rand()/rmax; 
 double choice=rand()/rmax; 
 if (u1 == 0) 
  return mu; 
 else 
 { 
  double z1=(sqrt(-2*log(u1))*cos(2*3.141592654*u2)); 
         double z2=(sqrt(-2*log(u1))*sin(2*3.141592654*u2)); 
         if (choice >=0.5) 
      return sigma*z1+mu; 
   else 
    return sigma*z2+mu; 
 } 
} 
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            program main 
       parameter(N=1721) 
       real x1(N),x2(N-1) 
            integer x3(N-1) 
 
    open(1,file='Asiamedtotal.txt',status='old') 
 
       do 1 I=1,N 
       read(1,*) x1(I) 
1       continue 
            close(1) 
 
 
   open(1,file='Asiamed_Price_lisan.dat',status='new') 
       do 3 I=1,N-1 
       if (x1(I).LE. x1(I+1)) then 
       x3(I)=0 
       else  
       x3(I)=1 
       end if 
       write(1,*) x3(I) 
3         continue 
       close(1) 
        end 
 
 
#include <stdio.h> 
int frequency[2][2][2][2][2][2][2][2][2][2]; 
 
void main () { 
  
 FILE *fp; 
 int i,j,k,l,m,n,o,p,q,r; 
 char ch; 
 long time=0; 
 int flag[10],temp; 
 
        if ((fp=fopen("Asiamed_Price_lisan.dat", "r"))==NULL) { 
                printf("can not open file lisan.dat\n"); 
                exit (0); 
                } 
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 for(i=0;i<9;i++) { 
  do { 
   ch=fgetc(fp); 
   }while(ch!='0'&ch!='1'); 
  if(ch=='0') flag[i]=0; 
  else flag[i]=1; 
  } 
 
 do { 
  do { 
   ch=fgetc(fp); 
   }while(ch!='0'&ch!='1'&ch!=EOF); 
   
                if(ch=='0') flag[9]=0; 
                else flag[9]=1; 
  
 
 
frequency[flag[0]][flag[1]][flag[2]][flag[3]][flag[4]][flag[5]][flag[6]][flag[7]][flag
[8]][flag[9]]++; 
  temp=flag[0]; 
  for(i=0;i<9;i++) flag[i]=flag[i+1]; 
  time++; 
  }while(ch!=EOF); 
 
 frequency[temp][flag[0]][flag[1]][flag[2]][flag[3]][flag[4]][flag[5]][flag[6]][
flag[7]][flag[8]]--; 
  
 fclose(fp); 
 
        if ((fp=fopen("Asiamed_Price_str10.dat", "a+"))==NULL) { 
                printf("can not open file confmer22.dat\n"); 
                exit (0); 
                } 
 for(i=0;i<2;i++) { 
 for(j=0;j<2;j++) { 
 for(k=0;k<2;k++) { 
 for(l=0;l<2;l++) { 
 for(m=0;m<2;m++) { 
 for(n=0;n<2;n++) { 
 for(o=0;o<2;o++) { 
 for(p=0;p<2;p++) { 
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 for(q=0;q<2;q++) { 
 for(r=0;r<2;r++) { 
  fprintf(fp,"%d\n ",frequency[i][j][k][l][m][n][o][p][q][r]); 
  } 
  }}}}}}}}} 
 fclose(fp); 
 } 
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     program main 
     parameter (N=2**10) 
 
            real f1(N) 
            real B_1(N),G(20),B_11(N) 
      
            Integer f_1(N) 
 
       open(2,file='Asiamed_Price_str10.dat',status='old') 
        sumcd=0.0 
            do 20 I=1,N 
              read(2,*) B_11(I) 
         sumcd=sumcd+B_11(I) 
20              continue  
               close(2) 
       open(1,file='Asiamed_Price_str10cd.dat',status='new') 
          do 25 I=1,N 
        f1(I)=1.0*(I-1)/N+1.0/(2*N) 
        B_1(I)=1.0*B_11(I)/sumcd 
              write(1,*) f1(I),'   ',B_1(I) 
25            continue 
               close(1)    
 
 
        open(2,file='Asiamed_Price_str10_ju.dat',status='new') 
            Do 35 I=1,20 
            sum_g=0 
            do 45 J=1,N 
            sum_g=sum_g+(f1(J)**I) *B_1(J) 
45            continue 
             G(I)=sum_g 
             write(2,*) G(I) 
35           continue  
             close(2)             
             end 
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        program main 
        use Numerical_libraries 
 
        integer IBTYPE,IPRINT,M_1,MAXITN,ME,N_1,J 
        parameter (IBTYPE=0,IPRINT=0,M_1=2,MAXITN=10000,ME=2,N_1=4) 
   double precision X_1(N_1),FVALUE,XGuess(N_1), 
     &   XLB(N_1),XSCALE(N_1),XUB(N_1) 
   external moment 
 
   DATA Xguess/0.5,0.5,0.5,0.5/ 
   data XSCALE/0.001,0.001,0.001,0.001/ 
   DATA XLB/0.0,0.0,0.0,0.0/ 
   DATA XUB/1.0,1.0,1.0,1.0/ 
 
   call DNCONF (moment,M_1,ME,N_1,XGuess,IBTYPE,XLB,XUB, 
     &              XSCALE,IPRINT,MAXITN,X_1,FVALUE)               
 
        write(*,*) FVALUE 
   write(*,*) X_1(1),X_1(2) 
   write(*,*) X_1(3),X_1(4) 
   end 
 
 
        Subroutine moment(M_1,ME,N_1,X_1,ACTIVE,FC,Grad) 
        use Numerical_libraries 
 
        Parameter (IPATH=1, LDA=1,N=2,M=15) 
        integer M_1,ME,N_1 
   double precision X_1(N_1),P(N,N),ju(M+1),S 
   double precision A0(LDA,LDA),g(M+1,N),B0(N-1),X0(N-1),sum_N_1 
   double precision A(N,N),B(N),X(N),a1(N),judata(M),FC,Grad(*) 
        integer delta 
   LOGICAL ACTIVE(*) 
   EXTERNAL  delta 
 
 
        Double precision cnj,sum_b,sumgm 
 
        S=0.5 
   a1(1)=0 
   a1(2)=1-S 
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         do 1 I=1,N 
    do 2 J=1,N 
   P(I,J)=X_1(2*(I-1)+J) 
2   continue 
1   continue 
C         above is to obtain the probability matrix 
 
         do 10 I=1,N-1 
    do 20 J=1,N-1 
    A0(I,J)=P(J,I)-P(N,I)-delta(I,J) 
20     continue 
10       continue 
         do 25 I=1,N-1 
    B0(I)=-P(N,I) 
25    continue 
    call DLSARG (N-1,A0,LDA,B0,IPATH,X0) 
    sum_N_1=0.0 
    ju(1)=0.0 
    do 30 I=1,N-1 
    g(1,I)=X0(I) 
    sum_N_1=sum_N_1+g(1,I) 
    ju(1)=ju(1)+g(1,I) 
30     continue 
         g(1,N)=1.0-sum_N_1 
    ju(1)=ju(1)+g(1,N) 
C          above ju(1) means ju(0), g(1,I) means g(0,I) 
 
         sumgm=0.0 
        open(1,file='Asiamed_Price_str10_ju.dat',status='old') 
         do 40 n1=1,M 
    read(1,*) judata(n1) 
         do 45 I=1,N 
    do 46 J=1,N 
    A(I,J)=P(J,I)*(S**(n1))-delta(I,J) 
 
 
46       continue 
         B(I)=0.0 
         do 47 k=0,n1-1 
          sum_b=0.0D0 
    do 48 J=1,N 
    if (k.EQ. 0) then   
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    sum_b=sum_b+(a1(J)**(n1-k))*P(J,I)*g(k+1,J) 
    else 
    sum_b=sum_b+(S**k)*(a1(J)**(n1-k))*P(J,I)*g(k+1,J) 
         end if 
48     continue 
         call combinator(n1,k,cnj) 
C    write(*,*) 'cnj=',cnj 
C    write(*,*) n1,k 
         B(I)=B(I)-cnj*sum_b 
47     continue 
45     continue 
    call DLSARG (N,A,LDA+1,B,IPATH,X) 
         ju(n1+1)=0.0 
    do 49 I=1,N 
    g(n1+1,I)=X(I) 
    ju(n1+1)=ju(n1+1)+g(n1+1,I) 
49     continue 
        sumgm=sumgm+(ju(n1+1)-judata(n1))*(ju(n1+1)-judata(n1))   
40     continue 
         FC=sumgm 
        write(*,*) FC,X_1(1),X_1(2) 
   write(*,*) X_1(3),X_1(4) 
   If (ACTIVE(1)) Grad(1)=X_1(1)+X_1(2)-1.0D0 
   If (ACTIVE(2)) Grad(2)=X_1(3)+X_1(4)-1.0D0 
   close(1) 
        return 
   end 
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    Function delta(x,y) 
    integer x, y 
    integer delta 
    If (x.EQ.y) then  
    delta=1 
    else 
    delta=0 
    end if 
    end 

 
            Subroutine combinator(l1,l2,lc) 
            integer l1,l2,I 
            Double precision lc, gra1,gra2,gra3 
             
       if (l2.EQ. 0) then 
       lc=1.0D0 
       else 
            gra1=1 
            do 200 I=1,L1 
            gra1=gra1*I 
200            continue 
            gra2=1 
            do 210 I=1,l2 
            gra2=gra2*I 
210            continue 
            gra3=1 
            do 220 I=1,l1-l2 
            gra3=gra3*I 
220            continue 
            lc=1.0D0*gra1/(gra2*gra3) 
       end if 
            return 
            end 
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     program main 
     integer n_1,n_2 
     parameter(n_1=1200,n_2=2**10,Num=2) 
     integer B(n_2),I,J,sigma(n_1+1) 
     real p(Num,Num),x(n_1+1),y(n_2),t(n_2),kai(n_1) 
     real s1,s2,a1,a2 
          
         Data P/0.942686,0.9999840, 
     &          0.057314,0.0000160/ 
             s1=0.5 
             s2=s1 
             a1=0.0 
             a2=1-s1 
             x(1)=0 
        sigma(1)=1 
             open(2,file='random.dat',status='old') 
             do 20  I=2,n_1+1 
             read(2,*) kai(I) 
C        write(*,*) 'random number is ',kai(I) 
          if ((kai(I).GE.0) .AND. (kai(I).LT.p(sigma(I-1),1))) then 
             x(i)=s1*x(i-1)+a1 
        sigma(I)=1 
            else  
             x(i)=s2*x(i-1)+a2 
        sigma(I)=2 
             end if 
C        write(*,*) 'x(i)=',x(i) 
             do 10 J=1,n_2 
             fuzu=1.0*(j-1)/n_2 
             fuzu1=1.0*j/n_2 
             if ((x(i).GE.fuzu) .AND. (x(i).LT.fuzu1)) then 
             B(j)=B(j)+1 
             else 
             B(j)=B(j) 
             end if 
10             continue 
20             continue 
              close(2) 
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         open(1,file='Asiamed_Price_rifscd.dat',status='new') 
             do 30 j=1,n_2  
              t(j)=1.0*j/n_2-1.0*1/(2*n_2) 
              y(j)=1.0*B(j)/(n_1+1) 
              write(1,*) t(j),'    ',y(j) 
30              continue 
     close(1) 
               end 
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            program main 
       parameter(N=2**10) 
       real x1(N),x2(N),y1(N),y2(N),sum,ave 
 
  open(1,file='Asiamed_Price_str10cd.dat',status='old') 
       open(2,file='Asiamed_Price_str10walk.dat',status='new') 
        sum=0.0 
       do 1 I=1,N 
       read(1,*) x1(I),y1(I) 
       sum=sum+y1(I) 
1       continue 
            ave=sum/N 
       x2(1)=x1(1) 
       y2(1)=y1(1)-ave 
       write(2,*) x2(1),y2(1) 
C       write(2,*) y2(1) 
       do 5 I=2,N 
       x2(I)=x1(I) 
       y2(I)=y2(I-1)+(y1(I)-ave) 
       write(2,*) x2(I),y2(I) 
C       write(2,*) y2(I) 
5           continue 
            close(2) 
       close(1) 
        end 
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         program main 
       parameter(N=2**10) 
       real x1(N),x2(N),y1(N),y2(N),sum,ave 
 
  open(1,file='Asiamed_Price_rifscd.dat',status='old') 
       open(2,file='Asiamed_Price_rifswalk.dat',status='new') 
        sum=0.0 
       do 1 I=1,N 
       read(1,*) x1(I),y1(I) 
       sum=sum+y1(I) 
1       continue 
            ave=sum/N 
       x2(1)=x1(1) 
       y2(1)=y1(1)-ave 
       write(2,*) x2(1),y2(1) 
C       write(2,*) y2(1) 
       do 5 I=2,N 
       x2(I)=x1(I) 
       y2(I)=y2(I-1)+(y1(I)-ave) 
       write(2,*) x2(I),y2(I) 
C       write(2,*) y2(I) 
5           continue 
            close(2) 
       close(1) 
        end 
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% The lines 5, 6 and 40 should be changed according to the period.  
% The value of Ds should be changed as you like. 
% (1)Calculation of the function HV 
Ds = 8; 
load SpApril1.txt -ascii; 
clear S; S =SpApril1; 
N = length(S); 
clear u; 
for i = 1:Ds 
    for k = 1:(N-i) 
        u(i,k) = log(S(N-k+1-i)/S(N-k+1)); 
    end 
end 
delete hv; 
clear hv; 
for i = 1:Ds 
 K1 = 0; K2 =0; 
  for k = 1:(N-i) 
   K1 = K1 + u(i,k); K2 = K2 + u(i,k)^2; 
  end 
 hv(i) = 100*sqrt(252)*sqrt((K2/(N-1-i) - (K1)^2/((N-i)*(N-1-i)))/i); 
end 
save hv hv -ascii; 
plot(hv, '--*') 
axis([0 Ds 10 22]) 
hold on 
% (2) Non Linear Least square estimation by toolbox of matlab 
x0 = [hv(1) 0.34 0.56] 
LB = [hv(1) 0 0] 
 
 
UB  = [(hv(1) + 3) 2.0 5.0] 
[x,resnorm] = lsqnonlin(@myfun1,x0,LB,UB) 
%(3)Error estimation 
error = sqrt(resnorm/Ds) 
 
 
%(4)Estimated plotting 
sigma = x(1); 
p = x(2); 
q = x(3);  
for i = 1:Ds 
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f(i) = sigma*sqrt((q^2)/((p+q)^2)+p*(2*q+p)*(1-exp(-(p+q)*i))/(i*(p+q)^3)); 
end 
plot(f, 'r') 
%(5)Title and Label 
title(['S&P500 19Nov2001-1 April2002 (',num2str(N),' business days)']) 
text(0.8,21.5,['\sigma = ',num2str(sigma),',   p = ',num2str(p),',   q = ',num2str(q),',   
error = ',num2str(error)]) 
text(0.8,20.5,['HV(1) = ',num2str(hv(1))]) 
text(0.8,12, ['Initial Parameter for (sigma  p  q) =  ',num2str(x0)]) 
text(0.8,11.2, ['Lower Bound for (sigma p q) =  ',num2str(LB)]) 
text(0.8,10.4, ['Upper Bound for (sigma p q) =  ',num2str(UB)]) 
%text(0.8,10, ['Initial Parameter for (sigma  p  q) =  ',num2str(x0)]) 
%text(0.8,9.2, ['Lower Bound for (sigma p q) =  ',num2str(LB)]) 
%text(0.8,8.4, ['Upper Bound for (sigma p q) =  ',num2str(UB)]) 
xlabel('Time Lag (days)') 
ylabel('Volatility (%)') 
delete hv; 
hold off 
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function F = myfun(x) 
load hv -ascii; 
t0 = length(hv); 
% x(1)=sigma, x(2)=p, x(3)=q 
for i = 1:t0 
G(i) = x(1)*sqrt((x(3)^2)/((x(2)+x(3))^2)+x(2)*(2*x(3)+x(2))*(1-exp(-
(x(2)+x(3))*i))/(i*(x(2)+x(3))^3)); 
end 
F = G – hv 
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function [theta0,I]=RBMLE(theta0,X,lambda); 
 
delta=ones(4,1); 
theta=zeros(4,1); 
theta(1)=log(theta0(1)); 
theta(2)=log(theta0(2)/(1-theta0(2))); 
theta(3)=log((theta0(2)+theta0(3))/(1-theta0(2)-theta0(3))); 
theta(4)=log(theta0(4)); 
theta 
while(max(abs(delta))>0.00001) 
   [Z,V,Y]=RBMLE2(theta0,X,lambda); 
   delta=lscov(Z,Y,V); 
   theta=theta+0.2*delta; 
   theta0=[exp(theta(1)); exp(theta(2))/(1+exp(theta(2))); 
exp(theta(3))/(1+exp(theta(3))) - exp(theta(2))/(1+exp(theta(2))); exp(theta(4))] 
 if (theta0(2)>0.999)  
       delta=0; 
       theta0=[NaN;NaN;NaN]; 
    end 
   end 
    
   I=inv(Z'*inv(V)*Z); 
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function [Z,V,Y]=RBMLE2(theta,X,lambda); 
 
N=length(lambda); 
M=length(X); 
 
% Write parameters in useful form. 
k=theta(1); 
a=theta(2); 
g=theta(3); 
scale=theta(4); 
 
% Transform parameters onto the whole real line. 
k1=log(k); 
a1=log(a/(1-a)); 
g1=log((g+a)/(1-g-a)); 
s1=log(scale); 
% Computes the empirical characteristic function. 
PhiHat=zeros(N,1); 
for i=1:N 
   PhiHat(i)=mean(cos(lambda(i)*X)); 
end 
 
% Setting up the IGLS scheme, i.e. computing the variance matrix V and  
% matrix of derivatives Z. 
Z=zeros(N,4); 
V=zeros(N); 
lPhi1=-k*lambda.^(2*a).*(scale^2+lambda.^2).^g; 
Phi1=exp(lPhi1); 
Y=PhiHat-Phi1; 
Z(:,1)=lPhi1.*Phi1; 
Z(:,2)=(2*log(lambda)-log(scale^2+lambda.^2)).*lPhi1.*Phi1 * 
exp(a1)*(1+exp(a1))^(-2); 
Z(:,3)=log(scale^2+lambda.^2) .*lPhi1.*Phi1 * exp(g1)*(1+exp(g1))^(-2);      
Z(:,4)=2*scale*g*lPhi1.*Phi1 ./(scale^2+lambda.^2); 
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for i=1:N 
   for j=1:i 
      lPhi2=-k*((lambda(j)+lambda(i))^2)^a 
*(scale^2+(lambda(j)+lambda(i))^2).^g; 
      lPhi3=-k*((lambda(j)-lambda(i))^2)^a*(scale^2+(lambda(j)-lambda(i))^2).^g; 
      Phi2=exp(lPhi2);   
      Phi3=exp(lPhi3); 
      V(i,j)=(0.5*(Phi2+Phi3)-Phi1(i)*Phi1(j))/M; 
      V(j,i)=V(i,j); 
   end    
end 
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function y= RieszBesselChFun(z,alpha,gamma,kappa,A) 
y=exp(-kappa*(z.^2).^alpha.*(A^2+z.^2).^gamma); 
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function [p,zeta]= RieszBesselDensity(alpha,gamma,kappa,A,N,R) 
Delta=2*R/N; 
z=0:Delta:2*R-Delta; 
z=z-R; 
fHat=RieszBesselChFun(z,alpha,gamma,kappa,A); 
 
 
fTrans=fft(fHat)/N; 
fTrans=fftshift(fTrans); 
zeta=((1-N/2):N/2)*pi/R; 
fTrans=fTrans.*exp(-i*R*zeta); 
 
p=-real(fTrans)/(zeta(2) - zeta(1)); 
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function [V,I]=RieszBesselInfo(theta0,x,h,N,R); 
 
I=zeros(4); 
lik=RieszBesselLikelihood(theta0,x,N,R); 
 
theta(1)=exp(theta0(1))/(1+exp(theta0(1))); 
theta(2)=exp(theta0(2))/(1+exp(theta0(2))) - theta(1); 
theta(3)=exp(theta0(3)); 
theta(4)=exp(theta0(4)); 
 
for j=1:4; 
   for k=j:4; 
      thetaJ1=theta; thetaJ2=theta; thetaK1=theta; thetaK2=theta; 
      thetaJ1(j)=thetaJ1(j)+h; 
      thetaJ1(k)=thetaJ1(k)+h; 
      [pdf, z]=RieszBesselDensity(thetaJ1(1),thetaJ1(2),thetaJ1(3),thetaJ1(4),N,R); 
  likJ1=spline(z,pdf,x); 
  likJ1=-sum(log(likJ1.^2)/2); 
      thetaJ2(j)=thetaJ2(j)-h; 
      thetaJ2(k)=thetaJ2(k)+h; 
      [pdf, z]=RieszBesselDensity(thetaJ2(1),thetaJ2(2),thetaJ2(3),thetaJ2(4),N,R); 
  likJ2=spline(z,pdf,x); 
  likJ2=-sum(log(likJ2.^2)/2); 
      thetaK1(k)=thetaK1(k)+h; 
      thetaK1(j)=thetaK1(j)-h; 
  [pdf, 
z]=RieszBesselDensity(thetaK1(1),thetaK1(2),thetaK1(3),thetaK1(4),N,R); 
  likK1=spline(z,pdf,x); 
  likK1=-sum(log(likK1.^2)/2); 
      thetaK2(k)=thetaK2(k)-h; 
      thetaK2(j)=thetaK2(j)-h; 
      [pdf, 
z]=RieszBesselDensity(thetaK2(1),thetaK2(2),thetaK2(3),thetaK2(4),N,R); 
  likK2=spline(z,pdf,x); 
  likK2=-sum(log(likK2.^2)/2); 
      I(j,k)=(likJ1-likJ2-likK1+likK2)/((2*h)^2); 
   end 
end 
 
I=I+I'-diag(diag(I)); 
V=I^(-1); 
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function lik=RieszBesselLikelihood(theta0,x,N,R) 
 
alpha=exp(theta0(1))/(1+exp(theta0(1))); 
gamma=exp(theta0(2))/(1+exp(theta0(2))) - alpha; 
kappa=exp(theta0(3)); 
A=exp(theta0(4)); 
 
[pdf, z]=RieszBesselDensity(alpha,gamma,kappa,A,N,R); 
lik=spline(z,pdf,x); 
lik=-sum(log(lik.^2)/2); 
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Lévy Processes: theory and applications, 1999b.

A. Janicki and R. Weron. Simulation and Chaotic Behavior of α − stable

Stochastic Processes. Marcel Dekker, New York, New York, 1994.

S. Kotz and I.V. Ostrovskii. A mixture representation of the Linnik distribu-

tion. Statist. Probab. Lett., 26:61–64, 1996.

I.A. Koutrouvelis. Regression-type estimation of the parameters of stable laws.

J. Amer. Statist. Assoc., 75:918–928, 1980.

T. Kozubowski. Computer simulation of geometric stable distributions. J.

Comput. Appl. Math., 116(2):221–229, 2000.

130



T. Kozubowski. Fractional moment estimation of Linnik and Mittag-Leffler

parameters. Math. Comput. Modelling, 34:1023–1035, 2001.

C. M.C. Lee and M. J. Ready. Inferring trade direction from intraday data.

Journal of Finance, 46:733–746, 1991.

R. Leipus and M.C. Viano. Modelling long-memory time series with finite or

infinite variance: a general approach. J. Time Ser. Anal., 21:61–74, 2000.

A. Lo. Long-term memory in the market prices. Econometrica, 59:1279–1313,

1991.

N. Lu. Fractal imaging. Academic Press, San Diego, 1997.

B.B. Mandelbrot. The variation of some other speculative price. J. Business

(Chicago), 40:393–413, 1967.

B.B. Mandelbrot. Intermittent turbulence in self-similar cascades: divergence

of high moments and dimension of the carrier. Journal of Fluid Mechanics,

62:331–358, 1974.

B.B. Mandelbrot. The Fractal Geometry of Nature. Academic, New York,

1983.

B.B. Mandelbrot and J.W. Van Ness. Fractional Brownian motions, fractional

noises and applications. SIAM Review, 10(4):422–437, 1968.

M.B. Marcus. ξ−Radial Processes and Random Fourier Series, volume 368 of

Mem. Amer. Math. Soc. 1987.

J.H. McCulloch. Financial Applications of Stable Distributions,Handbook of

Statistics-Statistical Methods in Finance, volume 14. Elsevier Science, B.V,

Amsterdam, 1996.

S. Mittnik, T. Doganoglu, and Y. Chen. Computing the probability density

function of the stable Paretian distribution. Math. Comput. Modelling, 29:

235–240, 1999.

131



C.L. Nikias and M. Shao. Signal processing with Alpha-stable distributions and

applications. Wiley, New York, 1995.

I. Norros, E. Valkeila, and J. Virtamo. An elementary approach to a Gir-

sanov formula and other analytical results on fractional Brownian motion.

Bernoulli, 5:571–587, 1999.

G. Oppenheim and M.C. Viano. Obtaining seasonal long-memory by aggre-

gating simple discrete or continuous time random coefficients short memory

processes. Pub. IRMA, Lille., V, 1999.

A.S. Paulson, E.W. Holcomb, and R. A. Leitch. The estimation of the param-

eters of the stable laws. Biometrika, 62(1):163–170, 1975.
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