
subject to

r i i i r 4oo/,13 1

Ll o j 1600^12 + 20OAC13J

Fi i l riooo/>t22 + iooo/x23^) fiooo^)
Ll OJ i 2000/x22 j ~ I 500 j

that is,

600/i12 + 600/x13 + 300O)Lt22 + 1000/x23 < 1000

400/x13 + 1000/x22 + 1000/x23 < 500

Mn + M12 + Mi3 = 1

/X21 + /X22 + /X23 = 1

with

/xu > 0, /x12 > 0, /x13 >: 0, /x21 > 0, /x22 > 0, /x23 > 0

The optimization problem can be stated in standard form (after adding the
slack variables a and (3) as:

M i n i m i z e / = -1200/x12 - 8OO/x13 - 8000/x22 - 2000/x23

subject to

600/x12 + 600/x13 + 3000/x22 + 1000/x23 + a = 1000

400/x13 + 1000/x22 + 1000/x23 + 13 = 500 ( R ,

/X11 + /X12 + /X13 = 1

/X21 H- /X22 + /X23 = 1

/xl7 > 0 (i = 1,2;./ = 1,2,3), a > 0, /3 > 0

Step 3: The problem (E10) can now be solved by using the simplex method.

4.5 SENSITIVITY OR POSTOPTIMALITY ANALYSIS

In most practical problems, we are interested not only in optimal solution of
the LP problem, but also in how the solution changes when the parameters of
the problem change. The change in the parameters may be discrete or contin-

Previous Page



uous. The study of the effect of discrete parameter changes on the optimal
solution is called sensitivity analysis and that of the continuous changes is
termed parametric programming. One way to determine the effects of changes
in the parameters is to solve a series of new problems once for each of the
changes made. This is, however, very inefficient from a computational point
of view. Some techniques that take advantage of the properties of the simplex
solution are developed to make a sensitivity analysis. We study some of these
techniques in this section. There are five basic types of parameter changes that
affect the optimal solution. They are:

1. Changes in the right-hand-side constants bt

2. Changes in the cost coefficients Cj

3. Changes in the coefficients of the constraints atj

4. Addition of new variables
5. Addition of new constraints

In general, when a parameter is changed, it results in one of the three cases:

1. The optimal solution remains unchanged; that is, the basic variables and
their values remain unchanged.

2. The basic variables remain the same but their values are changed.
3. The basic variables as well as their values are changed.

4.5.1 Changes in the Right-Hand-Side Constants bt

Suppose that we have found the optimal solution to a LP problem. Let us now
change the bt to bt + Ab1 so that the new problem differs from the original only
on the right-hand side. Our interest is to investigate the effect of changing bt

to bt + Abi on the original optimum. We know that a basis is optimal if the
relative cost coefficients corresponding to the nonbasic variables Cj are non-
negative. By considering the procedure according to which Cj are obtained, we
can see that the values of Cj are not related to the bt. The values of c, depend
only on the basis, on the coefficients of the constraint matrix, and the original
coefficients of the objective function. The relation is given in Eq. (4.10):

Cj = Cj ~ K7Aj = Cj - cJfi^Aj (4.33)

Thus changes in bt will affect the values of basic variables in the optimal so-
lution and the optimality of the basis will not be affected provided that the
changes made in bt do not make the basic solution infeasible. Thus if the new
basic solution remains feasible for the new right-hand side, that is, if

X'B = B-J(b + Ab) > 0 (4.34)



then the original optimal basis, B, also remains optimal for the new problem.
Since the original solution, say*

is given by

XB = B *b (4.35)

Eq. (4.34) can also be expressed as

m

x\ = xt + S ft, Ab: > 0, i = 1,2,. . .,m (4.36)
7=1

where

B " 1 = [fiijl (4.37)

Hence the original optimal basis B remains optimal provided that the changes
made in bh Abh satisfy the inequalities (4.36). The change in the value of the
/th optimal basic variable, Axh due to the change in bt is given by

X'B - XB = AX8 = B~'Ab

that is,

m

Ax1 = S frjAbj, i = 1,2,. . .,m (4.38)

Finally, the change in the optimal value of the objective function (Af) due to
the change Ab1 can be obtained as

m

Af = clAXB = C^B-1Ab = nT Ab = S Tj Ab7 (4.39)

Suppose that the changes made in fe,-(A^1-) are such that the inequality (4.34) is
violated for some variables so that these variables become infeasible for the

1It is assumed that the variables are renumbered such that the first m variables represent the basic
variables and the remaining n — m the nonbasic variables.



new right-hand-side vector. Our interest in this case will be to determine the
new optimal solution. This can be done without reworking the problem from
the beginning by proceeding according to the following steps.

1. Replace the bt of the original optimal tableau by the new values, b ' =
B - 1 (b + Ab) and change the signs of all the numbers that are lying in
the rows in which the infeasible variables appear, that is, in rows for
which bl < 0.

2. Add artificial variables to these rows, thereby replacing the infeasible
variables in the basis by the artificial variables.

3. Go through the phase I calculations to find a basic feasible solution for
the problem with the new right-hand side.

4. If the solution found at the end of phase I is not optimal, we go through
the phase II calculations to find the new optimal solution.

The procedure outlined above saves considerable time and effort compared to
the reworking of the problem from the beginning if only a few variables be-
come infeasible with the new right-hand side. However, if the number of vari-
ables that become infeasible are not few, the procedure above might also re-
quire as much effort as the one involved in reworking of the problem from the
beginning.

Example 4.5 A manufacturer produces four products, A, B9 C, and D, by
using two types of machines (lathes and milling machines). The times required
on the two machines to manufacture 1 unit of each of the four products, the
profit per unit of the product, and the total time available on the two types of
machines per day are given below.

Find the number of units to be manufactured of each product per day for max-
imizing the profit.

Note: This is an ordinary LP problem and is given to serve as a reference
problem for illustrating the sensitivity analysis.

SOLUTION Let xu X2, X3, and X4 denote the number of units of products A,
B9 C, and D produced per day. Then the problem can be stated in standard

Machine

Lathe machine
Milling machine
Profit per unit ($)

Time Required per Unit (min) for
Product:

A

1
3

45

B

10
40

100

C

4
1

30

D

9
1

50

Total Time
Available
per Day

(min)

1200
800



Minimum C7 < O; x2 enters the next basis

Result of pivot operation:

X5 f 0 ^ [g 1 - \ 0 1000 ^ ^ S m a l l e r

Pivot one,
element x5

leaves
the
basis

X2 To 1 id To Q io Q 20 800

- / - f 0 - f - f 0 I 1 2000

t
Minimum Zj < 0, Jt4 enters the basis

form as follows:

Min imize /= -45Jc1 - 100JC2 - 3Qx3 - 5Qx4

subject to

7X1 + 1Ox2 + 4x3 + 9x4 < 1200

3X1 + 4Ox2 + X3 + X4 < 800

Jc1- > 0, i = 1 to 4

By introducing the slack variables X5 >: 0 and X6 > 0, the problem can be
stated in canonical form and the simplex method can be applied. The compu-
tations are shown in tableau form below.

Basic
Variables

X5

*6

" /

Variables

X1

7
3

-45

X2

10
]40|

Pivot
element

-100

X3

4
1

- 3 0

X4

9
1

- 5 0

X5

1
0

0

X6

0
1

0

- /

0
0

1

Ratio bj/ais

T>i for ais > 0

1200 120
800 20 <- Smaller

one,

leaves
the
basis

0



Result of pivot operation:

5 f\ HH 1 4 1 n 4,000 800, c Ii

Jc4 7 0 [JJ 1 35 —35 0 -35- —^-Smaller
Pivot one, Jt4
element leaves

the
basis

-2_ 1 J- O _L _2_ 0 - ^ 1900X2 35 i 70 ^ ~350 350 U 7 i Z U U

7 25 ^ 50 ^ 38 8 ] 52,000
J ~ 7 U ~ 7 U 7 7 1 ~~7

T
Minimum C7 < 0, Jt3 enters the basis

Result of pivot operation:

X3 3 U X 3 15 ~ 1 5 U 3

r ± 1 0 - - - — - 0 ^
•*2 30 A U 30 150 75 U 3
_ r 25 n n 50 22 2 ! 28,000

J 3 U U 3 3 3 X 3

The optimum solution is given by

X2 = ^ , X3 = ^p (basic variables)

Xx = x4 = x5 = x6 = 0 (nonbasic variables)

. -28,000 . $28,000
/min = ^ or maximum profit =

From the final tableau, one can find that

X3 I _ ) 3 / _ vector of basic variables in . p .

jc2 j " t T J ~ the ° P t i m u m solution

[c ") C _3Q ") vector of original cost
[ = ] [ = coefficients corresponding (E2)

C2 J v ~~ 100 J t o t^e basic variables
o _ M" ^ - m a t r ix of original coefficients (V .

Ll 40 J corresponding to the basic variables

_, r&3 fei TB - B I inverseofthecoefficient

B = = x 2 i m a t r i x B which appears (E4)
Lfe &2 J L-Bo 75-1 in the final tableau also



n = c^B"1 = (-30 - 100) l5 j 2
 15

L ~~T50 75 J

C _22") simplex multipliers, the
= \ 2 ( = neEatives of which appear (E5)

L~3 J in the final tableau also

Example 4.6 Find the effect of changing the total time available per day on
the two machines from 1200 and 800 min to 1500 and 1000 min in Example
4.5.

SOLUTION Equation (4.36) gives

m

Xi + S 0ij Abj > 0, i = 1,2,. . .,m (4.36)

where xt is the optimum value of the /th basic variable. (This equation assumes
that the variables are renumbered such that Xx to xm represent the basic vari-
ables.)

If the variables are not renumbered, Eq. (4.36) will be applicable for / = 3
and 2 in the present problem with Ab3 = 300 and Ab2 = 200. From Eqs. (E1)
to (E5) of Example 4.5, the left-hand sides of Eq. (4.36) become

X3 + fe A^3 + 3̂2 Ab2 = ^ + ± (300) ~ ^ (200) = ^ P

X2 + fe Ab3 + /322 Ab2 = f - ^o (300) + ^ (200) = ^ g

Since both these values are > 0, the original optimal basis B remains optimal
even with the new values of bt. The new values of the (optimal) basic variables
are given by Eq. (4.38) as

Xi, = Y] I = XB + AX8 = XB + B"1 Ab

_ m r £ -Al f3oo^ _ r±fn
= m + L -^ d U o r U J

and the optimum value of the objective function by Eq. (4.39) as

/Tnin = /min + A / = /min + C£ AXB = -^9. + ( _ 3 0 - 100) I J j

_ 35,000
3

Thus the new profit will be $35,000/3.



4.5.2 Changes in the Cost Coefficients Cj

The problem here is to find the effect of changing the cost coefficients from C7

to Cj + Ac7 on the optimal solution obtained with C7. The relative cost coeffi-
cients corresponding to the nonbasic variables, xm + i,xm + 2, . . . , xn are given
by Eq. (4.10):

m

Cj = Cj — n T A j = Cj — S TCiOiJ, j = m + l , m + 2 , . . . , n ( 4 . 4 0 )
/ = i

where the simplex multipliers Tr1- are related to the cost coefficients of the basic
variables by the relation

nT = c£B- '

that is,
m

-K1 = S ck(3kh i = 1, 2, . . . , m (4.41)
Ic= 1

From Eqs. (4.40) and (4.41), we obtain

m / m \ m / m \

Cj = Cj - S atj ( S Cffiki ) = Cj - S c J S a^ia ),
/—1 \k—\ / k—l \i— 1 J

i = m + 1, m + 2, . . . , n (4.42)

If the Cj are changed to c, + Ac7, the original optimal solution remains optimal,
provided that the new values of c,, c-, satisfy the relation

m / m \

cj = Cj + Acj - ^S (Q + AQ) ( S aypuj > 0

m / m \

= cy + ACj - ^S Ac, ( S a ^ . J > 0,

j = m + l , m + 2 , . . . , n (4.43)

where c; indicate the values of the relative cost coefficients corresponding to
the original optimal solution.

In particular, if changes are made only in the cost coefficients of the non-
basic variables, Eq. (4.43) reduces to

Cj: + Acj > 0, j = m + 1, m + 2, . . . , n (4.44)

If Eq. (4.43) is satisfied, the changes made in cy, Ac7, will not affect the
optimal basis and the values of the basic variables. The only change that occurs



is in the optimal value of the objective function according to

m

A/ = S Xj Acj (4.45)

and this change will be zero if only the Cj of nonbasic variables are changed.
Suppose that Eq. (4.43) is violated for some of the nonbasic variables. Then

it is possible to improve the value of the objective function by bringing any
nonbasic variable that violates Eq. (4.43) into the basis provided that it can be
assigned a nonzero value. This can be done easily with the help of the previous
optimal tableau. Since some of the cj are negative, we start the optimization
procedure again, by using the old optimum as an initial feasible solution. We
continue the iterative process until the new optimum is found. As in the case
of changing the right-hand-side bh the effectiveness of this procedure depends
on the number of violations made in Eq. (4.43) by the new values Cj + Ac7.

In some of the practical problems, it may become necessary to solve the
optimization problem with a series of objective functions. This can be accom-
plished without reworking the entire problem for each new objective function.
Assume that the optimum solution for the first objective function is found by
the regular procedure. Then consider the second objective function as obtained
by changing the first one and evaluate Eq. (4.43). If the resulting cj > 0, the
old optimum still remains as optimum and one can proceed to the next objec-
tive function in the same manner. On the other hand, if one or more of the
resulting cj < 0, we can adopt the procedure outlined above and continue the
iterative process using the old optimum as the starting feasible solution. After
the optimum is found, we switch to the next objective function.

Example 4.7 Find the effect of changing C3 from -30 to -24 in Example
4.5.

SOLUTION Here Ac3 = 6 and Eq. (4.43) gives that

ci = C1 + Ac1 - Ac3[a2lp32 + 3̂1033] = T + 0 - 6[3(-£) + 7(£)] = - f

C^ = C4 + Ac4 - Ac3[tf24/?32 + a34(333] = f + 0 - 6[1(-^) + 9(£] = |

c'5 = c5 + Ac5 - Ac3[a25p32 + O35P33] = f + 0 - 6[0(-^) + 1(^)] = ff

c'6 = c6 + Ac6 - Ac3[^26]S32 + a36&33\ = I + 0 - 6[1(-^) + 0(£)] = {f

The change in the value of the objective function is given by Eq. (4.45) as

4800 28,000 4800 23,200
A/ = Ac3 x3 = - y - so that / = — + - y - = —



Since all the relative cost coefficients are nonnegative, the present solution is
optimum with

X1 = 160, X2 = 8 (basic variables)

x3 = X4. = x5 = X6 = 0 (nonbasic variables)

/min = -8000 and maximum profit = $8000

4.5.3 Addition of New Variables

Suppose that the optimum solution of a LP problem with n variables Jc1, X2,
. . . ,xn has been found and we want to examine the effect of adding some
more variables Xn+ k, k = 1, 2, . . . , on the optimum solution. Let the con-
straint coefficients and the cost coefficients corresponding to the new variables
Jcn + k be denoted by ain + k, i — 1 to m and Cn + k, respectively. If the new
variables are treated as additional nonbasic variables in the old optimum so-
lution, the corresponding relative cost coefficients are given by

m

Cn+Ic = Cn+k ~ S TTi^n+k (4.46)
/ = 1

where Tr1, TT2, . . . , 7rm are the simplex multipliers corresponding to the original
optimum solution. The original optimum remains optimum for the new prob-
lem also provided that Cn + k > 0 for all k. However, if one or more Cn + k < 0,

Basic
Variables

X3

X2

-f

-f

Variables

Pivot
element

i
30

5
3

t

1

0

0

0

1

0

0

1
0

X3

1

0

0

3
5

1
50

1

X4

1

3

1
30

8
3

7
5

2
25

5

X5

4
15

1
150

86
15

4
25

3
250

6

X6

i
15

2
75
16
15

1
25

7
250

1

0

0

1

0
0

1

bi

800
3

40
3

23,200

160
8

8000

Ratio bj/cijj
for ay > 0

160 <-

400

Since c\ is negative, we can bring Xx into the basis. Thus we start with the
optimal tableau of the original problem with the new values of relative cost
coefficients and improve the solution according to the regular procedure.



it pays to bring some of the new variables into the basis provided that they can
be assigned a nonzero value. For bringing a new variable into the basis, we
first have to transform the coefficients ain + k into ain+k so that the columns of
the new variables correspond to the canonical form of the old optimal basis.
This can be done by using Eq. (4.9) as

An + k = B~ An+k
mx 1 mXm mX 1

that is,
m

ahn + k = S PiJd1n+^ i = 1 to m {AAl)

where B" 1 = [ft ̂ ] is the inverse of the old optimal basis. The rules for bringing
a new variable into the basis, finding a new basic feasible solution, testing this
solution for optimality, and the subsequent procedure is same as the one out-
lined in the regular simplex method.

Example 4.8 In Example 4.5, if a new product, Zs, which requires 15 min of
work on the lathe and 10 min on the milling machine per unit, is available,
will it be worthwhile to manufacture it if the profit per unit is $40?

SOLUTION Let xk be the number of units of product E manufactured per
day. Then ck = —40, axk = 15, and a2k = 10; therefore,

ck = ck- TXaxk - Tr2a2k = - 4 0 + (f) (15) + (§) (10) = ^f > 0

Since the relative cost coefficient ck is nonnegative, the original optimum so-
lution remains optimum for the new problem also and the variable xk will re-
main as a nonbasic variable. This means that it is not worth manufacturing
product E.

4.5.4 Changes in the Constraint Coefficients atj

Here the problem is to investigate the effect of changing the coefficient atj to
atj + Aa1J after finding the optimum solution with atj. There are two possibil-
ities in this case. The first possibility occurs when all the coefficients atj, in
which changes are made, belong to the columns of those variables which are
nonbasic in the old optimal solution. In this case, the effect of changing atj on
the optimal solution can be investigated by adopting the procedure outlined in
the preceding section. The second possibility occurs when the coefficients
changed atj correspond to a basic variable, say, Jt70 of the old optimal solution.
The following procedure can be adopted to examine the effect of changing

<*i,jo t 0 aijo + Aaijo-

1. Introduce a new variable xn + x to the original system with constraint coef-
ficients



0«\/i + l = <*i,jo + Aaijo (4-48)

and cost coefficient

Cn + 1 = Cj0 (original value itself) (4.49)

2. Transform the coefficients ain + x to at ^ + 1 by using the inverse of the
old optimal basis, B" 1 = [ft-,-], as

m

aiin + x = S )8,/i/,w + i, i = 1 to m (4.50)

3. Replace the original cost coefficient (C70) of J(Cy0 by a large positive number
N, but keep Cn + x equal to the old value Cy0.

4. Compute the modified cost coefficients using Eq. (4.43):

m / m \

cj = Cj + ACJ - S A c J S Oifiu J,
k- 1 y -1 /

j = m + 1, m + 2, . . . , n9 n + 1 (4.51)

where A Q = 0 for k = 1, 2, . . . , J0 - I9J0+ 1, . . . , m and Ac70 =
/V — c-

5. Carry the regular iterative procedure of simplex method with the new
objective function and the augmented matrix found in Eqs. (4.50) and
(4.51) until the new optimum is found.

Remarks:

1. The number N has to be taken sufficiently large to ensure that xj0 cannot
be contained in the new optimal basis that is ultimately going to be found.

2. The procedure above can easily be extended to cases where changes in
coefficients atJ of more than one column are made.

3. The present procedure will be computationally efficient (compared to
reworking of the problem from the beginning) only for cases where there
are not too many number of basic columns in which the a(J are changed.

Example 4.9 Find the effect of changing A1 from j j to j n ( in Example

4.5 (i.e., changes are made in the coefficients atj of nonbasic variables only).

SOLUTION The relative cost coefficients of the nonbasic variables (of the
original optimum solution) corresponding to the new atj are given by

Cy = Cy — Ti7Ay, j = nonbasic (1, 4, 5, 6)



Since A1 is changed, we have

C1=C,- U7X1 = -45 - ( - f - I) 1 Uj = ^

As C1 is positive, the original optimum solution remains optimum for the new
problem also.

Example 4.10 Find the effect of changing A1 from j - | to j , | in Example

4.5.

SOLUTION The relative cost coefficient of the nonbasic variable Jt1 for the
new A1 is given by

Ci=Ct- TT7A1 = -45 - ( - § - I) T J = - f

Since C1 is negative, Jc1 can be brought into the basis to reduce the objective
function further. For this we start with the original optimum tableau with the
new values of A1 given by

L—Bo 75-1 L ° J L-30 +25-I L B O J

Basic
Variables

X3

X2

~f

X3

X\

-f

Variables

X\

14
15
19
150

Pivot
element

13
3

t

0
1

0

X2

0
1

0

140
19

150
19

650
19

1

0

0

1

0

0

X4

7
3
1

30

50
3

49
19
5
19

295
19

*5

4
15

~T50

22
3

6
19
1
19

135
19

*6

1
15
2
75

2
3

5
19
4
19

30
19

0
0

1

0
0

1

bt
800
3

40
3

28,000

3,200
19

2,000

186,000

Q>ilais)

4000
14

2000
19



Since all c-} are nonnegative, the present tableau gives the new optimum solu-
tion as

X1 = 2000/19, X3 = 3200/19 (basic variables)

X2 = X4 = X5 = X6 = 0 (nonbasic variables)

186,000 j . $186,000
/min = — — and maximum profit = —

4.5.5 Addition of Constraints

Suppose that we have solved a LP problem with m constraints and obtained
the optimal solution. We want to examine the effect of adding some more
inequality constraints on the original optimum solution. For this we evaluate
the new constraints by substituting the old optimal solution and see whether
they are satisfied. If they are satisfied, it means that the inclusion of the new
constraints in the old problem would not have affected the old optimum solu-
tion, and hence the old optimal solution remains optimal for the new problem
also. On the other hand, if one or more of the new constraints are not satisfied
by the old optimal solution, we can solve the problem without reworking the
entire problem by proceeding as follows.

1. The simplex tableau corresponding to the old optimum solution ex-
presses all the basic variables in terms of the nonbasic ones. With this
information, eliminate the basic variables from the new constraints.

2. Transform the constraints thus obtained by multiplying throughout by
- 1 .

3. Add the resulting constraints to the old optimal tableau and introduce
one artificial variable for each new constraint added. Thus the enlarged
system of equations will be in canonical form since the old basic vari-
ables were eliminated from the new constraints in step 1. Hence a new
basis, consisting of the old optimal basis plus the artificial variables in
the new constraint equations, will be readily available from this canon-
ical form.

4. Go through phase I computations to eliminate the artificial variables.
5. Go through phase II computations to find the new optimal solution.

Example 4.11 If each of the products A, B, C, and D require respectively 2,
5,3, and 4 min of time per unit on grinding machine in addition to the oper-
ations specified in Example 4.5, find the new optimum solution. Assume that
the total time available on grinding machine per day is 600 min and all this
time has to be utilized fully.



SOLUTION The present data corresponds to the addition of a constraint
which can be stated as

2^1 + 5x2 + 3JC3 + Ax4 = 600 (E1)

By substituting the original optimum solution,

_ 4 0 _ 8 0 0 _ _ _ _ _ n

X2 — 3 , X3 — 3 , X\ — X4 — X5 — X^ — U

the left-hand side of Eq. (E1) gives

2(0) + 5 ( f ) + 3 (*f) + 4(0) = ^ * 600

Thus the new constraint is not satisfied by the original optimum solution. Hence
we proceed as follows:

Step 1: From the original optimum tableau, we can express the basic variables
as

_ 8 0 0 _ 5 _ 7 4 . 1
X3 ~ 3 3 x\ 3 X4 15 X 5 "+" 15 X6

X2 = T ~~ 30 X\ + 30 X4 + T50 X5 ~ 75 X6

Thus Eq. (E1) can be expressed as

2*1 + 5 (-y — 30 Xx + 30 X4 + 750 *5 ~ 75 X6)

+ 3 ( ^ — § Jc1 — Ix4 - ^5X5 + ^ x 6 ) + Ax4 = 600

that is,

6 * 1 6 " * 4 ~ 3 0 * 5 " ' " T 5 * 6 = 3~ № 2 )

Step 2: Transform this constraint such that the right-hand side becomes posi-
tive, that is,

" 6 * 1 + "6 *4 + 30 X5 ~~ \5 X6 = ~T №3)

5^/7 3: Add an artifical variable, say, xk, the new constraint given by Eq. (E3)
and the infeasibility form w = xk into the original optimum tableau to obtain
the new canonical system as follows:



Thus the new optimum solution is given by

*i = "TT, *2 = if, x3 = ̂ r (basic variables)

X4 = X5 = X6 = 0 (nonbasic variables)

164,000 $164,000
/min = j ^ — and maximum profit = —

4.6 TRANSPORTATION PROBLEM

This section deals with an important class of LP problems called the transpor-
tation problem. As the name indicates, a transportation problem is one in which
the objective for minimization is the cost of transporting a certain commodity
from a number of origins to a number of destinations. Although the transpor-
tation problem can be solved using the regular simplex method, its special
structure offers a more convenient procedure for solving this type of problems.

Basic
Variables

X3

X2

xk

-f
— w

Variables

Xx

5
3
1

30
[Si
LAJ

Pivot
element

25
3
19
6

X2

0
1
0

0
0

X3

1
0
0

0
0

X4

7
3

~30
17
6

50
3
17
6

X5

4
5

~150
23
30

22
3

23
30

X6

I
15
2

75

~~75

2
3
1
15

xk

0

0

1

0

0

- /

0

0

0

1

0

— w

0

0

0

0

1

hi
800
3

40
3

800
3

28,000
3
800
3

(bilais)

160
400
1600
~I9~

Step 4: Eliminate the artificial variable by applying the phase I procedure:

Basic
Variables

X3

X2

Xx

-f
— w

Variables

0

0
1

0

0

X2

0
1
0

0
0

X3

1
0
0

0
0

X4

16
19
6
95
17
19

175
19

0

X5

113
285

7
475
23
95

101
19

0

X6

3
95
13

475
2
95

16
19

0

xk

10
19
1

95
6
19

50
19

0

- /

0

0

0

1

0

— w

0

0

0

0

1

hi
2,400

200
19

1,600

164,000

0



This procedure is based on the same theory of the simplex method, but it makes
use of some shortcuts that yield a simpler computational scheme.

Suppose that there are m origins Rx, R2, . . . , Rm (e.g., warehouses) and n
destinations, D1, D2, . . . ,Dn (e.g., factories). Let at be the amount of a
commodity available at origin / (i = 1, 2, . . . , m) and bj be the amount
required at destination j (j = 1, 2, . . . , « ) . Let ctj be the cost per unit of
transporting the commodity from origin i to destination j . The objective is to
determine the amount of commodity (jc,y) transported from origin / to destina-
tion j such that the total transportation costs are minimized. This problem can
be formulated mathematically as:

m n

Minimize/= S S xtj (4.52)

subject to

n

S Xij = ah / = 1,2,. . .,m (4.53)

m

S1Jc0 = bp j = 1,2,. . . ,* (4.54)

*0 > 0, I = 1,2,. . .,m, j = 1,2,. . .,H (4.55)

Clearly, this is a LP problem in mn variables and m + n equality constraints.
Equations (4.53) state that the total amount of the commodity transported

from the origin i to the various destinations must be equal to the amount avail-
able at origin i (i = 1,2,. . .,m), while Eqs. (4.54) state that the total amount
of the commodity received by destination j from all the sources must be equal
to the amount required at the destination./ (j = 1,2,. . .,/?). The nonnegativity
conditions Eqs. (4.55) are added since negative values for any xtj have no
physical meaning. It is assumed that the total demand equals the total supply,
that is,

m n

S ax•, = S bi (4.56)
i = i j = \ J

Equation (4.56), called the consistency condition, must be satisfied if a solu-
tion is to exist. This can be seen easily since

m m / n \ n / m \ n

S a , - = S ( S x J = S ( S x J = Xbj (4.57)

The problem stated in Eqs. (4.52) to (4.56) was originally formulated and
solved by Hitchcock in 1941 [4.6]. This was also considered independently by



Koopmans in 1947 [4.7]. Because of these early investigations the problem is
sometimes called the Hitchcock-Koopmans transportation problem. The spe-
cial structure of the transportation matrix can be seen by writing the equations
in standard form:

X\\ + x\2 + # * * + Xyn = ax

X2\ + *22 + * • • + X2n = a2

Xm\ + xm2 + # ' * + Xmn = am

(4.58a)

JC11 + X1x + xmX = bx

X» +X* +*m2 = h (4.5»)

xXn + X1n + xmn = bn

C\\XU + C12X12 + • • • + cXnxXn + C21X21 + • • • 4- C2nX2n + • • •

+ cw i*w i + • • • + cmnxmn = f

(4.58c)

We notice the following properties from Eqs. (4.58).

1. All the nonzero coefficients of the constraints are equal to 1.
2. The constraint coefficients appear in a triangular form.
3. Any variable appears only once in the first m equations and once in the

next n equations.

These are the special properties of the transportation problem that allow
development of the transportation technique. To facilitate the identification of
a starting solution, the system of equations (4.58) is represented in the form
of an array, called the transportation array, as shown in Fig. 4.2. In all the
techniques developed for solving the transportation problem, the calculations
are made directly on the transportation array.

Computational Procedure. The solution of a LP problem, in general, requires
a calculator or, if the problem is large, a high-speed digital computer. On the
other hand, the solution of a transportation problem can often be obtained with
the use of a pencil and paper since additions and subtractions are the only



Figure 4.2 Transportation array.

calculations required. The basic steps involved in the solution of a transpor-
tation problem are:

1. Determine a starting basic feasible solution.
2. Test the current basic feasible solution for optimality. If the current so-

lution is optimal, stop the iterative process; otherwise, go to step 3.
3. Select a variable to enter the basis from among the current nonbasic

variables.
4. Select a variable to leave from the basis from among the current basic

variables (using the feasibility condition).

5. Find a new basic feasible solution and return to step 2.

The details of these steps are given in Ref. [4.10].

4.7 KARMARKAR'S METHOD

Karmarkar proposed a new method in 1984 for solving large-scale linear pro-
gramming problems very efficiently. The method is known as an interior

To

From

Origin
i

Destination j Amount
available

Amount
required



method since it finds improved search directions strictly in the interior of the
feasible space. This is in contrast with the simplex method, which searches
along the boundary of the feasible space by moving from one feasible vertex
to an adjacent one until the optimum point is found. For large LP problems,
the number of vertices will be quite large and hence the simplex method would
become very expensive in terms of computer time. Along with many other
applications, Karmarkar's method has been applied to aircraft route scheduling
problems. It was reported [4.19] that Karmarkar's method solved problems
involving 150,000 design variables and 12,000 constraints in 1 hour while the
simplex method required 4 hours for solving a smaller problem involving only
36,000 design variables and 10,000 constraints. In fact, it was found that Kar-
markar's method is as much as 50 times faster than the simplex method for
large problems.

Karmarkar's method is based on the following two observations:

1. If the current solution is near the center of the poly tope, we can move
along the steepest descent direction to reduce the value of/by a maxi-
mum amount. From Fig. 4.3, we can see that the current solution can
be improved substantially by moving along the steepest descent direction
if it is near the center (point 2) but not near the boundary point (points
1 and 3).

2. The solution space can always be transformed without changing the na-
ture of the problem so that the current solution lies near the center of the
poly tope.

Minimum value of/

Figure 4.3 Improvement of objective function from different points of a polytope.



It is well known that in many numerical problems, by changing the units of
data or rescaling (e.g., using feet instead of inches), we may be able to reduce
the numerical instability. In a similar manner, Karmarkar observed that the
variables can be transformed (in a more general manner than ordinary rescal-
ing) so that straight lines remain straight lines while angles and distances change
for the feasible space.

4.7.1 Statement of the Problem

Karmarkar's method requires the LP problem in the following form:

Minimize / = C7X

subject to

MX = 0

x{ + x2 + • • • + xn = 1 (4.59)

X > 0

where X = {xx X2 • • • xn}
T, c = {cx C2 - • • cn}

T, and [a] is an m X n
matrix. In addition, an interior feasible starting solution to Eqs. (4.59) must

be known. Usually, X = J - - • • • - ( is chosen as the starting point. In
{jt n n)

addition, the optimum value of /must be zero for the problem. Thus

X(1) = j - - • • • - [ = interior feasible
Ln n n) (4.60)

/min = 0

Although most LP problems may not be available in the form of Eq. (4.59)
while satisfying the conditions of Eq. (4.60), it is possible to put any LP prob-
lem in a form that satisfies Eqs. (4.59) and (4.60) as indicated below.

4.7.2 Conversion of an LP Problem into the Required Form

Let the given LP problem be of the form:

Minimize d rX

subject to

M X = b ( 4 6 1 )

X > 0



To convert this problem into the form of Eq. (4.59), we use the procedure
suggested in Ref. [4.20] and define integers m and n such that X will be an
(n - 3)-component vector and [a] will be a matrix of order m - 1 X n - 3.
We now define the vector z = \z\ Zi • • • Zn-3V as

z = | (4.62)

where ]8 is a constant chosen to have a sufficiently large value such that

n-3

/3 > S JC1- (4.63)
i = 1

for any feasible solution X (assuming that the solution is bounded). By using
Eq. (4.62), the problem of Eq. (4.61) can be stated as follows:

Minimize j3drz

subject to

M z = \ b
P (4.64)

z > 0

We now define a new vector z as

^ n - 2
Z =

1 zn-\ '

and solve the following related problem instead of the problem in Eqs. (4.64):

Minimize {/3dr 0 0 M) z

subject to

0 0 n 0 UJ
erz + zn-2 + zn-i + Zn = 1 (4.65)

z > 0



where e is an (m — l)-component vector whose elements are all equal to 1,
Zn - 2 is a slack variable that absorbs the difference between 1 and the sum of
other variables, zn-\ is constrained to have a value of Hn, and M is given a
large value (corresponding to the artificial variable zn) to force Zn to zero when
the problem stated in Eqs. (4.61) has a feasible solution. Equations (4.65) are
developed such that if z is a solution to these equations, X = /3z will be a
solution to Eqs. (4.61) if Eqs. (4.61) have a feasible solution. Also, it can be
verified that the interior point z = (l/n)e is a feasible solution to Eqs. (4.65).
Equations (4.65) can be seen to be the desired form of Eqs. (4.61) except for
a 1 on the right-hand side. This can be eliminated by subtracting the last con-
straint from the next-to-last constraint, to obtain the required form:

Minimize {/3dr 0 0 M} z

subject to

" w o - J b ( j j " > - w ) l f O

- e r - 1 (n - 1) - 1 J W
eTz + zn-2 + zn-i + Zn = I (4.66)

z > 0

Note: When Eqs. (4.66) are solved, if the value of the artificial variable Zn

> 0, the original problem in Eqs. (4.61) is infeasible. On the other hand, if
the value of the slack variable Zn -2 = 0, the solution of the problem given by
Eqs. (4.61) is unbounded.

Example 4.12 Transform the following LP problem into a form required by
Karmarkar's method:

Minimize 2x\ + 3x2

subject to

3Jc1 + Jc2 - 2JC3 = 3

5Jc1 - 2JC2 = 2

Jc1 > 0, 1 = 1,2,3

SOLUTION It can be seen that d = {2 3 0}7, M = U _\ " H b

= j I, and X = (JC1 JC2 Jc3}
T. We define the integers m and n as n = 6 and



m = 3 and choose (3 = 10 so that

Noting that e = {l 1 l } r , Eqs. (4.66) can be expressed as

Minimize {20 30 0 0 0 M) z

subject to

Ls - 2 o j CoJ io h i

• ( i S - K J - a d J ) " -

{-{1 1 1} - 1 5 - 1 } z = 0

Zi -I- Z2 + £3 + Z4 + Z5 + Z6 = 1

z = {zi Z2 Z3 Z4 Z5 Z6V ^ 0

where M is a very large number. These equations can be seen to be in the
desired form.

4.7.3 Algorithm

Starting from an interior feasible point X(1), Karmarkar's method finds a se-
quence of points X(2), X(3), . . . using the following iterative procedure:

1. Initialize the process. Being at the center of the simplex as the initial

feasible point X(1) = ) - - . . . - [ Set the iteration number as k
(^n n n)

= 1.

2. Test for optimality. Since/ = 0 at the optimum point, we stop the pro-
cedure if the following convergence criterion is satisfied:

IkWI < e (4.67)

where e is a small number. If Eq. (4.67) is not satisfied, go to step 3.



3. Compute the next point, X(* +1}. For this, we first find a point Y(k+{) in
the transformed unit simplex as

ln n n) (4.68)
Qj ([/] ~ [Pf ([P] [PfV1IP]) [D(X(k))]c

\\c\\ y/n (n - 1)

where ||c|| is the length of the vector c, [/] the identity matrix of order
n, [D(X^)] ann X n matrix with all off-diagonal entries equal to 0, and
diagonal entries are equal to the components of the vector X(k) as

[D(X(k))h = xf\ i = 1,2,. . .,/i (4.69)

[P] is an (m H- 1) X n matrix whose first m rows are given by
[a] [D(X^)] and the last row is composed of l's:

[pj _ ^ , « j

and the value of the parameter a is usually chosen as a = \ to ensure
convergence. Once Y(lc + l) is found, the components of the new point
X(k + l) art determined as

r<*+i) - X[ y'1 i - 1 2 n (A 7n

Set the new iteration number as k = k + 1 and go to step 2.

Example 4.13 Find the solution of the following problem using Karmarkar's
method:

Minimize/ = 2X1 + X2 — X3

subject to

X2 - x3 = 0 ( E 2 )

JC1 H- JC2 H- X3 = 1

xt > 0, / = 1,2,3

Use the value of e = 0.05 for testing the convergence of the procedure.



SOLUTION The problem is already in the required form of Eq. (4.59), and
hence the following iterative procedure can be used to find the solution of the
problem.

Step 1: We choose the initial feasible point as

Y ( l ) - 1 1 (

" I y

and set k = 1.
Step 2: Since |/(X(1))| = | | | > 0.05, we go to step 3.
Step 3: Since [a] = {0 1 - 1 } , c = {2 1 - l } r , ||c|| =

V(2)2 + (I)2 + (-1)2 = V6, we find that

~3 0 0"

[D(X(1))] = 0 J 0

_0 0 }_

[a] [D(Xm)] = {0 I -\}

rw[D(x<'>)n_ ro 3 - n

L i i i J Li i iJ

p o oir 2. r h
[ D ( X * 1 * ) ] C = O i O 1 = i

_0 0 U U l J L-O

(U] ~ [Pf(IP] [PfV1IP]) [O(X(1))] c

-(E !3-[J I]K r . I])(J)
r 2 1 1-, ̂  2̂  , 4̂3 " "3If 0 { *)

1 1 1 J 1 ( ) 2 (
i i 1 ( 1 ) 2 )

L - 3 6 6 J ^ " " 3 ^ ^ - 9 - ^



Using a = \, Eq. (4.68) gives

--[M-^-(I)
V3V K-gJ KjosJ

Noting that
n

^ j x r j r — 3 ^1 0 8; -f 3 ^1 0 8 ; -t- 3 I 4 0 8 ; — 3

Eq. (4.71) can be used to find
^ - 3 ± N r 34 ^

MN ^ f 324 ) ( 108 )

S JC ( 1 ) V ( 2 ) ( 3 7 J ( 3 7 J
(^rTi r J r J ^324^ ^T08^

Set the new iteration number ask = k + l = 2 and go to step 2. The
procedure is to be continued until convergence is achieved.

Notes:

1. Although X(2) = Y(2) in this example, they need not be, in general, equal
to one another.

2. The value of/atX (2 ) is

/ ( X ^ ) = 2 ( ^ ) + 1 S - | ^ < / ( * '> ) = #

4.8 QUADRATIC PROGRAMMING

A quadratic programming problem can be stated as:

Minimize/(X) = C7X + ^X7DX (4.72)

subject to

A X < B (4.73)

X > 0 (4.74)



where

A A (̂ cA Sb1^i

X2 C2 b2

X = . , C = . , B = . ,

V x n y ^cnJ ^bmy

dn dn - - • dln an aX2 • • • aXn

d2X d22 • • • d2n a2l a22 • • • ^2n

D = . , and A =

-dn\ dn2 • • • dw nJ Law l am2 • # • • amn-

In Eq. (4.72) the term X7DX/2 represents the quadratic part of the objective
function with D being a symmetric positive-definite matrix. If D = O, the
problem reduces to a LP problem. The solution of the quadratic programming
problem stated in Eqs. (4.72) to (4.74) can be obtained by using the Lagrange
multiplier technique. By introducing the slack variables sf9 i = 1, 2, . . . , m,
in Eqs. (4.73) and the surplus variables tj, j = 1, 2, . . . , n, in Eqs. (4.74),
the quadratic programming problem can be written as:

Minimize/(X) = C7X + ^X7DX (4.72)

subject to the equality constraints

AfX +sj= bh i = 1,2,. . .,m (4.75)

-Xj + tj = 0, J= 1,2,. . .,/i (4.76)

where

A , - "?•

The Lagrange function can be written as

m

L(X,S,T,X,0) = C7X + jXrDX + S X,- (AfX + sj - £,)
i = 1

n
+ S 0/-JC,- + f,2) ( 4 . 7 7 )



The necessary conditions for the stationariness of L give

— = Cj; + _S dijXi + .E \fiij - 6j = 0, j = 1,2,. . .,n (4.78)

^ = 2V,- = 0, i = 1,2,. . .,iw (4.79)
as,

^ = 20/,- = 0, j = 1,2,. . .,« (4.80)

— = A1
7X + sj - bt = 0, I = 1,2,. . .,m (4.81)

^ l = -jc + ,? = 0 , J= 1,2,. . .,« (4.82)

OUj

By defining a set of new variables Y1 as

Y1• = s2
t > 0, i = 1,2,. . .,m (4.83)

Equations (4.81) can be written as

AfX - bt = -s2
t = -Yh i = 1,2,. . .,m (4.84)

Multiplying Eq. (4.79) by st and Eq. (4.80) by tj9 we obtain
X^? = X1-J;- = 0, I = 1,2,. . .,m (4.85)

djtj = 0, j = 1,2,. . .,/i (4.86)

Combining Eqs. (4.84) and (4.85), and Eqs. (4.82) and (4.86), we obtain

X1(AfX - bt) = 0 , I = 1,2,. . .,m (4.87)
OjXj = 0, j = 1,2,. . .,n (4.88)

Thus the necessary conditions can be summarized as follows:

n m

Cj ~ OJ + S X/dy + S \fl« = 0, J = 1,2,. . .,/Z (4.89)

i=\ i=\

AfX - bt = -Y1, i = 1,2,. . .,m (4.90)

JCy > 0, j = 1,2 n (4.91)
Ĵ  > 0, i = 1,2,. . .,m (4.92)

X, > 0, j = 1,2,. . .,m (4.93)



Oj > O, J = 1,2,. . .,w (4.94)

X^ = 0, i = 1,2,. . .,m (4.95)

0,JC, = 0, ./ = 1,2,. . .,n (4.96)

We can notice one important thing in Eqs. (4.89) to (4.96). With the ex-
ception of Eqs. (4.95) and (4.96), the necessary conditions are linear functions
of the variables JC,, Yh X1-, and 0,. Thus the solution of the original quadratic
programming problem can be obtained by finding a nonnegative solution to
the set ofm + n linear equations given by Eqs. (4.89) and (4.90), which also
satisfies the m + n equations stated in Eqs. (4.95) and (4.96).

Since D is a positive-definite matrix, / (X) will be a strictly convex func-
tion^ and the feasible space is convex (because of linear equations), any local
minimum of the problem will be the global minimum. Further, it can be seen
that there are 2 (n + m) variables and 2 (n + m) equations in the necessary
conditions stated in Eqs. (4.89) to (4.96). Hence the solution of the Eqs. (4.89),
(4.90), (4.95), and (4.96) must be unique. Thus the feasible solution satisfying
all the Eqs. (4.89) to (4.96), if it exists, must give the optimum solution of
the quadratic programming problem directly. The solution of the system of
equations above can be obtained by using phase I of the simplex method. The
only restriction here is that the satisfaction of the nonlinear relations, Eqs.
(4.95) and (4.96), has to be maintained all the time. Since our objective is just
to find a feasible solution to the set of Eqs. (4.89) to (4.96), there is no ne-
cessity of phase II computations. We shall follow the procedure developed by
Wolfe [4.21] to apply phase I. This procedure involves the introduction of n
nonnegative artificial variables zt into the Eqs. (4.89) so that

n m

Cj - Oj + S 1 xAj + . 2 \flij + Zj = 0, j = 1,2,. . .,n (4.97)

Then we minimize
n

F = Ti Zj (4.98)

subject to the constraints

n m

Cj - Oj + S Xjdij + S \flij + Zj = 0, j = 1,2,. . .,«

i = i i = i

AfX + Yi = bh i = 1,2,. . . ,m

X > 0 , Y > 0 , X . > 0 , 0 > O

1SeC Appendix A for the definition and properties of a convex function.



While solving this problem, we have to take care of the additional conditions

\Yi = 0, I = 1,2,. . .,m ^ ggv

OjXj = 0, j = 1,2,. . .,n

Thus when deciding whether to introduce Y1 into the basic solution, we first
have to ensure that either A, is not in the solution or \ will be removed when
Y1 enters the basis. Similar care has to be taken regarding the variables Oj and
Xj. These additional checks are not very difficult to make during the solution
procedure.

Example 4.14

Minimize/ = -Axx + x\ — IxxX2 H- 2*2

subject to

2X1 + xx < 6

Xx - Ax2 < 0

xx > 0, X2 > 0

SOLUTION By introducing the slack variables Yx = s \ and Y2 = ^2 and the
surplus variables ^1 = rf and O2 = t\9 the problem can be stated as follows:

subject to

c J C ) - f : : ] - ( 3

-X1 + Ox = 0 (E1)

- ^ 2 + O2 = 0

By comparing this problem with the one stated in Eqs. (4.72) to (4.74), we
find that

r 2 ~ 2 i T2 n

„ = - 4 , C2 = 0, D - [ _ 2 J , A - ^ _ 4 j .



The necessary conditions for the solution of the problem stated in Eqs. (E1)
can be obtained, using Eqs. (4.89) to (4.96), as

-A - O1 H- 2Jc1 - 2JC2 H- 2X1 + X2 = 0

0 - 02 - Ixx + Ax2 + X1 - 4X2 = 0 (E2)

2xx + jc2 - 6 = -Yx

Jc1 - 4JC2 - 0 = -Y2

xx > 0, X2 > 0, Yx > 0, Y2 > 0, X1 > 0, ( E a )

X2 > 0, (9, > 0, O2 ^ 0

XxYx = 0, 6J1JC1 = 0
(E4)

X2Y2 = 0, 02JC2 = 0

(If Y1 is in the basis, X1 cannot be in the basis, and if Jc7 is in the basis, Oj cannot
be in the basis to satisfy these equations.) Equations (E2) can be rewritten as

2Jc1 - 2JC2 + 2X1 +X2-OX + ZX = A

-Ixx H- 4JC2 H- X1 - 4X2 - O2 + Z2 = 0

(E5)
2JC1 H- Jc2 H-F1 = 6

JC1 - 4JC2 + Y2 = 0

where Zx and Z2 are artificial variables. To find a feasible solution to Eqs. (E2)
to (E4) by using phase I of simplex method, we minimize w = Zx H-Z2 with
constraints stated in Eqs. (E5), (E3), and (E4).

The initial simplex tableau is shown below.

X2 selected for
entering next basis

Most negative

Basic
Variables

Y1

Zi

Z2

— w

Variables

2
1
2

- 2

0

X2

1
- 4
- 2

- 2

Xi

0
0
2
1

- 3

X2

0

0
1

- 4

3

Ox

0
0

- 1
0

1

O2

0
0
0

- 1

1

Y1

1
0
0
0

0

Y2

0
1
0
0

0

Zx

0
0
1

0

0

Z2

0
0
0
1

0

VV

0
0
0
0

1

6
0
4
0

- 4

btlais

for
a is > 0

6

O ^ Smaller
one



X1 selected to Most negative
enter the basis

This tableau shows that X1 has to enter the basis and F2 or x2 has to leave the
basis. However, X1 cannot enter the basis since F1 is already in the basis [to
satisfy the requirement of Eqs. (E4)]. Hence Jc1 is selected to enter the basis
and this gives F1 as the variable that leaves the basis. The pivot operation on
the element f results in the following tableau:

According to the regular procedure of simplex method, X1 enters the next basis
since thejcost coefficient of X1 is most negative and Z2 leaves the basis since
the ratio bt/ais is smaller for z2. However, X1 cannot enter the basis, as Yx is
already in the basis [to satisfy Eqs. (E4)]. Hence we select X2 for entering the
next basis. According to this choice, Z2 leaves the basis. By carrying out the
required pivot operation, we obtain the following tableau.

Basic
Variables

F,

Y2

Z\

X2

— w

Variables

X1

- 1
1
i
2

i

X2

0

0
0
1

0

X1

1
4

1
5
2
1
4
5
2

X2

1

- 4

- 1

- 1

1

0i

0

0
- 1

0

1

O2

1
4

- 1
1
2
1
4
1
2

F1

1

0

0

0

0

F2

0

1

0

0

0

Z\

0

0
1

0

0

Z2

~4

1
1
2
1
4
1
2

W

0

0
0
0

1

bi

0
4 4
0

- 4

for
ais > 0

<-Smaller
one

Basic
Variables

Xx

F 2

Zx

X2

— w

Variables

X\

1
0
0

0

0

X2

0
0
0

1

0

X1

1
10
9
10

[U]

1
5
13
5

X2

2
5
18
5
7
5

4
5
7
5

0i

0

0

- 1

0

1

S2

1
10
9
10
3
5

1
5
3
5

Y1

2
5
2
5
2
5

1
5
2
5

F2

0

1

0

0

0

Z\

0
0

1

0

0

Z2

""To
9
10
3
5

5
2
5

W

0
0
0

0

1

bt
12
5
12
5
8
5

6
5
8
5

btlais

for
ais > 0

8
3

fs <- Smaller
one

6

Most negative

From this tableau we find that X1 enters the basis (this can be permitted this
time since F1 is not in the basis) and Z1 leaves the basis. The necessary pivot
operation gives the following tableau:



Since both the artificial variables Z\ and Z1 are driven out of the basis, the
present tableau gives the desired solution as Xx = f|, Jt2 = jf, Y2

 = ft > X1
 =

75 (basic variables), X2 = O, Fj = 0,O1 = 0, 02 = 0 (nonbasic variables). Thus
the solution of the original quadratic programming problem is given by

~* _ 32 * _ 14 j r __ r,* *\ _ 88
x\ - T3> *2 ~ 13» a n d /min ~ / (*1 > *2) ~ "TI
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REVIEW QUESTIONS

4.1 Is the decomposition method efficient for all LP problems?

4.2 What is the scope of postoptimality analysis?

4.3 Why is Karmarkar's method called an interior method?

4.4 What is the major difference between the simplex and Karmarkar meth-
ods?

4.5 State the form of LP problem required by Karmarkar's method.

4.6 What are the advantages of the revised simplex method?

4.7 Match the following terms and descriptions.
(a) Karmarkar's method Moves from one vertex to another
(b) Simplex method Interior point algorithm
(c) Quadratic programming Phase I computations not required
(d) Dual simplex method Dantzig and Wolfe method
(e) Decomposition method Wolfe's method



4.8 Answer true or false.
(a) The quadratic programming problem is a convex programming prob-

lem.
(b) It is immaterial whether a given LP problem is designated the primal

or dual.
(c) If the primal problem involves minimization of/subject to greater-

than constraints, its dual deals with the minimization of/subject to
less-than constraints.

(d) If the primal problem has an unbounded solution, its dual will also
have an unbounded solution.

(e) The transportation problem can be solved by simplex method.

4.9 Match the following in the context of duality theory.
(a) xt is nonnegative /th constraint is of less-than or

equal-to type
(b) xt is unrestricted Maximization type
(c) /th constraint is of equality type /th variable is unrestricted
(d) /th constraint is of greater-than /th variable is nonnegative

or equal-to type
(e) Minimization type /th constraint is of equality type

PROBLEMS

Solve the following LP problems by the revised simplex method.

4.1 Minimize/= -5Jc1+ Ix2 + 5JC3 — 3JC4

subject to

2x\ + X2 — x3 = 6

3Jc1 + 8JC3 + Jc4 = 7

X1 > 0, i = 1 to 4

4.2 Maximize /= 15Jt1 + 6JC2 + 9JC3 + 2JC4

subject to

1OJC1 + 5JC2 + 25JC3 + 3JC4 < 50

12Jc1 + 4JC2 + 12JC3 +JC4 < 48

7Jc1 +Jc4 < 35

JC/ > 0, i = 1 to 4



4.3 Minimize/ = 2X1 + 3x2 + 2x3 — X4 + X5

subject to

3Jt1 - 3jt2 + 4x3 + 2x4 - X5 = 0

Jt1 + Jt2 4- Jt3 H- 3jt4 + X5 = 2

X1 > 0, / = 1,2,. . .,5

4.4 Discuss the relationships between the regular simplex method and the
revised simplex method.

4.5 Solve the following LP problem graphically and by the revised simplex
method:

Maximize /= X2

subject to

-xx + X2 < 0

-2Jt1 - 3Jt2 < 6

Jt1, Jt2 unrestricted in sign

4.6 Consider the LP problem:

Minimize / = 3X1 + X3 + 2x5

subject to

-*i 4- Jt3 — Jt4 + X5 = — 1

Jt2 — 2jt3 + 3jt4 + 2jt5 = —2

Xi > 0, i = 1 to 5

Solve this problem using the dual simplex method.

4.7 Maximize/= 4Jt1 + 2jt2

subject to

X1 - 2jt2 > 2

X1 + 2x2 = 8

X1 - X2 < 11

X1 > 0, x2 unrestricted in sign



(a) Write the dual of this problem.
(b) Find the optimum solution of the dual.

(c) Verify the solution obtained in part (b) by solving the primal problem
graphically.

4.8 A water resource system consisting of two reservoirs is shown in Fig.
4.4. The flows and storages are expressed in a consistent set of units.
The following data are available:

Quantity Stream 1 (/ = 1) Stream 2 (i = 2)

Capacity of reservoir / 9 7
Available release from reservoir i 9 6

Capacity of channel below reservoir i 4 4
Actual release from reservoir i JC, X2

Figure 4.4 Water-resource system.

The capacity of the main channel below the confluence of the two streams
is 5 units. If the benefit is equivalent to $2 X 106 and $3 X 106 per unit
of water released from reservoirs 1 and 2, respectively, determine the
releases Xx and X1 from the reserovirs to maximize the benefit. Solve this
problem using duality theory.

4.9 Solve the following LP problem by the dual simplex method:

Minimize / = Ixx + 9x2 + 2Ax3 4- Sx4 + 5x5

Stream 1

Reservoir 1

Channel 1
(X1)

Stream 2

Reservoir 2

Channel 2

(X2)

I r r igat ion

d is t r i c t 2

Irr igat ion

d is t r i c t 1

Main channe l

( x i +X2)



subject to

x\ + X2 + 2*3 - X5 - X6 = 1

-2JC1 + X3 H- X4 + ;c5 — X7 = 2

JC/ >: 0, i = 1 to 7

4.10 Solve Problem 3.1 by solving its dual.

4.11 Show that neither the primal nor the dual of the problem,

Maximize /= —Jc1 4- 2JC2

subject to

-Jc1 + Jc2 < - 2

x} - X2 < 1

X1 > 0, X2 >: 0

has a feasible solution. Verify your result graphically.

4.12 Solve the following LP problem by decomposition principle, and verify
your result by solving it by the revised simplex method:

Maximize /= 8X1 + 3x2 + 8x3 + 6x4

subject to

4X1 + 3x2 + X3 + 3x4 < 16

4X1 - x2 + x3 < 12

X1 + 2x2 < 8

3X1 + X2 < 10

2x3 + 3x4 < 9

4x3 + x4 < 12

JC1- > 0, i = 1 to 4

4.13 Apply the decomposition principle to the dual of the following problem
and solve it.

Minimize/ = 1Ox1 + 2x2 H- 4x3 H- 8x4 H- X5

subject to



JC1 + 4x 2 — JC3 > 16

2Jc1 H- JC2 + JC3 > 4

3X1 H- X4 H- X5 > 8

X1 + 2JC4 - X5 > 2 0

x( > 0, / = 1 to 5

4.14 Express the dual of the following LP problem:

Maximize /= 2X1 H-X2

subject to

X1 - 2x2 > 2

X1 H- 2x2 = 8

X1 - X2 < 11

X1 > 0, X2 is unrestricted in sign

f 1200^) f 118(T)
4.15 Find the effect of changing b = ] \ to ] [ i n Example 4.5

C 800J C 120J
using sensitivity analysis.

4.16 Find the effect of changing the cost coefficients C1 and C4 from —45 and
— 50 to —40 and —60, respectively, in Example 4.5 using sensitivity
analysis.

4.17 Find the effect of changing C1 from —45 to —40 and C2 from —100 to
—90 in Example 4.5 using sensitivity analysis.

4.18 If a new product, E, which requires 10 min of work on lathe and 10 min
of work on milling machine per unit, with a profit of $120 per unit is
available in Example 4.5, determine whether it is worth manufacturing
E.

4.19 A metallurgical company produces four products, A, B, C, and D9 by
using copper and zinc as basic materials. The material requirements and
the profit per unit of each of the four products, and the maximum quan-
tities of copper and zinc available are given below.

Copper (Ib)
Zinc (Ib)
Profit per unit ($)

Product

A

4
2

15

B

9
1

25

C

1
3

20

D

10
20
60

Maximum Quantity
Available

6000
4000



Find the number of units of the various products to be produced for max-
imizing the profit.

Solve problems 4.20-4.28 using the data of problem 4.19.

4.20 Find the effect of changing the profit per unit of product D to $30.

4.21 Find the effect of changing the profit per unit of product A to $10, and
of product B to $20.

4.22 Find the effect of changing the profit per unit of product B to $30 and of
product Cto $25.

4.23 Find the effect of changing the available quantities of copper and zinc to
4000 and 6000 Ib, respectively.

4.24 What is the effect of introducing a new product, E, which requires 6 Ib
of copper and 3 Ib of zinc per unit if it brings a profit of $30 per unit?

4.25 Assume that products A, B9 C, and D require, in addition to the stated
amounts of copper and zinc, 4, 3, 2 and 5 Ib of nickel per unit, respec-
tively. If the total quantity of nickel available is 2000 Ib, in what way
the original optimum solution is affected?

4.26 If product A requires 5 Ib of copper and 3 Ib of zinc (instead of 4 Ib of
copper and 2 Ib of zinc) per unit, find the change in the optimum solution.

4.27 If product C requires 5 Ib of copper and 4 Ib of zinc (instead of 7 Ib of
copper and 3 Ib of zinc) per unit, find the change in the optimum solution.

4.28 If the available quantities of copper and zinc are changed to 8000 Ib and
5000 Ib, respectively, find the change in the optimum solution.

4.29 Solve the following LP problem:

Minimize/= 8Jc1 — 2x2

subject to
-4Jc1 + 2JC2 < 1

5JC1 — 4JC2 < 3

Jc1 > 0, Jc2 > 0

Investigate the change in the optimum solution of Problem 4.29 when the fol-
lowing changes are made (a) by using sensitivity analysis and (b) by solving
the new problem graphically.

4.30 6, = 2

4.31 b2 = 4

4.32 C1 = 10



4.33 c2 = - 4

4.34 an = -5

4.35 a22 = —2

4.36 Perform one iteration of Karmarkar's method for the LP problem:

Min imize /= Ixx — 2x2 + 5x3

subject to

Jc1 — x2 = 0

Xx + X2 + X3 = 1

Xi > 0, I = 1,2,3

4.37 Perform one iteration of Karmarkar's method for the following LP prob-
lem:

Minimize /= 3Jc1 + 5JC2 — 3x3

subject to

X1 - x3 = 0

Xx + X2 + X3 = I

xt > 0, I = 1,2,3

4.38 Transform the following LP problem into the form required by Kar-
markar's method:

Minimize/ = Xx +X2 H-JC3

subject to

Jc1 + Jc2 — JC3 = 4

3X1 — Jc2 = 0

JC; > 0, I = 1,2,3

4.39 A contractor has three sets of heavy construction equipment available
at both New York and Los Angeles. He has construction jobs in Seattle,
Houston, and Detroit that require two, three, and one set of equipment,
respectively. The shipping costs per set between cities i andj (ctj) are
shown in Fig. 4.5. Formulate the problem of finding the shipping pat-
tern that minimizes the cost.



Figure 4.5 Shipping costs between cities.

4.40 Minimize/(X) = 3Jc1 + 2x1 + 5JC3 ~ 4Jc1Jc2 - 2Jc1Jc3 - 2JC2JC3

subject to

3Jc1 + 5JC2 + 2JC3 > 10

3JC1 H- 5JC3 < 15

JC1- > 0, I = 1,2,3

by quadratic programming.

4.41 Find the solution of the quadratic programming problem stated in Ex-
ample 1.5.

4.42 According to elastic-plastic theory, a frame structure fails (collapses)
due to the formation of a plastic hinge mechanism. The various possible
mechanisms in which a portal frame (Fig. 4.6) can fail are shown in

Figure 4.6 Plastic hinges in a frame.

Detroit

Houston

Seattle

New York

Los Angeles



Figure 4.7 Possible failure mechanisms of a portal frame.

Fig. 4.7. The reserve strengths of the frame in various failure mecha-
nisms (Z1) can be expressed in terms of the plastic moment capacities
of the hinges as indicated in Fig. 4.7. Assuming that the cost of the
frame is proportional to 200 times each of the moment capacities M1,
M2, M6, and M7, and 100 times each of the moment capacities M3, M4,
and M5, formulate the problem of minimizing the total cost to ensure
nonzero reserve strength in each failure mechanism. Also, suggest a
suitable technique for solving the problem. Assume that the moment
capacities are restricted as 0 < M1- < 2 x 105 lb-in., i = 1,2,. . . ,7.
Data: JC = 100 in., y = 150 in., P1 = 1000 Ib, and P2 = 500 Ib.
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