
LINEAR PROGRAMMING I:
SIMPLEX METHOD

3.1 INTRODUCTION

Linear programming is an optimization method applicable for the solution of
problems in which the objective function and the constraints appear as linear
functions of the decision variables. The constraint equations in a linear pro-
gramming problem may be in the form of equalities or inequalities. The linear
programming type of optimization problem was first recognized in the 1930s
by economists while developing methods for the optimal allocation of re-
sources. During World War II the U.S. Air Force sought more effective pro-
cedures of allocating resources and turned to linear programming. George B.
Dantzig, who was a member of the Air Force group, formulated the general
linear programming problem and devised the simplex method of solution in
1947. This has become a significant step in bringing linear programming into
wider use. Afterward, much progress has been made in the theoretical devel-
opment and in the practical applications of linear programming. Among all the
works, the theoretical contributions made by Kuhn and Tucker had a major
impact in the development of the duality theory in LP. The works of Charnes
and Cooper were responsible for industrial applications of LP.

Linear programming is considered a revolutionary development that permits
us to make optimal decisions in complex situations. At least four Nobel Prizes
were awarded for contributions related to linear programming. For example,
when the Nobel Prize in Economics was awarded in 1975 jointly to L. V.
Kantorovich of the former Soviet Union and T. C. Koopmans of the United
States, the citation for the prize mentioned their contributions on the applica-
tion of LP to the economic problem of allocating resources [3.1]. George Dant-
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zig, the inventor of LP, was awarded the National Medal of Science by Pres-
ident Gerald Ford in 1976.

Although several other methods have been developed over the years for
solving LP problems, the simplex method continues to be the most efficient
and popular method for solving general LP problems. Among other methods,
Karmarkar's method, developed in 1984, has been shown to be up to 50 times
as fast as the simplex algorithm of Dantzig. In this chapter we present the
theory, development, and applications of the simplex method for solving LP
problems. Additional topics, such as the revised simplex method, duality the-
ory, decomposition method, postoptimality analysis, and Karmarkar's method,
are considered in Chapter 4.

3.2 APPLICATIONS OF LINEAR PROGRAMMING

The number of applications of linear programming has been so large that it is
not possible to describe all of them here. Only the early applications are men-
tioned here and the exercises at the end of this chapter give additional example
applications of linear programming. One of the early industrial applications of
linear programming has been made in the petroleum refineries. In general, an
oil refinery has a choice of buying crude oil from several different sources with
differing compositions and at differing prices. It can manufacture different
products, such as aviation fuel, diesel fuel, and gasoline, in varying quantities.
The constraints may be due to the restrictions on the quantity of the crude oil
available from a particular source, the capacity of the refinery to produce a
particular product, and so on. A mix of the purchased crude oil and the man-
ufactured products is sought that gives the maximum profit.

The optimal production plan in a manufacturing firm can also be decided
using linear programming. Since the sales of a firm fluctuate, the company can
have various options. It can build up an inventory of the manufactured products
to carry it through the period of peak sales, but this involves an inventory
holding cost. It can also pay overtime rates to achieve higher production during
periods of higher demand. Finally, the firm need not meet the extra sales de-
mand during the peak sales period, thus losing a potential profit. Linear pro-
gramming can take into account the various cost and loss factors and arrive at
the most profitable production plan.

In the food-processing industry, linear programming has been used to de-
termine the optimal shipping plan for the distribution of a particular product
from different manufacturing plants to various warehouses. In the iron and
steel industry, linear programming was used to decide the types of products to
be made in their rolling mills to maximize the profit. Metal working industries
use linear programming for shop loading and for determining the choice be-
tween producing and buying a part. Paper mills use it to decrease the amount
of trim losses. The optimal routing of messages in a communication network



and the routing of aircraft and ships can also be decided using linear program-
ming.

Linear programming has also been applied to formulate and solve several
types of engineering design problems, such as the plastic design of frame struc-
tures, as illustrated in the following example.

Example 3.1 In the limit design of steel frames, it is assumed that plastic
hinges will be developed at points with peak moments. When a sufficient num-
ber of hinges develop, the structure becomes an unstable system referred to as
a collapse mechanism. Thus a design will be safe if the energy-absorbing ca-
pacity of the frame (U) is greater than the energy imparted by the externally
applied loads (E) in each of the deformed shapes as indicated by the various
collapse mechanisms [3.9].

For the rigid frame shown in Fig. 3.1, plastic moments may develop at the
points of peak moments (numbered 1 through 7 in Fig. 3.1). Four possible
collapse mechanisms are shown in Fig. 3.2 for this frame. Assuming that the
weight is a linear function of the plastic moment capacities, find the values of
the ultimate moment capacities Mb and Mc for minimum weight. Assume that
the two columns are identical and that P1 = 3, P1 = 1, /z = 8, and / = 10.

SOLUTION The objective function can be expressed as

f(Mb,Mc) = weight of beam + weight of columns

= a(2lMb + 2hMc)

where a is a constant indicating the weight per unit length of the member with
a unit plastic moment capacity. Since a constant multiplication factor does not
affect the result, /can be taken as

/ = 2lMb + 2hMc = 20A^ + 16MC (E1)

Figure 3.1 Rigid frame.



E = Pi 5i + P2 52 = 349 E = Pi 5i = 249

C/ = 4M69 + 2MC9 [/ = 2M69 + 2MC9

Figure 3.2 Collapse mechanisms of the frame. Mb, moment carrying capacity of
beam; MC9 moment carrying capacity of column [3.9].

The constraints (U > E) from the four collapse mechanisms can be expressed
as

Mc > 6

Mb > 2.5

2Mb + Mc > 17

M^ + Mc > 12 (E2)

3.3 STANDARD FORM OF A LINEAR
PROGRAMMING PROBLEM

The general linear programming problem can be stated in the following stan-
dard form:

1. Scalar form



MmInIiZeZ(JC15JC2,. . .,Jtn) = C1X1 + c2x2 + • • • + cnxn (3.1a)

subject to the constraints

^11JC1 + a12x2 + • • • + a]nxn = bx

O21X1 + O22X2 + • • • + a2nxn = b2 {3.2a)

amXxx + ow 2x2 + • • • 4- omnxn = bm

X1 > O

* 2 " ° (3.3o)

Xn > O

where c}, bjy and atj (i = 1,2,. . .,m; j = 1,2,. . .,«) are known con-
stants, and Xj are the decision variables.

2. Matrix form

Minimize/(X) = C7X (3.1fc)

subject to the constraints

aX = b (3.2b)

X > O (3.36)

where

X1 \ ( 1 I [ l

X = ^2, b = r . 2 , c = ? : - ,

Vx^y ^fem^ ^ y

O11 O12 • • • O1n

^21 #22 * * " a2n
a =

_ o m i o m 2 • * • o m n _



The characteristics of a linear programming problem, stated in the standard
form, are:

1. The objective function is of the minimization type.

2. All the constraints are of the equality type.

3. All the decision variables are nonnegative.

It is now shown that any linear programming problem can be expressed in the
standard form by using the following transformations.

1. The maximization of a function/(Jc1,X2,. . .,Xn) is equivalent to the min-
imization of the negative of the same function. For example, the objec-
tive function

minimize / = C1Jc1 + c2x2 + # * * + cnxn

is equivalent to

maximize/ ' = —/ = -C1JCi ~~ C2*2 — • • • — cnxn

Consequently, the objective function can be stated in the minimization
form in any linear programming problem.

2. In most engineering optimization problems, the decision variables rep-
resent some physical dimensions, and hence the variables Jc7 will be non-
negative. However, a variable may be unrestricted in sign in some prob-
lems. In such cases, an unrestricted variable (which can take a positive,
negative, or zero value) can be written as the difference of two non-
negative variables. Thus if Xj is unrestricted in sign, it can be written as
Xj = xj — xj, where

x'j > 0 and JC/ > 0

It can be seen that Jc7 will be negative, zero, or positive, depending on
whether x" is greater than, equal to, or less than jcy'.

3. If a constraint appears in the form of a "less than or equal to" type of
inequality as

0*1*1 + akix2 + • • • + aknxn < bk

it can be converted into the equality form by adding a nonnegative slack
variable Xn+ ] as follows:

akxxx + Uk2X2 + • * • + QtnXn +Xn + 1 = bk



Similarly, if the constraint is in the form of a "greater than or equal to"
type of inequality as

akxxx + Uk2X2 + • • • + aknxn > bk

it can be converted into the equality form by subtracting a variable as

akxxx + ak2x2 + • • • + OfnXn -Xn + 1 = bk

where Xn + 1 is a nonnegative variable known as a surplus variable.

It can be seen that there are m equations in n decision variables in a linear
programming problem. We can assume that m < n; for if m > n, there would
be m — n redundant equations that could be eliminated. The case n = m is of
no interest, for then there is either a unique solution X that satisfies Eqs. (3.2)
and (3.3) (in which case there can be no optimization) or no solution, in which
case the constraints are inconsistent. The case m < n corresponds to an
underdetermined set of linear equations which, if they have one solution, have
an infinite number of solutions. The problem of linear programming is to find
one of these solutions that satisfies Eqs. (3.2) and (3.3) and yields the mini-
mum of/.

3.4 GEOMETRY OF LINEAR PROGRAMMING PROBLEMS

A linear programming problem with only two variables presents a simple case
for which the solution can be obtained by using a rather elementary graphical
method. Apart from the solution, the graphical method gives a physical picture
of certain geometrical characteristics of linear programming problems. The
following example is considered to illustrate the graphical method of solution.

Example 3.2 A manufacturing firm produces two machine parts using lathes,
milling machines, and grinding machines. The different machining times re-
quired for each part, the machining times available on different machines, and
the profit on each machine part are given in the following table.

Type of Machine

Lathes
Milling machines
Grinding machines

Profit per unit

Machining Time Required (min)

Machine Part I

10
4
1

$50

Machine Part II

5
10
1.5

$100

Maximum Time Available
per Week (min)

2500
2000
450



Determine the number of parts I and II to be manufactured per week to max-
imize the profit.

SOLUTION Let the number of machine parts I and II manufactured per week
be denoted by x and y, respectively. The constraints due to the maximum time
limitations on the various machines are given by

IOJC + 5y < 2500 (E1)

Ax + 10y < 2000 (E2)

JC + 1.5y < 450 (E3)

Since the variables x and y cannot take negative values, we have

x - ° (E4)

y > 0

The total profit is given by

f(x,y) = 50x + 10Oy (E5)

Thus the problem is to determine the nonnegative values of x and y that satisfy
the constraints stated in Eqs. (Ej) to (E3) and maximize the objective function
given by Eq. (E5). The inequalities (E1) to (E4) can be plotted in the xy plane
and the feasible region identified as shown in Fig. 3.3. Our objective is to find

Figure 3.3 Feasible region given by Eqs. (E,) to (E4).
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at least one point out of the infinite points in the shaded region of Fig. 3.3
which maximizes the profit function (E5).

The contours of the objective function, / , are defined by the linear equation

5(k + 10Oy = k = constant

As k is varied, the objective function line is moved parallel to itself. The max-
imum value of/ is the largest k whose objective function line has at least one
point in common with the feasible region. Such a point can be identified as
point G in Fig. 3.4. The optimum solution corresponds to a value of JC* =
187.5, y* = 125.0 and a profit of $21,875.00.

In some cases, the optimum solution may not be unique. For example, if
the profit rates for the machine parts I and II are $40 and $100 instead of $50
and $100, respectively, the contours of the profit function will be parallel to
side CG of the feasible region as shown in Fig. 3.5. In this case, line P"Q",
which coincides with the boundary line CG, will correspond to the maximum
(feasible) profit. Thus there is no unique optimal solution to the problem and
any point between C and G on line P"Q" can be taken as an optimum solution
with a profit value of $20,000. There are three other possibilities. In some
problems, the feasible region may not be a closed convex polygon. In such a
case, it may happen that the profit level can be increased to an infinitely large
value without leaving the feasible region, as shown in Fig. 3.6. In this case
the solution of the linear programming problem is said to be unbounded. On
the other extreme, the constraint set may be empty in some problems. This
could be due to the inconsistency of the constraints; or, sometimes, even though

Figure 3.4 Contours of objective function.



Figure 3.5 Infinite solutions.

the constraints may be consistent, no point satisfying the constraints may also
satisfy the nonnegativity restrictions. The last possible case is when the fea-
sible region consists of a single point. This can occur only if the number of
constraints is at least equal to the number of variables. A problem of this kind
is of no interest to us since there is only one feasible point and there is nothing
to be optimized.

Thus a linear programming problem may have (1) a unique and finite opti-
mum solution, (2) an infinite number of optimal solutions, (3) an unbounded

Figure 3.6 Unbounded solution.



solution, (4) no solution, or (5) a unique feasible point. Assuming that the
linear programming problem is properly formulated, the following general ge-
ometrical characteristics can be noted from the graphical solution.

1. The feasible region is a convex polygon.f

2. The optimum value occurs at an extreme point or vertex of the feasible
region.

3.5 DEFINITIONS AND THEOREMS

The geometrical characteristics of a linear programming problem stated in Sec-
tion 3.4 can be proved mathematically. Some of the more powerful methods
of solving linear programming problems take advantage of these characteris-
tics. The terminology used in linear programming and some of the important
theorems are presented in this section.

Definitions

1. Point in n-Dimensional Space A point X in an n-dimensional space is
characterized by an ordered set of n values or coordinates (xux2,. . .,Jcn). The
coordinates of X are also called the components of X.

2. Line Segment in n-Dimensions (L) If the coordinates of two points A and
B are given by xf] and JC)2) (j = 1,2,. . . ,n), the line segment (L) joining these
points is the collection of points X (X) whose coordinates are given by Xj =
\x(jl) + (1 - \)xf\j = 1,2,. . .,n, with 0 < X < 1.

Thus

L = {X|X = XX(1) + (1 - X)X(2)} (3.4)

In one dimension, for example, it is easy to see that the definition is in accor-
dance with our experience (Fig. 3.7):

JC<2> - x(X) = X[JC(2) - JC(1)], 0 < X < 1 (3.5)

A B
1 i I I ^ x

0 X(D X(W X(2)
Figure 3.7 Line segment.

1A convex polygon consists of a set of points having the property that the line segment joining
any two points in the set is entirely in the convex set. In problems having more than two decision
variables, the feasible region is called a convex polyhedron, which is defined in the next section.



whence

X(K) = XJC(1) + (1 - \)x(2\ O < X < 1 (3.6)

3. Hyperplane In n-dimensional space, the set of points whose coordinates
satisfy a linear equation

axxx + • • • + anxn = a rX = b (3.7)

is called a hyperplane.
A hyperplane, H, is represented as

H(a,b) = {X|arX = b} (3.8)

A hyperplane has n — 1 dimensions in an rc-dimensional space. For example,
in three-dimensional space it is a plane, and in two-dimensional space it is a
line. The set of points whose coordinates satisfy a linear inequality like axxx

+ • • • + anxn < b is called a closed half-space, closed due to the inclusion
of an equality sign in the inequality above. A hyperplane partitions the
/i-dimensional space (En) into two closed half-spaces, so that

H+ = (XIa7X > b} (3.9)

H~ = {X|a rX < b} (3.10)

This is illustrated in Fig. 3.8 in the case of a two-dimensional space (£2).

4. Convex Set A convex set is a collection of points such that if X(1) and X(2)

are any two points in the collection, the line segment joining them is also in
the collection. A convex set, S, can be defined mathematically as follows:

If X ( 1 ) ,X ( 2 ) e5 , then X e S

where

X = XX(1) + (1 - X)X(2), 0 < X < 1

Hyperplane

Figure 3.8 Hyperplane in two dimensions.



Figure 3.9 Convex sets.

A set containing only one point is always considered to be convex. Some
examples of convex sets in two dimensions are shown shaded in Fig. 3.9. On
the other hand, the sets depicted by the shaded region in Fig. 3.10 are not
convex. The L-shaped region, for example, is not a convex set because it is
possible to find two points a and b in the set such that not all points on the line
joining them belong to the set.

5. Convex Polyhedron and Convex Polytope A convex polyhedron is a set
of points common to one or more half-spaces. A convex polyhedron that is
bounded is called a convex polytope.

Figure 3.1 \a and b represent convex polytopes in two and three dimensions,
and Fig. 3.11c and d denote convex polyhedra in two and three dimensions.
It can be seen that a convex polygon, shown in Fig. 3.11a and c, can be
considered as the intersection of one or more half-planes.

6. Vertex or Extreme Point This is a point in the convex set that does not
lie on a line segment joining two other points of the set. For example, every
point on the circumference of a circle and each corner point of a polygon can
be called a vertex or extreme point.

7. Feasible Solution In a linear programming problem, any solution that sat-
isfies the constraints

aX = b (3.2)

X > 0 (3.3)

is called a feasible solution.

Figure 3.10 Nonconvex sets.



Figure 3.11 Convex poly topes in two and three dimensions (a, b) and convex poly-
hedra in two and three dimensions (c, d).

8. Basic Solution A basic solution is one in which n — m variables are set
equal to zero. A basic solution can be obtained by setting n — m variables to
zero and solving the constraint Eqs. (3.2) simultaneously.

9. Basis The collection of variables not set equal to zero to obtain the basic
solution is called the basis.

10. Basic Feasible Solution This is a basic solution that satisfies the non-
negativity conditions of Eq. (3.3).

11. Nondegenerate Basic Feasible Solution This is a basic feasible solution
that has got exactly m positive X1.

12. Optimal Solution A feasible solution that optimizes the objective func-
tion is called an optimal solution.



13. Optimal Basic Solution This is a basic feasible solution for which the
objective function is optimal.

Theorems The basic theorems of linear programming can now be stated and
proved. 1^

Theorem 3.1 The intersection of any number of convex sets is also convex.

Proof: Let the given convex sets be represented as R1 (i = 1,2,. . .,K) and
their intersection as R, so that*

K

R = n Ri

If the points X(1), X(2) e R9 then from the definition of intersection,

X = XX(1) + (1 - X) X(2) e R1 (i = 1,2,. . .,K)

0 < X < 1

Thus

K

XeR= PI R1
I = i

and the theorem is proved. Physically, the theorem states that if there are a
number of convex sets represented by R1, R2, . . . , the set of points R common
to all these sets will also be convex. Figure 3.12 illustrates the meaning of this
theorem for the case of two convex sets.

Theorem 3.2 The feasible region of a linear programming problem is con-
vex.

1ThC proofs of the theorems are not needed for an understanding of the material presented in
subsequent sections.
*The symbol O represents the intersection of sets.

Figure 3.12 Intersection of two convex sets.



Proof: The feasible region S of a standard linear programming problem is
defined as

S = {X|aX = b , X > 0} (3.11)

Let the points X1 and X2 belong to the feasible set S so that

aX, = b , X1 > 0 (3.12)

aX2 = b , X2 > 0 (3.13)

Multiply Eq. (3.12) by X and Eq. (3.13) by (1 - X) and add them to obtain

B[XX1 + (1 - X)X2] = Xb + (1 - X)b = b

that is,

aXx = b

where

Xx = XX1 + (1 - X)X2

Thus the point Xx satisfies the constraints and if

0 < X < 1, Xx > 0

Hence the theorem is proved.

Theorem 3.3 Any local minimum solution is global for a linear program-
ming problem.

Proof: In the case of a function of one variable, the minimum (maximum) of
a function/(x) is obtained at a value x at which the derivative is zero. This
may be a point like A(x = X1) in Fig. 3.13, where/(JC) is only a relative (local)
minimum, or a point like B(x = X2), where/(x) is a global minimum. Any
solution that is a local minimum solution is also a global minimum solution
for the linear programming problem. To see this, let A be the local minimum
solution and assume that it is not a global minimum solution so that there is
another point B at which fB < fA. Let the coordinates of A and B be given by

I } / and I . / , respectively. Then any point C = \ .2 / which lies on the

C O U J U J



Figure 3.13 Local and global minima.

line segment joining the two points A and B is a feasible solution and / c = \fA

+ (1 — ̂ )IB- I n this case, the value of/decreases uniformly from fA tofB, and
thus all points on the line segment between A and B (including those in the
neighborhood of A) have / values less than fA and correspond to feasible so-
lutions. Hence it is not possible to have a local minimum at A and at the same
time another point B such that fA > fB. This means that for all B, fA < / f i , so
that fA is the global minimum value.

The generalized version of this theorem is proved in Appendix A so that it
can be applied to nonlinear programming problems also.

Theorem 3.4 Every basic feasible solution is an extreme point of the convex
set of feasible solutions.

Theorem 3.5 Let S be a closed, bounded convex polyhedron with Xf, / =
1 to p, as the set of its extreme points. Then any vector X e S can be written
as

p

x = S X1Xf
1 = 1

X, > 0

P

Ex1 = I

Theorem 3.6 Let 5 be a closed convex polyhedron. Then the minimum of a
linear function over S is attained at an extreme point of S.

The proofs of Theorems 3.4 to 3.6 can be found in Ref. [3.1].

Local
minimum

Global minimum

A

B

xi X2



3.6 SOLUTION OF A SYSTEM OF LINEAR
SIMULTANEOUS EQUATIONS

Before studying the most general method of solving a linear programming
problem, it will be useful to review the methods of solving a system of linear
equations. Hence in the present section we review some of the elementary
concepts of linear equations. Consider the following system of n equations in
n unknowns.

011*1 + ^12*2 + ' ' * + Cl1nXn = bx (E1)

021*1 + 022*2 + • • • + alnxn = b2 (E2)

031*1 + 032*2 + ' ' ' + Cl3nXn = b3 (E3) (3.14)

0/!i*i + 0*2*2 + • • • + annxn = bn (En)

Assuming that this set of equations possesses a unique solution, a method of
solving the system consists of reducing the equations to a form known as can-
onical form.

It is well known from elementary algebra that the solution of Eqs. (3.14)
will not be altered under the following elementary operations: (1) any equation
Er is replaced by the equation kEr, where k is a nonzero constant, and (2) any
equation Er is replaced by the equation E1. + kEs, where Es is any other equa-
tion of the system. By making use of these elementary operations, the system
of Eqs. (3.14) can be reduced to a convenient equivalent form as follows. Let
us select some variable X1 and try to eliminate it from all the equations except
they'th one (for which O7, is nonzero). This can be accomplished by dividing
theyth equation by ajt and subtracting aki times the result from each of the other
equations, k = 1,2,. . .J — 1, j + 1,. . .,n. The resulting system of
equations can be written as

a'uxx + ^i2X2 + • • • + a'XJ_xxi_x + (k,- + a[J+lxi+l + • • •

+ a'lnxn = b\

021*1 + 022*2 + ' ' ' + 02,i-1*/-1 + °*/ + «2,/+1*/+1 + " ' '

+ a'lnxn = b'2

a]_XAxx + «/-1,2*2 + • • • H- 0 y ' - i , / - i + Ox1 H- aj-U+1X1+x

H- • • • + a[_x^xn = Z?;_,



Uj1X1 + aj2x2 + • • • + aj^-xXi-x + Xx1 + ajJ+lxi+l

+ • • • + ajnxn = bj

a/+1,1*1 + a,'+1,2*2 + " • " + aj+xj-\Xi-\ + O*/ + ^+i , / + i*/ + i

+ • • • + aj+Unxn = bj+x

a'n\X\ + a'n2x2 + • • • + a'n%i-xXi-\ + Q*/ + < /+ i* / + i + ' ' '

+ annxn =b'n (3.15)

where the primes indicate that the a[} and bj are changed from the original
system. This procedure of eliminating a particular variable from all but one
equations is called a pivot operation. The system of Eqs. (3.15) produced by
the pivot operation have exactly the same solution as the original set of Eqs.
(3.14). That is, the vector X that satisfies Eqs. (3.14) satisfies Eqs. (3.15),
and vice versa.

Next time, if we take the system of Eqs. (3.15) and perform a new pivot
operation by eliminating xs, s =£ / , in all the equations except the rth equation,
t =£ 7, the zeros or the 1 in the /th column will not be disturbed. The pivotal
operations can be repeated by using a different variable and equation each time
until the system of Eqs. (3.14) is reduced to the form

Ix1 + 0JC2 + OJC3 + • • • 4- Oxn = b'{

OJC1 + 1JC2 + OJC3 + • • • + OJCW = b'{

OJC1 + 0JC2 + Lc3 + • • • 4- Oxn = b'{ (3.16)

Ox1 + Ox2 + Ox3 + • • • + Ixn = bn'

This system of Eqs. (3.16) is said to be in canonical form and has been ob-
tained after carrying out n pivot operations. From the canonical form, the so-
lution vector can be directly obtained as

X1 = b?9 i = 1,2,. ..,/i (3.17)

Since the set of Eqs. (3.16) has been obtained from Eqs. (3.14) only through
elementary operations, the system of Eqs. (3.16) is equivalent to the system
of Eqs. (3.14). Thus the solution given by Eqs. (3.17) is the desired solution
of Eqs. (3.14).



3.7 PIVOTAL REDUCTION OF A GENERAL SYSTEM OF
EQUATIONS

Instead of a square system, let us consider a system of m equations in n vari-
ables with n > m. This system of equations is assumed to be consistent so
that it will have at least one solution.

UnX1 + anx2 + • • • H- a]nxn = bx

U21X1 + Gi22X2 H- • • • + U2nXn = b2 ( 3 1 8 )

0*11*1 + 0m2*2 + • # • + amnxn = bm

The solution vector(s) X that satisfy Eqs. (3.18) are not evident from the equa-
tions. However, it is possible to reduce this system to an equivalent canonical
system from which at least one solution can readily be deduced. If pivotal
operations with respect to any set of m variables, say, Jc1, Jt2, . . . , xm, are
carried, the resulting set of equations can be written as follows:

Canonical system with pivotal variables X1, x2, . . . , xm

Xxx + Ox2 H- • • • + 0xm + al\m + lxm + l + • • • + a['nxn = b'[

Qx1 + LK2 + • • • + 0xm H- a'lm + xxm + x + • • • + a'2'nxn = b2' (3.19)

Ox1 + Ox2 + • • • H- \xm H- a^m+lxm + i H- • • • + QlnXn = bn
m

Pivotal
variables

Nonpivotal or
independent

variables

Constants

One special solution that can always be deduced from the system of Eqs. (3.19)
is

Cb?, i = 1,2, . . . ,m
(3.20)

(0, 1 = m H- 1, m + 2, . . . , n

This solution is called a &a?/c solution since the solution vector contains no
more than m nonzero terms. The pivotal variables X1, i = 1, 2, . . . , m, are
called the basic vuriubles and the other variables JC/5 i — m H- 1, m H- 2,
. . . , ft, are called the nonbusic variubles. Of course, this is not the only
solution, but it is the one most readily deduced from Eqs. (3.19). If all b", i
= 1, 2, . . . , m, in the solution given by Eqs. (3.20) are nonnegative, it
satisfies Eqs. (3.3) in addition to Eqs. (3.2), and hence it can be called a busic
feusible solution.



It is possible to obtain the other basic solutions from the canonical system
of Eqs. (3.19). We can perform an additional pivotal operation on the system
after it is in canonical form, by choosing a'p'q (which is nonzero) as the pivot
term, q > m, and using any row/? (among 1,2,. . .,m). The new system will
still be in canonical form but with xq as the pivotal variable in place of xp. The
variable xp, which was a basic variable in the original canonical form, will no
longer be a basic variable in the new canonical form. This new canonical sys-
tem yields a new basic solution (which may or may not be feasible) similar to
that of Eqs. (3.20). It is to be noted that the values of all the basic variables
change, in general, as we go from one basic solution to another, but only one
zero variable (which is nonbasic in the original canonical form) becomes non-
zero (which is basic in the new canonical system), and vice versa.

Example 3.3 Find all the basic solutions corresponding to the system of
equations

2JC, + 3JC2 - 2x3 - Ix4 = 1 (I0)

JC1 H- X2 H- X3 H- 3x4 = 6 (H0)

Xx — X2 + X3 + 5JC4 = 4 (HI0)

SOLUTION First we reduce the system of equations into a canonical form
with Jc1, X2, and X3 as basic variables. For this, first we pivot on the element
au = 2 to obtain

x\ + 2 X2 ~ X3 - 2 XA — 2 1 I = 21O

0 - | x 2 + 2x3 + T *4 = T H1 = H0 - Ii

0 - § JC2 H- 2JC3 H- 1J JC4 = \ IH1 = IH0 - I1

Then we pivot on a22 = —\, to obtain

JC1 + 0 H- 5JC3 H- 16JC4 = 17 I2 = I1 — § H2

0 + Jc2 - 4JC3 - 13JC4 = - 1 1 H2 = - 2 H1

0 + 0 - 8JC3 - 24JC4 = - 2 4 HI2 = IH1 + f H2

Finally we pivot on ^3 3 to obtain the required canonical form as

Jc1 + Jc4 = 2 I3 = I2 - 5 HI3

jc2 - Jc4 = 1 H3 = H2 H- 4 IH3

jc3 + 3x4 = 3 IH3 = -I IH2



From this canonical form, we can readily write the solution of Jc1, JC2, and X3

in terms of the other variable X4 as

Xx = 2 — X4

X2 = 1 + X4

X3 = 3 — 3x4

If Eqs. (I0), (H0), and (HI0) are the constraints of a linear programming prob-
lem, the solution obtained by setting the independent variable equal to zero is
called a basic solution. In the present case, the basic solution is given by

Jc1 = 2, Jc2 = 1, Jc3 = 3 (basic variables)

and x4 = 0 (nonbasic or independent variable). Since this basic solution has
all Xj > 0 (j = 1,2,3,4), it is a basic feasible solution.

If we want to move to a neighboring basic solution, we can proceed from
the canonical form given by Eqs. (I3), (H3), and (HI3). Thus if a canonical
form in terms of the variables JC1, JC2, and JC4 is required, we have to bring JC4

into the basis in place of the original basic variable JC3. Hence we pivot on
a34 in Eq. (HI3). This gives the desired canonical form as

x{ - I X3 = 1 I4 = I3 - IH4

Jc2 + ! Jc3 = 2 H4 = H3 + IH4

X4 + \x3 = 1 HI4 = 1IH3

This canonical system gives the solution of Jc1, JC2, and JC4 in terms of JC3 as

Xl = 1 + 1 X3

X2 = I - \x3

JC4 = 1 — 3 JC3

and the corresponding basic solution is given by

Jc1 = 1, Jc2 = 2, Jc4 = 1 (basic variables)

Jc3 = 0 (nonbasic variable)

This basic solution can also be seen to be a basic feasible solution. If we want
to move to the next basic solution with Jc1, JC3, and JC4 as basic variables, we
have to bring JC3 into the current basis in place of JC2. Thus we have to pivot



a23 in Eq. (H4). This leads to the following canonical system:

X1 + x2 = 3 I5 = I4 + \n5

X3 + 3x2 = 6 H5 = 31I4

J t 4 - J c 2 = - i Hi5 = Hi4 - | n 5

The solution for Jc1, X3, and X4 is given by

xx = 3 - X2

x3 = 6 — 3x2

JC4 = — 1 H - X 2

from which the basic solution can be obtained as

JCI = 3, Jc3 = 6, Jc4 = - 1 (basic variables)

jc2 = 0 (nonbasic variable)

Since all the Xj are not nonnegative, this basic solution is not feasible.
Finally, to obtain the canonical form in terms of the basic variables Jc2, Jc3,

and Jc4, we pivot on a"2 in Eq. (I5), thereby bringing JC2 into the current basis
in place of Jc1. This gives

X2 + X1 = 3 I6 = I5

Jc3 - 3^1 = - 3 H6 = H5 - 3I6

Jc4 + Jc1 = 2 IH6 = IH5 + I6

This canonical form gives the solution for JC2, Jc3, and JC4 in terms OfJC1 as

X2 = 3 - X1

Jc3 = —3 + 3Jc1

Jc4 = 2 — JC1

and the corresponding basic solution is

Jc2 = 3, Jc3 = —3, Jc4 = 2 (basic variables)

Jc1 = O (nonbasic variable)

This basic solution can also be seen to be infeasible due to the negative value
for Jc3.



3.8 MOTIVATION OF THE SIMPLEX METHOD

Given a system in canonical form corresponding to a basic solution, we have
seen how to move to a neighboring basic solution by a pivot operation. Thus
one way to find the optimal solution of the given linear programming problem
is to generate all the basic solutions and pick the one that is feasible and cor-
responds to the optimal value of the objective function. This can be done be-
cause the optimal solution, if one exists, always occurs at an extreme point or
vertex of the feasible domain. If there are m equality constraints in n variables
with n > m, a basic solution can be obtained by setting any of the n — m
variables equal to zero. The number of basic solutions to be inspected is thus
equal to the number of ways in which m variables can be selected from a set
of n variables, that is,

(n) - " !

\m/ (n - m)\ ml

For example, if n = 10 and m = 5, we have 252 basic solutions, and if n =
20 and m = 10, we have 184,756 basic solutions. Usually, we do not have to
inspect all these basic solutions since many of them will be infeasible. How-
ever, for large values of n and m, this is still a very large number to inspect
one by one. Hence what we really need is a computational scheme that ex-
amines a sequence of basic feasible solutions, each of which corresponds to a
lower value of/until a minimum is reached. The simplex method of Dantzig
is a powerful scheme for obtaining a basic feasible solution; if the solution is
not optimal, the method provides for finding a neighboring basic feasible so-
lution that has a lower or equal value of/. The process is repeated until, in a
finite number of steps, an optimum is found.

The first step involved in the simplex method is to construct an auxiliary
problem by introducing certain variables known as artificial variables into the
standard form of the linear programming problem. The primary aim of adding
the artificial variables is to bring the resulting auxiliary problem into a can-
onical form from which its basic feasible solution can be obtained immedi-
ately. Starting from this canonical form, the optimal solution of the original
linear programming problem is sought in two phases. The first phase is in-
tended to find a basic feasible solution to the original linear programming prob-
lem. It consists of a sequence of pivot operations that produces a succession
of different canonical forms from which the optimal solution of the auxiliary
problem can be found. This also enables us to find a basic feasible solution, if
one exists, of the original linear programming problem. The second phase is
intended to find the optimal solution of the original linear programming prob-
lem. It consists of a second sequence of pivot operations that enables us to
move from one basic feasible solution to the next of the original linear pro-
gramming problem. In this process, the optimal solution of the problem, if one
exists, will be identified. The sequence of different canonical forms that is



necessary in both the phases of the simplex method is generated according to
the simplex algorithm described in the next section. That is, the simplex al-
gorithm forms the main subroutine of the simplex method.

3.9 SIMPLEX ALGORITHM

The starting point of the simplex algorithm is always a set of equations, which
includes the objective function along with the equality constraints of the prob-
lem in canonical form. Thus the objective of the simplex algorithm is to find
the vector X > 0 that minimizes the function/(X) and satisfies the equations:

Ixx + Ox2 + • • • + 0xm + alm + lxm + l + • • • + a'[nxn = b'{

Ox1 + Ix2 + • • • + 0xm + alm + lxm + l + • • • + OZnXn = b'{

Oxx + Ox2 + • • • + lxm + < w + i*w + i + • • • + alnxn = bl

Oxx + Ox2 + • • • + 0xm - f

+ C^ + 1Xn + 1 + • • • + CnXn = - / £

(3.21)

where a-j , c" , b" , and/o are constants. Notice that (—/) is treated as a basic
variable in the canonical form of Eqs. (3.21). The basic solution which can
readily be deduced from Eqs. (3.21) is

X1 = b", i = 1,2,. . .,m

/ = /o (3-22)

xt = 0, / = m + 1, m + 2, . . . , n

If the basic solution is also feasible, the values of Jc1-, i = 1,2,. . .,«, are non-
negative and hence

bn
{ > 0, I = 1,2,. . .,m (3.23)

In phase I of the simplex method, the basic solution corresponding to the can-
onical form obtained after the introduction of the artificial variables will be
feasible for the auxiliary problem. As stated earlier, phase II of the simplex
method starts with a basic feasible solution of the original linear programming
problem. Hence the initial canonical form at the start of the simplex algorithm
will always be a basic feasible solution.



We know from Theorem 3.6 that the optimal solution of a linear program-
ming problem lies at one of the basic feasible solutions. Since the simplex
algorithm is intended to move from one basic feasible solution to the other
through pivotal operations, before moving to the next basic feasible solution,
we have to make sure that the present basic feasible solution is not the optimal
solution. By merely glancing at the numbers c" , j = 1, 2, . . ., n, we can tell
whether or not the present basic feasible solution is optimal. Theorem 3.7
provides a means of identifying the optimal point.

3.9.1 Identifying an Optimal Point

Theorem 3.7 A basic feasible solution is an optimal solution with a mini-
mum objective function value of/o if all the cost coefficients c" , j = m + 1,
m + 2, . . . , n, in Eqs. (3.21) are nonnegative.

Proof: From the last row of Eqs. (3.21), we can write that

n

JS + S CfX1=J (3.24)
i = m + 1

Since the variables xm + j , xm + 2, . . . ,Xn are presently zero and are constrained
to be nonnegative, the only way any one of them can change is to become
positive. But if c" > 0 for i = m + 1, m + 2, . . . , n, then increasing any
Xi cannot decrease the value of the objective function/. Since no change in the
nonbasic variables can cause/to decrease, the present solution must be optimal
with the optimal value of/equal to /o .

A glance over c" can also tell us if there are multiple optima. Let all c" >
0, / = ra + 1, ra + 2, . . . , & — I, k + I, . . . , n, and let cl — 0 for some
nonbasic variable xk. Then if the constraints allow that variable to be made
positive (from its present value of zero), no change in/results, and there are
multiple optima. It is possible, however, that the variable may not be allowed
by the constraints to become positive; this may occur in the case of degenerate
solutions. Thus, as a corollary to the discussion above, we can state that a
basic feasible solution is the unique optimal feasible solution if c" > 0 for all
nonbasic variables Jc7, j = m + 1, m + 2, . . . , n. If, after testing for opti-
mality, the current basic feasible solution is found to be nonoptimal, an im-
proved basic solution is obtained from the present canonical form as follows.

3.9.2 Improving a Nonoptimal Basic Feasible Solution

From the last row of Eqs. (3.21), we can write the objective function as

m n

J = JZ + S CfX1+ S CfXj
i = l j = «(+l (3.25)

= /o for the solution given by Eqs. (3.22)



If at least one cj' is negative, the value o f /can be reduced by making the
corresponding Xj> 0. In other words, the nonbasic variable xj9 for which the
cost coefficient cj is negative, is to be made a basic variable in order to reduce
the value of the objective function. At the same time, due to the pivotal op-
eration, one of the current basic variables will become nonbasic and hence the
values of the new basic variables are to be adjusted in order to bring the value
of/less than/o. If there are more than one cj' < 0, the index s of the nonbasic
variable xs which is to be made basic is chosen such that

c'J = minimum cj' < 0 (3.26)

Although this may not lead to the greatest possible decrease in /(since it may
not be possible to increase xs very far), this is intuitively at least a good rule
for choosing the variable to become basic. It is the one generally used in prac-
tice because it is simple and it usually leads to fewer iterations than just choos-
ing any cj' < 0. If there is a tie-in applying Eq. (3.26), (i.e., if more than one
cj' has the same minimum value), we select one of them arbitrarily as c'J .

Having decided on the variable xs to become basic, we increase it from zero
holding all other nonbasic variables zero and observe the effect on the current
basic variables. From Eqs. (3.21), we can obtain

X1 = b[' -a['sxs, b'{ > 0

X2 = Vi - OS5X59 Vi > 0 (3.27)

*m = Vm -(C5X59 K > O

f = f 5 + CJx59 c ' J < 0 (3.28)

Since c'J < O, Eq. (3.28) suggests that the value of xs should be made as large
as possible in order to reduce the value of/as much as possible. However, in
the process of increasing the value of xS9 some of the variables Jt1- (/ =
1,2,. . .,m) in Eqs. (3.27) may become negative. It can be seen that if all the
coefficients a"s < O, i = 1,2,. . .,m, then xs can be made infinitely large with-
out making any xt < O, / = 1,2,. . .,m. In such a case, the minimum value of
/ i s minus infinity and the linear programming problem is said to have an un-
bounded solution.

On the other hand, if at least one a"s is positive, the maximum value that xs

can take without making xt negative is b"/a"s. If there are more than one
a"s > 0, the largest value JC* that xs can take is given by the minimum of the
ratios b-la^ for which a? > 0. Thus

if! / J1 It \
jcf = - ^ = minimum ( -^ ) (3.29)

ars ais>o \ f l ,5/



The choice of r in the case of a tie, assuming that all b" > 0, is arbitrary. If
any b" for which a"s > 0 is zero in Eqs. (3.27), Jc5 cannot be increased by any
amount. Such a solution is called a degenerate solution.

In the case of a nondegenerate basic feasible solution, a new basic feasible
solution can be constructed with a lower value of the objective function as
follows. By substituting the value of ;t* given by Eq. (3.29) into Eqs. (3.27)
and (3.28), we obtain

r = x *

Xi = b'j' - a'i'sxf > 0, / = 1,2,. . .,m and i * r (3.30)

xr = 0

Xj• = 0, j = m + 1, m + 2, . . . , n and j ^ s

f = fo + c!xf </o
w (3.31)

which can readily be seen to be a feasible solution different from the previous
one. Since a"s > 0 in Eq. (3.29), a single pivot operation on the element a"s

in the system of Eqs. (3.21) will lead to a new canonical form from which the
basic feasible solution of Eqs. (3.30) can easily be deduced. Also, Eq. (3.31)
shows that this basic feasible solution corresponds to a lower objective function
value compared to that of Eqs. (3.22). This basic feasible solution can again
be tested for optimality by seeing whether all c" > 0 in the new canonical
form. If the solution is not optimal, the entire procedure of moving to another
basic feasible solution from the present one has to be repeated. In the simplex
algorithm, this procedure is repeated in an iterative manner until the algorithm
finds either (1) a class of feasible solutions for which/ -• — oo or (2) an optimal
basic feasible solution with all c" > 0, i = 1,2,. . .,n. Since there are only a
finite number of ways to choose a set of m basic variables out of n variables,
the iterative process of the simplex algorithm will terminate in a finite number
of cycles. The iterative process of the simplex algorithm is shown as a flow-
chart in Fig. 3.14.

Example 3.4

Maximize F = Xx + Ix2 + X3

subject to

2X1 + X2 - X3 < 2

-2X1 + J c 2 - 5JC3 > - 6

4JC1 + Jc2 + Jc3 < 6

JC/ > 0, i = 1,2,3



Figure 3.14 Flowchart for finding the optimal solution by the simplex algorithm.
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objective function equation by pivoting on a"rs



SOLUTION We first change the sign of the objective function to convert it
to a minimization problem and the signs of the inequalities (where necessary)
so as to obtain nonnegative values of bt (to see whether an initial basic feasible
solution can be obtained readily). The resulting problem can be stated as:

Minimize/ = —xx — 2x2 — X3

subject to

2^1 + Jc2 - Jc3 < 2

2Jc1 — Jc2 + 5JC3 < 6

4Jc1 + Jc2 + Jc3 < 6

JC1- > 0, i = 1 to 3

By introducing the slack variables JC4 >: 0, JC5 > 0, and JC6 > 0, the system of
equations can be stated in canonical form as

2JC} + Jc2 — Jc3 + Jc4 =2

Ixx - X2 + 5x3 + x5 =6 Q2 v

4Jc1 H- Jc2 + JC3 + JC6 = 6

-xx -2x2-x3 - f = 0

where JC4, JC5, JC6, and —/can be treated as basic variables. The basic solution
corresponding to Eqs. (E1) is given by

jc4 = 2, Jc5 = 6, Jc6 = 6 (basic variables)

Jc1 = X2 = x3 = 0 (nonbasic variables) (E2)

/ = o

which can be seen to be feasible.
Since the cost coefficients corresponding to nonbasic variables in Eqs. (E1)

are negative (c" = - 1 , C2 = - 2 , C3 = -1 ) , the present solution given by
Eqs. (E2) is not optimum. To improve the present basic feasible solution, we
first decide the variable (xs) to be brought into the basis as

c's
f = min(c/ < 0) = c'{ = -2

Thus x2 enters the next basic set. To obtain the new canonical form, we select
the pivot element a"s such that

K . (b?\
— = mm —
a'r's als>o \aZ/



In the present case, s = 2 and a"2 and a%2 are >: O. Since frf/afc = 2/1 and
b3la32 = 6/1, Jtr = Jt1. By pivoting an a"2, the new system of equations can be
obtained as

2Jt1 4- IJt2 - X3 + X4 = 2

4Jt1 + OJt2 4 4jt3 4- X4 4- X5 = 8 /p v

2Jt1 + Ox2 + 2x3 - X4 4 x6 = 4

3Jt1 4 OJt2 - 3jt3 4 2Jt4 - / = 4

The basic feasible solution corresponding to this canonical form is

Jt2 = 2, Jt5 = 8, Jt6 = 4 (basic variables)

Jt1 = X3 = Jt4 = 0 (nonbasic variables) (E4)

/ = - 4

Since C3 = —3, the present solution is not optimum. As c" = min(c" < 0)
= c 3 , xs = x3 enters the next basis.

To find the pivot element a"S9 we find the ratios b"la"s for a"s > 0. In Eqs.
(E3), only a23 and a33 are > 0, and hence

a23 4 a33 I

Since both these ratios are same, we arbitrarily select ^23 as the pivot element.
Pivoting on a'{3 gives the following canonical system of equations:

3X1 4- Ix2 4- Ox3 + 4 X4 + ^x5 = 4

Ix1 4 Ox2 4- Ix3 + \ X4 4- \ X5 = 2 ~, v

Ox1 + Ox2 4 Ox3 - § X4 - \ X5 4- X6 = 0

6X1 + Ox2 4- Ox3 + x-} X4 + IX5 - / = 10

The basic feasible solution corresponding to this canonical system is given
by

X2 = 4, x3 = 2, x6 = 0 (basic variables)

X1 = x4 = x5 = 0 (nonbasic variables) (E6)

/= -io

Since all c" are >: 0 in the present canonical form, the solution given in (E6)
will be optimum. Usually, starting with Eqs. (E1), all the computations are



All c'i are > O and hence the present solution is optimum.

Example 3.5: Unbounded Solution

Minimize/= -3Jc1 — Ix2

subject to

Xx - X2 < 1

done in a tableau form as shown below:

Most negative c" (x2 enters next basis)

Result of pivoting:

X1 2 1 - 1 1 0 0 0 2
Jc5 4 0 [4] 1 1 0 0 8 2 (Select this

Pivot arbitrarily,
element JC5 drops

from next
basis)

X6 2 0 2 - 1 0 1 0 4 2

- / 3 0 - 3 2 0 0 1 4

T
Most negative c" (JC3 enters the next basis)

Result of pivoting:

Jc2 3 1 0 \ \ 0 0 4

X3 1 0 1 \ \ 0 0 2

Jc6 0 0 0 - \ - \ 1 0 0

-/6 0 0 xi \ 0 1 10

Basic
Variables

JC4

* 5

-*6

~f

Variables

JC 1

2

2
4

- 1

X2

Pivot
element

i

1

- 2
T

- 1

5
1

- 1

JC4

1

0
0

0

JC5

0

1
0

0

X6

0

0

1
0

- /

0

0
0

1

b?

2

6
6

0

b'/lai for

2 <- Smaller one
(x4 drops
from next
basis)

6



3X1 - 2JC2 < 6

Jc1 > O, X2 > 0

SOLUTION Introducing the slack variables X3 > 0 and X4 >: 0, the given
system of equations can be written in canonical form as

JC1 — X2 + X3 = 1

3Jc1 - 2JC2 + J C 4 = 6 (E 1 )

-3Jc1 - 2x2 - / = 0

The basic feasible solution corresponding to this canonical form is given by

Jc3 = 1, JC4 = 6 (basic variables)

Jc1 = Jc2 = 0 (nonbasic variables) (E2)

/ = o

Since the cost coefficients corresponding to the nonbasic variables are nega-
tive, the solution given by Eq. (E2) is not optimum. Hence the simplex pro-
cedure is applied to the canonical system of Eqs. (E1) starting from the solu-
tion, Eqs. (E2). The computations are done in tableau form as shown below:

Most negative c" (X1 enters the next basis)

Result of pivoting:

Jc1 1 - 1 1 0 0 1
X4 0 Q] - 3 1 0 3 3 (jc4 leaves the

Pivot basis)
element

- / 0 - 5 3 0 1 3

t
Most negative c" (x2 enters the next basis)

Basic
Variables

* 3

X4

-f

Variables

Xi

Pivot
element

3

- 3

X2

- 1

_2

2

X3

1

0

0

X4

0

1

0

r

0

0

1

bi

1

6

0

b'llal for
a£ > 0

1<- Smaller value
(jc3 leaves
the basis)

2



Result of pivoting:

JC1 1 0 - 2 1 0 4 Both a"s are
Jc2 0 1 - 3 1 0 3 negative (i.e.,

no variable
leaves the
basis)

- / 0 0 -12 5 1 18

t
Most negative c" (JC3 enters the basis)

At this stage we notice that X3 has the most negative cost coefficient and
hence it should be brought into the next basis. However, since all the coeffi-
cients a"3 are negative, the value o f / c a n be decreased indefinitely without
violating any of the constraints if we bring X3 into the basis. Hence the problem
has no bounded solution.

In general, if all the coefficients of the entering variable xs (a"s) have nega-
tive or zero values at any iteration, we can conclude that the problem has an
unbounded solution.

Example 3.6: Infinite Number of Solutions To demonstrate how a problem
having infinite number of solutions can be solved, Example 3.2 is again con-
sidered with a modified objective function:

Min imize /= -4OJC1 - 100JC2

subject to

IQx1 + 5x2 < 2500

4Jc1 + 10JC2 < 2000

2Jc1 + 3JC2 < 900

Jc1 > 0, Jc2 > 0

SOLUTION By adding the slack variables JC3 > 0, JC4 > 0 and JC5 > 0, the
equations can be written in canonical form as follows:

1OJC1 + 5JC2 +JC3 = 2500

4JC1 + 10JC2 +JC4 = 2000

2Jc1 + 3JC2 +JC5 =900

-4OJC1 - 100JC2 - / = 0



Most negative c" (x2 enters the basis)

Result of pivoting:

X3 8 0 1 - \ 0 0 1,500

jc2 ^ 1 0 J0 0 0 200

jc5 j-0 0 0 — ^ 1 0 300

- / 0 0 0 10 0 1 20,000

Since all c" > 0, the present solution is optimum. The optimum values are
given by

x2 = 200, Jc3 = 1500, Jc5 = 300 (basic variables)

JCi = Jc4 = 0 (nonbasic variables)

/m i n = -20,000

Important Note: It can be observed from the last row of the preceding ta-
bleau that the cost coefficient corresponding to the nonbasic variable JC1 (c") is
zero. This is an indication that an alternative solution exists. Here X1 can be
brought into the basis and the resulting new solution will also be an optimal
basic feasible solution. For example, introducing X1 into the basis in place of
X3 (i.e., by pivoting on aJ3), we obtain the new canonical system of equations
as shown in the following tableau:

The computations can be done in tableau form as shown below:

Basic
Variables

* 3

X4

X5

Variables

Xx

10
4

2

-40

JC2

5

Pivot
element

3

-100

X3

1
0

0

0

X4

0
1

0

0

X 5

0
0

1

0

- /

0
0

0

1

v;
2,500
2,000

900

0

V(IaI for al > 0

500
200 <- Smaller value

(x4 leaves the
basis)

300

Basic
Variables

X,

X2

X5

- /

Variables

Xi

1

0

0

0

X 2

0

1

0

0

X 3

i
8
1

20
I
10

0

X 4

i
16
1
8
1
4

10

X 5

0

0

1

0

- /

0

0

0

1

v;
1500

8

125

150

20,000

WIaI for
a;: >o



The solution corresponding to this canonical form is given by

Jc1 = - ^ , X2 = 125, x5 = 150 (basic variables)

x3 = X4 = 0 (nonbasic variables)

/min = -20,000

Thus the value of/has not changed compared to the preceding value since Jc1

has a zero cost coefficient in the last row of the preceding tableau. Once two
basic (optimal) feasible solutions, namely,

200 125

X1 = 1500 and X2 = 0 >

0 0 '

V 300y V150y

are known, an infinite number of nonbasic (optimal) feasible solutions can be
obtained by taking any weighted average of the two solutions as

X* = XX1 + (1 - X)X2

/ * r \ r ( i -x )T N ^d -X)T^
jc2* 200X + (1 - X)125 125 + 75X

X * = Jc3* = 1500X = 1500X

Jc4* 0 0 '

Vjc*y V300X + (1 - X)150y V150 4- 150Xy

0 < X < 1

It can be verified that the solution X* will always give the same value of
-20,000 for/for all 0 < X < 1.

3.10 TWO PHASES OF THE SIMPLEX METHOD

The problem is to find nonnegative values for the variables Jc1, JC2, . . . , Xn that
satisfy the equations



axxxx + ^12X2 + • • • + aXnxn = bx

Q2xXx + ^22X2 + • • • + alnxn = b2 ^3 3 2 ^

amXxx + am2x2 H- • • • + amnxn = bm

and minimize the objective function given by

C1X1 + c2x2 + • • • + cnxn = f (3.33)

The general problems encountered in solving this problem are:

1. An initial feasible canonical form may not be readily available. This is
the case when the linear programming problem does not have slack vari-
ables for some of the equations or when the slack variables have negative
coefficients.

2. The problem may have redundancies and/or inconsistencies, and may
not be solvable in nonnegative numbers.

The two-phase simplex method can be used to solve the problem.
Phase I of the simplex method uses the simplex algorithm itself to find

whether the linear programming problem has a feasible solution. If a feasible
solution exists, it provides a basic feasible solution in canonical form ready to
initiate phase II of the method. Phase II, in turn, uses the simplex algorithm
to find whether the problem has a bounded optimum. If a bounded optimum
exists, it finds the basic feasible solution which is optimal. The simplex method
is described in the following steps.

1. Arrange the original system of Eqs. (3.32) so that all constant terms bj
are positive or zero by changing, where necessary, the signs on both
sides of any of the equations.

2. Introduce to this system a set of artificial variables ^1, y2, . . . , ym (which
serve as basic variables in phase I), where each yt > 0, so that it becomes

axxxx + ^12X2 + • • • + aXnxn + J 1 =bx

021*1 + 022*2 + • • • + Cl2nXn + y2 = b2

. (3.34)

<*m\X\ + ami*! + • • • + amnxn + ym = bm

bt > 0



Note that in Eqs. (3.34), for a particular /, the a^-'s and the bt may be
the negative of what they were in Eq. (3.32) because of step 1.

The objective function of Eq. (3.33) can be written as

C1X1 + c2x2 + • • • + cnxn + ( - / ) = 0 (3.35)

3. Phase I of the Method. Define a quantity w as the sum of the artificial
variables

w = Ji + yi + • • * + ym (3.36)

and use the simplex algorithm to find Jt1- > 0 (/ = 1,2,. . .,n) and y,
> 0 (/ = 1,2,. . .,ra) which minimize w and satisfy Eqs. (3.34) and
(3.35). Consequently, consider the array

G11X1 + ̂ 12X2 + • ' • + U1nXn + J1 = bx

U21X1 + ^22X2 + • • • + U2nXn + y2 = b2

umXxx + um2x2 + • • • + umnxn + ym = bm

C1X1 +c2x2 + • • • H- cnxn + ( - / ) = 0 ( 3 3 ? )

yx + yi + • • • + ym + ( -w) = o

This array is not in canonical form; however, it can be rewritten as a
canonical system with basic variables J i , J2, . . . 9ym, - / , and -w by
subtracting the sum of the first m equations from the last to obtain the
new system

0n*i + ^12*2 + • • * + auxn + V1 = bx

U21Xx + ^22X2 + • • • + u2nxn + y2 = b2

0ml *l + 0m2*2 + * * ' + amn^n + Jm ~ ^m

C1X1 + C2X2 + • ' ' + CnXn + (-/) = 0

J1JC1 + J2X2 + • • • + JnXn + (-w) = ~w0

where

J1- = - ( a H + O21- + • • • + GnO)9 i = 1,2,. . .,n (3.39)

-W0 = -(&, H- b2 + • • • + bm) (3.40)



Equations (3.38) provide the initial basic feasible solution that is nec-
essary for starting phase I.

4. w is called the infeasibility form and has the property that if as a result
of phase I, with a minimum of w > 0, no feasible solution exists for the
original linear programming problem stated in Eqs. (3.32) and (3.33),
and thus the procedure is terminated. On the other hand, if the minimum
of w = 0, the resulting array will be in canonical form and hence initiate
phase II by eliminating the w equation as well as the columns corre-
sponding to each of the artificial variables y\9 y2, • • • , ym from the array.

5. Phase II of the Method. Apply the simplex algorithm to the adjusted
canonical system at the end of phase I to obtain a solution, if a finite one
exists, which optimizes the value of/.

The flowchart for the two-phase simplex method is given in Fig. 3.15.

Example 3.7

Minimize/ = Ix1 + 3x2 + 2x3 - JC4 H- JC5

subject to the constraints

3X1 — 3x2 + 4;t3 H- 2x4 — x5 = 0

x\ + X2 + X3 + ĴC4 + JC5 = 2

JC/ > 0, i = 1 to 5

SOLUTION

Step 1: As the constants on the right-hand side of the constraints are already
nonnegative, the application of step 1 is unnecessary.

Step 2: Introducing the artificial variables ^1 > 0 and y2 > 0, the equations
can be written as follows:

3Jc1 - 3;c2 + 4x3 + 2JC4 - Jc5 + ^ 1 = 0

Xx + X2 + X3 + 3x4 H-Jc5 H-J2 = 2 (E1)

2s, H- 3JC2 H- 2JC3 - JC4 H- JC5 - / = 0

Step 3: By defining the infeasibility form w as

w = y\ + yi



Figure 3.15 Flowchart for the two-phase simplex method.
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Figure 3.15 (Continued)

the complete array of equations can be written as

3^1 — 3x2 + 4x3 4- 2x4 — X5 + yx = 0

Xi + X2 + X3 + 3x4 +X 5 + y 2
 = 2 ,£ x

2Jc1 + 3JC2 + Ix3 - X4 + Jc5 - / = 0

yx + y2 - W = 0

From block C

Find s such that
c's = min (c';) From block A

Present basic
feasible solution
is optimal, Stop

Yes is c's > 0 ?

No

Yes
All a'is < 0 ?

Solution is
unbounded,

Stop

No

Choose r such that -^f- = min / -^f-)
a r s a ' i s > 0 V a i s *

Use a random choice in the case of a tie

Replace r-th basic variable by xs by
pivoting on the element a"rs



This array can be rewritten as a canonical system with basic variables as yx,
)>2> —/> a nd — w by subtracting the sum of the first two equations of (E2)
from the last equation of (E2). Thus the last equation of (E2) becomes

-4Jc1 + 2JC2 - 5x3 - 5JC4 + Ox5 - w = - 2 (E3)

Since this canonical system [first three equations of (E2), and (E3)] provides
an initial basic feasible solution, phase I of the simplex method can be
started. The phase I computations are shown below in tableau form.

Basic
Variables

y\

yi

—w

Admissible Variables

Xx

3

1

2
- 4

X2

- 3

1

3
2

X3

4

1

2
- 5

X4

2
Pivot

element

3

- 1
- 5

- 1

1

1
0

Artificial
Variables

y\

i

0

0
0

yi

0

i

0
0

0 0

2 §

0
- 2

Value of
bl'/a? for
al > 0

<- Smaller
value

drops
from
next
basis)

Most negative

Since there is a tie between d'{ and d'l, d'l is selected arbitrarily as the most
negative d" for pivoting (JC4 enters the next basis).

Result of pivoting:

-f
— w

3
2
7
2

7
2
7
2

3
2

Pivot
element

3
2

2
- 5

4
5

1
0

0
0

1
2
5
2

1
2
5
2

1
2
3
2

1
2
5
2

0
1

0
0

0

2 T T - ^ 2
drops
from
next
basis

0
- 2

Most negative d" (x2 enters next basis)



Result of pivoting (since V1 and y2 are dropped from basis, the columns
corresponding to them need not be filled):

JC4 77 0 Ti 1 fi Dropped £ §
*2 ^JJ A - j j U jj H 5

r 98 n H8 n _4_ _̂
""/ 22 U 22 U ~22 ~~11
- w 0 0 0 0 0 0

Step 4: At this stage we notice that the present basic feasible solution does not
contain any of the artificial variables J1 and y2, and also the value of w is
reduced to 0. This indicates that phase I is completed.

Step 5: Now we start phase II computations by dropping the w row from fur-
ther consideration. The results of phase II are again shown in tableau form.

Most negative c" (x5 enters next basis)

Result of pivoting:

~~^4 i 1 I i i o 1
*s -̂  ^ -2 0 1 I
-/ 2J 1 5 Q 0 -1

Now, since all c" are nonnegative, phase II is completed. The (unique)
optimal solution is given by

Jc1 = X2 = X3 = 0 (nonbasic variables)

Jc4 = §, Jc5 = I (basic variables)

f = -
J mm 5

Basic
Variables

X4

X2

-f

Original Variables

_1_

98
22

X2

0
1

0

7
11
K)
11

118
22

X4

1

0

0

2
11

Pivot
element

__4_
22

Constant
bf
6
11

_4_
11

__6_

Value of &/'/< for
a;: >o

6
2

f<-Smaller value
(x2 drops from
next basis)
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REVIEW QUESTIONS

3.1 Define a line segment in /i-dimensional space.

3.2 What happens when m = n in a (standard) LP problem?

3.3 How many basic solutions can an LP problem have?

3.4 State an LP problem in standard form.



3.5 State four applications of linear programming.

3.6 Why is linear programming important in several types of industries?

3.7 Define the following terms: point, hyperplane, convex set, extreme
point.

3.8 What is a basis?

3.9 What is a pivot operation?

3.10 What is the difference between a convex polyhedron and a convex poly-
tope?

3.11 What is a basic degenerate solution?

3.12 What is the difference between the simplex algorithm and the simplex
method?

3.13 How do you identify the optimum solution in the simplex method?

3.14 Define the infeasibility form.

3.15 What is the difference between a slack and a surplus variable?

3.16 Can a slack variable be part of the basis at the optimum solution of an
LP problem?

3.17 Can an artificial variable be in the basis at the optimum point of an LP
problem?

3.18 How do you detect an unbounded solution in the simplex procedure?

3.19 How do you identify the presence of multiple optima in the simplex
method?

3.20 What is a canonical form?

3.21 Answer true or false.
(a) The feasible region of an LP problem is always bounded.
(b) An LP problem will have infinite solutions whenever a constraint

is redundant.
(c) The optimum solution of an LP problem always lies at a vertex.
(d) A linear function is always convex.
(e) The feasible space of some LP problems can be nonconvex.
(f) The variables must be nonnegative in a standard LP problem.
(g) The optimal solution of an LP problem can be called the optimal

basic solution.
(h) Every basic solution represents an extreme point of the convex set

of feasible solutions.



(i) We can generate all the basic solutions of an LP problem using
pivot operations.

(j) The simplex algorithm permits us to move from one basic solution
to another basic solution.

(k) The slack and surplus variables can be unrestricted in sign.
(1) An LP problem will have an infinite number of feasible solutions.
(m) An LP problem will have an infinite number of basic feasible so-

lutions.
(n) The right-hand-side constants can assume negative values during

the simplex procedure.
(o) All the right-hand-side constants can be zero in an LP problem.
(p) The cost coefficient corresponding to a nonbasic variable can be

positive in a basic feasible solution.
(q) If all elements in the pivot column are negative, the LP problem

will not have a feasible solution.
(r) A basic degenerate solution can have negative values for some of

the variables.
(s) If a greater-than or equal-to type of constraint is active at the op-

timum point, the corresponding surplus variable must have a pos-
itive value.

(t) A pivot operation brings a nonbasic variable into the basis.
(u) The optimum solution of an LP problem cannot contain slack vari-

ables in the basis.
(v) If the infeasibility form has a nonzero value at the end of phase I,

it indicates an unbounded solution to the LP problem.
(w) The solution of an LP problem can be a local optimum.
(x) In a standard LP problem, all the cost coefficients will be positive.
(y) In an standard LP problem, all the right-hand-side constants will

be positive.
(z) In a LP problem, the number of inequality constraints cannot ex-

ceed the number of variables.
(aa) A basic feasible solution cannot have zero value for any of the

variables.

PROBLEMS

3.1 State the following LP problem in standard form:

Maximize/= -Ixx — X2 + 5JC3



subject to

xx - 2x2 + Jc3 < 8

3JC, - 2x2 > - 1 8

2Jc1 + X2 - 2x3 < - 4

3.2 State the following LP problem in standard form:

Maximize /= JCJ — 8JC2

subject to

3Jc1 + 2JC2 > 6

9Jc1 + 7JC2 < 108

2JCJ - 5JC2 > - 3 5

JC15Jc2 unrestricted in sign

3.3 Solve the following system of equations using pivot operations:

6Jc1 — 2JC2 + 3JC3 = 1 1

4JC1 + Ix2 + JC3 = 21

5Jc1 + 8JC2 + 9JC3 = 48

3.4 It is proposed to build a reservoir of capacity Jc1 to better control the
supply of water to an irrigation district [3.15, 3.171. The inflow to the
reservoir is expected to be 4.5 X 106 acre-ft during the wet (rainy)
season and 1.1 X 106 acre-ft during the dry (summer) season. Between
the reservoir and the irrigation district, one stream (A) adds water to
and another stream (B) carries water away from the main stream, as
shown in Fig. 3.16. Stream A adds 1.2 X 106 and 0.3 X 106 acre-ft
of water during the wet and dry seasons, respectively. Stream B takes
away 0.5 X 106 and 0.2 X 106 acre-ft of water during the wet and dry
seasons, respectively. Of the total amount of water released to the
irrigation district per year (JC2), 30% is to be released during the wet
season and 70% during the dry season. The yearly cost of diverting
the required amount of water from the main stream to the irrigation
district is given by 18(0.3JC2) + 12(0.7JC2). The cost of building and
maintaining the reservoir, reduced to an yearly basis, is given by 25Jc1.
Determine the values of X1 and JC2 to minimize the total yearly cost.



Figure 3.16 Reservoir in an irrigation district.

3.5 Solve the following system of equations using pivot operations:

Axx - Ix2 + 2x3 = - 8

3JC, + Ax1 - 5x3 = - 8

5Jc1 + X 2 - 8JC3 = - 3 4

3.6 What elementary operations can be used to transform

2JC, + Jc2 + Jc3 = 9

JCj + X2 + X3 = 6

2JC, 4- 3JC2 H- JC3 = 13

Irrigation district
(Water received: x2)

Main stream
Stream B

Stream A

Capacity, x\

Proposed reservoir

Inflow to reservoir



into

X1 = 3

X2 = 2

xx + 3x2 + x3 = 10

Find the solution of this system by reducing into canonical form.

3.7 Find the solution of the following LP problem graphically:

Maximize / = Zx1 + 6x2

subject to

-JC1 + JC2 < 1

2JC1 4- Jc2 < 2

Jc1 > 0, Jc2 > 0

3.8 Find the solution of the following LP problem graphically:

Minimize /= -3Jc1 + 2JC2

subject to

0 < Jc1 < 4

1 < jc2 < 6

Jc1 + Jc2 < 5

3.9 Find the solution of the following LP problem graphically:

Minimize /= 3Jc1 + 2JC2

subject to

8Jc1 + Jc2 > 8

2Jc1 + Jc2 > 6

Jc1 + 3JC2 > 6

Jc1 H- 6JC2 > 8

Jc1 > 0, Jc2 > 0



3.10 Find the solution of the following problem by the graphical method:

Minimize/ = x\x\

subject to

X1 x\ > e*

x\x\ < e

JC1 > 0, Jc2 > 0

where e is the base of natural logarithms.

3.11 Prove Theorem 3.6.

For Problems 3.12 to 3.43, use a graphical procedure to identify (a) the fea-
sible region, (b) the region where the slack (or surplus) variables are zero, and
(c) the optimum solution.

3.12 Maximize/= 6JC + Iy

subject to

7JC + 6y < 42

5JC + 9y < 45

x — y < 4

JC > 0, y > 0

3.13 Rework Problem 3.12 when JC and y are unrestricted in sign.

3.14 Maximize/= 19JC + Iy

subject to

7JC + 6y < 42

5JC + 9y < 45

JC — y < 4

JC > 0, y > 0

3.15 Rework Problem 3.14 when JC and y are unrestricted in sign.



3.16 Maximize/= x + 2y

subject to

x - y > - 8

5JC - y > 0

x + y > 8

-jc + 6y >: 12

5JC + 2j < 68

JC < 10

JC > 0, j > 0

3.17 Rework Problem 3.16 by changing the objective to: Minimize/ = JC
- y-

3.18 Maximize/ = JC + 2y

subject to

JC - y > - 8

5JC - y > 0

JC + y > 8

-JC + 6y > 12

5JC + Iy > 68

JC < 10

JC > 0, y > 0

3.19 Rework Problem 3.18 by changing the objective to: Minimize/ = JC
- y-

3.20 Maximize/= JC + 3v

subject to

-4JC + 3;y < 12

JC + y < 7

JC - 4y < 2

JC > 0, >; > 0



3.21 Minimize/= x + 3y

subject to

-Ax + 3y < 12

x + y < 7

JC - 4y < 2

A: and y are unrestricted in sign

3.22 Rework Problem 3.20 by changing the objective to: Maximize/ = x

3.23 Maximize/= x + 3y

subject to

-Ax + 3y < 12

JC + y < 7

JC - 4 j >: 2

JC > 0, y > 0

3.24 Minimize/= JC - 8j

subject to

3JC + 2y > 6

JC - j < 6

9JC + 7j < 108

3JC + Iy < 70

2JC - 5y > -35

JC > 0, y > 0

3.25 Rework Problem 3.24 by changing the objective to: Maximize/ = x
-Sy.

3.26 Maximize/= x — Sy

subject to

3JC + 2y > 6



x - y < 6

9JC + Iy < 108

3JC + 7;y < 70

2x - 5j > - 3 5

JC > 0, j is unrestricted in sign

3.27 Maximize/= 5JC - 2y

subject to

3x + 2y > 6

JC - j < 6

9JC + 7y < 108

3JC + 7j < 70

2JC - 5y > - 3 5

JC > 0, j > 0

3.28 Minimize/ = JC — Ay

subject to

JC — y > —4

4JC + 5y < 45

5JC - 2y < 20

5JC + 2y < 10

JC > 0, y > 0

3.29 Maximize/ = x — Ay

subject to

JC - y > - 4

4JC + 5y < 45

5JC - 2j < 20

5JC + 2y > 10

JC > 0, j is unrestricted in sign



3.30 Minimize/ = x — Ay

subject to

x — y > —4

Ax + 5y < 45

5JC - 2y < 20

5JC + 2y > 10

JC > 0, y > 0

3.31 Rework Problem 3.30 by changing the objective to: Maximize/ = x
-4y.

3.32 Minimize/= Ax + 5y

subject to

IOJC + y > 10

5x + Ay > 20

3JC + Iy > 21

x + \2y > 12

x > 0, y > 0

3.33 Rework Problem 3.32 by changing the objective to: Maximize/ = Ax
+ 5y.

3.34 Rework Problem 3.32 by changing the objective to: Minimize/ = 6x
+ 2y.

3.35 Minimize/= 6x + 2y

subject to

\0x + y > 10

5JC + Ay > 20

3JC + Iy > 21

JC + 12y > 12

JC and y are unrestricted in sign



3.36 Minimize/= 5JC + Iy

subject to

3x + Ay < 24

JC - j < 3

JC + Ay > 4

3JC + y > 3

JC > 0, j > 0

3.37 Rework Problem 3.36 by changing the objective to: Maximize/ = 5JC
+ 2y.

3.38 Rework Problem 3.36 when JC is unrestricted in sign and y > 0.

3.39 Maximize/= 5JC + Iy

subject to

3JC + Ay < 24

JC - y < 3

JC + 4y < 4

3JC + y > 3

JC > 0, y > 0

3.40 Maximize/= 3JC + 2y

subject to

9JC + IQy < 330

21JC - Ay > -36

JC + 2y > 6

6JC - y < 72

3JC + y < 54

JC > 0, j > 0

3.41 Rework Problem 3.40 by changing the constraint JC + Iy > 6 to JC +
2y < 6.



3.42 Maximize/= 3x + Iy

subject to

9x + Wy < 330

21JC - Ay > -36

x + 2y < 6

6JC - y < 72

3JC + y > 54

x > 0, y > 0

3.43 Maximize/= 3x + 2y

subject to

2Lt - 4y > -36

JC + 2y > 6

6x - y < 72

x > 0, j > 0

3.44 Reduce the system of equations

2JC, + 3x2 - Ix3 - Ix4 = 2

Jc1 + Jc2 — Jc3 + 3JC4 = 12

Jc1 — Jc2 + Jc3 + 5JC4 = 8

into a canonical system with Jc1, JC2 and Jc3 as basic variables. From this
derive all other canonical forms.

3.45 Maximize /= 24OJC1 + 104JC2 + 60JC3 + 19JC4

subject to

2OJC1 + 9JC2 + 6x3 + Jc4 < 20

1OJC1 + 4JC2 + 2JC3 + JC4 < 10

JC/ >: 0, i = 1 to 4

Find all the basic feasible solutions of the problem and identify the
optimal solution.



3.46 A progressive university has decided to keep its library open round the
clock and gathered that the following number of attendants are re-
quired to reshelve the books:

Time of Day Minimum Number of
(hours) Attendants Required

0-4 4
4-8 7
8-12 8

12-16 9
16-20 14
20-24 3

If each attendant works eight consecutive hours per day, formulate the
problem of finding the minimum number of attendants necessary to
satisfy the requirements above as a LP problem.

3.47 A paper mill received an order for the supply of paper rolls of widths
and lengths as indicated below.

Number of Rolls Width of Roll Length
Ordered (m) (m)

1 6 100
1 8 300
1 9 200

The mill produces rolls only in two standard widths, 10 and 20 m. The
mill cuts the standard rolls to size to meet the specifications of the
orders. Assuming that there is no limit on the lengths of the standard
rolls, find the cutting pattern that minimizes the trim losses while sat-
isfying the order above.

3.48 Solve the LP problem stated in Example 1.6 for the following data: /
= 2 m, Wx = 3000 N, W2 = 2000 N, W3 = 1000 N, and Wx=W2 =
W3 = 200 N.

3.49 Find the solution of Problem 1.1 using the simplex method.

3.50 Find the solution of Problem 1.15 using the simplex method.

3.51 Find the solution of Example 3.1 using (a) the graphical method and
(b) the simplex method.

3.52 In the scaffolding system shown in Fig. 3.17, loads Xx and X2 are ap-
plied on beams 2 and 3, respectively. Ropes A and B can carry a load
of Wx = 300 Ib each, the middle ropes, C and D, can withstand a load



Figure 3.17 Scaffolding system with three beams.

of W2 = 200 Ib each, and ropes E and F are capable of supporting a
load W3 = 100 Ib each. Formulate the problem of finding the loads Jc1

and X2 and their location parameters JC3 and X4 to maximize the total
load carried by the system, Jc1 + JC2, by assuming that the beams and
ropes are weightless.

3.53 A manufacturer produces three machine parts, A9 B9 and C. The raw
material costs of parts A, B9 and C are $5, $10, and $15 per unit, and
the corresponding prices of the finished parts are $50, $75, and $100
per unit, respectively. Part A requires turning and drilling operations,
while part B needs milling and drilling operations. Part C requires
turning and milling operations. The number of parts that can be pro-
duced on various machines per day and the daily costs of running the
machines are given below.

Beam 3

Beam 2

Formulate the problem of maximizing the profit.

Solve each problem by the simplex method.

3.54 Problem 1.22

3.55 Problem 1.23

Machine Part

A
B
C

Cost of running the
machines per day

Number of Parts That Can Be Produced on

Turning Lathes

15

25

$250

Drilling Machines

15
20

$200

Milling Machines

30
10

$300

BA

C D

E F

Beam 1



3.56 Problem 1.24

3.57 Problem 1.25

3.58 Problem 3.7

3.59 Problem 3.12

3.60 Problem 3.13

3.61 Problem 3.14

3.62 Problem 3.15

3.63 Problem 3.16

3.64 Problem 3.17

3.65 Problem 3.18

3.66 Problem 3.19

3.67 Problem 3.20

3.68 Problem 3.21

3.69 Problem 3.22

3.70 Problem 3.23

3.71 Problem 3.24

3.72 Problem 3.25

3.73 Problem 3.26

3.74 Problem 3.27

3.75 Problem 3.28

3.76 Problem 3.29

3.77 Problem 3.30

3.78 Problem 3.31

3.79 Problem 3.32

3.80 Problem 3.33

3.81 Problem 3.34

3.82 Problem 3.35

3.83 Problem 3.36

3.84 Problem 3.37

3.85 Problem 3.38



3.86 Problem 3.39

3.87 Problem 3.40

3.88 Problem 3.41

3.89 Problem 3.42

3.90 Problem 3.43

3.91 The temperatures measured at various points inside a heated wall are
given below.

Distance from the heated surface as a
percentage of wall thickness, X1 0 20 40 60 80 100

Temperature, I1 (
0C) 400 350 250 175 100 50

It is decided to use a linear model to approximate the measured values
as

t = a + bx (1)

where t is the temperature, x the percentage of wall thickness, and a
and b the coefficients that are to be estimated. Obtain the best estimates
of a and b using linear programming with the following objectives.

(a) Minimize the sum of absolute deviations between the measured
values and those given by Eq. (1): E1- |a H- bxt — tt\.

(b) Minimize the maximum absolute deviation between the measured
values and those given by Eq. (1):

M a x \a H- bxt — tt\
i

3.92 A snack food manufacturer markets two kinds of mixed nuts, labeled
A and B. Mixed nuts A contain 20% almonds, 10% cashew nuts, 15%
walnuts, and 55% peanuts. Mixed nuts B contain 10% almonds, 20%
cashew nuts, 25% walnuts, and 45% peanuts. A customer wants to
use mixed nuts A and B to prepare a new mix that contains at least 4
Ib of almonds, 5 Ib of cashew nuts, and 6 Ib of walnuts, for a party.
If mixed nuts A and B cost $2.50 and $3.00 per pound, respectively,
determine the amounts of mixed nuts A and B to be used to prepare
the new mix at a minimum cost.

3.93 A company produces three types of bearings, Bu B2, and B3, on two
machines, Ax and A2. The processing times of the bearings on the two
machines are indicated in the following table.



If the amounts of time available per day for component placement,
soldering, and inspection are 1500, 1000, and 500 person-minutes,
respectively, determine the number of units of A and B to be produced
for maximizing the production. If each unit of A and B contributes a
profit of $10 and $15, respectively, determine the number of units of
A and B to be produced for maximizing the profit.

3.95 A paper mill produces paper rolls in two standard widths; one with
width 20 in. and the other with width 50 in. It is desired to produce
new rolls with different widths as indicated below.

Width Number of Rolls
(in.) Required

40 150
30 200
15 50
6 100

The new rolls are to be produced by cutting the rolls of standard widths
to minimize the trim loss. Formulate the problem as an LP problem.

The times available on machines Ax and A2 per day are 1200 and 1000
minutes, respectively. The profits per unit OfZZ1, B2, and B3 are $4,
$2, and $3, respectively. The maximum number of units the company
can sell are 500, 400, and 600 for ZJ1, B2, and B3, respectively. For-
mulate and solve the problem for maximizing the profit.

3.94 Two types of printed circuit boards A and B are produced in a com-
puter manufacturing company. The component placement time, sol-
dering time, and inspection time required in producing each unit of A
and B are given below.

Machine

A2

Processing Time (min) for Bearing:

B1

10
8

B2

6
4

B3

12
4

Circuit Board

A
B

Time Required per Unit (min) for:

Component Placement

16
10

Soldering

10
12

Inspection

4
8



If the total machining times available in a week are 500 hours on lathes
and 400 hours on milling machines, determine the number of units of
P1 and P2 to be produced per week to maximize the profit.

3.97 A bank offers four different types of certificates of deposits (CDs) as
indicated below.

Duration Total Interest at Maturity
CD Type (yr) (%)

1 0.5 5
2 1.0 7
3 2.0 10
4 4.0 15

If a customer wants to invest $50,000 in various types of CDs, deter-
mine the plan that yields the maximum return at the end of the fourth
year.

3.98 The production of two machine parts A and B requires operations on
a lathe (L), a shaper (S), a drilling machine (Z)), a milling machine
(M), and a grinding machine (G). The machining times required by A
and B on various machines are given below.

3.96 A manufacturer produces two types of machine parts, P1 and P2 , using
lathes and milling machines. The machining times required by each
part on the lathe and the milling machine and the profit per unit of each
part are given below.

Machine Part

Machine Time (hr) Required by
Each Unit on:

Lathe

5
4

Milling Machine

2
4

Cost per Unit

$200
$300

Machine Part

A
B

Machine Time Required (hours per unit) on:

L

0.6
0.9

S

0.4
0.1

D

0.1
0.2

M

0.5
0.3

G

0.2
0.3

The number of machines of different types available is given by L: 10,
S: 3, D: 4, M: 6, and G: 5. Each machine can be used for 8 hours a
day for 30 days in a month.



(a) Determine the production plan for maximizing the output in a
month

(b) If the number of units of A is to be equal to the number of units
of B, find the optimum production plan.

3.99 A salesman sells two types of vacuum cleaners, A and B. He receives
a commission of 20% on all sales provided that at least 10 units each
of A and B are sold per month. The salesman needs to make telephone
calls to make appointments with customers and demonstrate the prod-
ucts in order to sell the products. The selling price of the products, the
average money to be spent on telephone calls, the time to be spent on
demonstrations, and the probability of a potential customer buying the
product are given below.

Coal Type

Ci
C2

C3

Quantify of
Coal Required
to Generate 1
MWh at the
Power Plant

(tons)

A

2.5
1.0
3.0

B

1.5
2.0
2.5

Pollution
Caused at

Power Plant

A

1.0
1.5
2.0

B

1.5
2.0
2.5

Cost of Coal
at Power

Plant

A

20
25
18

B

18
28
12

Vacuum
Cleaner

A
B

Selling
Price

per Unit

$250
$100

Money to Be Spent
on Telephone Calls
to Find a Potential

Customer

$3
$1

Time to Be Spent
in Demonstrations

to a Potential
Customer (hr)

3
1

Probability of a
Potential
Customer

Buying the
Product

0.4
0.8

In a particular month, the salesman expects to sell at most 25 units of
A and 45 units of B. If he plans to spend a maximum of 200 hours in
the month, formulate the problem of determining the number of units
of A and B to be sold to maximize his income.

3.100 An electric utility company operates two thermal power plants, A and
B, using three different grades of coal, C1, C2, and C3. The minimum
power to be generated at plants A and B is 30 and 80 MWh, respec-
tively. The quantities of various grades of coal required to generate 1
MWh of power at each power plant, the pollution caused by the var-
ious grades of coal at each power plant, and the costs of coal are given
in the following table.



Formulate the problem of determining the buying scheme that corre-
sponds to a minimum cost.

3.102 A steel plant produces steel using four different types of processes.
The iron ore, coal, and labor required, the amounts of steel and side
products produced, the cost information, and the physical limitations
on the system are given below.

Farm

1
2
3
4

Minimum amount
required (tons)

Price ($/ton) of Vegetable Type

1
(Potato)

200
300
250
150

100

2
(Tomato)

600
550
650
500

60

3
(Okra)

1600
1400
1500
1700

20

4
(Eggplant)

800
850
700
900

80

5
(Spinach)

1200
1100
1000
1300

40

Maximum
(of All
Types

Combined)
They Can

Supply

180
200
100
120

Formulate the problem of determining the amounts of different grades
of coal to be used at each power plant to minimize (a) the total pol-
lution level, and (b) the total cost of operation.

3.101 A grocery store wants to buy five different types of vegetables from
four farms in a month. The prices of the vegetables at different farms,
the capacities of the farms, and the minimum requirements of the gro-
cery store are indicated in the following table.

Process
Type

1
2
3
4

Cost

Limitations

Iron Ore
Required
(tons/day)

5
8
3

10

$50/ton

600 tons
available
per
month

Coal
Required
(tons/day)

3
5
2
7

$10/ton

250 tons
available
per
month

Labor
Required

(person-days)

6
12
5

12

$150/person-
day

No limita-
tions on
availability
of labor

Steel
Produced
(tons/day)

4
6
2
6

$350/ton

All steel
produced
can be
sold

Side
Products
Produced
(tons/day)

1
2
1
4

$100/ton

Only 200
tons
can be
sold per
month

Assuming that a particular process can be employed for any number
of days in a 30-day month, determine the operating schedule of the
plant for maximizing the profit.
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