
EcoCast: Interactive, Object-Oriented Macroprogramming
for Networks of Ultra-Compact Wireless Sensor Nodes

Yi-Hsuan Tu, Yen-Chiu Li
1Department of Computer Science

National Tsing Hua University, Taiwan
{cindyduh, joyce7216}@gmail.com

Ting-Chou Chien, Pai H. Chou1,2

2Center for Embedded Computer Systems
University of California, Irvine, CA USA

{tchien, phchou}@uci.edu

ABSTRACT
EcoCast is an execution framework for macroprogramming of wire-

less sensor networks. Users access sensor nodes as dynamic objects

in Python by invoking methods on them without being concerned

with network protocols, and type marshalling and demarshalling

ensure proper data access. EcoCast extends Python’s functional

programming primitives map(), reduce(), and filter() to macro-

programming with several synchrony semantics and job-control op-

tions. EcoCast can compile Python lambda expressions and func-

tions to run on the nodes at native speed without requiring most

users to write code in C or assembly, and it patches the firmware

transparently without rebooting. The use of Python also facili-

tates host-side application development by enabling developers to

take full advantage of the rich code libraries and data structures in

Python. Experimental results show the reprogramming and execu-

tion latencies of EcoCast scale well over the size of the network

while occupying a small memory footprint.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-

time and embedded systems—wireless sensing systems; D.2.6 [Software
Engineering]: Programming Environments—Interactive environ-
ments

General Terms
Design, Languages

Keywords
wireless sensor network, macroprogramming, dynamic loading

1. INTRODUCTION
Macroprogramming may be a crucial technology in making wire-

less sensor networks (WSN) a truly useful tool for a wide range of

applications. In contrast to traditional programming for individ-

ual sensor nodes, macroprogramming entails writing a program for

groups of nodes in the network. It promises to enable the user to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’11, April 12–14, 2011, Chicago, Illinois.
Copyright 2011 ACM 978-1-4503-0512-9/11/04 ...$10.00.

command a large number of nodes at the high level without having

to express error-prone details at the low level. Moreover, the high-

level knowledge captured by a macroprogram can potentially lend

itself to global optimization opportunities that would otherwise be

difficult to discover with only node-local knowledge.

As appealing as the idea may sound, macroprogramming still

remains a challenge today. To be truly successful, macroprogram-

ming must strike a balance between its technical merits and prac-

tical considerations. The runtime system must be able to perform

firmware patching over a wireless link, and we believe it should

be able to execute code natively for efficiency and interactively
for direct feedback. Perhaps the most important consideration is

the choice of the language: it should be sufficiently expressive

(i.e., Turing Complete) with both node-level and macro-level con-

structs in a clean syntax and can be smoothly integrated into a well-

supported programming environment with a large user base. More-

over, the runtime support should be lightweight enough to run on

some of the more resource-constrained WSN platforms.

To meet these challenges, we propose EcoCast, an interactive

object-oriented macroprogramming framework. From a command-

line shell on a host computer, one can issue a macroprogramming

command to run on multiple nodes as a group and individually. We

choose the Python language for its familiar syntax, dynamic object

orientation, interactive scripting and batch execution, macropro-

gramming constructs, and rich library support for general-purpose

application development. Nodes and groups of nodes in the net-

work are represented as objects in Python on the host computer and

are accessed via method calls. Python code can also be compiled

and loaded on-demand transparently and executed on the nodes im-

mediately, without having to rely on a different language for node

programming. For macroprogramming, we extend functional pro-
gramming constructs to working with groups of nodes: map (re-

turns a list of return values of invoking a function on a group of

nodes), reduce (returns the result of reduction operation on a group

of nodes), and filter (returns a subgroup of nodes satisfying a

given condition). EcoCast also supports different synchrony se-

mantics for parallel execution.

This paper is organized as follows. We survey previous work in

related areas, followed by an overview of the proposed system. We

explain the scripting methodology, compilation, reprogramming,

and multi-hop networking. Experimental results show EcoCast to

be effective in terms of scalability of the number of nodes, round-

trip latency, topology discovery, and multi-hop latency, especially

considering the very limited resource on the sensor nodes.

2. RELATED WORK
Our proposed EcoCast system requires integration of several key

features: remote firmware update, interactive scripting, and macro-

366

programming. This section surveys related work in these individual

areas. Most systems proposed to date support node-level, compila-

tion style of software development, whereas EcoCast supports in-

teractive style of macroprogramming by scripting.

2.1 Remote Firmware Update
Although macroprogramming can be done in the traditional style

of compiling the entire program and writing the firmware before ex-

ecution, it is impractical as the cost of correcting even a minor error

in the firmware can be prohibitive. Instead, it is almost manda-

tory to be able to update firmware remotely. Remote firmware up-

date can be divided into full image replacement and binary patch-

ing. The former completely replaces the firmware image (except

for the bootloader) and requires a reboot, and this has been done

for single-hop [8, 9] and multi-hop [20, 21, 34] networks, includ-

ing epidemic dissemination protocols [16]. However, full image

replacement can be costly, and patching techniques have been pro-

posed, by transmitting a diff script or an edit script containing

patching commands. Proposed techniques use diff [18, 32], block-

level comparison [17], by finding fixed-size shared blocks [36], or

by leveraging higher-level program structure to generate more con-

cise scripts [19]. Another alternative to program image replacement

is to use loadable modules for reprogramming. Loading a module

entails resolving references to symbols and can be divided into pre-
linking [11], dynamic linking [10,25], and dynamic loading [6,13].

Some remote update methods may be more structured and limited

to constant modifications [2] rather than general code replacement.

To be applicable to interactive execution, the remote reprogram-

ming technique should update multiple nodes at a time [8,9,16,20]

rather than a single node at a time [18]. It should not require re-

booting after a new program image has been installed or patched,

or else program state will be lost. Also, it should be able to confirm

successful reprogramming before proceeding to the next step in a

macroprogram [8].

2.2 Shells and Scripting Systems
Scripting has been shown to enable programmers to achieve 10×

the productivity over system programming languages such as C or

Java [29]. Several recent works are suggesting scripting as a new

trend towards programming and control of WSN. A shell is an in-

teractive command-line interpreter for a scripting language, while

a scripting language is one whose primitives consist of higher-level

functions or programs rather than low-level instructions. Scripting

languages may be executed interactively or in batch.

Trying to adapt the idea of scripting to WSN, however, requires

much more than porting code and subsetting the language. For in-

stance, SensorWare [4] includes an interpreter for a subset of the

Tcl [28] scripting language on the sensor node itself. This is very

powerful but requires a 32-bit CPU with several hundred kilobytes

of program memory plus data memory, too costly for most sensor

nodes. Several other systems also support shell on the nodes, in-

cluding Mantis, Contiki, and TinyOS. These are useful for users

to invoke commands interactively, but they are add-on features and

occupy additional program and data memory.

One way to overcome the resource limitation on the nodes is

to run the shell on the host computer, rather than on the node.

LiteOS [5] provides LiteShell, a command-line interpreter that sup-

ports UNIX-like commands and maps the sensor network to the file

system for invoking commands and updating firmware. The com-

mands are also available as APIs for developing user applications

on the host PC. The idea of fat client, thin server is also central to

Marionette [37] and EcoExec [15]. Both provide a Python-based

shell on the host while the node implements primitives for function

invocation and memory access primitives. The former is for de-

bugging during development phase and relies on an external repro-

gramming scheme [16] for whole image replacement; whereas the

latter can patch on-demand, by involving an optimizing compiler

in the loop if necessary, and continue executing commands inter-

actively without rebooting. Both Marionette and EcoExec require

users to write code in a separate language (nesC and C, respec-

tively) at the node level, but neither supports macroprogramming.

Another issue is synchrony: nodes may take a different amount

of time to finish executing a function, or the results may be invoked

at different times due to the different number of hops that the pack-

ets may need to travel. Whether it is necessary to synchronize the

nodes before the next command is allowed to proceed becomes an

important consideration in such a parallel language. EcoExec with

its serial semantics by default assumes synchronous (fully block-

ing) semantics, which is the most conservative and at the same time

slowest.

2.3 Query Systems and Macroprogramming
Query-like interfaces have been proposed for WSN [3, 23, 38],

including an SQL-like interface [24] for retrieving data from the

WSN as if it were a database. All query systems are interactive.

Similar to a macroprogram, a single query can potentially involve

many nodes in the network and would otherwise be complex to

specify at the node-level abstraction. However, query systems are

limited to propagating data from the nodes upstream to the host and

are not designed to support programming in general. First, a query

system has no concept of compiler or linker to properly handle pro-

gram fragments. Second, even if the query mechanism can dissem-

inate code patches as data downstream to the nodes, doing so over

a general query protocol would be highly inefficient compared to

one designed specifically for remote reprogramming purpose, such

as the protocol described in Section 6.2.

Macroprogramming systems support the use of high-level pro-

gramming constructs on groups of nodes, rather than lower-level

constructs for individual nodes. Several works impose a task graph

or dataflow graph model of computation on top of a set of nodes

[1, 30, 31]. They serve to abstract away the communication details

and capture the data or control dependency among individual or

groups of nodes; however, the actual functionality at the system

level and node level needs to be expressed in another language.

Unlike graph models, Regiment [26] and Region Streams [27]

support macroprogramming using functional reactive programming
construct both spatially (over regions of nodes) and temporally (sam-

ples over time). They support arithmetic operations and pure func-

tions on sensed data but not invoking functions in general or per-

forming operations with side effects on the nodes. Kairos [12]

also provides a C-like macroprogramming environment for vehicle

tracking. The use of a special language is expressive at the macro-

programming level, but integration with the rest of the software

development (such as GUI) would require more effort. Macro-

Lab [14] uses a Matlab-like language, and its functions can be in-

voked remotely, though incremental patching is not a built-in fea-

ture. Frameworks such as EnviroSuite [22], which maps nodes to

objects in a programming language, can facilitate such software in-

tegration efforts, but they provide less macroprogramming support.

Our proposed EcoCast attempts to balance the expressivity of func-

tional style macroprogramming with the practicality of node/group-

to-object mapping in the popular Python language.

3. SYSTEM OVERVIEW
EcoCast is a lightweight, interactive, object-oriented macropro-

gramming framework that spans a host computer and a WSN plat-

367

Figure 1: System overview.

form. We use the source code of EcoExec [33] as a starting point.

This section first describes our first target platform, followed by an

overview of the execution flow.

3.1 Wireless Sensing Platform
EcoCast can be ported to a variety of wireless sensing platforms

as long as they can be organized as three subsystems: nodes, base
stations, and the host. An overview of these subsystems is shown in

Fig. 1. Although EcoCast contains features of EcoExec, the newly

added macroprogramming and multi-hop features could not fit in

the 4KB program memory of the original Eco platform. There-

fore, we ported the code and implemented EcoCast on a different

platform that is less resource-constrained but still considered ultra-

compact. This section describes this platform.

3.1.1 Nodes
We implemented EcoCast on the EcoSpire [7] sensor nodes. The

MCU of EcoSpire is the Nordic nRF24LE1, which contains an

8051-compatible core integrated with the nRF24L01 radio in the

2.4 GHz ISM band, a multichannel analog-to-digital converter, and

general-purpose I/O pins. The nRF24L01 radio supports auto-ack

and auto-retransmission, and the nRF24LE1 MCU contains 1 KB

on-chip data RAM and 16 KB flash as program memory. EcoSpire

contains an on-board triaxial accelerometer, and it includes an ex-

pansion connector for a variety of sensor and actuator modules.

3.1.2 Base Station
The hardware of the base station in the experiment is built by

connecting a Nordic nRF24L01 2.4 GHz RF transceiver module to

a Freescale DEMO9S12NE64 evaluation board via SPI . The MCU

on this board is the HCS12 (16-bit) with 64K bytes of flash and 8K

bytes of RAM. It supports TCP/IP via its Fast Ethernet (10/100

Mbps) MAC/PHY transceiver.

3.1.3 Host Computer
The host subsystem runs on a conventional PC that can commu-

nicate with the nodes via the base station(s). The host computer

runs the wireless shell that enables programmers to interact with

the nodes over the air. The host also maintains a suite of tools that

help the shell keep track of the state of the nodes as well as code

generation and optimization. The tools include the compiler, linker,

runtime estimator, node database, and version control. These tools

are invoked automatically and transparently to the users as they

Packet Processing

Network Processing

EcoExec Node

EcoExec Host

Mass Command Handler

Esh
Command

script
User

interface

Type
Marshalling

Mass
Programming
PreProcessing

function
installed?

Generate
Message

Incremental
Linking

Binary
Image

Extract, diff

Type
Demarshalling

Mass
Programming

PostProcessing

Routing
Processing

PacketizingDepacketizing Depacketizing

Relay to
next hop

Destination
?

Packetizing

Update
?

Store
handler

Execute
handler

Generate
Feedback

Host subsustem Node subsustem

new to
EcoCast

based on
EcoExec

Legend

Figure 2: Execution Flow of EcoCast.

type commands into the shell. The execution sequence is explained

next.

3.2 Execution Flow
The user can either type in a command interactively or run an ap-

plication program (script) written in Python to call our API library.

In either case, the same command is invoked, and EcoCast handles

them in exactly the same way. The steps in the execution are node-

handle creation, command processing, and message issuing. The

flowchart of EcoCast is shown in Fig. 2.

3.2.1 Joining and Leaving a Network
When the host system starts up, it first searches for available

sensor nodes to join the network. We assume that every node has

been programmed with a unique ID out of factory. On power-up,

a node attempts to join a network governed by a host computer.

Once a node and a host agree to connect, the host constructs a node
handle object in Python with the node’s unique ID and creates a

new entry for it in the node database. Subsequently, all operations

on the node, including function invocation, code update, configu-

ration changes, etc, are all done through the node handle object.

This idea is analogous to the concept of file handles used by most

programming languages for reading and writing files, except these

calls translate into wireless communication messages between the

host and the node. If the host cannot reach a node after a timeout

period, then the host system removes the corresponding node han-

dle object and marks so in the node database. Attempts to use such

a handle causes an exception to be raised.

3.2.2 Language Wrapping
Similar to other language wrappers for middleware systems, our

wrapper also performs type marshalling and demarshalling when

translating between Python code and the node’s native code. Na-

tive code includes not only drivers at the low level and library rou-

tines but also user-written Python code that is translated into C and

subsequently compiled. In all cases, function prototype informa-

tion (types of the parameters and return value) is either explicitly

written, inferred, or name-encoded. For each type of target MCU,

we create an architecture profile in terms of the endian and word

size to enable EcoCast to handle the checking and conversion or to

raise an exception if it cannot convert.

368

Table 1: Comparison between EcoExec and EcoCast
Feature EcoExec EcoCast

Remote firmware patching single node group

Code memory EEPROM Flash, RAM

Function code C C, Python

Remote function invocation Yes Yes

Job control, scope No Yes

Functional programming on nodes default (serial) parallel

Type marshalling and demarshalling No Yes

Multi-Hop Networking No Yes

3.2.3 Code Swapping and Dynamic Compilation
In addition to serving as a language wrapper for function in-

vocation and type marshalling, EcoCast also performs several OS

functions on the host on behalf of the nodes, the most important

of which is host-assisted code swapping. Dynamic compilation is

also performed as a step if necessary. Before invoking a function,

EcoCast checks the state of the node’s firmware image to see if the

target function is in memory. If not, then it attempts to swap in

the code first, if the binary exists. If the binary does not exist, then

it attempts to compile and link the code from either Python code

fragments or library source code. It needs to perform incremental

linking on the new function to produce a new binary image.

3.2.4 Communication and Synchronization
Ultimately, everything the host needs to do to a node is done by

sending messages via the base station that the node is associated

with. Messages from the host can either specify that new code be

installed or a target function be invoked. A single command in

Python may turn into commands to multiple nodes and gathering

results from their invocations. EcoCast not only attempts to op-

timize such communication patterns by broadcasting and schedul-

ing, but also supports several different user-specifiable semantics,

including fully blocking and nonblocking execution styles.

4. SCRIPTING
This section describes the details of interactive execution involv-

ing the host-side scripting environment. EcoCast provides a script-

ing environment as the primary way for users and application pro-

grams (e.g., GUI) to interact with the sensor nodes. It consists of

a class library at a higher level for the user to access the sensor

network, a shell called Esh for interactive access, and a class li-

brary at a lower level for runtime support. Table 1 summarizes key

enhancements of EcoCast over EcoExec.

4.1 Scripting Language
We use Python1 as our scripting environment for its clean syntax

and rich feature support. It can be run two ways: interactive mode

and batch mode. In interactive mode, users can enter commands

as Python statements directly into Esh (Section 4.2). Variables in

Python need not be declared before they are used, and they track the

references to objects that are self descriptive (and thus considered

dynamically typed). Typing the name of a variable in interactive

mode causes the object to be “rendered” in its string representation.

Thus, in interactive mode,

>>> x = 3 # no need to declare x

>>> x # displays its value as text

3 # interpreter calls int’s __repr__ method

1We mean Python 2.6 as of this writing, instead of Python 3.0,
which is an intentionally backwards incompatible release.

The runtime system keeps track of the types of the objects dynami-

cally and enforces their consistent use. One direct advantage is that

the same code is thus reusable over a wide range of types without

templates (C++) or interfaces (Java). This enables Python’s built-in

list data structure to contain objects of any type, simply by enclos-

ing them in square brackets, such as ["hello", 3, 2.95].

Python is object-oriented with its support for classes, inheri-

tance, method invocation, and instantiation. Objects may be in-

stantiated simply by calling the constructor with the parameters, in

the syntax of function calls. The rest of this subsection explains our

use of data structures and macroprogramming constructs in Python.

4.1.1 Node Handles and Group Handles
A node handle is a data structure through which the program

can access the node, analogous to a file handle. To create a node

handle object in EcoCast, one instantiates the ecNode class with the

statement var_name = ecNode(id), where var_name is the variable

name that represents this node instance, and id is the node’s net-

work address. Subsequently, an application program can access

the node by making Python method calls on the node handle ob-

ject. Operations on attributes of such a node-handle object will

have the same effect as directly manipulating them in the appli-

cation program during runtime. One can use the object.method()

and object.attribute syntax to invoke functions on the node and

to access (get and set) attributes on the node. These accesses are

translated into a sequence of actions on the host, ultimately reach-

ing the nodes, and getting response back, as explained in Section

3.2. By treating nodes as objects, programmers can build complex

applications such as graphical user interface or data analysis pro-

grams easily without getting bogged down with the details of WSN

programming.

In interactive mode, the Python shell renders an expression as a

string to give the user instant feedback. For built-in types such as

int and str, the values are rendered in the literal form such as 3

and "hello". For user-defined types (namely classes), the Python

shell calls the special __repr__ method, which can be defined by

the user to return a string representation for the object’s value. In

our case, we define it to be the string in the constructor syntax with

the value of the node ID. For example,

>>> x = ecNode(123) # instantiate a node handle

>>> x # prints the string returned by

ecNode(123) # the x.__repr__() special method

>>>

Note that in the current EcoCast implementation, node handles are

supported only at the macroprogramming level rather node level.

That is, user-defined functions to run on a node are not to reference

other nodes, although library and synthesized code written in C

may reference other nodes at a lower level using node IDs.

In EcoCast, a group handle is used to construct a group of nodes.

The ecGroup class is instantiated with the statement g = ecGroup(L)

where L is a list of node IDs or handles. The nodes in the group

listen to a specific channel, and each node is assigned a group ID.

The ecGroup handle can be reused in several macroprogramming

constructs without having to reconstruct a new group each time.

4.1.2 Functional and Macroprogramming Constructs
Python provides map, filter, reduce as constructs for functional

programming. EcoCast provides the corresponding functions for

macroprogramming sensor nodes. In Python,

map(f, A) is equivalent to [f(A[0]), f(A[1]), f(A[2])...], that

is, forms a new list with the return values of calling function f on

every element of the list A. A more general form of map takes mul-

369

tiple lists and is equivalent to calling f with arguments taken from

the corresponding elements of the lists,

e.g., [f(A[0], B[0], C[0]), f(A[1], B[1], C[1]), ...].

filter(f, L) computes the subset of list members that satisfy a

condition. That is, it returns a new list of members x of L such that

f(x) evaluates to true.

reduce(f, L[, Init]) performs a binary operation f on the first

two members of L, and applies the f operator on the resulting value

with the subsequent member of L for the rest of the list. For exam-

ple, if L has five elements, then it evaluates to

f(f(f(f(L[0], L[1]), L[2]), L[3]), L[4]).

If the optional third parameter Init is provided, then L[0] in the

expanded expression is replaced with f(Init, L[0]) instead.

Functional programming constructs often make use of lambda

expressions for defining anonymous functions for convenience. For

instance, lambda x,y: x+y is an anonymous function that returns

the sum of its two arguments. It can be passed in place of f to the

reduce example above to compute the sum of the list members.

We extend the concept of functional programming on lists of data

to macroprogramming on groups of nodes.

ecMap(f, GH) is equivalent to [GH[0].f(), GH[1].f(), ...], that

is, the list of return values from calling method f on every node in

GH, which may be either a group handle or a list of node handles. A

more general form of ecMap() takes additional lists whose members

are passed as parameters to the corresponding calls.

ecFilter(func, GH, f) constructs a list from those elements GH[i]

of GH for which func(GH[i].f()) returns true. Note that if the f has

arguments, the parameters can be added following the f.

ecReduce(func, GH, f) calls function func on two arguments cu-

mulatively over func(GH[i].f()) from left to right, so as to reduce

the list to a single value. Note that if the f has arguments, the pa-

rameters can be added following the f.

Note that in the ecMap operator, f is “local” to each node by ref-

erencing a method by name. Both ecFilter and ecReduce also in-

clude a call to method f whose result is used for filtering and reduc-

tion purposes, respectively. On the other hand, func is “global” as

either a function passed by reference or a lambda expression. We

show a simple example using the commands above.

1 >>> listAll()

2 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

3 >>> GH = ecGroup([1,2,4,5,7,9]) # group based on IDs

4 >>> GH

5 ecGroup([1, 2, 4, 5, 7, 9])

6 >>> ecMap(readTemp, GH)

7 [25.5, 25.3, 25.3, 25.5, 25.2, 25.3]

8 >>> ecFilter(lambda x: x < 2000, GH, readADC)

9 [ecNode(1), ecNode(2), ecNode(4), ecNode(9)]

10 >>> ecReduce(lambda x, y: x + y, GH, readTemp)

11 177.5

On Line 1, the function listAll() lists the all IDs of nodes that

are found and bound to the host during the start-up process of the

Host subsystem. Line 3 constructs a group GH of nodes with IDs

[1,2,4,5,7,9]. Line 6 calls readTemp method on each node in

GH to read the temperature and return a list of the results. Line 8

constructs a list of nodes from GH whose result of calling readADC

method is less than 2000. On Line 10, the ecReduce command sums

the result of calling readTemp method on every node in GH. An av-

erage could be obtained easily by dividing it by len(GH).

In this example, readADC() is a lower-level function that returns

the raw value from the ADC. In contrast, readTemp() is a host-

local method that invokes a lower-level function on the node to

obtain the raw ADC value (a 12-bit int in this case) and converts

it to a floating-point value. In either case, most users need not be

concerned about whether the floating point conversion was done on

the node remotely or on the host locally.

As another example, with these functional programming con-

structs, a tracking application can be written as simply as

1 def PEG():

2 # Request all nodes to do one minute sensing

3 # n = nodes that have average readings > THRESHOLD

4 n = ecFilter(lambda x: x > THRESHOLD, GH, readADC1Min)

5 # Request nodes to do ACTION

6 ecMap(ACTION, n)

7 GH = ecGroup(getNodes())

8 ecMap(setSamplesPerSec, GH, [20] * len(GH))

9 task = repeated(1, PEG) # obj to spawn a new thread / sec

10 task.start()

11 time.sleep(60)

12 task.stop()

These examples show nodes to be passive by executing com-

mands upon host request and returning the results to the host. In

general, nodes may be active in periodic data sampling or actua-

tion, but these actions are decoupled from serving host requests.

4.2 Esh Constructs
EcoCast provides a command line interpreter named Esh (for

“EcoCast shell”). It accepts the full Python syntax in interactive

mode, plus extended syntax for the purpose of job control and

scoping for macroprogramming and source-code interception. Al-

though users can directly load the class library and run everything

from the Python prompt, the reason for this additional layer is to

intercept constructs that must be processed before invoking the un-

derlying Python interpreter. Specifically, inline C code can be ex-

tracted and preprocessed this way. The rest of the EcoCast classes

and API can be used directly by any other Python program without

going through Esh.

4.2.1 Job Control in Esh
Esh supports running background jobs while executing interac-

tively. To run a job in the background, the user simply types the

command as usual, followed by &, similar to most Unix-style shells.

The jobs command can then be used to list the command names,

execution status, and the result of all the background jobs. The

getResult(id) command returns the execution result of a specific

background job with id. For example:

>>> n.readADC() &

>>> jobs

2 Background Job(s)

No. Command Status Result

==

1 ecMap(readTemp, nodes) Running None

2 n.readADC() Done 2344

>>>

4.2.2 Scoping commands
Esh provides commands that change the default scoping of the

symbols so that those inside a designated node can be visible and

accessed directly without having to qualify them with the node in-

stance first. These can be very useful for executing a series of com-

mands associated with a node or a list of nodes.

370

Table 2: Summary of EcoCast commands
Command Type Meaning

listAll() EcoCast API list IDs of found nodes

getNodes() EcoCast API obtain a list of node instances

ecNode EcoCast class open connection to one node

ecGroup() EcoCast class open group connection(s) to node(s)

ecMap() EcoCast Macro-

prog. API

map function for node(s)

ecFilter() EcoCast Macro-

prog. API

filter function for node(s)

ecReduce() EcoCast Macro-

prog. API

reduce function for node(s)

& Esh qualifier run a command as a background job

jobs Esh command show the information of background

jobs

scope...end Esh block set symbol scope to node or nodes

extern Esh qualifier enable access global variable in sym-

bol scope of node or nodes

scope [node instance | list of node instances | ecGroup instance]

list of statements
end

When user enter the scope command followed by a node instance
or a list of node instances, all the functions or variables in the com-

mands entered later are mapped to the attribute on the nodes.

While inside a scope block, the extern [variable name] com-

mand enables access to a variable in the global scope. Here is an

example:

1 >>> t = 0 # global

2 >>> n = ecNode(1)

3 >>> scope n # set scope to n

4 ... extern t # access global

5 ... t = readTemp() # n.readTemp()

6 ... t

7 25.4

8 ... end

Line 1 initializes a global variable t. From Line 5 to 8, all sym-

bols except t refer to those inside node n, as specified by the scope

statement on Line 3 and extern t on Line 4. readTemp() on Line

5 is equivalent to n.readTemp() without the scope command. Note

that if n on Line 3 is replaced with a list, then each statement in

the scope block turns into an ecMap of the method to the elements

(nodes) of the list.

Table 2 shows the classes, macroprogramming primitives, and

APIs used in EcoCast. The node level methods are not list here,

and users can get the details using dir().

4.3 Method Dispatching and Attribute Access
EcoCast performs two tasks as the language wrapper: type mar-

shalling and code swapping.

4.3.1 Type Marshalling
Type marshalling is the task of ensuring that the sender or caller’s

data type is properly matched with that of the recipient or callee,

by conversion at runtime if necessary. EcoCast has access to all the

prototype information for the functions and global variables, and it

also can look up the architecture model for information such as the

endian, word size, and their mapping to Python ones. Every native

and non-native (e.g., 12-bit ADC int) type of every architecture can

be modeled as a Python class with the proper conversion operators.

For instance, EcoCast can provide an unsigned, 16-bit, big-endian

integer class as follows:

1 class UInt16big: # unsigned 16-bit, big-endian int

2 def __init__(self, n): # constructor

3 if (type(n) == type(1)): # type of 1 is int

4 # ensures value in range or throw exception

5 # store in self._rawData

6 elif # other types

7 # handle other types

8 def __int__(self): # typecast to built-in int

9 # form int from self._rawData and return

Note that by representing MCU data types this way in Python on

the host, the underlying Python interpreter automatically invokes

the proper type conversion operator accordingly. In the example

of UInt16big, any value going to the node can be specified using

just a generic int in Python; and any returning value automatically

can be cast into the proper type, all without burdening the user with

having to know all the type variants. For instance,

1 >>> n.setSamplesPerSec(20)

2 >>> n.bitResolution

3 12

4 >>> n.readADC()

5 15

The user does not need to be concerned with whether the samples

per second parameter is represented as an 8-bit, 16-bit, or 32-bit

signed or unsigned int. If the value is not one that can be handled

by the underlying hardware, then the user gets an exception. Con-

versely, the user also does not need to worry about the data type

returned by the readADC function, which may return 12-bit or 14-bit

values – it automatically gets cast into the proper type as needed.

4.3.2 Code Wrapping
Code wrapping is a way for the node-handle object to abstract

away implementation details as to where the code associated with

a node object is implemented. Some code and attributes may be

maintained (or “cached”) on the host and therefore can be exe-

cuted efficiently without incurring expensive wireless communi-

cation. In the example above, the setSamplesPerSec and readADC

functions reside on the node, but both may be locally intercepted

and optimized. This is because if there was a previous call to

setSamplesPerSec with the same value, and no other host has al-

tered the samples per second attribute, then EcoCast can simply re-

turn without actually making the remote call. Similarly, if readADC

is called five times within one second, but it had been configured to

be sampling at once per minute, the user has the option of returning

the cached value without communication. These are analogous to

standard I/O buffering on general-purpose computer systems.

Another form of abstraction is the support of convenient syn-

tax for attribute access. If n.bitResolution is used as an R-value

(i.e., on the right-hand-side of an assignment, or passed (by-value)

as a parameter), then the underlying Python interpreter automati-

cally calls the special method n.__getattr__("bitResolution") to

compute the value. Similarly, if n.bitResolution is used as an L-

value (i.e., in the context of n.bitResolution = 12), then Python

calls the special method n.__setattr__("bitResolution", 12) au-

tomatically instead. This mechanism enables the node handle to

appear as if it were the node itself.

5. COMPILATION AND LINKING
EcoCast performs compilation on two types of code for the node:

C source code and Python code. C programs are written in a style

that is native to the node’s MCU architecture and is inherited from

EcoExec. Python code is normally interpreted in the context of the

371

shell on the host PC itself. EcoCast adds the ability for the user

to write Python code to be executed on the node. EcoCast would

rewrite the Python code into C and invoke the C compiler. Then,

EcoCast processes the .map file to perform linking incrementally so

that a small patch file can be generated.

5.1 Compilation from Python
Instead of going to C language, the user can actually write Python

functions and expressions that are then translated into C to be com-

piled to run on the node. This is especially useful for specifying

conditions such as threshold or triggering conditions, and these

functions are often passed as the first parameter to a macroprogram-

ming construct. In addition to expressions, assignment statements,

named functions and anonymous functions (lambda), we also sup-

port structured control flow in the form of if/else and for loops with

known iteration bounds. A named function in Python has the syn-

tax

def function_name(parameter_list):

statements

return expr

One problem is that Python parameters are dynamically typed and

cannot always be inferred. In those cases, our solution is to require

the use of naming convention to encode the types of the parameters

and the function. We put a prefix before parameter name to indicate

the datatype:

Prefix C_ UC_ I_ UI_ F_

C Type char unsigned char int unsigned int float

The types of all local variables are automatically inferred and so as

the return value. To facilitate type inference, we requires that the

type of a variable to remain constant. Once the types are known,

then it is easy to convert most expressions and statements from

Python to C.

5.2 Incremental Linking and Code Swapping
Linking is the step of assigning addresses to symbols after the

program source code has been compiled into object code. To min-

imize the size of the patching script, linking should be performed

incrementally by considering the way the program has been linked

in the previous version. For each node, EcoCast maintains a direc-

tory of the source files, memory map file, and command script of

the node.

The map file contains information on memory usage, list of func-

tion segments, segment sizes and locations in program memory,

and the symbol table. The function call tree is also assumed to be

available with the proper compiler directives. Information obtained

from the memory map file can only reveal the size and address of

each function but not the actual function name, function parameters

or return value. The information extracted from the map files are

used by EcoCast for type marshalling and dispatching. To allow

another host access to the framework, the map file can be retrieved

either from the original host or the nodes.

To minimize the size of the patching script, the incremental linker

attempts to keep these assigned addresses unchanged between ver-

sions. The addresses include not only code but also data, constants,

and library routines. If the linker can determine that two pieces of

code are never invoked together, then it may consider overlaying

them when necessary to fit in the very limited amount of program

memory while reducing the reference patching. In the current im-

plementation, each code segment is given a priority based on the

call tree generated by Keil C LX51 linker. The higher the priority,

the smaller the number, starting from 1, and priority 0 is assigned

to driver code segments. For each segment, the larger its call depth,

the higher its priority. This ensures that segments that are least ref-

erenced will be overlaid first. A least recently used (LRU) replace-

ment algorithm is used to select among segments with the same

priority.

5.3 Version Control and Patching Scripts
Conceptually, the host subsystem maintains a database entry for

keeping track of the memory layout and source files of each sensor

node. However, it is inefficient and not scalable to a large number

of nodes, because we expect some or most nodes to have identi-

cal memory layouts. To eliminate redundant entries, we maintain

the information according to the firmware version. Nodes with the

same version share the same entry, and a new entry is created when

functions are installed or updated, resulting in distinct memory lay-

outs. This organization makes it efficient to re-compile, re-link, and

updating code to a group of nodes at a time. Moreover, to encour-

age experimentation, EcoCast integrates version control (Subver-

sion in our case) for the node firmware to enable roll back to any

previous version of the firmware as simply as an “undo” command.

Upon generation of a new program image, binaries of the new

function are extracted while pre-existing segments that are updated

are diff ed with the original binaries to generate the patching bina-

ries. These patches are then wrapped into store messages (Section

6.1) for installation or update on the target node.

6. REPROGRAMMING AND EXECUTION
One user command on the host subsystem can be expanded into

a sequence of actions, including some that turn into messages that

are received and executed by the nodes, followed by returning val-

ues to the host or other nodes. The host first sends patching scripts

to the targeted nodes if necessary, and then sends the message to

invoke the user’s desired function. For macroprogramming, Eco-

Cast attempts to parallelize the communication and execution as

much as possible. This section first describes message handling by

a node, followed by group reprogramming over the air, and group

invocation of functions with specific discussion on synchrony is-

sues.

6.1 Execution Mechanism on the Node
The Node subsystem consists of two software components: Store

and Execute. They make use of the same underlying messaging

mechanism for wireless communication.

6.1.1 Store Component
The Store component is responsible for processing incoming data

to the node. This happens during function installation or variable

updates. A STORE message contains a 2-byte target address, 1-

byte nonvolatile flag, a 1-byte length field, and the data payload.

The nonvolatile flag indicates whether the data should be stored in

nonvolatile memory such as EEPROM or flash, or if it should be

written to RAM only. The difference is that the RAM content is

lost when the device is rebooted. It is up to the programmer to

decide whether the program is to be permanently updated or tem-

porarily changed. In our case, the code for lambda expressions is

kept in RAM only.

6.1.2 Execute Component
The execute component invokes target functions plus basic func-

tions for memory access. It contains a set of get handlers that re-

turn memory content at a given address, and this mechanism can

be further extended as a debugging utility. Unlike EcoExec, which

assumes that the code must be copied from external EEPROM into

372

Figure 3: Reprogramming scenario

on-chip RAM before it can execute, EcoCast assumes execute-in-
place (XIP) model for program memory, although it is also possi-

ble execute from RAM for code that is meant to be run temporar-

ily and discarded, such as most lambda expressions. In any case,

the firmware is structured such that no rebooting is needed after

patching. We achieve this by setting the highest priority on the

code segment for the EcoCast runtime support such that it cannot

be modified at run time.

6.2 Group Reprogramming of Nodes
To reprogram (patch) a set of nodes, EcoCast performs the steps

similar to Telescribe [8] as shown in Fig. 3, with the difference

that EcoCast does it incrementally rather than full image replace-

ment. This scheme is robust to interruption during reprogramming.

In Step 1, the host individually sends a JOIN message to ask the

nodes that need to be reprogrammed to join the group. This group

of nodes (in ovals in Fig. 3(b)) would listen to a specific channel

and every member node keeps a bitmap to track packet loss. In Step

2, the host broadcasts the DATA messages via the specific channel

on which only the group members can receive, as shown in Fig.

3(b). The DATA message includes the code (as data) and its mem-

ory address. Each time a node receives a DATA message, it stores

the code to the specific memory location and sets the correspond-

ing bit in the bitmap. After all DATA messages are sent, the host

broadcasts a REQ message (Fig. 3(c)) in Step 3, and all the mem-

ber nodes reply with a BMP message containing their bitmap to

the host to indicate missing DATA messages (Fig. 3(d)). A simple

TDMA technique is applied to the BMPs from the nodes, where

each node waits until its time slot as determined by its group ID

and sends the BMP back to the host. The host rebroadcasts the lost

DATA packets according to the BMPs and repeats the steps above

until all members are reprogrammed correctly, unless the user de-

cides to abort.

6.3 Group Execution of Functions on Nodes
To ask a node to execute a function, the host just needs to send an

EXEC message to the node and wait until the node replies with the

result. To ask multiple nodes to execute a function, such as the case

with map, it would be inefficient to simply iterate over the nodes

one at a time. Instead, the following protocol is used, as sketched

in Fig. 4. Initially, the host broadcasts an EXEC message, and the

nodes execute the specified function. However, at this point the

Figure 4: Function execution sketch

nodes should not reply as soon as they are done, because it is likely

to run into collision if not coordinated. The host is not blocked but

may send a PROBE message to see if a node has completed the

previous call. Instead of sending a PROBE to each node, the host

sends it to only the node acting as the leader, since it is expected

that all nodes would complete execution around the same time. The

leader replies with either a WAIT if it is still running and the host

repeats; or the leader replies with a READY if it has finished. Then,

the host broadcasts a REQ message, and all the nodes return their

execution results similar to the group reprogramming in Section

6.2. The nodes reply with a RESULT message in a simple TDMA

scheme, instead of the bitmap.

One question is how long the host should wait before trying a

PROBE. The overhead for the leader is high if we probe the leader

too often, but if the time interval between successive probes is too

long, then the response latency increases. For this reason, we esti-

mate the execution time using a timing analysis tool named Bound-

T [35]. It computes an upper bound on the worst case execution

time (WCET) of a program. Using the estimated execution time,

EcoCast can determine an effective time for probing.

6.4 Background Job Management
To handle a background job, the interpreter assigns a thread to

execute the command in the background, and the background jobs
manager records the command, execution status and the informa-

tion of the corresponding thread. When multiple jobs exist in the

system, EcoCast is responsible for mapping the incoming packets

from the nodes to the associated jobs on the host. Since every in-

coming packet is related to a node instance on the host system, the

associated job is in charge of the packet. Note that we apply a lock-

ing scheme where an attribute of a node instance that resides on

node must be serialized to ensure correct execution on the node.

The jobs command is provided by EcoCast for the user to monitor

the execution status and access the result after the background job

is done.

7. MULTI-HOP NETWORKING
We use the proposed functional programming constructs to build

our initial multi-hop network protocol. We implement a stack with

minimal complexity by pro-active routing on the host, and this

approach is effective for those networks whose topologies do not

change rapidly. Our bootstrapping multi-hop protocol can be sep-

arated into topology discovery phase and normal transfer phase.

Both make use of six types of messages, as shown in Table 3.

373

Table 3: Opcodes for our Multi-hop Protocol
Discovery Phase

Code Type

2 Host Broadcast Request
3 Node Broadcast Request
4 Node Broadcast Ack
5 Host Broadcast Ack

Transfer Phase

Code Type

0 Host Data Request
1 Node Data Ack

Figure 5: Illustrative example for Discovery phase

7.1 Phase 1: Topology Discovery
Every node can use a node broadcast request message (type 3) to

to discover its neighbors by receiving type-4 messages from them.

The host can use type-2 message to ask one certain node to dis-

cover its neighbors and report with a type-5 message. In this phase,

EcoCast starts neighbor discovery from node #0, the default virtual

root node represented by the base station, and it explores the neigh-

bor nodes until the entire network has been discovered. The host

maintains the neighbor list for each node for path selection. In this

phase, when a node receives a packet, it checks if it is the recipient,

and the response is either to process it, relay it, or ignore it. Fig.

5 shows an illustrative example for requesting a node to report its

neighbor information.

After all neighbors have been discovered, the host can compute

the network topology and select the path for each node. For sim-

plicity, we use BFS (breadth-first search) as our path selecting pol-

icy. This protocol is designed to be simple on the node by moving

the complexity to either the host or a base station in the field. In

this case, path selection is done on the host in Python, but users

can always replace it with other algorithms or make a distributed

version.

7.2 Phase 2: Packet Transmission and Relay
After neighbor discovery and path selection, phase 2 is for the

normal operation of the network. It entails packet transmission and

relay. To do this, two types of packets are used: OpCode 0 is the

“downstream” packet type from the host to the nodes, and OpCode

1 is the “upstream” type. The packet format includes the hop length

and the IDs of the nodes along the path, followed by the payload.

8. EVALUATION
We evaluate the performance of EcoCast in terms of reprogram-

ming latency, execution latency, and memory footprint.

8.1 Experimental Setup and Test Cases
Our setup consists of a PC acting as the host connected through

an Ethernet base station to ten nodes as described in Section 3.1.

The nodes are all equipped with an on-board triaxial accelerome-

ter, and different nodes have their output pins connected to actu-

ators for lighting control. At the beginning, all nodes have been

programmed with only the essential drivers, including SPI, flash

memory, and RF, but no application code. Each application is in-

crementally linked and uploaded by EcoCast on demand.

0

7.5

15.0

22.5

30.0

1 2 3 4 5 6 7 8 9 10

ti
m

e
(s

)

Number of Nodes

EcoCast Parallel Reprogramming
Normal Reprogramming

(a) Reprogramming time of
ADC.

TEMP

ADC

ADC_1MIN

0 1 2 3 4

Time(s)

Linking Diff Binary Group Forming
Uploading

(b) Ratio of different steps of la-
tency in reprogramming 10 nodes

Figure 6: Reprogramming Latency

We created several WSN applications using EcoCast, and their

details are shown in Table 4. For single-hop experiments, the RF

transmission power is 0 dBm; for multi-hop ones, the RF transmis-

sion power is set to −20 dBm.

8.2 Reprogramming Latency
EcoCast performs group reprogramming (Section 6.2) to min-

imize the reprogramming latency for multiple nodes. Fig. 6(a)

shows the comparison of latency between sequential reprogram-

ming and group reprogramming by EcoCast for installing the ADC

application on-the-fly. Installation of a new application entails sev-

eral steps, including linking, binary diff’ing (i.e., patch generation),

uploading, and group forming if reprogramming a group of nodes.

We demonstrate the reprogramming latency of applications TEMP,

ADC and ADC_1MIN by group reprogramming of EcoCast where

the group size is 10 nodes. The applications are uploaded in se-

quence. Fig. 6(b) shows the latency of different steps. Note that

ADC and ADC_1MIN can reuse the same group as TEMP, and there-

fore their group formation times can be completely eliminated. The

linking time of ADC_1MIN is longer since EcoCast tries to keep

the shared functions of the two ADC applications at the same lo-

cations. On average, it takes about 6.15 ms to upload one byte and

write it into flash memory. In our experiments, the compilation-

linking-installation-confirmation procedure require less than 4 sec-

onds total for 10 nodes, which is acceptable. Several other wireless

reprogramming schemes actually do not confirm if the nodes have

been programmed successfully.

8.3 Round-Trip Command Execution Latency
The round-trip command execution latency, also called the re-

sponse time, is defined from issuing the command to receiving the

results back on the host. We measure the response time of TEMP

and ADC by serial execution iteratively (i.e., for-loop) and in par-

allel (using ecMap) over a range of group sizes from 1 to 10. We

execute each application 50 times and record the average response

time. The result is shown in Fig. 8.

The measured runtime scales linearly for serial execution. For

parallel execution, we plot the worst case that includes the addi-

tional phase of group forming before execution, even though for

the common case the same group can be reused. With this assump-

tion, the response time of serial execution exceeds that of parallel

execution for group sizes of 6 and higher in both TEMP and ADC

applications. This means the group overhead can be amortized for

a modest number of nodes even for very short execution delays.

Fig. 9 shows the breakdown of parallel (ecMap) execution times of

ADC into three phases: group formation, execution and probing,

and result collection. The group formation time can be eliminated

374

Table 4: Test cases of functional programming
Name Description Size1 Iterative command Macroprogramming statements

TEMP Read the output of temperature sensor and re-

turn to host.

202

bytes

g = getNodes([0,1,2,3,4,5,6,7,8,9])

for n in g:

n.readTemp()

g = ecGroup([0,1,2,3,4,5,6,7,8,9])

ecMap(readTemp,g)

ADC Reads the output value for the digitalized out-

put of triaxial accelerometer return to host.

212

bytes

for n in g:

n.readADC()
ecMap(readADC,g)

ADC_1MIN Samples the output value of triaxial ac-

celerometer in 25Hz for one minute and re-

turn the average of the outputs.

372

bytes

No iterative version ecMap(readADC1Min,g)

LIGHTING Control the switch of the light(on/off) 12

bytes

for n in g:

n.turnOn()

time.sleep(5)

for n in g:

n.turnOff()

ecMap(turnOn, g)

time.sleep(5)

ecMap(turnOff, g)

1 The uploaded size is the size of patching binary generated by diff’ing the original binary with the new binary.

60.200

60.275

60.350

60.425

60.500

1 2 3 4 5 6 7 8 9 10

ti
m

e
(s

)

Number of Sensor Nodes

(a) Response time

0

1

2

3

4

20 40 60 80 100

ti
m

e
(s

)

Number of Sensor Nodes

Group Formation Execution & Probing
Result Collection

59

60

61

62

63

(b) Ratio of different phases

Figure 7: Response time of ADC parallel execution of EcoCast

0

0.15

0.30

0.45

0.60

1 2 3 4 5 6 7 8 9 10

ti
m

e
(s

)

Number of Sensor Nodes

Normal For-loop Execution
EcoCast Parallel Execution

(a) TEMP

0

0.15

0.30

0.45

0.60

1 2 3 4 5 6 7 8 9 10

ti
m

e
(s

)

Number of Sensor Nodes

Normal For-loop Execution
EcoCast Parallel Execution

(b) ADC

Figure 8: Response time of serial execution and parallel execu-
tion of EcoCast

by reusing the same group, while the execution and probing phase

remains nearly constant. The result collection phase would still

grow linearly but at a much lower slope. For applications with long

execution times, the times of group formation and result collec-
tion phases become negligible. The measured result of ADC_1MIN

shows in Fig. 7(a). By following the TDMA schedule, we estimate

the response time with large group sizes according to the trend of

Fig. 7(a) and show the time of different phases in Fig. 7(b). We

observe that group formation and result collection phases together

take a total of only 1.18 seconds in a group with 100 nodes.

8.4 Memory Footprint
A system with a small footprint gives users more room for ap-

plications. EcoCast has a small footprint, making it particularly

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10

ti
m

e
(s

)

Number of Sensor Nodes

Group formation Execution & Probing Result Collection

Figure 9: Ratio of different phases to execution time of ADC via
parallel execution of EcoCast.

Table 5: Comparison of Memory footprint
Runtime System Program memory Data memory

SensorWare ≤ 180KB ≤ 64KB

Maté 16KB 849B

LiteOS 30KB ≈ 1.6KB

Mantis 14KB ≤ 5KB

Marionette ≤ 4KB 153B

EcoCast 3.94 KB 215B

applicable to resource-constrained platforms. Table 5 shows the

comparison of memory footprints of runtime systems with inter-

active shell support. The core of EcoCast occupies 1425 bytes

of program memory and 161 bytes of data memory. With essen-

tial drivers, EcoCast takes 3942 bytes of program memory and 215

bytes of data memory.

EcoCast is significantly smaller than most of the other works

while being similar in size to Marionette [37], which also takes ad-

vantage of Python for the fat-client, thin-server organization. How-

ever, Marionette needs to be built on top of TinyOS, requires exter-

nal support for remote reprogramming, is intended for debugging

rather than deployment, and does not support macroprogramming.

A related system, TinyBasic, also has some limitations. For in-

stance, it only supports data operations for signed integers, whereas

EcoCast maximizes the host assist and node flexibility to minimize

the memory footprint on the node.

8.5 Multi-Hop Reprogramming Latency
We first evaluate the time it takes to find a path for each node.

As shown in Fig.10, it takes about 16.6 ms to reach a node one-hop

away. Then, we can find subsequent routes through this node. The

number of hops is proportional to the latency since we start a whole

discovery for every node.

375

Figure 10: Latency of finding a path for each node

(a) Light control (b) Door monitoring

Figure 11: The latency of adding functions

In multi-hop network configuration, we have one test application

called LIGHTING for light control. It was not in the firmware of

the nodes at the beginning of the experiment. Upon invoking the

turnOn() and turnOff() functions for LIGHTING, EcoCast prepares

the binary for the functions, each of which is six bytes long, and

transmits two packets to each target node, which patches its own

firmware and executes. As shown in Fig. 11(a), it takes 35.9 ms to

relay a packet and reprogram the node that is one hop away from

the host, with an average of 2 ms for each additional hop. Fig. 11(b)

shows another application, DOORMON, which is 417 bytes in size

and takes 1.99 seconds to reprogram a node that is one hop away

and 2.31 seconds for five hops away.

8.6 Discussion
The experimental results show parallel execution of functional

programming constructs to work well for single-hop networks; the

performance is adequate for a modest-sized multi-hop network, but

there is plenty of room for optimizations. One way to speed up is

pipelined execution, although this is much more difficult in prac-

tice than in theory due to wireless communication. Another way

is to explore asymmetric routes. If some nodes are not part of the

targeted group for function invocation, then perhaps they can play

more of a relay role, and reply packets need not take the reverse

routes as request ones. The more even distribution of workload

may also have energy efficiency benefits. Many more optimizations

are possible for filter and reduce constructs in a multi-hop net-

work. We have demonstrated the feasibility of combining macro-

programming, interactivity, and integration with a general-purpose

language, and many further optimizations can now be built on this

framework.

9. CONCLUSIONS AND FUTURE WORK
EcoCast brings the elegance and power of Python to enabling in-

teractive macroprogramming by scripting of resource-constrained

wireless sensor networks. Interactivity encourages experimentation

by beginners, by providing instant feedback to functions of interest

while being forgiving by supporting undo with an underlying revi-

sion control system. As Python is not just a “beginner’s language”

but is actually used by expert programmers in production-quality

systems due to support of constructs at a much higher-level of ab-

straction, we expect EcoCast to also boost the productivity of ex-

pert programmers in a similar way. EcoCast relieves the user of the

burden of the edit-recompile-relink and reprogramming process by

transparently performing incremental compilation and patching, if

necessary, before invoking functions on a group of nodes, all with

negligible delays and is considered practically interactive. The use

of node handles with type marshalling enables seamless integration

of the sensor network as objects with the rest of the application code

such as graphical user interfaces and data processing code. More-

over, host-assisted demand code paging enables EcoCast to run on

some of the most resource-constrained platforms.

Several directions for future work remain. First is a smarter re-

placement policy for code by assigning priority to those segments

that are either used more frequently in the near future. Second is

further optimization of macroprogramming constructs, in particu-

lar filter and reduce, to complex network topologies. One way is

to map the computation to the specific network topology; another

is to enable pipelined execution of commands while keeping the

results synchronized.

Acknowledgments
This work was sponsored in part by a National Institute of Stan-

dards and Technology (NIST) Technology Innovation Program (TIP)

Grant 080058, National Science grant CBET-0933694, and a Na-

tional Science Council grant 99-2625-M-007-001. Any opinions,

findings, and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the

views of the National Science Foundation.

10. REFERENCES
[1] A. Awan, S. Jagannathan, and A. Grama.

Macroprogramming heterogeneous sensor networks using

COSMOS. Operating Systems Review, 4(3):159–174, 2007.

[2] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth,

B. Shucker, C. Gruenwald, A. Torgerson, and R. Han.

MANTIS OS: an embedded multithreaded operating system

for wireless micro sensor platforms. Mob. Netw. Appl.,
10(4):563–579, 2005.

[3] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor

database systems. In Mobile Data Management, pages 3–14.

Springer, 2001.

[4] A. Boulis, C.-C. Han, and M. B. Srivastava. Design and

implementation of a framework for efficient and

programmable sensor networks. In MobiSys ’03, May 2003.

[5] Q. Cao, T. Abdelzaher, J. Stankovic, and T. He. The LiteOS

operating system: Towards unix-like abstractions for

wireless sensor networks. In IPSN ’08, pages 233–244,

Washington, DC, USA, 2008. IEEE Computer Society.

[6] H. Cha, S. Choi, I. Jung, H. Kim, H. Shin, J. Yoo, and

C. Yoon. RETOS: resilient, expandable, and threaded

operating system for wireless sensor networks. In IPSN ’07,

pages 148–157, New York, NY, USA, 2007. ACM.

[7] C. Chen, Y. Chen, Y. Tu, S. Yang, and P. Chou. EcoSpire: an

application development kit for an Ultra-Compact wireless

sensing system. Embedded Systems Letters, IEEE,

1(3):65–68, 2009.

[8] M.-H. Chen and P. H. Chou. TeleScribe: A scalable,

resumable wireless programmable approach. In Proc.
International Conference on Embedded Software

376

(EMSOFT), Scottsdale, AZ, USA, October 24-29 2010.

[9] Crossbow Technology. Mote in-network programming user

reference version 20030315.

http://www.tinyos.net/tinyos-1.x/doc/Xnp.pdf, 2003.

[10] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt. Run-time

dynamic linking for reprogramming wireless sensor

networks. In SenSys ’06, pages 15–28, New York, NY, USA,

2006. ACM.

[11] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a

lightweight and flexible operating system for tiny networked

sensors. In LCN ’04: Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks,

pages 455–462, Washington, DC, USA, 2004. IEEE

Computer Society.

[12] R. Gummadi, R. Gummadi, O. Gnawali, and R. Govindan.

Macro-programming wireless sensor networks using Kairos.

Distributed Computing in Sensor Systems, pages 126–140,

2005.

[13] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava.

A dynamic operating system for sensor nodes. In MobiSys
’05, pages 163–176, New York, NY, USA, 2005. ACM.

[14] T. W. Hnat, T. I. Sookoor, P. Hooimeijer, W. Weimer, and

K. Whitehouse. Macrolab: a vector-based

macroprogramming framework for cyber-physical systems.

In SenSys ’08, pages 225–238, New York, NY, USA, 2008.

ACM.

[15] C.-H. Hsueh, Y.-H. Tu, Y.-C. Li, and P. Chou. EcoExec: An

interactive execution framework for ultra compact wireless

sensor nodes. In SECON ’10, pages 1 –9, jun. 2010.

[16] J. W. Hui and D. Culler. The dynamic behavior of a data

dissemination protocol for network programming at scale. In

SenSys ’04, pages 81–94, New York, NY, USA, 2004. ACM.

[17] J. Jeong and D. Culler. Incremental network programming

for wireless sensors. In Sensor and Ad Hoc Communications
and Networks, 2004. IEEE SECON 2004. 2004 First Annual
IEEE Communications Society Conference on, pages 25–33,

Oct. 2004.

[18] J. Kim and P. H. Chou. Remote progressive firmware update

for flash-based networked embedded systems. In Proc.
International Symposium on Low Power Electronics
andDesign (ISLPED), pages 407–412, San Francisco, CA,

USA, August 19-21 2009.

[19] J. Koshy. Remote incremental linking for energy-efficient

reprogramming of sensor networks. In Proceedings of the
second European Workshop on Wireless Sensor Networks,

pages 354–365. IEEE Press, 2005.

[20] S. S. Kulkarni and L. Wang. Mnp: Multihop network

reprogramming service for sensor networks. In Proceedings
of the 25th International Conference on Distributed
Computing Systems (ICDCS, pages 7–16, 2005.

[21] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: a

self-regulating algorithm for code propagation and

maintenance in wireless sensor networks. In NSDI’04:
Proceedings of the 1st conference on Symposium on
Networked Systems Design and Implementation, pages 2–2,

Berkeley, CA, USA, 2004. USENIX Association.

[22] L. Luo, T. F. Abdelzaher, T. He, and J. A. Stankovic.

EnviroSuite: An environmentally immersive programming

framework for sensor networks. ACM Transactions on
Computational Logic, 5(3):543–576, August 2006.

[23] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.

Tag: a tiny aggregation service for ad-hoc sensor networks.
SIGOPS Oper. Syst. Rev., 36(SI):131–146, 2002.

[24] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and

W. Hong. TinyDB: an acquisitional query processing system

for sensor networks. ACM Transactions on Database
Systems (TODS), 30(1):122–173, 2005.

[25] P. J. Marron, M. Gauger, A. Lachenmann, D. Minder,

O. Saukh, and K. Rothermel. FlexCup: A flexible and

efficient code update mechanism for sensor networks. In

EWSN ’06: Proceedings of the third European Workshop on
Wireless Sensor Networks (EWSN 2006, pages 212–227,

2006.

[26] R. Newton, G. Morrisett, and M. Welsh. The Regiment

macroprogramming system. In IPSN ’07, pages 489–498,

New York, NY, USA, 2007. ACM.

[27] R. Newton, R. Newton, and M. Welsh. Region streams:

functional macroprogramming for sensor networks. In

Proceedings of the 1st International Workshop on Data
Mangement for Sensor Networks, pages 78–87, Toronto,

Canada, 2004. ACM.

[28] J. K. Ousterhout. Tcl: An embeddable command language.

In Proceedings of the USENIX Winter 1990 Technical
Conference, Berkeley, CA, 1990. USENIX Association.

[29] J. K. Ousterhout. Scripting: Higher level programming for

the 21st century. IEEE Computer, 31(3):23–30, March 1998.

[30] A. Pathak and M. K. Gowda. Srijan: A graphical tookit for

sensor network macroprogramming. In Proceedings of the
7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the
Foundations of software engineering, 2009.

[31] A. Pathak, L. Mottola, A. Bakshi, V. K. Prasanna, and G. P.

Picco. Expressing sensor network interaction patterns using

data-driven macroprogramming. In Pervasive Computing
and Communications Workshops, 2007. PerCom Workshops
’07. Fifth Annual IEEE International Conference on, pages

255 –260, March 2007.

[32] N. Reijers and K. Langendoen. Efficient code distribution in

wireless sensor networks. In WSNA ’03: Proceedings of the
2nd ACM international conference on Wireless sensor
networks and applications, pages 60–67, New York, NY,

USA, 2003. ACM.

[33] SourceForge. Source code of EcoExec.

http://ecoexec.sourceforge.net/, 2010.

[34] T. Stathopoulos, J. Heidemann, and D. Estrin. A remote code

update mechanism for wireless sensor networks. Technical

report, UCLA, Los Angeles, CA, USA, 2003.

[35] Tidorum Ltd. Bound-T user guide.

http://www.tidorum.fi/bound-t/manuals/user-guide.pdf,

April 2009.

[36] A. Tridgell. Efficient Algorithms for Sorting and
Synchronization. PhD thesis, Australian National University,

2000.

[37] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim,

J. Jeong, J. Hui, P. Dutta, and D. Culler. Marionette: using

RPC for interactive development and debugging of wireless

embedded networks. In IPSN ’06, pages 416–423, New

York, NY, USA, 2006. ACM.

[38] Y. Yao and J. Gehrke. The cougar approach to in-network

query processing in sensor networks. SIGMOD record,

31(3):9–18, 2002.

377

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

