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Introduction

• Newton’s first and third laws are sufficient for the study of bodies at rest 

(statics) or bodies in motion with no acceleration.

• When a body accelerates (changes in velocity magnitude or direction), 

Newton’s second law is required to relate the motion of the body to the forces 

acting on it.

• Newton’s second law:

- A particle will have an acceleration proportional to the magnitude of the 

resultant force acting on it and in the direction of the resultant force.

- The resultant of the forces acting on a particle is equal to the rate of change 

of linear momentum of the particle.

- The sum of the moments about O of the forces acting on a particle is 

equal to the rate of change of angular momentum of the particle about O.
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Newton’s Second Law of Motion
• Newton’s Second Law:  If the resultant force acting on a 

particle is not zero, the particle will have an acceleration 

proportional to the magnitude of resultant and in the direction 

of the resultant.

• Consider a particle subjected to constant forces,

m
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• When a particle of mass m is acted upon by a force 

the acceleration of the particle must satisfy

,F
�

amF
��

=

• Acceleration must be evaluated with respect to a Newtonian 

frame of reference, i.e., one that is not accelerating or rotating.

• If force acting on particle is zero, particle will not accelerate, 

i.e., it will remain stationary or continue on a straight line at 

constant velocity.
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Linear Momentum of a Particle

• Replacing the acceleration by the derivative of the 

velocity yields
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• Linear Momentum Conservation Principle:  

If the resultant force on a particle is zero, the linear 

momentum of the particle remains constant in both 

magnitude and direction.
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Systems of Units
• Of the units for the four primary dimensions (force, mass, 

length, and time), three may be chosen arbitrarily.  The 

fourth must be compatible with Newton’s 2nd Law.

• International System of Units (SI Units):  base units are the 

units of length (m), mass (kg), and time (second).  The unit 

of force is derived,

( )
22 s

mkg
1

s

m
1kg1N1

⋅
=








=

• US customary units – these units are, respectively the foot 

(ft), the pound (lb) and second (s) 

1 foot = 0.3048 m 1 lb = 0.4535 kg

g  = 32.2 ft/s2= 9.81 m/s2

The unit of mass is derived,

2

2

1lb lb s
1slug 1

1ft s ft

⋅
= =
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Equations of Motion
• Newton’s second law provides

amF
��

=∑

• Solution for particle motion is facilitated by resolving 

vector equation into scalar component equations, e.g., for 

rectangular components,
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• For tangential and normal components,

ρ

2
v

mF
dt

dv
mF

maFmaF

nt

nntt

==

==

∑∑

∑∑



© 2007 The McGraw-Hill Companies, Inc. All rights reserved. 

Vector Mechanics for Engineers: Dynamics

E
ig

h
th

E
d

itio
n

12 - 8

Dynamic Equilibrium

• Alternate expression of Newton’s second law,

ectorinertial vam

amF

 

0

≡−

=−∑
�

��

• With the inclusion of the inertial vector, the system of 

forces acting on the particle is equivalent to zero.  The 

particle is in dynamic equilibrium.

• Methods developed for particles in static equilibrium 

may be applied, e.g., coplanar forces may be 

represented with a closed vector polygon.

• Inertia vectors are often called inertial forces as they 

measure the resistance that particles offer to changes 

in motion, i.e., changes in speed or direction.

• Inertial forces may be conceptually useful but are not 

like the contact and gravitational forces found in 

statics.
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Sample Problem 12.1

A 90.7 kg block rests on a horizontal plane.  

Find the magnitude of the force P required 

to give the block an accelera-tion or 3 m/s2 

to the right.  The coef-ficient of kinetic 

friction between the block and plane is µk = 

0.25.

SOLUTION:

• Resolve the equation of motion for the 

block into two rectangular component 

equations.

• Unknowns consist of the applied force P

and the normal reaction N from the plane.  

The two equations may be solved for these 

unknowns.
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Sample Problem 12.1

N
NF k

25.0

N 890mgW

=
=

==

µ

x

y

O

SOLUTION:

• Resolve the equation of motion for the block into 

two rectangular component equations.

:maFx =∑

( )( )
N272

sm3kg7.9025.030cos 2

=
=−° RP

:0=∑ yF

0N89030sin =−°− PR

• Unknowns consist of the applied force P and the 

normal reaction N from the plane.  The two 

equations may be solved for these unknowns.

( ) N272N89030sin25.030cos
N89030sin

=+°−°
+°=

PP
PN

N3.667=P



© 2007 The McGraw-Hill Companies, Inc. All rights reserved. 

Vector Mechanics for Engineers: Dynamics

E
ig

h
th

E
d

itio
n

12 - 11

Sample Problem 12.3

The two blocks shown start from rest.  

The horizontal plane and the pulley are 

frictionless, and the pulley is assumed to 

be of negligible mass.  Determine the 

acceleration of each block and the 

tension in the cord.

SOLUTION:

• Write the kinematic relationships for the 

dependent motions and accelerations of the 

blocks.

• Write the equations of motion for the 

blocks and pulley.

• Combine the kinematic relationships with 

the equations of motion to solve for the 

accelerations and cord tension.
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Sample Problem 12.3

• Write equations of motion for blocks and pulley.

:AAx amF =∑

( ) AaT kg1001 =

:BBy amF =∑

( )( ) ( )

( ) B

B

BBB

aT

aT

amTgm

kg300-N2940

kg300sm81.9kg300

2

2
2

2

=

=−

=−

:0==∑ CCy amF

02 12 =− TT

SOLUTION:

• Write the kinematic relationships for the dependent 

motions and accelerations of the blocks.

ABAB aaxy
2
1

2
1 ==

x

y

O
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Sample Problem 12.3

( )

N16802

N840kg100

sm20.4

sm40.8
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A

• Combine kinematic relationships with equations of 

motion to solve for accelerations and cord tension.

ABAB aaxy
2
1

2
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Sample Problem 12.4

The 5.4 kg  block B starts from rest and 

slides on the 13.6 kg wedge A, which is 

supported by a horizontal surface.  

Neglecting friction, determine (a) the 

acceleration of the wedge, and (b) the 

acceleration of the block relative to the 

wedge.

SOLUTION:

• The block is constrained to slide down the 

wedge.  Therefore, their motions are 

dependent.  Express the acceleration of 

block as the acceleration of wedge plus the 

acceleration of the block relative to the 

wedge.

• Write the equations of motion for the 

wedge and block.

• Solve for the accelerations.
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Sample Problem 12.4
SOLUTION:

• The block is constrained to slide down the wedge.  

Therefore, their motions are dependent.

ABAB aaa
���

+=

• Write equations of motion for wedge and block.

x

y

:AAx amF =∑

( ) AA

AA

agWN

amN

=

=°

1

1

5.0

30sin

( ):30cos ABABxBx aamamF −°==∑
( )( )

°+°=

−°=°−

30sin30cos

30cos30sin

gaa

aagWW

AAB

ABABB

( ) :30sin °−==∑ AByBy amamF

( ) °−=°− 30sin30cos1 ABB agWWN



© 2007 The McGraw-Hill Companies, Inc. All rights reserved. 

Vector Mechanics for Engineers: Dynamics

E
ig

h
th

E
d

itio
n

12 - 16

Sample Problem 12.4

( ) AA agWN =15.0

• Solve for the accelerations.

2sm53.1=Aa

( ) ( ) °+°=

°+°=

30sinsm81.930cossm54.1

30sin30cos

22

AB

AAB

a

gaa

2sm24.6=ABa

( )

( ) ( )

( )
( ) ( ) °+

°
=

°+

°
=

°−=°−

°−=°−

30sinN53N4.1332

30cos N53

30sin2

30cos

30sin30cos2

30sin30cos1

A

BA

B

A

ABBAA

ABB

a

WW

gW
a

agWWagW

agWWN

mass of block B mB = 5.4 kg

Weight of block B WB = mBg = 53 N

mass of Wedge A mA = 13.6 kg

Weight of Wedge A WA = mAg = 133.4 N
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Sample Problem 12.5

The bob of a 2-m pendulum describes an 

arc of a circle in a vertical plane.  If the 

tension in the cord is 2.5 times the weight 

of the bob for the position shown, find the 

velocity and accel-eration of the bob in 

that position.

SOLUTION:

• Resolve the equation of motion for the bob 

into tangential and normal components.

• Solve the component equations for the 

normal and tangential accelerations.

• Solve for the velocity in terms of the 

normal acceleration.
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Sample Problem 12.5
SOLUTION:

• Resolve the equation of motion for the bob into 

tangential and normal components.

• Solve the component equations for the normal and 

tangential accelerations.

:tt maF =∑
°=

=°

30sin

30sin

ga

mamg

t

t

2
sm9.4=ta

:nn maF =∑
( )°−=

=°−

30cos5.2

30cos5.2

ga

mamgmg

n

n

2sm01.16=na

• Solve for velocity in terms of normal acceleration.

( )( )2
2

sm03.16m2=== nn av
v

a ρ
ρ

sm66.5±=v
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Sample Problem 12.6

Determine the rated speed of a highway 

curve of radius ρ = 122 m banked 

through an angle θ = 18o.  The rated 

speed of a banked highway curve is the 

speed at which a car should travel if no 

lateral friction force is to be exerted at its 

wheels.

SOLUTION:

• The car travels in a horizontal circular 

path with a normal component of 

acceleration directed toward the center of 

the path.The forces acting on the car are 

its weight and a normal reaction from the 

road surface.

• Resolve the equation of motion for the 

car into vertical and normal components.

• Solve for the vehicle speed.
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Sample Problem 12.6

SOLUTION:

• The car travels in a horizontal circular 

path with a normal component of 

acceleration directed toward the center of 

the path.The forces acting on the car are 

its weight and a normal reaction from the 

road surface.

• Resolve the equation of motion for the 

car into vertical and normal components.

:0=∑ yF

θ

θ

cos

0cos

W
R

WR

=

=−

:nn maF =∑

ρ
θ

θ

θ

2

sin
cos

sin

v

g

WW

a
g

W
R n

=

=

• Solve for the vehicle speed.

( )( ) °=

=

18tanm122 sm81.9

tan

2

2 θρgv

s/m7.19=v
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Angular Momentum of a Particle

• moment of momentum or the angular 

momentum of the particle about O.

=×= VmrH O

���

• Derivative of angular momentum with respect to time,

∑

∑
=

×=

×+×=×+×=

O

O

M

Fr

amrVmVVmrVmrH

�

�

����
�
���

�
��

�

• It follows from Newton’s second law that the sum of the 

moments about O of the forces acting on the particle is 

equal to the rate of change of the angular momentum of the 

particle about O.

zyx

O

mvmvmv

zyx

kji

H

���

�
=

• is perpendicular to plane containingOH
�

Vmr
��

 and 

θ

φ

θ

�2
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Eqs of Motion in Radial & Transverse Components

( )
( )θθ

θ

θθ
����

���

rrmmaF

rrmmaF rr

2

2

+==

−==

∑

∑

• Consider particle at r and θ, in polar coordinates,

( )

( )
( )θθ

θθ

θ

θ

θ

θ

����

����

�

�

rrmF

rrrm

mr
dt

d
Fr

mrH O

2

22

2

2

+=

+=

=

=

∑

∑

• This result may also be derived from conservation of 

angular momentum,
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Conservation of Angular Momentum
• When only force acting on particle is directed toward 

or away from a fixed point O, the particle is said to 

be moving under a central force.

• Since the line of action of the central force passes 

through O, and  0∑ == OO HM �
��

constant==× OHVmr
���

• Position vector and motion of particle are in a plane 

perpendicular to .OH
�

• Magnitude of angular momentum,

000 sin

constantsin

φ

φ

Vmr

VrmH O

=

==

massunit 

momentumangular 

constant

2

2

===

==

hr
m

H

mrH

O

O

θ

θ

�

�or
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Conservation of Angular Momentum

• Radius vector OP sweeps infinitesimal area

θdrdA
2

2
1=

• Define === θ
θ

�2
2
12

2
1 r

dt

d
r

dt

dA
areal velocity

• Recall, for a body moving under a central force,

constant
2 == θ�rh

• When a particle moves under a central force, its areal 

velocity is constant.
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Newton’s Law of Gravitation

• Gravitational force exerted by the sun on a planet or by the 

earth on a satellite is an important example of gravitational 

force.

• Newton’s law of universal gravitation - two particles of 

mass M and m attract each other with equal and opposite 

force directed along the line connecting the particles,

4

4
9

2

3
12

2

slb

ft
104.34

skg

m
1073.66

ngravitatio ofconstant 

⋅
×=

⋅
×=

=

=

−−

G

r

Mm
GF

• For particle of mass m on the earth’s surface,

222 s

ft
2.32

s

m
81.9 ==== gmg

R

MG
mW
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Sample Problem 12.7

A block B of mass m can slide freely on a 

frictionless arm OA which rotates in a 

horizontal plane at a constant rate .0θ�

a) the component vr of the velocity of B

along OA, and 

b) the magnitude of the horizontal force 

exerted on B by the arm OA.

Knowing that B is released at a distance r0

from O, express as a function of r

SOLUTION:

• Write the radial and transverse equations 

of motion for the block.

• Integrate the radial equation to find an 

expression for the radial velocity.

• Substitute known information into 

the transverse equation to find an 

expression for the force on the block.



© 2007 The McGraw-Hill Companies, Inc. All rights reserved. 

Vector Mechanics for Engineers: Dynamics

E
ig

h
th

E
d

itio
n

12 - 27

Sample Problem 12.7

SOLUTION:

• Write the radial and transverse 

equations of motion for the block.

:

:

θθ amF

amF rr

=

=

∑
∑ ( )

( )θθ

θ

����

���

rrmF

rrm

2

0 2

+=

−=

• Integrate the radial equation to find an 

expression for the radial velocity.

∫∫ =

==

====

r

r

v

rr

rr

r
r

rr
r

drrdvv

drrdrrdvv

dr

dv
v

dt

dr

dr

dv

dt

dv
vr

r

0

2
0

0

2
0

2

θ

θθ

�

��

���

dr

dv
v

dt

dr

dr

dv

dt

dv
vr r

r
rr

r ==== ���

( )2
0

22
0

2
rrvr −= θ

• Substitute known information into the 

transverse equation to find an expression for 

the force on the block.

( ) 212
0

22
02 rrmF −= θ
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Sample Problem 12.8

A satellite is launched in a direction 

parallel to the surface of the earth with 

a velocity of 30155 km/h from an 

altitude of 385 km.  Determine the 

velocity of the satellite as it reaches it 

maximum altitude of 3749 km.  The 

radius of the earth is 6345 km.

SOLUTION:

• Since the satellite is moving under a 

central force, its angular momentum is 

constant.  Equate the angular 

momentum at A and B and solve for the 

velocity at B.
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Sample Problem 12.8

SOLUTION:

• Since the satellite is moving under a central 

force, its angular momentum is constant.  

Equate the angular momentum at A and B

and solve for the velocity at B.

( )
( )

( )km3749km6345

km 385km6345
km/h30155

constantsin

+

+
=

=

=
==

B

A

AB

BBAA

O

r

r
vv

vmrvmr
Hvrm φ

km/h20105=Bv
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Trajectory of a Particle Under a Central Force

• For particle moving under central force directed towards force center,

( ) ( ) 02
2 ==+−==− ∑∑ θθθθ FrrmFFrrm r

�������

• Second expression is equivalent to from which,,constant 2 == hr θ�









−==

rd

d

r

h
r

r

h 1
and

2

2

2

2

2 θ
θ ���

• After substituting into the radial equation of motion and simplifying,

r
u

umh

F
u

d

ud 1
where

222

2

==+
θ

• If F is a known function of r or u, then particle trajectory may be found 

by integrating for u = f(θ), with constants of integration determined from 

initial conditions.



© 2007 The McGraw-Hill Companies, Inc. All rights reserved. 

Vector Mechanics for Engineers: Dynamics

E
ig

h
th

E
d

itio
n

12 - 31

Application to Space Mechanics

constant

1
where

22

2

2

2222

2

==+

====+

h

GM
u

d

ud

GMmu
r

GMm
F

r
u

umh

F
u

d

ud

θ

θ

• Consider earth satellites subjected to only gravitational  pull of the 

earth,

• Solution is equation of conic section,

( ) tyeccentricicos1
1

2

2
==+==

GM

hC

h

GM

r
u εθε

• Origin, located at earth’s center, is a focus of the conic section.

• Trajectory may be ellipse, parabola, or hyperbola depending on 

value of eccentricity.
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Application to Space Mechanics

( ) tyeccentricicos1
1

2

2
==+=

GM

hC

h

GM

r
εθε

• Trajectory of earth satellite is defined by

• hyperbola, ε > 1 or C > GM/h2. The radius vector becomes 

infinite for














−±=








−±==+ −−

2

11
11 cos

1
cos0cos1

hC

GM

ε
θθε

• parabola, ε = 1 or C = GM/h2.  The radius vector becomes 

infinite for

°==+ 1800cos1 22 θθ

• ellipse, ε < 1 or C < GM/h2.  The radius vector is finite for θ

and is constant, i.e., a circle, for ε < 0.
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Application to Space Mechanics
• Integration constant C is determined by conditions at 

beginning of free flight, θ =0, r = r0 ,

( )2
000

2
0

2

2
0

11

0cos1
1

vr

GM

rh

GM

r
C

GM

Ch

h

GM

r

−=−=














°+=

( )

0
0

2
00

2

2

or    1

r

GM
vv

vrGMhGMC

esc ==

=≥≥ε

• Satellite escapes earth orbit for 

• Trajectory is elliptic for v0 < vesc and becomes 

circular for ε = 0 or C = 0,

0r

GM
vcirc =
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Application to Space Mechanics
• Recall that for a particle moving under a central force, 

the areal velocity is constant, i.e.,

constant
2
12

2
1 === hr

dt

dA
θ�

• Periodic time or time required for a satellite to complete 

an orbit is equal to area within the orbit divided by areal 

velocity,

h

ab

h

ab ππ
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Sample Problem 12.9

Determine:

a) the maximum altitude reached by the 

satellite, and 

b) the periodic time of the satellite.

A satellite is launched in a direction 

parallel to the surface of the earth with a 

velocity of 36,900 km/h at an altitude of 

500 km. 

SOLUTION:

• Trajectory of the satellite is described by

θcos
1

2
C

h

GM

r
+=

Evaluate C using the initial conditions at θ
= 0.

• Determine the maximum altitude by 

finding r at θ = 180o.

• With the altitudes at the perigee and 

apogee known, the periodic time can be 

evaluated.
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Sample Problem 12.9
SOLUTION:

• Trajectory of the satellite is described by

θcos
1

2
C

h

GM

r
+=

Evaluate C using the initial conditions at 

θ = 0.
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Sample Problem 12.9
• Determine the maximum altitude by finding r1 at θ

= 180o.
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• With the altitudes at the perigee and apogee known, the 

periodic time can be evaluated.
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Kepler’s Laws of Planetary Motion

• Results obtained for trajectories of satellites around earth may also be applied 

to trajectories of planets around the sun.

• Properties of planetary orbits around the sun were determined astronomical 

observations by Johann Kepler (1571-1630) before Newton had developed 

his fundamental theory.

1) Each planet describes an ellipse, with the sun located at one of its foci.

2) The radius vector drawn from the sun to a planet sweeps equal areas in 

equal times.

3) The squares of the periodic times of the planets are proportional to the 

cubes of the semimajor axes of their orbits.


