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ABSTRACT

In a large variety of industrial scale processes, fixed or mobile
sensors are typically deployed in large-scale vessels to mon-
itor parameters such as temperature, pressure and chemical
concentration. When these vessels are cluttered with obsta-
cles, e.g. large cooling ponds cluttered with nuclear waste
containers, it becomes increasingly difficult for the sensors
to estimate their position. The acoustic ranging signals used
for estimating distances between each sensor node and refer-
ence nodes fixed to the vessel infrastructure can suffer from
Non-Line-Of-Sight (NLOS) signal propagation and thus in-
troduce large positive errors in some of the estimated dis-
tances.

In this paper we present a robust localization algorithm
for localizing sensors in cluttered NLOS environments. We
show that if the number of erroneous range measurements
is less than half, it is possible to accurately estimate these
NLOS errors at each sensor node by solving a convex opti-
mization problem. Each sensor node can then use its esti-
mate of NLOS errors to accurately localize itself. Our ap-
proach is completely independent of the physical hardware
used to perform range measurements and thus can be used
to localize sensor nodes in any NLOS prone environment.
We demonstrate this with the help of experimental results
with three different hardware platforms each employing a
different ranging mechanism.
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(b) Robot Prototyp

(a) Storage pond

Figure 1: Sensor nodes for industrial processes.
Robot prototype photograph provided by Simon
Watson from the University of Manchester.

1. INTRODUCTION

There is a large variety of industrial scale aqueous pro-
cesses that are carried out in very large scale vessels or tanks.
For example, in chemical industry, different chemical reac-
tions are carried out in large enclosed reaction vessels and
chemical engineers are generally interested in temperature,
pressure, turbidity and other parameters inside the vessel.
Currently available methods which place sensors outside the
vessel are not only limited in which parameters can be mea-
sured but also in the spatial and temporal resolution. There
are some processes where industrial waste is stored underwa-
ter in large ponds of water. For example, in nuclear industry,
when spent nuclear fuel is taken out of the nuclear reactor,
it continues to generate heat for a very long period of time.
This waste is stored in metallic containers which are then
kept inside a large cooling pond for 60 to 100 years before
the waste can be disposed off permanently. These cooling
ponds can be as large as 50m x20m and as deep as 15m. One
such storage pool is shown in Fig. (1a) where a Manhattan
landscape of skip towers can be easily seen. During this ex-
tended period, these ponds must be carefully monitored for
temperature hot-spots, radioactivity and leaks.

For monitoring these aqueous industrial processes, we have
proposed an underwater mobile sensor network. Fig. (1b)
shows a prototype of our mobile sensor node. Each sensor
node is just 10cm in diameter and has five degrees of free-
dom for easy maneuvering through the clutter environment.
It will be equipped with temperature, pH, turbidity and ra-
dioactivity sensors and ultrasound transducers for acoustic
communication and ranging to both other sensor nodes and
reference nodes fixed to the vessel infrastructure. A swarm
of these sensor nodes can be introduced in a reaction vessel



or a cooling pond to monitor the conditions inside these en-
vironments. For the robots to sense and explore the pools,
they must be able to determine their positions in these un-
derwater environments. However, the cluttered nature of
these environments presents us with unique challenges. The
ultrasound pulses used for performing range measurements
can reflect and bounce off the metallic surfaces before ar-
riving at the transducers. These multipath reflections intro-
duce large positive errors in some of the estimated distances
between the reference and sensor nodes as shown in Fig. (2).
These erroneous measurements make it very difficult to es-
timate the true positions of sensor nodes. The main focus of
this work is to develop a robust localization approach that
would allow these sensor nodes to localize themselves accu-
rately in such cluttered environments even in the presence
of erroneous measurements.

The current body of research generally addresses this prob-
lem by identifying the Line-of-Sight (LOS) and Non-Line-
of-Sight (NLOS) range measurements [25, 17]. The erro-
neous measurements are then either removed completely or
assigned smaller weights while calculating the coordinates
of the sensor node. The identification of LOS and NLOS
measurements generally relies on the characteristics of the
received signals at the physical layer [24]. Therefore, it is
specific to the modality used to perform ranging and can-
not be used across different hardware platforms. Another
approach is to characterize the target environment by per-
forming extensive pre-deployment measurements [18, 23].
This prior information is then used to weight the measure-
ments during localization. However, this approach is envi-
ronment dependent and cannot be used for ad-hoc deploy-
ments. There is also some research that treats the NLOS
range measurements as outliers [9]. This approach tries to
detect and remove these outliers by observing the consis-
tency of the measurements. However, even if this outlier
detection is completely successful, removing measurements
lowers the overall localization accuracy.

In this paper, we present a robust localization algorithm
that overcomes all of the above mentioned issues. Although,
we have used aqueous industrial processes as our motivation,
our approach can be used to localize sensor nodes in any of
the NLOS prone environments. Following are the primary
contributions of our work,

e We propose a robust localization algorithm that is
completely independent of the physical signals used
to perform range measurements and does not require
any prior knowledge about the environment.

We analyze the robustness of our algorithm and quan-
tify its breaking point, that is, the largest percentage
of non line of sight range measurements that it can
tolerate. We show that by exploiting the assumption
that non line of sight errors are typically positive we
can shift the breaking point from 30% to 50% in the
asymptotic case.

We compare our robust localization algorithm with
seven competing algorithms, including an oracle algo-
rithm that can perfectly distinguish between line of
sight and non line of sight measurements. We present
experimental results from a series of real sensornet
testbeds: 1) a lecture theater using Jennic nodes and
ToF radio ranging; 2) a meeting room with MIT Cricket
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Figure 2: Non line of sight signal propagation in a
cluttered environment results in an overestimated
distance measurement d-»

nodes and acoustic ranging; and 3) a water tank us-
ing Neptune [2] and SenseComp [3] transducers and
acoustic ranging.

Besides real experiments with fixed sensor nodes, we
have conducted simulations with mobile sensor nodes.
In mobile scenarios, filters are typically used to fuse
noisy position measurements over time, and produce
trajectories that tend to be close to the real ones. We
show that our robust localization algorithm used with-
out any filter significantly outperforms competing al-
gorithms (e.g. non linear least squares), even when the
position estimates are fused with an Extended Kalman
Filter.

The rest of this paper is organized as follows. Section 2
outlines the localization problem that this work is address-
ing. Section 3 shows that traditional localization algorithms
cannot localize sensor nodes accurately in the presence of
NLOS measurements. Section 4 presents our robust local-
ization algorithm. Section 5 presents an analysis of the ro-
bustness of our algorithm. Section 6 and 7 describe experi-
mental results for fixed and mobile sensor nodes respectively.
Related work is discussed in Section 8 and, finally, Section
9 concludes this paper.

2. PROBLEM SET UP

For ease of exposition, we will restrict ourselves to two
dimensions, however, the ideas and the solutions presented
in this paper can be easily extended to the complete three
dimensional case. Let us suppose that there are m fixed ref-
erence nodes with coordinates (z;,y;) where i =1,2,...,m.
A sensor node that wishes to determine its coordinates, esti-
mates its distance to three or more reference nodes as shown
in Fig. (2). Let us suppose that d; is the estimated distance
to reference node i. Each estimated distance d; is given as,

1)

where d; is the true distance, e; is a small measurement
error and 7; is a large positive error introduced due to non
line of sight signal propagation. If there is a direct path
available between the reference and the unlocalized node
then n; = 0 for this range measurement. We assume that the
measurement error €; has a zero mean Gaussian distribution,
where as the non line of sight error 7n; is drawn from any
non-negative distribution.

Jizdi—ﬁi—éi 1=1,2,...,m



e~ N (0,0%) (2)

where o is the standard deviation of the Gaussian distri-
bution. In literature, NLOS errors are assumed to follow a
uniform or an exponential distribution. However, our ap-
proach is independent of the NLOS error distribution. The
only assumption that we make is that these errors follow a
non-negative distribution.

Given the reference node coordinates (x;,y;) and the mea-
sured distances d; with i = 1,2,..., m between the reference
nodes and the unlocalized node, determine the coordinates
of the unlocalized node (x,y) where some of the distances
are overestimated due to non line of sight signal propaga-
tion and there is no additional information available to dis-
tinguish these erroneous measurements from the rest of the
direct line of sight range measurements.

3. ISSUES WITH THE TRADITIONAL AP-

PROACH

In this section, we outline the traditional least squares
based localization approach and analyze its performance in
the presence of overestimated distances due to non line of
sight signal propagation. If (x,y) are coordinates of the
unlocalized node, then we can write a system of equations
as,

(z1—2)’+ (i —y)? = di
(m2—2)’+ (12 —y)? = di (3)
(@m—2)°+ (ym —y)® = do

The only unknowns in the above system of equations are
the coordinates = and y of the unlocalized node. These can
be determined by solving a problem that is known as least
squares and is given as

(4)
where x = [z, y]T, X is a vector of estimated coordinates and
r; (x) is a residual function given as,

ri(x)={(zi—2)" + (g 9’} —di i=12....m (5)

This residual function r; (x) is a nonlinear function of x
and y. Therefore, the problem given in Eq. (4) is an un-
constrained nonlinear optimization problem and is gener-
ally known as nonlinear least squares. It can be solved by
using any of the Newton type optimization algorithms [5].
These are iterative algorithms and require a starting point
X0 = [x0,%0]” which is then gradually improved in each it-
eration until a local minimum of the above defined objective
function is found.

The system of nonlinear equations given in Eq. (3) can
be linearized by subtracting one of the equations from the
remaining m — 1 equations. If we subtract the last equation
from the others, this results in the following linear system,
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(1= 2m)T+ (Y1 —Ym)y = b
(@2 —zm)x+ (Y2 —Ym)y = b2 (6)
(Tm—1 = Tm)T + (Ym-1 —Ym)y = bm-1

where,
1
=5 {of —on +yl —yn + i — &7}

In matrix notation, the linear system given in Eq.
be expressed as,

bi

Ax=b (8)
where,
L1 — Tm Y — Ym
T2 — Tm Y2 — Ym
A= )
Im—1 — Tm Ym—1 — Ym
and
T} — Ty + Ui — Y + diy — di
1| 2 —an 4y —vh+do —d3
b=- (10)
2 :
T = T + Y — Y + doy — diy s

The system of linear equations given in Eq. (7) can be solved
for x and y by using the least squares approach given in Eq.
(4) with the following residual function,

= i=1,....m—1
(1)
When this residual function which is linear in the unknowns
x and y is used, the problem expressed in Eq. (4) is known
as linear least squares and has a closed form solution given

as,

i (%) = (T —@m) T+ (Yi —ym)y — bi

&::(ATA)ilATb (12)

If b is a vector created by using the true distances d; in Eq.
(10), the localization error can be given as,

lIx = %[z < [[AT]l2]lv]]2 (13)
where v is the discrepancy or the error,
v=b-b (14)
-1
Af = (ATA) A" (15)

Eq. (13) suggests that even if one of the estimated ranges
contains a large error, it will significantly increase the vec-
tor norm ||v||2 and thus the upper bound on the localiza-
tion error. Although, we have used the closed form solution



of linear least squares to explain this, the nonlinear least
squares of Eq. (4) also suffers from this shortcoming. Thus
the traditional approach of least squares based localization
will not be able to localize sensor nodes accurately in non
line of sight prone cluttered environment where some of the
range measurements can be erroneous.

4. ROBUST LOCALIZATION

In this section, we present our robust localization algo-
rithm. We have observed in the previous section that each
range estimate between anchor nodes and the node with
unknown coordinates can be represented as an Euclidean
distance function resulting in a system of nonlinear equa-
tions given in Eq. (3). It is generally desirable to convert a
nonlinear system of equations into a linear one. Nonlinear
equation systems can have multiple roots and local minima.
This presents a significant challenge to the optimization al-
gorithms that have to rely on heuristics or additional ap-
plication knowledge which might not be readily available
to guide them towards the appropriate solution. However,
when dealing with linear equation systems, we can leverage
the very well developed field of linear algebra. Therefore, we
would like to convert the nonlinear equation system given in
Eq. (3) into a linear system. We have already illustrated
one approach in the previous section that can be used to ac-
complish this where one of the equations is subtracted from
the rest to eliminate the nonlinear terms. This results in a
linear system given in Eq. (7). Another similar approach is
to subtract each equation from the rest, thus providing (7;)
distinct linear equations. However, such approaches of lin-
earization are unsuitable for our particular scenario where
some of the range measurements contain large non line of
sight errors. If an equation representing the range mea-
surement with large error is chosen to be subtracted from
the rest, it will result in corrupting all the linear equations.
However, we can avoid this by re-writing the nonlinear equa-
tions of the system given in Eq. (3) as follows,

—2x12 — 2y1y + v by —ni1—er

—2xox —2y2y +v = ba—n2 —e2 (16)
72$m$ — 2ymy +v = bm — Nm — Em
where
v = 224 y2
bi = di—ai -yl
€; = 2dzéz — é?
Since €; < d;, we have,
e; ~ 2d;¢é; (18)

Therefore, each range measurement equation is kept in-
dependent of others and the nonlinearity is hidden in a new
variable v. Eq. (16) can be written in matrix notation as,

Ax+n+e=b (19)

where A € R™*3 is given as,
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—2x1 —2y1 1
—2$2 —2y2 1
A= . (20)
—2Tm  —2Yym 1
di —ai —yi
d3 — a3 —y3 z
b= x= |y, (21)
. v
Ao — Ty — Y

and n and e are vectors of scaled non line of sight and mea-
surement errors respectively. Eq. (19) has two unknowns,
the node coordinates x and the scaled non line of sight errors
n whereas e is a vector of Gaussian random variables. If we
have an estimate fi of the scaled non line of sight errors, we
can compute an estimate of the node coordinates as,

-1
% = (ATA) A" (b-0) (22)

We assume that the anchor nodes are placed in such a
manner that they are non-collinear and thus the rank of
matrix A is 3. If Z is an orthonormal basis of the null space
of AT then

Z"A =0 (23)

where Z € R™*™3 Let us suppose that C = ZT and
premultiply Eq. (19) with C. This annihilates the matrix
A and the unknown coordinates x and we are left with,

Cn+ée=y (24)
where C € R™3X™ and
y=Cb (25)
€ =Ce (26)
According to the property of vector norm,
[€]l2 < [IC][2[le]l2 (27)

Since the rows of C are orthonormal, we have ||C|l2 = 1 and
thus,

1€l]z < [le]l2 (28)

Since e is a random Gaussian vector, the norm |le|z =
V> €2 is a random variable with Chi distribution. The
mean p. of this random variable is given as,

T'((m+1)/2)
v2 I'(m/2)

Thus the only unknown in Eq. (24) is the vector n. If
we can find a unique solution i which is in fact an estimate
of non line of sight range errors, we can compute the un-
known node coordinates using Eq. (22). However, Eq. (24)
is an underdetermined system of linear equations with an in-
finite number of solutions because the number of unknowns

fe = (29)



is larger than the number of available equations. We can,
however, find a way of determining the vector n of scaled
non line of sight errors if we impose certain constraints on
it. If we assume that the vector n is sparse i.e. the majority
of its elements are zero, then it is possible to find a unique
solution i1 by solving the following problem.

minimize  ||nl:

30
ICn — yll2 < lle]l (30)

subject to
where we have used Eq. (28) to replace ||€]2 with |le]2
in the above problem and it can be determined using Eq.
(29). This is a convex optimization problem and can be
easily solved using second-order cone programming [7]. Our
assumption that n is sparse in fact means that we are assum-
ing that the majority of the range measurements are direct
line of sight and only a few of the estimated distances con-
tain large non line of sight errors. In the next section, we will
quantify this statement and explicitly state the percentage
of the range measurements corrupted by non line of sight
errors that our proposed approach can withstand. Another
extremely important observation is the fact that non line
of sight signal propagation always elongates the estimated
distances i.e. the non line of sight errors are always posi-
tive. We can use this extra information to further constrain
the optimization problem presented in Eq. (30). The new
optimization problem is given as,

[n[1
[Cn—yll2 < e]-
n>0

minimize

subject to (31)

In the following sections, we will show that these positivity
constraints n > 0 are extremely important in increasing the
robustness of our proposed approach to erroneous non line
of sight range measurements.

This approach of determining sparse solutions of under-
determined linear systems using [j-norm minimization is
known as Basis Pursuit [10]. Since its recent discovery, it
has found applications in a wide spectrum of areas rang-
ing from compressive sensing, signal and image processing,
statistics, medical imaging, error correction, interference re-
jection and many more. It has also made possible some fas-
cinating new applications that were not possible before. For
example, dynamic images of beating heart using magnetic
resonance imaging. However, to the best of our knowledge,
it has never been used to mitigate the effect of non line of
sight errors for localization in cluttered environments. Our
work shows that by leveraging these developments in other
fields, we can localize sensor nodes even in extremely harsh
environments where the currently available approaches are
not successful.

S. ROBUSTNESS ANALYSIS

Naturally the very first question that comes to mind is
how robust is the proposed approach? That is, given a
set of reference nodes and distance estimates to these ref-
erence nodes, what is the largest percentage of erroneous
range measurements that our proposed algorithm can tol-
erate before breaking down completely. In this section, we
answer this question and quantify this breaking point. Let
us consider a noiseless underdetermined system as,
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Figure 3: Jennic JN5148 radio ranging nodes

Gh=c (32)

where G € RP*? with p < ¢ and the unknown vector h is
non-negative and s-sparse i.e., only s elements of h are non-
zero and positive. We can determine an estimate h of vector
h using a convex program similar to Eq. (31) as,

minimize | h|;
subject to Gh=c (33)
h>0

Donoho and Tanner [14] studied this problem using con-
vex polytope theory. They established that the vector h
obtained by solving the above convex program is unique if
the number of faces of a convex polytope P when projected
down to R? from R? remain unchanged. By using the clas-
sical results on counting the faces of randomly projected
convex polytopes by Affentranger and Schneider [4] and by
Vershik and Sporyshev [26], they were able to show that
under asymptotic conditions this happens when

p
s < 5 +1
This shows that almost half of the elements of h can be
non-zero and the above convex program will still be able to
recover it. However, when the positivity constraints h > 0
are removed from Eq. (33), the threshold for the successful
recovery of h is lowered to

(34)

p+1

3

This suggests that the positivity constraints are extremely
important for successful recovery of unique sparse solutions
of underdetermined systems.

Here we must point out that the above results were de-
rived for the noise-free version of the problem given in Eq.
(33) with equality constraints. However, in practice we have
to deal with noise and solve Eq. (31) that involves conic
constraints. In an extended work, Donoho and Tanner [15]
suggest that these results are applicable to the noisy version
of the problem as well. Donoho et al. [13] have also shown
this analytically when G is a partial Fourier matrix.

In order to derive these results, it was also assumed that
the size of the problem (the matrices and vectors in Eq. (33))

5 < (35)
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Figure 4: Localizing a sensor node in a room using
Jennic radio ranging

tends to infinity. Donoho and Tanner [12] have derived some
non-asymptotic results as well but these results still require
the dimensions of G to be on the order of several hundreds
which is not possible for our particular application. Turning
back to our localization approach described in the previous
section, we can use asymptotic results to describe the upper
bounds of its robustness. Thus for the convex program in
Eq. (31), we have

(36)

and for Eq. (30),

37)

These results suggest that our convex programming based
robust localization approach will be able to estimate the
non line of sight errors accurately even if almost half of the
measurements are erroneous. If, however, the positivity con-
straints on the errors are removed, robustness is significantly
reduced and only one third of the erroneous measurements
can be corrected. In the later sections, we will show through
experimental results that even for a small number of anchor
nodes, our localization algorithm is robust in the presence
of as many as 40% erroneous measurements.

6. EXPERIMENTS

In this section, we present results from the experiments
that were conducted to assess the performance of our convex
programing based robust localization algorithm. We com-
pare the localization error of our approach which we refer
to as Robust Pos with seven different algorithms. These in-
clude 1) Nonlinear LS: the nonlinear least squares approach
of Eq. (4), 2) Linear LS: linear least squares with the lin-
earization discussed in Section 4, 3) Robust Free: convex
program of Eq. (30) that does not include the positivity
constraints on non line of sight errors in the problem formu-
lation, 4) Oracle: an oracle that has the complete knowledge
about which range measurements are due to non line of sight
signals. It removes such erroneous measurements and then
calculates the node position using linear least squares. 5)
Res Weighted the residual weighted algorithm by Chen [9]
for localization in NLOS environments, 6) Rob Estimator

323

] | @ Nonlinear LS
£ 10 Hll Linear LS
< Il Robust Free
<] [l Robust Pos
@ [ Oracle
9 [ IRes Weighted
= 5 [_IRob Estimator |
[ JLAD
. [

Figure 5: Localization error for various algorithms

—o True Errors i
—= Estimated Errors||

160
140r
1200

~

o
o

80r
60r
40F

227 TT 2, | I it

2 4 6 8
Anchor Number

Scaled Error (m?

Figure 6: Comparison of true errors and the errors
estimated by our algorithm

the robust estimator for localization proposed by Casas et
al. [8] and 7) LAD the least absolute deviation based ap-
proach from statistics for solving linear equation systems
with large errors. In the following subsections, we describe
our experiments from three different hardware platforms.

6.1 Radio Ranging

In this section, we present our results from experiments
that were carried out with sensor nodes that use 2.4GHz
radio ranging to estimate distance between themselves. For
these experiments we used JN5148 sensor nodes shown in
Fig. (3a) from Jennic [1]. These nodes estimate the distance
by measuring time of flight of radio packets between two
nodes. A transmitter node sends out a POLL packet and the
receiving node responds with an ACK. It also measures the
turnaround time in hardware for it to respond to the POLL
message as shown in Fig. (3b). At the transmitter the total
time along with this turnaround time gives an estimate of
two way time of flight between the nodes. When issued with
a ranging command, the transmitter node performs a burst
of 10 measurements. The receiver records the turnaround
times of all 10 packets. This information is then sent back to
the transmitter in a separate data packet. The transmitter
then estimates the distance using the timing information.
This is known as forward ranging. Since the estimated times
can be affected by the clock offsets and accuracies, a reverse
burst can also be performed where the transmitter and the
receiver nodes swap roles.

Our experience with these sensor nodes suggests that they
perform very well in an open outdoors environment where
they can measure distances of up to 100m with an accuracy
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of less than 1m. However, when these nodes are used in an
ordinary indoors environment, some of the range measure-
ments can have errors of up to 100%. This is due to the fact
that in an indoors environment, the radio signal can reflect
and bounce off the walls or the furniture and the physical
layer at the receiver can lock onto any of the reflected sig-
nals. This creates a very harsh scenario where some of the
range measurements are very accurate with less than 1m er-
ror whereas others can have errors of several tens of meters
and no other information is available to distinguish between
the erroneous and good range measurements.

This experiment was performed in a 15m x10m lecture
theater full of chairs and other furniture. One sensor node
was connected to the laptop to record the range measure-
ments and a second node which was used as a reference
node was placed at different positions inside the lecture the-
ater. At each position, its coordinates were measured using
a laser range finder and 100 forward and 100 reverse range
measurements were performed to the sensor node connected
to the laptop. A mean of these measurements was used as
an estimate of the measured range between the two sensor
nodes. The recorded reference node coordinates and the
range measurements were then used to localize the sensor
node connected to the laptop using different localization
algorithms. Fig. (4) shows one scenario with 8 reference
node positions shown with red stars and the true position
of the sensor node connected to the laptop is shown as a
blue cross. In this set up 5 of the range measurements were
accurate whereas the remaining 3 had significant errors. In
the figure, the estimate of the position computed by our ro-
bust localization approach is shown as a magenta diamond.
The coordinates determined by the algorithm without the
positivity constraints, nonlinear least squares, linear least
squares and the oracle algorithm are shown as a black trian-
gle, a blue square, a red circle and a green cross respectively.
The position estimate computed using the residual weighted
approach of Chen [9], the robust estimator of Casas et al. [8]
and the least absolute deviation estimator are shown as cyan
inverted triangle, a black left triangle and a black pentagram
respectively.

The localization error for our approach is about 1m and
that of the oracle is 1.8m! The reason for this is that our al-
gorithm corrects the erroneous measurements and then uses
all the reference node positions and the corrected measure-
ments to estimate the node coordinates whereas the oracle
removes the bad measurements and uses the remaining ones
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Figure 9: Localizing a sensor node in a room using
ultrasound ranging

to calculate the node coordinates. Fig. (5) compares the
localization errors of our approach with all of the other ap-
proaches. Since the residual weighted algorithm computes
the position estimate as a weighted linear combination of the
solutions of all the subsets of range measurements, those cor-
rupted by NLOS errors influence the final position estimate
and thus cause the higher localization error. The robust
estimator approach also examines the subsets of measure-
ments and tries to filter out the erroneous measurements by
comparing the residuals with a threshold. In this experi-
ment, all the residuals were below the computed threshold
and thus the algorithm failed to detect erroneous measure-
ments. This resulted in the large localization error. The
least absolute deviation estimator also could not perform
significantly better.

Fig. (6) compares the actual errors for every reference
node with an estimate i of the errors computed by our al-
gorithm. This shows that the estimated errors are quite
similar to the actual errors and this is the reason for the
good performance of our algorithm because these estimated
errors are removed before calculating the node coordinates
as shown in Eq. (22). We must point out that these are
scaled non line of sight errors n; as opposed to non line of
sight errors 7i;. Eq. (18) shows how non line of sight errors
are scaled by true distance to form these scaled errors.

In order to empirically test the breaking point of our al-
gorithm, we conducted another experiment in the same lec-
ture theater. In this experiment, we kept the 5 good range
measurements and the reference positions and gradually in-
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Figure 10: Localization errors of various algorithms

creased the number of erroneous measurements from 0 to 9
by placing the reference node at different locations in the
room. Thus the total number of reference positions and the
measurements varied from 5 to 14 with the percentage of
the erroneous measurements varying from 0% to 65%. Fig.
(7) shows the localization error versus the percentage of erro-
neous measurements. It clearly shows a knee where just after
40%, the error jumps from less than 1m to more than 5m.
This is due to the fact that the sparsity constraint on n is
violated and convex programming is unable to find a unique
solution to the underdetermined system of Eq. (24). The
performance of the oracle algorithm is also shown for com-
parison and we can see that our algorithm performs better
than the oracle before the breakdown point is reached. This
suggests that our algorithm will perform better than any of
the approaches that try to distinguish between the line of
sight and non line of sight measurements unless additional
knowledge about the non line of sight errors is incorporated
in them. Our approach implicitly does this by automati-
cally inferring this knowledge instead of relying on the user
to provide it. However, it is only successful in inferring this
knowledge if the number of non line of sight measurements
is less than half.

6.2 In Air Acoustic Ranging

In this section, we outline the results of our experiments
that were carried out using MIT Cricket motes [22]. These
motes use time difference of arrival between a radio signal
and a ultrasound signal to estimate the distance. A trans-
mitter sends out a radio packet and ultrasound pulse simul-
taneously. Since the speed of propagation of radio waves is
significantly higher than the speed of sound, it is received
almost instantaneously by the receiver. It starts a timer and
on receiving the ultrasound pulse, this timer is stopped. This
gives an estimate of one way time of flight which is then used
with the speed of propagation of sound to determine the dis-
tance to the transmitter. In these experiments 7 motes were
placed in an office in a 3m x3m area as shown in Fig. (8).
One of the motes was programmed to act like a receiver and
the other 6 worked like beacons or reference nodes continu-
ously sending out radio and ultrasound signals. The receiver
used this transmitted signals to estimate distances to each
of the reference nodes. The receiver was also connected to
a laptop computer to record all the measurements.

Since the ultrasound pulses emitted by the motes can re-
flect and bounce off solid place surfaces, we placed two motes
in such a manner that they were facing a wall. This created
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Figure 12: Ranging errors for clear and cluttered
underwater environment

non line of sight propagation of ultrasound pulses emitted
by these motes and thus the distances to these reference
nodes were overestimated by the receiver. For each of these
transmitters, the overestimation error is around 70cm. For
the first experiment, one of these non line of sight nodes was
switched off. Therefore, there were a total of 5 transmitters
or reference nodes and only one of these was generating non
line of sight signals. At the receiver, distances to all 5 trans-
mitters were estimated and then along with the transmitter
nodes coordinates used to determine the location of the re-
ceiver using the above mentioned localization approaches.

Fig. (9) shows the scenario with 5 reference node posi-
tions, the true position of the receiver and the coordinates
calculated by our algorithm and other approaches. It shows
that the receiver position determined by our algorithm and
the oracle is almost indistinguishable from the true position.
The localization error for our approach is 6.3cm and that of
the oracle is 4.9cm. Thus despite having an erroneous mea-
surement with an error of almost 70cm, our algorithm comes
as close as about a lcm of the oracle. The robust estima-
tor removes two of the good measurements and accepts one
erroneous range measurement for its final coordinate compu-
tation and thus exhibits a large error. The residual weighted
algorithm and least absolute deviation also results in large
localization errors. Fig. (10) compares the localization er-
rors of all of the tested algorithms.

The reason that our algorithm was able to perform as well
as the oracle is that it was able to estimate the errors very
accurately. Fig. (11) compares the actual errors scaled by
the true distance and the estimate of these errors computed
by our algorithm. It shows that the estimate matches the
true values quite reasonably. Since these errors are removed
before computing the node coordinates, the calculated node
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position is quite close to the actual position of the receiver.

In the second experiment, the second transmitter with
non line of sight signals was also switched on. Thus there
were a total of 6 reference nodes in this experiment with 2
being non line of sight. Thus 33.3% of the measurements
were erroneous. In this experiment, the localization error of
our algorithm jumped to 120cm which indicates that it had
moved beyond the breakdown point and was thus unable to
determine a unique estimate fi of errors. We notice that the
breakdown point in this experiment was at 33.3% which is
lower than the 40% that was observed in the previous ex-
periment. This is due to the fact that the number of anchor
nodes and thus the size of the underdetermined system of
Eq. (24) was smaller for this experiment as compared to the
previous one. The results presented in Section 5 suggest that
as we increase the number of anchor nodes, the breakdown
point of the algorithm approaches 50%.

6.3 Underwater Acoustic Ranging

We now present some underwater experiments where ul-
trasound signals from underwater acoustic transducers were
used to perform range measurements. Since our robots are
still in a prototype stage, we used two acoustic transduc-
ers connected to a desktop computer with the help of a
ADC/DAC card and the signal waveforms were generated
from LabView software. We chose to use Neptune T204 [2]
as a transmitter due to its hemispherical beam pattern and
40KRO08 [3] was used as a receiver. We are considering to
use T204 for reference nodes fixed to the pond infrastruc-
ture and 40KR08 for our mobile sensor nodes because of its
small size. These transducers were connected to two sep-
arate metal frames which could be moved on top of a lab
tank with the transducers positioned inside the water. The
dimensions of the tank are 12mx1.2mx0.6m.

For these experiments, an MLS coded BPSK signal with
a code length of 2047bits was used for ranging because such
signals are better suited to combat multipath and interfer-
ence rejection. A carrier frequency of 50kHz was selected
after inspecting the frequency response of both the trans-
ducers. The signal to be transmitted was generated by the
desktop computer, converted to analogue using a 12bit dig-
ital to analogue converter on the card and then fed into the
transducer. At the receiver, the received signal was am-
plified through a 48.4dB gain amplifier, digitized through
a 16bit ADC and then cross correlated in software at the
desktop computer with transmitted signal to detect the first
arriving peak to the signal. This provided us with the time
of the flight of the signal from the transmitter to the re-
ceiver. During the experiments, the water temperature was
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Figure 15: Simulated localization in water tank

measured with a thermometer and was found to be constant
18°C. According to Lubbers and Graaff [20] equation,

Vis = 1405.03 + 4.624¢ — 0.0383t> (38)

the speed of propagation of ultrasound in water at this
temperature is 1475.85m/s. Eq. (38) is valid for a tempera-
ture range of 10 —40°C at atmospheric pressure. Using this
speed of propagation, the measured time of flight was then
converted into a range estimate.

For the first experiment, both the receiver and the trans-
mitter was placed close to the walls of the tank with clear
line of sight. The distance between the transmitter and the
vessel wall was 6cm and similarly the receiver was 9cm away
from the wall. The depth of both transducers was 1.5m.
The transducers were placed close to the walls to observe
if such boundary conditions could give rise to strong multi-
path propagation of acoustic signals. The receiver was fixed,
whereas the transmitter was positioned at different distances
from the receiver along the length of the tank. At each trans-
mitter location, MLS coded BPSK signals were transmitted
and 100 range estimates were recorded. Fig. (12a) shows
the ranging errors for this obstacle free scenario. It shows
that under line of sight conditions, the range measurements
have very small errors on the order of few centimeters even
when the distance between the two transducers is 10m.

In order to observe the effect of solid occlusions on the
ranging system, two sets of concrete blocks were placed in-
side the tank between the transmitter and the receiver as
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Figure 16: Localization errors of various algorithms

shown in Fig. (13). And again the transmitter was posi-
tioned at different locations along the length of the tank
and 100 range estimates were recorded for each transmitter
position. Fig. (14) shows the actual experimental set up. In
this case, we observed large errors in the estimated distances
ranging from less than 1m to 3m. When the separation be-
tween the receiver and the transmitter is 1m, we observe
that the signal is strong enough to pass through the porous
concrete and thus results in a small error of few centimeters
. We can use the error distributions for the obstruction free
and obstructed case from Fig. (12a) and Fig. (14) respec-
tively to emulate the performance of this underwater rang-
ing system for localizing a mobile sensor node. Let us take
a simplified view of the underwater sensor network and sup-
pose that there are five reference nodes equipped with T204
transducers fixed with in this tank and a robot equipped
with 40KR08 estimates distances to these six anchor nodes
as shown in Fig. (15). Let us suppose that one of these
anchor nodes results in a non line of sight range estimate
with an error randomly chosen from a uniform distribution
U(a,b) with @ = 0.5m and b = 3m and line of sight mea-
surement errors are from A(0,0?) with o = 4cm. Fig. (15)
shows the estimated positions and Fig. (16) presents the
localization errors of all of the considered algorithms. These
results show that when this underwater ranging system will
be employed for localization in this particular environment,
our algorithm will be able to successfully localize the sensor
nodes. Although, this is not our target application environ-
ment, such error distributions from any of the storage pools
can be used to verify the performance of our algorithm and
we consider these experiments as a preliminary step towards
that goal.

7. MOBILE SENSOR NODES

In this section, we focus on the localization of mobile sen-
sor nodes and compare the performance of our algorithm
with an Extended Kalman Filter. A Kalman filter is con-
sidered state of the art in estimating the state of a dynamic
system. It uses a state model to predict the state of the
system, which is then combined with the measurements in a
least squares sense according to the covariances of both the
predicted state and the measurements. We assume that a
sensor node is moving with a constant velocity in the clut-
tered environment. At each discrete time step k, it estimates
its distance from the fixed anchor nodes deployed in the en-
vironment. The system state that we want to estimate using
a Kalman filter is the coordinates of the sensor node as it
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moves around in the pond. Let us suppose that x;, is a vec-
tor of the current state at time step k. Eq. (39) is a state
equation that relates the current state to the previous one,

xpy =Fxrx_1+Gu+w (39)
10 k 0 Uy
el el iafn] @

where u, and u, are the x and y components of the velocity
and w is a gaussian random vector with covariance W. It
represents the noise in our chosen state model i.e. a sensor
node moving with constant velocity. At each time step k, the
sensor node also estimates its distances to the fixed reference
nodes which results in a nonlinear equation system given in
Eq. (3). We can represent this as,

di = h(xk, €x) (41)

where dj is a vector of range measurements and b is a nonlin-
ear function that relates the current state and measurement
noise €, with covariance E to the measurements. We use
the following standard Kalman filter equations to estimate
the node coordinates at each time step k.

Xk|k—1 Fxi_1jx—1 + Gu
Pir—1 = FPkfl\k—lFT +W
Ki = Py Hi (HiPyp HL +E)7" (42)
Xple = Xpjk—1 + Ki(dr — h(xg5-1,0))
Py = (I-KiHp)Ppp_:



where Hj is the jacobian of h at the current estimated
state. The k|k—1 is the standard notation of the filter theory
and can be thought of as an estimate of the subscripted
quantity at time step k using the information from k—1. The
matrix K is known as Kalman gain and P is the covariance
of the state estimate.

As compared to the Kalman filter, our approach does not
require the state model or any information about the robot
movement. At each time step k, it only uses the available
range measurements and the reference node coordinates to
estimate the robot position using Eq. (31).

Fig. (17) shows a simulated scenario where a sensor node
has been moving in a cluttered environment. The orange
circles indicate the positions of reference nodes and the clut-
ter is shown as blue polygons. As the node moves around,
it estimates its position using the Extended Kalman filter
described above. For these simulations, the covriances of

model noise and measurement noise were W = [0'81 0%1}
and E = 0-81 0%1 respectively and non line of sight er-

rors were randomly seleted from a uniform distribution with
a = 10 and b = 20 units. The true path of the mobile node
is shown in blue and the path estimated by the Kalman fil-
ter is shown in red. Although this path some what follows
the true path of the mobile node, we can see that it con-
tains significant errors. This is due to the fact that despite
employing the dynamic state model, the Kalman filter is un-
able to cope with the erroneous range measurements. This
sort of behaviour is expected because a Kalman filter is an
extension of the least squares principle to the dynamic case.

Fig. (18) shows the same scenario when our robust local-
ization approach is used to estimate the mobile node coor-
dinates. As before, the true path is shown in blue and the
path estimated by our approach is shown in black. As we
can see from the figure, these two are almost indistinguish-
able for the most of the path length. However, if the robot
moves to a position in the environment where the majority
of the range measurements become non line of sight, our
approach also breaks down because the sparsity conditions
are violated and it is unable to find a unique estimate of
non line of sight errors. Fig. (19) shows the localization
error of both of the approaches over the entire duration of
the experiment. It shows that the discrepancy between the
true position of the sensor node and the location estimated
by our approach is negligible most of the time.

8. RELATED WORK

Sensor network localization has received considerable at-
tention and there is a large body of research available ad-
dressing this problem. However, we will restrict ourselves
to localization under NLOS conditions. Localization in the
presence of NLOS measurements has mostly been studied for
cellular networks [28, 27]. A vast majority of this work as-
sumes that it is possible to identify NLOS measurements by
inspecting the statistics of a series of measurements from a
mobile node [6, 19]. Once identified, these measurements
can be completely removed, assigned lower weights or if
NLOS error statistics are available, these can be combined
with the measurements to estimate the position [11]. How-
ever, if the nodes are stationary or moving very slowly then
it is not possible to use such approaches. An approach
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Figure 19: Comparison of localization error

that only relies on the measurements to identify and re-
move NLOS ranges has also been proposed [9]. However, it
is computationally very expensive and it relies on heuristics
that fail when there are more than one NLOS measurements
present. Another similar approach [8] tries to remove the
erroneous measurements by inspecting residuals. However,
such an approach can also fail when the number of measure-
ments is small.

With recent developements in UWB radio technology, NLOS
localization for sensor nodes in indoor cluttered environ-
ments has also been explored [16]. However, such approaches
also rely on the characteristics of the UWB signals to identify
LOS and NLOS signals [24]. Just like cellular networks, after
the identification, such measurements can be either removed
completely or incorporated in localization [17, 25]. Another
approach that has been explored is to characterize the in-
door environment and then use the collected NLOS error
statistics as prior information during localization [18]. How-
ever, this requires extensive pre-deployment measurements
and thus cannot be used for ad-hoc networks. An approach
that is similar to our work has also been proposed [21]. It
treats the erroneous measurements as outliers but does not
impose positivity constraints on these outliers. As we have
shown, the positivity constraints on NLOS measurements
are extremely important and significantly improve the per-
formance.

9. CONCLUSION

In this paper, we presented a robust localization algorithm
for determining the coordinates of sensor nodes in a cluttered
environment where due to non line of sight signal propaga-
tion some of the range measurements are erroneous. We also
analyzed the robustness of this algorithm both theoretically
and empirically and showed that under realistic conditions,
it can accurately localize sensor nodes even if as many as
40% of the range measurements are erroneous. Below this
threshold, our algorithm even outperforms an oracle that
possess the complete knowledge of which measurements are
erroneous. We showed that our approach is completely inde-
pendent of the hardware used for performing range measure-
ments and does not require any extra information that must
be gathered beforehand. This makes it suitable for localizing
ad-hoc sensor networks in a wide variety of environments.
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