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Abstract—We propose a parallel algorithm that solves the
best k-mismatches alignment problem against a genomic refer-
ence using the “one sequence/multiple processes” paradigm and
distributed memory. Our proposal is designed to take advantage
of a computing cluster using MPI (Message Passing Interface)
for communication. Our solution distributes the reference among
different nodes and each sequence is processed concurrently by
different nodes. When a (putative) best solution is found, the
successful process propagates the information to other nodes,
reducing search space and saving computation time.

The distributed algorithm was developed in C++ and op-
timized for the PLX and FERMI supercomputers, but it is
compatible with every OpenMPI-based cluster. It was included in
the ERNE (Extended Randomized Numerical alignEr) package,
whose aim is to provide an all-inclusive set of tools for short reads
alignment and cleaning. ERNE is free software, distributed under
the Open Source License (GPL V3) and can be downloaded at:
http://erne.sourceforge.net. The algorithm described
in this work is implemented in the ERNE-PMAP and ERNE-PBS5
programs, the former designed to align DNA and RNA sequences,
while the latter is optimized for bisulphite-treated sequences.

I. INTRODUCTION

The advent of NGS (Next Generation Sequencing), first ap-
peared in 2005, has changed the bioinformatics field, opening
new and unimaginable research perspectives. New sequencers
are able to produce huge amounts of data, at a very low cost
and in a few days. The sequencers produce a set of short se-
quences (called “reads”) in the alphabet {A,C,G, T,N}. The
first four letters represent nucleotide bases that can be present
in a genome (Adenine, Cytosine, Guanine and Thymine). Since
the sequencing reading process is not perfect, in some cases the
sequencer prefers to return a “not known” signal (N ) instead
of returning an incorrect value.

In bioinformatics, the short string alignment problem is the
problem of aligning (searching) the “correct” position for each
short read against a reference (a representation of a genome
similar but not equal to the sequenced individual), allowing
only a limited amount of mismatches. In some cases one wants
also to allow a (still more) limited number of insertions and
deletions of characters (bases) in the string. Often, the aligners
use heuristics to cut the search space and hence reduce com-
putation time, at the cost of a (hopefully) negligible amount of
false positives and false negatives. There are numerous NGS
aligners proposed by the scientific community, for a review
see [1], [2].

The NGS sequencer technology has improved, since 2005,

at a very fast rate: every year the throughput of the sequencers
increased by a 5-fold factor [3], [4]. Such of high rate of data
production imposes the need to reduce the time required to per-
form the alignment phase (the bottleneck in any resequencing
or otherwise analysing project) without sacrificing accuracy.
These trends in growth pose new computational challenges:
the higher the amount of data to process, the higher the need
to process this data as quickly as possible.

In this work we propose to use a computing cluster and
partition both the set of reads and the reference genome across
the nodes. The first ingredient is to use MPI (Message Passing
Interface) [5] to transmit input and output of the alignments
performed. We explored the approach consisting in allowing
communication among nodes during the alignment phases.
When a node finds a better solution than the ones currently
discovered, the possibility to broadcast reduces search space
and computation. This approach is particularly well-suited
when variations of the so called “best” k-mismatch problem
are under study. More on this aspect below.

A problem that can arise, when adding interprocess com-
munications, could be the overhead caused by the communi-
cation itself: significant amounts of computation time spent in
transmitting and/or waiting for data. Aware of this problem,
we designed the communication system controlled to avoid
flooding the transmission media and trying to keep delays to
a minimum in data waiting.

The approach is based on an evolution of the mrNA soft-
ware [6] and it was optimized to work on the PLX supercom-
puter [7]. We are planning to optimize the code for the Fermi
supercomputer (12th in the world, [8]). However, the current
implementation is compatible with every cluster supporting
OpenMPI. In this paper we explore only the capability of the
ERNE-PBS5 software (the parallel version of ERNE-BS5 [9]).
ERNE-PBS5 is able to align reads produced using protocols for
bisulfite treated reads (a protocol called BS-seq), that it is able
to detect (un)methylated cytosines that are crucial information
used in epigenetic studies. The BS-seq protocol transforms the
majority of the cytosines into thymines, reducing the sequence
complexity and increasing the search space, hence a set of
reads produced using BS-seq in general requires more time
to be aligned w.r.t. DNA or RNA reads. A description of
the problems arising when working on BS-seq reads is out
of the scope of this paper, for which we refer the reader to
[2], [9]. Our implementation takes as input a reference and
a set of reads in FASTQ format and produces a (standard in
bioinformatics) SAM/BAM formated output.
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A. Parallel alignment approaches

To date, there are two main approaches/technologies em-
ployed in parallel processing. The first one is based on Mes-
sage Passing Interface (MPI) and exist different “flavors”, e.g.,
OpenMPI [10] or Intel R© MPI. Open source NGS alignment
software based on MPI include mrNA [6], GNUMAP [11]
and pBWA [12]. There exists also a proprietary solution called
Novoalign.

The second approach is a framework proposed by Google
and based on a technique called MapReduce [13] that can effi-
ciently use from a few to thousands of (possibly rentable) ma-
chines. Different realizations are available, based on MapRe-
duce or on Apache Hadoop (Open Source). A naive application
to the alignment problem starts by dividing the reads into
n groups. The computation (MAP) can now work indepen-
dently on each group against the whole reference. The output
(REDUCE) is then obtained simply as a concatenation of the
output of each process. In the last few years different solutions
based on the MapReduce paradigm appeared, e.g., Crossbow
[14], CloudBurst [15], SeqMapReduce [16], CloudAligner
[17], and SEAL [18].

B. The best k-mismatches alignment problem

Let P (pattern/read) and R (reference) be two strings in
the nucleotide alphabet Σ = {A,C, T,G,N}. We indicate
a sub-string of P (or R) starting at position i and ending
at position j as P [i, j], with i, j ∈ N, 0 ≤ i ≤ j < |P |.
We write P [i] as a shortcut for P [i, i]. When aligning we
must take care of sequencing errors (due to an incorrect
acquisition of data) and to differences between the individual
sequenced and the reference. Due to these limitations we can
not use “exact” string matching but we must consider (some
form of) “approximate” string matching. It is customary to
introduce a distance function to keep errors under a threshold.
The simplest and most used distance in bioinformatics is the
Hamming distance [19]:

dH(X,Y ) = |{i | X[i] �= Y [i], 0 ≤ i < |X|}|, (1)

that is defined when X,Y ∈ Σ∗ and |X| = |Y |. The Hamming
distance counts the number of differences (i.e., mismatches)
between two strings. However, in the NGS computing area,
“aligning” means to solve the best k-mismatches alignment
problem: given a read P , a reference R, and k ∈ N, de-
termine all the position in R where P can be aligned with
k′ mismatches (0 ≤ k′ ≤ k) and there exist no positions
where P can be aligned with less than k′ mismatches. In other
words, the problem is to find (if existing) the m positions
I = {i1, . . . , im} where

dH(P,R[i1, i1+ |P |−1]) = . . . = dH(P,R[im, im+ |P |−1]) = k′

(2)

and for no position j, dH(P,R[j, j + |P | − 1]) < k′.

The naive solution is to compare every base of R against
every base of P , with a computation cost of O(|P | · |R|).
Due to the dimension of the reference (from few thousand to
billions of base pairs), this is not a practicable solution. Many
algorithms have been proposed to pre-process the reference
and achieve computation cost proportional to the logarithm of
reference’s dimension (or better) and linear in pattern’s size.
The most used solutions are based on suffix trees/arrays [20]
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Fig. 1. Scheme of our implementation of Master/Workers pattern.

and the Burrows-Wheeler transform [21]. The alignment core
of the ERNE programs [22], [23] is based on a modification of
the Karp-Rabin algorithm [24] and the use of the Pigeonhole
principle.

II. IMPLEMENTATION

All current cluster-oriented alignment tools use geomet-
ric decomposition to solve the best k-mismatches problem,
because all inexact-matching algorithms proposed are strictly
sequential. Therefore the only way to speed up the computation
is to decrease the working load (i.e., reducing CPU time). Our
idea is not focused on a naive split of input data but on a run-
time reduction of search space: if a process finds one or more
occurrences with k′ < k mismatches, then all other processes
must be notified in order to search for occurrences with k′
mismatches instead of k, thereby reducing search space.

We chose the Master/Workers pattern to implement our
algorithm, where workers can also communicate among them.
This model allows both to apply geometric decomposition
as well as sharing the “best” k-values among nodes. Usu-
ally biological interesting references (e.g., human, mouse,
grapevine) do not allow to splitting the reference in more than
10–30 chunks (chromosomes). Therefore the Master/Workers
structure is replicated to fill all the nodes assigned to the job
(e.g., if 32 nodes are available and the reference is split into 8
pieces, then the structure will be replicated 32/8 = 4 times).
In this way each group (i.e., the nodes whose union makes the
reference) aligns a subset of input reads. In Fig. 1 is depicted
an overview of the logical structure.

The structure is partitioned into two kinds of groups: the
workers groups, composed of nodes that perform alignments,
and the masters groups, containing the nodes whose tasks are
data distribution and results collection. Let n be the number
of nodes in the MPI environment and let m be the group
size (i.e., the numbers of parts in which the reference is
split). The above groups are obtained partitioning the whole
environment (MPI_COMM_WORLD) in g = (n/m) workers
groups (workerIntracomm) plus a single masters group
(mastersIntracomm) consisting in group masters and the
global master. This allows optimal data distribution and results
collection. In particular, the global master can assign a block
of reads to each worker group simply by sending it by
mastersIntracomm to relative group master. Then the
group master broadcasts the reads in the associated working
group, while the global master can continue the assignment to
another group. In a similar way results are collected: during
the alignment phase results are stored in group master’s local
storage, so that when the phase is completed they can be easily
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TABLE I. TABLE OF READS/SEC.

without errors update with errors update
Groups Nodes Min Average Max Min Average Max

1 1 18,16 22,70 30,68 n.a. n.a. n.a.

1 2 17,34 20,39 25,10 15,02 23,70 27,65

1 4 17,11 24,75 35,54 16,76 27,57 29,57

1 8 20,01 29,28 41,71 22,56 31,95 47,50

2 1 19,83 22,11 51,26 21,28 23,10 38,61

2 2 22,35 23,68 32,97 23,40 25,68 32,11

2 4 28,24 29,63 38,99 25,58 31,84 33,41

2 8 26,07 33,28 50,57 28,49 35,18 45,94

4 1 17,93 20,52 37,50 21,54 24,03 72,41

4 2 24,49 25,47 36,21 19,27 28,27 34,74

4 4 26,48 29,95 55,26 25,53 32,55 52,50

4 8 24,56 33,11 56,34 30,67 37,11 47,66

sent to global master using mastersIntracomm. This last
step is necessary in order to produce a unique output file. For
the sake of performance group masters are implemented as
threads in nodes with rank equal to 0 according to relative
workersIntracomm. The group master of workers group
number 0 is also a global master (in other words, the global
master and group masters are also workers). Other available
cores in node’s CPU are exploited by alignment threads. In
order to reduce waste of time and to avoid communications
bottleneck problems, threads use blocking mechanisms to
send/receive data, hence most of the processors time is used
for alignments. Usually input data is huge, hence the sequence
load-distribute-align-collect-save is looped until input is con-
sumed.

The most delicate part of our implementation is the update
of best k-values. The time at which this action is performed is
unpredictable and updates are from unknown sources, so the
primitives involved must be poll-able. These two conditions
can not be met by MPI_Bcast procedure because they can
not be detected by the standard MPI probing mechanisms (e.g.,
MPI_Probe). In order to solve this issue we implemented a
poll-able broadcast [25] that uses point-to-point communica-
tions on a binomial tree virtual topology. In a group with m
nodes it needs log2(m) propagation steps and is compatible
with MPI_Probe, hence it can be executed only if necessary.
Also an efficient buffer mechanism is implemented to avoiding
waiting network operations. It consists of a thread that waits
for communications and update each process’s k values. In this
fashion the alignment threads can simply check if and how k
has changed, without wasting time in communication checks.

As a general (practical) consideration on our approach,
consider the fact that when found, the best alignment allows
to cut search space to all processes reached by the message
broadcasted. Even though cannot claim a better worst-case
performance, this consideration had practical value on our
experiments.

III. RESULTS

We tested our implementation using Vitis vinifera genome
as reference and a set of 161,847,352 BS-seq reads, 100
base pairs long. The reference genome is composed of 19
chromosomes and we generated four different partitions for
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Fig. 2. Processivity of the implementation without (a) and with (b) errors
update communications. On Y-axis is the average number of aligned reads
per second that a node is able to process. On X-axis is the number of nodes
for group.

the groups. The partitions are optimized for 1, 2, 4 and 8
nodes.

Tests are performed on PLX supercomputer. This cluster
is composed by 254 nodes, each one equipped with two esa-
core CPUs at 2.4 GHz (12 total cores) and 48 GB of DDR3
RAM at 1,333 MHz. The network is entrusted to a Infiniband
connection with 4x QDR switches and the operating system is
Red Hat RHEL 5.6 x86 64.

We run different alignments with 1, 2 and 4 groups and
with 1, 2, 4 and 8 nodes for each group. We collected
the reads processed per second during the alignments phase
and we summarized the results showing minimum, average,
and maximum reads/sec in Table I. We tested the algorithm
with and without the errors update procedure. The “without”
tests represent a MapReduce model only, while the “with”
tests represent the complete ERNE-PBS5 model (MapReduce
and errors broadcast and update). The average columns are
graphically depicted in Fig. 2. The case “one group with one
node” was not run using ERNE-PBS5, which require at least
two nodes, and the non-parallel version ERNE-BS5 was used
instead. In this case there are no communication and so we
reported the results only on the “without” section. We can
argue that the number of reads per second that a node can
process increases (roughly) linearly with the number of nodes
in the group. This is possible only due to the communication
system we have implemented. Since the groups involved in
an alignment works on different set of reads, using two or
more groups does not improve performances on a node (as
expected). Our current implementation is not optimized for
data communication, hence the measurements are taken only
on the alignment phase. Our next goal is to improve on
these bottlenecks and to enhance the whole program for faster
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alignment.

We tested the ability of working with different groups
because we plan to optimize the code for the Fermi [8]
infrastructure, where the minimum allocation unit for a parallel
program is 64 nodes (up to 2048 nodes). In this situation
we were not able to divide the grapevine genome in 64
parts, but, due to our implementation, we were allowed to
use 8 groups of 8 nodes (up to 256 groups). This allows
us to use a MapReduce-like approach partitioning reads into
groups, maintaining a partition of the reference and allowing
communication within each group.

IV. CONCLUSION

In this work we explored state-of-the-art parallel tools
for the alignment problem. We started from the two most
popular family of solutions: ad-hoc system that use naive
messages paradigm and the MapReduce-like approaches. All
analyzed tools have good features but none implements a
powerful ad-hoc system combined with MapReduce idea. So
we designed and implemented a comprehensive software that
uses MapReduce-like decompositions of the reference on top
of a novel view on parallel alignments. This approach consist
in a Master/Workers architecture where workers can share the
results during alignment phase in order to reduce search space.
The reference’s biological meaning limits the number of parts
in which the reference’s data-structure can be divided. To solve
this issue we allowed to partition the reference into a group
of nodes with a Master/Workers structure. Then the set-up is
automatically replicated to fill available resources so that each
copy aligns a subset of input reads.

We tested our algorithm with real data and we reached our
goal: communication among processes guarantees a reduction
of CPU time, allowing each node to process more reads per
second (w.r.t. to the serial or MapReduce only implementa-
tions).

As a further improvement, we plan to replace the legacy
Boost Thread Library with the more performing and portable
OpenMP APIs [26] and enable it to GPGPU (General-Purpose
computing on Graphics Processing Units) by OpenCL or
CUDA as done in [27].
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