
Journal of Behavioral and Experimental Finance 23 (2019) 138–160

Contents lists available at ScienceDirect

Journal of Behavioral and Experimental Finance

journal homepage: www.elsevier.com/locate/jbef

Review article

Web-based experimental economics software: How do they compare
to desirable features?
Shu Wing Chan a,∗, Steven Schilizzi a, Md Sayed Iftekhar a, Raymond Da Silva Rosa b

a Agriculture and Resource Economics, UWA School of Agriculture and Environment, M087, The University of Western Australia (UWA), 35 Stirling
Hwy, Crawley WA 6009, Australia
b Accounting and Finance (UWA Business School), The University of Western Australia (M250), 35 Stirling Highway, Crawley WA 6009, Australia

a r t i c l e i n f o

Article history:
Received 22 December 2017
Received in revised form 14 March 2019
Accepted 17 April 2019
Available online 9 May 2019

JEL classification:
code
C81
C88

Keywords:
Experimental economics
Web-based
Software
Online experiments
Web-based experiments
Economic experiments

a b s t r a c t

Web-based experiments that cut across the lab vs. field distinction are increasingly popular with
economists. However, non-standardized software features and services hinder comparability and
replication. This study reviews a wide selection of experimental economics software packages and
evaluates them against criteria based on the logistics and operational requirements of economic
experiments. We find that oTree and SoPHIE rank highest across criteria, but Veconlab and classEx
might be suitable for those with a dominant need for a large library of ready-made experiments.
We find a portability gap: no presently available software allows portability of experiments across
platforms because of technical complexity and the challenging coordination needs of experimental
economists. As a result, experiments may be replicated only on the same platform or with the same
software, but general replicability is slow and costly. This constrains the development of experimental
economics as a replicable science.

© 2019 Elsevier B.V. All rights reserved.

Contents

1. Introduction... 139
2. Logistics and operational requirements of web-based economic experiments .. 140
3. Key desirable features of web-based experimental economics software .. 140

3.1. Software license, maintenance and support... 141
3.1.1. Open-source .. 141
3.1.2. Active community support.. 141
3.1.3. Active development ... 141

3.2. User interface and usability.. 141
3.2.1. Multiple device support .. 141
3.2.2. Usability... 141

3.3. Data management.. 141
3.3.1. Data stored in a database management system .. 141
3.3.2. Data export ... 142

3.4. Flexibility and portability ... 142
3.4.1. Flexibility to write one’s own experiment.. 142
3.4.2. Restricted vs. general replication ... 142
3.4.3. Portability .. 142

3.5. Subject management and payouts... 142
3.5.1. Subject management ... 142
3.5.2. Group matching.. 142

∗ Corresponding author.
E-mail addresses: chansw@ieee.org (S.W. Chan), steven.schilizzi@uwa.edu.au (S. Schilizzi), mdsayed.iftekhar@uwa.edu.au (M.S. Iftekhar),

ray.dasilvarosa@uwa.edu.au (R. Da Silva Rosa).

https://doi.org/10.1016/j.jbef.2019.04.007
2214-6350/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jbef.2019.04.007
http://www.elsevier.com/locate/jbef
http://www.elsevier.com/locate/jbef
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbef.2019.04.007&domain=pdf
mailto:chansw@ieee.org
mailto:steven.schilizzi@uwa.edu.au
mailto:mdsayed.iftekhar@uwa.edu.au
mailto:ray.dasilvarosa@uwa.edu.au
https://doi.org/10.1016/j.jbef.2019.04.007

S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160 139

3.5.3. Subject payouts .. 142
3.6. Experiment dashboard .. 142
3.7. Application development and extensibility .. 142

3.7.1. Availability of application programming interface (API) ... 142
3.7.2. Modular design... 143
3.7.3. Automated testing.. 143

3.8. Multi-lingual support .. 143
3.9. Multi-tenancy support .. 143

3.10. Ready-made documented examples.. 143
4. Research method and data.. 143

4.1. Research method ... 143
4.2. Data ... 143

4.2.1. Data collection .. 143
4.2.2. Data inclusion ... 144
4.2.3. Data exclusion .. 144

5. Reviewed web-based experimental economics software packages (WEESPs) .. 144
5.1. Summary assessment of the reviewed software packages... 144
5.2. Discussion of selected software packages against the desirable features .. 144

5.2.1. SoPHIE.. 144
5.2.2. oTree .. 145
5.2.3. Veconlab .. 145
5.2.4. EconPort .. 146
5.2.5. EconPlay .. 146
5.2.6. LabSEE.. 146
5.2.7. classEx ... 147
5.2.8. jsPsych ... 147
5.2.9. Willow ... 147

5.2.10. CORAL .. 148
5.3. Comparison of selected multi-purpose software packages against desired features .. 148

6. Conclusion ... 150
Acknowledgments .. 150
Appendix A. Software packages information .. 150
Appendix B. Programming languages, web frameworks and other technologies used in web-based experimental economics software 150
B.1. Programming languages.. 152

B.1.1. Java... 152
B.1.2. PHP... 152
B.1.3. Python.. 152
B.1.4. JavaScript... 152

B.2. Web frameworks.. 152
B.2.1. Model-view-controller (MVC) framework... 152
B.2.2. Django framework.. 152
B.2.3. Zend framework ... 152
B.2.4. Bootstrap framework ... 156

B.3. Other technologies... 158
B.3.1. .Net framework... 158
B.3.2. Node.js ... 158
B.3.3. Common gateway interface (CGI) .. 158

Appendix C. .. 160
References ... 160

1. Introduction

Experimental economics addresses economic questions in set-
tings where data are ‘‘deliberately created for scientific (or other)
purposes under controlled conditions’’ (Friedman and Sunder,
1994). Experimental economics may use technology as simple
as pen and paper or cards, e.g., Chamberlin (1948), but web-
based experiments have become increasingly popular. They allow
researchers to (i) run experiments with more diverse samples as
well as specific or rare population groups, (ii) recruit larger sub-
ject pools which can give higher statistical power (Reips, 2000),
(iii) conduct cross-cultural experiments in real time (Paolacci
et al., 2010), (iv) run experiments more quickly (Reips, 2002), and
(v) reduce experimenter effects by absenting themselves from the
experimental context (Reips, 1996). All these possibilities have
the potential to increase external validity. Potential disadvantages
of web-based experiments include (i) the possibility of multiple
submissions (Reips, 1996), (ii) possible adoption of false identity

by participants, and (iii) the possible high rate of incomplete
responses (Arechar et al., 2017; Reips, 2002). Whilst these issues
are challenging, Reips (2000) provides some potential solutions
and discusses the less tractable problem of replicability of web-
based experiments outside the technological platforms used to
host them.

One practical challenge for experimenters recognized in these
studies is identification of the software application best suited for
their purpose. Research on the advantages and disadvantages of
software packages is lacking notwithstanding the variety of prod-
ucts like oTree (Chen et al., 2015), Seaweed (Chilton et al., 2009),
Zocalo (Hibbert, 2005), BoXS (Seithe, 2012), classEx (Giamattei
and Lamsbdorff, 2019), and SoPHIE (Hendriks, 2012). In addition
to web-based software packages with a graphical user interface
(GUI), there are also programming frameworks like Willow (Weel
and McCabe, 2009), CORAL (Schaffner, 2014), LabSEE (LabSEE,
2015), and jsPsych (de Leeuw, 2015) which allow more flexibility
but require higher programming expertise. In contrast, hosted
software platforms allow running of standard experiments for

140 S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160

research and teaching purposes but do not allow writing one’s
own experiment. The advantage is that they can be used off-the-
shelf without any programming required. The variety of offerings
make it common to see different groups of researchers imple-
menting the same experiments with different software packages.
This makes a comparative study of their respective merits and
demerits time-consuming.

Palan (2015) reviews the outcomes of asset market experi-
ments using the following web-based experimental economics
software packages: EconPort, Flex-E-Markets, jMarkets, Rotman
Interactive Trader and SoPHIE labs with the ‘‘Graz–Innsbruck
Market System’’ (GIMS) (a non-web-based software built on the
z-Tree platform). Palan (2015) concludes that z-Tree (Fischbacher,
2007) is a viable platform due to its continuous development and
widespread use since 1995. Palan (2015) assesses the viability
and availability of many custom-built experimental economics
software packages. His criteria for software for asset market
experiments fall into two categories: criteria specific to asset
markets and criteria specific to market mechanisms. Asset market
criteria include complete, time-stamped data records, customiz-
ability, and extensibility, reliability and lifetime, non-standard
hardware and experiment designs and cost. Market mechanism
related criteria are a user-friendly interface, choice between sin-
gle and multi-unit trading, single or multi-period trading with or
without wealth carryover, possibility of trade in multiple markets
or over the counter, parameter specification, designated trader
roles, order validation, order types and algorithm trading. Palan
(2015) highlights the inefficiency caused by the parallel devel-
opment of similar applications as time and cost are not trivial.
He proposes a standardized solution software called GIMS which
uses a z-Tree program.

Jansen et al. (2014) undertake similar research in comparing
software packages for experiments in social ecology (z-Tree,
GameWeb, CSID framework, VCWeb, MobLab, boxes, Veconlab,
NetLogio HubNet and ConG). They focus on specific-purpose
behavioral and experimental economics software packages. The
evaluation criteria (Jansen et al., 2014) use are more extensive
than in Palan (2015), which include purpose, participant mode
such as local or lab, software model like installation required,
web-based, local or global, number of standard games that come
with the software, capacity to create new games, communication
between participants, expertise needed to implement and run a
new game, open source, hardware requirement, operating sys-
tems, data storage, support group size, documents in terms of
pages of documentation, user community and estimated number
of papers published that used the platform.

Palan (2015) and Jansen et al. (2014) focus on specific-
purpose experiments without a web-based focus. We address the
gap in the literature in assessing how well general-purpose web-
based economic software meets operational criteria that facilitate
comparability and replicability. We begin by identifying a set of
ideal desirable features and evaluate publicly available web-based
software for general-purpose economic experiments. We classify
general-purpose software as those that allow users to run more
than one type of experiments.

The rest of the paper is organized as follows. We first re-
view the logistics and operational requirements of web-based
economic experiments to assist us in defining desirable features.
We then identify desirable features for experimental economics
software and discuss how data on such software is collected and
classified. This leads us to assessing selected software packages
against the list of desirable features. We close by discussing
possible options for enhancing the use of web-based economic
experiments.

2. Logistics and operational requirements of web-based eco-
nomic experiments

Croson (2003) and Friedman and Sunder (1994) list key pro-
cesses required to conduct web-based economic experiments.
These include experiment design and testing, subject recruitment
and management including identification and maintenance of
privacy, communication including instructions, running the ex-
periment and debriefing, payment management, grouping and
matching of subjects using different methods, and data manage-
ment and reporting. These processes determine the attributes of
an ideal online platform, as they must all be addressed.

For laboratory and online experiments, there are many com-
monalities, from design to debriefing. We discuss only the main
differences between them, which include the location of subjects,
the potential difference in subject responsiveness, user interface
compatibility, data storage and payment method.

Laboratory experiments typically run in a dedicated computer
laboratory with specialized servers and client software such as
z-Tree and z-Leaf (Fischbacher, 2007), installed and run on a
local area network. In contrast, online experiments can be, in
principle, run anywhere and anytime: in a computer laboratory
but also in the field with mobile devices. Location of subjects is a
significant difference between online and laboratory, as subjects
can be scattered across different locations instead of sitting in
the same room. Thus, online experiments can use a diverse set
of subjects and have more flexibility in targeting a specific group.

Laboratory experiments may have more control over subjects’
interactions compared to online experiments. Any experiment
that requires real-time interaction between subjects can be af-
fected by their internet connection as subjects are not on the
same network. Network latency is possible for some subjects and
may have an impact on the running of the experiment. However,
experimenters can minimize the impact by providing a test web
page for prospective subjects to test their network performance
to the test server.

User interface is another difference between laboratory and
online experiments. For laboratory experiments that use desk-
top software like z-Tree, experimenters are less concerned as
the client software should display everything the same across
computers. However, for online experiments, it depends on the
browsers used by subjects. The way to mitigate this problem
is to provide subjects with information on the browsers and
the versions that are tested and supported for uses on the web
software.

For data storage such as experiment settings and results,
web-based software packages tend to use a common relational
database management system (RDMS) such as Microsoft SQL
Server, MySQL or PostgreSQL. On the other hand, non web-based
software packages for laboratory experiments are likely to store
data on file rather than in a database. In terms of incentive
payments, there is a difference between laboratory and online
experiments. For laboratory experiments, cash is commonly used,
although other types of rewards are possible. Online experiments
are more convenient when fully integrated with an online pay-
ment mechanism like PayPal. Subjects can be paid online if they
provide relevant details for electronic banking during registration.

The logistical and operational requirements provide the foun-
dation for defining desirable features of a web-based platform
for running economic experiments, which we discuss in the next
section.

3. Key desirable features of web-based experimental eco-
nomics software

All experimental economics software packages share some
common features. In this section, we examine the key features

S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160 141

important for the utility and success of web-based economic
experiment software. We group desired features into ten cate-
gories: (i) Software license, support and maintenance, (ii) User
interface and usability, (iii) Data management, (iv) Flexibility
and portability, (v) Subject management and payoff, (vi) Experi-
ment dashboard, (vii) Application development and extensibility,
(viii) Multi-lingual support, (ix) Multi-tenancy support, and (x)
ready-made documented examples.1

3.1. Software license, maintenance and support

We discuss why open-source is a desirable software feature
and how community support can be crucial to the success of
open-source software. We also discuss the importance of active
development.

3.1.1. Open-source
Open-source software (OSS) often provides a low-cost solution

compared to commercial software. Examples of highly regarded
and widely used OSS products include Linux, Apache, Drupal,
programming languages like Java, PHP, Python, Ruby, and rela-
tional databases like MySQL and PostgreSQL. Factors that affect
the success of OSS include user base, language translations, re-
sponsibility assignment and modularity (Midha and Palvia, 2012).
On the other hand, open-source projects could fail due to various
reasons, such as usurpation by a competitor, obsolescence, lack
of time for development and maintenance by developers, lack of
interest, outdated technologies, and low maintainability (Coelho
and Valente, 2017).

3.1.2. Active community support
Active community support contributes to the success of OSS

by increasing the chance of adoption. Many OSS projects use
discussion forums, mailing lists, Facebook pages, and other col-
laboration means to connect with their community. Mature OSS
projects like Linux, Apache, PHP, and Java organize worldwide
annual conferences for their users in order to share ideas and
knowledge. Community support promotes the software and im-
proves collaboration on solving problems and sharing codes and
ideas. Many OSS projects either collaborate with third-party or-
ganizations or establish a commercial arm for individuals and
companies that are more comfortable with paid support.

3.1.3. Active development
Experimenters are likely to re-run experiments for validation

purposes, to extend the research, or to increase the sample size.
Software that is maintained and under active development en-
sures continuity and bugs are addressed. Jansen et al. (2014)
report that software repository systems such as GitHub allow
retrieval of an old version of the software; however, there is a risk
the preserved version of the software might not work on future
hardware and operating systems and browsers.

Palan (2015) lists the expected lifetime of software as a key
consideration in choosing amongst software packages. Many
open-source experimental economics software packages have a
short duration of viability. A common cause is that develop-
ers complete their thesis or project and move on. This under-
scores the importance of active ongoing community support and
engagement.

1 This list was prepared based on an extensive consultation of existing
literature. However, there are several other desirable features such as availability
of treatment variations, continuous-time interactions, and time-out handling,
which have not been included in this paper.

3.2. User interface and usability

Usability is an important part of software quality as it plays a
critical role in its uptake. The popularity of mobile devices means
web-based software packages are expected to work on multiple
devices. We discuss the advantages and disadvantages of multiple
devices and the importance of a graphical user interface (GUI).

3.2.1. Multiple device support
Web software allows users to be platform- and

device-independent. Traditionally, experimenters run laboratory
experiments with either Windows or Mac desktop computers.

Responsive web design (RWD) methodology enables Web soft-
ware to work on different devices with a single design and URL.
It rearranges the user interface according to the screen size for
providing the same user experience (Gardner, 2011). Bootstrap, a
very popular RWD framework, developed by Twitter, is widely
used for Web applications. Some alternatives are Bulma, Skel-
ton, Pure, Groundwork, Cardinal, powertocss, Mueller, Bootflat,
Material and Endnote. Major advantages of RWD include one
single URL and one version of the code to deploy and update.
A drawback is that RWD needs to be downloaded and loading
times are often slow for mobile devices. The problem is mitigated
with combining RWD and Server-Side Components (RESS) which
are processed on the server first before sending to the client
(Wroblewski, 2011).

3.2.2. Usability
Usability plays an important role in software development as

it increases user acceptance and increases engagement. Nielsen
(2012) defines usability by five quality components: learnability,
efficiency, memorability, errors and satisfaction. Learnability is
how easily users can accomplish basic tasks when they use the
design for the first time. Efficiency is defined by how quickly
users can perform tasks accurately once they have mastered
the software. Memorability is how easily users can re-establish
proficiency if they stop using the software for a while. Factors that
can improve memorability include software that validates user
input and provides feedback and recovery for errors. Satisfaction
is defined by how pleasant it is to use the design which can
determine how likely users will use the software again in the
future.

3.3. Data management

A database management system is essential. Ideally, the soft-
ware used in a particular experiment allows data to be exported
in a format usable in other software packages (e.g. Excel, Matlab,
or R).

3.3.1. Data stored in a database management system
Database management systems (DBMS) should be used if data

persistence is required. In comparison with storing data in a
file, DBMS performs better regarding integrity, reliability, per-
formance, and security. For its greater speed, system memory is
another resource for storing experimental data, but it can result
in data loss due to sudden power outage or operating system
problems. Structured Query Language (SQL) is a commonly used
programming language to manage data in DBMS, although it
is not the only option. Some programming languages provide
object relational mapping (ORM) which allows programmers to
manage data in the database without writing SQL statements. SQL
manages data in the backend (DBMS) while HTML handles the
front-end interface.

142 S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160

3.3.2. Data export
Data collected is often required to be exported for further anal-

ysis or reporting using other software packages. Ideally, software
should allow experimenters to export data in commonly used
formats such as CSV, text or XML files. For instance, CSV is a
format that can be imported into commonly used statistical and
analytics programs such as SPSS, Matlab, and R.

The availability of data export capability has economic impli-
cations. If data cannot be exported into a format that can be used
by other software packages, experimenters will have to input the
data into other software manually. The process can be resource
intensive and time-consuming. This makes data exportability in
multiple commonly-used formats an important desideratum.

3.4. Flexibility and portability

Research questions can differ across experiments, so it is de-
sirable that experimenters have the flexibility to write their own
experiments. Further, the ability to run an experiment on other
software allows easier replication of results.

3.4.1. Flexibility to write one’s own experiment
Off-the-shelf experimental designs are convenient for learning

new software and for teaching, but the ability to design new ex-
periments is typically critical for researchers. Ideally, the language
used for writing experiments should be a common one, as this
will make it easier to access resources.

3.4.2. Restricted vs. general replication
Replication is important in scientific experiments (Ioannidis

et al., 2017) and software should facilitate it. There are two types
of replication: restricted and general. The restricted kind allows
replication only with the same software. Typically this involves
export or import of proprietary format files or the same source
code files with instructions that may be used by other experi-
menters to replicate the experiment with the same software. The
instructions include the parameters used and the location of the
source code files to be copied, which can vary between software
packages.

General replication allows an experiment to be written on one
software and used with another software. The smaller the modi-
fication required, the better. General replication is also known as
portability, and we discuss this term next.

3.4.3. Portability
Portability allows experiments to be not only replicated in

a restricted sense – on the same platform or with the same
software – but allows general replicability, across platforms and
different software, to be easier, quicker, and, often, less costly.
Experiments written in a programming language or for a par-
ticular software carry the risk that they might not work in the
future when it is no longer maintained. To mitigate this risk,
the source code for experiments should be portable across dif-
ferent software, like HTML pages, which work across different
browsers. For example, Extensible Markup Language (XML) may
be used to write experiments with software built to understand
an open standard XML. Experimenters would write experiments
in XML format using the defined tags to describe each step. A
standard experimental economics markup language (EEML) can
offer several advantages: an easier-to-learn descriptive language,
portability and replication of experiments across different soft-
ware, and creation of GUI tools for speeding up the development
of experiments.

3.5. Subject management and payouts

For conducting experiments, one needs to manage subjects
and, typically, pay them.

3.5.1. Subject management
Participants may be recruited in different ways. Experimenters

need to communicate with participants and record their details.
ORSEE (Greiner, 2015), a web-based participant management sys-
tem, has been widely used by experimenters. Amazon Mechan-
ical Turk (Amazon Mechanical Turk, 2015) is another option
that allows experimenters access to a global labor market. Sim-
ilar services are HROOT (Bock et al., 2014) and Prolific (Prolific,
2018; Palan and Schitter, 2018). Advantages of these systems in-
clude easier management, possible automated process and being
paperless.

Experimental economics software should ideally work with
software packages or online platforms for external participant
management or have built-in participant management functions.
However, web-based software packages can use APIs (Application
programming interface) for seamless integration with external
online platforms, which provide a better user experience.

3.5.2. Group matching
Many experiments require subjects to be allocated to groups.

The basis of grouping may vary. For instance, in fixed grouping, a
subject is paired with another subject throughout the experiment.
In random grouping a subject is paired with a different subject
in each round. Ideally, software should allow experimenters to
design and write their customized grouping mechanism via the
user interface.

3.5.3. Subject payouts
Subject payouts provide incentives to participants. Payment

can include a show-up fee, a conversion rate, and any specific
payment component for the experiment. Also, a period can be
paid or unpaid as some periods might be used for practice or
selected randomly for payment.

The software should give experimenters flexibility to manage
subject payments. Other than the usual payment type, experi-
menters should be allowed to customize payment settings ac-
cording to their needs, e.g. being able to add customized fields
for specific experiments. Best practice requires that the setting
and payment details for each experiment be recorded in a secure
database.

Integration with Amazon Mechanical Turk or PayPal or similar
systems can reduce the need for software to directly manage
the transactions, as this can be costly. The advantages of us-
ing common third-party payment gateways include a convenient
distribution of payments.

3.6. Experiment dashboard

An experiment dashboard is a visual representation that al-
lows the experimenter to monitor, adjust, and execute experi-
ments. For example, it can show how each subject is doing during
the experiment and highlight the subjects who are falling behind,
either using color or some other form of a visual representation.

The dashboard should have default settings with essential
parameters displayed on the screen that are relevant to most
experiments. At the same time, it should allow experimenters
to customize them for their own needs. A well-designed exper-
iment dashboard provides experimenters with useful insight for
managing experiments.

3.7. Application development and extensibility

3.7.1. Availability of application programming interface (API)
An application programming interface (API) is a set of func-

tions that allow developers to access the features and data of the
software. An API extends functionalities and facilitates integration

S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160 143

with third-party software. Well-designed and well-documented
APIs help to ensure developers can extend the software coher-
ently and consistently.

An advantage of using an API is the connection to the core
of the software without the need to understand the underlying
structure. It also reduces the need to rewrite code for common
functions and thereby improves productivity as developers can
devote more time and effort to extending software functionalities
for specific purposes.

3.7.2. Modular design
Modular design in software development consists in subdi-

viding the system into smaller parts called modules. It allows
reusability of modules within the system and even in other sys-
tems. Apart from reducing the cost of duplication, modular de-
sign can improve the quality of the software as each module
can be tested independently before integration. Another advan-
tage is that work can be shared among developers when func-
tions are split into modules and carried out concurrently. How-
ever, the quality of modules needs to be monitored and main-
tained through peer review of the code. Any faulty or low-quality
modules can create a risk to the software as a whole.

3.7.3. Automated testing
Automated testing is typically easily repeated and makes the

software more reliable. For web software, it is possible to run au-
tomated testing with software like Selenium (2015) by recording
the steps of actions for replay either through the GUI tool or by
scripting with its API. It can also provide a means of regression
testing, functional testing, and load testing.

Most programming languages have libraries for creating a
web bot. A bot is a software application that runs automated
tasks repetitively. There also exists an open-source framework
for building bots like Robot Framework (2017). It is useful if
the software allows experimenters to simulate participants with
web bots because a significant number of potential bugs may be
identified before conducting the real experiment.

3.8. Multi-lingual support

Multi-lingual support allows the user interface to be displayed
in different languages, which can encourage more users to use the
software. Depending on the design and availability of resources,
different approaches might be taken to implement multi-lingual
support within the software. One method is to use a text file to
store the user interface text and their translation of each language
separately. The application needs to be programmed for accepting
the language text file and displaying the translated text in the
file on the user interface. The most common way to implement
multi-lingual support is using GNU gettext and the corresponding
internationalization routines.

3.9. Multi-tenancy support

A multi-tenancy system allows more than one experimenter
to run experiments at the same time. Experimenters within the
same organization can use the software run by their IT depart-
ment, which allows them to focus on conducting experiments
rather than dealing with system administration tasks.

Each experimenter creates an account and experiments run by
them and the data generated are logically separated from other
experimenters within the system. Also, it is possible to allow
experiments to be shared within the system with other experi-
menters. This can reduce the cost of duplication and also facili-
tate collaboration. Importantly, data can be centrally stored and
backed up to protect against data loss. This gives experimenters
more time and resources to focus on experimental design and
implementation.

3.10. Ready-made documented examples

Experimenters without any prior programming experience can
learn from reading and modifying example codes. Their availabil-
ity can ease the learning curve and encourage buy-in of the soft-
ware. Documentation improves readability and reduces the cost
of maintenance. A basic rule in documenting code is to always use
meaningful names for variables, constants, functions, and classes
with inline documentation to explain their purpose. Proper doc-
umentation facilitates reusability rather than a reinvention of
the wheel. Many classic economic experiments have been repli-
cated using different software and programming languages. Ide-
ally, software should provide some ready-made examples with
well-written comments and documentation.

In the next section, we discuss our research method and
how we collect and analyze the data of Web-based Experimental
Economics Software Packages (WEESPs).

4. Research method and data

4.1. Research method

To answer our research question, we searched for available
WEESPs, gathering relevant data from the software documenta-
tion and websites, evaluating the features of the software pack-
ages, and comparing them against those described in the previous
section. A review of experimental economics journals yielded
limited information other than confirming the current dominance
of z-Tree.

To increase the potential search results outside the main-
stream experimental economics journals, we used the Web to
search for relevant research articles. We performed a search via
Google, Google Scholar, Scopus, and journals listed in ProQuest
using four keyword clusters: ‘‘experimental economics software’’,
‘‘Web experimental economics software’’, ‘‘mobile experimental
economics software’’ and ‘‘online experimental economics soft-
ware’’. We also checked the referenced links from the returned
result pages and papers, for mentions of software not found in
our primary searches. We visited each software website to collect
all the relevant information. In some instances, we contacted the
software author for information about their software.

One of the major challenges was that some software develop-
ers had not maintained the software on an on-going basis and the
contact information available on the website is no longer valid.
Further, while the majority of the authors replied to our request,
some authors did not respond.

4.2. Data

4.2.1. Data collection
In total, we found thirty-three experimental economics soft-

ware packages over the period late 2015 and early 2016 when we
performed the search. For each software, we collected software
name, URL of the software website, the platform it was devel-
oped on, whether it was free or commercial, first release date,
latest version number, last release date, any published or working
papers, type of experiments supported, experiment conducted
in published or working papers, license type, integration with
Amazon Mechanical Turk, and availability of documentation and
support. The collected data provide the foundation for further fil-
tering and analysis. Appendix A provides descriptive information
about the software.

The majority of software packages are developed in three pro-
gramming languages: Java, PHP, and Python. A few of them use
Model-View-Controller (MVC) frameworks like Python Django
and PHP Zend along with Bootstrap, a framework that allows

144 S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160

Table 1
Programming languages, Web frameworks and other technologies used by the
experimental economics software assessed in this study.
Programming languages Web frameworks Other technologies

Java: The AEE Lab
BoXS
ComLabGames
ConG
CORALa
EconPorta
jAuctions
JessX
jMarkets
Moblab
Multistage
Weblab
Zocalo

PHP: classEx
FEELE labb

LabSEEa

Seaweed
SoPHIEa

SoPHIE lab
Veconlaba

Python: oTreea
PEET
Willowa

JavaScript: jsPsycha

nodeGame

Python Django: oTreea

PHP Zend: SoPHIEa

SoPHIE lab

Bootstrap: classEx
LabSEEa

SoPHIEa

SoPHIE lab
oTreea

Node.js: Jars

.Net Framework: EconPlaya

CGI-bin: t-Tree

Note:
aAssessed software.
bFEELE uses Veconlab.

user interface to be responsive on different types of devices.
We list the programming languages, Web frameworks, and other
technologies used by the software packages found in Table 1. In
Table 2, we indicate whether it is web-based, open source, free or
commercial, and specific-purpose or multi-purpose. Appendix B
includes a brief description of the programming languages, Web
frameworks and other technologies.

4.2.2. Data inclusion
The selected software packages for review include web-based,

open-source/free, accessible either via download or its website,
and multi-purpose for creating more than one type of experi-
ment, with documentation and contact details.

4.2.3. Data exclusion
Any software packages that are not web-based, non-open

source or free, or without any download or online version, are
excluded. The software packages that appear in bold in Table 1
are examined in greater details.

5. Reviewed web-based experimental economics software
packages (WEESPs)

In this section, we start with the summary assessment of
the reviewed software packages based on the desirable features.
Next, we describe our findings for each platform followed by
comparison between them.

5.1. Summary assessment of the reviewed software packages

In the following tables, we provide a summary assessment of
the software packages against the desirable features of Section 3
for both hosted software packages and non-hosted software pack-
ages, followed by a detailed discussion of individual software
features.

Among the reviewed WEESPs, Veconlab, EconPort, EconPlay,
LabSEE and classEx are hosted software packages, and SoPHIE,

oTree, Willow, jsPsych and Coral are non-hosted software pack-
ages. The advantages of hosted software packages are that they
do not require installation of any hardware and software and can
be used immediately after registration. However, some potential
disadvantages of them are that experimenters do not have any
control and might not be able to create their own experiments
using the packages. Maintenance hours of hosted services might
not suit an individual’s requirement and services can be stopped
at any time if the hosting party decides not to continue or ask
for payment. Therefore, the pros and cons of individual packages
should be considered carefully before using a package.

Note that item 10, portability, stands out as the only desirable
feature that is absent from all the reviewed software packages.

5.2. Discussion of selected software packages against the desirable
features

In this section, we review the selected multi-purpose web-
based experimental economics software packages or WEESPs.
These can be further divided into software with Graphical User
Interface (GUI), like oTree and SoPHIE, or hosted services like
Veconlab, EconPort, LabSEE, EconPlay and classEx. There are also
development frameworks such as jsPsych, Willow, and CORAL
which offer experimenters more flexibility in building the GUI.

We assess the software packages on their features and not on
performance or security. We leave out performance and security
because factors like hardware, network and security configura-
tion affect performance and security and we do not have the
requisite information to take these factors into account.

5.2.1. SoPHIE
SoPHIE is an open source experimental economics and social

sciences software developed in PHP using the Zend and Bootstrap
frameworks. It can be integrated with any database supported by
PHP. Its inventor claims SoPHIE was created to counter the com-
plexity of using z-Tree. It is currently under active development
and used by researchers in a number of universities. It is free to
download and can be run on different operating systems. Users
can also choose the service hosted by its commercial partner,
sophielab.com, if greater support is required.

SoPHIE allows experimenters to design and create experi-
ments directly within its Web interface. It provides six elements
(termed as ‘‘steptypes’’ in SoPHIE) which include components like
form, generic PHP, presentation, questionnaire, quiz, and sync.
They can be used for creating any experiment. With a test run
feature, it gives experimenters a preview of their designed exper-
iment. Other than the installation of the software, experimenters
manage the lifecycle of an experiment on the web interface.
With the use of the Bootstrap framework as the user interface,
it supports multiple devices by default, important for web-based
software nowadays.

Unlike most reviewed software packages, SoPHIE has a built-
in participant management system similar to ORSEE. A plugin
for Amazon Mechanical Turk (AMT) integration can be purchased
under sophielab.com commercial license. Data is stored in the
database and can be used with major RDBMSs supported by
PHP. With multi-tenancy support, it implements role-based ac-
cess control for user and group management which allows more
than one experimenter to use the system simultaneously.

Experimenters and subjects have different URLs for accessing
the system. An admin interface is provided for monitoring the
progress of experiments, as well as other functions like export
and import of experiments created with SoPHIE for replication
purposes. It has multi-lingual support in English, French, German,
Italian, Spanish, and Chinese.

For group matching, experimenters start with the number of
groups for experiments. In individual experiments without any

S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160 145

Table 2
Other details for the assessed economics software packages.
Software Web-based Open-source Commercial Hosted service Multi-purpose Specific purpose MTurk Integration

The AEE Lab ✔ ✔ ✔

BoXS ✔ ✔ ✔

classEx ✔ ✔ ✔ ✔

ConG ✔ ✔

CORAL ✔ ✔ ✔

EconPort ✔ ✔ ✔

jAuctions ✔ ✔

JessX ✔ ✔

jMarkets ✔ ✔

Moblab ✔ ✔ ✔

Multistage ✔ ✔

Weblab ✔ ✔ ✔

Zocalo ✔ ✔

FEELE lab ✔ ✔ ✔ ✔

LabSEE ✔ ✔ ✔

Seaweed ✔ ✔ ✔

SoPHIE ✔ ✔ ✔ ✔

SoPHIE lab ✔ ✔ ✔ ✔

Veconlab ✔ ✔ ✔

oTree ✔ ✔ ✔ ✔ ✔

PEET ✔ ✔

Willow ✔ ✔ ✔

Jars ✔ ✔ ✔

JsPsych ✔ ✔ ✔ ✔

nodeGame ✔ ✔ ✔ ✔

EconPlay ✔ ✔ ✔

t-Tree ✔ ✔ ✔

interaction, the number of groups created equals the number of
participants. In experiments with participant interaction, the de-
fault is called ‘‘pre-generated grouping’’, which puts participants
in the same group in each repetition. However, experimenters can
choose to use random grouping to have participants group with
different participants in each repetition. For MTurk integration
and to reduce the drop-out rate, it creates a waiting room for
grouping participants after all individual tasks are completed.
Experimenters specify group size, individual waiting time until
a timeout and the global waiting time until timeout (in seconds).
Participants wait for a limited time to get matched with another
participant. The third grouping option is to write one’s own
grouping mechanism by using the group API functionalities.

A major disadvantage of SoPHIE is the lack of ready-made
experiments, the Ultimatum Game being the only example. How-
ever, SoPHIE’s author confirmed that it had been used for sim-
ple individual decision tasks, basic economic games and human
interaction, and bargaining, in particular, alternating-offer and
continuous bargaining. The learning curve can be steep given
the availability of only a few examples. Also, it does not have a
bot function for automated testing. The current admin interface
allows the experiment dashboard to be expanded to provide more
insights into the experiments.

5.2.2. oTree
oTree is an open source web-based software using Python

with Django and Bootstrap frameworks. According to one of its
developers, it was developed because he and his collaborators
could not find any software suitable for their requirements (Chen
et al., 2015). It is under active development with much informa-
tion available on its website. The website indicates universities
from a number of countries are users, a point confirmed by one
of its developers. The software is freely available for download
and can be run on different operating systems.

The main strength of oTree is its flexibility for writing one’s
own experiments, with twenty-six ready-made experiments that
can be used for learning and reuse purposes. Experiments are
written in Python using any text editor. It is possible to create

visual content using HighCharts, a JavaScript-based charting li-
brary. Experiments can also be run on another oTree installation
by replicating source code files and settings.

oTree provides by default support for multiple devices similar
to SoPHIE with the use of the Bootstrap framework. Regarding
data persistence, its default option uses SQLite, a file-based rela-
tional DBMS (RDBMS), which is good for development purposes.
However, common RDMSs like MySQL or PostgreSQL should be
used for production.

oTree has an admin interface for experimenters to monitor live
progress and perform actions such as moving to the next stage
participants who have fallen behind in the experiment. It is writ-
ten in modular design with an API available for further extension
of functionalities. Automated testing using bots is another attrac-
tive feature. Further, oTree has multi-lingual support in different
languages. It provides many options for group matching, like fixed
matching where subjects are grouped sequentially, randomly, by
arrival time, or by rank or score after the first round. Also, two
more complex options are provided: a fixed number of groups
with a divisible number of players and one with a non-divisible
number of players.

A major disadvantage for users who prefer using GUI is that
most settings for experiment configuration, e.g. for participants,
groups and payoff settings, are done via the setting.py file or set
up in python files. Also, session configuration via the dashboard
is possible if the option is specified in settings.py file in advance.
This could be enhanced by providing a Web interface for setting
up those parameters.

More importantly, it has no multi-tenancy support which
means only one experimenter can use each installation of the
software with data isolation or multiple users without data iso-
lation. Single tenancy with multiple users can allow users to see
each other’s data.

5.2.3. Veconlab
Veconlab is a hosted service for implementing economic ex-

periments written in PHP and MySQL. New experiments have
been added since we started the observation on its website,
which confirms it is under active development. It allows anyone

146 S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160

to create an account for running online experiments. Instructions
on how to set up and run an experiment are fully provided. It has
recently reached the one million participant login mark. Visitors
can try its online demo ‘‘Traveler’s Dilemma’’ before registration.

The main strength of Veconlab is its high number of ready-
made experiments, the highest amongst the software we re-
viewed. They cover different categories, namely auctions, bar-
gaining, games, finance, markets, public goods, and information.
All configurations are set up on the Web interface with a detailed
explanation for each parameter. Data for experiments are stored
in a MySQL database to ensure data persistence. It has very clear
documentation on its experiments, which, as discussed earlier, is
useful for classroom and research purposes. Its user interface is
simple to follow, with guiding instructions on each screen. For
group matching, two options are provided, fixed and random, but
no other settings.

Veconlab’s major limitation is its lack of capability for writing
one’s own experiment. As a workaround, experimenters can send
an email to the maintainer and suggest new experiments, but
there is no information on how such suggestions are received.
Also, there is a maximum limit of 30 sessions before the data
is recycled. For its user interface, it has plenty of room for im-
provement, as it has an early-day Web page style that could
be improved with more effective use of color, images, and font
styles. Moreover, without responsive support, its interface does
not properly support mobile devices. No multi-lingual support is
found on the interface. For subject management, experimenters
need to use external software like ORSEE or Amazon Mechanical
Turk, similar to most reviewed software packages. Data for exper-
iments can only be displayed on the screen but not exported into
other formats, another disadvantage. As a simple workaround,
experimenters can copy data manually into Excel, but the lack of
a data export interface is a significant shortfall. Its simple admin
interface has plenty of room to expand, in particular by including
an experiment dashboard.

5.2.4. EconPort
EconPort is another free hosted service that allows experi-

menters to create experiments online. It is a Web application
written in J2EE (Java 2 Platform, Enterprise Edition) architecture
connected to a database using JDBC (Java Database Connectiv-
ity) and developed by Georgia State University. No limitation of
experiments and sessions are mentioned. However, it does not
appear to be under active development, and the user community
is unknown.

It is suitable for experimenters who want to run one of the five
types of ready-made experiments available: normal form games,
extensive form games, GARP (consumer utility maximization),
marketlink, and one sided auctions. Documentation is provided
to help experimenters run their experiments. The configuration is
done partly on a Web page and partly using a Java Applet which
requires Java WebStart to be installed.

Participants access experiments with an access code sent by
the experimenters without need for registration. Its user interface
is neat and tidy but still has an early days Web interface. It has
multi-tenancy support, which allows multiple experimenters to
use it at the same time. For group matching, it allows constant
pairing, one-time random pairing, random round-robin pairing
with a random player role assignment, random round-robin pair-
ing while maintaining player roles and alternate player roles
between matches.

EconPort has the lowest number of desirable features. As a
closed source software, the community cannot contribute to the
development of the software. Its major disadvantage is that it
is not possible to write one’s own experiments. A proper data
export function should be implemented as it currently displays

data on the screen. Experimenters need to copy and paste data
from the screen and store them into a file.

For subject management, experimenters would have to use
software like ORSEE or Amazon Mechanical Turk. No information
on integration with Amazon Mechanical Turk can be found. With
its limited number of ready-made experiments and inability to
create one’s own experiments, EconPort is not very useful if
experimenters are not after the experiments provided. Also, it
does not have multiple devices or multi-lingual support. The
requirement of Java Web Start can create an issue, as not all
browsers support Java by default nowadays.

5.2.5. EconPlay
EconPlay is another hosted service that allows experimenters

to run experiments online. The platform is developed using .Net
technology with data stored in a Microsoft SQL server database.
Its author claims that it is under active development and has
a number of regular users. It is freely available but requires
registration.

EconPlay has a modern user interface compared with Vecon-
lab and EconPort and is very easy to follow. There are eleven
ready-made experiments, which include games, public goods,
bargaining, auctions, and markets. Similar to Veconlab, all config-
urations are set up on the Web interface, together with detailed
instructions. However, unlike Veconlab, there is an export func-
tion that allows experimenters to download experiment data into
a CSV file.

EconPlay provides an admin interface for only a few adminis-
trative tasks. It has multi-lingual support in English and French
for its ready-made experiments. With multi-tenancy support, it
allows multiple experimenters to use the system at the same
time, and the data is logically separated. Group matching is based
on the number of players selected (from two to forty), and the
number of players per group is worked out automatically. How-
ever, there are some inconsistencies, as some odd numbers of
players only allow one group consisting of all players, while some
assign a different number of players to different groups. There are
no other options for pairing subjects.

A major limitation is a lack of capability to write one’s own
experiments. Also, as a non-open-source product, its develop-
ment work cannot be shared by its community members. It
has only one developer, so there is a risk of discontinuity. The
user interface is modern, but the lack of responsive capability
prevents EconPlay from reliably supporting multiple devices. For
experimental data persistence, only up to 15 sessions can be
stored before the data is recycled. Like all the reviewed software
packages, it has an admin interface that can be expanded into an
experiment dashboard. For subject management, experimenters
need to organize this with third-party software like ORSEE or
Amazon Mechanical Turk. No direct integration with Amazon
Mechanical Turk is available.

5.2.6. LabSEE
LabSEE is another hosted service developed in PHP. It is freely

available but requires registration. Its author started to create
labSEE after being dissatisfied with z-Tree while completing his
PhD at the University of Warsaw. It is under active development.
The major users are the Faculty of Economics at Warsaw Univer-
sity and the Department of Psychology at Kozminski University
in Poland. Support is mainly via email, but the author hopes to
establish social media accounts as well as a discussion forum.

LabSEE’s significant advantage is that experimenters can write
their own experiments, and this sets it apart from the other
hosted services reviewed. There is no limitation on the number
of experiments or sessions. For writing experiments, JavaScript
is the programming language, as the developer believes that it

S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160 147

is easy to learn. It supports multiple devices using the Bootstrap
framework, much like SoPHIE and oTree. It is capable of creating
any type of experiment and offers multi-lingual support using
Unicode.

LabSEE allows the sharing of experiment code among users,
which is an attractive feature. At the time of writing, there are
seventeen codes to choose from, with fifteen in Polish and two
in English. For integration, it has a beta Learning Interoperabil-
ity Interface (LTI) extension that is available for connecting to
software like Moodle. For group matching, subjects are assigned
into groups sequentially, listing group names one after another.
Alternatively, group matching can be implemented by setting
the number of groups with an optional group name prefix. As a
programming framework, experimenters can extend the default
group matching function if they have a specific requirement that
the default group matching method does not satisfy.

Like most of the reviewed software packages, LabSEE does not
have subject management capability and needs to be managed
with third-party software like ORSEE, HROOT or Amazon Me-
chanical Turk. No built-in integration with Amazon Mechanical
Turk is implemented. The experimental dashboard needs to be
expanded onto the current admin interface. Although the concept
of shared experiments is attractive, its current downside is that
they are mainly in Polish, which is likely to limit the uptake
of the service outside Poland. The documentation is still being
developed, and some functions, like data and message returns,
need to be improved to reach present norms of quality. Also,
the documentation on the website mixes English and Polish. The
author acknowledges there is still work to be done.

5.2.7. classEx
classEx is a hosted service developed in PHP and MySQL and

available for free. It was developed to allow lecturers carrying out
experiments in the classroom, but it could be used for research
purpose as well. The software is under active development at the
University of Passau, Germany.

It has a mobile-first approach which runs on any mobile and
non-mobile devices. It has ready-made standard experiments that
allow the setup of multiple treatments, incentives, roles, groups,
rounds and stages. Like LabSEE, classEx allows experimenters to
write their own experiments, which can be useful for researchers
as well.

Like LabSEE, sharing and comparing experiments by different
experimenters is possible for knowledge sharing. Utilizing an
AJAX protocol, it avoids reloading the page too often and give
the user instant feedback. The AJAX feature can be turned off for
direct interaction in the classroom which provides the instructor
with an option when it is not required. classEx uses standard CSS3
technology to design its layout that works on both mobile and
non-mobile devices. The number of ready-made games is growing
as the wiki page shows only forty but fifty-six games can be found
on the platform.

It has multi-lingual support and currently supports English,
German and Spanish. The user interface allows the experimenter
to switch between lecturer mode, overview mode and editing
mode.

All experiment setup and experiment writing are being done
via the user interface. Experimenters can export and download
results in Excel spreadsheet xlsx file format.

On the interface of adding a parameter, text input boxes below
a label do not have any information why the user is required to
enter more than one which is something that can be improved.
Also, after registration, the notification email does not contain
any information about the initial password. There is a link on the
login page which experimenters can request for the password.
However, it is not obvious to new users as many platforms
normally generate and send a default password. Overall, classEx
is a very useful platform for classroom teaching.

5.2.8. jsPsych
jsPsych is an open source JavaScript-based development

framework tailored to online behavioral experiments that have
a defined structure. Its inventor chose JavaScript because it is
the only native language that comes with any browser. jsPsych
is under active development, with detailed documentation on
its API and plugins. According to its inventor, jsPsych has been
downloaded and used for many different types of experiments.
Support is mainly provided through its Google Group forum.

As a development framework, JsPsych can be used to create
any experiment, limited only by skill and access to resources.
Its inventor claims the types of experiments it is capable of
running include, but are not limited to, learning, perception,
decision making, statistical learning, and memory, plus studies on
psycholinguistics. It has a modular design with twenty-three plu-
gins ranging across audio, HTML, survey, animation, and fetching
user keyboard input to giving out instructions to subjects. It is
possible to create one’s own custom plugins which can extend its
functionalities. To write experiments, experimenters can use any
text editor and start with lines that import the jsPsych library.
Experimenters can replicate experiments by sharing the source
code with those who have jsPsych installed. Its main advantage is
its flexibility, which gives experimenters substantial control over
which experiments they can create.

A significant disadvantage is that it does not have any ready-
made experiments available. A sample ‘‘Hello World’’ experiment
is used to demonstrate the basic use of the library. By default,
it stores experimental data in memory instead of storing in a
database. This is a downside for data persistence, although it
provides an example of how to use a server-side programming
language, PHP, to use for data persistence. No built-in subject
management is available, so experimenters need to use ORSEE
or its plugin with Amazon Mechanical Turk, like most of the
software reviewed. For more comprehensive integration with
Amazon Mechanical Turk, a possible option is to use jsPsych
together with PsiTurk (2014). That no graphical user interface is
made available can be seen as providing some flexibility, but this
requires experimenters to create it on their own. Its capability
on multiple devices support is dependent on skills and expertise.
Also, there is no multi-tenancy support, so it is not built for
multiple experimenters using it on one installation. Moreover,
neither admin interface nor experimental dashboard is provided,
so experimenters need to create one if required.

In summary, the lack of many desirable features makes jsPsych
an expensive option in time and effort required from experi-
menters. It is more suitable for experimenters who like to have
more control and have the necessary skills and access to re-
sources.

5.2.9. Willow
Willow is a web development framework for experimental

economics developed in Python by the Department of Economics
at George Mason University. It is free to download and use.
Based on its Github and Sourceforge websites, the source code
download has not been updated for seven years and appears not
to be under active development. No information can be found
on its documentation and discussion forum on whether it has an
active community.

The framework allows a high degree of flexibility and can
be used to create any experiment, subject to skill and access
to the technical resources found in Python and Web front-end
technologies like HTML and CSS. It allows experimenters to write
their own experiments in Python with the API functions that
are specifically tailored to creating economic experiments. Data
is stored in CSV files which can be used by the common data
analysis software. By sharing source codes with Willow, experi-
menters can replicate experiments. It provides a technical manual

148 S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160

which is easy to follow and would suit experimenters who have a
background in Python programming or are interested in learning
Python and web front-end technologies.

Its major limitation is that it is not under active development.
Any bug fix or further enhancement is missing. Experimenters
need to build the interface on their own which requires skill
or access to resources, a common problem when working with
development frameworks. Support for multiple devices is de-
pendent on access to skills and resources as well. For subject
management, experimenters need to use a third-party software,
and nothing is mentioned in its documentation about integration
with Amazon Mechanical Turk. No admin interface or experi-
ment dashboard can be found, so that they would have to be
implemented by experimenters from scratch.

Without multi-tenancy support, Willow is built for use by only
one experimenter and for one installation at a time. No group
matching function is found, but experimenters can create one of
their own. Another disadvantage is that data is not stored in a
database, although it can be imported into one with the CSV file it
generates. Also, Willow provides only one simple example exper-
iment, which does not give the option to reuse the existing code.
It is suitable for experimenters who like to write experiments
in Python using a framework instead of a complete system like
oTree. However, Willow comes with the risk that the software
may not be maintained in the future.

5.2.10. CORAL
CORAL is a development framework written in Java and devel-

oped at the School of Economics and Finance of the Queensland
University of Technology. It was still in its early development
stage when we assessed it. It is free to download and use. It
was last updated in 2015 and is possibly no longer under active
development. We could not find any information about its user
community.

A major advantage of CORAL is that experimenters can use
a CSV file to define the stages that represent the overall flow
of an experiment. It includes properties like template filename
for a stage, loop, repeat, condition, validation or not, and wait
for input screen in chronological order of an experiment. It is
very straightforward to understand. Experimenters define the
overall setting of an experiment in a text file which specifies
the stages CSV filename, the number of simultaneous clients, the
database type (memory or database using a JDBC connection) and
screen size. For the user interface, experimenters need to build
the template files using a template engine, Apache Velocity. Its
documentation mentions any common language can be used for
its template engine due to Java’s scripting module that includes
z-Tree treatments. The logic of an experiment, like payouts and
feedback to subjects, needs to be written in JavaScript and stored
in separate files for modular design. For experiment testing, it
comes with a robot.js file which can be used for automatic testing.

One major problem we found is its missing documentation
for getting started on its website. However, a simple public good
game example shows the basics of how to use the framework,
which mitigates the problem. Missing documentation is a major
issue for experimenters who wish to use this framework, as it
requires reading its source code for a proper understanding. Like
other development frameworks, it lacks a lot of desirable features
and requires time and effort to build them from scratch. Also, as
stated, it appears not to be under active development. We could
not find an easy way to communicate with the author or with
other users.

Fig. 1. Comparison of desired features among reviewed software packages.

Fig. 2. No. of ready-made experiments of reviewed software packages.

5.3. Comparison of selected multi-purpose software packages against
desired features

Using the data in Table 3 for non-hosted packages and Table 4
for hosted software packages, we calculated performance scores
(Fig. 1). In the scoring method, we put 1 for every ‘yes ’ and 0.5
for ‘partly yes ’. The ones with the higher scores have a greater
number of the desirable features discussed in Section 3. An im-
plicit assumption is that all the desirable features are weighted
equally. This is to avoid introducing our own preferences, leaving
readers free to weight them as they wish.

Fig. 2 lists the number of ready-made experiments made avail-
able on each platform. classEx and Veconlab have the most ready-
made experiments. The main difference between them is that
experiments in classEx, but not in Veconlab, can be modified for
creating new ones.

This review suggests that for experimenters who are looking
for newer and actively developed software with GUI for writing
their own experiments, oTree and SoPHIE should be considered.
One major advantage of oTree over SoPHIE is the number of
ready-made experiments that can be used and modified straight-
away. They are both capable of creating many types of experi-
ments and use the Bootstrap framework that allows experiments
to be run on multiple devices. The choice between them might
come down to one’s preference for using Python or PHP as the
programming language.

If experimenters are looking for software with plenty of ready-
made experiments, Veconlab and classEx are the standout
choices. They have the largest number of experiments that can

S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160 149

Table 3
Selected multi-purpose non-hosted software packages against desirable features.

Table 4
Selected multi-purpose hosted software packages against desirable features.

150 S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160

be run immediately, with new types of experiments being added
by the maintainers as well. They both are excellent choices for
classroom teaching as well. The major downside for Veconlab is
that the user interface is not mobile friendly while classEx can
be a good choice if the use of mobile devices is a requirement.
For researchers who are looking to write their own experiments
on hosted services, Veconlab, Econlab, and Econplay would not
be suitable. LabSEE and classEx are the only hosted services that
allow writing one’s own experiments.

For more flexibility, experimenters can consider a develop-
ment framework like jsPsych which uses JavaScript to program
experiments, and the interface can be built to the exact specifi-
cations that experimenters want. However, it also means greater
cost and time, depending on skill and access to technical re-
sources. jsPsych is under active development, and we suggest to
use a server-side language together for data persistence. Willow
has a detailed tutorial on how to use it but has not been updated
for some time. CORAL is a new player in the domain and needs
more time to mature.

All the reviewed software packages have different strengths
and weaknesses. Portability is a major issue as no experiment
created on one platform can be run on another. Most software
packages have some administration interfaces that can be part
of an experiment dashboard with more room for improvement.
Automated testing is another area that needs to be focused on, as
only two software packages have this feature built-in, oTree and
CORAL.

6. Conclusion

Web technologies have generated positive impacts on many
aspects of today’s society. With their increasing influence, Web
experiments are likely to play a more important role. They offer
many advantages, like easier access to larger and more diversified
sample populations, cost savings in administration, and attraction
of participants with no restriction on location. Challenges like
subject identity, multiple submissions and the like might make
some experimenters hesitate about their viability. However, these
issues can be overcome today with technological improvements,
and the benefits will very likely outweigh the potential risks.

Web-based experimental economics software packages, or
WEESPs, are created for both specific and multiple purpose ex-
periments and have been developed in different programming
languages. Reasons for their existence include dissatisfaction with
existing software solutions, requirements not satisfied by existing
web-based software packages, and preference for a particular
programming language. WEESPs range from development frame-
works that provide the most flexibility but demand the highest
skill, to hosted services with lots of ready-made experiments
and no programming skills required. No matter which one the
experimenter chooses, an experiment running on one software
cannot be run on another. Although Github or a backup allows old
versions of software to be preserved, they may not work on future
hardware, operating systems or browsers. We believe a markup
language using XML to describe an experiment setting can be
used to solve the portability issue. The process to develop one can
be complex and requires enormous coordination effort within the
Experimental Economics research community. However, markup
language projects are not rare and have been taking place in many
areas for solving portability challenges.

Web experiments offer experimenters opportunities that can-
not be easily achieved in standard laboratory experiments. How-
ever, experimenters do not have to give up laboratory or field
experiments, as WEESPs can run them as well. Some WEESPs can
run even without a web server and Internet connection. More
importantly, with increased portability, web-based experiments

will allow ease of replication which, following on the tracks of
physics and biology, will help experimental economics strengthen
its scientific credentials (Camerer et al., 2016; Gertler et al., 2018).
With the increasing importance of the Web and ample room for
improvements, experimenters should consider adding web-based
experiments to their toolkit.

Acknowledgments

The authors would like to thank the following researchers for
providing information and assistance in learning more about their
software:-

• Chris Wickens <chris@otree.org> for oTree
• Achim Hendriks <achim.hendriks@uni-osnabrueck.de> for

SoPHIE
• Boun My Kene <bounmy@unistra.fr> for EconPlay
• Josh de Leeuw <jodeleeu@indiana.edu> for jsPsych
• Robert Borowski <info@labsee.com> for LabSEE

The authors are grateful to the Editor and the reviewers for pro-
viding detailed feedback on the paper. M S Iftekhar acknowledges
funding support from the Australian Research Council’s Discovery
Early Career Researcher Awards grant (ARC DECRA grant number
DE180101503).

Appendix A. Software packages information

The software packages information can be found in the fol-
lowing two tables. Table A.1 lists the source of the software
packages with their URL, platform, online and free to use or
not and license type. Table A.2 lists the detailed information of
the software packages with Published/Working paper(s) found,
type of experiments support (based on the website information),
type of experiments conducted (from published/working papers
found), a broad class of experiments, MTurk integration ready and
documentation/support.

Appendix B. Programming languages, web frameworks and
other technologies used in web-based experimental economics
software

To develop web applications, developers can choose to use
different programming languages, Web frameworks and other
technologies. Programming language can be used to create dy-
namic content combined with HTML (Hyper Text Markup Lan-
guage). Dynamic content can be account and subject manage-
ment, treatment management, experiment creation and testing,
record keeping, input validation, payoff calculation and other
required functions. However, two developers can build the same
web application with the same programming language in a very
different structure like how they manage libraries/functions for
database connection, session management, and dynamic content
presentation and other common functions. Other developers who
need to take on the project would have to spend time going
through the code and understand how things are interconnected.

On the other hand, a Web framework is designed to make the
development of web applications for a programming language in
a standard way. It provides libraries for common Web application
functions such as database connection, user and session man-
agement, templating engine for dynamic content presentation
and other common functions. Web framework promotes code
reusability and helps others to take on a project easier as the
structure of application developed with a framework have a
defined structure.

S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160 151

Table A.1
Source of software packages.
Software URL Platform Online Free License type

AEE Lab http://www.aton.com.au/index.html Java (no download) Yes No Commercial

BoXS https://www.bonneconlab.uni-bonn.de/boxs Java Yes Yes GNU General Public

Cal Economics http://www.res.otaru-uc.ac.jp/~uzawa/cal-
economics/cal-ee.html

The link is no longer available as the
administrator disabled its access. See the
information from the URL below.

https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-
10630001/

Windows software No Yes Free to use

classEx https://classEx.de PHP Yes Yes Free to use

Classroom Expernomics https://w3.marietta.edu/~delemeeg/expernom.html Possibly written in Perl CGI-bin
based on the search function
(last updated 2008)

Yes Yes None

ComLabGames http://www.comlabgames.com/ Java Yes Yes Free to download but no specific
license type is mentioned

ConG https://leeps.ucsc.edu/cong Java Yes Yes Under a version of the Simplified
BSD License (‘‘2-Clause BSD
License’’ or ‘‘FreeBSD License’’)
with the now-customary citation
requirement if the software is
used for academic publications

CORAL https://code.google.com/p/coral-econ/ Java Yes Yes Apache License 2.0

EconPlay http://www.econplay.fr/ .Net (no download - cloud
service)

Yes Yes Free to use

EconPort http://www.econport.org/econport/request?page=
web_home

Java Tomcat (no download -
cloud service)

Yes Yes Free to use

EXCEN http://expecon.gsu.edu/Software.html Use EconPort (A9) Yes Yes Free to use

FEELE http://projects.exeter.ac.uk/feele/ PHP Yes Yes Free to use

jars https://github.com/s-plum/jars Node.js application Yes Yes Free to download but no specific
license type is mentioned

jAuctions http://people.hss.caltech.edu/~jkg/jAuctions.html
No current link can be found.

Java (no download) Yes Yes Nothing mentioned as no
download is available

JessX - Java Experimental
Simulated Stock Exchange

http://jessx.ec-lille.fr/index.php?page=overview Java Yes Yes GNU/GPL license

jMarkets http://ssel.caltech.edu/software.html Java No Yes GNU General Public License

jsPsych http://www.jspsych.org/ JavaScript Yes Yes MIT

LabSEE http://labsee.com PHP (no download - hosted
service)

Yes Yes Free registration

Marketscape http://eeps6.caltech.edu/market-081029/ Downloadable CD. The demo
site might indicate it is written
in SSI/Perl

Yes Yes GNU General Public

MobLab http://www.moblab.com/ JSP (cloud service for teaching
and research)

Yes No Commercial

Multistage http://ssel.caltech.edu/software.html Java No Yes Free to use

oTree http://www.otree.org/ Python using Bootstrap
framework

Yes Yes MIT open source license

Qualtrix http://www.qualtrics.com/ PHP Yes Yes Free to register

Regate http:
//www.gate.cnrs.fr/perso/zeiliger/regate/regate.htm

Windows software running on
Win XP only

Yes Yes Free to download but no specific
license type is mentioned

Regate NG http://www.gate.cnrs.fr/spip.php?article403 Python Yes Yes MIT and GNU LGPL

Seaweed http://sourceforge.net/projects/c-weed PHP using the web framework
CodeIgniter-1.7.2

Yes Yes MIT License

SoPHIE http://www.sophie.uni-osnabrueck.de/ PHP using Zend and Bootstrap
frameworks

Yes Yes BSD style license (based upon
the ‘‘New BSD License’’)
extended by the citeware clause

SoPHIE Labs (Commercial
partner of SoPHIE)

http://www.sophielabs.com/ PHP (no download - cloud
service)

Yes No Commercial

t-Tree http://www.sweethall.net/auct-prog.cgi/ui CGI-bin Yes Yes To use the software for
experiments, a user needs to
sign a contract.

(continued on next page)

http://www.aton.com.au/index.html
https://www.bonneconlab.uni-bonn.de/boxs
http://www.res.otaru-uc.ac.jp/~uzawa/cal-economics/cal-ee.html
http://www.res.otaru-uc.ac.jp/~uzawa/cal-economics/cal-ee.html
https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-10630001/
https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-10630001/
https://classEx.de
https://w3.marietta.edu/~delemeeg/expernom.html
http://www.comlabgames.com/
https://leeps.ucsc.edu/cong
https://code.google.com/p/coral-econ/
http://www.econplay.fr/
http://www.econport.org/econport/request?page=web_home
http://www.econport.org/econport/request?page=web_home
http://expecon.gsu.edu/Software.html
http://projects.exeter.ac.uk/feele/
https://github.com/s-plum/jars
http://people.hss.caltech.edu/~jkg/jAuctions.html
http://jessx.ec-lille.fr/index.php?page=overview
http://ssel.caltech.edu/software.html
http://www.jspsych.org/
http://labsee.com/
http://eeps6.caltech.edu/market-081029/
http://www.moblab.com/
http://ssel.caltech.edu/software.html
http://www.otree.org/
http://www.qualtrics.com/
http://www.gate.cnrs.fr/perso/zeiliger/regate/regate.htm
http://www.gate.cnrs.fr/perso/zeiliger/regate/regate.htm
http://www.gate.cnrs.fr/spip.php?article403
http://sourceforge.net/projects/c-weed
http://www.sophie.uni-osnabrueck.de/
http://www.sophielabs.com/
http://www.sweethall.net/auct-prog.cgi/ui

152 S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160

Table A.1 (continued).
Software URL Platform Online Free License type

UAA Python Experimental
Economics Laboratory - PEET

http://econlab.uaa.alaska.edu/Welcome.html Python No Yes GNU General Public License

Veconlab http://veconlab.econ.virginia.edu/ PHP (no download - cloud
service)

Yes Yes Free to use

WebLab https://github.com/tomrutter/WebLab Java (last updated five years
ago)

Yes Yes Free to download but no specific
license type is mentioned

Willow: Experiments in Python http://econwillow.sourceforge.net/ Python Yes Yes Free to download but no specific
license type is mentioned

Zocalo http://zocalo.sourceforge.net/ Java No Yes Free to use

Apart from programming languages and Web frameworks,
there are other technologies do not fit into the categorization of
programming language and Web framework.

The following section provides a summary of each one of them
that are used by the list of web-based experimental economics
software that is found.

B.1. Programming languages

B.1.1. Java
Java is a programming language invented at Sun Microsystems

and released in 1995. It has been taught by many Computer
Science schools worldwide. The slogan of Java is ‘‘Write once, run
anywhere’’ which illustrates benefits of the Java language. Java
can be developed and run on any device as long as a Java virtual
machine (JVM) is available on the device without any changes on
the code. It has been used for network and Web development.
The related Java development technologies are Java Applet for
running application in the browser, J2EE Web framework and
JDBC for database connection (Java, 2015).

B.1.2. PHP
PHP (recursive acronym for PHP: Hypertext Pre-processor)

is a widely used and popular open source scripting language
specifically created for Web development even though it can be
used for general purpose. Its syntax is similar to Perl, Java and can
be embedded within HTML. It has been widely used for websites
and Web applications development and can be run on a number
of operating systems like Windows, Mac and Linux. It provides
a lot of functions like database connection, session management,
file upload and many other libraries that make Web development
a lot easier (reference here). Some well-known open-source prod-
ucts that are written in PHP are Content Management System
like Drupal, Joomla and WordPress and Learning Management
System like Moodle. The social media application, Facebook, is
also written in PHP (PHP, 2015).

B.1.3. Python
Python is a widely used general purpose, high-level program-

ming language. Its interpreters can be run on many platforms
like Windows, Mac and Linux. It supports object-oriented, func-
tional and procedural programming. It is used in scientific pro-
gramming, big data analysis, Web programming and many other
areas through its extensive libraries. Django is a very popular
Web application framework written in Python which follows the
model-view-controller (MVC) architectural pattern. Some of the
well-known websites and Web applications that are written in
Python are YouTube, Dropbox, Instagram and Pinterest. Google
also uses Python for many applications including one of its Cloud
services, PaaS (Platform as a Service), Google App Engine (Python,
2015).

B.1.4. JavaScript
JavaScript is a high level, object-oriented language that is built

into every Web browsers. It is the only native language that
comes with browsers without installation. It can be used to create
interaction with users on the client side without the need to
talk to the Web server. It is commonly used for client-side input
validation, quizzes, poll etc. However, it can also be used as a
server-side language like node.js and also for AJAX effect which
to connect to the external data source to refresh the data without
reloading the full page. jQuery and a number of similar JavaScript
libraries are commonly used for JavaScript development (jQuery,
2015).

B.2. Web frameworks

B.2.1. Model-view-controller (MVC) framework
MVC framework is an architectural design pattern in software

development. An application is split into three components which
are model, view and controller. The model represents the data
and the business logic of the application. The view is the pre-
sentation layer which is what users can see on the screen. The
controller acts as the middleman between the model and the
view and connects the appropriate model and view based on the
user request. MVC is very popular in Web application develop-
ment. It can be found on many Web programming languages like
Java, PHP, Python and .Net framework (Leff and Rayfield, 2001).

B.2.2. Django framework
Django framework is one of the MVC frameworks written in

Python. It eases the effort of developing a database-driven web-
site with the ability to generate administrative interface without
the need for coding. It is a high-level open-source Web frame-
work that encourages rapid development and clean design. Some
well-known websites that use Django framework are Instagram,
Pinterest and Mozilla.

B.2.3. Zend framework
Zend framework is an open-source, object-oriented Web ap-

plication MVC framework implemented in PHP 5. The principal
sponsor of the Zend framework project is Zend Technologies,
the company behind the development of PHP. Other significant
contributors to the projects include Microsoft and Google. Its
components can be used as a standalone library but they form
a powerful and extensible Web application framework when
combined. It offers MVC implementation and an abstract database
class that eases connection to databases. Some other components
are forms for HTML5 form rendering, validation and filtering and
authentication for authentication and authorization with many
common credential stores.

http://econlab.uaa.alaska.edu/Welcome.html
http://veconlab.econ.virginia.edu/
https://github.com/tomrutter/WebLab
http://econwillow.sourceforge.net/
http://zocalo.sourceforge.net/

S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160 153

Table A.2
Detailed information on software packages.
Software Published/Working

paper(s) found
Type of experiments
support (based on the
website information)

Type of experiments
conducted (from
published/working papers
found)

A broad class
of experiments

MTurk
integration
ready

Documentation/Support

AEE Lab Yes Teaching Suite Experiments
- Basic demonstration
market types, Posted Offer,
Double auction, over the
counter market, MRET
experiment (Public or
Private Penalty and resale
value), Ergon Energy MRET
experiment (instant create,
delayed create and
enhanced DHW), AGL/Alinta
merger experiment, MISO
electricity, CSIRO SE
Landscape experiment

Numerous papers can be
found at http://www.aton.
com.au/papers.html

Yes No The AEELab exists to support
consultants, researchers and
academics to conduct and use
experimental economics
research. They manage
experimental economics lab
facilities at a number of
university campuses and can
provide easy access to labs and
student participants for
persons wishing to run
experiments. They also develop
experiments to address
specified research questions,
and are a research facility in
their own right, conducting
experiments in respect to their
research agenda. In particular,
the AEE Lab can provide Lab
management and control
software and systems. Hosting
of experiments in other labs
using their lab-based
experiment management
systems. Development of
experiments, drawing upon
their software library of robust
and running experiments.
Delivery of experiments via
their existing labs.

BoXS Yes A programming framework
which should allow
different types of
experiments to run subject
to the programming skill of
experimenters

Public goods — how
bundling public with
private goods affects
individuals’ valuations for
both goods (Frackenpohl &
Pönitzsch 2013)

Yes No Online documentation,
example programs, FAQ,
mailing list, video tutorials

Cal Economics No information is
found.

CAL for Economics No information is found. No No Online documentation is found
at http://www.res.otaru-
uc.ac.jp/~uzawa/cal-
economics/cal-ee.html

classEx Yes Games supported can be
found at
https://classEx.de/games

Teaching microeconomic
principles with smartphones
— lessons from classroom
experiments with classEx
Giamattei, M., and Llavador,
H. (2017). Working paper.
How Fragile Is Conditional
Cooperation? A Field
Experiment with
Smartphones during the
2014 Soccer World Cup
Graf Lambsdorff, J.,
Giamattei, M., Werner,
K.(2017). Journal of
Behavioral Decision Making
30(2):492.501.
Emotion vs. Cognition
— Experimental Evidence
on Cooperation from the
2014 Soccer World Cup.
Graf Lambsdorff, J.,
Giamattei, M., Werner, K.,
Schubert M.(2016). Working
paper.

Yes Unknown Online documentation is found
at https:
//classEx.de/documentation
Google Forum is found at
https://groups.google.com/
forum/#!forum/classex

(continued on next page)

http://www.aton.com.au/papers.html
http://www.aton.com.au/papers.html
http://www.res.otaru-uc.ac.jp/~uzawa/cal-economics/cal-ee.html
http://www.res.otaru-uc.ac.jp/~uzawa/cal-economics/cal-ee.html
http://www.res.otaru-uc.ac.jp/~uzawa/cal-economics/cal-ee.html
https://classEx.de/games
https://classEx.de/documentation
https://classEx.de/documentation
https://groups.google.com/forum/#!forum/classex
https://groups.google.com/forum/#!forum/classex

154 S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160

Table A.2 (continued).
Software Published/Working

paper(s) found
Type of experiments
support (based on the
website information)

Type of experiments
conducted (from
published/working papers
found)

A broad
class of
experiments

MTurk
integration
ready

Documenta-
tion/Support

Classroom
Expernomics

No information is
found.

No longer available — the
website is maintained as an
archive.

No information is found. No No Nothing is available
as the website is for
archive purpose now.

ComLabGames No information is
found.

This module is for
designing games to conduct
experiments with human
subjects over the Internet
for learning about strategic
behavior through personal
experience and data
analysis. It is suitable for
use in high school and
college courses, research
laboratories for
experimental economists
and psychologists, as well
as within strategic
consulting groups. e.g.
auction games, trading
games, free-form games

No information is found. No No Online documentation
is found at
http://www.
comlabgames.com/
free0.4/index.html

ConG Yes Prisoner’s Dilemma, Hawk
Dove, Public Goods Game
(Voluntary Contribution
Mechanism), Public Goods
Game, Hotelling Spatial
Competition Game and
programming Skills
Required to Extend ConG.

No information is found. Yes No Demonstration,
deployment and
configuration
documentation on the
home page.

CORAL Yes Coral is a lightweight
framework that aims to
facilitate the design of
economic experiments
while being as flexible as
possible. It means it can be
used for creating different
types of experiments
subject to the programming
skill of experimenters

No information is found. Yes No Online documentation
is found at
https://code.google.
com/p/coral-econ/
wiki/GettingStarted

EconPlay Yes Games : (2 × 2 Games,
Guessing Game), Public
Good : (Voluntary
Contribution), Bargaining :
(Ultimatum Games, Trust
Game, Gift Exchange Game),
Auctions : (Private Value
Auctions, Common Value
Auctions), Market: (Double
Auctions, Cournot oligopoly,
Bertrand oligopoly)

- Nicolas Jacquemet, Stéphane
Luchini, Antoine Malézieux,
Jason Shogren, (Forthcoming),
Is tax evasion a personality
trait? An empirical evaluation
of psychological determinants
of << tax morale >>. Revue
Économique

- A. Baujard, F. Gavrel, H.
Igersheim, J.-F. Laslier and I.
Lebon << Individual Behavior
under Evaluative Voting. A
comparison between
laboratory and In Situ
experiments >>, in Blais, A.,
Laslier, J.-F. and Van der
Straeten, K. (eds), Voting
experiments, Heidelberg:
Springer, pp. 257-270, 2016

- Jocelyn Groff and Anne
Rozan, (2015) ‘‘Could two be
worse than one? Individuals’
investments in multiple
public bads’’, Economics
Bulletin, Volume 35, Issue 4,
p.2166-2173

Yes
— cannot
create your
own
experiments

No Online tutorial and
FAQ are found at
http://www.econplay.
fr/aide.aspx

(continued on next page)

http://www.comlabgames.com/free0.4/index.html
http://www.comlabgames.com/free0.4/index.html
http://www.comlabgames.com/free0.4/index.html
https://code.google.com/p/coral-econ/wiki/GettingStarted
https://code.google.com/p/coral-econ/wiki/GettingStarted
https://code.google.com/p/coral-econ/wiki/GettingStarted
http://www.econplay.fr/aide.aspx
http://www.econplay.fr/aide.aspx

S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160 155

Table A.2 (continued).
Software Published/Working

paper(s) found
Type of experiments
support (based on the
website information)

Type of experiments
conducted (from
published/working papers
found)

A broad
class of
experiments

MTurk
integration
ready

Documenta-
tion/Support

- Romain Baeriswyl, Camille
Cornand (2014), ‘‘Reducing
overreaction to central banks
disclosure: theory and
experiment’’, Journal of the
European Economic
Association, 12(4):
1087-1126.

- M. Lefebvre & A. Stenger
(2016) Long-lasting effects of
temporary incentives in good
public games, BETA working
paper n◦2016-25.

- d’Albis, H., Attanasi, G. and
E. Thibault (2017), Ambiguous
Survival Probabilities and
Demand for Annuities: An
Experimental Test through
Charitable Giving, BETA WP,
University of
Strasbourg.

- Lambert E.-A., Tisserand J.-C.
(2016), Does the obligation to
bargain make you fit the
mold, WP du BETA 2016-37.

- Garcia, S., Jacob, J., Lambert,
E-A (2017), ‘‘Comparison of
liability sharing rules for
environmental damage: An
experiment with different
levels of solvency’’, BETA
Working Paper n◦2017-12.

- Attanasi, G., Cox J. and V.
Sadiraj, ‘‘Festival Games:
Inebriated and Sober
Altruists’’

- Jacob, J., Brunette, L.,
Eeckhoudt, L. (2017),
‘‘Prevent or Cure? Trading in
the face of left-skewed binary
lotteries?’’.

- Brunette, M., Jacob, J.
(2017), ‘‘Risk Aversion,
Prudence and Temperance in
gains and losses: Are we all
schizophrenics?’’

EconPort Normal Form Game,
Extensive Form Game, GARP
(consumer utility
maximization), MarketLink
(commodity double auction,
asset double auction, posted
offer, posted bid),
One-Sided Auctions (Dutch,
English, first- and
second-price auctions)

Yes No

EXCEN Use the EconPort website. No information is found. Yes No Use the EconPort
website.

(continued on next page)

156 S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160

Table A.2 (continued).
Software Published/Working

paper(s) found
Type of experiments
support (based on the
website information)

Type of experiments
conducted (from
published/working papers
found)

A broad
class of
experiments

MTurk
integration
ready

Documenta-
tion/Support

FEELE American Call Option,
Bertrand Competition,
Currency Attack, Diamond
Dyvbig Experiment,
Hold-Up Problem, Insurance
Market With Asymmetric
Information, Kiyotaki
Wright Hazlett Experiment,
Lemon game, Monty Hall
Paradox, Network
Externalities, Price
Discrimination, Team Draft,
Warren Buffett.

When and what degree does
communication help in
oligopoly markets (Fonseca
and Normann 2012).

Yes No Online documentation
is found at
http://projects.exeter.
ac.uk/feele/
LecturerStart.shtml

jars No documentation is found. No information is found. No docu-
mentation

No No information is
found.

jAuctions Auction programs that can
be used for a wide variety
of auction experiments.

No information is found. Yes No No information is
found.

JessX - Java
Experimental
Simulated
Stock Exchange

Create a program allowing
for the simulation of a
financial market with
realistic features like
training, dot com bubble,
several kinds of assets and
divergence, stressful. -
http://jessx.ec-lille.fr/index.
php?page=experiment

No information is found. Yes No A tutorial is found at
http://jessx.ec-
lille.fr/index.php?
page=tutorial;
teaching material is a
broken link;

jMarkets Yes jMarkets is a Java-based
web application which
implements continuous
double-sided electronic
markets and supports
multiple concurrent
markets.

To explore how uninformed
traders read information from
transaction prices and order
flow in financial markets
with insiders (Bruguier et al.
2010).The reliability of online
preference revelation using a
series of controlled laboratory
experiments (Chen et al.
2013).

No No Online documentation
is found at http:
//jmarkets.ssel.caltech.
edu:8000/jmarkets/
wiki/InstallGuide and
FAQ.

jsPsych Yes jsPsych is a JavaScript
library for creating and
running behavioral
experiments in a web
browser. The library
provides a flexible
framework for building a
wide range of
laboratory-like experiments
that can be run online.

https://www.researchgate.net/
publication/261221973_
jsPsych_A_JavaScript_library_
for_creating_behavioral_
experiments_in_a_Web_
browser

Yes Yes - with
The
jsPsych.turk
module

Online documentation
can be found on the
website and Google
group is found at
https://groups.google.
com/forum/#!forum/
jspsych

LabSEE No information is
found.

Nothing is mentioned. The author could not supply
the information.

No No information is
found.

Marketscape No information is
found

Experiments can include
single or multiple markets,
multiple goods and
currencies, multiple types of
subjects, varying economic
conditions or incentives.

No information is found. No —
double
auction
trading

No Online demo is found
at http://eeps.caltech.
edu/market-demo/,
and online
documentation is
found at
http://marketscape.
caltech.edu/wiki/
IndexofTutorials

(continued on next page)

B.2.4. Bootstrap framework
Bootstrap (2015) is a free and open source mobile first front-

end framework. It is originally developed by Twitter and has since
been very popular and widely used in many Web applications
and websites. It has HTML and CSS based design templates for

user interface components like form, button, navigation, typog-
raphy and others. Web applications that are developed in the
Bootstrap framework have the responsive capability that auto-
matically adjusts the appearance according to the screen size.
This makes it a very popular choice because Web applications

http://projects.exeter.ac.uk/feele/LecturerStart.shtml
http://projects.exeter.ac.uk/feele/LecturerStart.shtml
http://projects.exeter.ac.uk/feele/LecturerStart.shtml
http://jessx.ec-lille.fr/index.php?page=experiment
http://jessx.ec-lille.fr/index.php?page=experiment
http://jessx.ec-lille.fr/index.php?page=tutorial
http://jessx.ec-lille.fr/index.php?page=tutorial
http://jessx.ec-lille.fr/index.php?page=tutorial
http://jmarkets.ssel.caltech.edu:8000/jmarkets/wiki/InstallGuide
http://jmarkets.ssel.caltech.edu:8000/jmarkets/wiki/InstallGuide
http://jmarkets.ssel.caltech.edu:8000/jmarkets/wiki/InstallGuide
http://jmarkets.ssel.caltech.edu:8000/jmarkets/wiki/InstallGuide
https://www.researchgate.net/publication/261221973_jsPsych_A_JavaScript_library_for_creating_behavioral_experiments_in_a_Web_browser
https://www.researchgate.net/publication/261221973_jsPsych_A_JavaScript_library_for_creating_behavioral_experiments_in_a_Web_browser
https://www.researchgate.net/publication/261221973_jsPsych_A_JavaScript_library_for_creating_behavioral_experiments_in_a_Web_browser
https://www.researchgate.net/publication/261221973_jsPsych_A_JavaScript_library_for_creating_behavioral_experiments_in_a_Web_browser
https://www.researchgate.net/publication/261221973_jsPsych_A_JavaScript_library_for_creating_behavioral_experiments_in_a_Web_browser
https://www.researchgate.net/publication/261221973_jsPsych_A_JavaScript_library_for_creating_behavioral_experiments_in_a_Web_browser
https://groups.google.com/forum/#!forum/jspsych
https://groups.google.com/forum/#!forum/jspsych
https://groups.google.com/forum/#!forum/jspsych
http://eeps.caltech.edu/market-demo/%20
http://eeps.caltech.edu/market-demo/%20
http://marketscape.caltech.edu/wiki/IndexofTutorials
http://marketscape.caltech.edu/wiki/IndexofTutorials
http://marketscape.caltech.edu/wiki/IndexofTutorials

S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160 157

Table A.2 (continued).
Software Published/Working

paper(s) found
Type of experiments
support (based on the
website information)

Type of experiments
conducted (from
published/working papers
found)

A broad
class of
experiments

MTurk
integration
ready

Documenta-
tion/Support

MobLab No information is
found

Auction Theory (11),
Behavioral Economics (14),
Finance (5),Game Theory
(29), Industrial Organization
(18), Intermediate
Macroecon (6),
Macroeconomics (9),
Managerial Economics (27),
Microeconomics (25),
Negotiations (6), Political
Economy (7), Principles of
Economics (11).

No information is found Yes No Online documentation
is found at
https://www.moblab.
com/games/support/
getting-started/

Multistage Yes It is designed initially to
deal with a broad class of
games subject to the
experimenter’s
programming skill.

No information is found. Yes No Online documentation
is found at
http://multistage.ssel.
caltech.edu:
8000/multistage

oTree Yes Public goods, trust game,
beauty contest, survey,
Prisoner’s Dilemma,
Ultimatum, Battle of the
Sexes, Vickrey auction,
Cournot
competition,principal agent,
dictator game, matching
pennies, traveler’s dilemma,
bargaining game, common
value auction, Stackelberg
competition, Bertrand
competition, stag hunt,
real-effort transcription
task, lemon market game.

Holzmeister, Felix,
Pfurtscheller, Armin, 2016.
oTree: The ‘‘bomb’’ risk
elicitation task. Journal of
Behavioral and Experimental
Finance. 10, 105-108.
Holzmeister, Felix. (2017).
oTree: Ready-made apps for
risk preference elicitation
methods. Journal of
Behavioral and Experimental
Finance. 16, 33-38.

Yes Yes Documentation, FAQ,
blog, demo and slides
are available on the
home page, and they
are very
comprehensive as
well.

Qualtrix No information is
found.

Mainly use for creating
surveys.

No information is found. Yes -
surveys only

No Online training is
found at
http://www.qualtrics.
com/university/
researchsuite/ and
also paid support.

Regate Yes The Regate software allows
for implementing
experimental economics
experiments: bargaining,
public goods, market,
auctions. A simple script
programming language has
to be used to implement
the experiments, while
communication between
the computers is based on
Internet protocols (TCP/IP).

Coordination game
(Jacquemet and Zylbersztejn
2013). Bubbles with
overlapping generations
(Deck 2014). Gender
difference and competitive
behavior (Gupta 2005).

Yes No Online documentation
is found at http:
//www.gate.cnrs.fr/
perso/zeiliger/regate/
RegateManuel.htm

Regate NG No information is
found.

Documentation in French
and Google translate does
not work on the page.

No information is found. Yes No No information is
found.

Seaweed Yes Seaweed can create simple
two-player economic games
with symmetric actions and
one decision per screen.
Moreover, your game is
ready to be played by
randomly paired people on
the Internet.

The author/developer
evaluated the design interface
by asking five economists to
fix bugs in and augment a
pre-existing game. The game
engine was evaluated by
posting a game of ‘‘Rock
Paper Scissors’’ on MTurk

No -
two-player
economic
games

No No information is
found.

(continued on next page)

and websites nowadays are expected to work on devices like
PC desktop/laptop, Mac desktop/laptop and mobile devices like
smartphones and tablets. Bootstrap makes the task a lot easier.

Many Web applications use Bootstrap for their mobile themes
and this includes Drupal, Joomla, WordPress, Moodle and many
other applications.

https://www.moblab.com/games/support/getting-started/
https://www.moblab.com/games/support/getting-started/
https://www.moblab.com/games/support/getting-started/
http://multistage.ssel.caltech.edu:8000/multistage
http://multistage.ssel.caltech.edu:8000/multistage
http://multistage.ssel.caltech.edu:8000/multistage
http://www.qualtrics.com/university/researchsuite/%20
http://www.qualtrics.com/university/researchsuite/%20
http://www.qualtrics.com/university/researchsuite/%20
http://www.gate.cnrs.fr/perso/zeiliger/regate/RegateManuel.htm
http://www.gate.cnrs.fr/perso/zeiliger/regate/RegateManuel.htm
http://www.gate.cnrs.fr/perso/zeiliger/regate/RegateManuel.htm
http://www.gate.cnrs.fr/perso/zeiliger/regate/RegateManuel.htm

158 S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160

Table A.2 (continued).
Software Published/Working

paper(s) found
Type of experiments
support (based on the
website information)

Type of experiments
conducted (from
published/working papers
found)

A broad
class of
experiments

MTurk
integration
ready

Documenta-
tion/Support

SoPHIE A working paper
reference is found
on the website
but cannot find
the paper.

Human Interaction
Experiments with
ultimatum as an example.

The author could not supply
the information.

Yes Yes A number of
technical documents
are available at http:
//www.sophie.uni-
osnabrueck.de/docs/;
Google Group -
Community Support -
https://groups.google.
com/forum/#!forum/
sophie-community;
The documentation
and group support
are ongoing.

SoPHIE Labs
(Commercial
partner of
SoPHIE)

Same as SoPHIE. Same as SoPHIE. Same as SoPHIE. Yes Yes Commercial support
for SoPHIE - 1 ticket
for 60EUR, 5 tickets
for 275EUR, 10 tickets
for 475EUR and 25
tickets for 950EUR.
Support tickets cover
extensive support
inquiries like
installation assistance,
code checking,
remote maintenance,
etc. They guarantee
the first response to
an inquiry within
24 h. Our Support
tickets do not include
customization and
development
inquiries. A support
ticket is valid for one
year.

t-Tree Yes — existed on
the website but
the link is broken
now.

t-Tree (Tokyo Toolbox for
Readymade Economic
Experiments) is software for
experimental economics
that focuses on auctions
and market design.

The author could not supply
the information.

No -
auctions and
market
design

No Online documentation
but the link is broken
http://www.kazumori.
net/tTree.pdf

UAA Python
Experimental
Economics
Laboratory —
PEET

No information is
found.

Island experiment No information is found. Yes No Manual is found at
http://econlab.uaa.
alaska.edu/software/
UAA-PEET%20basic%
20instructions.txt -
last updated: 30 Nov
2009

(continued on next page)

B.3. Other technologies

B.3.1. .Net framework
.Net (dot net) framework is developed by Microsoft. It is a

collection of Web services. Applications developed in .Net are pri-
marily run on the Microsoft Windows platform. Most commonly
used programming languages for .Net development are C# and
Visual Basic (VB) from Microsoft even though it is possible to
develop in other programming languages on another platform
with .Net framework installed.

B.3.2. Node.js
Node.js is an open source, a cross-platform runtime environ-

ment for creating server-side Web applications. Node.js appli-
cations are developed in JavaScript and can run on the node.js

runtime across a number of platforms. It uses an event-driven
and non-blocking I/O model which gives the advantages of being
lightweight and efficient. Many large companies are reported as a
user of Node.js on its website such as Microsoft, LinkedIn, Yahoo,
Walmart and SAP.

B.3.3. Common gateway interface (CGI)
Common Gateway Interface (CGI) is a standard protocol for

web servers to execute external programs/scripts running on a
server that generates dynamic web pages. CGI scripts can be
written in many programming languages like Perl, Python and
PHP. It is an old technology that is used to generate dynamic Web
content although it is still in use today. However, it is now slowly
replaced by new technologies.

http://www.sophie.uni-osnabrueck.de/docs/
http://www.sophie.uni-osnabrueck.de/docs/
http://www.sophie.uni-osnabrueck.de/docs/
https://groups.google.com/forum/%23!forum/sophie-community
https://groups.google.com/forum/%23!forum/sophie-community
https://groups.google.com/forum/%23!forum/sophie-community
http://www.kazumori.net/tTree.pdf
http://www.kazumori.net/tTree.pdf
http://econlab.uaa.alaska.edu/software/UAA-PEET%20basic%20instructions.txt%20
http://econlab.uaa.alaska.edu/software/UAA-PEET%20basic%20instructions.txt%20
http://econlab.uaa.alaska.edu/software/UAA-PEET%20basic%20instructions.txt%20
http://econlab.uaa.alaska.edu/software/UAA-PEET%20basic%20instructions.txt%20

S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160 159

Table A.2 (continued).
Software Published/Working

paper(s) found
Type of experiments
support (based on the
website information)

Type of experiments
conducted (from
published/working papers
found)

A broad
class of
experiments

MTurk
integration
ready

Documenta-
tion/Support

Veconlab Yes Auction: (Takeover Game,
Common Value and Private
Value Auctions,
Multi-Round Auctions with
Package Bidding Options,
Emissions Permits),
Bargaining: (Ultimatum,
Principal/Agent, Reciprocity,
and Trust Games),
Decisions: (Bayes’ Rule,
Lottery Choice, Investment
Game, Value Elicitation,
Probability Matching,
Search), Finance/Macro:
(Asset Market, Macro
Markets, Prediction Markets,
Gains from Trade, Bank
Runs), Games:
(Attacker/Defender,
Centipede, Coordination,
Guessing, Matrix Games,
Traveler’s Dilemma,
Two-Stage Extensive Form
Game), Information:
(Information Cascades,
Lemons Market,
Signaling/Poker Game,
Statistical
Discrimination),Markets:
(Bertrand, Call Market,
Cournot/Monopoly, Double
Auction, Posted Offer,
Supply Chain, Vertical
Monopoly),

Conditional cooperation in a
public goods game
(Chaudhuri and
Paichayontvijit 2006).
Circadian effects on
strategic reasoning - the
time of day that decisions
are made in the Beauty
Contest(Dickinson and
McElroy 2012)

Yes No Instructor’s guide
with the online demo
is found at
http://veconlab.econ.
virginia.edu/guide.php
and description for
each available
experiment/game.

Public: (Common Pool
Resource, Congestion/Entry,
Public Goods, Rent Seeking,
Volunteer’s Dilemma,
Voting, Water Externalities),
Micro Principles: (Ten
Experiments Configured for
Introductory Classes: Trade,
Supply, Demand, Costs,
Monopoly, Market Failures,
Simple Games), Principles:
(Input Demand and Real
Wages, Input Supply,
Circular Flow, Gains from
Trade, Inflation, Assets and
Present Value),
Surveys: (Questionnaire ,
Quiz Program)

WebLab No information is
found.

No documentation is found. No information is found. No docu-
mentation

No No information is
found.

Willow:
Experiments in
Python

No information is
found.

Nothing mentioned but
given that it is a
programming framework, it
can be used to program any
experiments assuming the
experimenter has the skill.

No information is found. Yes No Forum is found at
http://sourceforge.net/
p/econwillow/
discussion/1094149/ -
last activity: Aug
2014; Manual is
found at
http://econwillow.
sourceforge.net/
manual.html - last
updated: 12 Nov
2010

Zocalo Yes - http://zocalo.
sourceforge.net/
papers.html (a link
with broken link
documents)

A toolkit for building
prediction markets, markets
in securities that pay out
depending on outcomes of
future events.

Bubbles in asset markets
with overlapping
generations (Deck et al.
2014).

No -
Prediction
markets
only

No Online documentation
is found at http:
//zocalo.sourceforge.
net/javadoc/

http://veconlab.econ.virginia.edu/guide.php
http://veconlab.econ.virginia.edu/guide.php
http://sourceforge.net/p/econwillow/discussion/1094149/%20
http://sourceforge.net/p/econwillow/discussion/1094149/%20
http://sourceforge.net/p/econwillow/discussion/1094149/%20
http://econwillow.sourceforge.net/manual.html
http://econwillow.sourceforge.net/manual.html
http://econwillow.sourceforge.net/manual.html
http://zocalo.sourceforge.net/papers.html
http://zocalo.sourceforge.net/papers.html
http://zocalo.sourceforge.net/papers.html
http://zocalo.sourceforge.net/javadoc/
http://zocalo.sourceforge.net/javadoc/
http://zocalo.sourceforge.net/javadoc/

160 S.W. Chan, S. Schilizzi, M.S. Iftekhar et al. / Journal of Behavioral and Experimental Finance 23 (2019) 138–160

Appendix C

The following table lists the software packages that are not
required for citation and their URL.

Software URL
Apache https://httpd.apache.org
Drupal https://www.linux.org
Java https://www.java.com
PHP http://www.php.net/
Python https://www.python.org/
Ruby https://www.ruby-lang.org/en/
MySQL https://www.mysql.com/
PostgreSQL https://www.postgresql.org/

References

Amazon Mechanical Turk, 2015. Overview – Amazon Mechanical Turk. https:
//requester.mturk.com/. (accessed 15.08.01).

Arechar, A.A., Gächter, S., Molleman, L., 2017. Conducting interactive experiments
online. Exp. Econom. 1–33.

Bock, O., Baetge, I., Nicklisch, A., 2014. Hroot: Hamburg registration and
organization online tool. Eur. Econ. Rev. 71, 117–120.

Bootstrap, 2015. Bootstrap – The most popular HTML, CSS, and JS library in the
world. https://getbootstrap.com/. (accessed 15.08.01).

Camerer, C.F., et al., 2016. Evaluating replicability of laboratory experiments in
economics. Science http://dx.doi.org/10.1126/science.aaf0918.

Chamberlin, E.H., 1948. An experimental imperfect market. J. Political Econ. 56
(2), 95–108.

Chen, D.L., Schonger, M., Wickens, C., 2015. oTree – An Open-Source Platform
for Laboratory, Online, and Field Experiments. Working Paper, pp.1–16.
http://www.otree.org/oTree.pdf.

Chilton, L.B., et al., 2009. Seaweed: a web application for designing economic
games. In: HComp09 Proceedings of the ACM SIGKDD Workshop on Hu-
man Computation, pp. 34–35. http://portal.acm.org/citation.cfm?id=1600150.
1600162.

Coelho, J., Valente, M.T., 2017. Why modern open source projects fail. In:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM, pp. 186–196.

Croson, R., 2003. Why and How To Experiment: Methodologies from Experimen-
tal Economics. University of Illinois Law Review. https://illinoislawreview.
org/wp-content/ilr-content/articles/2002/4/Croson.pdf.

Fischbacher, U., 2007. Z-tree: Zurich toolbox for ready-made economic
experiments. Exp. Econom. 10 (2), 171–178.

Friedman, D., Sunder, S., 1994. Experimental Methods: A Primer for Economists.
Cambridge University Press, New York.

Gardner, B.S., 2011. Responsive web design: Enriching the user experience. Sigma
J.: Inside Digit. Ecosyst. 11 (1), 13–19.

Gertler, P., Galiani, S., Romero, M., 2018. How to make replication the norm.
Nature 554, 417–419.

Giamattei, M., Lamsbdorff, J. Graf, 2019. classEx - An online tool for lab-in-the-
field experiments with smartphones. J. Behav. Exp. Finance 29, 223–231.
http://dx.doi.org/10.1016/j.jbef.2019.04.008.

Greiner, B., 2015. Subject pool recruitment procedures: organizing experiments
with ORSEE. J. Econom. Sci. Assoc. 1 (1), 114–125.

Hendriks, A., 2012. SoPHIE - Software Platform for Human Interaction
Experiments. University of Osnabrueck, Working Paper, 2012.

Hibbert, C., 2005. Zocalo: An Open-Source Platform for Deploying Prediction
Markets. CommerceNet Labs, 21.

Ioannidis, J., Stanley, TD., Doucouliagos, H., 2017. ‘The power of bias in economics
research’. Econ. J. 127 (605), 236–265.

Jansen, M.A., Lee, A., Waring, T.M., 2014. Experimental platforms for behavioral
experiments on social-ecological systems. Ecology Soc. 19 (4), 20.

jQuery, 2015. jQuery. https://jquery.com/. (accessed 15.08.01).
LabSEE, 2015. LabSEE: Experiments Surveys Test online. http://labsee.com.

(accessed 15.08.01).
de Leeuw, J.R., 2015. Jspsych: A javascript library for creating behavioral

experiments in a web browser. Behav. Res. Methods 47 (1), 1–12.
Leff, A., Rayfield, J.T., 2001. Web-application development using the

model/view/controller design pattern. In: IEEE Enterprise Distributed
Object Computing Conference. pp. 118–127.

Midha, V., Palvia, P., 2012. Factors affecting the success of open source software.
J. Syst. Softw. 85 (4), 895–905.

Nielsen, J., 2012. Usability 101: Introduction to Usability. https://www.nngroup.
com/articles/usability-101-introduction-to-usability/. (accessed 18.06.01).

Palan, S., 2015. GIMS—SOftware for asset market experiments. J. Behav. Exp.
Finance 5, 1–14.

Palan, S., Schitter, C., 2018. Prolific.ac – a subject pool for online experiments. J.
Behav. Exp. Finance 17, 22–27.

Paolacci, G., Chandler, J., Ipeirotis, P.G., 2010. Running experiments on amazon
mechanical turk. Judgment Decis. Mak. 5 (5), 411–419.

Prolific.ac, 2018. Prolific: Bringing people together to power the world’s research.
http://www.prolific.ac/. (accessed 18.07.01).

psiTurk.org, 2014. pisTurl: crowdsource your research. https://psiturk.org/.
(accessed 15.10.03).

Reips, U.D., 1996. Experimenting in the world wide web. In: Proceedings of the
26th Society for Computers in Psychology Conference (SCiP–96). Chicago,
USA.

Reips, U.D., 2000. The web experiment method: Advantages, disadvantages, and
solutions. In: Proceeding in Psychological Experiments on the Internet. pp.
89–117.

Reips, U.D., 2002. Standards for internet-based experimenting. Exp. Psychol. 49
(4), 243–256.

Robot Framework, 2017. Robot Framework. http://robotframework.org (accessed
17.08.12).

Schaffner, M., 2014. Programming for Experimental Economics: Introducing
CORAL - a lightweight framework for experimental economic experiments.
https://ideas.repec.org/p/qut/qubewp/wp016.html (accessed 15.10.06).

Seithe, M., 2012. Introducing the Bonn Experiment System (BoXS) (No. 01/2012).
Bonn Econ Discussion Papers.

Selenium, 2015. Selenium – Web Browser Automation. http://www.seleniumhq.
org/. (accessed 15.08.01).

Weel, J., McCabe, K., 2009. Willow: Experiments in Python. George Mason
University. http://econwillow.sourceforge.net (accessed 15.10.06).

Wroblewski, L., 2011, RESS: Responsive Design + Server Side Components. http:
//www.lukew.com/ff/entry.asp?1392 (accessed 16.03.25).

https://httpd.apache.org
https://www.linux.org
https://www.java.com
http://www.php.net/
https://www.python.org/
https://www.ruby-lang.org/en/
https://www.mysql.com/
https://www.postgresql.org/
https://requester.mturk.com/
https://requester.mturk.com/
https://requester.mturk.com/
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb2
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb2
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb2
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb3
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb3
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb3
https://getbootstrap.com/
http://dx.doi.org/10.1126/science.aaf0918
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb6
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb6
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb6
http://www.otree.org/oTree.pdf
http://portal.acm.org/citation.cfm?id=1600150.1600162
http://portal.acm.org/citation.cfm?id=1600150.1600162
http://portal.acm.org/citation.cfm?id=1600150.1600162
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb9
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb9
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb9
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb9
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb9
https://illinoislawreview.org/wp-content/ilr-content/articles/2002/4/Croson.pdf
https://illinoislawreview.org/wp-content/ilr-content/articles/2002/4/Croson.pdf
https://illinoislawreview.org/wp-content/ilr-content/articles/2002/4/Croson.pdf
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb11
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb11
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb11
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb12
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb12
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb12
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb13
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb13
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb13
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb14
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb14
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb14
http://dx.doi.org/10.1016/j.jbef.2019.04.008
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb16
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb16
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb16
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb19
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb19
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb19
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb20
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb20
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb20
https://jquery.com/
http://labsee.com
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb23
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb23
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb23
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb24
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb24
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb24
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb24
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb24
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb25
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb25
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb25
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb27
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb27
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb27
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb28
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb28
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb28
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb29
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb29
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb29
http://www.prolific.ac/
https://psiturk.org/
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb32
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb32
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb32
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb32
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb32
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb33
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb33
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb33
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb33
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb33
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb34
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb34
http://refhub.elsevier.com/S2214-6350(18)30090-X/sb34
http://robotframework.org
https://ideas.repec.org/p/qut/qubewp/wp016.html
http://www.seleniumhq.org/
http://www.seleniumhq.org/
http://www.seleniumhq.org/
http://econwillow.sourceforge.net
http://www.lukew.com/ff/entry.asp?1392
http://www.lukew.com/ff/entry.asp?1392
http://www.lukew.com/ff/entry.asp?1392

	Web-based experimental economics software: How do they compare to desirable features?
	Introduction
	Logistics and operational requirements of web-based economic experiments
	Key desirable features of web-based experimental economics software
	Software license, maintenance and support
	Open-source
	Active community support
	Active development

	User interface and usability
	Multiple device support
	Usability

	Data management
	Data stored in a database management system
	Data export

	Flexibility and portability
	Flexibility to write one's own experiment
	Restricted vs. general replication
	Portability

	Subject management and payouts
	Subject management
	Group matching
	Subject payouts

	Experiment dashboard
	Application development and extensibility
	Availability of application programming interface (API)
	Modular design
	Automated testing

	Multi-lingual support
	Multi-tenancy support
	Ready-made documented examples

	Research method and data
	Research method
	Data
	Data collection
	Data inclusion
	Data exclusion

	Reviewed web-based experimental economics software packages (WEESPs)
	Summary assessment of the reviewed software packages
	Discussion of selected software packages against the desirable features
	SoPHIE
	OTree
	Veconlab
	EconPort
	EconPlay
	LabSEE
	ClassEx
	JsPsych
	Willow
	CORAL

	Comparison of selected multi-purpose software packages against desired features

	Conclusion
	Acknowledgments
	Appendix A. Software packages information
	Appendix B. Programming languages, Web frameworks and other technologies used in web-based experimental economics software
	Programming languages
	Java
	PHP
	Python
	JavaScript

	Web frameworks
	Model-view-controller (MVC) framework
	Django framework
	Zend framework
	Bootstrap framework

	Other technologies
	.Net framework
	Node.js
	Common gateway interface (CGI)

	Appendix C
	References

