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Foreword

Writing a foreword for a book by a former student runs many of the same risks faced by
a parent who is talking to others about his or her adult children. First, the parent risks
locking the child into something of a time warp, thinking largely about what the child
has done in the early part of his or her life and ignoring much of what the child has
done since leaving the nest. Second, the parent risks amplifying the minor annoyances
of living with a person day to day and ignoring or missing the big picture of virtue
and character that the child has developed through the maturation process aided by
years of careful parenting. Fortunately, in this instance, the chances of these kinds of
type I and II errors are slim, because (1) even as a student Kalyanmoy Deb displayed
the combination of virtues that now let us count him among the top researchers in the
field of genetic and evolutionary computation, and (2) thinking back to his time as
a student, I have a difficult time recalling even a single minor annoyance that might
otherwise overshadow his current deeds.

In reviewing this book, Multi-Objective Optimization using Evolutionary
Algorithms, I find that it is almost a perfect reflection of the Kalyanmoy Deb I
knew as my student and that I know now. First, the book chooses to tackle a
current, important, and difficult topic multi-objective optimization using genetic and
evolutionary algorithms (GEAs)-and the Kalyan I know has always shown good
intuition for where to place his efforts, having previously pioneered early studies in
niching, competent GAs, coding design, and multi-objective GEAs. Second, the book
is readable and pedagogically sound, with a carefully considered teaching sequence for
both novice and experienced genetic algorithmists and evolutionaries alike, and this
matches well with the Kalyan I know who put teaching, learning, and understanding
ahead of any thought of impressing his colleagues with the esoteric or the obscure.
Third and finally, the book is scholarly, containing as broad and deep a review of multi
objective GEAs as any contained in the literature to date, and the presentation of
that information shows a rich understanding of the interconnections between different
threads of this burgeoning literature. Of course, this comes as no surprise to those
of us who have worked with Kalyan in the past. He has always been concerned with
knowing who did what when, and then showing us how to connect the dots.

For these reasons, and for so many more, I highly recommend this book to readers
interested in genetic and evolutionary computation in general, and multi-objective
genetic and evolutionary optimization, in particular. The topic of multi-objective
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GEAs is one of the hottest topics in the field at present, and practitioners of many
stripes are now turning to population-based schemes as an increasingly effective
way to determine the necessary tradeoffs between conflicting objectives. Kalyanmoy
Deb's book is complete, eminently readable, and accessible to the novice and expert,
alike, and the coverage is scholarly, thorough, and appropriate for specialists and
practitioners, both. In short, it is my pleasure and duty to urge you to buy this book,
read it, use it, and enjoy it. There is little downside risk in predicting that you'll
be joining a whole generation of researchers and practitioners who will recognize
this volume as the classic that marked a new era in multi-objective genetic and
evolutionary algorithms.

David E. Goldberg
University of Illinois at Urbana-Champaign



Preface

Optimization is a procedure of finding and comparing feasible solutions until no better
solution can be found. Solutions are termed good or bad in terms of an objective, which
is often the cost of fabrication, amount of harmful gases, efficiency of a process, product
reliability, or other factors. A significant portion of research and application in the field
of optimization considers a single objective, although most real-world problems involve
more than one objective. The presence of multiple conflicting objectives (such as
simultaneously minimizing the cost of fabrication and maximizing product reliability)
is natural in many problems and makes the optimization problem interesting to solve.
Since no one solution can be termed as an optimum solution to multiple conflicting
objectives, the resulting multi-objective optimization problem resorts to a number
of trade-off optimal solutions. Classical optimization methods can at best find one
solution in one simulation run, thereby making those methods inconvenient to solve
multi-objective optimization problems.

Evolutionary algorithms (EAs), on the other hand, can find multiple optimal
solutions in one single simulation run due to their population-approach. Thus, EAs
are ideal candidates for solving multi-objective optimization problems. This book
provides a comprehensive survey of most multi-objective EA approaches suggested
since the evolution of such algorithms. Although a number of approaches were outlined
sparingly in the early years of the subject, more pragmatic multi-objective EAs
(MOEAs) were first suggested about a decade ago. All such studies exist in terms
of research papers in various journals and conference proceedings, which thus force
newcomers and practitioners to search different sources in order to obtain an overview
of the topic. This fact has been the primary motivation for me to take up this project
and to gather together most of the MOEA techniques in one text.

This present book provides an extensive discussion on the principles of multi
objective optimization and on a number of classical approaches. For those readers
unfamiliar with multi-objective optimization, Chapters 2 and 3 provide the necessary
background. Readers with a classical optimization background can take advantage of
Chapter 4 to familiarize themselves with various evolutionary algorithms. Beginning
with a detailed description of genetic algorithms, an introduction to three other EAs,
namely evolution strategy, evolutionary programming, and genetic programming, is
provided. Since the search for multiple solutions is important in multi-objective
optimization, a detailed description of EAs, particularly designed to solve multi-modal
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optimization problems, is also presented. Elite-preservation or emphasizing currently
elite solutions is an important operator in an EA. In this book, we classify MOEAs
according to whether they preserve elitism or not. Chapter 5 presents a number of non
elitist MOEAs. Each algorithm is described by presenting a step-by-step procedure,
showing a hand calculation, discussing advantages and disadvantages of the algorithm,
calculating its computational complexity, and finally presenting a computer simulation
on a test problem. In order to obtain a comparative evaluation of different algorithms,
the same test problem with the same parameter settings is used for most MOEAs
presented in the book. Chapter 6 describes a number of elitist MOEAs in an identical
manner.

Constraints are inevitable in any real-world optimization problem, including
multi-objective optimization problems. Chapter 7 presents a number of techniques
specializing in handling constrained optimization problems. Such approaches include
simple modifications to the MOEAs discussed in Chapters 5 and 6 to give more
specialized new MOEAs.

Whenever new techniques are suggested, there is room for improvement and further
research. Chapter 8 discusses a number of salient issues regarding MOEAs. This
chapter amply emphasizes the importance of each issue in developing and applying
MOEAs in a better manner by presenting the current state-of-the-art research and by
proposing further research directions.

Finally, in Chapter 9, the usefulness of MOEAs in real-world applications is
demonstrated by presenting a number of applications in engineering design. This
chapter also discusses plausible hybrid techniques for combining MOEAs with a
local search technique for developing an even better and a pragmatic multi-objective
optimization tool.

This book would not have been completed without the dedication of a number of my
students, namely Sameer Agrawal, Amrit Pratap, Tushar Goel and Thirunavukkarasu
Meyarivan. They have helped me in writing computer codes for investigating the
performance of the different algorithms presented in this book and in discussing with
me for long hours various issues regarding multi-objective optimization. In this part
of the world, where the subject of evolutionary algorithms is still a comparative
fad, they were my colleagues and inspirations. I also appreciate the help of Dhiraj
Joshi, Ashish Anand, Shamik Chaudhury, Pawan Nain, Akshay Mohan, Saket Awasthi
and Pawan Zope. In any case, I must not forget to thank Nidamarthi Srinivas who
took up the challenge to code the first viable MOEA based on the non-domination
concept. This ground-breaking study on non-dominated sorting GA (NSGA) inspired
many MOEA researchers and certainly most of our MOEA research activities at the
Kanpur Genetic Algorithms Laboratory (KanGAL), housed at the Indian Institute of
Technology Kanpur, India.

The first idea for writing this book originated during my visit to the University
of Dortmund during the period 1998-1999 through the Alexander von Humboldt
(AvH) Fellowship scheme. The resourceful research environment at the University
of Dortmund and the ever-supportive sentiments of AvH organization were helpful
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in formulating a plan for the contents of this book. Discussions with Eckart Zitzler,
Lothar Thiele, Jiirgen Branke, Frank Kursawe, Gunter Rudolph and Ian Parmee on
various issues on multi-objective optimization are acknowledged. Various suggestions
given by Marco Laumanns and Eckart Zitzler in improving an earlier draft of this book
are highly appreciated. I am privileged to get continuous support and encouragement
from two stalwarts in the field of evolutionary computation, namely David E. Goldberg
and Hans-Paul Schwefel. The help obtained from Victoria Coverstone-Carroll, Bill
Hartmann, Hisao Ishibuchi and Eric Michelssen was also very useful. I also thank
David B. Fogel for pointing me towards some of the early multi-objective EA studies.

Besides our own algorithms for multi-objective optimization, this book also presents
a number of algorithms suggested by other researchers. Any difference between what
is presented here and the original version of these algorithms is purely unintentional.
Wherever in doubt, the original source can be referred. However, I would be happy
to receive any such comments, which would be helpful to me in preparing the future
editions of this book.

The completion of this book came at the expense of my long hours of absence from
home. I am indebted to Debjani, Debayan, Dhriti, and Mr and Mrs S. K. Sarkar for
their understanding and patience.

Kalyanmoy Deb
Indian Institute Technology K anpur

deb@iitk.ac. in





1

Prologue

Optimization refers to finding one or more feasible solutions which correspond to
extreme values of one or more objectives. The need for finding such optimal solutions
in a problem comes mostly from the extreme purpose of either designing a solution for
minimum possible cost of fabrication, or for maximum possible reliability, or others.
Because of such extreme properties of optimal solutions, optimization methods are of
great importance in practice, particularly in engineering design, scientific experiments
and business decision-making.

When an optimization problem modeling a physical system involves only one
objective function, the task of finding the optimal solution is called single-objective
optimization. Since the time of the Second World War, most efforts in the field have
been made to understand, develop, and apply single-objective optimization methods.
Now-a-days, however, there exist single-objective optimization algorithms that work
by using gradient-based and heuristic-based search techniques. Besides deterministic
search principles involved in an algorithm, there also exist stochastic search principles,
which allow optimization algorithms to find globally optimal solutions more reliably.
In order to widen the applicability of an optimization algorithm in various different
problem domains, natural and physical principles are mimicked to develop robust
optimization algorithms. Evolutionary algorithms and simulated annealing are two
examples of such algorithms.

When an optimization problem involves more than one objective function, the task
of finding one or more optimum solutions is known as multi-objective optimization.
In the parlance of management, such search and optimization problems are known
as multiple criterion decision-making (MCDM). Since multi-objective optimization
involves multiple objectives, it is intuitive to realize that single-objective optimization
is a degenerate case of multi-objective optimization. However, there is another reason
why more attention is now being focused on multi-objective optimization - a matter
we will discuss in the next paragraph.

Most real-world search and optimization problems naturally involve multiple
objectives. The extremist principle mentioned above cannot be applied to only one
objective, when the rest of the objectives are also important. Different solutions may
produce trade-offs (conflicting scenarios) among different objectives. A solution that
is extreme (in a better sense) with respect to one objective requires a compromise
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in other objectives. This prohibits one to choose a solution which is optimal with
respect to only one objective. Let us consider the decision-making involved in buying
an automobile car. Cars are available at prices ranging from a few thousand to few
hundred thousand dollars. Let us take two extreme hypothetical cars, i.e. one costing
about ten thousand dollars (solution 1) and another costing about a hundred thousand
dollars (solution 2), as shown in Figure 1. If the cost is the only objective of this
decision-making process, the optimal choice is solution 1. If this were the only objective
to all buyers, we would have seen only one type of car (solution 1) on the road and no
car manufacturer would have produced any expensive cars. Fortunately, this decision
making process is not a single-objective one. Barring some exceptions, it is expected
that an inexpensive car is likely to be less comfortable. The figure indicates that
the cheapest car has a hypothetical comfort level of 40%. To rich buyers for whom
comfort is the only objective of this decision-making, the choice is solution 2 (with a
hypothetical maximum comfort level of 90%, as shown in the figure). Between these
two extreme solutions, there exist many other solutions, where a trade-off between
cost and comfort exists. A number of such solutions (solutions A, B, and C) with
differing costs and comfort levels are shown in the figure. Thus, between any two such
solutions, one is better in terms of one objective, but this betterment comes only from
a sacrifice on the other objective.

1.1 Single and Multi-Objective Optimization

Right from standards nine or ten in a secondary school, students are taught how to
find the minimum or maximum of a single-variable function. Beginning with the first
and second-order derivative-based techniques of finding an optimum (a generic term
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Figure 1 Hypothetical trade-off solutions are illustrated for a car-buying decision-making

problem.
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meaning either a minimum, maximum or saddle point), students in higher-level classes
are taught how to find an optimum in a multi-variable function. In undergraduate level
courses focusing on optimization-related studies, they are taught how to find the true
optimum in the presence of constraints. Constrained optimization is important in
practice, since most real-world optimization problems involve constraints restricting
some properties of the system to lie within pre-specified limits. An advanced-level
course on optimization which is usually taught to undergraduate and graduate
students focuses on theoretical aspects of optimality, convergence proofs and special
purpose optimization algorithms for nonlinear problems, such as integer programming,
dynamic programming, geometric programming, stochastic programming, and various
others. Not enough emphasis is usually given to multi-objective optimization. There
is, however, a reason for this.

As in the case of single-objective optimization, multi-objective optimization has also
been studied extensively. There exist many algorithms and application case studies
involving multiple objectives. However, there is one matter common to most such
studies. The majority of these methods avoid the complexities involved in a true
multi-objective optimization problem and transform multiple objectives into a single
objective function by using some user-defined parameters. Thus, most studies in
classical multi-objective optimization do not treat multi-objective optimization any
differently than single-objective optimization. In fact, multi-objective optimization is
considered as an application of single-objective optimization for handling multiple
objectives. The studies seem to concentrate on various means of converting multiple
objectives into a single objective. Many studies involve comparing different schemes
of such conversions, provide reasons in favor of one conversion over another, and
suggest better means of conversion. This is contrary to our intuitive realization that
single-objective optimization is a degenerate case of multi-objective optimization and
multi-objective optimization is not a simple extension of single-objective optimization.

It is true that theories and algorithms for single-objective optimization are
applicable to the optimization of the transformed single objective function. However,
there is a fundamental difference between single and multi-objective optimization
which is ignored when using the transformation method. We will discuss this
important matter in the following subsection.

1.1.1 Fundamental Differences

Without the loss of generality, let us discuss the fundamental difference between single
and multi-objective optimization with a two-objective optimization problem. For two
conflicting objectives, each objective corresponds to a different optimal solution. In
the above-mentioned decision-making problem of buying a car, solutions 1 and 2 are
these optimal solutions. If a buyer is willing to sacrifice cost to some extent from
solution 1, the buyer can probably find another car with a better comfort level than
this solution. Ideally, the extent of sacrifice in cost is related to the gain in comfort.
Thus, we can visualize a set of optimal solutions (such as solutions 1, 2, A, B and C)
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where a gain in one objective calls for a sacrifice in the other objective.
Now comes the big question. With all of these trade-off solutions in mind, can one

say which solution is the best with respect to both objectives? The irony is that none
ofthese trade-off solutions is the best with respect to both objectives. The reason lies
in the fact that no solution from this set makes both objectives (cost and comfort)
look better than any other solution from the set. Thus, in problems with more than
one conflicting objective, there is no single optimum solution. There exist a number
of solutions which are. all optimal. Without any further information, no solution from
the set of optimal solutions can be said to be better than any other. Since a number
of solutions are optimal, in a multi-objective optimization problem many such (trade
off) optimal solutions are important. This is the fundamental difference between a
single-objective and a multi-objective optimization task. Except in multi-modal single
objective optimization, the important solution in a single-objective optimization is the
lone optimum solution, whereas in multi-objective optimization, a number of optimal
solutions arising because of trade-offs between conflicting objectives are important.

1.2 Two Approaches to Multi-Objective Optimization

Although the fundamental difference between these two optimizations lies in the
cardinality in the optimal set, from a practical standpoint a user needs only one
solution, no matter whether the associated optimization problem is single-objective
or multi-objective. In the case of multi-objective optimization, the user is now in a
dilemma. Which of these optimal solutions must one choose? Let us try to answer this
question for the case of the car-buying problem. Knowing the number of solutions
that exist in the market with different trade-offs between cost and comfort, which
car does one buy? This is not an easy question to answer. It involves many other
considerations, such as the total finance available to buy the car, distance to be
driven each day, number of passengers riding in the car, fuel consumption and cost,
depreciation value, road conditions where the car is to be mostly driven, physical
health of the passengers, social status, and many other factors. Often, such higher
level information is non-technical, qualitative and experience-driven. However, if a
set of many trade-off solutions are already worked out or available, one can evaluate
the pros and cons of each of these solutions based on all such non-technical and
qualitative, yet still important, considerations and compare them to make a choice.
Thus, in a multi-objective optimization, ideally the effort must be made in finding the
set of trade-off optimal solutions by considering all objectives to be important. After
a set of such trade-off solutions are found, a user can then use higher-level qualitative
considerations to make a choice. In view of these discussions, we therefore suggest the
following principle for an ideal multi-objective optimization procedure.

Step 1 Find multiple trade-off optimal solutions with a wide range of values for
objectives.

Step 2 Choose one of the obtained solutions using higher-level information.



PROLOGUE

Multi-objective
optimization problem

lIinimize f ,
Ilinimize f~

Minimize fill

subdect to constraints

;·1:...
III

Step 2

Choo.. one
solution

5

Figure 2 Schematic of an ideal multi-objective optimization procedure.

Figure 2 shows schematically the principles in an ideal multi-objective optimization
procedure. In Step 1 (vertically downwards), multiple trade-off solutions are found.
Thereafter, in Step 2 (horizontally, towards the right), higher-level information is
used to choose one of the trade-off solutions. With this procedure in mind, it is easy
to realize that single-objective optimization is a degenerate case of multi-objective
optimization, as argued earlier. In the case of single-objective optimization with only
one global optimal solution, Step 1 will find only one solution, thereby not requiring
us to proceed to Step 2. In the case of single-objective optimization with multiple
global optima, both steps are necessary to first find all or many of the global, optima
and then to choose one from them by using the higher-level information aheut' the
problem.

If thought of carefully, each trade-off solution corresponds to a specific order of
importance of the objectives. It is clear from Figure 1 that solution A assigns more
importance to cost than to. comfort. On the other hand, solution C assigns more
importance to comfort than to cost. Thus, if such a relative preference factor among
the objectives is known for a specific problem, there is no need to follow the above
principle for solving a multi-objective optimization problem. A simple method would
be to form a composite objective function as the weighted sum of the objectives,
where a weight for an objective is proportional to the preference factor assigned to
that particular objective. This method of scalarizing an objective vector into a single
composite objective function converts the multi-objective optimization problem into
a single-objective optimization problem. When such a composite objective function
is optimized, in most cases it is possible to obtain one particular trade-off solution.
This procedure of handling multi-objective optimization problems is much simpler,
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yet still being more subjective than the above ideal procedure. We call this procedure
a preference-based multi-objective optimization. A schematic of this procedure is
shown in Figure 3. Based on the higher-level information, a preference vector w

is first chosen. Thereafter, the preference vector is used to construct the composite
function, which is then optimized to find a single trade-off optimal solution by a
single-objective optimization algorithm. Although not often practiced, the procedure
can be used to find multiple trade-off solutions by using a different preference vector
and repeating the above procedure.

It is important to realize that the trade-off solution obtained by using the preference
based strategy is largely sensitive to the relative preference vector used in forming the
composite function. A change in this preference vector will result in a (hopefully)
different trade-off solution. We shall show in the next chapter that any arbitrary
preference vector need not result in a trade-off optimal solution to all problems.
Besides this difficulty, it is intuitive to realize that finding a relative preference vector
itself is highly subjective and not straightforward. This requires an analysis of the
non-technical, qualitative and experience-driven information to find a quantitative
relative preference vector. Without any knowledge of the likely trade-off solutions,
this is an even more difficult task. Classical multi-objective optimization methods
which convert multiple objectives into a single objective by using a relative preference
vector of objectives work according to this preference-based strategy. Unless a reliable
and accurate preference vector is available, the optimal solution obtained by such
methods is highly subjective to the particular user.

The ideal multi-objective optimization procedure suggested earlier is less subjective.
In Step 1, a user does not need any relative preference vector information. The task
there is to find as many different trade-off solutions as possible. Once a well-distributed
set of trade-off solutions is found, Step 2 then requires certain problem information in

MUlti-objective
optimization problem

Minimize f,
Minimize f,

Minimize £.

subject to constraints

Estimate a
relative

importance
vector

Single-objective
optimization problem

or

a composite function

ane optimum
solution

lC
Figure 3 Schematic of a preference-based multi-objective optimization procedure.
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order to choose one solution. It is important to mention that in Step 2, the problem
information is used to evaluate and compare each of the obtained trade-off solutions. In
the ideal approach, the problem information is not used to search for a new solution;
instead, it is used to choose one solution from a set of already obtained trade-off
solutions. Thus, there is a fundamental difference in using the problem information in
both approaches. In the preference-based approach, a relative preference vector needs'
to be supplied without any knowledge of the possible consequences. However, in the
proposed ideal approach, the problem information is used to choose one solution from.
the obtained set of trade-off solutions. We argue that the ideal approach in this matter
is more methodical, more practical, and less subjective. At the same time, we highlight
the fact that if a reliable relative preference vector is available to a problem, there is
no reason to find other trade-off solutions. In such a case, a preference-based approach
would be adequate.

Since Step 2 requires various subjective and problem-dependent considerations, we
will not discuss this step further in this present book. Most of this book is devoted
to finding multiple trade-off solutions for multi-objective optimization problems.
However, we will also discuss a number of techniques to find a preferred distribution
of trade-off solutions, if information about the relative importance of the objectives is
available.

1.3 Why Evolutionary?

It is mentioned above that the classical way to solve multi-objective optimization
problems is to follow the preference-based approach, where a relative preference
vector is used to scalarize multiple objectives. Since classical search and optimization
methods use a point-by-point approach, where one solution in each iteration is
modified to a different (hopefully better) solution, the outcome of using a classical
optimization method is a single optimized solution. Thinking along this working
principle of available optimization methods, it would not be surprising to apprehend
that the development of preference-based approaches was motivated by the fact that
available optimization methods could find only a single optimized solution in a single
simulation run. Since only a single optimized solution could be found, it was, therefore,
necessary to convert the task of finding multiple trade-off solutions in a multi-objective
optimization to one of finding a single solution of a transformed single-objective
optimization problem.

However, the field of search and optimization has changed over the last few years by
the introduction of a number of non-classical, unorthodox and stochastic search and
optimization algorithms. Of these, the evolutionary algorithm (EA) mimics nature's
evolutionary principles to drive its search towards an optimal solution. One of the
most striking differences to classical search and optimization algorithms is that EAs
use a population of solutions in each iteration, instead of a single solution. Since a
population of solutions are processed in each iteration, the outcome of an EA is also
a population of solutions. If an optimization problem has a single optimum, all EA
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population members can be expected to converge to that optimum solution. However,
if an optimization problem has multiple optimal solutions, an EA can be used to
capture multiple optimal solutions in its final population.

This ability of an EA to find multiple optimal solutions in one single simulation run
makes EAs unique in solving multi-objective optimization problems. Since Step 1 of
the ideal strategy for multi-objective optimization requires multiple trade-off solutions
to be found, an EA's population-approach can be suitably utilized to find a number
of solutions in a single simulation run.

1.4 Rise of Multi-Objective Evolutionary Algorithms

Starting with multi-objective studies from the early days of evolutionary algorithms,
this book presents various techniques of finding multiple trade-off solutions using
evolutionary algorithms. Early applications to multi-objective optimization problems
were mainly preference-based approaches, although the need for finding multiple trade
off solutions was clearly stated. The first real application of EAs in finding multiple
trade-off solutions in one single simulation run was suggested and worked out in 1984
by David Schaffer in his doctoral dissertation (Schaffer, 1984). His vector-evaluated
genetic algorithm (VEGA) made a simple modification to a single-objective GA and
demonstrated that GAs can be used to capture multiple trade-off solutions for a
few iterations of a VEGA. However, if continued for a large number of iterations,
a VEGA population tends to converge to individual optimal solutions. After this
study, EA researchers did not pay much attention to multi-objective optimization for
almost half a decade. In 1989, David E. Goldberg, in his seminal book (Goldberg,
1989), suggested a lO-line sketch of a plausible multi-objective evolutionary algorithm
(MOEA) using the concept of domination. Taking the clue from his book, a number
of researchers across the globe have since developed different implementations of
MOEAs. Of these, Fonseca and Fleming's multi-objective GA (Fonseca and Fleming,
1995), Srinivas and Deb's non-dominated sorting GA (NSGA) (Srinivas and Deb,
1994), and Horn, Nafploitis and Goldberg's niched Pareto-GA (NPGA) (Horn et al.,
1994) were immediately tested for different real-world problems to demonstrate that
domination-based MOEAs can be reliably used to find and maintain multiple trade
off solutions. More or less at the same time, a number of other researchers suggested
different ways to use an EA to solve multi-objective optimization problems. Of these,
Kursawe's diploidy approach (Kursawe, 1990), Hajela and Lin's weight-based approach
(Hajela and Lin, 1992), and Osyczka and Kundu's distance-based GA (Osyczka and
Kundu, 1995) are just a few examples. With the rise of interest in multi-objective
optimization, EA journals began to bring out special issues (Deb and Horn, 2000),
EA conferences started holding tutorials and special sessions on evolutionary multi
objective optimization, and an independent international conference on evolutionary
multi-criterion optimization (Zitzler et al., 2001) is recently arranged.

In order to assess the volume of studies currently being undertaken in this field, we
have made an attempt to count the number of studies year-wise from our collection
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of research papers on this topic. Such a year-wise count is presented in Figure 4. The
latter shows the increasing trend in the number of studies in the field. The slight
reduction in the number of studies in 1999 shown in this figure is most likely to
result from the non-availability of some material to the author until after the date of
publication of this book. Elsewhere (Veldhuizen and Lamont, 1998), studies up until
1998 are classified according to various other criteria. Interested readers can refer to
that work for more statistical information.

Despite all of these studies, to date, there exists no book or any other monograph
where different MOEA techniques are gathered in one convenient source. Both
researchers and newcomers to the field have to collect various research papers and
dissertations to find out the various techniques which have already been attempted.
This book fills that gap and will hopefully serve to provide a comprehensive survey
of multi-objective evolutionary algorithms up until the year 2000.

1.5 Organization of the Book

For those readers not so familiar with the concept of multi-objective optimization,
Chapter 2 provides some useful definitions, discusses the principle of multi-objective
optimization, and briefly mentions optimality conditions. Chapter 3 describes a
number of classical optimization methods which mostly work according to the
preference-based approach. Starting with the weighted approach, discussions on
the c-constraint method, Tchebycheff methods, value function methods and goal
programming methods are highlighted. In the light of these techniques, a review of
many classical techniques is also presented.

Since this book is about multi-objective evolutionary algorithms, it is, therefore,
necessary to discuss the single-objective evolutionary algorithms, particularly for
those readers who are not familiar with evolutionary computation. Chapter 4 begins
with outlining the difficulties associated with classical methods and highlights the
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need for a population-based optimization method for multi-objective optimization.
Thereafter, four different evolutionary algorithms, i.e. genetic algorithms (GAs),
evolution strategy (ES), evolutionary programming (EP) and genetic programming
(GP), are discussed. Since most existing MOEAs are GA-based, we have provided
rather detailed descriptions of the working principles of both a binary-coded and a
real-parameter GA. Constraints are evident in real-world problem solving. We have
also highlighted a number of constraint handling techniques which are used in a GA.
In the context of multi-objective optimization, we have discussed the need for finding
a well-distributed set of trade-off solutions. Since finding and maintaining a well
distributed set of optimal solutions is equivalent to solving a multi-modal problem for
finding and maintaining multiple optimal solutions simultaneously, we also elaborate
various EA techniques used in solving multi-modal problems.

Discussions on the fundamentals of multi-objective optimization in Chapter 2, the
classical methods used to solve multi-objective problems in Chapter 3, and the working
principles of various evolutionary optimization techniques in Chapter 4 provide a
platform for presenting different MOEAs. Since the number of existing MOEAs are
many, we have classified them in two categories, namely non-elitist and elitist MOEAs.
In the context of single-objective EAs, the need of an elite-preserving operator has been
amply demonstrated both theoretically and experimentally in the literature. Since
elite-preservation is found to be important in multi-objective optimization, we group
the algorithms based on whether they use elitism or not. First, non-elitist MOEAs
are described in Chapter 5. Starting from early suggestions, most of the commonly
used MOEAs are discussed. In order to demonstrate the working principles of these
algorithms, they are clearly stated in a step-by-step format. The computational
complexities of most algorithms are also calculated. Based on the descriptions of
these algorithms, the advantages and disadvantages of each are also outlined. Finally,
simulation results are shown on a simple test problem to show the performance of
different MOEAs. Since an identical test function is used for most algorithms, a
qualitative comparison of the algorithms can be obtained from such simulation results.

Chapter 6 presents a number of elitist MOEAs. Highlighting the need of elitism
in multi-objective optimization, different elitist MOEAs are then described in turn.
Again, the algorithms are described in a step-by-step manner, the computational
complexities are worked out, and the advantages and disadvantages are highlighted.
Simulation results on the same test problem are also shown, not only to have
a comparative evaluation of different elitist MOEAs, but also to comprehend the
differences between elitist and non-elitist MOEAs.

Constraints are inevitable in practical multi-objective optimization problems. In
Chapter 7, we will discuss two constraint-handling methods which have been recently
suggested. In addition, an approach based on a modified definition of domination is
suggested and implemented with an elitist MOEA. Three approaches are applied on
a test problem to show the efficacy of each approach.

Chapter 8 discusses a number of salient issues related to multi-objective
optimization. Some of these issues are common to both evolutionary and classical
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optimization methods. Various means of representing trade-off solutions in problems
having more than two objective problems are discussed. The scaling of two-objective
optimization algorithms in larger-dimensional problems is also discussed. Thereafter,
various issues related only to multi-objective evolutionary algorithms have been
particularly highlighted in order to provide an outline of future research directions. Of
these, the performance measures of an MOEA, the design of difficult multi-objective
test problems, the comparison of MOEAs on difficult test problems, the maintenance of
diversity in objective versus decision spaces, convergence issues and implementations
of controlled elitism are of immediate interest to research in the field. From a practical
standpoint, techniques for finding a preferred set of trade-off solutions instead of the
complete Pareto-optimal set, and the use of multi-objective optimization techniques
to solve single-objective constrained optimization problems and to solve unbiased goal
programming problems are some suggested directions for future research.

No description of an algorithm is complete unless its performance is tested and
applied to practical problems. In Chapter 9, we will present a number of case studies
where elitist and non-elitist MOEAs are applied to a number of engineering problems
and a space trajectory design problem. Although these application case studies are
not the only applications which exist in the literature, they amply demonstrate the
purpose with which we have begun this chapter. All application case studies show
how MOEAs can find a number of trade-off solutions in various problems in one
single simulation run. Chapter 9 also proposes a hybrid MOEA approach along
with a local search technique for finding better-converged and better-distributed
trade-off solutions. Thus, in addition to providing a number of MOEA techniques
to find multiple trade-off solutions as required in Step 1 of the ideal approach of
multi-objective optimization, this book has also addressed Step 2 of this approach
by outlining a number of rational techniques for choosing a compromised solution.
Reasonable methods are suggested to reduce the cardinality of the set of trade-off
solutions so as to allow the decision-making task easier for the user.
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Multi-Objective Optimization

As the name suggests, a multi-objective optimization problem (MOOP) deals with
more than one objective function. In most practical decision-making problems,
multiple objectives or multiple criteria are evident. Because of a lack of suitable
solution methodologies, an MOOP has been mostly cast and solved as a single
objective optimization problem in the past. However, there exist a number of
fundamental differences between the working principles of single and multi-objective
optimization algorithms. In a single-objective optimization problem, the task is to
find one solution (except in some specific multi-modal optimization problems, where
multiple optimal solutions are sought) which optimizes the sole objective function.
Extending the idea to multi-objective optimization, it may be wrongly assumed that
the task in a multi-objective optimization is to find an optimalsolution corresponding
to each objective function. In this chapter, we will discuss the principles of multi
objective optimization and present optimality conditions for any solution to be optimal
in the presence of multiple objectives.

2.1 Multi-Objective Optimization Problem

A multi-objective optimization problem has a number of objective functions which
are to be minimized or maximized. As in the single-objective optimization problem,
here too the problem usually has a number of constraints which any feasible solution
(including the optimal solution) must satisfy. In the following, we state the multi
objective optimization problem (MOOP) in its general form:

Minimize/ Maximize
subject to

fm(x),

9j(x) ~ 0,
hk(x) = 0,
x(l) < x < XIU)

1 - 1_ 1 '

~= 1,2, ,.M; }
) - 1,2, , J,
k = 1,2, , K;

i = 1,2, ,n.

(2.1)

A solution x is a vector of n decision variables: x = (x1 , Xl, ... , xn ) T. The last set
of constraints are called variable bounds, restricting each decision variable Xi. to take
a value within a lower x~ l) and an upper x~U) bound. These bounds constitute a
decision variable space V, or simply the decision space. Throughout this book, we
will use the terms point and solution interchangeably to mean a solution vector x.
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Associated with the problem are J inequality and K equality constraints. The
terms 9j (x) and hdx) are called constraint functions. The inequality constraints
are treated as 'greater-than-equal-to' types, although a 'less-than-equal-to' type
inequality constraint is also taken care of in the above formulation. In the latter
case, the constraint must be converted into a 'greater-than-equal-to' type constraint
by multiplying the constraint function by -1 (Deb, 1995). A solution x that does
not satisfy all of the (J + K) constraints and all of the 2N variable bounds stated
above is called an infeasible solution. On the other hand, if any solution x satisfies
all constraints and variable bounds, it is known as a feasible solution. Therefore, we
realize that in the presence of constraints, the entire decision variable space D need
not be feasible. The set of all feasible solutions is called the feasible region, or S. In
this present book, sometimes we will refer to the feasible region as simply the search
space.

There are M objective functions f(x) = (f, (x), f2(X), ... , fM(x))T considered
in the above formulation. Each objective function can be either minimized or
maximized. The duality principle (Deb, 1995; Rao, 1984; Reklaitis et al., 1983), in
the context of optimization, suggests that we can convert a maximization problem
into a minimization one by multiplying the objective function by -1. The duality
principle has made the task of handling mixed type of objectives much easier. Many
optimization algorithms are developed to solve only one type of optimization problems,
such as e.g. minimization problems. When an objective is required to be maximized
by using such an algorithm, the duality principle can be used to transform the original
objective for maximization into an objective for minimization.

Although there is a subtle difference in the way that a criterion function and an
objective function is defined (Chankong et al., 1985), in a broad sense we treat them
here as identical. One of the striking differences between single-objective and multi
objective optimization is that in multi-objective optimization the objective functions
constitute a multi-dimensional space, in addition to the usual decision variable space.
This additional space is called the objective space, Z. For each solution x in the
decision variable space, there exists a point in the objective space, denoted by
f(x) = z = (Z"Z2, ... ,ZM)T. The mapping takes place between an n-dimensional
solution vector and an M-dimensional objective vector. Figure 5 illustrates these two
spaces and a mapping between them.

Multi-objective optimization is sometimes referred to as vector optimization,
because a vector of objectives, instead of a single objective, is optimized.

2.1.1 Linear and Nonlinear MOO?

If all objective functions and constraint functions are linear, the resulting MOOP
is called a multi-objective linear program (MOLP). Like the linear programming
problems, MOLPs also have many theoretical properties. However, if any of the
objective or constraint functions are nonlinear, the resulting problem is called a
nonlinear multi-objective problem. Unfortunately, for nonlinear problems the solution
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Figure 5 Representation of the decision variable space and the corresponding objective

space.

techniques often do not have convergence proofs. Since most real-world multi-objective
optimization problems are nonlinear in nature, we do not assume any particular
structure of the objective and constraint functions here.

2.1.2 Convex and Nonconvex MOOP

Before we discuss a convex multi-objective optimization problem, let us first define a
convex function.

Definition 2.1. A function f: jRn ----1 jR is a convex function if for any two pair
of solutions x(]),x(2) E jRn, the following condition is true:

f (,\xl]l + (1 - A)xI2l) :::; Af(xl]l) + (1 - A)f(x(21),

for all 0 < A < 1.

(2.2)

The above definition gives rise to the following properties of a convex function:

1. The linear approximation of f(x) at any point in the interval [x(]), x(2l] always
underestimates the actual function value.

2. The Hessian matrix of f(x) is positive definite for all x.

3. For a convex function, a local minimum is always a global minimum.'

Figure 6 illustrates a convex function. A function satisfying the inequality shown in

1 In the context of single-objective minimization problems, a solution having the smallest function
value in its neighborhood is called a local minimum solution, while a solution having the smallest
function value in the feasible search space is called a global minimum solution.
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Figure 6 A convex function is illustrated. A line joining function values at two points X l 1 I

and x(2) always estimates a large value of the true convex function.

equation (2.2) with a I>' sign instead of a '.::;' sign is called a nonconvex function. To
test if a function is convex within an interval, the Hessian matrix vl.f is calculated and
checked for its positive-definiteness at all points in the interval. One of the ways to
check the positive-definiteness of a matrix is to compute the eigenvalues of the matrix
and check to see if all eigenvalues are positive. To test if a function f is nonconvex
in an interval, the Hessian matrix - vl.f is checked for its positive-definiteness. If it is
positive-definite, the function f is nonconvex.

It is interesting to realize that if a function g(x) is nonconvex, the set of solutions
satisfying g(x) 2': 0 represents a convex set. Thus, a feasible search space formed with
nonconvex constraint functions will enclose a convex region. Now, we are ready to
define a convex MOOP.

Definition 2.2. A multi-objective optimization problem is convex if all objective
functions are convex and the feasible region is convex (or all inequality
constraints are nonconvex and equality constraints are linear).

According to this definition, an MOLP is a convex problem. The convexity of an
MOOP is an important matter, which we shall see in subsequent chapters. There exist
many algorithms which can handle convex MOOPs well, but face difficulty in solving
nonconvex MOOPs. Since an MOOP has two spaces, the convexity in each space
(objective and decision variable space) is important to a multi-objective optimization
algorithm. Moreover, although the search space can be nonconvex, the Pareto-optimal
front may be convex.

2.2 Principles of Multi-Objective Optimization

We illustrate the principles of multi-objective optimization through an airline routing
problem. We all are familiar with the intermediate stopovers that most airlines force
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us to take, particularly when flying long distance. Airlines try different strategies to
compromise on the number of intermediate stopovers and earn a large business mileage
by introducing 'direct' flights. Let us take a look at a typical, albeit hypothetical,
airline routing for some cities in the United States of America, as shown in Figure 7.
If we look carefully, it is evident that there are two main 'hubs' (Los Angeles and
New York) for this airline. If these two hubs are one's cities of origin and destination,
the traveler is lucky. This is because there are likely to be densely packed schedules
of flights between these two cities. However, if one has to travel between some other
cities, let us say between Denver and Houston, there is no direct flight. The passenger
has to travel to one of these hubs first and then take more flights from there to reach
the destination. In the Denver-Houston case, one has to fly to Los Angeles, fly on to
New York and then make the final lap to Houston.

To an airline, such modular networks of routes is easiest to maintain and coordinate.
Better service facilities and ground staff need only be maintained at the hubs,
instead of at all airports. Although one then travels longer distance than the actual
geographical distance between the cities of origin and destination, this helps an airline
to reduce the cost of its operation. Such a solution is ideal from the airline's point of
view, but not so convenient from the point of view of a passenger's comfort. However,
the situation is not that biased against the passenger's point of view either. By
reducing the cost of operation, the airline is probably providing a cheaper ticket.
However, if comfort or convenience is the only consideration to a passenger, the latter
would like to have a network of routes which would be entirely different to that shown
in Figure 7. A hypothetical routing is shown in Figure 8. In such a network, any two
airports would be connected by a route, thereby allowing a direct flight between all
airports. Since the operation cost for such a scenario will be exorbitantly high, the
cost of flying with such a network would also be high.

Thus, we see a trade-off between two objectives in the above problem - cost versus
convenience. A less-costly flight is likely to have more intermediate stopovers causing

Figure 7 A typical network of airline routes showing hub-like connections.
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Figure 8 A hypothetical (but convenient) airline routing.

more inconvenience to a passenger, while a high-comfort flight is likely to have direct
routes, thus causing an expensive ticket. The important matter is that between any
two arbitrary cities in the first map (which resembles the routing of most airlines)
there does not exist a flight which is less costly as well as being largely convenient. If
there was, that would have been the only solution to this problem and nobody would
have complained about paying more or wasting time by using a 'hopping' flight. The
above two solutions of a hub-like network of routes and a totally connected network
of routes are two extreme solutions to this two-objective optimization problem. There
exist many other compromised solutions which have lesser hub-like network of routes
and more expensive flights than the solution shown in Figure 7. Innovative airlines
are constantly on the lookout for such compromises and in the process making the
network of routes a bit less hub-like, so giving the passengers a bit more convenience.

The 'bottomline' of the above discussion is that when multiple conflicting objectives
are important, there cannot be a single optimum solution which simultaneously
optimizes all objectives. The resulting outcome is a set of optimal solutions with
a varying degree of objective values. In the following subsection, we will make this
qualitative idea more quantitative by discussing a simple engineering design problem.

2.2.1 Illustrating Pareto-Optimal Solutions

We take a more concrete engineering design problem here to illustrate the concept of
Pareto-optimal solutions. Let us consider a cantilever design problem (Figure 9) with
two decision variables, i.e. diameter (d) and length (1). The beam has to carry an end
load P. Let us also consider two conflicting objectives of design, i.e. minimization
of weight f 1 and minimization of end deflection f2. The first objective will resort to
an optimum solution having the smaller dimensions of d and 1, so that the overall
weight of the beam is minimum. Since the dimensions are small, the beam will not be
adequately rigid and the end deflection of the beam will be large. On the other hand, if
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Figure 9 A schematic of a cantilever beam.
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the beam is minimized for end deflection, the dimensions of the beam are expected to
be large, thereby making the weight of the beam large. For our discussion, we consider
two constraints: the developed maximum stress (}max is less than the allowable strength
SlJ and the end deflection b is smaller than a specified limit bm ax ' With all of the
above considerations, the following two-objective optimization problem is formulated
as follows:

Minimize

Minimize

subject to
(2.3)

where the maximum stress is calculated as follows:

32Pl
(}max = nd3 .

The following parameter values are used:

(2.4)

p = 7800 kg/m3 ,

SlJ = 300 MPa,
P = 1 kN,
bm ax = 5 mm.

E = 207 GPa,

The left plot in Figure 10 marks the feasible decision variable space in the overall
search space enclosed by 10 ::; d ::; 50 mm and 200 ::; 1 ::; 1000 mm. It is clear that
not all solutions in the rectangular decision space are feasible. Every feasible solution
in this space can be mapped to a solution in the feasible objective space shown in
the right plot. The correspondence of a point in the left figure with that in the right
figure is also shown.

This figure shows many solutions trading-off differently between the two objectives.
Any two solutions can be picked from the feasible objective space and compared. For
some pairs of solutions, it can be observed that one solution is better than the other
in both objectives. For certain other pairs, it can be observed that one solution is
better than the other in one objective, but is worse in the second objective. In order
to establish which solution(s) are optimal with respect to both objectives, let us hand
pick a few solutions from the search space. Figure 11 is drawn with many such solutions
and five of these solutions (marked A to E) are presented in Table 1. Of these solutions,
the minimum weight solution (A) has a diameter of 18.94 mm, while the minimum
deflection solution (D) has a diameter of 50 mm. It is clear that solution A has a
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Figure 10 The feasible decisionvariable space (left) and the feasible objective space (right).

smaller weight, but has a larger end-deflection than solution D. Hence, none of these
two solutions can be said to be better than the other with respect to both objectives.
When this happens between two solutions, they are called non-dominated solutions.
If both objectives are equally important, one cannot say, for sure, which of these two
solutions is better with respect to both objectives. Two other similar solutions (B and
C) are also shown in the figure and in the table. Of these four solutions (A to D),
any pair of solutions can be compared with respect to both objectives. Superiority of
one over the other cannot be established with both objectives in mind. There exist
many such solutions (all solutions, marked using circles in the figure, are obtained by
using NSGA-II - a multi-objective EA - to be described later) in the search space.
For clarity, these solutions are joined with a curve in the figure. All solutions lying
on this curve are special in the context of multi-objective optimization and are called
Pareto-optimal solutions. The curve formed by joining these solutions is known as a
Pareto-optimal front. The same Pareto-optimal front is also marked on the right plot
of Figure 10 by a continuous curve. It is interesting to observe that this front lies in
the bottom-left corner of the search space for problems where all objectives are to be
minimized.

Table 1 Five solutions for the cantilever design problem.

d 1 Weight Deflection
Solution (mm) (mm) (kg) (mm)

A 18.94 200.00 0.44 2.04
B 21.24 200.00 0.58 1.18
C 34.19 200.00 1.43 0.19
D 50.00 200.00 3.06 0.04
E 33.02 362.49 2.42 1.31
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Figure 11 Four Pareto-optimal solutions and one non-optimal solution.

It is important to note that the feasible objective space not only contains Pareto
optimal solutions, but also solutions that are not optimal. We will give a formal
definition of Pareto-optimal solutions later. Here, we simply mention that the entire
feasible search space can be divided into two sets of solutions - a Pareto-optimal and
a non-Pareto-optimal set. Consider solution E in Figure 11 and also in Table 1. By
comparing this with solution C, we observe that the latter is better than solution E
in both objectives. Since solution E has a larger weight and a larger end-deflection
than solution C, the latter solution is clearly the better of the two. Thus, solution E
is a sub-optimal solution and is of no interest to the user. When this happens in
the comparison of two solutions, solution C is said to dominate solution E or that
solution E is dominated by solution C. There exist many such solutions in the search
space, which can be dominated by at least one solution from the Pareto-optimal set.
In other words, there exists at least one solution in the Pareto-optimal set, which will
be better than any non-Pareto-optimal solution. It is clear from the above discussion
that in multi-objective optimization the task is to find the Pareto-optimal solutions.

Instead of considering the entire search space for finding the Pareto- and non-Pareto
optimal sets, such a division based on domination can also be made for a finite set of
solutions P chosen from the search space. Using a pair-wise comparison as above, one
can divide the set P into two non-overlapping sets Pl and P2, such that Pl contains all
solutions that do not dominate each other and at least one solution in P1 dominates
any solution in P2. The set P1 is called the non-dominated set, while the set P2 is
called the dominated set. In Section 2.4.6, we shall discuss different computationally
efficient methods to identify the non-dominated set from a finite set of solutions.

There is an interesting observation about dominated and non-dominated sets, which
is worth mentioning here. Let us compare solutions D and E. Solution D is better
in the second objective but is worse in the first objective compared to solution E.
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Thus, in the absence of solutions A, B, C, and any other non-dominated solution, we
would be tempted to put solution E in the same group with solution D. However, the
presence of solution C establishes the fact that solutions C and D are non-dominated
with respect to each other, while solution E is a dominated solution. Thus, the non
dominated set must be collectively compared with any solution x for establishing
whether the latter solution belongs to the non-dominated set or not. Specifically, the
following two conditions must be true for a non-dominated set P1 :

1. Any two solutions of P1 must be non-dominated with respect to each other.
2. Any solution not belonging to P1 is dominated by at least one member of Pl.

2.2.2 Objectives in Multi-Objective Optimization

It is clear from the above discussion that, in principle, the search space in the context
of multiple objectives can be divided into two non-overlapping regions, namely one
which is optimal and one which is non-optimal. Although a two-objective problem is
illustrated above, this is also true in problems with more than two objectives. In the
case of conflicting objectives, usually the set of optimal solutions contains more than
one solution. Figure 11 shows a number of such Pareto-optimal solutions denoted by
circles. In the presence of multiple Pareto-optimal solutions, it is difficult to prefer one
solution over the other without any further information about the problem. If higher
level information is satisfactorily available, this can be used to make a biased search
(see Section 8.6 later). However, in the absence of any such information, all Pareto
optimal solutions are equally important. Hence, in the light of the ideal approach, it
is important to find as many Pareto-optimal solutions as possible in a problem. Thus,
it can be conjectured that there are two goals in a multi-objective optimization:

1. To find a set of solutions as close as possible to the Pareto-optimal front.
2. To find a set of solutions as diverse as possible.

The first goal is mandatory in any optimization task. Converging to a set of solutions
which are not close to the true optimal set of solutions is not desirable. It is only when
solutions converge close to the true optimal solutions that one can be assured of their
near-optimality properties. This goal of multi-objective optimization is common to
the similar optimality goal in a single-objective optimization.

On the other hand, the second goal is entirely specific to multi-objective
optimization. In addition to being converged close to the Pareto-optimal front, they
must also be sparsely spaced in the Pareto-optimal region. Only with a diverse set
of solutions, can we be assured of having a good set of trade-off solutions among
objectives. Since MOEAs deal with two spaces - decision variable space and objective
space - 'diversity' among solutions can be defined in both of these spaces. For example,
two solutions can be said to be diverse in the decision variable space if their Euclidean
distance in the decision variable space is large. Similarly, two solutions are diverse in
the objective space, if their Euclidean distance in the objective space is large. Although
in most problems diversity in one space usually means diversity in the other space,
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this may not be so in all problems. In such complex and nonlinear problems, it is then
the task to find a set of solutions having a good diversity in the desired space (Deb,
1999c).

2.2.3 Non-Conflicting Objectives

Before we leave this section, it is worth pointing out that there exist multiple Pareto
optimal solutions in a problem only if the objectives are conflicting to each other. If the
objectives are not conflicting to each other, the cardinality of the Pareto-optimal set is
one. This means that the minimum solution corresponding to any objective function
is the same. For example, in the context of the cantilever design problem, if one is
interested in minimizing the end-deflection b and minimizing the maximum developed
stress in the beam, O'max, the feasible objective space is different. Figure 12 shows that
the Pareto-optimal solution reduces to a single solution (solution A marked on the
figure). A little thought will reveal that the minimum end-deflection happens for the
most rigid beam with the largest possible diameter. Since this beam also corresponds
to the smallest developed stress, this solution also corresponds to the minimum-stress
solution. In certain problems, it may not be obvious that the objectives are not
conflicting to each other. In such combinations of objectives, the resulting Pareto
optimal set will contain only one optimal solution.

2.3 Difference with Single-Objective Optimization

Besides having multiple objectives, there are a number of fundamental differences
between single-objective and multi-objective optimization, as follows:
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Figure 12 End-deflection and developed maximum stress are two non-conflicting objectives

leading to one optimal solution.
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• two goals instead of one;
• dealing with two search spaces;
• no artificial fix-ups.

We will discuss these in the following subsections.

2.3.1 Two Goals Instead of One

In a single-objective optimization, there is one goal - the search for an optimum
solution. Although the search space may have a number of local optimal solutions,
the goal is always to find the global optimum solution. However, there is an exception.
In the case of multi-modal optimization (see Section 4.6 later), the goal is to find a
number of local and global optimal solutions, instead of finding one optimum solution.
However, most single-objective optimization algorithms aim at finding one optimum
solution, even when there exist a number of optimal solutions. In a single-objective
optimization algorithm, as long as a new solution has a better objective function value
than an old solution, the new solution can be accepted.

However, in multi-objective optimization, there are clearly two goals. Progressing
towards the Pareto-optimal front is certainly an important goal. However, maintaining
a diverse set of solutions in the non-dominated front is also essential. An algorithm
that finds a closely packed set of solutions on the Pareto-optimal front satisfies the
first goal of convergence to the Pareto-optimal front, but does not satisfy maintenance
of a diverse set of solutions. Since all objectives are important in a multi-objective
optimization, a diverse set of obtained solutions close to the Pareto-optimal front
provides a variety of optimal solutions, trading objectives differently. A multi-objective
optimization algorithm that cannot find a diverse set of solutions in a problem is as
good as a single-objective optimization algorithm.

Since both goals are important, an efficient multi-objective optimization algorithm
must work on satisfying both of them. It is important to realize that both of these
tasks are somewhat orthogonal to each other. The achievement of one goal does
not necessarily achieve the other goal. Explicit or implicit mechanisms to emphasize
convergence near the Pareto-optimal front and the maintenance of a diverse set of
solutions must be introduced in an algorithm. Because of these dual tasks, multi
objective optimization is more difficult than single-objective optimization.

2.3.2 Dealing with Two Search Spaces

Another difficulty is that a multi-objective optimization involves two search spaces,
instead of one. In a single-objective optimization, there is only one search space - the
decision variable space. An algorithm works in this space by accepting and rejecting
solutions based on their objective function values. Here, in addition to the decision
variable space, there also exists the objective or criterion space. Although these two
spaces are related by an unique mapping between them, often the mapping is nonlinear
and the properties of the two search spaces are not similar. For example, a proximity of
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two solutions in one space does not mean a proximity in the other space. Thus, while
achieving the second task of maintaining diversity in the obtained set of solutions, it
is important to decide the space in which the diversity must be achieved.

In any optimization algorithm, the search is performed in the decision variable
space. However, the proceedings of an algorithm in the decision variable space can
be traced in the objective space. In some algorithms, the resulting proceedings in
the objective space are used to steer the search in the decision variable space. When
this happens, the proceedings in both spaces must be coordinated in such a way that
the creation of new solutions in the decision variable space is complimentary to the
diversity needed in the objective space. This, by no means, is an easy task and more
importantly is dependent on the mapping between the decision variables and objective
function values.

2.3.3 No Artificial Fix-Ups

It is needless to say that most real-world optimization problems are naturally posed
as a multi-objective optimization problem. However, because of the lack of a suitable
means of handling multi-objective problems as a true multi-objective optimization
problem in the past, designers had to innovate different fix-ups. We will discuss a
number of such methods in the next chapter. Of these, the weighted sum approach and
the c-constraint method are the most popularly used. In the weighted sum approach,
multiple objectives are weighted and summed together to create a composite objective
function. Optimization of this composite objective results in the optimization of
individual objective functions. Unfortunately, the outcome of such an optimization
strategy depends on the chosen weights. The second approach chooses one of the
objective functions and treats the rest of the objectives as constraints by limiting each
of them within certain pre-defined limits. This fix-up also converts a multi-objective
optimization problem into a single-objective optimization problem. Unfortunately here
too, the outcome of the single-objective constrained optimization results in a solution
which depends on the chosen constraint limits.

Multi-objective optimization for finding multiple Pareto-optimal solutions elimi
nates all such fix-ups and can, in principle, find a set of optimal solutions corre
sponding to different weight and c-vectors. Although only one solution is needed for
implementation, a knowledge of such multiple optimal solutions may help a designer to
compare and choose a compromised optimal solution. It is true that a multi-objective
optimization is, in general, more complex than a single-objective optimization, but
the avoidance of multiple simulation runs, no artificial fix-ups, availability of efficient
population-based optimization algorithms, and above all, the concept of dominance
helps to overcome some of the difficulties and give a user the practical means to handle
multiple objectives, a matter which was not possible to achieve in the past.

2.4 Dominance and Pareto-Optimality

Most multi-objective optimization algorithms use the concept of dominance in their
search. Here, we define the concept of dominance and related terms and present a
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number of techniques for identifying dominated solutions in a finite population of
solutions.

2.4.1 Special Solutions

We first define some special solutions which are often used In multi-objective
optimization algorithms.

Ideal Objective Vector

For each of the M conflicting objectives, there exists one different optimal solution. An
objective vector constructed with these individual optimal objective values constitutes
the ideal objective vector.

Definition 2.3. The m-th component of the ideal objective vector z* ss the
constrained minimum solution of the following problem:

Minimize fm(x) }
subject to XES.

(2.5)

Thus, if the minimum solution for the m-th objective function is the decision vector
x*(m) with function value f::n, the ideal vector is as follows:

In general, the ideal objective vector corresponds to a non-existent solution. This is
because the minimum solution of equation (2.5) for each objective function need not
be the same solution. The only wayan ideal objective vector corresponds to a feasible
solution is when the minimal solutions to all objective functions are identical. In this
case, the objectives are not conflicting to each other and the minimum solution to any
objective function would be the only optimal solution to the MOOP. Figure 13 shows
the ideal objective vector (z*) in the objective space of a hypothetical two-objective
minimization problem.

It is interesting to ponder the question: 'If the ideal objective vector is non-existent,
what is its use?' In most algorithms which are seeking to find Pareto-optimal solutions,
the ideal objective vector is used as a reference solution (we are using the word
'solution' corresponding to the ideal objective vector loosely here, realizing that an
ideal vector represents a non-existent solution). It is also clear from Figure 13 that
solutions closer to the ideal objective vector are better. Moreover, many algorithms
require the knowledge of the lower bound on each objective function to normalize
objective values in a common range, a matter which we shall discuss later in Chapter 5.

Utopian Objective Vector

The ideal objective vector denotes an array of the lower bound of all objective
functions. This means that for every objective function there exists at least one
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Figure 13 The ideal, utopian, and nadir objective vectors.

solution in the feasible search space sharing an identical value with the corresponding
element in the ideal solution. Some algorithms may require a solution which has an
objective value strictly better than (and not equal to) that of any solution in the
search space. For this purpose, the utopian objective vector is defined as follows.

Definition 2.4. A utopian objective vector z** has each of its components
marginally smaller than that of the ideal objective vector, or z~* = z~ - €i with
€i > 0 for all i = 1,2, ... , M.

Figure 13 shows a utopian objective vector. Like the ideal objective vector, the
utopian objective vector also represents a non-existent solution.

Nadir Objective Vector

Unlike the ideal objective vector which represents the lower bound of each objective
in the entire feasible search space, the nadir objective vector, znact, represents the
upper bound of each objective in the entire Pareto-optimal set, and not in the entire
search space. A nadir objective vector must not be confused with a vector of objectives
(marked as 'w' in Figure 13) found by using the worst feasible function values, ff'ax,
in the entire search space.

Although the ideal objective vector is easy to compute (except in complex multi
modal objective problems), the nadir objective vector is difficult to compute in
practice. However, for well-behaved problems (including linear MOOPs), the nadir
objective vector can be derived from the ideal objective vector by using the paYoff
table method described in Miettinen (1999). For two objectives (Figure 13), if
z*lll = (fJ(x*(ll), h(x*11ll) T and z*(2) = (fJ(x*(2)), f2(x*12)1)T are coordinates of

the minimum solutions of f 1 and fz , respectively, in the objective space, then the

nadir objective vector can be estimated as znact = (fl (x*12 l), fz (x*(1)1)T.
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The nadir objective vector may represent an existent or a non-existent solution,
depending on the convexity and continuity of the Pareto-optimal set. In order
to normalize each objective in the entire range of the Pareto-optimal region, the
knowledge of nadir and ideal objective vectors can be used as follows:

f~orm = f i - zi
t Znad _ Z*

t t

(2.6)

2.4.2 Concept of Domination

Most multi-objective optimization algorithms use the concept of domination. In these
algorithms, two solutions are compared on the basis of whether one dominates the
other solution or not. We will describe the concept of domination in the following
paragraph.

We assume that there are M objective functions. In order to cover both minimization
and maximization of objective functions, we use the operator <l between two solutions i
and j as i<lj to denote that solution i is better than solution j on a particular objective.
Similarly, i.t- j for a particular objective implies that solution i is worse than solution j

on this objective. For example, if an objective function is to be minimized, the operator
<l would mean the '<' operator, whereas if the objective function is to be maximized,
the operator <l would mean the '>' operator. The following definition covers mixed
problems with minimization of some objective functions and maximization of the rest
of them.

Definition 2.5. A solution x(l) is said to dominate the other solution x(l), if
both conditions 1 and 2 are true:

1. The solution xl]) is no worse than x(l) in all objectives, or fdx(])) if fdx(l))

for all j = 1,2, ... , M.
2. The solution x' 1) is strictly better than x' 1) in at least one objective, or

fj(x l ] ) ) <l fj(x(l)) for at least one) E {l,2, ... , M}.

If any of the above condition is violated, the solution x(]) does not dominate the
solution x (1 ) . If x l l ) dominates the solution x (1 ) (or mathematically x l l ) ::s x (1 ) ) , it
is also customary to write any of the following:

• x' 1) is dominated by xl]);

• x! l) is non-dominated by x(l), or;
• x(]) is non-inferior to x(l).

Let us consider a two-objective optimization problem with five different solutions
shown in the objective space, as illustrated in Figure 14. Let us also assume that the
objective function 1 needs to be maximized while the objective function 2 needs to be
minimized. Five solutions with different objective function values are shown in this
figure. Since both objective functions are of importance to us, it is usually difficult to
find one solution which is best with respect to both objectives. However, we can use
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the above definition of domination to decide which solution is better among any two
given solutions in terms of both objectives. For example, if solutions 1 and 2 are to be
compared, we observe that solution 1 is better than solution 2 in objective function 1
and solution 1 is also better than solution 2 in objective function 2. Thus, both of
the above conditions for domination are satisfied and we may write that solution 1
dominates solution 2. We take another instance of comparing solutions 1 and 5. Here,
solution 5 is better than solution 1 in the first objective and solution 5 is no worse
(in fact, they are equal) than solution 1 in the second objective. Thus, both the
above conditions for domination are also satisfied and we may write that solution 5
dominates solution 1.

It is intuitive that if a solution x ( 1 ) dominates another solution x' 2), the solution
x ( 1

) is better than x ( 2
) in the parlance of multi-objective optimization. Since the

concept of domination allows a way to compare solutions with multiple objectives,
most multi-objective optimization methods use this domination concept to search for
non-dominated solutions.

2.4.3 Properties of Dominance Relation

The definition 2.5, described on page 28, defines the dominance relation between any
two solutions. There are three possibilities that can be the outcome of the dominance
check between two solutions 1 and 2. i.e. (i) solution 1 dominates solution 2, (ii)
solution 1 gets dominated by solution 2, or (iii) solutions 1 and 2 do not dominate
each other. Let us now discuss the different binary relation properties (Cormen et al.,
1990) of the dominance operator.

Reflexive: The dominance relation is not reflexive, since any solution p does not
dominate itself according to Definition 2.5. The second condition of dominance
relation in Definition 2.5 does not allow this property to be satisfied.

Symmetric: The dominance relation is also not symmetric, because p :::5 q does not
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imply q :::S p. In fact, the opposite is true. That is, if p dominates q, then q does
not dominate p. Thus, the dominance relation is asymmetric.

Antisymmetric: Since the dominance relation is not symmetric, it cannot be
antisymmetric as well.

Transitive: The dominance relation is transitive. This is because if p :::S q and q :::S r,
then p :::S r.

There is another interesting property that the dominance relation possesses. If solution
p does not dominate solution q, this does not imply that q dominates p.

In order for a binary relation to qualify as an ordering relation, it must be at
least transitive (Chankong and Haimes, 1983). Thus, the dominance relation qualifies
as an ordering relation. Since the dominance relation is not reflexive, it is a strict
partial order. In general, if a relation is reflexive, antisymmetric, and transitive, it is
loosely called a partial order and a set on which a partial order is defined is called a
partially ordered set. However, it is important to note that the dominance relation is
not reflexive and is not antisymmetric. Thus, the dominance relation is not a partial
order relation in its general sense. The dominance relation is only a strict partial order
relation.

2.4.4 Pareto-Optimality

Continuing with the comparisons in the previous subsection, let us compare solutions 3
and 5 in Figure 14, because this comparison reveals an interesting aspect. We observe
that solution 5 is better than solution 3 in the first objective, while solution 5 is worse
than solution 3 in the second objective. Thus, the first condition is not satisfied for
both of these solutions. This simply suggests that we cannot conclude that solution 5
dominates solution 3, nor can we say that solution 3 dominates solution 5. When this
happens, it is customary to say that solutions 3 and 5 are non-dominated with respect
to each other. When both objectives are important, it cannot be said which of the
two solutions 3 and 5 is better.

For a given finite set of solutions, we can perform all possible pair-wise comparisons
and find which solution dominates which and which solutions are non-dominated with
respect to each other. At the end, we expect to have a set of solutions, any two of
which do not dominate each other. This set also has another property. For any solution
outside of this set, we can always find a solution in this set which will dominate the
former. Thus, this particular set has a property of dominating all other solutions which
do not belong to this set. In simple term, this means that the solutions of this set
are better compared to the rest of solutions. This set is given a special name. It is
called the non-dominated set for the given set of solutions. In the example problem,
solutions 3 and 5 constitutes the non-dominated set of the given set of five solutions.
Thus, we define a set of non-dominated solutions as follows.
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Definition 2.6 (Non-dominated set). Among a set of solutions P, the non
dominated set of solutions P I are those that are not dominated by any member
of the set P.

When the set P is the entire search space, or P = 5, the resulting non-dominated
set pi is called the Pareto-optimal set. Figure 15 marks the Pareto-optimal set with
continuous curves for four different scenarios with two objectives. Each objective can
be minimized or maximized. In the top-left figure, the task is to minimize both
objectives f] and f2. The solid curve marks the Pareto-optimal solution set. If f]
is to be minimized and fz is to be maximized for a problem having the same search
space, the resulting Pareto-optimal set is different and is shown in the top-right figure.
Here, the Pareto-optimal set is a union of two disconnected Pareto-optimal regions.
Similarly, the Pareto-optimal sets for two other cases «maximizing f i , minimizing
fz) and (maximizing f i , maximizing f2)) are also shown in the bottom-left and
bottom-right figures, respectively. In any case, the Pareto-optimal set always consists
of solutions from a particular edge of the feasible search region.

It is important to note that an MOEA can be easily used to handle all of the above
cases by simply using the domination definition. However, to avoid any confusion, most
applications use the duality principle (discussed earlier) to convert a maximization
problem into a minimization problem and treat every problem as a combination of
minimizing all objectives.

Like global and local optimal solutions in the case of single-objective optimization,
there could be global and local Pareto-optimal sets in multi-objective optimization.

Definition 2.7 (Globally Pareto-optimal set). The non-dominated set of the
entire feasible search space 5 is the globally Pareto-optimal set.

On many occasions, the globally Pareto-optimal set is simply referred to as the
Pareto-optimal set. Since solutions of this set are not dominated by any feasible
member of the search space, they are optimal solutions of the MOOP. We define
a locally Pareto-optimal set as follows (Deb, 1999c; Miettinen, 1999).

Definition 2.8. If for every member x in a set f there exists no solution y
(in the neighborhood of x such that Ily - xll oo :s; e, where € is a small positive
number) dominating any member of the set f, then solutions belonging to the
set f constitute a locally Pareto-optimal set.

Figure 16 shows two locally Pareto-optimal sets (marked with continuous curves).
When any solution (say 'B') in this set is perturbed locally in the decision variable
space, no solution can be found dominating any member of the set. It is interesting to
note that for continuous search space problems, the locally Pareto-optimal solutions
need not be continuous in the decision variable space and the above definition will
still hold good. Later in Section 8.3, we shall present instances of MOOPs having
many locally Pareto-optimal sets. Zitzler (1999) added a neighborhood constraint on
the objective space in the above definition to make it more generic.

By the above definition, it is also true that a globally Pareto-optimal set is also a
locally Pareto-optimal set.
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Figure 15 Pareto-optimal solutions are marked with continuous curves for four

combinations of two types of objectives.

2.4.5 Strong Dominance and Weak Pareto-Optimality

The dominance relationship between the two solutions defined in Definition 2.5 is
sometimes referred to as a weak dominance relation. This definition can be modified
and a strong dominance relation can be defined as follows.

Definition 2.9. A solution x l l) strongly dominates a solution x (2) (or xl]) -<
x (2)), if solution x l l) is strictly better than solution x l21 in all M objectives.

Referring to Figure 14, we now observe that solution 5 does not strongly dominate
solution 1, although we have seen earlier that solution 5 weakly dominates solution 1.
However, solution 3 strongly dominates solution 1, since solution 3 is better than
solution 1 in both objectives. Thus, if a solution xl] 1 strongly dominates a solution
x(2 1, the solution xl]) also weakly dominates solution x 121, but not vice versa. The
strong dominance operator has the same properties as that described in Section 2.4.3
for the weak dominance operator.

The above definition of strong dominance can be used to define a weakly non
dominated set.
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Definition 2.10 (Weakly non-dominated set). Among a set of solutions P,
the weakly non-dominated set of solutions pi are those that are not strongly
dominated by any other member of the set P.

The above definition suggests that a weakly non-dominated set found from a set
of P solutions contains all members of the non-dominated set obtained by using
Definition 2.6 from the same set P. In other words, for a given population of solutions,
the cardinality of the weakly non-dominated set is greater than or equal to the
cardinality of the non-dominated set obtained by using the usual Definition 2.6.
The definition of a globally or locally weakly Pareto-optimal set can also be defined
similarly by using the definition of the weakly non-dominated set.

From the above discussion it is clear that a Pareto-optimal set is always a non
dominated set. But there may exist non-dominated sets containing some Pareto
optimal solutions and some non-Pareto-optimal solutions. Thus, it is important to
realize that the non-dominated solutions found by an optimization algorithm need
not represent the true Pareto-optimal set. However, it can be hoped that population
based search algorithms which adequately emphasize the non-dominated set of a given
population to steer its search are likely to approach the true Pareto-optimal region.
The important question is: 'How would we find the non-dominated set in a given
population of solutions?' Since a non-dominated set may be required to be identified
in each iteration of a multi-objective optimization algorithm, we are interested in
a computationally efficient procedure of identifying the non-dominated set from a
population of solutions. We will discuss a few such procedures in the next subsection.

2.4.6 Procedures for Finding a Non-Dominated Set

Finding the non-dominated set of solutions from a given set of solutions is similar in
principle to finding the minimum of a set of real numbers. In the latter case, when



34 MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION

two numbers are compared to identify the smaller number, a '<' relation operation
is used. In the case of finding the non-dominated set, the dominance relation j (or
-<, as the case may be) can be used to identify the better of two given solutions. Like
the existence of different algorithms for finding the minimum number from a finite
set (Cormen et al., 1990), many approaches have also been suggested for finding the
non-dominated set from a given population of solutions. Although many approaches
are possible, they would usually have different computational complexities. To make
matters simple, we will discuss here three procedures, starting from a naive and slow
approach to an efficient and fast approach.

Approach 1: Naive and Slow

In this approach, each solution i is compared with every other solution in the
population to check if it is dominated by any solution in the population. If the solution
i is found to be dominated by any solution, this means that there exists at least one
solution in the population which is better than i in all objectives. Hence the solution
i cannot belong to the non-dominated set. We mark a flag against the solution i to
denote that it does not belong to the non-dominated set. However, if no solution is
found to dominate solution i, it is a member of the non-dominated set. This is how
any other solution in the population can be checked to see if it belongs to the non
dominated set. The following approach describes a step-by-step procedure for finding
the non-dominated set in a given set P of size N.

Identifying the Non-Dominated Set: Approach 1

Step 1 Set solution counter i = 1 and create an empty non-dominated set Pl.

Step 2 For a solution j E P (but j i= t), check if solution j dominates solution
i. If yes, go to Step 4.

Step 3 If more solutions are left in P, increment j by one and go to Step 2;
otherwise, set pI = P" U{i}.

Step 4 Increment i by one. If i :::; N, go to Step 2; otherwise stop and declare
pI as the non-dominated set.

We illustrate the working principle of the above procedure on the same set of five
(N = 5) solutions, as shown in Figure 14. Ideally, the exact objective vector for each
solution will be used in executing the above procedure, but here we use the figure
to compare different solutions. We follow the above step-by-step procedure in the
following.

Step 1 We set t = 1 and P" = 0.

Step 2 We compare solution 1 with all other solutions for domination, starting from
solution 2. We observe that solution 2 does not dominate solution 1.

Step 3 However, solution 3 dominates solution 1. Thus, we move to Step 4.
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Step 4 Solution 1 does not belong to the non-dominated set and we increment i to
2 and move to Step 2 to check the fate of solution 2.

Step 2 We observe that solution 1 dominates solution 2. We therefore move to Step 4.

Step 4 Thus, solution 2 does not belong to the non-dominated set. Next, we check
solution 3.

Steps 2 and 3 Starting from solution 1, we observe that neither solution 1 nor 2
dominates solution 3. In fact, solutions 4 and 5 also do not dominate solution 3.
Thus, we include solution 3 in the non-dominated set, pI = {3}.

Step 4 We now check solution 4.

Step 2 Solution 5 dominates solution 4. Thus, it cannot be a member of pl.

Step 4 Now we check the final solution (solution 5).

Step 2 We observe that none of the solutions (1 to 4) dominates solution 5.

Step 3 So, solution 5 also belongs to the non-dominated set. Thus, we update
P'={3,5}.

Step 4 We have now considered all five solutions and found the non-dominated set
pI = {3,5}.

It is clear that Step 2 requires O(N) comparisons for domination and each
comparison for domination needs M function value comparisons. Thus, the total
complexity (we define complexity here as the total number of function value
comparisons) of Step 2 is O(MN). Step 4 recursively calls Step 2, thereby requiring at
most O(MN2) computations of the above procedure. It is important to realize that
this is the worst case complexity. Since in Step 2, not all (N ~ 1) solutions may have
to be checked for domination with every solution i , the average case complexity may
be smaller.

In order to investigate how the average case complexity of this implementation
grows with the population size and the number of objectives, we perform a systematic
experimental study. For three different M values and a number of population sizes (N),
we create 100 random populations. For each population, we use the above approach
and record the total number of function value comparisons needed to find the non
dominated set. The average of this comparisons is plotted in Figure 17. Similar plots
for two other approaches are also shown. These two approaches will be described in
the next subsections. We have used M = lOin this plot, and population sizes in the
range 100 to 1000 are used. An average of 100 simulation runs are shown here, and
the figure is plotted using a log-log graph. Since the results obtained fall more or
less on a straight line, this suggests a polynomial increase in the complexity with the
population size. When we compute the slope of this plot for this log-log graph, it is
found to be 1.943, thereby suggesting a near-quadratic complexity.
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Figure 17 Average number of comparisons versus population size N shown for ten
objectives (M = 10).

Although the worst case complexity varies linearly with the number of objective
functions (M), the average case scenario may be different. This is because as the
number of objective functions increases, the Pareto-optimal front becomes a higher
dimensional surface. For example, with M = 2, the Pareto-optimal front is at most a
two-dimensional curve. For three objectives (M = 3), the Pareto-optimal region is at
most a three-dimensional surface, and so on. Thus, for the same population size an
increase in M may result in a larger proportion of solutions in the non-dominated set.
When most solutions lie in the non-dominated front, the algorithms will have different
computational complexity compared to the worst case calculations. However, we do
not worry much about how the complexity depends on M; instead, we are more
interested in knowing how the complexity depends on N. This is because for a given
multi-objective optimization problem, M remains fixed. It then becomes important
to know what population size is appropriate for obtaining a particular accuracy in
the obtained solutions and what is the resulting run-time complexity. We will discuss
more about how the computational complexity depends on M later in Section 8.8.

Approach 2: Continuously Updated

This approach is similar in principle to Approach 1, except that better bookkeeping is
used to make the algorithm faster. In this approach, every solution from the population
is checked with a partially filled population for domination. To start with, the first
solution from the population is kept in an empty set P'. Thereafter, each solution i
(the second solution onwards) is compared with all members of the set P", one by
one. If the solution i dominates any member of P I, then that solution is removed from
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P'. In this way non-members of the non-dominated solutions get deleted from P'.
Otherwise, if solution i is dominated by any member of pi, the solution i is ignored.
If solution i is not dominated by any member of pi, it is entered in P'. This is how
the set pi grows with non-dominated solutions. When all solutions of the population
are checked, the remaining members of pi constitute the non-dominated set.

Identifying the Non-Dominated Set: Approach 2

Step 1 Initialize pi = {1}. Set solution counter i = 2.

Step 2 Set j = 1.

Step 3 Compare solution i with j from PI for domination.

Step 4 If i dominates j, delete the j-th member from pi or update pi =
PI\{PI(j)}. If j < IP'I, increment j by one and then go to Step 3. Otherwise,
go to Step 5. Alternatively, if the j-th member of pi dominates i, increment
i by one and then go to Step 2.

Step 5 Insert i in pi or update pi = pi U {i}. If i < N, increment i by one and
go to Step 2. Otherwise, stop and declare pi as the non-dominated set.

We illustrate the above procedure of identifying the non-dominated set by using
the previous example (in Figure 14) of five population members.

Step 1 pi = {l} and we set i = 2.

Step 2 We set the solution counter of pi as j = 1 (which refers to solution 1).

Step 3 We now compare solution 2 (i = 2) with the lone member of pi (solution 1)
for domination. We observe that solution 1 dominates solution 2 . Since the j-th
member of pi dominates solution i., we increment i to 3 and go to Step 2. This
means that solution 2 does not belong to the non-dominated set.

Step 2 The set P I still has solution 1 (j = 1) only.

Step 3 Now we compare solution 3 with solution 1. We observe that solution 3 (i = 3)
dominates solution 1. Thus, we delete the j-th (or the first) member from pi

and update pi = 0. Thus, Ipll = O. This depicts that a non-member of the
non-dominated set gets deleted from P'. We now move to Step 5.

Step 5 We insert i = 3 in pi or update pi = {3}. Since i < 5 here, we increment i to
4 and move to Step 2.

Step 2 We set j = 1, which refers to the lone element (solution 3) of P'.

Step 3 By comparing solution 4 with solution 3, we observe that solution 3 dominates
solution 4. Thus, we increment i to 5 and move to Step 2.

Step 2 We still have solution 3 in P'.
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Step 3 Now, we compare solution 5 with solution 3. We observe that neither of them
dominates the other. Thus, we move to Step 5.

Step 5 We insert solution 5 in P" and update pI = {3,5}. Since i = 5, we stop and
declare pI = {3,5} as the non-dominated set.

Here, we observe that the second element of the population is compared with only
one solution P', the third solution with at most two solutions of P", and so on. This
requires a maximum of 1+2+·· ·+(N -1) or N(N -1 )/2 domination checks. Although
this computation is also O(MN 2 ), the actual number of computations is about half
of that required in Approach 1. It is interesting to note that the size of pI may not
always increase (dominated solutions will get deleted from PI) and not every solution
in the population may be required to be checked with all solutions in the current pI set
(the solution may get dominated by a solution of PI). Thus, the actual computational
complexity may be smaller than the above estimate.

Figure 17 shows that Approach 2 has an average number of comparisons much
smaller than that of Approach 1. Since the slope of the fitted lines of both approaches
are more or less the same, both approaches have a similar order of computational
complexity. However, there is a remarkable difference in the actual number of
computations. Next, we will discuss an approach which is computationally faster than
the above two approaches.

Approach 3: Kung et al. '8 Efficient Method

This approach first sorts the population according to the descending order of
importance to the first objective function value. Thereafter, the population is
recursively halved as top (T) and bottom (B) subpopulations. Knowing that the top
half of the population is better in terms of the first objective function, the bottom
half is then checked for domination with the top-half. The solutions of B that are not
dominated by any member of T are combined with members of T to form a merged
population M. The merging and the domination check starts with the innermost case
(when there is only one member left in either T or B in recursive divisions of the
population) and the proceeds in a bottom-up fashion. This approach is not as easy to
visualize as the previous two approaches, but, as discussed in Kung et al. (1975), it is
the most computationally efficient method.

Identifying the Non-Dominated Set: Approach 3

Step 1 Sort the population according to the descending order of importance in
the first objective function and rename the population as P of size N.

Step 2, Front(P) If !PI = 1, return P as the output of Front(P). Otherwise,
T = Front(p{lLplIPI/21) and B = Front(pllPl/2+1 Lp{IPI1). If the i-th

solution of B is not dominated by any solution of T, create a merged set
M = T U{i}. Return M as the output of Front(P).

What finally returns from Step 2 is the non-dominated set.
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It is important to mention that Step 2 uses a self-recursion. We illustrate the working
of the above procedure on the same example problem (Figure 14) as used in the
previous approaches with five population members.

Step 1 Since the first objective is to be maximized in this problem, we sort the
population according to the decreasing value of the first objective function. We
obtain the following sequence:

P = {5,3, 4, 1,2}

Step 2 When the entire set P enters Front( ), the size of P is not one. Thus, we set
T = Front({5,3}) and B = Front({4, 1,2}). Recursively, the Front({5,3}) would
divide the set {5,3} into two halves and make Front ({5}) and Front ({3}) as the
next inner T and B sets. Since the sizes of these two inner sets are one each,
these two solutions are sent as output to the above Front( ) calls. Moving up a
step to Front({5, 3}) with T = {5} and B = {3}, the domination check and merging
operation are then executed. We observe that solution 3 is not dominated by
solution 5. Therefore, the merged set contains both solutions, or M = {5,3}.
Thus, the outcome of the T = Front({5,3}) is the set {5,3}.

Similarly, the Front({4, 1, 2}) operation makes two calls, i.e. Front({4}) and
Front({1,2}). The output from the former is {4}. The latter makes two more
calls, i.e. Front({l}) and Front ({2} ), with outputs as {l} and {2}, respectively. Now,
to complete the Front ({1 , 2}) operation, we need to check whether solution 2 is
indeed dominated by solution 1. As we already know that solution 2 is dominated
by solution 1, we have M = {l} as the output of Front({l, 2}). Now, to complete
the Front ({4, 1, 2}) operation, we need to check the domination of solutions 4 (T)
and 1 (B). Since solution 1 is not dominated by solution 4, the merged set is
M = {4, l}, which is also the output of the Front ({4, 1, 2}) call.

Now, for the overall call to Front(P), the sets are {5,3} and {4, l}, respectively.
Checking the domination of the solutions in B with the solutions of T, we observe
that both solutions 4 and 1 are dominated by solution 5. Thus, the output of
the Front(P) call is the set {5,3}, and this is the non-dominated set.

After some lengthy computations, Kung et al. (1975) found that the complexity
of this approach is 0 (N(logN)M-2) for M ?: 4 and O(NlogN) for M = 2 and
3. Interested readers may refer to the original study for details of this complexity
calculation. Figure 17 shows that Approach 3 performed the best among all three
approaches.

With M = 10 objectives, we observe a similar order of the three approaches in
terms of their computational complexities (see Table 2). The corresponding rates of
increase in complexity are 1.9543, 1.8834, and 1.8826 for Approaches 1, 2 and 3,
respectively. For M = 20 objectives, the complexity measures are similar. Although
the complexity of Approach 3 is shown in a polynomial order, this is primarily done
to investigate the effect of population size alone. It is important to note that the
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Table 2 Computational complexity of finding the non-dominated set for different values of

M.

M Approach 1
4 14.714N 1.5447

10 12.614N1.9543
20 19.525N2.oo34

Approach 2
25.354N 1.1248

8.145N1.8834
9.772N2.0032

Approach 3
14.120N1.1228

7.431 N1.8826
9.413N2.0013

above time complexities reflect the average time complexity of an approach and that
the orders of computational complexity presented in each approach are calculated for
the worst case scenarios. Nevertheless, the experimental results show that with large
values of M, the complexity approaches O(N 2) in the range 100 ::; N ::; 1000.

It is clear that the non-dominated solutions found by any of the above approaches are
the best solutions in a population. Thus, these solutions are also called the solutions
of the best non-dominated set.

2.4.7 Non-Dominated Sorting of a Population

We shall see later in Chapter 5 that most evolutionary multi-objective optimization
algorithms require us to find only the best non-dominated front in a population.
These algorithms classify the population into two sets - the non-dominated set and
the remaining dominated set. However, there exist some algorithms which require
the entire population to be classified into various non-domination levels. In such
algorithms, the population needs to be sorted according to an ascending level of non
domination. The best non-dominated solutions are called non-dominated solutions of
level 1. In order to find solutions for the next level of non-domination, there is a simple
procedure which is usually followed. Once the best non-dominated set is identified,
they are temporarily disregarded from the population. The non-dominated solutions
of the remaining population are then found and are called non-dominated solutions
of level 2. In order to find the non-dominated solutions of level 3, all non-dominated
solutions of levels 1 and 2 are disregarded and new non-dominated solutions are found.
This procedure is continued until all population members are classified into a non
dominated level. It is important to reiterate that non-dominated solutions of level 1

are better than non-dominated solutions of level 2, and so on.

Non-Dominated Sorting

Step 1 Set all non-dominated sets Pj , (j
domination level counter j = 1.

1,2, ... ) as empty sets. Set non-

Step 2 Use anyone of the Approaches 1 to 3 to find the non-dominated set pi
of population P.

Step 3 Update Pj = pi and P = P\P'.
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Step 4 If P "I 0, increment j by one and go to Step 2. Otherwise, stop and
declare all non-dominated sets Pi, for i = ',2, ... , j.

We illustrate the working of the above procedure on the same set of five solutions
(Figure 14) by using Approach 1 for identifying the non-dominated set.

Step 1 We first set j = l to identify the non-dominated solutions of the first level.

Step 2 As shown earlier, the first non-dominated set is pi = {3,5}.

Step 3 Update P = pi = {3,5} and modify P by deleting solutions 3 and 5 from it,
or p = {', 2, 4}.

Step 4 Since P is a non-empty set, we move to Step 2 in search of solutions of the
second non-domination level (j = 2).

Step 2 We now move to Approach 1, outlined above on page 34.

Step 1 Set i = l and pi = 0.

Step 2 Solution 2 does not dominate solution 1.

Step 3 We now check solution 4 with solution 1.

Step 2 Solution 4 does not dominate solution 1 either.

Step 3 We set pi = {l}.

Step 4 We increment i to 2 (check for solution 2) and move to Step 2.

Step 2 Solution 1 dominates solution 2.

Step 3 Thus, we move to Step 4.

Step 4 We now check solution 4 for its inclusion in the second non-dominated
set.

Step 2 Solution 1 does not dominate solution 4.

Step 3 Check with solution 2.

Step 2 Solution 2 does not dominate solution 4 either.

Step 3 We include solution 4 in the set or pi = {1, 4}.

Step 4 All three solutions are checked for non-domination. Thus, we declare
the non-dominated set as pi = {l , 4}.

Step 3 Update P2 = pi = {',4} and modify P by deleting pi from it, or P = {2}.

Step 4 We increment j to 3 and move to Step 2 in search of solutions in the third
non-dominated set.

Since there is only one solution left in P, this must belong to the third non-dominated
set. Thus, there are three non-dominated sets in the population with the following
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Figure 18 Solutions classified into various non-domination classes.

classification in a decreasing order of non-domination (or an increasing order of
domination):

((3,5), (1,4), (2))

The corresponding sets are marked in Figure 18 with hypothetical curves. The other
two approaches can also be used and an identical outcome will be found.

The complexity of this complete classification procedure is the sum of the individual
complexities involved in identifying each non-dominated set. It is important to note
that after the first non-dominated set is identified, the number of solutions left in
P is smaller than the original population size. Thus, subsequent identifications will
require smaller computational complexity. In an average scenario, the number of non
domination levels is usually much smaller than the population size. We shall show
later in Section 8.8 that as M increases the number of different non-domination
levels in a random population reduces drastically. Thus, for all practical purposes, the
computational complexity of the overall non-dominated sorting procedure is governed
by the procedure of identifying the first non-dominated set.

In a similar experimental study, we find the overall computational complexity
needed in sorting several populations according to different non-domination levels.
The rate of increase in the complexity is slightly more compared to just finding the
best non-dominated set. Interestingly, even in the complete non-dominated sorting
problem, Approach 3 turns out to be better than the other two approaches. Table 3
shows the estimated complexity measures (from simulation results) for different
population sizes (N) and number of objectives (M). It is clear from these computations
that Approach 3 requires the least amount of computational effort to sort a population
into different non-domination levels.

An O(MN 2 ) Non-Dominated Sorting Procedure

Using the above procedure, each front can be identified with at most O(MN 2 )

computations. In certain scenarios, this procedure may demand more than O(MN 2 )
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Table 3 Computational complexities for a complete non-dominated sorting procedure.

M Approach 1 Approach 2 Approach 3

4 3.876N 1.9722 3.274N 1.7463 3.145N1.7135

10 10.942N1.9722 6.786N1.9194 6.369N 1.9133

20 19.526N 2.0034 9.768N 2.OO33 9.408N2.0014

computational effort for the overall non-dominated sorting of a population. Here, we
suggest a completely different procedure which uses a better bookkeeping strategy
requiring 0 (MN2) overall computational complexity.

First, for each solution we calculate two entities: (i) domination count u., the
number of solutions which dominate the solution i, and (ii) Si, a set of solutions
which the solution i dominates. This requires O(MN 2) comparisons. At the end of
this procedure, all solutions in the first non-dominated front will have their domination
count as zero. Now, for each of these solutions (each solution i with n., = 0), we visit
each member (j) of its set Si and reduce its domination count by one. In doing so,
if for any member j the domination count becomes zero, we put it in a separate list
Pl. After such modifications on S, are performed for each i with ni = 0, all solutions
of pi would belong to the second non-dominated front. The above procedure can be
continued with each member of P I and the third non-dominated front can be identified.
This process continues until all solutions are classified.

An O(MN 2) Non-Dominated Sorting Algorithm

Step 1 For each i E P, n., = °and initialize S, = O. For all j # i and j E P,
perform Step 2 and then proceed to Step 3.

Step 2 If i ::5 j, update Sp = Sp U {j}. Otherwise, if j ::5 i, set n; = n; + 1.

Step 3 If ni = 0, keep i in the first non-dominated front PI (we called this set
pi in the above paragraph). Set a front counter k = 1.

Step 4 While Pk # 0, perform the following steps.

Step 5 Initialize Q = °for storing next non-dominated solutions. For each
i E Pk and for each j E Si,

Step 5a Update nj = n, - 1.

Step 5b If nj = 0, keep j in Q, or perform Q = Q U {j}.

Step 6 Set k = k+ 1 and Pk = Q. Go to Step 4.

Steps 1 to 3 find the solutions in the first non-dominated front and require 0 (M N2)
computational complexity. Steps 4 to 6 repeatedly find higher fronts and require at
most 0 (N2) comparisons, as argued below.

For each solution i in the second or higher-level of non-domination, the domination
count n; can be at most N - 1. Thus, each solution i will be visited at most N - 1 times
before its domination count becomes zero. At this point, the solution is assigned a
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particular non-domination level and will never be visited again. Since there are at most
N -1 such solutions, the complexity of identifying second and more fronts is O(N 2 ) .

Thus, the overall complexity of the procedure is 0 (MN 2). It is important to note that
although the time complexity has reduced to O(MN 2 ), the storage requirement has
increased to O(N 2 ) .

2.5 Optimality Conditions

In this section, we will outline the theoretical Pareto-optimality conditions for a
constrained MOOP. Here, we state the optimality conditions for the MOOP given in
equation (2.1). We assume that all objectives and constraint functions are continuously
differentiable. As in single-objective optimization, there exist first- and second-order
optimality conditions for multi-objective optimization. Here, we state the first-order
necessary condition and a specific sufficient condition. Interested readers may refer
to more advanced classical books on multi-objective optimization (Chankong and
Haimes, 1983; Ehrgott, 2000; Miettinen, 1999) for a more comprehensive treatment of
different optimality conditions.

The following condition is known as the necessary condition for Pareto-optimality.

Theorem 2.5.1. (Fritz-John necessary condition). A necessary condition for x*
to be Pareto-optimal is that there exist vectors A 2:: 0 and u 2:: 0 (where A E ]RM,

U E]RJ and A,u # 0) such that the following conditions are true:

1. L~=lAm'V'fm(x*)-L;=lUj'V'gj(x*)=O, and
2. Ujgdx*) =0 for allj = 1,2, ... ,J.

For a proof, readers may refer to Cunha and Polak (1967). Miettinen (1999) argues
that the above theorem is also valid as the necessary condition for a solution to
be weakly Pareto-optimal. Those readers familiar with the Kuhn-Tucker necessary
conditions for single-objective optimization will immediately recognize the similarity
between the above conditions and that of the single-objective optimization. The
difference is in the inclusion of a A-vector with the gradient vector of the objectives.

For an unconstrained MOOP, the above theorem requires the following condition:

M

LAm'V'fm(x*) = 0
m=l

to be necessary for a solution to be Pareto-optimal. Writing the above vector equation
in matrix form, we have the following necessary condition for an M-objective and
n-variable unconstrained MOOP:

£iM.]
ox,£iM.
OXl

£iM.
OX n

[] [I]
(2.7)



MULTI-OBJECTIVE OPTIMIZATION 45

For nonlinear objective functions, the partial derivatives are expected to be nonlinear.
For a given A-vector, the nonexistence of a corresponding Pareto-optimal solution can
be checked by using the above equation. If the above set of equations are not satisfied,
a Pareto-optimal solution corresponding to the given A-vector does not exist. However,
the existence of a Pareto-optimal solution is not guaranteed by the above necessary
condition. That is, any solution which satisfies equation (2.7) is not necessarily a
Pareto-optimal solution.

For problems with n = M (identical number of decision variables and objectives),
the Pareto-optimal solutions must satisfy the following:

lli ~ £iM.
aX] aX] ax,
lli ~ £iM.
a X2 aX2 aX2 =0. (2.8)

lli ~ £iM.
aX n DX n aX n

The determinant of the partial derivative matrix must be zero for Pareto-optimal
solutions. For a two-variable, two-objective:' MOOP, the above condition reduces to
the following:

Ofl of2 of1 of2
OXl OX2 OX2 OXl . (2.9)

The following theorem offers sufficient conditions for a solution to be Pareto-optimal
for convex functions.

Theorem 2.5.2. (Karush-Kuhn-Tucker sufficient condition for Pareto-optimality).
Let the objective functions be convex and the constraint functions of the problem
shown in equation (2.1) be nonconvex. Let the objective and constraint functions
be continuously differentiable at a feasible solution x*. A sufficient condition for
x" to be Pareto-optimal is that there exist vectors A > 0 and u ~ 0 (where A E JRM
and u E JRJ) such that the following equations are true:

1. L.~=l AmVfdx*) - L.I=l Uj V'gj (x*) = 0, and
2. Ujgj(x*) = 0 for all j = 1,2, ... , J.

For a proof, see Miettinen (1999). If the objective functions and constraints are
not convex, the above theorem does not hold. However, for pseudo-convex and non
differentiable problems, different necessary and sufficient conditions do exist (Bhatia
and Aggarwal, 1992).

2.6 Summary

Most real-world search and optimization problems are naturally posed as multi
objective optimization problems. However, due to the complexities involved in solving
multi-objective optimization problems and due to the lack of suitable and efficient
solution techniques, they have been transformed and solved as single-objective
optimization problems. In this chapter, we have argued that such a transformation is
often subjective to the user. Moreover, because of the presence of conflicting multiple
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objectives, a multi-objective optimization problem results in a number of optimal
solutions, known as Pareto-optimal solutions. Faced with multiple objectives, ideally
a user is interested in finding multiple Pareto-optimal solutions. Thus, there are two
tasks of an ideal multi-objective optimization algorithm, namely (i) to find multiple
Pareto-optimal solutions and (ii) to seek for Pareto-optimal solutions with a good
diversity in objectiveandjor decision variable values.

Most multi-objective optimization methods use the concept of domination in their
search. Thus, we have presented definitions for domination, a non-dominated set and
a Pareto-optimal set of solutions. Thereafter, we have suggested three approaches for
identifying the non-dominated set from a population of solutions. Since some multi
objective evolutionary algorithms requires a complete non-dominated sorting of a set
of N solutions, we have discussed two approaches, of which one guarantees performing
the task in O(MN 2 ) computational effort. Finally, the optimality conditions for
solutions to become Pareto-optimal are presented. In the next chapter, we will present
a number of classical approaches for solving multi-objective optimization problems.



3

Classical Methods

In this chapter, we will describe a few commonly used classical methods for handling
multi-objective optimization problems. We refer to these methods as classical
methods, mainly to distinguish them from evolutionary methods, which we will
discuss in the remaining chapters of this book. Classical multi-objective optimization
methods have been around for at least the past four decades. During this period, many
algorithms have also been suggested. Many researchers have attempted to classify
algorithms according to various considerations. Cohon (1985) classified them into the
following two types:

• Generating methods;
• Preference-based methods.

In the generating methods, a few non-dominated solutions are generated for the
decision-maker, who then chooses one solution from the obtained non-dominated
solutions. No a priori knowledge of relative importance of each objective is used.
On the other hand, in the preference-based methods, some known preference for each
objective is used in the optimization process. Hwang and Masud (1979) and later
Miettinen (1999) fine-tuned the above classification and suggested the following four
classes:

• No-preference methods;
• Posteriori methods;
• A priori methods;
• Interactive methods.

The no-preference methods do not assume any information about the importance of
objectives, but a heuristic is used to find a single optimal solution. It is important to
note that although no preference information is used, these methods do not make any
attempt to find multiple Pareto-optimal solutions. Posteriori methods use preference
information of each objective and iteratively generate a set of Pareto-optimal solutions.
Although this method or the Cohon's generating methods are similar in principle to
the ideal approach proposed in Chapter 1, the classical method of generating Pareto
optimal solutions require some knowledge on algorithmic parameters which will ensure
finding a Pareto-optimal solution. On the other hand, a priori methods use more
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information about the preferences of objectives and usually find one preferred Pareto
optimal solution. Interactive methods use the preference information progressively
during the optimization process.

Although there exist other classifications, the above classification based on the
extent of preference information is an appropriate one. We will outline here a number
of classical methods in the order of increasing use of preference information.

3.1 Weighted Sum Method

The weighted sum method, as the name suggests, scalarizes a set of objectives into a
single objective by pre-multiplying each objective with a user-supplied weight. This
method is the simplest approach and is probably the most widely used classical
approach. Faced with multiple objectives, this method is the most convenient one that
comes to mind. For example, if we are faced with the two objectives of minimizing
the cost of a product and minimizing the amount of wasted material in the process of
fabricating the product, one naturally thinks of minimizing a weighted sum of these
two objectives.

Although the idea is simple, it introduces a not-so-simple question. What values of
the weights must one use? Of course, there is no unique answer to this question. The
answer depends on the importance of each objective in the context of the problem
and a scaling factor, which we will address a little later. The weight of an objective is
usually chosen in proportion to the objective's relative importance in the problem. For
example, in the above-mentioned two-objective minimization problem, the cost of the
product may be more important than the amount of wasted material. Thus, the user
can set a higher weight for the material cost than for the amount of wasted material.
Although there exist ways to quantify the weights from this qualitative information
(Parmee et al., 2000), the weighted sum approach requires a precise value of the weight
for each objective.

However, setting up an appropriate weight vector also depends on the scaling of
each objective function. It is likely that different objectives take different orders of
magnitude. In the above example again, the cost of the product may vary between 100
to 1000 dollars, whereas the amount of wasted material may vary between 0.01 and
0.1 m'. When such objectives are weighted to form a composite objective function,
it would be better to scale them appropriately so that each has more or less the
same order of magnitude. For example, we may multiply the product cost by 1(10- 3 )

and the amount of wasted material by 1(101 ) to make them equally important. This
process is called normalization of objectives.

After the objectives are normalized, a composite objective function F(x) can be
formed by summing the weighted normalized objectives and the MOOP given in
equation (2.1) is then converted to a single-objective optimization problem as follows:

Minimize
subject to

F(x) = L~=l wmfm(x),
9j (xl 2': 0,
hdx) = 0,
x(l) < x, < x{U)

1 - 1_ t '

j = 1,2, , J; }
k = 1,2, , K;

i = 1,2, ,n.

(3.1)
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Here, W m (E [0, 1]) is the weight of the m-th objective function. Since the minimum
of the above problem does not change if all weights are multiplied by a constant, it is
the usual practice to choose weights such that their sum is one, or 2::.;;;=, W m = 1.

Mathematically oriented readers may find a number of interesting theorems
regarding the relationship between the optimal solution of the above problem to
the true Pareto-optimal solutions in classical texts (Chankong and Haimes, 1983;
Ehrgott, 2000; Miettinen, 1999). For the above problem, two interesting theorems are
reproduced below from Miettinen (1999).

Theorem 3.1.1. The solution to the problem represented by equation (3.1) is
Pareto-optimal if the weight is positive for all objectives.

The proof of this theorem is achieved by first assuming that the optimal solution
obtained with all positive weights is not a Pareto-optimal solution and then showing
a contradiction of this assumption. This theorem is true for any MOOP. However, it
conveys only a part of the story. With a positive weight vector, the obtained optimum
solution to the problem in equation (3.1) is a Pareto-optimal solution. However, it
does not imply that any Pareto-optimal solution can be obtained by using a positive
weight vector. The next theorem confirms this for convex problems.

Theorem 3.1.2. If x* is a Pareto-optimal solution of a convex multi-objective
optimization problem, then there exists a non-zero positive weight vector w such
that x* is a solution to the problem given by equation (3.1).

For the proof, refer to Miettinen (1999). This theorem suggests that for a convex
MOOP, any Pareto-optimal solution can be found by using the weighted sum method.

Let us now illustrate how the weighted sum approach can find Pareto-optimal
solutions of the original problem. For simplicity, we consider the two-objective problem
shown in Figure 19. The feasible objective space and the corresponding Pareto-optimal
solution set are shown. With two objectives, there are two weights w, and wz, but
only one is independent. Knowing anyone, the other can be calculated by simple
subtraction.

Knowing the weights, we can also calculate the composite function F. Its contour
surfaces can then be visualized in the objective space, as shown by lines 'a', 'b', 'c',
and 'd' in Figure 19. Since F is a linear combination of both objectives f, and h,
we would expect a straight line as the contour line of F on the objective space. This
is because any solution on the contour line will have the same F value. If considered
carefully, this contour line is not an arbitrary line; its slope is related to the choice
of the weight vector. In fact, for two objectives, its slope is -w, /wz. The location of
the line depends on the value of F on any point on the line. The effect of lowering the
contour line from 'a' to 'b' is in effect jumping from solutions of higher F values to a
lower one.

Since the problem represented by equation (3.1) requires minimization of F, the task
is to find the contour line with the minimum F value. This happens with the contour
line which is tangential to the search space and also lies in the bottom-left corner
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Feasible objective space

£1
Pareto-optimal front

(3.2)

Figure 19 Illustration of the weighted sum approach on a convex Pareto-optimal front.

of this space. In the figure, this line is marked as 'd'. The tangent point 'A' is the
minimum solution of F, and is consequently the Pareto-optimal solution corresponding
to the weight vector.

If a different weight vector is used, the slope of the contour line would be different
and the above procedure, in general, would result in a different optimal solution.
Using Theorem 3.1.2, we can argue that for a convex MOOP, multiple Pareto-optimal
solutions can be found by solving the corresponding problem (equation (3.1)) with
multiple positive weight vectors, one at a time, each time finding a Pareto-optimal
solution. The above theorem can be extended to nonconvex MOOPs, particularly
when the Pareto-optimal front is convex.

3.1.1 Hand Calculations

To illustrate, we choose the following two-objective optimization problem:

Minimize fl (x) = xj , }

Minimize fl(x) = 1 + x~ - Xl - u sinlbvrxr },
subject to 0:::; Xl :::; 1, -2:::; Xl < 2.

The problem has two parameters a and b, which control the convexity of the search
space. Figure 20 shows the objective space for a = 0.2 and b = 1. For illustration, the
complete objective space is not shown; instead, the complete Pareto-optimal region
and its neighboring space are presented.

We form the composite function F with a weight vector (WI, Wl)T:

F(x) =WIXI +Wl [1 +X~-Xl -asin(b7tXJl]. (3.3)

We shall substitute the values of a and b later. Using the first-order optimality
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Figure 20 Illustration of the objective space and the Pareto-optimal set. Optimal solutions

of the composite function F for equi-spaced values of w i E [0.271,0.620] are shown by using

circles.

(3.5)

(3.4)W] +W2 [-1 - ubrt cosfbvrxj l],

2W 2 X2 .

condition (Deb, 1995), we obtain:

aF
aX]

aF
aX2

Equating the right sides of the above two equations to zero, we obtain the stationary
solutions as follows:

x*1

x*2

b
1n

cos-] [a~n (:: -1)] ,
o.

(3.6)

(3.7)

The next task is to satisfy the second-order optimality conditions. Calculating the
Hessian matrix and then finding the conditions for positive semi-definiteness of the
matrix, we obtain the second-order condition for the minimum of F as follows:

sintbrrx] 12:: O. (3.8)

This condition suggests that xi must lie in discrete regions of constant width 1/b, or
2i/b ::; xi ::; {2i + 1lib, for all i = 0,1,2, ... , while satisfying the condition that the
upper bound of xi is one (in order to satisfy the variable upper bound). Thus, the
implications of all of the above calculations is that for the chosen values of w] and W2,

the optimal solution is given by equations (3.6) and (3.7), provided that equation (3.8)
is satisfied.

The above calculations give us the exact minimum of the weighted function F for
any a and b. Now, we set a = 0.2 and b = 1 to find the optimal solutions of F. Since,
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b = 1, the optimal solution is valid for i = 0 only. By using equation (3.6), we obtain
the optimal solution as a function of the ration of the weights as follows:

. 1 ~ 1 [5 (Wl )]
xl = ~ cos ~ W2 - 1 , xi = O. (3.9)

The above equation allows us to calculate the weight vector at two extreme solutions.
At xi = 0, Wl/W2 = 1.628 and at xi = 1, Wl/W2 = 0.372. Using Wl + W2 = 1, we
obtain

xi = 0: Wl = 0.620, W2 = 0.380.
xi = 1: Wl = 0.271, W2 = 0.729.

Thus, choosing any weight vector within the above bounds (0.271 ::::: Wl ::::: 0.620 and
W2 = 1 - w.), we can find the corresponding optimal solution using equation (3.9).
According to Theorem 3.1.2, these solutions are Pareto-optimal solutions to the
original problem.

It is interesting to note that if a single-objective optimization algorithm is applied
a number of times with a uniformly distributed set of weight vectors, the resulting
Pareto-optimal solutions may not be uniformly spaced either in the decision variable
space or in the objective space. This can be understood by noting the nonlinear
relationship of Xl and WdW2 in equation (3.9). Figure 20 above shows the Pareto
optimal solutions corresponding to 20 uniformly distributed slopes, with Wl values in
the range [0.271,0.620]. Other values of Wl (that is, Wl E [0,0.271] and [0.620,1]) will
result in one of the two extreme solutions: xi = 0 or xi = 1.

3.1.2 Advantages

This is probably the simplest way to solve an MOOP. The concept is intuitive and easy
to use. For problems having a convex Pareto-optimal front, this method guarantees
finding solutions on the entire Pareto-optimal set.

3.1.3 Disadvantages

However, there are a number of difficulties with this approach. In handling mixed
optimization problems, such as those with some objectives of the maximization type
and some of the minimization type, all objectives have to be converted into one type.
Although different conversion procedures can be adopted, the duality principle is
convenient and does not introduce any additional complexity.

In most nonlinear MOOPs, a uniformly distributed set of weight vectors need not
find a uniformly distributed set of Pareto-optimal solutions. Since this mapping is not
usually known, it becomes difficult to set the weight vectors to obtain a Pareto-optimal
solution in a desired region in the objective space.

Moreover, different weight vectors need not necessarily lead to different Pareto
optimal solutions. In the above example problem, many weight vectors (with Wl E

[0,0.271]) lead to the same solution (xi = 1, xi = 0). This information about which
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weight vectors do correspond to an identical optimal solution of F is not obvious in
nonlinear problems.

Furthermore, since most single-objective optimization algorithms (multi-variable or
constrained optimization techniques (Deb, 1995; Rao, 1984)) are designed to find a
solution that satisfies the first-order optimality criterion, more tests are needed to
know whether the obtained solution is truly a minimum solution. This increases the
computational complexity of the weighted sum approach.

In interesting MOOPs, there may exist multiple minimum solutions of F for a specific
weight vector. However, each of these minimum solutions may represent a different
solution in the Pareto-optimal set. Some of these solutions can be weakly dominated to
each other, thereby wasting the search effort. Moreover, if the chosen single-objective
optimization algorithm cannot find all minimum solutions for a weight vector, some
Pareto-optimal solutions cannot be found.

3.1.4 Difficulties with Nonconvex Problems

The above weighted sum approach cannot find certain Pareto-optimal solutions in the
case of a nonconvex objective space. Figure 21 explains this scenario. When a weight
vector is chosen such that a contour line marked 'a' or 'b' in the figure results, the
minimum solution of F will correspond to a Pareto-optimal solution. Unfortunately,
no contour line will produce a tangent point with the feasible objective space in the
region BC. This is because before a line becomes a tangent to any point in BC, it
also becomes a tangent at another better (with a smaller F) point (either on AB
or CD) in the objective space. Since it is, in general, difficult to know whether the
resulting objective space is nonconvex, the weighted sum approach must be applied

Feasible objective space

,,,,,,,,,,,,,,
,a

Pareto-optimal front

Figure 21 The weighted sum approach fails to find some Pareto-optimal solutions in a

nonconvex objective space.
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with caution.
We illustrate this matter by constructing a two-objective optimization problem

which has a nonconvex Pareto-optimal front. Let us consider the problem shown by
equation (3.2) with a = 0.1 and b = 3. The objective space is shown in Figure 22.
According to equation (3.8), there are two distinct regions of optimality for xj :

o < xi :s: 1/3 and 2/3 :s: xi :s: 1. For each value of WI in the range (0.054,0.660),
there exist two local minimum solutions:

X*= 1 COS-I [ 1 (~-1)]l:m o.:m 1 - WI '
x*=2+ 1 COS-I [ 1 (~-1)]I :5:m o.:m 1 - Wl '

Xi = 0,

xi = o.
and

However, at any WI, only one of the above two solutions is the global minimum of F.

This can be found by checking if WI > 0.5. If yes, then the smaller of the two XI values
corresponds to the global minimum. If Wl < 0.5, then the larger of the two XI values
correspond to the global minimum. If, however, WI = 0.5, both are minimum, having
the same F value. These two solutions occur at xi = 1/6 and xi = 5/6. These points
are marked as solutions 'B' and 'C', respectively, in Figure 22. Solution A corresponds
to WI = 0.660, while solution D corresponds to WI = 0.054. This figure also shows
that the contour line with WI = 0.5 is tangential at points Band C in the objective
space. Thus, if 0.054 :s: WI :s: 0.5 is chosen, solutions in the range DC will be found,
while if 0.5 :s: WI :s: 0.660 is chosen, solutions in the range BA will be found. In the
figure, excluding solutions Band C, 10 other solutions with equi-spaced WI values in
the range [0.054,0.660] are also shown. The nonlinearity in the mapping between the
spacing of the obtained solutions and that of WI is evident. With other values of WI
(outside the range [0.054,0.660]), the inverse of the cosine in equation (3.6) cannot
be computed. However, when variable bounds are considered, solutions A or D will
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D

Figure 22 Pareto-optimal solutions in Be cannot be found by using the weighted sum
approach.
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be obtained as optimal solutions for these weight values. Thus, the region BC (with
fj E (1/6,5/6)) will be undiscovered by using the weighted sum approach.

3.2 c-Constraint Method

In order to alleviate the difficulties faced by the weighted sum approach in solving
problems having nonconvex objective spaces, the c-constraint method is used. Haimes
et al. (1971) suggested reformulating the MOOP by just keeping one of the objectives
and restricting the rest of the objectives within user-specified values. The modified
problem is as follows:

Minimize
subject to

f~(x),

fm(x) ::::; Em,

9j (x) 2: 0,
h.k(X) = 0,
X(l) < X' < X~U)

t - l_ 1. '

m = 1,2, , M and m -I- u;
j = 1,2, ,;
k = 1,2, , K;

i = 1,2, , n.

(3.10)

In the above formulation, the parameter £m represents an upper bound of the value
of f m and need not necessarily mean a small value close to zero. Let us first illustrate
the working of the c-constraint method. Let us say that we retain fz as an objective
and treat f1 as a constraint: f, (x) ::::; £1. Figure 23 shows four scenarios with different
£, values.

Let us consider the third scenario with £, = £1 first. The resulting problem with
this constraint divides the original feasible objective space into two portions, f, ::::; £1
and f1 > £1' The left portion becomes the feasible solution of the resulting problem
stated in equation (3.10). Now, the task of the resulting problem is to find the solution
which minimizes this feasible region. From Figure 23, it is clear that the minimum

Figure 23 The c-constraint method.
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(3.11)

solution is IC'. In this way, intermediate Pareto-optimal solutions can be obtained in
the case of nonconvex objective space problems by using the c-constraint method.

For convex or nonconvex objective spaces, the following proof says all about the
utility of the c-constraint method.

Theorem 3.2.1. The unique solution of the e-consiraint problem stated m
equation (3.1 0) is Pareto-optimal for any given upper bound vector €

(£1, ... , £~-1, £~+1, ... , £M)T.

The proof comes from the assumption that the unique solution to the c-constraint
problem is not Pareto-optimal and then showing that this assumption violates the
definition of Pareto-optimality (Miettinen, 1999).

3.2.1 Hand Calculations

Let us now illustrate the working of the c-constraint method on the problem stated
in equation (3.2) with a = 0.1 and b = 3 (Figure 22). We have discussed earlier
that this problem has a nonconvex objective space. Keeping fz as the only objective
and limiting f 1 to £], we have the following single-objective constrained optimization
problem:

Minimize f 2(X1, X2) = 1 +x~ - Xl - 0.1 sin(3nx,), }
subject to Xl::; £1,°::; Xl::; 1, -2::; X2 < 2.

Allowing the variable bounds and considering only one constraint, 91 == e 1 - x] 2: 0,
we write the Kuhn-Tucker optimality conditions (Deb, 1995) by using a Lagrange
multiplier U1 for the constraint 91:

V'h-U1V'91 0,

91 > 0,

u19] 0,

U1 > 0.

We have the following equations:

-1 - 0.3ncos(3nx1) +U1 0,

2X2 0,

£1 - X] > 0,

ud£] -x,) 0,

U1 > 0.

The first equation suggests that u: > 0. Thus, the fourth equation suggests that
Xl = £1· The second equation suggests X2 = 0. Thus, the optimum solution is xi = £]
and xi = 0, which lies on the Pareto-optimal front. This clearly shows that by changing
£1 values, different Pareto-optimal solutions can be found.
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Figure 24 A two-objective problem with disjointed Pareto-optimal sets.

Let us change the problem by using a = 0.2 and b = 3 (Figure 24), before leaving
this subsection. Once again, we treat the first objective as a constraint by limiting its
value within [0, £1]. The Kuhn-Tucker conditions are as follows:

-1 - 0.6ncos(371X1) + U1 0,

2X2 0,

£1 ~x1 > 0,

U,(£l- xJl 0,

U1 > 0.

Here too, xi = 0. However, U1 need not be greater than zero. When U1 = 0, the
optimal value of Xl satisfies cos(3nxil = -1/0.6n, or xi = 0.226 and 0.893 in the
specified range of x- . In the complete range of £1 E [0,1], we find the following
optimum values of xi (with xi = 0):

!
£1, if °< £1 < 0.226 (AB);

0.226 if 0.226 < e1 < 0.441 (BC);
xi = 0.226 iff2(£1,0) >f2(0.226,0) and 0.441 ~ £1

£1 if f2(£1 ,0) ~ f2(0.226,0) and 0.441 ~ £1
0.893, if 0.893 < £1 < 1 (EF). 0,'10 7..-

S bL? \

< 0.893 (CD);
< 0.893 (DE);

When £1 is chosen in the range CE, there are two cases: U1 = °or U1 > 0. The
minimum of the two cases is to be accepted. The switch-over takes place at Xl = 0.562.
Figure 24 shows that if £1 = 0.4 (or any value in the range BCD, or £1 E [0.226,0.562])
is used, the optimal solution is solution B: xi = 0.226 and xi = 0. However, when £1 is
chosen at any point on the true Pareto-optimal region (AB or DE), that point is found
as the optimum. Similarly, when £1 is chosen in the range EF, the solution E is the



58 MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION

optimal solution. This is how the c-constraint method can identify the true Pareto
optimal region independent of whether the objective space is convex, nonconvex, or
discrete.

3.2.2 Advantages

Different Pareto-optimal solutions can be found by using different £m values. The
same method can also be used for problems having convex or nonconvex objective
spaces alike.

In terms of the information needed from the user, this algorithm is similar to
the weighted sum approach. In the latter approach, a weight vector representing the
relative importance of each objective is needed. In this approach, a vector of £ values
representing, in some sense, the location of the Pareto-optimal solution is needed.
However, the advantage of this method is that it can be used for any arbitrary problem
with either convex or nonconvex objective space.

3.2.3 Disadvantages

The solution to the problem stated in equation (3.10) largely depends on the chosen
e vector. It must be chosen so that it lies within the minimum or maximum values of
the individual objective function. Let us refer to Figure 23 again. Instead of choosing
€1, if €1 is chosen, there exists no feasible solution to the stated problem. Thus, no
solution would be found. On the other hand, if £f is used, the entire search space is
feasible. The resulting problem has the minimum at CD'. Moreover, as the number of
objectives increases, there exist more elements in the € vector, thereby requiring more
information from the user.

3.3 Weighted Metric Methods

Instead of using a weighted sum of the objectives, other means of combining multiple
objectives into a single objective can also be used. For this purpose, weighted metrics
such as Ip and 100 distance metrics are often used. For non-negative weights, the
weighted Ip distance measure of any solution x from the ideal solution z* can be
minimized as follows:

(
M )l/P

Minimize Ip(x) = L m = l wmlfm(x) - z:'nIP ,

subject to 9j (x] 2: 0,
hdx) = 0,
x(l) < x, < x(U)

t. - t_ 1 )

j = 1,2, ,J; )
k = 1,2, , K;

i = 1,2, , n.

(3.12)

The parameter p can take any value between 1 and 00. When p = 1 is used, the
resulting problem is equivalent to the weighted sum approach. When p = 2 is used, a
weighted Euclidean distance of any point in the objective space from the ideal point
is minimized.
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When a large p is used, the above problem reduces to a problem of minimizing
the largest deviation Ifm(x) - z;;,J This problem has a special name - the weighted
Tchebycheff problem:

Minimize
subject to

loo (x) = max~=l wmlfm(x) - z~I,

gj(x) ~ 0,
hdx) = 0,
X(L) < x, < x l U )

1 - t_ t ,

j=l,2, ,J; }
k = 1,2, , K;

i = 1,2, ,n.

(3.13)

However, the resulting optimal solution obtained by the chosen lp depends on the
parameter p. We illustrate the working principle of this method in Figures 25, 26,
and 27 for p = 1, 2 and 00, respectively. In all of these figures, optimum solutions
for two different weight vectors are shown. It is clear that with p = 1 or 2, not all
Pareto-optimal solutions can be obtained. In these cases, the figures show that no
solution in the region BC can be found by using p = 1 or 2. However, when the
weighted Tchebycheff metric is used (Figure 27), any Pareto-optimal solution can be
found. There exists a special theorem for the weighted Tchebycheff metric formulation
(Miettinen, 1999):

Theorem 3.3.1. Let x" be a Pareto-optimal solution. There then exists a positive
weighting vector such that x" is a solution of the weighted Tchebycheff problem
shown in equation (3.13), where the reference point is the utopian objective vector
z** .

However, it is also important to note that as p increases the problem becomes non
differentiable and many gradient-based methods cannot be used to find the minimum
solution of the resulting single-objective optimization problem.

,
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Figure 25 The weighted metric method

with p = 1.
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with p = 2.
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Figure 27 The weighted metric method with p = 00.

3.3.1 Hand Calculations

Let us consider the problem shown in equation (3.2) with a = 0.1 and b = 3
(Figure 22). We have seen earlier that this problem has a nonconvex objective space.
We use the weighted metric method with p = 2 and assume zj = zi = O. Thus, the
resulting 1~ is as follows."

1~ = Wlxt + W2 [1 + x~ - Xl ~ 0.1 sin (3rrxJl] 2.

The minimum of this function corresponds to xi = 0 and xj, satisfying the following
equation:

w- x] -W2 [1 +xi2-xj ~0.lsin(371xil] [1 +0.371cos(371xjl] =0.

There exists a number of roots of this equation. However, considering the one which
minimizes 12 yields the following value of xj for different values of w- :

Wl 1.00 0.95 0.90 0.85 0.80 0.75 0.70
x* 0.000 0.077 0.122 0.151 0.172 0.190 0.2041

wl 0.65 0.60 0.55 0.50 0.45 0.40 0.35
x* 0.216 0.227 0.237 0.246 0.688 0.709 0.7271

Wl 0.30 0.25 0.20 0.15 0.10 0.05 0.00
x* 0.745 0.762 0.779 0.798 0.819 0.849 1.0001

Figure 28 plots these optimal solutions. It is clear that this method with p = 2 cannot
identify certain regions (BC, marked on the figure) in the Pareto-optimal front. It is
interesting to note that this algorithm can find more diverse solutions when compared
to the weighted sum approach, or the Lj-metric method (Figure 22).

1 Minimization of 12 and 1~ will produce the same optimum.
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Figure 28 Optimal solutions corresponding to 21 equi-spaced Wj values between zero and

one.

3.3.2 Advantages

The weighted Tchebycheff metric guarantees finding each and every Pareto-optimal
solution when z" is a utopian objective vector (Miettinen, 1999). Although in the
above discussions only lp metrics are suggested, other distance metrics are also used.
Shortly, we will suggest two improvements to this approach, which may be useful in
solving problems having a nonconvex objective space.

3.3.3 Disadvantages

Since different objectives may take values of different orders of magnitude, it is
advisable to normalize the objective functions. This requires a knowledge of the
minimum and maximum function values of each objective.

Moreover, this method also requires the ideal solution z*. Therefore, all M objectives
need to be independently optimized before optimizing the lp metric.

3.3.4 Rotated Weighted Metric Method

Instead of directly using the lp metric as it is stated in equation (3.12), the lp metric
can be applied with an arbitrary rotation from the ideal point. Let us say that the
rotated objective reference axes f is related to the original objective axes f by the
following relationship:

f = Rf, (3.14)
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where R is the rotation matrix of size M x M. The modified 1p metric then becomes:

(3.15)

By using different rotation matrices, the above function can be minimized. Figure 29
illustrates the scenario with p = 2. In this case, the metric is equivalent to:

[(f(x) - z*)TC(f(x) ~ z*)f/z,

where C = RTDiag(wl,··· ,wM)R. The rotation matrix R will transform the objective
axes into another set of axes dictated by the rotation matrix. In this way, iso-L
solutions become aligned in a rotated ellipsoid, as shown in Figure 29. With this
strategy and by changing each member of the C matrix, any Pareto-optimal solution
can be obtained.

Let us now apply this method to the problem used earlier in the hand calculation.
We introduce here the parameter (x, i.e. the angle of rotation of the fl axis. With
respect to this rotation angle, we have the following rotation matrix:

C = [ co~ (X sin (X] T [Wl
- sin (X cos (X 0

o] [ cos (X sin (X]
Wz - sin (X cos (X

Using Wl = 0.01 and Wz = 0.99, and varying (X between zero and 90 degrees, we
obtain the following minimum value of lz (with xi = 0):

/

/
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/
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Figure 29 The proposed correlated weighted metric method with p = 2.
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<X 0 5 10 15 20 25 30
x* 0.898 0.822 0.775 0.738 0.706 0.676 0.6461

<X 35 40 45 50 55 60 65
x* 0.616 0.583 0.546 0.502 0.447 0.379 0.3081

<X 70 75 80 85 90
x* 0.247 0.193 0.141 0.085 0.0181

Figure 30 shows these solutions. Any solution in the Pareto-optimal front can be
obtained by changing the angle and the weight vector. For more than two objectives,
there are (~) angles which constitute the rotation matrix. These can be varied to find
different Pareto-optimal solutions.

However, one difficulty with this approach is that there are many parameters, which
must be fixed. Moreover, in certain problems, the minimum solution corresponding to
the modified 12 metric may result in a dominated solution, thereby not guaranteeing
that we will always find a Pareto-optimal solution.

3.3.5 Dynamically Changing the Ideal Solution

Another remedy to the problem of not being able to find some Pareto-optimal solutions
with the original 1p metric (for small p values) would be to update the point z*, for
every time that a Pareto-optimal solution is found. In this way, the 1p distance of the
ideal solution comes closer to the Pareto-optimal front and previously undiscovered
Pareto-optimal solutions can now be found. With each Pareto-optimal solution found
so far, all combinations of objective values may be formed to construct new candidate
ideal solutions. Thereafter, a candidate solution which does not dominate any of the
other solutions (or, in principle, the candidate solution which is closest to the Pareto-

1

0.8

0.6

0.4

0.2

o .

0.80.60.40.2
-0.2 '-----__-'--__--'--__----'- '-----_-----.J

o

Figure 30 The modified 12 can find any Pareto-optimal solution.
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optimal front) may be chosen as the new z*.
Figure 31 illustrates this method. After the Pareto-optimal solutions A and Bare

found, the ideal point may be updated to the new point O. It is then easier to find
some Pareto-optimal solutions (such as solution C) which were impossible to find by
using the original z*.

3.4 Benson's Method

This procedure is similar to the weighted metric approach, except that the reference
solution is taken as a feasible non-Pareto-optimal solution. A solution zO is randomly
chosen from the feasible region. Thereafter, the non-negative difference (z~ - f m(x))
of each objective is calculated and their sum is maximized:

Maximize
subject to

L~=l max (0, (z~ - fm(x))),
fm(x) :'::: z~,
gj(x) ;::: 0,

hk(x);::: 0,
x(l) < x. < x lU )

1 - 1_ 1 1

m= l,2 ,M;
j = 1,2, , J;
k = 1,2, , K;

i = 1,2, ,n.

(3.16)

Figure 32 shows the chosen solution zO in the feasible region. For any solution x,
the above objective function has a value equal to half of the perimeter of a hypercube
having zO and f(x) as the diagonal points. The only requirement is that the solution
x must weakly dominate the solution at zO. The maximization of the above objective
is similar to finding a hypercube with the maximum perimeter. Since the Pareto
optimal region lies at the extreme of a feasible search space, the optimum solution
of the above optimization problem is a member of the Pareto-optimal front. For a
number of properties of this approach, refer to the original study (Benson, 1978) or to
Ehrgott (2000). Since the algorithm is straightforward, we do not perform any hand

I
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Figure 31 Moving z" closer to the Pareto

optimal front may allow more Pareto

optimal solutions to be found.

Figure 32 Illustration of Benson's

method. Half of the perimeter of the box

is the objective function.
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calculation. Interested readers may take this as an exercise for using the test problem
of the previous section and to complete an iteration of the above method for a proper
understanding.

3.4.1 Advantages

To avoid scaling problems, individual differences can be normalized before the
summation. To obtain different Pareto-optimal solutions, the differences can be
weighted before summation. Thereafter, by changing the weight vector, different
Pareto-optimal solutions can be obtained. In such a scenario, the use of the nadir
point, zuad, as the chosen point may be found suitable. If zO is chosen appropriately,
this method can be used to find solutions in the nonconvex Pareto-optimal region.

3.4.2 Disadvantages

The optimization problem formulated above has an additional number of constraints
needed to restrict the search in the region dominating the chosen solution z".
Moreover, the objective function is non-differentiable, thereby causing difficulties for
gradient-based methods to solve the above problem. Although a modified formulation
is suggested in Ehrgott (2000) for differentiable objective functions, the resulting
optimization problem has equality constraints which are usually difficult to handle.

3.5 Value Function Method

In the value function (or utility function) method, the user provides a mathematical
value function U : JRM ----1 JR relating all M objectives. The value function must be
valid over the entire feasible search space. The task is then to maximize the value
function as follows:

Maximize
subject to

U(f(x))
gj(x) ;:;. 0,

hk(x) = 0,
ILl < . < lUI

Xi _ Xl _ Xi ,

j = 1,2, , J; }
k = 1,2, , K;

i = 1,2, , n.

(3.17)

Here, f(x) = (fl (x}, f2(Xl, ... , fM(x))T. As seen from the above problem, the value
function provides interactions among different objectives. Among the two solutions
i and j, if U(f(i)) > U(f(j)) solution i is then preferred to solution j. Rosenthal
(1985) states that the value function must be strongly decreasing before it can be
used in multi-objective optimization. This means that the preference of a solution
must increase if one of the objective function values is decreased while keeping other
objective function values the same. This led Miettinen (1999) to prove the following
theorem:

Theorem 3.5.1. Let the value function U : JRM ----1 JR be strongly decreasing. Let
U attain its maximum at f". Then, f" is Pareto-optimal.
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Figure 33 Contours of the value function.

In Figure 33, we show the contours of a nonlinear value function. For the nature of
the contours shown in this figure, the solution A, where a contour of the value function
is tangential to the Pareto-optimal front, is the preferred solution. It is important to
note that this method can find only one solution at a time. By changing the parameters
involved in the value function, different Pareto-optimal solutions can be found.

In some sense, the weighted sum approach or the weighted metric approach can
be written as special cases of the value function approach. In such approaches,
special forms of the value function are used. However, the formulation of the problem
described in equation (3.17) allows a generic functional relationship among different
objectives. The value function is usually chosen to be a nonlinear function of
objectives. A good deal of theory of value functions (or utility functions) can be
found in Keeney and Raiffa (1976).

3.5.1 Advantages

This idea is simple and ideal, if adequate value function information is available. The
value function methods are mainly used in practice to multi-attribute decision analysis
problems with a discrete set of feasible solutions (Keeney and Raiffa, 1976), although
the principle can also be used in continuous search spaces.

3.5.2 Disadvantages

As evident from the above discussions, the obtained solution entirely depends on the
chosen value function. It also requires users to come up with a value function which
is globally applicable over the entire search space. Thus, there is a danger of using an
over-simplified value function.
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3.6 Goal Programming Methods

Goal programming was first introduced in an application of a single-objective linear
programming problem by Charnes et al. (1955). However, goal programming gained
popularity after the work of Ignizio (1976, 1978), Lee (1972), and various others.
Romero (1991) has presented a comprehensive overview of the technique and listed a
plethora of engineering applications where the goal programming technique has been
used (Clayton et al., 1982; Sayyouth, 1981).

The main idea in goal programming is to find solutions which attain a predefined
target for one or more objective functions. If there exists no solution which achieves
pre-specified targets in all objective functions (the user is being optimistic), the task is
to find solutions which minimize deviations from the targets. On the other hand, if a
solution with the desired target exists, the task of goal programming is to identify that
particular solution. In some sense, this task is similar to that in satisficing decision
making and the obtained solution is a satisficing solution, which can be different from
an optimal solution. First, we illustrate the working of a goal programming method
in a single-objective problem.

Let us consider a design objective f(x), which is a function of a solution vector x.

Without loss of generality, we consider a objective function which is to be minimized
(such as the fabrication cost of an engineering component). In goal programming, a
target value t is chosen for every design objective by the user and the task is then to
find a solution which has an objective value equal to t, subject to the condition that
the resulting solution is feasible. We formulate the optimization problem, as follows:

goal (f(x) = t), }
x E 5,

(3.18)

where 5 is the feasible search region. If the target t is smaller than the optimal
objective value, f(x*), naturally there exists no feasible solution which will attain
the above goal exactly. The objective of goal programming is then to find that
solution which will minimize the deviation d between the achievement of the goal
and the aspiration target, t. The solution for this problem is still x", and the
overestimate is d = f (x* ) - t. Similarly, if the target cost t is larger than the maximum
feasible cost, f max, the solution of the goal programming problem is x, which makes
f(x) = f max. However, if the target cost t is within [f'[x"}, fmaxL the solution to the
goal programming problem is that feasible solution x which makes the objective value
exactly equal to t. Although this solution may not be the optimal solution of the
constrained f(x), this solution is the outcome of the above goal program. In the above
example, we have considered a single-objective problem. However, goal programming
is mostly applied in multi-objective optimization problems. In fact, goal programming
brings interesting scenarios when multiple criteria are considered.

In the above example, an 'equal-to' type goal is discussed. However, there can be
four different types of goal criteria, as shown below (Steuer, 1986):

1. Less-than-equal-to (f(x) ::; t).
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2. Greater-than-equal-to (f(x) 2: t).
3. Equal-to (f(x) = t).
4. Within a range (f(x) E [tl , tUJ).

In order to achieve the above goals, two non-negative deviation variables (n and p)
are usually introduced. For the less-than-equal-to type goal, the positive deviation p
is subtracted from the objective function, so that f(x) - p ::::: t. Here, the deviation p
quantifies the amount by which the objective value has surpassed the target t. The
objective of goal programming is to minimize the deviation p so as to find the solution
for which the deviation is minimum. If f'(x) > t, the deviation p should take a non-zero
positive value; otherwise it must be zero.

For the greater-than-equal-to type goal, a negative deviation n is added to the
objective function, so that f(x) +n 2: t. The deviation n quantifies the amount by
which the objective function has not satisfied the target t. Here, the objective of goal
programming is to minimize the deviation n. For f(x) < t, the deviation n should
take a non-zero positive value, otherwise it must be zero. For the equal-to type goal,
the objective function needs to have the target value t, and thus both positive and
negative deviations are used, so that f (x) - p + n = t. Here, the objective of goal
programming is to minimize the summation (p + n}, so that the obtained solution is
minimally away from the target in either direction. If f(x) > t, the deviation p should
take a non-zero positive value and if f(x) < t, the deviation n should take a non-zero
positive value. For f(x) = t, both deviations p and n must be zero. The fourth type
of goal is handled by using two constraints: f(x) - p ::::: t l and f(x) + n 2: t ". The
objective here is to minimize the summation (p +n). All of the above constraints can
be replaced by a generic equality constraint:

f(x) - p + n = t. (3.19)

Thus, to solve a goal programming problem, each goal is converted into at least one
equality constraint, and the objective is to minimize all deviations p and n. Goal
programming methods differ in the ways that the deviations are minimized. Here, we
briefly discuss three popular methods. In all of these methods, we assume that there
are M objectives f j (x}, each having one of the above four types of goal.

3.6.1 Weighted Goal Programming

A composite objective function with deviations from each of M objectives is used, as
described below:

Minimize L~l ((XjPj + I3jnjl. }
subject to fj(x) - Pj +nj = tj, j = 1,2, ... , M,

XES,

nj, Pj 2: 0, j = 1,2, ... , M.

(3.20)

Here, the parameters (Xj and I3j are weighting factors for positive and negative
deviations of the j-th objective. For less-than-equal-to type goals, the parameter I3j
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is zero. Similarly, for gre-ater-than-equal-to type goals, the parameter <Xj is zero. For
range-type goals, there exists a pair of constraints for each objective function. Usually,
the weight factors <Xj and f3j are fixed by the decision-maker, which makes the method
subjective to the user. We illustrate this matter through a simple example problem,
as follows:

goal

goal

subject to

(3.21)

The decision space, which is the feasible solution space (x E S) is shown in Figure 34
(shaded region). The goal lines (fl :::; 2 and fz :::; 2) are shown in Figure 35. It
is clear that there exists no feasible solution which achieves both goals. Thus, the
resulting solution to this goal programming problem will violate either or both of the
above goals, but in a minimum sense. In solving this problem by using the weighted
goal programming approach, the following nonlinear programming (NLP) problem is
constructed:

Minimize
subject to

<X1Pl + <X2P2,
10Xl -Pl < 2,
10+(x2- 5)2 <2

10Xl -P2 - ,
0.1:::;xl:::;1,0:::;x2:::;10, p i ~ 0,

(3.22)

Note that in the above NLP problem, the deviations n i and n2 in the constraints
are eliminated by using a I:::;' relation. Figures 34 and 35 make the concept of goal
programming clear. Since no solution in the target space lies in the objective space, the
objective of goal programming is to find that solution in the objective space which
minimizes the deviation from the target space in both objectives. Now comes the
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dependence of the resulting solution on the weight factors (Xl and (Xl. By choosing
a value of these weight factors, one, in fact, constructs an artificial penalty function
(sometimes known as a utility function) away from the objective space. Thus, the
objective (Xl PI + (XlPl produces contours (known as Archimedian contours), as shown
in Figure 35. The minimization of the problem given by equation (3.22) with a set of
(Xl and (X2 values finds a solution in which an Archimedian contour makes a tangent
to the feasible objective space. If an equal importance to both objectives (that is,
(Xl = (X2 = 0.5) is given, the minimum contour (marked by the continuous line) is
shown in Figure 35 and the resulting solution (marked as 'A') is as follows:

Xl = 0.3162, X2 = 5.0, PI = P2 = 1.162.

At this solution, the objective function values are f l = 3.162 and fz = 3.162, thereby
violating goals f l ::::: 2 and fz ::::: 2. An interesting scenario emerges when different
weight factors are chosen. For example, if (Xl = 1 and (Xl = °are chosen, the resulting
contour is shown by a dashed line and the corresponding solution (marked as 'B') is
as follows:

Xl = 0.2, X2 = 5.0, PI = 0, P2 = 3.0.

On the other hand, if (Xl = °and (X2 = 1 are chosen, the resulting solution (marked
as 'C') is as follows:

Xl = 0.5, X2 = 5.0, PI = 3.0, P2 = 0.

Solutions A, B and C are shown on Figure 34. This figure shows that there exist many
more such solutions which lie in the interval 0.2 ::::: Xl ::::: 0.5 and X2 = 5.0, each one
of which is the solution to the above goal programming problem for a different set of
weight factors (Xl and (Xl. Thus, we observe that the solution to the goal programming
problem largely depends on the chosen weight factors. Moreover, as outlined elsewhere
(Romero, 1991), there exist a number of other difficulties with the weighted goal
programming method, similar to those found with the weighted sum approach.

3.6.2 Lexicographic Goal Programming

In this approach, different goals are categorized into several levels of preemptive
priorities. A goal with a lower-level priority is infinitely more important than a goal
of a higher-level priority. Thus, it is important to fulfill the goals of first-level priority
before considering goals of a second level of priority. Some researchers argue that
such consideration of goals is most practical (Ignizio, 1976), although there exist some
critics of this approach (Zeleny, 1982).

This approach formulates and solves a number of sequential goal programming
problems. First, only goals and corresponding constraints of the first-level priority
are considered in the formulation of the goal programming problem and the latter
is solved. If there exist multiple solutions to the resulting problem, another goal
programming problem is formulated with goals having the second-level priority. In
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this case, the objective is only to minimize any deviations in the goals of second
level priority. However, the goals of first-level priority are used as hard constraints
so that the obtained solution does not violate the goals of first-level priority. This
process continues with goals of other higher-level priorities in sequence. The process
is terminated as soon as one of the goal programming problems results in a single
solution. When this happens, all subsequent goals of higher-level priorities are
meaningless and are known as redundant goals (Romero, 1991). Usually, a single
Pareto-optimal solution is found by this method.

We illustrate the working principle of the lexicographic goal programming approach
in Figure 36. If objective f] is more important than objective f l , we minimize the
problem with f] first, ignoring fl. We shall find multiple solutions in AB and CD
in the first-level goal programming. Since there exists more than one solution to this
problem, we proceed to the second-level optimization, where fz is minimized. The
search is restricted among solutions found in the first-level goal programming. The
solution to the second-level goal programming is D, which is the minimum solution of
tz among all solutions in AB and CD. Thus, solution D is the solution of the overall
lexicographic goal programming. It is interesting to note that if f l was considered
more important than f 1 , then solution E would have been the only optimum solution
of the first-level optimization and the procedure would have been stopped there. The
solution E would then have been declared as the solution to the overall lexicographic
goal programming problem.

3.6.3 Min-Max Goal Programming

This approach is similar to the weighted goal programming approach, but instead
of minimizing the weighted sum of the deviations from the targets, the maximum

E

Figure 36 The lexicographic goal programming approach.
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deviation in any goal from the target is minimized. The resulting nonlinear
programming problem becomes as follows:

Minimize
subject to

d

<XjPj + I3jnj ::; d,
fj(x) -Pj +n, = tj,

XES,

nj,pj 2:: 0,

~ : 1,2, , M, )
J-1,2, ,M,

j = 1,2, ,M.

(3.23)

Here, the parameter d becomes the maximum deviation in any goal. This method
requires the choice of weight factors <Xj and I3j, thereby making the approach subjective
to the user. In some sense, this approach is similar to the weighted Tchebycheff
approach, except that the ideal solution z* is replaced with the target solution.

3.7 Interactive Methods

There exist a number of interactive methods, where minimum knowledge is needed a
priori. For example, there is no need to know a value function relating to the objectives
before even starting to solve the problem. As and when some Pareto-optimal solutions
are found, their location and interactions are analyzed. The main aspect in these
approaches is that from time to time during the optimization process the decision
maker is involved in providing some information about the direction of search, weight
vector, reference points, and other factors. Since the decision-maker is involved in the
optimization process, these techniques are becoming popular in practice; however, for
the same reasons these approaches lose their simplicity. Some of the most popular
methods include the following:

1. Interactive surrogate worth trade-off (ISWT) method (Chankong and Haimes,
1983).

2. Step method (Benayoun et al., 1971).
3. Reference point method (Wierzbicki, 1980).
4. Guess method (Buchanan, 1997).
5. Nondifferentiable interactive multi-objective bundle-based optimization system

(NIMBUS) approach (Miettinen and Makela, 1995).
6. Light beam search (Jaszkiewicz and Slowinsky, 1994).

For a detailed discussion on the above and other interactive approaches, interested
readers may refer to the original studies or to Miettinen (1999).

3.8 Review of Classical Methods

From the above descriptions of some of the most popular classical multi-objective
optimization algorithms, we observe a number of difficulties, particularly if the user
is interested in finding multiple Pareto-optimal solutions:

1. Only one Pareto-optimal solution can be expected to be found in one simulation
run of a classical algorithm.
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2. Not all Pareto-optimal solutions can be found by some algorithms in nonconvex
MOOPs.

3. All algorithms require some problem knowledge, such as suitable weights or € or
target values.

All of the classical algorithms described here suggest a way to convert a multi
objective optimization problem into a single-objective optimization problem. The
weighted sum approach suggests minimizing a weighted sum of multiple objectives,
the c-constraint method suggests optimizing one objective function and use all other
objectives as constraints, weighted metric methods suggests minimizing an Ip metric
constructed from all objectives, the value function method suggests maximizing
an overall value function (or utility function) relating all objectives, and goal
programming methods suggest minimizing a weighted sum of deviations of objectives
from user-specified targets. These conversion methods result in a single-objective
optimization problem, which must be solved by using a single-objective optimization
algorithm. In most cases, the optimal solution to the single-objective optimization
problem is expected to be a Pareto-optimal solution. Such a solution is specific to the
parameters used in the conversion method. In order to find a different Pareto-optimal
solution, the parameters must be changed and the resulting new single-objective
optimization problem has to be solved again. Thus, in order to find N different Pareto
optimal solutions, at least N different single-objective optimization problems need to
be formed and solved.

Even after forming N single-objective optimization problems and solving them,
some algorithms do not guarantee finding solutions in the entire Pareto-optimal
region. We have argued earlier that if the MOOP is nonconvex, then the weighted
sum approach, the weighted metric approach (with small p), or the value function
approach have limitations in finding solutions in the nonconvex region of the Pareto
optimal set. Stating this otherwise, this means that no matter what weight vector
is used, solutions in the nonconvex Pareto-optimal region cannot be found by these
methods.

All methods discussed here require some knowledge about the problem. In the case
of the weighted sum approach, we have shown earlier that a uniformly spaced set of
weight vectors may not produce uniformly spaced Pareto-optimal solutions. Moreover,
different weight vectors may produce an identical Pareto-optimal solution. The extent
of non-uniformity in the obtained Pareto-optimal solutions and the range of useful
weight vectors largely depend on the problem. Similarly, in the e-constraint method
the choice of the € vector is an important one. The resulting Pareto-optimal solution
largely depends on the chosen € vector. Once again, a uniformly spaced € vector' may
not produce a uniformly spaced set of Pareto-optimal solutions. Similar arguments can
be made with the weighted metric method. The value function approach depends on
the utility function U. The parameters involved in these functions can be changed to

2 A uniformly spaced € vector can be created by systematically varying each member of the € vector
uniformly and by keeping the others constant.
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find different Pareto-optimal solutions. Here too, the resulting Pareto-optimal solution
will depend on the chosen parameters. In the goal programming method, the target
values and the chosen weights largely affect which Pareto-optimal solution will result.

Despite these shortcomings, classical methods have a number of advantages, because
of which they are used in solving real-world multi-objective optimization problems.
The proofs of convergence (which are not discussed adequately in this present text, but
can be found in texts on classical methods) to the Pareto-optimal set are their main
strength. The weighted sum approach and the weighted metric approach guarantee
that every Pareto-optimal solution corresponds to an optimal solution to the resulting
single-objective optimization problem for a convex MOOP. The weighted Tchebycheff
method and the c-constraint method guarantee that every Pareto-optimal solution
corresponds to an optimal solution to the resulting single-objective optimization
problem for any convex or nonconvex MOOP. With these properties, it then depends
on the efficiency of the chosen single-objective optimization algorithm to find the true
Pareto-optimal solutions. Moreover, the methods are simple and easy to implement
on a computer.

In order to highlight the difference between the classical preference-based approach
and the ideal approach of multi-objective optimization, we show simulation results
of an elitist non-dominated sorting genetic algorithm (NSGA-II), discussed later in
Section 6.2, on two problems used in illustrating the weighted sum approach earlier
in this chapter. The first problem (u = 0.2 and b = 1 in equation (3.2)) results in a
convex Pareto-optimal front and the second problem (u = 0.1 and b = 3 in the same
equation) results in a nonconvex Pareto-optimal region. NSGA-II (with a population
size of 20 and a maximum of 25 generations) uses 500 function evaluations in each
case. Figures 37 and 38 show all 20 obtained non-dominated solutions for the first and
second problem, respectively. These figures demonstrate how multiple solutions, very
close to or on the Pareto-optimal front, can be simultaneously obtained using a single
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Figure 37 An MOEA (NSGA-II) finds

20 solutions in one single simulation on a

convex problem.

Figure 38 An MOEA (NSGA-II) finds

20 solutions in one single simulation on a

nonconvex problem.
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simulation run of an MOEA and without using any additional problem parameters.
Importantly, the performance of the MOEA used in this study does not seem to matter
to the convexity of the Pareto-optimalfront. Moreover, a reasonably good distribution
of solutions is obtained in both problems. Although we have not presented any MOEA
technique yet, the above simulation results, in comparison to those obtained using
classical methods discussed in this chapter, provide a clear distinction between the
ideal and preference-based approaches.

3.9 Summary

The principle of multi-objective optimization was described in the previous chapter.
It was highlighted there that multi-objective optimization is different from single
objective optimization. In the case of conflicting objectives, the resulting multi
objective optimization problem (MOOP) gives rise to a number of optimal solutions,
known as Pareto-optimal solutions or non-inferior solutions. Since none of these
solutions can be said to be any better than the others, the first task in an ideal multi
objective optimization is to find as many such Pareto-optimal solutions as possible.

In this present chapter, we have reviewed a number of classical multi-objective
optimization algorithms. Most algorithms convert the MOOP problem into a single
objective optimization problem by using some user-defined procedures. Of these, the
weighted approach converts multiple objectives into a single objective by using a
weighted sum of objectives. The weight vector is user-defined. Since this method
is incapable of finding trade-off optimal solutions in problems with a nonconvex
Pareto-optimal region, the c-constraint approach converts all but one of the objective
functions into constraints. Again, user-defined limits are used to constrain the
objectives. Another way to solve nonconvex problems is to minimize a Tchebycheff
metric constructed by using multiple objectives. This method also requires a weight
vector for emphasizing the objectives differently. For some of these algorithms, there
exist theorems proving that the optimal solution of the converted single-objective
optimization problem is one of the Pareto-optimal solutions. These proofs make
classical multi-objective optimization algorithms interesting. On the other hand, in
their practical use each of these algorithms may have to be used many times, hopefully
each time finding a different Pareto-optimal solution. Moreover, each of these classical
methods involve a number of user-defined parameters, which are difficult to set in an
arbitrary problem.

In the next chapter, we will present an overview of evolutionary algorithms, and in
subsequent chapters explain how such algorithms can be a useful alternative to finding
multiple Pareto-optimal solutions simultaneously in a multi-objective optimization
problem.





4

Evolutionary Algorithms

Evolutionary algorithms (EAs) mimic natural evolutionary principles to constitute
search and. optimization procedures. EAs are different from classical search and
optimization procedures in a variety of ways. In this chapter, we will present a number
of popular evolutionary algorithms by discussing their differences with classical
methods.

Although this book is about multi-objective optimization, most multi-objective
evolutionary algorithms modify single-objective evolutionary algorithms in special
ways. Thus, an understanding of single-objective evolutionary algorithms will be
essential in understanding the working principles of multi-objective evolutionary
algorithms. Among different evolutionary algorithms, we will discuss in detail
binary-coded and real-parameter genetic algorithms. Thereafter, we will present
various procedures of evolution strategy. Finally, brief descriptions of evolutionary
programming and genetic programming are presented. However, there exist other
evolutionary and nature-inspired algorithms, such as ant-colony optimization,
simulated evolution, DNA computing, and cultural algorithms, descriptions of which
can all be found in the EA literature.

As discussed in the previous chapter, one of the two tasks in the ideal multi-objective
optimization is to find widely spread solutions in the obtained non-dominated front.
Finding and maintaining multiple solutions in one single simulation run is a unique
feature of evolutionary optimization techniques. At the end of this chapter, we will
also describe a number of methods to find multiple optimal solutions in multi-modal
function optimization using evolutionary techniques. Some of these methods are
directly used in the multi-objective evolutionary methods described in the subsequent
chapters.

4.1 Difficulties with Classical Optimization Algorithms

In any growing field of research and application, it becomes difficult and dangerous
to call any study 'classical'. In this book, we have loosely called all search and
optimization algorithms that use a single solution update in every iteration and
that mainly use a deterministic transition rule as classical methods. Many such
optimization algorithms can be found in standard textbooks (Arora, 1989; Deb, 1995;
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Fox, 1971; Haug and Arora, 1989; Himmelblau, 1972; Reklaitis et al., 1983). Interested
readers can refer to these texts for a good understanding of some of those algorithms.

Most classical point-by-point algorithms use a deterministic procedure for
approaching the optimum solution. Such algorithms start from a random guess
solution. Thereafter, based on a pre-specified transition rule, the algorithm suggests
a search direction, which is often arrived at by considering local information. A uni
directional search is then performed along the search direction to find the best solution.
This best solution becomes the new solution and the above procedure is continued
for a number of times. Figure 39 illustrates this procedure. Algorithms vary mostly in
the way the search directions are defined at each intermediate solution.

Classical optimization methods can be classified into two distinct groups: direct
methods and gradient-based methods (Deb, 1995). In direct search methods, only the
objective function (f(x)) and the constraint values (gj(x), hk(X)) are used to guide
the search strategy, whereas gradient-based methods use the first- and/or second-order
derivatives of the objective function and/or constraints to guide the search process.
Since derivative information is not used, the direct search methods are usually slow,
requiring many function evaluations for convergence. For the same reason, they can
also be applied to many problems without a major change in the algorithm. On the
other hand, gradient-based methods quickly converge near an optimal solution, but
are not efficient in non-differentiable or discontinuous problems. In addition, there are
some common difficulties with most classical direct and gradient-based techniques, as
follows:

• The convergence to an optimal solution depends on the chosen initial solution.
• Most algorithms tend to get stuck to a suboptimal solution.
• An algorithm efficient in solving one optimization problem may not be efficient in

solving a different optimization problem.
• Algorithms are not efficient in handling problems having a discrete search space.

Feasible
decision

Constraints

Figure 39 Most classical methods use a point-by-point approach.
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• Algorithms cannot be efficiently used on a parallel machine.

79

Since nonlinearities and complex interactions among problem variables often exist
in real-world optimization problems, the search space usually contains more than one
optimal solution, of which most are undesired locally optimal solutions having inferior
objective function values. While solving these problems, when classical methods get
attracted to any of these locally optimal solutions, there is no escape.

Every classical optimization algorithm is designed to solve a specific type of
problem. For example, the geometric programming method (Reklaitis et al., 1983) is
designed to solve only posynomial-type objective function and constraints. Geometric
programming is efficient in solving such problems but cannot be applied easily to
solve other types of functions. The conjugate direction or conjugate gradient methods
have convergence proofs for solving quadratic objective functions having one optimal
solution, but they are not expected to work well in problems having multiple optimal
solutions. The Frank-Wolfe's successive linear programming method (Reklaitis et al.,
1983) works efficiently on linear function and constraints, but for solving nonlinear
problems its performance largely depends on the chosen initial conditions. Thus, one
algorithm may be best suited for one problem and may not even be applicable to a
different problem. This requires users to know a number of optimization algorithms
in order to solve different optimization problems.

In most practical optimization problems, some decision variables are restricted to
take discrete values only. This requirement often arises to meet the market conditions.
For example, if the diameter of a mechanical component is a decision variable and
the component is likely to be procured 'off-the-shelf', the optimization algorithm
cannot use any arbitrary diameter. A usual practice to tackle such problems is to
assume that all variables are continuous during the optimization process. Thereafter,
an available size closer to the obtained solution is recommended. However, there are
major difficulties with this approach. First, since infeasible values of a decision variable
are allowed in the optimization process, the optimization algorithm spends enormous
time in computing infeasible solutions (in some cases, it may not even be possible to
evaluate an infeasible solution). This makes the search effort inefficient. Secondly, as
post-optimization calculations, the nearest lower and upper available sizes need to be
checked for each infeasible discrete variable. For n such discrete variables, a total of
Z" additional solutions need to be evaluated. Thirdly, two options checked for each
variable may not guarantee formation of the optimal combination with respect to
other variables. All of these difficulties can be eliminated if only feasible values of the
variables are allowed during the optimization process.

Many real-world optimization problems require the use of simulation software
involving the finite element method, the computational fluid mechanics approach,
nonlinear equation solving, or other computationally extensive methods to compute
the objective function and constraints. Because of the affordability and availability
of parallel computing systems, it has now become convenient to use them in solving
complex real-world optimization problems. Since most classical methods use the point
by-point approach, where one solution gets updated to a new solution in one iteration,
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the advantages of parallel systems cannot be fully exploited.
The above discussion suggests that classical methods without major fix-ups may face

difficulties in solving practical optimization problems. In this chapter, we will describe
a few evolutionary algorithms which may alleviate some of the above difficulties and
which are increasingly replacing classical methods in practical problem solving.

4.2 Genetic Algorithms

Over the last decade, genetic algorithms (GAs) have been extensively used as search
and optimization tools in various problem domains, including the sciences, commerce
and engineering. The primary reasons for their success are their broad applicability,
ease of use and global perspective (Goldberg, 1989). r. it:

The concept of a genetic algorithm was first edficeived by John Holland of the
University of Michigan, Ann Arbor. Thereafter, he and his students have contributed
much to the development of this field. Most of the initial research work can be
found in various International Conference Proceedings. However, there now exist
several textbooks on GAs (Goldberg, 1989; Gen and Cheng, 1997; Holland, 1975;
Michalewicz, 1992; Mitchell, 1996; Vose, 1999). A more comprehensive description
of GAs, along with other evolutionary algorithms, can be found in the recently

)r;J;'{f compiled 'Handbook on Evolutionary Computation' (Back et al., 1997). Three
f· , ; journals ('Evolutionary Computation Journal' published by MIT Press, 'Transactions

on Evolutionary Computation' published by IEEE and 'Genetic Programming and
Evolvable Machines' published by Kluwer Academic Publishers) are now dedicated to

/' ~promote research in this field. In addition, most GA applications can also be found in
various domain-specific journals.

In this section, we will first describe the working principle of a binary-coded GA.
Thereafter, we will describe a real-parameter GA, which is ideally suited to handle
problems with a continuous search space. Because of the population-approach of
GAs, constraints can be handled in a much better way than the way in which they
are handled in classical search and optimization algorithms. We will also describe a
number of approaches for handling constraints in GAs.

4.2.1 Binary Genetic Algorithms

Working Principles

As the name suggests, genetic algorithms (GAs) borrow their working principle from
natural genetics. In this section, we will describe the principles of a GA's operation.
To illustrate the working of GAs better, we will also show a hand-simulation of one
iteration of GAs on a two-variable problem. A theoretical description of GA parameter
interactions and other salient issues are then presented.

/ ';f? JA ./lY(1'
/
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GAs are search and optimization procedures that are motivated by the principles
of natural genetics and natural selection. Some fundamental ideas of genetics are
borrowed and used artificially to construct search algorithms that are robust and
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require minimal problem information.
The working principle of GAs is very different from that of most classical

optimization techniques. We describe the working of a GA by illustrating a simple
can design problem. A cylindrical can is considered to have only two parameters 
the diameter d and height h. Let us consider that the can needs to have a volume
of at least 300 ml and the objective of the design is to minimize the cost of the can
material. With this constraint and the objective, we first write the corresponding
nonlinear programming problem (NLP problem) (Deb, 1999b):

Minimize

subject to

Variable bounds

f(d,h)=c(~+ndh), )
_ nd2h

91 (d, h) = -4- 2: 300,

dmin :S d :S dmax,
hmin :S h :S h max.

(4.1)

The parameter c is the cost of the can material per square em, and the decision
variables d and h are allowed to vary in [dmin, dmax] and [hmin, h max] em, respectively.

Representing a Solution

In order to use GAs to find the optimal decision variables d and h, which satisfy the
constraint 91 and minimizes f, we first need to represent them in binary strings. Let
us assume that we shall use five bits to code each of the two decision variables, thereby
making the overall string length equal to 10. The following string represents a can of
diameter 8 em and height 10 em:

01000 01010
~~

d h

This string and corresponding decision variables are shown in Figure 40. In this
representation, the lower and upper bounds of both decision variables are considered
to be zero and 31, respectively. With five bits to represent a decision variable, there are
exactly 25 or 32 different solutions possible. Choosing the lower and upper bounds
as described above allows the GA to consider only integer values in the range [0,
31]. However, GAs are not restricted to use only integer values; in fact, GAs can be
assigned to use any other integer or non-integer values just by changing the string

§lh
1--1

d

(d, h) =(8, 10) em

(Chromosome) =0 I 000 a I a I a

Figure 40 A typical can and its chromosomal representation are shown. The cost of the

can is marked as 23 units. This figure is taken from Sadhana (Deb, 1999b). Reproduced with

permission from Indian Academy of Sciences, Bangalore.
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(4.2)

length and lower and upper bounds:

. X~ax _X~in

Xi = xi11ln + t 2f i _It DV(sil,

where Ci is the string length used to code the i-th variable and DV(sil is the decoded
value of the string Si (where the complete string is s = U~l s.). In the above example,
Ci = 5, xrin = 0 and xrax = 31 for both variables, such that Xi = DV(sil. The above
mapping function allows the following features to exist in the decision variables:

1. Any arbitrary (albeit finite) precision can be achieved in the decision variables by
using a long enough string.

2. Different decision variables can have different precisions by simply using different
substring lengths.

3. Decision variables are allowed to take positive and negative values.
4. Variable bounds are taken care of by the mapping function given in equation (4.2).

Coding the decision variables in a binary string is primarily used to achieve a pseudo
chromosomal representation of a solution. For example, the lO-bit string illustrated
above can be explained to exhibit a biological representation of a can having a diameter
of 8 em and a height of 10 cm. Natural chromosomes are made of many genes, each
of which can take one of many different allele values (such as, the gene responsible
for the eye color in a person's chromosomes may be expressed as black, whereas it
could have been blue or some other color). When we see the person, we see the
person's pheIfo'i1pic representation, but each feature of the person is precisely written
in his/her chromosomes - the genotypic representation of the person. In the can design
problem, the can itself is the phenotypic representation of an artificial chromosome of
10 genes. To see how these 10 genes control the phenotype (the shape) of the can, let
us investigate the leftmost bit (gene) of the diameter (d) parameter. A value of 0 at
this bit (the most significant bit) allows the can to have diameter values in the range
[0, 15] em, whereas the other value 1 allows the can to have diameter values in the
range [16, 31] em. Clearly, this bit (or gene) is responsible for dictating the 'slidn%ss'
of the can. If the allele value 0 is expressed, the can is slim, while if the value 1 is
expressed, the can is 'fat'. Each other bit position or a combination of two or more
bit positions can also be explained to support the can's phenotypic appearance, but
some of these explanations are interesting and important, and some are not.

After choosing a string representation scheme and creating a population of strings
at random, we are ready to apply genetic operations to such strings to hopefully find
better populations of solutions. However, before we discuss the genetic operators used
in GAs, we shall describe an intermediate step of assigning a 'goodness' measure to
each solution represented by a string.

Assigning Fitness to a Solution

It is important to reiterate that binary GAs work with strings representing the decision
variables, instead of decision variables themselves. Once a string (or a solution) is
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gen gen + 1

Assign Fitness

No

Figure 41 A flowchart of the working principle of a GA.

created by genetic operators, it is necessary to evaluate the solution, particularly
in the context of the underlying objective and constraint functions. In the absence
of constraints, the fitness of a string is assigned a value which is a function of the
solution's objective function value. In most cases, however, the fitness is made equal
to the objective function value. For example, the fitness of the above can represented
by the lO-bit string sis:

F(s) 0.065 [n (8)2/2 + n (8) (10)] ,

23,

assuming c = 0.065. Since the objective of the optimization here is to mmirmze
the objective function, it is to be noted that a solution with a smaller fitness value
compared to another solution is better.

We are now in a position to describe the genetic operators which constitute the
main part of a GA cycle. Figure 41 shows a flowchart of the working of a GA. Unlike
classical search and optimization methods, a GA begins its search with a random
set of solutions, instead of just one solution. Once a random population of solutions
(in the above example, a random set of binary strings) is created, each is evaluated
in the context of the underlying NLP problem (as discussed above) and a fitness is
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assigned to each solution. The evaluation of a solution means calculating the objective
function value and constraint violations. Thereafter, a metric must be defined by
using the objective function value and constraint violations to assign a relative merit
to the solution (called the fitness). A termination condition is then checked. If the
termination criterion is not satisfied, the population of the solutions is modified by
three main operators and a new (and hopefully better) population is created. The
generation counter is incremented to indicate that one generation (or, one iteration,
in the parlance of classical search methods) of the GA is completed. The flowchart
shows that the working of a GA is simple and straightforward. We will now discuss
the genetic operators, in the light of the can design problem.

Figure 42 shows the phenotypes of a random population of six cans. The fitness (for
feasible solutions, this is the cost term, while for infeasible solutions it is the cost plus
the penalty in proportion to constraint violation) of each can is marked on the latter.
It is interesting to note that two solutions do not have an internal volume of 300 ml
and thus are penalized by adding an extra artificial cost, a matter which is discussed
in Section 4.2.3 later. Currently, it will suffice to note that the extra penalized cost is
large enough to cause all infeasible solutions to have a worse fitness value than that
of any feasible solution. We are now ready to discuss three genetic operators.

Reproduction or Selection Operator

The primary objective of the reproduction operator is to make duplicates of good
solutions and eliminate bad solutions in a population, while keeping the population
size constant. This is achieved by performing the following tasks:

1. Identify good (usually above-average) solutions in a population.
2. Make multiple copies of good solutions.
3. Eliminate bad solutions from the population so that multiple copies of good

solutions can be placed in the population.

There exists a number of ways to achieve the above tasks. Some common methods
are tournament selection, proportionate selection and ranking selection (Goldberg

~ t30j

§ E373

§+30

~+40

Figure 42 A random population of six cans. This figure is taken from Sadhana (Deb,

1999b). Reproduced with permission from Indian Academy of Sciences, Bangalore.
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and Deb, 1991).
In the tournament selection, tournaments are played between two solutions and

the better solution is chosen and placed in the mating pool. Two other solutions are
picked again and another slot in the mating pool is filled with the better solution. If
carried out systematically, each solution can be made to participate in exactly two
tournaments. The best solution in a population will win both times, thereby making
two copies of it in the new population. Using a similar argument, the worst solution
will lose in both tournaments and will be eliminated from the population. In this way,
any solution in a population will have zero, one or two copies in the new population.
It has been shown elsewhere (Goldberg and Deb, 1991) that the tournament selection
has better or equivalent convergence and computational time complexity properties
when compared to any other reproduction operator that exists in the literature.

Figure 43 shows six different tournaments played between old population members
(each gets exactly two turns). When cans with a cost of 23 units and 30 units are
chosen at random for the first tournament, the can costing 23 units wins and a copy of
it is placed in the mating pool. The next two cans are chosen for the second tournament
and a copy of the better can is then placed in the mating pool. This is how the mating
pool (Figure 44) is formed. It is interesting to note how better solutions (having less
costs) have made themselves to have multiple copies in the mating pool and worse
solutions have been discarded. This is precisely the purpose of a reproduction or

§ . Matiog Pool • @
~]-§ @I-{~
@J ~ Q [§+30o ~~ L=J~ Q
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Figure 43 Tournaments are played between the six population members of Figure 42.

The population enclosed by the dashed box forms the mating pool. This figure is taken

from Sadhana (Deb, 1999b). Reproduced with permission from Indian Academy of Sciences,

Bangalore.
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Figure 44 The population after reproduction operation. This figure is taken from Sadhana

(Deb, 1999b). Reproduced with permission from Indian Academy of Sciences, Bangalore.

a selection operator. An interesting aspect of the tournament selection operator is
that just by changing the comparison operator, the minimization and maximization
problems can be handled easily.
~-There exist a num""""Eler ofotIier selection operators. Before we discuss other genetic
operators, let us describe a number of other popular selection operators. In the
proportionate selection method, solutions are assigned copies, the number of which
is proportional to their fitness values. If the average fitness of all population members
is f a v g , a solution with a fitness f i gets an expected fi/f a v g number of copies.
The implementation of this selection operator can be thought of as a roulette-wheel
mechanism, where the wheel is divided into N (population size) divisions, where
the size of each is marked in proportion to the fitness of each population member.
Thereafter, the wheel is spun N times, each time choosing the solution indicated
by the pointer, as shown in Figure 45. This figure shows a roulette wheel for five
individuals having different fitness values. Since the third individual has a higher
fitness value than any other, it is expected that the roulette wheel selection (RWS)
will choose the third solution more often than any other solution. This RWS scheme
can also be easily simulated on a computer. Using the fitness value Fi of all strings, the
probability of selecting the i-th string is Pi = FdL~=l Fj • Thereafter, the cumulative

probability (Pi = L~=l p.) of each string can be calculated by adding the individual

Solution, i Fi Pi Pi PiN
1 25.0 0.25 0.25 1.25
2 5.0 0.05 0.30 0.25
3 40.0 0.40 0.70 2.00

1

4 10.0 0.10 0.80 0.50
5 20.0 0.20 1.00 1.00

5

Figure 45 A roulette wheel is marked for five individuals according to their fitness values.

The third individual has a higher probability of selection than any other.
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5

probabilities from the top of the list. Thus, the bottom-most string in the population
has a cumulative probability (PN) equal to 1. The roulette-wheel concept can be
simulated by realizing that the i-th string in the population represents the cumulative
probability values in the range [Pi-I, Pd. The first string represents the cumulative
values from zero to PI. In order to choose N strings, N random numbers between
zero to one are created. Thus, a string that represents the chosen random number in
the cumulative probability range (calculated from the fitness values) for the string is
copied to the mating pool. Figure 46 shows the cumulative probability line (ranging
from zero to one) and the corresponding ranges of each of the five solutions for the
example problem outlined in Figure 45. A random number ri shown by the pointer
marks solution 3. Hence, solution 3 is selected as a member of the mating pool. In
this way, the string with a higher fitness value represents a larger range of cumulative
probability values and therefore has a higher probability of being copied into the
mating pool. Since the computation of the average fitness requires the fitness of
all population members, this selection operator is slow compared to the tournament
selection method (Goldberg and Deb, 1991). Moreover, the roulette-wheel selection
operator inherently maximizes the fitness function.

The above implementation of the proportionate selection is noisy in the sense of
introducing a large variance in its realizations. The variance may be reduced by using a
somewhat deterministic version of the above roulette-wheel selection operator. In the
stochastic remainder roulette-wheel selection (SRWS) operator, the probabilities Pi
are multiplied by the population size and the expected number of copies is calculated
for all solutions. Thereafter, each solution is first assigned a number of copies equal to
the integer part ofthe expected number. Thereafter, the usual roulette-wheel selection
(RWS) operator is applied with the fractional part of the expected number of all
solutions to assign further copies. Since a part of the assignment is deterministic,
this operator is less noisy. For the example problem shown in Figure 45, the expected
number of copies (Pi N) is also computed. Under the SRWS scheme, we first assign one
copy each to solutions 1 and 5, two copies to solution 3, and no copies to solutions 2
and 4. The remaining one slot in the mating pool is filled by using a RWS operation
on the entire population with the fractional values as fitness: (0.25, 0.25, 0.00, 0.50,
0.00).

Whether the basic roulette-wheel selection or the stochastic remainder roulette
wheel selection operator is used, O(N 1 random numbers have to be created to
complete the selection process. This computation can be reduced if a different version

i= 1 2 3 4

~~I~
O.~ 1.0

I i .1

Figure 46 An implementation of the roulette-wheel selection operator.
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4

3

Figure 47 The stochastic universal sampling selection procedure.

- stochastic universal sampling (SUS) - is used (Baker, 1985). In this version, only
one random number r is chosen for the whole selection process. Since N different
solutions have to be chosen, a set of N equi-spaced numbers is created:

R = {r, r + liN, r + 2/N, ... , r + (N -l)/N} mod 1.

Thereafter, a solution corresponding to each member of R is chosen from the
cumulative probability values as before. Figure 47 shows the selection procedure for
the same five solutions using the SUS method. Assuming that the periphery of the
roulette wheel is of one unit, the first solution is chosen according to the location
of the random number on the periphery. Other solutions are chosen by traversing
identical distances (1 IN) along the periphery of the roulette wheel. In the above case,
solutions 1 and 3 get two copies each and solution 5 gets one copy after selection
operation. Solutions 2 and 4 do not get any copies in the mating pool.

Besides having a large computational complexity, proportionate selection methods
have a scaling problem. The outcome of this selection operator is dependent on
the true value of the fitness, instead of the relative fitness values of the population
members. For example, if in a population, one solution has a large fitness value
compared to the rest of the population members, the probability of choosing this
super-solution would be close to one, thereby dominating the mating pool with its
copies. On the other hand, if in a population, all solutions have more or less the
same fitness value, every solution has a similar probability of selection (pd. This will
lead to a single assignment of each solution in the mating pool. This phenomenon
is equivalent to not performing the selection operation at all. In order to circumvent
both of these difficulties, raw fitness values are mapped within a predefined range of
scaled fitness values (Goldberg, 1989). However, the tournament selection does not
have this scaling problem.

The scaling difficulty can also be avoided by using a ranking selection method.
First, the solutions are sorted according to their fitness, from the worst (rank 1) to
the best (rank N). Each member in the sorted list is assigned a fitness equal to the
rank of the solution in the list. Thereafter, the proportionate selection operator is
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applied with the ranked fitness values, and N solutions are chosen for the mating
pool.

Crossover Operator

A crossover operator is applied next to the strings of the mating pool. A little thought
will indicate that the reproduction operator cannot create any new solutions in the
population. It only makes more copies of good solutions at the expense of not-so
good solutions. The creation of new solutions is performed by crossover and mutation
operators. Like the reproduction operator, there exists a number of crossover operators
in the GA literature (Spears, 1998), but in almost all crossover operators, two strings
are picked from the mating pool at random and some portion of the strings are
exchanged between the strings to create two new strings. In a single-point crossover
operator, this is performed by randomly choosing a crossing site along the string and
by exchanging all bits on the right side of the crossing site.

Let us illustrate the crossover operator by picking two solutions (called parent
solutions) from the new population created after the reproduction operator. The
cans and their genotype (strings) are shown in Figure 48. The third site along the
string length is chosen at random and the contents of the right side of this cross site
are exchanged between the two strings. The process creates two new strings (called
offspring). Their phenotypes (the cans) are also shown in this figure. Since a single
cross site is chosen here, this crossover operator is called the single-point crossover
operator.

It is important to note that the above crossover operator created a solution (having
a cost of 22 units) which is better in cost than both of the parent solutions. One
may wonder that if a different cross site were chosen or two other strings were chosen
for crossover, whether we would have found a better offspring every time. It is true
that every crossover between any two solutions from the new population is not likely
to find offspring better than both parent solutions, but it will be clear in a while
that the chance of creating better solutions is far better than random. This is true
because the parent strings being crossed are not any two arbitrary random strings.
These strings have survived tournaments played with other solutions during the earlier
reproduction phase. Thus, they are expected to have some good bit combinations in
their string representations. Since, a single-point crossover on a pair of parent strings
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Figure 48 The single-point crossover operator. This figure is taken from Sadhana (Deb,

1999b). Reproduced with permission from Indian Academy of Sciences, Bangalore.



90 MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION

can only create edifferent string pairs (instead of all Z€-l possible string-pairs) with
bit combinations from either strings, the created offspring are also likely to be good
strings. Moreover, every crossover may not create better solutions, but we will not
worry too much about this here. If bad solutions are created, they will get eliminated in
the next reproduction operation and hence will have a short life. However, let us think
about the other possibility, that is, a good solution is created by the crossover operator.
Since the offspring is good, it is likely to get more copies in the next reproduction
operation and is also likely to get more chances to achieve a crossover with other good
solutions in subsequent generations. Thus, more and more solutions in the population
are likely to have similar chromosomes. This is exactly how biologists and evolutionists
have explained how complex life forms have formed from simple ones (Dawkins, 1976,
1986; Eldredge, 1989).

In order to preserve some good strings selected during the reproduction operator,
not all strings in the population are used in a crossover. If a crossover probability of
Pc is used, then 1DOPe % strings in the population are used in the crossover operation
and 1OO( 1 - Pe)% of the population are simply copied to the new population.

The above concept of exchanging partial information between two strings can also
be achieved with more than one cross sites. In a two-point crossover operator, two
different cross sites are chosen at random. This will divide the string into three
substrings. The crossover operation is completed by exchanging the middle substring
between the strings, as shown in the following example:

o
o 1 I 0

1 1
o
1

Parents

o 0 11
000

o
1

1
1

o 0
o ~ 0 1 I 1

1 0

Offspring

1 0 0 11
000 0

o
1

1
1

o
o

Extending this idea, one can also implement a n-point crossover, where n cross sites
(odd or even) can be chosen. If an odd number of cross sites is chosen, the end of
each string can be considered as an additional cross site, thereby making the total
number of cross sites an even number. The crossover can then proceed by exchanging
alternate substrings. The extreme of this process is the uniform crossover, where one
offspring is constructed by choosing every bit with a probability P (usually P = 0.5 is
used) from either parent, as shown in the following example:

o
o

Parents
1 0 000 101
1 1 1 000 1 1

o 0
o ~ 0

Offspring
1 0 1 0 0 0 0
1 1 000 1 1

1 0
1 0

Usually, P = 0.5 is used. In the example problem, the second, fourth, fifth, seventh and
ninth bits are exchanged between the parents. In terms of the extent of exploration (or
search) power of a crossover operator, a single-point crossover preserves the structure
of the parent strings to the maximum extent in the offspring. The extent of string
preservation reduces with the increase of cross sites in the crossover operator and is
a minimum in the case of a uniform crossover operator. Spears (1998) has analyzed a
number of these crossover operators and has found several interesting properties for
many of them.
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Mutation Operator
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The crossover operator IS mainly responsible for the search aspect of genetic
algorithms, even though the mutation operator is also used for this purpose. The bit
wise mutation operator changes a 1 to a 0, and vice versa, with a mutation probability
of Pm. The need for mutation is to keep diversity in the population. Figure 49 shows
how a string obtained after the use of reproduction and crossover operators has been
mutated to another string, thus representing a slightly different can. Once again, the
solution obtained in the illustration is better than the original solution. Although it
may not happen in all the instances of a mutation operation, mutating a string with
a small probability is not a random operation since the process has a bias for creating
only a few solutions in the search space.

The bit-wise mutation procedure described above requires the creation of a random
number for every bit. In order to reduce the computational complexity, Goldberg
(1989) suggested a mutation clock operator, where after a bit is mutated, the location
of the next mutated bit is determined by an exponential distribution. The mean of
the distribution is assumed to be !-1 = 1/Pm. The procedure is simple. First, create
a random number r E [0,1]. Then, estimate the next bit to be mutated by skipping
T] = -Pm ln] 1 - r) bits from the current bit. In this way, on an average, 0 (1 /Pm)
times less random numbers are to be generated. This mutation clock operator has
been used in Deb and Agrawal (1999b).

The three operators - selection, crossover, and mutation operators - are simple and
straightforward. The reproduction operator selects good strings, while the crossover
operator recombines together good substrings from two good strings to hopefully form
a better substring. The mutation operator alters a string locally to hopefully create
a better string. Since none of these operations are performed deterministically, these
claims are not guaranteed, nor explicitly tested, during a GA generation. However, it
is expected that if bad strings are created they will be eliminated by the reproduction
operator in subsequent generations and if good strings are created, they will be
emphasized. Later, we shall see some intuitive reasoning as to why a GA with these
simple operators constitutes a potential search and optimization algorithm.

Fundamental Differences

As seen from the above description of a GA's working principles, such algorithms are
very different from most of the traditional optimization algorithms. The fundamental
differences are described in the following paragraphs.

t22:J (10,6) 0 1 0~1~0 0011 0 ~ 0 1 O~O~O 00110 (8,6) tITiJ
Figure 49 The bit-wise mutation operator. The fourth bit is mutated to create a new

string. This figure is taken from Sadhana (Deb, 1999b). Reproduced with permission from

Indian Academy of Sciences, Bangalore.
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Binary GAs work with a coding of decision variables, instead of the variables
themselves. They work with a discrete search space, even though the function may be
continuous. On the other hand, since function values at various discrete solutions are
required, a discrete or a discontinuous function may be handled by using GAs. This
allows GAs to be applied to a wide variety of problem domains. Another advantage
is that GA operators exploit the similarities in string-structures to make an effective
search. We shall discuss more about this matter a little later. One of the drawbacks of
using a coding is that a suitable coding must be chosen for proper working of a GA.
Although it is difficult to know beforehand what coding is suitable for a problem, a
number of experimental studies (Back, 1996; Radcliffe, 1991) suggest that a coding
which respects the underlying building block processing must be used.

The more striking difference between GAs and most classical optimization methods
is that GAs work with a population of solutions instead of a single solution. Because
there is more than one string being processed simultaneously and used to update every
string in the population, it is likely that the expected GA solution may be a global
solution. Even though some classical algorithms are population-based, such as Box's
algorithm (Box, 1965), they do not use the obtained information efficiently. Moreover,
since a population is what is updated at every generation, a set of solutions (in the
case of multi-modal optimization, multi-objective optimization and others) can be
obtained simultaneously.

In the above discussion of GA operators and their working principles, no word has
been mentioned about the gradient or any other auxiliary problem information. In
fact, GAs do not require any auxiliary information except the objective function
values, although problem information can be used to speed up the GA's search
process. The direct search methods used in traditional optimization also do not require
gradient information explicitly, although in some of these methods search directions
are found by using the objective function values, which are similar in concept to the
gradient of the function. Moreover, some classical direct search methods work under
the assumption that the function to be optimized is unimodal. GAs do not impose
any such restrictions.

The other difference is that GAs use probabilistic rules to guide their search. On
the face of it, this may look unnecessary, but careful thinking may provide some
interesting properties for this type of search. The basic problem with most of the
classical methods is that they use fixed transition rules to move from one solution to
another solution. Since the destiny of these methods is pre-determined, they can only
be applied to a special class of problems, in particular those for which the transition
rules lead most search points towards the correct optimum. Thus, these methods are
not robust and cannot be applied to a wide variety of problems. GAs, on the other
hand, use probabilistic transition rules and an initial random population. These two
features allow GAs to recover from early mistakes, if any, and enable them to handle
a wide class of problems.

Another difference to most classical methods is that GAs can be easily and
conveniently used in parallel systems. By using the tournament selection operator,
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where two strings are picked at random and the better string is copied in the mating
pool, only two processors are involved at a time. Since any crossover operator requires
interaction between only two strings, and since mutation requires alteration in only
one string at a time, GAs are suitable for parallel implementations. There is another
advantage. Since in real-world design optimization problems, most computational time
is spent in evaluating solutions, with multiple processors all solutions in a population
can be evaluated in a distributed manner. This will reduce the overall computational
time substantially.

Every good optimization method needs to balance the extent of exploration of
information obtained up until the current generation through recombination and
mutation operators with the extent of exploitation through the selection operator.
If the solutions obtained are exploited too much, premature convergence is expected.
On the other hand, if too much stress is given on a search, the information obtained
thus far has not been used properly. Therefore, the solution time may be enormous
and the search exhibits a similar behavior to that of a random search. Most classical
methods have fixed transition rules and hence have fixed degrees of exploration and
exploitation. Since these issues can be controlled in a GA by varying the parameters
involved in the genetic operators, GAs provide an ideal platform for performing a
flexible search.

Understanding How GAs Work

The working principle described above is simple, with GA operators involving string
copying and substring exchange, plus the occasional alteration of bits. Indeed, it
is surprising that with such simple operators and mechanisms, a potential search
is possible. We will try to give an intuitive answer to such doubts and also
remind the reader that a number of studies have attempted to find a rigorous
mathematical convergence proof for GAs (Rudolph, 1994; Vose, 1999; Whitley, 1992).
Even though the operations are simple, GAs are highly nonlinear, massively multi
faceted, stochastic and complex. There exist studies using Markov chain analysis which
involve deriving transition probabilities from one state to another and manipulating
them to find the convergence time and solution. Since the number of possible states
for a reasonable string length and population size become unmanageable even with
the high-speed computers available today, other analytical techniques (statistical
mechanics approaches and diffusion models) have also been used to analyze the
convergence properties of GAs.

In order to investigate why GAs work, let us apply the GA for only one-cycle to a
numerical maximization problem:

Maximize sin (x ), }
Variable bound 0:::; x:::; rr. (4.3)

We will use five-bit strings to represent the variable x in the range [0,zr], so that the
string (00000) represents the x = 0 solution and the string (11111) represents the
x = n solution. The other 30 strings are mapped in the range [0, rr] uniformly. Let
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us also assume that we use a population of size four, the proportionate selection, the
single-point crossover operator with Pc = 1, and no mutation (or, Pm = 0). To start
the GA simulation, we create a random initial population, evaluate each string, and
then use three GA operators, as shown in Table 4. The first string has a decoded value
equal to 9 and this string corresponds to a solution x = 0.912, which has a function
value equal to sin(0.912) = 0.791. Similarly, the other three stings are also evaluated.
Since the proportionate reproduction scheme assigns a number of copies according
to a string's fitness, the expected number of copies for each string is calculated in
column 5. When the proportionate selection operator is actually implemented, the
number of copies allocated to the strings is shown in column 6. Column 7 shows the
mating pool. It is noteworthy that the third string in the initial population has a fitness
which is very small compared to the average fitness of the population and is eliminated
by the selection operator. On the other hand, the second string, being a good string,
made two copies in the mating pool. The crossover sites are chosen at random and
the four new strings created after crossover is shown in column 3 of the bottom table.
Since no mutation is used, none of the bits are altered. Thus, column 3 of the bottom
table represents the population at the end of one cycle of a GA. Thereafter, each of
these stings is then decoded, mapped and evaluated. This completes one generation of
a GA simulation. The average fitness of the new population is found to be 0.710, i.e.
an improvement from that in the initial population. It is interesting to note that even
though all operators used random numbers, a GA with all three operators produces a
directed search, which usually results in an increase in the average quality of solutions
from one generation to the next.

The string copying and substring exchange are all interesting and seem to improve
the average performance of a population, but let us now ask the question: 'What has
been processed in one cycle of a GA?' If we investigate carefully, we observe that
among the strings of the two populations there are some similarities in the string
positions among the strings. By the application of three GA operators, the number
of strings with similarities at certain string positions has been increased from the
initial population to the new population. These similarities are called schema in the
GA literature. More specifically, a schema represents a set of strings with certain
similarities at certain string positions. To represent a schema for binary codings, a
triplet (1, 0 and *) is used; a * represents both 1 or O. It is interesting to note that a
string is also a schema representing only one string - the string itself.

Two definitions are associated with a schema. The order of a schema H is defined
as the number of defined positions in the schema and is represented as 0 (H). A schema
with full order o(H) = erepresents a string. The defining length of a schema H is
defined as the distance between the outermost defined positions. For example, the
schema H = (* 1 0 * * 0 * * *) has an order o(H) = 3 (there are three defined
positions: 1 at the second gene, 0 at the third gene, and 0 at the sixth gene) and a
defining length 6(H) = 6 - 2 = 4.

A schema H1 = (1 0 * * *) represents eight strings with a 1 in the first position
and a 0 in the second position. From Table 4, we observe that there is only one string
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Table 4 One generation of a GA hand-simulation on the function sin(x).

Initial population

String nv- x f(x) fi/f a v g AC b Mating
pool

01001 9 0.912 0.791 1.39 1 01001
10100 20 2.027 0.898 1.58 2 10100
00001 1 0.101 0.101 0.18 0 10100
11010 26 2.635 0.485 0.85 1 11010

Average, f avg 0.569

Mating Pool cs- New population

String ov- x f(x)
01001 3 01000 8 0.811 0.725
10100 3 10101 21 2.128 0.849
10100 2 10010 18 1.824 0.968
11010 2 11100 28 2.838 0.299

Average, f avg 0.710
a DY, decoded value of the string.
b AC, actual count of strings in the population.
c CS, cross site.
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representing this schema H 1 in the initial population and that there are two strings
representing this schema in the new population. On the other hand, even though
there was one representative string of the schema H2 = (0 0 * * *) in the initial
population, there is not one in the new population. There are a number of other
schemata that we may investigate and conclude whether the number of strings they
represent is increased from the initial population to the new population or not.

The so-called schema theorem provides an estimate of the growth of a schema H
under the action of one cycle of the above tripartite GA. Holland (1975) and later
Goldberg (1989) calculated the growth of the schema under a selection operator
and then calculated the survival probability of the schema under crossover and
mutation operators, but did not calculate the probability of constructing a schema
from recombination and mutation operations in a generic sense. For a single-point
crossover operator with a probability Pc, a mutation operator with a probability Pm,
and the proportionate selection operator, Goldberg (1989) calculated the following
lower bound on the schema growth in one iteration of a GA:

f(H) [5(H) ]
m(H, t + 1) 2': m(H, t) f avg 1 - Pc £_ 1 - Pmo(H) , (4.4)

where m(H, t) is the number of copies of the schema H in the population at generation
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t, f(H) is the fitness of the schema (defined as the average fitness of all strings
representing the schema in the population), and f avg is the average fitness of the
population. The above inequality leads to the schema theorem (Holland, 1975), as
follows.

Theorem 4.2.1. Short, low-order, and above-average schemata receive exponen
tially increasing number of trials in subsequent generations.

A schema represents a number of similar strings. Thus, a schema can be thought of
as representing a certain region in the search space. For the above function, the schema
H1 = (1 0 * * *) represents strings with x values varying from 1.621 to 2.330 with
function values varying from 0.999 to 0.725. On the other hand, the schema H2 = (0 0
* * *) represents strings with x values varying from 0.0 to 0.709 with function values
varying from 0.0 to 0.651. Since our objective is to maximize the function, we would
like to have more copies of strings representing schema H1 than H2. This is what we
have accomplished in Table 4 without having to count all of these competing schema
and without the knowledge of the complete search space, but by manipulating only a
few instances of the search space. Let us use the inequality shown in equation (4.4)
to estimate the growth of H1 and H2. We observe that there is only one string (the
second string) representing this schema, or m( H1 ,0) = 1. Since all strings are used
in the crossover operation and no mutation is used, Pc = 1.0 and Pm = O. For the
schema H1 , the fitness f(Hl) = 0.898, the order o(H 1 ) = 2, and the defining length
6(H 1) = 1. In addition, the average fitness of the population is f avg = 0.569. Thus,
we obtain from equation (4.4):

0.898 [ 1 ]m(Hl,1) > (1). 0.569 1 - (1.0)5 ~ 1 - (0.0)(2) ,

1.184.

The above calculation suggests that the number of strings representing the schema
H 1 must increase. We have two representations (the second and third strings) of this
schema in the next generation. For the schema H2, the estimated number of copies
using equation (4.4) is m(H2, 1) ;::: 0.133. Table 4 shows that no representative string
of this schema exists in the new population.

The schema H1 for the above example has only two defined positions (the first
two bits) and both defined bits are tightly spaced (very close to each other) and
contain the possible near-optimal solution (the string (1 0 0 0 0) is the optimal
string in this problem). The schemata that are short, low-order, and above-average
are known as the building blocks. While GA operators are applied on a population
of strings, a number of such building blocks in various parts along the string get
emphasized, such as H1 (which has the first two bits in common with the true optimal
string) in the above example. Note that although H2 is short and low-order, it is not
an above-average schema. Thus, H2 is not a building block. This is how GAs can
emphasize different short, low-order and above-average schemata in the population.
Once adequate number of such building blocks are present in a GA population, they
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get combined together due to the action of the GA operators to form bigger and
better building blocks. This process finally leads a GA to find the optimal solution.
This hypothesis is known as the Building Block Hypothesis (Goldberg, 1989).

Significance of Population Size

In a genetic algorithm, a decision about whether to have a '1' or a '0' has to be made
at every bit position. The mechanism of using selection, crossover and mutation is one
of the many ways of arriving at a decision. Holland viewed this decision-making in
each bit independently and compared the process to a two-armed bandit game-playing
problem. With one arm being fixed to either a 1 or a 0, the task is to find the arm
which makes the maximum payoff (or fitness). With respect to the above definition
of schema, everyone-bit information is an order-one schema. Since the rest (£ - 1)
bits are not considered, the fitness of one instantiation of any order-one schema is
dependent on the exact value of bits at other locations.

In order to demonstrate the significance of an adequate population size in a GA, let
us make use of a simple bimodal single-variable objective function for maximization:

f(x) = Cl Nix, o i , b- ] + C2N(X, a2, b2), (4.5)

where the function N (x, ai, bd is a Gaussian function with a mean at ai and a
standard deviation of b.. The search space is spanned over [0,1]. By varying these
six parameters, one can obtain functions of differing complexity. Let us choose the
location of two maxima: a 1 = 0.25, and a2 = 0.80. First, we use the following setting:

b i = 0.05, b 2 = 0.05, Cl = 0.5, C2 = 1.0.

This makes the second maximum (at x = 0.80) the global maximum solution. Figure 50
shows the function. Let us consider two competing schemata (Ho == 0 * ... *) and
(H 1 == 1 * ... *) and analyze their growth under genetic operators. Figure 50 also
shows that the left region (x E [0,0.5]) is represented by Ho and the right region
(x E [0.5,1.0]) is represented by the schema H 1 . The average fitness of these two
schemata are also shown with dashed lines. It is clear that the schema H 1 has a
better fitness than Ho. Since the schema order and defining length are identical for
both these schemata and H 1 is above-average, it becomes a building block. Thus, it
is expected that a GA will make the right decision of choosing more solutions of H1

than Ho. Since a GA can decide the correct direction of search by processing order-one
schemata alone, a population of size two is essentially enough. However, note that the
average fitness values shown by dashed lines in Figure 50 for any of the schemata do
not adequately represent the fitness of all the strings which are represented by the
schema. There is a large variation in the fitness values among the strings representing
a schema. Because of this variability in fitness values, an appropriate number of copies
in each region must be present to adequately represent the fitness variations. If we
assume that ;\ (> 1) number of solutions are needed to statistically represent a region,
an overall population of size 2;\ is enough to solve the above problem by using a
binary-coded GA.
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Figure 51 The modified bimodal function

and average fitness values of two order-one

schemata.

Now let us change the problem by choosing another parameter setting:

bl = 0.20, bz = 0.05, C1 = 3, Cz = 1.

Figure 51 shows the function having two maxima. Now, the local maximum solution
occupies a larger basin of attraction than the global maximum solution. When the
fitnesses of Ho and H1 are computed (Table 5), it is observed that Ho has a better
fitness than H1. Thus, if a population size of 27\ is used to solve the modified
problem, a GA will be misled and emphasize more solutions of Ho in a random initial
population. Although this does not mean that a GA will not be able to recover from
such early mistakes, a reliable application of the GA would be to make sure that it is
started in the correct direction from the very first generation. In order to investigate
the higher-order schema competitions, we have computed the fitness of four order
two competing schemata in Table 5, where the order of Hoc, H0 1 , H10 and H11 is
vertically downwards. These values are also shown pictorially in Figure 52. Here also,

Table 5 Schema fitness values for the bimodal problem.

Schema fitness
Order-one Order-two Order-three

(0.000-0.500)
(0.500-1.000)

4.732
2.633

(0.000-0.250) 4.732
(0.250-0.500) 4.732
(0.500-0.750) 1.828
(0.750-1.000) 3.439

(0.000-0.125) 3.848
(0.125-0.250) 5.616
(0.250-0.375) 5.616
(0.375-0.500) 3.848
(0.500-0.625) 1.808
(0.625-0.750) 1.848
(0.750-0.875) 6.324
(0.875-1.000) 0.553
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Figure 53 Average fitness values of

different order-three schemata shown for the

modified bimodal function.

we observe that the schema (representing the region 0.750 :S. x :S. 0.875) containing
the global maximum solution does not win the competition. When we compute the
order-three schema competitions (see Table 5), we observe that the schema containing
the global maximum wins the competition. Figure 53 clearly shows that the schema
containing the global maximum has the maximum fitness value. However, the overall
function is favored for the local maximum. In order to recognize the importance of
the global maximum solution, a schema with a narrower region must be emphasized.
In fact, any higher-order (> 3) schema competition will favor the global maximum
solution. Thus, if a GA has to find the global maximum in a reliable way, the GA
has to start comparing order-three schemata with the variability in string fitness in
mind. Any competition lower than order three will favor the local maximum solution.
One of the ways to ensure that a GA will start processing from order-three schemata
is to have a population large enough to house strings representing all 23 competing
schemata. Let us recall that the former bimodal problem (see Figure 50) required us
to start processing from order-one schemata (having 21 or two competing schemata)
in order to proceed in the correct direction. Since here, eight schemata are competing,
a population of size 8A would be adequate to represent a sufficient number of strings
from each of the eight competing schemata. Thus, the modified bimodal problem needs
four times more population size in order to reliably find the global maximum solution
compared to the original bimodal problem.

Thus, we observe that the population size is related to the complexity of the
problem. The parameter A depends on the variability in fitness values of strings
representing a schema. For example, when keeping the location of two maxima, if the
function is not as smooth (Figure 54), the required sample size Aneeded to detect a
signal from the noise would be higher. Based on these considerations, Goldberg et al.
(1992) calculated a population sizing estimate for a binary-coded GA. Following this
study, Harik et al. (1999) tightened the sizing expression by considering the schema
competition from a gambler's ruin model.
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GA Operator Interactions

Besides choosing an appropriate population size, another important matter is the
balance between exploitation caused by the selection operator and the exploration
introduced by the chosen recombination and mutation operators. If the selection
operator uses too much selection pressure, meaning that it emphasizes the population
best solution too much by assigning many copies of it, the population loses its diversity
very quickly. In order to bring back the diversity, the exploration power of the
recombination and mutation operators must be large, meaning that these operators
must be able to create solutions which are fairly different from the parent solutions.
Otherwise, the population can become the victim of excessive selection pressure and
eventually converge to a sub-optimal solution. On the other hand, if the selection
pressure is very low, meaning that not much emphasis is given to the population-best
solutions, the GA's search procedure behaves like a random search process. Although
a qualitative argument of the balance between these two issues can be made and
understood, a quantitative relationship between them is difficult to achieve.

Goldberg et al. (1993b) balanced the extent of exploitation and exploration issues
by calculating the characteristic times of a selection and a crossover operator. In their
earlier work (Goldberg and Deb, 1991), the take-over times t 5 of a number of selection
operators were calculated. The take-over time was defined as the number of generations
required for the population-best solution to occupy all but one of the population slots
by repetitive application of the selection operator alone. This characteristic time of a
selection operator provides information about the speed with which the best solution
in a population is emphasized. It was observed that binary tournament selection and
linear ranking selection (with an assignment of two copies to the best solution) have
the same take-over times. Proportionate selection is much slower than tournament
selection.
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For the uniform crossover operator, investigators have calculated the mixing time

t c , which refers to the number of generations required before repetitive application of
the crossover operator alone can find a desired solution. This time gives information
about how long a GA would have to wait before an adequate mixing of population
members can produce the desired solutions.

By comparing the order of magnitudes of these two characteristic times,
investigators argued that a GA will work successfully if the following relationship
holds:

Pc 2: Alns, (4.6)

where A is a constant which relates to the string length and population size and
s is the selection pressure. On the one-max test problem, where the objective is to
maximize the number of Is in a string, Figure 55 shows the theoretical control map

for successful GAs. A similar control map is obtained using GA simulation results
(Figure 56). What is interesting to note from these figures is that a GA with any
arbitrary parameter setting is not expected to work well even on a simple problem. A
GA with a selection pressure s and a crossover probability Pc falling inside the control
map finds the desired optimum. The above problem is a bit-wise linear problem, where
a decision can be made in each bit, independent of the decisions taken at other bits.
Even for this problem, a tournament selection with a large tournament size (such as
s = 20 or so) and the uniform crossover operator with a small crossover probability
(such as Pc = 0.2 or so) and no mutation, is not expected to find the true optimum
solution. Although these parameter settings are probably extreme ones to choose in
any application, they provide an understanding of the importance of interactions
among GA operators and their parameter settings in performing a successful GA run.

For a selection pressure lower than a critical value, GAs can drift to any arbitrary
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Figure 55 A theoretical control map for the working of a GA on the one-max problem

(Goldberg et al., 1993b). Reprinted with permission from the Journal of the Society of

Instruments and Control Engineers (SICE).
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Figure 56 Simulation results show the working region for a GA on the one-max problem
(Goldberg et al., 1993b). Reprinted with permission from the Journal of the Society of
Instruments and Control Engineers (SICE).

solution and for a very large selection pressure, GAs cause important building blocks
to compete among themselves, thereby not finding the desired optimum. These two
cases become the two extreme bounds on the selection pressure in the above control
map.

GA Operator Interactions under a Fixed Number of Trials

It is clear from the description of the working principles of a GA that such operators are
tunable with the parameters associated with each of them. Since there exist flexibilities
for changing the importance of one operator over another or flexibilities in using a
different representation scheme to suit a problem, GAs are widely applicable to various
types of problems. As we have seen in the previous section, along with this flexibility
a burden is placed on the part of the user to choose an appropriate combination of
GA operators and their parameters. While facing a real-world problem, the overall
time to solve the problem is often fixed. This means that whatever algorithm is used
to solve the problem at hand, we are only allowed to use a fixed number of trials
(or function evaluations). For the sake of our discussion here, let us say that we are
allowed to use a total of S trials to solve a problem. Since in a generational GA we
create N new offspring at every generation, this means that we are allowed to run a GA
having a population size N for a maximum of t m ax = SIN generations. If N is small,
a large number of generations are allowed. On the other hand, if N is large, a small
number of generations will be allowed. Then, an important point to ponder is what
population size is appropriate to choose when the overall number of trials is fixed.
A related question to ask is: 'Given the adequate population size, what combination
of GA operators is appropriate?' It is important to realize that the answer to these
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questions will be different if the maximum number of allowed trials does not have
a bound. Several researchers have attempted to find such GA operators and their
parameter interactions for fixed number of trials, simply because such considerations
are pragmatic in solving real-world problems.

Deb and Agrawal (1999b) conducted a series of experiments with different GA
operators and parameter settings and applied these to different problems of varying
difficulties. The outcome of this study is important and is outlined in the following:

1. For simpler problems (such as well-behaved unimodal or linear problems), a GA
with a selection operator and a crossover or a mutation operator, or a combination
of crossover and mutation operators, can all work satisfactorily. However, there is
a distinct difference in the required population size in each case. For a selecto
mutation GA, a small population size (such as 3-6) provides the optimum
performance. Since a selecto-mutation GA is similar to a local search approach,
instead of more population members it requires a larger number of iterations
to navigate its search towards the optimum. On the other hand, for a selecto
recombinative GA (with no mutation operator), the population size requirement is
rather high. A GA with a crossover requires an adequate population size (described
in Section 4.2.1) to steer the search in the right direction. Since the search relies on
combining salient building blocks, the building block discovery and their emphasis
requires an adequate number of population members. However, once the salient
building blocks are found, not many generations are needed to combine them
together. Thus, although a larger population size is in order, the number of
generations required may be comparatively smaller. This is in contradiction to
the common belief that since GAs use a population of solutions in each iteration,
they are computationally more expensive than a local search algorithm.

2. For difficult problems (where difficulty can come from multi-modality, dimension
ality of the search space, ruggedness of the fitness function, etc.), selecto-mutation
GAs do not work successfully in finding the correct optimum solution. However,
selecto-recombinative GAs can find the correct optimum with an adequate popula
tion size. Oates et al. (1999a, 1999b) observed similar results on a number of other
problems.

Elite-Preserving Operator

In order to preserve and use previously found best solutions in subsequent generations,
an elite-preserving operator is often recommended. In addition to an overall increase
in performance, there is another advantage of using such elitism. In an elitist GA,
the statistics of the population-best solutions cannot degrade with generations. There
exists a number of ways to introduce elitism. We will discuss here a couple of popular
approaches.

In a simple implementation, the best £% of the population from the current
population is directly copied to the next generation. The rest ((100 - E ) %) of the new
population is created by the usual genetic operations applied on the entire current
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population (including the chosen €% elite members). In this way, the best solutions of
the current population not only get passed from one generation to another, but they
also participate with other members of the population in creating other population
members.

The above implementation is a generational one. However, elitism is more commonly
introduced in the context of steady-state GAs, where after every offspring is created,
it is used to modify the entire population. The elitism is introduced by comparing
two offspring with two parent solutions and then keeping the two better solutions.
A somewhat generational version of this concept is implemented by first creating an
offspring population by using usual genetic operations and then choosing the best N
solutions from a combined population (of size 2N) of parent and offspring populations
(Eshelman, 1991).

Theoretical Studies

Besides 'back-of-the-envelope' calculations and empirical studies, there exists a
number of rigorous mathematical studies where a complete processing of a finite
population under GA operators is modeled by using Markov chains (Vose, 1999;
Vose and Wright, 1996) and statistical mechanics (Priigel-Bennett and Shapiro, 1994;
Rogers and Priigel-Bennett, 1998). On different classes of functions, the recent analysis
of GAs by Vose and Rowe (2000) as a random heuristic search reveals the complex
dynamical behavior of a binary-coded GA with many metastable attractors. The
interesting outcome is the effect of population size on the degree of metastability. For
larger population sizes, the duration near a metastable state is more. In the statistical
mechanics approach, instead of considering microscopic details of the evolving system,
several macroscopic variables describing the system are modeled. Priigel-Bennett et
al. (1994) studied the evolution of the first four cumulants of the fitness distribution as
macroscopic variables. These are the mean, standard deviation, skewness and kurtosis
of the fitness distribution. Analyzing different GA implementations with the help of
these cumulants provides interesting insights into the complex interactions among GA
operators (Rogers and Priigel-Bennett, 1998).

Rudolph (1994) has shown that a simple GA with an elite-preserving operator and
non-zero mutation probability converges to the global optimum solution. However,
the absence of elitism does not always allow a simple GA to have this convergence
property.

Why Use Binary Alphabets?

Binary alphabets must naturally be used in problems having Boolean decision
variables. In practice, many problems involve Boolean decision variables, particularly
where the presence or absence of an entity is a decision variable. However, in handling
a generic discrete search space problem, one can think of using higher-cardinality
alphabets as well. Although it is not entirely intuitive why binary alphabets are better,
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there exist a couple of reasons for choosing binary alphabets. There also exists at least
one counter-argument to such a proposal.

Holland (1975) and Goldberg (1989) argued that although a GA with a population
size N processes N strings in every generation, in the schema space as many as 0 (N 3)
schemata get processed. This leverage provides a GA with its implicit parallelism
property. Based on a count of the total number of schema being processed, Goldberg
(1991) showed that a binary coding offers the maximum number of schemata per bit
of information. Since the schemata count is the maximum for binary alphabets, the
leverage achievable from it is also a maximum.

Reeves (1993b) estimated the minimum initial population size needed so that
every possible solution in the search space can be reached from this population by
crossover alone. The initial population must contain a string such that at every gene
position every possible alphabet is present. Since mutation operation is ignored and
crossover can only exchange information between strings, this condition will ensure
that repetitive operation of crossover to this initial population will eventually create
any possible solution in the search space. The conclusion of this study is that the
higher the cardinality of the alphabet, then the larger is the minimum population size
requirement to achieve the above condition. This means that with larger cardinality
alphabets, more storage and computational effort will be necessary.

Antonisse (1989) criticized the schema counting procedure of Holland and Goldberg.
He argued that for more than two alphabets, the use of one 'don't care' symbol to
represent all combinations of alphabets is flawed. He suggested that all (2V

- v - 1)

different 'don't care' symbols must be used, where v is the cardinality of the chosen
alphabet. This makes (2V

- 1) different possibilities in each gene position, thereby
making the overall number of schemata as (2V

- 1)€, and not (v + 1)€. This modified
number of total schemata per alphabet turns out to be monotonically increasing with
the cardinality v; in addition, the greater the cardinality of the alphabet, then the
larger is the effect of Antonisse's schema processing. Since a GA does not work on
the schema space, it is difficult to evaluate the merits of both of these arguments
in an absolute sense. However, it is clear that whether it is Holland's schemata or
Antonisse's augmented schemata that get processed in a GA with a higher cardinality
alphabet, the implicit parallelism argument holds in both cases.

Other GAs

In addition to the simple binary GA described above, there exist a number of
advanced GAs, specifically designed to have advanced features. In order to ensure
the convergence properties and to accelerate the rate of convergence, elitist GAs are
commonly used. Of these, Eshelman's (Eshelman, 1991) CHC 1 is an elitist GA which
selects the best N solutions from a combination of 2N population members formed by

1 The interpretation of C, Hand C is derived from three features of the CHC algorithm: cross
generation selection, heterogeneous recombination and cataclysmic mutation (Eshelman, 2001).
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using the parent and the offspring populations. Moreover, the CHC algorithm uses a
restricted mating (with a uniform like crossover operator) so that dissimilar solutions
(in terms of bit differences between them) will mate with each other. Because of a
high selection pressure introduced by the elite-preserving operation, this GA needs to
use a highly disruptive recombination operator.

Genetic Implementor (GENITOR) (Whitley, 1989) is a steady-state elitist GA,
where each offspring is introduced into the parent population one at a time. Parents
are chosen according to a ranking selection operator and the created offspring replaces
the worst individual in the parent population. On a generational framework, Goldberg
and Deb (1991) have shown that the GENITOR algorithm has an inherently large
selection pressure. Once again, this GA requires a highly disruptive recombination
operator to maintain a balance between exploration and exploitation issues.

Messy GAs (Goldberg et al., 1989, 1990) are variable-length GAs where the
identification of all salient building blocks and the subsequent mixing of them is
temporally separated into two phases. In the primordial phase, important building
blocks are identified by comparing different plausible building blocks with one another.
In the juxtapositional phase, the necessary building blocks are combined together by
the use of a cut-and-splice operator to form optimal solutions in difficult problems.
We will describe messy GAs in more detail in Section 6.7. The quest for finding
the necessary linkage needed in a problem on the fly, a matter which took shape
with the messy GA study, has now been paid adequate attention. The continuing
research on gene expression GAs (Kargupta, 1997), linkage learning GAs (Harik
and Goldberg, 1996), the Bayesian optimization algorithm (Pelican et al., 1999), the
factorial distribution algorithm (Miihlenbein and Mahnig, 1999) and various others
represent worthy efforts applied in this direction.

Genetic algorithms have also been extensively used in scheduling and other
combinatorial optimization problems. The representation used in such problems is
different from the usual binary string representation. This also requires different
recombination operators to be devised for creating valid offspring from valid parent
solutions. A number of such GA implementations and applications can be found in
various books (Goldberg, 1989; Gen and Cheng, 1997; Michalewicz, 1992; Mitchell,
1996), as well as certain journals and conference proceedings.

4.2.2 Real-Parameter Genetic Algorithms

When binary-coded GAs need to be used to handle problems having a continuous
search space, a number of difficulties arise. One difficulty is the Hamming cliffs
associated with certain strings (such as strings 01111 and 10000) from which a
transition to a neighboring solution (in real space) requires the alteration of many
bits. Hamming cliffs present in a binary coding cause artificial hindrance to a gradual
search in the continuous search space. The other difficulty is the inability to achieve
any arbitrary precision in the optimal solution. In binary-coded GAs, the string length
must be chosen a priori to enable GAs to achieve a certain precision in the solution.
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The more the required precision, then the larger is the string length. For large strings,
the population size requirement is also large (Goldberg et al., 1992), thereby increasing
the computational complexity of the algorithm. Since a fixed coding scheme is used
to code the decision variables, variable bounds must be such that they bracket the
optimum variable values. Since in many problems this information is not usually
known a priori, this may cause some difficulty in using binary-coded GAs in such
problems. Furthermore, a careful thinking of the schema processing in binary strings
reveals that not all Holland's schemata are equally important in most problems having
a continuous search space. To a continuous search space, the meaningful schemata are
those that represent the contiguous regions of the search space. The schema (* * * *
1), for example, represents every other point in the discretized search space. Although
this schema may be useful in certain periodic or oscillatory functions, the schema (1
* * * *) signifies a more meaningful schema representing the right-half of the search
space in most problems. Thus, the crossover operator used in the binary coding needs
to be redesigned in order to increase the propagation of more meaningful schemata
pertaining to a continuous search space.

There exists a number of real-parameter GA implementations, where crossover and
mutation operators are applied directly to real parameter values. Since real parameters
are used directly (without any string coding), solving real-parameter optimization
problems is a step easier when compared to the binary-coded GAs. Unlike in the
binary-coded GAs, decision variables can be directly used to compute the fitness
values. Since the selection operator works with the fitness value, any selection operator
used with binary-coded GAs can also be used in real-parameter GAs.

However, the difficulty arises with the search operators. In the binary-coded GAs,
decision variables are coded in finite-length strings and exchanging portions of two
parent strings is easier to implement and visualize. Simply flipping a bit to perform
mutation is also convenient and resembles a natural mutation event. In real-parameter
GAs, the main challenge is how to use a pair of real-parameter decision variable vectors
to create a new pair of offspring vectors or how to perturb a decision variable vector
to a mutated vector in a meaningful manner. As in such cases the term 'crossover'
is not that meaningful, they can be best described as blending operators (Dejong,
1999). However, most blending operators in real-parameter GAs are known as crossover
operators, and we will continue to use the same term here. First, we describe a number
of real-parameter crossover operators and then present a few real-parameter mutation
operators. Herrara et al. (1998) have provided a good overview of many real-parameter
crossover and mutation operators.

Linear Crossover

One of the earliest implementations was reported by Wright (1991), where a linear
. ( (1 t)(2 t) (1 t) (2 t))crossover operator created the three solutions, 0.5 Xi' +Xi' ), (1.5xi ' -0.5xi '

(1 t) (2t) . (1 t) (2t) .and (-O.5xi ' + l.5xi ' ) from two parent solutions Xi' and Xi' at generation
t, with the best two solutions being chosen as offspring. Figure 57 shows the three
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offspring created from the two parent solutions.

A Naive Crossover

This crossover operator is similar to the crossover operators used in binary-coded GAs.
Cross sites are only allowed to be chosen at the variable boundaries. For example, a
single-point crossover at the third site will produce the following offspring:

Parent 1: (X\l.t) x1l. t) xi
,· t) x~l,tl x~1,t))

Parent 2'. ((2,t) (2,t) (2,t) (2,t) (2,t))
xl x2 x3 x4 Xn

Offspring 1: (x\l,t) x1l,t) xi"t) x~2,t) xi,2,t))

Offspring 2: (x\2,t) x12,t) xi2,t) x~l .t ) X~l,t))

For two decision variables and for the case when the cross site falls in the variable
boundary, the offspring can be either parents themselves or the other two diagonal
solutions, as shown in Figure 58. Like in the single-point crossover operator, two-point,
n-point, or uniform crossover operators can also be used in a similar manner. This
crossover operator does not have an adequate search power and thus the search within
a decision variable has to mainly rely on the mutation operator.

Blend Crossover and Its Variants

Goldberg introduced the concept of virtual alphabets in the context of real-parameter
GAs (Goldberg, 1991), a matter which is discussed on page 120. Eshelman and Schaffer

(1993) have introduced the notion of interval schemata which is similar in principle
to the virtual alphabets. They also suggested a blend crossover (BLX-ex) operator
for real-parameter GAs. For two parent solutions xi"t) and x~2,t) (assuming xi 1,t) <
x~2,t)), the BLX-ex randomly picks a solution in the range [x~l,t) - ex(x~2,t) - x~1,t)),

x~2,t) + «( xi 2,t) - xi 1"u This crossover operator is illustrated in Figure 59.

Thus, if Ui is a random number between 0 and 1, the following is an offspring:

(l,t+l) (1 ) (l,t) + (2,t)
Xi = - Yi Xi Yixi, (4.7)
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where Yi = (1 + Zoe lUi ~ ex. If ex is zero, this crossover creates a random solution in the
range (x;l,tl, x;2.tl). In a number of test problems, the investigators have reported
that BLX-O.5 (with ex = 0.5) performs better than BLX operators with any other ex
value. However, it is important to note that the factor Yi is uniformly distributed for
a fixed value of ex. However, BLX-ex has an interesting property: the location of the
offspring depends on the difference in parent solutions. This will be clear if we rewrite
equation (4.7) as follows:

(
(1.1fl1 (1,11) __ ((2.11 (1,11)

Xi - Xi - Y: Xi ~ Xi . (4.8)

If the difference between the parent solutions is small, the difference between the
offspring and parent solutions is also small. This property of a search operator allows
us to constitute an adaptive search. If the diversity in the parent population is large,
an offspring population with a large diversity is expected, and vice versa. Thus, such
an operator will allow the searching of the entire space early on (when a random
population over the entire search space is initialized) and also allow us to maintain a
focussed search when the population tends to converge in some region in the search
space.

It is important to note that there exists a number of other crossover operators which
work by using the same principle. The arithmetic crossover (Michalewicz and Janikow,
1991) uses equation (4.7) with a fixed value of Y for all decision variables. However, Y

is chosen by carefully calculating its maximum allowed value in all decision variables
so that the resulting values do not exceed the lower or upper limits. The extended
crossover operator (Voigt et al., 1995) is also similar to BLX-ex.

Simulated Binary Crossover

In 1995, this author and his students developed the simulated binary crossover (SBX)
operator, which works with two parent solutions and creates two offspring (Deb and
Agrawal, 1995; Deb and Kumar, 1995). As the name suggests, the SBX operator
simulates the working principle of the single-point crossover operator on binary strings.
In these studies, we showed that this crossover operator respects the interval schemata
processing, in the sense that common interval schemata between the parents are
preserved in the offspring. The procedure of computing the offspring xi 1. t+ 11 and

x;2.t+ 1) from the parent solutions x; 1,1 I and xi 2.t ] is described as follows. A spread
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(4.9)

factor /3i is defined as the ratio of the absolute difference in offspring values to that
of the parents:

I

11, t-t 1 ) I 1,til) I
(!. Xi - Xi
IJi = Il,tl (l,t) .

Xi -Xi

First, a random number u, between 0 and 1 is created. Thereafter, from a specified
probability distribution function, the ordinate /3qi is found so that the area under
the probability curve from 0 to /3qi is equal to the chosen random number u.. The
probability distribution used to create an offspring is derived to have a similar search
power to that in a single-point crossover in binary-coded GAs and is given as follows
(Deb and Agrawal, 1995):

O.5(T]c + 1)/3;c,
1

O.5(T]c + 1) /3;c +1 ,

if/3i<::::1;

otherwise. (4.10)

Figure 60 shows the above probability distribution with T]c = 2 and 5 for creating
offspring from two parent solutions (xi 1.t ) = 2.0 and <l,t) = 5,0) in the real space.

In the above expressions, the distribution index T]c is any non-negative real number.
A large value of T]c gives a higher probability for creating 'near-parent' solutions
and a small value of T]c allows distant solutions to be selected as offspring. Using
equation (4.10), we calculate /3qi by equating the area under the probability curve
equal to u., as follows:

{

(2Ui)~' _1_
/3qi= ( 1 )"C11

2(1 - ud

if u, <:::: 0.5;

otherwise,
(4,11)

After obtaining /3 qi from the above probability distribution, the offspring are
calculated as follows:

Il,t+l)
Xi

Il,t +1)
Xi

05 [(1 + (!. .)x(l,t) + (1- (!. .)x(l,t l]
. IJql 1 IJql 1 '

0.5 [(1 -/3qJxi l,t) + (1 + /3qi)xi l,t 1] ,

(4.12)

(4.13)

Thus, the following step-by-step procedure is followed to create two offspring (x~1,t +1 I

and xil,t+ll) from two parent solutions (xi1,tl and <l,t)):

Step 1: Choose a random number u. E [0,1).

Step 2: Calculate /3qi using equation (4.11),

Step 3: Compute the offspring by using equations (4,12) and (4.13),

Note that two offspring are symmetric about the parent solutions, This is
deliberately enforced to avoid a bias towards any particular parent solution in a single
crossover operation, Another interesting aspect of this crossover operator is that for
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Figure 60 The probability density function for creating offspring under an SBX-ll c

operator. Parents are marked with an '0'. Reproduced from Deb and Beyer (2001) (© 2001

by the Massachusetts Institute of Technology).

a fixed 11c the offspring have a spread which is proportional to that of the parent
solutions:

(
Il,t+l) _ 11,tI11) _ (l. (Il,t) _ 11,t))

Xi Xi - jJ q i Xi Xi ' (4.14)

This has an important implication, Let us consider two scenarios: (i) two parents are
far away from each other, and (ii) two parents are closer to each other. For illustration,
both of these cases (with parent solutions xi 1,1 1 = 2.0 and xi l,t) = 5.0 in the first case

and with parent solutions xl 1
,t) = 2.0 and xl l

,t) = 2.5 in the second case) and the
corresponding probability distributions with 11c = 2 are shown in Figures 61 and 62,
respectively. For an identical random number u.. the parameter (jq i take the same
value in both cases. From equation (4.14) it is clear that in the first case the offspring
are likely to be more widely spread than in the second case. Figures 61 and 62 also
show the corresponding offspring (marked with a box) for u, = 0.9 or (jqi = 51

/
3

.

These figures clearly show that if the parent values are far from each other (the first
case), it is possible for solutions away from the parents to be created. Compare the
offspring xi 1 ,t+ 1) = 0.935 with parent xl 1

,t ) = 2.0. However, if the parent values
are close by (the second case), distant offspring are not likely. Compare the offspring
xl 1

,t+ 1) = 1.822 with parent xi 1,t) = 2.0 created by using the same random number as

in the first case. In initial populations, where the solutions are randomly placed (like
the first case), this allows almost any value to be created as an offspring. However,
when the solutions tend to converge due to the action of genetic operators (like the
second case), distant solutions are not allowed, thereby focusing the search to a narrow
region.
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Figure 61 Probability distribution of

offspring with distant parents.
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Figure 62 Probability distribution of

offspring with closely spaced parents.

It is interesting to note that both equations (4.12) and (4.13) can be written in the
form of equation (4.7) with the following relationship: Yi = 0.5(1 =f (3Qi)' However, it
is important that, unlike in the BLX-(X operator, the equivalent Yi term in the SBX
operator is not uniformly distributed (refer to equation (4.11)). The SBX operator
biases solutions near each parent more favorably than solutions away from the parents.
Essentially, the SBX operator has two properties:

1. The difference between the offspring is in proportion to the parent solutions.
2. Near-parent solutions are monotonically more likely to be chosen as offspring than

solutions distant from parents.

Using the SBX operator, a mixed-integer programming algorithm with genetic
algorithms (GeneAS) was introduced and applied to a number of engineering design
problems elsewhere (Deb, 1997a).

Fuzzy Recombination Operator

Voigt et al. (1995) suggested a fuzzy recombination (FR) operator, which is similar to
the above SBX operator. In fact, the FR operator can be thought of as a special case
of the SBX operator with llc = 1. Like other recombination operators, this operator
also has a tunable parameter d. First, the difference between two parent solutions
is computed. Thereafter, a triangular probability distribution is used around each
parent. This distribution has its apex located at the parent solution and the base is
proportional to the difference in parents or d(xi2

.t) ~ xi 1.t )), as shown in Figure 63.
Like the SBX operator, this operator also gives importance to the creation of solutions
closer to the parents than away from them. The distribution can be changed with the
parameter d. As d is large, solutions away from the parents can get created. However,
if d is small, only near-parent solutions are allowed. Like the BLX and SBX operators,
this operator also creates distant solutions in proportion to the spread of the parent
solutions.
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Figure 63 The FR operator. Parents are marked by filled circles.
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Unimodal Normally Distributed Crossover

Ono and Kobayashi (1997) suggested a unimodal normally distributed crossover
(UNDX) operator, where three or more parent solutions are used to create two or more
offspring. Offspring are created from an ellipsoidal probability distribution with one
axis formed along the line joining two of the three parent solutions and the extent of
the orthogonal direction is decided by the perpendicular distance of the third parent
from the axis (Figure 64). Unlike the BLX operator, this operator assigns more
probability for creating solutions near the center of the first two parents than near
the parents themselves. Recently, a multi-parental UNDX operator with more than
three parents has also been suggested (Kita et al., 1998). Like the BLX operator, this
operator also assigns offspring proportional to the spread of the parent solutions.

Simplex Crossover

In the simplex crossover (Tsutsui et al., 1999), more than two parents participate in
the crossover operation. As many as (n+ 1) parents (where n is the number of decision
variables) are used as a simplex (representing a region enclosed by the points). The
centroid of these parents are first calculated. Thereafter, the simplex is enlarged by
extending the apex of the simplex at points away from the centroid. Each apex is

Figure 64 The UNDX operator.
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placed on a line joining the centroid and each parent. Thereafter, with a uniform
probability distribution, a number of solutions (H = 200 is suggested) are created
from this extended simplex. Figure 65 illustrates this procedure. Investigators have
suggested replacing only two of the parents by two solutions from a set of H new
solutions and the two parent solutions. The first offspring is the best solution of H
randomly created solutions and the other is chosen by using a rank-based roulette
wheel selection from the set H, excluding the already chosen first offspring. Since, at
least n solutions are needed to span an n-dimensional search space, the use of (n + 1)
solutions in the simplex seems like a good idea.

On a number of different correlated problems, investigators have shown that their
GA with the simplex crossover can find increased precision in the obtained solution
much faster than GAs with the UNDX operator. Moreover, they argue that this
crossover operator is invariant in terms of linear coordinate transformation. Since the
choice of two offspring from H new solutions is different from the usual implementation
of creating two offspring from two parent solutions, a straightforward comparison of
this crossover operator with the UNDX operator or any other real-parameter crossover
operator (such as SBX or BLX) is difficult.

Fuzzy Connectives Based Crossover

This operator (Herrara et al., 1995) is also applied variable by variable. For each
. bl three reai k d . I (Ill 11,t ) ) . II (lUI (2,tl)vana e Xi, ree regions are mar e : region Xi' Xi ' region Xi ,Xi

and region III (xi2
,t I , xi U )) (here, we assume that x; U) < x;2

,t ) ), The fourth region is

an overlapping region (lJi1 ) , lJ;2
) ) with all of the above three regions. Here, lJi1) :::: xi 1, t )

and lJi2 ) 2': x; 2, t I. All of these four regions are shown in Figure 66. Once these regions

Parent
simplex

l..- ~ Xl

Figure 65 The SPX operator. The

parents are marked by filled circles.
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Figure 66 Four regions for the FCB

crossover operator. The parents are marked

by filled circles.
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are identified, one solution is chosen from each of them by using user-defined fuzzy
connective functions, which are defined over two normalized parents:

s'=
12,t I III

Xi -Xi

12, t) 1 l,l) .
Xi - Xi

Four different connectives (T, G, P, and () are used in different regions:

R ' I' 11,lI11_ ILI+( 11I1_ IL))T( ')
egion . Xi - Xi Xi Xi S, S ,

R . II' 12,tI11_ IL)_L( 11I)_ IL))G( ')egion . Xi - Xi r Xi Xi S, S ,

R . III' 13,tI11_ Il)+( 11I)_ IL))p( ')egion 'Xi -Xi Xi Xi S,S,

R · IV' 14,t(1)_ Il)+( i u : ILI)C"( ')egion . Xi - Xi Xi - Xi S, S .

(4.15 )

(4.16)

(4.17)

(4.18)

G(s, s') = max(s, s '),
((s, s') = T1 AG'''.

Investigators have suggested different forms for these connectives. By applying this
approach to a number of test problems, they suggested that the following connectives
give the best performance:

T(s, s') = mints, s '),
P(s, s') = (1 - A)S + AS'

A list of other fuzzy connectives can be found from the original study (Herrera et al.,
1998). Of the four solutions, two of these directly replace the two parent solutions.
The other two solutions replace two random solutions taken from the rest of the
population members waiting to undergo a crossover. It is clear that the performance
of this crossover depends on the chosen fuzzy connective functions. Compared to other
crossover operators, it is interesting to ponder whether such complicated arithmetic
operators are needed to make the crossover operator efficient.

Unfair Average Crossover

In the unfair average crossover (Nomura and Miyoshi, 1996), two parents are used and
two offspring are created. However, unlike the SBX or BLX operators, this crossover
operator does not preserve the mean of the parent solutions, but instead will create
offspring towards one of the parent solutions. Unless this favored parent solution is
the better of the two parent solutions, introduction of such a bias is hard to justify.
Specifically, the following equations can be used to create offspring with (X E [0,0.5]:

{ (1 + ) 1l,l) _ 12,\I for i = 1, ... \ j,(1.i I 11 (X Xi (xXi' (4.19)Xi _ 11,tl+(1+ )12,t) for i = j + 1, ... \n.(Xx t (X x t '

12,\+1I { (1 _ ) 1i .u + 12, t) for i = 1, ... , j,(X Xi (Xxi' (4.20)Xi 11,t) + (1 _ ) (2.\1 for i = j + 1, ... ,n.(xXi (X Xi '

The parameter j is a randomly chosen integer between 1 and n, indicating the cross
site. For two variables (n = 2) and with a cross site at j = 2, the bias in creating
offspring is clearly shown in Figure 67. The shaded region marks the possible location
of the offspring.
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(l,t+l)
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+X(l,t)
I
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'------ -L ~ xi

Figure 67 The unfair crossover operator illustrated on a two-dimensional search space.
The parents are marked by filled circles.

Similarity in Different Crossovers

The plethora of different real-parameter crossover operators discussed above clearly
shows the importance and the need for real-parameter GAs. However, a simple thought
also comes to mind: 'Are all these crossover operators different from each other?' There
exist a number of theoretical studies involved with trying to understand the properties
of different crossover operators (Nomura, 1997; Qi and Palmieri, 1993). A recent study
(Beyer and Deb, 2000) has found similarity in all of these operators.

The issue of 'this crossover operator' versus 'that crossover operator' is really
context-dependent. The crossover cannot be viewed as an independent operator. The
issue of exploitation and exploration makes a crossover operator dependent on the
chosen selection operator for a successful GA run. Viewed in this way, Beyer and
Deb argued that in most situations the selection operator reduces the population
diversity, because selection eliminates some population members by making duplicates
of a few others. Figure 68 shows a population, one instance of the effect of a
selection operator on this population, and one instance of the effect of a recombination
operator on the mating pool. The extent of reduction in diversity due to the selection
operator can be related to the exploitation power of the selection operator. Thereafter,
when a crossover operator is acted on the population found after the selection
operator, it should enhance the population diversity in general. Such a balance
between the reduction and enhancement of population diversity will allow a GA
to have an adequate search property. It is important to highlight that a balance
between exploitation and exploration is also achieved from the characteristic time
of each operator for binary GAs (refer to page 100). Based on these arguments, two
postulations have been recently suggested (Beyer and Deb, 2000). Under a crossover
operator:

1. the population mean should not change;
2. the population diversity should increase, in general.

Although not intuitive, the first postulation is desired. Since most crossover operators
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Figure 68 When selection reduces the diversity, the recombination operator must increase

the diversity.

do not use any fitness information, there is no reason for a crossover operator to steer
the search in any particular direction. The best that a crossover operator can do is to
keep the mean of the offspring population the same as that of the parent population
and alter the population variance. The second postulation also makes sense. Since a
selection operator reduces the population variance in general, if a crossover operator
also reduces the population variance, the combined action may lead to a premature
convergence. To counterbalance the reduction in population variance due to the
selection operator, the crossover operator should increase the population variance in
general. Beyer and Deb (2000) gave arguments for an increase in population diversity
for several types of objective functions. In the light of the above two postulates, it will
suffice to characterize a crossover operator with two factors: the shift in the population
mean and the growth of population variance with generations. The study calculated
the population mean and variance under three real-parameter crossover operators
in terms of their characteristic parameters. By equating the variance growth of the
SBX, BLX and FR operators, the investigators obtained four sets of characteristic
parameter values (shown in Table 6) producing identical variance growth in a flat
fitness landscape. This means that on a flat fitness landscape, a GA with SBX-2,
BLX-O.662, and FR-l.095 will have similar performances. Although in other fitness

Table 6 Parameter values for an identical population variance growth of three crossover

operators on a fiat fitness landscape.

SBX BLX FR

TJc (X d
2 0.662 1.095
3 0.500 0.707
5 0.419 0.433

10 0.381 0.226
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functions, these parameters values may not produce exactly the same performance, the
above argument suggests that there exist characteristic parameter values which will
make these crossover operators equivalent. In other words, all of the mean-preserving
crossover operators can be expected to show similar behavior for certain characteristic
parameter settings of each operator. However, the generic FCB crossover operator and
the unfair average crossover operator discussed above do not preserve the population
mean. There may be a difference in performance of GAs with these crossover operators
with GAs with mean-preserving crossover operators. It is mentioned earlier that the
motivation for using a crossover operator which does not preserve the mean of the
parent population in the created offspring population is weak.

Since real-parameter crossover operators directly manipulate two or more real
numbers to create one or more real numbers as offspring, one may wonder whether
there is a special need for using another mutation operator. The confusion arises
because both operators seem to be doing the same task, i.e. perturb every solution in
the parent population to create a new population. The distinction among operators
lies in the extent of perturbation allowed in each operator. Although debatable, this
author believes the distinction between a crossover and a mutation operator lies mainly
in the number of parent solutions used in the perturbation process. If only one parent
solution is used, it should be called a mutation operation. With only one parent, a
range of perturbations must be predefined. However, if more than one parent solution
is used in the perturbation process, the range of perturbation may be adaptive and
can be determined from the diversity of the parents on the fly. If the diversity in
participating parents is large, the crossover can create offspring which are also diverse
with respect to each other. Thus, with a crossover operator, it is possible to achieve
adaptively large or small perturbations without any predefined setting of the range
of perturbation. As in the binary-coded GA a mutation is meant to have a local
perturbation, in real-parameter GAs a local perturbation in a predefined manner
can also be useful in maintaining diversity in a population. In the following, we will
mention some of the most commonly used real-parameter mutation operators.

Random Mutation

The simplest mutation scheme would be to create a solution randomly from the entire
search space (Michalewicz, 1992):

(l,t 111 _ (lUI ILl)
lI, - r, Xi - Xi ' (4.21)

where r, is a random number in [0,1]. Figure 69 shows this probability distribution
with a continuous line. This operator is independent of the parent solution and is
equivalent to a random initialization. Instead of creating a solution from the entire
search space, a solution in the vicinity of the parent solution with a uniform probability
distribution (shown with a dashed line in Figure 69) can also be chosen:

I l,t+ 1) Il,t) )lI, =X, +(r,-O.5,1" (4.22)
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Figure 70

Figure 69 The random mutation operator. operator.
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The non-uniform mutation

where t. i is the user-defined maximum perturbation allowed in the i-th decision
variable. Care should be taken to check if the above calculation takes lJ; 1. t ' 11

outside of the specified lower and upper limits. Instead of using a uniform probability
distribution, non-uniform probability distributions have also been suggested. In the
following subsections, we will present a few such mutation operators.

Non-Uniform Mutation

Here, the probability of creating a solution closer to the parent is more than the
probability of creating one away from it (Figure 70). However, as the generations (t)
proceed, this probability of creating solutions closer to the parent gets higher and
higher (Michalewicz, 1992):

11.1+11_ (l.tI1)+ (lUI ILI))(l (1
lJi -Xi T Xi -Xi -r i

t/l m a x ) " ) . (4.23)

Here, T takes a boolean value, -lor 1, each with a probability of 0.5. The parameter
t m ax is the maximum number of allowed generations, while b is a user-defined
parameter. In this way, from early on the above mutation scheme acts like a uniform
distribution, while in later generations it acts like Dirac's function, thus allowing a
focussed search.

Normally Distributed Mutation

A simple and popular method is to use a zero-mean Gaussian probability distribution:

(4.24)

Here, the parameter (Ji is a fixed, user-defined parameter. This parameter is important
and must be correctly set in a problem. Such a parameter can also be adaptively
changed in every generation by some predefined rule. This operator is identical to the
mutation operator used in evolution strategy (ES). However, the latter also has a self
adaptive mutation operator, where the mutation strength is evolved with the decision
variables (Fogel et al., 1995; Hansen and Ostermeier, 1996; Herdy, 1992; Sarvanan
et al., 1995; Schwefel, 1987b). For handling bounded decision variables, special care
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must be taken to make sure that no solution is created outside of the specified lower
and upper limits.

Polynomial Mutation

Like in the SBX operator, the probability distribution can also
function, instead of a normal distribution (Deb and Goyal, 1996):

11,t+11 _ Il,t III + ( lUI _ ILI)<.
lIi -Xi Xi Xi 0"

be a polynomial

(4.25)

where the parameter ili is calculated from the polynomial probability distribution
P(b) = O.5(llm + 1)(1 -Ibl)'lm:

_ {(2r i ) l / I 'l m I 11 _ 1,
bi= 1-[2(1-rtlJ 1/ I 'l m t 11,

if r. < 0.5,
if r. 2:: 0.5.

(4.26)

This distribution is similar to the non-uniform mutation operator, although a fixed
value of the parameter 11m is suggested here. It is observed that a value of 11m
produces a perturbation of the order 0 (1III Ill) in the normalized decision variable. For
handling bounded decision variables (Deb and Agrawal, 1999a), the mutation operator
is modified for two regions, i.e. [xi L) , xd and [Xi, xiU I], very similar to the non-uniform
mutation described above. The difference is that in this mutation operator the shape
of the probability distribution is directly controlled by an external parameter 11 m and
the distribution is not dynamically changed with generations.

Theory of Real-Parameter Genetic Algorithms

Although real-parameter GAs deal with real parameter values and bring the GA
technique a step closer to classical optimization algorithms, there does not exist many
theoretical studies on real-parameter GAs. In the following paragraphs, we will discuss
a couple of salient studies.

Goldberg (1991) argued that in a real-parameter GA the action of a selection
operator causes the above-average solutions to survive in the population. In each
decision variable, these sub-regions of above-average solutions constitute virtual
characters of a virtual alphabet. For example, Figure 71 shows that the first and
second decision variables have virtual alphabets with a cardinality of three and two,
respectively. Thus, after a few generations, a real-parameter GA treats a continuous
search space problem as a discrete search space problem and the search is then similar
to a binary-coded GA with low cardinal alphabets. In such an event, the search gets
restricted to certain islands in the search space. Although mutation can allow some
diffusion, the mutation strength must be large enough to create solutions outside of
the width of the virtual characters. Based on this virtual alphabet theory, Goldberg
defined a number of blocking functions, where the global optimum lies in a region not
marked by the virtual characters. Since a real-parameter GA will soon converge to
intersections of virtual characters of different decision variables, the global optimum
will be difficult to find.
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Figure 71 Virtual characters are shown in a two-variable space. The dark-shaded regions

are intersections of virtual hyperplanes.

Qi and Palmieri (1993) made an extensive study on different combinations of real
parameter GA operators by using a discrete-time stochastic process. The use of a
large population assumption allowed the investigators to find the probability density
functions 7tt ('), characterizing the distribution of the population at any generation
t. Thereafter, by letting the population size N go to infinity, the limiting behavior
of the GA operator interactions was found. The salient features of their study are as
follows:

1. For a GA with selection and mutation operators, the selection operator tends to
reduce the variance of 7tt ('), while mutation spreads the distribution. However, the
combined effect is a shift towards the optimum in a unimodal problem. With a
large number of generations, the distribution 7tt (.) approaches a Dirac function,
<S(x-x*)3.

2. The second observation is that a GA with a selection operator alone monotonically
increases the density of solutions in the regions with above-average fitness.

3. The third observation is that a repetitive application of a crossover operator alone
decorrelates the decision variables, leading to:

lim 7tdXl,X2, ... ,Xn) =n;' 17to(xil,
t ---\()O

(4.27)

where 7to (Xi) is the marginal density function of Xi.

4. The fourth observation is that a combined effect of selection and crossover
allows hyperplanes of higher average fitness value to be sampled more often. The
consequence of this is that intersection of these hyperplanes allows better solutions
to be sampled more often. This can be considered as the real-coded version of the
building-block hypothesis. A hyperplane representing a larger region is equivalent
to a low-order schema in binary-coded GAs. Intersection of hyperplanes (low-order
schemata) signifies smaller regions (higher-order schemata) in the context of real
parameter GAs.
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4.2.3 Constraint-Handling in Genetic Algorithms

In the example problem illustrated in Section 4.2.1, we have handled the volume
constraint by adding a penalty proportional to the constraint violation to the
objective function value. In minimization problems, this is a common way of handling
constraints in evolutionary algorithms. However, in this section we will describe a
number of other efficient methods for handling constraints. As outlined elsewhere
(Michalewicz and Schoenauer, 1996; Michalewicz et al., 2000), most constraint
handling methods which exist in the literature can be classified into five categories,
as follows:

1. Methods based on preserving feasibility of solutions.
2. Methods based on penalty functions.
3. Methods biasing feasible over infeasible solutions.
4. Methods based on decoders.
5. Hybrid methods.

We will describe these methods briefly in the following subsections.

Methods Based on Preserving Feasibility of Solutions

In this approach, two feasible solutions, after recombination and mutation operations,
will create two feasible offspring. This can be achieved in a number of different ways.

First, one decision variable can be eliminated by using an equality constraint either
implicitly or explicitly. In this way, the equality constraint is always satisfied. For
example, for the following equality constraint:

the variable x i can be eliminated by the following equation: Xl = 0.5x~x3 in the
objective function and in all other constraints. In this way, an EA has to use one
decision variable less. This also allows the above equality constraint to be satisfied
automatically in all solutions used in the optimization process. Similarly, for K linear
simultaneous equalities, K decision variables can be eliminated (only (n - K) decision
variables need to be used in an EA), thereby automatically satisfying all K linear
equality constraints. In the implicit method of handling an equality constraint h(x),

a variable Xk can be calculated from the constraint by finding the root of:

(4.28)

where (X\Xk)1 i ] is the (n- 1) real-parameter vector (without Xk) corresponding to the
i-th solution. Here, an EA uses all n decision variables, but in finding the root of the
above equation, the value of Xk is not taken from the individual vector; instead, the
estimated root of the above equation is used as a value of Xk. There are two ways to
handle this new value of xj . In the Lamarckian method, the new value is substituted
in the i-th individual vector, while in the Baldwinian method, the new value is not
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substituted. However, both methods use the new value to compute objective function
and other constraints. Although the Lamarckian method of repairing an infeasible
solution seems desirable (Deb and Goel, 2001b), the Baldwinian method is found to
be more efficient in some problems (Liu et al., 2000).

Since in most interesting optimization problems, the optimal solution lies on the
intersection of constraint boundaries, operators that search only in the boundary area
between feasible and infeasible region are found to be efficient in certain problems
(Michalewicz and Schoenauer, 1996).

Methods Based on Penalty Functions

In most applications, an exterior penalty term (Deb, 1995; Reklaitis et al., 1983),
which penalizes infeasible solutions, is used. Based on the constraint violation 9j (x)

or hk(x), a bracket-operator penalty term is added to the objective function and a
penalized function is formed:

J K

F(x) = fix) + L Rj \9dx)) + L Tklhk(xll,
j 1 k 1

(4.29)

where Rj and Tk are user-defined penalty parameters. The bracket-operator \ ) denotes
the absolute value of the operand, if the operand is negative. Otherwise, if the operand
is non-negative, it returns a value of zero. Since different constraints may take different
orders of magnitude, it is essential to normalize all constraints before using the
above equation. A constraint Qj(xl :2: b, can be normalized by using the following
transformation:

9j (x) == Q
j
(x)/b j -~ 1 :2: O.

Equality constraints can also be normalized similarly. Normalizing constraints in the
above manner has an additional advantage. Since all normalized constraint violations
take more or less the same order of magnitude, they all can be simply added as the
overall constraint violation and thus only one penalty parameter R will be needed to
make the overall constraint violation of the same order as the objective function:

F(x) = f(x) + R [t \9j (x)) + t Ihk(X11] .
ilk 1

(4.30)

When an EA uses a fixed value of R in the entire run, the method is called the static
penalty method. There are two difficulties associated with this static penalty function
approach:

1. The optimal solution of F(x) depends on penalty parameters R. Users usually have
to try different values of R to find which value would steer the search towards
the feasible region. This requires extensive experimentation to find any reasonable
solution. This problem is so severe that some researchers have used different values
of R depending on the level of constraint violation (Homaifar et al., 1994), while
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some have used a sophisticated temperature-based evolution of penalty parameters
through generations (Michalewicz and Attia, 1994) involving a few parameters
describing the rate of evolution. We will discuss these dynamically changing
penalty methods a little later.

2. The inclusion of the penalty term distorts the objective function (Deb, 1995). For
small values of R, the distortion is small, but the optimum of F(x) may not be
near the true constrained optimum. On the other hand, if a large R is used, the
optimum of F(x] is closer to the true constrained optimum, but the distortion
may be so severe that F(x) may have artificial locally optimal solutions. This
primarily happens due to interactions among multiple constraints. EAs are not
free from the distortion effect caused due to the addition of the penalty term in
the objective function. However, EAs are comparatively less sensitive to distorted
function landscapes due to the stochasticity in their operators.

In order to investigate the effect of the penalty parameter R on the performance
of EAs, we consider a well-studied welded beam design problem (Reklaitis et al.,
1983). Figure 72 shows the configuration of the welded-beam problem. The resulting
optimization problem has four design variables, x = (h, £,t, b), and five inequality
constraints, involving different stress, buckling and logical limitations:

Minimize f",(x) = 1.10471 h2 £+ 0.048 1ltb( 14.0 + e),
Subject to 91 (x) == 13 600 - T(X) :::: 0,

92(X) == 30000 - o'(x] :::: 0,

9.dx) == b - h:::: 0,

94(X) == Pc(x) - 6000:::: 0,

9s(X) == 0.25 - 6(x) :::: 0,

0.125::; h::; 10,

0.1::; £,t,b::; 10.

The terms T(X), cr(x), Pc(x) and 6(x) are given below:

(4.31)

T(X)

cr(x)

(T'(X))2 + (TI/(x))l + fT'(X)TI/(X)j /0.25[£2 + (h + t)2],

504000

t 2 b

F

Figure 72 The welded beam design problem.
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The optimized solution reported in the literature (Reklaitis et al., 1983) is h * = 0.2444,
€* = 6.2187, t" = 8.2915, and b* = 0.2444, with a function value equal to f* = 2.38116.
Binary GAs are applied to this problem in an earlier study (Deb, 1991) and the
solution x = (0.2489,6.1730,8.1789,0.2533) with f = 2.43 (within 2% of the above
best solution) was obtained with a population size of 100. However, it was observed
that the performance of the GAs largely depended on the chosen penalty parameter
values.

In order to obtain further insights into the working of the GAs, we apply binary
GAs with the tournament selection and a single-point crossover operator with Pc = 0.9
on this problem. Each variable is coded in 10 bits, so that the total string length is
40. A population size of 80 is used and GAs with 50 different initial populations are
run until 500 generations have been achieved. All constraints are normalized and a
single penalty parameter R is used. Table 7 shows the performance of such binary
GAs for different penalty parameter values. For each case, the best, median (the
optimized objective function values of 50 runs are arranged in ascending order and
the 25th value in the list is called the median optimized function value) and worst
values of 50 optimized objective function values are also shown in the table. With
R = 1, although three out of 50 runs have found a solution within 10% of the best
known solution, 13 GA runs have not been able to find a single feasible solution in
40 080 function evaluations. This happens because with a small R there is not much
pressure for the solutions to become feasible. With a large value of R, the pressure

Table 7 The number of runs (out of 50) converged within E:% of the best-known solution

are shown when using binary GAs with different penalty parameter values on the welded

beam design problem.

R E: Optimized f H' (x)

< < < < < > Infea-
1% 2% 10% 20% 50% 50% sible Best Median Worst

10° 0 1 3 3 12 25 13 2.41 7.62 483.50
101 0 0 0 0 12 38 0 3.14 4.33 7.45
10' 0 0 0 0 1 49 0 3.38 5.97 10.66
10" 0 0 0 0 0 50 0 3.73 5.88 9.42
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for solutions to become feasible is more and all 50 runs then found feasible solutions.
However, because of the larger emphasis assigned for solutions to become feasible, a
feasible solution has a large selective advantage over an infeasible solution. If new and
different feasible solutions are not created, GAs would overemphasize this sole feasible
solution and soon prematurely converge near this solution. This is exactly what has
happened in GA runs with larger R values, where the best solution obtained, in most
cases, is more than 50% away (in terms of function values) from the true constrained
optimum. Similar experiences have been reported by other researchers in applying
GAs with an exterior penalty function approach to other constrained optimization
problems. Thus, if the penalty function method is to be used, the user usually have
to take many runs or 'adjust' the penalty parameters to get a solution within an
acceptable limit.

There exist a number of dynamic penalty methods where the penalty parameter is
changed with the generation counter t (Joines and Houck, 1994):

(4.32)

where C, ex and 13 are user-defined constants. A value of 13 = 2 is suggested. The penalty
parameter R can be updated from the last k generations of population statistics and
updated at every generation. However, both static and dynamic penalty methods
require exogenous parameters, which must be tuned for every new problem.

Methods Based on Feasible Over Infeasible Solutions

In these methods, a clear distinction between feasible and infeasible solutions in the
search space is made. In the behavioral memory method (Schoenauer and Xanthakis,
1993), all constraints are considered in a sequence. When sufficient feasible solutions
satisfying the constraints taken from the top of the sequence are found, the next
constraint from the sequence is considered. In this way, each constraint gets its turn
to divert the population members in the region of its feasibility.

In another approach (Powell and Skolnick, 1993), an additional generation
dependent term is added to the static penalty term as follows:

Fix) ~ fix) I R(t (9;{xl) I ~ IhdxlI) I Alt, x) (4.33)

At every generation, the term A(t, x) is the difference between the best static penalized
function value among all infeasible solutions and the worst feasible solution. This
would make the best infeasible solution in the population to have the same F() value
as that of the worst feasible solution in the population. For a hypothetical single
variable function f(x) having one constraint g(x) ~ 0, the left plot of Figure 73 shows
the construction of F(x). This figure illustrates the procedure with six population
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Figure 73 The left figure shows Powell and Skolnick's constraint handling method,

while the right figure shows Deb's constraint handling method. Reprinted from Computer

Methods in Applied Mechanics and Engineering, Volume 186, K. Deb, 'An efficient constraint

handling method for genetic algorithms', Pages 311-338, Copyright 2000, with permission

from Elsevier Science.

members, of which three are feasible. Notice that for all feasible solutions, F(x) = f( x).

As discussed in an another study (Deb, 2000), this method has at least two difficulties:

1. The need to fix a penalty parameter R still exists.
2. The fitness function Flx ), constructed by using the above approach, may have an

artificial local optimum.

A recent study (Deb, 2000) suggested a modification, which does not need any penalty
parameter:

if x is feasible;

otherwise.
(4.34)

Here, f max is the objective function value of the worst feasible solution in the
population. The right figure of Figure 73 shows the construction procedure of F(x)

from f(x) and g(x) for a single-variable objective function. One fundamental difference
between this approach and the previous approach is that the objective function
value is not computed for any infeasible solution. Since all feasible solutions have
zero constraint violation and all infeasible solutions are evaluated according to their
constraint violations only, both the objective function value and constraint violation
are not combined in any solution in the population. Thus, there is no need to have any
penalty parameter R for this approach. Moreover, the approach is also quite pragmatic.
Since infeasible solutions are not to be recommended for use, there is no real reason
for one to find the objective function value for an infeasible solution. The method uses
a binary tournament selection operator, where two solutions are compared at a time,
and the following scenarios are always assured (Goldberg, 1992):

1. Any feasible solution is preferred to any infeasible solution.
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2. Among two feasible solutions, the one having a better objective function value is
preferred.

3. Among two infeasible solutions, the one having a smaller constraint violation is
preferred.

To steer the search towards the feasible region and then towards the optimal solution,
the method recommends the use of a niched tournament selection (where two solutions
are compared in a tournament only if their Euclidean distance is within a pre-specified
limit). This ensures that even if a few isolated solutions are found in the feasible space,
they will be propagated from one generation to another for maintaining diversity
among the feasible solutions.

Using this penalty parameter-less constraint handling strategy, real-parameter GAs
(with an SBX-2 operator), using a niched tournament selection and a population size
of 80, has found 50 out of 50 runs within a maximum of 0.1%of the optimal objective
function value in the welded beam design problem (Deb, 2000). This means that with
the proposed approach, one run is enough to find a satisfactory solution close to the
true optimal solution. The best, median and mean objective function values of 50 runs
are 2.38145, 2.38263, and 2.38355, respectively.

Methods Based on Decoders

In these approaches, a chromosome stores information about how to fix an infeasible
solution. For example, the chromosome may keep information about an ordering of
decision variables which may be altered to make a solution feasible. In some instances,
a decoder imposes a mapping between a feasible solution and a decoded solution.
One such example is the use of a homomorphous mapping between an n-dimensional
cube and a feasible search space (Koziel and Michalewicz, 1998). The mapping allows
every solution in the cube to be mapped into a feasible solution in the search space.
Moreover, the entire feasible region is mapped in the cube. In this way, a search in
the cube will result in a search in the feasible region only. In such methods, care must
be taken in assuring that the computational complexity of the mapping is not too
high. Moreover, the continuity in the decoded space (in the cube) must preserve the
continuity of actual solutions in the feasible search region.

Hybrid Methods

Since classical constrained optimization methods have been studied and applied for
many years, it may be wise to combine such a method with the existing operators
of an evolutionary algorithm. In one application, the Hooke-Jeeves pattern search
method is combined with evolutionary algorithms (Waagen et al., 1992). In the
coevolutionary approach suggested by Paredis (1994), where a population of decision
variable vectors is evolved along with a population of constraints, fitter solutions
satisfy more constraints and fitter constraints are violated by fewer solutions. A
different twist to this coevolutionary approach, suggested elsewhere (Barbosa, 1996),
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uses a population of solutions and a population of Lagrange multipliers. Since the
constrained optimum solutions are saddle points of the corresponding Lagrangian
function, the coevolutionary approach helps to find the optimum solution along with
optimum Lagrange multipliers. A knowledge of the optimal Lagrange multiplier is
extremely helpful in performing post-optimal sensitivity analysis.

4.3 Evolution Strategies

More or less contemporary to the development of GAs, research on a field very similar
to such algorithms was in progress in Germany. As a result of this work, P. Bienert,
1. Rechenberg and H.-P. Schwefel of the Technical University of Berlin suggested the
so-called evolution strategy (ES) during the early Sixties. The first applications of ES
were experimental and attempted to solve the shape optimization of a bended pipe
(Lichtfuss, 1965), the drag minimization of a jointed plate (Rechenberg, 1965), and
the shape optimization of a flashing nozzle (Schwefel, 1968), along with various other
problems. Since the evaluation of a solution in each of these problems was difficult
and time-consuming, a simple two-membered ES was used in all of the early studies.
However, Schwefel was the first to simulate a different version of the ES on a computer
in 1965. Thereafter, multi-membered ESs, recombinative ESs, and self-adaptive ESs
were all suggested. However, the early ES procedure is fundamentally different from
binary GAs in mainly two ways: (i) ESs use real parameter values and (ii) early ESs
do not use any crossover-like operator. However, an ES's working principle is similar
to that of a real-parameter GA used with selection and mutation operators only.

Realizing the similarity between these two surprisingly similar (although practiced
in two geographically distant places) procedures, recent ES studies have introduced
crossover-like operators. In the following subsections, we will describe these approaches
and discuss an important issue which is mostly studied in the context of evolution
strategies.

4.3.1 N on- Recombinative Evolution Strategies

In this section, we describe a number of different ESs where no recombination operator
is used.

Two-Membered ESs: (l+l)-ES

This is the simplest of all ESs. In each iteration, one parent is used to create one
offspring by using a Gaussian mutation operator. The step-by-step procedure is shown
below. (The procedure is given for solving minimization problems.)

Two-Membered ES: (l+l)-ES

Step 1 Choose an initial solution x and a mutation strength (Y.

Step 2 Create a mutated solution:

y=xtN(O,(Y), (4.35)
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where N(O, o ) is a vector of instances created using a zero-mean normal
distribution and having a standard deviation o.

Step 3 If fry) < fix)' replace x with y.

Step 4 If a termination criterion is satisfied, stop. Otherwise, go to Step 2.

Here, all decision variables are mutated with a normal distribution having the same
mutation strength (a term used for the 'standard deviation' in ES research). It is
intuitive that the success of this algorithm in finding a solution close to the true
optimum solution largely depends on the chosen o value. For a few simple problems,
the optimal c values are calculated for obtaining the maximum rate of convergence
towards the optimum solution. In order to find the minimum of a linear function
f(x) = Co +C1 x i in the range -b/2 ::; Xi ::; b/2 for i = 1,2, ... ,n, Rechenberg (1973)
calculated the optimal mutation strength:

o" = )'1 ~. (4.36)

For a sphere model f(x) = .L~=1 xf, the optimal mutation strength is found as follows:

* 2 rc = 1.2 4-, (4.37)
n

where r denotes the current Euclidean distance from the true optimum solution. It is
interesting to note that for this function the optimal mutation strength must change
dynamically. The chosen mutation strength must be inversely proportional to the
number of variables and as the solution comes closer and closer to the optimum, the
mutation strength should reduce proportionately. This phenomenon is exploited in
developing self-adaptive ESs, where in addition to the decision variables, mutation
strength is also evolved in the ES. We will discuss self-adaptive ESs in Section 4.3.3
below.

Using these two calculations, the probabilities of a successful mutation occurring in
both functions are found to be 0.184 and 0.270. Based on these numbers, Rechenberg
postulated the famous '1/5 success rule', where the mutation strength rr is modified
across generations (Rechenberg, 1973, p. 123):

The ratio of successful mutations to all mutations should be 1/5. If this
ratio is greater than 1/5, increase the mutation strength, while if it is less
than 1/5, decrease the mutation strength.

A mutation is defined as successful if the mutated offspring is better than the parent
solution. If many successful mutations are observed, this indicates that the solutions
are residing in a better region in the search space. Hence, it is time to increase the
mutation strength in the hope of finding even better solutions closer to the optimum
solution. By counting the number of successful mutations Ps over n trials, Schwefel
(1981) suggested a factor Cd = 0.817 in the following o-update rule:

if p, < 1/5,
if Ps > 1/5,
if p , = 1/5.

(4.38)
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In the presence of constraints, a mutated solution is considered better if it is feasible
and is better than the parent in terms of the objective function value. Oyrnan, Deb,
Beyer (1999) suggested a better constraint handling ES along the lines of constraint
handling strategies used in genetic algorithms.

Multi-Membered ESs: (11 + A)-ES and (11, A)-ES

With the use of optimal mutation strength and the 1/5 success rule, the (1+1)
ES is better than the simple Monte Carlo method, where a solution in the
neighborhood is created with an arbitrary user-defined probability distribution.
However, the population approach used in multi-membered ESs makes them much
better algorithms. There are two ways to introduce multiple members in an ES. We
first discuss the 'plus' strategy, where 11 (> 1) parent solutions are used to create A
offspring using mutation alone.

Multi-Membered ES: (11 + A)-ES

Step 1 Choose an initial population P of 11 solutions x I ii, i = 1, 2, ... , 11 and a
mutation strength cr.

Step 2 Create A mutated solutions:

v'" =x 1i l +N(O,cr). (4.39)

To create the j-th offspring, a parent i is chosen at random from 11 parent
solutions. N(O, cr) is defined as earlier.

Step 3 Modify the parent population P by combining all parent and offspring:

P=(UA {yljl')U(U~' [xiii')) 1 J l]l J.

From P, the best 11 solutions are chosen and the rest are deleted.

Step 4 If a termination criterion is satisfied, stop. Otherwise, go to Step 2.

For many problems, A/ll ~ 5 is suggested. Figure 74 shows a schematic of this
procedure. Since in the selection operation both parent and offspring populations are
used, the (11 + A)-ES is an elitist algorithm. Although elite-preservation is desired,
this procedure does not control the extent of elitism. In certain problems, where
new successful mutations are difficult to achieve, the search in a (11 + A)-ES will
stagnate. In order to avoid this problem, an alternate (11, A)-ES is suggested. The
only difference between this and a (11 + A)-ES is in Step 3. Instead of combining the
parent and offspring populations before selection, only the offspring population is
now used. Thus, the modified population P before selection is P = U~ dy(j I). This
requires that A~ 11. In this way, the parent solutions are ignored and the success of the
(11, A)-ES depends on the ability of the algorithm to find better offspring. Figure 75
shows this procedure. The (11, A)-ES is a non-elitist procedure. A strategy, where some
limited copies of the better parent solutions are chosen and the rest are filled from
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Iteration t Iteration t+l
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Figure 74 The procedure for a (~+ A)-ES.

the offspring population, would introduce elitism in a controlled manner and may
turn out to be a good compromise between a (1-1 + A)-ES and a (I-1,A)-ES. One way to
achieve this is to allow a life span, K (2 1), for each parent (Schwefel and Rick, 1998).
A parent older than K generations is not considered further in the selection process,
thereby allowing new offspring solutions to enter into the new population. Using this
notation, the two extreme strategies are (1-1, A)-ES for K = 1 and (1-1 + A)-ES for K = 00.

4.3.2 Recombinative Evolution Strategies

In the recombinative ESs, a set of chosen parents are first recombined to find a new
solution. Thereafter, the solution is mutated as before. Instead of choosing two parents
or all parents for the recombination, a set of p (a value between 1 and 1-1 inclusive)
parents are chosen at random. A value of p = 1 means no recombination. Two types of
recombination are mainly in use: (i) intermediate and (ii) discrete. In the intermediate

Iteration t Iteration t+l..
.ew

Parent Through Offspring Through parent
populatioZl mutation population selection populatioJl

<.
Figure 75 The procedure for a (u. A)-ES.
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recombination operator, the average p chosen solution vectors are calculated as follows:

1 p

y = - Lx(il.
P i- 1

(4.40)

It is clear that if all parents are used in each recombination, or p = u, the procedure
has a tendency to cluster around the centroid of the current population. In problems,
where a population brackets the true optimum, this may be a good strategy.

In the discrete recombination, each decision variable is chosen from one of the p

parents at random. For example, a discretely recombined solution is shown derived
from the following four solutions (p = u):

Parent 1: ( 11 ( I) (1 ) ( 11 (I) (1)
Xl X 2 x) X 4 Xs X 6

Parent 2:
(2) (21 (2 ) (2) (2) (21

Xl X 2 x) X 4 Xs X 6

Parent 3: ( 31 (31 (3) (3) (3 ) (31
Xl X 2 x) X 4 Xs X 6

Parent 4:
(4) (4) (4) (4) (4) (4)

Xl X 2 x) X 4 Xs x6

Recombinant: (2) (3 ) (4) ( 2) (4) (3 )
Xl X 2 X3 X 4 X s X 6

This operator is similar to the uniform crossover procedure used in genetic algorithms.
Different combinations of decision variables of the existing solutions can be obtained
by this procedure. The step-by-step procedure of the entire algorithm is as follows:

Recombinant ES: (~/p + '\)-ES

Step 1 Choose an initial population P of ~ solutions x! i), i. = 1,2, ... , ~ and a
mutation strength vector CT.

Step 2 Create'\ mutated solutions, each using p parents randomly chosen from
11 parents, as follows:

1. Calculate the recombinant solution y either by using an intermediate or
a discrete recombination from p parents.

2. Mutate the recombinant solution:

y=y+N(O,cr). (4.41 )

Step 3 Modify the parent population P by combining all parent and offspring:

From P the best u solutions are chosen and the rest are deleted.

Step 4 If a termination criterion is satisfied, stop. Otherwise, go to Step 2.

For the (Ill p, ,\ )-ES, only the offspring population would be used to create the new
population in Step 3 of the above algorithm.
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4.3.3 Self-Adaptive Evolution Strategies

Self-adaptation is a phenomenon which makes evolutionary algorithms flexible
and closer to natural evolution. Among the evolutionary methods, self-adaptation
properties have been explored with evolution strategies (ESs) (Back, 1992, 1997;
Beyer, 1995a, 1995b; Hansen and Ostermeier, 1996; Rechenberg, 1973; Sarvanan
et al., 1995; Schwefel, 1987a) and evolutionary programming (EP) (Fogel et al., 1995),
although there exist some studies of self-adaptation in genetic algorithms (GAs) with
the mutation operator (Back, 1992). When applied to function optimization, there
are a number of reasons why evolutionary algorithmists should pay attention to self
adaptation:

1. Knowledge of lower and upper bounds for the optimal solution may not be known
a pnon.

2. It may be necessary to know the optimal solution with arbitrary precision.
3. The objective function and the optimal solution may change with time.

There are three different ways where self-adaptation is introduced into ESs:

1. A hierarchically organized population-based meta-ES (Herdy, 1992).
2. Adaptation of the covariance matrix (CMA) determining the probability

distribution for mutation (Hansen and Ostermeier, 1996).
3. Explicit use of self-adaptive control parameters (Rechenberg, 1973; Schwefel,

1987a).

The meta-ES method of self-adaptation uses two levels of ESs: the top level optimizes
the strategy parameters (such as mutation strengths), a solution of which is used to
optimize the true objective function in the lower-level ES. The second method (CMA)
records the population history for a certain number of iterations to calculate covariance
and variance information among the object variables. The subsequent search effort is
influenced by these variance values. Here, we discuss the third type of self-adaptive
ES, where the strategy parameters (variances (J~ and covariances C~j) are explicitly
coded along with the decision variables and updated by using predefined update rules
in each generation. There are basically three different implementations which are in
use.

Isotropic Self-Adaptation

In this self-adaptive ES, a single mutation strength (J is used for all variables. In
addition to n object variables, the strategy parameter (J is also used in a population
member. The logarithmic update rules for the decision variables and the mutation
strength are as follows:

(Jlt+l) (Jltl exp('ToN(O, 1)), (4.42)

xit+ 11 x;tl + (Jlt+l)NdO, 1), (4.43)

where N (0,1) and NdO, 1) are realizations of a one-dimensional normally distributed
random variable with a mean of zero and a standard deviation of one. The parameter
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TO is the learning parameter which should be set as TOX n 1/2, where n is the
dimension of the variable vector (Schwefel, 1987a). Beyer (1995b) has shown that, for
the sphere model, the optimal learning parameter for a (l,A)-ES is '"[0 = C1 ,AI VTl,
where C1,A is the progress coefficient. For multi-membered ESs, an optimal learning

parameter value is not determined. However, most studies use C",A or C~'h"A as the
constant of proportionality in the corresponding ES. The above update rule for 0'

requires an initial value, which may be chosen as 0'(0) = (x;U) -x;L))//f2, assuming
a uniform distribution of solutions within the specified range of Xi values.

Besides the logarithmic update rules described above, there also exist symmetric
and generalized two-point update rules (Schwefel, 1995).

Non-Isotropic Self-Adaptation

Here, a different mutation strength o . is used for each variable. Thus, this type of
self-adaptive ES is capable of learning to adapt to problems where each variable has
an unequal contribution to the objective function. In addition to n object variables, n
other strategy parameters are included in the decision variable vector. The logarithmic
update rules for decision variables and mutation strengths are as follows:

U;t+1) u;llexp(T'N(O,l)+TNdO,l)), (4.44)

X;t+1 1 X;ll+u;l+lI Nd O,lj, (4.45)

where T' cc (2n)-1/2 and T oc (2n1/2) 1/2. Due to lack of any theoretical results on
this self-adaptive ES, the progress coefficients for the (ll-, A)-ESs or (ll-Iu, A)-ESs are
normally used as the constant of proportionality for T' and T. Similar initial values
for 0';0), as discussed for isotropic self-adaptive ESs, may be chosen.

Correlated Self-Adaptation

In correlated self-adaptation, in addition to n mutation strengths, G) covariances, at
most, are included in each individual solution. Thus, there are a total of ((?) + n)
exogenous strategy parameters to be updated for each solution. Thus, this type of
self-adaptive ES can adapt to problems where decision variables (x) are correlated.
Schwefel (1981) suggested that instead of using covariances, one can replace them with
a rotation angle corresponding to each pair of coordinates. In a correlated problem
(where decision variables are nonlinearly interacting with each other), the task is to
find all pair-wise coordinate rotations and the spread of solutions in each rotated
coordinate system so that the objective function is completely uncorrelated in the
new coordinate system. Thus, the update rules are suggested for n decision variables,
n mutation strengths Ui and G) rotation angles (Xj as follows:

1t+1 )
Ui

11+ 11
(Xj

x lt+1)

0';11 exp ('"['N(O, 1) + TNdO, 1)),

I II
(Xj + ~ <XN j (0, 1),

x ll l +N(O,c(uIH1I,alt+11)),

(4.46)

(4.47)

(4.48)
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where N (0, C( (}"I t+ 1I, a lt+ 1))) is a realization of a normally distributed correlated
mutation vector with a zero mean vector and a covariance matrix C. The parameter
l3a is fixed as 0.0873 (or 50) (Schwefel, 1987a). Whenever an angle CXj goes outside the
range [-71,71], it is mapped inside the range, that is, if Icxjl > 71, CXj = CXj -271· cxj/lcxjl.

The parameters 'I', 'I and u~OI are set as before. The rotation angles are initialized
within zero and 180 degrees at random.

4.3.4 Connection Between Real-Parameter GAs and Self-Adaptive ESs

Without loss of generality, we will now discuss the similarity in the working of a real
parameter GA with an SBX operator and the isotropic self-adaptive ES. Under the
latter, the difference (say Lid between the offspring (xit+ 1)) and its parent (xill) can
be written from equations (4.42) and (4.43) as follows:

Lii = l-" exp(ToN(O, 1))] N(O, 1). (4.49)

Thus, an instantiation of Lii is a normal distribution with zero mean and a variance
which depends on u l l l , TO, and the instantiation of the log-normal distribution. For
our argument, there are two aspects of this procedure:

1. For a particular realization of the log-normal distribution, the difference Lii is
normally distributed with zero mean. That is, offspring closer to the parents are
monotonically more likely to be created than offspring away from the parents.

2. The standard deviation of Lii is proportional to the mutation strength u l \ I, which
signifies, in some sense, the population diversity.

In Figure 76, we show the effect of a 50% reduction in o ' I) on the distribution of Lii
under a self-adaptive ES.

Under the SBX operator, we write the term Lii by using equations (4.12) or (4.13)
as follows:

(4.50)

where bPi is the absolute difference in the two parent solutions. There is a similarity
between equations (4.49) and (4.50). The latter equation suggests that the distribution
of Lii depends on the distribution of (13 q i - 1) for a particular pair of parents. The
distribution of 13 q i has its mode at 13 q i = 1 (refer to equation (4.11)). Thus, the
distribution of (13 q i - 1) will have its mode at zero. Although the distribution (13 q i - 1J

is not a normal distribution, Figure 60 suggests that a small Lii has a higher probability
to be created than a large Lii , and that this distribution is monotonic to the distance
from a parent. The variance of this distribution depends on bpi' which signifies the
population diversity. Figure 77 shows the effect of a 50% reduction in bp i on the
distribution of Lii under the SBX operator. Comparing Figures 76 and 77 we observe
that in self-adaptive ES, the diversity in the offspring population is controlled by the
explicit mutation strength parameter, while in GAs with SBX operator it is controlled
by the parent population diversity. Thus, there is a remarkable similarity in the way
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that offspring are assigned in both an isotropic self-adaptive ES and in a GA with an
SBX operator. In both cases, the offspring closer to the parent solutions are assigned
a larger probability to be created than solutions away from parents, and the variance
of this probability distribution depends on the current population diversity.

Simulation Results

We consider the following 30-variable ellipsoidal model:

ELP: { Minimize
",30 1 s': 1 2
Ll l' Xl'

-1 :s; Xi :s; 1 for i. = 1 I 2, ... ,30.
(4.51)

Since each variable has an unequal contribution to the objective function, we use
non-isotropic self-adaptive ESs. A tournament selection operator with size 3 and
no mutation operator is used in GAs with the SBX operator (with llc = 1).
For the recombinative ES, we use the dominant crossover on object variables and
intermediate recombination on strategy parameters, as suggested elsewhere (Back and
Schwefel, 1993). Figure 78 shows the objective function value of the best solution in
the population with a GA and with an (10j10,100)-ES. Since the vertical axis is
drawn on a logarithmic scale, both approaches proceed towards the true optimum
solution exponentially quickly. Since the slopes are more or less the same, the rate of
convergence to the optimum is also similar in both approaches.

Figure 79 plots the population standard deviation in x i , X 15 and X30 variables in the
population for the real-parameter GA with the SBX operator. Since they are scaled
as 1.0, 1.514 ~ 292, and 1.52 9 ~ 127 834, respectively, the 30-th variable is likely to
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have a smaller population variance than the first variable. The figure shows this fact
clearly. Since, the ideal mutation strengths for these variables are also likely to be
inversely proportionate to 1.5i~ 1, we find a similar ordering with the non-isotropic
self-adaptive ES as well (Figure 80). Thus, there is a remarkable similarity in how
both real-parameter GAs with SBX operator and self-adaptive ESs work. In the former
case, the population diversity becomes adapted by the fitness landscape, which in turn
helps the SBX operator to create Xi value of offspring proportionately. In the latter
case, the population diversity becomes controlled by independent mutation strengths,
which become adapted based on the fitness landscape. Comparative simulations on
other problems can also be found in the original study (Deb and Beyer, 2001).

4.4 Evolutionary Programming (EP)

Evolutionary programming (EP) is a mutation-based evolutionary algorithm applied
to discrete search spaces. David Fogel (Fogel, 1988) extended the initial work of his
father Larry Fogel (Fogel, 1962) for applications involving real-parameter optimization
problems. Real-parameter EP is similar in principle to evolution strategy (ES), in that
normally distributed mutations are performed in both algorithms. Both algorithms
encode mutation strength (or variance of the normal distribution) for each decision
variable and a self-adapting rule is used to update the mutation strengths. Several
variants of EP have been suggested (Fogel, 1992). Here, we will discuss the so-called
standard EP, for tackling continuous parameter optimization problems.

EP begins its search with a set of solutions initialized randomly in a given bounded
space. Thereafter, EP is allowed to search anywhere in the real space, similar to the
real-parameter GAs. Each solution is evaluated to calculate its objective function value
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f (x). Then, a fitness value F(x) is calculated by some user-defined transformation of
the objective function. However, the fitness function can also be the same as the
objective function.

After each solution is assigned a fitness, it is mutated by using a zero-mean normally
distributed probability distribution and a variance dependent on the fitness function,
as follows:

(4.52)

where the parameters f3i and Yi must be tuned for a particular problem, such that
the term inside the square-root function is positive. If the fitness function F(x)

is normalized between zero and one (with F(x) = a corresponding to the global
minimum), the parameters Yi = a can be used. In such an event, as the solutions
approach the global minimum, the mutation strength becomes smaller and smaller.
However, for other fitness functions, a proper Yi must be chosen. To avoid this
user-dependent parameter setting, Fogel (1992) suggested a meta-EP, where the
mutation strength for each decision variable is also evolved, similar to the self-adaptive
evolution strategies. In a meta-EP, problem variables constitute decision variables x
and mutation strengths cr. Each is mutated as follows:

xi + (JiNdO, 1),

((Ji)l + ((JiNdO, 1),

(4.53)

(4.54)

where (is a user-defined exogenous parameter, which must be chosen to make sure that
the mutation strength remains positive. It is important to mention here that there
also exists a Rmeta-EP, where in addition to the mutation strengths, correlation
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coefficients are used as decision variables, as in the case of correlated evolution
strategies (Fogel et al., 1992).

After the mutation operation, both parent and offspring populations are combined
together and the best N solutions are probabilistically selected for the next generation.
The selection operator is as follows. For each solution x (i I in the combined population,
a set of 11 members are chosen at random from the combined population. Thereafter,
the fitness of x(i) is compared with that of each member of the chosen set and a score
equal to the number of solutions having the worse fitness is counted. Thereafter, a1l2N
population members are sorted according to the descending order of their scores and
the best N solutions having the better score are selected. It is clear that if 11 = 2N is
chosen, the procedure is identical to the deterministic selection of the best N solutions.
For 11 < 2N, the procedure is probabilistic. Since both parent and offspring populations
are combined before selecting N solutions, the selection procedure preserves elitism.
Fogel (1992) proved the above algorithm for convergence. Back (1996) showed that for
the sphere model having a large number of variables, the implicit mutation strength
used in the EP is larger than the optimal mutation strength, thereby causing the EP
to perform worse than an optimal algorithm. Fogel's correction to equation (4.52)
with:

(4.55)

for n > 2 helps make the implicit mutation strength of the same order as the optimal
mutation strength. An EP with the above fix-up is expected to perform as good as an
evolution strategy with an optimal mutation strength.

4.5 Genetic Programming (GP)

Genetic programming (GP) is a genetic algorithm applied to computer programs to
evolve efficient and meaningful programs for solving a task (Koza, 1992; Koza, 1994;
Banzhaf et al., 1998). Instead of decision variables, a program (usually a C, C++, or
Lisp program) represents a procedure to solve a task. For example, let us consider
solving the following differential equation using a GP:

Solve d1:) = 2x }dx '
with 1:)(x = 0) = 2.

(4.56)

The objective in this problem is to find a solution 1:) (x) (1:) as a function of x)
which will satisfy the above problem description. Here, a solution in a GP method is
nothing but an arbitrary function of x. Some such solutions are 1:) (x) = 2x2 ~ 2x + 1,
1:)(x) = exp(x)+2, or 1:) (x) = 2x+ 1. It is the task of a GP technique to find the function
which is the correct solution to the above problem through genetic operations.

In order to create the initial population, a terminal set T and a function set F must
be pre-specified. A terminal set consists of constants and variables, whereas a function
set consists of operators and basic functions. For example, for the above problem
T = {x, 1,2,~1,~2, ... } and F = {-;.-, x,+,-, x .exp.sin.cos.Iog, ... } can be used. By
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the use of two such sets, valid syntactically correct programs can be developed. Two
such programs are shown in Figure 81. Like a GA, a GP process starts with a set
of randomly created syntactically correct programs. Each program (or solution) is
evaluated by testing the program in a number of S instances in a supervised manner.
By comparing the outcome of the program on each of these instances with the actual
outcome, a fitness is assigned. Usually, the number of matched instances (say Ii) are
counted and a fitness equal to IdS is assigned to the i-th individual. By maximizing
this artificial fitness metric, one would hope to find a solution with a maximum of S
matched instances. In the above problem, the fitness of a solution can be calculated in
the following manner. First, a set of solutions can be chosen. We illustrate the fitness
assignment procedure by choosing a set of 11 instances of x, as shown in Table 8.
The true value of the right side of the differential equation can be computed for
each solution (column 3 in the table). Thereafter, for each solution, the left side of
the differential equation can be computed numerically. In column 4 of the table, we
compute the exact value of the left side of the differential equation for the solution
1) (1) (xl = 2x2 - 2x + 1. Now, an error measure between these two columns (3 and
4) can be calculated as the fitness of the solution. Obviously, such a fitness metric
must be minimized in order to get the exact solution of the differential equation.
By computing the absolute differences between columns 3 and 4 and summing, we
determine the fitness of the solution as 11.0. Since lJI 1) (x = 0) = 1 does not match
with the given initial condition, 1) (x = 0) = 2, we add a penalty to the above fitness
proportional to this difference and calculate the overall fitness of the solution. With
a penalty parameter of one, the overall fitness becomes 11.0 + 1.0, or 12.0. This way,
even if the differential equation is satisfied by a function but the initial condition is
not satisfied, then the overall fitness will be non-zero. Only when both are satisfied,
will the overall fitness take the lowest possible value.

+

1

2

+

exp

y(x) 2*x*x - 2*x + 1 y(x) = exp(x) + 2

Figure 81 Two GP solutions.
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Table 8 A set of 11 instances and evaluation of a solution lJ ( 1 ) (x) = 2x2 - 2x + 1.

Instances x 2x d1J( 1) /dx

1 0.0 0.0 -2.0
2 0.1 0.2 -1.6
3 0.2 0.4 -1.2
4 0.3 0.6 -0.8
5 0.4 0.8 -0.4
6 0.5 1.0 0.0
7 0.6 1.2 0.4
8 0.7 1.4 0.8
9 0.8 1.6 1.2
10 0.9 1.8 1.6
11 1.0 2.0 2.0

The crossover and mutation operators are similar to that in GAs. We illustrate
the working of a typical GP crossover operator on two parent solutions in Figure 82.
A sub-program to be exchanged between two parents is first chosen at random in
each parent. Thereafter, the crossover operator is completed by exchanging the two
sub-programs, as shown in Figure 82.

The mutation operator can be applied to a terminal or to a function. If applied to a
terminal, the current value is exchanged with another value from the terminal set, as
shown in Figure 83. Similarly, if the mutation operation is to be applied to a function
(a node), a different function is chosen from the function set. Here, care must be taken
to keep the syntax of the chosen function valid.

Like GAs, GP operators are usually run for a pre-specified number of generations,
or until a solution with a best fitness value is found. In addition to the above simple
GP operators, there exist a number of other advanced operators, such as automatically
defined functions, meaningful crossover, and various others, which have been used to
solve a wide variety of problems (Koza, 1994).

C/\~2 I exp \, ,

, ~ ,
, ,, ,, ,, ,
, x '

2

Parent 1 Parent 2 Offspring 1 Offspring 2

Figure 82 The GP crossover operator.
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Figure 83 The GP mutation operator.

4.6 Multi-Modal Function Optimization

As the name suggests, multi-modal functions have multiple optimum solutions, of
which many are local optimal solutions. Multi-modality in a search and optimization
problem usually causes difficulty to any optimization algorithm in terms of finding
the global optimum solutions. This is because in these problems there exist many
attractors in which an algorithm can become directed to. Finding the global optimum
solution in such a problem becomes a challenge to any optimization algorithm.

However, in this section, we will discuss an optimization task which is much more
difficult than just finding the global optimum solution in a multi-modal optimization
problem. The objective in a multi-modal function optimization problem is to find
multiple optimal solutions having either equal or unequal objective function values.
This means that in addition to finding the global optimum solution(s), we are
interested in finding a number of other local optimum solutions. It may apparently
look puzzling as to why one would be interested in finding local optimum solutions.
However, the knowledge of multiple local and global optimal solutions in the search
space is particularly useful in obtaining an insight into the function landscape.
Such information is also useful to design engineers and practitioners for choosing an
alternative optimal solution, as and when required. In practice, because of the changing
nature of a problem, new constraints may make a previous optimum solution infeasible
to implement. The knowledge of alternate optimum solutions (whether global or local
optimum) allows a user to conveniently shift from one solution to another.

Most classical search and optimization methods begin with a single solution and
modify the solution iteratively and finally recommend only one solution as the
obtained optimum solution (refer to Figure 39). Since our goal is to find multiple
optimal solutions, there are at least two difficulties with the classical methods:

1. A classical optimization method has to be applied a number of times, each time
starting with a different initial guess solution to hopefully find multiple optimum
solutions.

2. Different applications of a classical method from different initial guess solutions do
not guarantee finding different optimum solutions. This scenario is particularly true
if the chosen initial solutions lie in the basin of attraction of an identical optimum.
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Since EAs work with a population of solutions instead of one solution, some change
in the basic EA, which is described in the previous section, can be made so that
the final EA population consists of multiple optimal solutions. This will allow an EA
to find multiple optimal solutions simultaneously in one single simulation run. The
basic framework for the working of an EA suggests such a plausibility and makes EAs
unique algorithms in terms of finding multiple optimal solutions. In this section, we
will discuss different plausible modifications to a basic genetic algorithm for finding
and maintaining multiple optimal solutions in multi-modal optimization problems.
These ideas are then borrowed in subsequent chapters to find multiple Pareto-optimal
solutions in handling multi-objective optimization problems.

4.6.1 Diversity Through Mutation

Finding solutions closer to different optimal solutions in a population and maintaining
them over many generations are two different matters. Early on in an EA simulation,
solutions are distributed all over the search space. Because of parallel schema
processing in multiple schema partitions, solutions closer to multiple optimal solutions
get emphasized in early generations. Eventually, when the population contains
clusters of good solutions near many optima, competitions among clusters of different
optima begins. This continues until the complete population converges to a single
optimum. Therefore, although it is possible to discover multiple solutions during early
generations, it may not be possible to maintain them automatically in a GA. In order
to maintain multiple optimal solutions, an explicit diversity-preserving operator must
be used.

The mutation operator is often used as a diversity-preserving operator in an EA.
Although, along with selection and crossover operators, it can help find different
optimal solutions, it can help little in preserving useful solutions over a large number
of generations. The mutation operator has a constructive as well as a destructive
effect. As it can create a better solution by perturbing a solution, it can also destroy
a good solution. Since we are interested in accepting the constructive effect and since
it is computationally expensive to check the worth of every possible mutation for its
outcome, the mutation is usually used with a small probability in a GA. This makes
the mutation operator insufficient to use as a sole diversity-preserving operator for
maintaining multiple optimal solutions.

4.6.2 Preselection

Cavicchio (1970) was the first to introduce an explicit mechanism of maintaining
diversity in a GA. Replacing an individual with a like individual is the main concept
in a preselection operator. Cavicchio introduced preselection in a simple way. When an
offspring is created from two parent solutions, the offspring is compared with respect
to both parents. If the offspring has a better fitness than the worst parent solution,
it replaces that parent. Since an offspring is likely to be similar (in genotypic space
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and in phenotypic space) to both parents, replacement of a parent with an offspring
allows many different solutions to co-exist in the population. This operation is also
carried out in all pairs of the mating parents. Thus, the resulting successful offspring
replace one of their parents, thereby allowing multiple important solutions to co
exist in the population. Although Cavicchio's study did not bring out the effect of
introducing preselection because of the use of many other operators, Mahfoud (1992)
later suggested a number of variations, where the preselection method is used to solve
a couple of multi-modal optimization problems.

4.6.3 Crowding Model

Dejong (1975) in his doctoral dissertation used a crowding model to introduce
diversity among solutions in a GA population. Although his specific implementation
turns out to be weak for multi-modal optimization, he laid the foundation for many
popular diversity preservation techniques which are in use to date.

As the name suggests, in a crowding model, crowding of solutions anywhere in
the search space is discouraged, thereby providing the diversity needed to maintain
multiple optimal solutions. In his crowding model, Dejong used an overlapping
population concept and a crowding strategy. In his GA, only a proportion G (called
the generation gap) of the population is permitted to reproduce in each generation.
Furthermore, when an offspring is to be introduced in the overlapping population, CF
solutions (called the crowding factor) from the population are chosen at random. The
offspring is compared with these CF solutions and the solution which is most similar
to the offspring is replaced. In his study, Dejong used G = 0.1 and CF = 2 or 3. Since
a similar string is replaced by the offspring, diversity among different strings can be
preserved by this process. Similarity among two strings can be defined in two spaces
- phenotypic (the decision variable space) and genotypic space (the Hamming space).
Dejong's crowding model has been subsequently used in machine learning applications
(Goldberg, 1983) and has also been analyzed (Mahfoud, 1995). The main contribution
of Dejong's study was the suggestion of replacing one solution by a similar solution
in maintaining multiple optimum solutions in an evolving population.

4.6.4 Sharing Function Model

Goldberg and Richardson (1987) suggested another revolutionary concept, where c)
instead of replacing a solution by a similar solution, the focus was more on degrading ) .~ ,'O!

the fitness of similar solutions. The investigators viewed the population as a battlefield /1"/'

for multiple optimal solutions, with each trying to ~~'vive with the largest possible
( \ occupants. Since most subsequent GA studies have used this model in solving multi

.v,J modal optimization problems, we will describe it here in somewhat greater detail.
Let us imagine that we are interested in finding q optimal solutions in a multi-modal

optimization problem. The only resource available to us is a finite population with N
slots. It is assumed here that q « N, so that each optimum can work with an adequate
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r/y~

subpopulation (niche) of solutions. Since the population will need representative
solutions of all q optima, s&fu~;w the available resource of N population slots must
have to be shared among all representative solutions. This means that if for each
optimum i, there is an expected occupancy rn, in the population, .L~=1 m, = N. If, in
any generation, an optimum i has more than this expected number of representative
solutions, this has to come at the expense of another optimum. Thus, the fitness
of each of these representative solutions must be degraded so that in an overall
competition the selection operator does not choose all representative solutions. On
the other hand, solutions of an under-represented optimum must be e~ph~~d by
the selection operator. Argu1~ from a two-armed bandit game-playing scenario, the
investigators showed that if such a sharing concept is introduced, the arm with a
payoff f gets populated by a number of solutions (m) proportionate to f, or m ex: f.

For q armed bandits (or q optimal solutions), this means that the ratio of payoff f
(optimal objective value) and m (number of subpopulation slots) for each optimum
would be identical, or:

rn. m, m q

This suggests an interesting phenomenon. If a hypothetical fitness function f I (called
the 'shared fitness function') is defined as follows:

(4.58)

then all optima (whether local or global) would have an identical shared fitness value.
If a proportionate selection is now applied with the shared fitness values, all optima
will get the same expected number of copies, thereby emphasizing each optimum
equally. Since this procedure will be performed in each generation, the maintenance
of multiple optimal solutions is also possible.

Although the above principle seems like a reasonable scheme for maintaining
multiple optimal solutions in a finite population from generation after generation,
there is a practical problem. The precise identification of solutions belonging to
each true optimum demands a lot of problem knowledge and in most problems is
not available. Realizing this, Goldberg and Richardson (1987) suggested an adaptive
strategy, where a sharing function is used to obtain an estimate of the number of
solutions belonging to each optimum. Although a general class of sharing functions is
suggested, they used the following function in their simulation studies:

Sh( d) = { 1 - ( as~are) ex ,

0,

if d ::; ashare;

otherwise.
(4.59)

The parameter d is the distance between any two solutions in the population. The
above function takes a value in [0,1], depending on the values of d and ashare. If d is
zero (meaning that two solutions are identical or their distance is zero), Sh(d) = 1.

This means that a solution has full sharing effect on itself. On the other hand, if
d ;::: ashare (meaning that two solutions are at least a distance of ashare away from
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each other), Sh(d) = O. This means that two solutions which are a distance of O'share
away from each other do not have any sharing effect on each other. Any other distance
d between two solutions will have a partial effect on each. If lX = 1 is used, the effect
linearly reduces from one to zero. Thus, it is clear that in a population, a solution may
not get any sharing effect from some solutions, may get partial sharing effect from few
solutions, and will get a full effect from itself. Figure 84 shows the sharing function
Sh(d) as it varies with the normalized distance d/O'share for different values of lX. If
these sharing function values are calculated with respect to all population members
(including itself), are added and a niche count ric, is calculated for the i-th solution,
as follows:

(4.60)
N

ric, = L Sh( d i i ),

j 1

then the niche count provides an estimate of the extent of crowding near a solution.
Here, di j is the distance between the i-th and j-th solutions. It is important to note
that ric, is always greater than or equal to one. This is because the right side includes
the term Sh( dii) = Sh( 0.0) = 1. The final task is to calculate the shared fitness
value as f{ = fi/nci, as suggested above. Since all over-represented optima will have
a larger ric, value, the fitness of all representative solutions of these optima would
be degraded by a large amount. All under-represented optima will have a smaller ric,
value and the degradation of the fitness value would not be large, thereby emphasizing
the under-represented optima. The following describes the step-by-step procedure for
calculating the shared fitness value of a solution i in a population.

Shared Fitness Calculation

Step 1 Calculate the sharing function value Sh( d i j ) with all population
members by using equation (4.59).
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(4.61)

Step 2 Add all sharing function values to calculate the niche count ric, by using
equation (4.60).

Step 3 Calculate the shared fitness value as f{ = fi/nci.

After the shared fitness is calculated for all population members, a proportionate
selection method is used to find the mating pool. The crossover and mutation operators
are applied to the whole population as usual.

Careful thinking will reveal that the shared fitness computation of a population
member i is O(N), since this involves finding the distance di j with every population
member. Although some bookkeeping can be used, the computation for calculating
the shared fitness value of all population members is O(N 2 ) . However, it is important
to highlight that in most real-world problems the calculation of the distance between
vectors of decision variables or strings could be negligible compared to expensive
objective function computations. Hence, the above computational complexity may
not be critical. However, there exists another factor, which has been the source of
some criticisms of the sharing function method, a matter we will discuss later (see
page 150).

An Example Problem

In order to illustrate the working of the sharing function approach, let us take a
bimodal function:

Maximize f(x) = [sinlvocl], }
0::::: x::::: 2.

Let us also consider a population of six solutions, as shown in Table 9. A six-bit
coding is used and decoded value of each string is mapped in [0,2] to calculate the
corresponding decision variable value. These six solutions are also shown as circles
on a function plot in Figure 85. This figure shows that of the two maxima, the
second maximum (x* = 1.5) is populated by more solutions than the first maximum
(x* = 0.5). If the sharing approach is not used, this population is most likely to lead a
GA to converge to the second maximum alone, thereby not finding the first maximum.

Table 9 Six solutions and corresponding shared fitness values.

Sol. String Decoded x(ij f i nc, f!
1

i value

1 110100 52 1.651 0.890 2.856 0.312
2 101100 44 1.397 0.948 3.160 0.300
3 011101 29 0.921 0.246 1.048 0.235
4 001011 11 0.349 0.890 1.000 0.890
5 110000 48 1.524 0.997 3.364 0.296
6 101110 46 1.460 0.992 3.364 0.295
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Figure 85 Six solutions and their shared fitness values (shown by dashed lines) on the

bimodal function.

We will now illustrate the sharing function approach and calculate the shared fitness
values of each population member.

To illustrate this, we use phenotypic sharing and a ITshare = 0.5. In the next
subsection, we will show that with two optima and a range of 2.0 for the decision
variable, the suggested ITshare is indeed 0.5. We also choose ex = 1. We use the above
procedure to calculate the shared fitness of the first solution only.

Step 1 From the first solution, the distances from all population members are as
follows:

dll = 0,
d15 = 0.127,

d12 =0.254,
d16=0.191.

d13=0.731, d14 = 1.302,

The corresponding sharing function values are calculated by usmg equa
tion (4.59):

Sh(dll) = 1,
Sh(d15) = 0.746,

Sh(d12) = 0.492,
Sh(d161 = 0.618.

Sh(d131 = 0,

Note that since solutions 3 and 4 are more than a 0.5 unit away from solution 1,
their sharing effect is zero.

Step 2 The niche count of the first solution is simply the addition of the above
sharing function values, or:

nc- = 1 + 0.492 + 0 + 0 + 0.746 + 0.618 = 2.856.
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Table 10 Computation of niche counts for all six solutions.

Sharing function values nc,
1 2 3 4 5 6

1 1 0.492 0 0 0.746 0.618 2.856
2 0.492 1 0.048 0 0.746 0.874 3.160
3 0 0.048 1 0 0 0 1.048
4 0 0 0 1 0 0 1.000
5 0.746 0.746 0 0 1 0.872 3.364
6 0.618 0.874 0 0 0.872 1 3.364

Step 3 The shared fitness value of the first solution is:

f( = fix! 1) l/nc] = 0.890/2.856 = 0.312.

Table 10 shows the niche count calculations of all six solutions. The right-most column
of this table shows the niche count values, which are copied in the sixth column of
Table 9. The corresponding shared fitness values are shown in the seventh column
of Table 9. Figure 85 also shows these shared fitness values with dashed lines. Since,
solution 4 is near-optimal to x" = 0.5 and this is the only solution representing this
optimum, its shared fitness value is higher than any other solution in the population.
On the other hand, since there are four representatives (solutions 1, 2, 5 and 6) of the
second maximum, their shared fitness values are somewhat less. Since the selection
operator will be performed with these shared fitness values, more copies of solution 4
are expected in the mating pool. By calculating the average shared fitness of the
population, it is found that f~/f~vg = 2.29, whereas the average of fUf~vg of the four
solutions near the second maximum is 0.77. Thus, by the action of a proportionate
selection, it is expected that solution 4 would have two or more copies and the four
solutions near the second maximum may reduce to three solutions (4 x 0.77 = 3.08).
These calculations show how the sharing function approach can restore a balance
between the number of solutions in each optimum.

Parameter Setting

The sharing function Sh( d] defined in equation (4.59) introduced two user-defined

parameters - a and <Yshare. Although a does not have too much effect on the
performance of the sharing function method (Deb, 1989), the second parameter <Yshare

must be set right in order to define the niche size of an optimum. Ideally, the latter
is directly related to the basin of attraction of the optimum. Since this information is
not available in an arbitrary problem, Deb and Goldberg (1989) suggested different
ways to set this parameter. We will first present the suggestions for phenotypic sharing
and then discuss the same for genotypic sharing. In most applications, an a = 1 or 2
is used.
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For phenotypic sharing, the Euclidean distance between two decision variable
vectors xli) and x ljl can be calculated as dij:

11

di j = L(X~il - x~j))2.

k 1

(4.62)

Imagining that the n-dimensional hypersphere of radius r must be divided among q
optima equally (each small hypersphere having a radius (Jshare), this reduces to the
following equation:

ern, or
r

(Jshare

H - 1 /, n (I U 1 I L I) 2 Th . f for j duciere, r - 2: V L k= 1 Xk - Xk . us, as estimate 0 (Jshare or intro ucmg q
equispaced niches in the search space is:

/,n
k

(IU) ILI)2VL ·1 X k - Xk
(Jshare = -'--------,-----

201
(4.63)

For n = 1 (single variable problems), the above equation reduces to (Jshare = (x~U) 

x~LI)/(2q). If normalized distance values d ij = L~cl r(x~i) - x~))/(x~U) - x~L))]2

are used, the following normalized sharing parameter value can be employed:

0.5
(Jshare = H(;1'vq (4.64)

For genotypic sharing, the Hamming distance between two f-bit binary strings s Ii)
and s (j I is used as dij. The Hamming distance is defined as the number of positions
where bits are different in two strings. This distance value only takes an integer value
in the range [0,e]. Counting the number of strings having different bit differences
with a given string in the entire search space, Deb and Goldberg (1989) calculated the
number of allowed bit differences K for which all strings having K or less bit differences
occupy at least the 1/q-th portion of the entire search space, or:

(4.65)

Since there may not exist an integer K satisfying the above equation, we calculate the
minimum value of K for which the left side becomes more than the right side. This
minimum value of K is assigned as (Jshare'
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Simulation Results

MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION

In order to demonstrate the working of the sharing function method, we show one GA
simulation run on the following five-peaked function:

Maximize f(x) = 2-2( ( x - 0 . l 1/0.8)2 sin6(57Ix l, }

O::;x::;1.
(4.66)

We use a population size of 100, the proportionate selection method, and a single
point crossover operator with a probability of 0.9. No mutation is used. The GA is run
until 200 generations have taken place, in order to demonstrate that subpopulations
in all five optima are possible to maintain even for a large number of generations.
Figure 86 shows that without the sharing function approach, a GA converges to the
best maximum. However, Figure 87 shows that all five maxima are found in a single
simulation run of a GA with the sharing function approach with CYshare = 0.1 (obtained
using equation (4.63) with n = 1, q = 5, x(UI = 1 and x(L) = 0).

Difficulties of the Sharing Function Approach

There are two difficulties with the sharing function approach. First, there is a need for
choosing a CYshare. We have already suggested estimates for choosing an appropriate
CYshare earlier. Both types of sharing require a user to fix a value of the number of
optima q to calculate an estimate of an adequate CYshare' If the q chosen to compute
CYshare is larger than the actual number of optima in the search space, the sharing
function approach tends to form more niches than the function can allow. This may
lead to finding a number of suboptimal solutions in addition to the optimal solutions.
On the other hand, if the chosen q underestimates the actual number of optima in
the search space, not all optima may be found by the sharing function approach. In
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most applications where an exact number of optima is not known a priori, a q = 5
to 10 may be tried. It is also important to note that if q niches are needed to be
found, a GA needs an adequate population size to support all q subpopulations. We
suggest using N = xq, where K is a constant and must be calculated as the minimum
population size needed to find one optimum independently.

The computed niche count for each solution provides an idea of the number of
solutions around an optimum and can be used to resize O"share at every generation.
Such a dynamic update of O"share may provide a better performance of an EA than
a fixed value of O"share' More research in this direction must be pursued to evaluate
the efficacy of such techniques. We will discuss one such dynamic update procedure
in Section 5.8.6.

Secondly, there is an inherent scaling problem that shared fitness values can
introduce. Consider the population shown using circles on the two-optimum function
in Figure 88. The shared fitness values (marked by dashed lines in the figure) suggest
that a sub-optimal solution (solution A) has the best shared fitness value. This is
because the solution has a fitness value which is not too much worse than the optimal
solutions, but is not crowded by many solutions. Since the proportionate selection
will emphasize this solution the most (even more than the near-optimal solutions),
the population may contain some sub-optimal solutions. Figure 87 also shows the
existence of some such solutions, even after 200 generations. However, many of the
non-optimal solutions shown in Figure 87 are also the outcome of crossovers between
solutions from two different optima, a matter we will discuss below in Section 4.6.7.

Real-Parameter GAs for Multi-Modal Optimization

In the above simulations, binary-coded GAs are used. Since the implementation of
the sharing function approach affects only the selection operator, it can also be used

x

Figure 88 The shared fitness of solution A is maximum here.
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in a straightforward manner with real-parameter GAs. However, there is one matter
which needs discussing.

The role of any niching method is to emphasize solutions corresponding to poorly
represented regions in the population. The sharing function approach achieves this
task by artificially degrading the fitness of the crowded solutions in the population.
Although the mating pool obtained by such a procedure may contain multiple copies
of important solutions, if highly destructive recombination and mutation operators are
used, some such solutions may get destroyed. Thus, there is a need to use restricted
search operators. Fortunately, in most of the real-parameter crossover operators
described earlier, the search power can be controlled with a tunable parameter. In
the SBX operator, this parameter is TIc, while in the BLX operator, the parameter
is (x. To achieve a restricted search power, in SBX a large value of TIc must be used,
while in BLX a small value of (X must be used.

Deb and Kumar (1995) studied the effect of TIc on the performance of a real
parameter GA to maintain a good distribution of solutions among multiple optima on a
number of multi-modal functions. We reproduce here the outcome of one such function.
This function is the same five-peaked function used in the previous subsections.
Instead of showing the population members on the function, Figure 89 presents a
performance measure derived from the distribution of solutions in the final population.
The actual number of solutions (nd near each of the five optima are calculated and a
chi-square like deviation measure is evaluated:

q+ 1 ( _ ) 2, n.; -ni ,
l= L

i~l O'i

(4.67)

where q is the number of optima, ni is the desired number of solutions in the i-th
optimum, and O'i is the standard deviation in the number of solutions in the i-th
optimum. The desired number of solutions is calculated in proportion to the optimal
function value of each optimum. For the above problems, the optimal function values
are 1.0, 0.917, 0.707, 0.458 and 0.25. Thus, the corresponding desired numbers of
solutions in each optimum in a population of size 100 are nl = 30, n2 = 28, n3 = 21,
n4 = 14, and ns = 7. The (q +1)-th set is considered as all solutions in the population
not belonging to any of the optima. For this set, nq +1 = O. The variances of all groups
can be calculated as follows:

0'2 = { ni (1 - ~) for i = 1,2, ... , q,
1 ,q 2 for i 1Lj 1 O'j , or 1 = q + .

Thus, the smaller the above measure t, then the closer is the distribution to the desired
distribution. In Figure 89, we observe that with TIc, the distributing ability (calculated
by using equation (4.67)) of real-parameter GAs with the SBX operator gets better in
solving a problem having five optima. The figure also shows that at around TIc = 30,
the distributing ability of real-parameter GAs with an SBX is equivalent to that of
binary-coded GAs with phenotypic sharing. It is important to realize that with such
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solutions across multiple optima (Deb and Kumar, 1995). Reprinted with permission.

a large T]c, on most occasions offspring are created close to the parent solutions. This
allows a slow yet steady search for better solutions in a multi-modal problem, instead
of wild searches which may lead to lethal solutions.

Effect of Selection Operators

Oei et al. (1991) argued that the sharing function approach will not work well with
the tournament or any ranking selection operator. Because of the proportionality law
between the number of expected solutions and the optimal function value, only a
proportionate selection can maintain subpopulations with a proportionate number of
solutions. The investigators suggested a different niching strategy for the tournament
selection. In their continuously updating sharing technique, a tournament between two
solutions is played by finding the number of solutions in the vicinity of each solution
in the new partial population. Instead of calculating the niche count with solutions
in the old population, as in the sharing function approach described earlier, the niche
count is calculated with solutions of the new population, as and when the population
is formed. Between two solutions, the one with a better shared fitness value computed
in the new population is chosen.

Instead of using the above continuously updated sharing approach, the investigators
have also suggested a few practical implementation procedures. A niche size parameter
n * is defined by the user beforehand. For each of the two solutions participating in
a tournament, the number of individuals in a niche with a CTshare parameter can be
computed. Alternatively, the niche counts can also be computed. If the number of
individuals in a niche or niche count of both solutions is less than n *, the one with
the better fitness value wins; otherwise, the one with the smaller number of crowded
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individuals or smaller niche count wins. Thus, if one solution is overly crowded beyond
n * and the other is not, the second solution is chosen. However, if both solutions
competing in a tournament are adequately crowded, the one which is comparatively
less crowded is selected. The fitness comparison is used only when both solutions are
not adequately crowded. The attractive aspect of this strategy is that the importance
to fitness or to crowding can be controlled by using the n * parameter. Since the
tournament selection operator is found to have both a fast take-over time and a quick
execution time, this shared tournament selection is now attracting a lot of attention.

Instead of using the complete population to compute the niche count or number of
crowded individuals, these computations can be performed on a small subpopulation
randomly chosen from the complete population. This will reduce the computational
complexity at the expense of introducing noise in the niching calculations.

Another simple procedure to introduce niching with a tournament selection would
be to seek a maximum of k individuals as a partner for the selection of an individual i.
If any of k individuals lie within (Tshare, that solution competes with the solution i and
the one with a better fitness value wins. On the other hand, if none of the k solutions
is found to lie within (Tshare of solution i, it is automatically declared selected. Once
again, the selection pressure based on fitness can be controlled by changing k. Such
an idea has been implemented in a recent study (Deb, 2000).

4.6.5 Ecological GA

Davidor (1991) suggested an ecological GA to evolve both the artificial niche and
species in a population. In order to achieve this, he placed the population members on
a two-dimensional grid (formed to make a torus) so that each member is surrounded
by eight other members. In a steady-state GA, one member in the grid is chosen
at random. The genetic operations are performed within a subpopulation consisting
of nine individuals (the chosen individual and eight other surrounding individuals)
to create an offspring string. This string contests with parent strings and survives
according to the fitness of the string. Since an offspring can only survive by replacing
its parents, like population members (individuals in the basin of each optimal solution
in a multi-modal problem) are expected to stay close to each other, thereby forming
islands of different optimal solutions. Davidor has shown that in solving a multi
modal problem, separate islands can be formed in the torus. However, the ecological
model does not have any mechanism for maintaining islands of local peaks for many
generations. Thus, local peaks are formed but eventually get overwhelmed by the
global optimum solution due its slow diffusion effect.

4.6.6 Other Models

Goldberg and Wang (1998) proposed an alternate niching method (coevolutionary
shared niching (CSN)), which is inspired by the economic model of monopolistic
competition. In a population of customers, a set of businessmen is needed to be
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placed in such a way that each businessman, staying at a minimum distance to each
other, serves the maximum number of customers. In a coevolutionary context of two
populations involving businessmen and customers, each population seeks to maximize
their separate interests, thereby creating adequately spaced niches. The usual GA
population of solutions is named as the customer population here. The diversity in
solutions is maintained by the usual fitness sharing scheme, where the fitness of a
customer is calculated by degrading its objective function by the total number of
customers its businessman serves. On the other hand, the fitness of a businessman is
assigned by summing the objective function value of all of its customers. Initially, all
customers and businessmen are picked from the search space at random. A selecto
recombinative GA is applied to the customer population and a selecto-mutation GA
is applied to the businessman population. For each customer, the closest businessman
is chosen. Thereafter, its shared fitness is calculated and the stochastic universal
selection (SUS) operator is applied. The single-point crossover is used in the original
study. For a businessman, a mutated solution is created and compared. If the mutated
businessman is better than the original solution and is at least a critical distance away
from other businessmen, it replaces the original businessman. On two test problems,
it was possible to maintain stable subpopulations in all optima.

In solving an immune system problem, Smith et al. (1993) suggested an antigen
antibody matching procedure, which has an implicit fitness sharing strategy. The
sharing function approach is not explicitly used here. In order to find a match in
an antibody population for each antigen chosen from an antigen population, the
procedure showed its ability to maintain a diverse set of antibodies covering a set
of antigens. Such a coevolutionary strategy can be implemented in other optimization
contexts without resorting to an explicit sharing approach.

Jelasity (1998) proposed the universal evolutionary global optimization algorithm
(or UEGO) for multi-modal function optimization. UEGO works in different levels,
starting from the complete search space. Each level embodies a number of species.
Each species is designated with a center and a radius to mark its working domain in
the search space. A new species is formed from two solutions of a previously formed
species by comparing their objective function values with that of the centroid of the
two solutions. If the centroid is worse than both parents, two new species are formed
at two parent solutions. This heuristic is derived from the fact that there always
lies a worse region between two optimal regions. UEGO also uses a fusion of species
based on their nearness to each other, deletion of species to control over-growth of
the number of species, and optimization within a species in search of better solutions
representing the species. Each of these procedures involves some parameter settings.
Several suggestions for fixing most of these parameters are outlined in the study.
Although this procedure was used to find only one global optimum solution, multiple
optimal solutions (that is, other global or local optimal solutions) are also found as
byproducts of this procedure. This is because multiple species are maintained up until
the end of a simulation run.
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4.6.7 Need for Mating Restriction

In the previous subsections, we have seen that multiple optimal solutions in a multi
modal optimization problem can be found simultaneously by forming artificial niches
(subpopulations) in the population. Each niche can be considered to represent an
optimum. In order to capture a number of optima simultaneously and maintain these
for many generations, a niching method is used. Niching helps to emphasize and
maintain solutions around multiple optima, but it is the task of the search operators to
find the best point within a niche efficiently. With the usual crossover operator applied
uniformly to the whole population, some search effort is wasted in the recombination of
solutions from different optima. A speciation method restricts mating among solutions
in the basin of one optimum and helps find the best or a near-best optimum solution
efficiently. If a speciation method is not used, individual opt~um or near-optimum
solutions may be obtained, but because of the creation of z/that solutions (solutions
that do not represent any optimum) either a larger population size or more generations
are necessary to achieve a specified accuracy in the obtained solutions. In speciation
methods, only 'like individuals' are allowed to mate. Thus, the probability of creating
lethal individuals is small and the search is mostly confined in the vicinity of each
optimum. Thus, in the presence of both niching and speciation, niching maintains
subpopulation of solutions around many optima and the speciation allows us to make
a parallel search in all optimal basins to find multiple optimal solutions simultaneously.

A number of speciation methods have been suggested and implemented in genetic
algorithms. Of the earlier works related to mating restriction in genetic algorithms,
Hollstein's inbreeding scheme (Hollstein, 1971), where mating was allowed between
close individuals in his simulation of animal husbandry problems, Booker's taxon
exemplar scheme (Booker, 1982) for restrictive mating in his simulation of learning
pattern classes, Holland's suggestion of a tag-template scheme (Holland, 1975), Perry's
adaptive GA for creating multiple species (Perry, 1984), Sannier and Goodman's
restrictive mating in forming separate coherent groups in a population (Sannier and
Goodman, 1987), Deb's phenotypic and genotypic mating restriction schemes (Deb,
1989), and Davidor's ecological model (Davidor, 1991) are just a few studies. Here,
we will briefly mention the phenotypic and the genotypic mating restriction schemes.

We have developed two mating restriction schemes based on the phenotypic and
genotypic distances between mating individuals (Deb, 1989). These mating restriction
schemes are straightforward. In order to choose a mate for an individual, their
distances (for a phenotypic mating restriction, the Euclidean distance, and for a
genotypic mating restriction, the Hamming distance) are computed. If the distance
is closer than a parameter CYmating, they are participated in the crossover operation;
otherwise, another individual is chosen at random and their distances are computed.
This process is continued until a suitable mate is found or all population members are
exhausted, in which case a random individual is chosen as a mate. In all simulations
of this study, CYmating is kept the same as the value of the parameter CYshare chosen for
the niching method. Figure 90 shows the population after 200 generations, obtained
by using the phenotypic mating restriction scheme with CYmating = 0.1 and with the
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Figure 90 The population obtained after 200 generations using the sharing function and

mating restriction approaches. Reproduced from Deb (1997b) (© 1997 lOP Publishing Ltd

and Oxford University Press).

sharing function approach. The rest of the parameter settings are the same as before.
This figure shows that the GA with niching and mating restrictions finds a better
distributed population across the peaks than GAs with the sharing function approach
alone (shown in Figure 87).

It is interesting to note in Figure 89 that real-parameter GAs with the SBX
operator having T]c 2: 140 performed better than binary GAs with sharing and mating
restriction operations.

4.7 Summary

Before understanding the working principles of multi-objective evolutionary
algorithms, it is essential to know the workings of single-objective evolutionary
algorithms. In this chapter we have discussed a number of evolutionary algorithms
(EAs). Of them, genetic algorithms (GAs) and evolution strategy (ES) are used as
baseline algorithms in most of the popular multi-objective evolutionary algorithms.
Thus, we have discussed these two algorithms in somewhat more detail. Later, we
have also described briefly two other evolutionary algorithms, namely evolutionary
programming (EP) and genetic programming (GP). Although there exists a number
of different evolutionary algorithms (Back et al., 1997), they are all motivated by the
natural evolutionary principles. Most of these methods share a number of common
properties, as follows:

1. They work with a population of solutions, instead of one solution in each iteration.
By starting with a random set of solutions, an EA modifies the current population
to a different population in each iteration. Working with a number of solutions
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provides an EA with the ability to capture multiple optimal solutions in one single
simulation run.

2. They have two distinct operations, namely selection and search. In the selection
operation, better solutions in the current population are emphasized by duplicating
them in the mating pool. In the search operation, new solutions are created by
exchanging partial information (in the decision variable space) among solutions of
the mating pool and by perturbing them in their neighborhood.

3. They do not use any gradient information during the above two operations. In
addition, their representations are flexible. These properties make EAs flexible
enough to be used in a wide variety of problem domains.

4. The operators use stochastic principles. Since deterministic rules are not used, EAs
do not assume any particular structure of a problem to be solved.

Much of the research carried out in the area of evolutionary computation is
available in a number of well-written books (Back, 1996; Fogel, 1995; Fogel et al.,
1966; Goldberg, 1989; Gen and Cheng, 1997; Holland, 1975; Michalewicz, 1992;
Mitchell, 1996; Koza, 1992, 1994; Schwefel, 1995). In addition, the following regular
conference proceedings provide useful source material: The International Conference
on Genetic Algorithms (ICGA), a biannual conference started in 1985, The Genetic
and Evolutionary Computation Conference (GECCO), an annual conference started in
1999, The International Conference on Evolutionary Computation (ICEC), an annual
conference started in 1994, The Congress on Evolutionary Computation (CEC), an
annual conference started in 1999, The Evolutionary Programming Conference, an
annual conference started in 1992, The Genetic Programming Conference (GP), an
annual conference started in 1996, Parallel Problem Solving from Nature (PPSN)
Conference, a biannual conference started in 1990, Foundations of Genetic Algorithms
(FOGA), a biannual workshop started in 1990, and many other related events. The
following journals also regularly publish papers on evolutionary computation: IEEE
Transactions on Evolutionary Computation (TEC), published by the IEEE Press,
Evolutionary Computation Journal (ECJ), published by the MIT Press, and Genetic
Programming and Evolvable Machines published by the Kluwer Academic Publishers,
plus several other domain-specific journals, including a couple of on-line publications.

Multi-objective optimization is a mixture of two optimization strategies: (i)
minimizing the distance of the obtained solutions from the true optimal solutions, and
(ii) maximizing the spread of solutions in the obtained set of solutions. The former
task is similar to the usual task in a single-objective optimization, while the latter
task is similar to finding multiple optimal solutions in a multi-modal optimization. In
this chapter we have also discussed a number of multi-modal optimization techniques
using evolutionary algorithms. The ability to capture multiple solutions in an EA
population makes multi-modal and multi-objective evolutionary algorithms elegant
and useful. With such descriptions of both of these optimization tasks, we have now
set a platform from which we can now make our journey into the world of multi
objective evolutionary optimization algorithms.
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Non-Elitist Multi-Objective
Evolutionary Algorithms

A striking difference between a classical search and optimization method and an
evolutionary algorithm (EA) is that in the latter a population of solutions is processed
in every iteration (or generation). This feature alone gives an EA a tremendous
advantage for its use in solving multi-objective optimization problems (MOOPs).
Recall from Section 2.2 that one of the goals of an ideal multi-objective optimization
procedure is to find as many Pareto-optimal solutions as possible. Since an EA works
with a population of solutions, in theory we should be able to make some changes to
the basic EA described in the previous chapter so that a population of Pareto-optimal
solutions can be captured in one single simulation run of an EA. If we can achieve this,
it will eliminate repetitive use of a single-objective optimization method for finding one
different Pareto-optimal solution in each run. This will also eliminate the need of any
parameters such as weight vectors, £ vectors, target vectors, and various others. These
parameters are needed in a classical multi-objective optimization algorithm in order to
transform the MOOP into a single-objective optimization problem favoring a single
Pareto-optimal solution. This is because each setting of these vectors is associated
with a particular Pareto-optimal solution in some problems. Using classical methods
to find multiple Pareto-optimal solutions, one then chooses a different weight vector
and solves the resulting single-objective optimization problem again.

On the other hand, the ENs population approach can be exploited to emphasize
all non-dominated solutions in a population equally and to simultaneously preserve
a diverse set of multiple non-dominated solutions using a niche-preserving operator,
described in the previous chapter. In this way multiple good solutions can be found
and maintained in a population. After some generations, this process may lead the
population to converge close to the Pareto-optimal front and with a good spread.

In this chapter, we will describe such modifications to a basic EA for finding multiple
Pareto-optimal solutions simultaneously. First, we concentrate on algorithms which do
not use any elite-preserving operator. Once we have a clear idea of these algorithms,
we shall present multi-objective EAs which use an elite-preserving operator in the
next chapter.
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5.1 Motivation for Finding Multiple Pareto-Optimal Solutions

Before we discuss the multi-objective EAs, let us go one step ahead and ponder for
a while the advantages of finding multiple Pareto-optimal solutions. Let us say that
we use a multi-objective EA and finally manage to find a number of Pareto-optimal
solutions in one single simulation run (for example, see Figures 37 and 38 earlier).
We recall that each of these solutions would correspond to the optimum (or a near
optimum) solution of a composite problem trading-off different objective functions.
Thus, each solution is important with respect to some trade-off relationship among
the objectives. Now the obvious question is: 'What should we do with such multiple
Pareto-optimal solutions?' After all, from a practical standpoint, we only need one
solution to implement. So the real question is which one of these multiple solutions
are we interested in? This may not be a difficult question to answer in the presence
of many obtained trade-off solutions, but is difficult to answer in the absence of any
such knowledge. This is precisely the difficulty a user faces while using a classical
method. If a user knows the exact trade-off among objective functions (in other words,
the user knows a weight vector that (s)he is interested in), there is no need to find
multiple solutions. A weight-based classical method would be good enough to find
the corresponding optimal solution. We have termed this approach a preference-based
approach in Chapter 1, while the classical literature calls this approach an 'a priori'
approach.

However, unfortunately, a user is usually not sure of an exact trade-off relationship
among objectives. In this scenario, we argue that from a practical standpoint, it is
better to find a set of Pareto-optimal solutions first and then choose one solution
from the set by using some other higher-level information or considerations. We have
termed this approach an ideal approach in Chapter 1. After a non-dominated set of
solutions are found, each solution can be associated with an artificial weight vector
estimated from the location of the solutions in the non-dominated set. Thereafter, if
some rough preference knowledge about the trade-off among objectives is known, it
can be used to choose one of the non-dominated solutions, which will closely match
the information conveyed by the artificial weight vector. This method, at least, gives
a user an overall perspective of other possible optimal solutions that the underlying
MOOP offers before choosing a solution and also allows a user to choose a solution
according to some desired degree of importance to each objective.

One can argue that in order to get a perspective of different Pareto-optimal solutions
that the underlying MOOP offers, one can still use the 'a priori' approach of classical
methods in the following way. In this so-called 'posteriori' approach, first a set of
weight vectors (or € vectors) are chosen. Thereafter, for each weight vector, we
construct a single-objective optimization problem and find the corresponding optimum
solution. When all such optimizations are performed, we get a set of Pareto-optimal
solutions. Figure 91 illustrates this posteriori approach and the ideal approach on
a two-objective hypothetical minimization problem. For each approach, the resulting
Pareto-optimal solutions are also illustrated. In the repeated application of the a priori
approach shown in the left figure, nine different equi-spaced weight vectors are chosen.
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Figure 91 Classical 'posteriori' approach and the proposed ideal approach.

The figure shows W2 only, but it is assumed that Wj = 1 - W2. The direction of the
arrows in the left figure indicates that the weight vectors are chosen first. Thereafter,
Pareto-optimal solutions are found by using each weight vector. In the absence of any
additional knowledge, it is wise to use a uniform-spaced set of weight vectors. In a
sufficiently nonlinear problem, it is likely that the optimal solutions resulting from a
uniformly spaced set of weight vectors may not result in a uniformly spaced set of
Pareto-optimal SOlutions, as depicted in the figure.

The right portion of Figure 91 shows the working principle of the proposed
ideal approach. Here, no knowledge of any weight vector is assumed at first and
a population-based optimization algorithm is used to find multiple Pareto-optimal
solutions. Since the original MOOP is not converted to a single-objective optimization
problem and since usually the concept of domination along with a diversity-preserving
mechanism are to be used to drive the search process, this approach may find a good
spread of Pareto-optimal solutions. Here, an arrow pointing towards a weight value
indicates that a weight vector is calculated after the Pareto-optimal solutions are
found. By using the individual objective function value of each of these solutions, an
estimate of a trade-off among different objectives can then be made for each solution.
For example, the left-most Pareto-optimal solution (marked 'A' on the figure) will
correspond to a 100% preference of f 1 and a 0% preference of h. This is because this
solution corresponds to the minimum f 1 among all obtained Pareto-optimal solutions.
We can relate these preference values loosely with the weights. The solution 'A' may
be assigned a weight vector [w- , W2) = (1,0). In this way, all obtained solutions
can be assigned a pseudo-weight vector (refer to equation (8.1) later for a way to
achieve a pseudo-weight vector). The user can now compare different solutions with
their associated weight vector and choose a solution most desirable to the user. For
example, if the user is interested in finding a solution with more or less equal trade-off
between the two objectives, (s)he should choose the solution closer to a weight vector
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Wj = Wz = 0.5. For the solutions illustrated in the figure, the user's choice would be
solution 'B'.

We argue that this ideal approach is a better practical strategy, although the
computational issue of finding multiple Pareto-optimal solutions in one simulation
using a multi-objective optimizer versus iteratively finding one Pareto-optimal solution
at a time using a single-objective optimizer remains as an interesting future research.
Most EA methods described in this book are assumed to work with the ideal approach.

5.2 Early Suggestions

As in the classical optimization, early researchers of evolutionary algorithms have also
realized the need of handling multiple objectives. G. E. P. Box (1957) hand-simulated
an evolutionary operation for multiple objectives. He, being an experimentalist,
clearly appreciated the necessity of using more than one objectives in a design (Box,
1957, p. 84):

... in practice we are interested not only in the productivity of the process,
but also in the physical properties of the product which is manufactured.

Furthermore, in discussing how to handle multiple objectives using an evolutionary
operation, he clearly mentioned the difficulties of using a weighted approach (Box,
1957, p. 96):

Although it is theoretically possible to equate all responses to a single
criterion such as profitability, this usually presents great practical
difficulties. As a general rule it is best to represent the problem as one of
improving a principal response (for example the cost per lb. of product)
subject to satisfying certain conditions on a number of auxiliary responses.
These auxiliary responses usually measure the quality and important
physical properties of the product.

Very careful thought in the selection of the principal response is essential.
The vital question to ask is: 'If this response is improved will it mean
necessarily that the processes improved?'

It is interesting to note the suggestion of an c-constraint-based strategy for use
with the evolutionary operation. This suggestion came much earlier than a formal
introduction of an e-constraint strategy by Haimes, Lasdon, and Wismer (1971). Box
was also concerned with the need for choosing an appropriate criterion as the objective
function of the converted single-objective optimization problem.

Fogel et al. (1966) suggested and simulated on a computer a weighted approach in
handling multiple objectives (or goals) in two different scenarios. With the task of
finding a logic for transforming a sequence of input symbols to a sequence of output
symbols, the investigators suggested a way to evaluate a solution for predicting the
n-th symbol into the future (where n > 0) with an evaluation function fn. In order
to solve a combined problem of predicting two or more symbols in the future, each
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corresponding evaluation function can be combined with a weight directly related
to the importance of predicting that symbol. In an effort to control the growth of
the finite-state machines (FSMs) by evolutionary programming, they were faced with
two different objectives - maximize the performance of prediction and minimize the
machine complexity. Once again, they suggested adding a penalty term (related to
the second objective) to the first objective. This procedure is similar to the use of
a weighted approach, with the constant in the penalty term acting as the relative
weight associated with the second objective of minimizing complexity. On a computer
simulation, they showed that by increasing the constant in the penalty term, small
sized FSMs can be evolved. Although the non-domination concept in handling multi
objective optimization problems is not used, this application was one of the earliest
evolutionary algorithms used to handle multiple objectives.

Rosenberg (1967) in his dissertation suggested, but did not simulate, a genetic
search method for finding the chemistry of a population of single-celled organisms
with multiple properties or objectives. He referred to a set of chemical concentrations
as a property. Although his formulations included minimizing the deviations of
multiple properties from desired properties, in all of his simulations he considered
only one property, thereby missing the opportunity to investigate the effect of multiple
objectives in a GA.

The first real implementation of a multi-objective evolutionary algorithm (vector
evaluated GA or VEGA) was suggested by David Schaffer in 1984. Schaffer (1984)
modified the simple tripartite genetic algorithm GAs with selection, crossover and
mutation by performing independent selection cycles according to each objective.
We will describe the VEGA in detail in a subsequent subsection. The algorithm
worked efficiently for some generations but in some cases suffered from its bias towards
individual objective champions. Although the first goal of multi-objective optimization
was fulfilled, the second task of maintaining a good spread of solutions in the obtained
front was not entirely accomplished by the proposed VEGA.

Ironically, no significant study was performed for almost a decade after the
pioneering work of Schaffer. Goldberg (1989), while discussing the VEGA in his book,
realized a better implementation of domination principle in an EA and suggested
a revolutionary lO-line sketch of a new non-dominated sorting procedure. Since an
EA needs one fitness function for reproduction, the trick was to find a single metric
from a number of objective functions. Goldberg's suggestion was to use the concept of
domination to assign more copies to non-dominated individuals in a population. Since
diversity is another concern, he also suggested the use of a niching strategy among
solutions of a non-dominated class. Realizing the potential of a good multi-objective
evolutionary algorithm which can be derived from his suggestions, at least three
independent groups of researchers have developed different versions of multi-objective
evolutionary algorithms (multi-objective GAs (MOGAs), niched Pareto GAs (NPGAs)
and non-dominated sorting GAs (NSGAs)). These algorithms differ in the way a fitness
is assigned to each individual. We will discuss each of these implementations in detail
in subsequent subsections. A comprehensive summary of some of these algorithms can
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also be found elsewhere (Coello, 1999; Veldhuizen, 1999).
Besides the algorithms described in this chapter, many other non-elitist MOEAs

have also been suggested. We certainly do not make any attempt to include all such
algorithms in this present text. Instead, we have included a few which are most
commonly used.

5.3 Example Problems

Most of the MOEAs described in this book are illustrated by showing a hand
simulation of the algorithm on a simple example problem. Since some algorithms
are specifically designed to handle minimization problems and some are designed to
handle maximization problems, we have chosen two different example problems.

5.3.1 Minimization Example Problem: Min-Ex

We consider the following two-objective, two-variable minimization problem for
illustrating the working of most of the algorithms presented in this and the next
chapter:

{
Minimize fdx)=Xl,

Minimize f( )-~
Min-Ex: 2 x - Xl ' (5.1)

subject to O.l:S;Xl:S;l,
o< X2 < 5.

Although this problem looks simple, it produces conflicting scenarios between
both objectives, resulting in a set of Pareto-optimal solutions. A straightforward
manipulation of the above two functions will allow us to find the following relationship
between both objectives:

(5.2)

The function f l is a function of Xl only. Thus, the boundaries of the search space
correspond to the minimum and maximum values of the numerator of the right side
of the above equation. This happens for xi = 0 and xi = 5. Figure 92 shows the
partial search space with two boundaries. Since both functions are to be minimized, all
solutions in the lower boundary (with xi = 0) are members of the Pareto-optimal set.
Thus, for all Pareto-optimal solutions, two objective functions are related as fz = 1If l ,

thereby constituting the trade-off among the Pareto-optimal solutions. The figure also
shows the complete Pareto-optimal front, which comprises the solutions 0.1 :s; xi :s; 1
and xi = O. It is important to highlight that the resulting Pareto-optimal region
(shown by a bold line) is convex.

We have also chosen six random solutions in the search space for illustrating the
working principle of algorithms described in this chapter. These solutions are also
marked in Figure 92 and are tabulated in Table 11.
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Figure 92 The example problem Min-Ex with six randomly chosen solutions.

5.3.2 Maximization Example Problem: Max-Ex

On the other extreme of the Pareto-optimal front in the above problem, there lies
a search boundary corresponding to fz = 6/f1 . Incidentally, all solutions in this
boundary belong to the Pareto-optimal set of the problem where the same objective
functions are being maximized:

Maximize fl(x) = x j ,

}Maximize f ( ) - 1+ X22 X - -X-l-' (5.3)
subject to 0.1 < Xl < 1,

o< X2 < 5.

However, besides the basic difference in the type of optimization, there is a subtle
difference between Min-Ex and the above problem. In the former case (minimization
of objective functions) the resulting Pareto-optimal set is a convex set in the objective
function space, whereas in the latter case (maximization of objective functions), the

Table 11 Six randomly chosen solutions in the objective space of Min-Ex.

Solution Xl X2 fl f 2

1 0.31 0.89 0.31 6.10
2 0.43 1.92 0.43 6.79
3 0.22 0.56 0.22 7.09
4 0.59 3.63 0.59 7.85
5 0.66 1.41 0.66 3.65
6 0.83 2.51 0.83 4.23
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resulting Pareto-optimal set is a nonconvex set. Although the variable space (the
XI-X2 space) is convex, Pareto-optimal solutions in the objective space behave in a
nonconvex manner. In tackling such problems, algorithms that somehow exploit the
convexity of Pareto-optimal set may not be expected to do well.

One of the ways to convert a minimization problem into a maximization problem
is to use the duality principle (Deb, 1995), where the objective function is multiplied
by -1. This allows an objective function to take negative values. Some selection
operators (such as the proportionate selection operator) cannot process negative fitness
values since in these operators the fitness values are converted to probability measures
directly. A common method of this conversion is to subtract the objective function
from a large maximum value:

(5.4)

where fiax is the maximum function value of f i in the entire search space. In the
problem stated in equation (5.1), the maximum objective function values are 1 and
60, respectively. Thus, we modify the problem in equation (5.3) as follows:

{
Maximize fdx) = 1.1-xl,

Max-Ex: Maximize f2(x) = 60 ~ 1 tlx2,
(5.5)

subject to 0.1 < Xl ~ 1,
o< X2 < 5.

Since Xl varies between 0.1 and 1.0, we have used a constant 1.1 instead of 1.0 to avoid
any divide-by-zero error in computing fz- This modified function has a Pareto-optimal
front at xi = 0 and 0.1 ~ xi ~ 1.0 (the same as in the Min-Ex problem), although the
objective functions vary as f2(X) = 60 -1/[1.1 - fl (xl]. Figure 93 shows the partial
search space and the complete Pareto-optimal front (with a bold line). The Pareto
optimal set is now a convex set in the objective space. A randomly created initial
population of six members is shown in the objective space in Figure 93. The decision
parameter values and corresponding objective function values are also shown in
Table 12. These solutions will be used to illustrate the fitness assignment procedure for
the different multi-objective evolutionary algorithms discussed in subsequent sections.

Table 12 Six randomly chosen solutions in the objective space of Max-Ex.

Solution Xl X2 fl f2
1 0.31 0.89 0.79 53.90
2 0.43 1.92 0.67 53.21
3 0.22 0.56 0.88 52.91
4 0.59 3.63 0.51 52.15

5 0.66 1.41 0.44 56.35
6 0.83 2.51 0.27 55.77
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Figure 93 The maximization problem Max-Ex with six randomly chosen solutions.

5.4 Vector Evaluated Genetic Algorithm

Schaffer (1984) implemented the first multi-objective GA to find a set of non
dominated solutions. Subsequently, he compared his GA with an adaptive random
search technique (Schaffer, 1985) and observed a better performance obtained by
his algorithm. He called his GA the vector evaluated GA, or VEGA. The name is
appropriate for multi-objective optimization, because his GA evaluated an objective
vector (instead of a scalar objective function), with each element of the vector
representing each objective function.

VEGA is the simplest possible multi-objective GA and is a straightforward
extension of a single-objective GA for multi-objective optimization. Since a number
of objectives (say M) have to be handled, Schaffer (1984) thought of dividing the
GA population at every generation into M equal subpopulations randomly. Each
subpopulation is assigned a fitness based on a different objective function. In this
way, each of the M objective functions is used to evaluate some members in the
population.

We illustrate this fitness evaluation scheme in Figure 94 for five objective functions.
The population at any generation is divided into five equal divisions. Each individual
in the first subpopulation is assigned a fitness based on the first objective function
only, while each individual in the second subpopulation is assigned a fitness based
on the second objective function only, and so on. In order to reduce the positional
bias in the population, it is better to shuffle the population before it is partitioned
into equal subpopulations. After each solution is assigned a fitness, the selection
operator, restricted among solutions of each subpopulation, is applied until the
complete subpopulation is filled. This is particularly useful in handling problems
where objective functions take values of different orders of magnitude. Since all
members in a subpopulation are assigned a fitness based on a particular objective
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Figure 94 Schematic of a VEGA.

function, restricting the selection operator only within a subpopulation emphasizes
good solutions corresponding to that particular objective function. Moreover, since no

two solutions are compared for different objective functions, disparity in the ranges
of different objective functions does not create any difficulty either. Schaffer used the

proportionate selection operator (Goldberg, 1989).

Vector Evaluated Genetic Algorithm Procedure

Step 1 Set an objective function counter i = 1 and define q = N/M.

Step 2 For all solutions j = 1 + (i - 1) * q to j = i * q, assign fitness as:

F(x(j)) = fdx(j)).

Step 3 Perform proportionate selection on all q solutions to create a mating

pool Pi.

Step 4 If i = M, go to Step 5. Otherwise, increment i by one and go to Step 2.

Step 5 Combine all mating pools together: P = U~l Pi. Perform crossover and
mutation on P to create a new population.

A little thought will reveal that the above algorithm emphasizes solutions which
are good for individual objective functions. In order to find intermediate trade
off solutions, Schaffer allowed crossover between any two solutions in the entire
population. In this way, Schaffer thought that a crossover between two good solutions,
each corresponding to a different objective, may find offspring which are good
compromised solutions between the two objectives. The mutation operator is applied

on each individual as usual.

5.4.1 Hand Calculations

We consider the two-objective, two-variable optimization problem Max-Ex to better
illustrate the working of the VEGA. Since a VEGA uses the proportionate selection
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operator, which in principle maximizes the fitness function, we have chosen the
Max-Ex problem. The randomly created initial population of six members is shown
in the objective space in Figure 93. The Pareto-optimal front comprises solutions
0.1 :::; xi :::; 1 and xl = O. It is important to highlight that the resulting Pareto
optimal region (shown by the bold curve in Figure 93) is convex. Now, we follow the
step-by-step procedure of the VEGA.

Step 1 We set the counter i = 1 and parameter q = 6/2 = 3. Since there are two
objectives, we partition the population into two subpopulations. Let us say that
partition 1 comprises solutions 1, 2 and 5, and partition 2 comprises solutions 3,
4 and 6. Figure 95 shows this partitioning in the objective space.

Step 2 Now, all solutions of the first partition will be assigned a fitness based on the
first objective function. Table 13 presents the assigned fitness to each of these
three solutions of the first subpopulation. The best solutions in each partition
is shown in italic script.

Step 3 It can be seen that solution 1 has the best fitness among all solutions in the
first partition (Figure 96). Under a proportionate selection operator with scaling,
solutions 1 and 2 are expected to have two copies and one copy, respectively,
in the first partition. It is likely that the worst solution (solution 5) will get
eliminated after the selection operation.

Step 4 Next we move to Step 2 for the second objective function (i = 2).

Step 2 Solutions 3, 4 and 6 belong to the second partition and are assigned fitness
values based on the second objective function. These fitness values are presented
in Table 13.
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Figure 95 Six solutions are partitioned into two groups in VEGA.
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Table 13 Fitness assignment procedure under a VEGA.

Solution Xl X2 f, f2 Partition Assigned
fitness

1 0.31 0.89 0.79 53.90 1 0.79
2 0.43 1.92 0.67 53.21 1 0.67
3 0.22 0.56 0.88 52.91 2 52.91
4 0.59 3.63 0.51 52.15 2 52.15
5 0.66 1.41 0.44 56.35 1 0.44
6 0.83 2.51 0.27 55.77 2 55.77

Step 3 The solution 6 has the best fitness among all solutions in the second partition
(Figure 96). During the selection operation in the second partition, two copies
of solution 6 and one copy of solution 3 are expected.

Step 4 Now, we move to Step 5, where crossover and mutation operations will be
performed on the complete population obtained after both selection operations.
This completes one iteration of the VEGA.

Figure 96 shows that there is a bias for solutions towards individual champions.

5.4.2 Computational Complexity

Since a stochastic remainder proportionate selection operator takes 0 (N / M )
computations (Goldberg and Deb, 1991) for each of M objectives, a VEGA has the
same computational complexity as that of single-objective GAs.
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Figure 96 Fitness assignment in a VEGA.
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The main advantage of a VEGA is that it uses a simple idea and is easy to implement.
Only minor changes are required to be made in a simple GA to convert it to a multi
objective GA and this does not incur any additional computational complexity. This
is a definite advantage of the VEGA over all other multi-objective GAs.

We have discussed earlier that a VEGA has a tendency to find solutions near
the individual best solution of each objective. In problems where such solutions are
desired, the VEGA may be found to be a good alternative. One such application of
VEGA on constrained function optimization has been nicely demonstrated elsewhere
(Coello, 2000).

Although the VEGA is simple to implement, there exist some limitations in its
working principle. We will describe these in the next section.

5.4.4 Disadvantages

Recall that each solution in a VEGA is evaluated only with one objective function.
Thus, every solution is not tested for other (M - 1) objective functions, all of
which are also important in the context of multi-objective optimization. During a
simulation run of a VEGA, it is likely that solutions near the optimum of an individual
objective function would be preferred by the selection operator in a subpopulation.
Such preferences take place in parallel with other objective functions in different
subpopulations. In the original study (Schaffer, 1984), it was assumed that the
crossover operator would combine these individual champion solutions together to
find other trade-off solutions in the Pareto-optimal region. However, as observed by
Schaffer, even in convex search space problems, the crossover between individual
champion solutions could not find diverse solutions in the population. Eventually,
the VEGA converges to individual champion solutions only.

5.4.5 Simulation Results

Figure 97 shows the population obtained by using a VEGA on the two-objective
optimization problem (Max-Ex). In this experiment, we have used the following GA
parameter settings:

Population Size
String length
Selection
Crossover
Mutation

40,
24 for Xl and 26 for Xl,

Stochastic universal selection without any scaling,
Single-point crossover with Pc = 0.9,
Not used.

Although a few solutions close to the Pareto-optimal solutions were found during
30 to 50 generations (not shown here), the VEGA cannot sustain the intermediate
solutions. If all GA parameters are chosen right, the VEGA may come very close to the
Pareto-optimal front, but eventually it is destined to get attracted by the individual
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Figure 97 Non-dominated solutions after

500 generations of the VEGA without the

mutation operator.

Figure 98 Non-dominated solutions at

the end of 500 generations of the VEGA

with the mutation operator.

champion solutions, thereby losing the intermediate solutions in the Pareto-optimal
front. Figure 97 shows all non-dominated solutions obtained after 500 generations.
It is clear that after a substantial number of generations the VEGA fails to sustain
its diversity along the Pareto-optimal front and converges near one of the individual
champion solutions.

When mutation is used with a probability of 0.02 (equivalent to 1j(string-length)),
the VEGA seems to find a good spread of non-dominated solutions (Figure 98), but
because of the absence of an elite-preserving operator and being stochasticity involved
in the bit-wise mutation operator, the VEGA cannot maintain its solutions on the
Pareto-optimal front. Recall that in order to remain on the Pareto-optimal front,
the second decision variable X2 must be zero (the lower bound coded by the binary
string of all zeros). With the presence of mutation (on an average one bit per string),
it is difficult to maintain solutions on the Pareto-optimal front. However, the same
mutation when applied to the substring coding the first decision variable (xd has
provided some diversity in the non-dominated solutions.

Although the mutation operator has provided some diversity, it has been achieved
at the expense of convergence near the Pareto-optimal front. In fact, Schaffer's VEGA
did not include any other operator for maintaining diversity explicitly. However, his
later studies included two modifications, which we will discuss next.

5.4.6 Non-Dominated Selection Heuristic

Schaffer realized that one of the ways to maintain diverse solutions in the Pareto
optimal region is to emphasize non-dominated solutions in a population. One of the
ways to give importance to a solution in a GA is to assign a large selection probability.
In the proportionate selection operator, a solution with a fitness f i is selected with a
probability fil L~=l fj. Thus, the solution i can be emphasized by adding an extra
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term €i to this probability, but care must be taken to make sure that this extra amount
€i is subtracted from some other solutions in the population in order to preserve the
overall probability of selecting the complete population as one.

In this method, the non-dominated solutions in the current population are first
found. Thereafter, an amount € is subtracted from each dominated solution, thereby
reducing the importance of the dominated solutions. For a subpopulation of N I

population members having p' non-dominated solutions, this amounts to a total
reduction of (N' - p')€ from all (N' - pi) dominated solutions. This amount is then
redistributed among p I non-dominated solutions by adding an amount N 'p' p , € to each
non-dominated solution. This method of redistribution of selection probabilities has
two important implications:

1. Non-dominated solutions are emphasized over dominated solutions.
2. Additional emphasis to each non-dominated solution is given equally.

We shall see throughout this book that these two features are important ingredients
of most multi-objective optimization algorithms that exist to date. However, since
the fitness assignment is still performed based on individual objective functions on
members of separate subpopulations, all non-dominated solutions do not have the
same absolute selection probability.

The rest of the algorithm is the same as the VEGA. Each member in a subpopulation
is selected with its modified selection probability. Crossover and mutation are
performed as usual on the whole population. We apply this algorithm to the same
two-objective test problem and observe that the ability of this modified VEGA is not
very different from the original VEGA. We use c = 0.02. After 500 generations, we
observe in Figure 99 that the modified VEGA cannot improve the diversity to a large
extent in the obtained Pareto-optimal solutions. In fact, as Schaffer also pointed out,
if there exist only a few non-dominated solutions in the population (p ' is small), they
get over-emphasized by the selection operator. This may cause the algorithm to lose
its population diversity.

When a mutation operator is invoked with a bit-wise probability of 0.02 (equivalent
to the l/(string-length) rule) and the modified VEGA is run up until 500 generations,
there seems to be a good spread of solutions on the Pareto-optimal front (Figure 100).
The modified VEGA seems to have found a better spread of solutions, compared to
the original VEGA, in the presence of the bit-wise mutation operator. The emphasis of
non-dominated solutions provided by the assignment of an extra selection probability
matches well with the mutation's search power to find and maintain solutions on the
Pareto-optimal front, even in the absence of an explicit elite-preserving operator.

5.4.7 Mate Selection Heuristic

With the selection operation used in the original VEGA, it is expected that specialist
solutions of each objective will populate a GA population. Schaffer realized that
the random mating (crossover) between any two solutions may not guarantee that
solutions of different subpopulations are used in the crossover operation. For example,
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Figure 100 Non-dominated solutions
after 500 generations obtained with a
VEGA using the non-domination selection
heuristic and mutation.

with two objective functions, there is only a 50% chance that the two mating
solutions are from two different subpopulations. In order to create utopian solutions
(intermediate Pareto-optimal solutions), Schaffer thought that cross-breeding ofthese
specialist solutions is necessary. He proposed two techniques. In the first approach,
one parent is chosen at random from the mating pool. To choose its mate, a solution
having the maximum Euclidean distance in the objective space is chosen from the
population. This mate would most likely be a solution from the specialists of an
objective different from that in the first parent. This will allow cross-breeding of two
different specialist solutions and intermediate solutions are expected to be created.
Unfortunately, Schaffer reported that this strategy did not work well compared to the
original random mating strategy. The reason for its poor performance is that since the
first parent is randomly chosen, it may not be a specialist. Thus, a solution which is
widely different from it may not be a specialist as well. Moreover, we argue that the
basic idea of cross-breeding two specialist solutions to create an intermediate utopian
solution may not occur in many problems, particularly in those with a nonconvex
search region.

Schaffer's second approach to restrict mating was to use an improvement distance,
instead of the Euclidean distance, to choose a mate. In the distance metric
computation, only positive (improved) distances are summed over all dimensions. A
solution with the maximum improvement distance is chosen as a mate. His conclusion
was that although this heuristic worked better than the first heuristic, it is worse than
the random mating (the crossover operator used in the original VEGA). Since none
of these methods performed better than the original VEGA in the original study, we
do not present any simulation results with these methods on our test problem. There
exists a number of other MOEAs which use a fitness assignment scheme similar to
that in the VEGA. Next, we will describe a few of these algorithms.
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Fourman (1985), in his symbolic layout design study, suggested two ways to handle
multiple criteria in a GA. The first algorithm is a straightforward weighted approach.
By changing the weight associated with each objective, different solutions have been
found using a simple GA. The second approach is similar to that of a VEGA. However,
the selection operator was similar to the binary tournament selection. When two
solutions are picked for comparison, one of the M objective functions is chosen at
random and is used to compare two solutions. The algorithm also introduced a way
to vary the frequency of choosing an objective. In this way, it is possible to introduce
problem knowledge, if available, into his GA. On layout design problems, he observed
that this strategy was able to find a 'greater variability' in resulting populations than
the first approach.

The extreme of assigning a relative selection frequency for objectives is to use
lexicographic ordering of objectives (Ben-Tal, 1980). By making one of the objectives
infinitely more important than the rest of the objectives, that objective is first
optimized alone. After the first level of optimization with the most-preferred objective,
if there exist multiple optimal solutions, the second-best objective is tried. A constraint
limiting the first objective to take no worse than the obtained optimal value in
the previous case is added. This makes sure that previously found better solutions
are always retained. The algorithm terminates when there exists only one optimum
solution to an optimization problem.

Bentley and Wakefield (1997) suggested a number of ranking schemes as plausible
fitness functions in a GA. The weighted average ranking (WAR) worked well in
many multi-objective optimization problems. In this method, population members
are ranked separately according to each objective function. A fitness equal to the sum
of the ranks in each objective is assigned. In this way, individual champion solutions
and intermediate solutions will have comparable fitness values, thereby emphasizing
a variety of solutions to co-exist in the GA population.

Lis and Eiben (1996) proposed a multi-sexual GA (MSGA) for multi-objective
optimization, which is similar in principle to the VEGA. Each solution is marked
with an additional integer variable, representing the objective function for which it
has to be evaluated. Investigators decided to remain closer to nature by referring to this
additional variable as the sex variable. All solutions marked with a sex variable value k
are evaluated by the k-th objective function only. Instead of using the proportionate
selection, a ranking selection is used to choose a solution for mating. Crossover is
allowed only between solutions having a different sex variable value. In a uniform
crossover operation, the offspring inherits the sex variable of that parent from which
it inherited the maximum number of genes (bits). Mutation is performed as well,
but no mutation is allowed to the sex variable gene. The MSGA also maintains an
external set of non-dominated solutions and updates it with current non-dominated
solutions at every generation. Since the elite set of solutions is not used in the genetic
operations (rather it is used for bookkeeping purposes), we do not call this strategy
an elitist MOEA. However, on a couple of test problems, a widely distributed set
of non-dominated solutions were found. It is interesting to note that the algorithm
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(5.6)

does not use any explicit niche-preserving mechanism, except the use of a sex marker
and a restricted mating which ensures crossovers among good solutions of different
objectives. It is a matter of future research to investigate how such a strategy without
an explicit niche-preserving operator is able to find a well-distributed Pareto-optimal
set in more complex problems.

5.5 Vector-Optimized Evolution Strategy

A few years after the VEGA study, but well before the study of other multi
objective EAs, Frank Kursawe (1990) suggested a vector-optimized evolution strategy
(VOES) for multi-objective optimization. In this approach, the basic self-adaptive
evolution strategy for single-objective optimization is modified to handle multi
objective optimization problems. Although the fitness assignment scheme was similar
to the VEGA, Kursawe's algorithm used a number of other aspects from nature.

First, a solution is represented by using a diploid chromosome, each having a
dominant and a recessive string. Two different solution vectors (each with a decision
variable vector x and the corresponding strategy parameter vector (J) are used as an
individual in a population. One of the two solutions is marked as 'dominant' and the
other is marked as 'recessive'. Thus, an individual i results in two objective vector
evaluations: (i) f d, calculated by using the decision variables of the dominant genotype
and (ii) f r , calculated by using the decision variables of the recessive genotype. The
overall fitness evaluation and the selection procedure are as follows.

The selection process is completed in M steps (where M is the number of objective
functions). For each step, a user-defined probability vector is used to choose an
objective. This vector can either be kept fixed or varied with generations. If the m-th
objective function is chosen, the fitness of an individual i is computed as a weighted
average of its dominant objective value (fd)~) and recessive objective value (f r )~) in
a 2 : 1 ratio:

F(i) = ~(f )(i) + ~(f )(1)
3 d m 3 r m ·

From 1-1 parent solutions, A mutated solutions are created, as usual. The update of
strategy parameters and decision variables are also performed, as described earlier in
Section 4.3.3. An additional swap operator exchanging decision variables of recessive
and dominant solutions is used with a variable-wise probability of 1/3. This allows
mixing of dominant genes with recessive genes. This operator is similar to the uniform
crossover operator performed between dominant and recessive chromosomes, but, on
an average, one-third of the decision variables are swapped.

For each selection step, the population is sorted according to each objective function
and the best (M - 1)/M-th portion of the population is chosen as parents. This
procedure is repeated M times, every time using the survived population from the
previous sorting. Thus, the relationship between A and 1-1 is as follows:

(
M _l)M

1-1- -- A- M . (5.7)
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For two objectives, J.1 = 0.25;\. If the probability vectors are chosen properly, good
solutions corresponding to each objective will be chosen for the mating pool.

All new J.1 solutions are copied into an external set, which stores all non-dominated
solutions found since the beginning of the simulation run. After new solutions are
inserted into the external set, a non-domination check is made on the whole external
set and only new non-dominated solutions are retained. If the size of the external
set exceeds a certain limit, a niching mechanism is used to eliminate closely packed
solutions. This allows maintenance of a diversity in the solutions of the external set.
Although the preservation of non-dominated solutions in the external set is an elite
preserving strategy, these solutions are not used in further genetic processing. Hence,
we do not call this approach an elitist approach.

5.5.1 Advantages and Disadvantages

We observe that this algorithm performs a domination check to retain non-dominated
solutions and a niching mechanism to eliminate crowded solutions. We have argued
that both of these features are essential in a good MOEA. Unfortunately, Kursawe
showed simulation results on a single problem and no further work has been pursued
since this study. It remains a challenging task to investigate how this algorithm will
fare in more complex problems.

Although some variations to this algorithm are possible and the necessity of diploid
chromosomes is questionable, in Section 6.6 we shall discuss a simpler and a well
studied multi-objective ES. Because of its complications and the fact that it is not
much used by current researchers, we do not show any hand simulation of the VOES.
Interested readers may refer to the original study (Kursawe, 1990) for more details.

5.6 Weight-Based Genetic Algorithm

Hajela and Lin (1993) proposed a weight-based genetic algorithm (we call this WBGA)
for multi-criterion optimization in 1993. As the name suggests, each objective function
f i is multiplied by a weight w.: A GA string represents all decision variables Xi as
well as their associated weights w.. The weighted objective function values are then
added together to calculate the fitness of a solution. However, unlike the weighted sum
approach used in the classical multi-criterion optimization literature, the investigators
suggested a technique which exploits the population-approach of GAs. Each individual
in a GA population is assigned a different weight vector. Thus, instead of finding one
Pareto-optimal solution corresponding to a particular weight vector, a GA population
simultaneously maintains multiple weight vectors, thereby finding multiple Pareto
optimal solutions in one simulation run. Thus, the key issue in WBGAs is to maintain
diversity in the weight vectors among the population members. In WBGAs, the
diversity in the weight vectors is maintained in two ways. In the first approach, a
niching method is used only on the substring representing the weight vector, while
in the second approach, carefully chosen subpopulations are evaluated for different
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pre-defined weight vectors, an approach similar to that of the VEGA. Before we
discuss these approaches, we would like to reiterate that any weight-based approach
for multi-objective optimization will, in principle, fail to find solutions in a nonconvex
Pareto-optimal region. We have discussed this matter in Chapter 2. Fortunately,
not many real-world multi-objective optimization problems have been found to have
a nonconvex Pareto-optimal region. This is the reason why the classical weighted
sum approaches are still popularly used in practice. To those problems, both of the
following approaches may be found useful.

5.6.1 Sharing Function Approach

In addition to n decision variables, the user codes a weight vector of size M in a string.
The weights must be chosen in a way so as to make the sum of all weights in every
string one. One of the ways to achieve this is to normalize each weight by the sum of
all weights:

Wi
w. i;- M .

'\ W·
Lj=l )

On the other hand, if only a few Pareto-optimal solutions are desired, a fixed set of
weight vectors may be chosen beforehand and an integer variable X w can be used to
represent one of the weight vectors. We will use this latter approach here.

The integer variable X w varies between 1 and a maximum number K, which denotes
the maximum number of weight vectors that one is interested in. Since, in most
problems, each weight vector will result in one Pareto-optimal solution, the choice of
K will be governed by the maximum number of desired Pareto-optimal solutions. The
choice of weight combinations is entirely up to the user. With each value of X w = k,
the user must associate a particular weight vector Wk. For example, in a two-objective
optimization problem, nine (K = 9) different weight vectors can be represented by the
integer variable X w varying between 1 to 9, as shown in the following table.

Xw 1
Weight vector (0.1,0.9)

2

(0.2,0.8)
3

(0.3,0.7)
9

(0.9,0.1)

A solution x' i) is then assigned a fitness equal to the weighted sum of the normalized
objective function values computed as follows:

M . f ( (i)) fmin(.) Lxi') j X - J.F(x 1 ) = W. vv .
) fmax _ fmln

j=l ) J

(5.8)

The normalization of the objective function values as shown above are essential, simply
because each objective function may take different range of values.

In order to preserve diversity in the weight vectors, a sharing strategy is proposed.
Since the weights are directly mapped in the X w variable, the sharing is performed
with X w variable only. That is, in the computation of the distance metric di j between

two solutions i and j, only x~~) and x~) values are considered and no other decision
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variables are used:
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(5.9)

The sharing function Sh( dlj ) is computed with a niching parameter O"share. Recall that
Xw is an integer variable which takes values in steps of one. Thus, a O"share value of
1 would mean that solutions with identical X w values are only shared. A O"share = 2

will allow contributions from neighboring weight vectors, but this may reduce the
diversity needed to find all K different Pareto-optimal solutions, each corresponding
to a weight combination.

For each solution i in the population, the sharing function values are added together
for all solutions including itself and the niche count ric, is computed. Thereafter, the
fitness (calculated using equation (5.8)) is degraded by the niche count ric, to calculate
the shared fitness F{ = F(xlil)/nci'

Since fitness is degraded when using the sharing function concept, the proportionate
selection method needs to be used. The crossover and mutation operators are applied
on the whole population as usual. Investigators have also suggested the use of a mating
restriction strategy (Deb, 1989) for better convergence of the algorithm. In the distance
metric computation for deciding which two solutions should mate with each other, only
the integer variable X w is used. If the computed distance is within a threshold O"mating,

two solutions are mated; otherwise, another solution is tried.

Weight-Based GA Fitness Assignment

Step 1 For each objective function j, set upper and lower bounds as fjax and
fmin

) .

Step 2 For each solution i = 1,2, ... , N, calculate the distance
dik = Ix~1 _x~ll with all solutions k = 1,2, ... ,N. Then calculate the
sharing function value as follows:

{
1-~

Sh( d ik) = O"share '
0,

if d i k :::; O"share;

otherwise.

Thereafter, calculate the niche count of the solution i as

nc, = L~=l Sh(dik).

Step 3 For each solution i = 1,2, ... , N, follow the entire procedure below.
Corresponding to the x~1 value, identify the weight vector w li ) from the
user-defined mapping between the integer variable x~) and the weight
vector w li ). Assign fitness Fi according to equation (5.8). Calculate the

shared fitness as F{ = Fi/nci'

When all population members are assigned a fitness FI, the proportionate selection
is applied to create the mating pool. Thereafter, crossover and mutation operators are
applied on the entire string, including the substring representing X w '
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WBGAs use the proportionate selection operator which is ideal for solving
maximization problems. Thus, we choose the two-objective optimization problem Max
Ex to illustrate the fitness assignment procedure. We will use an identical population
of six solutions as used in the VEGA, but include a third integer variable X w ' The
following mapping between X w and the corresponding five weight vectors are used:

Xw 1
Weight vector (0.1,0.9)

2
(0.3,0.7)

3
(0.5,0.5)

4
(0.7,0.3)

5
(0.9,0.1)

Thus, an additional integer value between 1 and 5 accompanies each solution. This
value suggests a weight vector (from the above table) by which the objective functions
are weighted for a particular solution. Next, we follow the step-by-step procedure of
the fitness assignment procedure of WBGAs, as outlined above.

Step 1 By observing the lower and upper bounds! parameter values, we set fjax =
1.0, fjin = 0.1, fTax = 59.0 and fTin = 0.0.

Step 2 Now, we calculate the niche count of each of the six solutions, only using the
X w variable (Table 14). We first compute the distance values:

dl1 = 0,

d'4 = 1,

d12=12~51=3, d13=O,
dis = 2, d16 = 3.

We use CYshare = 1 and calculate the sharing function values as follows:

Sh(d,ll = 1,

Sh(d'41 = 0,

Sh(d,21 = 0,
Sh(d14) = 0,

Sh(d131=1,
Sh(d,6) = 0.

The niche count of the 1st solution is the sum of the above sharing function
values, or nc 1 = 2. Similarly, we find the niche count of the other solutions in
the following:

nC2 = 2, nC3 = 2, nC4 = 1, nc, = 1, nC6 = 2.

Step 3 We now assign the fitness to each solution. We first calculate the fitness of the
1st solution. The variable X w takes the value 2 for this solution. With respect to
the mapping (from the table above), we observe that the corresponding weight

1 For an arbitrary problem, a guess of the upper and lower bounds may be used. One way to get an
idea of these bounds is to calculate a sample of random solutions and then use the sample maximum
and minimum values as the bounds. If in any generation, bounds outside of these ranges are found,
the sample maximum and minimum values can be replaced with the new bounds. Another approach
would be to first find the individual best solution for each objective. Thereafter, at each individual
best solution, all other objective values are computed. Finally, for each objective, the minimum
and maximum values of all such solutions are noted.
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fl 1) fmin f1l ) fmin
Wi 1) 1 - 1 + W( 1) 2 - 2

1 fmax _ fmin 2 fmax _ fmin '
1 1 2 2

03 0.79 - 0.1 0753.90 - 0
. 1 - 0.1 +. 59 - 0 '

0.869.

The shared fitness of this solution is F; = F1 Inc] = 0.86912 = 0.435.

Similarly, we calculate the fitness of other solutions as follows:

F2 = 0.660, F3 = 0.888, F4 = 0.841, Fs = 0.551, F6 = 0.265.

The corresponding shared fitness values are as follows:

F~=0.330, F~=0.444, F~=0.841, F~=O.s51, F~=0.133.
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These values are tabulated in Table 14. Figure 101 shows the solutions and their
weighted contour lines. Column 8 of Table 14 reveals that the solution 3 has the
highest weighted fitness, but not the highest shared fitness.

During the selection operation, comparison of solutions with different weight vectors
does not make much sense, and must not be allowed. For example, a comparison of
solutions 1 and 2 does not make sense, because solution 1 is evaluated with the first
weight vector (emphasizing fz), while solution 2 is evaluated with the fifth weight
vector (emphasizing f 1). However, the original WBGA does not suggest any restriction
in the selection operation. The proportionate selection operator is used on the entire
population. However, for solutions having an identical xw , the selection prefers a
solution closer to the Pareto-optimal set. In the above example, solutions 1 and 3
have the same weight vector and the table reveals that solution 3 is better compared
to solution 1. When sharing is performed on the weight variable, solution 3 would
be emphasized over solution 1. This is because they are both competing for the same

Table 14 Fitness assignment under a WBGA with a sharing function approach.

Solution Xl X2 Xw fl f2 Niche Fitness Shared
count fitness

1 0.31 0.89 2 0.79 53.90 2 0.869 0.435
2 0.43 1.92 5 0.67 53.21 2 0.660 0.330
3 0.22 0.56 2 0.88 52.91 2 0.888 0.444
4 0.59 3.63 1 0.51 52.15 1 0.841 0.841
5 0.66 1.41 4 0.44 56.35 1 0.551 0.551
6 0.83 2.51 5 0.27 55.77 2 0.265 0.133
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Figure 101 Weighted direction for each solution.

weight vector and the figure shows that solution 3 is closer to the Pareto-optimal front
than solution 1. A similar conclusion can be made for solutions 2 and 6 having the same
weight vector. Here, solution 2 is better. Solutions 4 and 5 are only representatives
of the weight vectors (0.1,0.9)T and (O.7,O.3)T, respectively. It is interesting to note
how these solutions are emphasized by means of their shared fitness values. In this
way, the sharing procedure will maintain different weight vectors in the population
and the fitness assignment procedure will emphasize the correct solution from the
niche of solutions having an identical weight vector. In this problem, the true Pareto
optimal solution (xi, xi)T corresponding to any given weight vector (WI, W2)T can be
calculated by differentiating the weighted normalized objective function and is found
to be as follows:

xi (5.10)

(5.11)

Figure 101 also shows three Pareto-optimal solutions (A, B and C) corresponding to
X w = 1, 2 and 3, respectively. The exact location of these solutions are calculated
by using equations (5.10) and (5.11). The other two Pareto-optimal solutions
(corresponding to Xw = 4 and 5) lie outside the range 0.1 S x I SLIt is also
interesting to note that a uniformly spread set of weight vectors may not correspond
to a uniformly spread set of Pareto-optimal solutions in the objective space. In
the following table, we show the Pareto-optimal function values for different weight
vectors:

Weight vector (0.02,0.98)T (0.1,0.9)T (O.3,O.7)T (O.5,O.5)T
(f* f*) T (0.24,58.84)T (0.73,57.30)T (0.91,54.70)T (0.98,51.90)Tl' 2
Weight vector (0.7,0.3)T (0.9,0.1)T (0.98,0.02)T

(fi, fi) T (1.02,47.63)T (1.06,35.71)T (1.08,3.32)T
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Computational Complexity

Step 2 of a WBGA computes the distance metric between all pairs of solutions,
thereby requiring 0 (N 2) computations. Other computations are smaller than this
computation. Thus, the overall complexity of the fitness assignment procedure of a
WBGA is O(N 2 ) . However, if a weight vector is coded, O(MN 2 ) computations are
necessary.

It is important to highlight here that if a stochastic sharing function approach is
used (Deb and Kumar, 1995; Goldberg and Richardson, 1987), this complexity can
be reduced. Instead of calculating the distance between one solution with all (N - 1)

other solutions, the niche count can be calculated with a sample (of size" « N) of
solutions. Although the niche count computation may not be accurate, the overall
complexity can be reduced to O("N). Elsewhere (Deb and Kumar, 1995), it is shown
that a subpopulation of size of about one-tenth of the population size is enough to
maintain adequate diversity in solutions in a number of multi-modal problems.

Advantages

Since a WBGA uses a single-objective GA, not much change is needed to convert
a simple GA implementation into a WBGA one. Moreover, the complexity of the
algorithm (with a single extra variable xw ) is smaller than other multi-objective
evolutionary algorithms.

Disadvantages

The WBGA uses a proportionate selection procedure on the shared fitness values.
Thus, in principle, the WBGA will work in a straightforward manner in finding
solutions for maximization problems. However, if objective functions are to be
minimized, they are required to be converted into a maximization problem. Moreover,
for mixed types of objective functions (some are to be minimized and some are to be
maximized), complications may arise in trying to construct a fitness function.

Weighted sum approaches share a common difficulty in finding Pareto-optimal
solutions in problems having nonconvex Pareto-optimal region. Thus, a WBGA may
also face difficulty in solving such problems.

We have discussed above that usually a uniformly distributed set of weight vectors
may not result in a set of uniformly distributed Pareto-optimal solutions. Thus, if
a uniform spread of non-dominated solutions is desired, it is difficult to choose an
appropriate set of weight vectors.

Simulation Results

The same GA parameter settings that were used in the previous algorithm are used
here. We use Ushare = 1. Figure 102 shows the non-dominated solutions found after
500 generations of the WBGA. The bit-wise mutation operator is used here. The figure
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Figure 102 Non-dominated solutions obtained after 500 generations of the WBGA with

the sharing approach.

also shows that only a few solutions on or near the Pareto-optimal front are found.

5.6.2 Vector Evaluated Approach

The vector evaluated approach is similar to the VEGA. First, a set of K different
weight vectors w(kj (where k = 1,2, ... , K) are chosen. Thereafter, each weight vector
w' k) is used to compute the weighted normalized fitness for all N population members.
Among them, the best N/K members (decided on the basis of the weighted normalized
fitness values) are grouped together into a subpopulation. This subpopulation is then
associated with the weight vector w(k) for subsequent genetic processing. Selection,
crossover and mutation are all restricted to solutions of each subpopulation. The
subpopulation size N/K for each weight vector is maintained so that at the end of these
operations the total population size remains the same as N. In the next generation,
once again each weight vector is used to find the best subpopulation from the new
population and the generations continue.

It is clear from the above procedure that there is a total of K subpopulations, one for
each chosen weight vector. In addition, one population member can be associated with
more than one weight vector. In particular, the middle solutions will be included in
more than one subpopulations. Hajela and Lin (1993) also tested a scheme where one
population member is strictly allowed to be included in exactly one subpopulation.
However, finally they concluded that this scheme is not as good as the former one.
Therefore, we will only use the former scheme here.

In this algorithm, multiple solutions are found by explicitly preserving K weight
vectors. Thus, there is no need for introducing any additional niching operator. One
subpopulation is processed for each weight vector and genetic operations search for
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the best possible solution for that weight vector. In this way, diversity among weight
vectors is maintained explicitly and convergence to the Pareto-optimal solutions is
attempted using a genetic algorithm procedure.

In the following, we present one generation of this approach in a step-by-step
manner. It is assumed that a set of K weight vectors are known.

Vector Evaluated Approach

Step 1 Set weight vector counter k = 1.

Step 2 Find the fitness Fj of each solution j with its weight vector w ' k) using
equation (5.8). Choose the best N/K solutions according to fitness F. Copy
these solutions in the subpopulation Pk .

Step 3 Perform selection, crossover and mutation on Pk to create a new
population of size N/K.

Step 4 If k < K, increment k by one and go to Step 2. Otherwise, combine all
subpopulations to create the new population P = U~ 1 Pk . If IPI < N, add
randomly created solutions to make the population size equal to N.

Step 2 evaluates N solutions and is performed K times, thereby requiring a total of
KN evaluations. If K is very small compared to N, the complexity involved in each
generation of this algorithm is 0 (N).

We now apply the above procedure without Step 3 on the two-variable example
problem Max-Ex. Let us assume that we consider the following two weight vectors:

Xw 1
Weight vector (0.1,0.9)

2

(0.5,0.5)

Step 1 We set k = 1. We also use the same lower and upper bounds of the objective
values as used before.

Step 2 For the first weight vector w l l ) = (O.1,O.9)T, we evaluate all six population
members in Table 15 (see below). Since K = 2 and N = 6, we need to choose only

Table 15 Fitness assignment under a WBGA with the vector evaluated approach.

Solution Xl Xl f 1 fl Fitness Fitness
with w l l ) with will

1 0.31 0.89 0.79 53.90 0.899 0.840
2 0.43 1.92 0.67 53.21 0.875 0.768

3 0.22 0.56 0.88 52.91 0.894 0.881
4 0.59 3.63 0.51 52.15 0.841 0.669
5 0.66 1.41 0.44 56.35 0.897 0.666
6 0.83 2.51 0.27 55.77 0.870 0.567
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Figure 103 Weighted directions in the vector evaluated approach.

the three best solutions for each weight vector. It turns out that solutions 1, 3,
and 5 belong to the first subpopulation Pl. Figure 103 also shows that among all
six solutions, these three solutions are closer to solution A, which is the Pareto
optimal solution corresponding to the first weight vector. The continuous lines
are used to show the weighted directions.

Step 3 Ideally, we should now use these three solutions and perform an iteration of
selection, crossover and mutation to create a new subpopulation of size 3. Since
we are interested in illustrating the fitness assignment scheme here, we ignore
this step.

Step 4 Next, we increment k to 2 and move to Step 2.

Step 2 With the second weight vector w(2) = (O.3,O.7)T, we find that solutions 1,
2, and 3 belong to the second subpopulation P2 (refer to the seventh column
in Table 15). Figure 103 also shows the weighted directions with dashed lines.
These solutions are closer to solution B, which is the Pareto-optimal solution
corresponding to the second weight vector.

Step 3 As before, three new solutions should be created with three solutions (1, 2
and 3). However, we will again ignore this step here.

Step 4 The population at the end of this iteration will be the union set of two new
subpopulations (PI and P2) which would have been created in Step 3 for k = 1
and 2. If there exist some common members between these two subpopulations,
randomly created solutions can be added to fill up the population.
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Advantages and Disadvantages of the Vector Evaluated Approach

As in any weight-based method, a knowledge of the weight vectors is also essential
in this approach. This method is better in complexity than the sharing function
approach, because no pair-wise distance metric is required here. There is also no need
for keeping any additional variable for the weight vectors. However, since GA operators
are applied to each subpopulation independently, an adequate subpopulation size is
required for finding the optimal solution corresponding to each weight vector. This
requires a large population size.

By applying both methods in a number of problems, investigators concluded that
the vector evaluated approach is better than the sharing function approach.

Simulation Results

We have attempted to solve the test problem Max-Ex by using the vector evaluated
approach. Figure 104 shows the non-dominated solutions after 500 generations.
Comparing Figures 102 and 104, we observe that a WBGA with the vector evaluated
approach is able to find a better spread of population members on the Pareto-optimal
front. Moreover, the convergence to the Pareto-optimal front is also better with the
vector evaluated approach.

Coello and Christiansen (1999) used a similar technique in their multi-objective
optimization tool for engineering design (MOSES) by executing independent GAs with
user-supplied weight vectors. For each weight vector, one solution is found. When all
GAs found this optimized solutions, they are declared as the set of non-dominated
solutions. Unlike in the above WBGA method, weights are not coded, but a fixed
user-defined weight vector is used in each GA run.
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Figure 104 Non-dominated solutions after 500 generations using a WBGA and the vector

evaluated approach.
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5.7 Random Weighted GA

Murata and Ishibuchi (1995) suggested a random weighted GA (RWGA) similar
to the above WBGA, except that a random normalized weight vector w(i) =
(Wj , W2, ... , WM) Til is assigned to the i-th solution in the population. The fitness

of the solution is assigned as the weighted sum of the objectives with L~l Wj = 1:

M

f(x1i1) = L wii\(x1i1).

j=l

(5.12)

After all population members are assigned a fitness, a proportionate selection
operator, a crossover operator, and a mutation operator are applied to form a new
population. Before accepting the new population, a random portion of the population
is replaced with an equal number of solutions chosen from an external population
(created at random). Although the original study referred to this process as an elite
preserving operator, it is not clear how randomly picked solutions can qualify as
elites in subsequent generations. In a later version of the RWGA (Ishibuchi and
Murata, 1998a), investigators have clearly demonstrated the use of maintaining an
external population containing non-dominated solutions only. There, this external
population gets modified with current non-dominated solutions, as performed in
other elitist MOEAs (described in the next chapter). Nevertheless, the original study
and subsequent studies of the investigators have shown the applicability of the
RWGA in many optimization problems such as multi-objective flow-shop scheduling
and fuzzy rule selection problems. In comparison to the VEGA, they have shown
better convergence results in these problems. We discuss a modified RWGA later in
Section 8.1l.

In the RWGA, the diversity in the non-dominated solutions is maintained in
two ways: (i) by using a random weight vector to evaluate each solution, thereby
emphasizing solutions which may lead to different solutions in the Pareto-optimal
region, and (ii) by using an exchange operator where a proportion of the population
is replaced with solutions from an external set. Emphasis for solutions closer to
the Pareto-optimal front is explicitly maintained by performing the proportionate
selection with weighted function values. Thus, both tasks needed in an MOEA are
present in the RWGA. However, like other weight-based approaches, the RWGA is
also likely to be unable to find Pareto-optimal solutions in nonconvex problems.

Due to the similarity of this algorithm with the WBGA, we will not perform any
simulation studies with this algorithm. Interested readers may refer to the original
report for a demonstration of the working of this algorithm.

5.8 Multiple Objective Genetic Algorithm

Fonseca and Fleming (1993) first introduced a multi-objective GA (called MOGA)
which used the non-dominated classification of a GA population. The investigators
were the first to suggest a multi-objective GA which explicitly caters to emphasize
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non-dominated solutions and simultaneously maintains diversity in the non-dominated
solutions.

The MOGA differs from a standard tripartite GA in the way fitness is assigned to
each solution in the population. The rest of the algorithm (the stochastic universal
selection (SUS), a single-point crossover, and a bit-wise mutation) is the same as that
in a classical GA. We describe the MOGA in the following.

First, each solution is checked for its domination in the population. To a solution
i, a rank equal to one plus the number of solutions n., that dominate solution i is
assigned:

(5.13)

In this way, non-dominated solutions are assigned a rank equal to 1, since no solution
would dominate a non-dominated solution in a population. A little thought reveals
that in any population, there must be at least one solution with rank equal to one and
the maximum rank of any population member cannot be more than N (the population
size). Figure 105 shows a two-objective minimization problem having 10 solutions,
while Figure 106 shows the rank of each solution. The shaded region represents the
feasible search space. It is clear that the ranking procedure may not assign all possible
ranks (between 1 and N) to any population. For example, ranks 7, 9 and 10 are missing
in the population used in the figure. Once the ranking is performed, a raw fitness to
a solution is assigned based on its rank. To perform this, first the ranks are sorted
in ascending order of magnitude. Then, a raw fitness is assigned to each solution
by using a linear (or any other) mapping function. Usually, the mapping function is
chosen so as to assign fitness between N (for the best-rank solution) and 1 (for the
worst-rank solution). Thereafter, solutions of each rank are considered at a time and
their raw fitnesses are averaged. This average fitness is now called the assigned fitness
to each solution of the rank. In this way, the total allocated raw fitness and total
assigned fitness to each rank remains identical. Moreover, the mapping and averaging
procedure ensures that the better ranked solutions have a higher assigned fitness. In
this way, non-dominated solutions are emphasized in a population.

Figure 105 A two-objective search

space and the corresponding Pareto-optimal

front.

Figure 106 Ranking procedure III the

MOGA.
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Lee and Esbensen (1997) also used the above ranking procedure to assign copies in
a proportionate selection. Although the idea of converting multiple objective values to
a ranked metric by using the non-domination principle is a step towards an efficient
multi-objective optimization, the second goal of maintaining a diverse set of solutions
cannot be guaranteed by this simple procedure.

In order to maintain diversity among non-dominated solutions, Fonseca and Fleming
(1993) have introduced niching among solutions of each rank. The niche count with
Ushare is found as described in the previous chapter. The sharing function with <X = 1 is
used, but the distance metric is computed with the objective function values, instead
of the parameter values. Thus, the normalized distance between any two solutions i
and j in a rank is calculated as follows:

(5.14)

where frax and frin are the maximum and minimum objective function value of the
k-th objective. For the solution i., djj is computed for each solution j (including i)
having the same rank. Equation (4.59) (see above) is used with <X = 1 to compute
the sharing function value. Thereafter, the niche count is calculated by summing the
sharing function values:

u.Ir , )

ric, = L Sh(dij),
j-v l

(5.15)

where l-l(ril is the number of solutions in rank rio In an MOGA, the sharing function
approach, as described earlier in Section 4.6.4, is followed and a shared fitness value
is calculated by dividing the fitness of a solution by its niche count. Although all
solutions of any particular rank have the identical fitness, the shared fitness value of
a solution residing in a less-crowded region has a better shared fitness. This produces
a large selection pressure for poorly represented solutions in any rank.

Dividing the assigned fitness values by the niche count (always equal to or greater
than one) reduces the fitness of each solution. In order to keep the average fitness of
the solutions in a rank the same as that before sharing, these fitness values are scaled
so that their average shared fitness value is the same as the average assigned fitness
value. After these calculations, the focus is shifted to the solutions of the next rank
and an identical procedure is executed. This procedure is continued until all ranks are
processed. Thereafter, the stochastic universal selection (SUS) (with shared fitness
values), the single-point crossover, and the bit-wise mutation operators are applied to
create a new population.

MOGA Fitness Assignment Procedure

Step 1 Choose a Ushare (a dynamically updated procedure for fixing Ushare is
described later). Initialize l-l( j) = 0 for all possible ranks j = 1, ... , N. Set
solution counter i = 1.
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Step 2 Calculate the number of solutions (n ,) that dominates solution i.
Compute the rank of the i-th solution as ri = 1 + ni. Increment the count
for the number of solutions in rank ri by one, that is, 1-1(ri) = 1-1(ri) + 1.

Step 3 If i < N, increment i by one and go to Step 1. Otherwise, go to Step 4.

Step 4 Identify the maximum rank r* by checking the largest ri which has
1-1(r.) > O. The sorting according to rank and fitness-averaging yields the
following assignment of the average fitness to any solution i = 1, ... , N:

r . 1

Fi = N - L l-1(k) - 0.5(I-1(ril-1).
kcl

(5.16)

To each solution i with rank ri = 1, the above equation assigns a fitness
equal to Fi = N -O.S( 1-1 (1)-1), which is the average value of 1-1 (1) consecutive
integers from N to N - 1-1( 1) + 1. Set a rank counter r = 1.

Step 5 For each solution i in rank r, calculate the niche count ric, with
other solutions (l-1(r) of them) of the same rank by using equation (5.15).
Calculate the shared fitness using Fj = F;Inc;. To preserve the same average
fitness, scale the shared fitness as follows:

F)' \-- Fj l-1 (r ) F'
,,~tlrIF' J.
Lk 1 k

Step 6 If r < r", increment r by one and go to Step 5. Otherwise, the process
is complete.

We now illustrate the working of the MOGA on the same two-objective optimization
problem Min-Ex.

5.8.1 Hand Calculations

We begin with the six-membered population used earlier. To illustrate the fitness
assignment procedure of the MOGA better, we follow the above step-by-step
procedure.

Step 1 We choose Cfshare = 0.5, and 1-1(j) = 0 for all j = 1 to 6 (since there are N = 6
population members).

Steps 2 and 3 For solution 1, we find that nl = 0, and thus, rl = 1 + 0 = 1.
Similarly, we find r, for all other solutions and list them in Table 16. We observe
that there are three solutions with rank 1 (thus, 1-1 (1) = 3), two solutions with
rank 2 (1-1(2) = 2) and one solution with rank 4 (1-1(4) = 1). Therefore, there is
no solution in rank 3,5 and 6, or 1-1(3) = I-1(S) = 1-1(6) = O.

Step 4 The maximum rank r* assigned to any solution in the population is 4. Sorting
of the population according to rank yields the following sequence (Table 16):

(1,3,5) (2,6) ( ) (4).
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Table 16 Fitness assignment procedure of the MOGA.

Solution Xl X2 f l f 2 Rank Average Niche Shared Scaled
fitness count fitness fitness

1 0.31 0.89 0.31 6.10 1 5.0 1.752 2.854 4.056
2 0.43 1.92 0.43 6.79 2 2.5 1.000 2.500 2.500
3 0.22 0.56 0.22 7.09 1 5.0 1.702 2.938 4.176
4 0.59 3.63 0.59 7.85 4 1.0 1.000 1.000 1.000
5 0.66 1.41 0.66 3.65 1 5.0 1.050 4.762 6.768
6 0.83 2.51 0.83 4.23 2 2.5 1.000 2.500 2.500

These ranks are also shown against solutions on Figure 107. We now assign
a raw fitness of 6.00 to solution 1, a raw fitness of 5.00 to solution 3, and so
on. Finally, solution 4 gets a raw fitness equal to 1. Then, we average the raw
fitnesses of all solutions in each rank and reassign that value as the average fitness
of each solution having the same rank. Alternatively, the above procedure can
be substituted using equation (5.16), as follows:

F1 = N - 0.5(11(1) - 1) = 6 - 0.5(3 - 1) = 5.0,

F2 = N - 11(1) - 0.5(11(2) - 1) = 6 - 3 - 0.5(2 - 1) = 2.5,

F3 = N - 0.5(11(1) - 1) = 6 - 0.5(3 - 1) = 5.0,

F4 = N - 11(1) - 11(2) -11(3) - 0.5(11(4) -1)

= 6 - 3 - 2 - 0 - 0.5(1 - 1) = 1.0,
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Figure 107 Ranking of solutions under an MOGA.
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Fs = N - 0.5( ll-(1) - 1) = 6 - 0.5(3 - 1) = 5.0,

F6 = N - ll-(1) - 0.5(ll-(2) ~ 11= 6 - 3 - 0.5(2 - 1) = 2.5.
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It is seen that all three solutions of the first rank has the same average fitness
of 5.0.

Step 5 For three solutions of the first rank, we will now calculate the niche count in
the objective function space. Assuming, fjin = 0.1, fjax = 1.0, fl

in = 1, and
flax = 10, we have the following normalized distances:

dl3 = 0.149, d1S = 0.475, d3S = 0.621.

Using these values and O"share = 0.5, we calculate the corresponding sharing
function values (with (X = 1):

Sh(d13) = 0.702, Sh(d1S) = 0.050, Sh(d3Sl = O.

Of course, Sh( d 11) = Sh( d33) Sh( dss) = 1. Thus, the niche counts for
solutions 1, 3 and 5 are as follows:

nc i 1 + 0.702 + 0.050 = 1.752,

nC3 1 + 0.702 + 0 = 1.702,

nc, 1 + 0.050 + 0 = 1.050.

Now, dividing the average fitness values by the corresponding niche count, we
calculate the shared fitness Fj (column 9 in Table 16).

Now, we scale these fitness values so that their average is the same as the
original average fitness value. The scaling factor is F1ll-(1)/ (F; + F~ + F~) or
5 x 3/(2.854 + 2.938 + 4.762) or 1.421. We multiply column 9 in Table 16 by
1.421 to calculate the scaled fitness values of solutions 1, 3 and 5.

Step 6 We now move to Step 5 with solutions of rank 2.

Step 5 We compute d26 = 0.528. Thus, Sh( d26 1= 0 (solutions 2 and 6 have no effect
on each other) and niche counts nC2 = nC6 = 1. Thus, the shared fitness values
are the same as the average fitness values and the scaling factor is one. Table 16
shows the corresponding scaled fitness values.

Step 6 Now, we move to Step 5 again for rank 3 solutions. Since there are none, we
move to Step 5 for rank 4 solutions. Since there is only one solution in rank 4, its
scaled fitness value is the same as its average fitness value. Since the maximum
rank is 4 in the population, we stop here. This completes the fitness assignment
procedure of the MOGA.
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5.8.2 Computational Complexity

It is clear from the algorithm that Steps 2 and 3 are executed N times, each time
comparing (N ~ 1) solutions for domination. Although the procedure can be made
faster by using proper bookkeeping, this procedure requires O(MN 2 ) comparisons.
Since there could be a maximum of N ranks, the sorting procedure in Step 4, niche
count computation in Step 5, and the scaling of shared fitness values will not require
worse than O(N 2 ) computations. Thus, the overall complexity of the MOGA is
O(MN 2 ) .

5.8.3 Advantages

The fitness assignment scheme is simple in MOGA. Since niching is performed in the
objective space, the MOGA can be easily applied to other optimization problems,
such as combinatorial optimization problems. If a spread of Pareto-optimal solutions
is required on the objective space, the MOGA is the suitable choice.

5.8.4 Disadvantages

Although the concept of domination is used to assign fitness, all solutions in a
particular non-dominated front (except the first one), need not have the same assigned
fitness. This may introduce an unwanted bias towards some solutions in the search
region. In particular, this algorithm may be sensitive to the shape of the Pareto
optimal front and to the density of solutions in the search space.

The shared fitness computation procedure does not make sure that a solution in
a poorer rank will always have a worse scaled fitness FI than every solution in a
better rank. This may happen particularly if there exist many crowded solutions with
a better rank. The niche count for these solutions would be large and the resulting
shared fitness may be small. If this happens, adequate selection pressure may not exist
to all solutions in a better rank, thereby leading to a slow convergence or inability to
find a good spread in the Pareto-optimal front. In an NSGA, this problem is avoided
by assigning fitness values front-wise. Each solution in a better front is assigned a
larger shared fitness value.

Like other GAs which use niche counts to maintain diversity, the <Jshare parameter
needs fixing. However, developers of MOGAs have suggested a dynamic update of
<Jshare, which does not require any pre-fixing of this parameter. We will describe this
procedure in a later subsection.

5.8.5 Simulation Results

We apply an MOGA on the two-objective test problem using a fixed <Jshare = 0.158 and
other parameter settings as before (population size 40, crossover probability 0.9 and
binary coding with (24+26) or 50 bits). The MOGA without the mutation operator
cannot find a good spread, as shown in Figure 108. At the end of 50 generations,
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Figure 108 Population after 50 and

500 generations obtained with an MOGA

without mutation. At 500 generation, all

solutions converge to the solution A.

Figure 109 Population after 500 genera

tions obtained with an MOGA with muta

tion.

many distinct Pareto-optimal solutions are found; however, as the MOGA is run for
a large number of generations (500 generations), the population converges to only
one Pareto-optimal solution (marked 'A' in the figure). In the absence of any other
diversity preserving mechanism (such as mutation), the niching method adopted in
an MOGA does not seem to maintain the needed diversity among the Pareto-optimal
solutions.

When MOGA is applied to Min-Ex with the bit-wise mutation operator with a
mutation probability of 0.02, a different scenario emerges. The algorithm can now find
more solutions near the front, as shown in Figure 109. Even after 500 generations, a
good spread is maintained by the help of the mutation operator.

5.8.6 Dynamic Update of the Sharing Parameter

The sharing parameter <Jshare signifies the maximum distance (in phenotype or
genotype space) between any two solutions before they can be considered to be in
the same niche. In the context of multi-objective optimization, we should choose a
value of the <Jshare parameter in such a way that we have a uniform distribution of
solutions in the Pareto-optimal front. If we are following the objective function space
niching, as in an MOGA, we compute distance as the Euclidean distance between
any two solutions in the objective function space. Thus, if the Pareto-optimal front
is known, we would like to have all N (population size) solutions uniformly spaced
on the Pareto-optimal front. This is depicted in Figure 110. Knowing the perimeter
(L) of the Pareto-optimal front, we would calculate <Jshare = LIN. In this way, each
niche will contain one solution, thereby having a near-uniform distribution of Pareto
optimal solutions. However, the difficulty of the above simple approach is that the
Pareto-optimal region is not known a priori.



198 MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION

Figure 110 The Pareto-optimal region is

divided equally to find a suitable CYshare.

Figure 111 Fonseca and Fleming's

method of calculating CYshare.

In the absence of any knowledge of the Pareto-optimal front, Fonseca and Fleming
(1993) suggested a simple procedure for calculating Ushare in each generation. From
the population members, first find the minimum and maximum bounds of each of
the objective function values (li and u.}. Now, it can be argued that all solutions in
the current population lie in a hypervolume V = n~l (u, - 1il. On each objective,
we now increment the range by adding Ushare and find the new hypervolume VI =
n~l (u, -li + Ushare). The difference in these two hypervolumes is LiV = VI - V and
all N solutions should ideally lie in this differential hypervolume. Figure 111 shows a
population of 11 solutions in the objective function space at any particular generation
and how the hypervolume is divided into 11 equal squares. Since each niche occupies a
hypervolume of u:J{are and there are N such hypervolumes in LiV, we use the following
equation to calculate Ushare:

(5.17)

For more than three objective functions (M > 2), a numerical root finding method
(Press et al., 1988) can be used to find Ushare' For two objective functions (M = 2),
the above equation reduces to

U2 - 12 + U1 - 11
Ushare = N - 1 (5.18)

In order to use the above equations, care must be taken to normalize each objective
function so that an identical Ushare can be used for each of the objective functions. If
normalized objective function values are used, equation (5.17) can be written for the
normalized niching parameter u:h are as follows:

(5.19)

For M = 2, the above equation yields u:hare = 2j(N - 1). Table 17 lists these
normalized niching parameter values for a few cases by finding u:hare from the above
equation. It is intuitive that as the population size increases, the u:hare value reduces
in order to accommodate more niches. It is also interesting to note that as the number
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Table 17 Normalized (J~hare values for several cases of M and N.

N Number of objectives, M
234 5

30 0.069 0.377 0.707 1.014
50 0.041 0.280 0.560 0.827
70 0.029 0.231 0.484 0.730

100 0.020 0.190 0.417 0.643
150 0.013 0.152 0.354 0.560
200 0.010 0.131 0.316 0.510
300 0.007 0.105 0.270 0.447
400 0.005 0.090 0.242 0.408
500 0.004 0.081 0.223 0.381
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of objective functions increases, the u~hare value also increases. This is due to the
increase in the dimensionality of the search space.

The above equation allows a static normalized u~hare to be used, thereby eliminating
the need for evaluating Ushare in every generation, as proposed by the investigators.
However, instead of computing the Euclidean distance metric, we now have to compute
the normalized Euclidean distance, as follows:

(5.20)

Note that the above equation for computing the distance metric is different from that
shown earlier in equation (5.14) (see page 192). Here, the bounds Uk and lk for the
objective functions change with generations, while in the latter, the bounds are fixed
over the entire GA run.

When equation (5.18) is used to update Ushare in each iteration of MOGA,
similar performance of the algorithm is observed in the two-objective test problem
Min-Ex. The obtained Pareto-optimal solutions without and with the mutation
operator are shown in Figures 112 and 113, respectively. Besides these studies, more
experimental studies are needed to investigate if the added complexity in dynamic
Ushare computation is worthwhile over a reasonable static (fixed) value (Deb and
Goldberg, 1989).

5.9 Non-Dominated Sorting Genetic Algorithm

Goldberg's idea of using the non-dominated sorting concept in GAs (Goldberg, 1989)
was more directly implemented by Srinivas and Deb in 1994. Once again, the dual
objectives in a multi-objective optimization algorithm are maintained by using a
fitness assignment scheme which prefers non-dominated solutions and by using a
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500 generations obtained with an MOGA

without mutation. At generation 500, all

solutions converge to the solution A.

Figure 113 Population after 500 genera

tions obtained with an MOGA with muta

tion.

sharing strategy which preserves diversity among solutions of each non-dominated
front. In the following paragraphs, we will discuss the non-dominated sorting GA (or
NSGA) in some detail.

The first step of an NSGA is to sort the population P according to non-domination.
Different algorithms suitable for this task are described in Section 2.4 above. This
classifies the population into a number of mutually exclusive equivalent classes (or
non-dominated sets) Pj :

It is important to reiterate that any two members from the same class cannot be said
to be better than one another with respect to all objectives. The total number of
classes (or fronts), denoted as p in the above equation, depends on the population P
and the underlying problem. As we have discussed before, the procedure of completely
classifying the population according to non-domination is at most 0 (MN2). Let us
consider the population shown in Figure 105. After the non-dominated sorting, the
population members are classified into four distinct non-dominated sets, as shown in
Figure 114.

Once the classification task is over, it is clear that all solutions in the first set,
that is, all i E Pj , belong to the best non-dominated set in the population. The
second best solutions in the population are those that belong to the second set, or
all members of P2 , and so on. Obviously, the worst solutions are those belonging to
the final set, or all members of Pp, where p is the number of different non-dominated
sets in the population. By examining Figure 114 carefully, it is clear that solutions of
the first front are best in terms of their closeness to the true Pareto-optimal front in
the population. Thus, it makes sense to assign the highest fitness to solutions of the
best non-dominated front and then assign a progressively worse fitness to solutions
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Figure 114 Ten solutions of Figure 105 are classified into different non-domination fronts.

of higher fronts. This is because the best non-dominated solutions in a population
are nearest to the true Pareto-optimal front compared to any other solution in the
population. In the following, we will describe the exact NSGA fitness assignment
procedure which was adopted by Srinivas and Deb (1994).

The fitness assignment procedure begins from the first non-dominated set and
successively proceeds to dominated sets. Any solution i of the first (or best) non
dominated set is assigned a fitness equal to Fi = N (the population size). This
specific value of N is used for a particular purpose. Since all solutions in the first
non-dominated set are equally important in terms of their closeness to the Pareto
optimal front relative to the current population, we assign the same fitness to all of
them. With respect to Figure 114, solutions 1 to 4 are all assigned a fitness equal to
10 (the population size).

Assigning more fitness to solutions belonging to a better non-dominated set ensures
a selection pressure towards the Pareto-optimal front. However, in order to achieve
the second goal, diversity among solutions in a front must also be maintained. Unless
an explicit diversity-preserving mechanism is used, GAs (or any EAs) are not likely to
ensure diversity. In an NSGA, the diversity is maintained by degrading the assigned
fitness based on the number of neighboring solutions. In order to explain the need of
diversity preservation, let us refer to the solutions in the first front in Figure 114. It is
clear that the front is not represented adequately with the four solutions 1 to 4. Three
solutions (2 to 4) are crowded in one portion of the front, whereas there is only one
solution representing the entire top-left portion of the front. If the solution 1 is not
emphasized adequately and if it gets lost in subsequent genetic operations, the GA
has to rediscover this part of the Pareto-optimal front. In order to avoid this problem,
we have to make sure that less crowded regions in a front are adequately emphasized.
In an NSGA, the sharing function method (refer to Section 4.6.4) is used for this
purpose.

The sharing function method is used front-wise. That is, for each solution i in the
front Pj , the normalized Euclidean distance d i j from another solution j in the same
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front is calculated, as follows:

(5.21 )dij =
!PII ((i) (il)2
'" X k -Xk
L Xmax _Xmin
k=' k k

It is important to note that the sharing distance is calculated with the decision
variables, instead of the objective function values as in an MOGA. Once these
distances are calculated, they are used to compute a sharing function value by using
equation (4.59) with (X = 2. The sharing function takes a value between zero and
one, depending on the distance dij. Any solution j which has a distance greater
than <Jshare from the i-th solution contributes nothing to the sharing function value.
Although a dynamic update procedure of <Jshare is suggested (Fonseca and Fleming,
1995), described above in Section 5.8.6, an NSGA uses a fixed value, employing
equations (4.63) or (4.64). After all IP,I sharing function values are calculated, they
are added together to calculate the niche count nc, of the i-th solution. The niche
count, in some sense, denotes the number of solutions in the neighborhood of the i-th
solution, including the latter. If there exists no other solution within a radius of <Jshare

from a solution, the niche count for that solution would be one. On the other hand, if
alllP,1 solutions in the front are very close to each other compared to <Jshare, the niche
count of any solution in the group would be close to IP,I. For example, if a proper
<Jshare is chosen, the niche count for solution 1 in Figure 114 would be one, whereas
the niche count of the other three solutions (2, 3 or 4) in the first front would be close
to three.

The final task is to reduce the fitness of the i-th solution by its niche count and
obtain the shared fitness value, F{ = Fi/nci. This process of degrading fitness of a
solution which is crowded by many solutions helps emphasize the solutions residing
in less crowded regions. This is precisely the purpose of the diversity preserving
mechanism. In the context of Figure 114, the shared fitness of solution 1 will be
F; = 10, whereas that of the other three solutions would be close to 10/3 or 3.33. We
shall illustrate the exact calculation of the shared fitness values in the next subsection.

This procedure completes the fitness assignment procedure of all solutions in the
first front. In order to proceed to the second front, we note the minimum shared fitness
in the first front and then assign a fitness value slightly smaller than this minimum
shared fitness value. This makes sure that no solution in the first front has a shared
fitness worse than the assigned fitness of any solution in the second front. Once again,
the sharing function method is applied among the solutions of the second front and
the corresponding shared fitness values are computed. This procedure is continued
until all solutions are assigned a shared fitness.

Since the sharing function method works with the proportionate selection operator,
as discussed above in Section 4.6.4, the NSGA used the less-noisy stochastic remainder
roulette-wheel operator (Goldberg, 1989). This assigns copies in the mating pool
proportional to the shared fitness. In this way, each solution in the first front has
a better chance of surviving in the mating pool than that in the second front, and so
on. On the other hand, the sharing function approach among solutions in each front
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makes sure that solutions in the less crowded region get more copies in the mating
pool. In this way, the dual goals of multi-objective optimization are achieved by the
above fitness assignment procedure. As mentioned above, the crossover and mutation
operators are applied as usual to the whole population.

The NSGA fitness assignment procedure is described in a step-by-step algorithm in
the following.

NSGA Fitness Assignment

Step 1 Choose sharing parameter <Jshare and a small positive number E and
initialize Fmin = N + E. Set front counter j = 1.

Step 2 Classify population P according to non-domination:
(P1 , Pz , ... , Pp ) = Sort(P, j).

Step 3 For each q E P j

Step 3a Assign fitness Fjq) = Fmin - E.

Step 3b Calculate niche count nc., using equation (4.60) among solutions
of P, only.

Step 3c Calculate shared fitness F'i
q) = F:

q)
/nc q.

Step 4 Fmin = min(F,;q): q E Pj ] and set j = j + 1.

Step 5 If j :::; p, go to Step 3. Otherwise, the process is complete.

This fitness assignment procedure can be embedded in a single-objective GA. The
proportionate selection operator must be used. However, any crossover and mutation
operator can be employed. In the following, we illustrate the above fitness assignment
procedure on the Min-Ex problem.

5.9.1 Hand Calculations

A randomly created initial population of six members was shown in the objective
space in Figure 92. This figure also marked the Pareto-optimal front, which comprises
solutions 0.1 :::; xi :::; 1 and xi = O. Table 18 lists these six solutions and their objective
function values.

Step 1 We choose <Jshare = 0.158 using equation (4.59). We have used E = 0.22, in
particular to round-off the fitness value of the solutions in the second front. We
set Fmin = 6.22 and j = 1.

Step 2 Next, we classify the population into different non-domination sets. It is
observed that there are three sets, as marked in Figure 115. Solutions 1, 3 and
5 belong to the first non-domination set Pl. Solutions 2 and 6 belong to the
second non-domination set Pz, while the solution 4 belongs to the third set P3

of non-domination.
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Table 18 Fitness assignment under an NSGA.

Solution Xl Xl fl f l Front Assigned Shared
Id fitness fitness

1 0.31 0.89 0.31 6.10 1 6.00 4.22

2 0.43 1.92 0.43 6.79 2 4.00 4.00

3 0.22 0.56 0.22 7.09 1 6.00 4.22

4 0.59 3.63 0.59 7.85 3 3.78 3.78

5 0.66 1.41 0.66 3.65 1 6.00 6.00
6 0.83 2.51 0.83 4.23 2 4.00 4.00

Step 3 The next task is to begin from the solutions of the first non-dominated set
and assign a fitness equal to the population size. In this example, there are six
solutions. Hence, we assign a fitness of 6.00 to all solutions of the first front.
Now, we modify these fitness values to emphasize diversity among the solutions.
For this purpose, we calculate the normalized Euclidean distance between the
solutions by using equation (5.21):

d13 = 0.120, d is = 0.403, d3S = 0.518.

We now calculate the sharing function values by using equation (4.59):

Sh(d13) = 0.423, Sh(dlS) = 0, Sh(d3Sl = o.

Using equation (4.60) (but replacing N with 1P11 = 3), we calculate the niche
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Figure 115 The population is classified into three non-dominated fronts.
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count for all three solutions:

ric- = Sh.ldj i ] + Sh(d131 + Sh(dlS)

= 1 + 0.423 + 0

= 1.423,

nC3 = Sh( d31 1+ Sh( d33 ) + Sh( d3S )

= 0.423 + 1 + 0

= 1.423,

nc., = Sh( ds i ) + Sh( dS3) + Sh(dss)

=0+0+1

= 1.000.

Finally, we compute the shared fitness by dividing the assigned fitness with the
above niche count values. The corresponding shared fitness values are shown in
Table 18 and Figure 116.

Step 4 Now, Fmin = 4.22. We set j = 2.

Step 5 We continue the above procedure for assigning fitness to solutions in the
second and third fronts. Corresponding shared fitness values are shown in
Table 18 and in Figure 116.

From the above fitness assignment, the following two observations can be made:

1. No solution in a front has a worse shared fitness value than a solution in a worse
front. For example, any solution in front 1 has a better fitness than any solution in
fronts 2 or 3.
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Figure 116 Shared fitness values of six solutions.
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2. Within a front, less dense solutions (in the parameter space) have better fitness
values.

The first property provides a selection pressure towards the non-dominated solutions,
a process which would hopefully lead NSGA towards the Pareto-optimal solutions.
The second property ensures that diversity is maintained among the non-dominated
solutions.

5.9.2 Computational Complexity

The computational complexity of the above fitness assignment procedure is
mainly governed by the non-dominated sorting procedure and the sharing function
implementation. The first task requires at most 0 (M N2 ) complexity (refer to
Section 2.4 above). The sharing function implementation requires every solution in a
front to be compared with every other solution in the same front, thereby incurring
a total of Lf= 1 lPi 12 distance computations. Each distance computation requires
evaluation of n differences between parameter values. In the worst case (when all
population members belong to one set, p = 1 and IPII = N), this computation is
O(nN 2 ) . Thus, the overall complexity of the NSGA is the larger of O(MN 2 ) and
O(nN 2 ) .

5.9.3 Advantages

The main advantage of an NSGA is the assignment of fitness according to non
dominated sets. Since better non-dominated sets are emphasized systematically, an
NSGA progresses towards the Pareto-optimal region front-wise. Moreover, performing
sharing in the parameter space allows phenotypically diverse solutions to emerge when
using NSGAs. If desired, the sharing can also be performed in the objective space.

5.9.4 Disadvantages

The sharing function approach requires fixing the parameter O"share. It has been
observed earlier (Srinivas and Deb, 1994) that the performance of an NSGA is sensitive
to the parameter O"share; however, if it is chosen according to the suggestions (see
equations (4.63) or (4.64)), a reasonably good spread of solutions can be obtained. For
most of the simulation studies performed in this book using NSGAs, the suggested
guidelines are followed. However, the dynamic update procedure of O"share (Fonseca
and Fleming, 1993) described earlier can also be used.

5.9.5 Simulation Results

We now apply the NSGA on the two-objective optimization problem with GA
parameter settings identical to that used for other algorithms. Two variables are coded
in binary strings of lengths 24 and 26, respectively. First, we use the NSGA without
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a mutation operator. We use a fixed lTshare = 0.158. Figure 117 shows that the NSGA
without a mutation operator is able to find a good spread of solutions as early as in
50-th generation. The NSGA is started with 40 random solutions in the search space.
The combined action of emphasis of non-dominated solutions and niching operator
allows the NSGA to come close to the Pareto-optimal front and also maintain a good
diversity.

When the NSGA is allowed to run up to 500 generations, the spread of solutions
near the Pareto-optimal region is maintained and the distribution becomes better
(Figure 118). This shows the ability of the NSGA to maintain diversity of solutions
even without the use of a mutation operator.

We now turn on the bit-wise mutation operator with a probability of 0.02. Figure 119
shows the non-dominated solutions after 50 generations. Since no elite-preserving
operator is used in any of these NSGA runs, mutation with a l/(string-length)
probability seems to be destructive. The number of solutions near the Pareto
optimal region is less than that in Figure 117 (without mutation). A similar behavior
of the NSGA is observed at 500 generations (Figure 120). These results suggest
that NSGAs (or any other multi-objective GAs) must use some sort of elitism so
that previously discovered solutions near the Pareto-optimal region are not lost in
subsequent generations. One can then rely on the mutation operator to try and find
better solutions than those that have been found already. If better solutions are not
found, such mutations are a waste, but if better solutions are found, they will not
be lost easily due to the preservation of elitism. We shall discuss more about elitist
multi-objective GAs in the next chapter.
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5.10 Niched-Pareto Genetic Algorithm

Horn et al. (1994) have proposed a multi-objective GA based on the non-domination
concept. This method differs from the previous methods in the selection operator.
The niched Pareto genetic algorithm (NPGA) uses the binary tournament selection,
unlike the proportionate selection method used in VEGAs, NSGAs and MOGAs.
Their choice of tournament selection over proportionate selection is motivated by the
theoretical studies (Goldberg and Deb, 1991) on the selection operators used in single
objective GAs. It has been shown that the tournament selection has better growth
and convergence properties compared to proportionate selection. However, when a
tournament selection (or any other non-proportionate selection) is to be applied to
multi-objective GAs, which use the sharing function approach, there is one difficulty.
The working of the sharing function approach follows a modified two-armed bandit
game playing strategy (Goldberg and Richardson, 1987), which allocates solutions in
a niche proportional to the average fitness of the niche. Thus, while using the sharing
function approach, it is necessary to use the proportionate selection operator.

In the NPGA, a dynamically updated niching strategy, originally suggested in Oei
et al. (1991), is used. During the tournament selection, two solutions i and j are
picked at random from the parent population P. They are compared by first picking
a subpopulation T of size tdom (<< N) solutions from the population. Thereafter, each
solution i and j is compared with every solution of the subpopulation for domination.
Of the two solutions, if one dominates all solutions of the subpopulation but the other
is dominated by at least one solution from the subpopulation, the former is chosen.
We call this scenario 1. However, if both solutions i and j are either dominated by at
least one solution in the subpopulation or are not dominated by any solution in the
subpopulation, both are checked with the current (partially filled) offspring population
Q. We call this scenario 2. Each solution is placed in the offspring population and
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its niche count is calculated. The solution with the smaller niche count wins the
tournament. In the following, we will first outline the NPGA tournament selection
procedure and then present one generation of the algorithm. The implementation of
this algorithm is different from that of a standard GA. In the beginning when the
offspring population is empty, a slight deviation from the above procedure is adopted.
If scenario 2 is faced, one of the two solutions is chosen as a parent at random. The
same procedure is followed for another pair of solutions to choose the second parent.
These two parents are then mated and mutated to create two offspring. From the third
tournament onwards, the original procedure is adopted.

For any two solutions i and j, and the current offspring population Q, the following
dynamically updated binary tournament selection procedure is used.

NPGA Tournament Selection Procedure

winner = NPGA-tournament «. j, Q)

Step Tl Pick a subpopulation Ti j of size tdom from the parent population P.

Step T2 Find (Xi as the number of solutions in Ti j that dominates i. Calculate
(Xj as the number of solutions in Ti j that dominates j.

Step T3 If (Xi = 0 and (Xj > 0, then i is the winner. The process is complete.

Step T4 Otherwise, if (Xi > 0 and (Xj = 0, then j is the winner. The process is
complete.

Step T5 Otherwise, if IQI < 2, i or j is chosen as a winner with probability
0.5. The process is complete. Alternatively, the niche counts nc, and nc,
are calculated by placing 1 and j in the current offspring population Q,
independently. With the niching parameter CTshare, ric, is calculated as the
number of offspring (k E Q) within a CTshare distance di k from 1. The
distance d i k is the Euclidean distance between solutions 1 and k in the
objective space:

M(fill _flkl )2
, 1n Tn

L fmax _ fmm
rn 1 m m

(5.22)

Note that, f~ax and f~in are the maximum and minimum bounds of the
m-th objective function in the search space.

Step T6 If ric, :::; nc,. solution 1 is the winner. Otherwise, solution j is the
WInner.

One attractive aspect of an NPGA is that there is no need for specifying any
particular fitness value to each solution. The tournament selection prefers non
dominated solutions in a stochastic manner (domination-check is performed only
within a subpopulation of solutions) and whenever a decision about non-domination
cannot be established, the parents which reside in less crowded regions in the
offspring population are chosen. The former feature provides a selection pressure
towards Pareto-optimal solutions, while the latter feature allows diverse solutions to



210 MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION

be created. As pointed out earlier, these two features are essential for a multi-objective
optimization algorithm and an NPGA, like NSGAs and MOGAs, also possesses the
above two essential features.

In the following, we outline how the above tournament selection is used in one cycle
of the NPGA algorithm.

NPGA Procedure

Step 1 Shuffle P, set i = 1, and set Q = 0.

Step 2 Perform the above tournament selection and find the first parent, Pl

NPGA-tournament(i, i + 1, Q).

Step 3 Set i = i+2 and find the second parent, P2 = NPGA-tournament(i, i+ 1,
Q).

Step 4 Perform crossover with Pl and P2 and create offspring Cl and C2.

Perform mutation on ci and C2.

Step 5 Update offspring population Q = Q U {c-, C2}.

Step 6 Set i = i + 1. If i < N Go to Step 2. Otherwise, if IQI = N/2, shuffle P,
set i = 1, and go to Step 2. Otherwise, the process is complete.

In addition to the Cfshare parameter, the NPGA is also sensitive to the tdem

parameter. Although the proposers of this algorithm did not suggest any guidelines for
fixing tdem, the numerical experiments performed by the proposers reveal that tdem

should be an order of magnitude smaller than the population size. If the chosen tdem

value is too small, the non-domination check would be noisy, which may not amply
emphasize the true non-dominated solutions in a population. On the other hand, if
the chosen tdem is too large, true non-dominated solutions would be emphasized, but
the computational complexity of the NPGA would be greater. Ideally, this parameter
should also depend on the number of objectives being optimized (refer to Section 8.8
below for further discussions on this aspect).

5.10.1 Hand Calculations

Let us choose the Min-Ex problem and show a hand-calculation with an initial
population of six members, as shown in Table 11. We follow the NPGA in a step
by-step manner.

Step 1 Set i = 1 and Q = 0. For ease of demonstration, we use eight bits for coding
Xl and 10 bits for coding X2.

Step 2 We move to the NPGA tournament selection procedure with solutions 1 and
2.

Step Tl Let us choose a subpopulation (with tdem = 2) with solutions 3 and
5.
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Step T2 Since neither solutions 3 nor 5 dominate solutions 1 or 2, we have

!Xl = !X2 = o.
Steps T3 and T4 Skipped.

Step T5 Since there is no solution in the offspring population yet, we choose
one at random. Say we choose solution 1.

Thus, p i = 1.

Step 3 Now, we play another NPGA tournament with solutions 3 and 4.

Step Tl Let us say we choose another subpopulation with solutions 1 and 6.

Step T2 We observe that both solutions 1 and 6 do not dominate solution 3,
but solution 1 dominates solution 4.

Step T3 Thus, !X3 = 0 and !X4 = 1. So, solution 3 is the winner.

Thus, P2 = 3.

Step 4 We now perform a single-point crossover independently on each variable (site
4 in Xl and site 3 in X2) between solutions 1 and 3 and assume no mutation
here.

Parent
00111011 0010110110

(0.31) (0.89)
00100010 0001110011

(0.22) (0.56)

Offspring
00110010 0011110011

(0.28) (1.19)
00101011 0000110110

(0.25) (0.26)

Step 5 Thus, the resulting offspring population Q has the following two solutions:

Solution

c1
c2

0.28
0.25

1.19
0.26

0.28
0.25

7.82
5.04

Step 6 Now, we set i = 4 and move to Step 2.

Step 2 We playa tournament with solutions 5 and 6.

Step Tl We choose a subpopulation with solutions 2 and 4.

Step T2 Neither solutions 2 nor 4 dominate solutions 5 or 6. Thus, we move

to Step T5.

Step T5 We now calculate the niche counts nc, and nC6 in the objective space.
We calculate the following distances:

dS(cl)

dS(c 2 )

d6 (c l )

d6 (c 2 )

(
0.66 - 0.28) 2 (3.65 - 7.82) 2 = 0 627

1-0.1 + 10-1 .,

0.481,

0.730,

0.651.
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Using a Ushare = 0.5, we observe that only one solution c2 is within the
Ushare distance from solution 5, whereas neither c1 nor c2 are within the Ushare

distance from solution 6. Thus, nc, = 1 and nC6 = O. So, we choose solution 5
as the winner of the tournament. Note that solution 5 dominates solution 6.
However, since both offspring are located closer to solution 5, it makes a selective
disadvantage of solution 5 over solution 6.

Step 3 In order to create the second parent, we shuffle the population and follow the
above procedure.

5.10.2 Computational Complexity

We perform a worst case analysis, where every tournament requires both scenarios 1
and 2 to be performed. In each tournament, scenario 1 requires a domination check
of two solutions with a set of tdom solutions, thereby requiring 2Mtdom comparisons.
For all population members, this amounts to a total of 2MNtdom comparisons. In
scenario 2, the niche count calculation requires 21QI distance computations for each
tournament. Since the size of the offspring population Q linearly varies from 2 to
(N - 2), a total of 0 (N2 ) distance computations are needed. Thus, the overall
complexity of the algorithm is 0 (N2). If the size of tdom is of the same order as
N, the overall complexity is 0 (M N2).

5.10.3 Advantages

As mentioned above, one of the main advantages of the NPGA is that no explicit
fitness assignment is needed. While VEGAs, NSGAs and MOGAs are not free from
their subjectivity in the fitness assignment procedure, the NPGA does not have
this problem. Another advantage of the NPGA is that this is the first proposed
multi-objective evolutionary algorithm which uses the tournament selection operator.
However, the dynamically updated tournament selection somewhat reduces the
elegance with which tournament selection is applied in single-objective optimization
problems. If the subpopulation size tdom is kept much smaller than N, the complexity
of the NPGA does not depend much on the number of objectives (M), as is
evident from the above complexity analysis. Thus, the NPGA may be found to be
computationally efficient in solving problems having many objectives.

5.10.4 Disadvantages

The NPGA requires fixing two important parameters: Ushare and tdom' The parameter
Ushare has more effect on an NPGA than an NSGA. This is because the niche count
nc, of a solution i is calculated as the number of population members present within
a distance Ushare from solution i. Whether a solution resides very near to solution i
or a solution is situated at a distance almost equal to Ushare is not a concern here.
They all are counted equally in the niche count calculation. Whereas in the NSGA
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niche count calculation, although all solutions within ITshare distance are counted, the
contribution of a solution away from solution i is less when compared to a solution
close to i. Thus, there is a greater need to use an appropriate value for ITshare in an
NPGA.

The performance of the NPGA depends on the choice of tdem, as described above.

5.10.5 Simulation Results

We apply the NPGA to the Min-Ex problem for 500 generations. Identical GA
parameter settings to those used in the NSGA study are used here. In addition,
tdem = 6 and ITshare = 0.158 are used. The NPGA without mutation is used first.
Although there exist some solutions near the Pareto-optimal front after 30 generations,
the NPGA's dynamically updated niching mechanism cannot maintain them until 500
generations (Figure 121). All solutions at 500 generations converge to one point in the
Pareto-optimal front (marked lA' on the figure).

However, when mutation is introduced with a bit-wise probability of Pm = 0.02, a
good spread is observed. Figure 122 shows the obtained solutions after 500 generations.
Although a reasonable diversity is obtained as early as 50 generations, the figure
shows that even after 500 generations, the mutation operator is able to provide a
good diversity among the optimized solutions.

5.11 Predator-Prey Evolution Strategy

Laumanns et al. (1998) suggested a multi-objective evolution strategy (ES) which
is radically different from any of the methods discussed so far. This algorithm does
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not use a domination check to assign fitness to a solution. Instead, the concept of a
predator-prey model is used. Preys represent a set of solutions (x(i1, i = 1,2, ... , N),
which are placed on the vertices of a undirected connected graph. First, each predator
is randomly placed on any vertex of the graph. Each predator is associated with a
particular objective function. Thus, at least M predators are initialized in the graph.
Secondly, staying in a vertex, a predator looks around for preys in its neighboring
vertices. The predator 'catches' a prey having the worst value of its associated objective
function. When a prey x(i) is 'caught', it is erased from the vertex and a new solution
is obtained by mutating (and recombining) a random prey in the neighborhood of xli).

The new solution is then kept in the vertex. After this event is over, the predator takes
a random walk to any of its neighboring vertices. The above procedure continues in
parallel (or sequentially) with all predators until a pre-specified number of iterations
have elapsed. The simultaneous presence of predators favoring each objective allows
trade-off solutions to co-exist in the graph.

The proposers of this method have suggested using a two-dimensional torus as
a graph, which ensures that the maximum expected number of iterations required
by a predator to visit every vertex is bounded between N (log N)2 and 2(N - 1)2,
where N is the number of vertices in the torus. On a couple of test problems, they
have also observed that using multiple predators per objective is a good strategy.
Moreover, instead of using a constant mutation strength for the entire EA run, a
decreasing schedule of mutation strength is better. Starting from a large mutation
strength, this is decreased by a fixed factor every time a prey produces an offspring.
In particular, the investigators used (h+ 1 = 0.99erk, where in every iteration the
mutation strength is reduced by 1%. Since the mutation strength is reduced over
iterations, preys progressively create solutions in a closer neighborhood to themselves.

5.11.1 Hand Calculations

In order to demonstrate the working of the predator-prey evolution strategy (PPES)
on the Min-Ex problem, we use a toroidal grid of size 4 x 4 (or 16) preys. These 16
random solutions are shown in Figure 123 and listed in Table 19. The figure also shows
the corresponding grid with marked locations of the solutions. For each objective,
one predator is used. Thus, there are two predators: the first one is placed on grid
location 6 and the second one is placed on location 15. The neighbors of vertex 6 are
vertices 3, 5, 6, 7 and 11. However, the neighbors of vertex 15 are vertices 2, 10, 14,

15 and 16.
Table 19 shows that prey 7 has the worst value of the first objective function among

all neighboring preys of the first predator. Thus, this solution must be replaced by
a new solution. The new solution is calculated by first choosing a random solution
among the neighbors of this worst solution (solution 7). Thus, we choose one solution
at random from solutions 2, 6, 8 and 10. Say, we choose solution 8. We mutate this
solution by using a normal distribution with a chosen mutation strength 0.05. We find
a mutated solution (0.79,3.96) T. The corresponding function values are (0.79,6.28) T.
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Figure 123 A population of 16 preys and 2 predators in a 4 x 4 grid.

Thus, vertex 7 gets this new solution.
Figure 124 shows that solution 7 is worse than the new solution in terms of f]. By

comparing these two solutions, it can also be seen that the new solution is not as close
to the Pareto-optimal front as the original solution 7. However, the PPES compared
both of these solutions by using only the first objective function, thereby allowing
such an unwanted replacement.

We now play the same game with the second predator, which resides in vertex 15.
We observe that prey 14 has the worst value of the second objective function among
the neighbors of the second predator. We choose vertex 11 at random and mutate the
solution at this vertex. We obtain solution (0.36,1.90) T. The corresponding function
values are (0.36,8.06) T. Thus, vertex 14 gets this new solution. The modified set of 16
solutions are shown in the table. Figure 125 shows the location of the new solution,
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Figure 124 Predator 1 deletes prey 7. Figure 125 Predator 2 deletes prey 14.
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Table 19 The predator-prey algorithm is illustrated in a random population. The worst
objective function value for a predator is shown in bold.

Point Current population Neighbors New population

Xl X2 f l f 2 f 1 f 2 Xl x2

1 0.68 1.49 0.68 3.63 0.68 1.49
2 0.94 4.04 0.94 5.34 5.34 0.94 4.04
3 0.36 4.65 0.36 15.90 0.36 0.36 4.65
4 0.95 1.30 0.95 2.43 0.95 1.30
5 0.12 4.47 0.12 46.31 0.12 0.12 4.47
6 0.23 2.41 0.23 14.79 0.23 0.23 2.41
7 0.88 0.80 0.88 2.05 0.88 0.79 3.96
8 0.84 3.96 0.84 5.92 0.84 3.96
9 0.96 2.48 0.96 3.64 0.96 2.48
10 0.99 1.53 0.99 2.55 2.55 0.99 1.53
11 0.35 1.82 0.35 7.97 0.35 0.35 1.82
12 0.88 2.23 0.88 3.69 0.88 2.23
13 0.45 1.58 0.45 5.77 0.45 1.58
14 0.24 3.03 0.24 16.69 16.69 0.36 1.90
15 0.12 0.87 0.12 16.12 16.12 0.12 0.87
16 0.59 0.28 0.59 2.18 2.18 0.59 0.28

which will replace solution 14.

5.11.2 Advantages

The main advantage of this method is its simplicity. Random walks and replacing worst
solutions of individual objectives with mutated solutions are all simple operations,
which are easy to implement.

Another advantage of this algorithm is that it does not emphasize non-dominated
solutions directly. As we have previously mentioned in Chapter 2, one of the difficulties
with the domination-based algorithms is that all solutions in a non-dominated set need
not be members of the true Pareto-optimal front. Since the domination principle is
not used, at least this algorithm is free from this difficulty.

5.11.3 Disadvantages

No explicit operator is used to maintain a spread of solutions in the obtained non
dominated set. Instead, each predator is assigned the task of eliminating the worst
neighboring solution with respect to a different objective. Although this procedure is
different from preferring individual champion solutions (as it is in VEGA), there is no
special care taken to maintain the intermediate solutions. Thus, this algorithm may
also have difficulties in finding a good spread of solutions in the Pareto-optimal set.
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In the experiments shown in the original study, it was clear that the algorithm
is sensitive to the choice of mutation strength parameter and the ratio of predator
and prey used in a simulation study. If a low predator-to-prey ratio is used, individual
optima are emphasized, thereby making the algorithm difficult to find the intermediate
Pareto-optimal solutions. On the other hand, if a high predator-to-prey ratio is
chosen, the preys are compared with respect to all objectives more often. In an EA,
this produces an effect similar to that of emphasizing intermediate non-dominated
solutions. This raises an important issue of finding the optimal predator-to-prey
ratio for a problem. The original study used only two test problems, both having
two objective functions. How such a simple strategy without any diversity-preserving
operator can scale up in higher-dimensional objective space would be an interesting
study for future research.

In the following subsection, we present simulation results of this predator-prey
approach on a test problem.

5.11.4 Simulation Results

We now apply the algorithm on the following test problem for a maximum of 10 000
iterations per objective:

Minimize f](x) = xf,

)Minimize f ( ) _ 1 + x~
2 X -~, (5.23)Xl

subject to Jo.T:::;x,:::;l,
0:::; X2 < vIS.

This problem is different from the Min-Ex problem. The modification is used in order
to keep the decision variables corresponding to the Pareto-optimal solutions well inside
the search region. In the original problem, the optimum value corresponding to X2 was
zero (the lower bound on X2). Since mutation is used as the only search operator here
and the variable is coded directly instead of a binary representation, maintaining the
variable boundaries becomes a difficult task.

We use a lax 10 grid with 100 preys. First, we use one predator for each objective.
These are randomly placed on any vertex. We also use a normally distributed
probability distribution for mutation with a fixed mutation strength of 0.05. Figure 126
shows all preys after 1000 iterations per objective. The figure shows that preys
crowd near the Pareto-optimal region, with a tendency to have more solutions in the
intermediate region of the Pareto optimal set. This is in accordance with the original
study. Interestingly, when the algorithm is allowed to run for further iterations, the
diversity in the solutions reduce and solutions tend to come closer together. Figure 127
show the preys after 10 000 iterations per objective. It is clear from the figures how
preys lose diversity with iterations. Since no explicit diversity-preserving mechanism
is used, the presence of two predators in trying to enhance each objective's niche
cannot maintain enough diversity, particularly when each predator is allowed to visit
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algorithm.

Figure 127 All 100 preys after 10 000

iterations of the fixed mutation scheme.

every vertex a reasonable number of times. We argue that the remaining diversity
in the population is due to the fixed mutation strength of 0.05. If a larger mutation
strength were used, we would have more diversity but the solutions would have been
away from the Pareto-optimal set as well. Later, we will suggest an improvement to
this algorithm with an explicit diversity-preserving mechanism in the hope of keeping
better diversity of solutions in the population with iterations.

We will now try a decreasing mutation schedule, erk+ 1 = 0.9999erk, where k is
incremented every time an offspring is created. To start with, we use era = 0.5. We use
10 predators per objective. All 20 predators are placed on random vertices in the initial
population. Figure 128 shows the prey population after 8000 iterations per objective
(thereby allowing each predator to have 800 iterations). Although we have a good
spread of solutions at this stage, when the algorithm is run for a longer period, all
preys converge to the one solution on the Pareto-optimal front, as shown in Figure 129
after 500 000 iterations.

5.11.5 A Modified Predator-Prey Evolution Strategy

In the above studies, we have observed that all preys tend to become identical when
a decreasing mutation scheme is used. As discussed above, the original predator-prey
algorithm does not explicitly implement any diversity-preserving operator. Thus, if
the predators are allowed to visit each vertex many times, eventually the competition
among predators will prevail and preys will tend to become similar. There could be
several ways to introduce diversity to the above algorithm. We suggest one approach
here.

Instead of associating one objective to each predator, we associate a different weight
vector with each predator. In our implementation for two objectives, we use nine



NON-ELITIST MULTI-OBJECTIVE EA 219

8

6

4

T =8000 0) ( T= 500 000 0
s

6

4

O'-----L_L---'--_L----'--_J..----'--_J..--J

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
o
0.1 0.2 ll.] 0.4 0.5 0.6 0.7 ns 0.9

f ,

Figure 128

iterations per

algorithm.

All 100 preys after 8000

objective with a PPES

Figure 129 All preys converge to one

solution after 500 000 iterations of the

decreasing mutation scheme.

predators each corresponding to a different weight vector. For example, the first
predator takes a weight vector (Wl = 1, W2 = 0), the second predator takes a weight
vector (w- = 0.875, W2 = 0.125), and so on, until the ninth predator takes the weight
vector (w. = 0, W2 = 1). Each predator evaluates its neighboring prey with respect to
the weighted sum of the objectives. The prey with the worst weighted objective value
must be deleted. This modification is a general version of the PPES algorithm, where
only two weight vectors (w. = 1, W2 = 0) and (Wl = 0, W2 = 1) were allowed. Since
each predator emphasizes solutions corresponding to each weight vector, the modified
PPES algorithm may be able to maintain diversity in obtained solutions explicitly (at
least for problems having a convex Pareto-optimal region). In addition, we suggest
two further modifications.

1. To motivate faster convergence, we replace the worst vertex by a solution obtained
by mutating the best neighboring vertex, instead of mutating a random neighboring
vertex.

2. To allow multiple solutions to co-exist in the grid, we also restrict the predator's
movement in a special way. Instead of a random walk, a predator makes a move to
one of its neighbors (including its current position) based on the weighted objective
value of each neighboring vertex. Vertices with better weighted objective have a
larger probability to attract the predator. This mechanism also allows predators to
form their own niches in the grid.

We first tried this modified PPES on the problem shown in equation (5.23). Since
objectives f 1 and f 2 are unequally scaled, we use the following weighted normalized
function: w1fl +w2fz/50, for a predator with the weight vector (Wl,W2)T. With a
fixed mutation scheme (c = 0.05), we use a lOx 10 grid. Figure 130 shows all 100 preys
after 20 000 iterations per predator. Although solutions on the front were found much
earlier, we show the preys after 20 000 iterations to demonstrate that the modified
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algorithm can maintain a good diversity in the Pareto-optimal solutions for a large
number of generations. However, like all other weighted approaches, the algorithm is
sensitive to the normalization procedure and to the convexity of the Pareto-optimal
region.

Next, we will attempt to solve one of the two problems which were used in the
original study:

Minimize fl (x) = xt + x~, }
Minimize fl(x) = (Xl +2)1 + x~,

-50::; Xl < 50, -50::; xz < 50.
(5.24)

We use a 30 x 30 (or 900) preys (the same as that used in the original PPES study)
and a fixed mutation scheme with a mutation strength equal to 0.05. Figure 131 shows
that a good distribution is already formed on and near the true Pareto-optimal front
as early as 500 iterations per predator. This means that at this stage a total of 4500
solutions have been evaluated. Figure 132 shows all 100 preys after 50 000 iterations
per predator. The algorithm is run long enough to show that even after many iterations
the diversity in the preys close to the Pareto-optimal region is maintained. Since each
predator tries to maintain its own niche, multiple solutions co-exist in the grid.

5.12 Other Methods

In this section, we will briefly describe a number of other approaches to multi-objective
optimization which do not explicitly use an elite-preserving operator. Besides them,
a number of other algorithms are also suggested and summarized elsewhere (Coello,
1999; Horn, 1997).
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5.12.1 Distributed Sharing GA

Hiroyasgu et al. (1999) suggested a distributed sharing GA (DSGA) for multi-objective
optimization. In this approach, the distributed island model (see Section 4.6.5 above)
is used to maintain diversity among non-dominated solutions. The GA population
is divided into a number of subpopulations (or islands) and independent genetic
operations are performed to each island. The occasional migration of solutions from
each island to other islands is allowed. Subpopulations from all islands are collected
together and the non-dominated solutions are recorded. When the size of the non
dominated set is more than a desired number, sharing with a suitable D"share is
performed to choose the desired number of solutions. These chosen solutions are again
divided into a number of islands and the process continues until a convergence criterion
is satisfied. On a four-objective optimization problem, the investigators reported
better distributed solutions than a canonical GA applied many times. Besides the
sharing parameter, the DSGA requires a number of other parameters (such as number
of islands, the number of desired non-dominated solutions, convergence criterion,
migration rate, etc.). However, this study is different from other studies in that a
different niching technique is used in a distributed environment.

5.12.2 Distributed Reinforcement Learning Approach

Mariano and Morales (2000) suggested a distributed reinforcement learning approach,
where a family of agents are assigned to different objective functions. Each agent
proposes a solution to optimize its objective function. All such solutions are combined
and a non-dominated compromised set of solutions are identified. Each non-dominated
solution is rewarded. In the context of solving continuous search space problems, an
agent considers solutions in a particular search direction from its current location. The
solution is evaluated by the agent's corresponding objective function. The rewarding
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mechanism provides a direction for the algorithm to move towards the Pareto-optimal
region and the non-domination check maintains a diverse set of solutions, while
simultaneous creation of multiple solutions by a directional search method helps find
new solutions in the search space. This algorithm involves a number of parameter
fixings. On four test problems (SRN, ZDT3, VNT and TNK, discussed below in
Section 8.3), they used different parameters and showed better performance measures
(error ratio and spacing, discussed later in Section 8.2) than MOMGA - an elitist
MOEA which will be described in the next chapter.

5.12.3 Neighborhood Constrained GA

Loughlin and Ranjithan (1997) suggested a neighborhood constrained GA (NCGA),
which uses a population approach to the e-constraint strategy discussed earlier in
Chapter 3. All (M-l) objectives are converted into constraints and only one objective
is kept for optimization. Instead of using different € vectors in different simulation
runs, as in the case of the classical c-constraint method, each population member
is assigned an index in the population. According to the index value, a different €

vector is assigned to each member. A linear mapping for the € vector within user
defined lower and upper constraint levels is used for this purpose. Since solutions in
the population are gradually made more constrained, a restricted mating confining
the crossover to take place between neighboring solutions is adopted. The offspring
solutions are placed consecutively in the new population. The selection operator is also
performed within the neighboring solutions to promote diversity in the population.
The investigators demonstrated the working of this algorithm by applying it to an
air pollution problem. Compared to a single-objective GA and a Pareto-based GA,
their NCGA has found better diversity in the obtained solutions. It is interesting
to note that such diversity in these solutions is ensured by the explicit assignment
of different € vectors for different population members. Even without any explicit
non-dominated sorting procedure the approach, with an added penalty for constraint
violations is able to provide enough selection pressure for the algorithm to progress
towards the Pareto-optimal region. Although a number of other fix-ups are suggested,
the algorithm requires a number of parameter settings such as neighborhood distance,
penalty parameter, lower and upper limits on each constraint value, etc.

5.12.4 Modified NESSY Algorithm

Koppen and Rudlof (1997) suggested a neural evolutional strategy system (NESSY) for
single-objective optimization. The idea is very different from the standard evolutionary
algorithms. The evolutionary search takes place in a neural network paradigm. There
are three layers in this neural network. The first layer is called the solution layer, where
each neuron represents a decision variable vector x. Thus, the set of neurons in the
solution layer constitutes a population of solutions. The second layer is the generation
layer, where each neuron represents a separate gene (or decision variable). Thus, if
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there are n decision variables, there are exactly n neurons in the generation layer. All
neurons in the solution layer are connected to each neuron in the generation layer.
The third layer contains one neuron representing the lower bound of the objective
function. Figure 133 shows a schematic of such a neural network.

Each neuron j in the solution layer is assigned a fitness Flj), calculated from the
objective function value of x' j). Each neuron in the generation layer i chooses exactly
one neuron j in the solution layer with a probability proportional to the connection
weight Wij' The higher the weight, then the better is the probability of establishing an
association between the corresponding decision variable and the solution. All weights
are initialized randomly in [0,1]. After the association is made, the fitness g(i) of a
neuron i in the generation layer is assigned the same as the fitness of the solution
neuron j associated with the i-th neuron. Thereafter, the connection weights are
updated using the following rule:

(5.25)

where (X is the learning rate and 0 represents the state of the output neuron used
to normalize the difference in fitness values. It could be taken as the best fitness
of solution-neurons at generation t. It is important to note that if the fitness of a
solution-neuron is more (worse) than that of the generational-neuron, this means that
the connection between the corresponding gene and solution vectors is weak. The
above update rule reduces the weight in such a case. On the other hand, when the
converse happens, the weight is enhanced. For the currently associated neurons, the
weight is unchanged.

Besides this update, each solution-neuron is modified by comparing its fitness
with that of an arbitrary neuron in the generational layer. If the latter fitness is
better, the corresponding gene (decision variable value) is put in the solution-neuron.
The investigators termed this operator the transduction operator. Each decision
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Figure 133 A schematic of the single-objective NESSY algorithm.
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variable value is also mutated with a zero-mean normally distributed probability
distribution. The overall user-defined parameters of the NESSY algorithm are the
learning rate (x, mutation probability Pm, and the standard deviation of the normal
probability distribution used in the mutation operation. Ideally, there must be n
standard deviations used, each for a different decision variable.

For the use of the NESSY algorithm in multi-objective optimization (MONESSY),
the investigators have also suggested multiple neurons in the third layer, one
corresponding to each objective function. The fitness of a neuron g(i) in the
generational layer is suggested to be computed by using a randomly chosen objective
function. The association with a solution-neuron is also made with the same objective
function. Weight updates and the transduction operations are performed with the
same objective function chosen for the generational-neuron. However, the choice
of an objective function for each generational-neuron is made independently in
each generation. Since all objectives are used, solutions corresponding to individual
optimum are expected to survive in the population. On the test problem KUR
(discussed on page 327), the investigators have shown that the MONESSY algorithm
is able to distribute more solutions near the Pareto-optimal front than anywhere in the
search space. Since no elite-preserving operator is used, although solutions close to the
Pareto-optimal front are found, they may get lost after a few generations. Simulation
results with the MONESSY algorithm showed that it is able to rediscover solutions
near the Pareto-optimal regions periodically. Moreover, the lack of any explicit elite
preserving operator may cause difficulty in allowing a diverse of set of solutions to
co-survive in the solution layer.

5.12.5 Nash GA

Sefrioui and Periaux (2000) suggested a Nash GA for multi-objective optimization.
Motivated by a game-theoretic approach, they allowed one player to get associated
with each objective function. A player tries to optimize its objective function
while keeping other objective functions unchanged. In a periodic sequences of
operations, the Nash GA is terminated when no more improvement is recorded.
At this steady-state scenario, the resulting solution is a Nash-equilibrium solution
and is a candidate Pareto-optimal solution. Although the investigators claim better
convergence properties of this GA compared to the NSGA, it is clear that an explicit
niche-forming operator must be used to maintain multiple Pareto-optimal solutions.

5.13 Summary

The attractive feature of multi-objective evolutionary algorithms is their ability to find
a wide range of non-dominated solutions close to the true Pareto-optimal solutions.
Because of this advantage, the philosophy of solving multi-objective optimization
problems can be revolutionized. Instead of pre-fixing a weight vector and finding the
corresponding Pareto-optimal solution, we have suggested an ideal approach where a
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first attempt is made to find a number of trade-off solutions in one single simulation
run. We have argued that it becomes less subjective to choose one solution from such
a set of multiple trade-off solutions, instead of finding a solution by using a predefined
trade-off among objectives.

Evolutionary algorithms process a population of solutions in each iteration, thereby
making them ideal candidates for finding multiple trade-off solutions in one single
simulation run. In this chapter, we have presented a number of early multi-objective
evolutionary algorithms, which can be used to find multiple non-dominated solutions
close to the Pareto-optimal solutions. The common aspect of these algorithms is that
none of them have used an elite-preserving operator, thereby making the algorithms
easy to understand and implement. Even without an elite-preserving operator, some
of these algorithms have found well converged and well distributed trade-off solutions
in an example problem here and in many problems in their original studies.

As early as 1957, researchers have suggested a weighted approach for handling
multi-objective optimization problems. However, the first real MOEA was suggested
in 1984 by David Schaffer (Schaffer, 1984), where three different implementations,
including a domination-based strategy, were tried. Since no explicit diversity
preserving mechanism, other than the mutation operator, was used in the VEGA,
the population members eventually had a tendency to crowd near the individual
optimum solutions. This difficulty was eliminated in a number of implementations
about a decade later by carefully introducing the non-domination concept and an
explicit diversity-preserving operator. These implementations - MOGAs, NPGAs and
NSGAs - followed a suggestion of David E. Goldberg (Goldberg, 1989) and have

found well-converged and well-distributed sets of trade-off solutions in test problems,
as well as in real-world problems (refer to Chapter 9). At about the same time, two
other implementations, using a diploidy approach and a weighted sum approach,
were also suggested. Along with a few other algorithms, all of these MOEAs have
clearly demonstrated their use as candidate algorithms for the ideal multi-objective
optimization procedure, as described in Chapter 1.

In the next chapter, we will discuss elitist multi-objective evolutionary algorithms
which are supposedly faster and better than the algorithms described in this chapter.
However, the algorithms of this chapter provide a basic understanding of the working
principles of a multi-objective evolutionary algorithm, a matter which will be essential
to comprehend the algorithms of the next chapter.
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Elitist Multi-Objective
Evolutionary Algorithms

In the previous chapter, we have presented a number of multi-objective EAs which
do not use any elite-preserving operator. As the name suggests, an elite-preserving
operator favors the elites of a population by giving them an opportunity to be directly
carried over to the next generation. In single-objective optimization problems, elitism
is introduced into a GA in various ways. In a stead-state EA, the elitism can be
introduced in a simple manner. After two offspring are created using the crossover
and mutation operators, they are compared with both of their parents. Thereafter,
among the four parent-offspring solutions, the best two are selected, thereby allowing
elite parents to compete with their offspring for a slot in the next generation. Elitism
can also be introduced globally in a generational sense. Once the offspring population
is created, both parent and offspring population can be combined together. Thereafter,
the best N members may be chosen to form the population of the next generation. In
this way too, parents get a chance to compete with the offspring population for their
survival in the next generation.

No matter how elitism is introduced, it makes sure that the fitness of the population
best solution does not deteriorate. In this way, a good solution found early on in the
run will never be lost unless a better solution is discovered. The absence of elitism
does not guarantee this aspect. In fact, Rudolph (1996) has proved that GAs converge
to the global optimal solution of some functions in the presence of elitism. Moreover,
the presence of elites enhances the probability of creating better offspring.

Based on the above discussion, it is clear that elitism, in some form, is important
in an evolutionary algorithm. Although elitism is important, it is not clear to what
extent the elitism must be introduced into an MOEA. Elitism can be implemented
to different degrees. For example, one can simply keep track of the best solution in a
population and update it if a better solution is discovered at any generation, but not
use the elite solutions in any genetic operations. In this way, no evolutionary advantag:
is exploited from the elites. On the other hand, in another extreme implementation,
all elites present in the current population can be carried over to the new population.
In this way, not many new solutions get a chance to enter the new population
and the search does not progress anywhere. The interesting implementations are
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when an intermediate degree of elitism is introduced. In most single-objective EA
implementations, the best (X solutions of the population are used as the elites. However,
the choice of an appropriate (X value becomes important in the successful working of
the algorithm. The parameter (X is directly related to the selection pressure associated
with the elites. Since they are directly carried over to the next generation and also
participate in genetic operations, they tend to influence the population to crowd
around themselves. If a large (X is used, this influence is more and the population
loses its diversity. However, if a too small an (X is used, the adequate advantage of
the elites will not be exploited. Ideally, this procedure introduces the parameter (X to
experiment with in any problem, but many prefer to use a fixed value of «. Values of
(X = 1 to (X = 0.1N (10% of the population size) are common.

In single-objective optimization, elites are easy to identify. They are the better
solutions (with higher objective function values) in a population. The best elite is
the solution with the best objective function value. However, which solutions are
elites in the context of multi-objective optimization? Since there are many objective
functions, it is not as straightforward as in the single-objective case to identify the
elites. In such situations, the non-domination ranking comes to our rescue. A solution
can be evaluated as good or bad based on its non-domination rank in the population.
As we have seen earlier, there usually exists more than one solution in the best non
dominated set in a population at any generation. Since all non-dominated solutions are
treated equally well, all such best non-dominated solutions become elites of identical
importance. Thus, the choice of a predefined (X does not work in multi-objective
optimization. Introducing elitism with (X = 1 means that all best non-dominated
solutions are called elites. With (X = 2, all solutions in the first two non-dominated
fronts (with rank 1 and 2) may be called elites, and so on. Since the number of non
dominated solutions in any front is not controllable, it becomes difficult to introduce
elitism in a controlled manner in multi-objective optimization. Moreover, we will
discuss later in Section 8.8 that the number of solutions in the best non-dominated
front is usually large, particularly with a large number of objectives.

Thus, even if we would like to introduce elitism with (X = 1, we have a good
proportion of elite solutions coming from the previous population. As discussed earlier,
this allows the population to lose its diversity soon. The presence of elitism should
improve the performance of a multi-objective EA, but care must be taken to control
the effective degree of elitism introduced in the process. In the following sections, we
will present a number of algorithms that attempt to achieve a controlled elitism in
multi-objective evolutionary optimization.

6.1 Rudolph's Elitist Multi-Objective Evolutionary Algorithm

Rudolph (2001) suggested, but did not simulate, a multi-objective evolutionary
algorithm which uses elitism. This algorithm cannot be implemented as suggested
and requires the introduction of a diversity preservation mechanism. Nevertheless,
the algorithm provides a useful plan for introducing elitism into a multi-objective EA.
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In its general format, u parents are used to create A offspring using genetic operators.
Now there are two populations: the parent population P, and the offspring population
Qt. The algorithm works in three phases. In the first phase, the best solutions of Qt are
first identified. Since non-dominated solutions are best solutions in a population, the
non-dominated solutions of Qt are found. These are deleted from Qt and placed in an
elite population Q*. Thus, all solutions of the modified Qt are worse (or dominated)
than at least one solution in Q*.

In the second phase, each solution q of Q* is compared with each solution of the
parent population Pt. If q dominates any solution of Pt, that solution cannot be an
elite solution in accordance with Q* and is thus deleted from Pt. Since this offspring
is special (at least it has dominated one parent solution), we take it out of Q* and
put it in a set P'. On the other hand, if q does not dominate any solution of Pt and
q does not get dominated by any solution in Pt r then q belongs to the same non
dominated set as all solutions of Pt. Such a solution q is also special to a lower degree
than the elements of P I in the sense that at least q does not get dominated by any
parent solution of Pt. We take it out of Q* and put it into another set, Q'. This ends
the second phase. It is important to note that during this phase the original parent
population Pt gets modified.

In the third phase, all of the above sets are arranged in a special order of preference
to fill up the next generation parent population. First, the modified parent solution
set P and the set P I are combined together. If they together do not fill up all
l-l population slots, we take solutions from different sets in the following order:
Q I, Q* and Qt. Solutions are accepted until all population slots are filled. This
algorithm systematically prefers the best non-dominated solutions from both parent
and offspring populations and reduces (l-l + A) solutions to u.

Rudolph's Elitist EA

Step 1 Create the parent population P t to create an offspring population Qt.

Find non-dominated solutions of Qt and put them in Q*. Delete Q* from
Qt or Qt = Qt\Q*. Set pI = Q' = 0.

Step 2 For each q E Q*, find all solutions p E P, that are dominated by q. Put
these solutions of Pt in a set D (q). If ID (q) I > 0, carry out the following:

Pt Pt\D(q),

p' p' U {q},

Q* Q*\{q}.

Otherwise, if D (q) = 0 and q is non-dominated with all existing members
of Pt , then perform the following:

Q' = Q' U {q}, Q* = Q*\{q}.

Step 3 Form a combined population Ptt 1 = Pt U P'. If IP t+ 11 < l-l, then fill
Ptt 1 with elements from the following sets in the order mentioned below
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(Q', Q*,o.).

6.1.1 Hand Calculations

We now consider the same two-objective Min-Ex problem (defined above in
equation (5.1)) to illustrate the above elite-preservation algorithm. We assume an
offspring population of six solutions, as shown in Table 20 and in Figure 134. Here, we
show a serial implementation of Step 2, whereas a parallel implementation can also
be done.

Step 1 The first task is to find the best non-dominated front of the offspring
population Qt. The resulting front consists of solutions a, band e. Thus,
Q* = {a, b, e}. Figure 135 shows that these three belong to the non-dominated
front of the offspring population. We eliminate these solutions from Qt, or
Qt = {c, d, f}. For further processing, we set pI = Q' = 0.

Step 2 We find that q = a dominates the four solutions 1 to 4 of the parent
population. Thus, D( a) = {1,2, 3, 4}. We delete these from the parent population:
Pt = {5,6}and put the offspring a in pI = {a}. We also eliminate solution a from
Q* and have Q* = {b, e}.

Next, we consider solution b. We find that it dominates solution 6. Thus,
D(b) = {6}. Thus, we delete solution 6 from Pt, or P, = {5}. We also put
this solution in P", or pI = {a, b}. Finally, we delete this member from Q*.
The modified set is Q* = {e}. We also observe that solution 5 of the parent
population dominates offspring b. However, the above algorithm does not take
account of this aspect.

We now consider the last element of Q*. We observe that solution e is non
dominated with solution 5 (the remaining member of Pd. Thus, we keep
solution e in Q', or Q' = {e}. We also delete this element from Q*. Thus,
the modified Q* = 0.

Table 20 Parent and offspring with their objective function values.

Parent population, Pt Offspring population, Q,
Solution Xl Xl f l f l Solution Xl Xl f l f l

1 0.31 0.89 0.31 6.10 a 0.21 0.24 0.21 5.90
2 0.43 1.92 0.43 6.79 b 0.79 2.14 0.79 3.97

3 0.22 0.56 0.22 7.09 c 0.51 2.32 0.51 6.51
4 0.59 3.63 0.59 7.85 d 0.27 0.87 0.27 6.93

5 0.66 1.41 0.66 3.65 e 0.58 1.62 0.58 4.52

6 0.83 2.51 0.83 4.23 f 0.24 1.05 0.24 8.54
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Figure 134 Parent (numerals) and offspring (alphabets).

Step 3 The resulting sets are as follows:

P, = {5},

Q* = 0,
pi = {a, b),

Qt = {c, d, f}.

QI = {e},

We first form Pt U pi = {5, a, b}. Since three more elements are needed to fill the
population up to its size, we first include the only member of QI, and any two
members from Qt. Let us say that we choose solution c and d. Thus, the new
population is P t t 1 = {5, a, b, c, d, e}. Figure 136 shows the resulting solutions,
joined by dashed lines. This population becomes the parent population of the
next generation.
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Figure 135 Offspring are classified into two non-dominated fronts.
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Figure 136 The parent population of the next generation consists of solutions joined by

dashed lines.

6.1.2 Computational Complexity

In Step 1, the best non-dominated solutions are found. This requires 0 (MA2 )

computations. In Step 2, for each non-dominated solution in the offspring population,
all solutions in the parent population are checked, thereby requiring the worst case
o(l-lA) comparisons. If u = A = N is used, the worst case complexity is 0 (MN2).
However, it is important to remember that this algorithm does not attempt to maintain
any diversity in the obtained solutions.

6.1.3 Advantages

Rudolph (2001) has proven that the above algorithm with a 'positive variation kernel'
of its search operators allows convergence (of at least one solution in the population)
to the Pareto-optimal front in a finite number of trials (refer to Section 8.9 below)
in finite search space problems. The positiveness of the variation kernel (representing
the joint transition probabilities of crossover and mutation operators) makes sure that
the probability of creating any offspring from an arbitrary set of parent solutions in a
finite number of trials is one. Thus, in any population, if no Pareto-optimal solution
exists, the positiveness of the variation kernel of the combined search operators ensures
that one such member will be created in a finite number of trials. With the elite
preserving strategy of the above algorithm, this member cannot ever be deleted from
the population. This is because this solution will not be dominated by any other
solution in the search space. Therefore, this solution will always lie in Pt.

6.1.4 Disadvantages

However, what has not been proved is a guaranteed maintenance of diversity among
the Pareto-optimal solutions. If a population-based evolutionary algorithm converges
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to a single Pareto-optimal solution, it cannot be justified for its use over other classical
algorithms. What makes evolutionary algorithms attractive is their ability to find
multiple Pareto-optimal solutions in one single run.

Whenever all l-t parent solutions are Pareto-optimal, no new Pareto-optimal
solutions can be accommodated in the new population. This shortcoming does not
allow the above algorithm to find a more diverse set of Pareto-optimal solutions.
Although a niche formation scheme can be used in choosing the elements from QI,

Q* and Ql to fill up the population with a diverse set of solutions from these sets,
the algorithm stagnates as soon as an arbitrary set of l-t Pareto-optimal solutions are
found as parents.

The set pi is given priority over Q' in forming the new population Pt+], although
all members of QI are non-dominated with all members of Pt. Since a member of
Pt can dominate some members of pi, the resulting set Pt -+] may not contain all
non-dominated solutions.

Since this algorithm does not ensure any diversity among the obtained solutions,
we have not used it for testing on the example problem.

6.2 Elitist Non-Dominated Sorting Genetic Algorithm

This author and his students suggested an elitist non-dominated sorting GA (termed
NSGA-II) in 2000 (Deb et al., 2000a, 2000b). Unlike the above method of using only
an elite-preservation strategy as in the previous algorithm, NSGA-II also uses an
explicit diversity-preserving mechanism. In most aspects, this algorithm does not have
much similarity with the original NSGA, but the authors kept the name NSGA-II to
highlight its genesis and place of origin.

Like Rudolph's algorithm, in NSGA-II, the offspring population Qt is first created
by using the parent population Pt. However, instead of finding the non-dominated
front of Qt only, first the two populations are combined together to form R, of size 2N.
Then, a non-dominated sorting is used to classify the entire population Rt . Although
this requires more effort compared to performing a non-dominated sorting on Q t alone,
it allows a global non-domination check among the offspring and parent solutions.
Once the non-dominated sorting is over, the new population is filled by solutions of
different non-dominated fronts, one at a time. The filling starts with the best non
dominated front and continues with solutions of the second non-dominated front,
followed by the third non-dominated front, and so on. Since the overall population
size of R, is 2N, not all fronts may be accommodated in N slots available in the new
population. All fronts which could not be accommodated are simply deleted. When
the last allowed front is being considered, there may exist more solutions in the last
front than the remaining slots in the new population. This scenario is illustrated in
Figure 137. Instead of arbitrarily discarding some members from the last front, it
would be wise to use a niching strategy to choose the members of the last front, which
reside in the least crowded region in that front.

A strategy like the above does not affect the proceedings of the algorithm much
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Figure 137 Schematic of the NSGA-II procedure.

in the early stages of evolution. This is because, early on, there exist many fronts
in the combined population. It is likely that solutions of many good non-dominated
fronts are already included in the new population, before they add up to N. It then
hardly matters which solution is included to fill up the population. However, during
the latter stages of the simulation, it is likely that most solutions in the population
lie in the best non-dominated front. It is also likely that in the combined population
R, of size 2N, the number of solutions in the first non-dominated front exceeds N.
The above algorithm then ensures that niching will choose a diverse set of solutions
from this set. When the entire population converges to the Pareto-optimal front, the
continuation of this algorithm will ensure a better spread among the solutions.

In the following, we outline the algorithm in a step-by-step format. Initially,
a random population Po is created. The population is sorted into different non
domination levels. Each solution is assigned a fitness equal to its non-domination level
(1 is the best level). Thus, minimization of the fitness is assumed. Binary tournament
selection (with a crowded tournament operator described later), recombination and
mutation operators are used to create a offspring population Qo of size N. The
NSGA-II procedure is outlined in the following.

NSGA-II

Step 1 Combine parent and offspring populations and create Rt = Pt U Qt.

Perform a non-dominated sorting to R, and identify different fronts: F«,
i = 1,2, ... , etc.

Step 2 Set new population PH1 = 0. Set a counter i = 1.
Until IPH 11+ IFi 1 < N, perform Pt +1 = PH 1 UF; and i = i + 1.

Step 3 Perform the Crowding-sort (Fi, <cl procedure (described below on
page 236) and include the most widely spread (N - IPH 11l solutions by
using the crowding distance values in the sorted F, to PH1.

Step 4 Create offspring population QH 1 from PH 1 by using the crowded
tournament selection, crossover and mutation operators.
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In Step 3, the crowding-sorting of the solutions of front i (the last front which could not
be accommodated fully) is performed by using a crowding distance metric, which we
will describe a little later. The population is arranged in descending order of magnitude
of the crowding distance values. In Step 4, a crowding tournament selection operator,
which also uses the crowding distance, is used.

It is important to mention here that the non-dominated sorting in Step 1 and
filling up population PH 1 can be performed together. In this way, every time a non
dominated front is found, its size can be used to check if it can be included in the
new population. If this is not possible, no more sorting is needed. This will help in
reducing the run-time of the algorithm.

6.2.1 Crowded Tournament Selection Operator

The crowded comparison operator «c) compares two solutions and returns the winner
of the tournament. It assumes that every solution i has two attributes:

1. A non-domination rank Ti in the population.
2. A local crowding distance (d.) (which we define in the next subsection) in the

population.

The crowding distance d. of a solution i is a measure of the search space around i
which is not occupied by any other solution in the population. Based on these two
attributes, we can define the crowded tournament selection operator as follows.

Definition 6.1. Crowded Tournament Selection Operator: A solution i wins a
tournament with another solution j if any of the following conditions are true:

1. If solution i has a better rank, that is, Ti < Tj.

2. If they have the same rank but solution i has a better crowding distance than
solution j, that is, r, = Tj and d, > d..

The first condition makes sure that chosen solution lies on a better non-dominated
front. The second condition resolves the tie of both solutions being on the same non
dominated front by deciding on their crowded distance. The one residing in a less
crowded area (with a larger crowding distance d.) wins. The crowding distance d.
can be computed in various ways. Of these, the niche count metric (nc.) and the
head count metric (hct} are common (refer to Section 8.2 later). Both of these metrics
require 0 (MN2) complexity. Although they can be used, they have to be used in a
reverse sense. A solution having a smaller niche count or head count means a lesser
dense solution and has to be preferred. Thus, in the second condition, one should
choose solution i if r, = Tj and either ric, < ric, or, in terms of head counts, he, < hc..
However, in NSGA-II, we use a crowding distance metric, which requires O(MN log N)
computations.
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Crowding Distance

To get an estimate of the density of solutions surrounding a particular solution i in the
population, we take the average distance of two solutions on either side of solution i
along each of the objectives. This quantity d, serves as an estimate of the perimeter
of the cuboid formed by using the nearest neighbors as the vertices (we call this the
crowding distance). In Figure 138, the crowding distance of the i-th solution in its
front (marked with solid circles) is the average side-length of the cuboid (shown by
a dashed box). The following algorithm is used to calculate the crowding distance of
each point in the set :F.

Crowding Distance Assignment Procedure: Crowding-sort(F, <cl

Step C1 Call the number of solutions in F as 1 = IFI. For each i in the set,
first assign d, = O.

Step C2 For each objective function m = 1,2, ... , M, sort the set in worse
order of f m or, find the sorted indices vector: I'" = sort(fm i > [.

Step C3 For m = 1,2, ... , M, assign a large distance to the boundary solutions,
or dI;n = dI;n = 00, and for all other solutions j = 2 to (1- 1), assign:

The index I j denotes the solution index of the j-th member in the sorted list. Thus,
for any objective, 11 and II denote the lowest and highest objective function values,
respectively. The second term on the right side of the last equation is the difference
in objective function values between two neighboring solutions on either side of
solution I j • Thus, this metric denotes half of the perimeter of the enclosing cuboid with
the nearest neighboring solutions placed on the vertices of the cuboid (Figure 138). It
is interesting to note that for any solution i the same two solutions (i + 1land (i - 1)
need not be neighbors in all objectives, particularly for M :2 3. The parameters f:ax

and f:in can be set as the population-maximum and population-minimum values of
the m-th objective function.

o
o

•
Cuboid

i-I· - - - - - -, 0

: i_.__ ~

i+l

Figure 138 The crowding distance calculation. This is a reprint of Figure 1 from Deb et

al. (2000b) (© Springer-Verlag Berlin Heidelberg 2000).
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The above metric requires M sorting calculations in Step C2, each requmng
o (N log N) computations. Step C3 requires N computations. Thus, the complexity of
the above distance metric computation is 0 (MN log N ). For large N, this complexity is
smaller than 0 (MN 2), which denotes the computational complexity required in other
niching methods. Now, we illustrate the procedure while hand-simulating NSGA-II to
the example problem Min-Ex.

6.2.2 Hand Calculations

We use the same parent and offspring populations as used in the previous section
(Table 20).

Step 1 We first combine the populations PI and Qt and form Rl = {1,2, 3, 4, 5,6, a, b,
c, d, e, fl. Next, we perform a non-dominated sorting on Rt . We obtain the
following non-dominated fronts:

F, {5, a, e},

h {1,3,b,d},

F3 {2, 6, c, f},

F 4 {4}.

These fronts are shown in Figure 139.

Step 2 We set Pt+1 = 0 and i = 1. Next, we observe that !Pt 111 + IF,I = 0 + 3 = 3.
Since this is less than the population size N (= 6), we include this front in P, +-1 •

We set P t I 1 = {5, a, e}. With these three solutions, we now need three more
solutions to fill up the new parent population.

10
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Figure 139 Four non-dominated fronts of the combined population R,.
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Now, with the inclusion of the second front, the size of !PH' 1+ l.Fzl is (3 + 4)

or 7. Since this is greater than 6, we stop including any more fronts into the
population. Note that if fronts 3 and 4 had not been classified earlier, we could
have saved these computations.

Step 3 Next, we consider solutions of the second front only and observe that three
(of the four) solutions must be chosen to fill up three remaining slots in the
new population. This requires that we first sort this subpopulation (solutions 1,
3, b, and d) by using the <e operator (defined above in Section 6.2.1). We
calculate the crowded distance values of these solutions in the front by using the
step-by-step procedure.

Step Cl We notice that 1 = 4 and set d 1 = d3 = db = dd = O. We also set
fjax = 1, fjin = 0.1, fiax = 60 and fi in = O.

Step C2 For the first objective function, the sorting of these solutions is shown
in Table 21 and is as follows: I' = {3, d, 1, b},

Step C3 Since solutions 3 and b are boundary solutions for f" we set d,
db = 00. For the other two solutions, we obtain:

f(')-f(3) 031 022
d - 0 +' , 0 . -. 010

d - fmax _ fmin = + 1 - 0.1 =. .
1 ,

f(b)_f(d) 079 027
dj = 0+' '. = 0 + . -. = 0 58

fjax - fjlll 1 - 0.1 ..

Now, we turn to the second objective function and update the above
distances. First, the sorting on this objective yields IZ = {b, 1, d, 3}. Thus,

Table 21 The fitness assignment procedure under NSGA-II.

Front 1 Sorting in Distance
Solution x, Xz f 1 fz f, f z

5 0.66 1.41 0.66 3.65 third first 00

a 0.21 0.24 0.21 5.90 first third 00

e 0.58 1.62 0.58 4.52 second second 0.54

Front 2 Sorting in Distance
Solution x, Xz f, fz f, f z

1 0.31 0.89 0.31 6.10 third second 0.63
3 0.22 0.56 0.22 7.09 first fourth 00

b 0.79 2.14 0.79 3.97 fourth first 00

d 0.27 0.87 0.27 6.93 second third 0.12
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db = d3 = 00 and the other two distances are as follows:

(d) (bl
d f 2 -fz =0.58 6.93-3.97 =0.63.

1 + fmax _ fmm + 60 - 0
2 2

(3) (l I
f l -f2 = 10 7.09-6.10=012

dd + fmax _ fmin O. + 60 - 0 ..
2 2

The overall crowded distances of the four solutions are:

di = 0.63, d3 = 00, db = 00, dd = 0.12.

The cuboids (rectangles here) for these solutions are schematically shown in
Figure 140. Solution d has the smallest perimeter of the hypercube around
it than any other solution in the set :F2, as evident from the figure. Now,
we move to the main algorithm.

Step 3 A sorting according to the descending order of these crowding distance values
yields the sorted set {3, b, 1, d}. We choose the first three solutions.

Step 4 The new population is Pt t 1 = {5, a, e,3, b , 1}. These population members
are shown in Figure 141 by joining them with dashed lines. It is important
to note that this population is formed by choosing solutions from the better
non-dominated fronts.

The offspring population Qt+ 1 has to be created next by using this parent
population. We realize that the exact offspring population will depend on
the chosen pair of solutions participating in a tournament and the chosen
crossover and mutation operators. Let us say that we pair solutions (5, e), (u, 3),
(1, b), (u, 1), (e, b) and (3,5), so that each solution participates in exactly two
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Figure 140 The cuboids of solutions 1

and d. The cuboids for solutions 3 and b

extend to infinity.

Figure 141 The new parent population

Pt + 1 joined by dashed lines.
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tournaments. The crowding distance values for solutions of the first front are
also listed in Table 21. In the first tournament, we observe that solutions 5 and
e belong to the same front (rs = r e = 1). Thus, we choose the one with the
larger crowding distance value. We find that solution 5 is the winner.

In the next tournament between solutions a and 3, solution a wins, SInce it
belongs to a better front. Performing other tournaments, we obtain the mating pool:
{5, a, a, b, b, e}. Now, these solutions can be mated pair-wise and mutated to create
Qt+l. This completes one generation of the NSGA-II.

6.2.3 Computational Complexity

Step 1 of the NSGA-II requires a non-dominated sorting of a population of size 2N.
This requires at most 0 (MN2) computations. Sorting in Step 3 requires crowding
distance computation of all members of front i. However, the crowded tournament
selection in Step 4 requires the crowding distance computation of the complete
population Pt+ 1 of size N. This requires 0 (M N log N) computations. Thus, the overall
complexity of the NSGA-II is at most O( MN 2 ) .

6.2.4 Advantages

The diversity among non-dominated solutions is introduced by using the crowding
comparison procedure which is used with the tournament selection and during the
population reduction phase. Since solutions compete with their crowding distances (a
measure of the density of solutions in the neighborhood), no extra niching parameter
(such as O"share needed in the MOGAs, NSGAs or NPGAs) is required here. Although
the crowding distance is calculated in the objective function space, it can also be
implemented in the parameter space, if so desired (Deb, 1999c).

In the absence of the crowded comparison operator, this algorithm also exhibits
a convergence proof to the Pareto-optimal solution set similar to that in Rudolph's
algorithm, but the population size would grow with the generation counter. The elitism
mechanism does not allow an already found Pareto-optimal solution to be deleted.

6.2.5 Disadvantages

However, when the crowded comparison is used to restrict the population size,
the algorithm loses its convergence property. As long as the size of the first non
dominated set is not larger than the population size, this algorithm preserves all
of them. However, in latter generations, when more than N members belong to the
first non-dominated set in the combined parent-offspring population, some closely
packed Pareto-optimal solutions may give their places to other non-dominated yet
non-Pareto-optimal solutions. Although these latter solutions may get dominated by
other Pareto-optimal solutions in a later generation, the algorithm can resort into this
cycle of generating Pareto-optimal and non-Pareto-optimal solutions before finally
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Figure 142 The population after 50 generations with the NSGA-II without mutation.

converging to a well-distributed set of Pareto-optimal solutions.
As mentioned earlier, the non-dominated sorting needs to be performed on a

population of size 2N, instead of a population of size N required in most algorithms.

6.2.6 Simulation Results

We apply the above algorithm to the Min-Ex problem. The GA parameter settings are
also identical to that used before. A population size of 40 and a crossover probability
of 0.9 are used. The decision variables 1 and 2 are coded in 24 and 26 bits, respectively.
Figure 142 shows the population of 40 solutions at the end of 50 generations without
a mutation operator. This figure shows that even without the mutation operator, the
NSGA-II can make the population reach the true Pareto-optimal front with a good
spread of solutions. The population at the end of 500 generations, shown in Figure 143,
confirms that the NSGA-II can sustain the spread of solutions without mutation even
after a large number of generations are elapsed. However, the distribution of solutions
gets better with generations.

The next figure shows the NSGA-II population obtained using a bit-wise mutation
operator. Figure 144 shows the population after 500 generations with a mutation
probability of 0.02. With the mutation operator, the exploration power of the NSGA
II gets enhanced and a better distribution of solutions is observed.

6.3 Distance-Based Pareto Genetic Algorithm

Osyczka and Kundu (1995) suggested an elitist GA, a distance-based Pareto genetic
algorithm (DPGA), which attempts to emphasize the progress towards the Pareto
optimal front and the diversity along the obtained front by using one fitness measure.
This algorithm maintains two populations: one standard GA population Pt where
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(6.1)

genetic operations are performed, and another elite population E, containing all non
dominated solutions found thus far.

The initial population Po of size N is created at random. The first population
member is assigned a positive random fitness F1 (chosen arbitrarily) and is
automatically added to the elite set Eo. Thereafter, each solution is assigned a fitness
based on its distance from the elite set, E, = {e(k) : k = 1,2, ... , K}, where K is the
number of solutions in the elite set. Each elite solution elk) has M function values,

or e(k) = (e\kl, eik), ... ,e~l)T. The distance of a solution x from the elite set is

calculated as follows:

d'<'lx) ~ f, (e~) ~;}mlx)r
For the solution x, the minimum d (k) (x1of all k = 1,2, ... , K is found as follows:

. K
dm lll = min d1k j (xl

k=l

and the index k* for the minimum distance is also recorded. Thereafter, if the solution
x is a non-dominated solution with respect to the existing elite set, it is accepted in
the elite set and its fitness is calculated by adding the fitness of the elite member with
minimum distance from it and its distance from the minimum member:

(6.2)

The elite set is updated by deleting all elite solutions dominated by x, if any. On the
other hand, if the solution x is dominated by any elite solution, it is not accepted in
the elite set and its fitness is calculated as follows:

(6.3)
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In this way, as population members are evaluated for their fitness, the elite set is
constantly updated. At the end of the generation (when all N population members are
evaluated), the maximum fitness Fm ax among the existing elite solutions is calculated
and all existing elite solutions are assigned a fitness equal to Fm ax . At the end of
a generation, selection, crossover and mutation operators are used to create a new
population.

It is interesting to note that a non-dominated solution lying a large distance away
from the existing elite set gets a large (better) fitness. This helps in two ways. First,
if the new solution dominates a few members of the elite set, the fitness assignment
procedure helps in emphasizing solutions closer to the Pareto-optimal set. A distant
solution here means a solution distant from the existing elite set but closer to the
Pareto-optimal set. Assigning a large fitness to such a solution helps to progress
towards the Pareto-optimal front. On the other hand, if the new solution lies in
the same non-dominated front along with the elite solutions, the fitness assignment
procedure helps in maintaining diversity among them. A distant solution here means
an isolated solution on the same front. Assigning a large fitness to an isolated solution
helps to maintain diversity among obtained non-dominated solutions.

Distance-Based Pareto GA (DPGA)

Step 1 Create an initial random population Po of size N and set the fitness of
the first solution as Fl. Set generation counter t = 0.

Step 2 If t = 0, insert the first element of Po in an elite set Eo = {l}. For
each population member j ~ 2 for t = °and j ~ 1 for t > 0, perform the
following steps to assign a fitness value.

Step 2a Calculate the distance d; k I with each elite member k (with fitness

e~), m = 1,2, ... , M) as follows:

M

L
ml

Step 2b Find the minimum distance and the index of the elite member
closest to solution j:

k*
)

IE.! Ilk)
mmd j
k--l

{k : d 1k ) = dmin,. ) ) J.

Step 2c If any elite member dominates solution j, the fitness of j is:

Otherwise, the fitness of j is:
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and j is included in E, by eliminating all elite members that are
dominated by j.

Step 3 Find the maximum fitness value of all elite members:

All elite solutions are assigned a fitness Fmax'

Step 4 If t < t m ax or any other termination criterion is satisfied, the process is
complete. Otherwise, go to Step 5.

Step 5 Perform selection, crossover and mutation on Pt and create a new
population Pt t 1. Set t = t + 1 and go to Step 2.

Note that no separate genetic processing (like reproduction, crossover or mutation
operation) is performed on the elite population E, explicitly. The fitness Fm ax of elite
members is used in the assignment of fitness of solutions of Pt.

6.3.1 Hand Calculations

We use the two-variable Min-Ex problem. Let us also use the same parent population
as used in the previous section (Table 20).

Step 1 We arbitrarily choose the fitness of the first population member as F] = 10.0.
We also set t = O.

Step 2 Since t = 0, we include the first population member in the elite set Eo = {1}.
Now, for the second individual, we run through Steps 2a - 2c as follows:

Step 2a The distance di is:

d
2
1 (0.31-0.43)2 (6.10-6.79)2

0.31 + 6.10 '

0.40.

Step 2b Since there is only one member In Eo, the mimmum distance IS

drin = 0.40 and ki = 1.

Step 2c Since solution 1 dominates solution 2, the fitness of solution 2 is:

b max[O, (10.0 - 0.40)]

9.60.

The elite set remains unchanged here.

We go back to Step 2a to show the fitness computation for solution 3. The
distance dl = 0.33. Since solution 3 is non-dominated with solution 1, the
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fitness of solution 3 is F3 = 10.00 + 0.33 = 10.33. Solution 3 is also included in
the elite set. Thus, Eo = {1,31.

For solution 4, the distances d~ = 0.95 and d~ = 1.69. Thus, dT in = 0.95 and
the fitness of solution 4 is F4 = 10.00 - 0.95 = 9.05. The elite set is unchanged
here.

Similarly, the fitness values of solutions 5 and 6 are also calculated. The
corresponding minimum distance values and elite sets are shown in Table 22.

Step 3 There are three individuals (solutions 1, 3 and 5) in the elite set. The
maximum fitness of these two solutions is 11.20. Thus, these three solutions
are assigned a fitness 11.20 as an elite member. However, their fitness values in
the GA population remain as 10.00, 10.33 and 11.20, respectively.

Step 4 As no termination criterion is satisfied, we proceed to the next step.

Step 5 The population is now operated by a selection operation based on the fitness
values shown in the table, followed by crossover and mutation operations.
However, the elite set E1 = {1,3,5} passes on to the next population and the
fitness of the new population members will be computed with respect to this
elite set. In the process, the elite set may also get modified.

Figure 145 shows the six population members and the elite set obtained at the
end of the first generation. Arrows on this figure connect population members (ends
of arrows) with elite members (starts of arrows) having minimum distances in the
objective space. A continuous arrow marks an improvement in fitness, while a dashed
arrow shows a decrement in fitness of the population member from the fitness of the
elite member. A natural hierarchy of decreasing fitness for increasingly dominated
solutions evolves with this fitness assignment scheme. Since non-dominated solutions
are assigned more fitness, the selection operator will emphasize these solutions. The
crossover and mutation operators will then help create solutions near these non
dominated solutions, thereby helping the search to proceed towards the Pareto-optimal

Table 22 Fitness computations with the DPGA.

Solution GA population
(j) Xl Xl fl f l dffi lll Fitness Eo)

1 0.31 0.89 0.31 6.10 10.00 {1}
2 0.43 1.92 0.43 6.79 0.40 9.60 {1}
3 0.22 0.56 0.22 7.09 0.33 10.33 {1,3}
4 0.59 3.63 0.59 7.85 0.95 9.05 {1,3}
5 0.66 1.41 0.66 3.65 1.20 11.20 {1,3,5}
6 0.83 2.51 0.83 4.23 0.30 10.90 {1,3,5}
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Figure 145 The DPGA fitness assignment procedure.

region. Notice how the fitness assignment scheme takes care of the crowding of
solutions in the above example case. Since solution 3 is located close to solution 1
in the objective space and since there exists no solution close to solution 5, the
fitness of solution 3 is smaller than that of solution 5. Thus, an emphasis of non
dominated solutions and a maintenance of diversity are both obtained by the above
fitness assignment scheme. However, it is important to note that this may not always
be true, a matter we discuss later in Section 6.3.4.

6.3.2 Computational Complexity

The distance computation and dominance test require O(MTJ2) computations, where
TJ is the current size of the elite set Et . Since the algorithm does not restrict the size
of the elite set, it is likely that TJ will increase with generation. Thus, the complexity
of the algorithm increases with the number of generations.

6.3.3 Advantages

For some sequence of fitness evaluations, both goals of progressing towards the
Pareto-optimal front and maintaining diversity among solutions are achieved without
any explicit niching method. However, as we shall see in the next subsection, an
appropriate niching may not form in certain sequence of fitness assignments.

6.3.4 Disadvantages

As mentioned above, the elite size is not restricted and is allowed to grow to any size.
This will increase the computational complexity of the algorithm with generations.
However, this difficulty can be eliminated by restricting the elite size in Step 2c. A
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population member is allowed to be included in the elite set only when the elite size
does not exceed a user-specified limit. If there is no room left in the elite population,
the new solution can be used to replace an existing elite member. Several criteria can
be used to decide the member that must be deleted. One approach would be to find
the crowded distance (see the NSGA-II discussion in Section 6.2 above). If the crowded
distance of the new solution in the elite set is more than the crowded distance of any
elite member, the new solution replaces that elite member. In this way, the elite set
is always restricted to a specified size and better diversity can be obtained.

The original study suggested the use of a proportionate selection operator. In such
a case, the choice of the initial F1 is important. However, for tournament selection or
ranking selection methods, the algorithm is not sensitive to F, .

The DPGA fitness assignment scheme is sensitive to the ordering of individuals in
a population. In the above example (Table 22), if solution 1 and 5 are interchanged
in the population, the fitnesses of solutions 3 and 5 are more than that of solution 1
(Figure 146). However, solution 1 now resides in a least crowded area. This fitness
assignment is likely to have an adverse effect on the diversity of the obtained solutions.

6.3.5 Simulation Results

We apply the DPGA to the Min-Test problem. As in the other algorithms, we use a
population of size 40 and run the DPGA up until 500 generations. As suggested by
the investigators, we will use the proportionate selection scheme. (We have used the
stochastic universal selection scheme here.) The single-point crossover with Pc = 0.9
and the bit-wise mutation operator with Pm = 0.02 are used. Two variables are coded
in 24 and 26 bits. No restriction on the size of the elite set is kept. Figures 147
and 148 show the elite populations after 50 and 500 generations, respectively. It is
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Figure 146 The DPGA fitness assignment fails to emphasize the least crowded solution.
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generations with the DPGA.

interesting to note that the DPGA cannot find many non-dominated solutions after
50 generations. However, after 500 generations, the algorithm can find as many as 81
solutions near the Pareto-optimal front. Moreover, the population has maintained a
good distribution.

In order to support our argument on the gradual increase in the size of the elite
population, we have counted the number of non-dominated solutions in the elite set at
the end of each generation and plotted these data in Figure 149. It is clear that the size
increases with generation, except for occasional drops in the number. When a better
non-dominated solution is discovered, a few existing elite population members may
become dominated and hence the size of the elite population reduces. Since the elite
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Figure 149 Growth of the elite population size in the DPGA.
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population did not entirely converge on the exact Pareto-optimal front even after 500
generations, this sudden drop followed by increase in the size of the elite population
continues up until 500 generations. When all elite population members converge to the
true Pareto-optimal front, the elite size will monotonically increase or remain constant
with the generation counter.

6.4 Strength Pareto Evolutionary Algorithm

Zitzler and Thiele (1998a) proposed an elitist evolutionary algorithm, which they
called the strength Pareto EA (SPEA). This algorithm introduces elitism by explicitly
maintaining an external population P. This population stores a fixed number of the
non-dominated solutions that are found until the beginning of a simulation. At every
generation, newly found non-dominated solutions are compared with the existing
external population and the resulting non-dominated solutions are preserved. The
SPEA does more than just preserving the elites; it also uses these elites to participate
in the genetic operations along with the current population in the hope of influencing
the population to steer towards good regions in the search space.

This algorithm begins with a randomly created population Po of size N and an
empty external population Po with a maximum capacity of N. In any generation t,
the best non-dominated solutions (belonging to the first non-dominated front) of the
population Pt are copied to the external population Pt. Thereafter, the dominated
solutions in the modified external population are found and deleted from the external
population. In this way, previously found elites which are now dominated by a new
elite solution get deleted from the external population. What remains in the external
population are the best non-dominated solutions of a combined population containing
old and new elites. If this process is continued over many generations, there is a danger
of.the external population being overcrowded with non-dominated solutions, like that
in the DPGA. In order to restrict the population to over-grow, the size of the external
population is bounded to a limit (N). That is, when the size of the external population
is less than N, all elites are kept in the population. However, when the size exceeds
N, not all elites can be accommodated in the external population. This is where the
investigators of the SPEA considered satisfying the second goal of multi-objective
optimization. Elites which are less crowded in the non-dominated front are kept. Only
that many solutions which are needed to maintain the fixed population size N are
retained. The investigators suggested a clustering method to achieve this task. We
shall describe this clustering method a little later.

Once the new elites are preserved for the next generation, the algorithm then turns
to the current population and uses genetic operators to find a new population. The
first step is to assign a fitness to each solution in the population. It was mentioned
earlier that the SPEA also uses the external population Pt in its genetic operations. In
addition to the assigning of fitness to the current population members, fitness is also
assigned to external population members. In fact, the SPEA assigns a fitness (called
the strength) S1 to each member i of the external population first. The strength S1
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is proportional to the number (nd of current population members that an external
solution i dominates:

(6.4)

In other words, the above equation assigns more strength to an elite which dominates
more solutions in the current population. Division by (N + 1) ensures that the
maximum value of the strength of any external population member is never one or
more. In addition, a non-dominated solution dominating a fewer solutions has a smaller
(or better) fitness.

Thereafter, the fitness of a current population member j is assigned as one more
than the sum of the strength values of all external population members which weakly
dominate j:

r, = 1 + I. Si.
iEP,Aiji

(6.5)

The addition of one makes the fitness of any current population member Pt to be
more than the fitness of any external population member Pt. This method of fitness
assignment suggests that a solution with a smaller fitness is better. Figure 150 shows
this fitness assignment scheme for both external (shown by circles) and EA population
members (shown by squares) on a two-objective minimization problem. The fitness
values are also marked on this figure. The latter shows that the external population
members get smaller fitness values than the EA population members. Since there are
six population members in the EA population, the denominator in the fitness values
is seven. EA population members dominated by many external members get large
fitness values. With these fitness values, a binary tournament selection procedure is
applied to the combined (Pt U Pt ) population to choose solutions with smaller fitness
values. Thus, it is likely that external elites will be emphasized during this tournament
procedure. As usual, crossover and mutation operators are applied to the mating pool
and a new population PH 1 of size N is created. In the following, we will describe one

Pareto-optimal front

Figure 150 The SPEA fitness assignment scheme.
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iteration of the algorithm in a step-by-step format. Initially, i\ = 0 is assumed.

Strength Pareto Evolutionary Algorithm (SPEA)

251

Step 1 Find the best non-dominated set F1 (P t) of Pt. Copy these solutions to
Pt, or perform Pt = Pt U FdPtl.

Step 2 Find the best non-dominated solutions F1 (Pt ) of the modified
population Pt and delete all dominated solutions, or perform Pt = F1 (Pt).

Step 3 If IPtl > N, use a clustering technique to reduce the size to N. Otherwise,
keep Pt unchanged. The resulting population is the external population
PH1 of the next generation.

Step 4 Assign fitness to each elite solution i E Pt + 1 by using equation (6.4).
Then, assign fitness to each population member j E Pt by using
equation (6.5).

Step 5 Apply a binary tournament selection with these fitness values (in a
minimization sense), a crossover and a mutation operator to create the
new population Pt I 1 of size N from the combined population (PH 1 U Pd
of size (N + N).

Steps 3 and 5 result in the new external and current populations, which are then
processed in the next generation. This algorithm continues until a stopping criterion
is satisfied.

6.4.1 Clustering Algorithm

Let us now describe the clustering algorithm which reduces the size of the external
- -I - -1-

population Pt of size N to N (where N > N).
At first, each solution in Pt is considered to reside in a separate cluster. Thus,

initially there are N 1 clusters. Thereafter, the cluster-distances between all pairs of
clusters are calculated. In general, the distance d 12 between two clusters C1 and C2 is
defined as the average Euclidean distance of all pairs of solutions (i E C1 and j E C2),
or mathematically:

(6.6)

The distance d(i, j) can be computed in the decision variable space or in the objective

space. The proposers of the SPEA preferred to use the latter. Once all (~') cluster
distances are computed, the two clusters with the minimum cluster-distance are
combined together to form one bigger cluster. Thereafter, the cluster-distances are
recalculated for all pairs of clusters and the two closest clusters are merged together.
This process of merging crowded clusters is continued until the number of clusters in
the external population is reduced to N. Thereafter, in each cluster, the solution with
the minimum average distance from other solutions in the cluster is retained and all
other solutions are deleted. The following is the algorithm in a step-by-step format.
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Clustering Algorithm

MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION

Step Cl Initially, each solution belongs to a distinct cluster or Ci = {i}, so that
C = {Cl ,C2, ... ,CN,}·

Step C2 If ICI ::; N, go to Step C5. Otherwise, go to Step C3.

Step C3 For each pair of clusters (there are Cg l) of them), calculate the cluster
distance by using equation (6.6). Find the pair (il, i2) which corresponds
to the minimum cluster-distance.

Step C4 Merge the two clusters C, and Ci 2 together. This reduces the size of
C by one. Go to Step C2.

Step C5 Choose only one solution from each cluster and remove the others
from the clusters. The solution having the minimum average distance from
other solutions in the cluster can be chosen as the representative solution
of a cluster.

Since in Step C5, all but one representative solution is kept, the resulting set has at
most N solutions.

Complexity of Clustering Algorithm

The way the above algorithm is presented makes the understanding of the clustering
algorithm easier, but an identical implementation demands a large computational

burden: 0 (M N 1

3
). However, the clustering algorithm can be performed with proper

bookkeeping and the computations can then be reduced. Since solutions are not
removed until Step C5 is performed, all distance computations can in practice be

performed once in the beginning. This requires O(MN
/2

) computations. Thereafter,
the calculation of the average distances of clusters, the minimum distance calculation
of all pairs of clusters (with a complicated bookkeeping procedure), and the merging
of clusters can all be done with special bookkeeping! in a linear time at each call
of Steps C2 to C4. Since they are called (N 1 - N) times, the overall complexity of

the cluster-updates is O(N
/ 2

) . The final removal of extra solutions with intra-cluster
distance computation is linear to N I. Thus, if implemented with care, the complexity

_12
of the above clustering algorithm can be reduced to O(MN ).

6.4.2 Hand Calculations

We consider the Min-Ex problem again. Table 23 shows the EA and the external
population members used to illustrate the working of the SPEA. We have Pt =

1 The investigators of the SPEA did not suggest any such bookkeeping methods. However, by
using information about which clusters were the neighbors of each other cluster and updating
this information as clusters merge together, a linear complexity algorithm with a large storage
requirement is possible to achieve.
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Table 23 Current EA and external populations with their objective function values.

EA population Pt External population Pt

Solution Xl Xl f 1 fl Solution Xl Xl f l f l

1 0.31 0.89 0.31 6.10 a 0.27 0.87 0.27 6.93
2 0.43 1.92 0.43 6.79 b 0.79 2.14 0.79 3.97
3 0.22 0.56 0.22 7.09 c 0.58 1.62 0.58 4.52
4 0.59 3.63 0.59 7.85
5 0.66 1.41 0.66 3.65
6 0.83 2.51 0.83 4.23

{1,2,3,4,5,6} and Pt = {a,b,c}. Figure 151 shows all of these solutions. Note that
here N = 6 and N = 3.

Step 1 First, we find the non-dominated solutions of Pt. We observe from Figure 151
that they are FdPtl = {1,3,5}. We now include these solutions in Pt. Thus,
Pt ={a,b,c, 1,3,5}.

Step 2 We now calculate the non-dominated solutions of this modified population P l

and observe Fl(Ptl = {a,c, 1,3,5}. We set this population as the new external
population.

Step 3 Since the size of Pt is 5, which is greater than the external population size
(N = 3), we need to use the clustering algorithm to find which three will remain
in the external population.
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Figure 151 EA and external populations.
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Step Cl Initially, all five solutions belong to a separate cluster:

C1 = {a}, C2 = {e}, C3 = {l}, C4 = {3}, C5 = {5}.

Step C2 Since there are 5 clusters, we move to Step C3.

Step C3 We use fjax = 1, fjin = 0.1, fiax = 60 and fiin = 1. All mor 10
cluster-distances are as follows:

d12 = 0.35,
d24 = 0.40,

d13 = 0.05,
d25 = 0.09,

d14 = 0.06,
d34 = 0.09,

d15 = 0.44,
d35 = 0.39,

d23 = 0.30,
d45 = 0.49.

We observe that the minimum cluster-distance occurs between the first and
the third clusters.

Step C4 We merge these clusters together and have only four clusters:

C1 = {a, l}, C2 = {e}, C3 = {3}, C4 = {5}.

Step C2 Since there are four clusters, we move to Step C3 to reduce one more
cluster.

Step C3 Now, the average distance between the first and second cluster is the
average distance between the two pairs of solutions (a,c) and (L,c). The
distance between solutions a and e is 0.35 and that between solutions 1
and e is 0.30. Thus, the average distance d12 is 0.325. Similarly, we can
find other distances of all (i) or 6 pairs of clusters:

d12 = 0.325,
d23 = 0.400,

d13 = 0.075,
d24 = 0.090,

d14 = 0.415,
d34 = 0.490.

The minimum distance occurs between clusters 1 and 3.

Step C4 Thus, we merge clusters 1 and 3 and have the following three clusters:

It is also intuitive from Figure 152 that three solutions a, 1, and 3 reside
close to each other and are likely to be grouped into one cluster.

Step C2 Since we now have an adequate number of clusters, we move to
Step C5.

Step C5 In this step, we choose only one solution in every cluster. Since the
second and third clusters have one solution each, we accept them as they
are. However, we need to choose only one solution for cluster 1. The first
step is to find the centroid of the solutions belonging to the cluster. We
observe that the centroid of solutions a, 1 and 3 is ci = (0.27,6.71). Now
the normalized distance of each solution from this centroid is as follows:

d( a, ell = 0.005, d( 1, ell = 0.049, d(3, ell = 0.052.

We observe that solution a is closest to the centroid e 1 (this fact is also clear
from Figure 152). Thus, we choose solution a and delete solutions 1 and 3
from this cluster. Therefore, the new external population is Pt +1 = {a, c, 5}.
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Figure 152 Illustration of the three clusters.

Step 4 Now, we assign fitness values to the solutions of populations Pt and Pt+ 1 . Note
that solution 5 is a member of both Pt and Pt+ 1 and is treated as two different
solutions. First, we concentrate on the external population. We observe that
solution a dominates only one solution (solution 4) in Pt , Thus, its fitness (or
strength) is assigned as:

n a 1
Fa = N + 1 =6+1 =0.143.

Similarly, we find n e = ns = 1, and their fitness values are also Fe = Fs = 0.143.

Next, we calculate the fitness values of the solutions of Pt. Solution 1 is
dominated by no solution in the external population. Thus, its fitness is F1 = 1.0.
Similarly, solutions 2 and 3 are not dominated by any external population
members and hence their fitness values are also 1.0. However, solution 4 is
dominated by two external members (solutions a and c) and hence its fitness is
f4 = 1 +0.143+0.143 = 1.286. We also find that Fs = 1.0 and F6 = 1.143. These
fitness values are listed in Table 24.

Step 5 Now, using the above fitness values we would perform six tournaments by
randomly picking solutions from the combined population of size nine (in effect,
there are only eight distinct solutions) and form the mating pool. Thereafter,
crossover and mutation operators will be applied to the mating pool to create
the new population Pt +1 of size six.

This completes one generation of the SPEA. These hand calculations illustrate how
elitism is introduced in such an algorithm.
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Table 24 The fitness assignment procedures of the EA and external populations.

EA population Pt

Solution Fitness
External population Pt+ 1

Solution Fitness

1 1.000
2 1.000
3 1.000
4 1.286
5 1.000
6 1.143

a
c
5

0.143
0.143
0.143

6.4.3 Computational Complexity

Step 1 requires the computation of the best non-domination front of Pt. This needs
at most O(MN 2 ) computations. If Nand N are of the same order, Step 2 also
has a similar computational complexity. Step 3 invokes the clustering procedure,
requiring at most 0 (M N2 ) computations. All other steps in the algorithm do not
have computational complexities more than the above computation. Thus, the overall
complexity needed in each generation of the SPEA is O(MN 2 ) .

6.4.4 Advantages

It is easy to realize that once a solution in the Pareto-optimal front is found, it
immediately gets stored in the external population. The only way it gets eliminated is
when another Pareto-optimal solution, which leads to a better spread in the Pareto
optimal solutions, is discovered. Thus, in the absence of the clustering algorithm,
the SPEA has a similar convergence proof to that of Rudolph's algorithm. Clustering
ensures that a better spread is achieved among the obtained non-dominated solutions.

This clustering algorithm is parameter-less, thereby making it attractive to use. The
fitness assignment procedure in the SPEA is more or less similar to that of Fonseca
and Fleming's MOGA (Fonseca and Fleming, 1993) and is easy to calculate. To make
the clustering approach find the most diverse set of solutions, each extreme solution
can be forced to remain in an independent cluster.

6.4.5 Disadvantages

The SPEA introduces an extra parameter - N, the size of the external population.
A balance between the regular population size N and this external population size
N is important in the successful working of the SPEA. If a large (comparable to N)
external population is used, the selection pressure for the elites will be large and the
SPEA may not be able to converge to the Pareto-optimal front. On the other hand,
if a small external population is used, the effect of elitism will be lost. Moreover,
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many solutions in the population will not be dominated by any external population
members and their derived fitnesses will be identical. The investigators of the SPEA
used a 1:4 ratio between the external population and the EA population sizes.

The NSGA-II uses a crowding strategy which is O(MN logN); however, the
clustering algorithm used in an SPEA has an O(MN 2 ) complexity. Thus, an SPEA's
niche-preservation operator can be made faster by using the crowding strategy used
in the NSGA-II.

The SPEA shares a common problem with the MOGA. Since non-dominated sorting
of the whole population is not used for assigning fitness, the fitness values do not favor
all non-dominated solutions of the same rank equally. This bias in fitness assignment
in the solutions of the same front is dependent on the exact population and densities
of solutions in the search space.

Moreover, in the SPEA fitness assignment, an external solution which dominates
more solutions gets a worse fitness. This assignment is justified when all dominated
solutions are concentrated near the dominating solution. Since in most cases this is not
true, the crowding effect should come only from the clustering procedure. Otherwise,
this fitness assignment may provide a wrong selection pressure for the non-dominated
solutions.

6.4.6 Simulation Results

To illustrate the working of the SPEA, we apply this algorithm to the Min-Ex problem.
In addition to the standard parameter settings used in previous sections, we will also
use the following settings: a population size of 32 and an elite population size of eight.
Figure 153 shows the non-dominated solutions of the combined population (Pt UPt I 1)
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Figure 153 The non-dominated solutions of the combined EA and external population in

a SPEA run after 500 generations.
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after 500 generations. This figure shows that the SPEA with a mutation operator is
able to find a widely distributed set of solutions on the Pareto-optimal front.

6.5 Thermodynamical Genetic Algorithm

Kita et al. (1996) suggested a fitness function which allows a convergence near the
Pareto-optimal front and a diversity-preservation among obtained solutions. The
fitness function is motivated from the thermodynamic equilibrium condition, which
corresponds to the minimum of the Gibb's free energy F, defined as follows:

F = (E) - HT, (6.7)

where (E) is the mean energy, H is the entropy, and T is the temperature of the system.
The relevance of the above terms in multi-objective optimization is as follows. The
mean energy is considered as the fitness measure. In the study, the non-domination
rank of a solution in the population is used as the fitness function. In this way, the best
non-dominated solutions have a rank (or fitness) equal to 1. Obviously, minimization
of the fitness function is assumed here. The second term on the right side of the
above equation controls the diversity existent in the population members. In this way,
minimization of F means minimization of (E) and maximization of HT. In the parlance
of multi-objective optimization, this means minimization of the objective function
(convergence towards the Pareto-optimal set) and the maximization of diversity
in obtained solutions. Since these two goals are precisely the focus of an MOEA,
the analogy between the principle of finding the minimum free energy state in a
thermodynamic system and the working principle of an MOEA is appropriate.

Although the analogy is ideal, the exact definitions of mean energy and entropy
in the context of multi-objective optimization must be made. The investigators have
proposed the following step-by-step algorithm.

Thermodynamic GA (TDGA)

Step 1 Select a population size N, maximum number of generations t m ax , and
an annealing schedule T(t) (monotonically non-increasing function) for the
temperature variation.

Step 2 Set the generation counter t = 0 and initialize a random population
P(t) of size N.

Step 3 By using a crossover and a mutation operator, create the offspring
population Q(t) of size N from P(t). Combine the parent and offspring
populations together and call this R(t) = P(t) U Q(t).

Step 4 Create an empty set P(t+ 1) and set the individual counter i of P(t+ 1)
to one.

Step 5 For every solution j E R(t), construct PI(t, j) = P(t+1)U{j} and calculate
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the free energy (fitness) of the j-th member as follows:

f

F(j) = (E(il) - T(t) L.Hdj),
k~l

where (E(il) = L\:'Jt ,iI I Ek/IP' (t, j II and the entropy is defined as

I E1 0, I:
pI t t . i)
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(6.8)

(6.9)

The term pf is the proportion of bit 1 on the locus k of the population
P/(t, j).

After all 2N population members are assigned a fitness, find the solution
j* E R(t) which will minimize F given above. Include r in P(t + 1).

Step 6 If i < N, increment i by one and go to Step 5.

Step 7 If t < t m ax , increment t by one and go to Step 3.

The term Ek can be used as the non-dominated rank of the k-th solution in the
population P/(t, j). Although in every iteration of Step 5, the same R(t) population
members are used in order to choose the solution with the minimum fitness, it is
important to realize that the fitness computation is dependent on the temperature
term T(t), which varies from generation to generation. The fitness assignment also
depends on the Hd j) term, which depends on the current population P' [t , j). Thus,
one member which was minimum in one iteration need not remain minimum in another
iteration. Since non-dominated solutions are emphasized by the (E(j)) term and the
genotypic diversity is maintained through the Hk (j) term, both tasks of a multi
objective optimization are served by this algorithm.

It is interesting to note that since the optimization in Step 5 is performed for all
2N parent and offspring for every member selection for P(t +1), multiple copies of an
individual may exist in the population P(t + 1).

6.5.1 Computational Complexity

Step 5 requires a non-dominated sorting of 2N population members, thereby requiring
o (MN 2 ) computations. If an exhaustive optimization method is used, each k E P/(t, j)
requires O(lp/(t,j)[) or O(i) complexity in evaluating the corresponding free energy.
Since k varies from 1 to 2N, this requires 0 (iN) computations. In order to find a
complete population P (t + 1) of size N, i varies from 1 to N, thereby making a total of
0(N3) computational complexity. Thus, the overall complexity of one generation of
the TDGA is 0(N3), which is larger than that in the NSGA-II, PAES (to be discussed
in the next section) or SPEA.
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6.5.2 Advantages and Disadvantages

Since both parent and offspring populations are combined and the best set of N
solutions are selected from the diversity-preservation point of view, the algorithm is
an elitist algorithm.

The TDGA requires a predefined annealing schedule T(t). It is interesting to
note that this temperature parameter acts like a normalization parameter for the
entropy term needed to balance between the mean energy minimization and entropy
maximization. Since this requires a crucial balancing act for finding a good convergence
and spread of solutions, an arbitrary T(t) distribution may not work well in most
problems.

Investigators have demonstrated the working of the TDGA on a simple two
dimensional, two-objective optimization problem. Because of the need for choosing
a temperature variation T(t) and a local minimization technique for every solution,
we do not perform a hand calculation, nor do we present any simulation study here.

6.6 Pareto-Archived Evolution Strategy

Knowles and Corne (2000) suggested a multi-objective evolutionary algorithm which
uses an evolution strategy. In its simplest form, the Pareto-archived ES (PAES) uses a
(l+l)-ES. The main motivation for using an ES came from their experience in solving
real-world telecommunications network design problem. In the single-objective version
of the network design problem, they observed that a local search strategy (such as
a hill-climber, tabu search method, or simulated annealing) worked better than a
population-based approach. Motivated by this fact, they investigated whether a multi
objective evolutionary algorithm with a local search strategy can be developed to solve
the multi-objective version of the telecommunications network design problems. Since
a (l+l)-ES uses only mutation on a single parent to create a single offspring, this is a
local search strategy, and thus the investigators developed their first multi-objective
evolutionary algorithm using the (l+l)-ES.

At first, a random solution Xo (call this a parent) is chosen. It is then mutated by
using a normally distributed probability function with zero-mean and with a fixed
mutation strength. Let us say that the mutated offspring is Co. Now, both of these
solutions are compared and the winner becomes the parent of the next generation.
The main crux of the PAES lies in the way that a winner is chosen in the midst of
multiple objectives. We will describe this feature next.

At any generation t, in addition to the parent (p.) and the offspring (c.}, the PAES
maintains an archive of the best solutions found so far. Initially, this archive is empty
and as the generations proceed, good solutions are added to the archive and updated.
However, a maximum size of the archive is always maintained. First, the parent p,
and the offspring c, are compared for domination. This will result in three scenarios.

If p, dominates c-, the offspring c, is not accepted and a new mutated solution is
created for further processing. On the other hand, if c, dominates p., the offspring is
better than the parent. Then, solution c, is accepted as a parent of the next generation
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and a copy of it is kept in the archive. This is how the archive gets populated by non
dominated solutions.

The intricacies arise when both p, and c, are non-dominated to each other. In such
a case, the offspring is compared with the current archive, which contains the set
of non-dominated solutions found so far. Three cases are possible here. Figure 154
marks these cases as 1, 2, and 3. In the first case, the offspring is dominated by a
member of the archive. This means that the offspring is not worth including in the
archive, The offspring is then rejected and the parent p, is mutated again to find a
new offspring for further processing. In the second case, the offspring dominates a
member of the archive. This means that the offspring is better than some member(s)
of the archive. The dominated members of the archive are deleted and the offspring
is accepted without any condition. The offspring then becomes the parent of the next
generation. Note that this process does not increase the size of the archive, mainly
because the offspring enters the archive by eliminating at least one existing dominated
archive member. In the third case, the offspring is not dominated by any member of
the archive and it also does not dominate any member of the archive. In this case, it
belongs to that non-dominated front in which the archive solutions belong. In such
a case, the offspring is added to the archive only if there is a slot available in the
latter. Recall that a maximum archive size is always maintained in the PAES. The
acceptance of the offspring in the achieve does not qualify it to become the parent
of the next generation. This is because as for the offspring c., the current parent
p, is also a member of the archive. To decide who qualifies as a parent of the next
generation, the density of solutions in their neighborhood is checked. The one residing
in the least crowded area in the search space qualifies as the parent. If the archive
is full, the above density-based comparison is performed between the parent and the
offspring to decide who remains in the archive.

The density calculation is different from the other methods we have discussed so

1~ Offspring
C
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o
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Figure 154 Three cases of an offspring non-dominated with the parent solution. The

archive is shown by circles, while offspring are shown by boxes.
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Figure 155 The parent resides in a more dense hypercube than the offspring.

far. A more direct approach is used here. Each objective is divided into 2d equal
divisions," where d is a user-defined depth parameter. In this way, the entire search
space is divided into (2d ) M unique, equal-sized M-dimensional hypercubes. The
archived solutions are placed in these hypercubes according to their locations in the
objective space. Thereafter, the number of solutions in each hypercube is counted.
If the offspring resides in a less crowded hypercube than the parent, the offspring
becomes the parent of the next generation. Otherwise, the parent solution continues
to be the parent of the next generation. This situation is illustrated by the two
objective minimization problem shown in Figure 155. For the situation in this figure,
the offspring becomes the new parent. This is because the offspring is located in a
grid with two solutions and the parent is located in a grid with three solutions.

If the archive is already full with non-dominated solutions, obviously the offspring
cannot be included automatically. First, the hypercube with the highest number of
solutions is identified. If the offspring does not belong to that hypercube, it is included
in the archive and at random one of the solutions from the highest-count hypercube
is eliminated. Whether the offspring or the parent qualifies to be the parent of the
next generation is decided by same parent-offspring density count mentioned in the
previous paragraph.

In this way, non-dominated solutions are emphasized and placed in an archive.
As and when non-dominated solutions compete for a space in the archive, they are
evaluated based on how crowded they are in the search space. The one residing in the
least crowded area gets preference.

We outline one iteration of the (l+l)-PAES algorithm in a step-by-step manner
with parent Pt, offspring c, (created by mutating Pt) and an archive At. The archive
is initialized with the initial random parent solution. The following procedure updates

2 To allow recursive divisions of the search space, 2d divisions are used. The locating and placing of
a solution in a grid becomes computationally effective this way.
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the archive At and determines the new parent solution Pt-t 1.

Archive and Parent Update in PAES

Step 1 If c, is dominated by any member of At, set pj , 1 = p, (At is not
updated). Process is complete. Otherwise, if c, dominates a set of members
from At: D(ct) = {i : i E At 1\ c, :5 i}, perform the following steps:

At At\D(ct),

At At U lc.),

PHl c..

Process is complete. Otherwise, go to Step 2.

Step 2 Count the number of archived solutions in each hypercube. The parent
p, belongs to a hypercube having n p solutions, while the offspring belongs
to a hypercube having n c solutions. The highest-count hypercube contains
the maximum number of archived solutions.

If IAt I < N, include the offspring in the archive, or At = At U {c.} and
PH 1 = Winnertc., p.}, and return. Otherwise (that is, if IAtl = N), check
if c, belongs to the highest-count hypercube. If yes, reject c-, set PH 1 = p-,
and return. Otherwise, replace a random solution r from the highest-count
hypercube with c.:

At At\{r},

At At U {c.},

PHl Winnerjc., p.},

The process is complete.

The Winnertc., Pt) chooses c-, if n c < n p . Otherwise, it chooses Pt. It is important
to note that in any parent-offspring scenario, only one of the above two steps will be
invoked.

6.6.1 Hand Calculations

We now illustrate the working of the (l+l)-PAES on the example problem Min-Ex.
We consider an archive of size five (N = 5), with these five archive members, i.e. a, b,
c, d, and e being marked by circles in Figure 156. To illustrate different scenarios, we
present three independent parent-offspring pairs shown within dashed ellipses. Let us
consider them one by one. First, we consider p, = e and c. = 3.

Step 1 Solution e dominates the offspring (solution 3). Thus, we do not accept this
offspring. Parent e remains as the parent of the next generation and the archive
also remains unchanged.

Note that only Step 1 is executed here. Next, we consider the 'p, = band c, = 2'
scenano.
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Figure 156 The archive and three offspring considered in the hand calculation.

Step 1 Here, solution 2 dominates solution band c. Thus, both of these solutions
will be replaced by the offspring in the archive and the offspring (solution 2)
will become the new parent. The updated archive is At = {2, o., d, e).

Here also, only Step 1 is executed. The new parent is solution 2. Finally, we consider
the case with solution b being the parent (p, = b) and solution 1 being the mutated
offspring (c, = 1). We observe that these two solutions do not dominate each other.

Step 1 No member of the archive dominates solution 1, and the latter does not
dominate any solution in the archive either.

Step 2 First, we divide the space in each objective into eight divisions (objective 1
within [0.1,1] and objective 2 in [0,10]). From the grids shown in the figure, we
find that n p = 2 and n c = 1. That is, there is one additional archive member in
the hypercube containing the parent p, and no other archive members exist in
the hypercube containing the offspring Ct. The highest-count archive here is the
one containing the parent. Since the archive is full, we check if solution 1 belongs
to the highest-count hypercube. Since it does not, we include solution 1 in the
archive and delete one of the solutions u or b at random. If we delete solution b,
the new five-member archive is {n, 1,c, d, e). The new parent is solution 1.

Note that only Step 2 is executed in this case.

6.6.2 Computational Complexity

In one generation of the (l+l)-PAES, Step 1 requires O(MN) comparisons to find
if the offspring dominates any solution in the archive (of size N) or if any archive
solution dominates the offspring.
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When Step 2 is called, each archive member's hypercube location is first identified.
This requires O(Md) comparisons for each solution, thereby requiring a total of
O(NMd) comparisons for the entire archive of N solutions. Thus, in the worst case
(when Step 2 is executed), the complexity of one generation of the PAES is O(MNd).

In order to compare the complexity of the PAES with other generational EAs (such
as the NSGA-II or SPEA), we can argue that N generations of the PAES are equivalent
to one generation of the NSGA-II or SPEA in terms of the number of total new function
evaluations. Thus, the complexity of the (l+l)-PAES is O(MN 2d).

6.6.3 Advantages

The PAES has a direct control on the diversity that can be achieved in the
Pareto-optimal solutions. Step 2 of the algorithm emphasizes the less populated the
hypercubes to survive, thereby ensuring diversity. The size of these hypercubes can
be controlled by choosing an appropriate value of d. If a small d is chosen, hypercubes
are large and adequate diversity may not be achieved. However, if a large d is chosen
there exist many hypercubes and the computational burden will increase.

Since equal-sized hypercubes are chosen, the PAES should perform better when
compared to other methods in handling problems having a search space with non
uniformly dense solutions (Deb, 1999c). In such problems, there can be a non-uniform
distribution of solutions in the search space. This naturally favors some regions in
the Pareto-optimal front, thus making it difficult for an algorithm to find a uniform
distribution of solutions. By keeping the hypercube size fixed, Step 2 of the algorithm
will attempt to emphasize solutions in as many hypercubes as possible.

6.6.4 Disadvantages

In addition to choosing an appropriate archive size (N), the depth parameter d, which
directly controls the hypercube size, is also an important parameter. We mentioned
earlier that the number of hypercubes in the search space varies with d as 2d M or
(2M )d . For a three-objective function, this means gd. A change of d changes the
number of hypercubes exponentially, thereby making it difficult to arbitrarily control
the spread of solutions. Moreover, the side-length of a hypercube in each dimension
requires the knowledge of minimum and maximum possible objective function values.
These values are often difficult to choose in a problem.

There is another difficulty with the PAES. Since the sizing of the hypercubes is
performed with the minimum and maximum bounds of the entire search space, when
solutions converge near the Pareto-optimal front, the hypercubes are comparatively
large. One alternative method would be to use the population minimum and maximum
objective function values to find the hypercube sizes on the fly. However, this has a
serious drawback. If for any reason, the population members concentrate in a narrow
region, either because of premature convergence or because of the nature of the
problem, the resulting hypercube sizes can become smaller than desired.
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Figure 157 The PAES Archive after 50

generations.

6.6.5 Simulation Results

Figure 158 The PAES Archive after 500

generations.

Next, we apply the PAES to the Min-Ex problem with parameter settings identical to
that used for the NSGA-II. Here, we use a depth factor of 4. Figure 157 shows the
PAES-archive at the end of 50 generations. It is clear that the PAES has no difficulty in
converging to the Pareto-optimal front. However, the distribution of obtained solutions
is not as good as that found for the NSGA-II. When the PAES is run up until 500
generations (Figure 158), the distribution becomes somewhat better. The performance
of the PAES depends on the depth parameter, which controls the distribution in the
obtained solutions.

6.6.6 Multi-Membered PAES

In order to give the PAES a global perspective, the concept of multi-membered ES
is introduced (Knowles and Corne, 2000) into an MOEA. At first, we discuss the
(1+?-.)-PAES, where one parent solution is mutated ?-. times, each time creating an
offspring. With multiple offspring around, it is then necessary to decide which one
of the offspring competes with the parent to fight for the parenthood of the next
generation. To facilitate this decision-making, a fitness is assigned to each offspring
based on a comparison with the archive and its hypercube location in the search space.
The best-fit solution among the parent and offspring becomes the parent of the new
population.

In the (!J., ?-.l-PAES, each of the !J. parents and ?-. offspring are compared with the
current archive. Every offspring is checked for its eligibility to become a member of
the archive, as before. If it is, then the change in the spread of archive members in the
phenotypic space is noted. If the spread has changed by more than a threshold amount,
the offspring is accepted and the archive is updated. In order to create the new parent
population of !J. solutions, a fitness is assigned to all population members (!J. parents
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and A offspring) based on a dominance score, which is calculated as follows. If a parent
or an offspring dominates any member of the archive, it is assigned a score of 1. If it gets
dominated by any member of the archive, its score is -1. If it is non-dominated, it gets
a score of O. Although it is not clear exactly how a fitness is assigned from the scores,
a solution with a higher dominance score is always assigned a better fitness. However,
for solutions with the same dominance score, a higher fitness is assigned to the solution
having a lower population count in its hypercube location. Using the fitness values, a
binary tournament selection is applied to the parent-offspring population to choose
~ new parent solutions. Each of these u solutions is then mutated to create a total of
A offspring for their processing in the next generation. In this way, both parent and
offspring directly affect the archive and also compete against each other for survival
in the next generation.

Based on simulation results on a number of test problems, the proposers of the PAES
observed that multi-membered PAESs do not generally perform as well as the (1+1)
PAES. Since offspring are not compared against each other and only compared with
the archive, this method does not guarantee that the best non-dominated solutions
among the offspring are emphasized enough. For simulations limiting the number
of total trails, the (1+1)-ES does well on the test problems chosen in the study.
Investigators have also suggested an improved version of the PAES (Corne et al.,
2000).

6.7 Multi-Objective Messy Genetic Algorithm

Veldhuizen (1999), in his doctoral dissertation, proposed an entirely different approach
to multi-objective optimization. He modified the single-objective messy GAs of
Goldberg et al. (1989) to find multiple Pareto-optimal solutions in multi-objective
optimization. Since a proper understanding of this approach requires an understanding
of the single-objective messy GA approach, we first provide an outline here of the
messy GA. Interested readers may refer to the original and other studies on messy
GAs (Goldberg et al., 1989, 1990, 1993a; Veldhuizen and Lamont, 2000) for details.

6.7.1 Original Single-Objective Messy GAs

The main motivation in the study of messy GAs (mGAs) was to sequentially solve the
two main issues of identifying salient building blocks in a problem and then combining
the building blocks together to form the optimal or a near-optimal solution. Messy
GAs were successful in solving problems which can be decomposed into a number
of overlapping or non-overlapping building blocks (partial solutions corresponding to
the true optimal solution). Since the genic combination is an important matter to be
discovered in a problem, mGAs use both genic and allelic information in a string. The
following is a four-variable (£ = 4) messy chromosome:

((2 0) C1 1) (2 1) (3 1))
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There are four members in the chromosome. The first value in each member denotes
the gene (or position) number, while the second value is the allele value of that
position. Although it is a four-variable chromosome, the fourth gene is missing and
the second gene appears twice. A messy chromosome is allowed to have duplicate
genes and unspecified genes. By using a left-to-right scanning and a first-come-first
served selection, the above chromosome codes to the binary string: (1 0 1 _). The
unspecified problem is solved by filling the unspecified bits from a fixed template
string of length £.

The above two tasks of identification and combination of building blocks are
achieved in two phases, (i) the primordial phase and (ii) the juxtapositional phase. In
the primordial phase, the main focus is to identify and maintain salient building blocks
of a certain maximum order k. Since this is the most important task in a problem, the
developers of mGAs did not at first take any risk of missing out in any salient building
blocks. Thus, they made sure that the initial population size in the primordial phase
is large enough to accommodate all order-k genic and allelic combinations. A simple
calculation suggests that the required population size is Np = (D2k

. For small k
compared to £, this size is polynomial to the order k, or 0 (£k ). Since the length of
these initial chromosomes is smaller than the problem length £, the remaining bits are
filled from a fixed template string. The investigators argued extensively that in order
to have the minimum noise in evaluating partial strings, it is essential that a locally
optimal solution is used as a template string. We will discuss the issue of finding such
a locally optimal string a little later. After the partial string is embedded in a template
and is evaluated, a binary tournament selection with a niching approach is used to
emphasize salient partial strings in the primordial phase. Since the salient building
blocks constitute only a small fraction of all primordial strings, a systematic reduction
in population sizing is also used. After a fair number of repetitive applications of
tournament selection followed by a population reduction, the primordial phase is
terminated.

In the juxtapositional phase, the salient building blocks are allowed to combine
together with the help of a cut-and-splice and a mutation operator. The cut-and
splice operator is similar in principle to the single-point crossover, except that the
cross sites in both parents need not fall at the same place. This causes variable-length
chromosomes to exist in the population. The purpose of tournament selection with
thresholding, cut-and-splice, and the mutation operator is to find better and bigger
building blocks, eventually leading to the true optimal solution.

The issue of using a locally optimal template string is a crucial one. Since the
knowledge of such a string is not known beforehand, proposers have suggested a level
wise mGA, where the mGAs are applied in different eras, starting from the simplest
possible era. In the level-l era of an mGA, all order one (k = 1) substrings are
initialized and evaluated with a template string created at random. At the end of this
era, the obtained best solution is saved and used as a template for the level-2 era. In
this era, all order two (k = 2) substrings are initialized. This process is continued until
a specified number of era has elapsed or a specific number of function evaluations has
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been exceeded.
The above mGA procedure has successfully solved a number of complex

optimization problems, which were otherwise difficult to solve by using a simple GA.

6.7.2 Modification for Multi-Objective Optimization

In multi-objective optimization, we are dealing with a number of objectives. Thus, the
evaluation and comparison of chromosomes become difficult issues. Each chromosome
now has M different objective function values. Although a non-domination comparison
can be performed, there is an additional problem. In the primordial phase and in
the early generations of the juxtapositional phase, the chromosomes are small and
a complete string is formed by filling missing bits from a template string. If one
fixed template string is used for all solutions in an mGA era, this will produce a
bias towards finding solutions in a particular region in the search space. Since the
important task in a multi-objective optimization is to find multiple diverse set of
solutions near the Pareto-optimal region, Veldhuizen (1999) suggested the use of M
different template strings in an era. Similar to the single-objective mGA, a locally
optimal template string for each objective function is found by using the level-wise
MOM GA. In the level-1 MOMGA, each partial string is filled from M template
strings chosen randomly before the era has begun. Each filled string is evaluated
with a different objective function. The objective vector obtained in this process is
used in the selection operator, as described in the next paragraph. At the end of
an era, the best solution corresponding to each objective function is identified and
is assigned as the template string corresponding to that objective function. Since
different partial strings are filled with different template strings, each corresponding
to a locally optimal solution of an objective, salient building blocks corresponding to
all objective functions co-survive in the population.

The primordial phase begins with a population identical to the single-objective
mGAs. However, a different tournament selection procedure is used. The niched
tournament selection operator is exactly the same as that in the NPGA approach.
In order to compare two solutions in a population, a set of tdom solutions are chosen
from the latter. If one solution is non-dominated with respect to the chosen set and
the other is not, the former solution is selected. On the other hand, if neither of them
or both of them are dominated in the chosen set, a niching method is used to find
which of the two solutions resides in a least crowded area. For both solutions, the
niche count is calculated by using the sharing function approach discussed above in
Section 4.6 with a pre-defined Cfshare value. The solution with a smaller niche count
is selected. The preference of non-dominated and less-crowded solutions using the
above tournament selection helps to provide a selection advantage towards the non
dominated solutions and simultaneously maintains a diverse set of solutions. In all
simulations, the investigator used the phenotypic sharing approach. The population
reduction procedure is the same as that used in the single-objective mGAs.

The juxtapositional phase is also similar to that in the original mGA study, except



270 MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION

that the above-mentioned niched tournament selection procedure is used. At the end
of the juxtapositional phase, the current population is combined with an external
population which stores a specified number of non-dominated solutions found thus
far. Before ending the era, the external population is replaced with non-dominated
solutions of the combined population. This dynamically updated procedure introduces
elitism, which is an important property in any evolutionary algorithm. At the end of
all MOMGA eras, the external set is reported as the obtained non-dominated set of
solutions. The investigator has demonstrated the efficacy of the MOMGA in a number
of different test problems.

Veldhuizen (1999) also proposed a concurrent MOMGA (or CMOMGA) by
suggesting parallel applications of the MOMGA with different initial random
templates. In order to maintain diversity and to increase efficiency of the procedure,
the investigator also suggested occasional interchanges of obtained building blocks
among different MOMGAs. At the completion of all MOMGAs, the obtained external
sets of non-dominated solutions are all combined together and the best non-dominated
set is reported as the obtained non-dominated set of solutions of the CMOMGA.
Although the solutions obtained by this procedure do not indicate the robustness
associated with an independent run of an MOMGA, this parallel approach may be
desirable in practical problem solving. However, it is important to highlight that the
CMOMGA and the original MOMGA requires O(M£k m a x ) computational effort, which
may be much larger than the usual O(MN 2 ) estimate in most MOEAs. A recent study
using a probabilistically complete initialization of MOMGA population to reduce the
computational burden is an improvement over the past studies (Zydallis et al., 2001).

6.8 Other Elitist Multi-Objective EVOlutionary Algorithms

In this section, we will briefly describe a number of other elitist MOEA
implementations. A few other implementations can also be found elsewhere (Coello,
1999; Zitzler et al., 2001).

6.8.1 Non-Dominated Sorting in Annealing GA

Leung et al. (1998) modified the NSGA by introducing a population transition
acceptance criterion. This non-dominated sorting in annealing GA (NSAGA) also uses
a simulated annealing-like temperature reduction concept along with the Metropolis
criterion. After the offspring population Qt is created, it is first compared with the
parent population P, by using a two-stage probability computation. The first-stage
probability calculation is along the lines of finding the transition probability of creating
the offspring population from the parent population. The motivation for this O(N 3 )

complexity probability calculation is hard to understand, although it has facilitated
authors to line up a simulated annealing-like proof of convergence to the Pareto
optimal solutions. The second probability calculation is based on the Metroplois
criterion, which uses an energy function related to the number of non-dominated
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solutions in a population. In an elitist sense, an offspring population is accepted
only when the probability of creating such a population and accepting it with the
Metropolis criterion with an updated temperature concept is adequate. Clearly, the
goal of this work is to modify the NSGA procedure with a simulated annealing-like
acceptance criterion, so that a proof of convergence can be achieved. In the process,
the algorithm is more computationally complex (with respect to population size) than
all of the other algorithms we have discussed so far.

6.8.2 Pareto Converging GA

Kumar and Rockett (in press) suggested a criterion for terminating an MOEA
simulation based on the growth in proportion of non-dominated solutions in two
consecutive generations. In their Pareto converging GA (PCGA), every pair of
offspring is tested for non-domination along with the complete parent population.
The combined (N + 2) population members are sorted according to non-domination
levels. The worst two solutions are eliminated to restore the population size to N. Since
a usual generation requires N/2 such non-dominated sorting, the PCGA has O(MN 3 }

computational complexity for generating N new solutions. Moreover, the PCGA does
not use any additional niche-formation operator. However, the interesting aspect of
this study is the definition of a 'rank histogram', which is calculated as the ratio of
the number of solutions in a given non-domination level in the current population to
that in a combined population of the current and immediately preceding generation.
This requires non-dominated sorting of the current population P(t} and the combined
population P(t} U P(t - 1}. If these populations are sorted as follows:

P(t}

P(t} U P(t-l}

the rank histogram is calculated as a vector

{Pl (t), P2(t), },

{P~ [t ], P~(t), },

(6.10)

The vector has a size equal to the number of non-dominated sorted fronts found in
P(t}. By observing the vector RH(t} over the generations, the convergence properties
of an algorithm can be obtained. For example, if RH(t) has only one element and its
value is 0.5, the algorithm has completely converged to a particular front. However,
it is important to note that a value of 0.5 does not necessarily mean a complete
convergence to the true Pareto-optimal front, nor does it signify anything about the
spread of the obtained solutions. A decreasing value of the histogram tail signifies
a progress towards the convergence (see Figure 159). However, the first element in
RH (t) is an important parameter to track. The reduction or increase of this value
with generation indicates the amount of shuffling of the best non-dominated solutions
in successive generations. Although the investigators did not suggest this possibility,
the RH(t} vector information at each generation t can be used to adaptively change the
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Figure 159 The rank histogram with a decreasing tail.

extent of exploration versus exploitation in an MOEA. A recent study on controlled
elitism (described later in Section 8.10) is an effort in this direction, where the extent
of elitism is controlled by using a predefined decreasing rank histogram (Deb and
Goel, 2001a).

6.8.3 Multi-Objective Micro-GA

For handling problems requiring a large computational overhead in evaluating a
solution, Krishnakumar (1989) proposed a micro-GA with a small population size for
single-objective optimization. This investigator proposed using four to five population
members, participating in selection, crossover and block replacement. Coello and
Toscano (2000) suggested a multi-objective micro-GA (MIlGA), which maintains two
populations. The GA population (of size four) is operated in a similar way to that of
the single-objective micro-GA, whereas the elite population stores the non-dominated
solutions obtained by the GA. The elite archive is updated with new solutions in a
similar way to that achieved in the PAES. The search space is divided into a number
of grid cells. Depending on the crowding in each grid with non-dominated solutions,
a new solution is accepted or rejected in the archive. In difficult test problems, the
proof-of-principle results are encouraging.

6.8.4 Elitist MOEA with Coevolutionary Sharing

Neef et al. (1999) proposed an elitist recombinative multi-objective GA (ERMOCS)
based on Goldberg and Wang's coevolutionary sharing concept (1998) (described
earlier in Section 4.6.6). For maintaining diversity among non-dominated solutions,
the coevolutionary shared niching (CSN) method is used. The elite-preservation is
introduced by using a preselection scheme where a better offspring replaces a worse
parent solution in the recombination procedure. In the coevolutionary model, the
customer and businessman populations interact in the same way as in the CSN
model, except an additional imprint operator is used for emphasizing non-dominated
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solutions. After both customer and businessman populations are updated, each
businessman is compared with a random set of customers. If any customer dominates
the competing businessman and the latter is at least a critical distance dmin away
from other businessmen, it replaces the competing businessman. In this way non
dominated solutions from the customer population get filtered and find their place in
the businessman population. On a scheduling problem, ERMOCS is able to find well
distributed customer as well as businessman populations after a few generations. The
investigators has also observed that the performance of the algorithm is somewhat
sensitive to the dmin parameter and that there exists a relationship between the
parameter dmin and the businessman population size.

6.9 Summary

In the context of single-objective optimization, it has been shown that the presence
of an elite-preserving operator makes an evolutionary algorithm better convergent. In
this chapter we have presented a number of multi-objective evolutionary algorithms,
where an elite-preserving operator is included to make the algorithms better
convergent to the Pareto-optimal solutions. The wide range of algorithms presented
in this chapter demonstrates the different ways that elitism can be introduced into an
MOEA.

Rudolph's elitist GA compares non-dominated solutions of both parent and offspring
populations and a hierarchy of rules emphasizing the elite solutions is used to form the
population of the next generation. Although no simulation is performed, the drawback
of this algorithm is the lack of an operator ensuring the second task of maintaining
diversity among the non-dominated solutions.

The NSGA-II carries out a non-dominated sorting of a combined parent and
offspring population. Thereafter, starting from the best non-dominated solutions, each
front is accepted until all population slots are filled. This makes the algorithm an elitist
type. For the solutions of the last allowed front, a crowded distance-based niching
strategy is used to resolve which solutions are carried over to the new population.
This study has also introduced a crowded distance metric, which makes the algorithm
fast and scalable to more than two objectives.

The distance-based multi-objective GA (DPGA) maintains an external elite
population which is used to assign the fitness of the GA population members based on
their proximity to an elite set. Non-dominated solutions are assigned more fitness than
dominated solutions. Although the resulting set of solutions depend on the sequence
in which population members are assigned a fitness, this is one of the few algorithms
which use only one metric for achieving both tasks of multi-objective optimization.

The strength Pareto EA (SPEA) also maintains a separate elite population
which contains the fixed number of non-dominated solutions found till the current
generation. The elite population participates in the genetic operations and influences
the fitness assignment procedure. A clustering technique is used to control the size
of the elite set, thereby indirectly maintaining diversity among the elite population
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members.
The thermodynamical GA (TDGA) mInImIZeS the Gibb's free energy term

constructed by using a mean energy term representing a fitness function and an
entropy term representing the diversity term needed in a multi-objective optimization
problem. The fitness function is used as the non-domination rank of the solution
obtained from the objective function values. By carefully choosing solutions from a
combined parent and offspring population, the algorithm attempts to achieve both
tasks of an ideal multi-objective optimization.

The Pareto-archived evolution strategy (PAES) uses evolution strategy (ES) as
the baseline algorithm. Using a (l+l)-ES, the offspring is compared with the parent
solution for a place in an elite population. Diversity in the elite population is achieved
by deterministically dividing the search space into a number of grids and restricting the
maximum number of occupants in each grid. The 'plus' strategy and the continuous
update of an external archive (or elite population) with better solutions ensures
elitism. The investigators have later implemented the above concept in a multi
membered ES paradigm.

The multi-objective messy GA (MOMGA) extends the original messy GA to solve
multi-objective optimization problems. Although the basic structures of the original
messy GAs have been retained, multiple template solutions are used, instead of one
template solution. Each template is chosen as the best solution corresponding to each
objective in the previous era. The evaluation through multiple different templates and
assignment of fitness using the domination principle help maintain trade-off solutions
in the population.

In addition, we have briefly discussed a number of other elitist MOEAs. Algorithms
presented in this chapter have shown different ways elitism can be introduced in
MOEAs.



7

Constrained Multi-Objective
Evolutionary Algorithms

All algorithms described in the previous two chapters assumed that the underlying
optimization problem is free from any constraint. However, this is hardly the case
when it comes to solving real-world optimization problems. Typically, a constrained
multi-objective optimization problem can be written as follows:

Minimize/ Maximize
subject to

fm(x),

gj(x) ~ 0,

hdx) = 0,
X I L) < X. < X I U)

1 - 1 - 1

~= 1,2, ,.M; }
) - 1,2, ,1,
k = 1,2, , K;

i = 1,2, ,n.

(7.1)

Constraints divide the search space into two divisions - feasible and infeasible regions.
Like in the single-objective optimization, all Pareto-optimal solutions must also
be feasible. Constraints can be of two types: equality and inequality constraints.
Equation (7.1) shows that there are J inequality and K equality constraints in the
formulation. Constraints can be hard or soft. A constraint is considered hard if it must
be satisfied in order to make a solution acceptable. A soft constraint, on the other hand,
can be relaxed to some extent in order to accept a solution. Hard equality constraints
are difficult to satisfy, particularly if the constraint is nonlinear in decision variables.
Such hard equality constraints may be possible to relax (or made soft) by converting
them into an inequality constraint with some loss of accuracy (Deb, 1995). In all of the
constraint handling strategies discussed here, we assume greater-than-equal-to type
inequality constraints only. Thus, in the nonlinear programming (NLP) formulation of
the optimization problem shown in equation (7.1), the equality constraints h k will be
absent in further discussions in this present chapter. It is important to reiterate that
this relaxation does not mean that the algorithms cannot handle equality constraints.
Instead, it suggests that equality constraints should be handled by converting them
into relaxed inequality constraints.

The above formulation also accommodates the smaller-than-equal-to inequality
constraint (gj (x) :::; 0), if any. When such constraints appear, they can be converted
to the greater-than form by multiplying the left side by -1. Thus, if a solution x' i)

makes all gj (Xli)) ~ 0 for j = 1,2, ... , J, the solution is feasible and the constraint
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violation is zero. On the other hand, if any constraint 9dx1il) < 0, then the solution
is infeasible and the constraint j is violated. The amount of constraint violation in
this case is 19j(x( i ll.

7.1 An Example Problem

As before, we construct a simple two-variable, two-objective constraint optimization
problem to illustrate the working of the algorithms suggested in this chapter. The
objective functions are the same as that used in Min-Exbefore. We add two constraints:

Constr-Ex:

Minimize

Minimize

subject to

fj(x) = x j ,

f ( ) - 1 + Xl
1 X - -X-j-'

9j(X)=:=Xl+9xj ;:0:6,
9l(X) =:= -Xl +9Xj ;:0: 1,
0.1:; Xj < 1,
o< xz < 5.

(7.2)

Recall that the unconstrained problem has the Pareto-optimal solutions: 0.1 :; xi :; 1
and xi = O. This region in the decision variable space is the entire X --axis of Figure 160.

The corresponding Pareto-optimal region in the objective function space is also shown
in Figure 161 (a thin hyperbolic curve). Constraints divide the search space into two
regions as shown in both figures. With constraints, a part of the original Pareto
optimal region is not feasible and a new Pareto-optimal region emerges. The combined
Pareto-optimal set is as follows:

For 0.39 < xi < 0.67: xi = 6 - 9xi
For 0.67 < xi < 1.00: xi = 0

(Region A)
(Region B)

(7.3)
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Figure 160 Feasible search region for Constr-Ex in the decision variable space.
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Figure 161 Feasible search region for Constr-Ex in the objective space.

The entire Pareto-optimal region is still convex. The interesting aspect here is that in
order to find a diverse set of Pareto-optimal solutions in Region A, both variables xi
and xi must be correlated in a way so as to satisfy xi+ 9xi = 6.

Now, we will discuss different MOEAs which are particularly designed to handle
constraints.

7.2 Ignoring Infeasible Solutions

A common and simple way to handle constraints is to ignore any solution that
violates any of the assigned constraints (Coello and Christiansen, 1999). Although
this approach is simple to implement, in most real-world problems finding a feasible
solution (which will satisfy all constraints) is a major problem. In such cases, this naive
approach will have difficulty in finding even one feasible solution, let alone finding a set
of Pareto-optimal solutions. In order to proceed towards the feasible region, infeasible
solutions, as and when created, must be evaluated and compared among themselves
and with feasible solutions. One criterion often used in the context of constrained
single-objective optimization using EAs is a measure of an infeasible solution's overall
constraint violation (Deb, 2000; Michalewicz and Janikow, 1991). In this way, an EA
may assign more selection pressure to solutions with less-violated constraints, thereby
providing the EA with a direction for reaching the feasible region. Once solutions
reach the feasible region, a regular MOEA approach may be used to guide the search
towards the Pareto-optimal region.

7.3 Penalty Function Approach

This is a popular constraint handling strategy. Minimization of all objective functions
is assumed here. However, a maximization function can be handled by converting it
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into a minimization function by using the duality principle.
Before the constraint violation is calculated, all constraints are normalized. Thus,

the resulting constraint functions are £1.j (xli)) :::: 0 for j = 1,2, ... , J. For each solution

x! i), the constraint violation for each constraint is calculated as follows:

if g(xl i l ) < 0;
-J

otherwise.
(7.4)

(7.5)

Thereafter, all constraint violations are added together to get the overall constraint
violation:

J

O(xl i)) = L Wd x l i)).

i-l

This constraint violation is then multiplied with a penalty parameter Rm and the
product is added to each of the objective function values:

(7.6)

The functions Fm takes into account the constraint violations. For a feasible solution,
the corresponding 0 term is zero and Fm becomes equal to the original objective
function f m . However, for an infeasible solution, Fm > f m , thereby adding a penalty
corresponding to total constraint violation. The penalty parameter Rm is used to make
both of the terms on the right side of the above equation to have the same order of
magnitude. Since the original objective functions could be of different magnitudes, the
penalty parameter must also vary from one objective function to another. A number
of static and dynamic strategies to update the penalty parameter are suggested in the
single-objective GA literature (Michalewicz, 1992; Michalewicz and Schoenauer, 1996;
Homaifar et al., 1994). Any of these techniques can be used here as usual. However,
most studies in multi-objective evolutionary optimization use carefully chosen static
values of Rm (Srinivas and Deb, 1994; Deb, 1999a). Once the penalized function
(equation (7.6)) is formed, any of the unconstrained multi-objective optimization
methods discussed in the previous chapter can be used with Fm- Since all penalized
functions are to be minimized, GAs should move into the feasible region and finally
approach the Pareto-optimal set.

Let us consider six solutions shown in Table 25. Figure 162 demonstrates that the
first three solutions are not feasible, whereas the other three solutions are feasible. Let
us now calculate the penalized function values of all six solutions. The variable values
and their unconstrained function values are shown in Table 25.

First of all, the constraints are normalized as follows:

£1.l(X)
9Xl + X2

-1 :::: 0,
6

£1.2(x)
9Xl - X2

-1 :::: O.
1

(7.7)

(7.8)

The first solution is infeasible, because the constraint value is £ 1 (x' 1)) = [(9 x 0.31 +
0.89)/6] - 1 or -0.39, a negative quantity. Thus, the quantity Wl = 0.39. However, the
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Figure 162 Six solutions are shown in the objective space of Constr-Ex.
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second constraint is not violated at this solution (~b (x' 11) = 0.90, which is greater than
equal to zero), meaning W2 = O. Thus, the constraint violation is Q = W1 +W2 = 0.39.
The constraint violations of all other solutions are shown in Table 25.

We observe that the fz values are an order of magnitude larger than those of f 1 ,

although the constraint violations are of the same order as fl. Thus, we set R1 = 2
and R2 = 20. The penalized function value of the first solution is:

F1 =f1 +R 1Q ,

= 0.31 + 2 x 0.39,

= 1.09.

F2 = fz + R2 Q ,

= 6.10 + 20 x 0.39,

= 13.90.

Similarly, we compute the penalized fitness of the other five solutions in Table 26.

Table 25 Fitness assignment using the penalty function approach.

Solution Xl X2 f 1 f 2 W1 W2 Q

1 0.31 0.89 0.31 6.10 0.39 0.00 0.39
2 0.38 2.73 0.38 9.82 0.03 0.31 0.34
3 0.22 0.56 0.22 7.09 0.58 0.00 0.58
4 0.59 3.63 0.59 7.85 0.00 0.00 0.00
5 0.66 1.41 0.66 3.65 0.00 0.00 0.00
6 0.83 2.51 0.83 4.23 0.00 0.00 0.00
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Table 26 Penalized function values of all six solutions.

Solution f 1 f 2 Q F1 F2 Front
1 0.31 6.10 0.39 1.09 13.90 3
2 0.38 9.82 0.34 1.06 16.62 3
3 0.22 7.09 0.58 1.38 18.69 4
4 0.59 7.85 0.00 0.59 7.85 1
5 0.66 3.65 0.00 0.66 3.65 1
6 0.83 4.23 0.00 0.83 4.23 2

Using the F] and F2 values, we find that the first non-dominated set contains
solutions 4 and 5, the second non-dominated set contains solution 6, the third non
dominated set contains solutions 1 and 2, and the fourth non-dominated set contains
solution 3. This is how infeasible solutions get de-emphasized due to the addition
of penalty terms. Of course, the exact classification depends on the chosen penalty
parameters. It is interesting to note that by this procedure some infeasible solutions
can be on the same front with a feasible solution, particularly if the infeasible solution
resides close to the constraint boundary.

Recall that the non-dominated sorting on the unconstrained objective functions
(based on columns 2 and 3 of Table 26) would reveal the following classification:
[(1,3,5), (2,4,6)]. With penalized function values (columns 5 and 6 of Table 26), the
classification is different: [(4, 5), (6), (1 , 2), (3)]. Figure 163 shows the corresponding
fronts in the constrained problem. It is interesting to note how this penalty function
approach can change the objective functions so that feasible solutions close to the
Pareto-optimal front are allocated in the best non-dominated front. Among the
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Figure 163 Non-dominated fronts with the penalized function values.
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infeasible solutions, the ones close to the constraint boundary are allocated better
fronts. However, the classification largely depends on the exact value of the chosen
penalty parameters. The above procedure is one of the desired ways to assign fitness
in a constraint-handling MOEA.

7.3.1 Simulation Results

To illustrate the working of this naive penalty function approach, we apply the NSGA
(see Section 5.9 above) to the two-objective constrained optimization problem, Constr
Ex. The following GA parameters are used:

Population size
Crossover probability
Mutation probability
Niching parameter, Ushare

40,
0.9,
0,
0.158.

Niching is performed in the parameter space with normalized parameter values. The
constraints are normalized according to equations (7.7) and (7.8) and the bracket
operator (similar to equation (7.5), but each Wj is squared) is used to calculate the
penalty terms. It is mentioned above that the success of this naive approach depends
on the proper choice of the penalty parameters, R] and R2 . To show this effect, we
choose R1 = Rand R2 = lOR and use three different values of R. Figures 164, 165 and
166 show the complete population after 500 generations of the NSGA for different
values of R. The reason for continuing simulations for so long is purely to make sure
that a stable population is obtained. The first figure shows that a small penalty
parameter R = 0.1 cannot find all feasible solutions even after 500 generations. Since
penalty terms are added to each objective function, the resulting penalized objective
functions may form a Pareto-optimal front different from the true Pareto-optimal
front, particularly if the chosen penalty parameter values are not adequate. For this
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seem to approach the true front with

increasing values of R.

(7.9)

(7.10)

particular example problem, this pseudo Pareto-optimal front can be determined by
determining the penalized function values:

9Xl + X2 2 2
xl+R( 6 -1) +R(9xl-X2~1),

1 +X2 + 10R(9x
l +X2 _1)2 + 10R(9x l ~x2 _1)2.

Xl 6

With R = 0.1, we randomly create many solutions using the above two functions
and find the best non-dominated front. This front is plotted with a dashed line in
Figure 164. Since the penalty parameter is small, this front resides in the infeasible
region. This phenomenon is also common in single-objective constrained optimization.
If a smaller than adequate penalty parameter value is chosen, the penalty effect is less
and the resulting optimal solution may be infeasible (Deb, 2000).

However, when the penalty parameter is increased to R = 10, the resulting Pareto
optimal front for the two penalized functions given in equations (7.9) and (7.10) is
close to the true Pareto-optimal solution given in equation (7.3). It is interesting to
note how this resulting front approaches the true front with an increase of R, as shown
in Figure 167.

Figure 165 shows the population after 500 generations of the NSGA with R = 10.
Most of the constrained Pareto-optimal region is found by the NSGA. As seen from
Figure 167, with R = 10 the pseudo front is close to the true front. Thus, the NSGA
is able to locate the true front with R = 10.

It is interesting to note that when we increase the penalty parameter to R = 100, the
spread of obtained solutions is not as good as that with R = 10. Although the pseudo
front with R = 100 will be even closer to the true Pareto-optimal front compared to
that with R = 10, the constraints will be over-emphasized in initial generations. This
causes the NSGA to converge near a portion of the Pareto-optimal front.
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These results show the importance of the penalty parameter with the naive
approach. If an appropriate R is chosen, MOEAs will work well. However, if the choice
of R is not adequate, either a set of infeasible solutions or a poor distribution of
solutions is likely.

7.4 Jimenez-Verdegay-Gomez-Skarmeta's Method

Jimenez, Verdegay and Gomez-Skarrneta (1999) suggested a systematic constraint
handling procedure for the multi-objective optimization. Only inequality constraints
of the lesser-than-equal-to type are considered in their study, whereas any other
constraints can also be handled by using the procedure. Although most earlier
algorithms used the simple penalty function approach, this work suggested a careful
consideration of feasible and infeasible solutions and the use of niching to maintain
diversity in the obtained Pareto-optimal solutions. The algorithm uses the binary
tournament selection in its core. As in the single-objective constraint handling
strategies using tournament selection (Deb, 2000; Deb and Agrawal, 1999b), three
different cases arise in a two-player tournament. Both solutions may be feasible, or
both may be infeasible, or one is feasible and the other is infeasible. The investigators
carefully considered each case and suggested the following strategies.

Case 1: Both solutions are feasible. Since infeasibility is not a concern here, the
investigators suggested following a procedure similar to the niched Pareto GA
proposed by Horn et al. (1994) (see Section 5.10 above). First, a random
set of feasible solutions called a comparison set is picked from the current
population. Secondly, two solutions chosen for a tournament are compared with
this comparison set. If one solution is non-dominated in the comparison set and
the other is dominated by at least one solution from the comparison set, the
former solution is chosen as the winner of the tournament. Otherwise, if both
solutions are non-dominated or both solutions are dominated in the comparison
set, both are equally good or bad in terms of their domination with respect to
the comparison set. Thus, the neighborhood of each solution is checked to find
its niche count. The solution with a smaller niche count means that the solution
is situated in a least crowded area and is chosen as the winner of the tournament.

The niche count nc is calculated by using the phenotypic distance measure, that
is, problem variables are used to compute the Euclidean distance d between two
solutions. Then, this distance is compared with a given threshold CYshare. If the
distance is smaller than CYshare, a sharing function value is computed by using
equation (4.59) with an exponent value equal to (X = 2. Thereafter, the niche
count is calculated by summing the sharing function values calculated with each
population member. This procedure is the same as that used in the NSGA.

Case 2: One solution is feasible and other is not. The choice is clear here. The
feasible solution is declared as the winner.

Case 3: Both solutions are infeasible. As in the first case, a random set of
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infeasible solutions is first chosen from the population. Secondly, both solutions
participating in the tournament are compared with this comparison set. If one
is better than the best infeasible solution and the other is worse than the best
infeasible solution present in the comparison set, the former solution is chosen. A
suitable criterion can be used for this comparison. For example, the constraint
violation or nearness to a constraint boundary can be used. If both solutions
are either better or worse than the best infeasible solution, both of them are
considered as being equally good or bad. A decision with the help of a niche
count calculation is made, as before. The niche count is calculated with the
phenotypic distance measure (with Xi values) and with respect to the entire
population, as described in the first case. The one with the smaller niche count
wins the tournament.

This is a more systematic approach than the simple penalty function approach. As
long as decisions can be made with the help of feasibility and dominance of solutions,
they are followed. However, when both solutions enter a tie with respect to feasibility
and dominance considerations, the algorithm attempts to satisfy the second task of
multi-objective optimization. The algorithm uses a niching concept to encourage a
less-crowded solution.

7.4.1 Hand Calculations

We now illustrate this tournament selection procedure on the six solutions of our
example problem. Let us consider that solutions 1 and 2 participate in the first
tournament. Since both of them are infeasible, we follow Case 3. We select a
subpopulation of infeasible solutions from the population. Since we have considered
a small population size for illustration, we choose solution 3 as the only member in
the comparison set. Let us also use the constraint violation metric for evaluating an
infeasible solution. Thus, we observe that both solutions 1 and 2 are better than
solution 3 (the best or only solution of the comparison set). In order to resolve the
tie, we need to compute the niche count for each of these two solutions with respect
to the entire population. We show the computation for solution 1 only here. However,
the niche count values for other solutions in the population are listed in Table 27. The
normalized phenotypic distance values calculated are as follows:

d12 = 0.376, drs = 0.120, d14 = 0.630, dlS = 0.403, d16 = 0.662.

We use a sharing parameter O"share = 0.4 and (X = 2. The corresponding sharing
function values are as follows:

Sh(d121 = 0.116, Sh(dl31 = 0.910, Sh(d141 = 0, Sh(d1s1 = 0, Sh(d16) = O.

Thus, the niche count is the sum of all of these sharing function values or nci = 2.026.
Similarly, we calculate nC2 = 1.572. Since nC2 < nc i , we choose solution 2 as the
winner of the first tournament.
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Table 27 The niche count for each solution.

Solution Xl X2 f l fz Niche
count

1 0.31 0.89 0.31 6.10 2.026
2 0.38 2.73 0.38 9.82 1.572
3 0.22 0.56 0.22 7.09 1.910
4 0.59 3.63 0.59 7.85 1.699
5 0.66 1.41 0.66 3.65 1.474
6 0.83 2.51 0.83 4.23 1.717

Next, we take solutions 3 and 4 for the second tournament. Figure 162 reveals that
solution 3 is infeasible, but solution 4 is feasible. Case 2 suggests that the winner is
solution 4.

Next, we consider solutions 5 and 6. Since both are feasible, we must follow Case 1.
Let us choose solution 4 as the only member of the chosen comparison set. We put
solution 5 into the comparison set and observe that it is non-dominated. The same
is true with solution 6. So, we calculate their niche count in the entire population.
The niche count values are listed in Table 27. Since solution 5 has a smaller niche
count than that of solution 6, we choose solution 5. Notice that although solution 6
is dominated by solution 5, they both resorted in a tie in the tournament. The
difficulty arises because each solution is independently checked for domination with
the comparison set. The fact that solution 5 could dominate solution 6 is never checked
in the procedure. In the next section, we will present a different tournament-based
selection, which does not have this difficulty.

At the end of three tournaments, we have used all solutions exactly once and
obtained solutions 2, 4 and 6. Next, we shuffle the population members and perform
three more tournaments to fill up six population slots. Let us say that after shuffling
the following sequence occurs: (3,2,6,1,5,4). Thus, we pair them up as (3,2), (6,1)
and (5,4) and play tournaments between them. The first tournament, in the presence
of solution 1 as the comparison set, favors solution 2. This is because solution 2 has
a smaller constraint violation compared to solution 1, but solution 3 has a larger
constraint violation compared to solution 1. The constraint violations are calculated
in Table 25 on page 279. Between solutions 6 and 1, solution 6 wins. For the third
tournament, we choose solution 6 as the comparison set. Now, both solutions 4 and 5
are non-dominated in the comparison set. Thus, we make our decision based on their
niche counts. We find that solution 5 is the winner.

Thus, one application of the tournament selection on the entire original population
makes the following population as the mating pool: (2,2,4,5,5,6). Although two of
the three infeasible solutions are absent in the mating pool, the emphasis of feasible
solutions is not particularly ideal.
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7.4.2 Advantages

The algorithm requires a niche count computation for each solution. This requires
O(N 2 ) computations, which is comparable to that of other evolutionary algorithms.
Another advantage of this method is that the tournament selection is used. As shown
elsewhere (Goldberg and Deb, 1991), the tournament selection operator has better
convergence properties compared to the proportionate selection operator.

7.4.3 Disadvantages

Since the niche count is calculated with all population members, one wonders why
investigators suggested the use of a subpopulation to check domination and constraint
violation. The entire set of feasible solutions in the population can also be used as
the comparison set without increasing the computational complexity of the algorithm.
The flip side of this argument is relevant. It may be better to restrict the niche count
computations among the members of the chosen comparison set, instead of the entire
population. This would reduce the complexity of the computation.

It is not intuitive why one would be interested in maintaining diversity among
infeasible solutions. As in single-objective constrained optimization problems, the
goal here is also to move towards the feasible region. By preserving diversity
among infeasible solutions explicitly, the progress towards the feasible region may
be sacrificed.

There exist a couple of additional parameters (CTshare and the size of the comparison
set) which a user must set right. In order to make the non-domination check less
stochastic, a large comparison set is needed. Furthermore, it was mentioned earlier
that the algorithm does not explicitly check the domination of participating solutions
in a tournament.

7.4.4 Simulation Results

We consider the two-variable constrained optimization problem given in equa
tion (7.2), using the same GA parameters as before. We would like to mention here that
investigators of this algorithm used a different real-parameter crossover and mutation
operator to that used here. In the original study, a uniform real-parameter crossover
and a dynamically varying mutation operators were used. We use the SBX and the
polynomial mutation operator throughout this chapter, including this algorithm.

The initial population and the non-dominated solutions at the end of 500
generations are shown in Figures 168 and 169, respectively. The first figure shows that
the initial population contains some feasible and some infeasible solutions. Although
the algorithm approached the Pareto-optimal front over the generations, the progress
is slow and even after 500 generations, solutions on the constrained Pareto-optimal
region are not found.

It is important to note in particular that this algorithm could not find solutions
on the constrained Pareto-optimal region. In order to be on the constrained Pareto-
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optimal region, the parameters Xl and X2 must be related as X2 = 6 ~ 9x,. Since it
becomes difficult for the variable-wise crossover and mutation operator (used in the
above simulation) to find correlated solutions, satisfying the above equality constraint
becomes difficult, thereby making it hard to maintain solutions on the Pareto-optimal
front. Once such solutions are found, they have to be adequately emphasized by the
selection procedure and the constraint handling technique for their sustained survival.
This so-called linkage problem with generic variable-wise (or bit-Wise) operators is
important in the study of evolutionary algorithms and has motivated many researchers
to develop sophisticated EAs (Goldberg et al., 1989; Harik and Goldberg, 1996;
Kargupta, 1997; Miihlenbein and Mahnig, 1999; Pelican et al., 1999). The bottom
right portion of the Pareto-optimal region (see Figure 169) is represented by xi = 0
and xi E [7/9,1]. Since the spread in this part of the front can be achieved by keeping
diversity in only the variable x, and by maintaining X2 = 0, this portion of the Pareto
optimal region is comparatively easier to obtain. This algorithm seems to have found
some representative members on this part of the front.

The next strategy uses a much improved tournament selection operator, which is
easier in concept and eliminates most of the difficulties of this strategy.

7.5 Constrained Tournament Method

Recently, this author and his students have implemented a penalty-parameter-less
constraint handling approach for single-objective optimization. We have outlined this
constraint handling technique above in Section 4.2.3. A similar method can also be
introduced in the context of multi-objective optimization.

The constraint handling method discussed here uses the binary tournament
selection, where two solutions are picked from the population and the better solution is
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chosen. In the presence of constraints, each solution can be either feasible or infeasible.
Thus, there may be at most three situations: (i) both solutions are feasible, (ii) one is
feasible and other is not, and (iii) both are infeasible. For single-objective optimization,
we used a simple rule for each case:

Case (i) Choose the solution with the better objective function value.

Case (ii) Choose the feasible solution.

Case (iii) Choose the solution with smaller overall constraint violation.

In the context of multi-objective optimization, the latter two cases can be used as they
are presented, but the difficulty arises with the first case. This is because now we have
multiple objective functions, and we are in a dilemma as to which objective function
to consider. The concept of domination can come to our rescue here. When both
solutions are feasible, we can check if they belong to separate non-dominated fronts.
In such an event, choose the one that belongs to the better non-dominated front. If
they belong to the same non-dominated front, we can use the diversity preservation
task to resolve the tie. Since maintaining diversity is another goal in multi-objective
optimization, we can choose the one which belongs to the least crowded region in that
non-dominated set.

We define the following constrain-domination condition for any two solutions x' i I

and xlj).

Definition 7.1. A solution xiii is said to 'constrain-dominate' a solution xiii

(or xiii ::Sc xli)), if any of the following conditions are true:

1. Solution x' i) is feasible and solution xl j) is not.
2. Solutions xli) and xlj) are both infeasible, but solution xiii has a smaller

constraint violation.
3. Solutions xli) and xli) are feasible and solution xli) dominates solution xiii

in the usual sense (see Definition 2.5 above).

We can use the same non-dominated classification procedure described earlier in
Section 2.4.6 to classify a population into different levels of non-domination in the
presence of constraints. The only change required is that the domination definition
(presented in Section 2.4.2) has to be replaced with the above definition. Among
a population of solutions, the set of non-constrain-dominated are those that are
not constrain-dominated by any member of the population. Let us use Approach 1
(page 34) to classify six solutions in the example problem Constr-Ex into different
non-constrain-dominated sets.

Step 1 We set i = 1 and set pi = 0.

Step 2 We now check if solution 2 constrain-dominates solution 1. Both of these
solutions are infeasible. Thus, we use their constraint violation values to decide
who wins. The violation values are listed in Table 25. We observe that solution 2
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has a smaller constraint violation than solution 1. Thus, solution 2 constrain
dominates solution 1. We now move to Step 4 of Approach 1. This means that
solution 1 cannot be in the best non-constrain-dominated front.

Step 4 Increment ito 2 and move to Step 2.

Steps 2 and 3 Solution 1 does not constrain-dominate solution 2. We now check
whether solution 3 constrain-dominates solution 1. Both solutions are infeasible
and solution 3 has a larger constraint violation. Thus, solution 3 does not
constrain-dominate solution 1.

Next, we check solution 4 with solution 2. Solution 4 is feasible and solution 2
is not. Thus, solution 4 constrain-dominates solution 2. Thus, solution 2 cannot
be in the best non-constrain-dominated front.

Step 4 Next, we check solution 3.

Steps 2 and 3 Solution 1 constrain-dominates solution 3.

Step 4 Next, we check solution 4.

Step 2 Solutions 1, 2 and 3 do not constrain-dominate solution 4. Next, we check
whether solution 5 constrain-dominates solution 4. Both are feasible. We observe
that solution 5 does not dominate solution 4.

Step 3 Next, we try with solution 6. This solution also does not dominate solution 4.
Since there is no more members left in the population, solution 4 belongs to the
first non-constrain-dominated front, or P' = {4).

Step 4 We now have to check solution 5.

Step 2 Solutions 1, 2 and 3 do not constrain-dominate solution 5. Solutions 4 and 6
do not dominate solution 5.

Step 3 Thus, solution 5 is also a member of P'.

Step 4 We now check the final solution 6 for its inclusion in the best non-constrain
dominated front.

Step 2 Solutions 1 to 3 do not constrain-dominate this solution. Solution 4 does not
dominate solution 6, but solution 5 dominates this solution. Thus, solution 6
cannot be included in the best set.

Step 4 Thus, the first non-constrain-dominated set has two solutions P1

Figure 170 shows this set.
{4,5}.

To obtain the second non-constrain-dominated front, we discount these two solutions
(4 and 5) from the population and repeat the above procedure. We shall find P2 = {6}.

With the remaining three solutions (1, 2 and 3), we continue the above procedure
to find the third non-constrain-dominated front. We shall obtain P3 = {2}. This is
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because, solutions 1 and 3 have larger constraint violation values than solution 2.
Continuing in this fashion, we obtain P4 = {l} and Ps = {3}. Thus, the overall
classification is [(4, 5), (6), (2), (1 ), (3)]. All five fronts are shown in Figure 170. If the
constraint was absent, the following would have been the non-dominated classification:
[(3,1,5), (2,4,6)]. Now, since solutions 1, 2 and 3 are infeasible, the non-constrain
dominated classification is different and infeasible solutions have been pushed back
into worse classes of non-constrain-domination.

The above definition of constrain-domination will allow a similar non-dominated
classification in the feasible region, but will classify the infeasible solutions according
to their constraint violation values. Usually, each infeasible solution will belong to
a different non-constrain-dominated front in the order of their constraint violation
values, except when more than one solutions have an identical constraint violation.

7.5.1 Constrained Tournament Selection Operator

By using the above definition of constrain-domination, we define a generic constrained
tournament selection operator as follows.

Definition 7.2. Given two solutions X(i) and x(j), choose solution xli) if any of
the following conditions are true:

1. Solution x(i) belongs to a better non-constrain-dominated set.
2. Solutions x(i) and x(j) belong to the same non-constrain-dominated set, but

solution xli) resides in a less crowded region based on a niched-distance
measure.

The niched-distance measure refers to the measure of density of the solutions in the
neighborhood of a solution. The niched-distance can be computed by using various
metrics, as follows.
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Niche count metric. Calculate the niche count ric, and nc, with solutions of the
non-constrain-dominated set by using the sharing function method described
earlier in Section 4.6. Since the niche count of a solution gives an idea of
the number of crowded solutions and their relative distances from the given
solution, a smaller value of the niche count means fewer solutions in the
neighborhood. Thus, if this metric is used, the solution with the smaller niche
count must be chosen. This metric requires a parameter ITshare and requires
O(N p ) computations, where N p is the number of solutions in the non-constrain
dominated set. It is important to note that the relative distance measure for
computing the niche count can be made in either the decision variable space or
in the objective space.

Head count metric. Instead of computing the niche count, the total number of
solutions (the head count) in the ITshare-neighborhood can be counted for each
solution xli) and xlj). Using this metric, choose the solution with the smaller
head count. The complexity here is also O(N p ) . This metric may lead to ties,
which can be avoided by using the niche count metric. This is because the
niche count metric better quantifies the crowding of solutions. As for the niche
count metric, the neighborhood checking can be performed either in the decision
variable space or in the objective space.

Crowding distance metric. This metric is used in the NSGA-IL This metric
estimates half of the perimeter of the maximum hypercube which can be allowed
around a solution without including any other solution from the same obtained
non-constrain-dominated front inside the hypercube. A large crowding distance
for a solution implies that the solution is less crowded. The extreme solutions
are assigned an infinite crowding distance. This measure requires 0 (N p log N p )

computations, because of the involvement of the sorting of solutions in all M
objectives. This crowding distance can be computed in the decision variable
space as well.

Various other distance measures can also be used.

7. 5. 2 Hand Calculations

We now illustrate how the above constrained tournament selection operator acts on
the six chosen solutions of the example problem Constr-Ex to create the mating pool.

Let us first choose solutions 1 and 2 to play the first tournament. Since solution 2
belongs to a better non-constrain-dominated front than solution 1 (see Figure 170
above), we choose solution 2. Next, we choose solutions 3 and 4 for the second
tournament. Here, solution 4 is chosen, since it lies in the first front, whereas solution 3
lies in the fifth front. For the third tournament, we have solutions 5 and 6. Here,
solution 5 wins. At the end of three tournaments, we have used all solutions exactly
once and selected solutions 2, 4 and 5. Next, we shuffle the population members and
perform three more tournaments to fill up six population slots. Let us say that after
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shuffling, the following sequence occurs: (3,2,6, 1,5,4).
So, we compare solutions 3 and 2 next. Solution 2 wins. Next, among solutions 6

and 1, solution 6 wins. Finally, solutions 5 and 4 are compared. Since they belong to
the same non-constrain-dominated set, we have to check their niched-distance values
with all solutions in the set. By using the crowding distance metric we observe that
solutions 4 and 5 are the only members of the first non-constrain-dominated front.
Since these two are extreme solutions, both of them have an infinite crowding distance
and thus both should survive. Let us say that we choose solution 4 at random.

Thus, after the constrained tournament selection, we obtain the following mating
pool: (2,2,4,4,5,6). Solution 3 (the worst infeasible solution) gives away its place
for another copy of solution 4, which lies in the best non-constrain-dominated front.
Another infeasible solution (solution 1) is also eliminated.

7.5.3 Advantages and Disadvantages

In addition to the constraint violation computations, this strategy does not require
any extra computational burden. The constrain-domination principle is generic and
can be used with any other MOEAs. Since it forces an infeasible solution to be always
dominated by a feasible solution, no other constraint handling strategy is needed.

The above constrain-domination definition is similar to that suggested elsewhere
(Drechsler, 1998; Fonseca and Fleming, 1998a). However, these studies handle the
constraint violations in a more similar way to that in the COMOGA approach (Surry
et al., 1995) described later in Section 8.7.1. The only difference between the constrain
domination presented here and that in (Drechsler, 1998; Fonseca and Fleming, 1998a)
is in the way domination is defined for the infeasible solutions. In the above definition,
an infeasible solution having a larger overall constraint-violation is classified as a
member of a larger non-constrain-domination level. On the other hand, in (Fonseca
and Fleming, 1998a), infeasible solutions violating different constraints are classified
as members of the same non-constrain-dominated front. Drechsler (1998) proposes a
more detailed ordering approach. In these approaches one infeasible solution violating
a constraint 9j marginally will be placed in the same non-constrain-dominated level
with another solution violating a different constraint to a large extent but not violating
9j. This may cause an algorithm to wander in the infeasible search region for more
generations before reaching the feasible region through some constraint boundaries.
Moreover, since these approaches require domination checks to be performed with
the constraint-violation values, they are supposedly computationally more expensive.
However, a careful study is needed to investigate if the added complexity introduced
by performing a non-domination check over the simple procedure described earlier in
this section is beneficial to certain problems. Besides simply adding the constraint
violations together, Binh and Korn (1997) also suggested a different constraint
violation measure:

(7.11)
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generation 20.

The NSGA-II population at Figure 172

generation 50.
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where p > a and Cj (x]
used.

Iminto, gdxlll for all j. In the above approach, p IS

7.5.4 Simulation Results

We use the constraint tournament selection operator with the NSGA-II and employ the
crowded distance measure. As before, real-parameter GAs are used with a population
of size 40. Other NSGA-II parameters are the same as that used in the previous
chapter. Figures 171 to 174 show the best non-constrain-dominated solutions at
generations of 20, 50, 200 and 500. It is clear how solutions assemble closer to the
Pareto-optimal front and is distributed over the entire Pareto-optimal regions with an
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Figure 173 The NSGA-II population at Figure 174 The NSGA-II population at

generation 200. generation 500.
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increasing number of generations. Although identical search operators to that used in
the previous section are also used here, the constraint tournament selection operator
adequately emphasizes correlated Pareto-optimal solutions, once they are discovered.

In Binh and Korn's constrained multi-objective ES (MOBES) approach, a careful
comparison of the feasible and infeasible solutions is devised based on a diversity
preservation concept. These investigators preferred an infeasible solution over a
feasible solution, if the infeasible solution resides in a less crowded region in the
search space. By requiring a user-defined niche-infeasible parameter, the MOBES was
able to find a widely distributed set of non-constrain-dominated solutions in a couple
of test problems. Further studies are needed to justify the added complexities of the
MOBES.

7.6 Ray-Tai-Seow's Method

Ray et al. (2001) suggested a more elaborate constraint handling technique, where
the constraint violations of all constraints are not simply added together; instead, a
non-domination check of the constraint violations is made. We describe this procedure
here.

Three different non-dominated rankings of the population are first performed. The
first ranking is performed by using M objective function values, and the resulting
ranking is stored in an N-dimensional vector Ro b j ' The second ranking (Re o n ) is
performed by using only the constraint violation values of all (J of them) constraints
and no objective function information is used. Thus, the constraint violation of each
constraint is used as a criterion and a non-domination classification of the population
is performed with the constraint violation values. Notice that a feasible solution has
zero constraint violation. Thus, all feasible solutions have a rank 1 in Re o n . Such
a ranking procedure will allow solutions violating only one independent constraint
to lie in the same non-dominated front. The third ranking is performed by using
a combined objective function and constraint violation values (a total of (M + Jl
attributes). This produces the ranking Re o m . Although objective function values and
constraint violations are used together, interestingly there is no need of any penalty
parameter. In the domination check, the criteria are individually compared, thereby
eliminating the need of any penalty parameter. Once these rankings are complete, the
following algorithm is used for handling the constraints.

Ray-Tai-Seow's Constraint-Handling Method

Step 1 Using Re o m , select all feasible solutions having a rank 1. This can be
achieved by observing the feasibility of all rank 1 solutions from Re o n .

That is, pi = {q : Re o m (q1 = 1 and constraint violation wdq1 = 0, j =
1,2, ... , n. If Ipll < N, fill population pi by using Step 2.

Step 2 Choose a solution A with Ro b j by assigning more preference to low
ranked solutions. Choose its mate by first selecting two solutions Band C
by using Re o n . Then, use the following cases to choose either B or C:
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Case 1 If Band C are both feasible, choose the one with better rank in
Ro b j - If both ranks are the same, a head-count metric is used to decide
which of them resides in a less-crowded region in the population.

Case 2 If Band C are both infeasible, choose the one with a better rank
in Re o n . If both ranks are the same, then use a common-constraint
satisfaction metric (discussed later) to choose one of these. This metric
measures the number of constraints that each of B or C satisfies along
with A. The one satisfying the least number of common constraints is
chosen.

Case 3 If B is feasible and C is not, choose B; otherwise, choose C. On the
other hand, if B is infeasible and C is feasible, then choose C; otherwise,
choose B.

Use parents to create offspring and put parents and offspring into the
population.

In Step 2, solutions are chosen with different rankings Ro b i i Re o n and Re o m . Here,
we describe how a ranking is used to choose a solution from the population. Let us
illustrate the procedure with Ro bj' The maximum rank rm ax

, in the vector Ro bj is first
noted. Each rank is then mapped linearly between rm ax and 1, so that the best non
dominated solutions get a rank rm ax and the worst non-dominated solutions get a rank
1. Thereafter, a probability vector Pobj for selection is calculated in proportion to its
mapped rank. In this way, the best non-dominated solutions are assigned the maximum
probability of selection. This is similar to the roulette-wheel selection mechanism.

In Case 1, when the rank of both solutions Band C is the same, the head-count
metric is used to resolve the tie. First, the average Euclidean distance d of the
population (either in the decision variable space or in the objective space) is computed
by averaging the Euclidean distance of each solution with all other solutions in the
population, thereby requiring N (N - 1)/2 distance computations. Now, for each of the
solutions Band C, the number of solutions within a distance d from it is counted. This
measures the head-count of the solution within a fixed neighborhood. The solution
with a smaller head-count is chosen.

In Case 2, when the rank of both solutions Band C is the same, the following
procedure is used to calculate the common-constraint-satisfaction metric. For each
of solutions A, Band C, the set of constraints that are satisfied (not violated)
are determined as SA, SB and Sc, respectively. Now the cardinality of each of the
two intersecting set SA n SB and SA n Sc is calculated. Let us say that they are
nAB = ISA n SBI and nAC = ISA n Sci. Now, if nAB < nAC, solution B is chosen;
otherwise, solution C is chosen. This ensures that A and B together satisfy less common
constraints than A and C do together. This, in general, allows two solutions from
different regions of the search space to be mated. It also provides the needed diversity
in the mated parents in the hope of creating diverse offspring. If both nAB and nAC
are the same, one of either B or C is chosen at random.

Although a few other operators (such as a population shrinking and a mix-and
move crossover operator) are also suggested in the original study, we will leave out
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the details of these here and only discuss the constraint handling aspect of the
algorithm. Investigators of this constrained handling approach have solved a number
of engineering design problems, including a five-objective WATER problem (discussed
later in Section 8.3). It remains to be investigated how the algorithm performs on more
complex problems, particularly from the point of view of the computational burden
associated with the method.

7.6.1 Hand Calculations

We now illustrate the working of this algorithm on six solutions on our constrained
two-objective example problem Constr-Ex. The six population members are shown
above in Table 25 and Figure 162.

First, we perform a non-dominated sorting by using the objective function values
(columns 4 and 5 of Table 25). We obtain the following classification: [( 1,3,5), (2,4,6)].
Thus, the rank vector is Ro b j = (1,2,1,2,1,2). This is because the first solution
belongs to rank 1, the second solution is in rank 2, the third solution is in rank 1, and
so on. Similarly, we obtain the non-dominated classification of the population with
respect to constraint violations only (columns 6 and 7 of Table 25):

[(4,5,6), (1,2), (3)]

Thus, the rank vector for constraints is Re o n = (2,2,3,1,1,1). Finally, we obtain the
non-dominated ranking of the combined objective function and constraints, totaling
(2 + 2), or four criteria. We obtain the following non-dominated classification having
two fronts by using columns 4,5,6 and 7 of Table 25, as follows: [(1,2,3,4,5), (6)].
Thus, the corresponding ranking vector is Re 0 m = (1, 1, 1, 1, 1, 2).

Now, we move to Step 1 of the algorithm. Of the five rank-l solutions in Re o m ,

we observe that solutions 4 and 5 are feasible. Thus, pi = {4,5}. These solutions
act as the best solutions in the current population and are directly sent to the next
population. Thus, these solutions act as elite solutions, which also participate in the
genetic operations with other solutions in the population. Now, we move to Step 2 of
the algorithm to complete the rest of the steps.

First, we choose a solution (we call it solution A) by using Ro b j . Since there are
only two different ranks in Ro b j (or r m ax = 2), we map each rank linearly between 2
and 1. Thus, we have the mapping (2,1,2,1,2,1), obtained by swapping ranks 1 and 2
in Ro b j , so that rank-l solutions are assigned the value r m ax = 2. We observe that the
sum of all of these mapped values is (2 + 1+2 + 1+2 + 1), or 9. Thus, the probability
vector is Pobj = (2/9,1/9,2/9,1/9,2/9,1/9)T. With this probability vector, we choose
a solution. A simple procedure is to first form the cumulative probability vector as
Pobj = (2/9,3/9,5/9, 6/9, 8/9, 9/9)T and then choose a solution by using a random
number between zero and one. Let us say the chosen random number is 0.432. Since,
this lies between the first and second member of the cumulative probability vector,
we choose solution 2 as A.

Similarly, we choose two solutions by using Re o n . The probability vector is
Peon = (2/14,2/14,1/14,3/14,3/14, 3/14)T. Using random numbers 0.126 and 0.319,
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we obtain solution 1 as B and solution 3 as C. Now, we observe that both Band Care
infeasible. Thus, we choose solution 1, because it has a smaller rank than solution 3
in Re o n . Solution B is the winner.

Thus, solutions 1 and 2 mate with each other to create two offspring. The same
procedure can be continued to fill up the rest of the population.

7.6.2 Computational Complexity

The non-dominated ranking procedure is governed by the ranking on the combined
population, thereby requiring at most 0 ((M + I)N2) comparisons. Each selection
procedure of choosing a solution with any of the probability vectors requires
o(N) computations. The calculation of the average Euclidean distance d requires
o (N 2) calculations. Moreover, the head-count calculation procedure requires O(N)
comparisons. Thus, the overall complexity of the algorithm is 0 ((M + nN2).

7.6.3 Advantages

This algorithm handles infeasible solutions with more care than any other of the
constraint-handling techniques we have discussed so far. When all three solutions A,
Band C are infeasible (which may happen early on in a run), solutions Band Care
chosen according to their constrained non-domination levels. This means that solutions
violating different constraints are emphasized. In this way, diversity is maintained in
the population.

7.6.4 Disadvantages

In a later generation, when all population members are feasible and belong to a
suboptimal non-dominated front, the algorithm stagnates. This is because all of the
population members will have a rank equal to 1 in Ream. Since all are also feasible,
they fill up the population and no further processing is made. Most of the MOEAs
described in this book handle these latter generations in a different way. Genetic
operations are still allowed at this stage in the search for new solutions which will
make the spread of the entire population better. In order to alleviate this problem, a
simple change can be made. The selection of the best non-dominated feasible solutions
using Ream constitutes a population Pl. Thereafter, Step 2 of the algorithm can be
used to create a new population P1/. Now, populations P I and P /I can be combined
together and the best N solutions can be chosen in a similar way to that in the NSGA
II, by first choosing the non-dominated solutions and then choosing the least crowded
solutions from the last allowed non-dominated front.

There is another difficulty with this algorithm. During the crossover operation, three
offspring are created. The first one is created by using a uniform crossover with an
equal probability of choosing one variable value from each parent (solution A and its
partner). The other two solutions are created by using a blend crossover, which uses a
uniform probability distribution over a range that depends on a number of threshold
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parameter values. The difficulty arises in choosing parameter values related to each of
these operators. Another difficulty arises because five solutions (three offspring and
two parent) are accepted after each crossover operation. This process will cause the
population to soon lose its diversity.

Three non-dominated ranking and head-count computations make the algorithm
more computationally expensive than the other algorithms discussed so far.

7. 6. 5 Simulation Results

In order to investigate how well the above algorithm works, we apply it on the same
two-objective, two-constraint optimization problem. Figure 175 shows the complete
population after 50 generations. This figure shows that all 40 population members
are feasible and non-dominated to each other. The solutions also have a good spread
over the Pareto-optimal regions. However, as pointed out earlier, when all population
members are non-dominated to each other, the algorithm gets stuck and cannot accept
any new solutions. In our simulation run, this happened at the 31st generation and
no change in the population members is observed after this stage.

7.7 Summary

In most practical search and optimization problems, constraints are evident. Often
the constraints are many in numbers and are nonlinear. In this chapter, we have dealt
with several multi-objective evolutionary algorithms which have been particularly
suggested for handling constraints.

The first algorithm presented here is a usual penalty function approach, where
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Figure 175 The population at the 50th generation with Ray-Tai-Seow's method and with

their crossover operator. The population does not change thereafter.
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the constraint violation in an infeasible solution is added to each objective function.
Thereafter, the penalized objective function values are optimized. For relatively
large penalty terms (compared to objective function values), this method practically
compares infeasible solutions based on their constraint violations. Again, for the same
reason, a feasible solution will practically dominate an infeasible solution. Both of
these characteristics together allow the population members to become feasible from
infeasible solutions and, thereafter, allow solutions to converge closer to the true
Pareto-optimal solutions.

In Jimenez-Verdegay-Gomez-Skarmeta's constraint handling approach, feasible and
infeasible solutions are carefully evaluated by ensuring that no infeasible solution gets a
better fitness than any feasible solution. In a tournament played between two feasible
or infeasible solutions, comparison is made based upon a niching strategy, thereby
ensuring diversity among the obtained solutions.

In the constrained tournament approach discussed in this chapter, the definition
of domination is modified. Before comparing two solutions for domination, they are
checked for their feasibility. If one solution is feasible and the other is not, the feasible
solution dominates the other. If two solutions are infeasible, the solution with the
smaller normalized constraint violation dominates the other. On the other hand, if
both solutions are feasible, the usual domination principle is applied. Although this
definition (we called this the constrain-domination principle) can be used with any
other MOEA, its usage has been demonstrated here with the NSGA-II.

In the Ray-Tai-Seow's constraint handling approach, three different non-dominated
sorting procedures are used. In addition to a non-dominated sorting of the objective
functions, a couple of non-dominated sortings using the constraint violation values
and a combined set of objective function and constraint violation values are needed
to construct the new population.

A recent study (Deb et al., 2001) has compared the last three constraint handling
strategies on a number of test problems. For a brief description of their study, refer
to Section 8.4.5 below. In all problems, the constrained tournament approach with
the NSGA-II has been able to achieve a better convergence and maintain a better
diversity than the other two approaches. However, more comparative studies are
needed to establish the superiority of one algorithm over another. Further studies
in this direction demand controllable constrained test problems, a number of which
are suggested later in Section 8.3. It will also be interesting to investigate the effect
of the constrain-domination principle on the performance of other commonly used
MOEAs.





8

Salient Issues of Multi-Objective
Evolutionary Algorithms

In this chapter, we will describe a number of issues related to design, development
and application of multi-objective evolutionary algorithms. Although some of the
issues are also pertinent to classical multi-objective optimization algorithms, they

are particularly useful for population-based algorithms which intend to find multiple
Pareto-optimal solutions in one single simulation run. These include the following:

1. Illustrative representation of non-dominated solutions.

2. Development of performance measures.

3. Test problem design for unconstrained and constrained multi-objective optimiza

tion.

4. Comparative studies of different MOEAs.

5. Decision variable versus objective space niching.

6. Preference of a particular region in the Pareto-optimal front.

7. Single-objective constraint handling using multi-objective EAs.

8. Scaling issues of MOEAs in more than two objectives.

9. Design of convergent MOEAs.

10. Controlled elitism in elitist MOEAs.

11. Design of MOEAs for scheduling problems.

Each of the above issues is important in the development of MOEAs. Although
some attention has been given to some of the above, further comprehensive studies
remain as imminent future research topics in the field of multi-objective evolutionary
optimization. We will discuss these in the following sections.
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8.1 Illustrative Representation of Non-Dominated Solutions

Multi-objective optimization deals with a multitude of information. In a single
objective optimization, although there may exist multiple decision variables, there is
only one objective function. By plotting the objective function of the best solution at
a current iteration, the performance of an algorithm can be demonstrated. However,
in multi-objective optimization, there exists more than one objective and in most
interesting cases they behave in a conflicting manner. Throughout this book, we have
mostly considered two objectives and the performance of an algorithm has been shown
by illustrating the obtained solutions on a two-dimensional objective space plot. When
the number of objective functions is more than two, such an illustration becomes
difficult. In this section, we show a number of different ways in which non-dominated
solutions can be illustrated in such situations. A good discussion of some of these
methods can also be found in the text by Miettinen (1999). Although it is customary
to show the non-dominated solutions on an objective space plot, the decision variables
of the obtained non-dominated solutions can also be shown by using the following
illustration techniques.

8.1.1 Scatter-Plot Matrix Method

First Meisel (1973) and then Cleveland (1994) suggested plotting all (~) pairs of
plots among M objective functions. Figure 176 shows a typical example of such a
plot with M = 3 objective functions. Different alternate solutions can be shown by
different symbols or colors. Although (~) or M(M - 1)/2 plots are enough to show
solutions in three pairs of objective spaces, usually all M(M - 1) plots are shown for
better illustration. With M = 3 objectives, there are a total of 3 x 2 or 6 plots. The
arrangement of the sub-plots is important. The diagonal sub-plots mark the axis for
the corresponding off-diagonal sub-plots. For example, the sub-plot in position (1,2)
has its horizontal axis marked with f2 and the vertical axis marked with f]. If a user is
not comfortable in viewing a plot with f] in the vertical axis, the sub-plot in position
(2,1) shows the same plot with f 1 marked in the horizontal axis. In this way, the axes
of the sub-plots need not be labeled and the ranges of each axis can be shown only in
the sub-plots. Thus, a plot in the [i., j) position of the matrix is identical to the plot
in the (j, i ] position, except that the plot is mirrored.

In the event of comparing the performance of two algorithms on an identical
problem, the lower diagonal matrices can be plotted with non-dominated solutions
obtained from one algorithm and the upper-diagonal matrices can be plotted with
that of the other algorithm. In this way, the (i, j) position of the first algorithm can
be compared with the (j, i) position of the other algorithm. For many objectives (more
than five or so), plots where a clear front does not emerge may be omitted.

8.1.2 Value Path Method

This is a popular means of showing the obtained non-dominated solutions for a
problem having more than two objectives. This method was suggested by Geoffrion
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Figure 176 The scatter-plot matrix method.

et al. (1972). Figure 177 shows a typical value path plot representing the same set of
non-dominated solutions as shown in the scatter-plot matrix method. The horizontal
axis marks the identity of the objective function, and thus, must be ticked only at
integers starting from 1. If there are M objectives, there would be M tick-marks on
this axis. The vertical axis will mark the normalized objective function values. Two
different types of information are plotted on the figure. The vertical shaded bar (can
also be shown with range marks) for the objective function k represents the range
covering the minimum and maximum values of the k-th objective function in the
Pareto-optimal set, and not in the obtained non-dominated set. Although the figure
is plotted with the normalized objective values, this is not mandatory. Each cross
line, connecting all three objective bars, as shown in Figure 177, corresponds to a
solution from the obtained non-dominated set. Such lines simply join the values of
different objective functions depicted by the solution. When all solutions from the
obtained non-dominated set are plotted this way, the plot provides a number of types
of information:

1. For each objective function, the extreme function values provide a qualitative
assessment of the spread of the obtained solutions. An algorithm which spreads
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Figure 177 The value path method.

its solutions over the entire shaded bar is considered to be good in finding diverse
solutions.

2. The extent to which the cross-lines 'zig-zag' shows the trade-off among the objective
functions captured by the obtained non-dominated solutions. An algorithm having
a large change of slope between two consecutive objective function bars is
considered to be good in terms of finding good trade-off non-dominated solutions.

In order to show the diversity in each objective function, a histogram showing the
frequency distribution can also be superimposed on this graph.

8.1.3 Bar Chart Method

Another useful way to represent different non-dominated solutions is to plot the
solutions as a bar chart. First, the obtained non-dominated solutions are arranged
in a particular order. Thereafter, for each objective function, the function value of
each solution in the same order is plotted with a bar. Different colors or shades can
be used to mark the bars corresponding to each solution. Since the objectives can
take different ranges of values, it is customary to plot a bar chart diagram with
the normalized objective values. In this way, if there are N obtained solutions, N
different bars are plotted for each objective function. A gap can be provided between
two consecutive sets of bars, marking clearly the start of bars for the next objective
function. Figure 178 shows a typical bar chart plot. For ease of illustration, we only
show three different non-dominated solutions. Since bars are plotted, the diversity in
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Figure 178 The bar chart method.

different solutions for each objective can be directly observed from the plot. However,
if N is large, it becomes difficult to have an idea of the trade-offs among different
objective functions captured in the obtained solutions.

8.1.4 Star Coordinate Method

Manas (1982) suggested a star coordinate system to represent multiple non-dominated
solutions (see Figure 179). For M objective functions, a circle is divided into M
equal arcs. Each radial line connecting the end of an arc with the center of the
circle represents the axis for each objective function. For each line, the center of the
circle marks the minimum value of each objective and the circumference marks the
maximum objective function value. Since the range of each objective function can be
different, it is necessary to label both ends of each line. Normalization of objectives
is not necessary here. Once the framework is ready, each solution can be marked on

8

17 f
2

Figure 179 The star coordinate method.
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one such a circle. The points marked on each line can be joined with straight lines to
form a polygon. Thus, for N solutions, there will be N such circles. Visually, they will
convey the convergence and diversity in obtained solutions.

8.1.5 Visual Method

This method is particularly suitable for design related problems. The obtained non
dominated solutions can be shown side-by-side with a tag of objective function values.
In this way, a user can evaluate and compare different trade-off solutions. This will
also allow the user to have a feel of how solutions change when a particular objective
function value is changed. Figure 180 shows nine non-dominated solutions obtained for
the shape design of a simply supported beam with a central-point loading (described
below in Section 9.6). The figure shows solutions for two objectives: the weight of the
beam and the maximum deflection of the beam. Starting from a low-weight beam,
the obtained set of solutions shows how beams become more stiffened, incurring less
deflection but with more weight (or cost) of the beam.

If possible, a pseudo-weight vector can also be given along with each solution. Since
the true minimum and maximum objective function values of the Pareto-optimal set
are usually not known, the pseudo-weights can be derived as follows:

(8.1)

where frin and frax denote the minimum and maximum values of the i-th objective
function among the obtained solutions (or Pareto-optimal solutions, if known). This
weight vector for each solution provides a relative importance factor for each objective
corresponding to the solution. The figure also shows the pseudo-weights calculated for
all nine solutions.

Besides the obvious visual appearance, this method has another advantage. The
decision variables and the corresponding objective function values (in terms of a
pseudo-weight vector) are all shown in one set of plots. This provides a user with
a plethora of information, which would hopefully make the decision-making easier.

8.2 Performance Metrics

When a new and innovative methodology is initially discovered for solving a search
and optimization problem, a visual description is adequate to demonstrate the working
of the proposed methodology. In such pioneering studies, it is important to establish,
in the mind of the reader, a picture of the new suggested procedure. However, when
the methodology becomes popular and a number of different implementations exist,
it becomes necessary to compare these in terms of their performance on various test
problems. This has been a common trend in the development of many successful
solution methodologies, including multi-objective evolutionary algorithms.

Most earlier MOEAs demonstrated their working by showing the obtained non-
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Figure 180 Nine non-dominated solutions obtained using the NSGA-II for a simply

supported beam design problem (see page 457). Starting from the top and moving towards the

right, solutions are presented as increasing magnitude of weight (one of the objectives). This

is a reprint of Figure 13 from Deb and Goel (2001b) (@ Springer-Verlag Berlin Heidelberg

2001).

dominated solutions along with the true Pareto-optimal solutions in the objective
space. In those studies, the emphasis has been given to demonstrate how closely the
obtained solutions have converged to the true Pareto-optimal front. With the existence
of many different MOEAs, it is necessary that their performances be quantified
on a number of test problems. Before we discuss the performance metrics used in
MOEA studies, we would like to highlight that similar to the importance of a choice
of performance metric, there is a need to choose appropriate test problems for a
comparative study. Test problems might be known for their nature of difficulties, the
extent of difficulties and the exact location of the Pareto-optimal solutions (both in
the decision variable and in the objective space). We shall discuss this important issue
of test problem development for multi-objective optimization in Section 8.3 below.

It is amply mentioned in this book that there are two distinct goals in multi
objective optimization: (i) discover solutions as close to the Pareto-optimal solutions
as possible, and (ii) find solutions as diverse as possible in the obtained non-dominated
front. In some sense, these two goals are orthogonal to each other. The first goal
requires a search towards the Pareto-optimal region, while the second goal requires
a search along the Pareto-optimal front, as depicted in Figure 181. In this book, a
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~O-optimal front

Figure 181 Two goals of multi-objective

optimization.

Figure 182 An ideal set of non-

dominated solutions.

diverse set of solutions is meant to represent a set of solutions covering the entire
Pareto-optimal region uniformly. The measure of diversity can also be separated
in two different measures of extent (meaning the spread of extreme solutions) and
distribution (meaning the relative distance among solutions) (Zitzler et al., 2000).

An MOEA will be termed a good MOEA, if both goals are satisfied adequately.
Thus, with a good MOEA, a user is expected to find solutions close to the true
Pareto-optimal front, as well as solutions that span the entire Pareto-optimal region
uniformly. In Figure 182, we show the performance of an ideal MOEA on a hypothetical
problem. It is clear that all of the obtained non-dominated solutions lie on the Pareto
optimal front and they also maintain a uniform-like distribution over the entire Pareto
optimal region. However, because of the different types of difficulties associated with
a problem or the inherent inefficiencies associated with the chosen algorithm, such a
well-converged and well-distributed non-dominated set of solutions may not always be
found by an MOEA in solving any arbitrary problem. Take two sets of non-dominated
solutions obtained by using two algorithms on an identical problem, as depicted in
Figures 183 and 184. With the first algorithm (Algorithm 1), the obtained solutions
converge fairly well on the Pareto-optimal front, but clearly there is lack of diversity
among them. This algorithm has failed to provide information about the intermediate
Pareto-optimal region. On the other hand, the latter algorithm (Algorithm 2) has
obtained a good diverse set of solutions, but unfortunately the solutions are not close
to the true Pareto-optimal front. Although this latter set of solutions can provide a
rough idea of different trade-off solutions, the exact Pareto-optimal solutions are not
discovered. With such sets of obtained solutions, it is difficult to conclude which set
is better in an absolute sense.

Since convergence to the Pareto-optimal front and the maintenance of a diverse
set of solutions are two distinct and somewhat conflicting goals of multi-objective
optimization, no single metric can decide the performance of an algorithm in an
absolute sense. Algorithm 1 fairs well with respect to the first task of multi-objective
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Figure 183 Convergence is good, but

distribution is poor (by Algorithm 1).

Figure 184 Convergence is poor, but

distribution is good (by Algorithm 2).

optimization, while Algorithm 2 fairs well with respect to the second task. We are
again faced here with a two-objective scenario. If we define a metric responsible for
finding the closeness of the obtained set of solutions to the Pareto-optimal front and
another metric responsible for finding the spread of the solutions, the performance
of the above described two algorithms are non-dominated to each other. There is a
clear need of having at least two performance metrics for adequately evaluating both
goals of multi-objective optimization.

Besides the two extreme cases of an ideal convergence with a bad diversity
(Algorithm 1 in the previous example) and a bad convergence with an ideal diversity
(Algorithm 2), there could be other scenarios. Figure 185 shows that the non
dominated set of solutions obtained by using Algorithm A dominates the non
dominated set of solutions obtained by using Algorithm B. In this case, Algorithm A
has clearly performed better than Algorithm B. However, there could be a more
confusing scenario (Figure 186) where a part of the solutions obtained by using
Algorithm A dominates a part of the solutions obtained by using Algorithm B, and
vice versa. This scenario introduces a third dimension of difficulty in designing a
performance metric for multi-objective optimization. In this case, both algorithms
have similar convergence and diversity properties. The outcome of the comparison
will largely depend on the exact definition of the metrics used for these measures.

Based on these discussions, we realize that while comparing two or more algorithms,
at least two performance metrics (one evaluating the progress towards the Pareto
optimal front and the other evaluating the spread of solutions) need to be used and
the exact definitions of the performance metrics are important. In the following three
subsections, we will categorize some of the performance metrics commonly used in the
literature. The first type discusses metrics that can be used to measure the progress
towards the Pareto-optimal front explicitly. The second type discusses metrics that
can be used to measure the diversity among the obtained solutions explicitly. The
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Figure 185 Algorithm A performs better

than Algorithm B.

Figure 186 Algorithms A and Bare

difficult to compare.

third type uses two metrics which measure both goals of multi-objective optimization
in an implicit manner.

8.2.1 Metrics Evaluating Closeness to the Pareto-Optimal Front

This metric explicitly computes a measure of the closeness of a set Q of N solutions
from a known set of the Pareto-optimal set P*. In some test problems, the set P*

may be known as a set of infinite solutions (for example, the case where an equation
describing the Pareto-optimal relationship among the decision variables is known) or
a set of finite solutions (only a few solutions are known or possible to compute). In
order to find the proximity between two sets of different sizes, a number of metrics
can be defined. The following metrics are already used for this purpose in different
MOEA studies. They provide a good estimate of convergence if a large set for P* is
chosen.

Error Ratio

This metric (ER) simply counts the number of solutions of Q which are not members
of the Pareto-optimal set P* (Veldhuizen, 1999), or mathematically,

,101
ER = Li=l ei

IQI '
(8.2)

where e, = 1 if i (j. P* and e, = 0, otherwise. Figure 187 shows the Pareto-optimal
set as filled circles and the obtained non-dominated set of solutions as open squares.
In this case, the error ratio ER = 3/5 = 0.6, since there are three solutions which are
not members of the Pareto-optimal set. Equation (8.2) reveals that a smaller value
of ER means a better convergence to the Pareto-optimal front. The metric ER takes
a value between zero and one. An ER = °means all solutions are members of the
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Figure 187 The set of non-dominated solutions Q are shown as open squares, while a set
of the chosen Pareto-optimal set P* is shown as filled circles.

Pareto-optimal front P*, and an ER = 1 means no solution is a member of the P*.

It is worth mentioning here that although a member of Q is Pareto-optimal, if
that solution does not exist in P*, it may be counted in equation (8.2) as a non
Pareto-optimal solution. Thus, it is essential that a large set for P* is used in the
above equation. Another drawback of this metric is that if no member of Q is in the
Pareto-optimal set, it does not distinguish the relative closeness of any set Q from
P*. Because of this discreteness in the values of ER, this metric is not popularly used.
The metric can be made more useful, by redefining ei as follows. For each solution
i E Q, if the minimum Euclidean distance (in the objective space) between i and P*

is larger than a threshold value b, the parameter ei is set to one. By using a suitable
value for S, this modified metric would then represent a measure of the proportion of
the solutions close to the Pareto-optimal front.

Set Coverage Metric

A similar metric is suggested by Zitzler (1999). However, the metric can also be used
to get an idea of the relative spread of solutions between two sets of solution vectors
A and B. The set coverage metric C(A, B) calculates the proportion of solutions in B,
which are weakly dominated by solutions of A:

C( )
= I{b E BI.:Ja E A: a ::S b}1

A,B IBI . (8.3)

The metric value C(A, B) = 1 means all members of B are weakly dominated by A.
On the other hand, C(A, B) = 0 means that no member of B is weakly dominated by
A. Since the domination operator is not a symmetric operator (refer to Section 2.4.3),
C(A, B) is not necessarily equal to 1 -C(B,A). Thus, it is necessary to calculate both
C(A, B) and C(B,A) to understand how many solutions of A are covered by Band



312 MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION

vice versa. It is interesting to note that the cardinality of both vectors A and B need
not be the same while using the above equation.

Although Zitzler (1999) used this metric for comparing the performance of two
algorithms, it can also be used to evaluate the performance of an algorithm by using
A = P* and B = Q. The metric C(P* , Q) will determine the proportion of solutions in
Q, which are weakly dominated by members of P*. For the sets P* and Q shown in
Figure 187, C(P*, Q) = 3/5 = 0.6, since three solutions (A, B and D) are dominated
by a member of P*. It is needless to write that C(Q, P*) is always zero.

Generational Distance

Instead of finding whether a solution of Q belongs to the set P* or not, this metric
finds an average distance of the solutions of Q from P*, as follows (Veldhuizen, 1999):

(,\IQI dP)l/p
GD = L,=l l

IQI
(8.4)

For p = 2, the parameter d. is the Euclidean distance (in the objective space) between
the solution i E Q and the nearest member of P*:

IP*I
d, = min

k=l

M

'\ (fli) _ f* Ik))2L.. m. m ,
m e- l

(8.5)

where f;;' (k) is the m-th objective function value of the k-th member of P*. For the
obtained solutions shown in Figure 187, solution A is closest to the Pareto-optimal
solution 1, solution B is closest to solution 3, solution C is closest to solution 5,
solution D is closest to solution 7 and solution E is closest to 8. If the Pareto-optimal
solutions have the following objective function values:

Solution f 1 f 2 Solution f 1 f2
1 1.0 7.5 5 4.0 2.8
2 1.1 5.5 6 5.5 2.5
3 2.0 5.0 7 6.8 2.0
4 3.0 4.0 8 8.4 1.2

the corresponding Euclidean distances are as follows:

dAl V(1.2 -1.0)2 + (7.8 - 7.5)2 = 0.36,

dB3 V(2.8 - 2.0)2 + (5.1 - 5.0)2 = 0.81,

des V(4.0 - 4.0)2 + (2.8 - 2.8)2 = 0.00,

d07 V(7.0 - 6.8)2 + (2.2 - 2.0)2 = 0.28,

dE8 J(8.4 - 8.4)2 + (1.2 - 1.2)2 = 0.00.
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Thus, the generational distance (GO) calculated using equation (8.4) with p = 2 is
GO = 0.19. Intuitively, an algorithm having a small value of GO is better.

The difficulty with the above metric is that if there exists a Q for which there is a
large fluctuation in the distance values, the metric may not reveal the true distance.
In such an event, the calculation of the variance of the metric GO is necessary.
Furthermore, if the objective function values are of differing magnitude, they should
be normalized before calculating the distance measure. In order to make the distance
calculations reliable, a large number of solutions in the P* set is recommended.

Because of its simplicity and average characteristics (with p = 1), other researchers
have also suggested (Zitzler, 1999) and used this metric (Deb et al., 2000a). The
latter investigators have used this metric in a recent comparative study. For each
computation of this metric (they called it Y), the standard deviations of Y among
multiple runs are also reported. If a small value of the standard deviation is observed,
the calculated Y can be accepted with confidence.

Maximum Pareto-Optimal Front Error

This metric (MFE) computes the worst distance d. among all members of Q
(Veldhuizen, 1999). For the example problem shown in Figure 187, the worst distance
is caused by the solution B (referring to the calculations above). Thus, MFE = 0.81.
This measure is a conservative measure of convergence and may provide incorrect
information about the distribution of solutions. In this connection, a 'X' percentile
(where X = 25 or 50) of the distances d. among all solutions of Q can be used as a
metric. We will discuss more about such percentile measures later in this section.

8.2.2 Metrics Evaluating Diversity Among Non-Dominated Solutions

There also exists a number of metrics to find the diversity among obtained non
dominated solutions. In the following, we describe a few of them.

Spacing

Schott (1995) suggested a metric which is calculated with a relative distance measure
between consecutive solutions in the obtained non-dominated set, as follows:

s=
1 101 _

iQT ~(di - d)2, (8.6)

where d, = minkEO/\kfi L~-l If~n -f~ll and d is the mean value of the above distance

measure d = L~~ll ddlQI. The distance measure is the minimum value of the sum of
the absolute difference in objective function values between the i-th solution and any
other solution in the obtained non-dominated set. Notice that this distance measure
is different from the minimum Euclidean distance between two solutions.

The above metric measures the standard deviations of different d. values. When
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(8.7)

the solutions are near uniformly spaced, the corresponding distance measure will be
small. Thus, an algorithm finding a set of non-dominated solutions having a smaller
spacing (5) is better.

For the example problem presented in Figure 187, we show the calculation procedure
for dA:

dA min ((1.6 +2.7), (2.8 +5.0), (5.8 +5.6), (7.2 + 6.6))

4.3.

Similarly, dB = 3.5, de = 3.5, do = 2.4 and dE = 2.4. Figure 187 shows that the
solutions A to E are almost uniformly spaced in the objective space. Thus, the standard
deviation in the corresponding d, values would be large. We observe that d = 3.22
and the metric 5 = 0.73. For a set of non-dominated solutions which are randomly
placed in the objective space, the standard deviation measure would be much small.

Conceptually, the above metric provides useful information about the spread of
the obtained non-dominated solutions. However, if proper bookkeeping is not used,
the implementational complexity is O(IQI2 ) . This is because for each solution i, all
other solutions must be checked for finding the minimum distance d.. Although by
using the symmetry in distance measures, half the calculations can be avoided, the
complexity is still quadratic to the number of obtained non-dominated solutions. Deb
et al. (2000a) suggested calculating d. between consecutive solutions in each objective
function independently. The procedure is as follows.

First, sort the obtained non-dominated front in ascending order of magnitude in each
objective function. Now, for each solution, sum the difference in objective function
values between two nearest neighbors in each objective. For a detailed procedure,
refer to Section 6.2 above. Since the sorting has a complexity O(IQllog IQI)' this
distance metric would be quicker to compute than the above distance metric. Since
different objective functions are added together, normalizing the objectives before
using equation (8.6) is essential. Moreover, the above metric does not take into account
the extent of spread. As long as the spread is uniform within the range of obtained
solutions, the metric 5 produces a small value. The following metric takes care of the
extent of spread in the obtained solutions.

Spread

Deb et al. (2000a) suggested the following metric to alleviate the above difficulty:

Li = L~=l d~ + L~~ll Idi - dl
'\M '
Lm=l d~ + [Qld

where d, can be any distance measure between neighboring solutions and d is the mean
value of these distance measures. The Euclidean distance, the sum of the absolute
differences in objective values or the crowding distance (defined earlier on page 236)
can be used to calculate d.. The parameter d~ is the distance between the extreme
solutions of P* and Q corresponding to m-th objective function.
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For a two-objective problem, the corresponding d1and d2are shown in Figure 188
and d. can be taken as the consecutive Euclidean distance between i-th and (i + 1)-th
solutions. Thus, the term IQI in the above equation may be replaced by the term
(IQI - 1). The metric takes a value zero for an ideal distribution, only when dj = 0

and all d, values are identical to their mean d. The first condition means that in the
obtained non-dominated set of solutions, the true extreme Pareto-optimal solutions
exist. The second condition means that the distribution of intermediate solutions is
uniform. Such a set is an ideal outcome of any multi-objective EA. Thus, for an
ideal distribution of solutions, L1 = O. Consider another case, where the distribution
of the obtained non-dominated solutions is uniform but they are clustered in one
place. Such a distribution will make all [d, - dl values zero, but will cause non-zero

values for d;n' The corresponding L1 becomes L ~ 1 d~, / (L ~c 1 d~+(I Q1-1)d). This
quantity lies within [0,1]. Since the denominator measures the length of the piece
wise approximation of the Pareto-front, the L1 value increases with d~. Thus, as the
solutions get clustered more and more closer from the ideal distribution, the L1 value
increases from zero towards one. For a non-uniform distribution of the non-dominated
solutions, the second term in the numerator is not zero and, in turn, makes the L1
value more than that with a non-uniform distribution. Thus, for bad distributions,
the L1 values can be more than one as well.

For the example problem in Figure 187, the extreme right Pareto-optimal solution
(solution 8) is the same as the extreme non-dominated solution (solution E). Thus,
d2= 0 here. Since solution 1 (the extreme left Pareto-optimal solution) is not found,
we calculate d1= 0.5 (using Schott's difference distance measure). We calculate the
d, values accordingly:

d i = 4.3,
d, = 3.5,

dz = 3.5,
d, = 2.4.
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The average of these values is d = 3.43. We can now use these values to calculate the
spread metric:

0.5 + 0.0 + 14.3 - 3.431 + 13.5 - 3.431 + 13.5 - 3.431 + 12.4 - 3.431

0.5 + 0.0 +4 x 3.43
0.18.

Since this value is close to zero, the distribution is not bad. If solution A were the
same as solution 1, Ll = 0.15, meaning that the distribution would have been better
than the current set of solutions. Thus, an algorithm finding a smaller Ll value is able
to find a better diverse set of non-dominated solutions.

Maximum Spread

Zitzler (1999) defined a metric measuring the length of the diagonal of a hyperbox
formed by the extreme function values observed in the non-dominated set:

(8.8)

For two-objective problems, this metric refers to the Euclidean distance between the
two extreme solutions in the objective space, as shown in Figure 189.

In order to have a normalized version of the above metric, it can be modified as

follows:

D= (8.9)

I
I

I

I
I

I

I
I
I

___ L _

I

I

Figure 189 The maximum spread does not reveal true distribution of solutions.
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(8.10)

Here, F:a x and F:in are the maximum and minimum value of the m-th objective in
the chosen set of Pareto-optimal solutions, P*. In this way, if the above metric is one,
a widely spread set of solutions is obtained. However, neither D nor D can evaluate
the exact distribution of intermediate solutions.

Chi-Square-Like Deviation Measure

We proposed this metric for multi-modal function optimization and later used it
to evaluate the distributing ability of multi-objective optimization algorithms (Deb,
1989). A brief description of this measure is also presented on page 154. In this metric,
a neighborhood parameter € is used to count the number of solutions, ni, within each
chosen Pareto-optimal solution (solution i E P*). The distance calculation can be
made in either the objective space or in the decision variable space. The deviation
between this counted set of numbers with an ideal set is measured in the chi-square
sense:

IP*.I-tl ( _)2, n, -ni ,
L= L.

ic 1 (Ji

Since there is no preference to any particular Pareto-optimal solution, it is customary
to choose a uniform distribution as an ideal distribution. This means that there
should be n, = IQI/IP*I solutions allocated in the niche of each chosen Pareto-optimal
solution. The parameter (Jt = nd'-ntlIQll is suggested for i = ',2, ... ,IP*!. However,
the index i = IP*I+' represents all solutions which do not reside in the e-neighborhood
of any of the chosen Pareto-optimal solutions. For this index, the ideal number of
solutions and its variance are calculated as follows:

Let us illustrate the calculation procedure for the scenario depicted in Figure 190.
There are five chosen Pareto-optimal solutions, marked as 1 to 5. The obtained non
dominated set of IQI = '0 solutions are marked as squares. Thus, the expected number
of solutions near each of the five Pareto-optimal solutions (IP* I = 5) is n = '015 or
2 and n6 = 0 (the expected number of solutions away from these five Pareto-optimal
solutions). The corresponding standard deviations can be calculated by using these
numbers: (Jt = '.6 for i = , to 5 and (J~ = 5 x '.6 = 8.0. Now, we count the actual
number of non-dominated solutions present near each Pareto-optimal solution (the
neighborhood is shown by dashed lines). We observe from the figure that

nl =', n2 = 3, n3 =', n4 = 2, ns =', n., = 2.

With these values, the metric is:

(' -2)2 (3_2)2 ('_2)2 (2_2)2 ('-2)2 (2-0)2
Jf6+Jf6+Jf6+Jf6+Jf6+JfO'

'.73.
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5

Figure 190 Non-dominated solutions in each niche of the five Pareto-optimal solutions.

Since the above metric is a deviation measure, an algorithm finding a smaller value
of this metric is better able to distribute its solutions near the Pareto-optimal region.
If the ideal distribution is found, this metric will have a value zero. If most solutions
are away from the Pareto-optimal solutions, this metric cannot evaluate the spread of
solutions adequately.

8.2.3 Metrics Evaluating Closeness and Diversity

There exist some metrics where both tasks have been evaluated in a combined sense.
Such a metric can only provide a qualitative measure of convergence as well as
diversity. Nevertheless, they can be used along with one of the above metrics to get a
better overall evaluation.

Hypervolume

This metric calculates the volume (in the objective space) covered by members of
Q (the region shown hatched in Figure 191) for problems where all objectives are
to be minimized (Veldhuizen, 1999; Zitzler and Thiele, 1998b). Mathematically, for
each solution i E Q, a hypercube Vi is constructed with a reference point Wand the
solution i as the diagonal corners of the hypercube. The reference point can simply be
found by constructing a vector of worst objective function values. Thereafter, a union
of all hypercubes is found and its hypervolume (HV) is calculated:

(
IQI )HV = volume Ui = 1Vi . (8.11)

Figure 191 shows the chosen reference point W. The hypervolume is shown as a
hatched region. Obviously, an algorithm with a large value of HV is desirable. For
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the example problem shown in Figure 187, the hypervolume HV is calculated with
W=(11.0,10.0)T as:

HV = (11.0 - 8.4) x (10.0 -1.2) + (8.4 - 7.0) x (10.0 - 2.2)

+(7.0~4.0) x (10.0-2.8)+(4.0-2.8) x (10.0-5.1)

+(2.8 ~ 1.2) x (10.0 - 7.8)

64.80.

This metric is not free from arbitrary scaling of objectives. For example, if the first
objective function takes values an order of magnitude more than that of the second
objective, a unit improvement in f 1 would reduce HV much more than that a unit
improvement in fz. Thus, this metric will favor a set Q which has a better converged
solution set for the least-scaled objective function. To eliminate this difficulty, the
above metric can be evaluated by using normalized objective function values.

Another way to eliminate the bias to some extent and to be able to calculate a
normalized value of this metric is to use the metric HVR which is the ratio of the HV
of Q and of P*, as follows (Veldhuizen, 1999):

HV(Q)
HVR = HV(P*)' (8.12)

For a problem where all objectives are to be minimized, the best (maximum) value of
the HVR is one (when Q = P*). For the Pareto-optimal solutions shown in Figure 187,
HV(P*) = 71.53. Thus, HVR = 64.80/71.53 = 0.91. Since this value is close to one,
the obtained set is near the Pareto-optimal set. It is clear that values of both HV and
HVR metrics depend on the chosen reference point W.
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Attainment Surface Based Statistical Metric

Fonseca and Fleming (1996) suggested the concept of an attainment surface in the
context of multi-objective optimization. In many studies, the obtained non-dominated
solutions are usually shown by joining them with a curve. Although such a curve
provides a better illustration of a front, there is no guarantee that any intermediate
solution lying on the front is feasible, nor is there any guarantee that intermediate
solutions are Pareto-optimal. Fonseca and Fleming argued that instead of joining the
obtained non-dominated solutions by a curve, an envelope can be formed marking
all those solutions in the search space which are sure to be dominated by the set of
obtained non-dominated solutions. Figure 192 shows this envelope for a set of non
dominated solutions. The generated envelope is called an attainment surface and
is identical to the surface used to calculate the hypervolume (discussed above). Like
the hypervolume metric, an attainment surface also signifies a combination of both
convergence and diversity of the obtained solutions.

The metric derived from the concept of attainment surface is a practical one. In
practice, an MOEA will be run multiple times, each time starting the MOEA from a
different initial population or parameter setting. Once all runs are over, the obtained
non-dominated solutions can be used to find an attainment surface for each run.
Figure 193 shows the non-dominated solutions for three different MOEA runs for the
same problem with the same algorithm, but with different initial populations. With
a stochastic search algorithm, such as an evolutionary algorithm, it is expected that
variations in its performance over multiple runs may result. Thus, such a plot does not
provide a clear idea of the true non-dominated front. When two or more algorithms are
to be compared, the cluttering of the solutions near the Pareto-optimal front may not
provide a clear idea about which algorithm performed better. Figure 194 shows the
corresponding attainment surfaces, which can be used to define a metric for a reliable

Figure 192 The attainment surface is created for a number of non-dominated solutions.
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Figure 193 Non-dominated solutions ob

tained using three different runs of an

MOEA.

Figure 194 Corresponding attainment

surfaces provide a clear understanding of the

obtained fronts.

comparison of two or more algorithms or for a clear understanding of the obtained
non-dominated front.

First, a number of diagonal imaginary lines, running in the direction of the
improvement in all objectives, are chosen. For each line, the intersecting points of
all attainment surfaces for an algorithm are calculated. These points will lie on the
chosen line and, thus will follow a frequency distribution. Using these points, a number
of statistics, such as 25, 50 or 75% attainment surfaces, can be derived. Figure 195
shows an arbitrary cross-line AB and the corresponding intersecting points by the
three attainment surfaces. The frequency distribution along the cross-line for a large

Frequency distribution

A bk B
25%J5O%75%

Figure 195 Intersection points on a typical cross-line. A frequency distribution or a

histogram can be created from these points.
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number of hypothetical attainment surfaces is also marked on the cross-line AB. The
points corresponding to 25, 50 or 75% attainment surfaces are also shown.

The frequency distribution and different attainment surfaces for another set of
non-dominated solutions obtained using a second algorithm can also be computed
likewise. Once the frequency distributions are found on a chosen line, a statistical
test (the Mann-Whitney U test (Knowles and Corne, 2000), or the Kolmogorov
Smirnov type test (Fonesca and Fleming, 1996), or others) can be performed with
a confidence level 13 to conclude which algorithm performed better along that line.
The same procedure can be repeated for other cross-lines (at different locations in the
trade-off regions with different slopes). On every line, one of three decisions can be
made with the chosen confidence level: (i) Algorithm A is better than Algorithm B,
(ii) Algorithm B is better than Algorithm A, or (iii) no conclusion can be made
with the chosen confidence level. With a total of L lines chosen, Knowles and Corne
(2000) suggested a metric [a, b] with a confidence limit 13, where a is the percentage
of times that Algorithm A was found better and b is the percentage of times that
Algorithm B was found better. Thus, 100 - (a + b) gives the percentage of cases
the results were statistically inconclusive. Thus, if two algorithms have performed
equally well or equally bad, the percentage values a and b will be small, such as
[2.8,3.2], meaning that, in 94% of the region found by two algorithms no algorithm is
better than the other. However, if the metric returns values such as [98.0, 1.8], it can
be said that Algorithm A has performed better than Algorithm B. Noting the lines
where each algorithm performed better or where the results were inconclusive, the
outcome of this statistical metric can also be shown visually on the objective space.
Figure 196 shows the regions (by continuous lines) where Algorithm A performed
better and regions where the algorithm B performed better. The figure also shows
the regions where inconclusive results were found (marked with dashed curves). The
results on such a plot can be shown on the grand 50% attainment surface, which
may be computed as the 50% attainment surface generated by using the combined
set of points of two algorithms along any cross-line. In the absence of any preference
to any objective function, it can be concluded that an Algorithm A has performed
better than Algorithm B if a > b, and vice versa. Of course, the outcome will depends
on the chosen confidence level. Fonseca and Fleming (1996) nicely showed how such
a comparison depends on the chosen confidence limit. In most studies (Fonesca and
Fleming, 1996; Knowles and Corne, 2000), confidence levels of 95 and 99% were used.

Knowles and Corne (2000) extended the definition of the above metric for comparing
more than two algorithms. For K algorithms, the above procedure can be repeated for
(~) distinct pairs of algorithms. Thereafter, for each algorithm k the following two
counts can be made:

1. The percentage (uj ) of the region where one can be statistically confident with
the chosen confidence level that the algorithm K was not beaten by any other
algorithm.

2. The percentage (bd of the region where one can be statistically confident with the
chosen confidence level that the algorithm beats all other (K - 1) algorithms.
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Figure 196 The regions where either Algorithm A or B performed statistically better are

shown by continuous lines, while the regions where no conclusion can be made are marked

with dashed lines.

It is interesting to note that for every algorithm, Uk :2 b k , since the event described
in item 2 is included in item 1 above. An algorithm with large values of Uk and b k is
considered to be good. Two or more algorithms having more or less the same values of
Uk should be judged by the bj, value. In such an event, the algorithm having a large
value of b k is better.

Weighted Metric

A simple procedure to evaluate both goals would be to define a weighted metric of
combining one of the convergence metrics and one of the diversity measuring metric
together, as follows:

W = Wl GD + wzLi, (8.13)

with Wl + Wz = 1. Here, we have combined the generational distance (GD) metric
for evaluating the converging ability and Li to measure the diversity-preserving ability
of an algorithm. We have seen in the previous two subsections that the GD takes a
small value for a good converging algorithm and Li takes a small value for a good
diversity-preserving algorithm. Thus, an algorithm having an overall small value of W
means that the algorithm is good in both aspects. The user can choose appropriate
weights (w. and wz) for combining the two metrics. However, if this metric is to be
used, it is better that a normalized pair of metrics is employed.

Non-Dominated Evaluation Metric

Since both metrics evaluate two conflicting goals, it is ideal to pose the evaluation of
MOEAs as a two-objective evaluation problem. If the metric values for one algorithm
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Figure 197 Algorithms A and C produce a non-dominated outcome.

(8.14)

dominate that of the other algorithm, then the former is undoubtedly better than the
latter. Otherwise, no affirmative conclusion can be made about the two algorithms.
Figure 197 shows the performance of three algorithms on a hypothetical problem.
Clearly, Algorithm A dominates Algorithm B, but it cannot be said which is better
between Algorithms A and C.

A number of other metrics and guidelines for comparing two non-dominated sets
are discussed elsewhere (Hansen and Jaskiewicz, 1998).

8.3 Test Problem Design

In multi-objective evolutionary computation, researchers have used many different
test problems with known sets of Pareto-optimal solutions. Veldhuizen (1999) in his
doctoral thesis outlined many such problems. Here, we present a number of such
test problems which are commonly used. Later, we argue that most of these test
problems are not tunable and it is difficult to establish what feature of an algorithm
has been tested by these problems. Based on these arguments, we shall present a
systematic procedure of designing test problems for unconstrained and constrained
multi-objective evolutionary optimization. Moreover, although many test problems
were used in earlier studies, the exact locations of the Pareto-optimal solutions were
not clearly shown. Here, we make an attempt to identify their exact location using
the optimality conditions described in Section 2.5.

Although simple, the most studied single-variable test problem is Schaffer's two
objective problem (Schaffer, 1984):

{

Minimize f] (x) = x2 ,

SCH1: Minimize f 2 (x ) = (x - 2j2,
-A:S;x :S;A.

This problem has Pareto-optimal solutions x* E [0,2] and the Pareto-optimal set is a
convex set:
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Figure 198 Decision variable and objective space in Schaffer's function SCHl.

in the range 0 S; fi S; 4. Figure 198 shows the objective space for this problem and the
Pareto-optimal front. Different values of the bound-parameter A are used in different
studies. Values as low as A = 10 to values as high as A = 105 have been used. As the
value of A increases, the difficulty in approaching towards the Pareto-optimal front is
enhanced.

Schaffer's second function, SCH2, is also used in many studies (Schaffer, 1984):

SCH2:
Minimize

Minimize

{

- x
x-2

fdx) = 4 - x

x-4
f2(X) = (x - 5)2,

-5 S; x S; 10.

ifxS;l,
if 1 < x S; 3,
if 3 < x S; 4,
if x> 4,

(8.15)

The Pareto-optimal set consists of two discontinuous regions: x* E {[1,2] U [4,5]}.
Figure 199 shows both functions and the objective space. The Pareto-optimal regions
are shown by bold curves. Note that although the region BC produces a conflicting
scenario with the two objectives (as fl increases, fz decreases, and vice versa), the
scenario for DE is better than that for BC. Thus, the region BC does not belong to
the Pareto-optimal region. The corresponding Pareto-optimal regions (AB and DE)
are also shown in the objective space. The main difficulty an algorithm may face in
solving this problem is that a stable subpopulation on each of the two disconnected
Pareto-optimal regions may be difficult to maintain.

Fonseca and Fleming (1995) used a two-objective optimization problem having n
variables:

f Minimize

FON, 1Minimize

fdx) = 1 - exp (- L~~l (Xi - In)2) ,
f 2 (x ) = 1 - exp (- L~ll (Xi + In)2),
-4 S; Xi S; 4 i = 1,2, ... , n.

(8.16)
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The Pareto-optimal solution to this problem is xi = [-1/yn,1/yll] for i
1,2, ... ,n, These solutions also satisfy the following relationship between the two
function values:

fi = 1 - exp { - [2 - J-In( 1 _ fj )] 2 }

in the range 0 :::; fj :::; 1 - exp (-4). The interesting aspect is that the search space
in the objective space and the Pareto-optimal function values do not depend on the
dimensionality (the parameter n) of the problem. Figure 200 shows the objective space
for n = 10. Solution A corresponds to xi = 1/yn for all i = 1,2, ... ,n, and solution B
corresponds to xi = -1/yn for all i = 1,2, ... , n. Another aspect of this problem
is that the Pareto-optimal set is a nonconvex set. Thus, weighted sum approach will
have difficulty in finding a diverse set of Pareto-optimal solutions.

pareto-optimal}
front0.4

0.6

0.2

0.8
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o 0.2 0.4 0.6

f 1
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Figure 200 The objective space and Pareto-optimal region in the test problem FON.
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Kursawe (1990) used a two-objective optimization problem which IS more
complicated1

:

KUR {

Minimize

Minimize

fdx) = L~=l [-10exp(-0.2Jxf +Xf+d,

f2(X) = L~~l [IXiI08 + 5sin(xf)] ,
-5 S; Xi S; 5, i = 1,2,3.

(8.17)

The Pareto-optimal set is nonconvex as well as disconnected in this case. Figure 201
shows the objective space and the Pareto-optimal region for this problem. There
are three distinct disconnected Pareto-optimal regions. The decision variable values
corresponding to the true Pareto-optimal solutions are difficult to know here.
Solution 0 is a Pareto-optimal solution having xi = 0 for all i. = 1, 2, 3. Some Pareto
optimal solutions (region A in Figure 201) correspond to xi = xi = 0, and some
solutions (regions B and C) correspond to xi = xj. For these latter solutions, there are
effectively two independent decision variables and we can use equation (2.9) earlier to
arrive at the necessary condition for Pareto-optimality (assuming all Xi take negative
values):

A part of the region B is constituted for xi = O. Substituting xi = 0 in the above
equations, and using equation (2.9) with Xl and X3 variables, we obtain the necessary

1 The original problem used the term sin3 (Xi), instead of sin( xf), in f2 (x). Moreover, the problem
was defined for any number of decision variables and with no variable bounds (Kursawe, 1990).
To simplify our discussion here, we follow the three-variable modified version used elsewhere
(Veldhuizen, 1999).
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condition for Pareto-optimality:

exp( -O.2x3) [15(xj)2 cos(xj)3 - O.S( -xiJ-O.2]

exp( -O.2xiJ [15(X3)2 cost X3)3 - O.S(-x3r 0.2] .
(8.19)

Figure 202 shows the decision variable values corresponding to Pareto-optimal
solution 0 and Pareto-optimal regions A, Band C. The Pareto-optimal solutions
for the overall three-dimensional decision variable space and for the three individual
pair-wise decision variable spaces are shown. It is clear that they are constituted with
disconnected set of solutions in the decision variable space. It is also interesting to
note that the region B is constituted with a disconnected set of decision variables,
although they form a continuous set of solutions in the objective space (Figure 201).
Because of the discrete nature of the Pareto-optimal region, optimization algorithms
may have difficulty in finding Pareto-optimal solutions in all regions. The difficulty
in knowing the true Pareto-optimal front forced past studies to approximate the true
Pareto-optimal front with a few experimentally found solutions (Veldhuizen, 1999).

Poloni et al. (2000) used the following two variable, two-objective problem which
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Figure 202 Pareto-optimal solutions in the decision variable space for the test problem

KUR.
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has been used by many researchers subsequently:
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POL:

Minimize
Minimize
where

f] (x) = [1 + (A1 - B])2 + (A2 - B2)2] ,
f2(X) = [(Xl + 3)2 + (X2 + 1)2] ,
A, = 0.5 sin 1 - 2 cos 1 + sin 2 - 1.5 cos 2,
A2 = l.5sin 1 - cos 1 + 2sin2 - 0.5cos2,
B1 =0.5sinx,-2cosx] +sinx2-1.5cosx2,
B2 = lfisin x- - COSX1 + Zsin x, - 0.5cosx2,
-7[ s: (Xl, X2) s: 7[.

(8.20)

This function has a nonconvex and disconnected Pareto-optimal set, as shown in
Figure 203. The true Pareto-optimal set of solutions is difficult to know in this
problem. Figures 203 and 204 show that Pareto-optimal solutions are discontinuous
in the objective as well as in the decision variable space. Like other problems
having disconnected Pareto-optimal sets, this problem may also cause difficulty to
many multi-objective optimization algorithms. However, it is interesting to note from
Figure 204 that most parts (region A) of the Pareto-optimal region are constituted by
the boundary solutions of the search space. If the lower bound on X1 is relaxed, the
convex Pareto-optimal front A gets wider and the Pareto-optimal front B vanishes.
Thus, the existence of the Pareto-optimal region B is purely because of the setting up
of the lower bound of X1 to -7[.

Viennet (1996) used two three-objective optimization problems. We present one of
these in the following:

!
Minimize
Minimize

VNT: M'"mmuze

fdx) = O.5(xT + x~) + sin(xT + x~),

f2(X) = (3X1 -2X2 +4)2/8 + (Xl -X2 + 1)2/27 + 15,

f3(X) = 2 \ 1 -1.1 exp [-txT +x~)],
Xl +X2 +

-3 < (Xl, X2) < 3.

25

20

5

2 4 6 8 to 12 14 16 18 20

£1

(8.21)

Figure 203 Pareto-optimal sets in the objective space for the test problem POL.
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POL.

This problem has two variables. The true location of the Pareto-optimal set can be
found by realizing the parametric relationship between objectives 1 and 3:

O.5r+ sin r,,
-,- -1.1 exp(-r).

+r
where r = xf + x~ and 0 :::; r :::; '8. For each value of r, the minimum of the second
objective function may be a candidate solution for the true Pareto-optimal set. The
resulting Pareto-optimal solutions are shown in Figure 205. The decision variable
region for the Pareto-optimal front is also shown in Figure 206. These plots show the
exact location of the Pareto-optimal solutions. It is important to note that all studies
in the past found inexact locations of the true Pareto-optimal region (Veldhuizen,
1999; Viennet, 1996). However, here we show their exact locations.

Although researchers have used a number of other test problems, the fundamental
problem with all of these is that the difficulty caused by such problems cannot be
controlled. In most problems, neither the dimensionality can be changed, nor the
associated complexity (such as nonconvexity, the extent of discreteness of the Pareto
optimal region, etc.) can be changed in a simple manner. Moreover, some of the
problems described above demonstrate how difficult it is to find the true nature of the
Pareto-optimal front. It seems many researchers have developed such test problems
without putting much thought into the outcome of the Pareto-optimal front. After
the objective functions were developed, it was discovered that for some problems the
resulting Pareto-optimal front is a union of a number of disconnected regions or a
nonconvex region. These functions do not offer a way to make the problems more
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Figure 205 Pareto-optimal solutions (marked by bold curves) in the objective space for
the test problem VNT.

difficult or more easy to solve.
The design of test problems is always important in evaluating the merit of any

new algorithm. This is also true for multi-objective optimization algorithms. To really
test the efficacy of any algorithm, it must be tried on difficult problems. This is
because almost any algorithm will probably solve an easy problem, but the real
advantage of one algorithm over another will show up in trying to solve difficult
problems. For example, let us consider the scenario for a single-objective optimization
algorithm. If we use a test problem which is easy (say a single-variable quadratic
function), many algorithms, including a steepest-descent method (Deb, 1995), will
do equally well in trying to find the minimum of the function. Does this mean that

the steepest-descent method is as suitable as another non-gradient method, such as
an evolutionary algorithm, in solving any problem? The answer to this question is a
simple 'no'. It is well known that in solving multi-modal problems, the steepest-descent
method is destined to proceed towards an optimum, in whose basin of attraction the
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chosen initial solution lies. However, one can also argue that an algorithm 'A', which
can solve difficult problems better than another algorithm 'B', need not solve easy
problems better than 'B'. However, over a large sample of problems and algorithms,
this argument is weak compared to the following counter-argument - an algorithm
'A', which can solve easy problems better than another algorithm 'B', need not
solve difficult problems better than 'B'. Moreover, since most real-world problems are
nonlinear, multi-modal and stochastic, we should prefer algorithms which are better
in solving difficult problems.

Although the motivation for solving difficult problems is clear, the difficulty arises
in defining which features make a problem difficult? The context of problem difficulty
naturally depends on the nature of problems that the underlying algorithms are
trying to solve. In the context of solving multi-objective optimization problems, we
are interested in knowing the features that make a problem difficult for a multi
objective optimization algorithm. Fortunately, there are two tasks that a multi
objective optimization algorithm must do well:

1. Converge as close to the true Pareto-optimal region as possible.
2. Maintain as many widely spread non-dominated solutions as possible.

Keeping in mind these two tasks, we can now design a problem where each of the above
tasks would be difficult to achieve. For example, by constructing a test problem with
many local Pareto-optimal regions emerging on the way towards the global Pareto
optimal front, an optimization algorithm can be offered trouble in converging to the
true Pareto-optimal front. Again, by constructing another test problem where the
density of solutions is non-uniform along the Pareto-optimal region, an algorithm
can be put into a test for finding a uniform spread of Pareto-optimal solutions. It
is intuitive that a more difficult problem can be constructed by having both of the
above features present in the test problem. In the following, we first suggest different
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difficulties that a multi-objective optimization algorithm may face and then construct
test problems featuring these difficulties.

8.3.1 Difficulties in Converging to the Pareto-Optimal Front

A multi-objective optimization algorithm may face difficulty in converging to the true
(or global) Pareto-optimal front because of various features that may be present in a
problem (Deb, 1999c), including the following:

1. multi-modality;
2. deception;
3. isolated optimum;
4. collateral noise.

All of the above features are known to cause difficulty in single-objective EAs
(Deb et al., 1993) and when present in a multi-objective problem may also cause
difficulty to an MOEA. In tackling a multi-objective problem having multiple Pareto
optimal fronts, an MOEA, like many other search and optimization methods, may
converge to a local Pareto-optimal front. Despite some criticism (Grefenstette, 1993),
deception, if present in a problem, has been shown to cause GAs to get misled towards
deceptive attractors (Deb et al., 1993; Goldberg et al., 1989). There may exist some
problems where the optimum is surrounded by a fairly flat search space. Since there
is no useful information that most of the search space can provide, no optimization
algorithm will perform better than an exhaustive search method to find the optimum
in these problems. Multi-objective optimization methods are also no exception to
facing difficulty in solving such a problem. Collateral noise comes from the improper
evaluation of low-order building blocks (partial solutions which may lead towards
the true optimum) due to the excessive noise that may come from other part of the
solution vector. These problems are usually 'rugged' with relatively large variation
in the function landscapes. Multi-objective problems having such 'rugged' functions
may also cause difficulties to MOEAs, if adequate population size (see Section 4.2.1
ear lier) is not used.

8.3.2 Difficulties in Maintaining Diverse Pareto-Optimal Solutions

As it is important for an MOEA to find solutions near or on the true Pareto-optimal
front, it is also necessary to find solutions as diverse as possible in the Pareto-optimal
front. In most multi-objective EAs, a specific diversity-maintaining operator, such as
a niching technique or a clustering technique is used to find diverse Pareto-optimal
solutions. However, the following features might reasonably be thought to cause an
MOEA difficulty in maintaining diverse Pareto-optimal solutions:

1. Convexity or nonconvexity in the Pareto-optimal front.
2. Discontinuity in the Pareto-optimal front.
3. Non-uniform distribution of solutions in the search space and in the Pareto-optimal

front.
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Figure 207 The fitness assignment proportional to the number of dominated solutions (the

shaded area) favors intermediate solutions in a convex Pareto-optimal front (a), compared

to that in a nonconvex Pareto-optimal front (b). Reproduced from Deb (1999c) (@ 1999 by

the Massachusetts Institute of Technology).

There exist multi-objective problems where the resulting Pareto-optimal front is
nonconvex. Although it may not be readily apparent, in tackling such problems an
MOEA's success in maintaining diverse Pareto-optimal solutions largely depends on
the fitness assignment procedure. In some MOEAs, the fitness of a solution may be
assigned proportional to the number of solutions it dominates. Figure 207 shows how
such a fitness assignment favors intermediate solutions, in the case of problems with a
convex Pareto-optimal front (Figure 207(a)). With respect to an individual champion
solution (marked with small solid bullets on the figures), the proportion of dominated
region covered by an intermediate solution is more in Figure 207(a) than in 207(b).
Using such an MOEA which favors solutions having more dominated solutions, there is
a natural tendency to find more intermediate solutions than solutions near individual
champions, thereby causing an artificial bias towards some portion of the Pareto
optimal region.

In some multi-objective optimization problems, the Pareto-optimal front may not be
continuous; instead it may be a collection of discretely spaced continuous sub-regions
(as in test problems SCH2, POL and VNT). In such problems, although solutions
within each sub-region may be found, competition among these solutions may lead to
extinction of some of these regions.

It is also likely that the density of feasible solutions in the Pareto-optimal front is
not uniform. Some regions in the front may be represented by a higher densiiu?
of solutions than other regions (see Figure 205 for such a non-uniformly dense
search space). In such cases, there may be a natural tendency for MOEAs to find
a biased distribution in the Pareto-optimal region. Using these concepts, a tunable
two-objective test problem generator has been devised and presented elsewhere (Deb,
1999c).

2 Density can be measured as the hypervolume of a sub-region in the parameter space representing
a unit hypercube in the fitness space.
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8.3.3 Tunable Two-Objective Optimization Problems

Let us consider the following n-variable two-objective problem:

335

Minimize
Minimize

fl(X)=f l(Xl,X2, ,Xk), }
f2(X) = g(Xk+l, , xn ) x h(fl, g).

(8.22)

The function fl is a function of k « n) variables [XI = (xl, ... ,xdT ], while the
function fz is a function of all n variables. The function 9 is a function of (n - k)
variables [XII = (Xk+1, ... ,xn ) T] which do not appear in the function fl . The function
h is a function of the fl and 9 function values directly. We avoid complications by
choosing the f 1 and 9 functions which take only positive values (or f 1 > 0 and 9 > 0)
in the search space. By choosing appropriate functions for fl, 9 and h, multi-objective
problems having specific features can be created, as follows.

1. Convexity or discontinuity in the Pareto-optimal front can be affected by choosing
an appropriate h function.

2. Convergence to the true Pareto-optimal front can be affected by using a difficult
(multi-modal, deceptive, etc.) 9 function.

3. Diversity in the Pareto-optimal front can be affected by choosing an appropriate
(nonlinear or multi-dimensional) f 1 function.

We describe each of the above constructions in the following subsections.

Convexity or Discontinuity in the Pareto-Optimal Front

By choosing an appropriate h function, multi-objective optimization problems with
convex, nonconvex, or discontinuous Pareto-optimal fronts can be created. Specifically,
if the following two properties of h are satisfied, the global Pareto-optimal set will
correspond to the global minimum of the function 9 and to all values of the function
fl:

1. The function h is a monotonically non-decreasing function in 9 for a fixed value of
fl.

2. The function h is a monotonically decreasing function of f l for a fixed value of g.

The first condition ensures that the global Pareto-optimal front occurs for the global
minimum value of the 9 function. The second condition ensures that there is a
continuous 'conflicting' Pareto-optimal front. Although many different functions may
exist, we present two such functions - one leading to a convex Pareto-optimal front
and the other leading to a more generic problem having a control parameter which
decides the convexity or the nonconvexity of the Pareto-optimal fronts.

Convex Pareto-Optimal Front

For the following function:
1

h(fl,g) =~' (8.23)



336 MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION

we only allow f] > O. The resulting Pareto-optimal set is (xi, x II ) T = {( X I, X II )T :

V'g(xrIl = OJ.

Convex and Nonconvex Pareto-Optimal Front

We choose the following function for h:

h(f],g) = { 1- (~~r, iff] < /3g,
0, otherwise.

(8.24)

With this function, we allow f] 2': 0, but 9 > O. The global Pareto-optimal
set corresponds to the global minimum of the 9 function. The parameter /3 is a
normalization factor to adjust the range of values of the functions f] and g. In order to
have a significant Pareto-optimal region, /3 may be chosen as /3 2': f] ,max/gmin, where
f] ,max and gmin are the maximum value of the function f] and the minimum (or
global optimum) value of the function g, respectively. It is interesting to note from
equation (8.24) that when ex > 1, the resulting Pareto-optimal front is nonconvex.
In tackling these problems, the classical weighted sum approach cannot find any
intermediate Pareto-optimal solution by using any weight vector. The above function
can also be used to create multi-objective problems having a convex Pareto-optimal
set by setting ex ~ 1. Other interesting functions for h may also be chosen.

Test problems having local and global Pareto-optimal fronts of mixed type (some of
convex and some of nonconvex shapes) can also be created by making the parameter
ex a function of g. These problems may cause difficulty to algorithms that work by
exploiting the shape of the Pareto-optimal front, simply because a search algorithm
needs to adopt to a different kind of front while moving from a local to a global
Pareto-optimal front. We illustrate one such problem, where the local Pareto-optimal
front is nonconvex, whereas the global Pareto-optimal front is convex. Consider the
following functions [xj , Xl E [0,1]) along with function h defined in equation (8.24):

g(Xl)
{

4 - 3 exp ( Xlo~g·2):, if 0 < Xl < 004,

4-2exp ( xlc;t7 ) , if 004 < xz < 1,

4x] ,

0.25 + 3.75 g(Xl) - g** ,
g* - g**

(8.25)

(8.26)

(8.27)

where g* and g** are the local and the global optimal function values of g, respectively.
Equation (8.27) is set to have a nonconvex local Pareto-optimal front at ex = 4.0
and a convex global Pareto-optimal front at ex = 0.25. The function h is given in
equation (8.24) with /3 = 1. A random set of 40 000 solutions (x], Xl E [0.0,1.0]) is
generated and the corresponding solutions in the f ]-fl space are shown in Figure 208.
The figure clearly shows the nature of the convex global and nonconvex local Pareto
optimal fronts. Notice that only a small portion of the search space leads to the
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Figure 208 A two-objective function with a nonconvex local Pareto-optimal front and

a convex global Pareto-optimal front. Reproduced from Deb (1999c) (@ 1999 by the

Massachusetts Institute of Technology).

global Pareto-optimal front. An apparent front at the top of the figure is due to the
discontinuity in the g(X2) function at X2 = 0.4.

By making ex as a function of f], a Pareto-optimal front having partially convex
and partially nonconvex regions can be created. We now illustrate a problem having
a discontinuous Pareto-optimal front.

Discontinuous Pareto-Optimal Front

As mentioned earlier, we have to relax the condition for h being a monotonically
decreasing function of f] in order to construct multi-objective problems with a
discontinuous Pareto-optimal front. In the following, we show one such construction
where the function h is a periodic function of f]:

(
f ] ) '" fl.

h(f l , g) = 1 - 9 - 9 sinf Zrrqfj ). (8.28)

The parameter q is the number of discontinuous regions in a unit interval of fl. By
choosing the following functions:

f] [xj ]

g(X2)

x i ,

1 + 10x2,

and allowing variables Xl and X2 to lie in the interval [0,1], we have a two-objective
optimization problem which has a discontinuous Pareto-optimal front. Since the h
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Figure 209 Random solutions are shown on an f]-f2 plot of a multi-objective problem

having disconnected Pareto-optimal fronts.

function is periodic to xj , certain portions of the search boundary are dominated.
This introduces discontinuity in the resulting Pareto-optimal front. Figure 209 shows
random solutions in the f 1-f2 space and the resulting Pareto-optimal fronts. Here,
we use q = 4 and (X = 2. In general, the discontinuity in the Pareto-optimal front
may cause difficulty to MOEAs which do not have an efficient way of maintaining
diversity among discontinuous regions. In particular, the function-space niching may
face difficulties in these problems, because of the discontinuities in the Pareto-optimal
front.

Hindrance to Reach the True Pareto-Optimal Front

It was discussed earlier that by choosing a difficult function for 9 alone, a difficult
multi-objective optimization problem can be created. Test problems with standard
multi-modal functions used in single-objective EA studies, such as Rastrigin's
functions, NK landscapes, etc., can all be chosen for the 9 function.

Biased Search Space

With a simple monotonic 9 function, the search space can have an adverse density of
solutions towards the Pareto-optimal region. Consider the following function for g:

(

,n ,n min)"Li=k+ 1 Xi - Li=k+ 1 Xi
g(Xm+ l , ... ,Xn) = gmin+ (gmax-gmin) I:n max_I:n min' (8.29)

i=k+ 1 Xi i=k+ 1 Xi

where gmin and gmax are the minimum and maximum function values that the function
9 can take. The values xrin and xrax are the minimum and maximum values of the
variable Xi. It is important to note that the Pareto-optimal region occurs when 9 takes
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the value gmin. The parameter y controls the bias in the search space. If 'Y < 1, the
density of solutions away from the Pareto-optimal front is large. We show this on a
simple problem with k = 1, n = 2, and with the following functions: fl [xj ] = x i ,

and h( fl' g) = 1 - (fJlg}2. We also use gmin = 1 and gmax = 2. Figures 210 and
211 show 50 000 random solutions, each with y equal to 1.0 and 0.25, respectively.
It is clear that for y = 0.25, not even one solution is found on the Pareto-optimal
front, whereas for y = 1.0, many Pareto-optimal solutions exist in the set of 50 000
random solutions. Random search methods are likely to face difficulties in finding the
Pareto-optimal front in the case with y close to zero, mainly due to the low density
of solutions towards the Pareto-optimal region.

Parameter Interactions

The difficulty in converging to the true Pareto-optimal front may also arise because
of parameter interactions. It was discussed earlier that the Pareto-optimal set in the
two-objective optimization problem described in equation (8.22) corresponds to all
solutions of different f l values. Since the purpose in an MOEA is to find as many
Pareto-optimal solutions as possible, and since in equation (8.22) the variables defining
fl are different from the variables defining g, an MOEA may work in two stages. In
one stage, all variables XI may be found and in the other stage optimal XII values
may be obtained. This rather simple mode of working of an MOEA in two stages can
face difficulty if the above variables are mapped to another set of variables. If M is a
random orthonormal matrix of size n x n, the true variables y can first be mapped
to derive the variables X by using:

X = My. (8.30)
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Figure 210 50 000 random solutions are

shown for y = 1.0. Reproduced from Deb

(1999c ) (© 1999 by the Massachusetts

Institute of Technology).

Figure 211 50 000 random solutions are

shown for y = 0.25. Reproduced from

Deb (1999c) (© 1999 by the Massachusetts

Institute of Technology).



340 MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION

Thereafter, the objective functions defined in equation (8.22) can be computed by
using the variable vector x. Since the components of x can now be negative, care
must be taken in defining the f land 9 functions so as to satisfy the restrictions
placed on them in previous subsections. A translation of these functions by adding
a suitable large positive value may have to be used to force these functions to take
non-negative values. Since an MOEA will be operating on the variable vector y and
the function values depend on the interaction among variables of y, any change in
one variable must be accompanied by related changes in other variables in order to
remain on the Pareto-optimal front. This makes this mapped version of the problem
difficult to solve.

Non-Uniformly Represented Pareto-Optimal Front

In previous test problems, we have used a linear, single-variable function for fl. This
helped us create a problem with a uniform distribution of solutions in fl. Unless the
underlying problem has discretely spaced Pareto-optimal regions, there is no difficulty
for the Pareto-optimal solutions to get spread over the entire range of fl values.
However, a bias for some portions of the range of values for fl may be created by
choosing either of the following fl functions:

• the function fl is nonlinear;
• the function fl is a function of more than one variable.

It is clear that if a nonlinear f l function is chosen, the resulting Pareto-optimal region
(or, for that matter, the entire search region) will have a bias towards some values of fl.
The non-uniformity in distribution of the Pareto-optimal region can also be created
by simply choosing a multi-variable function (whether linear or nonlinear). Multi
objective optimization algorithms, which are not any good at maintaining diversity
among solutions (or function values), will produce a biased Pareto-optimal front in
such problems. Consider the single-variable, multi-modal function f i :

(8.31)

The above function has five minima for different values of Xl, as shown in Figure 212.
The right-hand figure shows the corresponding nonconvex Pareto-optimal front in a
fl-f2 plot. We used 9 = 1 + lOx2 and an h function defined in equation (8.24), having
f3 = 1 and ex = 4. This produces a nonconvex Pareto-optimal front. The right-hand
figure is generated on the Pareto-optimal front from 500 uniformly spaced solutions in
x i . The figure shows that the Pareto-optimal region is biased for solutions for which
f 1 is near one.

Summary of Test Problems

The two-objective tunable test problems discussed above require three functions 
f l, 9 and h - which can be set to various complexity levels. In the following, we
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Figure 212 A multi-modal f 1 function (left) and the corresponding non-uniformly
distributed nonconvex Pareto-optimal region (right). In the right plot, the Pareto-optimal
solutions derived from 500 uniformly spaced x1 solutions are shown. Reproduced from Deb
(1999c) (© 1999 by the Massachusetts Institute of Technology).

summarize the properties of a two-objective optimization problem due to each of the
above functions.

1. The function f] tests a multi-objective EA's ability to find diverse Pareto-optimal
solutions. Thus, this function tests an algorithm's ability to handle difficulties along

the Pareto-optimal front.
2. The function 9 tests a multi-objective EA's ability to converge to the true (or

global) Pareto-optimal front. Thus, this function tests an algorithm's ability to
handle difficulties lateral to the Pareto-optimal front.

3. The function h tests a multi-objective EA's ability to tackle multi-objective
problems having convex, nonconvex or discontinuous Pareto-optimal fronts. Thus,
this function tests an algorithm's ability to handle different shapes of the Pareto
optimal front.

The above construction makes an interesting connection between single-objective
and multi-objective optimization. Since the convergence to the true Pareto-optimal
front is directly related to minimization of the function 9 alone, all known problem
difficulties that a single-objective optimization algorithm can possibly face (such as
high-dimensionality, non-differentiability, ruggedness, noise, etc.) also become problem
difficulties for a multi-objective optimization algorithm. Moreover, since the function
9 is responsible for convergence to the true Pareto-optimal front, the convergence
properties of single-objective optimization algorithms now become valid for multi
objective optimization algorithms in solving problems constructed using the above
procedure.

In the light of the above discussion, a number of difficult functions are suggested in
the original study (Deb, 1999c). Motivated by these suggestions, a recent study has
constructed six difficult test problems, which we will describe next.
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Zitzler-Deb-Thiele's (ZDT) Test Problems

Zitzler et al. (2000) framed six problems (ZDT1 to ZDT6) based on the above
construction process. After this study was reported, these test problems have further
been studied by other researchers. These problems have two objectives which are to
be minimized:

(8.32)
Minimize fl (x},
Minimize fz(x) = g(x)h(fl [x}, g(x)).

The six test problems vary in the way that the three functions f 1 (x}, g(x) and h(x)
are defined. In all problems except ZDT5, the Pareto-optimal front is formed with
g(x) = 1. Although these problems used fl as a single-variable function, the problem
difficulty can be increased by using a multi-variate fl function or a mapped variable
strategy (equation (8.30)).

ZDTl

This is a 3D-variable (n = 30) problem having a convex Pareto-optimal set. The
functions used are as follows:

f 1 (x]

g(x)

h(f l , g)

Xl,

1 + n ~ 1.L~z Xi,

1- vM79.
(8.33)

All variables lie in the range [0,1]. The Pareto-optimal region corresponds to 0 :::;
xi :::; 1 and xi = 0 for i = 2,3, ... ,30. Figure 213 shows a search region (which
has a uniform density of solutions) and the Pareto-optimal region in the objective
space. This is probably the easiest of all of the six problems, having a continuous
Pareto-optimal front and a uniform distribution of solutions across the front. The
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0.80.60.40.2

l.~e'O-OP'imal
front

OL-~~L-~~-'-----~~-'-----~~-"-----~~

o

1.5

0.5

Figure 213 The search space near the Pareto-optimal region for ZDTl.
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only difficulty an MOEA may face from this problem is in tackling a large number of
decision variables.

ZDT2

This is also an n = 30 variable problem having a nonconvex Pareto-optimal set:

{

f,(x)

ZDT2: g(x)

h(fl, g)

(8.34)

All variables lie in the range [0,1]. The Pareto-optimal region corresponds to 0 ::;
xi ::; 1 and x~ = 0 for i = 2,3, ... ,30. Figure 214 shows the search region (which
has a uniform density of solutions) and the Pareto-optimal region on the objective
function space. The only difficulty with this problem is that the Pareto-optimal region
is nonconvex. Thus, weighted approaches will have difficulty in finding a good spread
of solutions on the Pareto-optimal front.

ZDT3

This is an n = 30 variable problem having a number of disconnected Pareto-optimal
fronts:

{

fl [x]

ZDT3: g(x)

h(f" g)

x i ,

1 + n ~ 1 .L~~2 Xi,

1 ~ y"f09 ~ (fdg) sinl l Onf j ].

(8.35)

All variables lie in the range [0,1]. The Pareto-optimal region corresponds to x~ = 0
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Figure 214 The search space near the Pareto-optimal region for ZDT2.
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Figure 215 The search space near the Pareto-optimal region for ZDT3.

for i = 2,3, ... ,30, and hence not all points satisfying 0 :::; xi :::; 1 lie on the Pareto
optimal front. Figure 215 shows the search region and the Pareto-optimal fronts in
the objective space. The difficulty with this problem is that the Pareto-optimal region
is discontinuous. The real test for MOEAs would be to find all discontinuous regions
with a uniform spread of non-dominated solutions.

ZDT4

This is an n = 10 variable problem having a convex Pareto-optimal set:

{

fl(X)
ZDT4: g(x)

h(fl, g)

xj ,

1 + 10(n ~ 1) + L~2(X~ -10cos(47Ixill,
1~~.

(8.36)

The variable Xl lies in the range [0,1], but all others lie in [-5,5]. There exists 21 9

or about 8(10 11 ) local Pareto-optimal solutions, each corresponding to 0 :::; xi :::; 1
and xi = 0.5m, where m is any integer in [~1 0, 10], where i = 2,3, ... ,10. The global
Pareto-optimal front corresponds to 0 :::; xi :::; 1 and xi = 0 for i = 2,3, ... ,10.
This makes g(x*) = 1. The next-best local Pareto-optimal front corresponds to
g(x) = 1.25, the next corresponds to 1.50, and so on. The worst local Pareto-optimal
front corresponds to g(x) = 25.00, thereby making a total of 100 distinct Pareto
optimal fronts in the objective space, of which only one is global. Figure 216 shows a
partial search region and the Pareto-optimal front in the objective space. The sheer
number of multiple local Pareto-optimal fronts produces a large number of hurdles for
an MOEA to converge to the global Pareto-optimal front.

ZDT5

This is a Boolean function defined over bit-strings. There are a total of 11 discrete
variables. The first variable X I is presented by a 30-bit substring and the rest 10
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Figure 216 The partial search space near the Pareto-optimal region for ZDT4.

variables (Xl - X11) are represented by 5 bits each. The function u( Xi) denotes the
number of '1s' in the substring used to represent the variable Xi.

ZDT5:

f1 (x)

g(x)

v(u(x;})

h(f1, g)

1 +U(X1)
'\ 11
Li=lV(U(X;})

{
2 + u(x;} if ujx.] < 5,
1 if u( Xi) = 5,

1/f](x).

The global Pareto-optimal front corresponds to the minimum value of g, or 9(x*) = 10.
This happens when variables Xl - Xl 0 are represented by a 5-bit substring of all '1s', or
when u( Xi) = 5 for i = 2,3 ... , 10. The diversity among the Pareto-optimal solutions
is maintained by the presence of different substrings representing X 1 . Since u( Xl) can
take 31 different integer values (0 - 30), the first objective f 1 takes any integer value in
[1,31]. Figure 217 shows the discrete global Pareto-optimal set. The best local Pareto
optimal front corresponds to the next-best value of g, or g(x*) = 11. It is important
to note that this next-best solution corresponds to anyone of the variables Xl to Xl 0

having a string maximally different from that in the global Pareto-optimal set. Here,
any of the variables xz - X 10 is a substring with all 'Os'. The v(u( x.l) function suggests
that most of the search space leads towards this local optimal solution, whereas the
globally optimal substring is an isolated maximum. In the context of single-objective
optimization, these problems have been shown to deceive a simple GA. Hence, they are
called deceptive problems. Multi-objective GAs are also likely to face difficulty from
deception and may easily converge to the best local Pareto-optimal solutions, instead
of the global Pareto-optimal solutions. In the above problem, there are a total of 1023
local Pareto-optimal sets. These fronts lie within the two dashed curves shown in the
figure. It becomes difficult for an optimization algorithm to reach the global Pareto
optimal set without getting attracted to one of these local Pareto-optimal fronts.
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Figure 217 The search space and the Pareto-optimal region for ZDT5.

ZDT6

This is a 10-variable problem having a nonconvex Pareto-optimal set. Moreover, the
density of solutions across the Pareto-optimal region is non-uniform and the density
towards the Pareto-optimal front is also thin:

{

f](x)

ZDT6: g(x)

h(f], g)

(8.38)

All variables lie in the range [0,1]. The Pareto-optimal region corresponds to 0 ::; xi ::;
1 and xi = 0 for i = 2,3, ... ,10. Figure 218 shows the Pareto-optimal region on the
objective function space. A set of 100 uniformly distributed xi solutions (in [0,1]) on
the Pareto-optimal front are also shown in the figure by circles. The adverse density
of solutions across the Pareto-optimal front, coupled with the nonconvex nature of
the front, may cause difficulties for many multi-objective optimization algorithms to
converge to the true Pareto-optimal front.

8.3.4 Test Problems with More Than Two Objectives

Most research on multi-objective evolutionary algorithms have been restricted to two
objective problems. There have been two reasons for this, as follows:

1. Both tasks of converging near the Pareto-optimal front and of finding a widespread
of solutions can be tested adequately with as few as two objectives and

2. Graphical ways for visualizing trade-off solutions in problems with more than two
objectives become difficult to achieve.
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Figure 218 The Pareto-optimal region for ZDT6.

Although two-objective test problems can test both of the desired aspects of an
MOEA, there should be some test problems which also test if an algorithm can be
applied to more than two objectives efficiently. For a large number of objectives,
the Pareto-optimal set becomes multi-dimensional in the objective space. Algorithms
then require better strategies for finding a set of widespread solutions. It would be
an interesting research project to investigate if the currently known MOEAs are able
to find a set of widespread non-dominated solutions closer to the true Pareto-optimal
front within a reasonable computational effort.

All of the basic difficulties highlighted in the previous subsection for two-objective
problems may also be present in a problem having a larger number of objectives. In
the following, we construct a test problem generator having M objective functions,
similar in construction to the two-objective test problem generator described earlier:

Minimize fl (x , ),
Minimize fl (Xl),

Minimize f M- 1(XM-l ),

Minimize f M (x] = g(xM)h (fdx1 ), fl(Xl), ... , f M- dXM -1), g(XM)) ,

subjectto xiEIRlxil, fori=1,2, ... ,M.

(8.39)

Here, the decision variable vector X is partitioned into M non-overlapping blocks as
follows:

Each vector Xi can be of different size. The objective functions f 1 - f M-l can be
chosen in a similar way as the function f 1 chosen in the previous subsection. The
function 9 can be similar to the function 9 described earlier and has the effect of
producing difficulty in progressing towards the true Pareto-optimal front. However,
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the function h is now different and must include all objective function values fl 

fM-l and g. However, the structure of the function h may be similar to the function
h described earlier and has the effect of causing difficulty along the Pareto-optimal
front. For example, the following h function will produce a continuous Pareto-optimal
region:

(
L M- l f ) '"

h(f l,f2, ... ,fM-l,g)=1- i~~ 1 (8.40)

The Pareto-optimal front will be convex for (X < 1. The parameter (3 is a normalization
parameter. In order to create a problem with a discontinuous set of Pareto-optimal
fronts, a periodic h function as used in the previous subsection can also be developed
here. Since the first (M - 1) objectives are functions of the non-overlapping set of
decision variables, the Pareto-optimal solutions correspond to the values of xM for
which g is minimum and for all permissible values of the first (M - 1) set of variables,
which satisfy f M = g(xM)h(fl, ... ,fM-l,g(xM)) (the Pareto-optimal surface) and
are non-dominated by each other.

In order to construct more difficult test problems, the decision variable vector x can
be mapped into a different variable vector y, as suggested above in equation (8.30).

8.3.5 Test Problems for Constrained Optimization

In addition to the above difficulties, the presence of 'hard' constraints in a multi
objective problem may cause further hurdles. Constraints may cause hindrance for
MOEAs to converge to the true Pareto-optimal region and may also cause difficulty in
maintaining a diverse set of Pareto-optimal solutions. It is intuitive that the success of
an MOEA in tackling both of these hindrances will largely depend on the constraint
handling technique used.

However, first we will present a number of test problems commonly used in
the literature and then discuss a systematic procedure for developing difficult test
problems. Veldhuizen (1999) have cited a number of constrained test problems used by
several researchers. It is evident from their survey that most constrained test problems
used only two to three variables and constraints are not sufficiently nonlinear. In the
following, we present three such test problems and discuss why they may not provide
adequate difficulty to an MOEA.

Test Problem BNH

Binh and Korn (1997) used the following two-variable constrained problem:

Minimize
Minimize

subject to

fdx) = 4xf + 4x~,

f2(X) = (Xl - 5)2 + (X2 - 5)2,

C: (x) == (Xl - 5)2 +X~ :::;: 25,

C2(X) == (Xl - 8)2 + (X2 + 3)2 ~ 7.7,
0:::;: Xl < 5,
0:::;: x2 < 3.

(8.41)
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Figure 219 Decision variable space

for the test problem BNH.

Figure 220 Objective space for the test

problem BNH.

Figure 219 shows the feasible decision variable space (the shaded region enclosed by
OBDEO). Both constraints (Cj , Cl) are also shown on the figure. It is interesting to
note that the second constraint Cl is redundant and does not make any part of the
bounded space infeasible. On the other hand, constraint C1 makes the region OABO
infeasible. Figure 220 shows the corresponding objective space. Since constraint Cl
does not affect the feasible region, we do not show this constraint in the objective
space. The constraint boundary of C1 is also shown in this figure. There exists an
equivalent region OA 'B'0 in the decision variable space which maps to the same
region OABO in the objective space. Thus, although some portion of the objective
space is eliminated because of the constraint C1, no solution of the unconstrained
bounded search space gets eliminated in the objective space. Thus, the presence of
the first constraint is also not critical in this problem. The only difficulty that this
constraint creates is that it reduces the density of solutions in the region OABO in
the objective space. The shape and continuity of the Pareto-optimal set is unchanged
by the inclusion of both constraints.

The Pareto-optimal solutions are constituted by solutions xi = xi E [0,3]
(region OC) and xi E [3,5], xi = 3 (region CD). These solutions are marked by
using bold continuous curves. The addition of both constraints in the problem does
not make any solution in the unconstrained Pareto-optimal front infeasible. Thus,
constraints may not introduce any additional difficulty in solving this problem.

Test Problem OSY

Osyczka and Kundu (1995) used the following six-variable test problem:

Minimize f 1(x) = - [25{Xl - 2)1 + {Xl - 2)1 + {X3 - 1)1 + {X4 - 4)1
+(xs _1)1],

Minimize fz{x) = xT + x~ + x~ + x~ + x~ + x~,
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Figure 221 The constrained Pareto-optimal front for the problem OSY. This is a reprint

of Figure 4 from Deb et al. (2001) (@ Springer-Verlag Berlin Heidelberg 2001).

subject to C1(x) == xr + X2 - 22: 0,
C2(x) == 6 - Xl - X2 2: 0,
C3(x) ==2-X2+X1 2:0,
C4(x) == 2 - Xl + 3X2 2: 0, (8.42)
Cs(x) == 4 - (X3 - 3)2 - X4 2: 0,
C6(x) == (xs - 3)2 + X6 - 42: 0,

°<xj , X2,X6 < 10, 1:S; X3, Xs < 5, os X4 < 6.

There are six constraints, four of which are linear. Since this is a six-variable problem,
it is difficult to show the feasible decision variable space. However, a careful analysis
of the constraints and the objective function reveals the constrained Pareto-optimal
front, as shown in Figure 221. The Pareto-optimal region is a concatenation of five
regions. Every region lies on some of the constraints. However, for the entire Pareto
optimal region, x~ = x;; = 0. Table 28 shows the other variable values in each of
the five regions and the constraints that are active in each region. Since the entire
Pareto-optimal region demands an MOEA to maintain its subpopulations at different
intersections of constraint boundaries, this may be a difficult problem to solve.

Test Problem SRN

Srinivas and Deb (1994) borrowed the following function from Chankong and Haimes
(1983):

Minimize fdx) = 2 + [x i - 2)2 + (X2 _1)2,
Minimize f2(X) = 9X1 - (X2 _1)2,

subject to C1 (x) == XT +X~ :s; 225,
C2(X) == Xl - 3X2 + 10 :s; 0,
-20 < Xl < 20,
-20 < X2 < 20.

(8.43)
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Table 28 Pareto-optimal solutions for the problem OSY. This is a reprint of Table 1 from

Deb et al. (2001) (© Springer-Verlag Berlin Heidelberg 2001).

Region Optimal values Active
x* x* x* x* constraints1 2 3 5

AB 5 1 (1, ... ,5) 5 2,4,6
BC 5 1 (1, ... ,5) 1 2,4,6
CD (4.056, ... ,5) (xi - 2)/3 1 1 4,5,6
DE 0 2 (1, ... ,3.732) 1 1,3,6
EF (0, ... ,1) 2 - xi 1 1 1,5,6

Figure 222 shows the feasible decision variable space and the corresponding Pareto
optimal set. By calculating the derivatives of both objectives and using equation (2.8),
we obtain:

1

2(Xi - 2) 9 I

2(xi -1) -2(xi -1) = o.

The above equation is satisfied for two cases: (i) xi = -2.5 and (ii) xi = 1. In
the feasible region, only the first case prevails. Thus, the Pareto-optimal solutions
correspond to xi = -2.5 and xi E [-14.79,2.50]. The feasible objective space,
along with the Pareto-optimal solutions, are shown in Figure 223. The only difficulty
the constraints introduce in this problem is that they eliminate some parts of the
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Figure 222 Constrained decision variable

space for the test problem SRN. This is a

reprint of Figure 1 from Deb et al. (2001)
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Figure 223 Feasible objective space for
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Figure 2 from Deb et al. (2001) (© Springer
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unconstrained Pareto-optimal set (shown by dashed lines).

Test Problem TNK

Tanaka (1995) suggested the following two-variable problem:

Minimize f, (x) = x i ,

Minimize f2(X) = X2,

subject to (1 (x] == x~ + x~ - 1 - 0.1 cos (16 arctan ~i) 2': 0,

(2(X) == (Xl - 0.5)2 + (X2 - 0.5)2 :; 0.5,

o< Xl:; 7I,

o< X2 < 7I.

(8.44)

The feasible decision variable space is shown in Figure 224. Since f, = Xl and
h = X2, the feasible objective space is also the same as the feasible decision variable
space. The unconstrained decision variable space consists of all solutions in the square
o:; (x1, X2) :; 7I. Thus, the only unconstrained Pareto-optimal solution is xi = xi = O.
However, the inclusion of the first constraint makes this solution infeasible. The
constrained Pareto-optimal solutions lie on the boundary of the first constraint. Since
the constraint function is periodic and the second constraint function must also be
satisfied, not all solutions on the boundary of the first constraint are Pareto-optimal.
The disconnected Pareto-optimal set is shown in Figure 224. Since the Pareto-optimal
solutions lie on a nonlinear constraint surface, an optimization algorithm may have
difficulty in finding a good spread of solutions across all of the discontinuous Pareto
optimal sets.

The above test problems are not tunable for introducing varying degrees of
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Figure 224 The feasible decision variable and objective spaces for the TNK problem. This

is a reprint of Figure 3 from Deb et al. (2001) (© Springer-Verlag Berlin Heidelberg 2001).
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complexity in constrained optimization. As for the tunable unconstrained test
problems, we also suggest here a number of test problems where the complexity of
the constrained search space can be controlled. The proposed problems are designed
to cause two different kinds of tunable difficulties in a multi-objective optimization
algorithm, as follows:

• difficulty near the Pareto-optimal front;
• difficulty in the entire search space.

We will discuss both of these in the following subsections.

Difficulty in the Vicinity of the Pareto-Optimal Front

In these test problems, constraints do not make any major portion of the search region
infeasible, except near the Pareto-optimal front. Constraints are designed in a way so
that some portion of the unconstrained Pareto-optimal region is now infeasible. In this
way, the overall Pareto-optimal front will constitute some part of the unconstrained
Pareto-optimal region and some part of the constraint boundaries. In Chapter 7,
we have used one such problem to illustrate the working principle of a number of
constrained handling MOEAs. In the following, we present a generic test problem
with J constraints:

f](xIl,

f1(x) = 9 (XII) exp( -f1(xIl/g(xrIl)'

Cdx) == fz(x) - aj exp[-b jf 1(xIlJ 2: 0,

Minimize
Minimize

subject to
{CTP1:

j=1,2, ... ,J.
(8.45)

Here, X = (XI,XII)T and the function fdxIl and g(XII) can be any multi-variable
functions. There are J inequality constraints and the parameters (aj, bj ] must be
chosen in a way so that at least some portion of the unconstrained Pareto-optimal
region is infeasible. We now describe a procedure to calculate the (aj, bj ) parameters
for J constraints.

Procedure for Calculating aj and b,

Step 1 Set j = 0, aj = b, = 1; also set fl = 1/0 + 1) and a = fl.

Step 2 Calculate ~ = aj exp( -bja) and

aj ~1 = (u, + ~)12,
1

b, 11 = --In(~laHl).
a

Increment a = a + fl and j = j + 1.

Step 3 If j < J, go to Step 2. Otherwise, the process is complete.

For two constraints (J = 2), the above procedure finds the following parameter values:

a1 = 0.858, bl = 0.541, a1 = 0.728, b1 = 0.295.

Figure 225 shows the unconstrained Pareto-optimal region (with a dashed line), and
the two constraints. With the presence of both constraints, the figure demonstrates



354 MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION

1.25

0.5
Pareto-optimal
front

0.80.60.40.2

0.25 ~__--'---__----'--__---' .L.-__~

o

Figure 225 Constrained test problem CTP1 with two constraints. This is a reprint of

Figure 5 from Deb et al. (2001) (@ Springer-Verlag Berlin Heidelberg 2001).

that only about one-third of the original unconstrained Pareto-optimal region is now
not feasible. The other two-thirds part of the constrained Pareto-optimal region comes
from the two constraints.

The reason why this problem may cause difficulty to an MOEA is as follows. Since a
part of the constraint boundary of each constraint now constitutes the Pareto-optimal
region, a spread in the Pareto-optimal solutions requires the decision variables (x) to
satisfy the inequality constraints with the equality sign. Each constraint is an implicit
nonlinear function of the decision variables. Thus, it may be difficult to discover and
maintain a number of solutions on a nonlinear constraint boundary. The presence
of more numbers of such constraints will demand the algorithm to discover and
maintain many such correlations among the decision variables. The complexity of
the test problem can be further increased by using a multi-modal function g.

Furthermore, besides finding and maintaining correlated decision variables to fall
on several constraint boundaries, there could be other difficulties near the Pareto
optimal front. The constraint functions can be such that the unconstrained Pareto
optimal region is now infeasible and the resulting Pareto-optimal set is a collection of
a number of discrete regions. Let us first present such a function mathematically and
then describe the difficulties:

{

Minimize f l (x) = xr ,

CTP2- Minimize f2(x) = g(x) (1 - fg
1
/:/ ) ,

(8.46)
CTP8: subject to C(x) == cos(e)[fz(x) - e] - sin(e)fl (x) ::::

a Isin {b7I [sin(e)(f2(x) - e) +cos(e)fdxW} Id .

The decision variable Xl is restricted in [0,1] and the bounds of other variables depend
on the chosen g(x) function. It is important to note that the problem can be made
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harder by choosing a multi-variate fl function. The constraint Clx] has six parameters
(8, a, b, c, d and e). In fact, the above problem can be used as a constrained test
problem generator by tuning these six parameters. We use the above problem to
construct different test problems.

First, we use the following parameter values:

8 = -0.271:, a = 0.2, b = 10, c = 1, d = 6, e = 1.

The resulting feasible objective space is shown in Figure 226. It is clear from this figure
that the unconstrained Pareto-optimal region (shown by dashes) is now infeasible.
The periodic nature of the constraint boundary makes the Pareto-optimal region
discontinuous, having a number of disconnected continuous regions. The task of an
optimization algorithm would be to find as many such disconnected regions as possible.
The number of such regions can be controlled by increasing the value of the parameter
b. It is also clear that with the increase in number of disconnected regions, an algorithm
will have difficulty in finding representative solutions in all disconnected regions.

The above problem can be made more difficult by using a small value of d, so that
in each disconnected region there exists only one Pareto-optimal solution. Figure 227
shows the feasible objective space for d = 0.5 and a = 0.1 (while other parameters are
the same as that in the previous test problem). Although most of the search space is
feasible, near the Pareto-optimal region the feasible search regions are disconnected,
with finally each sub-region leading to a singular feasible Pareto-optimal solution. An
algorithm will face difficulty in finding all discrete Pareto-optimal solutions because
of the changing nature from a continuous to a discontinuous feasible search space near
the Pareto-optimal region.

1.5

Figure 226 The constrained test problem CTP2. This is a reprint of Figure 6 from Deb et

al. (2001) (@ Springer-Verlag Berlin Heidelberg 2001).
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Figure 227 The constrained test problem CTP3. This is a reprint of Figure 7 from Deb et

al. (2001) (@ Springer-Verlag Berlin Heidelberg 2001).

The problem can be made more difficult by increasing the value of the parameter u,
which has an effect of making the transition from the continuous to the discontinuous
feasible region far away from the Pareto-optimal region. Since an algorithm now has
to travel a long narrow feasible tunnel in search of the lone Pareto-optimal solution
at the end of the tunnel, this problem will be much more difficult to solve compared
to the previous problem. Figure 228 shows one such problem with u = 0.75 with the
rest of the parameters being the same as those in the previous test problem.
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Figure 228 The constrained test problem CTP4. This is a reprint of Figure 8 from Deb et

al. (2001) (@ Springer-Verlag Berlin Heidelberg 2001).
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In all of the three above problems, the disconnected regions are equally distributed
in the objective space. The discrete Pareto-optimal solutions can be scattered non
uniformly by using c # 1. Figure 229 shows the feasible objective space for a problem
with c = 2 and with the other parameters the same as those in Figure 227. Since c > 1,
more Pareto-optimal solutions lie towards the right (higher values of f 1 ) . If, however,
c < 1 is used, more Pareto-optimal solutions will lie towards the left. For more Pareto
optimal solutions towards the right, the problem can be made more difficult by using
a large value of c. The difficulty will arise in finding all of the many closely packed
discrete Pareto-optimal solutions.

It is important to mention here that although the above test problems will cause
difficulty in the vicinity of the Pareto-optimal region, an algorithm has to maintain
an adequate diversity well before it comes close to the Pareto-optimal region. If an
algorithm approaches the Pareto-optimal region without much diversity, it may be too
late to create diversity among the population members, as the feasible search region
in the vicinity of the Pareto-optimal region is discontinuous.

Difficulty in the Entire Search Space

The above test problems cause difficulty to an algorithm in the vicinity of the Pareto
optimal region. Difficulties may also come from the infeasible search region in the
entire search space. Fortunately, the same constrained test problem generator can also
be used for this purpose.

Figure 230 shows the feasible objective search space for the following parameter
values:

8=O.ln, a=40, b=O.5, c=l, d=2, e=-2.

2 ,-------,------,---,---,---,

1.5

Figure 229 The constrained test problem CTP5. This is a reprint of Figure 9 from Deb et

al. (2001) (© Springer-Verlag Berlin Heidelberg 2001).
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Figure 230 The constrained test problem CTP6. This is a reprint of Figure 10 from Deb

et al. (2001) (@ Springer-Verlag Berlin Heidelberg 2001).

The objective space has infeasible bands of differing widths towards the Pareto-optimal
region. Since an algorithm has to overcome a number of such infeasible bands before
coming to the island containing the Pareto-optimal front, an MOEA may face difficulty
in solving this problem. The unconstrained Pareto-optimal region is now not feasible.
The entire constrained Pareto-optimal front lies on a part of the constraint boundary.
The difficulty can be increased by widening the infeasible regions (by using a small
value of d).

The infeasibility in the objective search space may also exist in some part of the
Pareto-optimal front. Using the following parameter values:

e = -0.05n, a = 40, b = 5, c = 1, d = 6, e = O.

we obtain the feasible objective space shown in Figure 231. This problem makes some
portions of the unconstrained Pareto-optimal region infeasible, thereby providing a
disconnected set of continuous regions. In order to find all such disconnected regions,
an algorithm has to maintain an adequate diversity right from the beginning of a
simulation run. It is also important that the Pareto-optimal solutions must lie on
the constraint boundary. Moreover, the algorithm also has to maintain its solutions
feasible as it proceeds towards the Pareto-optimal region.

With the constraints mentioned earlier, a combination of more than one effect can
be achieved together in a problem. For example, with two constraints C, (x) and C2 (x)
having the following parameter values:

e = O.ln, a = 40, b = 0.5, c = 1,
e = -0.05n, a = 40, b = 2.0, c = 1,

d = 2, e = -2.
d = 6, e = O.

we obtain the feasible search space shown in Figure 232. Both constraints produce
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Figure 231 The constrained test problem CTP7. This is a reprint of Figure 11 from Deb
et al. (2001) (@ Springer-Verlag Berlin Heidelberg 2001).

disconnected islands of feasible objective space. It will become difficult for any
optimization algorithm to find the correct feasible islands and converge to the
Pareto-optimal solutions. As before, the difficulty can be controlled by the above
six parameters. Although some of the above test problems can be questioned for their
practical significance, it is believed here that an MOEA solving these difficult problems
will also be able to solve any easier problem. However, the attractive aspect of these
test problems is that the level of difficulty can be controlled to a desired level.

0.6

region

0.8

Figure 232 The constrained test problem CTP8.
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Difficulty with the Function g{x)

In all of the above problems, an additional difficulty can be introduced by using a
nonlinear and difficult function for 9 (x), very similar to that used in the unconstrained
test problems. The function g{x) causes difficulty in progressing towards the Pareto
optimal front. In the test problems given above in equation (8.46), if a linear g{xl is
used, the decision variable space will resemble that of the objective space. However,
for a nonlinear g(x) function, the decision variable space can be very different. Since
evolutionary search operators work on the decision variable space, the shape and the
extent of infeasibility in the decision variable space is important. We illustrate the
feasible decision variable space for the following two g(x) functions:

g, (x)

g2{X)

1 +X2,

11 +x~ -10cos{2nx2)'

In both cases, we vary X2 E [0,1]. The Pareto-optimal solutions will correspond to
xi = 0. We use the test problem CTP7. Figures 233 and 234 show the feasible decision
variable spaces for both cases. It is clear that with the function g2{X), the feasible
decision variable space is more complicated. Since an MOEA search is performed in
the decision variable space, it is expected that in solving the latter case, an MOEA
may face more difficulty than the former.

More Than Two Objectives

By using the above concept, test problems having more than two objectives can also
be developed. We shall modify equation (8.39) as follows. Using aM-dimensional
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the decision variable space for CTP7 with
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Figure 234 Random feasible solutions in

the decision variable space for CTP7 with

92(X).



SALIENT ISSUES OF MULTI-OBJECTIVE EA

transformation (rotational R and translational e), we compute:

361

The matrix R will involve (M - 1) rotation angles. Thereafter, the following constraint
set can be used:

M-l

C[x] == f~ (x] - L Uj Isin (bj7[f/(X)~j) Id, 2' O.
j~l

(8.47)

Here, Uj, bj , c., d, and ej are all parameters that must be set to get a desired effect.
As before, a combination of more than one such constraints can also be used.

8.4 Comparison of Multi-Objective Evolutionary Algorithms

With the availability of many multi-objective evolutionary algorithms, it is natural
to ask which of them (if any) performs better when compared to other algorithms
on various test problems. To settle on an answer to the above question, one has
to be careful. Since a settlement based on analytical means is not easy, one has to
carefully choose test problems for such a comparative study. In particular, we argue
that the test problems must be hard enough to really distinguish the differences in
the performances of the various algorithms. The previous section discussed in detail
some such test problems. In the following, we will discuss a few significant studies
where comparisons of different MOEAs have been made.

8.4.1 Zitzler, Deb and Thiele's Study

Zitzler (1999) and Zitzler et al. (2000) compared the following eight multi-objective
EAs on the six test problems ZDT1 to ZDT6 described earlier.

RAND This is a random search method, where the non-dominated solutions from a
randomly chosen set of solutions are reported. The size of the random population
is kept the same as the total number of function evaluations used with the rest
of the algorithms described below.

SOGA This is a single-objective genetic algorithm, which is used to solve a weighted
sum of objectives. SaGA is applied many times, every time finding the optimum
solution for a different weighted sum of objectives. For each weighted objective,
SaGA is run for 250 generations.

VEGA This is the vector evaluated genetic algorithm suggested by Schaffer (1984).
This algorithm was described earlier in Section 5.4.

HLGA This is the weighted genetic algorithm (Hajela and Lin, 1992), which was
described earlier in Section 5.6.

MOGA This is Fonseca and Fleming's multi-objective genetic algorithm (Fonseca
and Fleming, 1993), which was described earlier in Section 5.8.
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NSGA This is the non-dominated sorting GA of Srinivas and Deb (1994). This
algorithm was also described earlier in Section 5.9.

NPGA This is Horn, Nafploitis and Goldberg's niched Pareto genetic algorithm
(Horn et al., 1994), described earlier in Section 5.10.

SPEA This is Zitzler and Thiele's strength Pareto evolutionary algorithm (Zitzler
and Thiele, 1998b), described earlier in Section 6.4. It is interesting to note that
this is the only elitist algorithm used in this comparative study.

For all algorithms, the following parameter values were used:

Population size 100,
Crossover rate 0.8,
Mutation rate 0.01,
Maximum number of generations 250.

Wherever a sharing strategy is used (in the NSGA, MOGA and NPGA), a niche
radius <Jshare = 0.4886 is used. For the ZDT5 problem defined over binary strings, a
genotypic niche parameter of <Jshare = 34 is used. In all problems except ZDT5, 30 bits
are used to represent each decision variable. For the NPGA, a domination pressure of
tdom = 10 is used. For the SPEA, an external population of size 20 and the regular
EA population of size 80 are used.

In all studies, five independent runs were made for each algorithm to solve each
problem. The final populations from all five simulations are combined to create a set
of 500 solutions. Thereafter, a non-domination sorting is performed to declare the best
non-dominated set of solutions. In the case of the SOGA only, 100 different weight
combinations were considered, each of which is run with a population size of 100 and
for 250 generations. Thus, compared to the other seven algorithms, the SOGA uses
100 times more function evaluations in solving each problem.

The summary of the simulation results is nicely captured in a set of box plots,
as shown in Figure 235. In each box, the upper and lower rows are the upper and
lower quartiles of a pair-wise set coverage metric, described in equation (8.3) earlier.
This metric measures the proportion of members in the set B which is dominated by
members of set A. Thus, C(A, B) = 1 means all members of B are weakly dominated by
A. On the other hand, C(A, B) = 0 means that no member of B is weakly dominated
by A. Since domination is not a symmetric operator, C(A, B) is not necessarily equal
to 1 - C(B,A). The bold lines in the figure show the medians of C(A, B). Dashed
appendages show the shape of the distribution of the metric, while dots show the
outliers. The following conclusions were made:

• All multi-objective EAs do better than the random search method (RAND).
• The NSGA outperforms all other non-elitist algorithms (all others except the SPEA)

on all problems.
• The nonconvexity in the Pareto-optimal front of ZDT2 caused difficulty to the

HLGA, VEGA and SOGA. Since all of these three algorithms used the weighted
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Figure 235 Box plots showing the etA, B) metric. Algorithms A and B refer to two
algorithms in a row and column, respectively. Reproduced from Zitzler et al. (2000) (© 2000

by the Massachusetts Institute of Technology).

sum of the objectives, it was expected that they would face difficulty in solving a
problem with a nonconvex Pareto-optimal front.

• Discreteness in the Pareto-optimal front for ZDT3 caused difficulty to most
algorithms in finding a diverse set of solutions.

• Multi-modality (ZDT4) and deception (ZDT5) caused ample difficulty for all
algorithms to converge to the true Pareto-optimal front. It was clear that a different
parameter setting (perhaps with a large population size) was needed to find the true
Pareto-optimal front in these problems.

• A search space with non-uniform density (in ZDT6) caused difficulty to all
algorithms except the SPEA in maintaining a diverse set of solutions.

• A hierarchy of algorithms emerged in terms of their performances in finding a set
of solutions close to the true Pareto-optimal front. The hierarchy in the descending
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order of merit observed was as follows:

1. SPEA;
2. NSGA;
3. VEGA;
4. NPGA, HLGA;
5. MOGA;
6. RAND.

The lone elitist algorithm, SPEA, clearly outperformed any other algorithm. It was
difficult to judge the superiority between the NPGA and HLGA. On some problems,
the NPGA performed better than the HLGA, while on other problems the HLGA
did better than the NPGA. On most problems, the SPEA performed better than
the SOGA.

• Elite-preservation is an important matter for converging to the Pareto-optimal front.

Based on the above outcome, elitism was introduced with the NSGA, VEGA, HLGA,
MOGA and NPGA. In general, the performances of all of the MOEAs with elitism
improved considerably. Interestingly, both the SPEA and the elitist NSGA (different
from the NSGA-II) performed equally well.

8.4.2 Veldhuizen's Study

Veldhuizen (1999) compared four algorithms (NSGA, NPGA, MOGA and MOMGA)
on a set of seven test problems, including SCH1, FON, KUR, POL, VNT, and a two
variable version of ZDT3. The population size used in the first four algorithms was
50 and in the MOMGA was 100. A single-point crossover with a crossover probability
of one and a bit-wise mutation with a mutation probability of 1/24 were used. All
variables were coded in equal number of bits so that the overall string length becomes
24. For the NPGA, tdom = 5 and for the NSGA, the lYshare values were calculated
by using Fonseca and Fleming's update rule (see equation (5.18) above). He used a
number of performance metrics covering the convergence and spread issues. Based on
the generational distance and spacing metrics, his results showed the superiority of
the MOMGA to the NSGA, NPGA and MOGA on the above test problems. The
NSGA performed the worst among all four algorithms. Between the MOGA and
NPGA, the former performed better. Although these results are contradictory to the
conclusions reported by Zitzler-Deb-Thiele (1998b), different problems were tried in
the respective studies. Moreover, the parameter settings used in the two studies were
also not identical. For example, the overall size of the search space considered in the
Veldhuizen's study (224 ) is much smaller than that used in Zitzler-Deb-Thiele's study
(23 0 0 to 290 0 ) .

8.4.3 Knowles and Corne's Study

On a set of six test problems, including SCH1, SCH2 and KUR, Knowles and Corne
(2000) compared a total of 13 algorithms. Besides the PAES, these investigators
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considered the NSGA and NPGA with and without an elitist strategy. Some
algorithms were different implementations of the (11 + A)-PAES (with different values
of 11 and A). A population of size 100 (or archive size of 100) was used. For the NPGA,
a tdom E [4,10] was used; however, for the PAES a tournament size of 2 was used.
Crossover and mutation probabilities of 0.9 and lj(string-length) were chosen. For
the NSGA and NPGA, the niche size parameter CYshare was calculated by performing
several experiments. Using the statistical metric based on the attainment surface
method, the conclusion was that the elitist NSGA with an archiving strategy is best
among all 13 algorithms, followed by the (1 + 1)-PAES. In the elitist NSGA, the five
best shared fitness solutions are directly copied into the next generation, thereby not
allowing the best five solutions to be lost in the genetic processing. For introducing
an archiving, an archive of size 100 is maintained with the non-dominated solutions,
as in the PAES, and the archive at the end of the final generation is presented as the
obtained non-dominated set. It was also observed that the computational complexity
for the elitist NSGA is more than that of the (1 + 1)-PAES. The use of a multiple
membered PAES was found to be disadvantageous. Moreover, the computational
overhead was also more. The reason for the elitist NSGA's better performance was due
to its less-noisy non-dominated sorting and less-noisy fitness assignment procedures.
With the introduction of the NSGA-II, which uses a faster non-dominated sorting
procedure (compared to NSGA) and an elitist strategy, better solutions with a less
computational complexity are also possible. In the following, we will discuss a recent
comparative study involving the NSGA-II.

8.4.4 Deb, Agrawal, Pratap and Meyarivan's Study

From the above studies, one matter has become absolutely clear. Elitism plays a major
role in the performance of an MOEA. Motivated by these studies, newly suggested
algorithms are all developed with an explicit elite-preserving strategy. As discussed
earlier in Section 6.2, the NSGA-II is one such implementation. In the studies of Deb et
al. (2000a, 2000b), three different elitist MOEAs are compared: NSGA-II, SPEA and
PAES. A set of nine test problems (SCHl, FON, POL, KUR, ZDTl, ZDT2, ZDT3,
ZDT4 and ZDT6) are considered. For unconstrained multi-objective optimization,
some of these are, by far, the most difficult problems suggested in the literature. All
algorithms are run for a maximum of 250 generations with a population size of 100 (for
the SPEA, an EA population of size 80 and an external population of size 20 are used).
A crossover probability of 0.9 and a mutation probability of lj(string-length) (for
binary-coded EAs) or ljn (for real-parameter EAs) are used. For the real-parameter
NSGA-II, the SBX and real-parameter mutation operators are used with distribution
indices (discussed on page 109) 11c = 20 and 11m = 20. For binary-coded EAs, 30 bits
are used to code each variable.

Table 29 shows the mean and variance values of a convergence metric (generational
distance (GD), redefined as Y in the original study) obtained by using the four
algorithms NSGA-II (real-parameter), NSGA-II (binary-coded), SPEA and PAES.
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Table 29 Mean Y and variance er~ values of the convergence metric Y.

Algorithm SCH FON POL KUR
NSGA-II Y 0.003391 0.001931 0.015553 0.028964
Real-coded (}"2 0 0 0.000001 0.000018y

NSGA-II Y 0.002833 0.002571 0.017029 0.028951
Binary-coded (}"2 0.000001 0 0.000003 0.000016y

SPEA
Y 0.003465 0.010611 0.054531 0.049077
(}"2 0 0.000005 0.000179 0.000081y

PAES
Y 0.001313 0.151263 0.030864 0.057323
(}"2 0.000003 0.000905 0.000431 0.011989y

Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
NSGA-II Y 0.033482 0.072391 0.114500 0.513053 0.296564
Real-coded (}"2 0.004750 0.031689 0.007940 0.118460 0.013135y

NSGA-II Y 0.000894 0.000824 0.043411 3.227636 7.806798
Binary-coded (}"2 0 0 0.000042 7.307630 0.001667y

SPEA
Y 0.001249 0.003043 0.044212 9.513615 0.020166
(}"2 0 0.000020 0.000019 11.321067 0.000923y

PAES
Y 0.082085 0.126276 0.023872 0.854816 0.085469
(}"2 0.008679 0.036877 0.00001 0.527238 0.006664y

In all problems, a set of IP*I = 500 uniformly spaced Pareto-optimal solutions are
chosen. The generational distance of each of the IQI obtained non-dominated solutions
from this set of 500 Pareto-optimal solutions is computed. This table shows that the
NSGA-II (real-parameter or binary-coded) is able to converge better in all problems
except for ZDT3 and ZDT6, where the PAES was found to have the better convergence.
In all cases with the NSGA-II, the variance of Y in 10 runs is also small, except for
ZDT4, where the NSGA-II (binary coded) is the best. The fixed archive strategy of
the PAES allows better convergence to be achieved in two out of the nine problems.

Table 30 shows the mean and variance values of the diversity metric (spread metric
defined on page 314) ~ obtained using all three algorithms. The NSGA-II (real
or binary-coded) performs the best in all nine test problems in terms of ~. For
problems with disconnected Pareto-optimal regions, the ~ calculation is performed
in each continuous region and averaged. The table shows that the worst performance
is observed with the PAES. For illustration, we show only one of the ten runs of the
PAES with an arbitrary run of the NSGA-II (real-parameter) on problem SCH1 in
Figure 236. On most problems, the real-parameter NSGA-II is able to find a better
spread of solutions than any other algorithm, including the binary-coded NSGA-II.

In order to demonstrate the working of these algorithms, we also show typical
simulation results of the PAES, SPEA and NSGA-II on the test problems KUR,
ZDT2, ZDT4 and ZDT6. The problem KUR has three disconnected regions in the
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Table 30 Mean L\ and variance ()~ values of the diversity metric L\.

Algorithm SCH FON POL KUR
NSGA-II ,1 0.477899 0.378065 0.452150 0.411477
Real-coded ()2 0.003471 0.000639 0.002868 0.000992

~

NSGA-II ,1 0.449265 0.395131 0.503721 0.442195
Binary-coded ()2 0.002062 0.001314 0.004656 0.001498

~

SPEA
K 0.818346 0.804113 0.954327 0.880424
()2 0.004497 0.002961 0.013170 0.009066
~

PAES
,1 1.063288 1.162528 1.020007 1.079838
()2 0.002868 0.008945 0 0.013772
~

Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
NSGA-II ,1 0.390307 0.430776 0.738540 0.702612 0.668025
Real-coded ()2 0.001876 0.004721 0.019706 0.064648 0.009923

~

NSGA-II ,1 0.463292 0.435112 0.575606 0.479475 0.644477
Binary-coded ()2 0.041622 0.024607 0.005078 0.009841 0.035042

~

SPEA
K 0.730155 0.678127 0.665726 0.732097 0.900793
()2 0.009066 0.004483 0.000666 0.011284 0.004124
~

PAES
,1 1.229794 1.165942 0.789920 0.870458 1.153052
()2 0.004839 0.007682 0.001653 0.101399 0.003916
~

Pareto-optimal front. Figure 237 shows all non-dominated solutions obtained after 250
generations with the NSGA-II (real-parameter). This figure demonstrates the abilities
of the NSGA-II in converging to the true front and in finding diverse set of solutions
in this front. Figure 238 shows the obtained non-dominated solutions with the SPEA,
which is the next-best algorithm for this problem (see Tables 29 and 30). Although
the convergence is adequate, the spread in the obtained non-dominated front is not
as good as that obtained with the NSGA-II.

Next, we show the non-dominated solutions for the problem ZDT2 in Figures 239
and 240. This problem has a nonconvex Pareto-optimal front. The performances of
the binary-coded NSGA-II and SPEA on this function are presented in these figures.
Although the convergence is not a difficulty here, both the real and binary-coded
NSGA-lls are better able to spread solutions in the entire Pareto-optimal region than
the SPEA (the next-best algorithm observed for this problem).

The problem ZDT4 has 219 or 7.94(10 11 ) different local Pareto-optimalfronts in the
search space, of which only one corresponds to the global Pareto-optimal front. The
Euclidean distance in the decision space between solutions of two consecutive local
Pareto-optimal sets is 0.25. Figure 241 shows that both of the real-parameter NSGA-II
and PAES get stuck at different local Pareto-optimal sets, although the convergence
and ability to find a diverse set of solutions are definitely better with the NSGA-
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Figure 236 The NSGA-II finds a better spread of solutions than the PAES on SCHl.

II. Binary-coded GAs have difficulties in converging near the global Pareto-optimal
front, a matter which was also observed in previous single-objective studies (Deb and
Agrawal, 1999b). On a similar 10-variable Rastrigin's function (which is used as g(x)

in ZDT4), that study clearly showed that a population of size of about at least 500 is
needed for single-objective binary-coded GAs (with a tournament selection, a single
point crossover and a bit-wise mutation) to find the global optimum solution in more
than 50% of the simulation runs. Since we have used a population of size 100, it is not
expected that a multi-objective GA would find the global Pareto-optimal solution in
this case.

Finally, Figure 242 shows that the SPEA finds a better converged set of non-
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Figure 237 Non-dominated solutions with

the NSGA-II (real-parameter) on problem

KUR.

Figure 238 Non-dominated solutions with

the SPEA on problem KUR.
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Figure 239 Non-dominated solutions with

NSGA-II (binary-coded) on ZDT2.

Figure 240 Non-dominated solutions with

SPEA on ZDT2.

dominated solutions in problem ZDT6 compared to any other algorithm. However,
the distribution in solutions is better with the real-parameter NSGA-II. Furthermore,
by using different parameter settings (running NSGA-II for longer generations and by
using different 11m values), investigators have been able to improve the performance
of the NSGA-II in all problems (Deb et al., 2000a).

In our original study, we have also compared three algorithms on a rotated EC4
problem (Deb et al., 2000a), in which the decision variables are rotated before
calculating the objective function values (discussed above on page 339). The rotation
of the decision variables causes all of the latter to vary in a particular fashion in order to
remain on the Pareto-optimal front, a matter which provides additional difficulty (the
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Figure 241 The real-parameter NSGA

II finds a better convergence and spread of

solutions than the PAES on problem ZDT4.

Figure 242 The real-parameter NSGA-II

finds a better distribution of solutions than

the SPEA on problem ZDT6, although the

SPEA has a better convergence.
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so-called linkage problem) to any optimization algorithm. As expected, no algorithm
performed well on this problem.

8.4.5 Constrained Optimization Studies

Unlike in the case of unconstrained multi-objective optimization, there do not exist
many systematic studies on constrained multi-objective optimization. One of the
reasons for this is probably the unavailability of suitable test problems for constrained
multi-objective optimization. With the test problems suggested above in Section 8.3.5
of this book, a consideration of more constrained optimization algorithms and further
comparative studies may be of potential interest to researchers.

In the following, we will describe one such recent study (Deb et al., 2000a), where
the test problems, Constr-Ex, SRN and TNK, and an engineering design problem,
WATER (Ray et al., 2001) (as described below) were studied:

Minimize
Minimize
Minimize
Minimize
Minimize
Subjected to

fdx) = 106 780.37(X2 + X3) + 61 704.67,
f2(x) = 3000xj,
f 3(x) = (305 700)2289x2/(0.06 x 2289)0.6S,

f4(x) = (250)228gexp(-39.75x2 + 9.9x3 + 2.74),

fs(x) = 25[1.39/(Xj X2) + 4940X3 - 80],
9j (x) == 0.001 39/(xjX2) +4.94x3 - 0.08:S; 1,
92 (x) == 0.000 306/(xj X2) + 1.082x3 - 0.0986 :s; 1,
93(X) == 12.307/(XIX2) + 49408.24x3

+ 4051.02 < 50000,

94(X) == 2.098/(XIX2) + 8046.33x3
- 696.71 :s; 16000,

9s(X) == 2.138/(xjx2) + 7883.39x3
- 705.04 :s; 10000,

96(X) == 0.417(xjx2) + 1721.26x3 -136.54:S; 2000,
97(X) == O.l64/(xj X2) + 631.13x3 - 54.48 :s; 550,
0.01 < Xl < 0.45,
0.01 < X2 < 0.10,
0.01 < X3 :s; 0.10.

(8.48)

In the Constr-Ex problem, a part of the unconstrained Pareto-optimal region is made
infeasible by a constraint. Thus, the resulting constrained Pareto-optimal region is a
concatenation of the first constraint boundary and some part of the unconstrained
Pareto-optimal region. In SRN, the constrained Pareto-optimal set is only a sub-set of
the unconstrained Pareto-optimal set. The third problem TNK, has a discontinuous
Pareto-optimal region, entirely falling on the first constraint boundary. The fourth
problem, WATER, is a five-objective and seven-constraint problem, which Ray et al.
(Rayet al., 2001) have attempted to solve. With five objectives, it is difficult to discuss
the effect of constraints on the unconstrained Pareto-optimal region, but below we will
show all (~) or 10 pair-wise plots presenting the obtained non-dominated solutions.
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In all of the problems, a population size of 100, and distribution indices for the real
parameter crossover and mutation operators of T]c = 20 and T]m = 100, respectively,
were used. The constrain-domination concept and the constrained handling technique
of Ray-Tai-Seow (RTS) (Ray et al., 2000, 2001) are implemented in two NSGA
II implementations. These NSGA-lls are run for a maximum of 500 generations.
Crossover and mutation probabilities were the same as before. Figure 243 shows
the obtained set of 100 non-dominated solutions after 500 generations. This figure
shows that the NSGA-II with the constrain-domination principle is able to maintain
solutions in the entire constrained Pareto-optimal region. It is important to note that
in order to maintain a spread of solutions on the constraint boundary, solutions must
be modified in a particular manner dictated by the constraint function. This makes
the task difficult for a search operator. Figure 244 shows the obtained solutions using
the RTS procedure after 500 generations of NSGA-II. It is clear that this NSGA-II
performs poorer than the constrain-domination-based NSGA-II (see Figure 243) in
terms of converging to the true Pareto-optimal front, and also in terms of maintaining
a diverse set of non-dominated solutions.

Simulation results on the SRN problem using the two constraint handling
approaches are shown in Figures 245 and 246. Figures 247 and 248 show the
feasible objective spaces and the obtained non-dominated solutions with the constrain
domination-based NSGA-II and the RTS-based NSGA-II on the problem TNK. In both
of the above problems (SRN and TNK), the superiority of the constrain-domination
principle in both aspects of multi-objective optimization is clear.

Ray et al. (2001) normalized the objective functions of the problem WATER in the
following manner:

8
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Figure 243 Obtained non-dominated so

lutions with the constrain-domination-based

NSGA-II on the constrained problem Constr

Ex.
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Figure 244 Obtained non-dominated so

lutions with the RTS-based NSGA-II on the

constrained problem Constr-Ex.
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Figure 245 Obtained non-dominated so

lutions with the constrain-domination-based

NSGA-II on the constrained problem SRN.

Figure 246 Obtained non-dominated so

lutions with the RTS-based NSGA-II on the

constrained problem SRN.

Since there are five objective functions in WATER, we used the scatter-plot matrix
method of comparing the solutions, as shown in Figure 249. Table 31 shows the
comparison of the constrain-domination-based and RTS-based NSGA-IIs in terms of
the spread of obtained non-dominated solutions. In most multi-objective problems,
constrain-domination-based NSGA-II has found a better spread of solutions than RTS
based NSGA-II. The former results are shown in the upper diagonal portion of the
figure, while the latter results are shown in the lower diagonal portion. The axes of
any plot can be obtained by looking at the corresponding diagonal boxes and their
ranges. We observe that the constrain-domination-based NSGA-II plots have better
formed patterns than the RTS plots, meaning that better convergence is achieved by
the former approach.For example, the interactions in figures f 1-f3, f]-f4, and frf4
are very clear from the constrain-domination results. Although similar patterns exist
in the results obtained by using the RTS technique, the convergence to the true fronts
is not adequate.

Table 31 Lower and upper bounds of the objective function values observed in the obtained

non-dominated solutions.

Approach f 1 f z f3
Constrain-domination 0.798-0.920 0.027-0.900 0.095-0.951
RTS 0.810-0.956 0.046-0.834 0.067-0.934

Approach f4 fs
Constrain-domination 0.031-1.110 0.001-3.124
RTS 0.036-1.561 0.211-3.116
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Figure 247 Obtained non-dominated so

lutions with the constrain-domination-based

NSGA-II on the constrained problem TNK.

Figure 248 Obtained non-dominated so

lutions with the RTS-based NSGA-II on the

constrained problem TNK.

(8.49)

8.5 Objective Versus Decision-Space Niching

The issue of objective versus decision-space niching is important in the context of
obtaining diversity among non-dominated solutions. It is clear that when objective
space niching is performed, diversity in objective function values is expected, whereas
when parameter-space niching is performed, diversity in the decision variable values
is expected. We illustrate the difference by comparing the performance of the NSGA
on a test problem with two different niching strategies. The problem is given below:

Minimize f] (xl = 1 - exp(-4xl) sin4(5nxl),

Minimize f2(X) = g(X2) [1 _ (~(~:\) 4] ,

where g(x2l = 1+ 9x~,

OS:xlS:1, -1S:x2S:1.

The NSGA with a reasonable parameter setting (population size of 100, 15-bit coding
for each variable, lYshare of 0.2236, crossover probability of one, and no mutation) is run
for 500 generations. Typical runs for both niching methods are shown in Figures 250
and 251. Although it seems that both methods are able to maintain diversity in
the function space (with a better distribution in the f l-f2 space with function-space
niching), the inset for the first plot (Figure 250) shows that the NSGA with parameter
space niching has found diverse values of the decision variable, whereas the NSGA with
function-space niching (Figure 251) converges to only about 50% of the entire decision
variable space. Since the first minimum and its basin of attraction span the complete
space for the function f i , the function-space niching does not have the motivation
to find other important solutions. Thus, in problems like this, function-space niching
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Figure 249 Upper diagonal plots for the constrain-domination-based NSGA-II and lower

diagonal plots are for RTS-based NSGA-II. Compare the (i, j) plot (RTS procedure with

i > j) with the (j, i) plot (constrain-domination procedure). The labels and ranges used for

each axis are shown in the diagonal boxes.

may hide information about other important Pareto-optimal solutions in the search
space.

It is important to understand that the choice between parameter-space or function
space niching entirely depends on what is desired for a set of Pareto-optimal solutions
in the underlying problem. In some problems it may be important to have solutions
with a trade-off in objective function values, without much regard for how similar or
diverse the actual solutions (x vectors or strings) are. In such cases, function-space
niching will, in general, provide solutions with a better trade-off in objective function
values. Since there is no induced pressure for the solutions to differ from each other
in the decision variable space, the Pareto-optimal solutions may not be very different
from each other, unless the underlying objective functions demand them to be so. On
the other hand, in some problems the emphasis could be on finding a set of solutions
which are diverse enough in the decision-variable space, as well as maintaining a
trade-off among the objective functions. In such cases, parameter-space niching would
be better. This is because, in some sense, categorizing a population by using non-



SALIENT ISSUES OF MULTI-OBJECTIVE EA 375

--"". -"0·0"0. Parameter-space niching
"'0.

0.4 0.5 0.6 0.7 0.8 0.9
£,

0.90.80.70.60.5

II 0.2 0.4 11.6 0.8 I

0.4

0.8

0.7

0.1

O'----'----'----'---'---'---'-------\l
0.3

lUfD).<Da::n~ Objective-space niching
0.9 '0...

,~

0'9~'r",'"t!v~""J',. '"\11.7 a! '~ ~
0.4 £, i.\

0.5 J \
q

'"

0.6

0.2

0.3

£,

£, 0.5
.~

o

o 0.2 11.4 11.6 0.8 I

0.5

0.9 · '"'.:, ('.,: -."" 
"

f 0.7
1

0.9

0.8

0.7

0.6

£2 0.5

0.4

0.3

0.2

0.1

O'----'----'----'----'----'---'--~

0.3

Figure 250 Parameter-space niching

finds diverse solutions in both of the ob

jective and decision-variable spaces. Repro

duced from Deb (1999c) (© 1999 by the

Massachusetts Institute of Technology).

Figure 251 Function-space niching finds

diverse solutions in the objective space,

but not in the decision-variable space.

Reproduced from Deb (1999c) (© 1999 by

the Massachusetts Institute of Technology).

domination helps to preserve some diversity among the objective functions and an
explicit parameter-space niching helps to maintain diversity in the solution vector.

The fitness-space niching has an advantage over parameter-space niching. Since
diversity is maintained in the objective space, MOEAs which employ fitness-space
niching can be extended naturally to any other EA, such as to a GP or an EP. A GP,
for example, uses parse trees as a solution. Finding a similarity measure between two
parse trees for implementing niching is more computationally complex than carrying
out the same between their objective vectors (Langdon, 1995). Whatever the way
solutions are represented, since every EA solution would be evaluated as a real vector
of objectives, the MOEAs with fitness-space niching described in this book can be
used directly with other EAs.

8.6 Searching for Preferred Solutions

The past few years ofresearch on multi-objective evolutionary optimization algorithms
have amply demonstrated that they are capable of finding multiple and diverse Pareto
optimal (or near Pareto-optimal) solutions in a single simulation run. It is then natural
to ask: 'How does one choose a particular solution from the obtained set of non
dominated solutions?'. In the following, we first review a few techniques often followed
in the context of multiple criterion decision-making and then suggest a number of
techniques which have been used in MOEA research.

We categorize the techniques into two types: post-optimal techniques and
optimization-level techniques. In the former approach, the solutions obtained after the
optimization technique are analyzed to choose a preferred solution. On the other hand,
in the second approach the optimization technique is directed towards a preferred
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8.6.1 Post-Optimal Techniques

Once a set of non-dominated solutions is obtained, usually some higher-level decision
making considerations (often societal or political) are used to choose a solution. The
following methods are often used in classical multi-objective optimization.

Compromise Programming Approach

The method of compromise programming, sometimes known as 'the method of global
criteria', picks a solution which is minimally located from a given reference point (Yu,
1973; Zeleny, 1973). The user has to fix a distance metric d() and a reference point z
for this purpose. A couple of commonly used metrics are presented below:

lp-metric:

Tchebycheff metric:

d[f,z) ~ (,t, Ifmlx] - zml') 'f>' ,

(f)
M Ifm(x) - zml

d ,z = max --------,------,-----,--
m~l maxxEsfm(x)-zm

(8.50)

(8.51)

Here, S is the entire search space. The reference point can be chosen as the ideal point
(see Section 2.4.1 above), which is usually comprised of the individual best objective
function values z = (fi, fi, ... , fM)T. Since this solution is usually a 'non-existent
solution', the user is interested in choosing a feasible solution, which is closest to this
reference solution. Figure 252 shows the reference point and the chosen solution in a
hypothetical set of obtained Pareto-optimal solutions (marked by filled circles) for a
two-objective minimization problem. The lz-metric becomes the Euclidean distance
metric.

\
\

_. L _

I

Reference solution

Figure 252 The reference point and the chosen optimal solution.
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Marginal Rate of Substitution Approach

The marginal rate of substitution is the amount of improvement in one objective
function which can be obtained by sacrificing an unit decrement in any other objective
function (Miettinen, 1999). The solution having the maximum marginal rate of
substitution is the one chosen by this method. Since pair-wise comparisons have to
be made with all M objectives for each Pareto-optimal solution, this method may be
computationally expensive. Figure 253 shows the preferred 'knee' point, where the
marginal rate of substitution is maximum among a set of obtained Pareto-optimal
solutions for both objectives.

Pseudo-Weight Vector Approach

In this approach, a pseudo-weight vector is calculated for each obtained solution.
Although there may exist a number of strategies to calculate a pseudo-weight vector,
we propose a simple procedure. Here, we will assume minimization problems only.
However, a little effort is needed to modify the procedure for maximization problems.

From the obtained set of solutions, the minimum fiin and maximum fiax values
of each objective function i are noted. Thereafter, the following equation is used to
compute the weight w. for the i-th objective function:

(fiax - f i (x 11 / (fiax - fi in)
Wi = (8.52)

.L~~1 (f~ax - fm(x)) / (f~ax - f~in)

This equation calculates the relative distance of the solution from the worst
(maximum) value in each objective function. Thus, for the best solution for the i-th
objective, the weight w, is a maximum. The numerator in the right side of the above
equation ensures that the sum of all weight components for a solution is equal to one.
Figure 254 shows a set of non-dominated solutions and their pseudo-weights for both
objectives.

'---------------- f 1

Figure 253 The chosen solution having the maximum marginal rate of substitution.
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Figure 254 The chosen optimal solution using the pseudo-weight vector approach.

We call the weight vector calculated by equation (8.52) a pseudo weight vector for
a particular purpose. The weight calculated by the above equation for any Pareto
optimal solution need not necessarily be identical to the true Pareto-optimal solution
corresponding to the same weight vector. Either because of the presence of constraints
or because of nonconvexity in the Pareto-optimal region, the extreme solutions in the
true Pareto-optimal set may not be the solutions found by using extreme weight
vectors (such as w, = 1 and all other Wj = 0). However, for problems having a convex
Pareto-optimal region, the weight computed using the above equation gives a relative
idea of the location of the solution in the Pareto-optimal region. The interesting part is
that although there is no formal definition of a weight vector for a solution situated in
the nonconvex region of the Pareto-optimal region, equation (8.52) allows us a way to
compute a relative trade-off value between objectives for all obtained non-dominated
solutions.

Once the weight vectors are calculated, a simple strategy would be to choose the
solution closer to a user-preferred weight vector. In Figure 254, if a 90% weight age
for tz and a 10% weight age for f, are desired, the corresponding choice is marked
on the figure. It is important to realize that this procedure is different from the
classical weighted sum approach (see Chapter 3). Here, a solution is chosen from a
set of obtained solutions, with each corresponding to a different weight vector. In the
classical weighted sum approach, only one solution optimizing the weighted average
of the objectives is found. We argue that in the presence of multiple non-dominated
solutions, it is convenient to choose one solution with a preferred weight vector.

8.6.2 Optimization-Level Techniques

In this section, we describe a number of methods which can be used during the
optimization phase to find a preferred set of solutions in the Pareto-optimal region.
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Finding a biased distribution, based on a user's preference for objectives, has two
advantages:

1. The search effort can be reduced.
2. Better precision in the non-dominated solutions can be obtained.

Since the search is directed to a particular region in the search space, it is intuitive
that a search effort would be reduced. Secondly, since a smaller region is searched,
the density of the obtained solutions is expected to be high, thereby increasing the
precision in such solutions.

Utility Functions

Multiple objective functions can be used to construct a utility function il(f) (Keeney
and Raiffa, 1976). The meaning of a utility function is that any two solutions having
the same utility function value have the same preference to a user. In this way, multiple
objectives are reduced to a single objective of maximizing the utility function. It is
obvious that the construction of a utility function is problem-dependent and is highly
subjective to the user. However, if a utility function can be constructed, a solution
maximizing the utility function can be obtained.

Biased Sharing Approach

Here, we propose a sharing approach which uses a biased distance metric. In calculating
the distance metric (discussed in Section 5.9 above) in the fitness-space sharing, the
following normalized distance metric is suggested:

(8.53)

This distance metric is nothing but the normalized Euclidean distance between two
objective vectors. In the proposed biased sharing approach, an unequal weightage
is given to each objective in computing the Euclidean distance. For example, if Wk

(E (0,1)) is the weight assigned to the k-th objective function, then the normalized
w~ is calculated for a convex problem as follows:

(1 ~Wk)
w~ = ------,--:-----

max~=l (1 - w m ) '

and the modified distance metric is computed as follows:

I

[

M (flll_f(il)2]2d . . I k k
(1, J) = L Wk (fmax ~ fmln)2

be 1 k k

(8.54)

(8.55)

The fitness-based sharing can then be used with this distance metric. It is important
to realize that when a sharing is performed with the second objective alone (with a
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large wz), more solutions near the optimum value of fl would be obtained. This is
why a transformation of weights, as used in equation (8.54), is necessary. Although
this new distance metric requires a new estimate for (J, equation (4.64) (see earlier)
can also be used. With this approach, the highest-priority objective function always
gets a weight equal to one, whereas all others get a weight between zero and one. It is
interesting to note that if equal weights are assigned to each objective, equation (8.55)
reduces to equation (8.53).

For convex Pareto-optimal regions, a higher weight for an objective function will
produce more dense solutions near the individual optimum. Figure 255 explains this
fact. For a two-objective optimization problem, if an extreme case of Wl = 0 and
Wz = 1 is used, the corresponding w ' is as follows: w; = 1 and w~ = O. Since the
effect of tz is absent in calculating the distance metric, equal number of solutions
are expected to be created in each equal partition of the f 1 search space. Thus, the
density of the Pareto-optimal solutions in the partition closer to the individual best
fi will be less. For the nonconvex Pareto-optimal region, w~ can be calculated as

w~ = wk/max~l Wk.
In the following, we apply a modified real-parameter NSGA with the above biased

sharing approach to the test problem SCHl. Other applications can be found elsewhere
(Deb, in press). We use a population of size 100, crossover probability of 0.9, mutation
probability of 1In, and distribution indices for the simulated binary crossover and the
polynomial mutation operators of 11c = 30 and 11m = 500, respectively. The NSGAs are
run up until 500 generations. In SCHl, the Pareto-optimal solutions lie in x E (0,2).
We divide this region into 10 equal divisions and count the number of Pareto-optimal
solutions found in each division under different weight vectors. Figure 256 shows the
number of such individuals versus x (the number of solutions in (0,0.2) are shown at
x = 0.2 in the figure). An average of 20 runs is plotted. This figure clearly shows that
when weights Wl = Wz = 0.5 are used, a more or less uniform distribution is observed.

Sparse
solutions

Figure 255 The density of Pareto-optimal solutions near the individual champion solution

of fl is less with Wj = 0 and W2 = 1.
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Figure 256 The number of solutions in each partition of the Pareto-optimal region under

different weight vectors for the problem SCHl.

However, when Wl = 0.1 and W2 = 0.9 are used, more solutions are found closer
to the x = 2 solution (the individual champion to the single-objective optimization
problem: minimize f 2 = (x-2)2). However, when Wl = 0.9 and W2 = 0.1 are used, an
opposing trend emerges. This experiment shows how by changing the weight vector,
the density of solutions along the Pareto-optimal front can be changed. In order to
investigate how the Pareto-optimal solutions are distributed, we have also plotted the
solutions obtained for one run in Figures 257 and 258 for wi = 0.9 and w, = 0.1,
respectively. Figure 257, with Wl = 0.9, shows that more solutions are near fi, while
Figure 258, with w, = 0.1, shows that more solutions are near fi.
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(8.56)

It is interesting to note that the proposed approach does not find a single
compromised solution; instead, it finds a biased distribution of solutions. If a user
wants to have a bias towards a particular objective, this biased sharing approach
produces more solutions towards the preferred region in the search space. Finding more
dense solutions in the region of preference is a much better approach than predefining
a weighted sum of objective and then finding only one optimum solution. With a
biased population, there exist many solutions in the desired region. One solution can
then be chosen by using the previously described methods. The above biased niching
concept can also be implemented with other niching procedures, such as with the
crowded distance operator used in the NSGA-II.

Although the above technique is able to find a biased distribution of solutions
towards a particular objective, the procedure is not appropriate for finding solutions
focused in any arbitrary part of the Pareto-optimal region. For example, if one is
interested in finding solutions only in the middle portion of the Pareto-optimal region,
the above procedure would not be able to find a biased distribution. The following
approach uses the generalized convex cone approach (Miettinen, 1999), often practiced
in the classical multi-objective optimization.

Guided Domination Approach

In this approach (Branke et al., 2000), a weighted function of the objectives is defined
as follows:

M

Qdf(x)) = fdxl + L aijfdx), i = 1,2, ... , M.
j=l,iii

where aij is the amount of gain in the j-th objective function for a loss of one unit
in the i-th objective function. The above set of equations require fixing the matrix
a, which has a one in its diagonal elements. Now, we define a different domination
concept for minimization problems as follows.

Definition 8.1. A solution xl] 1 dominates another solution x lz1, if Qdf(xl 1))) <
Qdf(x(Zl)) for all i = 1,2, ... , M and the strict inequality is satisfied at least for
one objective.

Let us illustrate the concept for two (M = 2) objective functions. The two weighted
functions are as follows:

Qdf1,izl

QZ(fl, fzl

f 1 + alZfZ,

anf] +fz.

(8.57)

(8.58)

Figure 259(b) shows the contour lines corresponding to the above two linear functions
passing through a solution A in the objective space. All solutions in the hatched region
are dominated by A according to the above definition of domination. It is interesting
to note that when using the usual definition of domination (Figure 259(a)), the region
marked by a horizontal and a vertical line will be dominated by A. Thus, it is clear
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A
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Figure 259 The regions dominated by solution A: (a) the dominated region using the usual

definition; (b) the dominated region using definition 8.1.

from these figures that the modified definition of domination allows a larger region to
become dominated by any solution than the usual definition. It is also interesting to
realize that since a larger region is now dominated, the complete Pareto-optimal front
(as per the original domination definition) may not be non-dominated according to this
new definition of domination. For the same value of the matrix a in the two-objective
function illustration, the resulting non-dominated front is depicted in Figure 260. This
figure shows that regions near the individual champions are now not non-dominated.
It is clear from this figure that some portion (shown by a thin continuous curve) of the
Pareto-optimal region is dominated by a member in the middle portion of the Pareto
optimal region (shown by a bold curve). Thus, an MOEA is expected to find only
the middle portion of the Pareto-optimal region, thereby biasing the search towards a
particular region of the Pareto-optimal front. Thus, by choosing appropriate values for

- \-"-
\ --

\

\

1/8 12 '.
'-----------------3-£ 1

Figure 260 The non-dominated portion of the Pareto-optimal region.
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the elements of the matrix a, a part of the Pareto-optimal region can be emphasized.
We would like to highlight that this approach can also be viewed in a different

manner. Instead of using a modified domination principle, this procedure can be
viewed as an multi-objective optimization approach with the original domination
principle acting on a linearly transformed set of objective functions. A little thought
will reveal that the above definition of domination on the objective vector f is the same
as the original domination definition on the transformed vector Q. Thus, the inability
of weight-based approaches to handle problems with nonconvex Pareto-optimal region
still holds for this modified approach.

In order to demonstrate the working of the above procedure, we apply an NSGA
with the modified domination principle. All NSGA parameters are chosen the same
as that used in the biased sharing approach. For the SCH1 problem, we first use
the following values: a 12 = an = 0.75. The corresponding extreme contour lines
are shown in Figure 261. It is clear that the Pareto-optimal region enclosed between
these two extreme contour lines dominates any solution in the other regions of the
original Pareto-optimal front. The NSGA simulation shows how the simple change in
the domination principle allows us to find a biased distribution of the Pareto-optimal
solutions.

Next, we change the parameters as follows: a 12 = 0 and an = 0.75. This allows
a region closer to the minimum f 1 solution to be found. Figure 262 shows that an
NSGA with identical parameter settings has found the corresponding portion of the
Pareto-optimal region.

Finally, we apply an NSGA with the guided domination principle on the welded
beam design problem (discussed earlier on page 124). Here, two objectives (weight

O'-----------'---'------"C------'----'---~~-"'-'-----'

o 0.5 1 1.5 2 2.5 3 3.5 4

£1

4

3.5

3

2.5

£2 2

1.5

1

0.5
1.33

1.5 2 2.5 3 3.5 4

£1

o '---------'-_--'-_L-----'-_---L-_=-""'-""_--'

o 0.5

0.5

4.-------,----,--,-----,-----,----,----,-----,

3.5

3

2.5

Figure 261 An intermediate portion of

the Pareto-optimal region for the problem

SCHl.

Figure 262 A region near the minimum

f 1 solution for the problem SCHl.
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and the deflection) are minimized. The parameter settings and the problem details
are the same as before. By using a 12 = 0.50 and a21 = 0.25, we obtain the portion of
the Pareto-optimal region shown in Figure 263. A simulation of the NSGA with the
usual domination principle is also shown. This figure clearly shows how the guided
domination approach finds the intermediate portion of the non-dominated front. It is
important to realize that for any weight-based method, the objective functions must be
normalized. In the welded beam problem, we have multiplied the deflection function by
103 before using the guided domination operation. When such normalization is used,
it becomes somewhat difficult to choose an appropriate weight aij. Nevertheless, this
is a useful approach for finding a biased distribution of solutions in the Pareto-optimal
region.

Weighted Domination Approach

Somewhat different from the above approach, Parmee et al. (2000) suggested
a weighted dominance principle. These investigators defined an index function
Idx(11,xI2)) between two solutions x (1) and x l21 for the i-th objective function as
follows:

fdx(ll) 'S fdx (21);

otherwise.
(8.59)

Now, if solution x' 1) dominates solution x(2), then each Ii function would take a value

equal to one. In other words, we can write the usual condition for domination in a
different way:

ML Idxl1I,x(2)) = M,
i --1
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Figure 263 An intermediate region of the Pareto-optimal front for the welded beam design

problem.
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with the condition that fdx( 1)} < fdx(2)} for at least one objective i. In the original
definition of domination, all objectives are given equal importance. Rewriting the
above equation and extending the relationship to inequality, one may write:

M 1
, -I-(x(l) x(2)} > 1LM l , -'

i=l

(8.61)

Generalizing the above concept for a weight vector w (such that L~l Wi = 1) which
indicates a preference relationship among different objectives, we can write the above
inequality for the w-dominating condition as follows:

ML wi Idx(1),x(2)}:::: 1.
i=l

(8.62)

If all objectives are of equal importance, each w, = 11M and we have the inequality
shown in equation (8.61). However, for any other generic weight vector, we have the
above condition for a solution x! 1) to be w-dominating solution x(2). Generalizing
further, these investigators suggested the condition for a (w, 'T}-dominance (with
'T :::; 1) between two solutions, as follows:

ML wi Idx(1),x(2)}:::: 'T.
i=l

(8.63)

Based on these conditions for w-dominance and (w, 'T}-dominance, a corresponding
non-dominated and a Pareto-optimal set can also be identified. However, if the above
weak dominance conditions are used, the obtained set would be a strict non-dominated
one. However, if anyone of the index functions is restricted for the strict inequality
condition, a weak non-dominated front will be found.

Although the above two definitions for dominance introduce f1.exibilities, they are
associated with additional parameters which a user has to supply. The investigators
suggested a preference-based procedure for selecting these parameters (the weight
vector wand the 'T parameter).

The above definitions for dominance are certainly interesting and may be used
to introduce bias in the Pareto-optimal region. The index function Ii takes Boolean
values of one or zero. For a better implementation, a real-valued index function can
also be constructed based on the actual difference in objective function values of the
two solutions.

8.7 Exploiting Multi-Objective Evolutionary Optimization

The previous sections have demonstrated how a number of conflicting objectives
can be given varying importance and how the population approach of evolutionary
algorithms can be used to find many optimal solutions corresponding to the resulting
multi-objective optimization problem. The multi-objective optimization concept can
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be exploited to solve other search and optimization problems including single-objective
constraint handling and goal programming problems. In this section, we will discuss
these two applications where evolutionary MOEA can be directly applied for this
purpose.

However, a number of other possibilities also exist. In a recent study (Bleuler
et al., in press), the bloating of genetic programs often encountered in genetic
programming (GP) applications is controlled by converting the problem into a
two-objective optimization problem of optimizing the underlying objective function
and minimizing the size of a genetic program. Since the minimization of program
size is also an important objective, the GP attempts to find the optimal program
without making the program unnecessarily large. Another study (Knowles et al.,
2001) shows that by carefully decomposing the original single objective function into
multiple functionally different objectives and treating the problem as a multi-objective
optimization problem makes the problem easier to solve than the usual single-objective
optimization procedure.

8.7.1 Constrained Single-Objective Optimization

First, we will discuss different ways that multi-objective optimization techniques have
been used as an alternate strategy for single-objective constrained optimization. In the
latter, there exist a single objective function and a number of constraints (inequality
or equality):

Minimize
subject to

f(x),
gj (x) 2: 0,

hk(x) = 0,
<LI < Xi:::; x;U)

j ~ 1,2, , J, }
k - 1,2, , K,

i = 1,2, .Tt.,

(8.64)

Without loss of generality, we assume that the objective function f(x) is minimized.
For a maximization problem, the duality principle can be used to convert the problem
into a minimization problem. In most difficult and real-world problems, the constraints
gdx) and hdx) are nonlinear and make most of the search space infeasible. This
causes difficulty even in finding a single feasible solution. Ideally, the problem is best
posed as a multi-objective optimization problem of minimizing the objective function
and minimizing all constraint violations. Thus, if there are C = J+K constraints, there
are a total of M = (C + 1) objectives in the corresponding multi-objective constrained
optimization problem:

Minimize
Minimize
Minimize

f(x),
(gdx))2,
[hk(X)]l,

x
l L I < x, < x

l U I
1 - 1 - 1 1

j = 1,2, , J, }
k = 1,2, , K,

i = 1,2, ,n.

(8.65)

Here, the bracket operator (ex.) returns ex. if ex. is negative; otherwise, it returns zero.
In this way, the constraint violations (gj (x) < 0) return a non-zero value. For all
solutions, satisfying an inequality or equality constraint returns a value equal to zero.



388 MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION

Since each constraint violation is minimized in the above multi-objective formulation,
the resulting Pareto-optimal region contains the constrained minimum solution, for
which all constraint violations are zero. Figure 264 illustrates the concept with the
following example problem:

Minimize

subject to
(8.66)

A little calculation will show that the constrained minimum is xi = xi = 1.5- 1/VI. =
0.793. The corresponding function value is f* = 2.121. This minimum solution is shown
in the figure as solution A. The horizontal axis marks the constraint violation. Thus,
all solutions with zero constraint violation are feasible. These solutions are also shown
in the figure, along with the entire objective space of the resulting two-objective
optimization problem. The corresponding Pareto-optimal solution set for the two
objective optimization problem is marked. It is clear that the constraint minimum
solution A belongs to one end of the Pareto-optimal solution set.

Although the above multi-objective formulation is an ideal way to treat constrained
optimization problems, the classical single-objective optimization literature converts
the above problem into a weighted sum of objectives. This method is largely known
as the penalty function approach (refer to Section 4.2.3), where the original objective
function f(x) and all constraint violations are added together with a weight vector
consisting of penalty parameters, as follows:

, K

P(x,R,r) = f(x) + L Rj(gdx ))2 + L rdhdx)]2.
j=l k~l

6,-----,-----,---,-----,-------,

(8.67)
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Figure 264 The constrained minimum, feasible solutions of the original single-objective

optimization problem, and the Pareto-optimal set of the multi-objective problem.
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In the parlance of multi-objective optimization, the above function is a weighted
sum of (J + K + 1) objectives with a weight vector w = (1, R, r )T. The classical
optimization literature witnessed an enormous difficulty in fixing a weight vector
for successful working of the above method. The components of the weight vector
determine a fixed path from anywhere in the search space towards the constrained
minimum. Sometimes, instead of converging to the true constrained minimum, the
path terminates to a local and artificial minimum. Thus, for sufficiently nonlinear
problems, not all weight vectors will allow a smooth convergence towards the true
constrained minimum. Often, the user has to experiment with various weight vectors to
solve the constrained optimization problem. This difficulty is similar in principle to the
difficulty faced with the weighted approaches in solving multi-objective optimization
problems. We have discussed earlier in Chapter 3 that an arbitrary weight vector may
not lead to a specific Pareto-optimal solution for nonconvex and even for convex search
space problems. With the above connection between the penalty-function approach
for constraint handling for single-objective optimization and the weighted approach
for multi-objective optimization, we can explain why users of the penalty function
based approach face difficulty in finding the true constrained minimum.

With the availability of Pareto-based multi-objective optimization methods, there
exist a number of advantages of using these in solving constrained optimization
problems, as follows:

1. The constraint handling problem can be solved in a natural way. No artificial
formulation of a penalized objective function Pix, R, r) is needed.

2. There is no need of any penalty parameters (R, r). This would make the approach
non-subjective of the user.

3. In many real-world problems, a constraint is never 'hard', that is, a solution with
a permissible constraint violation can still be considered if there is a substantial
gain in the objective function. Since the Pareto-optimal solution set corresponding
to the resulting multi-objective problem (equation (8.65)) would contain trade-off
solutions, including solutions that violate each constraints marginally or by a large
extent, the obtained non-dominated set will contain solutions corresponding to
the problem with 'soft' constraints. Figure 264 above shows that if 9j (x) <::: V"£
(or Ihk(xll <::: V"£) were allowed, all solutions within the region AB would be
of interest to a user. Since the objective function values monotonically improve
towards B, the solution B would be preferred. What is important is that since
many solutions can be found on the Pareto-optimal front by using an MOEA, such
post-optimality decision-making is possible to carry out in the presence of multiple
optimal solutions.

When multiple constraints exist, a similar phenomenon happens in more than two
dimensions. Since most of the MOEAs discussed earlier can also be used to solve
problems having more than two objectives with a complexity (at worst) as linear to
the number of objectives, such a computation is practical. However, for a very large
number of constraints, it is not necessary that all constraints need to be considered as a
separate objective function. The so-called hard constraints can be used as constraints,
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while soft constraints can be treated as additional objectives. Ideally, constraints which
are active (Deb, 1995) at the constrained minimum may be considered as objectives,
in order to find solutions closer to the constrained optimum solution.

Biased MOEA for Constrained Single-Objective Optimization

It is clear from the above discussion that in order to solve the constrained optimization
problem by using a multi-objective optimization problem formulation, we are
interested in solutions which must be biased towards one end of the Pareto-optimal
set, namely towards the region for which all constraint violations are small. Thus, we
need to use an algorithm which introduces a predefined bias in finding Pareto-optimal
solutions. In Section 8.6 above, we have outlined a number of approaches to enable
MOEAs to achieve this very task. One such technique can be used to find a biased
population of solutions towards the desired end of the Pareto-optimal region. In this
way, more solutions at the desired end will be found when compared to the rest of the
true Pareto-optimal set.

Another approach would be to use an MOEA which has a natural bias in finding
Pareto-optimal solutions towards the individual champion solutions. We have seen
earlier in Section 5.4 that the VEGA is one such algorithm for doing the task.
This algorithm has a tendency to find solutions near the minimum solutions of
each objective. Although some unconstrained minimum solutions (which are often
infeasible by a large margin) may also be found by using this procedure, our interest
would be on that part of the population which makes all constraint violations close
to zero. Alternatively, since we know which way to introduce bias, the VEGA can be
modified with a biasing technique. For example, instead of using an equal proportion
of the population for evaluating with each objective function, a smaller proportion
can be evaluated with the original objective function f(x). In this way, more emphasis
will be given for minimizing the constraint violations. A biased sharing or a guided
domination approach can also be applied in this context.

In the following, we present two different implementations, where similar principles
are used quite satisfactorily.

Surry, Radcliffe and Boyd's Constrained MOGA

In this implementation (Surry et al., 1995), in addition to calculating the objective
function value, each solution in the population is also checked for constraint violation.
If there is a constraint violation, its amount is noted; otherwise, a value zero is used
as the constraint violation. Thereafter, the population is classified according to a
non-dominated ranking by using the amount of constraint violations only. In a C
dimensional space of constraint violations (C = J+ K), each solution i is assigned
a rank ri based on how many solutions dominates it. It is interesting to note that
although there are C constraint violations, the Pareto-ranking produces a univariate
metric defining the level of overall constraint violation. Thus, it is enough to construct
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a two-objective optimization problem with the original objective function fi and the
ranking Ti as the two objectives. Figure 265 shows solutions in the constraint violation
space (CV 1 and CV2) and their corresponding Pareto-rankings. Solutions A to E
are infeasible, while solution F is feasible. Solution C is dominated by two solutions
(solution B and F) in the constraint violation space.

Once the Pareto-ranking is completed, a binary tournament selection is used to
create the mating pool in a special way. For the tournament selection, a user-defined
parameter Pcost is used. This parameter denotes the proportion of the population to
be selected when using the original objective function f(x). The tournament selection
operator is implemented as follows. For two solutions chosen for a tournament, one
of the two objectives (the original objective function fd is chosen with a probability
Pcost as the fitness. The Pareto-ranking Ti is chosen with a probability (1 - Pcost).

Thus the constrained MOGA (COMOGA) works with the right-side plot of the two
objectives shown in Figure 265. If the objective function is the fitness, solution E is
the best choice in the population shown. On the other hand, if constraint violation is
important, solutions F is the best choice. For a tie in any tournament played with the
chosen objective, the other objective value is used to break the tie. After the mating
pool is created, the crossover and mutation operators are applied on the complete
population.

The effect of choosing a small value of Pcost is to give more importance to constraint
satisfaction and less importance to minimization of the objective function. This may
be a good strategy to follow in the beginning of a simulation run, where the emphasis
is to create more and more feasible solutions. The effect of choosing a large value of
Pcost is the opposite. More solutions are compared based on the original objective
function value f(x) and hence there is an emphasis on finding the minimum value
of the objective function. This property is desired towards the latter generations of a
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simulation run, when most solutions are feasible and the only task remaining is to find
the constrained minimum. Since the parameter Peost needs to be dynamically varied
during a simulation run, the investigators have also proposed a controlled approach.
They defined a parameter T to indicate the desired proportion of feasible solutions in
the population (a value of 0.1 was suggested). The COMOGA begins with an initial
value of Peost = 0.5. Thereafter, in each iteration, it is updated as follows. If the
actual proportion of feasible solutions is less than T, the parameter Peost is reduced to
encourage the generation of more feasible solutions. They suggested a simple reduction
rule:

Peost f-- (1 - £ )Peost.

On the other hand, if the actual proportion of feasible solutions is more than the
target T, Peost is increased by using the following rule:

Peost f-- 1 - (1 - £)(1 -Peosd.

Thus, this method is essentially an extension of the VEGA in that an equal proportion
of the subpopulation is not used for each objective function. Instead, depending on
the proportion of the feasible solutions present in the population, the subpopulation
size for each of the two objectives (original objective function and the Pareto-ranking)
is varied.

On a pipeline optimization problem, investigators have concluded that the
COMOGA worked similarly to the best known penalty function approach for handling
constraints in terms of computational complexity and reliability in finding the best
solution. However, compared to the experimentations needed to find a good set of
penalty parameters, COMOGA requires fewer of these with its parameters, such as T

and £, and the update rules for choosing Peost.

Although this method allows more flexibility in the way that infeasible solutions can
become feasible and feasible solutions can approach the constrained minimum than the
classical penalty function approach, this method is not entirely flexible. The Pareto
ranking method adopted here steers the infeasible solutions towards the feasible region
and there may exist some constrained optimization problems where this approach may
fail, because in such problems non-dominated solutions based on constraint violations
may steer the search in the wrong direction. Coello (2000) suggested a somewhat more
flexible strategy, which we will discuss next.

Coello's Approach

Instead of using the Pareto-ranking as the only objective of handling all constraints,
Coello (2000) suggested a method where each constraint violation is explicitly used as
an objective. The population is divided into (C + 1) subpopulations of equal size. As
in the VEGA, each subpopulation deals with one of the objectives (either the original
objective function or a constraint violation). For ease of illustration, let us say the
subpopulations are numbered as 0, 1,2, ... , C. The first subpopulation numbered 0 is
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dealt with by the objective function f(x). Thereafter, the i-th subpopulation is dealt
with by the i-th constraint.

For minimization problems, the first subpopulation dealing with f(x) is evaluated a
fitness solely by using the objective function value. No constraint violation is checked
for these solutions. However, the evaluation procedure for other subpopulations is a
little different. For a solution x in a subpopulation dealing with the j-th constraint
gj (x) and violating a total of v(x) constraints, a fitness is assigned hierarchically as
follows:

If
Otherwise, if
Otherwise

gj(x) < 0,
v(x) > 0

F(x) = -gj (x).
F(x) = v(x).

F(x) = f(x).

First, the solution is checked for violation of the i-th constraint. If it is violated, the
fitness is assigned as the negative of the constraint violation, so that when minimized
the violation of the constraint assigned for its own subpopulation is minimized. If the
solution does not violate the i-th constraint, it is checked for violation of all other
constraints. Here, only the number of violated constraints v(x) is counted. The one
with a smaller number of violated constraints is assigned a smaller fitness. If the
solution is feasible, the fitness is assigned based on its objective function value and
the solution is moved to the first subpopulation.

Since each subpopulation except the first one emphasizes solutions that do not
violate a particular constraint and encourages solutions with a minimum number
of constraint violations, the overall effect of the search is to move towards the
feasible region. By evaluating the first subpopulation members (whether feasible or
infeasible) in terms of f (x) alone will mostly cause a preference to solutions close to
the unconstrained minimum. These solutions may not be directly of interest to us,
but the presence of them in a population may be useful for maintaining diversity in
the population. Since in most problems the number of constraints are usually large,
the proportion of such solutions may not be overwhelming. Although it seems to be
more flexible than the COMOGA approach, this method is also not entirely free from
an artificial bias in the search process. The above procedure of hierarchical fitness
assignment is artificial and may prohibit a convergence to the correct minimum in
certain problems.

Nevertheless, Coello (2000) has found new and improved solutions to a number of
single-objective constrained engineering design problems by using this approach. In
most cases, the solutions are better than or equivalent to the best solutions reported
in the literature. Since no non-dominated sorting and niching strategies are used, the
approach would be computationally fast.

However, in order to develop an algorithm which is free from any artificial bias, we
suggest using a state-of-the-art Pareto-based MOEA technique, but employ a biasing
technique suggested in an earlier section so that a biased distribution of solutions
emerges near the constrained minimum solution, instead of guiding the search in
an artificial manner. Since the nature of the problem demands finding a biased set
of solutions near the constrained minimum, such a biasing would not be artificial
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to the problem. It is important to realize that it is better to design an algorithm for
finding a biased distribution of solutions, rather than using a biased fitness assignment
procedure to lead the search towards any particular region. Once a biased distribution
is found, a preferred solutions can always be chosen.

8.7.2 Goal Programming Using Multi-Objective Optimization

In Section 3.6 above, a brief description of different approaches to goal programming
was presented. Recall that the task in goal programming is different to that in an
optimization problem. With specified targets for each objective, the purpose in goal
programming is to find a solution that achieves all of the specified targets, if possible.
If not, the purpose is to find a solution (or a set of solutions) which violates each
target minimally. In this present section, we suggest one procedure for converting
a multiple goal programming problem into a multi-objective optimization problem
and show some simulation results using an MOEA. The results clearly demonstrate
the usefulness of MOEAs in goal programming, particularly in terms of finding
multiple, widespread, trade-off solutions without the need of any user-supplied weight
vector. In fact, the proposed approach simultaneously finds solutions to the same
goal programming problem formed for different weight factors, thereby making this
procedure both practical and different from classical approaches.

Each goal is converted into an objective function of minimizing the difference
between the goal and its target. The conversion procedure depends on the type of
goals used. We present these in the following table (Deb, 2001).

Type

<
>

Range

Goal
f j [x] S; tj
fj(x) ~ tj
fj(x) = tj
f j (x) E [ti, tjl

Objective function
Minimize (filx) - tj)
Minimize (tj - f j (x))
Minimize Ifj(x) -tjl
Minimize max ((ti - f j (x)), (fj (x) - tj))

Here, the bracket operator ( ) returns the value of the operand if the operand is
positive; otherwise, it returns zero. The operator I I returns the absolute value of
the operand. In this way, a goal programming problem is formulated as a multi
objective problem. Although other similar methods have been suggested in classical
goal programming texts (Romero, 1991; Steuer, 1986), the advantage with the above
formulation is that (i) there is no need of any additional constraint for each goal,
and (ii) since GAs do not require objective functions to be differentiable, the above
objective function can be used.

Although somewhat obvious, we shall show that the nonlinear programming (NLP)
problem of solving the weighted goal programming for a fixed set of weight factors is
exactly the same as solving the above reformulated problem. We shall only consider
the 'less-than-equal-to' type goal; however, the same conclusion can be made for
other types of goal as well. Consider a goal programming problem having one goal of
finding solutions in the feasible space S for which the criterion is f(x) S; t. We use



SALIENT ISSUES OF MULTI-OBJECTIVE EA

equation (3.20) (see earlier) to construct the corresponding NLP problem:

395

Minimize
subject to ~(x) - p 'S t, }

P ~ 0,
xES.

(8.68)

We can rewrite both constraints involving p as p ~ max[O, (f(x) - t)]. When the
difference (f(x) - t) is negative, the above problem has the solution p = 0 and when
the difference f(x) - t is positive, the above problem has the solution p = f(x) - t.
This is exactly achieved by simply solving the problem: Minimize (f(x) - t).

Since we now have a way to convert a goal programming problem into an equivalent
multi-objective optimization problem, we can use an MOEA to solve the resulting
goal programming problem. In certain cases, a unique solution to a goal programming
problem may exist, no matter what weight factors are chosen. In such cases, the
equivalent multi-objective optimization problem is similar to a problem without
conflicting objectives and the resulting Pareto-optimal set contains only one solution.
However, in most cases, goal programming problems are sensitive to the chosen weight
factors, and the resulting solution to the problem largely depends on the specific
weight factors used. The advantage of using the multi-objective reformulation is that
each Pareto-optimal solution corresponding to the multi-objective problem becomes
the solution of the original goal programming problem for a specific set of weight
factors. Thus, by using MOEAs, we can get multiple solutions to the goal programming
problem simultaneously.

After multiple solutions are found, designers can then use higher-level decision
making approaches or compromise programming (Romero, 1991) to choose one
particular solution. Each solution K can be analyzed to estimate the relative
importance of each criterion function as follows:

(8.69)

For a 'range' type goal, the target tj can be substituted by either ti or tj depending
on which is closer to f(K).

Moreover, the proposed approach also does not pose any other difficulties which the
weighted goal programming method may have. Since solutions are compared criterion
wise, there is no danger of comparing 'apples with oranges'; nor is there any difficulty
of scaling in criterion function values. Furthermore, this approach does not pose any
difficulty in solving nonconvex goal programming problems.

Simulation Results

We show the working of the proposed approach on a number of problems.
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Test Problem Pi

We first consider the example problem given earlier in equation (3.21). The goal
programming problem is converted into a two-objective optimization problem PI as
follows:

(8.70)
Minimize (fl [xj , Xl) - 2), }
Minimize (fl(X" xz) - 2),

subject to S == (0.1 < Xl::; 1, 0::; Xl::; 10).

Here, the criterion functions are f, = l Ox, and f l = (10 + (Xl - 5)l)j(10xl)' We
use a population of size 50 and run the NSGA for 50 generations. A <Yshare = 0.158
(equation (4.64) earlier with n = 2 and q = 10) is used. As discussed above, the feasible
decision space lies above the hyperbola. All 50 solutions in the initial population and
all non-dominated solutions at the final population are shown in Figure 266, which is
plotted using criterion function values fl and fl. All final solutions have ~l = 5 and
0.2::; ~l ::; 0.5. This figure also marks the region (with dashed lines) of true solutions
of this goal programming problem with different weight factors. The figure shows that
the NSGA in a single run has been able to find different solutions in the desired
range. Although other regions (for f, < 2 and f, > 5) on the hyperbola are Pareto
optimal solutions of the two-objective optimization problem of minimizing f, and fz ,
the reformulation of the objective functions allows the NSGA to find only the required
region, which are also solutions of the goal programming problem. Table 32 shows five
different solutions obtained by the NSGA. Relative weight factors for each solution
are also computed by using equation (8.69) (see above). If the first criterion is of
more importance, solutions in first or second row can be chosen, whereas if the second
criterion is the important one, solutions in the fourth or fifth rows can be chosen.
The solution in the third row shows the situation where both criteria are of more or
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Figure 266 The NSGA solutions are shown on an fl-fl plot for problem PI (Deb, 2001).

Reproduced by permission of Operational Research Society Ltd.
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Table 32 Five solutions to the goal programming problem PI are shown (Deb, 2001).

Reproduced by permission of Operational Research Society Ltd.

~1 ~2 fdx) f 2(x) Wl W2

0.2029 5.0228 2.0289 4.9290 0.0098 0.9902
0.2626 5.0298 2.6260 3.8083 0.2572 0.7428
0.3145 5.0343 3.1448 3.1802 0.4923 0.5076
0.3690 5.0375 3.6896 2.7107 0.7027 0.2972
0.4969 5.0702 4.9688 2.0135 0.9955 0.0045

less equal importance. The advantage of using the proposed technique is that all such
(and many more as shown in Figure 266) solutions can be found simultaneously in
one single run.

Test Problem P2

We alter the above problem to create a different goal programming problem P2:

goal

goal

subject to

(8.71)

The feasible decision space and the criterion space are shown in Figure 267. There
exists only one solution (~1 = ~2 = 5) to this problem, no matter what non-zero weight
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Figure 267 NSGA solutions are shown on an f ]-f2 plot for problem P2 (Deb, 2001).

Reproduced by permission of Operational Research Society Ltd.
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factors are chosen. This is because this solution (marked as 'A' on the figure) makes
the shortest deviation from the criterion space. An NSGA with identical parameter
settings and an identical initial population to that used in test problem P1 are used. It
is observed that after 50 generations, all 50 population members converge at the most
satisficing solution marked by 'A'. This test problem shows that although a multi
objective optimization technique is used, the use of a reformulated objective function
allows us to find the sole optimal solution of the goal programming problem.

Test Problem P3

Next, we choose a problem P3 similar to that used by Ignizio (1976):

goal (f l = XlX2 ;::: 16), }
goal (f2 = (x, - 3)2 + x~ ::; 9),

subject to 6Xl + ?x2 ::; 42.
(8.72)

This investigator considered the constraint as the third goal, and emphasized that the
first-level priority in the problem is to find solutions which will satisfy the constraint.
However, here we argue that such a first-priority goal can be taken care of by using
it as a hard constraint so that any solution violating the constraint will receive a
large penalty. Since the constraint is explicitly taken care of, the next-level priority
is to find solution(s) which will minimize the deviation in the two goals presented in
equation (8.72).

Figures 268 and 269 show the problem in the solution and in the function space,
respectively. The feasible search space is shown by plotting about 25 000 points in
Figure 269. This figure shows that there exists no feasible solution which satisfies
both goals. In order to solve this problem, we use a real-parameter NSGA, but the
variables are coded directly. A simulated binary crossover (SBX) with 11c = 30 and
a polynomial mutation operator with 11m = 100 are used (Deb and Agrawal, 1995).
A population size of 100 is employed and the NSGA is run for 50 generations. Other
parameters identical to those used in the previous test problem are used. The only
solution obtained by the NSGA is as follows:

Xl = 3.568, X2 = 2.939, f 1 = 10.486, fz = 8.961.

This solution is marked on both figures with a circle. Such a solution is feasible and
lies on the constraint boundary. It does not violate the second goal; however, it does
violate the first goal by an amount of (16 - 10.486) or 5.514. Figure 269 shows that it
violates the first goal (f1 ;::: 16) minimally (keeping the minimum distance from the
feasible search space).

An Engineering Design

Finally, we apply the technique to a goal programming problem constructed from
the welded beam design problem discussed earlier on page 124. It is intuitive that
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an optimal design for cost will cause all four design variables to take small values.
When the beam dimensions are small, it is likely that the deflection at the end of the
beam is going to be large. Thus, the design solutions for minimum cost (f, (x)) and
minimum end deflection (f2(x)) conflict with each other. In the following, we present
a goal programming problem from the cost and deflection considerations:

goal

goal

subject to

[f, (x) = 1.104 71h2€+ 0.0481ltb(14.0 + €) ::; 51,

(f (x) = 2.1952 < 0.001)2 ~_ ,

9' (x) == 13 600 - 'T(x) ?:: 0,
92(X) == 30000 - o{x] ?:: 0,
93(X)==b-h?::0,
94(X) == Pc(x) - 6000 ?:: 0,
0.125::; h, b < 5.0 and 0.1 < €,t::; 10.0.

(8.73)

All of the terms have been explained earlier (see page 124). Here, we would like to
have a design for which the cost is smaller than 5 units and the deflection is smaller
than 0.001 inch. If there exists any such solution, then that solution is the desired
solution. However, if such a solution does not exist, we are interested in finding a
solution which will minimize the deviation in cost and deflection from 5 and 0.001 in,
respectively.

Here, constraints are handled by using the bracket-operator penalty function (Deb,
1995). Penalty parameters of 100 and 0.1 are used for the first and second criterion
functions, respectively. A violation of any of the above four constraints will make
the design unacceptable. Thus, in terms of the discussion presented in Ignizio (1976),
satisfaction of these constraints is the first priority.
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Figure 270 NSGA solutions (each marked with a 'diamond') are shown on the objective

function space for the welded beam problem (Deb, 2001). Reproduced by permission of

Operational Research Society Ltd.

In order to investigate the search space, we plot many random feasible solutions in
the f]-f2 space in Figure 270. The corresponding criterion space (marking the region
with cost :s; 5 and deflection :s; 0.001) is also shown in this figure. The figure shows
that there exists no feasible solution in the criterion space, meaning therefore that
the solution to the above goal programming problem will have to violate at least one
goal. A real-parameter NSGA with 100 population members and an SBX operator
with T]c = 30 and a polynomial mutation operator with T]m = 100 are employed. We
also use a O"share value of 0.281 (see equation (4.64) earlier, with P = 4 and q = 10).
Figure 270 shows the solutions (each marked with a 'diamond') obtained after 500
generations. The existence of multiple solutions is accounted for by the fact that no
knowledge of weight factor for each goal is assumed here, and that each solution can
be accounted for by different combinations of weight factors for cost and deflection
quantities.

We construct another goal programming problem by changing the targets to t] = 2.0
and t2 = 0.05. Since there exists no solution with a cost smaller than 2 units, and the
deflection of 0.05 in is also large enough, the resulting most satisficing solution should
represent the minimum-cost solution. Figure 271 shows that the NSGA with identical
parameter settings converges to one solution:

h = 0.222, €= 7.024, t = 8.295, b = 0.244.

This solution has a cost of 2.431 units and deflection of 0.0157 in. Figure 271 shows
that such a solution is very close to the minimum-cost solution.

8.8 Scaling Issues

In multi-objective optimization, the problem difficulty varies rather interestingly with
the number of objectives. In the previous chapters, we have cited examples mostly
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with two objectives, primarily because of the ease in which two-dimensional Pareto
optimal fronts can be visually demonstrated. When the number of objectives increases,
the dimensionality of the objective space also increases. With M objectives, the
Pareto-optimal front can be at most an M-dimensional surface. Figure 272 shows
the Pareto-optimal surface in a typical three-objective optimization problem. Any
pair of solutions on such a surface are non-dominated to each other. In the problem
shown in the figure, all objectives are to be minimized. Thus, the feasible search space
lies above this surface. The task of an MOEA here is to reach this surface from the
interior of the search space and distribute solutions as uniformly as possible over

Pareto-optimal
surface

I

.75

0.5
.25

o

o

o

Figure 272 A typical Pareto-optimal surface for a three-objective minimization problem.
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the surface. Although the above example shows a three-dimensional Pareto-optimal
surface, conflicting objectives can also produce a three-dimensional Pareto-optimal
curve.

8.8.1 Non-Dominated Solutions in a Population

With an increase in the number of objective functions, the dimensionality of the
Pareto-optimal set increases. It is also intuitive that with an increase in number of
objective functions, the number of non-dominated solutions in the initial random
population will also increase. This has a serious implication in choosing an appropriate
population size. However, before we discuss the effect of M on the population sizing,
we investigate how the proportion of non-dominated solutions in a random population
increases with M.

In a multi-objective optimization problem having M objective functions, we are
interested in counting the number of non-dominated solutions IFll in a randomly
created population of size N. One of the ways to do this is to calculate the probability
P(K) of having a population with exactly K non-dominated solutions, where K can
be varied from one to N. Thereafter, the expected value of K can be found by using
the obtained probability distribution. In order to find P(K), we have the scenario
depicted in Figure 273. The following two conditions must be fulfilled to calculate
this probability:

1. All pairs of solutions ((~) of them) in the cluster A (non-dominated set) must not
dominate each other.

2. Every solution in cluster B (dominated set) must be dominated by at least one
solution from cluster A.

The probability calculation for the second case is difficult to carry out, because the
dominance check for any two pairs of solutions may not be independent. For example,
let us consider the dominance checks with solution 1 from cluster A and solutions a

and b from cluster B. Let us also assume that solution a dominates solution b.
Now, while checking the dominance between solutions 1 and a, we would find that

1

a

b

N

Cluster A

Cluster B

Figure 213 The procedure for counting non-dominated solutions.
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solution 1 dominates solution u. Since solution u inherently dominates solution b,
the transitivity property for dominance assures us that solution 1 also dominates
solution b. This happens with a probability of one. Thus, it would be erroneous to
consider that the probability of solution 1 dominating solution u and probability of
solution 1 dominating solution b are independent. Since there exist many such chains,
the exact probability computation becomes difficult to achieve.

However, we can attempt to investigate how the proportion of non-dominated
solutions increase with M by randomly creating a population of solutions and
explicitly counting the non-dominated solutions in a computer simulation. We can
experiment with different values of Nand M. In order to get a good estimate of the
mean proportion of non-dominated solutions, we use one million random populations
(f i E [0,1]) for each combination of Nand M. Figure 274 shows how the proportion
of non-dominated solutions (1.F11/N) varies with M for a number of fixed population
sizes. We show the results with N = 50, 100 and 200. It is clear from this figure that as
the number of objective functions increases, most solutions in the population belong
to the non-dominated front. The growth in the number of non-dominated solutions
is similar to a logistic growth pattern. In all cases, the standard deviation from each
combination is calculated and is found to be reasonably small. It is interesting to note
that for larger population sizes, the growth is delayed. This aspect is important in the
context of choosing an appropriate population size, a matter which we discuss in the
next subsection.

In order to investigate the effect of the population size N, we show the variation of
the proportion of non-dominated solutions with population size for values of M = 2, 5
and 10 in Figure 275. We observe that as the population size increases, the proportion
of non-dominated solutions decreases. The standard deviation in each case is small.
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Figure 274 The proportion of the best
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8.8.2 Population Sizing

We have observed that as the number of objective functions increases, more and more
solutions tend to lie in the first non-dominated front. In particular, when the initial
population is randomly created, this may cause a difficulty to most multi-objective
evolutionary algorithms. Recall that most MOEAs described in the previous chapters
emphasize all solutions of the first non-dominated front equally by assigning a similar
fitness. In fact, the NSGA assigns exactly the same fitness to all solutions of the first
non-dominated front before the niching operator is applied. If all population members
lie in the first non-dominated front, most MOEAs also assign the same (or similar)
fitness to all solutions. When this happens, there is no selection advantage to any
of these solutions. The recombination and mutation operators must need to create
solutions in a better front in order for the search to proceed towards the Pareto
optimal region. In the absence of any selection pressure for better solutions, the task
of recombination of mutation operators to find better solutions may be difficult in
general. In implementing an appropriate elitism, these algorithms will also fail, simply
because most of the population members belong to the best non-dominated front and
there may not be any population slot left to include any new solution. There are
apparently two solutions to this problem:

• use a large population size;
• use a modified algorithm.

We have seen in Figure 275 above that for a particular M, the proportion of non
dominated solutions decreases with population size. Thus, if we require a population
with a user-specified maximum proportion of non-dominated solutions (say pj ), then
Figure 275 can be used to estimate what would be a reasonable population size. In
fact, we have simulated the proportions of best non-dominated solutions for different
M values and plotted the data obtained in Figure 276. For example, let us say that we
require at most 30% population members (p : = 0.3) in the best non-dominated front
in the initial random population. This figure shows with arrows the corresponding
minimum population sizes for different values of M. It is clear that the required
population size increases exponentially with the number of objectives.

Another approach would be to use a modified technique for assigning fitness. Instead
of assigning fitness based on the non-dominated rank of a solution, some other criterion
could be used. The amount of spread in objective space may be used to assign
fitness. For example, the NSGA can be used with objective space sharing, instead
of parameter space sharing. In this way, solutions that are closely packed in one part
of the non-dominated front will not be favored when compared to those that lie in less
dense regions on the non-dominated front. Nevertheless, more careful studies must be
performed to investigate whether the currently known evolutionary algorithms can
scale well to solve MOOPs with large M values.

Besides an appropriate proportion of non-dominated solutions, an adequate
population size for a random initial population should also depend on other factors,
such as the signal-to-noise ratio and the degree of nonlinearity associated with the
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problem (Goldberg et al., 1992; Harik et al., 1999). Some of these quantities may
be difficult to compute in an arbitrary MOOP, but an initial guess of an adequate
population size obtained from Figure 276 may be a good starting point for an iterative
population sizing task. As often used in the case of single-objective optimization
problems, an EA simulation needs to be started with a random population. If
information about better regions of the decision space is known, an EA population can
be initialized there, instead of initializing randomly in the entire decision space. In such
an event, the above figures are of not much use, as they were obtained by assuming a
random initial population. Nevertheless, the figures do show how the dimensionality
in objective functions causes many solutions to belong to the same non-dominated
front.

As in single-objective EAs, dynamic population sizing strategies have also been
suggested in MOEAs. In one implementation (Tan et al., 2001), an MOEA population
is adaptively sized based on the difference between the distribution of solutions in
the best non-dominated front and a user-defined distribution. In such strategies, the
reduction of an existing population can be achieved using a niching strategy. However,
a technique for adding new yet good solutions in a reasonable manner remains as a
challenging task to such MOEAs.

8.9 Convergence Issues

Algorithm development and the application of multi-objective evolutionary algorithms
date back to the 1980s. Many new and improved algorithms, with a better
understanding of their working behaviors, are fairly recent phenomena. Thus, it is
not surprising that there does not exist a multitude of mathematical convergence
theories related to multi-objective evolutionary optimization. Part of the reason is
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also due to the fact that mathematical convergence theories related to single-objective
evolutionary algorithms have only recently begun to emerge (Rudolph, 1994; Vose,
1999). However, with the overwhelming and increasing interest in the area of multi
objective optimization, many such theories should appear on the horizon before too
long.

Finding such a theory for multi-objective optimization is one step harder than in
the case of single-objective optimization. This is because, in the ideal approach to
multi-objective optimization there are two tasks: convergence to the Pareto-optimal
front and maintenance of a diverse Pareto-optimal set. Thus, in addition to finding a
proof for convergence to the Pareto-optimal front, it is also necessary to have a proof
of diversity among solutions along the Pareto-optimal front. Since achievement of one
does not automatically ensure achievement of the other, both proofs are necessary for
multi-objective evolutionary optimization.

8.9.1 Convergent MOEAs

Most of the credit in attempting to outline convergence theories related to MOEAs
goes to G. Rudolph (Rudolph, 1998a, 2001; Rudolph and Agapie, 2000). In his first
study (Rudolph, 1998a), he extended the theory of convergence for the single-objective
canonical evolutionary algorithm to multi-objective optimization. His proofs rely on
the positiveness of the variation kernel, which relates to the search power of the
chosen genetic operators. Simply stated, if the transition probability from a set of
parents to any solution in the search space is non-zero positive, then the transition
process of the variation operators (crossover and mutation operators) is said to have
a positive variation kernel. For variation operators having a positive variation kernel
and with elitism, Rudolph (2001) has shown that an MOEA can be designed in order
to have a property to converge to the true Pareto-optimal front in a finite number
of function evaluations in finite search space problems. For continuous search space
problems, designing such convergent MOEAs is difficult (Rudolph, 1998b). Although
this has been an important step in the theoretical studies of MOEAs, what is missing
from the proof is a component which implies that in addition to the convergence to
the Pareto-optimal front, there should be an adequate diversity present among the
obtained solutions.

In their recent study, Rudolph and Agapie (2000) extended the above outline of a
convergence proof for elitist MOEAs. First, they proposed a base-line elitist MOEA
where the elite population size is infinite.

Rudolph and Agapie's Base Algorithm VV

Step 1 A population P(O) is drawn at random and t = a is set. An elite set
E(O) is formed with non-dominated solutions of P(O).

Step 2 Generate a new population P(t+ 1) = generate(E(t)) by usual selection,
recombination, and mutation operators.

Step 3 Combine P(t + 1) and E(t). Set the new elitist set E(t + 1) with the
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non-dominated solutions from the combined set P(t + 1) U E(t).

Step 4 If stopping criterion is not satisfied, set t = t + 1 and go to Step 2.
Otherwise, declare E(t + 1) is the set of obtained non-dominated solutions.

With a homogeneous finite Markov chain having a positive transition matrix, these
investigators have shown that all Pareto-optimal solutions will be members of the set
E(t) in a finite time with probability one. If E(t) contains any non-Pareto-optimal
solutions, it will be eventually replaced by a new Pareto-optimal solution in Step 3.
When E(t) contains Pareto-optimal solutions only, no dominated solution can enter
the set E(t). The algorithm does not check for the spread of non-dominated solutions
stored in E(t). When run for a long time, the above algorithm will eventually find each
and every Pareto-optimal solution, but to achieve this the required size of E(t) may be
impractical. Realizing this fact, the investigators have modified the above algorithm
for a finite-sized archive set E(t).

Rudolph and Agapies Base Algorithm ARI

Step 1 A population P[O] is drawn at random and t = 0 is set. An elite set
E(O) is formed with non-dominated solutions of PfO).

Step 2 Generate a new population P(t + 1) = generate( E(t)) by usual selection,
recombination, and mutation operators.

Step 3 Store non-dominated solutions of P(t + 1) in P*(t). Initialize a new set
Q(t) = 0.

Step 4 For each element y E P*(t), perform the following steps:

Step 4a Collect all solutions from E(t) which are dominated by y:
D)J = {e E E(t) : y -< e}.

Step 4b If D)J # 0, delete those solutions from E(t) and include yin E(t).

Step 4c If y is non-dominated with all members of E(t), then update
Q(t) = Q(t) U{y}.

Step 5 Calculate k = min(N - IE(t)I,IQ(t)l), the minimum of unoccupied
positions in the elite set or the number of new solutions that are non
dominated with members of E(t).

Step 6 Update E(t+ 1) = E(t)Udraw(k, Q(t)) with newly found good solutions.

Step 7 If stopping criterion is not satisfied, set t = t + 1 and go to Step 2.
Otherwise, declare E(t + 1) as the obtained set of non-dominated solutions.

The function draw(k, Q (t)) returns a set of, at most, k distinct solutions from the
set Q (t). Thus, essentially the non-dominated solutions from each iteration are checked
with the external population (archive E(t)). If any new solution strongly dominates
a member of E(t), this dominated solution is eliminated from E(t). Furthermore, a
copy of the new solution is included in the archive E(t). If any new solution is non
dominated with all members of E(t), then it is moved to the special set Q(t). Later,
depending on the available population slots, some members from Q (t) are copied to
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the archive E(t}. Here, the set E(t} is an external population and does not participate
in any genetic operations.

These investigators have also shown that once a Pareto-optimal solution moves into
E(t}, either by replacing a dominated solution from E(t} or by filling the remaining
slots of E(t) from Q (t), that particular solution cannot be deleted. Since a fixed size
N is maintained for the set E(t}, once N Pareto-optimal solutions enter E(t}, no other
Pareto-optimal solutions will be accepted.

It is important to note that by copying distinct elements of Q(t} in E(t) in Step 6

does not guarantee finding a distinct set of solution in E(t). There may well be
duplicate solutions entering E(t) in Step 4b. Even if there is no duplicate solution
in the final E(t), there is no guarantee for their good spread across the Pareto-optimal
front. Thus, with a positive transition matrix for the genetic operators and with the
use of the above elitist strategy, convergence to the Pareto-optimal set is guaranteed
in a finite time with probability one. However, there are two difficulties, as follows:

1. There is no guarantee of an underlying spread among the members of the set E(t).
2. The proof does not imply a particular time complexity; it only proves that solutions

in the optimal set will only be found in a finite time.

The investigators also suggested two other algorithms which introduce elitism and
make use of the elite solutions in genetic operations. These algorithms also do not
guarantee maintaining a spread of solutions in the obtained set of non-dominated
solutions. Nevertheless, the proof of convergence to the Pareto-optimal front in these
algorithms itself is an important achievement in its own right.

8.9.2 An MOEA with Spread

Motivated by the above studies, we suggest an algorithm which attempts to converge
to the true Pareto-optimal front and simultaneously attempts to maintain the best
spread of solutions. First, we outline the algorithm.

An Elitist Steady-State MOEA

Step 1 A population Pj O] is drawn at random and t = 0 is set.

Step 2 Create a single solution l/ = generate(P( t)) by usual selection,
recombination, and mutation operators.

Step 3 Collect all solutions from P(t) which are dominated by l/:

D y = {p E P(t) : l/ ::S p}.

Step 4 If Dy Ie 0, delete one of the members of Dy at random and include l/

in P(t) and go to Step 5. Otherwise, if Dy = °and l/ is non-dominated in
P(t), then decide to replace a solution from P(t) with l/ by using a crowding
routine: P(t + 1) = Cr ovd tngfu, P(tll

Step 5 If a stopping criterion is not satisfied, set t = t + 1 and go to Step 2.
Otherwise, declare P(t + 1) as the set of obtained non-dominated solutions.
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The crowding routine in Step 4 decides inclusion of 1J in P(t) based on whether
by doing so the distribution of solutions gets better or not. Before we check this, we
find the non-dominated front of P(t). Let us call this front F] (t) of size T] = IF] [t l]. A
diversity measure V(P) of a population P is used to decide whether to accept 1J or not.
If the inclusion of 1J (in place of an existing solution) in P(t) improves this measure,
the solution 1J will be included in P (t) by replacing a solution from F] (t). There could
be several strategies used for finding the replacing member. We suggest choosing that
member which if replaced by 1J produces the maximum improvement in the diversity
measure. If replacement of any existing solution by 1J does not improve the diversity
measure, P(t) is unchanged.

Crowding(1J, P(t))

Step Cl Find the non-dominated set F] (t) of p(t). Set T] = IF] (t)l. Include 1J
in F1 (t).

Step C2 Choose each solution p E F] (t) except the extreme solutions.
Calculate V p (F,) as the diversity measure resulting by temporarily
excluding p from F] (t).

Step C3 Find p* = {p : V p (F,) [::> VdF] ) for all i.], for which the V-metric has
the worst value.

Step C4 Delete p* from F] (t).

The diversity metric V can be calculated in either of the two spaces: decision variable
space or objective space. Depending on this choice, the spread in solutions will be
achieved.

The above algorithm accepts a new solution 1J only when the following two situations
anse:

• solution 1J dominates at least one member of P'( t};

• solution 1J is non-dominated to all members of P(t) and solution 1J improves the
diversity metric.

Thus, with the second condition it is likely that a Pareto-optimal solution residing
in P( t) may get replaced by a non-Pareto-optimal yet non-dominated solution 1J in
trying to make the diversity measure better. However, when the parent population
P(t) contains a set of Pareto-optimal solutions which are maximally diverse, no new
solution can update P(t), thereby achieving convergence as well as maximum diversity
among obtained Pareto-optimal solutions. Thus, such a vector of solutions is a stable
attracior to the above algorithm. However, the search procedure to reach to such a
solution vector may not be straightforward. The use of an archive to remember the
previously found good solutions or a dynamically updated definition of dominance
may be some ways to improve the performance. The attractive aspect is that if any
member p of the parent population P(t) is non-Pareto-optimal, there exists a finite
probability to find a Pareto-optimal solution 1J (for a search operator having a positive
variation kernel) dominating p. In such a scenario, the first condition above will allow
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acceptance of solution 1), thereby allowing the above algorithm to progress towards
the Pareto-optimal front.

It is important to note that the spread of solutions obtained by this algorithm
depends on the chosen diversity metric. Any diversity metric, described earlier in
Section 8.2, can be used for this purpose. Here, we illustrate a diversity metric for
two-objective optimization problems. First, we include 1) in Fl (t), thereby increasing
the size of Fl (t) to T] + 1. Thereafter, except the two end solutions, we exclude one,
say the j-th solution of the remaining (T] - 1) solutions, and calculate the diversity
metric u,(Fl):

'1- 1 -
. _ " Idi. - dl

V) - L l'
i.=l T]~

(8.74)

where d Li==-ll di./(T] - 1). In the above equation, we calculate the consecutive
distances d. of all T] solutions (excluding the j-th solution). The above procedure is
continued for every solution in Fl (t) except the end solutions. The solution with the
worst diversity measure (the largest Vi value) is eliminated from Fl (t). It is clear that
the smaller the above diversity measure V j , then the better is the distribution. For
the above diversity measure Vi, the algorithm will eventually lead to a distribution
for which the distance between all consecutive pairs of solutions will be identical (or,
when Vi = 0), thereby ensuring a uniform distribution.

Although the above discussion does not sketch a proof of convergence to a maximally
diverse set of Pareto-optimal solutions, it argues that such a set of solutions is a stable
attractor of the above algorithm. More studies in this direction are needed to design
MOEAs having a proof of convergence to the Pareto-optimal set as well as a proof of
maximal diversity among them. More interesting studies should include a complexity
analysis of such MOEAs.

Simulation Results

In order to demonstrate the working of the above algorithm, we attempt to solve the
following two-objective problem:

Minimize f l [xj , Xz) = xj , }
Minimize fZ(Xl, XZ) = 1 - Xl + x~,

subject to 0::; Xl::; 1, -1::; xz::; 1.
(8.75)

The problem has a Pareto-optimal front with xi = 0 and 0 ::; xi ::; 1. The functional
relationship for the Pareto-optimal solutions is a straight line: fi = 1 - fi.

We use a real-parameter implementation with population of size 10, binary
tournament selection, the SBX operator with T]c = 10 and the polynomial mutation
operator with Tlm = 5. Crossover and mutation probabilities are 0.9 and 0.5,
respectively. The SBX operator is used to create two offspring, of which one is selected
at random and mutated. The algorithm is run for 80 000 function evaluations (8000
generations) to record the progress of the algorithm. Figure 277 shows the diversity
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Figure 277 Increasingly better distribution is achieved with the proposed algorithm.

measure D with function evaluations. It is clear that the above algorithm finds an
increasingly better distribution with generation number. At the end of 80 000 function
evaluations, the diversity measure is very close to zero, meaning that a uniform
like distribution is achieved. The population members at the end of 80 000 function
evaluations are shown in Figure 278. This figure does indeed show a uniform-like
distribution. The sudden worsening in the diversity metric in Figure 277 occurs due
to the discovery of improved extreme solutions.
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Figure 278 A uniform-like distribution is achieved with the proposed algorithm.
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Computational Complexity

The above algorithm requires one sorting in one of the two objective functions
requiring 0 (N log N) computations for each new solution. In order to create N new
solutions in a generational sense, 0 (N 2 log N) computations are necessary. However, if
a special bookkeeping strategy is used for tracking the unaffected distance measures,
the computational complexity can be reduced.

Distances in More Than Two Objectives

Finding the neighbors and then calculating the consecutive Euclidean distances
among non-dominated solutions for problems having more than two objectives is
computationally expensive. For these problems, the obtained non-dominated solutions
can be used to construct a higher-dimensional surface by employing the so-called
triangularization method. As shown in Figure 279, several distance measures can be
associated with such a triangularized surface. The average distance of all edges (shown
by bold lines) including a solution i can be used as the distance d.. Alternatively, the
hypervolume (shown hatched in the figure) enclosed by all triangular elements where
the current solution is a node can be used as d.. The crowding distance metric used in
the NSGA-II can also be used in problems with more than two objectives. Thereafter, a
diversity measure similar to that given above in equation (8.74) can also be employed.

8.10 Controlling Elitism

The elitist MOEAs described in Chapter 6 raise an important issue relating to EA
research, namely the concept of exploitation versus exploration (Goldberg, 1989).
Let us imagine that at a generation, we have a population Rt where most of the
members lie on the non-dominated front of rank one and this front is not close to
the true Pareto-optimal front. This will happen in the case of multi-modal multi
objective problems, where a population can get attracted to a local Pareto-optimal
front away from the global Pareto-optimal front. Since a large number of population
members belong to the current best non-dominated front, the elite-preserving operator

3

Figure 279 Triangularization of a non-dominated surface approximated by a set of obtained

non-dominated solutions (marked by filled circles).
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will result in not accepting many dominated solutions. For example, in NSGA
II (Deb et al., 2000b), elite solutions are emphasized on two occasions, i.e. once
in the usual tournament selection operation and again during the elite-preserving
operation in the until loop (see page 234). The former operation involves the crowded
tournament selection operator, which emphasizes the elite solutions (the current-best
non-dominated solutions). In the latter case, solutions are selected starting from the
current-best non-dominated solutions until all population slots are filled. This dual
emphasis of the elite solutions will cause a rapid deletion of solutions belonging to the
non-elitist fronts. Although the crowding tournament operator will ensure diversity
along the current non-dominated front, lateral diversity will be lost. In many problems,
when this happens the search slows down, simply because there may be a lack of
diversity in the particular decision variables left to push the search towards better
regions of optimality. Thus, in order to ensure better convergence, a search algorithm
may need diversity in both aspects - along the Pareto-optimal front and lateral to the
Pareto-optimal front, as shown in Figure 280.

A recent study (Parks and Miller, 1998) of a specific problem has suggested
that the variability present in non-dominated solutions may allow a strong elitist
selection pressure to be used without prematurely converging to a sub-optimal front.
Apparently this makes sense, but in general it may be beneficial to maintain both
kinds of population diversities in a multi-objective EA. In the test problems discussed
above in Section 8.3, the lateral diversity is ensured by the function 9 () through (n - 1)
decision variables. Solutions converging to any local Pareto-optimal front will cause all
of these decision variables to take an identical value. A strong elitism will reduce the
lateral variability in these solutions and may eventually prevent the algorithm moving
towards the true Pareto-optimal front. Thus, it is important to explicitly preserve both
kinds of diversities in an MOEA in order to handle different kinds of multi-objective
optimization problems.

Front
1
\

•
\

\

•\
-,

\

•

2
\

\

••,

• -. -

3
'e,

•'.
- ...... --.--

pareto-optimal front

Figure 280 The controlled elitism procedure. This is a reprint of Figure 2 from Deb and

Gael (2001a) (© Springer-Verlag Berlin Heidelberg 2001).
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Although most MOEAs use an explicit diversity preserving mechanism among
the non-dominated solutions, there is not much emphasis on maintaining diversity
laterally. We view this problem as a problem of balancing exploration and exploitation
issues in an MOEA. In the above discussion for NSGA-II, it is clear that in certain
complex problems, this algorithm, in the absence of a lateral diversity-preserving
operator such as mutation, causes too much exploitation of the currently-best non
dominated solutions. In order to counteract this excessive selection pressure, an
adequate exploration by means of the search operators must be used. Achieving a
proper balance of these two issues is not possible with the uncontrolled elitism used in
NSGA-II. In a recent study (Deb et al., 2000a), it was observed that in the test problem
ZDT4 with Rastrigin's multi-modal function as the 9 functional, NSGA-II could not
converge to the global Pareto-optimal front. However, when a mutation operator with
a larger mutation strength is used, the algorithm succeeds in achieving convergence.
Increasing variability through mutation enhances the exploration power of an MOEA
and a balance between enhanced exploitation and the modified exploration can be
maintained.

Although many researchers have adopted an increased exploration requirement by
using a large mutation strength in the context of single-objective EAs, the extent of
needed exploration is always problem-dependent. In the following subsection, instead
of concentrating on changing the search operators, we suggest a controlled elitism
mechanism for NSGA-II which will control the extent of exploitation rather than
controlling the extent of exploration. However, we highlight that a similar controlled
elitism mechanism is needed and can also be introduced into other elitist MOEAs
(Laumanns et al., 2001).

8.10.1 Controlled Elitism in NSGA-II

In the proposed controlled NSGA-II, we restrict the number of individuals in the
current best non-dominated front adaptively. We attempt to maintain a predefined
distribution of number of individuals in each front. Specifically, we use a geometric
distribution for this purpose:

(8.76)

where N i is the maximum number of allowed individuals in the i-th front and r « l ) is
the reduction rate. This is in agreement with another independent observation (Kumar
and Rockett, in press). Although the parameter r is user-defined, the procedure is
adaptive, as follows.

First, the population Rt = P, UQt is sorted for non-domination. Let us say that the
number of non-dominated fronts in the combined population (of size 2N) is K. Thus,
according to the geometric distribution, the maximum number of individual allowed
in the i-th front (i = ',2, ... , K) in the new population of size N is:

, - r . 1
N, = N-,--Kr 1

- • (8.77)
-r

Since r < " the maximum allowable number of individuals in the first front is the
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highest. Thereafter, each front is allowed to have an exponentially reducing number
of solutions. The distribution considered above is an assumption; however, other
distributions, such as an arithmetic distribution or a harmonic distribution, may also
be tried. Nevertheless, the main concept of the proposed approach is to forcibly allow
solutions from different non-dominated fronts to co-exist in the population.

Although equation (8.77) denotes the maximum allowable number of individuals
N, in each front i in a population, there may not exist exactly N, individuals in such
fronts. We resolve this problem by starting a procedure from the first front. First,
the number of individuals in the first front is counted. Let us say that there are N i
individuals. If Ni > N 1 (that is, there are more solutions than allowed), we only
choose N 1 solutions by using the crowded tournament selection. In this way, exactly
N 1 solutions that are residing in a less crowded region are selected. On the other hand,
if Ni :::; N1 (that is, there are less or equal number of solutions in the population
than allowed), we choose all Ni solutions and count the number of remaining slots
Pl = N 1 - N i. The maximum allowed number of individuals in the second front is
now increased to Nz + Pl. Thereafter, the actual number of solutions Ni present in
the second front is counted and is compared with Nz as above. This procedure is
continued until N individuals are selected. Figure 281 shows that a population of size
2N (having four non-dominated fronts with the top-most subpopulation representing
front one and so on) is reduced to a new population Pt+ 1 of size N by using the above
procedure. In the transition shown on the right, all four fronts have representative
solutions in PH 1. Besides this controlled elite-preserving procedure, the rest of the
procedure is kept the same as that used in NSGA-II. The left figure also shows the new
population Pt+l (having only two fronts) which would have been obtained by using
the usual NSGA-II procedure. It is clear that the new population obtained under the
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Figure 281 The controlled elite-preserving procedure in NSGA-II. This is a reprint of

Figure 3 from Deb and Goel (2001a) (© Springer-Verlag Berlin Heidelberg 2001).
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controlled NSGA-II procedure will, in general, be more diverse than that obtained by
using the usual NSGA-II approach. Since the population is halved, it is likely that in
each front there would be more solutions than allowed. However, there could be some
situations where after all 2N solutions are processed as above, there are still some
slots left in the new population to be filled. This may happen particularly when r is
large. In such cases, we make another pass with those individuals left out from the
first front, continue to other fronts, and then start including them until we fill up the
remaining slots.

Discussion

As mentioned earlier, keeping individuals from many non-dominated fronts in the
population helps the recombination operator to create diverse solutions. NSGA-II and
many other successful MOEAs thrive at maintaining diversity among solutions of
individual non-dominated fronts. The controlled elitism procedure suggested above
will help maintain diversity in the solutions across such fronts. In solving difficult
multi-objective optimization problems, this additional feature may be helpful in
progressing towards the true Pareto-optimal front.

It is intuitive that the parameter r is important in maintaining the correct balance
between the exploitation and exploration issues discussed above. This parameter
sets up the extent of exploration allowed in an MOEA. If r is small, the extent of
exploration is large, and vice versa. In general, the optimal value of r will depend
on the problem and it will be difficult to determine it theoretically. In the following
section, we present simulation results on a number of difficult problems to investigate
if there exists any value of r where NSGA-II performs well.

A Test Problem

In order to investigate the effect of controlled elitism alone, we do not use the mutation
operator. In addition, for controlled NSGA-II runs, we do not use the selection operator
in maka.nev.pop O to create the offspring population. We use a population size of 100,
a crossover probability of 0.95, and a distribution index for the SBX operator (Deb
and Agrawal, 1995) of 20. The algorithms are run until 200 generations are completed.
Instead of using the usual definition of domination, we have used the strong dominance
condition in these studies. The problem is a biased test function:

Minimize

Minimize

where

f1 (x] = Xl, )

f2(X) = g(x) (1 - y!xdg(x)) ,

(
10 )0.25

g(x) = 1+ Li=2 Xi ,

Xl E [0,1], Xi E [-5,5], i = 2, ... ,10.

(8.78)

In all simulations, 25 independent runs from different initial populations are taken.
Not all simulations with the NSGA-II and the controlled NSGA-II have converged
to the true Pareto-optimal front with the above parameter settings. However, one
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advantage of working with the above construction of a multi-objective test problem
is that the function 9() indicates the convergence of the obtained front near the true
Pareto-optimal front. For an ideal convergence to the latter, the 9() value would be
one. A simulation with a smaller g() is better. Figure 282 shows that NSGA-II could
not converge close to the true Pareto-optimal front. The average of the best value
of 9() in a population is calculated and is also plotted in the figure. It is clear that
all controlled elitism runs (with different r values except r = 0.9) have converged
better than runs with the original NSGA-II. The average g() value is closer to one
than that in NSGA-II. Among the different r values, r = 0.65 performed the best. For
smaller r values, an adequate number of fronts are not allowed to survive, thereby
not maintaining enough diversity to proceed to near the true Pareto-optimal front.
For r close to 1, there is not enough selection pressure allowed for the non-dominated
solutions, thereby slowing down the progress. Figure 282 clearly shows that there is
a trade-off reduction rate (around r = 0.65, in this problem), which makes a good
balance of the two aspects.

In order to investigate the composition of a population with controlled elitism, we
count the number of fronts and the number of best non-dominated solutions in 25
different runs of the NSGA-II and the controlled NSGA-II with r = 0.65. The average
values of these numbers are plotted in Figures 283 and 284, respectively. Figure 283
shows that in the case of the original NSGA-II, the number of fronts grows for a
few generations, but then eventually drops to one. On the other hand, the controlled
NSGA-II with r = 0.65 steadily finds and maintains solutions in more and more
fronts with increasing numbers of generations. This keeps an adequate diversity in the
population to enable progress towards the true Pareto-optimal front.

Figure 284 shows that all 100 population members reside in the non-dominated front
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Figure 282 Convergence observed for the usual and controlled NSGA-II. This is a reprint

of Figure 8 from Deb and Goel (2001a) (@ Springer-Verlag Berlin Heidelberg 2001).
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with the NSGA-II after only a few generations, thereby loosing the lateral diversity.
However, only about 20-25 solutions are maintained in the best non-dominated set in
the case of the controlled NSGA-II with r = 0.65. The rest of the population members
belong to other fronts, thereby maintaining a good lateral diversity.

There may exist other ways to control the lateral diversity in an MOEA. Alternative
distributions, such as an arithmetic distribution, can be tried instead of a geometric
distribution. A similar concept can be used with other MOEAs. In archived MOEAs,
such as the PAES and its successors, the number of individuals allotted in the non
dominated archives compared to dominated archives can be explicitly controlled.
Although more studies are needed, the experimental results shown above clearly
demonstrate the need for introducing lateral diversity in an MOEA. As diversity
among non-dominated solutions is required to be maintained for obtaining diverse
Pareto-optimal solutions, lateral diversity is also needed to be maintained for achieving
a better convergence to the true Pareto-optimal front.

8.11 Multi-Objective Scheduling Algorithms

Unlike the major interest shown in applying evolutionary algorithms to single
objective scheduling problems (Davis, 1991; Gen and Cheng, 1997; Reeves,
1993a; Starkweather et al., 1991), the application of multi-objective evolutionary
optimization in multi-objective scheduling problems has so far received a lukewarm
response. With the demonstration of efficient multi-objective function optimization
algorithms, this is probably the time that researchers interested in scheduling
problems (such as the traveling salesperson problem, job-shop scheduling, flow-shop
scheduling and other combinatorial optimization problems) might pay attention to the
possibilities of extending the ideas of MOEAs to multi-objective scheduling problems.



SALIENT ISSUES OF MULTI-OBJECTIVE EA 419

However, there do exist a number of studies where MOEAs are applied to multi
objective flow-shop, job-shop and open-shop scheduling problems. We will discuss
them briefly in this section. In addition, there exist other studies which have also
been used in multi-objective scheduling and planning problems using multi-objective
EAs and related strategies such as ant colony search algorithms (Iredi et al., 2001;
Krause and Nissen, 1995; Shaw et al., 1999; Tamaki et al., 1995, 1999; Zhou and Gen,
1997).

8.11.1 Random-Weight Based Genetic Local Search

As early as the mid 1990s, Murata and Ishibuchi (1995), applied the random-weight
GA (RWGA), described earlier in Section 5.7, to a two-objective flow-shop scheduling
problem. Before we discuss this application, let us briefly outline the objectives in a
flow-shop scheduling problem.

In such a scheduling problem, a total of n jobs must be finished by using m machines.
However, each job has exactly m operations, each of which must be processed in a
different machine. Thus, each job has to pass through each machine in a particular
order. Moreover, the order of machines needed to complete a job is the same for all
of the jobs. For each job, the time required to complete the task in each machine
is predefined. Figure 285 shows a typical schedule for a five-job and three-machine
problem. Note that all jobs follow the same order of machines: M1 to M2 and then to
M3. Each job i has an overall completion time, called the flow time Fl. This figure
shows the flow time for the first and fifth jobs. There is also an overall completion time
for all jobs, assuming that the first job in the first machine started at time zero. This
overall completion time of all jobs is known as the make-span. The figure also marks
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Figure 285 A five-job and three-machine flow-shop schedule.
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the make-span for the illustrated schedule. Furthermore, each job has a due date of
completion. If the actual completion time is more than the due date, the tardiness
for that job is defined as the extra time taken to complete the job. The tardiness for
a job i is shown as L, in the figure. It is interesting to note that if a job is completed
before the due date, the tardiness is zero. The flow time of a job reflects the time
taken to complete the job. The smaller the flow time for a job, then the better is the
schedule for that job. However, since jobs can have different flow times, it is better to
minimize the mean flow time F, which is defined as the average of the flow times for
all of the jobs:

(8.79)

Some careful thought will reveal that the absolute minimum of the mean flow time
occurs when all operations for a job are performed without any time delay. In this
way, each job requires a minimum possible flow time, thereby minimizing the mean
flow time. Since the operation time of a job on a machine is different for different
jobs, the overall schedule for achieving the minimum mean flow time would stagger
the operations of each job so that the individual mean flow time is a minimum. This
process will lead to a large make-span. However, minimizing the make-span is also
an important concern in a flow-shop scheduling. Thus, both optimization problems
of minimizing the mean flow time and minimizing the make-span have conflicting
optimal solutions (Bagchi, 1999).

The overall tardiness of a schedule can be measured by calculating the mean
tardiness as follows:

(8.80)

In a good schedule, it is desired to have a minimum mean tardiness, which ensures a
minimum delay of completion of all jobs from the due dates. Although minimization
of the mean tardiness and minimization of the make-span are somewhat related for
reasonable due dates, the minimization of mean tardiness and the minimization of
mean flow time will produce conflicting optimal solutions due to a similar reason as
that given above. In general, all three objectives of minimizing make-span, minimizing
mean flow time, and minimizing tardiness produce conflicting optimal solutions. In
most single-objective scheduling problems, the make-span is minimized, keeping the
mean flow time and mean tardiness restricted to certain values.

Murata and Ishibuchi (1995) formulated a two-objective scheduling problem for
minimizing the make-span and the mean tardiness. These investigators used a two
point order crossover operator and a shift-change mutation operator for creating valid
feasible offspring from feasible parents. In the two-point order crossover operator, two
random genes are chosen at random. An offspring schedule is created by copying the
genes outside the region bounded by the chosen genes from one parent and arranging
the inside genes as they are ordered in the second parent. Figure 286 illustrates this
crossover operator on two parent strings representing two schedules. Jobs 1, 2, 7,
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Figure 286 Two-point order crossover operator.

8 and 9 are copied from the first parent and jobs 3 to 6 are copied in the same
order as they appear in the second parent. In the shift-change mutation operator, two
genes are chosen at random and are placed side by side, thereby making the linkage
between these two genes better. Figure 287 illustrates this mutation operator. Jobs 3
and 6 come together in the mutated schedule. In comparison with the VEGA, these
investigators reported better converged solutions with their RWGA.

Later, Ishibuchi and Murata (1998a) introduced a local search technique in their
RWGA in the search for finding better converged solutions. The algorithm is identical
to that mentioned earlier in Section 5.7, except that each solution x created by using
the crossover and mutation operators is sent to a local search method to find an
improved local solution. A fixed number of solutions are created in the neighborhood
of x by exchanging places between two jobs. To determine the improvement, the
weighted objective function value (with the same random weight vector used by its
parents in the selection operation) is used. The local search operator is simple. If
a neighboring solution improves the weighted objective, it is accepted; otherwise,
another solution is tried. When a pre-specified number of solutions are tried, the best
solution becomes a new population member.

As before, an external population with non-dominated solutions is maintained and
updated in each iteration with the non-dominated solutions of the new population.
In addition, elitism is maintained by copying a fixed number of solutions (chosen at
random) from the elite population to create an offspring population. Figure 288 shows

Offspring

Mutated
offspring

Figure 287 Shift-change mutation operator.
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Figure 288 The hybrid RWGA procedure.

a schematic of one generation of the hybrid RWGA with the local search method.
This figure shows that by genetic operations, the offspring population is partially
filled. Some solutions from the elite population are directly copied into the offspring
population. Thereafter, each offspring population member is modified by using the
local search technique. For elite solutions introduced into the offspring population, a
random weight vector is used to calculate the objective function needed during the
local search method.

On a 10-job and five-machine flow-shop problem of minimizing the make-span and
minimizing the maximum tardiness (instead of minimizing the mean tardiness), these
investigators have used the following parameter settings: GA population of size 20,
elite population of size 3, and a maximum number of function evaluations of 10 000. In
comparison with the VEGA (shown by squares in Figure 289) and a constant weight
GA (CWGA) (shown by squares in Figure 290), their hybrid RWGA (shown by circles)
is able to find more solutions in the final non-dominated set. In both figures, the trade
off between make-span and maximum tardiness is evident. The VEGA is unable to find
intermediate solutions. The CWGA is used with an elite set proposed in the hybrid
RWGA, thereby collecting multiple and diverse non-dominated solutions along the
way. Furthermore, these investigators have solved a 20-job and 10-machine flow-shop
scheduling problem having three objectives and similar observations have been made.

8.11.2 Multi-Objective Genetic Local Search

Jaskiewicz (1998) suggested a multi-objective genetic local search (MOGLS) approach,
where each solution, created either in the initial population or in subsequent genetic
operations is modified with a local search technique. In his approach, a scalarizing
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function is chosen at random. The best N solutions from the population are chosen
according to the chosen scalarizing function. Two solutions from these N solutions are
chosen at random and a new offspring is created by genetic operations. A local search
procedure is initiated from the offspring until a better offspring is created. If the new
solution makes the distribution better, it is accepted in the main GA population. An
external elite set is then updated with this new solution. By considering different cost
values for each are, Jaskiewicz (1998) formed many three- and four-objective 50 and
100-city traveling salesperson problems (TSPs). He used the standard ordering-GA
and its operators and showed that the MOGLS is able to find more trade-off solutions
in the final generation than a repetitive single-objective genetic local search (GLS) in
these permutation problems.

8.11.3 NSGA and Elitist NSGA (ENGA)

Bagchi (1999) extended Srinivas and Deb's NSGA (Srinivas and Deb, 1994) (see
Section 5.9 above) to solve flow-shop, job-shop and open-shop scheduling problems.
In all cases, this investigator used three objective functions: (i) make-span, (ii) mean
flow time, and (iii) mean tardiness. In an effort to find more solutions in the obtained
non-dominated set, Bagchi (1999) introduced an elitist version of the NSGA; he called
this an elitist NSGA (or simply ENGA). In this approach, the offspring population
obtained after genetic operations is combined with the parent population. Thereafter,
the combined population is sorted in different non-dominated levels. The best 50%
solutions from this combined sorted population is chosen as the new population. The
rest of the procedures of assigning fitness and implementing the sharing approach are
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identical to that used in the original NSGA.
Simulation results on 21 test problems, including a 49-job and IS-machine flow

shop scheduling problem, suggested that although both the NSGA and ENGA
(with identical computational effort) found solutions with a comparable degree of
convergence, the ENGA found more numbers of non-dominated solutions than the
NSGA. This result is not surprising because an elitist algorithm is supposed to
preserve and propagate more non-dominated solutions than the non-elitist version.
The presence of more non-dominated solutions in the parent population helps create
better offspring. Moreover, once a set of non-dominated solutions are found, they
can only be eliminated if a better set of non-dominated solutions is discovered. This
observation supports similar observations reported in other studies (Leung et al.,
1998; Zitzler, 1999) and suggests the use of elitist algorithms even in the case of
multi-objective scheduling problems.

This particular study also reported other simulation results using the NSGA
and ENGA in different job-shop and open-shop scheduling problems. In a job-shop
scheduling problem, the unidirectional flow of jobs is relaxed. However, each job has
a particular order of operations. Before a job is completely finished, some operations
of another job can be started. Thus, job-shop scheduling allows more flexibility in
designing a schedule than flow-shop scheduling. An open-shop scheduling is even more
flexible in that the order of operations of any job is also not fixed. Any operation can
be performed at any point of time. On a number of problems, including a 20-job and
10-machine problem (minimizing make-span, mean flow time, and mean tardiness),
the study has shown that the elitist NSGA finds more non-dominated solutions in the
obtained non-dominated front than the non-elitist NSGA.

8.12 Summary

In this chapter, we have dealt with a number of salient issues regarding multi-objective
evolutionary algorithms. Although there exist many other issues, the topics discussed
here are of immense importance.

Most multi-objective studies performed so far involve only two objectives. While
dealing with more than two objectives, it becomes essential to illustrate the trade-off
solutions in a meaningful manner. We have reviewed a number of different ways in
which the non-dominated solutions can be represented. Of these, the scatter-plot and
value path methods are the most commonly used.

With the success of MOEAs in different problem domains, many new techniques
have been suggested. This demands a proper method of assessing the performance
of a newly suggested algorithm. Since an MOEA is supposed to perform the two
tasks of (i) converging close to the true Pareto-optimal front and (ii) maintaining a
diverse set of non-dominated solutions, an algorithm must be assessed with respect
to both of these tasks. Ironically, it is difficult to have one performance metric to
evaluate both of the above issues adequately. In this chapter, we have reviewed a
number of performance measures which have been suggested in the literature. While
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developing new performance metrics, their scalability to problems having more than
two objectives must be kept in mind.

For evaluating a new algorithm, there is also a need to test it with problems
possessing known complexities of the search space and with a known Pareto-optimal
set. We have presented a number of test problems which are suggested in the
literature and for the first time have determined the exact location of Pareto-optimal
solutions for many of these. Knowledge of the exact locations of the Pareto-optimal
solutions is helpful in investigating the search abilities of an algorithm. Test problems
assess the ability of a multi-objective optimization algorithm to successfully perform
different tasks. For the first time, we have also suggested a number of test problems
for constrained multi-objective optimization with known set of constrained Pareto
optimal solutions. Such test problems allow a multi-objective optimization algorithm
to be evaluated for its ability to reach the feasible search space and then to converge
to the correct constrained Pareto-optimal solutions.

With the development of a number of MOEAs over the past few years, there
have been some studies in comparing them systematically. The next section in
this chapter has outlined these comparisons and presented their outcome. Although
each study has considered different MOEAs with different performance measures, a
common conclusion has emerged from all of this work. Those MOEAs which properly
implemented elite-preservation, emphasized non-dominated solutions, and maintained
diversity among non-dominated solutions, all performed well. In several studies, it
was clear that elite-preservation is an important operation in converging as well as
sustaining a good diverse set of non-dominated solutions.

An important aspect of maintaining diversity among non-dominated solutions is the
space in which the diversity is required. In some problems, diversity among solutions is
more important in the decision variable space than in the objective space. It has been
shown that on such occasions, the diversity preserving operator (such as sharing,
clustering, etc.) must treat the proximity of the solutions in the decision variable
space. On the other hand, if the diversity in the objective space is more important,
the proximity must be measured in the objective space. It is important to keep in
mind that the proximity in one space may not mean that a proximity in the other
space would be automatically obtained. This has been found to be particularly true
in certain nonlinear and complex problems. Most MOEAs suggested in the previous
two chapters have attempted to maintain diversity in the objective space, although
they can be easily modified to find better distributed solutions in the decision variable
space by simply calculating the proximity measure (distance between two solutions)
in the decision variable space.

Throughout this book, we have been arguing the need for finding a diverse set
of non-dominated solutions. However, in a particular problem, the user may not be
interested in the complete Pareto-optimal set; instead, the user may be interested in a
certain region of the Pareto-optimal set. Such a bias can arise if not all objectives are
of equal importance to the user. MOEAs can be used to find a preferred distribution
of solutions in the Pareto-optimal region with such information. We have argued that



426 MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION

finding a preferred distribution in the region of interest is more practical and less
subjective than finding one biased solution in the region of interest. In this chapter,
we have discussed a number of techniques for achieving this task. In these MOEAs,
the user needs to specify a relative preference structure of the objectives. Algorithms
use this information to find a biased set of solutions in the Pareto-optimal front. If
such knowledge is available, there are two advantages: (i) the search effort is reduced,
and (ii) better precision in solutions in the desired region is achieved.

The concept of multi-objective optimization can also be used to solve other kinds of
optimization problems in an efficient way. For example, a constrained single-objective
optimization problem can be considered as being a multi-objective optimization
problem of optimizing the objective function and minimizing all constraint violations.
Most single-objective constraint handling techniques, including the penalty function
approach, introduce artificial means of penalizing infeasible solutions. The search
path to the feasible region largely depends on the way that the constraints are
handled. Treating constraint violations as objectives does not restrict the search path
in any way, thereby making the overall approach flexible and generic. In addition,
the principle of finding multiple optimal solutions can also be extended to other
similar problems, such as goal programming. Because of the lack of an optimization
algorithm which can find multiple optimal solutions simultaneously, goal programming
approaches traditionally use relative weights of objectives and resort to finding one
solution corresponding to one weight vector at a time. Here, we have suggested a
simple procedure to find multiple trade-off solutions in a goal programming problem
by converting the problem into a multi-objective optimization problem. Simulation
results demonstrate the efficacy of the proposed approach.

As mentioned earlier, most studies in multi-objective evolutionary algorithms
have considered only two objectives. In this chapter, we have discussed some issues
regarding the scalability of MOEAs in problems having more than two objectives. An
interesting aspect is that as the number of objectives increase, a larger proportion
of a randomly chosen population becomes non-dominated. When this happens,
introduction of elitism becomes tricky. This is because a large number of population
members are candidate elite solutions, therefore not allowing many new solutions to be
accepted in any generation. Moreover, we have suggested a way to choose an adequate
population size such that a reasonable proportion of the population members belongs
to the dominated fronts for initially introducing variability in the population.

In MOEAs, convergence to the Pareto-optimal front and simultaneous maintenance
of a good distribution are both important. Although there exist a number of MOEAs
with theoretical convergence properties to the true Pareto-optimal front, they do not
guarantee maintaining any spread of solutions. Moreover, such studies also do not
suggest any upper bound of the computational complexities needed to converge to the
Pareto-optimal front. More studies to develop MOEAs with properties of convergence
as well as spread of solutions remain as an imminent challenge to the researchers of
MOEAs.

Most elitist MOEA implementations do not control the extent of elitism adequately.
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For example, both Rudolph's MOEA and the NSGA-II do not allow choosing any
dominated solution before all of the non-dominated solutions are chosen. When most
population members belong to the best non-dominated front (either towards later
generations or in solving problems having a large number of objectives), the lateral
diversity needed to proceed towards the true Pareto-optimal front may have been lost
in certain problems. By allowing a certain proportion of other dominated fronts to
co-exist in the population, the lateral diversity can be restored. In this chapter, we
have proposed a strategy where elitism can be controlled by a single parameter. By
forcefully allowing solutions from dominated fronts to exist in the population, the
effective selective advantage to the best non-dominated solutions is controlled. The
SPEA controls elitism by choosing the size of the elite population to be small. In
this way, there is always a fixed ratio of elite to population members (1:4 ratio was
suggested by the original investigators) is maintained. The PAES controls elitism by
limiting the maximum number of solutions allowed in any grid of the archive. Such
controlled elitism techniques will be more useful in complex problems, particularly in
those problems having a large number of objectives.

Finally, we have discussed a number of multi-objective scheduling techniques using
evolutionary algorithms. Although to date there do not exist many studies in this
direction, the successful simulations' demonstration of finding well-distributed trade
off solutions in a number of applications suggest further immediate studies on such
scheduling MOEAs.





9

Applications of Multi-Objective
Evolutionary Algorithms

In the previous chapters, multi-objective evolutionary algorithms are described and
applied to test problems. The advantage of investigating the performance of MOEAs
on test problems as opposed to application problems is that in test problems the
problem complexity, including the location of entire Pareto-optimal set, is precisely
known. Thus, while evaluating an MOEA, it becomes useful and informative to apply
these algorithms on test problems. On the other hand, testing an MOEA's performance
on application problems is also necessary to demonstrate the use of the algorithm in
practice. In this chapter, we will present five applications of a number of elitist and
non-elitist MOEAs.

First, a number of mechanical component design problems are solved. Although a
few decision variables are used in each problem, the application of MOEAs shows how
multiple trade-off solutions can be found involving two conflicting design objectives:
cost and the reliability of designs. Although reliability of a design is not directly
used in the formulations, the minimization of maximum deflection anywhere in the
component or maximization of the stiffness of a component is equivalent to maximizing
the reliability of a design. In all of the case studies, solutions having each objective
varying over a wide range of values are found.

Secondly, an MOEA is applied to a number of truss-structure design problems
with a novel representation scheme, which allows both topology and member sizing
optimization problems to be handled simultaneously. In these problems, minimization
of the weight of the truss and the minimization of the maximum deflection of the
truss are two conflicting objectives. Interestingly, the entire non-dominated set of
solutions consists of a number of regions with differing topologies. Each contiguous set
of solutions have identical topologies but vary in member sizing only. Such properties
among trade-off solutions are not intuitive and can emerge from the obtained non
dominated solutions.

Thirdly, a microwave absorber is designed for two conflicting objectives 
minimization of reflectivity in a frequency band and minimization of the overall
thickness of the absorber. On a couple of different frequency-band absorber design
problems, three MOEAs are compared for their convergence and their ability to find
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diverse non-dominated sets of solutions. In all cases, solutions having a widely varying
range of both objectives are found.

Fourthly, MOEAs are applied to find interplanetary trajectories for three
objectives - delivered payload to the destination, time of flight and heliocentric
revolutions involved in the trajectories. On an Earth-Mars rendezvous mission, a
number of different non-dominated trajectories are found by an MOEA. Conflicting
characteristics for the first two objectives have been observed in the obtained solutions.
Interesting spiral trajectories, of fairly long lengths, are also observed.

Finally, a hybrid optimization technique with an MOEA, assisted by a local search
technique, is suggested for real-world problem solving. In most application problems
in this and previous chapters, a large number of non-dominated solutions are found by
an MOEA. However, in practice, one is interested in only a handful of Pareto-optimal
solutions. The hybrid technique proposed a clustering approach to group a number
of non-dominated solutions together and finally suggested a desired number of well
distributed trade-off solutions. The proposed technique is demonstrated by applying
it to a number of engineering shape design problems. With no knowledge of any
information about the optimal shapes in these problems, the proposed hybrid MOEA
can find different trade-off shapes, some of which are intuitive to an experienced
designer.

9.1 An Overview of Different Applications

Interested readers may refer to other application case studies for different real-world
applications of MOEAs. In Table 33, we outline a number of such studies. However,
we do not claim this list to be complete.

Table 33 Some real-world application studies of MOEAs.

Researcher(s) (Year)

S. S. Rao (1993)
A. D. Belegundu et al. (1994)

T. J. Stanley and T. Mudge
(1995)
C. S. Chang et al. (1995)
F. Jimenez and J. L. Verdegay
(1995)
C. A. Coello et al. (1995)
A. J. Chipperfield and P. J.
Fleming (1996)

T. Arslan et al. (1996)
S. Y. Hahn (1996)
D. S. Weile et al. (1996)

Application area

Structural optimization
Laminated ceramic composites
Microprocessor chip design

Traction for DC railway system
Solid transportation

Counterweight balancing of a robot arm
Gas turbine engine controller design

VLSI circuit design
Permanent magnet motor design
Broad-band microwave absorber design
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D. S. Todd and P. Sen (1997)

D. H. Loughlin and S. Ranjithan
(1997)
D. Lee (1997)
E. Zitzler and L. Thiele (1998a)

G. T. Parks and I. Miller (1998)

K. Fujita et al. (1998)
S. Obayashi et al. (1998)
K. Mitra et al. (1998)

H. A. Guvenir and E. Erel (1998)
T. Bagchi (1999)

D. Cvetkovic and I. Parmee
(1998)
R. Kumar and P. I. Rockett
(1998)

C. M. Fonseca and P. J. Fleming
(1998b)
S. Mardle et al. (1998)
B. Paechter et al. (1998)

A. G. Cunha et al. (1999)
S. Garg and S. K. Gupta (1999)

N. Eklund and M. Embrechts
(1999)
C. Poloni et al. (2000)
E. Schlemmer et al. (2000)
P. Di Barba et al. (2000)

L. Costa and P. Oliveira (2000)
A. J. Blumel et al. (2000)
K. B. Matthews et al. (2000)
H. Meunier et al. (2000)
X. Li et al. (2000)

F. B. Zhou et al. (2000)
A. Petrovski and J. McCall
(2001)

M. Lahanas et al. (2001)
W. EI Moudani et al. (2001)
M. Erickson et al. (2001)

M. Thompson (2001)

Containership loading design

Air pollution management

Marine vehicle design
Synthesis of digital hardware-software
multiprocessor system

Pressurized water reactor reload design

Automotive engine design
Aircraft wing plan-form shape design
Dynamic optimization of an industrial
nylon 6 semi-batch reactor

Inventory classification
Multi-criterion flow-shop scheduling
Airframe design and conceptual design

Hierarchical learning of pattern spaces

Gas turbine engine design

Fishery modeling
Class timetabling of a university

Extruder screw design

Free radical bulk polymerization reactor
Color-efficiency trade-off in filtered light

Aerodynamic shape design
Hydroelectric generator design

Electrostatic micro-motor design

Laminated composite plate design
Autopilot controller design
Land use planning
Radio network optimization
Medical image reconstruction

Continuous casting process

Cancer chemotherapy

Dose optimization in brachytherapy

Airlines crew rostering
Groundwater quality management
Analog filter tuning
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N. Laumanns et al. (2001)

D. Sasaki et al. (2001)
Ishibuchi et al. (2001)

1. F. Sbalzarini et al. (2001)

H. E. Aguirre et al. (2001)

Road train design

Supersonic wing design
Linguistic rule extraction

Microchannel flow optimization

Halftone image generation

9.2 Mechanical Component Design

In this section, we discuss four mechanical component design problems which were
originally solved as single-objective optimization problems. However, ideally these
problems are better posed as two-objective optimization problems. Because of the
lack of an adequate multi-objective optimization method for finding multiple Pareto
optimal solutions, they were not solved as single-objective optimization problems.
Through these representative problems, we will demonstrate how easily an MOEA
can be used to find a diverse set of non-dominated solutions.

In all of these problems (originally appeared in Deb et al. (2000d)), we have kept
the GA parameters the same: population size of 100, crossover probability of 1.0, and
mutation probability of 1In (where n is the number of variables). An SBX operator
(discussed earlier on page 109) with a distribution index of 11c = 10, and a real
parameter mutation operator (discussed above on page 120) with a distribution index
of 11m = 500, are employed. In all simulations, we run the NSGA-II for a maximum of
100 generations. All constraints are normalized and the sum of all constraint violations
is added to all objective functions (discussed in Section 7.3).

9.2.1 Two-Bar Truss Design

This problem was originally studied using the e-constraint method (Palli et al., 1999).
The truss (see Figure 291) has to carry a certain load without elastic failure. Thus,
in addition to the objective of designing the truss for minimum volume, there are
additional objectives of minimizing the stresses in each of the two members AC and
BC. We construct the following two-objective optimization problem for three variables:
11 (vertical distance between B and C in m), and Xl and xz (cross-sectional areas of

B

I
I -;:-;;

4m

IOOkN

Figure 291 A two-bar truss. This is a reprint of Figure 1 from Deb et al. (2000d)

(© Springer-Verlag Berlin Heidelberg 2000).
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AC and BC, respectively, in m2 ) :

fl(X,1J)=x]}16+1J2+X2~, }
fz(x, 1J) = max((JAC, (JBC),

max( (JAC, (JBC) ::; 1(105),
1 < 1J < 3, and x ~ o.

The stresses are calculated as follows:

433

(9.1)

20}16 + 1J2
(JAC = ,

1JX]
80~

(JBC = .
1J X 2

The original study reported only five solutions with the following two extreme
values: (0.004445 m", 89983 kPa) and (0.004833 m", 83268 kPa). In order to restrict
solutions with stress in the above range, we have included an additional constraint of
maximum stress being smaller than 1(105). A penalty parameter of R = 103 is used
to handle this constraint. We also add the following variable bounds: 0 ::; Xi ::; 0.01
m2 for i = 1 and 2. Figure 292 shows the optimized front found using NSGA-II.
The solutions are spread between the following two extreme values: (0.00407 m",
99755 kPa) and (0.05304 m3 , 8439 kPa), which indicates the power of the NSGA-II
in finding a wider spread of solutions when compared to the c-constraint method.
The latter method could not find a wide variety of solutions in terms of the second
objective. If minimization of stress is important, the NSGA-II finds a solution with a
stress as low as 8439 kPa, whereas the c-constraint method has found a solution with
a minimum stress of 83268 kPa, an order of magnitude higher than that found in the
NSGA-II. What is also important is that all of these solutions have been found in just
one simulation run of the NSGA-II.
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Figure 292 Optimized solutions obtained using the NSGA-II for the two-bar truss problem.

Five solutions found using the c-constraint method are also shown for comparison. This is a

reprint of Figure 2 from Deb et al. (2000d) (@ Springer-Verlag Berlin Heidelberg 2000).
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Driver Follower

Figure 293 A compound gear train.

9.2.2 Gear Train Design

A compound gear train is to be designed to achieve a specific gear ratio between the
driver and driven shafts (see Figure 293). The objective of the gear train design is
to find the number of teeth in each of the four gears so as to minimize (i) the error
between the obtained gear ratio and a required gear ratio of 1/6.931 (Kannan and
Kramer, 1994) and (ii) the maximum size of any of the four gears. Since the number
of teeth must be integers, all four variables are thus strictly integers. By denoting
the variable vector x = (Xl,X2,X3,X4) = (Td,Tb,Ta,Tf ), we write the two-objective
optimization problem as follows:

Minimize

Minimize
subject to

fdx) = (dn - ~1~:)2, )
f2(X) = maxlx- , X2, X3, X4),

12 ~ Xl,X2,X3,X4 ~ 60,
all Xi.S are integers.

(9.2)

Here, a module of 1 em is assumed. A discrete version of the SBX operator (Deb and
Goyal, 1998) is used to make sure that only integer offspring are created from the two
integer parents. Since only integer values are allowed, distribution indices of 11c = 2
and 11m = 10 are used for the SBX and polynomial mutation operators, respectively.

Figure 294 shows the obtained non-dominated solutions. The solutions obtained by
the single-objective GAs (GeneAS-I and GeneAS-II) (Deb and Goyal, 1998), by the
augmented Lagrangian (AL), and by the branch-and-bound (BB) methods (Kannan
and Kramer, 1994) for the error minimization are also shown. This figure shows that
although an NSGA-II could not find the best single-objective solutions (GeneAS-I
and II), the solution E is close to them and is better than all other single-objective
optimization algorithms in terms of the second objective.

The figure also shows that widely spread solutions are obtained by the NSGA-II.
The solutions marked as 'E' and 'D' (extreme obtained solutions) are shown in the
following table.

Solution Xl X2

E 12 12
D 12 12

27 37
13 13

Error
1.83(10 8)
5.01 (10- 1 )

Max. diameter (em)
37
13
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Figure 294 Optimized solutions obtained using the NSGA-II for the gear train design

problem. The previously found minimum-error solutions with the GeneAS-I and GeneAS-II,

the AL and BB methods are also shown. This is a reprint of Figure 3 from Deb et al. (2000d)

(© Springer-Verlag Berlin Heidelberg 2000).

9.2.3 Spring Design

A helical compression spring needs to be designed for mimmum volume and for
minimum stress. Three variables are identified: the number of spring coils N, the
wire diameter d, and the mean coil diameter D. Of these variables, N is an integer
variable, d is a discrete variable having 42 non-equispaced values (as given in Kannan
and Kramer (1994)), and D is a real-parameter variable. Denoting the variable vector
x = [xj , Xl, X3) = (N, d, D), we write the two-objective optimization problem as
follows:

Minimize fl (x) = 0.257tlX~X3(Xl + 2),

. .. () 8KPm ax X 3
Minimize fz x = 3'

7tXl
. Pm ax

subject to 91 (x) == f m ax ~ -k- - 1.05(X1 + 2)Xl 2': 0,

9l(X) == xz ~ dmin 2': 0,

93(X) == Dm ax ~ (Xl + X3) 2': 0,

94(X) == C - 32': 0,

9s(x) == bp m ~ bp 2': 0,

Pm ax - P
96(X) == k - bw 2': 0,

( ) - 5 8KPm ax X 3
97 x = - 2': 0,

7tX~

(9.3)
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9g(X) == Vm ax - 0.257t2X~X3(Xl +2) ::::: 0,

x1 is integer, X2 is discrete, X3 is continuous.

The parameters used above are as follows:

K- 4C- 1 + 0.615x2
- 4C - 4 X3'

Gx4

k = 8Xl;r
,; - p
Up - k'
S = 189 ksi,

P = 300 lb,

Pm ax = 1000 lb,

€max = 14 in,

dmin = 0.2 in,

D m ax = 3 in,

bw = 1.25 in,

bp m = 6 in,

C = D/d.

We add the last two constraints to restrict the stress to be within an allowable strength
and the volume to be within a pre-specified volume of Vm ax = 30 in:'. The discrete
version of the SBX is used to handle the first two variables and the continuous version
of SBX is used to handle the third variable. A penalty parameter of R = 103 is used
for each normalized constraint.

Figure 295 shows the non-dominated front obtained using the NSGA-II with the
penalty function approach, and the best solutions obtained by using two single
objective optimization algorithms - the GeneAS (Deb and Goyal, 1998) and the
branch-and-bound (BB) method (Kannan and Kramer, 1994). The NSGA-II is able to
find solutions close to these single-objective (volume) optima and, most importantly, is
able to maintain a wide spread of different solutions. The extreme NSGA-II solutions
are presented in the following table.
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Figure 295 Optimized solutions obtained using the NSGA-II are shown by circles for the

spring design problem. The previously found minimum-volume solutions with the GeneAS

and BB methods are also shown. This is a reprint of Figure 4 from Deb et al. (2000d)

(@ Springer-Verlag Berlin Heidelberg 2000).
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Solution Xl
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Min. volume 5
Min. stress 24

0.307
0.500

1.619
1.865

2.690
24.189

1 87 053
61 949

9.3 Truss-Structure Design

Optimal design of truss-structures has always been an active area of research in the
field of search and optimization. Various techniques based on classical and evolutionary
optimization techniques have been developed to find optimal truss-structures for
a single objective (Kirsch, 1989; Ringertz, 1985; Topping, 1983; Vanderplaat and
Moses, 1972). Most of these techniques can be classified into three main categories: (i)
sizing, (ii) configuration, and (iii) topology optimization. In the sizing optimization
of trusses, the cross-sectional areas of the members are considered as design variables
and the coordinates of the nodes and connectivity among the various members are
considered to be fixed (Goldberg and Samtani, 1986). A three-objective formulation
(weight, deflection and stress) of a number of sizing optimization problems is solved
elsewhere by using the MOSES optimization tool (Coello and Christiansen, 1999).
In the configuration optimization of trusses, the change in nodal coordinates are
also kept as design variables (Imai and Schmit, 1981). In the topology optimization,
the connectivity between the members in a truss is to be determined (Kirsch, 1989;
Ringertz, 1985). Classical optimization methods have not been used adequately in
topology optimization, simply because they lack efficient ways to represent the
connectivity of the members. Although the above three optimization problems are
discussed separately, the most efficient way to design truss-structures optimally is
to consider all three optimization problems simultaneously. In most attempts, multi
level optimization methods have been used (Rajan, 1995; Ringertz, 1985). In such
a method, when topology optimization is performed, member areas and the truss
configuration are assumed to be fixed. Once an optimized topology is found, the
member areas and/or configuration of the obtained topology are optimized. In the
context of multi-objective optimization, there also exists at least one study (Ruy
et al., 2000), where a level-wise search strategy is used. In this approach, first, the
cross-sectional area of each member and the coordinate of the nodes are assumed to be
fixed and only the topology (or connectivity) of the truss members is varied. This first
level optimization will produce a number of different topologies, each corresponding to
a trade-off between conflicting objectives. Thereafter, in the second-level optimization,
each of the obtained topologies are considered one at a time and member sizing
and node coordinates are varied to find a non-dominated set of solutions. When
all such simulation runs are over, all solutions are grouped together and the best
non-dominated solution set is found. First of all, it is obvious that such a multi
level optimization technique may not always provide the globally best solution, since
the optimization problems considered in both levels may not be linearly separable.
Secondly, in the context of multi-objective optimization, there may exist many non
dominated topologies for a reasonably large truss and performing the second-level
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optimization from each of these solutions would be computationally expensive.
In this study, we propose a representation scheme which naturally allows all three

optimizations to be performed simultaneously.

9.3.1 A Combined Optimization Approach

In a truss-structure design, certain nodes carry a load or are used as supports, while
other nodes are used for the purpose of better distributing the loads. The former
nodes (say n' of them) must be present in a feasible truss and are called basic nodes.
The remaining nodes (say nil of them) are optional and called non-basic nodes. The
objective in a truss-structure design (with all three design considerations - sizing,
configuration and topology) is to find which optional nodes are necessary in a truss,
what are the coordinates of these optional nodes, and which members must be present,
so that certain objectives (usually the weight of the truss and the maximum deflection
in the truss) are minimized by satisfying certain constraints (often the stresses in the
members and the displacements of nodes).

The proposed approach assumes a ground structure, which is a complete truss with
all possible member connections among all nodes (basic or non-basic) in the structure.
A truss is represented by specifying a cross-sectional area for each member in the
ground structure. Thus, a solution represented in the GA population is a vector of m
real numbers within a specified range (-A,A). The presence or absence of a member
in the ground structure is determined by comparing the cross-sectional area of the
member with a user-defined small critical cross-sectional area, €. If an area is smaller
than €, that member is assumed to be absent in the realized truss. This is how trusses
with differing topologies can be obtained with a fixed-length representation of the
truss member areas. Figure 296 proposes the coding procedure to be used. This figure
shows how a five-element vector of cross-sectional areas can represent a two-member
truss. Since elements 1 and 3 have positive cross-sectional areas and values larger than
a small value €, there exist only two members. This representation scheme has another
advantage. Since member areas are directly used, the values higher than € specify the
actual member cross-sectional area. Taking account of the above discussion, we now
present the formulation of the truss-structure optimization problem as a nonlinear
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Absent 1 Present
Bound: (-30,30)_1
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Solution: (9.10, -7.13, 5.25, -22.50, -12.45)

Figure 296 The proposed coding approach.
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programming (NLP) problem:
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Minimize
Minimize

subject to

fdA,E,) = L;':, pjCjAj ,

fz(A, E,) = max~=, h(A, E,),
G1 == Truss is acceptable to the user,
G2 == Truss is kinematically stable,
G3 == Sj - O"j (A, E,) 2:: 0, j = 1,2, , rn,
G4 == I>fax - I>k(A, E,) 2:: 0, k = 1,2, , n.,
A~in ::::; Ai ::::; A~ax, i = 1,2, , m,
i: min < i: < i: max . 1 2 "
~i _ '-,i _ "'i I 1, == , , ... ,n .

(9.4)

In the above NLP problem, the design variables are the cross-sectional areas of
members present in a truss (denoted as A) and the coordinates of all n" non-basic
nodes (denoted as E,). The first objective function denotes the overall weight of the
truss, while the second objective function denotes the maximum deflection at any node
in the truss. The first constraint makes sure that all basic nodes are present in a truss.
The second constraint ensures that the connectivity represented by a GA solution
represents a structure and not a mechanism. The third set of constraints forces the
member stress values not to exceed the allowable strength of the material. The fourth
set of constraints restricts the deflection in any node within an allowable limit. In
this study, we have not used G4. It is important to highlight that we have used a
finite element method to find the stress developed in any member and the deflection
of any node for every GA solution. The parameters Sj and I>fax are the allowable
strength of the j-th member and the allowable deflection of the k-th node, respectively.
In order to achieve a significant effect of all of the constraints, we normalize all of
these. All constraints are handled by using the constrain-domination principle. In
the simulations, we use the real-parameter NSGA-II, with the SBX operator and the
polynomial mutation operator.

Three-Bar Truss

Figure 297 shows the three-bar truss with three loading cases. The allowable strength
in the slanted members is 5 kPa and in the vertical member is 20 kPa. It is interesting
to note that the loading is not symmetric in this problem. The cross-sectional areas
are initialized in [-20,20] inz. We use a population of size 50, a crossover probability
of 0.9 and a mutation probability of 0.1. For the SBX and mutation operators, we
use 11c = 10 and 11m = 50, respectively. The NSGA-II is run for 150 generations.
The population of 50 solutions is plotted in Figure 298. This figure shows that the
NSGA-II is able to find multiple non-dominated solutions in one single simulation
run. The structure having minimum weight (solution A) of 7.16 lb has a deflection
of 0.035 in. The structure having maximum weight (solution F) of 76.57 lb has a
deflection of 0.0022 in. The corresponding topologies are also shown in this figure.
The entire non-dominated set of solutions reveals much salient information about this
truss design problem. First, out of all possible topologies, the three topologies shown
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Figure 297 The three-bar truss.

in the figure are found to be Pareto-optimal. Secondly, each Pareto-optimal topology
has its niche in the obtained front. Neighboring solutions under each topology vary
in their cross-sectional sizes. Table 34 lists the six extreme solutions marked in the
figure. It is clear that for the minimum weight topology (solutions within A and B),
a truss with only the left-most and middle members is optimal. The variation in the
solutions occurs because of variation in the cross-sectional sizes. The same is true
for all three topologies. By investigating these six solutions (A to F), the original
study (Deb et al., 2000c) argued that NSGA-II has found the truly extreme solutions
possible for each topology in the Pareto-optimal front. For example, solution F is
the minimum deflection solution, because all members have reached their maximum
allowable cross-sectional areas (Table 34). Ruy et al. (2000) attempted to solve the
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Figure 298 Obtained non-dominated solutions using the NSGA-II.
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Table 34 Six important solutions marking the beginning and end of different topologies.

Cross-sectional area (in 2 )

Solution Left Middle Right

A 4.046 1.442
B 8.132 4.981
C 8.105 4.759
D 20.000 13.667
E 14.975 7.096 19.246
F 20.000 20.000 20.000

Weight
(lb)

7.163
16.481
18.192
47.612
53.824
76.568

Deflection
(in)

0.035
0.012
0.007
0.003
0.003
0.002

same problem using a multi-stage multi-objective GA. The range of solutions obtained
in their study for the weight objective is approximately [13,38] lb and for the deflection
objective is approximately [0.0015,0.011] in. The plot drawn with the solutions found
using NSGA-II clearly shows that a much better spread of solutions is found. It
is important to highlight that their study on the same problem could not find the
intermediate (in the range from C to D) non-dominated solutions.

Ten-Bar Truss

Next, we consider the well-studied ten-bar truss design problem for two objectives
- weight of the truss and deflection at node 5 (see Figure 299). The loading is also
shown in the structure. All possible members are shown on the figure. The allowable
strength in all members is assumed to be 25 kPa. Here, we use a population of size
100 and run NSGA-II for 150 generations. The SBX and mutation parameters are the
same as before. The decision variables are initialized in [-35,35] in 2 . Figure 300 shows
the non-dominated solutions obtained by NSGA-II. It is interesting to note that of

/ , 360 in 1- 360 in

2 <1l 14 ~ 6
./

-> (iJ
I'l

®
'M

0

®
10
l'l

-:
(] @

./
1 5

./

100000 Ib 100000 Ib

Figure 299 The ten-bar truss.
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Figure 300 Obtained non-dominated solutions for the lO-bar truss.

the many possible topologies, NSGA-II has found only two different topologies in the
obtained non-dominated front. The structure, having a minimum weight of 2046.186
lb, has a deflection of 5.599 in. Once again, in comparison to Ruy et al. (2000), the
NSGA-II has been able to find a wide range of solutions. By investigating the extreme
solutions marked in the figure by using various theories of the mechanics of solids,
the original study (Deb et al., 2000c) argued that the obtained non-dominated front
is close to the true Pareto-optimal front.

It is clear from both simulations that in one single simulation run, the NSGA
II is capable of finding a number of trade-off solutions. What is interesting is that
the obtained non-dominated front has distinct regions with solutions of different
topologies. Within such a region, solutions vary by having different cross-sectional
areas of members, but while still keeping the same topology. Each region has a limit
in the value of the objective functions. To improve a solution away from these limits,
a different topology is desired. Knowledge of these trade-off solutions in a problem is
highly informative in real-world design activities.

9.4 Microwave Absorber Design

A microwave absorber is made of a number of absorptive coatings stacked on a perfect
electric conductor (PEC) (Weile et al., 1996), as shown schematically in Figure 30l.
This device is usually designed to suppress reflection over a pre-specified wide band
of frequencies, 'V E B. However, reflection over other frequencies are allowed. When
optimized for such a scenario (for example, suppression in the range 2 to 8 GHz), the
optimum design solution tends to be thick, thereby making the absorber expensive. On
the other hand, if a thin absorber is designed, the absorption quality is sacrificed. Thus,
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Figure 301 A schematic of a microwave absorber.

the design of a microwave absorber for minimum thickness (or minimum cost) and
maximum absorption quality (or minimum reflectivity) resorts to conflicting objectives
and hence becomes a multi-objective optimization problem.

Weile et al. (1996) used the NSGA, NPGA and a crowding MOEA to find multiple
non-dominated solutions in a number of microwave absorber design problem. These
investigators used a fixed number N 1 of absorbing layers. The material of each layer
is chosen from a set of 16 possible materials, so that four bits can be used to code
the material for each layer. The thicknesses of each layer are also used as decision
variables. From a table of material properties, the permittivity and permeability of
each material is chosen and a total reflection coefficient R('V) is calculated for an
incident wave of frequency 'V. The incident wave can be oriented in any direction. The
maximum R('V) for any incident wave over a set of discrete frequency values 'V E B is
found and a term R = 20 10glO [maxtktv}, 'V E B lJ is minimized. This becomes the first
objective function. The second objective function is the sum of all layer thicknesses,

or t = L.~~l ti·
In addition to the NSGA and NPGA, investigators introduced a crowded

tournament Pareto GA (CTPGA), where diversity is maintained by using Dejong's
crowding method (Dejong, 1975), along with a tournament selection method with
non-dominated ranking. Crossover and mutation operators are used as usual. In the
first experiment, non-dominated solutions are obtained for a frequency absorption in
the range 0.2 to 2 GHz. A population of size 8000, a crossover probability of 0.9, and
a mutation probability of 0.005 are used. Binary-coded multi-objective GAs are run
for 150 generations. All absorbers have N, = 5 layers. The thickness of each layer is
coded in 7 bits so that the overall string length is 5 x (4 + 7) or 55. For the CTPGA,
a generation gap of 0.6 and a crowding factor of 40 are used (Dejong, 1975). For the
NPGA, tdom = 100 is used. For both the NSGA and NPGA, a O"share value of 0.025
is employed. Sharing is performed in the decision variable space. However, instead of
using the complete population to compute the niche count, only 2.5% of the population
(200 randomly chosen solutions from the population) is used. Figure 302 shows the
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Pareto Fronts (0.2·2 GHz)
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Figure 302 Obtained non-dominated solutions are shown using three algorithms. The
NSGA (solutions shown by dots) finds the best spread of solutions (Weile et al., 1996).

Reprinted with permission (@ 1996 IEEE).

obtained non-dominated front using all three approaches. It is clear that the NSGA is
able to find a better distribution of solutions among the three approaches. Although
algorithms were run for 150 generations, the NSGA is able to find a good distribution
of solutions only after 10 generations. However, the investigators have also observed
that the NSGA is the most computationally expensive among the three algorithms.

Next, we reproduce the obtained non-dominated solutions for the 2-8 GHz band.
As shown in Figure 303, the NSGA also outperformed the NPGA and CTPGA in
this problem. For the two solutions (Designs 1 and 2, as shown in the figure), the
objective function values are as follows:

Design Max. reflectance
(dB)

Total thickness
(mm)

1
2

-23.16
-13.63

4.134
1.394

The frequency responses of these two designs are shown in Figure 304. This figure
clearly shows the suppression of frequencies in the range 2-8 GHz, Design 1 is better
for absorption, while design 2 is better for cost (or for the thickness of the absorber).

9.5 Low-Thrust Spacecraft Trajectory Optimization

The 'faster, cheaper and better' mission of the space program has placed emphasis
on better designs of spacecraft trajectories for achieving shorter flight times, smaller
launch vehicles and simpler flight systems. All of these objectives have an overall
goal of minimizing the cost of interplanetary missions. Due to their high propellant
efficiency, low-thrust propulsion systems have been recently paid renewed interest.
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Pareto Fronts (2.8 GHz)
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Figure 303 Obtained non-dominated solutions are shown using three algorithms for the

design of a 2-8 GHz microwave absorber. The NSGA solutions (shown by dots) span the

objective space better than the CTPGA and NPGA solutions (Weile et al., 1996). Reprinted

with permission (@ 1996 IEEE).

The Jet Propulsion Laboratory (JPL), in Pasadana, CA, has developed a calculus-of
variations (COV) technique to formulate the problem of finding the optimal spacecraft
trajectory for maximizing the mass of the spacecraft arriving at the destination. The
objective function and constraints on maximum possible engine thrust and rendezvous
are derived from the fundamental equations of motion for a spacecraft subject to a
single gravitational source (Coverstone-Carroll et al., 2000; Rauwolf and Coverstone
Carroll, 1996). At the core of the COY approach, a Solar Electric Propulsion Trajectory
Optimization (SEPTOP) software program is used. Other parameters, such as the
origin, destination, trajectory type and spacecraft engine characteristics, are all
specified by the user. A Lagrange multiplier concept is used to handle the constraints.
The optimization and the solution of the equations of motion are achieved by using
numerical methods, thereby requiring a starting solution. The convergence of such
a procedure often depends on the starting solution, particularly when the trajectory
must be determined for a complex scenario.

A particular difficulty with the COY approach is its inability to perform multi
objective optimization. As mentioned above, the determination of the true optimal
trajectory cannot be done with just one objective of maximizing the mass of the
payload delivered at the destination. Other objectives, such as minimizing the time
of travel, which is conflicting to the above objective, are also equally important. For
a rendezvous task, the spacecraft has to align itself with the planet concerned before
landing. Specifically, at the destination, the velocity vector of the spacecraft has to
match with that of the destination planet. For short trajectories, a spacecraft has to
move out radially fast to reach the orbit of the destination planet and then has to
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spend a considerable amount of energy in aligning itself for a smooth rendezvous with
the latter. This process actually burns more fuel, thereby causing a lesser amount
of delivered payload than that in a longer trajectory. In the latter, the spacecraft
gets enough time to align itself with the destination planet, a process in which the
spacecraft can coast for a substantial amount of time. Such a process leads to the
delivery of a large payload at the destination. Thus, it is interesting to know which size
of trajectory will deliver which size of mass. Since the COV technique cannot consider
multiple objectives easily, researchers have used other objectives as constraints.

Coverstone-Carroll et al. (2000) proposed a GA-based multi-objective optimization
technique using an NSGA to find multiple trade-off solutions to this problem.
To evaluate a solution (trajectory), the SEPTOP software is called for, and the
delivered payload mass and the total time of flight are calculated. In order to reduce
the computational complexity, the SEPTOP program is run for a fixed number
of generations. At the end of a SEPTOP run, the extent of violations of all of
the COV constraints are determined. This overall violation is appended to each
objective function as a constraint. A large penalty coefficient is used to put a large
emphasis on achieving solutions with proper satisfaction of the COV equations and
constraints. In addition, so as to achieve optimal solutions quickly, these authors have
used information about the problem and included a third objective of maximizing
heliocentric revolutions - the number of revolutions around the sun in the entire
trajectory. Since longer flights can be achieved in various ways, the third objective
provides a meaningful way (observed in past studies] to achieve the same.

Thus, the multi-objective optimization problem had eight decision variables
controlling the trajectory, three objective functions, i.e. (i) maximize the delivered
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payload at destination, (ii) maximize the negative of the time of flight, and (iii)
maximize the total number of heliocentric revolutions in the trajectory, and three
constraints, i.e. (i) limiting the SEPTOP convergence error, (ii) limiting the minimum
heliocentric revolutions, and (iii) limiting the maximum heliocentric revolutions in the
trajectory.

On the Earth-Mars rendezvous mission, the study found interesting trade-off
solutions. Using a population of size 150, the NSGA with IT"hare = 0.033 was run
for 30 generations on a Sun Ultra 10 Workstation with a 333 MHz ULTRA Sparc
IIi processor. The obtained non-dominated solutions are shown in Figure 305 for two
of the three objectives. It is clear that there exist short-time flights with smaller
delivered payloads (solution marked as 44) and long-time flights with larger delivered
payloads (solution marked as 36). To the surprise of the original investigators, two
different types of trajectories emerged. The representative solutions of the first set of
trajectories are shown in Figure 306. Solution 44 can deliver a mass of 685.28 kg and
requires about 1.12 years. On other hand, solution 72 can deliver almost 862 kg with
a travel time of about 3 years. In these figures, each continuous part of a trajectory
represents a thrusting arc and each dashed part of a trajectory represents a coasting
arc. It is interesting to note that only a small improvement in delivered mass occurs
in the solutions between 73 and 72. To move to a somewhat improved delivered mass,
a different strategy for the trajectory must be found. Near solution 72, an additional
burn is added, causing the trajectories to have better delivered masses. Solution 36 can
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Figure 306 The first set of trajectories. Reprinted from Computer Methods in Applied

Mechanics and Engineering, Volume 186, V. Coverstone-Carroll, J. W. Hartmann and

W. J. Mason, 'Optimal multi-objective low-thrust spacecraft trajectories', pages 387-402,

Copyright 2000, with permission from Elsevier Science.

deliver a mass of 884.10 kg. The discovery of a completely different type of solutions
when the trade-off between objectives has been fully exploited in one type of solutions
is very similar to that observed in the truss design problem discussed earlier.

The second set of trade-off solutions occurs with solutions 22 to 132, shown in
Figure 307. These solutions start with an inward journey to perform a number of
heliocentric revolutions around the Sun, primarily to make the spacecraft's orbit
inclinations to match more closely to that of Mars, before spiraling out to the
latter planet. Starting with a delivered payload of 773.33 kg (solution 132), the
set contains a solution (22) with a delivered payload of 911.78 kg. Because of the
number of heliocentric revolutions, the flight time is long in these trajectories. For
more detailed discussions of this Earth-Mars rendezvous and other interplanetary
trajectories, readers may refer to the original study (Coverstone-Carroll et al., 2000).

9.6 A Hybrid MOEA for Engineering Shape Design

It is clear from the previous chapters that the use of an MOEA is an efficient procedure
for finding a wide-spread and a well-converged set of solutions in a multi-objective
optimization problem. In this section, we would like to take MOEAs a step closer to
practice by considering the following:
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Figure 307 The second set of trajectories. Reprinted from Computer Methods in Applied

Mechanics and Engineering, Volume 186, V. Coverstone-Carroll, J. W. Hartmann and

W. J. Mason, 'Optimal multi-objective low-thrust spacecraft trajectories', pages 387-402,

Copyright 2000, with permission from Elsevier Science.

• ensuring convergence closer to the true Pareto-optimal front;
• reducing the size of the obtained non-dominated set.

We illustrate the proposed hybrid strategy by addressing both of the above issues in
the following subsections.

9.6.1 Better Convergence

In a real-world problem, one does not usually have any knowledge of the Pareto
optimal front. Although MOEAs have demonstrated good convergence properties in
test problems, we enhance the probability of its true convergence by using a hybrid
approach. A local search strategy is suggested from each obtained solution of the
MOEA in order to find a better solution. Since a local search strategy requires a
single-objective function, a weighted objective, a Tchebycheff metric, or any other
weighted metric which will convert multiple objectives into a single objective, can be
used. In this study, we use a weighted objective:

M

F(x) = L wffj (x),
j=l

where weights are calculated from the obtained set of solutions in a special way.
First, the minimum fjin and maximum fjax values of each objective function f j are
noted. Thereafter, for any solution x in the obtained set, the weight for each objective
function is calculated as follows:

_x (fjax - f j (x)) / (fjax - fjin)

w j
= L~l (f~ax _ fk(X))/(f~ax _ f~in)'

In the above calculation, minimization of the objective functions is assumed. When
a solution x is close to the individual minimum of the function f j , the numerator
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becomes one, thus causing a large value of the weight for this function. For an
objective which has to be maximized, the term (fjax - fj(x)) needs to be replaced
with (f j (x) - fjin ). The division of the numerator with the denominator ensures that

the calculated weights are normalized, or L~l wf = 1.
In order to distinguish the above calculated weight from the usual user-specified

weight needed in weighted sum multi-objective optimization procedures, we refer to
these calculated weights w as pseudo-weights. Once the pseudo-weights are calculated
from the obtained non-dominated set of solutions, the local search procedure is
simple. Begin the search from each solution x independently with the purpose of
optimizing F(x), as given in equation (9.5). Figure 308 illustrates this procedure. Since
the pseudo-weight vector WX dictates roughly the importance of different objective
functions at solution x, optimizing F(x) will produce a Pareto-optimal or a near
Pareto-optimal solution in convex problems. However, for nonconvex Pareto-optimal
regions, a different metric, such as the Tchebycheff metric (see Section 3.3 earlier), can
be used. Nevertheless, the overall idea is that once an MOEA finds a set of solutions
close to the true Pareto-optimal region, we use a local search technique for each of
these solutions with a differing emphasis on objective functions in the hope of better
convergence to the true Pareto-optimal front. Since independent local search methods
are tried for each solution obtained using an MOEA, all optimized solutions obtained
by the local search method need not be non-dominated to each other. Thus, we find the
non-dominated set of solutions from the obtained set of solutions before proceeding
further.

The complete procedure of the proposed hybrid strategy is shown in Figure 309.
Starting from the MOEA results, we first apply a local search technique, followed
by a non-domination check. After non-dominated solutions are found, a clustering

solution set

I a
b

/MOEA

C-----+------------l_ f 1

f
mi n

1 set after
local search

fmax
1

Figure 308 The local search technique may find better solutions. This is a reprint of

Figure 1 from Deb and Goel (2001b) (@ Springer-Verlag Berlin Heidelberg 2001).
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Figure 309 The proposed hybrid procedure of using a local search technique, a non

domination check, and a clustering technique. This is a reprint of Figure 2 from Deb and

Goel (2001b) (@ Springer-Verlag Berlin Heidelberg 2001).

technique is used to reduce the size of the optimal set, as discussed in the next
subsection.

9.6.2 Reducing the Size of the Non-Dominated Set

In an ideal scenario, a user is interested in finding a good spread of non-dominated
solutions close to the true Pareto-optimal front. From a practical standpoint, the user
would be interested in a handful of solutions (in most cases, 5 to 10 solutions are
probably enough). Interestingly, most MOEA studies use a population of size 100 or
more, thereby finding about 100 different non-dominated solutions. The interesting
question to ask is: 'Why are MOEAs used to find many more solutions than desired?'

The answer is fundamental to the working of an EA. The population size required
in an EA depends on a number of factors related to the number of decision variables,
the complexity of the problem, etc. (Goldberg et al., 1992; Harik et al., 1999). An
MOEA population cannot be sized according to the desired number of non-dominated
solutions in a problem. Since most real-world problems have a large number of decision
variables, a large population size is usually necessary for a successful EA run. The irony
is that when an MOEA works well with such a population size N, eventually it finds
N different non-dominated solutions, particularly if the niching mechanism used in
the MOEA works well. Thus, we need to devise a separate procedure for identifying
a handful of solutions from the large obtained set of non-dominated solutions. One
approach would be to use a clustering technique similar to that used by Zitzler (1999)
for reducing the size of the obtained non-dominated set of solutions to only a handful.
In this technique, each of the N solutions is assumed to belong to a separate cluster.
Thereafter, the distance de between all pairs of clusters is calculated by first finding
the centroid of each cluster and then calculating the Euclidean distance between the
centroids. Two clusters having a minimum distance between them are merged together
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Figure 310 The clustering method for reducing the set of non-dominated solutions. This

is a reprint of Figure 3 from Deb and Goel (2001b) (© Springer-Verlag Berlin Heidelberg

2001).

into a bigger cluster. This procedure is continued until the desired number of clusters
are identified. Finally, with the remaining clusters, the solution closest to the centroid
of the cluster is retained and all other solutions from each cluster are deleted. This is
how the clusters can be merged and the cardinality of the solution set can be reduced.'
Figure 310 shows the MOEA solution set as open boxes and the reduced set as filled
boxes. Care should be taken to include the extreme solutions of the extreme clusters.
In the following subsection, we illustrate the working of the proposed hybrid strategy
in the optimal shape design of engineering components.

9.6.3 Optimal Shape Design

Designing the shape of engineering components is not a new activity. The use of
optimization in engineering shape design has also received a lot of attention. However,
in optimal shape design problems, the most popular approach has been to predefine
a parametric mathematical function for the boundary describing the shape and use
an optimization technique to find the optimal values of the parameters describing
the mathematical function. Although this procedure requires prior knowledge of the
shape, the classical optimization methods facilitated the optimization of parameters
describing the mathematical shape functions.

With the advent of evolutionary algorithms as alternate optimization methods, there
exists a number of applications to optimal shape design problems, where shapes are
evolved by deciding the presence or absence of a number of small elements (Hamda
and Schoenauer, 2000; Jakiela et al., 2000; Sandgren et al., 1990). A predefined area (or

1 It may be a better idea to consider the extreme solutions residing in a separate cluster. This way,
extreme solutions are always retained.
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volume) is divided into a number of small regular elements. The task of an evolutionary
algorithm is to find which elements should be kept and which should be sacrificed
so that the resulting shape is optimal with respect to an objective function. This
procedure has a number of advantages.

1. The use of a numerical finite element method (or boundary element method) is
a usual method for analyzing an engineering component. Since these methods
require a component to be divided into small elements, this approach reduces one
computational step in the finite element procedure.

2. Since no a priori knowledge about the shape is required, this method is not
subjective to the user.

3. By simply using three-dimensional elements, this approach can be extended to
three-dimensional shape design problems.

4. The number and the shape of holes in a component can evolve naturally without
explicitly fixing them by the user.

Most studies of this approach, including those involving evolutionary algorithms, have
concentrated on optimizing a single objective. In this present study, we apply this
evolutionary procedure for multiple conflicting objectives.

Representation

Here, we consider two-dimensional shape design problems only. However, the
procedure can be easily extended to three-dimensional shape design problems as
well. We begin with a rectangular plate, describing the maximum overall region
where the shapes will be confined. Thereafter, we divide the rectangular plate into a
finite number of small elements (see Figure 311). Here, we consider square elements,
although any other shape including triangular or rectangular elements can also be
considered. Since the presence or absence of every element is a decision variable, we
use a binary coding for describing a shape. For the shape shown in Figure 312, the

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Figure 311 A rectangular

plate is divided into small

elements. This is a reprint of

Figure 4 from Deb and Gael

(2001b) (@ Springer-Verlag

Berlin Heidelberg 2001).

• ••••
Figure 312 The skeleton of

the shape. This is a reprint of

Figure 5 from Deb and Gael

(2001b) (@ Springer-Verlag

Berlin Heidelberg 2001).

Figure 313 The final

smoothened shape. This

is a reprint of Figure 6

from Deb and Gael (2001b)

(@ Springer-Verlag Berlin

Heidelberg 2001).
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corresponding binary coding is as follows:

01110 11111 10001 11111

The presence is denoted by a '1' and the absence is shown by a '0'. A left-to-right
coding procedure, as shown in Figure 311, is adopted here. In order to smoothen the
'stair case'-like shape denoted by the basic skeleton representation, we add triangular
elements (shown lightly shaded) for different cases in Figure 314. The skeleton shape
shown in Figure 312 represents the true shape shown in Figure 313.

Evaluation

When the shape is smoothened, it is further divided into smaller elements. Here, we
divide all squares and other shaped elements into triangular elements. A component
is evaluated by finding the maximum stress and deflection developed at any point in
the component due to the application of the given loads. Since no connectivity check
is made while creating a new string or while creating the initial random population,
a string may represent a number of disconnected regions in the rectangle. In such a
case, we proceed with the biggest cluster of connected elements (where two elements
are defined to be connected if they have at least one common corner). The string is
repaired by assigning a '0' to all elements which are not a part of the biggest cluster.

In all applications here, two conflicting objectives are chosen: the weight of the
resulting component and the maximum deflection anywhere in it. These two objectives
are conflicting because a minimum weight design is usually not stiff and produces a
large deflection, whereas a minimum deflection design has densely packed elements,
thereby causing a large weight of the resulting component. The maximum stress and
deflection values are restricted to lie within specified limits of the design by using
them as constraints.

Simulation Results

In order to show the efficacy of the proposed hybrid multi-objective optimization
procedure in solving optimal shape design problems, we use a number of mechanical
components. In all cases, we use the NSGA-II as the multi-objective optimization
algorithm. Since binary-coded strings are used to represent a shape, we use a bit-

Figure 314 Different cases of smoothening through triangular elements. This is a reprint

of Figure 7 from Deb and Goel (2001b) (@ Springer-Verlag Berlin Heidelberg 2001).
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wise hill-climbing strategy as the local search operator. The procedure is simple.
Starting from the left of the string, every bit is flipped to check if it improves the
design. If it does, the flipped bit is retained; otherwise, the bit is unchanged. This
procedure is continued until no bit-flipping over the entire string length has resulted
in an improvement.

Since the shapes are represented in a two-dimensional grid, we introduce a new
crossover operator which respects the rows or columns of two parents. Whether to
swap rows or columns is decided with a probability of 0.5. Each row or column is
swapped with a probability of 0.95/ d, where d is the number of rows or columns, as
the case may be. In this way, on an average, about one row or one column gets swapped
between the parents. A bit-wise mutation with a probability of l/(string-Iength) is
used. The NSGA-I1 is run for 150 generations. It is important to highlight that the
NSGA-I1 does not require any extra parameter setting. In all problems, a population
of size 30 and the following material properties are used:

Plate thickness: 10 mm,
Young's modulus: 200 GPa,

Yield strength: 150 MPa,
Poisson's ratio: 0.25.

In all figures shown below, the 'weight' represents the area of the plate (since the
thickness and density of material are assumed uniform throughout the plate) and the
'scaled deflection' refers to the maximum deflection multiplied by a suitable constant
number so as to make it of the same order as the weight.

Cantilever Plate Design

First, we consider a cantilever plate design problem, where an end load P = 10 kN
is applied, as shown in Figure 315. The rectangular plate of size 60 x 100 mm/ is
divided into 60 small square elements. Thus, 60 bits are used to construct a binary
string representing a shape.

Figure 316 shows the four steps of the proposed hybrid approach in designing the
cantilever plate. The first plot shows the non-dominated solutions obtained by using
the NSGA-II. Since the population size is 30, the NSGA-I1 is able to find 30 different
non-dominated solutions. Thereafter, the local search method is applied for each non-

-- -- 60 mm

J
Figure 315 The loading and support of the cantilever plate. This is a reprint of Figure 8

from Deb and Goel (2001b) C@ Springer-Verlag Berlin Heidelberg 2001).
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Figure 316 The hybrid procedure finds nine trade-off solutions for the cantilever plate

design problem. This is a reprint of Figure 9 from Deb and Goel (2001b) (© Springer-Verlag

Berlin Heidelberg 2001).

dominated solution, and a new and improved set of solutions are obtained (the second
plot). The third plot is the result of the non-domination check on the solutions shown
in the second plot. Three dominated solutions are eliminated by this process. The
final plot is obtained after the clustering operation with a choice of nine solutions.
This plot shows how nine well-distributed set of solutions are found from the third
plot of 27 solutions. If fewer than nine solutions are desired, the clustering mechanism
can be set accordingly.

In order to visualize the obtained set of nine solutions having a wide range of trade
offs in the weight and scaled deflection values, we show the shapes in Figure 317. It is
clear that starting from a low-weight solution (with large deflection), how large-weight
(with small deflection) shapes are found by the hybrid method. It is interesting to note
that the minimum weight solution eliminated one complete row (the bottom-most row)
in order to reduce the overall weight. The second solution (the element (1,2) in the
3x3 matrix) plot corresponds to the second-best weight solution. It is well known that
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Figure 317 Nine trade-off shapes for the cantilever plate design. This is a reprint of

Figure 10 from Deb and Gael (2001 b) (© Springer-Verlag Berlin Heidelberg 2001).

for an end load cantilever plate, a parabolic shape is optimal. Both shapes (elements
(1,1) and (1,2)) refer to a parabolic shape. As the importance of deflection increases,
the shapes tend to include more and more elements, thereby making the plate rigid
enough to have a lesser deflection. For the third solution, the development of a vertical
stiffener is interesting. This is a compromise between the minimum weight solution
and a minimum deflection solution. By adding a stiffener, the weight of the structure
does not increase much, whereas the stiffness of the plate increases considerably (hence
the deflection reduces). Finally, the complete plate (with the right top and bottom
ends chopped off) is found to be the smallest deflection solution.

We would like to reiterate here that the above nine solutions are not results of
multiple runs of a multi-objective optimization algorithm. All nine solutions (and if
needed, more can also be obtained) with interesting trade-offs between weight and
deflection are obtained by using one simulation run of the hybrid method.

Simply Supported Plate Design

Next, we consider a simply supported plate design, starting from a rectangular plate
with identical dimensions to that in the previous design. The plate is supported at
two nodes, as shown in Figure 318, and a vertical load P = 10 kN acts upon the
top-middle node of the plate.
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Figure 318 The loading and support of the simply supported plate. This is a reprint of

Figure 11 from Deb and Goel (2001b) (@ Springer-Verlag Berlin Heidelberg 2001).

Figure 319 shows the obtained non-dominated solutions (shown by circles) using
the NSGA-II. After the local search method is completed, the obtained solutions
(shown by squares) have a wider distribution. The number of solutions have been
reduced from 30 to 22 by the non-domination check. Finally, the clustering algorithm
finds nine widely separated solutions (shown by diamonds) from 22 non-dominated
solutions. The shapes of these nine solutions are shown in Figure 180 in the previous
chapter (on page 306). The minimum weight solution tends to use one row (the top
most row) less, but since the load is acting on the top of the plate, one element is
added so as to transfer the load to the plate. The third solution (shown in the (1,3)
th position in the matrix) is interesting. A careful look at Figure 319 reveals that
this solution is a knee solution. From this solution, a small advantage in weight can
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Figure 319 The hybrid procedure finds nine trade-off solutions for the simply supported

plate design problem. This is a reprint of Figure 12 from Deb and Goel (2001b) (@ Springer

Verlag Berlin Heidelberg 2001).
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only be achieved with a large sacrifice in the deflection. Similarly, in order to achieve
a small advantage in deflection, a large sacrifice in weight is needed. The shapes in
positions (1,2) and (2,1) can be compared with respect to the shape in position (1,3).
The shape in position (3,1), or solution 7, is also interesting. In order to achieve a
further reduction in deflection, stiffening of the two slanted arms is needed. Finally,
the absolute minimum-deflection shape is the complete rectangle with the maximum
possible weight.

Starting with the minimum weight design having two slim slanted legs, down to
thickening the legs to make them stiff, followed by joining the legs with a stiffener,
and finally finding the complete rectangular plate having the minimum deflection, are
all well-engineered trade-off solutions. In the absence of any such explicit engineering
knowledge, it is interesting how the hybrid procedure with the NSGA-II is able to find
the whole family of different trade-off solutions.

9.6.4 Hybrid MOEAs

The above procedure of using an MOEA with a local search technique is not the
only hybrid MOEA suggested in the literature. We have already discussed earlier
in Section 8.11 a technique where a local search method is used with an RWGA.
Other implementations of local search methods are also suggested in MOEA studies
(Jaskiewicz, 1998; Menzcer et al., 2000; Vicini and Quagliarella, 1999).

The main purpose of using a local search technique in an EA is to ensure proper
convergence to the true optimum. Because of their stochastic operators, EAs can
quickly steer their searches to near the true optimum. However, converging to the
exact optimum may be best achieved if a local search technique is used for the
solution obtained by an EA (Goldberg, 1989). Although there are several different
ways to implement a local search strategy with an EA, the following two procedures
are mainly used:

1. Use a local search method during EA generations.
2. Use a local search method at the end of an EA run.

In the first case, a parent population is operated by the usual genetic operations and
then followed by a local search method to create the new population (Jaskiewicz, 1998;
Vicini and Quagliarella, 1999). In the second case, a local search method is applied
only to the solutions obtained after a complete run of an EA (Deb and Goel, 2001b).
The hybrid MOEA suggested in this section is an example of the second procedure.

Both implementations have their advantages and disadvantages. In the first
implementation, local searches originating from a below-average solution in the
population may not lead to a better region in the search space, thereby wasting the
effort spent in the local search procedures. Since for every new solution in every
generation a local search procedure is applied, this implementation tends to be more
computationally expensive. On the other hand, since only local optimum solutions
are used in each generation, many EA generations may not be required. In the second
implementation, local searches are applied only to a handful of solutions obtained
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after an EA run. Since the obtained EA solutions are supposed to be closer to the
true optimum, many iterations of the local search method may not be necessary to
reach to the true optimum. However, the number of generations needed in the EA run
to find a solution close to the true optimum may be considerable.

The overall computational complexity of both implementations depend on two
important factors: (i) the number of function evaluations spent in each application of
the local search procedure, and (ii) the number of function evaluations spent in an
EA run. A proper balance between these two parameters must be made in order to
take advantage of both local search and EA search principles (Goldberg, 1999). With
a maximum of h 1s function evaluations allocated to each local search application,
the above two hybrid EA implementations with a population of size N have overall
function evaluations as given on the left and right sides of the following equation:

(9.7)

where t, and tz are the numbers of EA generations allowed in the first and second
hybrid procedures, respectively. In the case of multi-objective optimization, the second
procedure will find approximately N non-dominated solutions at the end of an MOEA
run. Hence, Nh1s function evaluations are considered in the right-side term of the
above equation. For an identical computational complexity, it is clear from the above
equation that:

t 1 1 1
- = - + -. (9.8)
tz h1s tz

Since both h 1s and tz must be greater than 2, the right side is less than one and
t, < tz, meaning that the EA generations allowed in the first procedure are smaller
than those in the second procedure, thereby allowing more importance to EAs in the
second procedure.

In the context of multi-objective optimization, the hybrid method suggested in this
section has another advantage. Once a set of widely spread non-dominated solutions
is found, they are used to derive a set of pseudo-weights based on their locations in
the front. The use of such pseudo-weights in a local search method will take each
solution closer to the corresponding weight much sooner than the use of random
weights suggested in the hybrid RWGA method.

9.7 Summary

In this chapter, we have presented a number of applications of MOEAs in
solving different real-world multi-objective optimization problems, including several
mechanical component designs, truss-structure designs, a microwave absorber design,
and a satellite trajectory design. In all of the problems, the power of MOEAs in finding
a well-distributed and well-converged set of non-dominated solutions has been clearly
demonstrated.

For real-world problem-solving, the use of a local search technique is often suggested
with single-objective EAs. The proper use of a local search technique may make an
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EA fast and reliable in converging close to the true optimum. In this chapter, we have
extended this idea to multi-objective optimization and suggested a hybrid MOEA
technique, where a local search method is used to update each non-dominated solution
obtained after an MOEA simulation run. Since a local search method works with only
one objective function, a composite objective function (using a weighted sum or a
weighted metric method) is suggested for the local search procedure. Instead of using a
random weight vector as in other studies (Ishibuchi and Murata, 1998a), the proposed
hybrid approach uses a pseudo-weight vector calculated from the location of each
solution in the entire obtained set of non-dominated solutions. We have argued that
this approach would be computationally quicker than the random weight approach in
converging near to the true Pareto-optimal front. The efficacy of this hybrid approach
has been demonstrated on a number of engineering shape design problems.

This chapter has clearly demonstrated that the MOEAs discussed in this book
are ready and waiting to be tested on more complex real-world multi-objective
optimization problems.





10

Epilogue

We began Chapter 1 by classifying the application of multi-objective optimization
algorithms into two fundamentally different approaches. In the ideal approach, no
special importance is given to any particular objective and a set of trade-off or Pareto
optimal solutions are desired to be found. After a set of Pareto-optimal (or near Pareto
optimal) solutions is found, some higher-level information regarding the problem is
used for choosing one solution from the obtained set of solutions. On the other hand, in
the preference-based approach, instead of finding a set of Pareto-optimal solutions, the
focus is to find one of the Pareto-optimal solutions based on a user-specified relative
importance vector for the objectives. From a practical standpoint, we have argued
that finding a reliable importance vector is difficult in the absence of any knowledge
of the Pareto-optimal solutions. However, the presence of a number of Pareto-optimal
(or near Pareto-optimal) solutions helps a user to choose a particular solution. In this
respect, the preference-based approaches are more subjective to the user than the
ideal approach and are highly sensitive to the chosen importance vector.

Most classical multi-objective optimization algorithms follow the preference-based
approach, whereas evolutionary multi-objective optimization algorithms follow the
ideal approach. Since the second task of choosing a particular solution from an
obtained set of non-dominated solutions requires further problem information, most
evolutionary algorithms described in this book have dealt with finding a set of
widespread Pareto-optimal or near-Pareto-optimal solutions.

In Chapter 2, we defined a dominance relationship between any two solutions in
the context of multiple objectives and then presented a number of procedures for
finding non-dominated solutions with varying degrees of computational complexity.
Of these, the procedure suggested by Kung et al. (1975) is computationally the best.
Since the task of identifying the non-dominated set of solutions in a population is
repeatedly used in most MOEAs, Kung et al. 's approach is recommended. Although
these methods are suggested for identifying the best non-dominated set of solutions in
a population, some MOEAs require a population to be completely sorted according to
different levels of non-domination. Since classical multi-objective optimization studies
do not require this task, there exist no studies related to non-dominated sorting. In
MOEA studies, more efforts must be made in finding efficient ways to perform non
dominated sorting. In the light of the ideal approach to multi-objective optimization, it
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is clearly argued that there are two tasks that a multi-objective optimization algorithm
must do well, as follows:

1. converge as close to the true Pareto-optimal solutions as possible;
2. maintain as diverse a population as possible.

The first task ensures that the obtained solutions are near optimal, while the second
task ensures that a wide range of trade-off solutions is obtained.

The ideal approach of choosing a compromised solution from multiple Pareto
optimal solutions can be better appreciated if the preference-based approach of
choosing a compromised importance vector leading to a specific Pareto-optimal
solution is understood. In this regard, we have presented a number of preference-based
optimization techniques which are commonly used in the classical multi-objective
optimization studies. Although these methods have been in use for many years, the
main difficulty arises in choosing a relative importance factor for each objective. Most
of the preference-based methods discussed in Chapter 3 have a proof of convergence
to a Pareto-optimal solution for certain classes of problems. If a relative importance
vector is reliably known in a problem, it is advisable to use one of these methods.
However, for a more exploratory search and investigation of a problem for the first
time, the choice of a relative importance vector is not easy and is often subjective.
This book has discussed algorithms for handling such problems which can be reliably
solved with less subjectivity from the user.

Since MOEAs use an evolutionary algorithm as the baseline optimization procedure,
we have devoted a significant portion of this book to describing various evolutionary
algorithms (EAs) used for solving single-objective optimization problems. Although
not all EAs are discussed, nor all EAs are treated with equal rigor, Chapter 4 has
outlined the working principles of several EAs, their parameter interactions, and their
broad-range applicability to different types of optimization problems. Specifically, EAs
that have been used to handle multi-modal optimization problems are discussed in
detail. This has been done due to the similarities in their working principles with
those of multi-objective optimization. In both problems, finding and maintaining
multiple optimal solutions from one generation to another is one of the primary tasks.
Most MOEAs have borrowed the principles used in solving multi-modal optimization
problems. Specifically, different niching techniques and clustering methods have been
discussed.

Non-elitist MOEAs, which do not use any elite-preserving operator, have been
discussed in Chapter 5. The descriptions of the algorithms in this chapter demonstrates
how a single-objective EA can be modified to achieve both tasks needed in multi
objective optimization. In most MOEAs of this chapter, convergence towards the
Pareto-optimal front is achieved by assigning a fitness based on the non-domination
ranking of solutions. Diversity among solutions is achieved by using an explicit niching
or crowding operation. The way that different MOEAs vary is the way that these issues
are implemented. Although most methods have used the non-domination concept,
more research is needed in using other concepts, such as the predator-prey model also
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discussed in the chapter. Horn (1997) has provided a good review of other techniques
that have been used in multi-objective evolutionary optimization.

Elitist MOEAs incorporate an elite-preserving operator, where previously found
good solutions are used in genetic operations in the current generation. This helps the
search to progress faster towards the Pareto-optimal solutions and helps to achieve
a monotonically non-deteriorating performance of an MOEA. Elitism is preserved in
various ways. Combining the parent population with the offspring population and
then accepting the best non-dominated solutions of the combined population is a
common approach to elitist MOEAs. Some MOEAs also use and maintain an external
elite population which gets updated with the new populations at every generation.
In addition to the two tasks needed in a multi-objective optimization, Chapter 6 has
demonstrated different ways that elitism can be incorporated. Simulation results on
a simple test problem have shown that MOEAs with elitism have a better converging
ability than those without elitism.

For constraint handling, a number of different constrained MOEAs have been
discussed in Chapter 7. Starting from the simple penalty function approach, MOEAs
have included more sophisticated constraint-based domination techniques. In this
regard, a definition of constrain-domination between two solutions has been suggested
for handling constrained optimization problems. Although an implementation of this
definition with an elitist MOEA - NSGA-II - has shown impressive results, this
approach can also be used with other MOEAs. The important matter in constrained
optimization is that infeasible solutions should not be simply discarded. A strategy
must be used to prefer one infeasible solution to the other.

In Chapter 8, we have discussed a number of important issues which must be
addressed well in the context of multi-objective evolutionary optimization. This
chapter has raised these issues and discussed the current state-of-the-art research into
each issue. However, more research is necessary to understand each of these better.

Because of the two-pronged task needed in multi-objective optimization, there is
also a need to have two different performance measures while evaluating an algorithm.
One measure should assess the ability of an MOEA to converge to the Pareto-optimal
front, while the other measure should assess the ability of an MOEA to maintain a
diverse set of trade-off solutions. It seems difficult to have one measure for achieving
both of these tasks, but only further research will reveal if this is a possibility.

With the development of different MOEAs, there is a need for them to be compared.
For a proper evaluation of algorithms, there is a need to have test problems which
adequately test an algorithm's ability to carry out various tasks. Since an MOEA
is supposed to do two tasks well, test problems can be developed to investigate an
MOEA's ability to overcome the different kinds of hurdles that may exist in a problem
when trying to achieve each of the two tasks. In Chapter 8, we have discussed a
particular test problem generator to develop a number of such test problems, some of
which have already been used by many researchers. More research could be done in
this direction. Although a similar test problem generator has also been suggested for
constrained optimization, many others are certainly possible.
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A number of studies comparing different MOEAs have also been outlined in
Chapter 8. Some conclusive results have appeared from these comparisons. However,
detailed studies involving constrained and unconstrained optimization, computational
time comparison, and parameter sensitivities must be tried.

In Chapter 8, we have in addition discussed a number of techniques for finding
a preferred set of Pareto-optimal solutions, instead of the complete set. Although
some preference information about different objectives is needed, MOEAs require
more qualitative rather than quantitative information. For example, if a user is sure
of emphasizing cost more than comfort, such preferred MOEAs can be used to find
a preferred set of Pareto-optimal solutions with more solutions crowded near the
minimum-cost solution. This chapter has demonstrated a number of implementations
to find a partial Pareto-optimal set based on the user's qualitative information. It is
important to realize the difference between this preferred approach and the preference
based approach commonly used with classical methods. In the proposed preferred
approach, no one Pareto-optimal solution is targeted. A biased distribution of Pareto
optimal solutions is the target. As discussed in the text, there are two advantages of
such a preferred approach. First, the computational time in finding the distribution
may be reduced because of the nature of a focused search. Secondly, more trade-off
solutions can be obtained in the desired region of interest. However, more research in
this area is needed to develop better techniques where the two advantages mentioned
above are better exploited.

Most of the examples used in this book and in other MOEA studies have chosen
two-objective optimization problems. Two objectives make the objective space two
dimensional, thereby making it easier to demonstrate the working of an algorithm.
However, since most MOEAs lack a rigorous mathematical proof of convergence and
a proof of maximum diversity in the obtained solutions, the scalability issue must
be kept in mind while developing a new MOEA. An MOEA should not have a
serious limitation in handling more than two objectives. On a particular matter, the
implementation of the diversity-preserving strategy (niching or clustering) must be
paid special attention. Since the dimension of the Pareto-optimal set goes up with
the number of objectives, distance computations and identification of neighboring
solutions must be made generic so that the computational complexity involved in
achieving these tasks is reasonably low. Another matter of interest is the size of
the random initial population required in solving problems having more than two
objectives. It has been shown in this book that the size of the best non-dominated
front in a random population increases with the number of objectives. Thus, an MOEA
starting with a random population will have an unavoidable difficulty in maintaining
lateral diversity, simply because not many fronts can exist in a finite population with
many objectives. Adequate population sizing or the introduction of highly disruptive
search operators may be necessary to make progress towards the true Pareto-optimal
front in these problems. However, whether such special considerations are needed, or
whether the existing diversity in the best non-dominated front can drive the search
towards a multi-dimensional Pareto-optimal front, would be interesting topics for
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future research.
Next, we have discussed a number of MOEAs which have guaranteed convergence to

the Pareto-optimal solution. Although the time complexity estimate for a convergence
depends on the chosen EA parameter setting, the algorithms have features that
guarantee that the MOEA population always proceeds towards the Pareto-optimal
front and attempts to maintain the widest possible spread among its members.
However, attempts to find MOEAs with the above features and with a time complexity
estimate would be worthwhile future research. In any event, it is necessary to realize
the importance of diversity preservation among the obtained solutions, while working
out a proof of convergence.

Implementing elitism in an MOEA in any form may cause undesirably high selection
pressure to the currently non-dominated solutions in a population. Since all solutions
in the best non-dominated front are elites, in principle, an elitist strategy must copy all
of these to the new population. This means a loss of lateral diversity in the population,
a matter which may cause an elitist MOEA to prematurely converge to a sub-optimal
front. Thus, the extent of elitism must be controlled in an elitist MOEA. Instead
of accepting all individuals from the best non-dominated set, a few can be accepted
according to a particular criterion. In this present book, we have suggested an adaptive
control strategy where solutions from each front are accepted according to a geometric
distribution. On a number of difficult problems the controlled elitist NSGA-II has been
able to converge better near the true Pareto-optimal front than an uncontrolled elitist
NSGA-II. However, more research is necessary in this direction to better control the
selection pressure of elite solutions so that a better balance between exploitation and
exploration issues is established.

Although these are some of the issues related to the development and understanding
of MOEAs, there exist many other matters which also need immediate attention.
Multi-objective optimization should be extended to solve multi-objective scheduling
and other multi-objective combinatorial optimization problems. A number of studies
in this direction have been discussed in this book. However, more studies are needed.
The domination concept will simply carryover to these problems, because it only
requires objective function information. If niching is performed in the objective space,
the MOEAs suggested in Chapters 5 and 6 can also be applied to these problems
in a straightforward manner. The only change required is in the choice of adequate
crossover and mutation operators. However, if niching is desired in the decision variable
space, an appropriate distance metric to find the similarity between two schedules
must be used. With availability of the efficient elitist MOEAs discussed in this book,
more applications in scheduling and other combinatorial optimization problems must
be attempted in the near future.

All studies related to the development of efficient MOEAs are not complete
unless these algorithms are applied to real-world problems. In Chapter 9, we have
presented a number of case studies where MOEAs are applied to engineering and
space applications. In all of these case studies, one aspect has clearly emerged. Existing
MOEAs can be directly used to find multiple trade-off solutions involving at least two
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or three objective functions. The trade-off solutions span a wide range of values of
objective functions. In most cases, the trade-off solutions include optimum solutions
of an individual objective function and many other trade-off solutions within these
extreme solutions. Finally, a hybrid MOEA, where a local search method is used
in coordination with MOEAs, is suggested. Since a local search method requires
only one objective function, a composite objective, derived by using the information
concerning the location of each solution in the obtained non-dominated set, is
suggested. Optimizing such a composite objective not only requires minimal iterations
to converge to the nearest optimal solution, but it also reduces the cardinality of the
obtained non-dominated set by finding identical optimal solutions from neighboring
trade-off solutions, in the case of discrete search space problems. In order to make the
approach more practical, a clustering technique is suggested with the obtained trade
off solutions. By specifying the number of desired trade-off solutions, the clustering
technique will deliver exactly that many trade-off solutions, and with a maximum
spread between them. The efficacy of such a technique has been demonstrated on a
number of engineering shape design problems.

Thus far, most MOEAs have been developed on a genetic algorithm or on
an evolution strategy platform. Although there exist a few studies using genetic
programming (Bleuler et al., in press; Hinchcliffe et al., 1998; Langdon, 1995) and
evolutionary programming (Kim and Kim, 1997), the MOEAs presented in this book
may be easily extended with GP, EP, and other EA paradigms. In this regard, despite
a few studies, more research on the parallel implementation of MOEAs must be paid
attention (Aherne et al., 1997; Makinen et al., 1996; Marco et al., 1999; Poloni et al.,
2000; Quagliarella and Vicini, 1998; Rowe et al., 1996; Stanley and Mudge, 1995).
The concept of using non-dominated sorting and a niche-preservation strategy can
also be extended into other search and optimization techniques, such as in tabu
search (Balicki and Kitowski, 2001; Hansen, 1997), in fuzzy-logic based evolutionary
algorithms (Gomez-Skarmeta et al., 1998; Gueugniaud et al., 1997; Ishibuchi and
Murata, 1997, 1998b), in ant colony based search algorithms (Iredi et al., 2001), etc.

This book and the numerous other research studies carried out so far have amply
demonstrated the usefulness and power of MOEAs in finding multiple yet well
diverse trade-off solutions with good convergence properties in many test problems
and application case studies. For practical problem solving, the number of trade
off solutions usually found by an MOEA are often too many in number. In a real
world scenario, it is desired to have not more than five to ten different candidate
solutions from which one could be selected. Since an MOEA needs to use an adequate
population size for the underlying EA operators to work correctly, an EA with five or
ten population members is not expected to work well in complex problems. Although
a simple clustering technique can be used to reduce the large set of trade-off solutions
to only a handful, this suggests a wasted effort in simply throwing away the rest
of the trade-off solutions. In a more sophisticated approach, the population size can
be gradually reduced after no improvement in the obtained non-dominated front is
recorded after a few generations. Other ideas are also certainly possible and must be
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worked out carefully.
Most MOEAs discussed in this book can also be applied in a straightforward manner

to solve single-objective optimization problems. In such a case, the domination check
between two solutions simply favors the solution with the better objective function
value. As a byproduct, if the single-objective optimization problem has multiple
optimal solutions (local and global), many of them can be found simultaneously.
Thus, the single-objective optimization becomes a degenerate application case of
multi-objective optimization using MOEAs. Moreover, the MOEAs of this book can
also be applied to solve multi-objective optimization problems with non-conflicting
objectives. In such applications, the resulting set would contain only the sole optimal
solution which optimizes all objectives.

However, having been able to adequately solve the first step of the ideal approach
of multi-objective optimization described in the first chapter, researchers should now
look for more comprehensive strategies for solving the tasks in both steps. Such a
strategy would be an interactive one and would optimally use an MOEA and a
local search technique in such a way that the best features of both techniques are
utilized. In this respect, the concepts used in the interactive classical multi-objective
optimization may be combined with an MOEA. What these MOEAs can achieve is
a part (hopefully a major part) of the complete ideal approach to multi-objective
optimization. Laying out a strategy of choosing one desired solution from the MOEA
obtained non-dominated set of solutions, a process which may require involvement
of a decision-maker in an iterative manner, is the remaining part, which also needs
immediate attention. Hopefully, this book has laid the foundation for developing such a
complete strategy, which would make the whole gamut of multi-objective optimization
less subjective, more logical and closer to practice.
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