
 Carlos A. Coello Coello, Gary B. Lamont and David A. Van Veldhuizen

Second Edition
Evolutionary Algorithms for Solving Multi-Objective Problems

Genetic and Evolutionary Computation Series

Series Editors

David E. Goldberg
Consulting Editor
IlliGAL, Dept. of General Engineering
University of Illinois at Urbana-Champaign
Urbana, IL 61801 USA
Email: deg@uiuc.edu

Medical Informatics

Stanford, CA 94305-5479 USA

Consulting Editor

Stanford University

John R. Koza

Email: john@johnkoza.com

Selected titles from this series:

Markus Brameier, Wolfgang Banzhaf
Linear Genetic Programming, 2007
ISBN 978-0-387-31029-9

Nikolay Y. Nikolaev, Hitoshi Iba
Adaptive Learning of Polynomial Networks, 2006
ISBN 978-0-387-31239-2

Tetsuya Higuchi, Yong Liu, Xin Yao

ISBN 978-0-387-24386-3
Evolvable Hardware, 2006

David E. Goldberg
The Design of Innovation: Lessons from and for Competent Genetic Algorithms, 2002
ISBN 978-1-4020-7098-3

Genetic Programming IV: Routine Human-Computer Machine Intelligence
ISBN: 978-1-4020-7446-2 (hardcover), 2003; ISBN: 978-0-387-25067-0 (softcover), 2005

Carlos A. Coello Coello, David A. Van Veldhuizen, Gary B. Lamont
 Solving Multi-Objective Problems, 2002

ISBN: 978-0-306-
Evolutionary Algorithms for

John R. Koza, Martin A. Keane, Matthew J. Streeter, William Mydlowec, Jessen Yu, Guido Lanza

46762-2

Lee Spector
Automatic Quantum Computer Programming: A Genetic Programming Approach

4-1 (hardcover), 2004; ISBN 978-0-387-36496-4 (softcover), 2007 ISBN: 978-1-4020-789

William B. Langdon
Genetic Programming and D
Programming! 1998

ata Structures: Genetic Programming + Data Structures = Automatic

ISBN: 978-0-7923-8135-8

For a complete listing of books in this series, go to http://www.springer.com

Second Edition

Carlos A. Coello Coello
Gary B. Lamont
David A. Van Veldhuizen

Evolutionary Algorithms
for Solving

Multi-Objective Problems

Gary B. Lamont
Department of Electrical and Computer

Depto. de Computación Engineering

Col. San Pedro Zacatenco Air Force Institute of Technology
México, D.F. 07360 MEXICO 2950 Hobson Way

WPAFB, Dayton, OH 45433-7765
lamont@afit.af.mil

402 Scott Dr., No. 3L3

Graduate School of Engineering

Carlos A. Coello Coello
CINVESTAV-IPN

Av. Instituto Politécnico Nacional No. 2508

ccoello@cs.cinvestav.mx

David A. Van Veldhuizen

Series Editors:
David E. Goldberg John R. Koza
Consulting Editor Consulting Editor
IlliGAL, Dept. of General Engineering Medical Informatics
University of Illinois at Urbana-Champaign Stanford University
Urbana, IL 61801 USA Stanford, CA 94305-5479 USA
deg@uiuc.edu john@johnkoza.com

Library of Congress Control Number: 2007930239

ISBN 978-0-387-33254-3 e-ISBN 978-0-387-36797-2

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY

with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection

or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are

proprietary rights.
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to

9 8 7 6 5 4 3 2 1

springer.com

QHQ AMC/A9

Scott AFB, IL 62225-5307
gdvanveldhuizen@jieee.orrg r r g r g r g

to our wives

Preface to the Second Edition

The response of the multiobjective optimization community to our first edi-
tion in 2002 was extremely enthusiastic. Many have indicated their use of our
monograph to gain insight to the interdisciplinary nature of multiobjective op-
timization employing evolutionary algorithms. Others are appreciative for our
providing them a foundation for associated contemporary multiobjective evo-
lutionary algorithm (MOEA) research. We appreciate these warm comments
along with readers’ suggestions for improvements. In that vein, we have sig-
nificantly extended and modified our previous material using contemporary
literature resulting in this new edition, which is extended into a textbook. In
addition to new classroom exercises contained in each chapter, the MOEA
discussion questions and possible research directions are updated.

The first edition presented an organized variety of MOEA topics based on
fundamental principles derived from single-objective evolutionary algorithm
(EA) optimization and multiobjective problem (MOP) domains. Yet, many
new developments occurred in the intervening years. New MOEA structures
were proposed with new operators and therefore better search techniques.
The explosion of successful MOEA applications continues to be reported in
the literature. Statistical testing methods for evaluating results now offers
improved analysis of comparative techniques, innovative metrics, and better
visualization tools. The continuing development of MOEA activity in the-
ory, algorithmic innovations, and MOEA practice calls for these new concepts
to be integrated into our generic MOEA text. Note that the continuing im-
provement (speed, memory, etc.) of computer hardware provides computa-
tional platforms that permit larger search spaces to be addressed at higher
efficiencies using both serial and parallel processing. This phenomenon, in
conjunction with user-friendly software interfacing tools, permits an increas-
ing number of scientists and engineers to explore the use of MOEAs in their
particular multiobjective problem domains.

With this new edition, we continue to provide an interdisciplinary com-
puter science and computer engineering text that considers other academic
fields such as operations research, industrial engineering, and management

VIII Preface to the Second Edition

science. Examples from all these disciplines, as well as all engineering areas
in general, are discussed and addressed as to their fundamental unique prob-
lem domain characteristics and their solutions using MOEAs. An expanded
reference list is included with suggestions of further reading for both the stu-
dent and practitioner. As in the previous edition, this book addresses MOEA
development and applications issues through the following features:

• The text is meant to be both a textbook and a self-contained reference.
The book provides all the necessary elements to guide a newcomer in the
design, implementation, validation, and application of MOEAs in either
the classroom or the field.

• Researchers in the field benefit from the book’s comprehensive review of
state-of-the-art concepts and discussions of open research topics.

• The book is also written for graduate students in computer science, com-
puter engineering, operations research, management science, and other
scientific and engineering disciplines, who are interested in multiobjective
optimization using evolutionary algorithms.

• The book is also for professionals interested in developing practical applica-
tions of evolutionary algorithms to real-world multiobjective optimization
problems.

• Each chapter is complemented by discussion questions and several ideas
meant to trigger novel research paths. Supplementary reading is strongly
suggested for deepening MOEA understanding.

• Key features include MOEA classifications and explanations, MOEA ap-
plications and techniques, MOEA test function suites, and MOEA perfor-
mance measurements.

• We created a website for this book at:

http://www.cs.cinvestav.mx/~emoobook

which contains considerable material supporting this second edition. This
site contains all the appendices of the book (which have been removed
from the original monograph due to space limitations), as well as public-
domain software, tutorial slides, and additional sources of contemporary
MOEA information.

This new synergistic text is markedly improved from the first edition. New
material is integrated providing more detail, which leads to a realignment of
material. Old chapters were modified and a new one was added. As before,
the various features of MOEAs continue to be discussed in an innovative
and unique fashion, with detailed customized forms suggested for a variety
of applications. The flow of material in each chapter is intended to present
a natural and comprehensive development of MOEAs from basic concepts to
complex applications.

Chapter 1 presents and motivates MOP and MOEA terminology and the
nomenclature used in successive chapters including a lengthy discussion on the

Preface to the Second Edition IX

impact of computational limitations on finding the Pareto front along with
insight to MOP/MOEA building block (BB) concepts.

In Chapter 2, MOEA developmental history has proceeded in a number
of ways from aggregated forms of single-objective Evolutionary Algorithms
(EAs) to true multiobjective approaches such as MOGA, MOMGA, NPGA,
NSGA, NSGA-II, PAES, PESA, PESA-II, SPEA, SPEA2 and their exten-
sions. Each MOEA is presented with historical and algorithmic insight. Being
aware of the many facets of historical multiobjective problem solving provides
a foundational understanding of the discipline. Various MOEA techniques,
operators, parameters and constructs are compared. Contemporary MOEA
development emphasizes new MOP variable representation, and novel MOEA
structures and operators. In addition, constraint-handling techniques used
with MOEAs are also discussed. A comprehensive comparison of contempo-
rary MOEAs provides insight to an individual algorithm’s advantages and
disadvantages.

In Chapter 3, a new chapter, both coevolutionary MOEAs and hybridiza-
tions of MOEAs with local search procedures (the so-called memetic MOEAs)
are covered. A variety of MOEA implementations within each of these two
types of approaches (i.e., coevolution and hybrids with local search mecha-
nisms) are presented, summarized, categorized and analyzed.

Chapter 4 offers a detailed development of contemporary MOP test suites
ranging from numerical functions (unconstrained and with side constraints)
and generated functions to discrete NP -Complete problems and real-world
applications. Our website contains the algebraic description as well as the
Pareto fronts (and, if generated by enumeration, the Pareto optimal set as
well) of many of the proposed test functions. This knowledge leads to an
understanding and ability to select appropriate MOEA test suites based upon
a set of desired comparative characteristics.

MOEA performance comparisons are presented in Chapter 5 using many
of the test function suites discussed in Chapter 4. Also included is an exten-
sive discussion of possible comparative metrics and presentation techniques.
The selection of key algorithmic parameter values (population size, crossover
and mutation rates, etc.) is emphasized. A limited set of MOEA results are
related to the design and analysis of efficient and effective MOEAs employing
these various MOP test suites and appropriate metrics. The chapter has been
expanded to include new testing concepts such as attainment functions, elabo-
rated dominance relations, and “quality” Pareto compliant indicator analysis.
A wide spectrum of empirical testing and statistical analysis techniques are
provided for the MOEA user.

Although MOEA theory is still relatively limited, Chapter 6 presents a
contemporary summary of known results. Topics addressed in this chapter in-
clude MOEA convergence to the Pareto front, Pareto ranking, fitness sharing,
mating restrictions, stability, running time analysis, and algorithmic complex-
ity.

X Preface to the Second Edition

It is of course unrealistic to present every generic MOP application, thus,
Chapter 7 attempts to group and classify the multitude of various contem-
porary MOEA applications via representative examples. This limited com-
pendium with an extensive reference listing provides the reader with a start-
ing point for their own application and research. Specific MOEA operators
as well as encodings adopted in many MOEA applications are integrated for
algorithmic understanding.

In Chapter 8, research and development of parallel MOEAs is classified and
analyzed. The three foundational paradigms (master-slave, island, and diffu-
sion) are defined. Using these three structures, many contemporary MOEA
parallel developments are algorithmically compared and analyzed in terms
of advantages and disadvantages for different computational architectures.
Some general observations about the current state of parallel and distributed
MOEAs are also included.

Chapter 9 discusses and compares the two main schools of thought re-
garding multi-criteria decision making (MCDM): Outranking approaches and
Multi-Attribute Utility Theory (MAUT). Aspects such as the operational atti-
tude of the Decision Maker (DM), the different stages at which preferences can
be incorporated, scalability, transitivity and group decision making are also
discussed. However, the main emphasis is in describing the most representative
research regarding preference articulation into MOEAs. This comprehensive
review includes brief descriptions of the approaches reported in the literature
as well as an analysis of their advantages and disadvantages.

Chapter 10 discusses multiobjective extensions of other search heuristics.
The main techniques covered include Tabu search, scatter search, simulated
annealing, ant system, distributed reinforcement learning, artificial immune
systems, particle swarm optimization and differential evolution.

New examples are integrated throughout the second edition. New algo-
rithms are addressed with special emphasis on the spectrum of MOEA oper-
ators and how they are implemented in contemporary and historic MOEAs.
Part of the focus is on classifying MOEAs as to implicit or explicit BB types.
Other classification features such as probabilistic vs. stochastic are investi-
gated. References are updated to include the current state-of-the-art MOEAs
and applications.

Class exercises are integrated into all chapters for pedagogical purposes.
Discussion questions within every chapter are updated and expanded. The
suggested and focused research ideas from the first edition are brought up-to-
date and continue to emphasize the current state-of-the-art horizon.

To profit from the book, one should have at least single-objective EA
knowledge and experience. Also, some mathematical knowledge is appropri-
ate in order to understand symbolic functions as well as theoretical MOEA
aspects. This knowledge includes basic linear algebra, calculus, probability
and statistics. This second edition may be used in the classroom at the senior
undergraduate or graduate level depending upon the instructor’s purpose. As
a class, we suggest that all material could fill a two semester course or with

Preface to the Second Edition XI

careful selection of topics, a one-semester course. Also, the material in the
revised text can be effectively employed by practitioners in many fields.

In support of this text, one can find up-to-date MOEA reference listings
of journal papers, conference papers, MOP software, and MOEA software at
the Evolutionary Multiobjective Optimization (EMOO) Repository internet
web site http://delta.cs.cinvestav.mx/~ccoello/EMOO. This site is con-
tinually updated to support the MOEA community and our text. If you have
a contribution, please send it to ccoello@cs.cinvestav.mx.

Creating a book such as this requires the efforts of many people. The
authors thank Matthew Johnson, Michael Putney, Jesse Zydallis, Tony Kadro-
vach, Giovani Gómez-Estrada, Dragan Cvetković, José Alfredo López, Nareli
Cruz-Cortés, Gregorio Toscano-Pulido, Luis Gerardo de la Fraga, and many
others for their assistance in generating computational results and reviewing
various aspects of the material. We also thank all those researchers who sent
us some of their research papers and theses to enrich the material contained
in this edition.

We express our sincere appreciation to Professors David E. Goldberg and
John R. Koza for including this book as a volume in their Genetic and Evo-
lutionary Computation book series, published by Springer.

Also, it has been a pleasure working with Springer’s professional editor-
ial and production staff. We particularly thank Melissa Fearon and Valerie
Schofield for their prompt and kind assistance at all times during the devel-
opment of this book.

We also want to thank other primary MOEA researchers not only for
their innovative papers but for various conversations providing more in-
sight to developing better algorithms. Such individuals include David Corne,
Tomoyuki Hiroyasu, Kalyanmoy Deb, Marco Laumanns, Jürgen Branke,
Sanaz Mostaghim, Nirupam Chakraborti, Alfredo G. Hernández-Dı́az, Julián
Molina, Rafael Caballero, Peter Fleming, Carlos Fonseca, Xavier Gandibleux,
Yaochu Jin, Kay Chen Tan, Jeffrey Horn, Hisao Ishibuchi, Piero Bonis-
sone, Jonathan Fieldsend, Marco Farina, Arturo Hernández-Aguirre, Lyn-
don While, Evan J. Hughes, Rajeev Kumar, Shigeru Obayashi, Joshua D.
Knowles, J. David Schaffer, Ian Parmee, El-Ghazali Talbi, Hernán Aguirre,
Oliver Schütze, Lothar Thiele, and Eckart Zitzler.

The authors also express their gratitude to Antonio Nebro, Enrique Alba,
Margarita Reyes-Sierra, Luis V. Santana-Quintero, Ricardo Landa-Becerra,
Mario A. Ramı́rez-Morales, Emanuel Téllez-Enŕıquez, Richard Day, Charles
Haag, and Mark Kleeman for their valuable help at different stages of the
development of this second edition. Without their help, this book would had
never been finished. Carlos A. Coello Coello also states that his contribution
to this book was developed using the computing facilities of the Department
of Computer Science of the Centro de Investigación y de Estudios Avanzados
from the Instituto Politécnico Nacional (CINVESTAV-IPN) with support pro-
vided by CONACyT (the Mexican council of science and technology) to the
first author through project no. 45683-Y, which was also greatly appreciated.

XII Preface to the Second Edition

Last but not least, we owe a debt of gratitude to our wives for their en-
couragement, understanding, and exemplary patience.

We hope that the new edition continues to represent not only a compre-
hensive introduction to MOEAs, but also the contemporary state-of-the-art
in MOEA structures, applications, testing and theory.

Carlos A. Coello Coello
Gary B. Lamont

David A. Van Veldhuizen
Spring 2007

Foreword to the Second Edition

Researchers and practitioners alike are increasingly turning to search, opti-
mization, and machine-learning procedures based on natural selection and
natural genetics to solve problems across the spectrum of human endeavor.
These genetic algorithms and techniques of evolutionary computation are
solving problems and inventing new hardware and software that rival hu-
man designs. The Springer Series on Genetic and Evolutionary Computation
publishes research monographs, edited collections, and graduate-level texts in
this rapidly growing field. Primary areas of coverage include the theory, imple-
mentation, and application of genetic algorithms (GAs), evolution strategies
(ESs), evolutionary programming (EP), learning classifier systems (LCSs) and
other variants of genetic and evolutionary computation (GEC). The series also
publishes texts in related fields such as artificial life, adaptive behavior, artifi-
cial immune systems, agent-based systems, neural computing, fuzzy systems,
and quantum computing as long as GEC techniques are part of or inspiration
for the system being described.

This is the second (revised and extended) edition of an encyclopedic vol-
ume on the use of the algorithms of genetic and evolutionary computation
for the solution of multi-objective problems. Multi-objective evolutionary al-
gorithms (MOEAs) are now even more popular than in 2002, when the first
edition of this book was published. Researchers and practitioners remain to
find an irresistible match between the population available in most genetic
and evolutionary algorithms and the need in multi-objective problems to ap-
proximate the Pareto trade-off curve or surface.

The authors have kept the remarkable job that distinguished the first edi-
tion in collecting, organizing, and interpreting the burgeoning literature of
MOEAs in a form that should be welcomed by novices and old hands alike.
The volume starts with an extraordinarily thorough introduction, including
short vignettes and photographs of many of the pioneers of multi-objective
optimization. It continues with as complete a discussion of the many vari-
eties of MOEAs as appears anywhere in the literature. This second edition
now adds a new chapter fully devoted to coevolutionary and memetic (i.e.,

XIV Foreword to the Second Edition

hybrids with local search mechanisms) MOEAs. A discussion of MOEA test
suites surveys the important topic of test landscapes and is followed with im-
portant chapters on empirical testing and MOEA theory. Such chapters have
been considerably extended with respect to the first edition, adding material
on state-of-the-art test functions and performance measures (and their lim-
itations), as well as the new developments on the theoretical foundations of
MOEAs. Practitioners will especially welcome the thorough survey of real-
world MOEA applications, which clearly indicates the growing interest in this
field. There is also an ample discussion on parallelization, and a thorough
review of mechanisms to incorporate user’s preferences in a MOEA (an area
called multi-criteria decision making). The final chapter of special topics dis-
cusses multi-objective extensions of other methods in soft computation such
as simulated annealing, ant colony optimization, and artificial immune sys-
tems. These chapters have also been considerably extended and refurbished
to reflect the many new developments that have arisen in this field since the
publication of the first edition of this book. With about 200 extra pages, a
considerable number of new problems and research ideas at the end of each
chapter and additional supporting material available through a website, this
second edition aims to be adopted as a textbook, while preserving much of its
monograph nature.

If you enjoyed the first edition of this book, then you will certainly benefit
even more from this second edition. If you still do not know this book, then, I
urge you to run—don’t walk—to your nearest on-line or off-line book purveyor
and click, signal, or otherwise buy this important addition to our literature.

David E. Goldberg
Consulting Editor
University of Illinois at Urbana-Champaign
deg@uiuc.edu
Urbana, Illinois, USA
May 2007

Contents

1 Basic Concepts . 1
1.1 Introduction . 1
1.2 Definitions . 3

1.2.1 Single-Objective Optimization . 4
1.2.2 The Multiobjective Optimization Problem 5
1.2.3 Multiobjective Optimization Problem 7
1.2.4 Definition of MOEA Progress . 14
1.2.5 Computational Domain Impact . 14
1.2.6 Pareto Epsilon Model . 17
1.2.7 Decision Maker Impact . 18

1.3 An Example . 19
1.4 General Optimization Algorithm Overview. 21
1.5 EA Basics . 24
1.6 Origins of Multiobjective Optimization . 29

1.6.1 Mathematical Foundations . 30
1.6.2 Early Applications . 30

1.7 Classifying Techniques . 31
1.7.1 A priori Preference Articulation . 32
1.7.2 A Posteriori Preference Articulation 46
1.7.3 Progressive Preference Articulation 47

1.8 Using Evolutionary Algorithms . 51
1.8.1 Pareto Notation . 53
1.8.2 MOEA Classification . 54

1.9 Summary . 55

Further Explorations . 57

2 MOP Evolutionary Algorithm Approaches 61
2.1 Introduction . 61
2.2 MOEA Techniques . 63

2.2.1 A Priori Techniques . 65

XVI Contents

2.2.2 Progressive Techniques . 70
2.2.3 A Posteriori Techniques . 71
2.2.4 Generic MOEA Goals and Operator Design 77

2.3 Structures of Various MOEAs . 88
2.3.1 Multi-Objective Genetic Algorithm (MOGA) 88
2.3.2 Nondominated Sorting Genetic Algorithm (NSGA) 91
2.3.3 Niched-Pareto Genetic Algorithm (NPGA) 94
2.3.4 Pareto Archived Evolution Strategy (PAES) 95
2.3.5 Strength Pareto Evolutionary Algorithm (SPEA) 97
2.3.6 Multiobjective Messy Genetic Algorithm (MOMGA) . . . 99
2.3.7 Pareto Envelope-based Selection Algorithm (PESA) . . . 101
2.3.8 The Micro-Genetic Algorithm for Multiobjective

Optimization . 102
2.3.9 Multiobjective Struggle GA (MOSGA) 105
2.3.10 Orthogonal Multi-Objective Evolutionary Algorithm

(OMOEA) . 106
2.3.11 General Multiobjective Evolutionary Algorithm

(GENMOP) . 108
2.3.12 Criticism to Pareto sampling techniques 111

2.4 Constraint-Handling Techniques . 113
2.5 Critical MOEA Elements . 116

2.5.1 MOEA Comparisons . 116
2.5.2 MOEA Theory . 116
2.5.3 MOEA Fitness Functions . 117
2.5.4 MOEA Chromosomal Representations 117
2.5.5 MOEA Problem Domains . 119

2.6 MOEA Design Recapitulation . 120
2.7 Summary . 121

Further Explorations . 123

3 MOEA Local Search and Coevolution . 131
3.1 Introduction . 131
3.2 MOEA Local Search Techniques . 131

3.2.1 Hybrid MOEA Techniques . 134
3.2.2 Comments on Hybrid MOEA Techniques 143

3.3 MOEA Coevolutionary Techniques . 144
3.4 Coevolution and Symbiosis in EAs . 147

3.4.1 Coevolutionary Algorithms . 147
3.4.2 Cooperative Coevolutionary Genetic Algorithms 149
3.4.3 Symbiogenetic Coevolution . 150

3.5 Coevolution and Symbiosis in MOEAs . 152
3.5.1 Elitist Recombinative MOGA with Coevolutionary

Sharing . 152
3.5.2 Parmee’s Co-Evolutionary MOEA 154

Contents XVII

3.5.3 Genetic Symbiosis Algorithm . 155
3.5.4 Interactive GA with Co-evolving Weighting Factors 157
3.5.5 Multiobjective Co-operative Co-evolutionary GA 158
3.5.6 Lohn’s Coevolutionary Genetic Algorithm 159
3.5.7 Distributed Cooperative Coevolutionary Algorithm 161
3.5.8 Coello’s Coevolutionary MOEA . 163
3.5.9 Nondominated Sorting Cooperative Coevolutionary GA 165

3.6 Applying Coevolutionary MOEAs . 165
3.6.1 Coevolving Multiple MOEAs . 166
3.6.2 Coevolving MOEAs with other Search Algorithms 167
3.6.3 Coevolving Density Estimators . 167
3.6.4 Coevolving Target Solutions . 167
3.6.5 Coevolving Competing Populations 168

3.7 Final Comments on Coevolutionary MOEAs 168

Further Explorations . 171

4 MOEA Test Suites . 175
4.1 Introduction . 175
4.2 MOEA Test Function Suite Issues . 176
4.3 MOP Domain Feature Classification . 179

4.3.1 Unconstrained Numeric MOEA Test Functions 182
4.3.2 Side-Constrained Numeric MOEA Test Functions 187
4.3.3 MOP Test Function Generators . 193

4.4 Generic Scalable MOP Test Problems . 199
4.4.1 Okabe’s Test Functions . 207
4.4.2 Huband’s Test Functions . 209

4.5 Combinatorial MOEA Test Functions . 220
4.6 Real-World MOEA Test Functions . 222
4.7 Summary . 228

Further Explorations . 229

5 MOEA Testing and Analysis . 233
5.1 Introduction . 233
5.2 MOEA Experiments: Motivation and Objectives 235
5.3 Experimental Methodology . 236

5.3.1 MOP Pareto Front Determination 236
5.3.2 MOEA Algorithms Testing . 238
5.3.3 Key MOEA Algorithmic Parameters 239

5.4 MOEA Experimental Measurements . 243
5.4.1 Selection of MOEA Comparison Measures 245
5.4.2 Generic Attainment Function . 245
5.4.3 Dominance Relations . 250
5.4.4 Primary Quality Indicators . 254

XVIII Contents

5.4.5 Other MOEA Quality Indicators . 263
5.4.6 MOEA Experimental Metrics Summary 267

5.5 MOEA Statistical Testing Approaches . 268
5.5.1 Statistical Testing Techniques . 268
5.5.2 Non-Parametric Statistics (Analysis of Variance) 270
5.5.3 Methods for Presentation of MOEA Results 272
5.5.4 Visualization of Test Results . 272

5.6 Software Support of MOEA Testing. 273
5.7 Summary . 276

Further Explorations . 277

6 MOEA Theory and Issues . 283
6.1 Introduction . 283
6.2 Pareto-Related Theoretical Contributions 284

6.2.1 Partially Ordered Sets . 284
6.2.2 MOEA Convergence . 288

6.3 MOEA Theoretical Issues . 300
6.3.1 Fitness Landscapes . 300
6.3.2 Fitness Functions . 305
6.3.3 Pareto Ranking . 307
6.3.4 Pareto Niching and Fitness Sharing 310
6.3.5 Recombination Operators . 314
6.3.6 Mating Restrictions . 315
6.3.7 Solution Stability and Robustness 317
6.3.8 MOEA Complexity . 317
6.3.9 MOEA Scalability . 319
6.3.10 Running Time Analysis . 320
6.3.11 MOEA Computational “Cost” . 326
6.3.12 NFL-Theorem for Multiobjective Optimization

Algorithms . 326
6.3.13 Alternative Definitions of Optimality 327
6.3.14 Local Search . 329

6.4 Summary . 333

Further Explorations . 335

7 Applications . 339
7.1 Introduction . 339
7.2 Engineering Applications . 340

7.2.1 Environmental, Naval and Hydraulic Engineering 340
7.2.2 Electrical and Electronics Engineering 347
7.2.3 Telecommunications and Network Optimization 356
7.2.4 Robotics and Control Engineering 360
7.2.5 Structural and Mechanical Engineering 369

Contents XIX

7.2.6 Civil and Construction Engineering 376
7.2.7 Transport Engineering . 377
7.2.8 Aeronautical Engineering . 381

7.3 Scientific Applications . 388
7.3.1 Geography . 388
7.3.2 Chemistry . 389
7.3.3 Physics . 391
7.3.4 Medicine . 393
7.3.5 Ecology . 396
7.3.6 Computer Science and Computer Engineering 397

7.4 Industrial Applications . 407
7.4.1 Design and Manufacture . 408
7.4.2 Scheduling . 416
7.4.3 Management . 424
7.4.4 Grouping and Packing . 426

7.5 Miscellaneous Applications . 428
7.5.1 Finance . 428
7.5.2 Classification and Prediction . 430

7.6 Future Applications . 434
7.7 Summary . 435

Further Explorations . 437

8 MOEA Parallelization . 443
8.1 Introduction . 443
8.2 pMOEA Fundamental Background . 445

8.2.1 pMOEA Notation . 445
8.2.2 pMOEA Motivation and Issues . 446

8.3 pMOEA Paradigms . 450
8.3.1 Master-Slave pMOEA Model . 452
8.3.2 Island pMOEA Models . 455
8.3.3 Diffusion pMOEA Model . 458
8.3.4 Hierarchical Hybrid pMOEA Models 459

8.4 pMOEAs From the Literature . 460
8.4.1 Master-Slave pMOEAs . 460
8.4.2 Island pMOEAs . 465
8.4.3 Diffusion pMOEAs . 473

8.5 pMOEA Analyses and Issues . 475
8.5.1 pMOEA Observations . 476
8.5.2 pMOEA Suitability Issues . 476
8.5.3 pMOEA Hardware and Software Architecture Issues . . . 477
8.5.4 pMOEA Test Function Issues . 480
8.5.5 pMOEA Metric/Parameter Issues 484

8.6 pMOEA Development Issues . 488
8.6.1 pMOEA Creation Options . 490

XX Contents

8.6.2 Master-Slave Implementation Issues 491
8.6.3 Island Implementation Issues . 493
8.6.4 Diffusion Implementation Issues . 499
8.6.5 Parallel Niching Issues . 500
8.6.6 Parallel Archiving Issues . 502
8.6.7 pMOEA Theory Issues . 503

8.7 A “Generic” pMOEA . 503
8.7.1 Engineering a pMOEA . 504
8.7.2 “Genericizing” a pMOEA . 507

8.8 Conclusions . 507

Further Explorations . 509

9 Multi-Criteria Decision Making . 515
9.1 Introduction . 515
9.2 Multi-Criteria Decision Making. 516

9.2.1 Operational Attitude of the Decision Maker 517
9.2.2 When to Get the Preference Information? 518

9.3 Incorporation of Preferences in MOEAs . 520
9.3.1 Definition of Desired Goals . 522
9.3.2 Utility Functions . 526
9.3.3 Preference Relations . 528
9.3.4 Outranking . 531
9.3.5 Fuzzy Logic . 533
9.3.6 Compromise Programming . 535

9.4 Issues Deserving Attention . 536
9.4.1 Preserving Dominance . 537
9.4.2 Transitivity . 537
9.4.3 Scalability . 537
9.4.4 Group Decision Making . 537
9.4.5 Other important issues . 539

9.5 Summary . 540

Further Explorations . 541

10 Alternative Metaheuristics . 547
10.1 Introduction . 547
10.2 Simulated Annealing . 548

10.2.1 Basic Concepts . 548
10.2.2 Multiobjective Versions . 550
10.2.3 Advantages and Disadvantages of Simulated Annealing . 556

10.3 Tabu Search and Scatter Search . 557
10.3.1 Basic Concepts . 558
10.3.2 Multiobjective Versions . 559

Contents XXI

10.3.3 Advantages and Disadvantages of Tabu Search and
Scatter Search . 571

10.4 Ant System . 572
10.4.1 Basic Concepts . 572
10.4.2 Multiobjective Versions . 575
10.4.3 Advantages and Disadvantages of the Ant System 581

10.5 Distributed Reinforcement Learning . 582
10.5.1 Basic Concepts . 582
10.5.2 Advantages and Disadvantages of Distributed

Reinforcement Learning . 583
10.6 Particle Swarm Optimization . 584

10.6.1 Basic Concepts . 584
10.6.2 Multiobjective Versions . 585
10.6.3 Advantages and Disadvantages of Particle Swarm

Optimization . 593
10.7 Differential Evolution . 594

10.7.1 Multiobjective Versions . 596
10.7.2 Advantages and Disadvantages of Differential Evolution 604

10.8 Artificial Immune Systems . 604
10.8.1 Basic Concepts . 605
10.8.2 Multiobjective Versions . 606
10.8.3 Advantages and Disadvantages of Artificial Immune

Systems . 611
10.9 Other Heuristics . 612

10.9.1 Cultural Algorithms . 612
10.9.2 Cooperative Search . 614

10.10Summary . 616

Further Explorations . 617

Epilog . 623

References . 627

Index . 761

1

Basic Concepts

Everything has been said before, but since nobody listens we have to
keep going back and beginning all over again.

André Gide

1.1 Introduction

Problems with multiple objectives arise in a natural fashion in most disci-
plines and their solution has been a challenge to researchers for a long time.
Despite the considerable variety of techniques developed in Operations Re-
search (OR) and other disciplines to tackle these problems, the complexities
of their solution calls for alternative approaches.

The use of evolutionary algorithms (EAs) to solve problems of this nature
has been motivated mainly because of the population-based nature of EAs
which allows the generation of several elements of the Pareto optimal set in a
single run. Additionally, the complexity of some multiobjective optimization
problems1 (MOPs) (e.g., very large search spaces, uncertainty, noise, disjoint
Pareto curves, etc.) may prevent use (or application) of traditional OR MOP-
solution techniques.

This book is organized in such a way that its contents provides a gen-
eral overview of the field now called evolutionary multiobjective optimization
(EMO), which refers to the use of evolutionary algorithms of any sort (i.e., ge-
netic algorithms [581], evolution strategies [1460], evolutionary programming
[499] or genetic programming [905]) to solve multiobjective optimization prob-
lems. In fact, we also cover in this book other metaheuristics that have been
used to solve multiobjective optimization problems (e.g., particle swarm op-
timization [840], artificial immune systems [1161], cultural algorithms [1357],

1 Note that the terms “multi-objective” and “multiobjective” are used interchange-
ably throughout this book.

2 1 Basic Concepts

differential evolution [1525, 1294], ant colony [406], tabu search [572], scatter
search [938], and memetic algorithms [661], among others).

Multiobjective optimization problems are attacked today using EAs by en-
gineers, computer scientists, biologists, and operations researchers alike. This
book should therefore be of interest to the many disciplines that have to deal
with multiobjective optimization problems. At the end of each chapter, we
include a section called “Future Explorations”, which contains class exercises,
class software projects, discussion questions, and possible research directions.
Such material aims to provide support for teaching a course, and also delin-
eates some possible topics for developing masters and PhD theses.

This chapter presents the basic terminology and nomenclature for use
throughout the rest of the book. Furthermore, a historical overview of mul-
tiobjective optimization is also provided, together with a short introduction
to evolutionary algorithms. Additionally, we also provide a brief description
of the most representative mathematical programming techniques that have
been proposed to solve multiobjective optimization problems, including a pos-
sible classification of them.

Chapter 2 provides an overview of the different multi-objective evolution-
ary algorithms (MOEAs) currently available. These techniques go from a sim-
ple linear aggregating function to the most popular MOEAs based on Pareto
ranking (e.g., MOGA [504], NPGA [709], NSGA [1509], PAES [886], NSGA-II
[374], SPEA [1782], SPEA2 [1775] and ε-MOEA [372, 373]). Other issues such
as chromosomal representations, constraint-handling techniques and the use
of secondary populations are also addressed.

Chapter 3 discusses both coevolutionary MOEAs and hybridizations of
MOEAs with local search procedures (the so-called memetic MOEAs). A va-
riety of MOEA implementations within each of these two types of approaches
(i.e., coevolution and hybrids with local search mechanisms) are presented,
summarized, categorized and analyzed.

Chapter 4 presents a detailed development of MOP test suites ranging
from numerical functions (both unconstrained and with side constraints) and
generated functions to discrete NP -Complete problems and real-word ap-
plications. Discussions provide understanding of the MOP domain, and an
ability to select appropriate MOEA test suites based upon a set of desired
characteristics.

MOEA performance comparisons are presented in Chapter 5. Also, an ex-
tensive discussion of possible comparison metrics and presentation techniques
are presented. This includes a brief treatment of some recent findings regard-
ing the limitations of unary performance metrics. Results are related to the
design and analysis of efficient and effective MOEAs.

Chapter 6 summarizes the (still scarce) MOEA theoretical results found
in the literature.

Although it is unrealistic to present every MOP application, Chapter 7 at-
tempts to group and classify the wide variety found in the literature. Problem

1.2 Definitions 3

domain characteristics are presented for each generic application and issues
such as genetic operators and encodings are also briefly discussed.

Chapter 8 classifies and analyzes the existing research on parallel MOEAs.
The three foundational paradigms (master-slave, island, and diffusion) are
discussed, and some general observations about the current state of this area
(including its limits and most promising directions) are also presented.

Chapter 9 describes the most representative research regarding the incor-
poration of preferences articulation into MOEAs. The review is very com-
prehensive and includes brief descriptions of the approaches reported in the
literature as well as an analysis of their advantages and disadvantages.

Chapter 10 discusses multiobjective extensions of other metaheuristics
used for optimization. The main techniques covered include tabu search, scat-
ter search, simulated annealing, the ant colony, particle swarm optimization,
differential evolution, artificial immune systems, cultural algorithms and dis-
tributed reinforcement learning.

The remainder of this chapter is organized as follows. Section 1.2 contains
very important concepts such as Pareto optimum, ideal vector, Pareto optimal
set, and Pareto front, among others. Section 1.3 aims to put in practice some
of the concepts previously covered with an example. Section 1.4 discusses gen-
eral search and optimization techniques both deterministic and random, and
it places evolutionary computation within its appropriate historical context.
For those not familiar with evolutionary computation, Section 1.5 offers a
short introduction that concludes with a formal definition of an evolutionary
algorithm.

Section 1.6 contains a short review of the origins of multiobjective opti-
mization. Then, a taxonomy of the several multiobjective optimization tech-
niques proposed in the OR literature is provided in Section 1.7. Some repre-
sentative a priori, a posteriori and interactive approaches are also discussed
in this section.

Finally, Section 1.8 contains some of the main motivations for using evo-
lutionary algorithms to solve multiobjective optimization problems, as well as
some more of the formal notation that is used throughout this book.

Readers who are familiar both with EAs and multiobjective optimization
concepts, may want to skip most of this chapter (except for Section 1.2 on
nomenclature and the Discussion Questions at the end of the chapter).

1.2 Definitions

In order to develop an understanding of MOPs and the ability to design
MOEAs to solve them, a series of formal non-ambiguous definitions are re-
quired. These definitions provide a precise set of symbols and formal relation-
ships that permit proper analysis of MOEA structures and associated testing
and evaluation. Moreover, they are related to the primary goals for a MOEA:

4 1 Basic Concepts

• Preserve nondominated points in objective space and associated solution
points in decision space.

• Continue to make algorithmic progress towards the Pareto Front in objec-
tive function space.

• Maintain diversity of points on Pareto front (phenotype space) and/or of
Pareto optimal solutions - decision space (genotype space).

• Provide the decision maker (DM) “enough” but limited number of Pareto
points for selection resulting in decision variable values.

In order to understand these objectives of multiobjective optimization and
their attainment, we start the discussion with single-objective optimization
problems.

1.2.1 Single-Objective Optimization

The single-objective optimization problem as presented in Definition 1 con-
tinues to be addressed by many search techniques including numerous evolu-
tionary algorithms.

Definition 1 (General Single-Objective Optimization Problem) : A
general single-objective optimization problem is defined as minimizing
(or maximizing) f(x) subject to gi(x) ≤ 0, i = {1, . . . , m}, and hj(x) =
0, j = {1, . . . , p} x ∈ Ω. A solution minimizes (or maximizes) the scalar f(x)
where x is a n-dimensional decision variable vector x = (x1, . . . , xn) from
some universe Ω. �

Observe that gi(x) ≤ 0 and hj(x) = 0 represent constraints that must
be fulfilled while optimizing (minimizing or maximizing) f(x). Ω contains all
possible x that can be used to satisfy an evaluation of f(x) and its constraints.
Of course, x can be a vector of continuous or discrete variables as well as f
being continuous or discrete.

The method for finding the global optimum (may not be unique) of any
function is referred to as Global Optimization. In general, the global min-
imum of a single objective problem is presented in Definition 2 [72]:

Definition 2 (Single-Objective Global Minimum Optimization) :
Given a function f : Ω ⊆ R

n → R, Ω �= ∅, for x ∈ Ω the value f∗ � f(x∗) >
−∞ is called a global minimum if and only if

∀x ∈ Ω : f(x∗) ≤ f(x) . (1.1)

x∗ is by definition the global minimum solution, f is the objective function, and
the set Ω is the feasible region of x. The goal of determining the global min-
imum solution(s) is called the global optimization problem for a single-
objective problem. �

Although single-objective optimization problems may have a unique opti-
mal solution, MOPs (as a rule) present a possibly uncountable set of solutions,

1.2 Definitions 5

which when evaluated, produce vectors whose components represent trade-offs
in objective space. A DM then implicitly chooses an acceptable solution (or
solutions) by selecting one or more of these vectors.

1.2.2 The Multiobjective Optimization Problem

The Multiobjective Optimization Problem (also called multicriteria op-
timization, multiperformance or vector optimization problem) can then be
defined (in words) as the problem of finding [1218]:

“a vector of decision variables which satisfies constraints and optimizes
a vector function whose elements represent the objective functions.
These functions form a mathematical description of performance cri-
teria which are usually in conflict with each other. Hence, the term
“optimize” means finding such a solution which would give the values
of all the objective functions acceptable to the decision maker.”

Decision Variables

The decision variables are the numerical quantities for which values are to
be chosen in an optimization problem. These quantities are denoted as xj ,
j = 1, 2, . . . , n.

The vector x of n decision variables is represented by:

x =

⎡
⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎦ (1.2)

This can be written more conveniently as:

x = [x1, x2, . . . , xn]T , (1.3)

where T indicates the transposition of the column vector to the row vector.

Constraints

In most optimization problems there are always restrictions imposed by the
particular characteristics of the environment or available resources (e.g., phys-
ical limitations, time restrictions, etc.). These restrictions must be satisfied in
order to consider a certain solution acceptable. All these restrictions in gen-
eral are called constraints, and they describe dependences among decision
variables and constants (or parameters) involved in the problem. These con-
straints are expressed in form of mathematical inequalities:

6 1 Basic Concepts

gi(x) ≤ 0 i = 1, . . . , m (1.4)

or equalities:

hj(x) = 0 j = 1, . . . , p (1.5)

Note that p, the number of equality constraints, must be less than n,
the number of decision variables, because if p ≥ n the problem is said to be
overconstrained, since there are no degrees of freedom left for optimizing
(i.e., in other words, there would be more unknowns than equations). The
number of degrees of freedom is given by n − p. Also, constraints can be
explicit (i.e., given in algebraic form) or implicit, in which case the algorithm
to compute gi(x) for any given vector x must be known.

Commensurable vs. Non-Commensurable

In order to know how “good” a certain solution is, it is necessary to have some
criteria to evaluate it. These criteria are expressed as computable functions of
the decision variables,2 called objective functions. In real-world problems,
some functions are in conflict with others, and some must be minimized while
others are maximized. These objective functions may be commensurable
(measured in the same units) or non-commensurable (measured in different
units). The multiple objectives being optimized almost always conflict, placing
a partial, rather than total, ordering on the search space. In fact, finding the
global optimum of a general MOP is an NP -Complete problem [72].

Attributes, Criteria, Objectives, and Goals

In OR, it is a common practice to differentiate among attributes, criteria,
objectives and goals (e.g., [1036]). Attributes are often thought of as differen-
tiating aspects, properties or characteristics of alternatives or consequences.
Criteria generally denote evaluative measures, dimensions or scales against
which alternatives may be gauged in a value or worth sense. Objectives are
sometimes viewed in the same way, but may also denote specific desired levels
of attainment or vague ideals. Goals usually indicate either of the latter no-
tions. A distinction commonly made in OR is to use the term goal to designate
potentially attainable levels, and objective to designate unattainable ideals.

The convention adopted in this book is the same assumed by several re-
searchers (see for example [706] and [489]) of using the terms objective, criteria,
and attribute interchangeably to represent an MOP’s goals or objectives (i.e.,
distinct mathematical functions) to be achieved. The terms objective space or
objective function space are also used to denote the coordinate space within
which vectors resulting from evaluating an MOP’s solutions are plotted.

2 It is assumed that all functions used in this book are computable.

1.2 Definitions 7

The objective functions are designated: f1(x), f2(x), . . . , fk(x), where k is
the number of objective functions in the MOP being solved. Therefore, the
objective functions form a vector function f(x) which is defined by:

f(x) =

⎡
⎢⎢⎢⎣

f1(x)
f2(x)

...
fk(x)

⎤
⎥⎥⎥⎦ (1.6)

This can be written more conveniently as:

f(x) = [f1(x), f2(x), . . . , fk(x)]T

The set of all n-tuples of real numbers denoted by R
n is called Euclidean

n-space. Two Euclidean spaces are considered in MOPs:

• The n-dimensional space of the decision variables in which each coordinate
axis corresponds to a component of vector x.

• The k-dimensional space of the objective functions in which each coordi-
nate axis corresponds to a component vector fk(x).

Every point in the first space represents a solution and gives a certain
point in the second space, which determines a quality of this solution in terms
of the objective function values.

1.2.3 Multiobjective Optimization Problem

The mathematical definition of a multiobjective problem (MOP) is important
in providing a foundation of understanding between the interdisciplinary na-
ture of deriving possible solution techniques (deterministic, stochastic); i.e.,
search algorithms. The following discussions present generic MOP mathemat-
ical and formal symbolic definitions.

The single objective formulation is extended to reflect the nature of mul-
tiobjective problems where there is not one objective function to optimize,
but many. Thus, there is not one unique solution but a set of solutions. This
set of solutions are found through the use of Pareto Optimality Theory [428].
Note that multiobjective problems require a decision maker to make a choice
of xi

∗ values. The selection is essentially a tradeoff of one complete solution
x over another in multiobjective space.

More precisely, multiobjective problems (MOPs) are those problems where
the goal is to optimize k objective functions simultaneously. This may in-
volve the maximization of all k functions, the minimization of all k functions
or a combination of maximization and minimization of these k functions. A
MOP global minimum (or maximum) problem is formally defined in Defini-
tion 3 [1626]:

8 1 Basic Concepts

Definition 3 (General MOP [1626, 277, 265]) : A general MOP is
defined as minimizing (or maximizing) F (x) = (f1(x), . . . , fk(x)) subject to
gi(x) ≤ 0, i = {1, . . . , m}, and hj(x) = 0, j = {1, . . . , p} x ∈ Ω. An MOP
solution minimizes (or maximizes) the components of a vector F (x) where x is
a n-dimensional decision variable vector x = (x1, . . . , xn) from some universe
Ω. It is noted that gi(x) ≤ 0 and hj(x) = 0 represent constraints that must be
fulfilled while minimizing (or maximizing) F (x) and Ω contains all possible x
that can be used to satisfy an evaluation of F (x). �

Thus, a MOP consists of k objectives reflected in the k objective functions,
m + p constraints on the objective functions and n decision variables. The k
objective functions may be linear or nonlinear and continuous or discrete in
nature. The evaluation function, F : Ω −→ Λ, is a mapping from the vector of
decision variables (x = x1, . . . , xn) to output vectors (y = a1, . . . , ak). [1626].
Of course, the vector of decision variables xi can also be continuous or discrete.

Ideal Vector

Definition 4 (Ideal Vector) : Let

x0(i) = [x0(i)
1 , x

0(i)
2 , . . . , x0(i)

n]T

be a vector of variables which optimizes (either minimizes or maximizes) the
ith objective function fi(x). In other words, the vector x0(i) ∈ Ω is such that

fi(x0(i)) = opt
x∈Ω

fi(x) (1.7)

Then, the vector

f0 = [f0
1 , f0

2 , . . . , f0
k]T (1.8)

(where f0
i denotes the optimum of the ith function) is ideal for an MOP,

and the point in R
n which determined this vector is the ideal (utopical) solu-

tion, and is consequently called the ideal vector. �

In other words, the ideal vector contains the optimum for each separately
considered objective achieved at the same point in R

n.

Convexity and Concavity

Definition 5 (Convexity) : A function φ(x) is called convex over the
domain of R if for any two vectors x1 and x2 ∈ R,

φ(θx1 + (1 − θ)x2) ≤ θφ(x1) + (1 − θ)φ(x2) (1.9)

where θ is a scalar in the range 0 ≤ θ ≤ 1. �

1.2 Definitions 9

A convex function cannot have any value larger than the function values
obtained by linear interpolation between φ(x1) and φ(x2).

If the reverse inequality of the equation (5) holds, the function is concave.
Thus φ(x) is concave if −φ(x) is convex. Linear functions are convex and
concave at the same time.

A set of points (or region) is defined as a convex set in n-dimensional
space if, for all pairs of two points x1 and x2 in the set, the straight-line
segment joining them is also entirely in the set. Thus, every point x, where

x = θx1 + (1 − θ)x2 0 ≤ θ ≤ 1 (1.10)

is also in the set. So, for example, the sets shown in Figure 1.1 are convex,
but the sets shown in Figure 1.2 are not.

Fig. 1.1. Two examples of convex sets.

F F

Fig. 1.2. Two examples of non-convex sets.

F

F

10 1 Basic Concepts

Pareto Terminology

Having several objective functions, the notion of “optimum” changes, because
in MOPs, the aim is to find good compromises (or “trade-offs”) rather than
a single solution as in global optimization. The notion of “optimum” most
commonly adopted is that originally proposed by Francis Ysidro Edgeworth
[425] and later generalized by Vilfredo Pareto [1242]. Although some authors
call this notion the Edgeworth-Pareto optimum (see for example [1517]), the
most commonly accepted term is Pareto optimum. The formal definition is
provided next.

Definition 6 (Pareto Optimality [1626, 277, 265]) : A solution x ∈ Ω
is said to be Pareto Optimal with respect to (w.r.t.) Ω if and only if (iff)
there is no x′ ∈ Ω for which v = F (x′) = (f1(x′), . . . , fk(x′)) dominates
u = F (x) = (f1(x), . . . , fk(x)). The phrase Pareto Optimal is taken to mean
with respect to the entire decision variable space unless otherwise specified. �

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ef
fic

ie
nc

y

cost

Fig. 1.3. An example of a problem with two objective functions: cost and effi-
ciency. The Pareto front or trade-off surface is delineated by a curved line.

In words, this definition says that x∗ is Pareto optimal if there exists
no feasible vector x which would decrease some criterion without causing a
simultaneous increase in at least one other criterion (assuming minimization).

The concept of Pareto Optimality is integral to the theory and the solving
of MOPs. Additionally, there are a few more definitions that are also adopted
in multiobjective optimization [1626]:

1.2 Definitions 11

Definition 7 (Pareto Dominance [1626, 277, 265]) : A vector u =
(u1, . . . , uk) is said to dominate another vector v = (v1, . . . , vk) (denoted by
u
 v) if and only if u is partially less than v, i.e., ∀i ∈ {1, . . . , k}, ui ≤
vi ∧ ∃i ∈ {1, . . . , k} : ui < vi. �

Definition 8 (Pareto Optimal Set [1626, 277, 265]) : For a given
MOP, F (x), the Pareto Optimal Set, P∗, is defined as:

P∗ := {x ∈ Ω | ¬∃ x′ ∈ Ω F (x′)
 F (x)}. (1.11)

�

Pareto optimal solutions are those solutions within the genotype search
space (decision space) whose corresponding phenotype objective vector com-
ponents cannot be all simultaneously improved. These solutions are also
termed non-inferior, admissible, or efficient solutions, with the entire set rep-
resented by P∗. Their corresponding vectors are termed nondominated; se-
lecting a vector(s) from this vector set (the Pareto front set PF∗) implicitly
indicates acceptable Pareto optimal solutions, decision variables or genotypes.
These solutions may have no apparent relationship besides their membership
in the Pareto optimal set. They form the set of all solutions whose asso-
ciated vectors are nondominated; Pareto optimal solutions are classified as
such based on their evaluated functional values.

Definition 9 (Pareto Front [1626, 277, 265]) : For a given MOP, F (x),
and Pareto Optimal Set, P∗, the Pareto Front PF∗ is defined as:

PF∗ := {u = F (x) | x ∈ P∗}. (1.12)

�

When plotted in objective space, the nondominated vectors are collectively
known as the Pareto front. Again, P∗ is a subset of some solution set. Its
evaluated objective vectors form PF∗, of which each is nondominated with
respect to all objective vectors produced by evaluating every possible solution
in Ω. In general, it is not easy to find an analytical expression of the line
or surface that contains these points and in most cases, it turns out to be
impossible. The normal procedure to generate the Pareto front is to compute
many points in Ω and their corresponding f(Ω). When there is a sufficient
number of these, it is then possible to determine the nondominated points and
to produce the Pareto front. A sample Pareto front is shown in Figure 1.3.
Note that PFtrue is used throughout this book interchangeably with PF∗.3

Although single-objective optimization problems may have a unique opti-
mal solution, MOPs usually have a possibly uncountable set of solutions on

3 The MOEA literature uses a variety of symbolic notation, but, in contrast, this
book has adopted the forms Ptrue and PFtrue , which are more understandable
and precise, and used more in current practice as related to the computational
domain.

12 1 Basic Concepts

a Pareto front. Each solution associated with a point on the Pareto front is a
vector whose components represent trade-offs in the decision space or Pareto
solution space.

The MOP’s evaluation function, f : Ω −→ Λ, maps decision variables
(x = x1, . . . , xn) to vectors (y = a1, . . . , ak). This situation is represented
in Figure 1.4 for the case n = 2, m = 0, and k = 3. This mapping may or
may not be onto some region of objective function space, dependent upon the
functions and constraints composing the particular MOP.

x2

x1 Ω = {x ∈ℜ } n Λ = {y ∈ℜ } k

F

F

F2

1

F3

"Decision Variable Space" "Objective Function Space"

Fig. 1.4. MOP Evaluation Mapping

Note that the DM is often selecting solutions via choice of acceptable
objective performance, represented by the Pareto front. Choosing an MOP
solution that optimizes only one objective may well ignore solutions, which
from an overall standpoint, are “better.” The Pareto optimal set contains
those better solutions. Identifying a set of Pareto optimal solutions is thus key
for a DM’s selection of a “compromise” solution satisfying the objectives as
“best” possible. Of course, the accuracy of the decision maker’s view depends
on both the true Pareto optimal set and the set presented as Pareto optimal.

Weak and Strict Pareto Optimality

Definition 10 (Weak Pareto Optimality) : A point x∗ ∈ Ω is a weakly
Pareto optimal if there is no x ∈ Ω such that fi(x) < fi(x∗), for i =
1, . . . , k. �

Definition 11 (Strict Pareto Optimality) : A point x∗ ∈ Ω is a strictly
Pareto optimal if there is no x ∈ Ω, x �= x∗ such that fi(x) ≤ fi(x∗), for
i = 1, . . . , k. �

1.2 Definitions 13

Kuhn-Tucker Conditions

Definition 12 (Kuhn-Tucker Conditions for Noninferiority) : If
a solution x to the general MOP is noninferior, then there exist wl ≥ 0,
l = 1, 2, . . . , k (wr is strictly positive for some r = 1, 2, . . . , k), and λi ≥ 0,
i = 1, 2, . . . ,m, such that [910]:

x ∈ Ω (1.13)

λigi(x) = 0 i = 1, 2, . . . ,m (1.14)

and

k∑
l=1

wl∇fl(x) −
m∑

i=1

λi∇gi(x) = 0 (1.15)

�

These conditions are necessary for a noninferior solution, and when all
of the f l(x) are concave and Ω is a convex set, they are sufficient as well.

MOP Global Minimum

Defining an MOP’s global optimum is not a trivial task as the “best” compro-
mise solution is really dependent on the specific preferences (or biases) of the
(human) decision maker. Solutions may also have some temporal dependences
(e.g., acceptable resource expenditures may vary from month to month). Thus,
there is no universally accepted definition for the MOP global optimization
problem. However, an MOP’s global optimum is defined to substantiate the
material presented in further chapters.

Pareto optimal solutions are those which when evaluated, produce vectors
whose performance in one dimension cannot be improved without adversely
affecting another. The Pareto front PF∗ determined by evaluating P∗ is fixed
by the defined MOP and does not change. Thus, P∗ represents the “best”
solutions available and allows the definition of an MOP’s global optimum.

Definition 13 (MOP Global Minimum) : Given a function f : Ω ⊆
R

n → R
k, Ω �= ∅, k ≥ 2, for x ∈ Ω the set PF∗ � f(x∗

i) > (−∞, . . . ,−∞) is
called the global minimum if and only if

∀x ∈ Ω : f(x∗
i)
 f(x) . (1.16)

Then, x∗
i , i = 1, . . . , n is the global minimum solution set (i.e., P∗), f

is the multiple objective function, and the set Ω is the feasible region. The
problem of determining the global minimum solution set is called the MOP
global optimization problem. �

14 1 Basic Concepts

1.2.4 Definition of MOEA Progress

The generic Pareto definitions presented before can lead to confusion in dis-
cussing the algorithmic progress of a MOEA’s complex structure. To prevent
possible inconsistencies in discussions of MOEAs, Van Veldhuizen [1626] de-
veloped Pareto terminology to clarify MOEA computational progress. For
example, at any given generation of a MOEA, a “current” set of Pareto so-
lutions (with respect to the current MOEA generational population) exists
and is termed Pcurrent (t), where t represents the current generation number.
Because of the manner in which Pareto optimality is defined, Pcurrent(t) is
generally a non-empty solution set [1626].

Many MOEAs use a secondary population which is referred to as an archive
or an external archive, in order to store nondominated solutions found through
the generational process [1628, 1626]. Since this secondary population contains
Pareto solutions generated up to a certain generation, each time another point
is considered for addition to the secondary population, the point must be ana-
lyzed for nondominance with respect to the points currently in the secondary
population. This secondary population is denoted Pknown (t) by definition.
Additionally, Pknown (0) is defined as the empty set (∅) and Pknown alone as
the final set of Pareto optimal solutions returned by the MOEA at termina-
tion [1626, 1790].

Different secondary population storage strategies exist; the simplest is
when Pknown (t) is updated at each generation (i.e., Pcurrent (t)

⋃
Pknown (t−

1)). At any given time, Pknown (t) is thus the set of Pareto solutions currently
found by the MOEA through generation t. Of course, the true Pareto solution
set (termed P∗) is defined in the computational domain as Ptrue which is
usually a subset of P∗. Both are not explicitly known a priori for problems
of any difficulty. Ptrue is defined by the functions composing an MOP and the
given computational domain limits.

Pcurrent (t), Pknown (t), and Ptrue are sets of MOEA genotypes where each
set’s phenotypes form a computational Pareto front set. The associated
Pareto front terms for each of these solution sets are defined respectively
as PFcurrent (t), PFknown (t), and PFtrue . Thus, when using a computational
MOEA to solve MOPs, the implicit assumption is that one of the following
holds at termination: Pknown = Ptrue , or Pknown ⊂ Ptrue , over some norm
(Euclidean, RMS, etc.). On the other hand, the limits of the computational
domain (finite storage, finite word-length) cause discussion inconsistencies in
these set notations as presented in the following section. Observe that various
MOEA researchers use a less precise notation referring only to the “approxi-
mated” Pareto front or Pareto solution.

1.2.5 Computational Domain Impact

The theory of computation implies that only a countable number of MOP
solutions can be computed. Also, the reality of having computers with finite

1.2 Definitions 15

word-length indicates that the accuracy of generated MOP solutions is lim-
ited. Note of course that numerical analysis techniques can be employed to
define associated error bounds if interested. Now, one could assume that the
theoretical P∗ and PF∗ are sets of values represented with infinite word-
length. Due to the computation domain (computer) strictly using these sets
as the goal set of Pareto optimal solutions, P∗ and associated optimal vectors
PF∗, it is impossible for most MOEAs to converge to the optimal solutions.4

As developed by Day [344], this phenomenon is due to the computational lim-
itation gap between using an uncountable infinite set (theoretical values) and
countable/finite set (computational values). The form of these sets is related
respectively to infinite word-length and finite word-length for representing de-
cision variables x, and associated objective vectors, F (x). With this approach,
MOEA results and analysis can be better compared to other multiobjective
solution techniques.

We use a more precise computational terminology to distinguish between
the real-world’s computational model, the formal mathematical world’s rep-
resentation of solutions, and the aforementioned Ptrue , PFtrue , Pknown , and
PFknown when solving MOPs. The three cases for each computational set are
related to the relationships found in Table 1.1, which lists the three types
of theoretical relationships between P∗ and PF∗ set cardinality that must
be addressed as related to specific MOP characteristics. Note that countable
includes finite.

Table 1.1: Relationships between the P∗ and PF∗ set size.

|P∗| |PF∗| Mappings of sets having size 1, n̈5, and ü6

1. Countable → Countable {(1 → 1), (n̈ → 1), (n̈ → n̈)}
2. Uncountable → Countable {(ü → 1), (ü → n̈), (ü → n̈)}
3. Uncountable → Uncountable {(ü → ü)}

P∗ and PF∗ of course represent the theoretical goal sets for a MOEA
search algorithm. However, as indicated before, they may not be computation-
ally achievable in any circumstance. Any goal set having an uncountable |PF∗|
cannot be solved by a Turing Machine because the machine can only generate
a countable number of optimal solutions; thus, #3 conditions in Table 1.1
reflect an MOP that cannot be optimally solved by a digital computer.
When |P∗| is uncountable infinite, the MOP reflected in #2 can be computa-
tionally solved only under certain problem domain circumstances. Finally, if

4 Examples of finite |P∗| and |PF∗| are found in NP-complete problems where the
decision variables take on a finite number of values and the associated multi-
objective functions likewise only have a finite number of values (usually integer).
Further examples are found in deceptive MOPs. This situation is not true for
continuous functions of continuous variables.

5 n̈ represents a countable/infinite or finite set.
6 ü represents an uncountable set.

16 1 Basic Concepts

the set of values contained in P∗ and PF∗ are subsets of computational num-
bers,7 then the MOP relationship of #1 can be solved by digital computers
with finite word-length and finite storage. Therefore, when defining the goal
set, it is important to define a set that the MOEA can converge to; i.e., the
goal sets referred to as Ptrue and PFtrue .

• Ptrue: This term is given as the MOP’s computational true Pareto Optimal
Set (decision variables). Under the following conditions Ptrue is a subset of
P∗ assuming that the decision variable values are computational numbers
(finite word-length representations).

1.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

All computational
numbers in P∗, Ptrue ⊆ P∗

and |P∗| finite
At least one non-computational
number in P∗, Ptrue �⊆ P∗

2. Ptrue �⊆ P∗

3. Ptrue �⊆ P∗

• PFtrue : This term is given as the MOP’s computationally true Pareto
Front set (objective values). Under the following conditions PFtrue is a
subset of PF∗ due to the discrete finite word-length decision variables
and associated PFknown vectors.

1.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

All computational
numbers in PF∗, with P∗ → PF∗ PFtrue ⊆ PF∗

and |PF∗| finite
At least one non-computational
number in PF∗, PFtrue �⊆ PF∗

2. PFtrue �⊆ PF∗

3. PFtrue �⊆ PF∗

• Pknown (t): This term defines the Pareto solution set best found by the
MOEA (finite word-length decision variables) at generation t. Pknown often
does NOT represent the true Pareto Optimal Set; instead, it only repre-
sents the best set found by a computational MOEA for a particular MOP.

• PFknown (t): This term, PFknown , defines a Pareto Front set found by the
MOEA at generation t. In general, it may be an intermediate Pareto Front
set relative to the MOEA process (i.e. objective values at the current gen-
eration are probably not as good as objective values in the final generation
Pareto Front set PFknown found by the MOEA).

Again, a NP-complete problem with finite cardinality of the P∗ Pareto
Solution and PF∗ points falls under the set inclusion principle in these de-
scriptions. In this situation, MOEA effectiveness can be explicitly measured
as to the obtainment of these points. However, because the MOEA process
7 These values must be a computational number ; otherwise, a digital computer

could not represent the goal sets. A computational number is a number that can
be represented or generated within a digital computer with finite word-length.

1.2 Definitions 17

may never reach PFknown for continuous functions, we can define a positive
error distance from this computational possibility as ε. This provides for a
different performance model in the next section for development of Pareto
optimal front test metrics.

1.2.6 Pareto Epsilon Model

Considering the fact that in computational domain (finite word length and
Turing machine definition), one may never be able to reach the “optimal”
Pareto front, the concept of being within a “small” value of the Pareto front is
appropriate. Moreover, one can only generate a finite number of points on the
Pareto front even though a countable or uncountable number of points exist.
The following definitions extend the previous definitions to provide a method
of modeling these phenomena. In other words, in the cases where Ptrue �⊆ P∗,
Ptrue and PFtrue are in the proximity8 of P∗ and PF∗ respectively.

Definition 14 (Pareto epsilon (ε) Dominance) : A vector u =
(u1, . . . , uk) is said to epsilon-dominate another vector v = (v1, . . . , vk) (de-
noted by u
ε v) if for some ε > 0 ui is partially less than vi + ε, i.e.,
∀i ∈ {1, . . . , k}, ui ≤ (vi + ε) ∧ ∃i ∈ {1, . . . , k} : ui < (vi + ε) where ε > 0. �

Definition 15 (Pareto epsilon (ε) Optimality) : A solution x ∈ Ω is
said to be Pareto epsilon Optimal with respect to Ω if and only if there is no
x′ ∈ Ω for which v = F (x′) = (f1(x′), . . . , fk(x′)) epsilon dominates u =
F (x) = (f1(x), . . . , fk(x)). The phrase Pareto epsilon Optimal is taken
to mean with respect to the entire decision variable space unless otherwise
specified. �

Definition 16 (Pareto epsilon (ε) Optimal Set) : For a given MOP,
F (x), the Pareto epsilon Optimal Set, P∗

ε , is defined as:

P∗
ε := {x ∈ Ω | ¬∃ x′ ∈ Ω F (x′)
ε F (x)}. (1.17)

�

Definition 17 (Pareto epsilon (ε) Front) : For a given MOP, F (x), and
Pareto epsilon Optimal Set, P∗

ε , the Pareto epsilon Front (PF∗
ε) is defined as:

PF∗
ε := {u = F (x) = (f1(x), . . . , fk(x)) | x ∈ P∗

ε }. (1.18)

�

Definition 18 (Pareto Front width distribution) : The width of the
Pareto front created by the Pareto epsilon Dominance factor is described by the

8 Distance of optimal solutions and associated Pareto front vectors to the theoret-
ical true depends upon finite word-length restriction and characteristics of the
problem domain. The distance can be defined as ε.

18 1 Basic Concepts

Pareto front width distribution. By placing 3D Gaussian distributions (Parzon
Windows) on each vector on a Pareto epsilon front, a distribution can be
illustrated having a multidimensional Gaussian Distribution Characteristics.
See Definition 14 for understanding of Pareto epsilon dominance. �

The following terminology is used to distinguish between the real-world’s
and mathematical-world’s representation of solutions and associated Pareto
epsilon front vectors when solving MOPs. In the cases where P ε

true �⊆ P∗
ε ,

P ε
true and PFε

true are in the proximity of P∗
ε and PF∗

ε respectively. The three
cases listed under each term are related to the relationships found in Table 1.1.

• P ε
true: This term is given as the MOP’s computational true Optimal epsilon

Set (decision variables). Under the following conditions P ε
true is a subset

of P∗
ε because the decision variables for the MOP must be discrete.

1.

⎧
⎨
⎩

All computational numbers in Pε
∗, P ε

true ⊆ Pε
∗

At least one non-computational
number in Pε

∗, P ε
true �⊆ Pε

∗

2. P ε
true �⊆ Pε

∗

3. P ε
true �⊆ Pε

∗

• PF ε
true: This term is given as the MOP’s computationally true Pareto

epsilon Front set (objective values). Under the following conditions PFε
true

is a subset of PF∗
ε due to making the decision variables and objective

vectors of the MOP discrete within the computer.

1.

⎧
⎨
⎩

All computational numbers in PFε
∗, PF ε

true ⊆ PFε
∗

At least one non-computational
number in PFε

∗, PF ε
true �⊆ PFε

∗

2. PF ε
true �⊆ PFε

∗

3. PF ε
true �⊆ PFε

∗

• P ε
known: This term defines Pareto epsilon Optimal Set found by the MOEA

(decision variables). Pε
known often times does not represent the true Pareto

epsilon Optimal Set; instead, it should represent the best Pareto epsilon
Optimal Set found by a MOEA for a particular MOP.

• PF ε
known: This term defines the Pareto epsilon Front set found by the

MOEA. PFε
known may be an intermediate Pareto epsilon Front for the

MOEA (i.e. a set that is not as good as the final Pareto epsilon Front set
found by the MOEA).

1.2.7 Decision Maker Impact

Solutions on the Pareto Optimal Front PF∗ represent optimal solutions in
the sense that improving the value in one dimension of the objective function
vector leads to a degradation in at least one other dimension of the objective
function vector. This is also true for PFknown . This requires the decision
maker to make a tradeoff decision when presented with a large finite number
of points on PFknown . There exists a difference in terminology between an
acceptable compromise solution and a Pareto Optimal Solution [510]. The

1.3 An Example 19

decision maker typically chooses only a few points in PFknown as generated
by Pknown . The associated Pareto Optimal solutions, u ∈PFknown

∗, are then
the “acceptable” (by the decision maker) compromise solutions. The decision
makers base their solution choice on which solutions take into account the
non-modelled human’s preference. The human preference factor can require
engineers and scientists to attempt to find a large number of the points in
PFknown , since all points may not be weighted equally by the decision maker.

1.3 An Example

To illustrate the application of the previous concepts, one example that has
been studied by several researchers [1322, 241] is as follows:

P

x

3

1
h

x

1
y

2

2

45o

Fig. 1.5. A two-bar plane truss.

The goal is to optimize the two-bar symmetric plane truss shown in
Figure 1.5. The design variables are the cross-sectional areas of the two bars.
The problem is formulated as follows:

Minimize

{
f1(x) = 2ρhx2

√
1 + x2

1

f2(x) = Ph(1+x2
1)

1.5(1+x4
1)

0.5

2
√

2Ex2
1x2

(1.19)

subject to:

20 1 Basic Concepts

g1(x) =
P (1 + x1)(1 + x2

1)
0.5

2
√

2x1x2

− σ0 ≤ 0 (1.20)

g2(x) =
P (−x1 + 1)(1 + x2

1)
0.5

2
√

2x1x2

− σ0 ≤ 0 (1.21)

where f1(x) is the structural weight of the truss, f2(x) is the displacement
of joint 3 (in Figure 1.5), and g1(x) and g2(x) are stress constraints of the
members.

In the previous expressions, x1 = x/h, x2 = A/Amin, E= Young’s modu-
lus, and ρ= density of material. It is assumed that: ρ = 0.283 lb/in3, h = 100
in, P = 104 lb, E = 3×107 lb/in2, σ0 = 2×104 lb/in2, Amin = 1 in2, and the
lower (l) and upper (u) bounds of the design variables are: x

(l)
1 =0.1, x

(l)
2 =0.5,

x
(u)
1 =2.25 and x

(u)
2 =2.5.

The true Pareto front of this problem (obtained through an enumerative
approach) is shown in Figure 1.6. Once the Pareto front of the problem has
been found, the DM is presented the set of Pareto optimal solutions generated
and then chooses a point (or points) from this set.

Fig. 1.6. True Pareto front of the two-bar truss problem.

1.4 General Optimization Algorithm Overview 21

1.4 General Optimization Algorithm Overview

For the purposes of this book, general search and optimization techniques
are classified into three categories: enumerative, deterministic, and stochastic
(random). Although an enumerative search is deterministic a distinction is
made here as it employs no heuristics. Figure 1.7 shows common examples of
each type.

Deterministic

Global
Search & Optimization

Greedy

Hill-Climbing

Branch & Bound

Depth-First

Breadth-First

Best-First
(A*,Z*, ...)

Stochastic

Evolutionary Computation

Random Search/Walk

Simulated Annealing

Tabu Search

Monte Carlo

Mathematical Programming

Enumerative

Calculus-Based

Fig. 1.7. Global Optimization Approaches

Enumerative schemes are perhaps the simplest search strategy. Within
some defined finite search space each possible solution is evaluated. However,
it is easily seen that this technique is inefficient or even infeasible as search
spaces become large. As many real-world problems are computationally in-
tensive, some means of limiting the search space must be implemented to find
“acceptable” solutions in “acceptable” time [1101]. Deterministic algorithms
attempt this by incorporating problem domain knowledge. Many of these are
considered graph/tree search algorithms and are described as such here.

Greedy algorithms make locally optimal choices, assuming optimal sub-
solutions are always part of the globally optimal solution [170, 729]. Thus,
these algorithms fail unless that is not the case. Hillclimbing algorithms search
in the direction of steepest ascent from the current position. These algorithms
work best on unimodal functions, but the presence of local optima, plateaus, or
ridges in the fitness (search) landscape reduce algorithm effectiveness [1407].
Greedy and hillclimbing strategies are irrevocable. They repeatedly expand a

22 1 Basic Concepts

node, examine all possible successors (then expanding the “most promising”
node), and keep no record of past expanded nodes [1264].

Branch and bound search techniques need problem specific heuristics/de-
cision algorithms to limit the search space [541, 1264]. They compute some
bound at a given node which determines whether the node is “promising;”
several nodes’ bounds are then compared and the algorithm branches to the
“most promising” node [1172]. Basic depth-first search is blind or uninformed
in that the search order is independent of solution location (except for search
termination). It expands a node, generates all successors, expands a successor,
and so forth. If the search is blocked (e.g., it reaches a tree’s bottom level) it
resumes from the deepest node left behind [1264]. Backtracking is a depth-first
search variant which “backtracks” to a node’s parent if the node is determined
“unpromising” [1172]. Breadth-first search is also uninformed. It differs from
depth-first search in its actions after node expansion, where it progressively
explores the graph one layer at a time [1264]. Best-first search uses heuristic
information to place numerical values on a node’s “promise”; the node with
highest promise is examined first [1264]. A∗, Z∗, and others are popular best-
first search variants selecting a node to expand based both on “promise” and
the overall cost to arrive at that node.9 Finally, calculus-based search methods
at a minimum require continuity in some variable domain for an optimal value
to be found [53].

Greedy and hill-climbing algorithms, branch and bound tree/graph search
techniques, depth- and breadth-first search, best-first search, and calculus-
based methods are all deterministic methods successfully used in solving a
wide variety of problems [170, 581, 1172]. However, many MOPs are high-
dimensional, discontinuous, multimodal, and/or NP -Complete. Deterministic
methods are often ineffective when applied to NP -Complete or other high-
dimensional problems because they are handicapped by their requirement for
problem domain knowledge (heuristics) to direct or limit search [500, 541,
581, 1101] in these exceptionally large search spaces. Problems exhibiting one
or more of these above characteristics are termed irregular [942].

Because many real-world scientific and engineering MOPs are irregular,
enumerative and deterministic search techniques are then unsuitable. Sto-
chastic search and optimization approaches such as Simulated Annealing (SA)
[861], Monte Carlo methods [1217], Tabu search [572], and Evolutionary Com-
putation (EC) [581, 1100, 72] were developed as alternative approaches for
solving these irregular problems. Stochastic methods require a function as-
signing fitness values to possible (or partial) solutions, and an encode/decode
(mapping) mechanism between the problem and algorithm domains. Although
some are shown to “eventually” find an optimum most cannot guarantee the

9 Note that there has been work regarding the extension of search algorithms such
as A∗ for multiobjective cases (see for example [1523, 335, 1051]). Such topic,
although called “Multiobjective Heuristic Search”, will not be covered in this
book, since we focus only on stochastic techniques.

1.4 General Optimization Algorithm Overview 23

optimal solution. They in general provide good solutions to a wide range of
optimization problems which traditional deterministic search methods find
difficult [581, 729].

A random search is the simplest stochastic search strategy, as it simply
evaluates a given number of randomly selected solutions. A random walk is
very similar, except that the next solution evaluated is randomly selected us-
ing the last evaluated solution as a starting point [1646]. Like enumeration,
though, these strategies are not efficient for many MOPs because of their fail-
ure to incorporate problem domain knowledge. Random searches can generally
expect to do no better than enumerative ones [581, pg. 5].

SA is an algorithm explicitly modeled on an annealing analogy, where, for
example, a liquid is heated and then gradually cooled until it freezes. Where
hill-climbing chooses the best move from some node SA picks a random one. If
the move improves the current optimum it is always executed, else it is made
with some probability p < 1. This probability exponentially decreases either
by time or with the amount by which the current optimum is worsened [1407,
407]. If water’s temperature is lowered slowly enough it attains a lowest-energy
configuration; the analogy for SA is that if the “move” probability decreases
slowly enough the global optimum is found.

In general, Monte Carlo methods involve simulations dealing with stochas-
tic events; they employ a pure random search where any selected trial solution
is fully independent of any previous choice and its outcome [1460, 1217]. The
current “best” solution and associated decision variables are stored as a com-
parator. Tabu search is a meta-strategy developed to avoid getting “stuck” on
local optima. It keeps a record of both visited solutions and the “paths” which
reached them in different “memories.” This information restricts the choice
of solutions to evaluate next. Tabu search is often integrated with other opti-
mization methods [572, 1460].

EC is a generic term for several stochastic search methods which compu-
tationally simulate the natural evolutionary process. As a recognized research
field EC is young, although its associated techniques have existed for about
forty five years [497]. EC embodies the techniques of genetic algorithms (GAs),
evolution strategies (ESs), and evolutionary programming (EP), collectively
known as EAs [496]. These techniques are loosely based on natural evolu-
tion and the Darwinian concept of “Survival of the Fittest” [581]. Common
between them are the reproduction, random variation, competition, and se-
lection of contending individuals within some population [496]. In general, an
EA consists of a population of encoded solutions (individuals) manipulated by
a set of operators and evaluated by some fitness function.

Each solution’s associated fitness determines which survive into the next
generation. Although sometimes considered equivalent, the terms EA and EC
are used separately in this book to preserve the distinction between EAs and

24 1 Basic Concepts

other EC techniques (e.g., genetic programming (GP) [905, 89] and learning
classifier systems [953, 183]).10

MOP complexity and the shortcomings of deterministic search methods
also drove creation of several optimization techniques by the Operations Re-
search (OR) community. These methods (whether linear or nonlinear, deter-
ministic or stochastic) can be grouped under the rubric mathematical program-
ming. These methods treat constraints as the main problem aspect [1460]. Lin-
ear programming is designed to solve problems in which the objective function
and all constraint relations are linear [681]. Conversely, nonlinear program-
ming techniques solve some MOPs not meeting those restrictions but require
convex constraint functions [1460]. It is noted here that many problem do-
main assumptions must be satisfied when using linear programming, and that
many real-world scientific and engineering problems may only be modeled by
nonlinear functions [681, pp. 138,574]. Finally, stochastic programming is used
when random-valued parameters and objective functions subject to statistical
perturbations are part of the problem formulation. Depending on the type of
variables used in the problem, several variants of these methods exist (i.e.,
discrete, integer, binary, and mixed-integer programming) [1460].

1.5 EA Basics

The following presentation defines basic EA structural terms and concepts;11

the described terms’ “meanings” are normally analogous to their genetic coun-
terparts. A structure or individual is an encoded solution to some problem.
Typically, an individual is represented as a string (or string of strings) corre-
sponding to a biological genotype. This genotype defines an individual organ-
ism when it is expressed (decoded) into a phenotype. A genotype is composed
of one or more chromosomes, where each chromosome is composed of sepa-
rate genes which take on certain values (alleles) from some genetic alphabet.
A locus identifies a gene’s position within the chromosome. Thus, each indi-
vidual decodes into a set of parameters used as input to the function under
consideration. Finally, a given set of chromosomes is termed a population.
These concepts are pictured in Figure 1.8 (for both binary and real-valued
chromosomes) and in Figure 1.9.

Just as in nature, Evolutionary Operators (EVOPs) operate on an EA’s
population attempting to generate solutions with higher and higher fitness.
The three major EVOPs associated with EAs are mutation, recombination,
and selection. Illustrating this, Figure 1.10 shows bitwise mutation on an en-
coded string where a ‘1’ is changed to a ‘0’, or vice versa. Figure 1.11 shows
10 Although GP and learning classifier systems may be classified as EA techniques,

several researchers consider them conceptually different approaches to EC [860].
11 There is no shortage of introductory EA texts. The general reader is referred to

Goldberg [581], Michalewicz [1100], Mitchell [1114], Fogel [496] or Eiben & Smith
[435]. A more technical presentation is given by Bäck [72].

1.5 EA Basics 25

Population

-- Chromosome (String)
-- Chromosome (String)

-- Chromosome (String)

Locus

(Position)

1 2 3 4 5 6 7 8 9 10

Allele (Value) = 0 Allele (Value) = 1

1 0 1 1 1 1 0 0 1 0
1 0 1 0 0 0 1 1 1 0
0 0 1 1 1 1 1 0 0 0
0 1 0 0 1 0 1 1 1 1

0 0 1 1 0 1 0 1 1 0
00 0 1 0 1 0 1 1 0

1 0 1 1 0 0 0 1 0 1
1 0 0 0 0 1 1 1 1 1
0 1 1 1 0 1 1 0 0 0
0 1 1 0 0 1 0 0 1 0

Locus

(Position)
1 2 3

4.3852

5.5495

6.3964 0.5837

8.3853 9.3856

1.0645

1.0937
6.3964

0.5837 8.3853

1.0937

Allele (Value) = 6.3964

Fig. 1.8. Generalized EA Data Structure and Terminology

single-point crossover (a form of recombination) operating on two parent bi-
nary strings; each parent is cut and recombined with a piece of the other.
Above-average individuals in the population are selected (reproduced) to be-
come members of the next generation more often than below-average individ-
uals. The selection EVOP effectively gives strings with higher fitness a higher
probability of contributing one or more children in the succeeding generation.
Figure 1.12 shows the operation of the common roulette-wheel selection (a
fitness proportional selection operator) on two different populations of four
strings each. Each string in the population is assigned a portion of the wheel
proportional to the ratio of its fitness and the population’s average fitness.

Real-valued chromosomes also undergo these same EVOPs although im-
plemented differently. All EAs use some subset or variation of these EVOPs.
Many variations on the basic operators exist; these are dependent upon prob-
lem domain constraints affecting chromosome structure and alleles [72].

An EA requires both an objective and fitness function, which are funda-
mentally different. The objective function defines the EA’s optimality con-
dition (and is a feature of the problem domain) while the fitness function
(in the algorithm domain) measures how “well” a particular solution satisfies
that condition and assigns a corresponding real-value to that solution. How-
ever, these functions are in principle identical [72, pg. 68] (e.g., in numerical
optimization problems).

Many other selection techniques are implemented by EAs, e.g., tournament
and ranking [72, 583]. Tournament selection operates by randomly choosing
some number q individuals from the generational population and selecting
the “best” to survive into the next generation. Binary tournaments (q = 2)
are probably the most common. Ranking assigns selection probabilities solely
on an individual’s rank, ignoring absolute fitness values. Two other selection
techniques noted in detail are the (µ+λ) and (µ, λ) selection strategies, where
µ represents the number of parent solutions and λ the number of children.

26 1 Basic Concepts

❏ Population ❏ Set of Individuals (Solutions)

❏ Parent ❏ Member of Current Generation

❏ Children ❏ Members of Next Generation

❏ Generation ❏ Successively Created Populations
 (EA Iteration)

❏ Chromosome ❏ Solution’s Coded Form; Vector
 (String) Consists of Genes
 With Alleles Assigned

❏ Fitness ❏ Number Assigned to a Solution;
 Represent’s "Desirability"

A
lg

o
ri

th
m

D
at

a
S

tr
u

ct
u

re

Fig. 1.9. Key EA Components

Parent:

Mutation Point

Offspring:

Fig. 1.10. Bitwise Mutation

The former selects the µ best individuals drawing from both the parents and
children, the latter selects µ individuals from the child population only.

Why is the choice of EA selection technique so important? Two conflicting
goals are common to all EA search: exploration and exploitation. Bäck also
offers the analogous terms of convergence reliability and velocity, large and
small genotypic diversity, and “soft” and “hard” selection [72, pg. 165]. No
matter the terminology, one goal is achieved only at the expense of another.
An EA’s selective pressure is the control mechanism determining the type of
search performed. Bäck’s analysis shows a general ordering of selection tech-
niques (listed in order of increasing selective pressure): Proportional, linear

1.5 EA Basics 27

Crossover Point

Parent 1:

Parent 2:

Offspring 1:

Offspring 2:

Fig. 1.11. Single-Point Crossover

S1 12
S2 12
S3 12
S4 12

mean 12

String Fitness

S1 S2

S4 S3

String Fitness

20
10

5
5

10

S1
S2
S3
S4

mean

S1

S2
S4

S3

Equal Fitness Unequal Fitness

Fig. 1.12. Roulette Wheel Selection

ranking, tournament, and (µ, λ) selection [72, pg. 180]. Finally, an EA’s deci-
sion function determines when execution stops. Table 1.2 highlights the major
differences between the three major EC instantiations.

It is beyond the scope of this book to provide an in-depth analysis of
general EVOPs and EA components. Interested readers are directed to the
Handbook of Evolutionary Computation [73], which is probably the most
comprehensive collection of articles discussing EC, its instantiations, and ap-
plications.

Although much room for creativity exists when selecting and defining EA
instantiations (e.g., genetic representation and specific EVOPs), careful con-
sideration must be given to the mapping from problem to algorithm domains.
“Improper” representations and/or operators may have detrimental effects
upon EA performance (e.g., Hamming cliffs [72, pg. 229]). Although there is
no unique combination guaranteeing “good” performance [498, 1708], choos-
ing wisely may well result in more effective and efficient implementations.

28 1 Basic Concepts

Table 1.2: Key EA Implementation Differences

EA Type Representation EVOPs
EP Real-values Mutation and (µ + λ)

selection alone
ES Real-values and Mutation,

strategy parameters recombination,
and (µ + λ)
or (µ, λ) selection

GA Historically binary; Mutation,
Real-values now recombination,
common and selection

To formally define an EA, its general algorithm is described in mathemati-
cal terms, allowing for exact specification of various EA instantiations. In this
framework, each EA is associated with a non-empty set I called the EA’s in-
dividual space. Each individual a ∈ I normally represents a candidate solution
to the problem being solved by the EA. Individuals are often represented as
a vector (a) where the vector’s dimensions are analogous to a chromosome’s
genes. The general framework leaves each individual’s dimensions unspecified;
an individual (a) is simply that and is modified as necessary for the particular
EA instance.

When defining (generational) population transformations Bäck denotes
the resulting collection of µ individuals via Iµ, and denotes population trans-
formations by the following relationship: T : Iµ → Iµ, where µ ∈ N [72].
However, some EA variants obtain resulting populations whose size is not
equal to their predecessors. Thus, this general framework represents a popu-
lation transformation via the relationship T : Iµ → Iµ′

, indicating succeeding
populations may contain the same or different numbers of individuals. This
framework also represents all population sizes, evolutionary operators, and
parameters as sequences [1092]. This is due to the fact that different EAs use
these factors in slightly different ways. The general algorithm thus recognizes
and explicitly identifies this nuance. Having discussed the relevant background
terminology, an EA is then defined as [1092] [72, pg. 66]:

Definition 19 (Evolutionary Algorithm) : Let I be a non-empty set (the
individual space), {µ(i)}i∈N a sequence in Z

+ (the parent population sizes),
{µ′(i)}i∈N a sequence in Z

+ (the offspring population sizes), Φ : I −→ R a
fitness function, ι :

⋃∞
i=1(I

µ)(i) −→ {true, false} (the termination criterion),
χ ∈ {true, false}, r a sequence {r(i)} of recombination operators r(i) : X

(i)
r −→

T
(
Ω

(i)
r , T

(
Iµ(i)

, Iµ′(i)
))

, m a sequence {m(i)} of mutation operators m(i) :

X
(i)
m −→ T

(
Ω

(i)
m , T

(
Iµ′(i)

, Iµ′(i)
))

, s a sequence {s(i)} of selection operators

s(i) : X
(i)
s ×T (I, R) −→ T

(
Ω

(i)
s , T

((
Iµ′(i)+χµ(i)

)
, Iµ(i+1)

))
, Θ

(i)
r ∈ X

(i)
r (the

1.6 Origins of Multiobjective Optimization 29

recombination parameters), Θ
(i)
m ∈ X

(i)
m (the mutation parameters), and θ

(i)
s ∈

X
(i)
s (the selection parameters). Then the algorithm shown in Figure 1.13 is

called an Evolutionary Algorithm. �

t := 0;

initialize P (0) := {a1(0), . . . , aµ(0)} ∈ Iµ(0)
;

while (ι({P (0), . . . , P (t)}) �= true) do

recombine: P ′(t) := r
(t)

Θ
(t)
r

(P (t));

mutate: P ′′(t) := m
(t)

Θ
(t)
m

(P ′(t));

select:
if χ

then P (t + 1) := s
(t)

(θ
(t)
s ,Φ)

(P ′′(t));

else P (t + 1) := s
(t)

(θ
(t)
s ,Φ)

(P ′′(t) ∪ P (t));

fi
t := t + 1;

od

Fig. 1.13. Evolutionary Algorithm Outline

1.6 Origins of Multiobjective Optimization

Multiobjective optimization theory is not as recent as we might think. In fact,
some authors (see for example [1516]) indicate that multiobjective optimiza-
tion is an inherent part of economic equilibrium and, in consequence, it can
be traced back to 1776 in which Adam Smith’s treatise The Wealth of Nations
was published.

The general concept of economic equilibrium is often attributed to Léon
Walras. However, William Stanley Jevons, Carl Menger, Francis Ysidro Edge-
worth and Vilfredo Pareto also did very important work in this regard in the
period between 1874 and 1906.

Closely related to multiobjective optimization is also the theory of psy-
chological games and the notion of game strategy (based on analyzing the
psychology of the adversary), which is attributed to Félix Édouard Émile
Borel.

The so-called Game Theory dates back to the work done by Borel in 1921.
However, most historians tend to attribute the origins of game theory to a
paper from the Hungarian mathematician John von Neumann, which was
orally presented in 1926 and published in 1928.

In 1944, John von Neumann and Oskar Morgenstern mentioned that an
optimization problem in the context of a social exchange economy was “a

30 1 Basic Concepts

peculiar and disconcerting mixture of several conflicting problems” that was
“nowhere dealt with in classical mathematics” [1664]. Unfortunately, they did
not discuss this problem any further in their book and no real contribution in
this regard was made until the 1950s.

In 1951, Tjalling C. Koopmans edited a book called Activity Analysis of
Production and Allocation [897], where the concept of “efficient” vector was
first used in a significant way.12

1.6.1 Mathematical Foundations

The origins of the mathematical foundations of multiobjective optimization
can be traced back to the period that goes from 1895 to 1906 [1516]. Dur-
ing that period, Georg Cantor [200, 201] and Felix Hausdorff [667] laid the
foundations of infinite dimensional ordered spaces. Cantor also introduced
equivalence classes and stated the first sufficient conditions for the existence
of a utility function. Hausdorff also gave the first example of a complete or-
dering. However, it was the concept of vector maximum problem introduced
by Harold W. Kuhn and Albert W. Tucker [910] which made multiobjective
optimization a mathematical discipline on its own. The so-called “proper ef-
ficiency” in the context of multiobjective optimization was also formulated in
this seminal paper that can be considered as the first serious attempt to derive
a theory in this area. This same direction was later followed by Kenneth J.
Arrow et al. [61] who used the term “admissible” instead of “efficient” points.

However, multiobjective optimization theory remained relatively undevel-
oped during the 1950s, and the subject was scarcely covered by only a few
authors (see for example [895, 896, 689, 696, 864, 821]).

Probably the most important research outcome of the 1950s was goal pro-
gramming, introduced by Abraham Charnes and William Wager Cooper [229]
based on an earlier paper [228].

It was until the 1960s that the foundations of multiobjective optimization
were consolidated and taken seriously by pure mathematicians when Leonid
Hurwicz [728] generalized the results of Kuhn & Tucker to topological vector
spaces.

1.6.2 Early Applications

In the 1960s, however, multiobjective public investment problems became
more common and “trade-off” became a favorite term used by managers,
planners, and decision makers [289]. So, this area arose in a natural fashion
in mathematical economics, and many techniques were developed by systems
analysts and decision theorists for private and public sector problems, by con-
trol theorists for engineering (guidance and design) problems, and by water

12 This monograph played a significant role in bringing the Nobel Prize to Koopmans
in 1975 [1519].

1.7 Classifying Techniques 31

resource economists and systems analysts for water resource planning prob-
lems. There was also some renewed interest in Kuhn and Tucker’s vector
maximum theory during the early 1960s, as it is reflected in papers by Zadeh
[1746], Klinger [870] and Da Cunha & Polak [324].

The application of multiobjective optimization to domains outside eco-
nomics began with the work by Koopmans [897] in production theory and
with the work of Marglin [1065] in water resources planning. The first en-
gineering application reported in the literature was a paper by Lofti Zadeh
in the early 1960s [1746]. However, the use of multiobjective optimization
became generalized until the 1970s [1513, 289, 288].

Good reviews of existing mathematical programming techniques for mul-
tiobjective optimization can be found in a wide variety of sources [1384, 159,
1036, 1015, 289, 1519, 489, 1704, 732, 1515, 733, 1220, 461, 992, 1111, 428].

1.7 Classifying Techniques

There have been several attempts to classify the many multiobjective opti-
mization techniques currently in use. First of all, it is quite important to
distinguish two stages in which the solution of a multiobjective optimization
problem can be divided: the optimization of the several objective functions
involved and the process of deciding what kind of “trade-offs” are appropriate
from the decision maker perspective (the so-called multicriteria decision mak-
ing process). In this section, some of the many techniques available for these
two stages of a multiobjective optimization problem, are discussed, analyzing
some of their advantages and disadvantages.

Cohon and Marks [289] proposed one of the most popular classifications
of techniques within the Operations Research community:

1. Generating techniques (a posteriori articulation of preferences).
2. Techniques which rely on prior articulation of preferences (non-interactive

methods).
3. Techniques which rely on progressive articulation of preferences (interac-

tion with the decision maker).

Other classifications are obviously possible (see for example [416]). How-
ever, the classification proposed by Cohon & Marks [289] has been adopted
for the purposes of this book, because it focuses the classification on the way
in which each technique handles the two problems of searching and making
(multicriterion) decisions [1631, 706]:

1. A priori Preference Articulation: make decisions before searching
(decide ⇒ search).

2. A posteriori Preference Articulation: search before making decisions
(search ⇒ decide).

32 1 Basic Concepts

3. Progressive Preference Articulation: integrate search and decision
making (decide ⇔ search).

In the following subsections, some of the most representative Operations
Research techniques are described, indicating how they fit within these three
groups.

1.7.1 A priori Preference Articulation

Following Cohon & Marks’ classification [289], this group of techniques in-
cludes those approaches that assume that either a certain desired achievable
goals or a certain pre-ordering of the objectives can be performed by the
decision maker prior to the search.

Global Criterion Method

In this method, the aim is to minimize a function which defines a global
criterion which is a measure of how close the decision maker can get to the
ideal vector f0. The most common form of this function is [1217]

f(x) =
k∑

i=1

(
f0

i − fi(x)
f0

i

)p

(1.22)

where k is the number of objectives.
For this formula Boychuk and Ovchinnikov [159] have suggested p = 1,

and Salukvadze [1420] has suggested p = 2, but other values of p can also be
used. Obviously, the results differ greatly depending on the value of p chosen.
Thus, the selection of the best p is an issue in this method, and it could also
be the case that any p could produce an unacceptable solution.

Another possible measure of ‘closeness to the ideal solution’ is a family of
Lp-metrics defined as follows

Lp(f) =

[
k∑

i=1

∣∣f0
i − fi(x)

∣∣p
]1/p

, 1 ≤ p ≤ ∞ (1.23)

In general, relative deviations of the form

f0
i − fi(x)

f0
i

(1.24)

are preferred over absolute deviations, because they have a substantive mean-
ing in any context. The relevant Lp metrics are

Lp(f) =

[
k∑

i=1

∣∣∣∣
f0

i − fi(x)
f0

i

∣∣∣∣
p
]1/p

, 1 ≤ p ≤ ∞ (1.25)

1.7 Classifying Techniques 33

The value of p indicates the type of distance: for p = 1, all deviations from
f∗

i are taken into account in direct proportion to their magnitudes, which
corresponds to ‘group utility’ [1742, 419]. For 2 ≤ p < ∞, the larger deviations
carry greater weight in Lp; for p = ∞, the largest deviation is the only one
taken into consideration, which leads to a purely ‘individual utility’ (min-max
criterion), in which all weighted deviations are equal.

Koski [904] has suggested Lp-metrics with a normalized vector objective
function of the form

fi(x) =
fi(x) − min

x∈F
fi(x)

max
x∈F

fi(x) − min
x∈F

fi(x)
(1.26)

In this case, the values of every normalized function are limited to the
range [0,1].

Using the global criterion method one non-inferior solution is obtained. If
certain parameters wi are used as weights for the criteria, a required set of
non-inferior solutions can be found. Duckstein [416] calls this method com-
promise programming, and his Lp-metric is13

Lp(x) =

[
k∑

i=1

wp
i

∣∣∣∣
fi(x) − f0

i

fi max − f0
i

∣∣∣∣
p
]1/p

(1.27)

where wi are the weights, fi max is the worst value obtainable for criterion i;
fi(x) is the result of implementing decision x with respect to the ith criterion.

The displaced ideal technique [1752] which proceeds to define an ideal
point, a solution point, another ideal point, etc. is an extension of compromise
programming.

Another variation of this technique is the method suggested by Wierzbicki
[1703, 1705] in which the global function has a form such that it penalizes the
deviations from the so-called reference objective. Any reasonable or desirable
point in the space of objectives chosen by the decision maker can be considered
as the reference objective.

Let fr = [fr
1 , fr

2 , . . . , fr
k]T be a vector which defines this point. Then the

function which is minimized has the form

P (x, fr) = −
k∑

i=1

(fi(x − fr
i)2 +

k∑
i=1

(max(0, fi(x − fr
i)2) (1.28)

where > 0 is a penalty coefficient which in this method can be chosen as
constant.

Minimizing (1.28) for the assumed point fr a non-inferior solution which
is close to this point can be obtained. If for different points fr the procedure
is carried out, some representation of non-inferior solutions can be found.
13 Metrics for MOEA evaluation are discussed in Chapter 4.

34 1 Basic Concepts

More information on this method can be found in [1217, 1751, 1753].

Goal Programming

Charnes and Cooper [229] and Ijiri [742] are credited with the development
of the goal programming method for a linear model, and played a key role in
applying it to industrial problems. As mentioned before, this was one of the
earliest techniques specifically designed to deal with multiobjective optimiza-
tion problems.

In this method, the DM has to assign targets or goals that wishes to
achieve for each objective. These values are incorporated into the problem
as additional constraints. The objective function then tries to minimize the
absolute deviations from the targets to the objectives. The simplest form of
this method may be formulated as follows [416]:

min
k∑

i=1

|fi(x) − Ti| , subject to x ∈ Ω (1.29)

where Ti denotes the target or goal set by the decision maker for the ith
objective function fi(x), and Ω represents the feasible region. The criterion,
then, is to minimize the sum of the absolute values of the differences between
target values and actually achieved values. A more general formulation of the
goal programming objective function is a weighted sum of the pth power of the
deviation |fi(x) − Ti| [630]. Such a formulation has been called generalized
goal programming [738, 739].

Looking again to equation (1.29), the objective function is nonlinear and
the simplex method can be applied only after transforming this equation into
a linear form, thus reducing goal programming to a special type of linear
programming. In this transformation, new variables d+

i and d−i are defined
such that [229]:

d+
i =

1
2
{|fi(x) − Ti| + [fi(x) − Ti]}, (1.30)

d−i =
1
2
{|fi(x) − Ti| − [fi(x) − Ti]}, (1.31)

Adding and subtracting these equations, the following equivalent linear
formulation may be found:

min Z0 =
k∑

i=1

(d+
i + d−i), (1.32)

subject to

1.7 Classifying Techniques 35

x ∈ Ω
fi(x) − d+

i + d−i = Ti

d+
i , d−i ≥ 0, i = 1, . . . , k

(1.33)

Since it is not possible to have both under- and overachievements of the
goal simultaneously, then at least one of the deviational variables must be
zero. In other words:

d+
i · d−i = 0 (1.34)

Fortunately, this constraint is automatically fulfilled by the simplex method
because the objective function drives either d+

i or d−i or both variables simul-
taneously to zero for all i.

Sometimes it may be desirable to express preference for over- or under-
achievement of a goal. Thus, it may be more desirable to overachieve a targeted
reliability figure than to underachieve it. To express preference for deviations,
the DM can assign relative weights w+

i and w−
i to positive and negative devia-

tions, respectively, for each target Ti. If a minimization problem is considered,
choosing the w+

i to be larger than w−
i would be expressing preference for un-

derachievement of a goal.
In addition, goal programming provides the flexibility to deal with cases

that have conflicting multiple goals. Essentially, the goals may be ranked in
order of importance to the problem solver. That is, a priority factor, pi (i =
1, . . . , k) is assigned to the deviational variables associated with the goals. This
is called “lexicographic ordering” by some authors (see for example [1111]).
These factors pi are conceptually different from weights, as it is explained, for
example, in [579]. The resulting optimization model becomes

min S0 =
k∑

i=1

pi(w+
i d+

i + w−
i d−i), (1.35)

subject to

x ∈ Ω
fi(x) − d+

i + d−i = Ti

d+
i , d−i ≥ 0, i = 1, . . . , k

(1.36)

Note that this technique yields a nondominated solution if the goal point
is chosen in the feasible domain [416].

More information on this method can be found in [230, 976, 975, 738, 807].

Goal-Attainment Method

In this approach, a vector of weights w1, w2, . . . , wk relating the relative under-
or over-attainment of the desired goals must be elicited from the decision
maker in addition to the goal vector b1, b2, . . . , bk for the objective functions

36 1 Basic Concepts

f1, f2, . . . , fk. To find the best-compromise solution x∗, the following problem
is solved [550, 551]:

Minimize α (1.37)

subject to:

gj(x) ≤ 0; j = 1, 2, . . . , m

bi + α · wi ≥ fi(x); i = 1, 2, . . . , k (1.38)

where α is a scalar variable unrestricted in sign and the weights w1, w2, . . . , wk

are normalized so that

k∑
i=1

|wi| = 1 (1.39)

If some wi = 0 (i = 1, 2, . . . , k), it means that the maximum limit of
objectives fi(x) is bi.

It can be easily shown [240] that the set of nondominated solutions can
be generated by varying the weights, with wi ≥ 0 (i = 1, 2, . . . , k) even for
nonconvex problems. The mechanism by which this method operates is il-
lustrated in Figure 1.14. The vector b is represented by the decision goal of
the DM, who also decides the direction of w. Given vectors w and b, the
direction of the vector b + α · w can be determined, and the problem stated
by equation (1.37) is equivalent to finding a feasible point on this vector in
objective space which is closest to the origin. It is obvious that the optimal
solution of equation (1.37) is the first point at which b + α · w intersects the
feasible region in the objective space (denoted by F in Figure 1.14). Should
this point of intersection exist, it would clearly be a nondominated solution.

It should be pointed out that the optimum value of α informs the DM of
whether the goals are attainable or not. A negative value of α implies that
the goal of the decision maker is attainable and an improved solution is then
to be obtained. Otherwise, if α > 0, then the DM’s goal is unattainable.

For more information on this method, refer to [240, 1321].

Lexicographic Method

This is a peculiar method in which the aggregations performed are not scalar.
In this method, the objectives are ranked in order of importance by the deci-
sion maker (from best to worst). The optimum solution x∗ is then obtained
by minimizing the objective functions, starting with the most important one
and proceeding according to the order of importance of the objectives.

Let the subscripts of the objectives indicate not only the objective function
number, but also the priority of the objective. Thus, f1(x) and fk(x) denote

1.7 Classifying Techniques 37

Fig. 1.14. Goal-attainment method with two objective functions.

the most and least important objective functions, respectively. Then the first
problem is formulated as

Minimize f1(x) (1.40)

subject to

gj(x) ≤ 0; j = 1, 2, . . . ,m (1.41)

and its solution x∗
1 and f∗

1 = f(x∗
1) is obtained. Then the second problem is

formulated as

Minimize f2(x) (1.42)

subject to

gj(x) ≤ 0; j = 1, 2, . . . ,m (1.43)
f1(x) = f∗

1 (1.44)

b + α w

F

α*

F *

2b

*f2

b1 f*1

w b

f

2f

1

38 1 Basic Concepts

and the solution of this problem is obtained as x∗
2 and f∗

2 = f2(x∗
2). This

procedure is repeated until all k objectives have been considered. The ith
problem is given by

Minimize fi(x) (1.45)

subject to

gj(x) ≤ 0; j = 1, 2, . . . ,m (1.46)
fl(x) = f∗

l , l = 1, 2, . . . , i − 1 (1.47)

The solution obtained at the end, i.e., x∗
k is taken as the desired solution

x∗ of the problem.
More information on this method may be found in [1321, 1429].

Min-Max Optimization

The idea of stating the min-max optimum and applying it to multiobjective
optimization problems was taken from game theory, which deals with solving
conflicting situations. The min-max approach to a linear model was proposed
by Jutler [811] and Solich [1503]. It has been further developed by Osyczka
[1216], Rao [1320] and Tseng & Lu [1606].

The min-max optimum compares relative deviations from the separately
attainable minima. Consider the ith objective function for which the relative
deviation can be calculated from

z
′

i(x) =
|fi(x) − f0

i |
|f0

i |
(1.48)

or from

z
′′

i (x) =
|fi(x) − f0

i)|
|fi(x)| (1.49)

It should be clear that for equations (1.48) and (1.49) it is necessary to
assume that for every i ∈ I (I = 1, 2, . . . , k) and for every x ∈ Ω, fi(x) �= 0.

If all the objective functions are going to be minimized, then equation
(1.48) defines function relative increments, whereas if all of them are going
to be maximized, it defines relative decrements. Equation (1.49) works con-
versely.

Let z(x) = [z1(x), . . . , zi(x), . . . , zk(x)]T be a vector of the relative in-
crements which are defined in R

k. The components of the vector z(x) are
evaluated from the formula

∀i∈Izi(x) = max {z′

i(x), z
′′

i (x)} (1.50)

Now the min-max optimum can be defined as follows [1217]:

1.7 Classifying Techniques 39

A point x∗ ⊂ Ω is min-max optimal, if for every x ∈ Ω the following
recurrence formula is satisfied:

Step 1:

v1(x∗) = min
x∈Ω

{zi(x)}
i∈I

(1.51)

and then Ii = {i1}, where i1 is the index for which the value of z1(x) is
maximal.

If there is a set of solutions X1 ⊂ Ω which satisfies Step 1, then
Step 2:

v2(x∗) = min
x∈X1

(
max

i∈I,i �∈I1
{zi(x)}

)
(1.52)

and then I2 = {i1, i2}, where i2 is the index for which the value of zi(x) in
this step is maximal.

If there is a set of solutions Xr−1 ⊂ Ω which satisfies step r − 1 then
Step r:

vr(x∗) = min
x∈Xr−1

(
max

i∈I,i �∈Ir−1
{zi(x)}

)
(1.53)

and then Ir = {Ir−1, ir}, where ir is the index for which the value of zi(x) in
the rth step is maximal.

If there is a set of solutions Xk−1 ⊂ Ω which satisfies Step k − 1, then
Step k:

vk(x∗) = min
x∈Xk−1

zi(x) for i ∈ I and i �∈ Ik−1 (1.54)

where v1(x∗), . . . , vk(x∗) is the set of optimal values of fractional deviations
ordered non-increasingly.

This optimum can be described in words as follows. Knowing the extremes
of the objective functions which can be obtained by solving the optimization
problems for each criterion separately, the desirable solution is the one which
gives the smallest values of the relative increments of all the objective func-
tions.

The point x∗ ∈ Ω which satisfies the equations of Steps 1 and 2 may be
called the best compromise solution considering all the criteria simultaneously
and on equal terms of importance. It should be noticed that even when these
equations look quite complicated, in many optimization models, only the first
step of this process is necessary to determine the optimum.

Multiattribute Utility Theory

Von Neumann and Morgenstern [1664] developed an axiomatic utility theory
to measure individual or group preferences. Utility theory assumes that an

40 1 Basic Concepts

individual can choose among the alternatives available in such a manner that
the satisfaction derived from the choice made is as large as possible. This,
of course, implies the individual is aware of the alternatives available and is
capable of evaluating them. Moreover, relative to a vector of objectives it is
assumed all information pertaining to the various levels of the objectives can
be captured by an individual’s utility function. In effect, an individual’s
utility function is a formal, mathematical representation of the individual’s
preference structure. Multiattribute utility functions, which may be assessed
as first proposed in [835, 1315, 122, 836] integrate the objective functions into
the preference structure. The highest degree of utility with respect to all the
objectives is obtained by maximizing the utility function.

Oppenheimer [1213] distinguishes two approaches to utility maximization:
the global and the local approaches.

The global approach [834] refers to the above expected utility maxi-
mization, and ‘may force the decision maker to fit a function not truly repre-
senting’ the preference function. Nevertheless, the global approach is taken in
most multiattribute utility models.

In the local approach [556], the above-mentioned problem of locking
the decision maker into a given risk attitude is avoided by using a sequence of
local linear approximations to the utility function. To each step pertains a trial
solution representing an improvement over its predecessor, so that eventually,
the sequence reaches its optimum.

The main drawback of this approach is that the DM has to spend a lot
of time building single-attribute utility functions. Then, the DM has to make
sure that the ‘corner utilities’ are assessed; the latter makes it possible to
combine the single attribute utilities ui(xi) into one function u(x).

To illustrate the assessment task, let four attributes, x1, x2, x3, and x4,
be, respectively, the weight W , probabilities of failure (1 − r) = pf , cost
k, and deflection ∆ of a structure. The first task is to assess the function
ui(xi), i = 1, 2, 3, 4; this can be best done by means of lotteries of the type:

Ke ∼ ����

����

Kmin

0.5

Kmax0.5

In words, given a lottery in which maximum cost kmax and minimum cost
kmin may be obtained with equal probability 0.5 (for example), which value ke

would the DM accept as a ‘certainty equivalent’? Furthermore, if the axioms
of von Neumann and Morgenstern are satisfied, it can be proved [1665] that
a utility function u(·) exists, leading to the equation:

u(ke) = 0.5u(kmax) + 0.5u(kmin) (1.55)

Utility functions are defined within a positive linear transformation and
one usually sets u(kmax) = 0 and u(kmin) = 1 so that u(ke) = 0.5. This proce-

1.7 Classifying Techniques 41

dure is continued in the intervals (kmax, ke), (ke, kmin), and overlapping inter-
vals, until a satisfactory piecewise-linear approximation of the utility function
is obtained.

If the attributes W , 1 − r, k and ∆ are mutually utility independent, the
function u(x) is given by [836]:

1 + ku(x) =
k∏

i=1

[1 + kkiui(xi)] (1.56)

Verification of the utility independence hypothesis, assessment of the
ki (i = 1, 2, 3, 4), and consistency check require a further series of lotter-
ies. However, even when a lot of effort is required to construct u(x), it may
be worth it in large and costly systems [416].

For more information on this method, refer to [559, 909].

Surrogate Worth Trade-Off

This method, proposed in [631], is a variant of the trade-off method in which
objective trade-offs are used as the information carrier and the DM responds
by expressing a degree of preference over the prescribed trade-offs by assigning
numerical values to each surrogate worth function. These functions are used to
construct a single objective problem. First, the set of strictly nondominated or
efficient solutions is generated, say by any multiobjective optimization tech-
nique (normally, the ε-constraint technique is used). Then a search along the
efficient boundary is performed using a surrogate worth function. Note the dif-
ference between this method, which stays on the Pareto optimum boundary,
and compromise programming or game theory, in which the Pareto optimum
set is approached, respectively, from the infeasible and the feasible regions.

The trade-off function for any two objectives evaluated at a given efficient
solution x is:

Tij(x) =
∂fi(x)
∂fj(x)

(1.57)

As can be seen from equation (1.57), this method can only be applied
when all the objective functions are differentiable.

The surrogate worth function, Wij , i �= j, i, j = 1, 2, . . . , n, is defined
as a function of the desirability of the trade-off λij on a scale. For example,
if a scale ranging from −10 to +10 is used, a (−10) would indicate that λij

marginal units of objective i are worth very much less than one marginal unit
of objective j, a (+10) means the opposite, and a zero indicates an even trade-
off. The best solution is found when all surrogate worth functions are equal
to zero. A complete description of this technique can be found in [630], and
an abbreviated version, in [579].

The main advantage of this technique resides in its sound theoretical basis
and on its several applications reported in the literature [629, 628, 330, 1209].

42 1 Basic Concepts

On the other hand, computational requirements are non-trivial, and much
input is required from the DM.

In general, it can said that the trade-off methods have two main disadvan-
tages [1217]:

• They cannot be used to solve non-convex problems, and
• they allow a satisfactory solution to be found only in a certain region of

Pareto optimal solutions, but do not provide a general outlook on the
possible range of objectives, and thus the final decision is influenced by
the starting point chosen.

ELECTRE

This technique (in its different versions) is applicable to problems that have a
discrete predefined set of alternatives in which some of the evaluation criteria
are non-quantifiable, i.e., the criteria can only be ranked ordinally or, with
additional information, on a ratio or interval scale.

ELECTRE I (elimination and (et) choice translating algorithm) was de-
veloped by Benayoun et al. [117]. This technique was improved by Roy [1384]
and it has been applied, for example, to water-related problems [336, 419, 417].
The idea is to choose those systems which are preferred for at least a plurality
of the criteria and yet do not cause an unacceptable level of discontent for
any one criterion. This methodology leans on three concepts: concordance,
discordance, and threshold values.

The concordance between any two systems i and j is a weighted measure
of the number of criteria for which action i is preferred to action j (denoted
i � j) or for which action i is equal to action j (denoted i ∼ j) and is given
as:

C(i, j) =

∑
k∈A(i,j) w(k)∑

k w(k)
, (1.58)

where w(k) is the weight of criterion k, k = 1, . . . ,K, and A(i, j) = {k|i �
j}. The weights, which are given by the DM, reflect a set of preferences.
Concordance may be considered as the weighted percentage of criteria for
which one action is preferred to another. Note that, by construction, 0 ≤
C(i, j) ≤ 1.

Determination of the discordance between i and j requires that an inter-
val scale common to each criterion be defined. The scale is used to compare
the discomfort caused between the ‘worst’ and the ‘best’ criterion value for
each pair of alternatives. A range may be chosen where the ‘best’ rating would
be assigned the highest value of the range and the ‘worst’ rating would receive
the lowest value of the range. Each criterion, however, can have a different
range to reflect the ‘leeway’ available for that criterion [416]. The problem of
applying a ratio scale to an ordinal criterion presents theoretical difficulties
which are fully addressed in [1753, 1362]. Essentially, evaluations of the type

1.7 Classifying Techniques 43

(a, b, c, d) may be assigned in an analogous way in which grades are assigned
to students. The discordance index is defined as:

D(i, j) =
max

k=1,K
(Z(j, k) − Z(i, k))

R∗ (1.59)

where Z(j, k) is the evaluation of alternative j with respect to criterion k,
and R∗ is the largest of the K criterion scales. Again, by construction, 0 ≤
D(i, j) ≤ 1.

7

6

5

3

4

1

2

Fig. 1.15. Example of an ELECTRE graph. Each node corresponds to a non-
dominated alternative. The arrows indicate preferences. Therefore it can said that
alternative 1 is preferred to alternative 2, alternative 4 is preferred to alternative 5,
etc.

To synthesize both, the concordance and discordance matrices, threshold
values (p, q) between zero and one, are defined by the DM. Using a geometric
representation, the preference relationships define a transitive and complete
graph (G) for each criterion, in which nodes are alternatives and arcs are
directed as the preference sign �. In the case of i ∼ j, one arc is drawn from i
to j and another from j to i. The arc set A of the composite graph (Γ) which
synthesizes both concordance and discordance relationships, is given by:

a(i, j) ∈ A ⇔ (C(i, j) > p) ∩ (D(i, j) < q) (1.60)

Figure 1.15 shows an example of the type of graph that ELECTRE I uses.
In choosing the value of p, the problem solver specifies how much ‘concordance’
is wanted: p = 1 corresponds to full concordance, which means that i should
be preferred or equivalent to j in terms of all criteria. By choosing q, the

44 1 Basic Concepts

amount of tolerable ‘discordance’ is specified: q = 0 means no discordance. It
is possible that some choices of p and q may eliminate all alternative systems.
If this is the case, the values of p and/or q must be restated. It is also possible
for cycles to occur in the composite graph (Γ) of ELECTRE I. In such cases
the nodes along the cycle are collapsed into one new node, which is equivalent
to assigning the same ranking to those systems.

The preference graph (Γ) of ELECTRE I thus yields a partial ordering of
the alternative systems. On the other hand, ELECTRE II [1384, 417], may
be used to obtain a complete ordering, as in [418]. Briefly, ELECTRE II is
based on two preference graphs representing the strong preferences (high p and
low q) and the weak preferences (lower p and higher q). The weak preferences
can be viewed as lower bounds on system performance that the DM is willing
to accept. ELECTRE III [1390] uses a credibility index, which is modelled
by a fuzzy number. This index is used to associate a value to the outranking
relation. In ELECTRE IV [1390], no weights are assigned to the criteria. In
this version, four indices of credibility may be assigned to the values of the
outranking relations. There are two other versions of ELECTRE: one called
ELECTRE TRI, which is customized for a sorting decision problem (it
uses conjunctive and disjunctive techniques to assign different alternatives to
different categories), and ELECTRE IS, which really consists of ELECTRE
I plus the use of discriminating thresholds [1390]. The fact that most of the
information about some versions of ELECTRE (for example, versions III and
IV) is available only in French has certainly limited its use [1386, 1488, 1390]

ELECTRE has been applied to a substantial number of practical problems
with a predetermined finite set of alternatives evaluated in terms of ordinal
(quantitative or qualitative) criteria, and could be most useful to solve mul-
tiobjective optimization problems that have those characteristics, since the
technique is robust, simple, requires little input from the DM, and usually
leads to plausible results.

The technique, however, has also been criticized. Brans & Vincke [168]
criticize the ELECTRE methods precisely because of the parameters that
they require. They argue that even though some of these parameters have
a real economic meaning and can, therefore, be fixed clearly, some others
(such as concordance discrepancies and discrimination thresholds) playing an
essential role in the procedures only have a technical character and their in-
fluence on the results is not always well understood. Moreover, in some of the
ELECTRE methods, the notion of “degree of credibility” is rather difficult
for practitioners [168].

More information on this method can be found in [1142, 1143, 1383, 1384,
1389, 579, 1390, 1658, 487].

1.7 Classifying Techniques 45

PROMETHEE

The PROMETHEE methods (Preference Ranking Organization METHod for
Enrichment Evaluations) belong to the family of outranking methods (i.e.,
ELECTRE) introduced by B. Roy. These methods include two phases [169]:

• The construction of an outranking relation on the different criteria or
objectives of the problem.

• The exploitation of this relation in order to give an answer to the multi-
criteria optimization problem.

In the first phase, a valued outranking relation based on a generalization
of the notion of criterion is considered: a preference index is defined and a
valued outranking graph, representing the preferences of the DM (six types
of functions are used to express these preferences), is obtained.

The exploitation of the outranking relation is realized by considering for
each action a leaving and an entering flow in the valued outranking graph:
a partial preorder (PROMETHEE I) or a complete preorder (PROMETHEE
II) on the set of possible actions can be proposed to the DM in order to solve
the decision problem.

In the PROMETHEE methods, Brans proposes an approach that is “very
simple and easy to understand by the decision maker” according to him. This
method is based on extensions of the notion of criterion. These extended
criteria can be easily built by the DM because they represent the natural
notion of intensity of preference, and the parameters to be fixed (maximum
two) have a real economic meaning.

More information on this method may be found in [168, 337, 420, 1063,
169, 167].

More recently, Huylenbroeck [730] proposed the so-called Conflict Analy-
sis Model, that combines the preference function approach of ELECTRE and
PROMETHEE with the conflict analysis test of a method called ORESTE
(this technique provides an outranking relation by using as its input ordinal
evaluations of the alternatives and the ranking of the criteria as a function
of their relative importance) [1381, 1261]. Also, Martel et al. [1076] pro-
posed a technique called PAMSSEM (Procédure d’Agrégation Multicritére de
type Surclassement de Synthèse pour Évaluations Mixtes), which is based on
ELECTRE and PROMETHEE, and can handle non deterministic and fuzzy
criteria evaluations [937]. Finally, there is another technique called NAIADE
(Novel Approach to Imprecise Assessment and Decision Environments) [1148],
which uses a distance operator to obtain pairwise comparisons of the alterna-
tives available to the DM. These comparisons are modelled as fuzzy numbers.
The aggregation procedure used by this technique produces incoming and
outgoing flows as in PROMETHEE.

46 1 Basic Concepts

1.7.2 A Posteriori Preference Articulation

These techniques do not require prior preference information from the DM.
Some of the techniques included in this category are among the oldest mul-
tiobjective optimization approaches proposed. The reason is that the main
idea of these approaches follows directly from the Kuhn-Tucker conditions for
noninferior solutions [289].

Linear Combination of Weights

Zadeh [1746] was the first to show that the third of the Kuhn-Tucker condi-
tions for noninferior solutions implies that these noninferior solutions might be
found by solving a scalar optimization problem in which the objective function
is a weighted sum of the components of the original vector-valued function.
That is, the solution to the following problem is, in general, noninferior:

min
k∑

i=1

wifi(x) (1.61)

subject to:

x ∈ Ω (1.62)

where wi ≥ 0 for all i and is strictly positive for at least one objective.
The noninferior set and the set of noninferior solutions can be generated by
parametrically varying the weights wi in the objective function. This was
initially demonstrated by Gass and Saaty [546] for a two-objective problem.

Note that the weighting coefficients do not reflect proportionally the rel-
ative importance of the objectives, but are only factors which, when varied,
locate points in the Pareto optimal set. For the numerical methods that can
be used to seek the minimum of equation (1.61), this location depends not
only on wi values, but also on the units in which the functions are expressed.

The ε-Constraint Method

This method also follows directly from the Kuhn-Tucker conditions for non-
inferior solutions. Equation (1.15) can be rewritten as:

wr∇fr(x) +
k∑

l=1, l �=r

wl∇fl(x) −
m∑

i=1

λi∇gi(x) = 0 (1.63)

Since only relative values of the weights are of significance, the rth objec-
tive can be selected so that wr = 1. The previous condition defined in equation
(1.63) then becomes:

1.7 Classifying Techniques 47

∇fr(x)
k∑

l=1, l �=r

wl∇f(x) −
m∑

i=1

λi∇gi(x) = 0 (1.64)

This rewritten condition allows the second term to be interpreted as a
weighted sum of the gradients of k− 1 lower-bound constraints, since there is
a plus sign before the summation. This interpretation implies that noninferior
solutions can be found by solving:

minfr(x) (1.65)

subject to:

fl(x) ≤ εl for l = 1, 2, . . . , k and l �= r (1.66)

where εl are assumed values of the objective functions that must not be ex-
ceeded.

The idea of this method is to minimize one (the most preferred or primary)
objective function at a time, considering the other objectives as constraints
bound by some allowable levels εl. By varying these levels εl, the noninferior
solutions of the problem can be obtained.

It is important to be aware of the fact that a preliminary analysis is re-
quired to identify proper starting values for εl. To get adequate εl values,
single-objective optimizations are normally carried out for each objective func-
tion in turn by using mathematical programming techniques.

This method, also known as trade-off method, because of its main con-
cept of trading a value of one objective function for a value of another function,
is further explained in [1217, 1019, 211, 733].

1.7.3 Progressive Preference Articulation

These techniques normally operate in three stages [289]: (1) find a nondomi-
nated solution, (2) get the reaction of the DM regarding this nondominated
solution, and modify the preferences of the objectives accordingly, and (3)
repeat the two previous steps until the DM is satisfied or no further improve-
ment is possible.

Probabilistic Trade-Off Development Method

The main motivation of this method (also known as PROTRADE) was to
be able to handle risk in the development of the objective trade-offs, and at
the same time being able to accommodate the preferences of the DM in a
progressive manner [577].

In this case, it is assumed that our multiobjective optimization problem
has a probabilistic objective function and probabilistic constraints [576]. Ac-
cording to a 12-step algorithm, an initial solution is found using a surrogate

48 1 Basic Concepts

objective function, then a multiattribute utility function is formed leading to
a new surrogate objective function and a new solution. The solution is checked
to see if it is satisfactory to the decision maker. The process is repeated until
a satisfactory solution is reached, as described in [578, 579].

The results of the multiobjective optimization provide not only levels of at-
tainment of the objective function elements (as in the goal attainment method
[550]), but also the probabilities of reaching those levels. The technique is in-
teractive, which means that the DM formulates a preference function in a
progressive manner, after a trial process [416].

One interesting aspect of this approach is that the DM actually ranks
objectives in order of importance (a multi-attribute utility function is used
to assist the DM in the articulation of preferences) at the beginning of the
process, and later uses pairwise comparisons to reconcile these preferences
with the “real” (observed) behavior of the attributes. This allows not only
an interactive participation of the DM, but it also allows to gain knowledge
about the trade-offs of the problem.

More information on this method may be found in [577, 579].

STEP Method

This method (also known as STEM) is an iterative technique based on the
progressive articulation of preferences. The basic idea is to converge toward
the ‘best’ solution in the min-max sense, in no more than k steps, being k
the number of objectives. This technique, which is mostly useful for linear
problems, starts from an ideal point and proceeds in six steps, as summarized
by Cohon [288]:

1. Construct a table of marginal solutions (strictly nondominated if unique),
by optimizing each objective function separately.

2. Compute, for each objective:

α(i) =
M(i) − m(i)

M(i)

⎡
⎣

J∑
j=1

c(i, j)

⎤
⎦

2

, (1.67)

where
M(i) = max fi(x), m(i) = min fi(x), and c(i, j) = cost coefficient of ith
linear objective.
Let the iteration index k = 0

3. Compute
∏

(i) = α(i)/
∑

α(i) and solve the min-max problem. Call the
solution x(k).

4. Show the solution to the DM:
a) if satisfied, STOP;
b) if not satisfied and k < p − 1, go to Step 5;
c) if not satisfied and k > p− 1, STOP. A different procedure or at least

a redefinition of the problem is required.

1.7 Classifying Techniques 49

5. The DM selects an objective satisfied by the solution and determines
the amount by which it can be decreased in order to improve the other
objectives. If this cannot be done, some other approach is again required.

6. Define a new constraint relaxing the objective selected in Step 5. Set
α(i) = 0 for that objective, increment k by one, and go to Step 3.

One criticism to this technique is the fact that it assumes that a best-com-
promise solution does not exist if it is not found after the k steps that the
iterative process above described was executed. This does not give any clue
to the DM of what to do [289]. Another problem is that it does not explicitly
capture the trade-offs between the objectives. The weights in no way reflect a
value judgment on the part of the DM. They are artificial quantities, generated
by the analyst to reflect deviations from an ideal solution, which is itself an
artificial quantity. This definition of the weights serves to obscure rather than
capture the normative nature of the multiobjective optimization problems
[289].

More details of this technique may be found in [289, 1547, 116].

Sequential Multiobjective Problem Solving Method

This method (also known as SEMOPS) was proposed by Monarchi et al. [1121]
and it basically involves the DM in an interactive fashion in the search for a
satisfactory course of action.

A surrogate objective function is used based on the goal and aspiration
levels of the DM. The goal levels are conditions imposed on the DM by external
forces, and the aspiration levels are attainment levels of the objectives which
the DM personally desires to achieve. One would say, then, that goals do not
change once they are stated, but that the aspiration levels may change during
the iteration process. The development of the algorithm is summarized as
follows [579]:

The decision problem consists of k goals, n decision variables, and a feasi-
ble region Ω. Associated with each of the goals is an objective function which
can be used to predict goal attainment or nonattainment. The set of all p
objective functions is written as z = (z1, z2, . . . , zk), and it is used to judge
how well the k goals have been achieved. The range of the ith element of z is
denoted by Λzi = [ziL, ziu], which is not necessarily defined by the maximum
and minimum values of the ith objective function. It is required that Ω be con-
tinuous and that all objective and constraint functions be at least first-order
differentiable. Thus the constraint or objective functions may be nonlinear.
Nondimensionality is achieved by transforming zi(x) into yi(x) with a range
of values in the interval [0, 1] such that

yi(x) =
zi(x) − ziL

ziu − ziL
(1.68)

Similarly, let AL = (AL1, AL2, . . . , ALk) denote the vector of aspiration
levels. Then, the transformation

50 1 Basic Concepts

Ai =
ALi − ziL

ziu − ziL
(1.69)

can be used to define Ai with values in the range [0, 1].
Monarchi [1120] suggests the use of the following transformations:

1. At most

zi(x) ≤ ALi; di =
zi(x)
ALi

=
yi(x)
Ai

(1.70)

2. At least

zi(x) ≥ ALi; di =
ALi

zi(x)
=

Ai

yi(x)
(1.71)

3. Equals

zi(x) = ALi; di =
1
2

[
ALi

zi(x)
+

zi(x)
ALi

]
=

1
2

[
Ai

yi(x)
+

yi(x)
Ai

]
(1.72)

4. Within an interval

ALiL ≤ zi(x) ≤ ALiU ; di =
[

ALiU

ALiL + ALiU

] [
ALiL

zi(x)
+

zi(x)
ALiU

]
(1.73)

In each instance, values of di ≤ 1 imply that the ith objective is satisfied.
It is also noted that, except for the first type, the di are nonlinear functions
of the ith objective.

Operationally, SEMOPS is a three-step procedure involving setup, itera-
tion, and termination. Setup involves structuring a principal problem and a
set of auxiliary problems with a surrogate objective function. The iteration
step involves cycling between an optimization phase (by the analyst), and an
evaluation phase (by the DM) until a satisfactory solution is reached, if it
exists. The procedure terminates when either a satisfactory solution is found,
or the DM concludes that none of the nondominated solutions obtained are
satisfactory and gives up in the search.

For the first iteration, then, the principal problem and set of k auxiliary
problems shown below are solved:
Principal problem

min s1 =
k∑

i=1

di (1.74)

subject to

1.8 Using Evolutionary Algorithms 51

x ∈ Ω (1.75)

and the set of auxiliary problems, l = 1, 2, . . . , k.

min s1l =
k∑

i=1,i �=l

di (1.76)

subject to

x ∈ Ω (1.77)

zl(x) ≥ ALl (1.78)

The resulting solutions are used in the evaluation process to assist the DM
to determine the “direction of change” for the next iteration.

More information on this method can be found in [1121, 579].
Other methods that also rely on the progressive articulation of preferences

have been proposed in [864, 1433, 1043, 114].

1.8 Using Evolutionary Algorithms

The potential of evolutionary algorithms for solving multiobjective optimiza-
tion problems was hinted as early as the late 1960s by Rosenberg in his PhD
thesis [1375]. Rosenberg’s study contained a suggestion that would have led
to multiobjective optimization if he had carried it out as presented. His sug-
gestion was to use multiple properties (nearness to some specified chemical
composition) in his simulation of the genetics and chemistry of a population
of single-celled organisms. Since his actual implementation contained only one
single property, the multiobjective approach could not be shown in his work.

The first actual implementation of what it is now called a multi-objective
evolutionary algorithm (or MOEA, for short) is credited to David Schaffer,
who proposed the Vector Evaluation Genetic Algorithm (VEGA), in 1984 (in
his PhD thesis [1439]). VEGA was mainly aimed for solving problems in ma-
chine learning [1439, 1440, 1441]. There is, however, a (rarely mentioned) ear-
lier attempt to use a genetic algorithm to solve a multi-objective optimization
problem which dates back from 1983 (see [764]).

Schaffer’s work was presented at the First International Conference on Ge-
netic Algorithms [1440]. Interestingly, his simple unconstrained two-objective
functions became the usual test suite to validate most of the evolutionary mul-
tiobjective optimization techniques developed during several of the following
years [1509, 709].

Evolutionary algorithms seem particularly suitable to solve multiobjective
optimization problems, because they deal simultaneously with a set of possible
solutions (the so-called population). This allows to find several members of

52 1 Basic Concepts

the Pareto optimal set in a single “run” of the algorithm, instead of having to
perform a series of separate runs as in the case of the traditional mathematical
programming techniques [261]. Additionally, evolutionary algorithms are less
susceptible to the shape or continuity of the Pareto front (e.g., they can easily
deal with discontinuous or concave Pareto fronts), whereas these two issues are
a real concern for mathematical programming techniques. Also, while many
optimization approaches from those described in Section 1.4 were developed
for searching intractably large spaces, traditional MOP solution techniques
generally assume small, enumerable search spaces [706]. More simply, some
MOP solution approaches focus on search and others on multi-criteria deci-
sion making (MCDM). MOEAs are then very attractive MOP solution tech-
niques because they address both search and multiobjective decision making.
Additionally, they have the ability to search partially ordered spaces for sev-
eral alternative trade-offs. Many researchers have successfully used MOEAs
to find good solutions for complex MOPs (see Chapter 7).

A MOEA’s defining characteristic is the set of multiple objectives being si-
multaneously optimized. Otherwise, a task decomposition clearly shows little
structural difference between the MOEA and its single-objective EA counter-
parts. The following definition and figures explain this relationship.

Definition 20 (Multiobjective Evolutionary Algorithm) : Let Φ :
I −→ R

k, (k ≥ 2, a multiobjective fitness function). If this multiobjective
fitness function is substituted for the fitness function in Definition 1.13 then
the algorithm shown in Figure 1.13 is called a Multiobjective Evolutionary
Algorithm. �

Figures 1.16 and 1.17 respectively show a general EA’s and MOEA’s task
decomposition. The major differences are noted as follows. By definition, Task
2 in the MOEA case computes k (where k ≥ 2) fitness functions. In addition,
because MOEAs expect a single fitness value with which to perform selection,
additional processing is sometimes required to transform MOEA solutions’
fitness vectors into a scalar (Task 2a). Although the various transformation
techniques vary in their algorithmic impact (see Section 6.3.8 from Chapter 6)
the remainder of the MOEA is structurally identical to its single-objective
counterpart. However, this does not imply the differences are insignificant.

General EA Tasks

1. Initialize Population
2. Fitness Evaluation
3. Recombination
4. Mutation
5. Selection

1 32 4 2 5

Loop

Sequential Decomposition

Fig. 1.16. Generalized EA Task Decomposition

1.8 Using Evolutionary Algorithms 53

 General MOEA Tasks

1. Initialize Population
2. Fitness Evaluation

2a. Vector/Fitness Transformation
3. Recombination
4. Mutation
5. Selection

Sequential Decomposition

1 32 4 2a 5

Loop

22a(1, 2, ..., k) (1, 2, ..., k)

Fig. 1.17. MOEA Task Decomposition

1.8.1 Pareto Notation

A MOEA’s algorithmic structure can easily lead to confusion (e.g., multi-
ple, unique populations) when identifying or using Pareto concepts. In fact,
MOEA researchers have erroneously used Pareto terminology in the literature
suggesting a more precise notation is required. During MOEA execution, a
“current” set of Pareto optimal solutions (with respect to the current MOEA
generational population) is determined at each EA generation and termed
Pcurrent(t), where t represents the generation number. Many MOEA imple-
mentations also use a secondary population storing nondominated solutions
found through the generations [1628, 1626] (see also Section 2.2.4 from Chap-
ter 2). Because a solution’s classification as Pareto optimal depends upon
the context within which it is evaluated (i.e., the given set of which it is a
member), corresponding vectors of this set must be (periodically) tested and
solutions whose associated vectors are dominated removed.

This secondary population is named Pknown (t). This term is also annotated
with t to reflect its possible changes in membership during MOEA execution.
Pknown (0) is defined as the empty set (∅) and Pknown alone as the final set of
solutions returned by the MOEA at termination. Different secondary popula-
tion storage strategies exist; the simplest is when Pcurrent (t) is added at each
generation (i.e., Pcurrent (t) ∪ Pknown (t − 1)). At any given time, Pknown (t)
is thus the set of Pareto optimal solutions yet found by the MOEA through
generation t. Of course, the true Pareto optimal set (termed Ptrue) is not
explicitly known for problems of any difficulty. Ptrue is implicitly defined by
the functions composing an MOP; it is fixed and does not change. Because
of the manner in which Pareto optimality is defined Pcurrent(t) is always a
non-empty solution set (see Theorem 1 in Chapter 6).

54 1 Basic Concepts

Pcurrent(t), Pknown , and Ptrue are sets of MOEA genotypes;14 each set’s cor-
responding phenotypes form a Pareto front.15 The associated Pareto front for
each of these solution sets is called PFcurrent(t), PFknown , and PFtrue . Thus,
when using a MOEA to solve MOPs, the implicit assumption is that one of
the following holds: Pknown = Ptrue , Pknown ⊂ Ptrue , or {ui ∈ PFknown ,uj ∈
PFtrue | ∀i, ∀j min[distance(ui,uj)] < ε}, where distance is defined over
some norm (Euclidean, RMS, etc.).

1.8.2 MOEA Classification

Many successful MOEA approaches are predicated upon previously imple-
mented mathematical MOP solution techniques. As seen in Section 1.6, the
OR field proposed several methods well before 1985 [289, 732, 1522]. Their
Multiple Objective Decision Making (MODM) problems are closely related to
design MOPs. These problems’ common characteristics are a set of quantifi-
able objectives, a set of well-defined constraints, and a process of obtaining
trade-off information between the stated objectives (and possibly also between
stated or non-stated non-quantifiable objectives) [732].

Various MODM techniques are commonly classified from a DM’s point
of view (i.e., how the DM performs search and decision making). Cohon &
Marks [289] further distinguish methods between two types of DM: a single
DM/group or multiple DMs with conflicting decisions. Here, it has been con-
sidered that the DM is either a single DM or a group, but a group united in
its decisions.

Because the set of solutions a DM is faced with are often “compromises”
between the multiple objectives some specific compromise choice(s) must be
made from the available alternatives. Thus, the final MOP solution(s) results
from both optimization (by some method) and decision processes. MOEA-
based MOP solution techniques are classified here as many OR researchers
do, defining three variants of the decision process [289, 732] where the final
solution(s) results from a DM’s preferences being made known either before,
during, or after the optimization process. Thus, the same classification of
techniques described in Section 1.7 from this chapter has been adopted for
MOEA-based MOP solution techniques.

Basic techniques below this top level of the MODM hierarchy may be com-
mon to several algorithmic research fields. However, the discussion is limited
to implemented MOEA techniques. A hierarchy of the known MOEA tech-
niques is shown in Figure 1.18 where each is classified by the different ways
in which the fitness function and/or selection is treated.

14 Horn [706] uses Ponline , Poffline , and Pactual instead of Pcurrent(t), Pknown , and Ptrue .
The notation presented here is more precise, allowing for each set’s generational
specification.

15 Note that when describing MOEAs, genotype refers to decision variable space,
whereas phenotype refers to objective function space.

1.9 Summary 55

Existing MOEA Solution Techniques

A Priori
(Before)

Progressive
(During)

A Posteriori
(Generating)

Aggregation (Ordering)

Lexicographic

Aggregation (Scalarization)

Linear Fitness Combination

Nonlinear Fitness Combination

Independent Sampling

Aggregation Selection

Criterion Selection

Cooperative Search

Pareto Selection
-- Ranking
-- Ranking and Niching
-- Demes
-- Elitist

Interactive

-- Multiplicative
-- Target Vector
-- Minimax

Hybrid Selection

Fig. 1.18. MOEA Solution Technique Classification

1.9 Summary

This chapter contains the basic definitions and formal notation that are
adopted throughout this book. Formal definitions of the general multiobjec-
tive optimization problem and the concept of Pareto optimum are provided.
Other related concepts such as Pareto optimal set, ideal vector, Pareto front,
weak and strict Pareto optimality are also introduced. After that, some in-
troductory material on evolutionary computation is discussed, as well as a
short historical review of the origins of multiobjective optimization and a
taxonomy of approaches suggested by operations researchers to tackle these
types of problems. Several representative approaches from this taxonomy are
also described and criticized. This chapter ends with a short discussion on
the main motivation to use evolutionary algorithms to solve MOPs together
with a description of the Pareto notation and MOEA classification adopted
throughout this book.

Further Explorations

Class Exercises

1. Enumerate the main advantages and limitations of mathematical pro-
gramming techniques for multiobjective optimization.

2. Most mathematical programming techniques operate only with a single
solution at a time. Do you think that there would be any advantages if
a set of solutions was manipulated at a time instead of only one? Would
that require any changes in the mathematical programming algorithms
that you are familiar with? Discuss.

3. Sketch an algorithm to generate nondominated solutions and execute by
hand. Discuss possible ways of improving the computational efficiency of
this algorithm (see for example [120, 361]).

4. Discuss the main components of an evolutionary algorithm. Indicate its
potential advantages and disadvantages as an optimizer.

5. Indicate possible situations in which an a priori preference articulation
scheme would be preferred over an a posteriori scheme and vice versa.

6. Do you think that interactive approaches (i.e., those using a progressive
preference articulation scheme) are a better choice (in the general case)
than either a priori or a posteriori approaches? Discuss.

Class Software Projects

1. Implement goal programming using any single-objective optimization
technique you wish (see for example [1324]). Test your implementation
with the example presented in Section 1.3. How efficient is this technique
at finding the true Pareto front of this problem? How much parameter-
setting is involved in the process? How many times do you need to run
the program to produce a reasonably good Pareto front?

2. Implement a simple genetic algorithm (see [581] for implementation de-
tails), and apply it to a single-objective optimization problem. Justify your

58 Further Explorations

choice of encoding (of decision variables), and genetic operators (i.e., type
of crossover and mutation). Then, consider a problem with two objective
functions, such as the one discussed in Section 1.3. Use a simple linear
combination of weights (see Section 1.7.1) to solve this problem with your
genetic algorithm. What problems do you see with this approach when
attempting to generate the Pareto front of a problem? Suggest a way of
keeping “diversity” in the population (i.e., avoid that the entire population
converges to a single point). Do you consider this approach appropriate to
deal with any number of objectives? One of the main reasons why the use
of a simple linear combination of weights is not recommended, is because
it can be proved that this approach cannot generate concave portions of
the Pareto front regardless of the weights used (see for example [329]).
Do you consider this as a major drawback in the sort of multiobjective
optimization problems that you wish to solve?

3. Use the same genetic algorithm implemented in the previous problem, and
now couple it with compromise programming (see Section 1.7.2). This ap-
proach uses a nonlinear combination of weights. Do you see any advantage
in doing this with respect to the use of a linear combination of weights?
Does compromise programming have the same problems than a simple lin-
ear combination of weights? What extra information does the approach
require? Is it difficult to obtain it?

4. Repeat the two previous questions, but using a multi-membered evolu-
tion strategy. Justify your choice of recombination operator and selection
scheme (plus or comma). See [1460] for implementation details.

5. Choose a set of five mathematical programming techniques used for mul-
tiobjective optimization (see for example [1111]), and implement them.
Then test them using two of the (unconstrained) test functions presented
in Chapter 4. Plot the Pareto fronts obtained and compare (graphically)
your results with respect to the true Pareto fronts of each test function
(obtained by enumeration). What advantages and disadvantages (if any)
do you see in these methods? Do they present any limitations? Discuss.

Discussion Questions

1. An obvious problem with multiobjective optimization techniques is that
they could generate the same element of the Pareto optimal set several
times. Investigate possible ways of dealing with this problem. See for ex-
ample:
Michael A. Rosenman and John S. Gero, “Reducing the Pareto optimal
set in multicriteria optimization”, Engineering Optimization, Vol. 8, pp.
189–206, 1985.

2. What are the main differences between the multiobjective optimization
techniques used for combinatorial optimization problems and those used

Further Explorations 59

for numerical optimization? What is the role of local search in the first
class of problems? See for example [429, 430, 431, 532, 879, 1615].

3. Read:
W. Stadler, “Initiators of Multicriteria Optimization”, In J. Jahn and
W. Krabs, editors, Recent Advances and Historical Development of Vector
Optimization, pages 3–47. Springer-Verlag, Berlin, 1986.
What areas of research are identified by Stadler in this paper? Describe
briefly each of them. Do you think that these research areas are still rea-
sonably active nowadays?

4. Read:
Dylan F. Jones and Mehrdad Tamiz, “Goal Programming in the Period
1990-2000”, in Matthias Ehrgott and Xavier Gandibleux (editors), Multi-
ple Criteria Optimization. State of the Art Annotated Bibliographic Sur-
veys, pp. 129–170, Kluwer Academic Publishers, 2002.

Explain with your own words the following variants of goal programming:
a) Weighted Goal Programming
b) Lexicographic Goal Programming
c) Tchebycheff Goal Programming

5. Several authors (see for example [416, 841]) have proposed the following
criteria to classify multiobjective optimization techniques:
• marginal vs. non-marginal difference between alternatives
• quantitative vs. ordinal qualitative criteria
• prior vs. progressive articulation of preferences
• interactive vs. non-interactive
Investigate each of these criteria and classify the approaches discussed in
this chapter based on them.

6. Investigate what is the “nadir objective vector” and indicate how can
be estimated. Can you find in the specialized literature a multiobjective
optimization technique that uses this concept? Can you think of some
possible applications for the nadir objective vector?

7. Discuss the GUESS method described by Buchanan [182]. Provide its
algorithm and indicate its advantages and disadvantages. Discuss some
possible applications of this technique.

8. Look at your local library for some papers on mathematical programming
techniques used for multiobjective optimization. Analyze the sort of test
functions normally used to validate results and discuss the methodology
adopted by operational researchers. Discuss.

9. Investigate what is the chi-square distribution. If it is assumed that there
are several elements of the Pareto optimal set of a problem available (ob-
tained, perhaps, by enumeration), how could you use a chi-square dis-
tribution to measure the effectiveness of a multiobjective optimization
technique?

60 Further Explorations

10. Fliege & Svaiter [492] proposed steepest descent methods for uncon-
strained multiobjective optimization and a “feasible descent direction”
method for constrained problems. Discuss the requirements of the ap-
proach and its possible implementation difficulties. What are the main
advantages provided by this sort of approach? Discuss.

11. Read the survey on nonlinear multiobjective programming by Tanino &
Kuk [1573] and discuss the following issues:
• Optimality conditions
• Duality (both Lagrange and Conjugate)
• Stability and sensitivity analysis

12. Read about interactive nonlinear multiobjective optimization procedures
(see for example [1110, 1111]). Discuss at least two approaches not covered
in this chapter (for example, light beam search [785, 786] and the reference
direction approach [902]).

13. An active application domain in which a considerable amount of work has
been done in the last few years is multicriteria scheduling (see for example
[1588]). Choose a particular type of multicriteria scheduling problem and
discuss its definition, complexity and modeling.

2

MOP Evolutionary Algorithm Approaches

An algorithm must be seen to be believed.

Donald Knuth

2.1 Introduction

Both researchers and practitioners in science, engineering, government, and
industry certainly have a strong interest in knowing state-of-the-art multi-ob-
jective optimization techniques. For researchers, this is the normal procedure
to trigger new and original algorithmic contributions. For practitioners, this
knowledge allows them to choose the most appropriate algorithm(s) for their
specific multi-objective problem (MOP) domain application. From the deci-
sion maker’s (DM) perspective, it is desired that only a “few” solutions are
available for ease of decision. Thus, as presented in Chapter 1, one is at-
tempting to optimize a vector objective function possibly with constraints
resulting in trade-offs between the multiple objectives. This chapter employs
the various generic mathematical definitions defined in Chapter 1 for dis-
cussing multi-objective evolutionary algorithm (MOEA) design.1 It is desired
that an MOEA generates MOP solutions in Ptrue which provide a trade-off
of performance (efficiency, effectiveness) for specific system model objectives
(cost/profit, constraints, etc.) that may mutually conflict. For example, the
classical multiobjective knapsack problem (profit and weight) and drug devel-
opment (cost vs. effectiveness) represent vectors of two objectives. Maximizing
one objective such as profit usually does not optimize another such as relia-
bility. Many contemporary real-world MOP applications for the practitioner’s

1 Note that some MOEA researchers and practitioners use the phrase “Multi-
Objective Optimization Problem” (MOOP) and “Multi-Objective Optimization”
(MOO) to associate with the field, instead of MOP and MOEA.

62 2 MOP Evolutionary Algorithm Approaches

and researcher’s critical analysis are discussed in Chapter 7 and [277] with
many examples reflected in the current MOEA literature.2

Since Evolutionary Algorithms and MOEAs in particular can encode in-
dividual solutions in numerous straightforward representations (chromosome
data structures) as well as directly compute associated objective values, they
have a considerable robust advantage over traditional MOP search techniques
(see Chapter 1). That is, traditional techniques may impose restrictions or
complex mappings on the problem domain or algorithm domain mathemati-
cal model in order to solve the problem. Of course, the No Free Lunch Theorem
(NFL) [1708] implies that a MOEA is not a universal robust solution tech-
nique for all MOPs. But, MOEAs generally can easily be guided by problem
domain information, not having to modify the problem domain model for use
with MOEAs. Then, the search process is easier to develop, understand and
test in its native form for a given application [1102].

Achieving the exact Pareto front of an arbitrary problem is usually quite
difficult. Nevertheless, reasonably good approximations of PFtrue are gener-
ally acceptable within limited computational time (see Chapter 1 for associ-
ated notation). MOEAs by definition attempt to find these acceptable but
approximate Pareto fronts and Pareto optimal solutions within some implicit
or explicit error measure (see Chapter 5).

This chapter addresses the many issues involved in MOP domain and
MOEA domain integration from a design perspective. In particular, historic
and generally used (MOEA) approaches such as the NSGA [1509, 374], PAES
[886], SPEA [1782, 1775], and the MOMGA [1626, 1629, 1790] are detailed and
analyzed. In the discussion of various MOEAs, each algorithm is catalogued
by recording key elements of its approach, and classified using the structure
defined in Chapter 1. The chapter also presents a generic MOEA algorithmic
formulation based upon basic evolutionary operators. Related to this generic
form, an analysis of currently known MOEA algorithmic design research is
given. Many relevant meta-level topics are addressed, highlighting MOEA
design concerns which have limited treatment in the literature. For example,
discussed are dominance operator differences, diversity operator variations,
population structures, impact of MOEA fitness function characteristics, lack
of MOEA theory, MOEA chromosomal representations, utility of explicit vs.
implicit building block approaches, and other selected topics.

Fundamental MOEA techniques and MOEA design goals along with a
generic MOEA structure are presented in Section 2.2. Specific MOEA pseudo
code and associated performance is discussed in Section 2.3. Constraint-
handling techniques are briefly discussed in Section 2.4. Critical MOEA ele-
ments are described in Section 2.5. This leads to Section 2.6 which recapitu-

2 For an up-to-date list of references on evolutionary multi-
objective optimization, visit the EMOO repository located at:
http://delta.cs.cinvestav.mx/~ccoello/EMOO with a mirror at:
http://www.lania.mx/~ccoello/EMOO

2.2 MOEA Techniques 63

lates general MOEA design principles. Section 2.7 presents a summary of the
contents of this chapter.

2.2 MOEA Techniques

This section discusses the development of MOEAs and associated techniques
and as such is concerned with issues such as the variety of MOEA design
efforts, practicality of the various operator techniques, fitness functions and
chromosomal representations. EAs, in general are considered as metaheuris-
tic problem solvers—top-level general strategies which guide other lower-level
heuristics3 to search for feasible solutions in difficult domains—search land-
scapes. This treatment of major MOEA research issues provides the interested
researcher and practitioner with tools and techniques of the field and their evo-
lution. The following incomplete historical list of EA algorithms for solving
MOPs reflects different algorithmic frameworks as well as fitness function and
chromosomal representations:

• Vector Evaluated GA (VEGA) [1439, 1440, 1441]
• Lexicographic Ordering GA [518]
• Vector Optimized Evolution Strategy (VOES) [934]
• Weight-Based GA (WBGA) [636]
• Multiple Objective GA (MOGA) [504]
• Niched Pareto GA (NPGA, NPGA 2) [708, 709, 453]
• Nondominated Sorting GA (NSGA, NSGA-II) [1509, 363, 374]
• Distance-based Pareto GA (DPGA) [1225, 1224]
• Thermodynamical GA (TDGA) [863]
• Strength Pareto Evolutionary Algorithm (SPEA, SPEA2) [1782, 1775]
• Multi-Objective Messy GA (MOMGA-I,II,III) [1626, 1629, 1790, 1788,

342, 345, 343]
• Pareto Archived ES (PAES) [885, 886]
• Pareto Envelope-based Selection Algorithm (PESA, PESA II) [301, 299]
• Micro GA-MOEA (µGA, µGA2) [283, 284, 1597]
• Multi-Objective Bayesian Optimization Algorithm (mBOA) [956, 1265]

It is also noted here that although David Schaffer is credited with the
“invention” of the first MOEA in the mid-1980s, other researchers also deserve
credit for their contributions during those years. Mainly, it is important to
emphasize the early attempt by Ito et al. [764] to use a genetic algorithm to
solve a multi-objective optimization problem, which precedes Schaffer’s work.
Additionally, it is also important to mention the work by Fourman [518], who
presented different MOEA implementations at the same conference where
Schaffer’s work was introduced.

3 Heuristic : a problem-solving technique in which the most appropriate local so-
lution or partial solution is selected using comparative rules.

64 2 MOP Evolutionary Algorithm Approaches

The idea of using Pareto-based fitness assignment was first proposed by
Goldberg [581] to solve the problems of Schaffer’s approach [1440]. He sug-
gested the use of nondominated ranking and selection to move a population
toward the Pareto front in a multiobjective optimization problem. The basic
idea is to find the set of strings in the population that are Pareto nondomi-
nated by the rest of the population. These strings are then assigned the highest
rank and eliminated from further contention. Another set of Pareto nondomi-
nated strings are determined from the remaining population and are assigned
the next highest rank. This process continues until the population is suitably
ranked. Goldberg also suggested the use of some kind of niching technique to
keep the GA from converging to a single point on the front [368]. A niching
mechanism such as sharing [587] would allow the GA to maintain individu-
als all along the nondominated frontier. A variety of MOEAs extended these
ideas and are discussed next in more detail.

67 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07
0

50

100

150

200

250

300

350

400

Publication Year

N
um

be
r

of
 P

ub
lic

at
io

ns

Fig. 2.1. Statistics of the number of publications per year related to evolutionary
multiobjective optimization (up to early 2007)

Not until the mid 1990s is there a noticeable increase in published MOEA
research. The sheer number of contemporary conference and journal publica-
tions and books indicates an active contemporary MOEA research community
(see Figure 2.1 and the EMOO repository [266]).

2.2 MOEA Techniques 65

As noted in Section 1.8.2 from Chapter 1, MOEA approaches have been
classified into three major categories. These categories and the specific tech-
niques they embody are:

A Priori Techniques: Lexicographic, linear fitness combination, and nonlinear
fitness combination.

Progressive Techniques: Progressive techniques or interactive computational
steering.

A Posteriori Techniques: Independent sampling, criterion selection, aggrega-
tion selection, Pareto-based selection, Pareto rank- and niche-based se-
lection, Pareto deme-based selection, Pareto elitist-based selection, and
hybrid selection.

In general, the multiobjective approach to solving MOPs generates “par-
tial orders” of solutions leading to possible multitudes of trade-off solutions
in objective space. Note that for single-objective optimization, a “total or-
der” exists. For MOEAs, the concept of dominance is addressed again with
reflection on strict partial orders of points in objective space.

Note that with MOPs, an explicit set of objective functions is not required,
but only the relative fitness of each solution in a neighborhood and a selec-
tion mechanism. Examples of this phenomenon are found in single-objective
optimization using simulated annealing [861] and tabu search [572].

There are fundamentally three MOP solution techniques; optimize only
the highest priority objective, use an aggregated weight sum of all the ob-
jectives, or employ a multiobjective algorithm to find the entire Pareto front
(all nondominated points, PFtrue). Within each of these techniques, there is
a multitude of operators that may search from edge to edge of the objective
space, move statistically forward towards the Pareto front from an initial set
of individuals, or randomly generate and test points. Finding MOP solutions
in Ptrue can vary from decision maker priority to attempting to find all solu-
tions. The essence of multi-criteria optimization is to find the Pareto front.
How does one exploit the objective landscape, different search operators, eval-
uate with metrics the results, and provide a small number of solutions to the
DM? The following subsections expand on generic MOP solution approaches
with critical analysis of the various techniques as an attempt to answer these
questions.

2.2.1 A Priori Techniques

By definition, these a priori techniques require a decision maker (DM) to de-
fine the MOP objective relative importance prior to search. This is usually
reflected in the weights associated with the aggregated sum of the objectives.
In essence, the preferences of the DM are modelled to evaluate and compare
solutions in this multicriteria decision making (MCDM) problem. In real-world
scientific and engineering problems, it is a non-trivial task to find the one solu-
tion of interest to the DM. The ramifications of “bad” objective prioritization

66 2 MOP Evolutionary Algorithm Approaches

choices are easy to understand: the decision maker’s “weight” (no matter how
defined) could be greater than necessary as more “acceptable” solutions are
missed. Optimizing mostly profit could lead to poor quality or reliability, not
a good compromise. No matter the optimization algorithm used, this is an
inescapable consequence of a priori MOEA techniques, which are examined
for each sub-technique. These sub-techniques evolve from the general concept
of a single scaled function such as represented in a weighted sum of objectives.

A priori techniques can be divided in the following major approaches:

• Lexicographic ordering
• Linear aggregating functions
• Nonlinear aggregating functions

Other approaches include achievement scaling functions [1702, 1707] and
the ε-constraint method [961, 1318] which also map the MOP to a single-
objective optimization problem.

Lexicographic ordering

In this method, the DM is asked to rank the objectives in order of importance.
The optimum solution is then obtained by minimizing the objective functions
in sequence, starting with the most important one and proceeding according to
the assigned order of importance of the objectives. It is also possible to select
randomly an objective to be optimized at each generation if the priority is
unknown [518].

Criticism of lexicographic ordering - Selecting randomly an objective is
equivalent to a weighted combination of objectives, in which each weight is
defined in terms of the probability that each objective has of being selected.
However, the use of tournament selection with this approach (as Fourman
[518] did) makes an important difference with respect to other techniques such
as the Vector Evaluated Genetic Algorithm (VEGA) [1440]. This is because
the pairwise comparisons of tournament selection make scaling information
negligible [505, 507]. This means that this approach may be able to depict
concave trade-off surfaces, although that really depends on the distribution
of the population and on the problem itself. Its main weakness is that this
approach tends to favor more certain objectives when many are present in
the problem, because of the randomness involved in the process. This has the
undesirable consequence of making the population converge to a particular
part of the Pareto front rather than to delineate it completely [260]. The main
advantage of this approach is its simplicity and computational efficiency. These
two properties make it highly competitive with other non-Pareto approaches
such as a weighted sum of objectives or VEGA.

Lexicographic techniques have not found favor with MOEA researchers, as
only a few implementations are reported in the specialized literature (see for

2.2 MOEA Techniques 67

example [526, 440]). This may be due to the fact that this technique explores
objective space unequally, in the sense that priority is given to solutions per-
forming well in one objective over another(s). Or, in other words, one objective
is optimized at all costs.

The lexicographic technique appears most suitable only when the impor-
tance of each objective (in comparison to the others) is clearly known. Of
course, trade-offs do exist. On the one hand, any reported solutions are Pareto
optimal (by definition and with respect to all solutions evaluated). On the
other hand, when is such an “all costs” goal necessary or even appropriate?
If one objective is to be optimized regardless of the others’ expense, it seems
more appropriate to instead use a single objective EA which does not incur
the additional overhead of a MOEA.

Linear aggregating functions

The typical form of linear aggregating functions is to compute fitness using:

fitness = min
k∑

i=1

wifi(x) (2.1)

where wi ≥ 0 and i = 1 . . . k are the weighting coefficients representing the
DM’s relative importance of the k objective functions of the MOP. It is usually
assumed for normalization that

k∑
i=1

wi = 1 (2.2)

The linear fitness combination technique is a popular scalarizing approach
despite its identified shortfalls [329], probably due to its simplicity. In Fig-
ure 2.2, observe that one of the equal slope parallel (minimization) lines indi-
cates that the search process finds a single Pareto front point A at minimum
cost, but only if it is on the convex hull of the Pareto front. Although point
B may be found, it is not retained since a smaller aggregate objective func-
tion value is found at point A. Observe that different weights reflect different
slopes and intersect the points on the convex hull at different points on PFtrue .
Thus, the linear aggregating algorithm usually does not find all Pareto front
points of interest. These points are defined as non-supported points since they
are not on the convex hull of the Pareto front. The variation of weights for a
specific MOP can cause large or a very small variation in the number or value
of points found on PFtrue .

Another scalarizing approach is the weighted Tchebycheff model which
can find the non-supported points on the Pareto front (i.e., not limited by
the convex hull). This search approach uses a reference point, f∗

i . This refer-
ence point must be beyond the ideal point where each component is less than

68 2 MOP Evolutionary Algorithm Approaches

Fig. 2.2. Linear aggregating technique for a bi-objective example with a priori
selection of weights, w1x1 + w2x2.

F

2F

1

Fig. 2.3. Tchebycheff technique for a bi-objective example with a priori selection
of weights, w1x1 + w2x2.

F

2F

1

A

B

2.2 MOEA Techniques 69

the minimum value of the ith objective. The weighted Tchebycheff model is
reflected in equation (2.3).

fitness = min maxi[wi|fi(x) − f∗
i |] (2.3)

where wi ≥ 0 and i = 1 . . . k. In Figure 2.3, the reference point is the origin.
With this technique, assuming that the reference point is properly defined,
Pareto points can be found on PFtrue for appropriate sets of weights in the
aggregated objective function. In an attempt to find the appropriate set of
weights, a sampling process can be employed.

Criticism of linear aggregating functions - A basic weighted sum MOEA is
both easy to understand and implement. The fitness combination technique is
also computationally efficient. If the problem domain is “easy” and a sense of
each objective’s relative worth is known and can be quantified, or even if the
time available for search is short, this may be a suitable method to discover an
acceptable MOP solution. However, this technique has a major disadvantage
due to certain MOP characteristics. Fonseca and Fleming [510] explain that
for any positive set of weights and fitness function Φ, the returned global opti-
mum is always a Pareto optimal solution (with regard to all others identified
during search). However, if PFtrue is nonconvex, optima in that portion of the
front can not be found via this method. This is proved using geometry by
Das & Dennis [329]. Thus, blindly using this technique guarantees that some
solutions in Ptrue cannot be found when it is applied to certain MOPs. Also
note that despite their popularity in the past, linear aggregating functions are
nowadays significantly less common than Pareto-based approaches.

Nonlinear aggregating functions

Nonlinear aggregation techniques (e.g., a multiplication of the objective func-
tions) are not very popular in the literature. This may be due to the over-
head involved in determining appropriate probability of acceptance or util-
ity functions, and to the various conditions which these objective functions
must meet [836]. This additional overhead may not justify resulting solutions’
“quality.”

Target vector approaches are somewhat more popular than multiplicative
approaches, and they may be particularly useful if the DM can specify goals
that he/she desires to achieve. The evolutionary algorithm in this case, tries
to minimize the difference between the current solution generated and the
vector of desirable goals (different metrics can be used for this purpose). Al-
though target vector approaches can be considered as another aggregating
approach, they are normally considered separately, because some of target-
vector approaches can generate (under certain conditions) concave portions
of the Pareto front, whereas approaches based on linear combination of weights
cannot.

70 2 MOP Evolutionary Algorithm Approaches

The most popular target vector approaches are hybrids with: Goal Pro-
gramming [359, 1702, 1422], Goal Attainment [1707, 1748], and the min-max
algorithm [636, 267].

Criticism of nonlinear aggregating functions - Multiplicative approaches
are simple and efficient, but they may be troublesome, since the definition of
a good nonlinear aggregation function may prove to be more difficult than
defining a linear aggregating function.

The same applies to target-vector approaches, which require the definition
of goals to be achieved. The computation of these goals normally requires
some extra computational effort and can lead to additional problems. Wilson
and MacLeod [1707] found that goal attainment could generate, under certain
circumstances, a misleading selection pressure. For instance, if there are two
candidate solutions which are the same in one objective function value but
different in the other, they still have the same goal-attainment value for their
two objectives, which means that for an evolutionary algorithm neither of
them is better than the other.

An additional problem with target-vector approaches is that they yield a
nondominated solution only if the goals are chosen in the feasible domain, and
such condition may certainly limit their applicability. Furthermore, just as in
all a priori techniques, specifying exact goals or weights before search may
unnecessarily limit the search space and therefore “miss” desirable solutions.

Note that despite their drawbacks, there are certain problems (particularly,
in multiobjective combinatorial optimization problems) in which nonlinear
aggregating functions (e.g., based on Tchebycheff weights) can provide very
good approximations of the Pareto optimal set (even outperforming Pareto-
based approaches) [784, 776, 779, 777, 778, 780, 782, 783, 781].

General Criticism of a priori Techniques

It appears that the a priori MOEA techniques considered are in general not
desirable for general use, except for nonlinear aggregating functions which can
be advantageous in certain types of problems (namely in multiobjective com-
binatorial optimization problems), as discussed in the previous section. If a
DM is spending resources to search for MOP solutions, it is reasonable to ex-
pect optimal (or “good”) solutions. Since these a priori techniques arbitrarily
limit the search space they may not be able to find all the available solutions
in Ptrue . Additionally, implementing “more” effective MOEAs might not be
as difficult and involves less overhead than imagined.

2.2.2 Progressive Techniques

The fact that there is a relatively small number of cited interactive search
efforts in the MOEA literature is surprising (see for example [91]). One would
think that no matter what MOP solution technique is implemented, close in-
teraction between the DM and “searchers” can only increase the efficiency

2.2 MOEA Techniques 71

(or “desirability”) of discovered solutions. It is understandable that a DM’s
time and effort is at a premium. At least to some level, though, more interac-
tion certainly implies “better” results. Although either a priori or a posteriori
techniques may be used interactively, the latter are more suited to MOPs be-
cause they offer a set of solutions rather than just one. There is a limit to
how much information a DM can process at one time, but surely some greater
number of choices beyond one or two is generally more advantageous.

Incorporating DM preferences within and through an interactive search
and decision making process may benefit all those involved. Do researchers
and/or practitioners feel they don’t have the time? Or is it the DM who
balks at the additional effort? Real-world applications should surely use this
interactive process as the economic implications can be quite significant. In
fact, several MOEAs [504, 454, 317, 1346, 719, 598] are able to explicitly
incorporate DM preferences within search (see Chapter 9).

General Criticism of Progressive Techniques

The main problem with progressive techniques is that the DM normally has
to define goals or a scheme of preferences to bias the search, and this requires
an interactive process that may be difficult and inefficient when nothing about
the problem is known. Also, under certain circumstances, there might be con-
tradictions in the preferences defined (e.g., when dealing with group prefer-
ences). However, when it is desirable to constrain the search within a certain
region of interest (something common in complex real-world problems), an
interactive process is perhaps the best choice. The main issues here have to
do with the way in which the preferences from the DM are incorporated into
the MOEA. Any proposal in this direction has to deal with a set of issues
such as scalability and intransitivities, among others (see Chapter 9).

2.2.3 A Posteriori Techniques

A posteriori techniques are explicitly seeking Ptrue and PFtrue . Thus, the
emphasis is now to perform a search as widespread as possible, as to generate
as many different elements of the Pareto optimal set as possible. The decision
making process will now take place after completing the search. The following
a posteriori sub-techniques are examined next:

• Independent sampling techniques
• Criterion selection techniques
• Aggregation techniques (linear, nonlinear)
• ε-constraint technique
• Pareto sampling techniques

72 2 MOP Evolutionary Algorithm Approaches

Independent Sampling Techniques

Various independent sampling approaches generally have reduced effective-
ness. This sort of technique uses some fitness combination technique where
the weights assigned to each objective are varied over a number of separate
MOEA runs. The difference with respect to a priori linear aggregating func-
tion is therefore the variability of the weights along the evolutionary process.
This variation can allow the generation of larger portions of the Pareto front.
But, these points are in most cases not uniformly placed along the Pareto
front. Because one does not know a priori a proper selection of weights, the
“ideal” uniform distribution of Pareto front points is seldom generated. Again,
variations in weights may generate points on PFtrue close together or at far
distances. If these points could be generated using a different approach, then
the inverse mapping to the weights would provide the DM with an explicit
weighted numerical tradeoff among the objectives, which is a very valuable
piece of information. The MOEA techniques discussed generally attempt to
generate PFtrue , but not directly related to the independent sampling weights
since finding the inverse mapping is very difficult.

Criticism of independent sampling techniques - The main advantage of this
type of technique is its relative simplicity and its efficiency (no Pareto ranking
procedure is required). This approach may have limited utility if a low number
of objectives is being considered (i.e., two or three). For example, assume a
MOEA using a linear fitness combination Tchebycheff approach. If each ob-
jective’s weight varies from 0 to 1 by 0.05 increments, only 21 MOEA runs are
necessary to explore the possible weight combinations and give some picture of
PFknown . However, even varying the weights at this coarse resolution results
in the required number of runs combinatorially increasing with the number
of objectives. Thus, its overall usefulness seems quite limited especially as the
arbitrary weight combinations may well prevent discovery of some solutions
in Ptrue , and also in view of other techniques’ strengths. Note however, that
this type of approach may be useful to approximate the Pareto front in certain
types of problems (e.g., multiobjective combinatorial optimization problems).
This is because in certain cases (particularly with convex Pareto fronts) they
may produce competitive results with respect to MOEAs based on Pareto
ranking at a lower computational cost (see for example [1507]).

Criterion Selection Techniques

The Vector Evaluated Genetic Algorithm (VEGA), which was proposed by
David Schaffer [1439, 1440, 1441] is normally considered the first implementa-
tion of a MOEA. The vector is by definition the vector of k objective functions
of the MOP. The VEGA approach is an example of a criterion or objective
selection technique where a fraction of each succeeding populations is selected
based on separate objective performance. The specific objectives for each frac-
tion are randomly selected at each generation. VEGA tends to converge to
solutions close to local optima with regard to each individual objective.

2.2 MOEA Techniques 73

Individual 1

Individual 2

Individual 3

Subpopu
lation 1

Subpopu
lation 2

Subpopu
lation k

Individual 1

Individual 2

Individual 3 Individual 3

Individual 2

Individual 1

Subpopu
lation 3

Create

Subpopu
lations

Generation (t)

Initial Population
arecreated

Shuffle

entire
population

Individuals are now
mixed

Apply

genetic
operators

Generation (t+1)

Start all over againk subpopulations
SizeM

Individual M Individual M Individual M

Fig. 2.4. Schematic of VEGA’s selection mechanism. It is assumed that the popu-
lation size is M and that there are k objective functions.

The VEGA concept is that, for a problem with k objectives, k sub-
populations of size M/k each would be generated (assuming a total population
size of M). Each sub-population uses only one of the k objective functions for
fitness assignment. The proportionate selection operator is used to generate
the mating pool. These sub-populations are then shuffled together to obtain
a new population of size M , on which the GA would apply the crossover and
mutation operators in the usual way. Shuffling is done prior to sub-population
partitioning in order to reduce positional population bias. This process is il-
lustrated in Figure 2.4. The complexity of VEGA is clearly the same as the
single-objective GA.

Schaffer realized that the solutions generated by VEGA were nondomi-
nated in a local sense, because their nondominance was limited to the current
population. And, while a locally dominated individual is also globally dom-
inated, the converse is not necessarily true [1440]. An individual that is not
dominated in one generation may become dominated by an individual who
emerges in a later generation. Also, Schaffer noted a problem that in genet-
ics is known as “speciation” (i.e., one could have the evolution of “species”
within the population which excel on different aspects of performance). This
problem arises because this technique selects individuals that excel in one di-
mension of performance, without considering other dimensions. The potential
danger is that one could have individuals with what Schaffer called “middling”
performance4 in all dimensions, which could be very useful for compromise
solutions, but that would not survive under this selection scheme, since they
are not in the extreme for any dimension of performance (i.e., they do not

4 By “middling,” Schaffer meant an individual with acceptable performance, per-
haps above average, but not outstanding for any of the objective functions.

74 2 MOP Evolutionary Algorithm Approaches

produce the best value for any objective function, but only moderately good
values for all of them). Speciation is undesirable because it is opposed to our
goal of finding a compromise solution. Schaffer suggested some heuristics to
deal with this problem. For example, one could use a heuristic selection prefer-
ence approach for nondominated individuals in each generation, to protect the
“middling” chromosomes. Also, crossbreeding among the “species” could be
encouraged by adding some mate selection heuristics instead of using the ran-
dom mate selection of the traditional GA (i.e., the use of mating restrictions).
Per the discussion, VEGA uses a localized criterion for ranking as depicted in
Figure 2.5.

nondominated

dominated

F

F

1

2

Fig. 2.5. VEGA’s criterion-based ranking mechanism.

Norris & Crossley [1190] and Crossley et al. [310] believe this technique
reduces the diversity of any given PFcurrent (t). They implemented elitist se-
lection to ensure PFknown (t) endpoints (or in other words, PFknown (t)’s ex-
trema) survive between generations. Otherwise, the MOEA converges to a
single design rather than maintaining a number of alternatives. In other at-
tempts to preserve diversity in PFcurrent (t) they also employ a VEGA variant.
Here, “k”-branch tournaments (where k is the number of MOP objectives) al-
low each solution to compete once in each of k tournaments, where each set
of tournaments selects 1

k th of the next population [805].
Criticism of criterion selection techniques - VEGA is very simple and easy

to implement, since only the selection mechanism of a traditional GA has to
be modified. One of its main advantages is that, despite its simplicity, this sort
of approach can generate several solutions in one run of the MOEA. However,

2.2 MOEA Techniques 75

note that the shuffling and merging of all the sub-populations that VEGA per-
forms corresponds to averaging the fitness components associated with each of
the objectives [587]. Since Schaffer uses proportional fitness assignment [581],
these fitness components are in turn proportional to the objectives themselves
[507]. Therefore, the resulting expected fitness corresponds to a linear com-
bination of the objectives where the weights depend on the distribution of
the population at each generation as shown by Richardson et al. [1360]. This
means that VEGA has the same problems than the aggregating approaches
previously discussed (i.e., it is not able to generate concave portions of the
Pareto front). Nevertheless, VEGA has been found useful in other domains
such as constraint-handling, where its biased behavior can be of great help
[1543, 275, 274]. Note that these algorithmic developments were in part based
upon consideration of the computational hardware performance at the time.
Other variations and extensions of the VEGA concept included the Vector
Optimized Evolution Strategy (VOES) by Kursawe [934]. His approach of
course was based on an evolution strategy along with a fitness evaluation pro-
cess similar to VEGA. It also employed a diploid chromosome scheme with
preservation of nondominated solutions using an elitist approach. The WBGA
(weight-based genetic algorithm) proposed by Hajela and Lin [636] is related
to VEGA’s sampling approach, but it uses a set of weights (each individual
is assigned a vector containing such weights). These vectors remain diverse
across the population through niching and appropriately selected subpopula-
tions that are evaluated for different objectives in a way analogous to VEGA.
Again, this MOEA is simple, but the use of weighted vectors has the same
disadvantages as the independent sampling approach.

Aggregation Selection Techniques

Aggregation selection MOEAs incorporate a variety of techniques to solve
MOPs such as weighted sums [751], constraint and objective combinations
[1017], and hybrid search approaches [358]. However, rather than using static
weight combinations for the objectives throughout a MOEA run, the weights
are varied between generations and/or each function evaluation. Sometimes
the weights are assigned randomly, sometimes they are functions of the par-
ticular solution being evaluated, and in other cases are encoded in the chro-
mosome as genes where evolutionary operators (EVOPs) act upon them, too.

Criticism of aggregation selection techniques - As with the criterion selec-
tion techniques, aggregation selection approaches can generate a set of solu-
tions in a single run of a MOEA. Thus, Pknown and PFknown may be reasonable
approximations to Ptrue and PFtrue , and have required only one MOEA run.
These methods are not without their disadvantages, however. When using
the weighted sum technique, it is known that certain members of PFtrue may
be missed [329]. Furthermore, both the constraint/objective combination and

76 2 MOP Evolutionary Algorithm Approaches

hybrid search approaches have significant overhead (e.g., solving a linear sys-
tem of equations to determine an appropriate hyperplane [1764]).

ε-Constraint Techniques

The ε-constraint technique is based upon selecting a primary objective func-
tion and then bounding the others with a separate allowable ε-constraint (must
be known a priori). The ε-constraints are then changed in order to generate
another point on the Pareto front (phenotype) and so forth resulting in finding
elements in the Pareto optimal set (genotype). Non-uniformity in the distri-
bution of the Pareto front points usually occurs. Examples of this approach
can be seen in [1507, 1318, 925, 961].

Criticism of ε-constraint technique: Easy to implement, but extensive com-
putation effort is required to generate PFknown .

Pareto Sampling Techniques

The disadvantages of aggregation selection techniques make evident that a
fitness assignment or selection technique able to “easily” find all members of
Ptrue and PFtrue is desired. Pareto sampling offers this capability, or at least
the realistic objective of finding Pknown and PFknown .

Pareto sampling refers to techniques that use the MOEA’s population ca-
pability to generate several elements of the Pareto optimal set in a single
stochastic computational run. Figure 2.6 presents a two objective conceptual
understanding of Pareto optimality. Again, one must relate the graphical de-
finition of dominated and nondominated points in objective space and the
corresponding solutions in variable space. Because of the strict partial or-
der, various points in the objective space can not be compared to each other
with regard to dominance. The intent of many MOEAs of course is to move
the nondominated points toward PFtrue generating a “good” distribution of
points on PFknown .

Criticism of A Posteriori Techniques

These techniques attempt to exploit the population capabilities of evolution-
ary algorithms to produce a set of elements of the Pareto optimal set in a
single run. This can be done either by using a cooperative mechanism (as
in VEGA [1440]) or by incorporating directly the concept of Pareto domi-
nance into the selection mechanism of an EA (the most usual way to tackle
MOPs with EAs). Scalability is, however, an issue when using Pareto sampling
techniques, as indicated before. Also, other types of techniques may be par-
ticularly useful within certain specific domains and therefore the importance
of knowing about their existence.

Although the No Free Lunch (NFL) theorems [1708] indicate that there
is no “best” MOEA, certain MOEAs have been experimentally shown to be

2.2 MOEA Techniques 77

dominated

nondominated

F 1

2F

Fig. 2.6. The concept of Pareto optimality as related to nondominance in a maxi-
mization MOP

more likely effective (robust) than others for specific MOP benchmarks and
certain classes of real-world problems.

2.2.4 Generic MOEA Goals and Operator Design

The basic algorithm design concept is to use Pareto-based fitness assignment
to identify nondominated vectors from a MOEA’s current population. Re-
garding this and our previous discussion, the four high-level primary goals of
such algorithms for solving MOPs are:

Goal 1. Preserve nondominated points (elitism vs. non-elitism)
with PFcurrent → PFknown

Goal 2. Progress or guide PFknown towards PFtrue

Goal 3. Generate and maintain diversity of: points on the Pareto Front,
PFknown (phenotype) and/or Pareto optimal solutions Pknown (genotype)

Goal 4. Provide the decision maker (DM) with a limited number of PFknown

points!

Thus, a MOEA should guide the search towards PFtrue , generate and
maintain a diversity of PFknown points, and prevent loss of “good” solutions
through archiving. The design of an idealized or generic Pareto-based Mul-
tiobjective Evolutionary Algorithm would consist of the following meta-level

78 2 MOP Evolutionary Algorithm Approaches

general procedures:

Step 0: Define the MOP; determine the mathematical form of F (x) =
[f1(x), f2(x), . . . fk(x)] and the chromosome representation of x. Define con-
straints (dynamic, static, linear, nonlinear, etc.). Integrate the “model” into
a specific MOEA algorithmic search process.
Step 1: The MOEA generates the Pareto front, PFknown (hard part); deter-
mine the nondominated sets, generation to generation, via populations. Con-
verge “close” to the true computational Pareto front, PFtrue ; note that what
we obtain is an approximation of such a true Pareto front! This is the cur-
rently known nondominated population, PFcurrent . Execute this same MOEA
process for a certain (given) number of generations or until some metric meets
some (predefined) threshold.
Step 2: The MOEA attempts to generate a uniform distribution across the
known Pareto front, PFknown , at the end of each generation.
Step 3: Select several of the “Optimal” points on the Pareto front, PFknown ,
for DM consideration.
Step 4: Determine the associated Pareto Optimal set, Pknown ; implement
decision variable values (i.e., our approximation of the Pareto optimal set) as
selected by the DM.
Step 5: Visualize algorithm processing and results as appropriate for improv-
ing MOEA performance (i.e., efficiency and effectiveness).

Of course, the integration of a specific MOP with selected MOEA soft-
ware requires insight not only into the problem domain, but into the MOEA
operator implementations as well. This a priori MOP and MOEA analysis
helps support the specific detailed design and implementation; the objective
being execution of a MOEA that has a high probability of finding a “good”
PFknown . A spectrum of MOEAs includes numerous operators which are listed
as follows according to their support of the four primary MOEA Goals:

Goal 1. Preserve nondominated points
• Dominance-Based ranking - fitness assignment
• Non-Pareto vs Pareto approaches
• Archiving + elitism of chromosome population

Goal 2. Progress towards points on PFtrue

• Convergence to true computational Pareto front, PFtrue

• Generating nondominated phenotype points
• Explicit/Non-Explicit building block manipulation
• Qualitative and Quantitative performance metrics and visual compar-

isons
• Probabilistic MOEA models; local search incorporation, etc.

Goal 3. Maintain diversity of: points on PFknown and/or on Pknown

• Diversity preservation
• Niching/fitness sharing and crowding on Pareto front (variations)
• Uniform/Diverse nondominated PFknown

2.2 MOEA Techniques 79

Goal 4. Provide the DM a limited number of PFknown

points!

Given the generic MOEA Pareto-based operators, specific variations and
aspects of these concepts are presented. Also, MOEAs implementing such
detailed operators are referenced.

Dominance-Based Ranking

The dominance relation (or operator), as described in Chapter 1 relates two
solutions; therefore, it is a binary operator. The result of this operation for two
individual solutions in objective function space has two possibilities: 1) one
solution dominates another or 2) the solutions do not dominate each other.
There exist various mathematical binary relationships for dominance opera-
tors: “reflexive” which the dominance operator is not, “symmetric” which is
not, “antisymmetric” which it is not, but it is “transitive.” Thus, the domi-
nance operator is ordered since it is not reflexive. It is not a partial order but
a strict partial order. Then, by definition, given a point in objective function
space, it could be dominated or not dominated by another point, but it could
also be “incomparable” to other points. With this insight, the concept of the
Pareto front and Pareto optimal solution are defined in Chapter 1, together
with their associated sets. And, a generic algorithm for generating these sets
can be formulated as done in Section 2.2.4.

Regarding the generation and selection of the Pareto optimal set, an or-
dering technique is required. When using an evolutionary algorithm for gen-
erating such Pareto optimal set, the fitness values are n tuples (considering n
objectives). A scaling technique is required over the tuples via a strict partial
order, so that nondominated solutions are generated. Thus, various ranking
methods have been suggested in the specialized literature. Such methods es-
sentially sort the individuals in objective function space before selection. Each
member of the list of possible points (individuals) in objective function space
is assigned a rank relative to one of the following dominance definitions:

• dominance rank: How many individuals is an individual dominated by
(plus 1)?

• dominance count: How many individuals does an individual dominate?
• dominance depth: At which “front” is an individual located? “Sort.”

Computationally implementing one of these ranking approaches in a spe-
cific MOEA design is, of course, straightforward. However, given a particular
problem domain, performance (efficiency and effectiveness) can have consid-
erable variance. This is due in no small measure to the structure of the fitness
landscape being searched! The result of the dominance ranking (see Figure 2.7)
is a strict partial ordered list which is used for sorting the points before em-
ploying a desired selection operator. As an example of dominance count see

80 2 MOP Evolutionary Algorithm Approaches

1

1

1

1

1

2

3

3

5

5

F

2F

1

7

4

Fig. 2.7. Dominance rank with grouping of equal ranks for sorting.

F

2F

1

0

0

0

1

2

2

3

4

5

0

0

5

Fig. 2.8. Dominance count with grouping of equal counts for sorting.

2.2 MOEA Techniques 81

Figure 2.8, which imposes a different partial order. In both cases, the dif-
ferent “ranks” are shown within the dotted regions. The “sorting” is based
upon “rank depth” and, of course, is different for the two different dominance
relationships. The computational order in all cases is usually O(N2). Specific
MOEA examples of dominance ranking use are:

• MOGA, NPGA [504, 709]: dominance rank
• NSGA/NSGA-II [1509, 374]: dominance depth
• SPEA/SPEA2 [1782, 1775]: dominance count and dominance rank
• MOMGA/MOMGA-II [1626, 1790]: dominance rank

General Diversity Preservation

Another goal of MOEA design is to provide a diversity of PFknown or Pknown

points to the DM that have a somewhat uniform distribution across the known
Pareto front. Various techniques are available for maintaining diversity in a
MOEA, including the Weight Vector Approach, the Fitness Sharing/Niching
Approach, Crowding/Clustering, Restricted Mating, and Relaxed Dominance,
all of which are discussed next:

• Weight Vector Approach: In this case, a vector set in fitness/objective
space is used to attempt to diversify points of the Pareto front surface
(i.e., the aim is, of course, to generate a uniform distribution of PFknown).
By changing the weights, different directions are defined, in order to bias
the search, and to move solutions away from its neighbors. Weight vector
approaches have been found very effective for certain types of applications
(for example, multi-objective combinatorial optimization [323, 1617, 1152,
535, 762]).

• Fitness Sharing/Niching Approach: In this approach, the size (or ra-
dius) of a neighborhood (or niche) is controlled through the σshare value
(niche radius). Then, one must count how many solutions are located
within the same niche, and the fitness is decreased proportionally to the
number of individuals sharing the same neighborhood [587, 368]. This aims
to promote the generation of solutions in the least populated regions of
the search space (see Figure 2.9). Note the following:
– The definition of the σshare parameter is critical.
– In order to apply a fitness sharing function, it is necessary to measure

distances [1554, 1769]. Such distances can be measured in genotype or
phenotype space.

– Several MOEAs (e.g., MOGA [504], the NSGA [1509]) adopted this
approach, with algorithms O(N2). However, not all of them applied
fitness sharing in the same space (MOGA [504] applied fitness sharing
in objective function space, whereas the NSGA [1509] applied it in
decision variable space).

82 2 MOP Evolutionary Algorithm Approaches

F

F

1

2

minimize

m
in

im
iz

e

Fig. 2.9. A graphical illustration of fitness sharing

Note that when using niching, it is also possible to adopt different topolo-
gies for defining neighborhoods. For example, one could use a grid, and
associate the value of σshare to the size of the squares that define such
grid (see Figure 2.10). In this example, within each grid square, a desired
maximum of one point is kept (the reduction to one point is usually based
upon random selection, but other criteria are possible).
The density estimation may be based on several criteria, such as the fol-
lowing:
– Kernel approach: The density estimator is based on the sum of f

values, where f is a function of the distance (vector) measured either
in genotypic or in phenotypic space (e.g., MOGA [504] and the NPGA
[709]).

– Nearest neighbor approach: The density estimator is based on the
volume of the hyper-rectangle defined by the nearest neighbors (e.g.,
the NSGA-II [374] and SPEA2 [1775]).

– Histogram approach: The density estimator is based on the number
of solutions that lie within the same hyper-box (e.g., PAES [886] and
PESA [301]).

• Crowding/Clustering: In this case, we select the surviving solutions
according to a region crowdedness metric measured in objective function
space (see Figure 2.11). This is an idea similar to fitness sharing, but more

2.2 MOEA Techniques 83

F

F

1

2

Fig. 2.10. A graphical illustration of a niching scheme based on the use of a grid

F

2F

1

i

i+1

i−1

Fig. 2.11. A graphical illustration of crowding

84 2 MOP Evolutionary Algorithm Approaches

efficient, which algorithms such as the NSGA-II [374] have adopted. It is
also possible to use clustering techniques for the same purpose [1775].

f 1

f 2

ε 2ε 3ε 4ε 5ε

ε

2ε

3ε

5ε

4ε

1 2

3
4

6

5

7

Fig. 2.12. An example of the use of ε-dominance in an external archive. Solution
1 dominates solution 2, therefore solution 1 is preferred. Solutions 3 and 4 are
incomparable. However, solution 3 is preferred over solution 4, since solution 4 is
the closer to the lower left-hand corner represented by point (2ε,2ε). Solution 5
dominates solution 6, therefore solution 5 is preferred. Solution 7 is not accepted
since its box, represented by point (2ε,3ε) is dominated by the box represented by
point (2ε,2ε).

• Relaxed forms of dominance: Use a certain solution x even though
it is worse than some solution y in regards to a particular objective
(value comparison in objective function space). This relaxation may be
compensated by an improvement in other objectives (see for example
[470, 471, 798, 1138, 892]).
Laumanns et al. [959] proposed a relaxed form of Pareto dominance called
ε-dominance. The main use of this concept in MOEAs has been to filter
solutions in an external archive. By using ε-dominance, we define a set of
boxes of size ε and only one nondominated solution is retained for each box
(e.g., the one closest to the lower left-hand corner). This is illustrated in
Figure 2.12, for a bi-objective case. The use of ε-dominance, as proposed in

2.2 MOEA Techniques 85

[959] and illustrated in Figure 2.12, guarantees that the retained solutions
are nondominated with respect to all solutions generated during the run.

• Restricted Mating: This is quite similar to Crowding/Clustering, but
in this case diversity is preserved through the avoidance of certain recom-
binations. When this approach is adopted, there is normally a parameter
(σmate) which defines the minimum distance that must separate two indi-
viduals so that they can mate. It can be used either in serial [1021] or in
parallel/distributed implementations [1157].

MOEA Populations

Defining MOEA population structures is directly related to the sets Pknown and
Pcurrent . Usually, Pknown is an archival set always updated to retain the best
solutions found so far. Pcurrent , of course, is the set of current generation non-
dominated solutions. The use is these two populations or sets can be treated
differently as to their use as parents at the beginning of each generation. These
sets are generally defined as generational (primary or main) and secondary
(archival or external) populations.5

As Horn [706] indicates, any practical MOEA implementation must include
a secondary population composed of all nondominated solutions found so far
(Pknown (t)). This is due to the MOEA’s stochastic nature which does not
guarantee that desirable solutions, once found, remain in the generational
population until MOEA termination. This is analogous to elitism but it is
emphasized that it is a separate population. The question is then how to
best utilize this additional population. Is it simply a repository, continually
added to and periodically culled of dominated solutions? Or is it an integrated
component of the MOEA? Although several researchers indicate their use of
secondary populations only a few explain its use in their implementation. As
there is no consensus for its “best” use, some of its incarnations are presented
next.

A straightforward implementation stores Pcurrent (t) at the end of each
MOEA generation (i.e., Pcurrent (t) ∪ Pknown (t − 1)). This set must be pe-
riodically culled since a solution’s designation as Pareto optimal is always
dependent upon the set within which it is evaluated. How often the popula-
tion is updated is generally a matter of choice, but as determination of Pareto
optimality is an O(kM2) algorithm (where k refers to the number of objectives
and M to the population size), it should probably not be performed arbitrar-
ily. As this population’s size grows comparison time may become significant.
This implementation does not feed solutions from Pknown (t) back into the
MOEA’s generational population.

5 Note that it is also possible to use a single population in a MOEA (see for example,
the NSGA-II [374], in which a plus selection mechanism with an implicit elitist
strategy is adopted). However, we will only discuss here the use of two populations
because this is the most common practice in the current literature.

86 2 MOP Evolutionary Algorithm Approaches

Conversely, other published algorithms actively involve Pknown in MOEA
operation. For example, Zitzler and Thiele’s [1781, 1780, 1782, 1770] SPEA
stores
Pcurrent (t) in a secondary population and then culls dominated solutions.
Solutions from both the MOEA’s generational and secondary populations
then participate in binary tournaments selecting the next generation. If the
number of solutions in Pknown (t) exceeds a given maximum, the population
is reduced by clustering which attempts to generate a representative solution
subset while maintaining the original set’s (Pknown (t)’s) characteristics. SPEA
also uses Pknown (t) in computing the main population’s solutions’ fitness; this
effectively results in a larger generational population.

Todd and Sen [1591] also insert nondominated solutions from Pknown (t)
into the mating population to maintain diversity, as do Ishibuchi and Mu-
rata [750, 752, 751] and Cieniawski et al. [255]. These implementations never
reduce the size of Pknown (t) except when removing dominated solutions. Parks
and Miller [1247, 1244, 1245] implement an archive of Pareto optimal solu-
tions. However, solutions in Pcurrent (t) are not always archived; the process
occurs only if a solution is sufficiently “dissimilar” from those already resident.
Thus, this also is a form of clustering. If a new solution is added, any archive
members no longer Pareto optimal are removed. Like SPEA, the next genera-
tion’s members are selected from both Pknown (t) and the current generational
population.

Some researchers use secondary populations not composed of Pareto op-
timal solutions. Bhanu and Lee [130] apply a MOEA to adaptive image seg-
mentation; their secondary population is actually a training database from
which GA population members are selected. Viennet et al. [1651] use separate
GAs to optimize each of the MOP’s k functions independently; these “addi-
tional” populations are later combined and nondominated solutions removed
to provide Pknown .

A secondary population (of some sort) is a MOEA necessity. Because the
MOEA is attempting to build up a (discrete) picture of a (possibly continuous)
Pareto front, this is probably a case where at least initially, too many solutions
are better than too few. It intuitively seems that a secondary population might
also be useful in adding diversity to the current generation and in exploring
“holes” in the known front, although how to effectively and efficiently use
Pknown in this way is unknown. Again, it is suggested to experiment directly
comparing various secondary population implementations.

Several researchers have studied different aspects of secondary populations
in the last few years. See for example [877, 485, 1454, 959, 127, 672].

A Generic MOEA Algorithm

In general, based upon the MOEA Goals, an effective MOEA should incor-
porate the following generic operations assuming operations on complete in-
dividuals:

2.2 MOEA Techniques 87

• An initialization phase generating N individuals in a population P and
evaluating fitness. Individual gene encoding from the problem domain
could be binary, integer or real.

• Remove Pareto dominated individuals from P based upon scalar multi-
objective function evaluations such as Pareto ranking; P → P i.

• Use a density estimator to limit the number of individuals in P i that lie
on “small” regions of the current PFknown or Pknown . Techniques include
niching, sharing, & crowding with associated parameter values. The re-
duced niche count keeps the population at a “reasonable” computational
number.

• Perform evolutionary operations (recombination, mutation, etc.) to gen-
erate new individuals using appropriate parameter values; P i → P ii. To
select individuals for recombination one can use ranking, binary tourna-
ment selection, or proportional selection, for example.

• Select individuals for the next generation (population P iii) one could oper-
ate on [P ii] or [P i

⋃
P ii] using ranking. P iii is, of course, Pcurrent . Various

selection operators such as binary tournament selection with replacement
or elitism can be employed as well for limiting the size of P iii. Elitism in
the objective domain seems to generate better results since “good” indi-
viduals are retained.

• If a termination predicate condition is not met, such as maximum number
of generations or convergence criteria, set P iii to P as Pcurrent .

• Remove Pareto dominated and infeasible individuals from P iii or repair
infeasible individuals. Set P iii to P as Pcurrent .

• Retain an archive of nondominated and feasible individuals by storing P iii

in an archive P iv. As the new population P iii is merged with the archive,
the nondomination operator is applied to the merged combination. The
P iv archive contains Pknown and associated PFknown .

• Local search operations in hybrid or memetic MOEAs can also provide
good performance by exploring limit regions in objective space [879]; i.e.,
only moving towards specific regions on the Pareto front.

Examples of MOEAs using archiving are PAES [886], SPEA [1782],
SPEA2 [1775], the microGA [284], MOMGA [1632], MOMGA-II [1790], and
MOMGA-III [341]. Considering algorithm efficiency, one should evaluate com-
plexity of proposed MOEAs and order them in terms of complexity as a func-
tion of population size. An analysis of MOEA complexity is presented in
Section 6.3.8.

As implied in the list of possible MOEA operators, most MOEAs follow
a pattern of initializing a population of individuals, then executing a gen-
erational loop with evolutionary operators, ranking individuals and keeping
nondominated solutions in an archive filtered for diversity. Figure 2.13 is a
meta-level Generic MOEA pseudo code representation of this concept. Ob-
serve that feasibility operations are not included since they could be embedded
in the generational loop or outside the loop at the end. The vast majority of

88 2 MOP Evolutionary Algorithm Approaches

MOEA algorithmic structures adhere to this generic structure, the differences
being in the specific operator details as shown in the MOEA pseudo codes
of Section 2.3. Applying possible MOEA operator insight then results in a
variety of Multi-Objective Evolutionary Algorithm (MOEAs) designs as pre-
sented in Section 2.3. In the next section, we address the issues of individual
MOEA performance, and we provide an understanding of specific operator
utility.

Initialize population P and P iv

Evaluate Objective F (x) values over population
Assign Rank Based on Pareto Dominance
Compute Niche Count
Assign Shared Fitness or Crowding
While not terminal condition (number of generations or other)

Selection of “good” individuals from P → P i’
Recombination, mutation of individuals in P i → P ii

Evaluate Objective Values of Children P ii

Rank (P i union P ii) → P iii based on Pareto Dominance
Compute Niche Count
Assign Shared Fitness or Crowding
Reduce P iii → P
Copy P iii → P iv based on Pareto Dominance

End While

Fig. 2.13. Generic MOEA Pseudo code

2.3 Structures of Various MOEAs

Various historical MOEAs are presented noting that many continue to be
modified and improved in newer versions. Most generational MOEAs implic-
itly process building blocks (BBs) while a few others such as the MOMGA
[1632] explicitly process BBs. As indicated, BB structures are different on
different vectors in the objective space (phenotype space). This situation is
reflected in different goal performances for various MOEAs on a given MOP.

2.3.1 Multi-Objective Genetic Algorithm (MOGA)

Carlos M. Fonseca and Peter J. Fleming [504] proposed a variation of Gold-
berg’s technique called “Multi-Objective Genetic Algorithm” (MOGA), in
which the rank of a certain individual corresponds to the number of chro-
mosomes in the current population by which it is dominated. Consider, for
example, an individual xi at generation t, is dominated by p

(t)
i individuals in

2.3 Structures of Various MOEAs 89

the current generation; thus, an individual is assigned a rank by the following
rule: rank(xi, t) = 1 + p

(t)
i [504]. Figure 2.14 shows a variety of dominated

points. Figure 2.15 represents the MOGA dominance based assignment based
upon fitness.

F

2F

1

1

2

3 1

Fig. 2.14. MOGA fitness domination; raw fitness is the number of dominating
solutions as shown in the picture

The pseudo code of MOGA is shown in Figure 2.16 with the more formal
algorithmic pseudo code in Algorithm 1.6 Note that the first edition of this
book uses the more generic pseudo code form [287]. Observe that N ′ refers to
the population size, g is the specific generation, fj(xk) is the j′th objective
function, xk is the k′th individual, P

′ the population.
All nondominated MOGA individuals are assigned rank 1, while domi-

nated ones are penalized according to the population density of the corre-
sponding region of the trade-off surface.

Fitness assignment is performed in the following way [504]:

1. Sort population according to rank.

6 Observe that we generally use the algorithmic pseudo code template for additional
MOEA descriptions. This is done in order to present a more precise algorithmic
description that is useful for understanding and implementation. Also with the
two example pseudo code descriptions, one can transform one to the other quickly
for pedagogical presentation.

90 2 MOP Evolutionary Algorithm Approaches

dominated

nondominated

F 1

2F

Fig. 2.15. MOGA’s Dominance Fitness Assignment

Initialize Population
Evaluate Objective Values
Assign Rank Based on Pareto Dominance
Compute Niche Count
Assign Linearly Scaled Fitness
Assign Shared Fitness
For i = 1 to number of Generations

Selection via Stochastic Universal Sampling
Single Point Crossover
Mutation
Evaluate Objective Values
Assign Rank Based on Pareto Dominance
Compute Niche Count
Assign Linearly Scaled Fitness
Assign Shared Fitness

End Loop

Fig. 2.16. MOGA Pseudo code

2. Assign fitness to individuals by interpolating from the best (rank 1) to
the worst (rank n ≤ N ′) in the way proposed by David E. Goldberg [581]
according to some function, usually linear, but not necessarily.

2.3 Structures of Various MOEAs 91

Algorithm 1 MOGA algorithm
1: procedure MOGA(N ′, g, fk(x)) � N ′ members evolved g generations to solve

fk(x)
2: Initialize Population P

′

3: Evaluate Objective Values
4: Assign Rank based on Pareto Dominance
5: Compute Niche Count
6: Assign Linearly Scaled Fitness
7: Shared Fitness
8: for i=1 to g do
9: Selection via Stochastic Universal Sampling

10: Single Point Crossover
11: Mutation
12: Evaluate Objective Values
13: Assign Rank Based on Pareto Dominance
14: Compute Niche Count
15: Assign Linearly Scaled Fitness
16: Assign Shared Fitness
17: end for
18: end procedure

3. Average the fitnesses of individuals with the same rank, so that all of them
will be sampled at the same rate. This procedure keeps the global pop-
ulation fitness constant while maintaining appropriate selective pressure,
as defined by the function used.

As Goldberg and Deb [583] indicate, this type of blocked fitness assignment
is likely to produce a large selection pressure that might produce premature
convergence. To avoid that, Fonseca and Fleming [504] use a niche-formation
method to distribute the population over the Pareto-optimal region, but in-
stead of performing sharing on the parameter values, they use sharing on the
objective function values [1509]. Note that MOGA has been also hybridized
with neural networks in an attempt to improve its performance [413].

2.3.2 Nondominated Sorting Genetic Algorithm (NSGA)

N. Srinivas andKalyanmoyDeb [1509] proposed another variation ofGoldberg’s
approach called the “Nondominated Sorting Genetic Algorithm” (NSGA).

The Nondominated Sorting Genetic Algorithm (NSGA) is another modifi-
cation to the ranking procedure originally proposed by Goldberg [1508]. The
pseudo code for this MOEA is given in Figure 2.17 and Algorithm 2.

This NSGA algorithm is based on several layers of classifications of the
individuals. Before selection is performed, the population is ranked on the
basis of nondomination: all nondominated individuals are classified into one
category (with a dummy fitness value, which is proportional to the popula-
tion size, to provide an equal reproductive potential for these individuals).

Vahid
Highlight

92 2 MOP Evolutionary Algorithm Approaches

Initialize Population
Evaluate Objective Values
Assign Rank Based on Pareto Dominance in Each “Wave”
Compute Niche Count
Assign Shared Fitness
For i = 1 to G

Selection via Stochastic Universal Sampling
Single Point Crossover
Mutation
Evaluate Objective Values
Assign Rank Based on Pareto Dominance in Each “Wave”
Compute Niche Count
Assign Shared Fitness

End Loop

Fig. 2.17. NSGA Pseudo code

Algorithm 2 NSGA-I algorithm
1: procedure NSGA-I(N ′, g, fj(xk)) � N ′ members evolved g generations to

solve fk(x)
2: Initialize Population P

′

3: Evaluate Objective Values
4: Assign Rank Based on Pareto dominance in Each Wave
5: Compute Niche Count
6: Assign Shared Fitness
7: for i=1 to g do
8: Selection via Stochastic Universal Sampling
9: Single Point Crossover

10: Mutation
11: Evaluate Objective Values
12: Assign Rank Based on Pareto dominance in Each Wave
13: Compute Niche Count
14: Assign Shared Fitness
15: end for
16: end procedure

To maintain the diversity of the population, these classified individuals are
shared with their dummy fitness values. Then this group of classified individ-
uals is ignored and another layer of nondominated individuals is considered.
The process continues until all individuals in the population are classified.
Stochastic remainder proportionate selection is adopted for this technique.
Since individuals in the first front have the maximum fitness value, they al-
ways get more copies than the rest of the population. This allows for a better
search of the PFknown regions and results in convergence of the population
toward such regions. Sharing, by its part, helps to distribute the population

2.3 Structures of Various MOEAs 93

over this region (i.e., the Pareto front of the problem). As a result, one might
think that this MOEA converges rather quickly; however, a computational
bottleneck occurs with the fitness sharing mechanism. The NSGA was rel-
atively successful during several years (see for example [1692, 145, 1340]),
although several comparative studies of the time [260, 1626] indicated that
it was outperformed by both MOGA [504] and NPGA [709]. The NSGA was
also a highly inefficient algorithm because of the way in which it classified
individuals.

Deb et al. [363, 374] have proposed an improved version of the NSGA
algorithm, called NSGA-II. The pseudo code of the NSGA-II is shown in
Algorithm 3.

Algorithm 3 NSGA-II algorithm
1: procedure NSGA-II(N ′, g, fk(xk)) � N ′ members evolved g generations to

solve fk(x)
2: Initialize Population P

′

3: Generate random population - size N ′

4: Evaluate Objective Values
5: Assign Rank (level) Based on Pareto dominance - sort
6: Generate Child Population
7: Binary Tournament Selection
8: Recombination and Mutation
9: for i = 1 to g do

10: for each Parent and Child in Population do
11: Assign Rank (level) based on Pareto - sort
12: Generate sets of nondominated vectors along PFknown

13: Loop (inside) by adding solutions to next generation starting from
the first front until N ′ individuals found determine crowding distance between
points on each front

14: end for
15: Select points (elitist) on the lower front (with lower rank) and are outside

a crowding distance
16: Create next generation
17: Binary Tournament Selection
18: Recombination and Mutation
19: end for
20: end procedure

The nondominated sorting algorithm-II (NSGA-II) is a generic non-explicit
BB MOEA applied to multiobjective problems (MOPs)–based on the original
design of NSGA. As shown in Figure 2.18, it builds a population of competing
individuals, ranks and sorts each individual according to nondomination level,
applies Evolutionary Operations (EVOPs) to create new pool of offspring, and
then combines the parents and offspring before partitioning the new combined
pool into fronts. The NSGA-II then conducts niching by adding a crowding

Vahid
Highlight

94 2 MOP Evolutionary Algorithm Approaches

distance to each member. It uses this crowding distance in its selection op-
erator to keep a diverse front by making sure each member stays a crowding
distance apart. This keeps the population diverse and helps the algorithm to
explore the fitness landscape. This MOEA is currently used in most MOEA
comparisons. It has also been used as a foundation for other algorithm designs
like the multiobjective BOA [845].

Non−dominated sorting Crowding distance sorting

Rejected

P
t+1

F

F

F

1

2

3

R

Q

P

t

t

t

Fig. 2.18. Flow diagram that shows the way in which the NSGA-II works. Pt is
the parents population and Qt is the offspring population at generation t. F1 are
the best solutions from the combined populations (parents and offspring). F2 are
the second best solutions and so on.

2.3.3 Niched-Pareto Genetic Algorithm (NPGA)

Jeffrey Horn and his colleagues [708, 709] proposed a tournament selection
MOEA based on Pareto dominance defined as the Niched-Pareto Genetic
Algorithm (NPGA) The pseudo code of the NPGA is shown in Algorithm 4
[708]. Two individuals randomly chosen are compared against a subset from
the entire population (typically, around 10% of the population). If one of
them is dominated (by the individuals randomly chosen from the population)
and the other is not, then the nondominated individual wins. When both
competitors are either dominated or nondominated (i.e., there is a tie), the
result of the tournament is decided through fitness sharing [587]. This is a
generational MOEA with implicit BB manipulation.

Horn et al. [708, 709] also suggested a form of fitness sharing in the ob-
jective domain, with a metric combining both the objective and the decision
variable domains, leading to what the authors called equivalent class sharing.

Vahid
Highlight

2.3 Structures of Various MOEAs 95

Algorithm 4 NPGA algorithm
1: procedure NPGA(N , g, fk(x)) � N ′ members evolved g generations to solve

fk(x)
2: Initialize Population P
3: Evaluate Objective Value
4: for i=1 to g do
5: Specialized Binary Tournament Selection
6: Begin
7: if Only Candidate 1 dominated then
8: Select Candidate 2
9: else if Only Candidate 2 dominated then

10: Select Candidate 1
11: else if Both are Dominated or Nondominated then
12: Perform specialized fitness sharing
13: Return Candidate with lower niche count
14: end if
15: End
16: Single Point Crossover
17: Mutation
18: Evaluate Objective Values
19: end for
20: end procedure

Erickson et al. [453] proposed the NPGA 2, which uses Pareto ranking
but keeps tournament selection (solving ties through fitness sharing as in the
original NPGA). The pseudo code of the NPGA 2 is shown in Algorithm 5.
Niche counts in the NPGA 2 are calculated using individuals in the partially
filled next generation, rather than using the current generation. This is called
continuously updated fitness sharing , as proposed by Oei et al. [1205].

2.3.4 Pareto Archived Evolution Strategy (PAES)

The Pareto Archived Evolution Strategy (PAES) was designed and imple-
mented by Joshua D. Knowles and David W. Corne [886]. The conceptual
approach is quite simple as shown in the pseudo code of Algorithm 6.

PAES consists of a (1+1) evolution strategy (i.e., a single parent that gen-
erates a single offspring) in combination with a historical archive that records
some of the nondominated solutions previously found. This archive is used as
a reference set against which each mutated individual is being compared. This
is analogous to the tournament competitions held with the NPGA [709]. PAES
also uses a novel approach to keep diversity, which consists of a crowding pro-
cedure that divides objective space in a recursive manner. Each solution is
placed in a certain grid location based on the values of its objectives (which
are used as its “coordinates” or “geographical location”). A map of such grid
is maintained, indicating the number of solutions that reside in each grid loca-
tion. Since the procedure is adaptive, no extra parameters are required (except

96 2 MOP Evolutionary Algorithm Approaches

Algorithm 5 NPGA 2 algorithm
1: procedure NPGA 2(N ′, g, fk(x)) � N ′ members evolved g generations to

solve fk(x)
2: Initialize Population P

′

3: Evaluate Objective Values
4: for i=1 to g do
5: Specialize Binary Tournament Selection using rank as domination

degree
6: Begin
7: if Only Candidate 1 dominated then
8: Select Candidate 2
9: else if Only Candidate 2 dominated then

10: Select Candidate 1
11: else if Both are dominated or nondominated then
12: Perform specialized fitness sharing
13: Return Candidate with lower niche count
14: end if
15: End
16: Single Point Crossover
17: Mutation
18: Evaluate Objective Values
19: end for
20: end procedure

Algorithm 6 PAES algorithm
1: procedure PAES(fk(x))
2: repeat
3: Initialize Single Population parent, C, and add to archive, A

4: Mutate C to produce child C′ and evaluate fitness
5: if C � C′ then
6: discard C′

7: else if C � C′ then
8: replace C with C′, and add C to A

9: else if ∃C”∈A(C” � C′) then
10: discard C′

11: else
12: apply test (C, C′, A) to determine which becomes the new current so-

lution and whether to add C′ to A

13: end if
14: until termination criteria is met
15: end procedure

for the number of divisions of the objective space). Furthermore, the proce-
dure has a lower computational complexity than traditional niching methods
[886]. Figure 2.19 shows a graphical illustration of PAES’ adaptive grid. The
adaptive grid of PAES and some other issues related to external archives (also

2.3 Structures of Various MOEAs 97

f1

f2

Size
of objective 1

O
b
jectiv

e 2

S
iz

e
o
f

o
b
je

ct
iv

e
2

Hypercube

corresponding component
to cover in the

Space that we need

Objective 1

objective 1

nDivs = 7

nDivs = 7

Individual with the worst
value in objective 2 and
best value in objective 1

Individual with the worst
value in objective 1 and
best value in objective 2

A

B

C

D

E
F

G

H

I

J

K

L

M
N

7

6

5

4

3

2

1

0

 0 1 2 3 4 5 6 7

Fig. 2.19. Graphical illustration of the adaptive grid used by PAES.

called “elite” archives) have been studied both from an empirical and from a
theoretical perspective (see for example [877, 491]).

Other implementations of PAES were also proposed, namely (1+λ)-ES and
(µ + λ)-ES. However, these were deemed to not improve overall performance.
A memetic7 version of PAES, called M-PAES was developed as a follow-up
to this algorithm [873]. PAES is a convergent implicit BB MOEA.

2.3.5 Strength Pareto Evolutionary Algorithm (SPEA)

The Strength Pareto Evolutionary Algorithm (SPEA) was introduced by
Eckart Zitzler and Lothar Thiele [1782]. This approach was conceived as a
way of integrating different MOEAs. The pseudo code of SPEA is shown in
Algorithm 7. SPEA uses an external archive containing nondominated solu-
tions previously found (the so-called external nondominated set). At each gen-
eration, nondominated individuals are copied to the external nondominated
set. For each individual in this external set, a strength value is computed. This
strength is similar to the ranking value of MOGA [504], since it is proportional
to the number of solutions to which a certain individual dominates. In SPEA,
the fitness of each member of the current population is computed according to

7 A memetic algorithm donotes the use of local search heuristic with a population-
based strategy. The word memetic has its roots in the word meme - which was
introduced in 1990 by Richard Dawkins in his book “The Selfish Gene” [340]. See
Chapter 10 for more details on multi-objective memetic algorithms.

98 2 MOP Evolutionary Algorithm Approaches

Algorithm 7 SPEA algorithm
1: procedure SPEA(N ′, g, fk(x))
2: Initialize Population P

′

3: Create empty external set E
′ (|E′| < |P′|)

4: for i:=1 to g do
5: E

′ = E
′ ∪ND(P′) � Copy members evaluating to be nondominated of P

to E
6: E

′ = ND(E) � Keep only member evaluating to nondominated vectors
in E

7: Prune E
′ (using clustering) if max capacity of E

′ is exceeded
8: ∀i∈P′ Evaluate(P′

i) � Evaluate fitness for all member of E
′ and P

′

9: ∀i∈E′ Evaluate(E′
i)

10: MP ← T (P′ ∪E
′) � Use binary tournament selection with

11: � replacement to select individuals from P
′ + E

′

12: � (multiset union) until the mating pool is full
13: Apply crossover and mutation on MP
14: end for
15: end procedure

the strengths of all external nondominated solutions that dominate it. The fit-
ness assignment process of SPEA considers both closeness to the true Pareto
front and even distribution of solutions at the same time. Thus, instead of
using niches based on distance, Pareto dominance is used to ensure that the
solutions are properly distributed along the Pareto front. Although this ap-
proach does not require a niche radius, its effectiveness relies on the size of
the external nondominated set. In fact, since the external nondominated set
participates in the selection process of SPEA, if its size grows too large, it
might reduce the selection pressure, thus slowing down the search. Because of
this, the authors decided to adopt a technique that prunes the contents of the
external nondominated set so that its size remains below a certain threshold.
The approach adopted for this sake was a clustering technique called average
linkage method [1132].

There is also a revised version of SPEA (called SPEA2) whose pseudo code
is shown in Algorithm 8 [1775]. SPEA2 has three main differences with respect
to its predecessor [1775]: (1) it incorporates a fine-grained fitness assignment
strategy which takes into account for each individual the number of individuals
that dominate it and the number of individuals to which it dominates; (2) it
uses a nearest neighbor density estimation technique which guides the search
more efficiently, and (3) it has an enhanced archive truncation method that
guarantees the preservation of boundary solutions.

The SPEA2 and NSGA-II are two of the most prominent MOEAs used
when comparing a newly designed MOEA. Prevalent in these two MOEAs
is the fact that they are implicit BB builders and they rely heavily on their
density estimator mechanisms.

2.3 Structures of Various MOEAs 99

Algorithm 8 SPEA2 algorithm
1: procedure SPEA2(N ′, g, fk(x))
2: Initialize Population P

′

3: Create empty external set E
′

4: for i=1 to g do
5: Compute fitness of each individual in P

′ and E
′

6: Copy all individual evaluating to nondominated vectors P
′ and E

′ to E
′

7: Use the truncation operator to remove elements from E when the capacity
of the file has been extended

8: If the capacity of E
′ has not been exceeded then use dominated individuals

in P
′ to fill E

′

9: Perform binary tournament selection with replacement to fill the mating
pool

10: Apply crossover and mutation to the mating pool
11: end for
12: end procedure

For n = 1 to k
Perform Partially Enumerative Initialization
Evaluate Each Pop Member’s Fitness (w.r.t. k Templates)

// Primordial Phase
For i = 1 to Maximum Number of Primordial Generations

Perform Tournament Thresholding Selection
If (Appropriate Number of Generations Accomplished)

Then Reduce Population Size
Endif

End Loop
//Juxtapositional Phase

For i = 1 to Maximum Number of Juxtapositional Generations
Cut-and-Splice
Evaluate Each Pop Member’s Fitness (w.r.t. k Templates)
Perform Tournament Thresholding Selection

and Fitness Sharing
Pknown(t) = Pcurrent(t) ∪ Pknown(t − 1)

End Loop
Update k Competitive Templates

(Using Best Value Known in Each Objective)
End Loop

Fig. 2.20. MOMGA Pseudo code

2.3.6 Multiobjective Messy Genetic Algorithm (MOMGA)

The Multiobjective Messy Genetic Algorithm (MOMGA) was proposed by
David A. Van Veldhuizen and Gary B. Lamont [1632] as an attempt to extend
the messy GA [354] to solve multiobjective optimization problems. The pseudo

100 2 MOP Evolutionary Algorithm Approaches

Algorithm 9 MOMGA algorithm
1: procedure MOMGA(N , g, fk(x))
2: for i = 1 to epoch do
3: � PEI Phase
4: Perform Partially Enumerative Initialization
5: Evaluate each population member’s fitness w.r.t.k templates
6: � Primordial Phase
7: for i = 1 to Max Primordial Generations do
8: Perform Tournament Thresholding Selection
9: if Appropriate number of generations accomplished then

10: Reduce Population Size
11: end if
12: end for
13: � Juxtapositional Phase
14: for i = 1 to Max Juxtapositional Generations do
15: Cut-and-Slice
16: Evaluate Each Population member’s fitness w.r.t.k templates
17: Perform Tournament Thresholding Selection and Fitness Sharing
18: PKnown(t) = Pcurrent(t) ∪ Pknown(t − 1)
19: end for
20: Update k templates � Using best known value in each objective
21: end for
22: end procedure

code of the MOMGA is shown in Figure 2.20 and in Algorithm 9. MOMGA
consists of three phases: (1) Initialization Phase, (2) Primordial Phase, and
(3) Juxtapositional Phase. In the Initialization Phase, MOMGA produces
all building blocks of a certain specified size through a deterministic process
known as partially enumerative initialization. The Primordial Phase performs
tournament selection on the population and reduces the population size if
necessary. In the Juxtapositional Phase, the messy GA proceeds by building up
the population through the use of the cut and splice recombination operator.

A revised version of MOMGA (called MOMGA-II) has been proposed by
Zydallis et al. [1790]. In this case, the authors extended the fast-messy GA
[584]. The pseudo code of the MOMGA-II is shown in Figure 2.21. The fast-
messy GA consists also of three phases: (1) Initialization Phase, (2) Building
Block Filtering, and (3) Juxtapositional Phase. Its main difference with re-
spect to the original messy GA is in the two first phases. The Initialization
Phase utilizes probabilistic complete initialization which creates a controlled
number of building block clones of a specified size. The Building Block Filter-
ing Phase reduces the number of building blocks through a filtering process
and stores the best building blocks found. This filtering is accomplished
through a random deletion of bits alternated with tournament selection be-
tween the building blocks that have been found to yield a population of “good”
building blocks. The Juxtapositional Phase is the same as in the MOMGA.

2.3 Structures of Various MOEAs 101

This approach is obviously an explicit BB technique. Also, the MOMGA-III
improves the MOMGA by restructuring the code into an object-oriented form
as well as adding better ways of exploring the objective space [341].

For n = 1 to k
Perform Probabilistically Complete Initialization
Evaluate Each Pop Member’s Fitness (w.r.t. k Templates)

// Building Block Filtering Phase
For i = 1 to Maximum Number of BBF Generations

If (BBF Required Based Off of Input Schedule)
Then Perform Building Block Filtering (BBF)

Else
Perform Tournament Thresholding Selection

Endif
End Loop

//Juxtapositional Phase
For i = 1 to Maximum Number of Juxtapositional Generations

Cut-and-Splice
Evaluate Each Pop Member’s Fitness (w.r.t. k Templates)
Perform Tournament Thresholding Selection

and Fitness Sharing
Pknown(t) = Pcurrent(t) ∪ Pknown(t − 1)

End Loop
Update k Competitive Templates
(Using Best Value Known in Each Objective)

End Loop

Fig. 2.21. MOMGA-II Pseudo code

2.3.7 Pareto Envelope-based Selection Algorithm (PESA)

The Pareto Envelope-based Selection Algorithm (PESA) is suggested by
Corne et al. [301]. The pseudo code for the method is given in Algorithm 10.
PESA consists of a small internal population and a larger external population.
A hyper-grid division of phenotype space is used to maintain selection diver-
sity (application of a crowding measure) as the MOEA runs. Furthermore, this
crowding measure is used to allow solutions into the external population via
an archive of solutions evaluating to nondominated vectors. A revised version
of this MOEA is called PESA-II [299]. The difference between the PESA-I
and II is that in the second, selection is region-based and the subject of selec-
tion is now a hyperbox, not just an individual (i.e., it first selects a hyperbox,
and then it selects an individual within that hyperbox). The motivation be-
hind this approach is to reduce the computational cost associated with Pareto
ranking [299]. Finally, these MOEAs are convergent implicit BB MOEAs.

102 2 MOP Evolutionary Algorithm Approaches

Algorithm 10 PESA algorithm
1: procedure PESA(N ′, fk(x))
2: Initialize Population P

′
i of size N ′ Randomly

3: Evaluate each member of P
′
i

4: Initialize the external population P
′
e to the empty set

5: repeat
6: Incorporate individuals evaluating to nondominated vectors from P

′
i into

P
′
e

7: Delete the current contents of P
′
i

8: repeat
9: With probability pc, select two parents from P

′
e � pc is the

probability of crossover
10: Produce a single child via crossover
11: Mutate the child created in the previous step
12: With probability (1 − pc), select one parent
13: Mutate the selected parent to produce a child
14: until P

′
i is filled

15: until termination criteria is met
16: Return(P′

e) � Return the members of P
′
e as the result

17: end procedure

2.3.8 The Micro-Genetic Algorithm for Multiobjective
Optimization

This approach was introduced by Carlos A. Coello Coello & Gregorio Toscano
Pulido [283, 284, 285]. A micro-genetic algorithm is a GA with a small popu-
lation and a reinitialization process. The way in which the micro-GA works is
illustrated in Figure 2.22. First, a random population is generated. This ran-
dom population feeds the population memory, which is divided in two parts:
a replaceable and a non-replaceable portion. The non-replaceable portion of
the population memory never changes during the entire run and is meant to
provide the required diversity for the algorithm. In contrast, the replaceable
portion experiences changes after each cycle of the micro-GA.

The population of the micro-GA at the beginning of each of its cycles
is taken (with a certain probability) from both portions of the population
memory so that there is a mixture of randomly generated individuals (non-
replaceable portion) and evolved individuals (replaceable portion). During
each cycle, the micro-GA undergoes conventional genetic operators. After the
micro-GA finishes one cycle, two nondominated vectors are chosen8 from the
final population and they are compared with the contents of the external
memory (this memory is initially empty). If either of them (or both) remains
as nondominated after comparing it against the vectors in this external mem-
ory, then they are included there (i.e., in the external memory). This is the

8 This is assuming that there are two or more nondominated vectors. If there is
only one, then this vector is the only one selected.

2.3 Structures of Various MOEAs 103

Population

Nominal

Selection

Crossover

Mutation

Elitism

New
Population

Convergence?

Filter

External
Memory

cycle
micro−GA

N

Y

Non−ReplaceableReplaceable

Population Memory

Random
Population

Fill in
both parts

of the
population
memory

Initial

Fig. 2.22. Diagram that illustrates the way in which the micro-GA for multiobjec-
tive optimization works [284].

historical archive of nondominated vectors. All dominated vectors contained
in the external memory are eliminated.

The micro-GA uses then three forms of elitism: (1) retain nondominated
solutions found within the internal cycle of the micro-GA, (2) use a replaceable
memory whose contents is partially “refreshed” at certain intervals, and (3)
replace the population of the micro-GA by the nominal solutions produced
(i.e., the best solutions found after a full internal cycle of the micro-GA).

Although the micro-GA is a very efficient MOEA, its main drawback is
that it requires a high number of parameters. This motivated the develop-
ment of the micro-GA2 (also called µGA2) [1597], which uses online adap-
tation. The way of which the µGA2 works is illustrated in Figure 2.23. One
of the main features of the new approach is the use of a parallel strategy
to adapt the crossover operator (i.e., several micro-GAs are executed in par-
allel). First, the initial crossover operator to be used by each micro-GA is
selected. The three crossover operators available are: 1) SBX [362], 2) two-
point crossover, and 3) a hybrid crossover operator proposed by the authors of

104 2 MOP Evolutionary Algorithm Approaches

Adaptive
Micro
GA

Adaptive
Micro
GA

Adaptive
Micro
GA

Select crossover operators

External Memory

Compare results and
rank the subpopulations

Select the population memories
for the Adaptive micro−GAs

Initialize population memories

Initialize crossover operators

N

Y

Convergence?

Fig. 2.23. Diagram that illustrates the way in which the µGA2 works.

this MOEA [1597]. The behavior of this crossover operator depends on the dis-
tance between each variable of the corresponding parents: if the variables are
closer than the mean variance of each variable, then intermediate crossover
is performed; otherwise, a recombination that emphasizes solutions around
the parents is applied. These crossover operators were selected because they
exhibited the best overall performance in an extensive set of experiments that
the authors of this approach conducted. Once the crossover operator has been
selected, the population memories of the internal micro-GAs are randomly
generated. Then, all the internal micro-GAs are executed, each one using one
of the crossover operators available (this is a deterministic process). The non-
dominated vectors found by each micro-GA are compared against each other

2.3 Structures of Various MOEAs 105

and the contribution of each crossover operator is ranked with respect to its
effectiveness to produce nondominated vectors. At this point, the crossover
operator which exhibits the worst performance is replaced by the one with the
best performance. The external memory stores the globally nondominated so-
lutions, and the new population memories (of every internal micro-GA) are
filled using this external memory. The new external memories of the micro-GA
are identical to this external memory. When all these processes are completed,
convergence is checked. For this sake, it is assumed that convergence has been
reached when none of the internal micro-GAs can improve the solutions previ-
ously reached. The rationale here is that if no new solutions have been found
within a certain (reasonably large) amount of time, it is fruitless to continue
the search.

The µGA2 works in two stages: the first one starts with a conventional evo-
lutionary process and it concludes when the external memory of each slave
process is full or when at least one slave has reached convergence (as assumed
in the previous paragraph). The second stage is finished when global conver-
gence (i.e., when all of the slaves have converged) is reached. An interesting
aspect of the µGA2 is that it attempts to balance between exploration and
exploitation by changing the priorities of the genetic operators. This is done
during each of the two stages previously described. During the first stage,
exploration is emphasized and during the second, exploitation is emphasized.
The stages are the following:

• Exploration stage: At this stage, mutation has more importance than
crossover so that the most promising regions of the search space can be
located. At this point, a low crossover rate is adopted and the mutation
operator is the main responsible of directing the search. The nominal con-
vergence (i.e., the internal cycle of the micro-GA) is also decreased, since
there is no interest in recombining solutions at this point.

• Exploitation stage: At this stage, the crossover operator has more im-
portance and therefore nominal convergence is increased to reach better
results.

2.3.9 Multiobjective Struggle GA (MOSGA)

The Multiobjective Struggle Genetic Algorithm (MOSGA) [46, 47] combines
the struggle crowding genetic algorithm [608] with a Pareto based rank-
ing scheme. The algorithm has the same pattern as the struggle algorithm
where two parents are chosen at random from the population, and the normal
crossover and mutation is performed to create a child. The child then com-
petes with the most similar individuals in the entire population. The child
replaces similar individuals if the child has a better ranking—counteracting
genetic drift. The ranking method employed is the same as that adopted in
MOGA [504].

Vahid
Highlight

Vahid
Highlight

106 2 MOP Evolutionary Algorithm Approaches

Algorithm 11 MOSGA [48]
1: procedure MOSGA(N ′, g, fk(x))
2: Initialize Population P

′

3: repeat
4: for (i = 1 to g) do
5: Randomly Select p parents from P

′

6: Apply EVOPs to create a child
7: Calculate the rank of the child
8: Rank the entire population with the new child
9: Locate the most similar individual

10: if New child’s ranking is better than the similar individual then
11: Replace the similar individual with new child
12: Update the ranking of the entire population
13: end if
14: end for
15: until Stopping criterion is met
16: end procedure

Although this MOEA has the flavor of being a simple variation of MOGA,
the approach is devised to counteract genetic drift which is known to spoil
population diversity [46, 47]. An advancement to this algorithm is a technique
to assess the robustness of optimal solutions generated by the MOEA. Gen-
erational information is extracted from the MOEA to construct a response
surface and a good estimate of the robustness of the Pareto front. Again, this
algorithm is a generational MOEA and also an implicit BB MOEA.

2.3.10 Orthogonal Multi-Objective Evolutionary Algorithm
(OMOEA)

The Orthogonal Multi-Objective Evolutionary Algorithm (OMOEA) process
begins with a strict definition of the MOP constraints involved for a particular
problem to solve. These constraints are considered when Pareto dominance
is defined. The algorithm starts by defining a single niche in the decision
variable space χ. This niche is recursively split into a group of sub-niches over
and over again until a stopping criteria is satisfied. This partitioning forces
a uniform search. The pseudo code for OMOEA is given in Algorithm 12
where P

′ denotes the global population and Ψ denotes the set of all sub-niches
[1755, 1757].

Generally, this MOEA performs well; however, a couple of shortcomings
were found by its authors [1756]:

1. Strong interaction (high epistasis) between variables degrades the per-
formance of OMOEA in both precision and distribution of the PFknown

vectors.
2. As the number of objectives increases, the number of solutions increases

exponentially.

2.3 Structures of Various MOEAs 107

Algorithm 12 OMOEA [1755, 1757]
1: procedure OMOEA I(N ′, fk(x)) � N ′ members evolved until a specified

precision is found for fk(x)
2: Input decision space χ as initial niche.
3: Evolve niches into P

′
N (1)

4: Split the niche into a group of ΨN sub-niches.
5: Initialize P

′ and Ψ
6: P

′ ← P
′
N (1); Ψ ← ΨN

7: gen=1
8: repeat
9: for (Each χ

(s)
N ∈ χ) do

10: Evolve χ
(s)
N and yield P

(s)
N (1)

11: Split the niche into a group of ΨN niches.
12: end for
13: Ψ ←

⋃
ΨN ;P′:P′ ←

⋃
P
′(s)
N (1)

14: gen = gen + 1
15: until (current P

′ does not reach the required precision, and the solution
number of P

′ is not more than a critical value)
16: Output P

′ as the satisfying close-to-Pareto-optimal set of MOP
17: end procedure

Algorithm 13 OMOEA-II [1756]
1: procedure OMOEA-II(N , fk(x))
2: Randomly create population P0 with size N .
3: Counter t ← 0
4: repeat
5: Apply Crossover Operator on Pt resulting in P

′
t offspring � |Pt| = |P′

t|
6: P”t = Pt ∪ P

′
t

7: Perform Selection on P”t resulting in Pt+1

8: t = t + 1
9: until Stopping Criteria Satisfied

10: Output Pt

11: end procedure

These shortcomings listed above are not unheard of for MOEAs. As a
matter of principle, MOEA designers must recognize both of these problems
when developing a new MOEA. To address these limitations, the OMOEA-II
was proposed in [1756]. The modification to the OMOEA is to reduce the
size of the orthogonal array in order to exploit optimality within a relatively
small space. The pseudo code of the OMOEA-II is presented in Algorithm 13.
Finally, this is a convergent MOEA that implicitly seeks BBs.

108 2 MOP Evolutionary Algorithm Approaches

Algorithm 14 GENMOP algorithm
1: procedure GENMOP(N , g, fk(x))
2: Initialize Parent Population Pp of size N
3: Evaluate, Rank, Normalize and Save Parent Population
4: for i=1 to g do
5: Initialize Children and Mating Pool
6: Fill Mating Pool with Parents by Rank
7: for j = 1 to size(children pool) do
8: Statistically select EVOP (weighted section based on previous

good/bad children record)
9: Apply selected EVOP on Children and Mating Pool once

10: Store EVOP used with new child
11: end for
12: Mutate new Children
13: Evaluate new Children
14: Combine Parents with new Children into a new Parent Pool
15: Rank, Normalize and Save new Parent Pool
16: end for
17: end procedure

2.3.11 General Multiobjective Evolutionary Algorithm
(GENMOP)

The General Multiobjective Evolutionary Algorithm (GENMOP) is a gen-
eral MOEA designed at the US Air Force Institute of Technology (AFIT).
GENMOP employs numerous operators to select from when conducting evo-
lutionary operators (EVOPs). As the search progresses, it more often chooses
EVOPs that repeatedly produce better solutions. The algorithm works on the
supposition that operators that continuously produce better solutions will, in
the future, continue to produce good solutions. The pseudo code for GEN-
MOP is given in Algorithm 14. In addition to the pseudo code a program
flow/population growth diagram is presented in Figure 2.24 to illustrate the
flow population members throughout execution of the MOEA. GENMOP is
a generational implicit MOEA that can be used on generic problems because
it can adapt its operator use to those that provide better solutions.

Other techniques that have been adopted and have not been discussed in
this chapter are the following:

• Pareto deme-based selection: These are approaches in which Pareto
ranking is applied over several subpopulations that are distributed within
some sort of geographical structure. The main idea here is to distrib-
ute the effort of checking for nondominance by applying Pareto ranking
locally within each (presumably small) subpopulation of a (most likely
parallelized) MOEA. Then, an additional mechanism has to be used to
determine nondominance with respect to the entire population. However,
since normally only locally nondominated individuals participate in this

2.3 Structures of Various MOEAs 109

Table 2.1. Summary of EVOPs, fitness, sharing, and representation for discussed
implicit BB MOEAs.

MOEA EVOPS Fitness Sharing R or Explicit or
{0, 1} Implicit BB

VEGA c+m Value of a single Phenotypic {0, 1} Implicit
objective Fitness σshare

MOGA c+m Linear interpolation Phenotypic R Implicit
using Fonseca and Fitness σshare {0, 1}
Fleming’s Pareto
ranking [504]

NPGA c+m Tournament Phenotypic {0, 1} Implicit
Fitness σshare R

NPGA 2 c+m Rank Phenotypic {0, 1} Implicit
Dominance Continuously R

Update fit.
Technique

NSGA c+m Dummy fitness Genotypic {0, 1} Implicit
using Nondominated (σshare - R

sorting Fitness)
NSGA-II c+m Nondominated Phenotypic {0, 1} Implicit

sorting and R

crowding
SPEA c+m Strength value Phenotypic {0, 1} Implicit

based on R

dominance and
clustering

SPEA2 c+m Strength value Density {0, 1} Implicit
based on dominance function R

and clustering
PAES m (1+1)single grid Phenotypic {0, 1} Implicit

(Hyperbox - R

sharing)
M-PAES m (1+1)single grid Phenotypic {0, 1} Implicit

R

PESA c+m Pareto ranking Phenotypic {0, 1} Implicit
(Hyperbox -
sharing)

PESA-II c+m Region-based Phenotypic {0, 1} Implicit
(Hyperbox -
sharing)

µGA c+m Pareto ranking Phenotypic {0, 1} Implicit
Grid-based

µGA2 c+m Pareto ranking Phenotypic {0, 1} Implicit
Grid-based R

MOSGA c+m Linear interpolation Phenotypic {0, 1} Implicit
using Fonseca and Fitness σshare

Fleming’s Pareto
ranking [504]

OMOEA c Based on sub-niche Genotypic R Implicit
evolution

OMOEA-II c Nondominated sorting Phenotypic R Implicit
cluster distance

GENMOP c+m Pareto ranking Phenotypic R Implicit
Fitness σshare

110 2 MOP Evolutionary Algorithm Approaches

Fig. 2.24. Illustrated is the program flow of the GENMOP. Population of vari-
able length solutions and the evolution process while the algorithm progresses is
illustrated. GENMOP pseudo code can be found in Algorithm 14.

mechanism, the procedure is then more efficient than using the entire pop-
ulation of a traditional (sequential) MOEA [1382].

• Pareto elitist-based selection: The use of elitism in the context of
evolutionary multiobjective optimization has been addressed by several
researchers since the mid 1990s. Elitist selection refers to retaining intact
the best n individuals (n ≥ 1) from the current generation to the next
one, without applying any operators to them. The use of elitism is known
to have great importance when using genetic algorithms to solve single-
objective optimization problems [1393]. However, the use of elitism in evo-
lutionary multiobjective optimization is still subject of research [964]. The
main idea here is to retain some of the highest ranked individuals in the
population (i.e., some nondominated vectors) and then fill the rest of the

2.3 Structures of Various MOEAs 111

population using some other technique (in some cases, dominated vectors
are discarded).

• Hybrid Selection: These are approaches in which the population capa-
bility of a MOEA is exploited, but several selection mechanisms are used
along the evolutionary search process. These approaches normally attempt
to combine the best of several MOEAs, and combine their selection and/or
fitness assignment techniques alternatively at each certain number of gen-
erations (the choice of technique to be adopted can be also decided through
the use of an uncertainty management technique such as fuzzy logic).

2.3.12 Criticism to Pareto sampling techniques

The main weakness of Pareto ranking in general is that there is no efficient
algorithm to check for nondominance in a set of feasible solutions (the con-
ventional process is O(kM2) for each generation, where k is the number of
objectives and M is the population size). Therefore, any traditional algorithm
to check for Pareto dominance exhibits a serious degradation in performance
as the size of the population and the number of objectives are increased. Also,
Pareto ranking becomes inappropriate when dealing with a large number of
objectives, because in such cases, all the individuals in the population will
soon become nondominated. Additionally, the use of sharing requires to esti-
mate the value of the sharing factor, which is not easy, and the performance
of the method normally relies a lot on such value. Nevertheless, and despite
its possible disadvantages, Pareto ranking remains as the most popular selec-
tion scheme adopted by MOEAs, because of the several advantages that it
provides over (linear) aggregating functions.

Besides the general criticism expressed before, there are certain specific
comments that have been addressed in the past towards each of the approaches
previously discussed:

• MOGA : The main criticism towards MOGA has been that it performs
sharing on the objective value space, which implies that two different vec-
tors with the same objective function values cannot exist simultaneously
in the population under this scheme [1509, 357]. This is apparently un-
desirable, because these are precisely the kind of solutions that the user
normally wants. However, nothing in the algorithm precludes it from per-
forming sharing in parameter value space, and apparently this choice has
been taken in some of the applications reported in the literature (see Chap-
ter 7). Also, in its original version, MOGA is a non-elitist MOEA.
The main advantage of MOGA is that it is efficient and relatively easy to
implement [260, 1626]. Its main weakness is that, as all the other Pareto
ranking techniques, its performance is highly dependent on an appropriate
selection of the sharing factor. However, it is important to note that Fon-
seca and Fleming [504] have developed a good methodology to compute
such value for their approach.

112 2 MOP Evolutionary Algorithm Approaches

• NSGA: Some researchers have reported that NSGA has a lower overall
performance than MOGA, and it seems to be also more sensitive to the
value of the sharing factor than MOGA [260, 1626]. Other authors [1781]
report that the NSGA performed quite well in terms of “coverage” of the
Pareto front (i.e., it spreads in a more uniform way the population over
the Pareto front) when applied to the 0/1 knapsack problem, but in these
experiments no comparisons with MOGA were provided. This is also a
non-elitist MOEA.

• NSGA-II: The NSGA-II is noticeably more efficient than its previous
version, but it also seems to have a questionable exploratory capability.
Although the algorithm tends to spread quickly and appropriately when
a certain nondominated region is found, it seems to have difficulties to
generate nondominated vectors that lie in certain (isolated) regions of
the search space [284]. There is also evidence of a notorious search bias
of the NSGA-II as the number of objectives increases [1775], although
some recent improvements have been introduced in order to deal with this
problem (see [912]).

• PAES: Despite its efficiency, PAES does not perform well in Pareto fronts
that are disconnected. This is due to the fact that PAES is exploratory in
nature, and does not keep in the external file the nondominated individuals
of the extremes of objective function space. It also stagnates under certain
conditions (e.g., in the presence of several disjoint Pareto fronts) [284,
1775].

• MOMGA, MOMGA-II and MOMGA-III: Although messy GAs are
very powerful, their main drawbacks are related to the exponential growth
of their population as the size of the building blocks grows [1114]. Although
the fast-messy GA is a good alternative to deal with this problem, it does
not solve it completely.

• Pareto deme-based selection techniques: To exploit better Pareto
deme-based selection techniques, it is desirable to use a parallel MOEA.
However, the use of parallelism introduces additional problems to take
into account (e.g., the cost of the communication topology adopted). See
Chapter 8 for a more detailed discussion of Parallel MOEAs.

• Pareto elitist-based selection: The main criticism towards Pareto eli-
tist approaches is that they may not retain diverse enough populations
to find and retain a PFknown truly representative of PFtrue , as they re-
tain only Pcurrent (t) between generational populations and discard all
other solutions. As more and more population members are contained
in Pcurrent (t) the remaining solutions may not provide enough diversity
for effective further exploration. In other words, Pareto elitist approaches,
as in single-objective optimization, may introduce a large selection pres-
sure that could cause premature convergence. Therefore, care should be
taken of the number of nondominated individuals retained at each gener-
ation. Additionally, the use of an efficient approach to maintain diversity
is crucial to make effective this sort of technique.

2.4 Constraint-Handling Techniques 113

• Hybrid selection: Hybrid selection techniques may be advantageous in
certain cases (e.g. in multiobjective combinatorial optimization). However,
it is by no means obvious how to balance different selection strategies that
are applied to the same population. This normally requires an additional
mechanism (e.g., fuzzy logic) or additional parameters that may compli-
cate the use of the approach.

2.4 Constraint-Handling Techniques

Handling constraints within a MOEA is an important topic that deserves
special attention, particularly when dealing with real-world problems. Most
real-world MOPs have constraints that need to be incorporated into our search
engine in order to avoid convergence towards infeasible solutions. Constraints
can be “hard” (i.e., they must be satisfied) or “soft” (i.e., they can be relaxed)
and their proper handling has been a matter of research within single-objective
EAs [265].

Normally, the vector g(x) ≤ 0 defines the set of MOP constraints (see Sec-
tion 1.2.2 from Chapter 1). Note that normally, only inequality constraints
(i.e., g(x)) are considered, because equality constraints can be easily trans-
formed into inequality constraints using, for example:

|h(x)| − ε ≤ 0 (2.4)

where h(x) = 0 is an equality constraint that we aim to satisfy, and ε is
the tolerance allowed (a very small value).

The most popular constraint-handling technique both for single-objective
and multi-objective EAs are penalty functions [1360]. Exterior penalty func-
tions are the most commonly used in the specialized literature, and their
general formulation is the following:

φ(x) = f(x) ±

⎡
⎣

n∑
i=1

ri × Gi +
p∑

j=1

cj × Lj

⎤
⎦ (2.5)

where φ(x) is the new (expanded) objective function to be optimized, Gi and
Lj are functions of the constraints gi(x) and hj(x), respectively, and ri and
cj are positive constants normally called “penalty factors”.

The most common form of Gi and Lj is:

Gi = max[0, gi(x)]β (2.6)

Lj = |hj(x)|γ (2.7)

where β and γ are normally 1 or 2.

114 2 MOP Evolutionary Algorithm Approaches

Exterior penalties are usually preferred when using evolutionary algo-
rithms because they do not require an initial feasible solution (as required
by interior penalty functions). However, the definition of the penalty factors
used in a penalty functions is not straightforward. Ideally, the penalty should
be kept as low as possible, just above the limit below which infeasible solu-
tions are optimal (this is called, the minimum penalty rule [339, 968, 1490]).
This is due to the fact that if the penalty is too high or too low, then the
problem might become very difficult for an evolutionary algorithm to solve
[339, 968, 1361]. If the penalty is too high and the optimum lies at the bound-
ary of the feasible region, the EA will be pushed inside the feasible region
very quickly, and will not be able to move back towards the boundary with
the infeasible region. A large penalty discourages the exploration of the in-
feasible region since the very beginning of the search process. If, for example
there are several disjoint feasible regions in the search space, the EA will tend
to move to one of them, and will not be able to move to a different feasible
region unless such regions are very close from each other. On the other hand,
if the penalty is too low, a lot of the search time will be spent exploring the
infeasible region because the penalty will be negligible with respect to the
objective function [1489]. These issues are very important in EAs, because
many of the problems in which they are used have their optimum lying on the
boundary of the feasible region [1487, 1490].

The minimum penalty rule is conceptually simple, but it is not necessarily
easy to implement. The reason is that the exact location of the boundary
between the feasible and infeasible regions is unknown in many of the problems
for which EAs are intended (e.g., in many cases the constraints are not given
in algebraic form, but are the outcome generated by a simulator [281]).

It is known that the relationship between an infeasible individual and the
feasible region of the search space plays a significant role in penalizing such
an individual [1360]. However, it is not clear how to exploit this relationship
to guide the search in the most desirable direction. Summarizing, the main
problem with penalty functions is the definition of good penalty factors that
can guide properly the search towards the feasible region. This has triggered
a significant amount of research aiming to devise penalty functions that can
be easily generalized and that require minimum (or none) parameter tuning
(see for example [1404, 475, 1097]).

Note however, that penalty functions are not the only constraint-handling
technique available for EAs. Other authors have proposed alternative ap-
proaches based, for example, on repairing infeasible solutions in order to make
them feasible [1105]. This, however, may be computationally expensive.

Other authors have proposed the use of selection schemes that consider
feasible solutions to be superior to infeasible ones (see for example [1291,
360]). This sort of scheme can be easily extended for MOEAs by defining, for
example, a binary tournament selection with the three possible cases:

2.4 Constraint-Handling Techniques 115

1. If both solutions compared are feasible, use Pareto dominance to define
the winner, with the possibility of using a density estimator to break ties
(e.g., niche count or crowding distances).

2. If one solution is feasible and the other infeasible, select the feasible one.
3. If both solutions are infeasible, then select the one that is “least” infeasible

(e.g., the one with the lowest sum of constraint violation).

Note, however, that when adopting schemes of this sort is important to
keep in mind that it is important to preserve at least a few infeasible solutions
in the population in order to be able to converge to solutions that lie in the
boundary between the feasible and infeasible regions (see for example [1097]).

It is also possible to define a nondominated feasibility ranking technique
using a three individual comparison. In this case, a more elaborate set of rules
need to be generated to select the tournament winner [1329, 1330].

Despite the important volume of research on constraint-handling tech-
niques for evolutionary algorithms (see for example [1105, 265]), there is a
noticeable lack of emphasis on the development of techniques suitable for
MOPs. Most researchers assume that techniques used for single-objective EAs
are suitable for MOPs as well. This assumption is normally associated with
the relative lack of constrained MOPs found in the current literature (see
Chapter 4). However, the development of constraint-handling techniques that
properly exploit the properties of MOPs is still an open research area.

An interesting research area that has become increasingly popular in the
specialized literature is the use of multi-objective optimization concepts to
handle constraints in single-objective optimization problems (see [1098] for a
survey). The main idea is very intuitive: a constrained single-objective opti-
mization problem is transformed into an unconstrained MOP. From the ap-
proaches reported in the specialized literature, we can identify two main ways
of performing this transformation:

1. Bi-Objective Transformation: In this case, two objectives are consid-
ered: the first is the original objective function and the second one is the
sum of constraint violation. See for example [1542, 197, 1766, 1736, 1678,
1640].

2. Multi-Objective Transformation: In this case, the problem is trans-
formed into an unconstrained MOP, in which we will have m+1 objectives,
where m is the total number of constraints and the additional objective
is the original objective function of our (single-objective) optimization
problem. After performing this transformation, any MOEA can be ap-
plied to the new problem, and in fact, both population-based approaches
(see for example [1250, 264, 274, 990]) and Pareto-based approaches (see
for example [511, 262, 279, 50, 1335, 1333, 670, 1229, 797, 793]) have been
adopted for this sake. Note, however, that some additional mechanisms
are required to guide the search in a proper manner, since constraints
and objectives are conceptually different [670]. Thus, when performing

116 2 MOP Evolutionary Algorithm Approaches

this sort of transformation, it is normally irrelevant to attempt to further
optimize a constraint that is already satisfied. Conversely, a solution that
represents a good trade-off of the constraints, but remains infeasible, may
not be of interest in this case, whereas it would be acceptable in a truly
multi-objective problem.

It is important to keep in mind that, when applying these transformations,
the aim is to find a single solution (i.e., the constrained global optimum) and
not a set of them, as in traditional MOPs.

The main motivations for applying these transformations is to eliminate
the need of fine-tuning the penalty factors of a penalty function, and to ap-
proach the feasible region in a more efficient way (i.e., requiring a lower number
of fitness function evaluations) [1098].

The key for future research in this area is not only to adapt other MOEAs
to handle constraints, but to exploit domain knowledge as much as possible
(see for example [1329, 947]).

2.5 Critical MOEA Elements

This section contains a brief discussion of the most critical elements asso-
ciated with MOEAs, including their empirical validation, their theoretical
foundations, their fitness function types, their chromosomal representations,
and their problem domains.

2.5.1 MOEA Comparisons

MOEA researchers have shown evident concern in developing metrics and
performing quantitative comparisons of different techniques. In the origins
of evolutionary multiobjective optimization, such comparisons were mainly
visual and the test functions had only two or maybe three objectives and
a very few decision variables. The Pareto fronts considered were normally
convex and had a continuous shape.

Recently researchers have proposed experimental methodologies for gen-
eral MOEA comparative analysis [1781, 1626, 1790]. An extensive discussion
on this subject is presented in Chapter 5. Many MOEA publications lacking
a more thorough comparative analysis use real-world applications (see Chap-
ter 7). An argument can be made down the lines of “if it works, use it,”
but in general, using a test problem and/or an application’s results to judge
comprehensive MOEA usefulness is not conclusive.

2.5.2 MOEA Theory

Less than 1/40th of published MOEA papers focus on underlying theoreti-
cal analyses of MOEAs. These papers focus mainly on MOEA parameters,

2.5 Critical MOEA Elements 117

behavior, and concepts (see Chapter 6 for a contemporary detailed discus-
sion on MOEA theory). They attempt to further define the nature and lim-
itations of Pareto optimality, the subsequent effects upon MOEA search to
determine the necessary conditions to ensure convergence, run-time analysis,
fitness landscape analysis, and discuss the characteristics and construction
of appropriate MOEA benchmark test function suites. However, this work,
although valuable, is evidently insufficient and much more effort in this direc-
tion is necessary. As Fonseca and Fleming [506] and Horn [706] have stated:
more effort is being spent designing and refining MOEA approaches than on
developing accompanying theory.

2.5.3 MOEA Fitness Functions

The catalogued research efforts provide various fitness function types used by
MOEAs. Table 2.2 lists several generic fitness function types, their identifying
characteristics, and examples of each drawn from the MOEA literature. These
listed types are not limited to MOEA applications nor are they the only ones
possible. Further examples can be found in [277] and Chapter 7. MOEAs offer
the exciting possibility of simultaneously employing different fitness functions
to capture desirable characteristics of the problem domain regardless of the
implemented MOEA technique.

The fitness functions employed appear limited only by the practitioner’s
imagination and particular application; several are identified and others must
surely exist. However, a fitness function’s effectiveness depends on its appli-
cation in appropriate situations (i.e., it measures some relevant feature of the
studied problem). The claim by many authors that their particular MOEA
implementations are successful imply the associated fitness functions are ap-
propriate for the given problem domains.

Finally, the catalogued efforts clearly show the non-commensurability and
independence of many fitness function combinations. For example, optimizing
a radio antenna design may involve electromagnetic (energy transmission), ge-
ometric (antenna shape), and financial (dollar cost) objectives. The proposed
antenna’s shape may have no meaningful impact on its cost. Also, these ob-
jectives may be measured in megawatts, feet, and euros! These are the factors
responsible for the partial ordering of the search space and the subsequent
need to develop appropriate MOEA fitness assignment procedures.

2.5.4 MOEA Chromosomal Representations

Theorems exist [498] showing that no intrinsic advantage is provided by any
given genetic representation. For any particular encoding and associated car-
dinality, equivalent evolutionary algorithms (in an input/output sense) can be
generated for each individual problem instance. Although certain gene repre-
sentations and EVOPs may be more effective and efficient in certain situations,
the theorems show that no choice of representation and/or EVOPs operating

118 2 MOP Evolutionary Algorithm Approaches

Table 2.2. MOEA Fitness Function Types

Category Characteristic Examples

Electromagnetic Energy transfer or reflection [1117]
[1627]
[472]

Economic Production growth [1470]
[607]
[84]

Entropy Information content and (dis)order [508]
[1532]
[1382]
[924]

Environmental Environmental benefit or damage [33]
[255]
[1607]
[414]

Financial Direct monetary (or other) cost [66]
[1325]
[598]
[1530]
[1443]

Geometrical Structural relationships [768]
[408]
[600]

Physical (Energy) Energy emission or transfer [1702]
[808]
[1247]
[346]

Physical (Force) Exerted force or pressure [309]
[1202]
[1646]
[669]

Resources Resource levels or usage [78]
[388]
[1470]

Temporal Timing relationships/Scheduling [504]
[750]
[1470]
[741]

2.5 Critical MOEA Elements 119

on one or two parents offers any capability which can not be duplicated by
another MOEA instantiation.

The NFL theorems9 [1708] indicate that if an algorithm performs “well”
(on average) for some problem class then it must do worse on average over
the remaining problems. In particular, if an algorithm performs better than
random search on some problem class then it must perform worse than random
search on the remaining problems. So, although the NFL theorems imply
one MOEA may provide “better” results than another when applied to some
problem these other theorems show that that MOEA is not unique. Thus,
there appears to be more than one way to skin a cat (or MOP).

Genetic representation is then another MOEA component limited only
by the implementor’s imagination. The cited efforts indicate the most com-
mon representation is a binary string corresponding to some simple mapping
from the problem domain. Real-valued chromosomes are also often used in this
fashion. And, as in single-objective EAs, combinatorial optimization problems
often use a permutation ordering of jobs, tasks, etc. However, some represen-
tations are more intricate and therefore notable.

Some MOEAs employ arrays as genome constructs. For example, Baita et
al. use a matrix representation to store recessive information [78].10 Parks and
Chow also use matrices as these data structures are more natural representa-
tions of their respective problem domains’ decision variables [1244, 254]. The
Prüfer encoding used by Gen et al. [553] uniquely encodes a graph’s spanning
tree and allows easy repair of any illegal chromosome. In the known multi-
objective Genetic Programming implementations (e.g., [55, 950, 1368, 683,
1408]), a program/program tree representation is used. No matter the repre-
sentation employed, it is again noted that any claims of “successful” MOEA
implementations imply the associated genetic encodings are appropriate for
the given problem domain.

2.5.5 MOEA Problem Domains

MOEAs operate on MOPs by definition. A more theoretical discussion of the
MOP domain is given in Chapter 4 and elsewhere [1630, 357]. The discussion
presented here is in more general terms. When implementing a MOEA it is
(implicitly) assumed that the problem domain (fitness landscape) has been ex-
amined, and a decision made that a MOEA technique is the most appropriate
solution tool for the given MOP. In general, it is accepted that single-objective
EAs are useful search algorithms when the problem domain is multidimen-
sional (many decision variables), and/or the search space is very large. Most
cited MOEA problem domains appear to exhibit these characteristics.

9 Note that multi-objective extensions of the NFL theorems have been also pro-
posed [300, 298].

10 As a side note, very few published MOEAs use dominant and recessive genetic
information (e.g. [78, 934]).

120 2 MOP Evolutionary Algorithm Approaches

An overwhelming majority of cited efforts are applied to non-pedagogical
problems. This indicates MOEA practitioners are developing and implement-
ing MOEAs as real-world tools. As a quick glance through Chapter 7 shows,
these implementations span several disparate scientific and engineering re-
search areas and give credibility to the MOEA’s claim as an effective and
efficient general purpose search tool.

What differentiates a MOEA from a single-objective EA? What compo-
nents should be included in a MOEA? When should a MOEA be used? The
following section addresses these questions and presents matters of a more
philosophical nature raised by the preceding discussion, considering several
MOEA design issues.

2.6 MOEA Design Recapitulation

Many MOEAs currently exist (see for example [261, 361, 1219, 290, 1558, 10]).
When considering them, those wishing to implement a MOEA may well be
asking, “Where do I begin?” An “all purpose” MOEA technique may not be
specified (the NFL theorems [1708] do not allow for one). However, certain
MOEAs can be suggested as a starting point, and any interested researchers
may then select one of these MOEAs to begin their own exploration of the
MOP domain.

Definition 13 from Chapter 1 states that an MOP’s global optimum is
PFtrue , determined by evaluating each member of Ptrue . Additionally, many
a posteriori approaches explicitly seek Ptrue . Thus, a priori techniques are
not generally appropriate because they may not be capable of finding each
member of Ptrue , and they return only a single solution per MOEA run. The
DM’s lack of information before search occurs is also a factor.

Although there are several a posteriori techniques to consider11 the fo-
cus adopted is on those MOEAs employing elitism and Pareto rank- and
niche-based selection. Specifically, it is emphasized to consider the NSGA-II
[374], SPEA2 [1775], PAES [886], PESA-II [299], and the microGA for multi-
objective optimization [284].

These algorithms stand out because they incorporate known MOEA the-
ory. The Pareto-based selection each employs explicitly seeks Ptrue . All in-
corporate a density estimator (e.g., niching, crowding, clustering, etc.) in an
attempt to uniformly sample PFtrue . Mating restriction may (or may not)
be included in any of the three, as may a secondary population. Finally, their
general algorithmic complexity is no higher than other known MOEA tech-
niques, and their source code is (in most cases) available in the Internet (see
Appendix H12).
11 Progressive approaches incorporate either a priori or a posteriori techniques; any

of the algorithms recommended in this chapter may be used interactively.
12 All the Appendices of this book are available for download at:

http://www.cs.cinvestav.mx/~emoobook

2.7 Summary 121

Although each MOEA’s authors (and rightly so) point out deficiencies
in their own and other MOEAs, any algorithmic approach is bound to have
some shortfalls when applied to certain problem classes (c.f., the NFL the-
orems [1708]). These algorithms’ common theme is their respect of known
relevant theoretical issues, and their empirical success in both (non-)numeric
MOPs and real-world applications. As reported in the specialized literature,
these algorithms easily win the title “Most Often Imitated,” implying other
researchers also see value in them.

Although not straightforward, many existing EA implementations are ex-
tendable into the MOEA domain. For example, GENOCOP III [1104] has
been readily modified to incorporate both a specialized problem domain code
and linear fitness combination technique.

2.7 Summary

This chapter presents an in-depth analysis of MOEA research, discussing in
detail several foundational issues such as implemented MOEA techniques and
fitness functions, MOEA comparisons and chromosomal representations. More
general observations are also made concerning MOEA characteristics and com-
ponents. Finally, some suggestions regarding how to select a MOEA for a
certain application are provided. This analysis identifies appropriate MOEAs
recommended for initial use in solving MOPs, and should be used when re-
engineering these (or any other) MOEAs to solve particular MOPs.

Further Explorations

Class Exercises

1. Compare (graphically) the ranking schemes adopted by: (1) MOGA [504],
(2) NSGA [1509], (3) SPEA [1782], and (4) NSGA-II [374].

2. Apply VEGA [1440] to the following two-objective MOP:

min f1(x) = x

min f2(x) = (x − 5)2

subject to the constraint:
−5 ≤ x ≤ 10

Attempt to do hand-calculations to generate a PFknown and Pknown

starting with an initial random population of six individuals.
3. Solve by hand-calculations the MOP of Problem 1 using MOGA [504]

and then implement this algorithm and compare its results with respect
to VEGA [1440].

4. Consider the following two-objective MOP:

max f1(x1, x2) = x1 + x2

max f2(x1, x2) = (x1 + 2)2 + (x2)2

subject to the constraints:
0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 2

Assuming at least four sets of weights, generate the four 3D search land-
scapes for each weighted fitness function. What are the landscape simi-
larities and differences? Compare smoothness versus roughness.

5. Given the specific two objective Pareto front of exercise 1 and using the
linear weighted objective aggregated form, show graphically for selected
weights the possible intersects with PFtrue . How does this relate to pos-
sibly generating all the points on the Pareto front using this approach?

124 Further Explorations

6. Adopting the same problem as in the previous exercise, generate points
on PFtrue using the weighted Tcyhebycheff model. Show graphically for
selected weights the possible intersect of various equal cost lines (min-
imization) with the true Pareto front, PFtrue . How does this relate to
possibly generating all the points on the Pareto front using this single
objective approach to solving MOPs?

7. Write down at least two different algorithms for ranking a population
of individuals in a MOEA, based on Pareto optimality and compare their
computational efficiency. Then, analyze the algorithm by Kung et al. [930]
and discuss its advantages and disadvantages.

8. Under what circumstances would it be possible to have a Pareto front
that consists of a single point? Should a MOEA still work in such case?
Discuss.

9. With regard to generating the Pareto optimal set, is a scaling technique
required if tournament selection is used? What is the impact of a large
range of values as well as fitness values that are very close to each other
numerically? How and where would you implement tournament selection
in a MOEA?

10. Generate pseudo code for the following MOEAs: 1) Constraint Method-
Based Multi-objective EA in [1318] 2) Multi-objective Multi-Criteria EA
in [1170], 3) Agent-Based Evolutionary Multi-objective Optimization in
[1502], and 4) Simple Multi-Objective Evolutionary Algorithm in [1623].

11. Generate pseudo code for the M-PAES [873] and any other hybrid MOEAs
of your choice.

12. Generate flow diagrams for all of the various MOEAs discussed in this
chapter and compare flow structures with respect to pseudo code. What
are the main similarities and differences?

13. Why does the use of MOEA secondary populations generally permit more
exploration of the search space? Relate this to operators also (crossover,
mutation, selection).

14. Analyze the time/space complexity (order-of analysis) of MOEAs in the
current literature, and compare your analysis with those published (see
for example [374, 788]).

Class Software Projects

1. Perform a comparative study of MOEAs whose source code is available in
the public domain (e.g., the NSGA-II [374], PAES [886], PESA-II [299],
and SPEA2 [1782]).

2. Take from the current literature various pedagogical MOPs that have
been solved using various MOEAs. Solve these problems using any of
the MOEAs whose source is available in the public domain (see previous
project).

Further Explorations 125

3. Implement the OMOEA-II [1756] and compare it with respect to the
NSGA-II and SPEA2 using the DTLZ test functions [379].

4. Design a graphical interface that facilitates the use of the NSGA-II (e.g.,
using windows for fine-tuning its parameters).

5. Implement a procedure that reduces the run-time complexity of Pareto
ranking (see [788]). Generate time complexity graphs that show the actual
gain in CPU time (measured in seconds) with respect to traditional Pareto
ranking.

Discussion Questions

1. Select a sample of papers on evolutionary multiobjective optimization
from the EMOO repository13 and perform an analysis that covers, for
example, the following aspects:
• Types of papers (propose a taxonomy for this sake. For example:

application-oriented, theoretical, algorithmic design, etc.).
• Type of algorithm adopted (e.g., the NSGA-II [374], SPEA2 [1775],

etc.).
• Number of objectives of the problem(s) dealt with in each paper.
See for example the analysis presented in [806, 1626].

2. Some researchers have proposed the use of a micro-genetic algorithm (i.e.,
a GA with a small population and a reinitialization process) with elitism
to solve multiobjective optimization problems [283]. Analyze the compu-
tational complexity of this approach. Also, study the role of its (several)
parameters on the quality of the solutions produced (consider number of
elements of the Pareto optimal set found and closeness to the true Pareto
front). Discuss some possible improvements to this algorithm (see for ex-
ample [1597]).

3. Evolutionary computation researchers have paid relatively little attention
to the data structures used to store nondominated vectors. Operation re-
searchers have used (in multi-objective combinatorial optimization), for
example, domination-free quad trees where a nondominated vector can
be retrieved from the tree very efficiently. Checking if a new vector is
dominated by the vectors in one of these trees can also be done very effi-
ciently [626]. Discuss the possible gains (both in terms of algorithm and
space complexity) that domination-free quad trees can bring to an evolu-
tionary algorithm that implements Pareto ranking. Also, discuss some of
the possible limitations of this data structure.

4. Chen [238] has proposed an algorithm based on a recursive binary divi-
sion of objective space which is represented by a hyper binary tree struc-
ture (the so-called “Pareto Tree Searching Genetic Algorithm” (PTSGA).

13 The EMOO repository is located at:
http://delta.cs.cinvestav.mx/~ccoello/EMOO/

126 Further Explorations

This sort of data structure allows an efficient location (and compar-
ison) of nondominated vectors. What other advantages do you think
that this approach may provide? What potential disadvantages does it
have? Do you foresee some limitations of this approach? What modifica-
tions/improvements do you propose?

5. Knowles et al. [890] have suggested that transforming certain single-
objective optimization problems into multiobjective (a process that they
call “multi-objectivizing”) can remove local optima and therefore, become
easier to solve by a hillclimber. Their hypothesis has been validated with
certain instances of the traveling salesperson problem. Discuss the main
premise of this paper and some of its consequences. Propose another prob-
lem (different from the one included in the paper) that you think is appro-
priate for multi-objectivizing. What are the main drawbacks of the tech-
nique? Can you identify some type of problems in which this approach
would not work at all? Explain.

6. Analyze the “Incremental Multiple Objective Genetic Algorithm”
(IMOGA) presented in [237]. How is this approach different from lexi-
cographic ordering? What do you think that is the source of power of this
approach, which presents competitive results with respect to the NSGA-
II [374], PAES [886] and SPEA2 [1775], and is able to deal with prob-
lems having 4 objectives? Read also about incremental learning [610, 611],
which is the idea that inspired the IMOGA.

7. Propose either a variation of an existing MOEA or an entirely new ap-
proach. Discuss issues such as inspiration for your algorithm, computa-
tional complexity (both time and space complexities), data structures re-
quired, performance (using the metrics defined in Chapter 5), main advan-
tages (as compared to traditional MOEAs), and main disadvantages. Was
your MOEA designed for a certain type of problems (e.g., combinatorial
optimization problems)? Does it use elitism (why or why not?).

8. Perform a comparative study of data structures that have been adopted
for secondary (external) populations. Include in your analysis, issues such
as computational complexity, memory usage, and ease of implementation.

9. Study the proposal by Alberto and Mateo [30] of using graphs for rep-
resenting and managing MOEA populations. Implement this scheme and
compare it to the use of the adaptive grid of Knowles and Corne [886].

10. What are the advantages and disadvantages of various constraint handling
techniques such as additional objectives, static/dynamic penalty functions
and time of constraint filtering? (see [265] for a survey on constraint-
handling techniques used in evolutionary algorithms). Relate to efficiency
(development time, execution time, memory, etc.) and effectiveness (ex-
ploration vs. exploitation, “good” Pareto front, etc.)

11. Chen et al. [235] proposed the incorporation of fitness inheritance [1495]
to improve the efficiency of a multi-objective evolutionary algorithm
(MOEA). Analyze this proposal and criticize it. Compare and contrast
elitism with respect to fitness inheritance. Relate fitness inheritance to

Further Explorations 127

the global criterion method discussed in Chapter 1 (Section 1.7.1). Discuss
possible ways to extend Chen et al.’s proposal to produce, for example, a
more efficient algorithm (see for example [1352, 1354]).

12. Koch and Zell [891] proposed the multi-objective clustering selection evo-
lutionary algorithm. Analyze this proposal and discuss the possible advan-
tages and disadvantages of introducing clustering techniques in a MOEA.
Compare this approach to Molyneaux et al.’s proposal [1119]. Discuss
computational complexity and parameter fine-tuning of both approaches.

13. Costa and Oliveira [302] proposed an evolution strategy for multiobjec-
tive optimization. Analyze this proposal and compare it to other related
proposals (see for example [935, 136, 886]).

14. Socha & Kisiel-Dorohinicki [1502] proposed an evolutionary multi-agent
system for multiobjective optimization. Compare and contrast this pro-
posal to Menczer et al.’s approach [1088]. Do you see any particular advan-
tages and disadvantages of applying multi-agent systems to multiobjective
optimization. Discuss.

15. Valenzuela [1623] proposed a simple evolutionary algorithm for multi-
objective optimization. The author of this approach argues that her ap-
proach does not require Pareto ranking but only a clever replacement
strategy. Analyze this proposal and criticize it. Do you foresee any possible
limitations/disadvantages of this algorithm? Compare it to Chakraborti
et al.’s [220] algorithm.

16. Mostaghim et al. [1141] discuss three types of quadtrees used to store
nondominated vectors and analyze their use in evolutionary multiobjec-
tive optimization. Compare this work with the proposal of Everson et
al. [462]. Indicate the main motivation to use efficient data structures to
store nondominated vectors in the context of evolutionary multiobjective
optimization.

17. Current researchers have placed little emphasis in developing approaches
in which the number of fitness function evaluations is minimized. This
cost reduction is vital in real-world applications. Analyze the strategy
proposed by Farina [468] which is based on generalized response surfaces.
Compare this strategy to the approach proposed by Duarte et al. [413].

18. Lu and Yen [1021] proposed the Rank-Density based Genetic Algorithm
(RDGA). Analyze the ranking strategy adopted by this algorithm as well
as the diversity mechanism proposed. Relate the selection and replacement
strategies adopted in the RDGA to the cellular genetic algorithm [1699].
Do you see any possible limitations of this algorithm if we consider that
it always tries to minimize rank and density values of the population
(regardless of the number of objective functions of the problem)? Compare
this approach to the non-generational genetic algorithm for multiobjective
optimization [1624, 150].

19. Considering gene expression (whether it be real or string valued chromo-
somes) relate how the biological processes of meiosis and mitosis [74, 75]

128 Further Explorations

are accomplished in MOEAs. Why is it important (or not important) to
accurately implement these processes in MOEAs?

20. Analyze the Potential Pareto Regions Evolutionary Algorithm (PPREA)
[638, 639], and discuss its main advantages and some of its possible dis-
advantages.

21. Runarsson and Yao [1405] present two versions of Pareto ranking applied
to constraint space, one that considers the objective function value in
the ranking process, and another one that does not consider it. These
versions are compared to a traditional over-penalized penalty function.
The results of this study indicate that Pareto ranking leads to a bias-free
search, which led the authors to conclude that this causes to spend most of
the time searching in the infeasible region (i.e., the approach was not able
to find feasible solutions). Analyze this study and indicate if you agree
with the results. If Pareto ranking is not a good way of biasing the search
in constrained optimization, why is that there are several (successful)
constraint-handling techniques based on Pareto ranking (see for example
[670])? Discuss.

Possible Research Ideas

1. Perform a detailed study of the role of crossover in the performance of
a certain MOEA (choose anyone you like). Analyze different types of
crossover operators (e.g., one-point, two-point, uniform, etc.). Consider
a set of benchmark functions such as those discussed in this chapter, and
a MOEA that uses elitism and Pareto ranking. See for example [173].

2. Some operation researchers have proposed “unification” procedures that
allow to combine several multiobjective optimization techniques under a
common framework (see for example [539, 538]). The idea has also been
suggested with MOEAs (see for example [963]). Design a common frame-
work where several MOEAs (based, for example, on Pareto ranking) can
fit. The framework should also allow to experiment with different genetic
operators (i.e., crossover, mutation and elitism variations). Implement this
framework and experiment with it. Analyze the potential benefits of such
a framework.

3. Propose a new constraint-handling approach for MOEAs. Compare your
approach against the use of a penalty function [1360]. Identify advantages
and disadvantages of your approach. Then, compare it against techniques
that have explicitly been proposed for MOEAs (see for example [1709,
1329]). Use some of the constrained MOPs proposed in the literature [375].

4. Explore the use of methods that allow to reduce the number of evaluations
performed by a MOEA. See for example, the use of surrogates [1667, 1334,
818, 819] and the learning of a Gaussian processes model of the search
landscape [881, 872].

Further Explorations 129

5. Traditional MOEAs assume that information about the objectives can be
obtained with total certainty. However, in real-world applications, is very
commonly the case that one is forced to deal with uncertainties [1248].
Investigate the work reported in the literature about uncertainty han-
dling in MOEAs (see for example [1576, 726]). Then, criticize the existing
approaches and make your own proposal.

6. Propose a MOEA that uses a target vector approach (see Section 1.7.1
from Chapter 1). Use elitism and an efficient approach to maintain di-
versity in the population. Conduct an analysis of the complexity of your
algorithm and a comparative study of its performance with respect to
other MOEAs (e.g., NSGA-II [374], SPEA2 [1775], and NPGA 2 [453]).
Can your approach generate Pareto fronts that are concave and discon-
tinuous? Is it competitive with respect to approaches that use Pareto
ranking? How efficient is it? What are its main drawbacks?

7. Study the r(n)-approximate algorithms proposed by Ehrgott [427] in the
context of multiobjective combinatorial optimization. Do you see any re-
lationship of these algorithms with MOEAs? Discuss.

8. Diversity is, with no doubt, a topic that deserves special attention in evo-
lutionary multiobjective optimization. The idea of using diversity as a
selection criterion that can guide a MOEA is intriguing, and has been
explored by some researchers (see for example the Genetic Diversity Evo-
lutionary Algorithm (GDEA) proposed in [1594]). Devise a new MOEA
using this same principle of using diversity as an objective that guides the
search.

9. Consider the possible hybridization of evolutionary algorithms with math-
ematical programming techniques. For example, researchers have proposed
hybrids with the ε-constraint method (see [1507, 1318, 948]).

10. Analyze the impact of using different fitness assignment schemes in a
multi-objective evolutionary algorithm. See for example [188].

11. Study the limitations of MOEAs based on Pareto ranking when dealing
with problems that have three or more objective functions (see for ex-
ample [1304, 1303, 386, 387, 1669, 880]). Compare different schemes that
could achieve an objective reduction (see for example [376, 175, 1435]),
and propose a new MOEA that can scale properly to a large number of
objectives (see for example [1531]).

12. Analyze the possibility of achieving an effective dimensionality reduction
that preserves the original nondominance structure of the problem (see
for example [175]).

13. Propose a multi-objective evolutionary algorithm that adopts a selection
scheme not based on Pareto ranking (see for example [126, 84, 987]).

14. The crowding distance adopted by the NSGA-II [374], despite being very
efficient and effective for the bi-objective case, is known to have difficulties
when dealing with problems having three or more objectives. Investigate
alternative schemes that can overcome this limitation (see for example
[912, 901]).

130 Further Explorations

15. One of the current research trends in the design of MOEAs is to base
their selection mechanism on a performance measure (see for example the
Indicator-based Evolutionary Algorithm (IBEA) [1774, 101, 102] and the
S metric selection MOEA (SMS-MOEA) [447, 129]). Discuss this research
trend and propose a new selection scheme based on some performance
metric that has not been used so far.

16. Analyze several diversity maintenance mechanisms (see for example [1039,
863, 1497, 1619, 984]) and their potential application within a multi-
objective evolutionary algorithm.

17. There exist few MOEAs based on a cellular genetic algorithm (see for
example [1175, 1152, 1157, 1156]). Propose a new MOEA based on this
sort of scheme, and discuss the similarities between the cellular genetic
algorithm and the predator-prey scheme [957, 605].

18. The multi-objective extensions of Bayesian Optimization Algorithms are
still relatively scarce in the specialized literature (see for example [1613,
1458, 1459, 956, 826, 844, 23]). Propose a new MOEA based on Bayesian
Optimization Algorithms and discuss its main advantages with respect to
the existing ones.

19. Analyze the possibility of incorporating concepts from thermodynamics
to design a new MOEA. See for example the High Performance Multi-
Objective Evolutionary Algorithm (HPMOEA) [1784], which adopts Gibbs
entropy, and the Thermodynamical Genetic Algorithm (TDGA) [863],
which adopts the principles of temperature and entropy as in simulated
annealing.

20. The incorporation of concepts from classifier systems into the design of
a MOEA has been very scarce (see for example [1624]). Propose a new
MOEA based on concepts from this area.

21. In the last few years, there has been an increasing interest in a special
type of evolutionary algorithm called “Estimation of Distribution Algo-
rithms” (EDAs), which do not have crossover or mutation, but use instead
probability distributions to generate the new population. Such probabil-
ity distributions are estimated from a set of selected individuals generated
at the previous generation [954]. Some researchers have proposed multi-
objective versions of EDAs (see for example [1579, 1578, 155]). Propose a
new multi-objective EDA and discuss its advantages and possible disad-
vantages with respect to state-of-the-art MOEAs.

22. Propose a multi-objective extension of a successful single-objective EA.
Such an extension should obviously preserve (as much as possible) the
advantages of its single-objective counterpart. See for example the MO-
CMA-ES [737], that extends the covariance matrix adaptation evolution
strategy (CMA-ES) [654], which is a very powerful evolutionary algorithm
for real-valued single-objective optimization.

23. Propose a new MOEA inspired on concepts from quantum computing.
See for example [855].

3

MOEA Local Search and Coevolution

When two opposite points of view are expressed with equal intensity,
the truth does not necessarily lie exactly halfway between them. It is
possible for one side to be simply wrong.

Richard Dawkins

3.1 Introduction

In order to make multiobjective evolutionary algorithms (MOEAs) more ben-
eficial to real-world applications, local search structures have been proposed
to drive the search towards the Pareto front more effectively and efficiently. A
number of generic local search techniques have been proposed along with prob-
lem domain specific methods. These approaches are discussed in this chapter
with thoughts on integrating new innovative local search with MOEAs. An-
other emerging area of MOEA research is applying coevolutionary techniques.
Relatively few researchers have explored the idea of combining coevolution
with MOEAs. This chapter presents various researchers’ algorithmic processes
for Coevolutionary MOEAs (CMOEA) with each researcher’s efforts summa-
rized, categorized, and analyzed. Some potential concept and future applica-
tions of MOEA coevolution are also suggested. Exercises, discussion questions,
and possible research directions for MOEA local search and coevolution are
presented at the end of the chapter.

3.2 MOEA Local Search Techniques

It turns out that in many multiobjective optimization problems (MOPs),
points in PFknown are clustered in various regions of objective space. Thus, it
may be possible to computationally direct points in such regions as well as
isolated points closer to PFtrue using clever mechanisms that exploit certain

132 3 MOEA Local Search and Coevolution

properties of the search space. For example, using one or a few of the objec-
tives, it may be possible to adopt a local search technique to move a point
closer to PFtrue (i.e., better approximate the Pareto front with PFknown).
And in addition, based upon MOEA goals, the use of local search (LS) may
generate a better distribution of points on PFknown . Of course, the LS process
starts in decision space or solution space with points in this space mapping
to objective space.

Specific local search decision space approaches for consideration would
be depth-first search (hill-climbing) [1407], simulated annealing [861], and
Tabu search [572]. Since we are combining (hybridizing) global search MOEAs
with local search techniques, they are generally defined as hybrid or memetic
MOEAs.1

Algorithm 15 represents a generic memetic MOEA with the inclusion of
the local search (LS) process noted. The specific position of the LS within
a standard MOEA cycle can vary depending upon design (i.e., conducting
a LS at every generation or at the end of a certain number of epochs). In
general, LS techniques employ decision space neighborhoods whose selected
points generate vectors in the objective space (phenotype). Note that doing
local search in the phenotype domain is impractical since mapping from non-
linear objective functions back to unique decision variable values is generally
impossible.

Balancing global MOEA search with local search for specific MOPs is crit-
ical to achieving good results. If fitness function computation in real-world
MOPs takes a considerable amount of CPU time, there exist computational
tradeoffs between local and global search. Thus, in the design and implemen-
tation of a MOEA-LS,2 specific questions arise relating to LS effectiveness
and efficiency:

• How often should the LS be applied based upon a probability, PLS?
• On which k solutions should LS be used given a neighborhood N(x) where

x is a current solution?
• How long should LS be run defined by a time period T?
• How efficient does LS need to be versus effectiveness?

1 Pablo Moscato [1133] introduced the concept of “memetic algorithm” to denote
the use of local search heuristics with a population-based strategy. The term
“memetic” has its roots in the word “meme”, which was first introduced by
Richard Dawkins in his classical book “The Selfish Gene” [340]. Dawkins defines a
meme as the “unit of imitation” in cultural transmission. Therefore, a memetic
algorithm can be seen as an approach that tries to mimic cultural evolution
rather than biological evolution (like evolutionary algorithms). The main differ-
ence has to do with the way in which information is transmitted. Whereas genes
are passed intact, memes are typically adapted by the individual who transmits
them. For more information on memetic algorithms, see [661].

2 The terms multiobjective memetic algorithm and MOEA-LS, are used inter-
changeably in this chapter.

3.2 MOEA Local Search Techniques 133

Algorithm 15 Memetic MOEA
1: procedure Memetic MOEA(N , g, fm(x))
2: Randomly initialize population Pg with N individuals
3: Evaluate fitness fm(x) of each individual x in Pg

4: while Termination condition false do
5: g = g + 1; number of generation
6: Select P

′
g from P(g−1) based on fitness fk(x) (k = # of objectives)

7: Apply genetic operators to P
′
g → P

′′
g

8: Local Search in P
′′

g neighborhood; P
′′

g → P
′′′

g

9: Evaluate fitness fm(x) of each individual in (P′′
g, P

′′′
g)

10: Select Pg from (Pg−1, P
′
g, P

′′
g, P

′′′
g)

11: end while
12: end procedure

• How could the MOEA recombination and mutation operators relate to the
LS operators and parameters?

• Should a Lamarckian or Baldwinian (Baldwin effect) fitness assignment
be employed?

Hart [660] analyzed the general aspects of some of the above questions
for single objective problems. Others have suggested that the neighborhood
structure could be of many forms as well as changing dynamically along with
different LS parameter values depending upon MOP insight. For a MOEA-LS,
the analysis of local search performance also relates primarily to the values
PLS , k, and T . Proper selection of these parameters and other MOEA-LS
parameters needs to effectively support the MOEA goals of driving toward
PFtrue with associated diversity of PFknown points.

MOEA-LS is employed both to explore and to exploit. In that regard,
the last question focuses on two generic fitness assignments to the individuals
found by the LS. For a single objective problem, the fitness values attached
to an individual (chromosome) in a local search process can be based upon a
Lamarckian or a Baldwinian approach. The Baldwinian3 strategy assigns the
best fitness value from the local search in the decision space neighborhood
to the neighborhood’s starting individual. The Lamarckian4 strategy, on the

3 James Mark Baldwin proposed in the early XIXth century a mechanism called
“organic selection” [79]. This mechanism, which is now known as the “Baldwin
effect”, refers to a specific selection for general learning ability. Rather than in-
heriting certain (fixed) abilities, an offspring inherits an increased capacity for
learning new skills. This mechanism has been adopted, in different ways, in evo-
lutionary computation.

4 At around 1801, the French zoologist, Jean Baptiste Pierre Antoine de Monet
(knight of Lamarck) started publishing the details of his own evolutionary theory.
Lamarck proposed the existence of a mechanism responsible for the changes in the
species, which is now known as “Lamarckism”. Today, the term “Lamarckism” is
used to refer to the theory according to which the characteristics acquired by an

134 3 MOEA Local Search and Coevolution

other hand, uses the best fitness value found and the associated individual
found in the neighborhood for the next generation. In memetic algorithms,
the Lamarckian approach is usually employed since the goal is to use the best
individuals to proceed. For multiobjective problems with LS, the Lamarckian
strategy is also used in the sense that the nondominated individuals (best)
and their set of fitness values are accepted for the next generation. Some
MOEA-LS approaches may retain only certain LS nondominated individuals
for the next generation based upon additional criteria such as distance or
position.

As reflected in some MOEA approaches described in Chapter 2, a simple
local search approach uses only one objective at a time and searches in a lo-
cal neighborhood in decision space with the Lamarckian model. The method
searches independently for extreme points in each dimension of the objective
space. The more complex local search concept, however, relates to moving ob-
jective space points towards PFtrue as generated from clustered decision space
neighborhood regions; thus, possibly providing more population diversity with
more nondominated points.

Since the solution of a MOP involves conflicting objectives, then due
to computational considerations, the attainment of the hyper-surface Pareto
front may suggest a local search focused only on a region of the Pareto sur-
face. Such a region could be motivated by the decision maker as based upon
a priori knowledge. The following sections discuss various MOEA memetic
approaches as related to all of these generic LS goals.

3.2.1 Hybrid MOEA Techniques

Various hybrid MOEAs can be developed by incorporating a specific local
search technique within a known MOEA. Examples include Knowles’ Memetic
PAES (M-PAES) [873], Ishibuchi and Murata’s MOGLS [750], Jaszkiewicz’s
MOGLS [779], Bosman and de Jong’s approach [154], Brown and Smith’s
technique [179], and Kleeman and Lamont’s method [867]. All of these are
variations of general MOEA global/local search algorithms. For a historical
review, Knowles [878] presents a generic evaluation of memetic MOEAs. Note
that combining local search with a MOEA has had fair success in solving spe-
cific multiobjective combinatorial and continuous optimization problems that
exhibit a property called global convexity [215]. In these cases, Pareto opti-
mal solutions are clustered (i.e., within a certain neighborhood) in decision
variable space. This phenomenon is associated with the concept of “connect-
edness” in both domains [146]. When connectedness is present, then local
search (i.e., neighborhood exploration techniques) should be successful. This
phenomenon, however, has been scarcely studied in the context of multiob-
jective optimization (see for example [803]).

individual during its lifetime are directly inherited by its descendants. Although
Lamarckism was refuted many years ago, some of the ideas related to this concept
have been incorporated, in different ways, in evolutionary computation [1520].

3.2 MOEA Local Search Techniques 135

In the following sections, a variety of MOEA local search approaches are
discussed along with their advantages and disadvantages for MOPs with var-
ious characteristics.

Weighted Vector Methods

In order to select points in objective space based upon local search in decision
space, particular MOEA-LS techniques use an aggregating fitness function. A
variety of such weighted-sum scalar approaches over the m fitness functions
are discussed.

f2

f1

Desired Search

Area for A

A

Offspring

Parent Solution

Solution in the Population

B

Desired Search

Area for B

a1

a2

b1

b2

Fig. 3.1. Objective space local search phenomena (adapted from [762])

Ishibuchi and co-researchers have contributed much to the field of memetic
MOEAs. Their initial research produced the simple multiobjective genetic lo-
cal search (S-MOGLS) algorithm [750]. In this early work, a weighted scalar
sum of objective functions is adopted by the authors, in order to determine the
best solution of the local search [1150]. The authors fine tune their algorithm
in later work so that local search is only applied to a subset of solutions. An
important result from this work is that an appropriate local search direction
for each offspring depends on its solution location in the objective space rel-
ative to its parents. To illustrate this issue, consider, for example, Figure 3.1,
in which the child A of (a1, a2) is close to its parents and thus an appropriate
local search direction is achieved. However, For B, which is far from its parents

136 3 MOEA Local Search and Coevolution

(b1, b2), the resulting local search direction is not the desired one. Therefore,
local search should be applied to only “good” offspring; that is, only to those
solutions in objective function space that are close to parent solutions. This
choice is important in achieving the desired goals for a local search engine in
objective function space.

In [759], the authors perform a comparison between a weighted local search
and Pareto dominance. Then, in further papers [751, 750], a local search ap-
proach is suggested with an aggregating fitness approach using randomly gen-
erated weights. A local search operator attempts to find a better solution in
the single-objective problem of their interest, by using the generated weights.
This approach has been extended and improved in a number of further pub-
lications [759, 762, 756, 760].

The S-MOGLS algorithm is illustrated by the generic memetic MOEA
described in Algorithm 15. The population Pg is randomly initialized. Pairs
of parent solutions are selected from the current population Pg, where P

′
g

denotes the set of selected pairs of parent solutions. Genetic operations are
applied to each pair in P

′
g to generate an offspring population P

′′
g. A local

search procedure is probabilistically applied to only “good-fitness” offspring
in P

′′
g in an attempt to form an improved population P

′′′
g. A new population

is constructed from the current population Pg, the offspring population P
′′

g,
and the improved population P

′′′
g. Each solution is evaluated using Pareto

ranking with elitism as well as crowding (an NSGA-II type of structure).
Experimental results on knapsack problems performed by Ishibuchi and

Narukawa [756] showed that better results are obtained from the weighted
sum-based selection scheme over the Pareto-based scheme. A tournament se-
lection of size 10 based on the weighted sum for parent selection was used for
these experiments. The weighted sum-based parent selection does not neces-
sarily work well for flowshop scheduling problems as shown in their work. The
superiority of the weighted sum-based selection scheme for knapsack problems
may be partially explained by the fact that a pair of similar parents in objec-
tive space is likely to be selected when using this selection scheme. Ishibuchi
and Narukawa [756] have also demonstrated that better results are obtained
for knapsack problems from the three-population model of generation update
than from the two-population model. The authors use a specific local search
procedure with the randomly weighted sum of the m objectives where λ is
defined as the weight vector. The randomly specified weight-sum vector which
was used to choose the initial solution for the current local search phase, is
also used to calculate the weighted sum of the m objectives for the current so-
lution x and the candidate solution y. The current solution x is replaced with
the candidate solution y only when the inequality f(x, λ) < f(y, λ) holds for
the weighted sum of the m objectives [760].

In the Memetic Pareto Archived Evolution Strategy (M-PAES) proposed
in [873], the next population is constructed from the current population Pg

and the improved population P
′′

g as P
′′′

g. The same mechanism of generation
update is used in [749, 813]. Note that one could use not only the current pop-

3.2 MOEA Local Search Techniques 137

ulation Pg and the improved population P
′′

g but also the offspring population
P
′
g.
Ishibuchi et al. [759] also focused on the flowshop scheduling problem which

provides considerable insight to MOEA-LS development. Their LS process as
designed and implemented can be interfaced not only to the MOGLS MOEA,
but it can also be easily integrated into SPEA [1782] and NSGA-II [374]
for comparing results. In all their flowshop scheduling examples with three
MOEAs the LS approach did quite well. Using a roulette wheel approach with
linear scaling for selection of recombination parents and an elitist strategy
for population selection, a LS process is applied to the MOEA’s population.
Termination occurs when a specified number of solutions have been examined.
Given a current individual and its neighborhood, a new individual in such
a neighborhood is randomly generated. If this neighbor has a better fitness
value, then it replaces the current solution in the population. The authors used
eight flowshop test problems with the objectives of minimizing makespan and
minimizing maximum tardiness. The metric for evaluating the selection of LS
parameters was the D1R, a normalized distance measure between points in
PFknown and a priori known points presumed in PFtrue (see Chapter 5). The
ratio of nondominated points is also employed. The extensive testing with LS
parameter variation undertaken by the authors provided them general insights
and motivation for the importance of understanding the problem domain and
the impact of LS search processing. Such insight should help to balance global
search and local search in attempting to efficiently achieve effective MOP
solutions.

Another weighted sum-based approach was developed by Deb and Goel
who have applied local search techniques for engineering shape design [367,
366, 574]. Their work applies a neighborhood search to the NSGA-II [374].
Their initial work applied the local search after the MOEA had completed
all generations, and later work compares their earlier results to the same
local search being applied after every generation and on every individual. The
added LS computational workload evidently impacted efficiency. Again, the
selection of the neighborhood in the decision domain is critical to generating
and selecting objective space points that move towards PFtrue . With the
vectored method, this is a difficult process at best. While the authors do not
explicitly name their algorithm, here it is called memetic NSGA-II (M-NSGA-
II) in order to distinguish it from the other algorithms discussed.

Jin and co-authors developed the evolutionary dynamic weighted aggrega-
tion (EDWA) algorithm [800, 801]. The main goal of their initial research was
to analyze how random dynamic weighting compares to systematic dynamic
weighting of the multiple objectives. In [803], Jin also attempts to show em-
pirically that connectedness [215, 432] is a key to making EDWA an effective
algorithm for continuous MOPs exhibiting global characteristics.

Connectedness relates to the topological structure of Ptrue and PFtrue .
Such solutions are connected in both parameter or decision space and generate
connected points in objective space. With these proper MOP characteristics,

138 3 MOEA Local Search and Coevolution

solutions are distributed regularly in parameter space such that they can
be defined with a piecewise linear function (i.e., a neighborhood). By con-
structing an approximate linear model using the Pknown points, one searches
on PFknown close to PFtrue . That is, by selecting points in the constructed
neighborhood of the current solution based upon the piecewise linear function,
one may find more points moving along PFtrue . When PFtrue is convex, this
evolution strategy (ES) approach with dynamic weighting first converges to
a point near or on PFtrue , then moves along or close to the front by chang-
ing the dynamic weights per generation. With a concave PFtrue , the extreme
points are initially found and search is conducted in directions near or on
PFtrue . This MOEA-LS is successful in achieving the generic MOEA criteria
if the MOP has the required characteristics, even when dealing with a dis-
connected PFtrue .5 If the connectedness property holds both in the objective
space and in the decision space, then a LS technique should effectively move
PFknown towards PFtrue .

Dominance Methods

As before, in order to select points in objective space based upon local search
in decision space, some MOEA-LS techniques use a Pareto dominance-based
scheme. Several of such dominance approaches are discussed.

Using Pareto dominance in local search, a candidate solution y is gener-
ated in the neighborhood of the current solution x. The current solution x is
replaced with the candidate solution y only when it is better than x. Pareto
dominance can be used to determine whether y is better with respect to the
m objectives. In this case, the current solution is replaced with the candidate
solution only when y dominates (in a Pareto sense) x. Note that k candidate
solutions can be generated and considered.

Leiva [977] proposed three memetic algorithms based upon the multi-
sexual-parents-crossover genetic algorithm (MSPC-GA) [460]. This devel-
opment, which was originally based on the Multisexual Genetic Algorithm
(MSGA) by [1000] applies both a simulated annealing (SA) and a neighbor-
hood search algorithm within their MSPC-GA. The first algorithm, called
MSPC-LS1, applies a simulated annealing algorithm to each solution in
Pknown after all the generations have been run. The second algorithm, called
MSPC-LS2, applies a simulated annealing algorithm on every individual in
every generation. The third algorithm, called MSPC-LS3, applies a neighbor-
hood search on all members of Pknown after all the generations are run. Re-
sults of three standard two-objective test problems are compared for the three
memetic algorithms. Pareto fronts of the various algorithms and the number
of nondominated points (up to 1200) found at the end of each algorithm’s run
are compared. The authors report that MSPC-LS3 normally generates the

5 Even if PFtrue is disconnected, the LS approach is effective because the MOEA
population should find at least one point in each segment.

3.2 MOEA Local Search Techniques 139

best results with 1200 nondominated points on PFtrue . However, since the
test functions adopted are not too complicated (by today’s standards in the
specialized literature), the benefit of using local search is not fully evident in
this paper, since its use also introduces an extra computational cost. However,
more complex MOPs may benefit from the memetic MOEAs introduced by
the authors.

Knowles and Corne developed the memetic Pareto archived evolution
strategy (M-PAES) algorithm ([873, 883]). This algorithm was based on their
previously developed PAES algorithm [885, 886, 884]. Reflecting on the PAES
algorithmic structure as discussed in Chapter 2, PAES is a (1+1) multiobjec-
tive evolution strategy (ES). PAES uses an external archive, it generates a
new child with a Gaussian mutation operator and selects the next generation
based upon nondominated comparison of the parent’s and child’s fitness value.
However, M-PAES introduces some changes with respect to its predecessor.
M-PAES adopts a (µ + λ)-ES (i.e., it has a population), and a crossover op-
erator to recombine local Pareto optimal solutions previously found. Instead
of the single external file used by PAES, M-PAES uses two files: one to keep
locally nondominated vectors and another one to keep globally nondominated
vectors. The algorithm also uses a population of candidate solutions which is
the basis to perform local search. Each individual from this initial population
is replaced by an improved solution obtained from a local search procedure.
To avoid excessive computational costs, M-PAES constrains the search to a
certain maximum number of moves; an intermediate population is then gen-
erated. This intermediate population is obtained from the recombination of
the union of the previous population and the current file of globally nondom-
inated vectors. The same crowding procedure based on geographical location
proposed with PAES is adopted with M-PAES. However, in M-PAES, a check
against the globally nondominated vectors is also applied for a further fil-
tering of the crowded regions in objective space. Therefore, acceptance of a
new individual in the intermediate population requires both global nondomi-
nance and residency in a relatively scarcely crowded region of objective space.
This algorithm compared well with respect to the Strength Pareto Evolution-
ary Algorithm (SPEA) [1782] in several instances of the multiobjective 0/1
knapsack problem.

In a further paper, Knowles and Corne [875] proposed to study the details
of the fitness landscape of a multiobjective combinatorial problem (the multi-
objective quadratic assignment) using different techniques and measures, and
then use this information to organize a local search procedure appropriate for
that specific problem.

Other MOEA-LS Approaches

There have been other proposals to combine MOEAs with local search proce-
dures. For example, Thomson et al. [1584] proposed a memetic algorithm for

140 3 MOEA Local Search and Coevolution

the synthesis of nonlinear digital circuits. Sato et al. [1431] proposed a differ-
ent type of memetic algorithm whose aim is to improve diversity rather than
to achieve better convergence (as normally done with multiobjective memetic
algorithms).

Kleeman et al. [867] proposed a tiered local search in an attempt to find
better laser designs. The tiered local search takes into account problem domain
knowledge and focuses the neighborhood search onto different chromosome
regions depending upon what generation the search has reached. Through
experimentation, it was determined that the electrical field magnitude has a
large impact in finding the areas of good solutions. So, earlier searches focus
on that neighborhood dimension, in an attempt to reach a “good” search re-
gion. But to find the best solutions in a region, the widths of the quantum
wells must be adjusted along with finer adjustments of the electrical field.
So these neighborhood searches are conducted in the later generations. Thus,
a dynamic LS technique could consist of searching certain genes in the be-
ginning, moving towards a specific region of PFtrue , and then searching a
different gene for achieving a “fine” tuning of PFknown .

Jaszkiewicz [777] proposed a technique called Random Directions Multiple
Objective Genetic Local Search (RD-MOGLS), which uses either a weighted
linear utility functions or a weighted Tchebycheff utility function (with weights
drawn at random) to combine the objective functions of the problem. Al-
though the technique is based on the use of local search to optimize the
aggregating function adopted, it also uses a sample of the best solutions
previously found by the algorithm (which is similar to the population of a
genetic algorithm) and performs recombination among selected individuals
from such a sample (analogous to the use of mating restrictions such as those
imposed in MOGA [504]). Also, quad trees are used to efficiently store previ-
ously found nondominated solutions [626]. RD-MOGLS is compared against
Ishibuchi and Murata’s MOGLS [751], and against a multiobjective version
of simulated annealing called MOSA [1616] (see Chapter 10) on bi-objective
and three-objective instances of the TSP. RD-MOGLS found solutions that
have better overall quality than any of the other two approaches, while using
a considerably lower number of objective function evaluations. Overall quality
is measured in terms of the expected value of a weighted Tchebycheff utility
function over a set of normalized weight vectors.

In related work, Jaszkiewicz [779, 774] compares the same algorithm to
SPEA [1782] and a greedy heuristic on a set of multiobjective 0/1 knapsack
problems. RD-MOGLS is found to be superior with respect to the two metrics
adopted: the first computes the volume of the objective space covered by the
vectors obtained; the second uses a weighted Tchebycheff scalarizing function
to generate “ideal” reference solutions that some multiobjective optimiza-
tion technique evaluated attempts to achieve. In [775], Jaszkiewicz performs
a comprehensive comparative study of local search-based metaheuristics ap-
plied to the multiple objective knapsack problem. The author compares five
approaches: (1) the Memetic Pareto Archive Evolution Strategy (M-PAES)

3.2 MOEA Local Search Techniques 141

[873], (2) Jaszkiewicz’s Multiple Objective Genetic Local Search (MOGLS)
[779], (3) Serafini’s Multiple Objective Simulated Annealing (SMOSA) [1466],
(4) Ulungu’s Multiple Objective Simulated Annealing (UMOSA) [1616], and
(5) Czyzak’s Pareto Simulated Annealing (PSA) [323]. For a quantitative com-
parison of results, the author adopts two performance measures: (1) coverage
of two sets [1770] and (2) a weighted Tchebycheff scalarizing function (see
Chapter 5). An interesting aspect of this study is that M-PAES is the only
algorithm (from the five chosen for the comparison) that relies on Pareto dom-
inance, since all the others use aggregating functions. Results indicated that
M-PAES could converge to the true Pareto front, but with a poor spread of
solutions. In contrast, the other approaches were able to converge to all the
nondominated regions. In [781], Jaszkiewicz performs an even more exhaustive
study in which ten metaheuristics are compared in the bi-objective set cov-
ering problem. The approaches compared are: (1) Jaszkiewicz’s Multiple Ob-
jective Genetic Local Search (MOGLS) [779, 777], (2) Ishibuchi and Murata’s
Multiple Objective Genetic Local Search (IMMOGLS) [751], (3) Serafini’s
Multiple Objective Simulated Annealing (SMOSA) [1466], (4) Ulungu’s Mul-
tiple Objective Simulated Annealing (UMOSA) [1616], (5) Czyzak’s Pareto
Simulated Annealing (PSA) [323], (6) the Nondominated Sorting Genetic Al-
gorithm (NSGA) [1509], (7) the Controlled Elitist Nondominated Sorting Ge-
netic Algorithm (CENSGA) [365], (8) the Strength Pareto Evolutionary Algo-
rithm (SPEA) [1782], (9) the Multiple Objective Multiple Start Local Search
(MOMSLS) with random weight vectors [776, 777], and (10) an approach
introduced in the paper, which the author calls Pareto Memetic Algorithm
(PMA), and is based on Jaszkiewicz’s MOGLS [777]. The author adopts a
special encoding (a set of columns of a matrix are encoded), a special mech-
anism to generate the initial set of solutions similar to the one proposed by
Eremeev [452], a neighborhood operator which is guided by an aggregating
function, a local search mechanism, which is also guided by an aggregating
function, and a recombination operator that produces a single offspring from
two parents, and is based on the idea of distance preserving crossover [1093].
The performance measure adopted by the author is the average best value
of the weighted Tchebycheff scalarizing function over a set of systematically
generated normalized weight vectors. Results indicated that the best perform-
ers were PMA and MOGLS, and that the recombination operator was mainly
responsible for their good performance. The author also reports that both
MOSA and PSA are able to generate good results, but are highly sensitive to
their parameters settings.

Gandibleux et al. [535] experimented with a GA that keeps all nondomi-
nated vectors obtained through Pareto ranking [581]. Then, when selection is
performed, it uses a mechanism similar to VEGA [1440] to keep some individ-
uals that excel with respect to each of the objectives. The remainder of the
population is filled with individuals not selected by VEGA or Pareto rank-
ing. To select such individuals, the authors use tournament selection based
on domination with fitness sharing (a mechanism similar to the NPGA [709]).

142 3 MOEA Local Search and Coevolution

Additionally, local search is applied to the best individuals of each generation,
in order to improve convergence to PFtrue . This approach, besides combining
three selection mechanisms (Pareto ranking, VEGA and the NPGA), can also
be considered a memetic algorithm because of its use of local search. It is
important to add that the algorithm does not start with a completely random
population, but instead uses a seeding strategy (normally another heuristic or
deterministic algorithm) to generate individuals that are good with respect
to one objective. This technique has been applied to bi-objective permutation
scheduling problems (considering as objectives maximum tardiness and total
flow time) and to bi-objective 0-1 knapsack problems.

Gradient knowledge in objective space can also be exploited by a LS al-
gorithm, by generating a gradient that moves a point toward PFtrue . MOPs
consisting of continuous variables are amenable to a gradient approach (or
conjugate gradient approach) because derivatives can be obtained (either in
an exact algebraic form, or can be numerically approximated) based upon a
specific direction from selected nondominating points in PFknown . Note how-
ever that derivatives in such situations tend to be quite noisy and therefore,
a probabilistic noise model can be used to represent the possible stochastic
derivative directions (i.e., a direction chosen based upon a random number
from the modeled distribution). For example, Bosman and de Jong [153] em-
ploy gradient information in numerical MOEAs in an attempt to determine the
proper gradient direction for future search. When hybridizing their MOEA,
they choose a random direction based upon the gradients of each individual
objective. Their results indicate that for five standard numerical test functions,
this hybrid technique produces faster and better results. Other hybridizations
of MOEAs with gradient information have also been attempted by other re-
searchers (see for example [179, 1456]). Shukla [1485] employs finite difference
(FD) and simultaneous perturbation (SP) methods for approximating the gra-
dient. These approximations are used in Schäfflers stochastic method (SSM)
[1442] and Timmels population based method (TPM) [1585] for updating the
real-valued decision variables (i.e., they are both adopted as mutation oper-
ators). These two mutation operators are embedded into the NSGA-II and
compared to the original NSGA-II. Four hybrids are produced, since, for each
hybrid, both FP and SP are adopted to estimate the gradient. Although the
hybrids performed well and were able to outperform the NSGA-II in one case,
they failed in multifrontal problems. The author also adopts a stopping crite-
rion based on Kuhn-Tucker conditions.

Marata and Itai [1154] propose a memetic MOEA that enhances the sim-
ilarity of solutions in different sets of nondominated solutions. The vehicle
routing problem (VRP) with three objectives (minimize maximum routing
time, minimize the number of vehicles, and maximize solution similarity) is
used as a benchmark to evaluate the approach. They use a two-fold MOEA to
generate different sets of nondominated solutions via VRP normal and high
demand periods. Results indicate that solution similarity is enhanced, but
routing time may be increased for various VRP versions.

3.2 MOEA Local Search Techniques 143

3.2.2 Comments on Hybrid MOEA Techniques

Of course, many local search variations could be implemented and integrated
into a MOEA. For example, its use in an a priori MOEA from Chapter 2 is
somewhat obvious with a single-objective function and hillclimbing process in
the search landscape (objective space).

Considering points in a decision space neighborhood, a “feedback” ap-
proach would be of interest. For example, a hyperplane in the decision space
is formed by the previous decision point, x, and the selected current decision
point, y. A new decision point is chosen within the hyperplane formed by the
points (x,y). Again, point x is the original point with point y selected within
the neighborhood of point x. The selection is based upon feedback from objec-
tive space associated with point y. The objective space point thus generates
the “best” nondominated point in objective space. Of course, there might be
a k number of points y produced upon this construction. The intent is that
this feedback approach uses selected points in a decision space hyperplane
that moves objective space points toward PFtrue . Selection of neighborhood
points is critical to the success of this technique. This approach could be
applied to the dominated as well as to the nondominated individuals. Also,
weighted-vector evaluation could be used instead of a dominance measure.

A summary of the MOEA local search or memetic techniques reviewed
in this chapter is presented in Table 3.1. Many of the simple test problems
employed in comparing these hybrid MOEA techniques have been convex
Pareto fronts of two dimensions (two objectives) making somewhat easy to
find PFtrue if connectedness applies. Other test functions such as the knap-
sack or scheduling problems provide more of a challenge and have also been
adopted in more recent work. As indicated before, most LS approaches are
not very successful in general because of the nonlinear mapping from decision
space to objective space. However, using specific problem domain character-
istics, local search techniques with operators such as restricted mating, the
specific Pareto front geometry could be exploited. The size and structure of
the search landscape is critical as to the utility of any gradient implemen-
tation. Also, the extra LS computational effort may be extensive and may
generate few if any better points depending upon the MOP being solved, and
it is advisable to take this into consideration before deciding to incorporate LS
into a MOEA. Also, the use of gradient local search approaches can be useful
for continuous MOPS, but would have limited if any viability to NP-Complete
discrete problems for example. The heart of the memetic approach is the local
search process in the decision space and the selection of associated objective
space points to explore and exploit. The MOEA-LS approaches need to be ex-
plored for MOPs with higher dimensionality (i.e., more than two objectives)
since local search methods are required to move towards specified regions of
the Pareto surface.

144 3 MOEA Local Search and Coevolution

Applying MOEA Local Search

It is suggested that MOEA-LS applications should use limited local search in
a probabilistic manner, and after a predefined number of generations, instead
of doing it at every generation. In general, applying LS at every generation
puts too much emphasis on exploitation, possibly leading to premature conver-
gence. In contrast, when adopting a predefined number of generations before
applying local search, it is possible to perform more exploration of the search
space. Based upon experience, the use of local search may be fruitful, not only
regarding convergence, but also diversity, if properly applied.

As to using a dominance technique or a weight-vector approach, such
choice depends upon the structure of the search landscape (rugged or smooth)
and the Pareto front structure (e.g., concave, convex, connected, disconnected,
continuous, discrete). Using the MOEA-LS feedback approach briefly sketched
in this chapter, one can incorporate problem domain information via the ob-
jective space for doing local search in the decision space. However, in general,
and because of the nonlinear mapping between the decision space and the
objective space, the use of a simple generic LS approach would probably not
result in improved movement toward PFtrue . Possible computational interac-
tive environments would be of considerable utility in this case.

It is indeed the case that the success of a MOEA-LS relates to connect-
edness of the MOP objective space and decision space as well as the building
block (BB) sizes reflected in different hyperspaces within the objective space.
The larger the size of the BB generally the more difficult to select points in
the decision space that move points towards PFtrue (the combinatorial gene
issue). The less connectedness, the less effective and efficient the local search
process becomes. The use of performance measures to evaluate and compare
MOEA-LS results should definitely be part of the design of experiments within
this emerging area (also called multiobjective memetic algorithms). Obviously,
the MOEA goals may possibly be achieved by executing a MOEA indepen-
dently of a LS and then combining results at termination with a MOEA-LS,
but more sophisticated hybridization schemes are expected to arise within the
next few years.

3.3 MOEA Coevolutionary Techniques

In nature there exist organisms that have a symbiotic relationship with other
organisms. According to the Merriam-Webster Online Dictionary, symbiosis
is defined to be the “intimate living together of two dissimilar organisms in
a mutually beneficial relationship”. Endosymbiosis is defined to be “sym-
biosis in which a symbiont dwells within the body of its symbiotic partner”.
Some evolutionary algorithms (EAs) and MOEAs have employed symbiotic
techniques, although its use is relatively rare. Nevertheless, some of these
symbiosis examples reported in the evolutionary computation literature are

3.3 MOEA Coevolutionary Techniques 145

A
lg

o
ri

th
m

L
o
ca

l
S
ea

rc
h

U
se

d
W

h
er

e
a
p
p
li
ed

H
ow

a
p
p
li
ed

M
et

h
o
d

S
im

u
la

te
d

N
o
n
d
o
m

in
a
te

d
M

S
P

C
-L

S
1

[9
7
7
]

A
n
n
ea

li
n
g

(S
A

)
A

ft
er

M
O

E
A

in
d
iv

id
u
a
ls

D
o
m

in
a
n
ce

M
S
P

C
-L

S
2

[9
7
7
]

S
A

E
a
ch

G
en

er
a
ti

o
n

A
ll

in
d
iv

id
u
a
ls

D
o
m

in
a
n
ce

N
ei

g
h
b
o
rh

o
o
d

N
o
n
d
o
m

in
a
te

d
M

S
P

C
-L

S
3

[9
7
7
]

S
ea

rc
h

(N
S
)

A
ft

er
M

O
E

A
in

d
iv

id
u
a
ls

D
o
m

in
a
n
ce

M
-P

A
E

S
[8

7
3
]

N
S

C
o
n
ti

n
u
a
ll
y

A
ll

in
d
iv

id
u
a
ls

D
o
m

in
a
n
ce

(a
rc

h
iv

e)

T
h
o
m

so
n

E
A

[1
5
8
4
]

N
S

M
u
ta

ti
o
n

o
p
er

a
to

r
R

a
n
d
o
m

in
d
iv

id
u
a
ls

S
in

g
le

O
b
je

ct
iv

e

P
o
la

r
P
o
la

r
E

a
ch

A
ll

D
o
m

in
a
n
ce

[1
4
3
1
]

d
o
m

in
a
n
ce

G
en

er
a
ti

o
n

S
u
b
p
o
p
u
la

ti
o
n
s

D
o
m

in
a
n
ce

S
-M

O
G

L
S

[7
5
0
]

N
S

E
a
ch

G
en

er
a
ti

o
n

A
ll

in
d
iv

id
u
a
ls

W
ei

g
h
te

d
v
ec

to
r

C
-M

O
G

L
S

[1
1
5
7
]

N
S

E
a
ch

G
en

er
a
ti

o
n

A
ll

in
d
iv

id
u
a
ls

W
ei

g
h
te

d
v
ec

to
r

P
G

S
-W

L
S

[7
5
6
]

N
S

E
a
ch

G
en

er
a
ti

o
n

A
ll

in
d
iv

id
u
a
ls

W
ei

g
h
te

d
v
ec

to
r

W
G

S
-P

L
S

[7
5
6
]

N
S

E
a
ch

G
en

er
a
ti

o
n

A
ll

in
d
iv

id
u
a
ls

D
o
m

in
a
n
ce

P
G

S
-P

L
S

[7
5
6
]

N
S

E
a
ch

G
en

er
a
ti

o
n

A
ll

in
d
iv

id
u
a
ls

D
o
m

in
a
n
ce

N
o
n
d
o
m

in
a
te

d
R

D
-M

O
G

L
S

[7
7
7
]

N
S

E
a
ch

G
en

er
a
ti

o
n

R
a
n
d
o
m

U
ti

li
ty

F
u
n
ct

io
n

W
ei

g
h
te

d
v
ec

to
r

M
-N

S
G

A
-I

I
[3

6
6
]

N
S

A
ft

er
M

O
E

A
in

d
iv

id
u
a
ls

W
ei

g
h
te

d
v
ec

to
r

M
-N

S
G

A
-I

I
[5

7
4
]

N
S

E
a
ch

G
en

er
a
ti

o
n

A
ll

in
d
iv

id
u
a
ls

W
ei

g
h
te

d
v
ec

to
r

M
ID

E
A

[1
5
3
]

N
S

E
a
ch

G
en

er
a
ti

o
n

A
ll

in
d
iv

id
u
a
ls

W
ei

g
h
te

d
v
ec

to
r

E
D

W
A

[8
0
0
]

N
S

E
a
ch

G
en

er
a
ti

o
n

A
ll

in
d
iv

id
u
a
ls

W
ei

g
h
te

d
v
ec

to
r

A
ft

er
x

G
en

er
a
ti

o
n
s

T
o
p

1
0

ra
n
k
ed

in
d
iv

id
u
a
ls

F
ee

d
b
a
ck

(t
h
is

ch
a
p
te

r)
N

S
S
el

ec
te

d
G

en
er

a
ti

o
n

n
ei

g
h
b
o
rh

o
o
d

D
o
m

in
a
n
ce

/
v
ec

to
r

G
E

N
M

O
P

-M
T

L
S

[8
6
7
]

T
ie

re
d

N
S

E
a
ch

G
en

er
a
ti

o
n

S
el

ec
te

d
ch

ro
m

o
so

m
ic

re
g
io

n
s

D
o
m

in
a
n
ce

T
a
b
le

3
.1

.
M

em
et

ic
M

O
E

A
s

146 3 MOEA Local Search and Coevolution

reviewed in this chapter, aiming to identify their main advantages and disad-
vantages.

We call coevolution to a change in the genetic composition of a species
(or group of species) as a response to a genetic change of another one. In a
more general sense, coevolution refers to a reciprocal evolutionary change be-
tween species that interact with each other. The term “coevolution” is usually
attributed to Ehrlich and Raven who published a paper on their studies per-
formed with butterflies and plants in the mid-1960s [434]. The relationships
between the populations of two different species A and B can be described
considering all their possible types of interactions. Such interaction can be
positive or negative depending on the consequences that such interaction pro-
duces on the population. All the possible interactions between two different
species are shown in Table 3.2.

A B

Neutralism 0 0 Populations A and B are independent and don’t interact

Mutualism + + Both species benefit from the relationship

Commensalism + 0 One species benefits from the relationship but the other
is neither harmed nor benefited

Competition - - Both species have a negative effect on each other since
they are competing for the same resources

Predation + - The predator (A) benefits while the prey (B) is negatively
affected

Parasitism + - The parasite (A) benefits while the host (B) is negatively
affected

Table 3.2. All the possible interactions between two different species.

Evolutionary computation researchers have developed several coevolution-
ary approaches in which normally two or more species relate to each other us-
ing one of the previously indicated schemes. Also, in most cases, such species
evolve independently through an evolutionary algorithm (normally a genetic
algorithm). The key issue in these coevolutionary algorithms is that the fit-
ness of an individual in a population depends on the individuals of a different
population. In fact, we can say that an algorithm is coevolutionary if it has
such property.

There are two main classes of coevolutionary algorithms in the evolution-
ary computation literature:

1. Those based on competition relationships (called competitive coevolu-
tion): In this case, the fitness of an individual is the result of a series of
“encounters” with other individuals [1241, 1377]. This sort of coevolution-
ary scheme has been normally adopted for games.

2. Those based on cooperation relationships (called cooperative coevolu-
tion): In this case, the fitness of an individual is the result of a collab-

3.4 Coevolution and Symbiosis in EAs 147

oration with individuals of other species (or populations) [1288, 1274].
This sort of coevolutionary scheme has been normally adopted for solving
optimization problems.

Next, we discuss coevolutionary multiobjective evolutionary algorithms
(CMOEAs), including some background knowledge regarding possible instan-
tiations of coevolution in an evolutionary algorithm and some possible future
applications of them.

3.4 Coevolution and Symbiosis in EAs

Several papers in the specialized literature investigate the use of coevolution
and symbiosis with EAs. In this section, a few (representative) methods are
reviewed along with some comments on the novelty of the ideas presented.
These reviews provide the reader with better insight into the advantages and
disadvantages of using these techniques. They also provide background sup-
port for the discussion provided later on, regarding CMOEAs.

3.4.1 Coevolutionary Algorithms

Paredis [1241, 1240] provides a good introduction to coevolution. Compet-
itive fitness is the first item discussed. Competitive fitness functions differ
from a standard fitness function in that competitive fitness calculations are
dependent on the current population to some degree [51]. The dependency
can be minimal (only one population member, for example) or comprehensive
(where the entire population is aggregated into a single fitness value). Four
examples of competitive fitness functions include full competition (all vs. all),
bipartite competition (one vs. one or possibly one vs. many), tournament
fitness (single elimination binary tournament, not to be confused with tour-
nament selection), and elitist competition (all vs. best). Figure 3.2 shows a
graphical representation of these four types of competitive functions. In these
competitions, the fitness of an individual is compared to one or more other
individuals. The most fit individual “wins” the competition with the others
it is compared against.

Competitive fitness is applied extensively in evolutionary games. Some of
the games experimented with include Tic Tac Toe [51], Othello [251], Awari
[338], Poker [133], Game of Tag [1355], Backgammon [1280], and the iterated
prisoner’s dilemma [252].

Another form of coevolution is the predator-prey model. An example
of this model is the work done by Hillis with sorting networks [682]. He used
two populations, one consisting of sorting networks and the other was a set
of lists with 16 numbers to be sorted. These populations were geographically
distributed over a grid of computers. On each computer, a set of networks
was applied to a set of lists. The fitness of a network was the percentage of

148 3 MOEA Local Search and Coevolution

BipartiteAll vs. All

Tournament All vs. Best

Fig. 3.2. Four types of competitive fitness functions

lists that were sorted while the fitness of a list was the percentage of networks
that could not sort it. This type of inverse fitness interaction is typical in
a predator-prey model. Hillis found that his coevolved solutions were better
than a traditional EA. He attributed this to two reasons. First, since the
populations are constantly changing, this encourages more exploration and
avoids premature convergence. The other reason is that the fitness testing is
more efficient, because the focus is on the lists that it cannot sort correctly.

Another distributed cooperative coevolutionary MOEA is suggested by
Tan et al. [1568]. It is essentially an island model with communication through
a server. However, each decision vector is decomposed into smaller compo-
nents. The approach evolves many solutions in the form of cooperative sub-
populations (islands). Results over a set of test functions is quite good and it
is achieved with a relatively small number of evaluations.

Paredis [1240, 1241] introduced the coevolutionary genetic algorithm
(CGA). His algorithm is based on the predator-prey model, in which he has
a solution population and a test population. He first initializes the two pop-
ulations (solutions and tests), and then generates fitness values for each by
seeing how well they do compared to 20 random individuals in the opposite
population (a 1 or 0 is assigned for each success or failure). These results
are stored in a history for each individual and the fitness is the average of
these 20 results. In each generation (he calls them cycles), 20 solutions and
tests are selected, with the fittest individual being 1.5 times more likely to
be chosen over the median fitness. If the solution is successful with the se-
lected test, it receives a 1, or else it gets a 0. The history of both is updated.

3.4 Coevolution and Symbiosis in EAs 149

The history keeps track of the 20 most recent results of encounters. After 20
encounters, two parents are chosen from the solution population (using the
same weighted selection mechanism indicated above). The parents are then
recombined and the child is mutated. The fitness of the child is then deter-
mined and the child is inserted into the population at the appropriate rank,
possibly knocking out one of the parents. This is a (µ + 1) selection strategy.
The parameters the author used are, in his own admission, quite arbitrary.
He also does not evolve his tests. He does this on purpose as his tests were
specifically designed to shape the search space. Nevertheless, he mentions that
there are times when the tests should be evolved as well. Some applications
of the CGA include classification, process control, path planning, constraint
satisfaction, density classification, and symbiosis. The classification, process
control, and path planning examples all evolve neural networks. The classifi-
cation example uses preclassified, unchanging training examples for the test
population, while the other two examples have the test solutions evolving.
The constraint satisfaction problem uses constraints as the test population
and arrays of variables as the solutions. He finds that the CGA outperforms
a traditional GA in these problems. For density classification, he coevolved
cellular automata with bit strings in order to classify the density of ones in
each bit string. He then moves away from the predator-prey model and ap-
plies the CGA in a symbiotic way, where the two populations provide positive
fitness feedback instead of negative. He used symbiosis to try to determine
the best genetic representation for an individual in a problem. This problem
tries to put chromosomes with the tightest linkages next to each other in order
to keep good solutions more intact when applying crossover. In his problem,
the solutions were evolved together with the representations. This problem
actually tries to explicitly link good building blocks in the chromosome and
it is successful at creating better solutions.

3.4.2 Cooperative Coevolutionary Genetic Algorithms

An interesting subset of coevolutionary algorithms is a group known as coop-
erative coevolutionary genetic algorithms (CCGA), which were orig-
inally proposed by Potter and de Jong [1288]. This type of algorithm has a
symbiotic approach, but instead of solution and test populations, it evolves
species populations. To form a solution, an individual from each species is
selected and combined with the other selected individuals. The solution is
evaluated and the species that made up the solution are scored based on the
fitness of the combined solution.

Potter and de Jong proposed two algorithms [1288]: CCGA-1 and CCGA-
2. CCGA-1, shown in Algorithm 16, initializes each population of species and
assigns the initial fitness by combining each subpopulation member with ran-
dom individuals from the other subpopulations. Then, each of the species is
coevolved in a round robin fashion using a traditional GA. The fitness of each
of the evolved subpopulation members is obtained by combining it with the

150 3 MOEA Local Search and Coevolution

best individual of the other subpopulations and getting the fitness of the in-
dividual. This method of credit assignment has several potential problems,
such as under sampling and excessive greediness, but it was only created as
a starting point to base the effectiveness of further refinements of the algo-
rithm. The results showed that CCGA-1 outperformed the standard GA when
the species represented functions that were independent of each other but it
performed worse when the function had dependencies.

Algorithm 16 CCGA-1
1: procedure CCGA-1(N , g, fk(x))
2: for Each species s do
3: P

′
s(g) = Randomly initialize population

4: Evaluate fitness of each individual in P
′
s(g)

5: end for
6: while Termination condition = false do
7: g = g + 1
8: for Each species s do
9: Select P

′
s(g) from P

′
s(g − 1) based on fitness

10: Apply genetic operators to P
′
s(g)

11: Evaluate fitness of each individual in P
′
s(g)

12: end for
13: end while
14: end procedure

In order to overcome this deficiency, a new credit assignment was created.
In addition to creating an individual as described before, a second individual
is created where a random member of each subpopulation is combined with
the individual. The best fitness of the two individuals is the one assigned
to the child’s fitness. This change in credit assignment produced the Algo-
rithm 17, which did well when the function was independent or when it had
dependencies.

Overall, the CCGA design provides a natural mapping onto coarse grained
parallel architectures. This type of setup might work well in some applica-
tions, such as, for example, the aircraft engine maintenance scheduling prob-
lem [865], in which each population member is a total solution.

3.4.3 Symbiogenetic Coevolution

Wallin et al. [1673] introduced a cooperative coevolutionary algorithm that is
based on the concept of endosymbiosis. Endosymbiosis deals with a symbiotic
relationship between an organism and another that dwells inside the body
of the host. In EAs, the use of competitive coevolution can keep populations
from stagnating by using another cospecies to maintain evolutionary pressure.
Wallin et al. [1673] proposed the Symbiotic Coevolutionary Algorithm

3.4 Coevolution and Symbiosis in EAs 151

Algorithm 17 CCGA-2
1: procedure CCGA-2(N , g, fk(x))
2: for Each species s do
3: P

′
s(g) = Randomly initialize population

4: Evaluate fitness of each individual in P
′
s(g)

5: end for
6: while Termination condition = false do
7: g = g + 1
8: for Each species s do
9: Select P

′
s1(g) from P

′
s(g − 1) based on fitness

10: Select P
′
s2(g) from P

′
s(g − 1) at random

11: if P
′
s1(g) is most fit then

12: Let P
′
s(g) = P

′
s1(g)

13: else
14: Let P

′
s(g) = P

′
s2(g)

15: end if
16: Apply genetic operators to P

′
s(g)

17: Evaluate fitness of each individual in P
′
s(g)

18: end for
19: end while
20: end procedure

(SCA) (see Algorithm 18) which uses two species: hosts and parasites. The
hosts are a complete solution while the parasite is a partial solution. For a
parasite to be evaluated, it must be paired up with a host. The parasite is
made up of two strings. The first string is a gray encoded binary number
to direct the parasitic values to a location in the host. The second string is
the parasitic value that is used to replace a portion of the host string. Other
implementations may include the use of Boolean operators (i.e., AND, OR,
XOR) to combine the host and the parasite.

Wallin et al. [1673] generate an equal number of parasites and hosts and
perform an all-to-all matching, where each host is paired with each parasite
individually and tested. A (µ+λ) selection scheme is employed using a tourna-
ment selection operator, where the top |µ| of the evaluated population forms
the mating pool for the next generation of hosts. The k best solutions are
stored in an external archive. After the next generation of hosts is formed,
the parasites must be evolved. The parasites first reproduce asexually. The
algorithm then applies bit mutation to both strings in the parasite. Finally,
the program uses roulette wheel selection to pick the next generation of para-
sites. For their experiments, they compare their SCA with a generational GA
on 64-bit and 128-bit decomposable problems, which are deceptive [1673]. All
the experiments are averaged over 50 runs and the SCA is tested with par-
asite sizes of 4, 7, 12, and 17 bits. The authors report that smaller parasite
sizes, such as 4 and 7, deliver the best results. While there is a symbiotic link

152 3 MOEA Local Search and Coevolution

Algorithm 18 SCA
1: procedure SCA(N , g, fk(x))
2: Initialize host population, P

′
H

3: Initialize parasite population, P
′
P ,

4: Generate random host population, P
′
H , of size N

5: Generate random parasite population, P
′
H , of size (N ∗ 10)

6: Create mating pool, P
′ = P

′
H

7: for i = 1 to g do
8: Let P = P

′

9: for j = 1 to N do
10: for k = 1 to (N*10) do
11: Combine Pj with (P′

P)k

12: Add new child to pool P

13: end for
14: end for
15: Evaluate all members of pool P

16: Sort pool P

17: Save top individuals in external archive
18: Create new mating pool P

′ = P - with top N individuals
19: for j = 1 to N do
20: Randomly select 2 parents from P

′ using tournament selection
21: Create Children P

′
C

22: Apply Recombination and Mutation
23: end for
24: Replace parents with children P

′ = P
′
C

25: Evolve Parasite population
26: Apply Bit Mutation to each parasite using Roulette wheel selection
27: end for
28: end procedure

between the parasites and the hosts, there really is no coevolution taking place.
Only the host is being evolved and the parasites are just being mutated.

3.5 Coevolution and Symbiosis in MOEAs

The focus in the previous section was on coevolutionary algorithms within the
context of single-objective EAs. In this section, the focus is on how coevolution
and symbiosis have been applied with respect to MOEAs. Note that many
of the algorithms discussed in this Section are based on concepts originally
proposed for single-objective EAs.

3.5.1 Elitist Recombinative MOGA with Coevolutionary Sharing

Neef et al. [1181] developed the Elitist Recombinative Multiobjective
Genetic Algorithm with Coevolutionary Sharing (ERMOCS). Their

3.5 Coevolution and Symbiosis in MOEAs 153

algorithm uses a rank-based selection scheme based on MOGA [504], in which
an individual’s rank is determined by the number of individuals that domi-
nate it. For selection, they decided to adopt an elitist recombination scheme,
where the parents compete with their own children for a spot in the next
generation. This type of selection ensures that good solutions are never lost
in the search process. Neef et al. [1181] note the importance of niching be-
cause it helps to maintain genetic diversity and avoid genetic drift. To this
end, the authors mention fitness sharing as prescribed in MOGA [504] and
list its two main drawbacks. First, it is difficult to determine the appropriate
niche size for a problem, unless one has extensive knowledge of the search
space. Secondly, combining tournament selection and a sharing scheme causes
chaotic behavior and limits the number of stable niches that are maintained.
Since the selection scheme adopted by the authors is very similar to tourna-
ment selection, they assume chaotic behavior would ensue if fitness sharing
was adopted. Thus, they adopt instead coevolutionary shared niching (CSN),
which was originally introduced by Goldberg and Wang [588] as a way to dy-
namically change the niche size and location of a population. CSN is inspired
on the economic model of monopolistic competition. The idea is to create two
populations, one of businessmen and another one of customers. The popula-
tion of customers is in fact the population of solutions to our problem (i.e.,
members of the Pareto optimal set) that will try to maximize a certain set of
criteria, whereas the businessmen will try to locate themselves in such a way
that their “profit” can be maximized. Customers will create niches according
to their own criteria being optimized. Businessmen will then have to adapt to
the current fitness landscape so that they can serve as many customers as pos-
sible. By enforcing a competition between these two populations, a uniform
spread of the population of customers is expected to emerge. Neef et al. [1181]
choose to calculate the fitness of the customers by dividing their rank by the
number of customers that use the same business. For the business population,
the fitness is the sum of all the ranks of customers that the business serves.

ERMOCS, which is shown in Algorithm 19, has four basic steps:

1. Population creation: Both, the customer and the businessmen popula-
tions are randomly created.

2. Fitness calculation: Customers are ranked using Pareto dominance and
businessmen fitness is determined by the sum of the rank-based fitness
values of the current customers.

3. Recombination: Offspring are created using recombination and muta-
tion and ranked based on the current population. Then, the parents are
compared to their offspring and the top best are chosen.

4. Imprint: Each businessman is compared to a random customer. If the
customer has a better fitness, then it replaces the businessman.

A disadvantage of this algorithm is the fact that a minimum distance pa-
rameter needs to be set. Neef et al. [1181] suggest using a combined minimum

154 3 MOEA Local Search and Coevolution

Algorithm 19 ERMOCS algorithm
1: procedure ERMOCS(N , g, fk(x))
2: Initialize Customer population C

′

3: Initialize Businessman population B
′

4: Generate random populations (C′ & B
′) - size N

5: Evaluate Customer Objective Values
6: Assign Customer rank based on Pareto dominance
7: Assign Business rank based on Customers served
8: for Each Parent in C

′ do
9: Generate C

′ Child population
10: Random Selection (Uniform Probability)
11: Recombination and Mutation
12: Assign rank to children based on Pareto dominance with C

′

13: Assign businessmen to children
14: Calculate shared fitness of children
15: Compare fitness of children with their parents
16: if Child is fitter than a Parent then
17: Child Replaces Parent in C

′

18: Adjust affected businessman fitness in B
′

19: end if
20: end for
21: Perform imprint operation with C

′ and B
′

22: if Termination Criteria not met then
23: Go to step 6
24: else
25: Stop.
26: end if
27: end procedure

distance setting and businessman population size measure. So, larger busi-
nessman populations would have a smaller distance between them. Another
possibility would be to apply a simulated annealing technique [861] to the
process, where initially the distance is large between the businessmen. This
would promote exploration at the early generations of the algorithm. Then, as
the algorithm progresses, the distance would get smaller. This would promote
exploration in the later generations.

3.5.2 Parmee’s Co-Evolutionary MOEA

Parmee et al. [1252] proposed an algorithm that is referred to as Parmee’s
Co-Evolutionary MOEA. The goal is to develop a preliminary method to
identify feasible design regions. It is an effort to initially narrow the search
space in the field of airframe design. Instead of implementing a Pareto-based
approach, a population for each objective function is evolved simultaneously.
This approach, which is shown in Algorithm 20, utilizes a range constraint
map. This map must be able to do three things: (1) allow each GA to produce

3.5 Coevolution and Symbiosis in MOEAs 155

an optimal solution, (2) draw all concurrent searches toward a single design
region that best satisfies all objectives, and (3) allow for some flexibility at
the end of the run so that better localized solutions can be obtained. The
range constraint map uses weights that go from 1.0 (allow for the maximum
value of an objective function) to 0.1 (solutions that produce values that are
within 10% of the other objective functions). Fitness values of solutions that
do not meet the criteria of the range constraint map are penalized adopting
an amount defined by the user. The map starts at 1.0 and progresses down
to 0.1. Both a linear decrease and a sine function are tested. The authors
found that the linear decrease to 0.1 empirically worked the best. It is worth
noting that this approach is not meant to be used in traditional multiobjective
optimization, but for preliminary design, in which the aim is to quickly locate
an interesting design region.

Algorithm 20 Parmee’s Co-Evolutionary MOEA
1: procedure Parmee(N , g, o, fk(x))
2: Initialize populations P

′
� for each objective o

3: Generate random populations of size N for each population P
′
�

4: for i = 1 to g do
5: for j = 1 to o do
6: Determine fitness of members in population P

′
ג

7: Normalize fitness relative to the min and max values
8: Apply penalty function (Using range constraint map)
9: Apply sensitivity analysis

10: Rank the variables effect on each objective
11: Adjust fitness values to ensure most influential variables are valid

(Using range constraint map)
12: for k = 1 to N - 1 do
13: Generate Child population
14: Randomly Select Parents (Roulette Wheel Selection)
15: Recombination and Mutation
16: end for
17: P

′
ג = (N - 1) Children + Best individual from current generation

18: end for
19: end for
20: end procedure

3.5.3 Genetic Symbiosis Algorithm

Mao et al. [1053, 1054] proposed the Genetic Symbiosis Algorithm (GSA)
for use with multiobjective optimization problems. The authors basically ex-
tend a single objective GSA [685] to handle multiple objective problems. The
GSA portion of the algorithm has two features that are different from the stan-
dard GA. The first feature is the introduction of a parameter that attempts to

156 3 MOEA Local Search and Coevolution

represent the symbiotic relationship between individuals. The authors list six
different ways that a symbiotic relationship can occur between two individu-
als. These range from a competitive relationship to a neutral relationship, all
the way to a cooperative (benefiting) relationship. The algorithm modifies the
fitness of an individual based on its symbiotic relationship to the other indi-
viduals. The symbiotic parameter is determined by a fuzzy inference function
using the distance between two individuals and the difference in the fitness
values of the same two individuals. The modified fitness value is then used as
a basis for selection.

For the multiobjective version of the GSA, shown in Algorithm 21, a sec-
ond symbiotic parameter is added to the algorithm. This parameter describes
the interaction of the objective functions. This second parameter functions in
the same manner as the initial symbiotic parameter. The sum of all the sym-
biotic relations of an individual with other individuals, and the sum of the
symbiotic relations of the objective function with the other objective functions
is combined and multiplied with the initial fitness function [1053]. The initial
fitness value depends on the rank of each individual, which is determined in
a way similar to the fitness ranking in MOGA [504].

Algorithm 21 GSA for MOP
1: procedure GSA for MOP(N , g, fk(x))
2: Initialize population P

′

3: Generate N individuals for population P
′

4: for i = 1 to g do
5: Perform Recombination and Mutation
6: Calculate Symbiotic Parameters
7: Modify fitness with symbiotic parameters
8: Evaluate objective values
9: Rank individuals in P

′ based on Pareto dominance
10: Generate children
11: end for
12: if Sufficient Learning of Symbiotic Relation then
13: Stop.
14: else
15: Train Symbiotic Relation with RasID
16: Go to Step 4
17: end if
18: end procedure

To “learn” the symbiotic relationships, inference rules are used that are
based on the mean and standard deviation of the distances between individuals
and the fitness of all the individuals. This “learning” is actually the training
of the parameters so they meet the designer’s specifications related to the
distribution of individuals. There are five weighting factors that the designer
must plug into the algorithm. These values weight the importance of the mean

3.5 Coevolution and Symbiosis in MOEAs 157

and variance in the phenotype and genotype domains and the weight of the
ranks of the solutions. So, the objective of the criterion function is to find
solutions that are evenly distributed. But determining these weights means
the user might need to have an idea of what the search space looks like. In fact,
the simulations that are run by the authors have a known search space. So,
one would think that it is difficult to determine if the algorithm would do well
when the search space is unknown or if the parameter settings play a big role
in the search results. Unfortunately, the authors do not address these issues.
The algorithm does its training using a method called Random Search with
Intensification and Diversification (RasID) [712]. This is a method that
was developed by one of the authors as a way to iteratively search both locally
and globally. Instead of alternating the searches on a set cycle, the RasID uses
an adaptive probability distribution function that changes based on the search
history. So, the symbiotic relations are trained using the criterion function and
the RasID algorithm. A niche parameter is not needed, but in its place, one
needs five other parameters.

3.5.4 Interactive GA with Co-evolving Weighting Factors

Barbosa et al. [91] proposed an interactive genetic algorithm with co-
evolving weighting factors (IGACW) for the objectives along with the
population (see Algorithm 22). This algorithm has two populations, one for the
proposed solutions to the problem, and the other for the weight-set population.
The problem chosen to solve is a graph layout problem and the goal is to
choose the best graph layout based on the chosen weight of importance for
each objective function. The populations are evolved in a round robin process.
First, the weights are kept constant while the solutions are evolved. Then, after
a specified number of generations, a set of solutions are presented to the user
for inspection and ranking. The ranking is based on the user’s preferences
and may be different from the actual fitness assigned to the graphs by the
algorithm. Then, the solutions are held constant while the weights are evolved.
A graph receives low fitness values when it differs widely from the graphs
ranked by the user. After a set number of generations, the best set of weights
is chosen based on the user’s inputs and the solution sets are evolved again.
The user inspects the results and if they are unsatisfactory by his standards,
he ranks them again and the process continues. The algorithm finishes once
the user is satisfied with the results. To minimize user fatigue, the algorithm
is run for several generations with each population before the user is required
any input. Also, the user only needs to rank some of the graphs, not all of
them. The graphs are ranked from the highest rank down to where the user
stopped. The graphs not ranked by the user are ranked behind those ranked
by the user, but they maintain their relative order.

To test the algorithm, two experiments are run. The first run is an example
of a user who does not care about the number of edge-crossings in the graph.
The second run is an example of a user who wants a minimum number of

158 3 MOEA Local Search and Coevolution

Algorithm 22 IGACW
1: procedure IGACW(N , g, fk(x))
2: Initialize layout population, P

′
L, randomly

3: Initialize weight-set population, P
′
W , randomly

4: Compute each criterion for all graph layouts
5: while User not satisfied do
6: Display a sample layout from P

′
L

7: The user ranks the sample
8: for i = 1 to gw (# of gens for weights) do
9: Evaluate weights population P

′
W

10: Generate new weights population P
′′

W

11: end for
12: Replace P

′
W with the best set of weights from P

′
W

⋃
P
′′

W

13: for i = 1 to gl (# of gens for layouts) do
14: Compute each criterion for all layouts in P

′
L

15: Evaluate layout population P
′
L

16: Generate new layout population P
′′

L

17: end for
18: Let P

′
L = P

′′
L

19: end while
20: end procedure

edge crossings. The results show that the evolution process for the weights
is greatly affected by the user’s preferences. The weights associated with the
criteria evolve to quite different values in the two runs. The solutions also
evolve to greatly different graphs. Since this type of testing is highly subjective
on the user’s preference, it would be hard, if not impossible, to compare the
IGACW algorithm with another MOEA in any way.

3.5.5 Multiobjective Co-operative Co-evolutionary GA

Keerativuttitumrong et al. [837] integrated the multiobjective genetic algo-
rithm (MOGA) designed by Fonseca [504] with the CCGA algorithm (dis-
cussed in Section 3.4.2) designed by Potter [1288]. The result is called the
Multiobjective Co-operative Co-evolutionary Genetic Algorithm
(MOCCGA).

The MOCCGA, shown in Algorithm 23 decomposes the problem into sub-
populations based on the decision variables, or a part of the problem that
requires optimization. Each individual of every subpopulation is ranked with
respect to its subpopulation based on Pareto dominance when it is combined
with the best individuals of other subpopulations. After ranking each mem-
ber of a subpopulation, they are assigned a fitness value based on their rank
in the subpopulation. The fitness sharing strategy utilized in this research is
applied in the phenotype domain. For selection, the authors adopt stochastic
universal sampling. The mutation and crossover rates adopted are 1% and
70%, respectively.

3.5 Coevolution and Symbiosis in MOEAs 159

Algorithm 23 MOCCGA
1: procedure MOCCGA(N , g, fk(x))
2: for Each species s do
3: P

′
s(g) = Randomly initialize population

4: Evaluate fitness of each individual in P
′
s(g)

5: Assign Rank based on Pareto dominance
6: Compute Niche count
7: Assign Linearly Scaled Fitness
8: Assign Shared Fitness
9: end for

10: for i = to g do
11: for Each species s do
12: Select P

′
s1(g) from P

′
s(g − 1) based on fitness

13: Select P
′
s2(g) from P

′
s(g − 1) at random

14: if P
′
s1(g) is most fit then

15: Let P
′
s(g) = P

′
s1(g)

16: else
17: Let P

′
s(g) = P

′
s2(g)

18: end if
19: Apply genetic operators to P

′
s(g)

20: Evaluate fitness of each individual in P
′
s(g)

21: Assign Rank based on Pareto dominance
22: Compute Niche count
23: Assign Linearly Scaled Fitness
24: Assign Shared Fitness
25: end for
26: end for
27: end procedure

MOCCGA is tested against MOGA [504] using the ZDT test functions
originally proposed in [1772]. The results indicate that MOCCGA is able to
outperform MOGA in all of the test functions adopted, although they both
perform poorly in discrete and non-uniform test problems. It is worth noting
that a parallel version of the algorithm is also validated (each species is run
on its own computer, and the best decision variable is broadcast to the other
computers). In this case, small, medium and large test instances are tried,
using 1, 2, 4 and 8 processors. Two different broadcast mechanisms are also
assessed: (1) MPI broadcast and (2) a customized broadcast. The authors
report that the customized broadcast works better and that the use of 4 and
8 nodes provides the most satisfactory speedup.

3.5.6 Lohn’s Coevolutionary Genetic Algorithm

Lohn et al. [1007] proposed another approach which is referred to as Lohn’s
Coevolutionary Genetic Algorithm or Lohn’s CGA. This algorithm is
based on Lohn’s earlier work in coevolving fitness schedules in an effort to find

160 3 MOEA Local Search and Coevolution

good amplifier and antenna solutions [1006, 1008]. For the amplifier problem,
there are two populations: a circuits population and a target population. The
circuits population consists of individuals that specify the values associated
with the components used in the circuit. The target vector is a population of
fitness functions. Each of the individuals consists of four elements: gain, bias,
power dissipation, and linearity. Both populations are evolved using genetic
algorithms. Individuals in the circuit population have their fitness based on
how many target vectors they successfully solve as well as the difficulty of
those target vectors. The fitness values are normalized between 0 and 1 with
0 being the best fitness. The individuals in the target vector population have
their fitness based on how many circuits can achieve their settings. If only
one circuit is capable of achieving the specifications in a target vector, then
the target vector receives the highest fitness score of 1. If all the circuits or if
no circuit meets the specifications, then the target vector receives the worst
fitness score of 0. This type of fitness assignment attempts to keep the target
vectors from becoming too difficult, but at the same time attempts to elim-
inate the easy ones. This allows the selection pressure to vary depending on
the population of circuits. For a more detailed description of these fitness as-
signment schemes, see [1006]. The results show that coevolution and a normal
GA perform similarly (statistically speaking), so coevolution does not seem
to introduce an important gain in this case.

In [1007], Lohn’s CGA (shown in Algorithm 24) is evaluated using the
ZDT test functions originally described in [1772]. The authors let the target
objective vectors (TOV) be the different objectives that the problem is try-
ing to solve. This is an interesting approach since the solutions are guided
toward varying fitness goals. Goals that are unattainable or are easy to at-
tain are more likely to be replaced with new ones. This variance of fitness
values allows the search to find solutions throughout the whole search space,
and not just solutions that are near the optimum value of the various fitness
functions. To determine the Pareto front, the author collected all the out-
put TOVs and found the nondominated points from among them. Results
are found to be competitive with respect to other MOEAs, although most
of them are non-elitist approaches (e.g., NSGA [1509], VEGA [1440], NPGA
[709], etc.), except for SPEA [1782]. While this approach can be classified as a
cooperative algorithm, it applies a coevolutionary technique that has aspects
of both a cooperative model and a competitive (predator-prey) model. The
target objective vectors are a lot like the mechanical rabbit that greyhounds
chase in a race. It keeps a certain distance from the dogs but never gets too far
ahead or too close. This type of relationship is also a symbiotic relationship.
The algorithm also has a built-in niching feature. The TOV fitness function is
biased toward having fewer solutions. So, TOVs tend to spread out through-
out the space in order to distinguish them from the other TOVs. An optimal
TOV population would have only one solution for every TOV. So, it seems
that the algorithm strives for a uniform spread.

3.5 Coevolution and Symbiosis in MOEAs 161

Algorithm 24 Lohn’s CGA
1: procedure Lohn’s CGA(N , g, fk(x))
2: Initialize solution population P

′
s

3: Initialize target objective vector population P
′
t

4: Randomly generate N individuals for population P
′
s

5: Generate N individuals for population P
′
t - seed with “easy” target objective

vectors
6: for i = 1 to g do
7: Determine fitness of individuals in P

′
s

8: Compare each individual in P
′
s to every target objective vector in P

′
t

9: Calculate the fitness of the solutions in P
′
s

10: Calculate the fitness of the target objective vectors in P
′
t

11: Create child solution population P
′′

s

12: Randomly Select Parents
13: Recombination and Mutation
14: Write P

′
s to an external archive

15: Set P
′
s = P

′′
s

16: Create target objective vector population P
′′

t

17: Randomly Select Parents
18: Recombination and Mutation
19: Write P

′
t to an external archive

20: Set P
′
t = P

′′
t

21: end for
22: end procedure

3.5.7 Distributed Cooperative Coevolutionary Algorithm

Tan et al. proposed the Distributed Cooperative Coevolutionary Algo-
rithm (DCCEA) [1569]. This algorithm is basically an extension of Keer-
ativuttitumrong et. al.’s work [837] and is shown in Algorithm 25. This ap-
proach uses the CCGA cooperative coevolution scheme [1288] and the MOGA
ranking scheme [504]. Where this algorithm is particularly different is that it
uses a different niching mechanism and an archive for the solutions. The nich-
ing scheme is one developed by the authors, so it differs from the one used in
[837]. The biggest advantage to this niching scheme is that it is adaptive and
the user does not need to set a niche radius a priori. As for the archive, it
contains all the nondominated solutions up to a user-defined maximum.

Another addition to the algorithm is the extending operator. Since the
archive stores the nondominated complete solutions, a niche count can be done
on these individuals. The individuals with the smallest niche counts may be
in regions that have not be exploited well by the algorithm. To alleviate this,
a predetermined number of clones of the individual with the smallest niche
count are created and the pieces of the clone are assigned to their various
subpopulations. It is hoped that this mechanism can bias the algorithm to
areas of the Pareto front that need further exploration.

162 3 MOEA Local Search and Coevolution

Algorithm 25 DCCEA
1: procedure DCCEA(N , g, fk(x))
2: for Each species s do
3: P

′
s(g) = Randomly initialize population

4: Collaborate (Create a complete solution with individuals from each
species)

5: Evaluate fitness of each solution
6: Assign Rank based on Pareto dominance with external archive
7: Update individual’s rank in P

′
s(g)

8: if Solution is nondominated then
9: Update external archive

10: end if
11: if Archive is full then
12: Compute Niche count
13: Find member with smallest niche count
14: Clone n copies of archive member to each species
15: end if
16: end for
17: for i = to g do
18: for Each species s do
19: Select P

′
s1(g) from P

′
s(g − 1) based on fitness

20: Select P
′
s2(g) from P

′
s(g − 1) at random

21: if P
′
s1(g) is most fit then

22: Let P
′
s(g) = P

′
s1(g)

23: else
24: Let P

′
s(g) = P

′
s2(g)

25: end if
26: Evaluate fitness of each solution
27: Assign Rank based on Pareto dominance with external archive
28: Update individual’s rank in P

′
s(g)

29: if Solution is nondominated then
30: Update external archive
31: end if
32: if Archive is full then
33: Compute Niche count
34: Find member with smallest niche count
35: Clone n copies of archive member to each species
36: end if
37: end for
38: end for
39: end procedure

The algorithm is also parallelized. The parallelization is a coarse-grained
strategy, similar to the one employed by Keerativuttitumrong et al. [837], but
more involved. In this case, the subpopulations are combined into peer groups
and each peer group is assigned a computer. These peer groups have their
own archive and generate complete solutions. After several generations (an

3.5 Coevolution and Symbiosis in MOEAs 163

exchange interval), each peer group submits its archive and representatives
to the central server and downloads the updates from the other peers. If the
evolution process in the peers is vastly different with respect to time, the per-
formance deteriorates. To avoid this deterioration, the peers are synchronized
according to a user defined synchronization interval. This distributed algo-
rithm is embedded into a distributed computing framework called Paladin-
DEC [1561, 1569].

For testing, the authors use five of the six ZDT test functions from [1772]
(see Chapter 4). Results are compared with respect to five other MOEAs
(PAES [886], PESA [301], NSGA-II [374], SPEA2 [1775] and IMOEA [1563]),
based on generational distance (how far the known Pareto front is from the
true Pareto front) and spacing (how evenly distributed the members are along
the known Pareto front) [287]. The authors find that with respect to gener-
ational distance, their results are comparable to the other MOEAs, but the
proposed approach does particularly well on the multi-modal and nonuni-
form test cases. With regard to spacing, the proposed approach consistently
obtained the best values.

3.5.8 Coello’s Coevolutionary MOEA

Coello Coello and Reyes Sierra [280] proposed a Coevolutionary MOEA
that the authors labeled the CO-MOEA. The CO-MOEA is designed to
decompose the problem into competing populations. If a population produces
more individuals on the known Pareto front, then it is rewarded by having
its population size increased. The goal is to direct the search to the most
promising regions of the search space. This approach is shown in Algorithm 26,
and it runs in four stages, each consuming the same number of generations. At
the first stage, the algorithm explores the entire search space. The algorithm
uses MOGA’s Pareto ranking scheme [504]. For population diversity, it uses
the adaptive grid algorithm proposed by Knowles [877] and found in his PAES
algorithm [886]. At the end of the first stage, the algorithm analyzes the
current Pareto front values in an effort to determine the critical variables.
Each variable is analyzed independently, so there is no effort to determine
whether any linkages exist between variables. If a variable plays a role on a
small portion of the Pareto front, the algorithm attempts to eliminate intervals
that are deemed less fruitful. The algorithm may also decide to subdivide the
interval of a variable. The new regions are assigned a different population.
This stage basically does an initial global search and then sets the stage for
multiple populations to do localized searches in regions which the algorithm
deems profitable. By eliminating portions of the search space, the algorithm
may have a difficult time finding the optimal solution in deceptive problems,
because the selection pressure is too high.

The second stage simultaneously evolves all the populations. Each popu-
lation focuses on a different region in the search space. At the end of each
generation of this stage, each nondominated individual from each population

164 3 MOEA Local Search and Coevolution

Algorithm 26 Co-MOEA
1: procedure Co-MOEA(N , g, fk(x))
2: Set # of gen = 0
3: Set # of populations = 1
4: while # of gen < g do
5: if # of gen = g/4 or g/2 or 3*g/4 then
6: Check active populations
7: Analyze decision variables (compute number of subdivisions)
8: Construct new subpopulations (update subpopulations)
9: end if

10: for i = 1 to # of populations do
11: if population i contributes to the current Pareto front then
12: Evolve and compete i
13: end if
14: end for
15: Apply Elitism
16: Reassign resources
17: # of gen = # of gen + 1
18: end while
19: end procedure

competes with the other nondominated individuals to create a single Pareto
front for that generation. This is done with the adaptive grid algorithm. Each
individual has a label, so the algorithm can keep track of which population
supplied the individual. The algorithm tracks each population’s contribution
to the Pareto front. Each population has its population size adjusted accord-
ing to the number of individuals it placed on the Pareto front. Thus, more
productive populations get more individuals, while less productive popula-
tions have their size decreased. Populations with no members on the Pareto
front are eliminated. So the populations compete with each other in an at-
tempt to increase their membership. This competition is more of an implicit
competition, because having more population members is not the goal of each
population.

The third and fourth stages are the same. At the beginning of the stage,
the algorithm determines how many populations need to be removed. Again,
the algorithm analyzes the populations and if they need to be divided any
further, the algorithm repeats the process laid out in stage one. A minimum
population size determines the size of all populations. The algorithm adjusts
the sizes of the populations in the same manner as it did in stage two. This
algorithm is compared with three other MOEAs (the microGA [284], PAES
[886], and the NSGA-II [374]) using three test functions and four performance
measures: Two Set Coverage, Spacing, Generational Distance, and Error Ra-
tio [287]. CO-MOEA is found to be competitive with respect to the other
MOEAs, although the authors admit that its main drawbacks include the

3.6 Applying Coevolutionary MOEAs 165

high selection pressure induced by the algorithm’s elitist scheme, and the
number of populations that the algorithm may need to use.

3.5.9 Nondominated Sorting Cooperative Coevolutionary GA

Iorio et al. [745] proposed the Nondominated Sorting Cooperative Co-
evolutionary Genetic Algorithm (NSCCGA). The NSCCGA combines
many of the aspects of the CCGA [1288], and the NSGA-II [374]. The algo-
rithm decomposes the problem into subpopulations based on the number of
variables (genes) and coevolves each subpopulation in an attempt to find the
true Pareto front for a problem.

The NSCCGA is shown in Algorithm 27, and it forms collaborations in a
manner slightly different than in the original CCGA [1288]. Instead of choos-
ing the best individual from each subpopulation, a random individual is cho-
sen from a group of “best” individuals. Any individual that was a segment
of a nondominated solution is contained in that group. The individuals are
ranked based on the NSGA-II Pareto ranking scheme [374]. All generations,
except for the first, follow this type of ranking and collaboration scheme. The
first generation consists of individuals that have not been ranked yet, so the
collaborations are selected at random in this case.

Each subpopulation holds a static number of individuals. So, if a decision
must be made between two individuals with the same rank, the algorithm uses
the NSGA-II’s crowding distance [374] to determine which individual to keep.
Each subpopulation uses tournament selection to determine its mating pool.
The mating pool has crossover and mutation applied to each individual in
order to form a child population. Note that since each subpopulation adopts
real-valued variables, the simulated binary crossover (SBX) [370, 362] operator
is used. This crossover operator generates the offspring of two parents based
on a probability distribution that was derived from a binary encoding.

This algorithm is compared to the NSGA-II on five problems proposed
from the ZDT test suite (see Chapter 4) plus a rotated problem proposed by
Deb [374]. Zitzler’s standard metrics (see Chapter 5) are adopted to compare
the average distance of the solution to the Pareto front, the distribution of
the points, and the spread of the points. The performance of the NSCCGA is
reported to be satisfactory with respect to the NSGA-II in all cases, except
for the rotated problem.

3.6 Applying Coevolutionary MOEAs

In this section, we briefly discuss some possible applications of coevolutionary
MOEAs which have not been addressed so far in the specialized literature (to
the authors’ best knowledge).

166 3 MOEA Local Search and Coevolution

Algorithm 27 NSCCGA
1: procedure NSCCGA(N , g, fk(x))
2: for Each species s do
3: P

′
s(g) = Randomly initialize population

4: Collaborate (Create a complete solution with random individuals from
each species)

5: Evaluate collaborations
6: Assign results to individual undergoing evaluation
7: end for
8: Assign rank based on Pareto Dominance - sort
9: Calculate crowding distance

10: Use elitism to keep only the best individuals in each population, P
′
s(g)

11: Create mating pool using Tournament Selection
12: Create children using mating pool
13: Randomly Select Parents from mating pool using tournament selection
14: Recombination and Mutation
15: for i = 1 to g do
16: for Each species s do
17: Collaborate (Create a complete solution with random individuals

from each species)
18: Evaluate collaborations
19: Assign results to individual undergoing evaluation
20: end for
21: Assign rank based on Pareto Dominance - sort
22: Calculate crowding distance
23: Use elitism to keep only the best individuals in each population, P

′
s(g)

24: Create mating pool using Tournament Selection
25: Create children using mating pool
26: Randomly Select Parents from mating pool using tournament selection
27: Recombination and Mutation
28: end for
29: end procedure

3.6.1 Coevolving Multiple MOEAs

A common cliché is “two heads are better than one”. This could also be applied
to MOEAs. Suppose a MOEA is particularly effective at finding solutions to
deceptive problems and another MOEA is effective at solving non-uniform
Pareto fronts. If one does not know the phenotype space of the problem,
throwing multiple MOEAs with distinctive strengths may be better than using
just one. The MOEAs could then be coevolved in such a way that individuals
are passed from one algorithm to another in an attempt to seed the algorithms
with good solutions.

3.6 Applying Coevolutionary MOEAs 167

3.6.2 Coevolving MOEAs with other Search Algorithms

MOEAs have been developed which incorporate local search at some point in
the algorithm. But an interesting application may be to coevolve a MOEA
with another type of algorithm, such as a local search, Particle Swarm Op-
timization (PSO) [840], Ant Colony Optimization (ACO) [406], simulated
annealing [861], among others. By coevolving, the search can exert a blend of
exploitation and exploration that occurs in each generation of the algorithm.
There are many ways that this coevolution can take place, but this section
limits the discussion to one particular implementation, in which a MOEA is
coevolved with a local search algorithm.

Let’s assume we have x populations, one is evolved using a MOEA and the
other x−1 are local search algorithms. At the first generation, the MOEA runs
and ranks the top solutions, using a Pareto ranking system and a crowding
mechanism. The top solutions are then used to seed the local search algo-
rithms. While the local search algorithms are working to find better solutions,
the MOEA is also evolving. After a fixed number of generations, the algo-
rithms cross-pollinate, and they evolve using the new members in their pop-
ulation. A mechanism would have to be devised so that an individual is only
submitted to a local search mechanism a certain number of times. This allows
for other avenues of exploration in the search. But the populations could be
designed so that there are varying degrees in the local search. For example,
one local search may flip only one bit or it may focus on only one segment
of the chromosome, while another population may flip 4 bits or focus on a
separate part of the chromosome.

3.6.3 Coevolving Density Estimators

The use of coevolutionary schemes to handle the diversity estimator of a
MOEA is another interesting application that has been only scarcely dealt
with in the specialized literature. Coevolutionary niching is a good example
of this sort of scheme (see [588, 707]), but it is not the only possibility. The de-
velopment of coevolutionary crowding and coevolutionary clustering schemes
is a topic that certainly deserves attention, too. Additionally, the use of mul-
tiple external (elitist) archives that could be coevolved using different density
estimators that determine which estimator (or combination of them) is better
seems another interesting possibility.

3.6.4 Coevolving Target Solutions

Coevolution could also be applied in a manner similar to the one prescribed
in Section 3.5.6. In that research, target objective vectors guide the search
toward the Pareto front by increasing the fidelity of the fitness required to be
considered a “good” solution. This moving target is an attempt to guide the
solutions toward better solutions. This could possibly be done in a manner

168 3 MOEA Local Search and Coevolution

similar to niching. As a population evolves, the fitness of individuals would
be based on their distribution along the Pareto front. Target vectors could
then be evolved at the same time and these vectors would be placed in areas
throughout the Pareto front. If many points fall into a neighborhood near a
target vector, its fitness would be low, but if only one or two vectors fall into
a target vector neighborhood, it would achieve a high fitness score. The target
vectors would thus evolve to fill less sparse locations along the Pareto front.
In turn, the population of solutions would be rewarded with higher fitness
values when they are closer to a target vector with only a few points in each
neighborhood. This method may prove to be a good alternative to some of
the niching methods currently in use.

3.6.5 Coevolving Competing Populations

In Coello’s CO-MOEA [280], discussed in Section 3.5.8, populations com-
peted implicitly. A population was rewarded with more individuals when it
contributed more to the known Pareto front. But there was no explicit com-
petition among them. A population did not have as a goal to have more
individuals than another population; this just happened by chance. But what
if there were explicit competition between populations? What if it were the
goal of each population to gain more individuals? Next, we briefly discuss a
possible scheme for this sort of coevolving competing populations.

One could setup a MOEA that has multiple populations, each with the
same initial size. Each population’s individuals would be fully instantiated,
meaning an individual is a complete solution to the problem. The populations
would evolve as any typical GA population does, using selection, mutation,
and recombination operators. A global Pareto front would be generated from
the best individuals from all the populations. The population that gener-
ated the most individuals would be rewarded with more population members
and the population with the fewest members would be punished with fewer
members. A population that has fewer members would adjust its operator
parameters and quite possibly the operators it uses in an effort to improve its
search capability. A population that gains members would maintain its status
quo.

Putting populations to compete against each other and allowing them to
vary their operators and parameters could be very beneficial, especially for
unknown search landscapes. This self-preservation mechanism would allow the
populations to self-adapt and create an algorithm that is better suited to the
search space. Plus, if a good population starts to lose individuals, it could
adapt in an effort to avoid stagnation.

3.7 Final Comments on Coevolutionary MOEAs

Section 3.5 presents a survey of the many ways researchers use coevolution
in MOEAs. Table 3.3 lists MOEAs that implement coevolution, the type of

3.7 Final Comments on Coevolutionary MOEAs 169

Symbiotic,
Cooperative or Subpopulations Where applied

Algorithm Competitive Used in algorithm

ERMOCS [1181] Cooperative No Niching

Parmee’s
CMGA [1252] Cooperative Yes Population

GSA for
MOP [1053] Symbiotic No Niching

Objective
IGACW [91] Cooperative No Weighting

MOCCGA [837] Cooperative Yes Population

Lohn’s Fitness
CGA [1007] Cooperative No Function

DCCEA [1569] Cooperative Yes Population

CO-MOEA [280] Competitive No Population

NSCCGA [745] Cooperative Yes Population

Table 3.3. Coevolutionary Techniques Used in MOEAs

coevolution scheme employed, if the algorithm decomposes the problem into
subpopulations, and where the application of coevolution occurs in the algo-
rithm.

Various methods of coevolution have been applied to MOEAs. Some of the
advantages and disadvantages of the most representative algorithms of this
sort reported in the specialized literature have been discussed. Also, some
possible future applications of CMOEAs have been briefly addressed. How-
ever, the effectiveness of coevolutionary MOEAs depends upon problem do-
main knowledge being explicitly used in the search process, and on the design
of appropriate schemes that properly exploit the advantages of coevolution.
Nevertheless, a variety of innovative directions for coevolutionary MOEAs are
possible (see for example [866]).

Further Explorations

Class Exercises

1. Explain the main differences between a memetic MOEA and a Coevolu-
tionary MOEA.

2. Discuss the main advantages and possible disadvantages of a MOEA-LS.
3. Discuss some of the possible metaheuristics that could be used to perform

local search in a memetic MOEA. How does the type of encoding (e.g.,
binary or real-numbers) affect your choice?

4. Why do you think that most MOEA-LS approaches do not move PFknown

towards PFtrue by themselves? Discuss.
5. Discuss possible types of coevolutionary MOEAs (based on the types of

interaction shown in Table 3.2) that are possible, but were not included
in this chapter.

6. How does the connectedness of the solution space Ptrue as well as the
connectedness of PFtrue relate to local search performance?

7. Discuss the main advantages and possible disadvantages of a coevolution-
ary MOEA.

8. Using the six specific questions from page 132 (in Section 3.2), compare
M-PAES [873] and MOGLS [750].

Class Software Projects

1. Implement a memetic multiobjective evolutionary algorithm using Lamar-
ckian fitness assignment. Then, compare this implementation to another
one that uses Baldwinian fitness assignment.

2. Implement any of the coevolutionary multiobjective evolutionary algo-
rithms discussed in this chapter and validate it using appropriate test
functions and performance measures.

172 Further Explorations

3. Select a two-objective multiobjective optimization problem in which each
objective function is highly nonlinear and apply to it one of the MOEA-
LS discussed in this chapter. Analyze connectedness, convergence, spread
and computational efficiency.

4. Repeat at least two of the MOEA-LS experiments discussed in this chap-
ter, and assess results using performance metrics such as those discussed
in Chapter 5. Use different values for k (number of solutions to which the
local search is applied) and T (number of iterations during which local
search should be applied).

5. Develop an interactive MOEA-LS environment for “steering” local search
points to PFtrue .

6. Implement, execute and evaluate a parallel version of the MOEA-LS ap-
proach proposed by Bosman & De Jong [154].

7. Apply Brown and Smith’s [179] hyperplane local search approach to one
of the test suites described in Chapter 4 (e.g., the ZDT test functions
[1772]). Evaluate and compare your results using performance measures
and statistical analysis (see Chapter 5).

Discussion Questions

1. Read Knowles and Corne’s survey on memetic algorithms used for mul-
tiobjective optimization [879]. Discuss some of the future prospects indi-
cated in this paper (e.g., objective correlation, restricted mating schemes,
etc.). Propose additional topics for future research in this area.

2. Stochastic local search algorithms are nowadays widely used for combina-
torial optimization [704]. Discuss the role of stochastic local search algo-
rithms in multiobjective optimization. How different are these algorithms
from traditional MOEAs? See for example [1237, 1238, 1239].

3. Discuss the main issues related to the combination of gradient techniques
with MOEAs (e.g., what is the most appropriate stage of the cycle of
a MOEA in which such integration should take place?). See for example
[179, 1456, 180, 154, 658, 657, 1485]. It is also advisable to read additional
references on this topic (see for example [492, 1442]).

4. Analyze the potential of rough sets [1262, 1263] as a possible local search
scheme that can be coupled to a MOEA (see for example [1424]).

5. Analyze other predator-prey MOEAs different from those discussed in this
chapter (see [957, 986, 1448, 605, 604]).

6. Miconi [1108] presents a study in which he attempts to show the main
drawback of coevolutionary algorithms. Analyze this paper and discuss
it. Do you agree with the experimental setup provided by Miconi? Do
you agree with his conclusions? What type of coevolutionary EA does he
consider in his study?

Further Explorations 173

7. What are the basic problems of using a MOEA-LS? Relate to pedagogical
test problems and real-world multi-dimensional multiobjective optimiza-
tion problems.

8. What other metrics besides D1R would you suggest for evaluating MOEA-
LS performance? Justify.

9. Are Coevolutionary MOEAs generally robust, or only suited for problems
with certain characteristics? Discuss.

10. When is the tiered MOEA-LS [867] a good approach? Relate to problem
characteristics.

11. Analyze other MOEAs that incorporate local search and which were not
discussed in this chapter. See for example [949, 663, 1679].

12. Analyze other Coevolutionary MOEAS not discussed in this chapter (see
for example [412, 1735]). Incorporate these approaches within the taxon-
omy proposed in this chapter, and identify strengths and possible weak-
nesses of each of them.

13. Review and discuss the utility of coevolving MOP solutions using the
framework proposed by Lamont et al. [943]. Relate this to the performance
of a parallel cooperative coevolutionary approach which uses low-level and
high-level teamwork hybrid schemes (see [1174]).

14. Discuss possible interactive visualization techniques for a MOEA-LS.
What are the main computational problems that you foresee for such
a visualization technique? Does the need of interaction with the user in-
troduce additional problems?

15. What are the main differences and similarities between a local search
technique developed for multiobjective continuous problems with respect
to another one designed for discrete problems? What are the main features
of the search space that a local search approach attempts to exploit in each
case?

Possible Research Ideas

1. Using more problem domain information for a many-objective optimiza-
tion problem, integrate a MOEA-LS with decision maker’s preferences to
specific objective-space surfaces. Attempt to develop new MOEA opera-
tors that improve performance.

2. Attempt to develop a theory of convergence for a generic Memetic MOEA
for either continuous or discrete problems.

3. Design an experimental study in which different Coevolutionary MOEAs
are applied to similar multi-dimensional multiobjective optimization prob-
lems, within a certain class. Based on the results from this study, propose
a new Coevolutionary MOEA that combines the main advantages of the
approaches compared.

4. Design a “hyperheuristic” for a certain type of multiobjective optimization
problem, in which several multiobjective metaheuristics are combined, and

174 Further Explorations

are coordinated by a master control that determines the stage of the search
at which any of them should be applied. See for example [186, 187, 189].
Incorporate local search into this scheme.

5. Attempt to develop a theory of convergence for Coevolutionary MOEAs.
6. Propose a Coevolutionary Memetic MOEA, and validate it using standard

test functions and performance measures. See for example [1491, 1492].
7. Analyze the role of local search as a mechanism to accelerate the conver-

gence of a MOEA (see for example [12, 11]).
8. Propose an island-based parallel Memetic MOEA that adopts different lo-

cal search mechanisms within each island (for more information on parallel
MOEAs, see Chapter 8).

9. Attempt to relate game theory [1665] with Coevolutionary MOEAs both,
from a theoretical and from a practical point of view.

10. Propose a new performance measure (different from those discussed in
Chapter 5) specifically designed for assessing performance of coevolution-
ary MOEAs. How is this performance measure different from the others?
Justify your proposal with some theoretical analysis and with benchmark
evaluations.

11. Develop a meta-level design for a parallel or distributed coevolutionary
MOEA (see Chapter 8 and [1174]). Evaluate your proposed approach using
performance measures from both the MOEA and the parallel algorithms
literature.

4

MOEA Test Suites

No amount of experimentation can ever prove me right; a single ex-
periment can prove me wrong.

Albert Einstein

4.1 Introduction

Why test multi-objective evolutionary algorithms (MOEAs)? To evaluate,
compare, classify, and improve algorithm performance (effectiveness and effi-
ciency). What is a MOEA test? Should we use a multi-objective optimization
problem (MOP) test function, a MOP test suite, pedagogical functions, or a
real-world problem? How to find an appropriate MOEA test?

Should we rely on the MOEA literature, on historical use, on test genera-
tors, or on well known real-world applications? When to test? Should we adopt
and incremental algorithm and test development methodology or should we
wait until the final stage of algorithm development to test it?

How should we design a MOEA test? Evidently, several important issues
must be taken into consideration. For example: basic assumptions, compu-
tational platform selection, statistical tools, performance measures selection,
experimental plan, among others. Thus, considerable effort must be spent
not only in defining proper MOP tests and in generating the proper design
of MOEA experiments, but also in employing the appropriate performance
measures and experiment conditions, as well as the proper statistical tools
that allow a fair algorithmic comparison. In this chapter, the development of
various MOP test suites is discussed in detail.

Many MOEA research efforts select as examples numeric MOP functions to
show or judge MOEA performance. In order to appreciate the rational for such
selections, a comprehensive discussion of MOP landscape issues and structure
is required along with an explanation of why the selected MOPs may be
appropriate or inappropriate MOEA test functions. Such MOP characteristics

176 4 MOEA Test Suites

include objective functions structures, constrained vs. unconstrained genotype
and phenotype formulations, and the impact of numerical approximation of
continuous forms. This chapter precisely addresses all of these issues. Standard
suite(s) of test functions exhibiting relevant MOP domain characteristics are
presented that can provide the necessary common MOEA comparative basis
(see [1630, 1628, 1626, 357, 355, 1790, 375, 375, 721, 1207]).

This chapter on MOP development is organized as follows: Section 4.2
discusses general test suite issues. Relevant MOP domain characteristics are
presented in Section 4.3 which also proposes appropriate MOPs for MOEA
test function suites given the described MOP domain features. Section 4.4
is devoted to scalable multi-objective test problems, describing several test
suites found in the current literature. Combinatorial problems are described
in Section 4.5, whereas Section 4.6 is devoted to real-world problems.

4.2 MOEA Test Function Suite Issues

The MOEA community has created various test suites as indicated and refer-
enced previously. Specific functions have however been often employed because
other researchers did so in their MOEA research, or perhaps because the MOP
appears to exercise certain MOEA components. It is not clear that all these
particular test functions are appropriate for inclusion into generic MOEA test
suites. Explanation is rarely offered as to the specific MOP’s origin or raison
d’etre, yet several appear to be relatively “easy” (see Section 4.3) in the sense
of finding the optimal solution. Poloni et al. [1283] also observed the lack of
complex mathematical MOEA performance assessment tests. This situation
implies that identification of appropriate test function suites to objectively
determine MOEA efficiency and effectiveness is required. Other researchers
have also noted the need for comprehensive test suites and have presented
some ideas and examples [357, 1284, 1646, 1630, 1773, 721, 1207], which are
included in this chapter.

Generic test function suites are both condoned and condemned. Any al-
gorithm successfully “passing” all submitted test functions has no guarantee
of continued effectiveness and efficiency when applied to real-world problems,
i.e., examples prove nothing except as counter examples. When integrating
MOP domains and MOEA domains, new and unforeseen situations may arise
resulting in undesirable performance for example. A MOEA test suite is then
a valuable tool only if relevant issues are properly considered. To motivate the
development of MOP test suites, historical single objective EA test functions
are addressed first.

Some single objective EA test suites examine an EA’s capability to “han-
dle” various problem domain characteristics. These suites incorporate relevant
search space features to be addressed by some particular EA instantiation.
Some example single-objective EA test suites are:

4.2 MOEA Test Function Suite Issues 177

• De Jong [348], suggests five single-objective GA optimization test func-
tions: sphere-parabolic, Rosenbrock ridge, Rastrigrin steps, Griewank quar-
tic, Schaffer F6 foxholes.

• Michalewicz & Schoenauer [1105] recommend twelve single-objective con-
strained optimization test functions.

• Schwefel [1460], offers a diversity of 62 different landscape functions from
the Evolution Strategies literature.

• Whitley et al. [1701], and Goldberg et al. [585], offer other formal GA test
suites; informal suites are also used by Yao & Liu [1730, 1731].

• So called deceptive problems include Goldberg’s order 3 and 6, bipolar
order 6, and Mühlenbein’s order 5. Some of these include extensive exper-
imental study of benchmarking functions for GAs.

• Digalakis & Margaritis [392], suggest eight standard functions along with
an additional six nonlinear squares problems for single objective EAs.

• Multi-optima examples from the Operations Research (OR) literature in-
clude Levy functions [978], Corana functions [296], Freudenstein-Roth and
Goldstein-Price functions [1127].

• Others are Ackley’s function and Weierstrass function (continuous but not
differentiable anywhere).

De Jong’s five standard GA test functions reflect the following characteris-
tics [581]: continuous and discontinuous, convex and nonconvex, unimodal and
multimodal, quadratic and nonquadratic, low- and high-dimensionality, and
deterministic and stochastic. Michalewicz & Schoenauer’s test bed addresses
the following issues [1105]: type of objective function (e.g., linear, nonlinear,
quadratic), number of decision variables and constraints, types of constraints
(linear and/or nonlinear), number of active constraints at the function’s op-
timum, and the ratio between the feasible and complete search space size.
Particular single objective EAs as well as MOEAs can be subjected to generic
test suites based upon these characteristics and then judged on their perfor-
mance (effectiveness and efficiency). In general, the following characteristics
both in the genotype and phenotype domains should be addressed when se-
lecting possible MOPs:

• continuous vs. discontinuous vs. discrete
• differentiable vs. non-differentiable
• convex vs. concave
• modality (unimodal, multi-modal)
• numerical vs. alphanumeric
• quadratic vs. nonquadratic
• type of constraints (equalities, inequalities, linear, nonlinear)
• low vs. high dimensionality (genotype, phenotype)
• deceptive vs. nondeceptive
• biased vs. unbiased portions of PFtrue

178 4 MOEA Test Suites

EA and MOEA test suite functions should range in difficulty from “easy”
to “hard” as found in pedagogical and generated forms as well as attempt to
represent generic real-world situations. Dynamically changing environments
can include “moving cones” [1131] with movement ranging from predictable
to chaotic to non-stationary and deceptive.

One should consider the following guidelines suggested by Whitley et al.
[1701] in developing generic test suites:

- Some test suite problems are resistant to simple search strategies.
- Test suites contain nonlinear, unseparable & unsymmetric problems.
- Test suites contain scalable problems.
- Some test suite problems have scalable evaluation cost.
- Test problems have a canonical representation (ease of use).

It should also be noted that Holland states that the use of “sample” ped-
agogical problems is of little use in understanding the performance of EAs
employed in complex real-world engineering and scientific design and analysis
problems [700]. That is, sample problems can be used to compare various EA
performances, but these results provide little insight to real-world EA appli-
cations. The same applies to MOPs for MOEA comparison in general. One
must be then very careful in selecting a MOP test suite in regard to defining
its purpose. One should contemplate the following: using a test suite of any
kind can be useful from a pedagogical perspective in comparing MOEAs, but
in general, may be of little importance when solving “real-world” problems!

Moreover, the No Free-Lunch (NFL) theorems [1708] imply that if problem
domain knowledge is not incorporated into the algorithm domain, no formal
assurances of an algorithm’s general robust effectiveness exist. NFL theorems
in addition imply that incorporating too much problem domain knowledge
into a search algorithm reduces its effectiveness on other problems outside and
even within a particular class; i.e., non-robust. In selecting a MOP test suite
one should consider characteristics from target problem domains. However,
as long as a test suite involves only major problem domain characteristics,
any search algorithm giving effective and efficient results over the test suite
might remain broadly applicable to that problem domain. Thus, traits and
characteristics common to all or most known MOPs should be completely
defined in order to help develop an MOP test suite. A dichotomy may exist
between MOEA test suite selection and the possible real-world application!

A MOEA should move towards PFtrue with considerable diversity in order
to converge to a complex Pareto front. Generating diversity only when “near”
the PFtrue generally does not achieve the desired effectiveness. Moreover, if
PFtrue is considerably concave with many regions of the search space not
dense in points (due to discretization), then moving through the dense feasible
regions requires again a diversity of points in each MOEA generation. This is
also true for vacuous regions due, for example, to constraints. The intent of
the following discussion is to present possible MOEA test functions and test
function suites based upon desired Ptrue and PFtrue characteristics.

4.3 MOP Domain Feature Classification 179

4.3 MOP Domain Feature Classification

Like single-objective EA optimization problems, MOPs may be suitable rep-
resentatives of real-world multi-objective problems. Most modeled real-world
problems are reflected in a mathematically functional structure, but MOPs
arguably capture more information about the modeled problem as they allow
incorporation of several objective functions. Regardless, modeling a real-world
problem may result in a numeric or combinatorial MOP, one that is per-
haps simple, perhaps complex. A MOP may contain continuous or discrete
or integer-constrained functions or even a mixture. Initially, the discussion is
restricted to homogeneously continuous numeric MOPs; other MOP types are
discussed in Section 4.5.

Any proposed MOP test suite must offer functions spanning a spectrum of
MOP characteristics. Particularly, it must contain “MOEA challenging” func-
tions. In order to then identify appropriate functions for inclusion, relevant
MOP domain characteristics must be identified and considered. The variety
of known examples from the historical literature are considered as the basis
for development; the associated list is found in Tables A.1, A.2, A.3, A.4, A.5
and Section A.5 in Appendix A.1 These MOPs each incorporate 2-3 func-
tions and 0-12 side constraints. Appendices B and C present a complete set
of figures showing Ptrue and PFtrue for each MOP listed in the tables. These
figures are deterministically derived by computing all decision variable com-
binations possible at a given computational numerical resolution using high
performance parallel computers. The purpose is to highlight major structural
characteristics of both Ptrue and PFtrue for use in constructing sound MOEA
test function suites.

Some MOP test functions can be built upon commonly used single-
objective optimization test functions. For example, Kursawe’s MOP incor-
porates a modified Ackley’s function [72, pg. 143] and a modification of one
provided by Schwefel [1460, pg. 341]. Poloni’s MOP incorporates a modified
Fletcher-Powell function [72, pg. 143]. Finally, Quagliarella’s MOP uses two
versions of Rastrigin’s function [231]. Other MOP test generators have been
proposed by Deb [357, 355]. The rationale for construction and use of these
and many of the other identified MOPs is sometimes unclear.

When implementing a MOEA, it is implicitly assumed that the problem
domain has been properly considered. A decision is made that a MOEA is an
appropriate search engine for the given MOP. A natural genotype represen-
tation defined and efficient exploitation and exploration operators declared.
The MOEA’s objective is the generation of PFknown and Pknown both of which
may be close to PFtrue and Ptrue , respectively.

Tables 4.1 and 4.2 identify salient MOP domain characteristics viewed from
a MOEA perspective and classified under a genotype and phenotype rubric.

1 All the Appendices of this book are available for download at:
http://www.cs.cinvestav.mx/~emoobook

180 4 MOEA Test Suites

Newly identified characteristics can augment the tables as well. Observe that
these high-level characteristics were determined from the figures presented in
Appendices B, C, D, E and F, whose representation and succeeding interpre-
tation may slightly change based upon underlying computational resolution
and graphical presentation of continuous MOPs.

Table 4.1: MOP Numeric Test Function Characteristics

Genotype Phenotype

Function C
o
n
n
ec

te
d

D
is

co
n
n
ec

te
d

S
y
m

m
et

ri
c

S
ca

la
b
le

S
o
lu

ti
o
n

T
y
p
e(

s)

#
F
u
n
ct

io
n
s

C
o
n
st

ra
in

ts

G
eo

m
et

ry

C
o
n
n
ec

te
d

D
is

co
n
n
ec

te
d

C
o
n
ca

v
e

C
o
n
v
ex

Binh x x 2R 2 2 Curve x x

Binh (3) x 2R 3 2 Point

Fonseca x x 2R 2 0 Curve x x

Fonseca (2) x x x nR 2 n Curve x x

Kursawe x x x nR 2 0 Curve x x

Laumanns x x 2R 2 2 Points x x

Lis x x 2R 2 2 Curve x x

Murata x x 2R 2 2 Curve x x

Poloni x 2R 2 2 Curves x x

Quagliarella x x nR 2 n Points x x

Rendon x x 2R 2 2 Curve x x

Rendon (2) x x 2R 2 2 Curve x x

Schaffer x x 1R 2 0 Curve x x

Schaffer (2) x x 1R 2 1 Curves x x

Viennet x x 2R 3 2 Surface x x

Viennet (2) x 2R 3 2 Surface x x

Viennet (3) x 2R 3 2 Curve x x

The table entries are explained as follows [1630, 1628, 1626]: Each row
corresponds to one of the MOPs listed in Appendix A. Each column indicates
some genotypic/phenotypic characteristic. Ptrue ’s “shape” may be connected,
disconnected, symmetric, and/or scalable. PFtrue may be connected, discon-
nected, and convex or concave. MOPs exhibiting any of these characteristics
are marked with an “x” in the appropriate column. Solution types are notated
by the number of decision variables and their type, where “R” indicates real
(continuous) decision variables. The number of functions is self-explanatory.
Table 4.1 lists MOPs associated with only decision variable constraints, iden-
tifying their numbers and types. Table 4.2 lists MOPs which also contain
side constraints, identifying both constraint numbers and types. Each MOPs’
PFtrue ’s shape is listed, as Pareto fronts may geometrically and/or topolog-

4.3 MOP Domain Feature Classification 181

ically differ. Also note that only two of these MOPs (Fonseca’s second [506]
and Schaffer’s first [1396]) have known analytical solutions for Ptrue .

Table 4.2: MOP Numeric Test Function (with side constraints) Charac-
teristics

Genotype Phenotype

Function C
o
n
n
ec

te
d

D
is

co
n
n
ec

te
d

S
y
m

m
et

ri
c

S
ca

la
b
le

S
o
lu

ti
o
n

T
y
p
e(

s)

#
F
u
n
ct

io
n
s

S
id

e
C

o
n
st

ra
in

ts

G
eo

m
et

ry

C
o
n
n
ec

te
d

D
is

co
n
n
ec

te
d

C
o
n
ca

v
e

C
o
n
v
ex

Belegundu x x 2R 2 2 + 2S Curve x x

Binh (2) x x 2R 2 2 + 2S Curve x x

Binh (4) x 2R 3 2 + 2S Surface x x

Jimenez x x 2R 2 2 + 4S Curve x x

Kita x x 2R 2 2 + 3S Curve x x

Obayashi x x 2R 2 2 + 1S Curve x x

Osyczka x 2R 2 2 + 2S Points x x

Osyczka (2) x 6R 2 6 + 6S Curves x x

Srinivas x x 2R 2 2 + 2S Curve x x

Tamaki x x 3R 3 3 + 1S Surface x x

Tanaka x 2R 2 2 + 2S Curves x x

Viennet (4) x 2R 3 2 + 3S Surface x x

What is Ptrue ’s nature? Few MOEA efforts describe an example MOP’s
underlying multi-dimensional decision variable (genotype) space, i.e., the
space where Ptrue resides. Since a MOP is composed of two or more functions,
the solution space is obviously restricted by their combined limitations (e.g.,
decision variable range and side constraints). Within that space, Ptrue may
be connected or disconnected, a hyper-area or separate points, symmetric in
shape, scalable, and so forth. Solutions may be discrete or continuous, and
are composed of one or more decision variables. When solved computation-
ally (and assuming feasible solutions exist), a MOP’s Ptrue has only a lower
bound (see Theorem 1 in Chapter 6); the upper bound is unknown and varies
depending upon the underlying computational resolution.

What is PFtrue ’s nature? PFtrue lies in objective space and as already
noted, may be (dis)connected, convex or concave, and multidimensional. In
fact, the structure of any Pareto front has theoretical dimensional limitations
depending on the number of functions composing the MOP (see Theorem 5
in Chapter 6). PFtrue ’s shape can range from a single vector to a collection
of multi-dimensional surfaces [1626].

Test suite functions should encompass combinations of all possible char-
acteristics. Although no guarantor of continued success, any MOEA search
algorithm giving effective and efficient results over the test suite should be

182 4 MOEA Test Suites

easily modified to target specific problems. Acceptable results should be evi-
dent in the global search space and the local true Pareto front, PFtrue .

4.3.1 Unconstrained Numeric MOEA Test Functions

Having discussed the MOEA testing requirement and considered the general
issues involved in developing a MOEA test function suite, an initial MOP list
is proposed for inclusion. As discussed, a complete and sound methodology for
constructing MOPs with arbitrary complexity and characteristics still eludes
us. Thus, proposed unconstrained numeric test suite MOPs are drawn from
the published literature or generated from more basic functions. These MOPs
in toto address some of the issues discussed in Section 4.2 and reflect the char-
acteristics in Table 4.1. Initially, functions are restricted to those with no side
constraints. The mathematical formulations of several of these MOPs, which
may be slightly revised from the originals or as elsewhere proposed [1630], are
shown in Table 4.3. Figures 4.1 through 4.14 show representations of several
of these MOPs’ Ptrue and PFtrue .2 Note that the graphs’ scales for Ptrue may
be different than what is stated in Table 4.3 to present Ptrue ’s “shape” more
clearly.

Schaffer’s first (unconstrained) two-objective function is selected for three
primary reasons. First is its historical significance; practically all the MOEAs
proposed until the mid-1990s were tested using this function. It is also an ex-
emplar of relevant MOP concepts. Second, this MOP allows determination of
an analytical expression for PFtrue [1627]. Third, as noted by Rudolph [1396],
this MOP’s Ptrue is in closed form so solutions’ membership in Ptrue is then
easily determined. This MOP’s PFtrue is a single convex Pareto curve (see Fig-
ure 4.2) and its Ptrue a line as shown in Figure 4.1. However, its one decision
variable implies it may not use the power of a MOEA’s search capabilities.
This “easy” problem is designated as MOP1.

Fonseca’s second MOP is also selected because this two-objective function
has an advantage of arbitrarily adding decision variables (scalability) without
changing PFtrue ’s shape or location in objective space [506]. This MOP’s
PFtrue is a single concave Pareto curve (see Figure 4.4) and its Ptrue an area
in solution space (see Figure 4.3). Additionally, a closed form for this MOP’s
Ptrue is claimed [506]. This problem is called MOP2.

Next is Poloni’s MOP, a maximization problem. This two-objective func-
tion’s Ptrue consists of two disconnected areas in solution space (see Fig-
ure 4.5), while its PFtrue consists of two disconnected Pareto curves (see Fig-
ure 4.6). Its solution mapping into dominated objective space is more con-
voluted than other MOPs from the literature. This problem is designated as
MOP3.

2 For a comprehensive list of MOPs and their graphical repre-
sentations, the reader must consult the Appendices available at:
http://www.cs.cinvestav.mx/~emoobook.

4.3 MOP Domain Feature Classification 183

Kursawe’s MOP is included because this two-objective function’s Ptrue has
several disconnected and unsymmetric areas in solution space. Its PFtrue consists
of three disconnected Pareto curves. Like MOP3, its solution mapping into
dominated objective space is also quite convoluted. Like MOP2, its number
of decision variables is arbitrary. However, changing the number of decision
variables appears to slightly change PFtrue ’s shape and does change its lo-
cation in objective space. We use it here with three decision variables. Note
that both Ptrue (see Figure 4.7) and PFtrue (see Figure 4.8) are disconnected.
This function is renamed MOP4.

Viennet’s MOP is proposed as the fifth generic test function since this tri-
objective function’s Ptrue consists of disconnected areas in solution space (see
Figure 4.9). And its PFtrue is a single, convoluted three-dimensional Pareto
curve (see Figure 4.10). This function is designated as MOP5.

A MOP constructed using Deb’s methodology (see Section 4.3.3) is se-
lected. Like MOP4, this two-objective function’s Ptrue and PFtrue are discon-
nected, although its PFtrue consists of four Pareto curves (see Figure 4.12).
Its solution mapping into dominated objective space is not as convoluted as
MOP4’s. This problem is used to compare MOEA performance in finding sim-
ilar phenotypes produced by different MOPs (c.f., MOP4). And this function
is now called MOP6.

Finally, Viennet’s second MOP is also suggested. This tri-objective MOP’s
Ptrue is a connected region in solution space (see Figure 4.11). Its PFtrue

appears to be a surface and its mapping into objective space appears straight-
forward (see Figure 4.12). This function is primarily meant to complement
MOP5. This function is relabeled as MOP7.

Table 4.3: MOEA Test Suite Functions

MOP Definition Constraints

MOP1
Ptrue con-
nected,
PFtrue

convex

F = (f1(x), f2(x)), where

f1(x) = x
2
,

f2(x) = (x − 2)
2

−105 ≤ x ≤ 105

MOP2
Ptrue con-
nected,
PFtrue

concave,
number of
decision
variables
scalable

F = (f1(x), f2(x)), where

f1(x) = 1 − exp(−
n∑

i=1

(xi −
1

√
n

)
2
),

f2(x) = 1 − exp(−
n∑

i+1

(xi +
1

√
n

)
2
)

−4 ≤ xi ≤ 4; i = 1, 2, 3

184 4 MOEA Test Suites

Table 4.3: (continued)

MOP Definition Constraints

MOP3
Ptrue dis-
connected,
PFtrue dis-
connected
(2 Pareto
curves)

Maximize F = (f1(x, y), f2(x, y)), where

f1(x, y) = −[1 + (A1 − B1)
2

+ (A2 − B2)
2
],

f2(x, y) = −[(x + 3)
2

+ (y + 1)
2
]

−3.1416 ≤ x, y ≤
3.1416,

A1 = 0.5 sin 1 −
2 cos 1 +

sin 2 −
1.5 cos 2,

A2 = 1.5 sin 1

− cos 1 +

2 sin 2 −
0.5 cos 2,

B1 = 0.5 sin x −
2 cos x +

sin y −
1.5 cos y,

B2 = 1.5 sin x −
cos x +

2 sin y −
0.5 cos y

MOP4
Ptrue dis-
connected,
PFtrue

disconnect-
ed (3 Pareto
curves),
number of
decision
variables
scalable

F = (f1(x), f2(x)), where

f1(x) =

n−1∑
i=1

(−10e
(−0.2)∗

√
x2

i +x2
i+1),

f2(x) =
n∑

i=1

(|xi|a + 5 sin(xi)
b
)

−5 ≤ xi ≤ 5; i = 1, 2, 3

a = 0.8,

b = 3

MOP5
Ptrue dis-
connected
and un-
symmetric,
PFtrue con-
nected (a
3-D Pareto
curve)

F = (f1(x, y), f2(x, y), f3(x, y)), where

f1(x, y) = 0.5 ∗ (x
2

+ y
2
) + sin(x

2
+ y

2
),

f2(x, y) =
(3x − 2y + 4)2

8
+

(x − y + 1)2

27
+ 15,

f3(x, y) =
1

(x2 + y2 + 1)
− 1.1e

(−x2−y2)

−30 ≤ x, y ≤ 30

MOP6
Ptrue dis-
connected,
PFtrue

disconnect-
ed (4 Pareto
curves),
number
of Pareto
curves
scalable

F = (f1(x, y), f2(x, y)), where

f1(x, y) = x,

f2(x, y) = (1 + 10y) ∗

[1 − (
x

1 + 10y
)
α −

x

1 + 10y
sin(2πqx)]

0 ≤ x, y ≤ 1,

q = 4,

α = 2

4.3 MOP Domain Feature Classification 185

Table 4.3: (continued)

MOP Definition Constraints

MOP7
Ptrue con-
nected,
PFtrue dis-
conn ected

F = (f1(x, y), f2(x, y), f3(x, y)), where

f1(x, y) =
(x − 2)2

2
+

(y + 1)2

13
+ 3,

f2(x, y) =
(x + y − 3)2

36
+

(−x + y + 2)2

8
− 17,

f3(x, y) =
(x + 2y − 1)2

175
+

(2y − x)2

17
− 13

−400 ≤ x, y ≤ 400

Fig. 4.1. MOP1 Ptrue
Fig. 4.2. MOP1 PFtrue

Fig. 4.3. MOP2 Ptrue Fig. 4.4. MOP2 PFtrue

186 4 MOEA Test Suites

Fig. 4.5. MOP3 Ptrue Fig. 4.6. MOP3 PFtrue

Fig. 4.7. MOP4 Ptrue
Fig. 4.8. MOP4 PFtrue

These proposed numeric MOEA test functions in Table 4.3 address the
issues mentioned in Section 4.2. MOP1 and MOP2 are arguably “easy” MOPs.
MOP2 and MOP4 are scalable as regards decision variable dimensionality.
MOP6 is scalable as regarding the number of Pareto curves in PFtrue . MOP5
and MOP7 are tri-objective MOPs. All are nonlinear, and several show a lack
of symmetry in both Ptrue and PFtrue . Taken together these MOPs begin to
form a coherent basis for MOEA comparisons. However, other relevant MOP
characteristics (as reflected in Tables 4.1 and 4.2) may also be addressed by
other MOPs selected for test suite inclusion. These additional MOPs may
need to be constructed in order to exhibit some desired characteristics (see
Section 4.3.3). Utilization of a test suite is advantageous to the community in
the fact that it presents data that is baselined from a standard test suite [1633].
Another philosophical development of a test suite reflects similar functionality
[1772].

Observe that parameters can be added to each function in order to high-
light and emphasize PFtrue characteristics providing more difficulty for a

4.3 MOP Domain Feature Classification 187

MOEA search. For example, in MOP4, one can vary the parameters a and b.
In MOP6, q and α can extend over a range of values.

4.3.2 Side-Constrained Numeric MOEA Test Functions

Side-constrained numeric MOPs should also be in any comprehensive MOEA
test function suite. Suitable linear and nonlinear constrained MOPs are pro-
posed as drawn from the published literature as well as generated. Note that
solving constrained MOPs with MOEAs brings in other open research issues,
most notably how the side constraints are accounted for in the MOEA in order
to ensure feasible solutions.

Historically, constraints have been handled by a MOEA through augment-
ing the objective functions with a penalty function [1360] (i.e., individuals
encoding infeasible solutions are less fit than those encoding feasible solu-
tions). This technique generally requires an “unnatural” normalization or a

0
2

4
6

8

15.0
15.5

16.0

16.5

17.0

-0.10

-0.05

0.00

0.05

0.10

0.15

 F
un

ct
io

n
3

 Function 1

Function 2

MOP 5 PF
true

Fig. 4.9. MOP5 Ptrue Fig. 4.10. MOP5 PFtrue

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x−value

y−
va

lu
e

MOP6 P
true

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.5

0

0.5

1

Function 1

F
un

ct
io

n
2

MOP6 PF
true

Fig. 4.11. MOP6 Ptrue Fig. 4.12. MOP6 PFtrue

188 4 MOEA Test Suites

Fig. 4.13. MOP7 Ptrue Fig. 4.14. MOP7 PFtrue

static/dynamic weighting schedule between these two elements of the new ob-
jective form. Another technique [796] uses binary tournament selection com-
paring two solutions, the feasible solution always being selected. If both are
infeasible, the one “closest” to the constraint boundary is used. If both are
feasible, then Horn’s niched Pareto MOEA is employed. The constraints can
be processed separately using the Pareto nondominated concept and then
combined with the objective function nondominated set [1329, 1330, 262]. Us-
ing these generic approaches, one can classify two constrained MOP solutions
using the domination principle if both solutions are feasible (class a); if one is
feasible and one is not (class b); or both are infeasible, but one has a smaller
constraint violation (class c) over the set of constraints. This classification
can then be used in the MOEA processing of constraints when attempting to
reach the Pareto front. Of course, the general objective of converging to the
true front with a diverse set of points while employing an appropriate con-
straint handling technique is probably problem dependent. Observe that the
MOEA could be applied to the MOP initially without considering the side
constraints, but using post-processing to remove infeasible solutions (could
take more processing, but reflects simpler algorithmic steps). However, post-
processing may delete too many points.

Table 4.4: Side-Constrained MOEA Test Suite Functions

MOP Definition Side Constraints

MOP-C1
Binh(2)

F = (f1(x, y), f2(x, y)), where

f1(x, y) = 4x
2

+ 4y
2
,

f2(x, y) = (x − 5)
2

+ (y − 5)
2

0 ≤ x ≤ 5, 0 ≤ y ≤ 3,

0 ≥ (x − 5)
2

+ (4.1)

y
2 − 25,

0 ≥ −(x − 8)
2 −

(y + 3)
2

+ 7.7

4.3 MOP Domain Feature Classification 189

Table 4.4: (continued)

MOP Definition Side Constraints

MOP-
C2 Osy-
czka(2)

F = (f1(x), f2(x)), where

f1(x) = −(25(x1 − 2)
2

+ (x2 − 2)
2

+ (x3 − 1)
2

+ (x4 − 4)
2

+ (x5 − 1)
2
,

f2(x) = x
2
1 + x

2
2 + x

2
3 + x

2
4 + x

2
5 + x

2
6

0 ≤ x1, x2, x6 ≤ 10,
1 ≤ x3, x5 ≤ 5,
0 ≤ x4 ≤ 6,

0 ≤ x1 + x2 − 2,

0 ≤ 6 − x1 − x2,

0 ≤ 2 − x2 + x1,

0 ≤ 2 − x1 + 3x2,

0 ≤ 4 − (x3 − 3)
2

−x4,

0 ≤ (x5 − 3)
2

+

x6 − 4

MOP-C3
Viennet(4)

F = (f1(x, y), f2(x, y), f3(x, y)), where

f1(x, y) =
(x − 2)2

2
+

(y + 1)2

13
+ 3,

f2(x, y) =
(x + y − 3)2

175
+

(2y − x)2

17
− 13,

f3(x, y) =
(3x − 2y + 4)2

8
+

(x − y + 1)2

27
+ 15

−4 ≤ x, y ≤ 4,

y < −4x + 4,

x > −1,

y > x − 2

MOP-C4
Tanaka

F = (f1(x, y), f2(x, y)), where

f1(x, y) = x,

f2(x, y) = y

0 < x, y ≤ π,

0 ≥ −(x
2
) − (y

2
)

+1 +

(a cos

(b arctan(x/y)))

a = 0.1

b = 16

Table 4.4 includes an extensive variety of possible numeric constrained
test functions. Based upon the general principles of test function selection
indicated previously, various constrained MOPs are suggested. Thus, Binh’s
second MOP is selected as a side-constrained test function. This two-objective
function’s Ptrue is an area in solution space and its PFtrue a single convex
Pareto curve. This problem is renamed MOP-C1. Next is Osyczka’s sec-
ond MOP, which is a heavily constrained, six decision variable problem.
This two-objective function’s Ptrue ’s shape is currently unknown while its
PFtrue consists of three disconnected Pareto curves. This problem is desig-
nated as MOP-C2.

Viennet’s fourth MOP is also selected for inclusion. This three-objective
function’s Ptrue is an irregularly shaped area in solution space. Its PFtrue is a
Pareto surface. This problem is designated as MOP-C3. These MOPs’ math-
ematical formulations are shown in Table 4.4; figures showing representations

190 4 MOEA Test Suites

of each MOPs’ Ptrue and PFtrue are found in Appendix G. Also suggested is
Tanaka’s two objective function with two nonlinear constraints which is de-
fined as MOP-C4 with the indicated genotype and phenotype Pareto curves
being the same as shown in Appendix G. Note the disconnected Pareto front
regions for MOP-C4 which can make it difficult for a MOEA to find PFtrue .
As with non-constrained numerical MOPs, parameters can be added to each
function in order to highlight and emphasize PFtrue providing more difficulty
for a MOEA search. For example, the parameters a, b of MOP-C4 (Tanaka)
from Table 4.4 can be varied over appropriate ranges.

Considering specific variations of these two MOP-C4 parameters along
with an absolute operator on the last term of the constraint, can result in the
following general landscapes:

• standard Tanaka phenotype with a = .1 and b = 16 (Figure 4.15)
• smaller continuous regions with a = .1, b = 32 (Figure 4.16)
• increased distance between regions using the absolute value on the last

term of the constraint, and a = .1, b = 16 (Figure 4.17)
• increased distance between regions using the absolute values on the last

term of the constraint, and a = .1, b = 32 (Figure 4.18)
• deeper periodic regions using the absolute value on the last term of the

constraint, and a = .1(x2 + y2 + 5xy), b = 32 (Figure 4.19)
• non-periodic regions on front using the absolute value on the last term of

the constraint, and a = .1(x2 + y2 + 5xy), b = 8(x2 + y2) (Figure 4.20)

Fig. 4.15. MOP-C4 (Tanaka),
a = .1, b = 16, Original
PFtrue (Ptrue) regions

Fig. 4.16. MOP-C4 (Tanaka),
a = .1, b = 32, smaller continu-
ous PFtrue (Ptrue) regions

By selecting values for the two parameters (a, b) different landscape struc-
tures evolve. Ptrue of course is the same by function definition. Although the
central Pareto curve in Figure 4.15 appears not to be continuous due to nu-
merical accuracy, it is continuous in reality. The two internal sections of this

4.3 MOP Domain Feature Classification 191

Fig. 4.17. MOP-C4 (Tanaka),
using absolute value on the last
term of the constraint and a =
.1, b = 16, increased distance be-
tween PFtrue (Ptrue) regions

Fig. 4.18. MOP-C4 (Tanaka),
using absolute value on the last
term of the constraint and a =
.1, b = 32, increased distance be-
tween PFtrue (Ptrue) regions

Fig. 4.19. MOP-C4 (Tanaka),
using absolute value on the last
term of the constraint and a =
.1(x2 + y2 + 5xy), b = 32, deeper
PFtrue (Ptrue) periodic regions

Fig. 4.20. MOP-C4 (Tanaka),
using absolute value on the
last term of the constraint and
a = .1(x2 + y2 + 5xy), b =
8(x2 + y2), non-periodic regions
PFtrue (Ptrue)

curve are very difficult to find numerically because of the near horizontal or
vertical slope at the associated points, respectively.

In general, (a, b) controls the length of the continuous region on the Pareto
front. As this region is decreased, a MOEA finds fewer points on PFtrue due to
the discretization of x; i.e., a more difficult problem. By increasing the value
of a, the length of the “cuts” become deeper requiring the search to proceed
along a narrower corridor, again more difficult to solve. One can also move
away from the periodic nature of the disconnected PFtrue regions by changing
b from the initial value of 16 (more optimal solutions in one direction or the

192 4 MOEA Test Suites

other). Finding all closely packed PFtrue regions then becomes difficult for the
MOEA. As reflected in the figures, such parameter variations can cause MOEA
searches to become more difficult as the size of feasible regions are decreased.
Just by changing a few parameters very different phenotype landscapes result.
Note that Deb et al. [375] have generated a more complex function with quite
similar phenotype characteristics (see Section 4.3.3).

Another difficult MOP (MOP-C5) with six side constraints is that pro-
posed by Osyczka and Kundu [1225] with two objective functions and six
genotype variables as follows:

Minimize F = (f1(x), f2(x)), where

f1(x) = −(25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2 + (x4 − 4)2 + (x5 − 1)2)
f2(x) = x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6

Subject to

c1(x) = x1 + x2 − 2 ≥ 0,

c2(x) = 6 − x1 − x2 ≥ 0,

c3(x) = 2 + x1 − x2 ≥ 0,

c4(x) = 2 − x1 + 3x2 ≥ 0,

c5(x) = 4 − x3 − 3)2 − x4 ≥ 0,

c6(x) = (x5 − 3)2 + x6 − 4 ≥ 0,

0 ≤ x1, x2, x6 ≤ 10, 1 ≤ x3, x5 ≤ 5, 0 ≤ x4 ≤ 6 (4.2)

The PFtrue is shown in Figure 4.21 reflecting six regions representing the
intersection of specific constraints. Maintaining subpopulations at the different
intersections is a difficult MOEA problem. The Ptrue solution values are x4 = 0
and x6 = 0 with the remaining variable values associated with each region
presented in Table 4.5.

Table 4.5: MOP-C5 Ptrue solution values [1225]

Region x1 x2 x3 x5

AB 5 1 (1, ..., 5) 5
BC 5 1 (1, ..., 5) 1
CD (4.06,...,5) (0.68, ...,1) 1 1
DE 0 2 (1, ..., 3.73) 1
EF (0, ..., 1) (2, ...1) 1 1

In the next section, processes for generating side-constrained numeric
MOP functions as well as unconstrained MOP functions are presented.

4.3 MOP Domain Feature Classification 193

Fig. 4.21. MOP-C5 connected PFtrue regions [1225]

4.3.3 MOP Test Function Generators

MOP test functions can also be generated by using the single-objective func-
tions. A methodology for constructing MOPs exhibiting desired characteris-
tics has been proposed by Deb [357]. Key issues are addressed in Deb’s work.
The fundamental generational characteristics include ease of construction and
scalability to any number of objective functions or decision variables. More-
over, the associated Pareto fronts have to be known, visualizable in shape and
location, and the associated decision variables computationally not difficult
to find in PFknown . A MOEA should always move toward PFtrue and Ptrue as
well as provide a uniform distribution of points on PFknown . Observe that for
higher dimensional PFknown visualizations, the use of symmetric hyperplanes
both at the phenotype and genotype levels, can help in analyzing performance
with only 3D plots of limited dimensions.

Deb defines both a local and global Pareto optimal set. His global Pareto
optimal set is what is termed Ptrue ; this text’s terminology is easily extended
to denote a local Pareto optimal set, i.e. Plocal . However, Plocal is ill-defined
and may be confusing. Consider Deb’s definition.

Local Pareto Optimal Set: Given some Pareto optimal set P, if
∀x ∈ P, ¬∃y satisfying ‖ y − x ‖∞ ≤ ε, where ε is a small posi-
tive number (in principle, y is obtained by perturbing x in a small

194 4 MOEA Test Suites

neighborhood), and for which F (y) � F (x), then the solutions in P
constitute a local Pareto optimal set.

This definition implies that for some given set of Pareto optimal solutions,
each is perturbed in some manner but no new nondominated vectors are
found. Deb’s purpose here is defining a set of Pareto optimal solutions whose
associated front (PFlocal) is “behind” PFtrue for the given MOP. Although
conceptually possible, any Plocal ’s existence is dependent upon the ε selected
within which solutions are perturbed. Additionally, too large an ε prohibits a
Plocal , too small an ε may result in multiple local fronts.

Deb also extends the concepts of multimodality, deception, an isolated op-
timum, and collateral noise (well known single-objective EA difficulties) to
the multiobjective domain. Two of these extensions can be disputed. First,
he defines a deceptive MOP as one in which there are at least two op-
tima (PFlocal and PFtrue) and where the majority of the search space favors
PFlocal . As stated above this concept depends on Plocal ’s existence. Secondly,
Deb defines a multimodal MOP as one with multiple local fronts. This de-
finition mixes terminology. One should use the term multimodal only when
referring to a single-objective optimization function containing both local and
global minima. As all vectors composing a Pareto front are “equally” optimal
there is no Pareto front modality. Perhaps the term “multifrontal” is a better
choice to reflect this situation.

Deb also notes some of the same MOP phenotype characteristics as pre-
sented in Section 4.3 and in Van Veldhuizen [1626]. He points out that when
computationally derived a non-uniform distribution of vectors may exist in
some Pareto front. He limits his initial test construction efforts to uncon-
strained MOPs of only two functions; his construction methodology then
places restrictions on the two component functions so that resultant MOPs
exhibit desired properties. To accomplish this he defines various generic bi-
objective optimization problems as reflected in the following two examples:

Minimize F = (f1(x), f2(x)), where

f1(x) = f(x1, . . . , xm),
f2(x) = g(xm+1, . . . , xN) h(f(x1, . . . , xm), g(xm+1, . . . , xN)) (4.3)

where function f1 is a function of (m < N) decision variables and f2 a function
of all N decision variables. The function g is one of (N −m) decision variables
which are not included in function f . The function h is directly a function of
f and g function values. The f and g functions are also restricted to positive
values in the search space, i.e., f > 0 and g > 0.

Deb lists five functions each for possible f and g instantiation, and four
for h. These functions may then be “mixed and matched” to create MOPs
with desired characteristics.

He states these functions have the following general effect:

4.3 MOP Domain Feature Classification 195

f – This function controls vector representation uniformity along the Pareto
front.

g – This function controls the resulting MOP’s characteristics – whether it is
multifrontal or has an isolated optimum.

h – This function controls the resulting Pareto front’s characteristics (e.g.,
convex, disconnected, etc.)

These functions respectively influence search along and towards the Pareto
front, and the shape of a Pareto front in �2. Deb implies that a MOEA
has difficulty finding PFtrue because it gets “trapped” in the local optimum,
namely PFlocal .

This methodology is not the only way to construct MOPs exhibiting some
set of desired characteristics such as curve, surface, convex, non-convex, con-
tinuous, discrete, disjoint, scalable, and others. Real-world MOPs may have
similar genotype and/or phenotype characteristics but look nothing at all like
the examples proposed. Thus the fact a MOEA “passes” all test functions
submitted using a generative methodology may have no bearing on its per-
formance in solving real-world MOPs. However, the same can be said of the
test suites proposed. Any test functions must be carefully selected to reflect
as accurately as possible the problem domain they attempt to represent.

Each of the test functions defined below is structured in the same manner
and consists itself of three functions f1, g, h [357].

Minimize : F (x) = (f1, f2),
subject to : f2(x) = g(x2, . . . , xm)h(f1(x1), g(x2, . . . , xm)),

where : x = (x1, . . . , xM). (4.4)

The function f1 is a function of the first decision variable only, g is a
function of the remaining m − 1 variables, and the parameters of h are the
function values of f1 and g. The test functions differ in these three functions
as well as in number of variables m and in the values the variables may take.

The six different test functions that follow the scheme given in Equation 4.4
are described next. This benchmark is known as the ZDT (Zitzler-Deb-Thiele)
test suite [1772].

Test Problem ZDT1: Has a convex Pareto-optimal front:

f1(x) = x1,

f2(x, g) = g(x) · (1 −
√

f1/g(x))

g(x) = 1 +
9

n − 1
·

n∑
i=2

xi

where n = 30, and xi ∈ [0, 1]. The PFtrue is formed with g(x) = 1. In
Figure 4.22 it is shown the PFtrue , and 10,000 random solutions are plotted

196 4 MOEA Test Suites

in objective space with the PFtrue in Figure 4.23.

Fig. 4.22. ZDT1 Pareto Front Fig. 4.23. 10,000 random solutions gen-
erated are plotted for ZDT1 test problem

Test Problem ZDT2: Has a nonconvex Pareto-optimal front:

f1(x) = x1,

f2(x, g) = g(x) · (1 − (f1/g(x))2)

g(x) = 1 +
9

n − 1
·

n∑
i=2

xi

where n = 30, and xi ∈ [0, 1]. The PFtrue is formed with g(x) = 1. In
Figure 4.24 it is shown the PFtrue , and 10,000 random solutions are plotted
in objective space with the PFtrue in Figure 4.25.

Test Problem ZDT3: Has a Pareto-optimal front disconnected, consisting
of several noncontiguous convex parts:

f1(x) = x1

f2(x, g) = g(x) ·
(

1 −
√

f1

g(x)
− f1

g(x)
· sin(10πf1)

)

g(x) = 1 +
9

n − 1
·

n∑
i=2

xi

where n = 30, and xi ∈ [0, 1]. The PFtrue is formed with g(x) = 1. The
introduction of the sin() function causes discontinuity in the Pareto-optimal

4.3 MOP Domain Feature Classification 197

Fig. 4.24. ZDT2 Pareto Front
Fig. 4.25. 10,000 random solutions gen-
erated are plotted for ZDT2 test problem

front. However, there is no discontinuity in decision variable space. In Fig-
ure 4.26 it is shown the PFtrue , and 10,000 random solutions are plotted in
objective space with the PFtrue in Figure 4.27.

Fig. 4.26. ZDT3 Pareto Front Fig. 4.27. 10,000 random solutions gen-
erated are plotted for ZDT3 test problem

Test Problem ZDT4: Contains 219 local Pareto-optimal fronts and, there-
fore, tests for the EA’s ability to deal with multifrontality:

198 4 MOEA Test Suites

f1(x) = x1

f2(x, g) = g(x) · (1 −
√

f1

g(x)
)

g(x) = 1 + 10 · (n − 1) +
n∑

i=2

(x2
i − 10 cos(4πxi))

where n = 10, x1 ∈ [0, 1] and x2, . . . , xn ∈ [−5, 5]. The PFtrue is formed
with g(x) = 1, the best PFlocal is formed with g(x) = 1.25. In Figure 4.28 it
is shown the PFtrue , and 10,000 random solutions are plotted in objective
space with the PFtrue in Figure 4.29.

Fig. 4.28. ZDT4 Pareto Front Fig. 4.29. 10,000 random solutions gen-
erated are plotted for ZDT4 test problem

Test Problem ZDT5: Describes a deceptive problem and distinguishes itself
from the other test functions in that xi represents a binary string:

f1(x) = 1 + u(x1)

f2(x, g) =
g(x)
f1(x)

g(x) =
11∑

i=2

v(u(xi)),

v(u(xi)) =
{

2 + u(xi), if u(xi) < 5;
1, if u(xi) = 5.

where u(x1) gives the number of ones in the bit vector xi, and n = 11,
x1 ∈ {0, 1}30 and x2, . . . , xn ∈ {0, 1}5. The PFtrue is formed with g(x) = 10,
while the best deceptive PFtrue is represented by the solutions for which

4.4 Generic Scalable MOP Test Problems 199

g(x) = 11. The global Pareto-optimal front as well as the local ones are
convex. In Figure 4.30 it is shown the PFtrue , and 10,000 random solutions
are plotted in objective space with the PFtrue in Figure 4.31.

Fig. 4.30. ZDT5 Pareto Front Fig. 4.31. 10,000 random solutions gen-
erated are plotted for ZDT5 test problem

Test Problem ZDT6: Includes two difficulties caused by the nonuniformity
of the search space: first, the Ptrue are nonuniformly distributed along the
PFtrue (the front is biased for solutions for which f1(x) in near one); and
second, the density of the solutions is lowest near the PFtrue and highest
away from the front:

f1(x) = 1 − exp(−4x1) · sin6(6πx1)

f2(x, g) = g(x) · (1 − (
f1

g(x)
)2)

g(x) = 1 + 9 · [
(

n∑
i=2

xi)

9
]0.25

where n = 10, xi ∈ {0, 1}. The PFtrue is formed with g(x) = 1 and
is nonconvex. In Figure 4.32 it is shown the PFtrue , and 10,000 random
solutions are plotted in objective space with the PFtrue in Figure 4.33.

4.4 Generic Scalable MOP Test Problems

Deb, Thiele, Laumanns and Zitzler [378] have proposed a set of generational
MOPs for testing and comparing MOEAs. This suite of benchmarks attempts
to define generic MOEA test problems that are scalable to a user defined

200 4 MOEA Test Suites

Fig. 4.32. ZDT6 Pareto Front Fig. 4.33. 10,000 random solutions gen-
erated are plotted for ZDT6 test problem

number of objectives. Because of the last names of its creators, this test suite
is known as DTLZ (Deb-Thiele-Laumanns-Zitzler). They suggest here a rep-
resentative set of test problems as discussed. Possibly more interesting and
useful test problems could be designed using these techniques. An increase in
dimensionality of the objective space also causes a random initial population
of moderate size to be nondominated to each other, thereby reducing the ef-
fect of the selection operator in a MOEA. Thus, this set of test problems is to
be used with a large number of objectives and to be used to asses if a MOEA
can reach the true Pareto-optimal front. Since the desired front will be known
in these test problems, a convergence metric (such as average distance to the
front) can be used to track the convergence of an algorithm.

Test Problem DTLZ1: A simple test problem using M objectives; PFtrue

linear Pareto-optimal front, separable, multimodal.
Minimize:

f1(x) = 1
2x1x2 . . . xM−1(1 + g(xM)),

f2(x) = 1
2x1x2 . . . (1 − xM−1)(1 + g(xM)),

...
...

fM−1(x) = 1
2x1(1 − x2)(1 + g(xM)),

fM (x) = 1
2 (1 − x1)(1 + g(xM)),

subject to 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n
where: g(xM) = 100

[
|xM | +

∑
xi∈xM

(xi − 0.5)2 − cos(20π(xi − 0.5))
]

For all the DTLZ test functions discussed in this chapter, we adopted
M = 3. The Pareto-optimal solutions correspond to x∗

M = 0 and the objec-
tive function values on the linear hyper-plane:

∑M
m=1 = 0.5 and it is shown

in Figure 4.34. A value of k = 5 is suggested here. In the above problem, the

4.4 Generic Scalable MOP Test Problems 201

total number of variables is n = M + k − 1. The difficulty in this problem
is to converge to the hyper-plane. The search space contains (11k − 1) local
Pareto-optimal fronts, each of which can attract a MOEA. The problem can
be made more difficult by using other multi-modal g functions (using a larger
k) and/or replacing xi by a nonlinear mapping xi = Ni(yi) and treating yi

as the decision variables. It is interesting to note that for M > 3, all Pareto-
optimal solutions on a three-dimensional plot involving fM and any other two
objectives will lie on or below the above hyper-plane.

Fig. 4.34. DTLZ1 Pareto Front

Test Problem DTLZ2: This test problem is
Minimize:

f1(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2) . . . cos(xM−2π/2) cos(xM−1π/2),
f2(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2) . . . cos(xM−2π/2) sin(xM−1π/2),
f3(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2) . . . sin(xM−2π/2),
...

...
fM−1(x) = (1 + g(xM)) cos(x1π/2) sin(x2π/2),
fM (x) = (1 + g(xM)) sin(x1π/2).
subject to 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n
where: g(xM) =

∑
xi∈XM

(xi − 0.5)2

The Pareto-optimal solutions correspond to xi = 0.5 for all xi ∈ xM and
all objective function values must satisfy:

∑M
i=1(fi)2 = 1. PFtrue is shown in

Figure 4.35 . It is recommended to use k = |xM | = 10. The total number of
variables is n = M + k − 1. This function can also be used to investigate a
MOEA’s ability to scale up its performance in a large number of objectives.
Like in DTLZ1, for M > 3, the Pareto-optimal solution must lie inside the
first quadrant of the unit sphere in a three-objective plot with fM as one of the
axes. To make the problem more difficult, each variable xi (for i=1 to (M−1))

202 4 MOEA Test Suites

can be replaced by the mean value of p variables xi = 1
p

∑ip
k=(i−1)p+1 xk.

Fig. 4.35. DTLZ2 Pareto Front

Test Problem DTLZ3: This is the same as DTLZ2 except for a new g
function: PFtrue concave, scalable, multimodal. Tests a MOEA’s ability to
converge to PFtrue .

Minimize:
f1(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2) . . . cos(xM−2π/2) cos(xM−1π/2),
f2(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2) . . . cos(xM−2π/2) sin(xM−1π/2),
f3(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2) . . . sin(xM−2π/2),
...

...
fM−1(x) = (1 + g(xM)) cos(x1π/2) sin(x2π/2),
fM (x) = (1 + g(xM)) sin(x1π/2).
subject to 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n
where: g(xM) = 100[|xM | +

∑
xi∈xM

(xi − 0.5)2 − cos(20π(xi − 0.5))]

It is suggested that k = |xM | = 10. There are a total of n = M + k− 1 de-
cision variables in this problem. The above g function introduces (3k - 1) local
Pareto-optimal fronts, and one global Pareto-optimal front. All local Pareto-
optimal fronts are parallel to the global Pareto-optimal front and a MOEA can
get stuck at any of these local Pareto-optimal fronts, before converging to the
global Pareto-optimal front at g∗ = 0. The global Pareto-optimal front corre-
sponds to xM = (0.5, . . . , 0.5)T . The next local Pareto-optimal is at g∗ = 1.
In Figure 4.36, PFtrue is shown.

Test Problem DTLZ4: This problem uses a modified meta-variable map-
ping over DTLZ (y → yα, α > 0); PFtrue concave, separable, unimodal. Tests
a MOEA’s ability to maintain a good distribution of solutions.

4.4 Generic Scalable MOP Test Problems 203

Fig. 4.36. DTLZ3 Pareto Front

Minimize:
f1(x) = (1 + g(xM)) cos(xπ

1π/2) cos(xπ
2π/2) . . . cos(xπ

M−2π/2) cos(xπ
M−1π/2),

f2(x) = (1 + g(xM)) cos(xπ
1π/2) cos(xπ

2π/2) . . . cos(xπ
M−2π/2) sin(xπ

M−1π/2),
f3(x) = (1 + g(xM)) cos(xπ

1π/2) cos(xπ
2π/2) . . . sin(xπ

M−2π/2),
...

...
fM−1(x) = (1 + g(xM)) cos(xπ

1π/2) sin(xπ
2π/2),

fM (x) = (1 + g(xM)) sin(xπ
1π/2).

subject to 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n
where: g(xM) =

∑
xi∈XM

(xi − 0.5)2

The parameter α = 100 is suggested. Here, too, all variables x1 to xM−1

are varied in (0 : 1). It is also suggested that k = 10. There are n = M +k−1
decision variables in the problem. PFtrue is shown in Figure 4.37. This mod-
ification allows a dense set of solutions to exist near the fM − f1 plane. It
is interesting to note that although the search space has a variable density
of solutions, the classical weighted-sum approaches or other directional meth-
ods may not have any added difficulty in solving these problems compared to
DTLZ2.

Test Problem DTLZ5: Again, DTLZ2 is modified by changing all (y) with
(1 + 2gfi)/2(1 + g); PFtrue unimodal, M < 4, degenerate fronts occur and
PFtrue is shown in Figure 4.38.

Minimize:
f1(x) = (1 + g(xM)) cos(θ1π/2) cos(θ2π/2) . . . cos(θM−2π/2) cos(θM−1π/2),
f2(x) = (1 + g(xM)) cos(θ1π/2) cos(θ2π/2) . . . cos(θM−2π/2) sin(θM−1π/2),
f3(x) = (1 + g(xM)) cos(θ1π/2) cos(θ2π/2) . . . sin(θM−2π/2),
...

...
fM−1(x) = (1 + g(xM)) cos(θ1π/2) sin(θ2π/2),

204 4 MOEA Test Suites

Fig. 4.37. DTLZ4 Pareto Front

fM (x) = (1 + g(xM)) sin(θ1π/2).
subject to: 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n
where: θi = π

4(1+g(xM)) (1 + 2g(xM)xi), for i = 2, 3, . . . , (M − 1)
g(xM) =

∑
xi∈XM

(xi − 0.5)2

The g function with k = |xM | = 10 is suggested. As before, there are n
= M + k − 1 decision variables in this problem and the Pareto-optimal front
corresponds to xi = 0.5 for all xi ∈ xM and all objective function values must
satisfy:

∑M
i=1(fi)2 = 1. This problem will test a MOEA’s ability to converge

to a curve and will also allow an easier way to visually demonstrate (just by
plotting fM with any other objective function) the performance of a MOEA.
Since there is a natural bias for solutions close to this Pareto-optimal curve,
this problem may be easy for an algorithm to solve. Because of its simplic-
ity and ease of representing the Pareto-optimal front, it is recommend that
a higher objective (M ∈ [5, 10]) version of this problem is used to study the
computational time complexity of a MOEA.

Test Problem DTLZ6: Modifying DTLZ5, a harder problem evolves by
changing g with

∑k
i=1 z0.1

i ; PFtrue unimodal, bias, many-to-one-mapping.
Minimize:

f1(x) = (1 + g(xM)) cos(θ1π/2) cos(θ2π/2) . . . cos(θM−2π/2) cos(θM−1π/2),
f2(x) = (1 + g(xM)) cos(θ1π/2) cos(θ2π/2) . . . cos(θM−2π/2) sin(θM−1π/2),
f3(x) = (1 + g(xM)) cos(θ1π/2) cos(θ2π/2) . . . sin(θM−2π/2),
...

...
fM−1(x) = (1 + g(xM)) cos(θ1π/2) sin(θ2π/2),
fM (x) = (1 + g(xM)) sin(θ1π/2).
subject to: 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n
where: θi = π

4(1+g(xM)) (1 + 2g(xM)xi),∀i = 2, 3, . . . , (M − 1)

4.4 Generic Scalable MOP Test Problems 205

Fig. 4.38. DTLZ5 Pareto Front

g(xM) =
∑

xi∈XM
(xi)0.1

The Pareto-optimal front corresponds to xi = 0 for all xi ∈ xM and is
shown in Figure 4.39. The size of the xM vector is chosen as 10 and the total
number of variables is identical as in DTLZ5. The above change in the prob-
lem makes it difficult for a MOEA to converge to the Pareto-optimal front as
in DTLZ5. The lack of convergence to the true front in this problem causes
MOEAs to find a dominated surface as the obtained front, whereas the true
Pareto-optimal front is a curve. In real-world problems, this aspect may pro-
vide misleading information about the properties of the Pareto-optimal front.

Fig. 4.39. DTLZ6 Pareto Front

Test Problem DTLZ7: PFtrue disconnected.
Minimize:

f1(x) = x1,

206 4 MOEA Test Suites

f2(x) = x2,
...

...
fM−1(x) = xM−1

fM (x) = (1 + g(xM)) · h(f1, f2, . . . , fM−1g(x))
subject to: 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n
where: g(x) = 1 + 9

|xM |
∑

xi∈xM
xi,

h(f1, f2, . . . , fM−1, g) = M −
M−1∑
i=1

(
fi

1+g(x) (1 + sin(3πfi))
)

This test problem has 2M − 1 disconnected Pareto-optimal regions in the
search space. The functional g requires k = |xM j| decision variables and the
total number of variables is n = M + k − 1. It is suggested that k = 20. The
Pareto-optimal solutions corresponds to xM = 0 and the Figure 4.40 shows
the PFtrue . This problem will test an algorithm’s ability to maintain individ-
uals in different Pareto-optimal regions. The problem can be made harder by
using a higher frequency sine function or using a multi-modal g function.

Fig. 4.40. DTLZ7 Pareto Front

Test Problem DTLZ8: In this problem, a constraint surface is defined.
Minimize:

fj(x) = 1
�n/M�

�j n
M �∑

�i=(j−1) n
M �

(xi) ,∀j = 1, 2, . . . ,M,

subject to: 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n
where: gj(x) = fM (x) + 4fj(x) − 1 ≥ 0,∀j = 1, 2, . . . , (M − 1)
gM (x) = 2fM (x) + minM−1

i,j=1,i �=j [fi(x) + fj(x)] − 1 ≥ 0,

The number of variables is considered to be larger than the number of
objectives n > M . It is suggested n = 10M . In this problem, there are a total
of M constraints. The Pareto-optimal front is shown in Figure 4.41 and is

4.4 Generic Scalable MOP Test Problems 207

a combination of a straight line and a hyper-plane. The straight line is the
intersection of the first (M − 1) constraints (with f1 = f2 = . . . = fM − 1
and the hyper-plane is represented by the constraint gM). MOEAs may have
difficulties in finding solutions in both regions of this problem and also in
maintaining a good distribution of solutions on the hyper-plane.

Fig. 4.41. DTLZ8 Pareto Front

Test Problem DTLZ9: This test problem is also created using the constraint
surface approach.

Minimize:

fj(x) = 1
�n/M�

�j n
M �∑

�i=(j−1) n
M �

(
x0.1

i

)
,∀j = 1, 2, . . . ,M,

subject to: 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n
where: gj(x) = f2

M (x) + f2
j (x) − 1 ≥ 0,∀j = 1, 2, . . . , (M − 1)

The number of variables is considered to be larger than the number of
objectives. For this problem, it is suggested n = 10M . The Pareto-optimal
front is a curve with f1 = f2 = . . . = fM − 1, similar to that in DTLZ5. How-
ever, the density of solutions gets thinner towards the Pareto optimal region.
The Pareto-optimal curve lies on the intersection of all (M − 1) constraints.
This feature of this problem may cause difficulties to a MOEA. However, the
symmetry of the Pareto-optimal curve in terms of (M − 1) objectives allows
an easier way to illustrate the obtained solutions. In Figure 4.42, we show
PFtrue with M = 3.

4.4.1 Okabe’s Test Functions

Tatsuya Okabe et. al [1207] propose a new methodology to generate multi-
objective test functions based on the mapping of probability density functions

208 4 MOEA Test Suites

Fig. 4.42. DTLZ9 Pareto Front

from decision to objective space, and give two examples to illustrate its use.
The basic idea to construct the problems is to depart from a starting space
(called S2) between decision space and objective space, and from there, one
has to construct both the decision space and the objective space by applying
appropriate functions to S2. Namely, the authors propose to use the inverse
of generation operation, i.e. deformation, rotation and shift. The procedure is
described in detail in [1207].

With the framework presented in [1207], a variety of test functions can be
generated. However, as indicated before, only two examples are described in
[1207]. Both of them are described next.

Test Problem OKA1:
Minimize:

f1 = x′
1,

f2 =
√

2π −
√

|x′
1| + 2|x′

2 − 3 cos(x′
1) − 3| 12 ,

where:
x′

1 = cos(π/12)x1 − sin(π/12)x2,
x′

2 = sin(π/12)x1 + cos(π/12)x2,
subject to:
x1 ∈ [6 sin(π/12), 6 sin(π/12) + 2π cos(π/12)],
x2 ∈ [−2π sin(π/12), 6 cos(π/12)],

The Ptrue is at: x′
2 = 3 cos(x′

1 + 3) and x′
1 ∈ [0, 2π]. Ptrue is shown in

Figure 4.43. PFtrue is at: f2 =
√

(2π)−
√

f1 and f1 ∈ [−π, π] and is shown in
Figure 4.44. The Distribution indicator is:

Dx→f =
3
2
|x′

2 − 3 cos(x′
1) − 3| 23 (4.5)

4.4 Generic Scalable MOP Test Problems 209

The distribution indicator (Dx→f) measures the amount of distortion the
probability density in the decision space suffers under the mapping from de-
cision space to objective space.

Fig. 4.43. Oka1 Pareto Optimal
Set

Fig. 4.44. Oka1 Pareto Front

Test Problem OKA2:
Minimize:

f1 = x1,
f2 = 1 − 1

4π2 (x1 + π)2 + |x2 − 5 cos(x1)|
1
3 + |x3 − 5 sin(x1)|

1
3 ,

subject to:
x1 ∈ [−π, π],
x2, x3 ∈ [−5, 5],

The Ptrue is at: (x1, x2, x3) = (x1, 5 cos(x1), 5 sin(x1)) and x1 ∈ [−π, π].
Ptrue is shown in Figure 4.45. PFtrue is at: f2 = 1 − 1

4π2 (f1 + π)2 and f1 ∈
[−π, π] and is shown in Figure 4.46. The Distribution indicator is: Dx→f =
9|x2 − 5 cos(x1)|

2
3 |x3 − 5 sin(x1)|

2
3 .

These test functions are very difficult for any MOEA, because the closer
the population gets to the Pareto front, the more sparse the probability density
becomes.

4.4.2 Huband’s Test Functions

Another scheme to generate scalable test functions is the one proposed by
Huband et al. [721]. The authors propose a set of transformations that are
sequentially applied to the decision variables, where each transformation adds
a desired characteristic to the problem. All the problems generated with this
methodology follow this format:

210 4 MOEA Test Suites

Fig. 4.45. Oka2 Pareto Optimal
Set

Fig. 4.46. Oka2 Pareto Front

Given z = [z1, . . . , zk, zk+1, . . . , zn]
Minimize fm=1:M (x) = DxM + Smhm(x1, . . . , xM−1)

where x = [x1, . . . , xM]
= [max(tpM , A1)(t

p
1 − 0.5) + 0.5, . . . ,

max(tpM , AM−1)(t
p
M−1 − 0.5) + 0.5, tpM]

tp = [tp1, . . . , t
p
M] ←� tp−1 ←� . . . ←� t1 ←� z[0,1]

z[0,1] = [z1,[0,1], . . . , zn,[0,1]]
= [z1/z1,max, . . . , zn/zn,max]

where z is the vector of decision variables with 0 ≤ zi ≤ zi,max, D, A1:M−1

and S1:M are constants to modify position and scale of the Pareto front. The
flexibility of this methodology lies on the h1:M functions, and the transforma-
tions to obtain the transition vectors t1:p, which keep desired characteristics
of the problem as separate design decisions.

First, the h1:M functions define the shape of the Pareto front, which can
be linear, convex, concave, mixed (convex and concave), and disconnected.
Such characteristics are obtained with the following set of functions:

linear1(x1, . . . , xM−1) =
M−1∏
i=1

xi

linearm=2:M−1(x1, . . . , xM−1) =

(
M−m∏
i=1

xi

)
(1 − xM−m+1)

linearM (x1, . . . , xM−1) = 1 − x1

4.4 Generic Scalable MOP Test Problems 211

convex1(x1, . . . , xM−1) =
M−1∏
i=1

(1 − cos(xiπ/2))

convexm=2:M−1(x1, . . . , xM−1) =

(
M−m∏
i=1

(1 − cos(xiπ/2))

)
·

(1 − sin(xM−m+1π/2))
convexM (x1, . . . , xM−1) = 1 − sin(x1π/2)

concave1(x1, . . . , xM−1) =
M−1∏
i=1

sin(xiπ/2))

concavem=2:M−1(x1, . . . , xM−1) =

(
M−m∏
i=1

sin(xiπ/2)

)
·

cos(xM−m+1π/2)
concaveM (x1, . . . , xM−1) = cos(x1π/2)

mixedM (x1, . . . , xM−1) =
(

1 − x1 −
cos(2Aπx1 + π/2)

2Aπ

)α

discM (x1, . . . , xM−1) = 1 − xα
1 cos2(Axβ

1π)

For a mixed Pareto front, when α > 1 the overall shape is concave, when
α < 1 it is concave, and when α = 1 it is linear; the number of segments
concave-convex is defined by A. For a disconnected Pareto front, α controls
the overall shape in the same way it does it for a mixed front; β controls the
location of the disconnected segments, and the number of such disconnected
segments is defined by A.

With this set of functions is easy to design the shape of the Pareto front,
but what about the fitness landscape? The rest of the characteristics are
added through a set of transformations. Huband et al. distinguish between
three types of transformations, based on the characteristics they emphasize
as important when designing multiobjective problems. Bias transformations
produce a bias in the fitness landscape, and are used to produce polynomial
bias, flat regions, or other type of bias depending of the values of another
variables; shift transformations move the location of optimal values, and are
used to apply a linear shift, or to produce deceptive and multimodal problems;
and reduction transformations, which combine the values of several variables
into a single one. They are used to produce unseparability of the problem
(dependency between variables). The set of transformations is the following:

b poly(y, α) = yα

212 4 MOEA Test Suites

b flat(y,A,B,C) = A + min(0, �y − B�)A(B − y)
B

−

min(0, �C − y�) (1 − A)(y − C)
1 − C

b param(y, u(y′), A,B,C) = yB+(C−B)(A−(1−2u(y′))|�0.5−u(y′)�+A|)

s linear(y,A) =
|y − A|

|�A − y� + A|

s decept(y,A,B,C) = 1 + (|y − A| − B)

(
�y − A + B�

(
1 − C + A−B

B

)
A − B

+

�A + B − y�
(
1 − C + 1−A−B

B

)
1 − A − B

+
1
B

)

s multi(y,A,B,C) =
(

1 + cos
(

(4A + 2)π
(

0.5 − |y − C|
2(�C − y� + C)

))
+

4B

(
|y − C|

2(�C − y� + C)

)2
)/

(b + 2)

r sum(y,w) =
∑|y|

i=1 w1yi∑|y|
i=1 wi

r nonsep(y, A) =

∑|y|
j=1

(
yj +

∑A−2
k=0

∣∣yj − y1+(j+k)mod|y|
∣∣)

|y|
A

⌈
A
2

⌉ (
1 + 2A − 2

⌈
A
2

⌉)

With this set of transformations and shape functions, Huband et al. [721]
propose a set of scalable problems for algorithm performance evaluation and
analysis. It is easy to obtain the characteristics of each, based on the trans-
formation and shape functions used, but they are mentioned explicitly after
the problems.

WFG1:
Minimize

fm=1:M−1(x) = xM + Smconvexm(x1, . . . , xM−1)
fM (x) = xM + SMmixedM (x1, . . . , xM−1)

where

4.4 Generic Scalable MOP Test Problems 213

yi=1:M−1 = r sum([y′
(i−1)k/(M−1)+1, . . . , y

′
ik/(M−1)],

[2((i − 1)k/(M − 1) + 1), . . . , 2ik/(M − 1)])
yM = r sum([y′

k+1, . . . , y
′
n], [2(k + 1), . . . , 2n])

y′
i=1:n = b poly(y′′

i , 0.02)
y′′

i=1:k = y′′′
i

y′′
i=k+1:n = b flat(y′′′

i , 0.8, 0.75, 0.85)
y′′′

i=1:k = zi,[0,1]

y′′′
i=k+1:n = s linear(zi,[0,1], 0.35)

This problem is separable and unimodal, but it has a flat region and is
strongly biased toward small values of the variables, which makes it very
difficult for some MOEAs. Two different views of PFtrue for this problem
are shown in Figures 4.47 and 4.48. From these figures, we can see that this
problem has a mixed PFtrue .

Fig. 4.47. WFG1 Pareto Front Fig. 4.48. WFG1 Pareto Front

WFG2:
Minimize

fm=1:M−1(x) = xM + Smconvexm(x1, . . . , xM−1)
fM (x) = xM + SMdiscM (x1, . . . , xM−1)

where

214 4 MOEA Test Suites

yi=1:M−1 = r sum([y′
(i−1)k/(M−1)+1, . . . , y

′
ik/(M−1)], [1, . . . , 1])

yM = r sum([y′
k+1, . . . , y

′
k+l/2], [1, . . . , 1])

y′
i=1:k = y′′

i

y′
i=k+1:k+l/2 = r nonsep([y′′

k+2(i−k)−1, y
′′
k+2(i−k)], 2)

y′′
i=1:k = zi,[0,1]

y′′
i=k+1:n = s linear(zi,[0,1], 0.35)

This problem is unseparable and multimodal. Two different views of
PFtrue for this problem are shown in Figures 4.49 and 4.50. Note that PFtrue is
disconnected.

Fig. 4.49. WFG2 Pareto Front Fig. 4.50. WFG2 Pareto Front

WFG3:
Minimize

fm=1:M (x) = xM + Smlinearm(x1, . . . , xM−1)

where

yi=1:M−1 = r sum([y′
(i−1)k/(M−1)+1, . . . , y

′
ik/(M−1)], [1, . . . , 1])

yM = r sum([y′
k+1, . . . , y

′
k+l/2], [1, . . . , 1])

y′
i=1:k = y′′

i

y′
i=k+1:k+l/2 = r nonsep([y′′

k+2(i−k)−1, y
′′
k+2(i−k)], 2)

y′′
i=1:k = zi,[0,1]

y′′
i=k+1:n = s linear(zi,[0,1], 0.35)

Again, this problem is unseparable but unimodal. It has a degenerated
Pareto front (the dimensionality of the Pareto front is M −2). In Figures 4.51

4.4 Generic Scalable MOP Test Problems 215

Fig. 4.51. WFG3 Pareto Front Fig. 4.52. WFG3 Pareto Front

and 4.52, the Pareto front is unidimensional, even when it was generated for
a problem with three objectives.
WFG4:

Minimize

fm=1:M (x) = xM + Smconcavem(x1, . . . , xM−1)

where

yi=1:M−1 = r sum([y′
(i−1)k/(M−1)+1, . . . , y

′
ik/(M−1)], [1, . . . , 1])

yM = r sum([y′
k+1, . . . , y

′
n], [1, . . . , 1])

y′
i=1:n = s multi(zi,[0,1], 30, 10, 0.35)

In this case, the problem is separable, but highly multimodal. This, and
the rest of the problems from this benchmark have concave Pareto fronts, as
the one shown in Figures 4.53 and 4.54.

WFG5:
Minimize

fm=1:M (x) = xM + Smconcavem(x1, . . . , xM−1)

where

yi=1:M−1 = r sum([y′
(i−1)k/(M−1)+1, . . . , y

′
ik/(M−1)], [1, . . . , 1])

yM = r sum([y′
k+1, . . . , y

′
n], [1, . . . , 1])

y′
i=1:n = s decept(zi,[0,1], 0.35, 0.001, 0.05)

A deceptive problem, separable. PFtrue for this problem is shown in Fig-
ures 4.55 and 4.56.

216 4 MOEA Test Suites

Fig. 4.53. WFG4 Pareto Front Fig. 4.54. WFG4 Pareto Front

Fig. 4.55. WFG5 Pareto Front Fig. 4.56. WFG5 Pareto Front

WFG6:
Minimize

fm=1:M (x) = xM + Smconcavem(x1, . . . , xM−1)

where

yi=1:M−1 = r nonsep([y′
(i−1)k/(M−1)+1, . . . , y

′
ik/(M−1)], k/(M − 1))

yM = r nonsep([y′
k+1, . . . , y

′
n], l)

y′
i=1:k = zi,[0,1]

y′
i=k+1:n = s linear(zi,[0,1], 0.35)

This problem is unseparable. Two views of PFtrue of this problem are
shown in Figures 4.57 and 4.58.

4.4 Generic Scalable MOP Test Problems 217

Fig. 4.57. WFG6 Pareto Front Fig. 4.58. WFG6 Pareto Front

WFG7:
Minimize

fm=1:M (x) = xM + Smconcavem(x1, . . . , xM−1)

where

yi=1:M−1 = r sum([y′
(i−1)k/(M−1)+1, . . . , y

′
ik/(M−1)], [1, . . . , 1])

yM = r sum([y′
k+1, . . . , y

′
n], [1, . . . , 1])

y′
i=1:k = y′′

i

y′
i=k+1:n = s linear(y′′

i , 0.35)
y′′

i=1:k = b param(zi,[0,1], r sum([zi+1,[0,1], . . . , zn,[0,1]],
[1, . . . , 1]), 0.98/49.98, 0.02, 50)

y′′
i=k+1:n = zi,[0,1]

Having a parameter dependent bias, this problem is also separable and
unimodal. Two views of PFtrue for this problem are shown in Figures 4.59
and 4.60.

WFG8:
Minimize

fm=1:M (x) = xM + Smconcavem(x1, . . . , xM−1)

where

218 4 MOEA Test Suites

Fig. 4.59. WFG7 Pareto Front Fig. 4.60. WFG7 Pareto Front

yi=1:M−1 = r sum([y′
(i−1)k/(M−1)+1, . . . , y

′
ik/(M−1)], [1, . . . , 1])

yM = r sum([y′
k+1, . . . , y

′
n], [1, . . . , 1])

y′
i=1:k = y′′

i

y′
i=k+1:n = s linear(y′′

i , 0.35)
y′′

i=1:k = zi,[0,1]

y′′
i=k+1:n = b param(zi,[0,1], r sum([z1,[0,1], . . . , zi−1,[0,1]],

[1, . . . , 1]), 0.98/49.98, 0.02, 50)

This problem also has a parameter dependent bias, but is also unsepara-
ble. Two views of PFtrue for this problem are shown in Figures 4.61 and 4.62.

Fig. 4.61. WFG8 Pareto Front Fig. 4.62. WFG8 Pareto Front

4.4 Generic Scalable MOP Test Problems 219

WFG9:
Minimize

fm=1:M (x) = xM + Smconcavem(x1, . . . , xM−1)

where

yi=1:M−1 = r nonsep([y′
(i−1)k/(M−1)+1, . . . , y

′
ik/(M−1)], k/(M − 1))

yM = r nonsep([y′
k+1, . . . , y

′
n], l)

y′
i=1:k = s decept(y′′

i , 0.35, 0.001, 0.05)
y′

i=k+1:n = s multi(y′′
i , 30, 95, 0.35)

y′′
i=1:n−1 = b param(zi,[0,1], r sum([zi+1,[0,1], . . . , zn,[0,1]],

[1, . . . , 1]), 0.98/49.98, 0.02, 50)
y′′

n = zn,[0,1]

The last problem of the suite is unseparable, multimodal, deceptive, and
has a parameter dependent bias. All these features make it a very difficult
problem. Two views of PFtrue for this problem are shown in Figures 4.63 and
4.64.

Fig. 4.63. WFG9 Pareto Front Fig. 4.64. WFG9 Pareto Front

The authors suggest to use these problems with 24 variables (k = 4 and
n = 24). The following constants hold for all the problems:

zi=1:n,max = 2i

Sm=1:M = 2m

A1 = 1

A2:M−1 =
{

0, for WFG3
1, otherwise

D = 1

220 4 MOEA Test Suites

The whole approach proposed by Huband et al. [721] is very versatile,
because it is very easy to design new test problems with desired properties.
The resulting problems, are very difficult to solve for most current MOEAs.
Thus, they are a good choice for testing the performance of new algorithms.

4.5 Combinatorial MOEA Test Functions

Although most MOP test functions found in the MOEA literature are numeric,
some combinatorial problems are used that provide differing algorithmic chal-
lenges. A combinatorial optimization problem is mathematically defined as
follows [541]:

Combinatorial Optimization Problem: A combinatorial opti-
mization problem π is either a minimization or maximization problem
consisting of three parts:
1. A domain Dπ of instantiations;
2. For each instance I ∈ Dπ a finite set Sπ(I) of candidate solutions

for I; and
3. A function mπ that assigns a positive rational number mπ(I, σ)

to each candidate solution σ ∈ Sπ(I) for each instance I ∈ Dπ.
mπ(I, σ) is called the solution value for σ.

A MOEA is able to search these finite (discrete) solution spaces but may
require specialized EVOPs ensuring only feasible solutions (i.e., Sπ(I)) are
generated for evaluation (i.e., a repair function). However, the phenotype do-
main of combinatorial MOPs is slightly different than that of its numeric
counterparts. These MOPs’ mapping into objective space is discrete and of-
fers only isolated points (vectors) in objective space. As only a finite number
of solutions exist, only a finite number of corresponding vectors may result.
Although these vectors may appear to form a continuous front when plotted,
the genotype domain’s discrete nature implies no solutions exist that map to
vectors between those composing PFtrue .

Various combinatorial MOPs are reflected in the MOEA literature. Horn &
Nafpliotis [708, 709] and Deb [357] present combinatorial (unitation3) MOPs.
Louis & Rawlins [1018] convert a deceptive GA problem into a MOP. NP -
Complete problems are combinatorial optimization problems and many can
be formulated as NP -Complete MOP test functions. For example:

- Some researchers focus on the use of fuzzy logic and MOEAs in solving
Multiobjective 0-1 Programming problems (e.g., [825, 1415, 1480, 1413]).

- Several efforts investigate Multiobjective Solid Transportation Problems
(e.g., [192, 792, 795, 736, 989, 988]).

3 A unitation function is a function whose value depends only upon the number of
ones and zeroes in the string on which it acts.

4.5 Combinatorial MOEA Test Functions 221

- A number of researchers have focused their efforts on solving Multiobjec-
tive Flowshop Scheduling Problems (e.g., [751, 1551, 173, 1554, 174, 57,
62]).

- Analogously, Multiobjective Job Shop Scheduling Problems are also rela-
tively popular in the literature (e.g., [991, 76, 77, 107, 1557, 459, 458, 540]).
Some researchers have reported that the use of linear aggregating functions
with adaptive weights are highly competitive (and computationally effi-
cient) when dealing with certain types of Multi-Objective Combinatorial
Optimization (MOCO) problems such as the traveling salesman problem
and job shop scheduling problems [777, 206, 1727, 1238, 1237]. The im-
portance of using mating restrictions and local search in MOCO problems
has also been stressed by some researchers [776, 1554].

- Finally, in recent years, Multiobjective Knapsack Problems have become
popular, particularly among operations researchers (e.g., [1415, 850, 1782,
779, 1781, 292, 918, 593]).

For the multi-objective 0/1 knapsack problem with n knapsacks and m
items, the objective is to maximize

f(x) = (f1(x), ...fn(x)) (4.6)

where

fi(x) =
m∑

j=1

pi,jxj (4.7)

and where pi,j is the profit of the jth item in knapsack i and xj is 1, if selected.
The constraint is

m∑
j=1

wi,jxj ≤ cifor all i (4.8)

where wi,j is the weight of item j in knapsack i and cj is the capacity of
knapsack j.

Another NP -complete problem for MOEA benchmarking is the multiob-
jective minimum spanning tree problem [887], defined as mo-MST or mc-MST
(multi-criteria). In this problem multiple weights are assigned to each edge of
the graph. Each edge has K associated non-negative real numbers represent-
ing K attributes; a K tuple. The generic multiobjective problem is to find
a single spanning tree solution that is minimal over all K edge tuple com-
ponents. Since a single solution is generally not possible, the requirement is
to find a set of spanning trees called the Pareto optimal set where each tree
in the set is nondominated by another via the weighted edge sequence. Such
problems can be parameterized to provide benchmark problems for MOEA
comparative studies. Generators can be employed for generating various non-
Euclidean mc-MST problems based upon particular selection of edge weights:
random uncorrelated, correlated, anti-correlated, and m-degree vertex corre-
lated. Also concave Pareto fronts or other geometries can be generated from

222 4 MOEA Test Suites

specific sparse or complete graphs. If there is a constraint on the maximum
vertex degree in each spanning tree, then the problem is defined as the mul-
tiobjective degree-constrained minimum spanning tree problem.

In essence, these problems are constrained minimization problems with the
additional constraint on x such that it is only able to take on discrete values
(e.g., integers). The use of these combinatorial MOPs in any proposed MOEA
test suite should also be considered. On the one hand, EAs often employ spe-
cialized representations and operators when solving these NP problems which
usually prevents a general comparison between various MOEA implementa-
tions. On the other hand, NPC problems’ inherent difficulty should present
desired algorithmic challenges and complement other test suite MOPs. Ta-
ble 4.6 outlines possible NP -Complete MOPs for inclusion. Databases such
as TSPLIB [1345], MP-Testdata [1786], and the OR Library [109], exist for
these NP -Complete problems. On another note, the landscapes for various
NP -Complete problems vary over a wide range with the knapsack problem
usually reflecting a somewhat smooth landscape and the travel salesperson
problem exhibiting a many-faceted landscape. The latter then being more dif-
ficult to search for an “optimal” Pareto front. Other NP -Complete problem
databases are also available.

Table 4.6: Possible Multiobjective NP -Complete Functions

NP -Complete Problem Example

Traveling Salesperson Min energy, time, and/or distance; Max ex-
pansion

Coloring Min number of colors, number of each color

Set/Vertex Covering Min total cost, over-covering

Maximum Independent Set (Clique) Max set size; Min geometry

Vehicle Routing Min time, energy, and/or geometry

Scheduling Min time, deadlines, wait time, resource use

Layout Min space, overlap, costs

NPC-Problem Combinations Vehicle scheduling and routing

0/1 Knapsacks - Bin Packing Max profit; Min weight

Minimum Spanning Trees tuple weighted edges; minimum weighting

4.6 Real-World MOEA Test Functions

Finally, real-world applications should be considered for inclusion in any
comprehensive MOEA suite. Many of the applications presented in Chap-
ter 7 could be selected. This type of MOP may be numeric, non-numeric,
or both, and usually has more constraints (in terms of resources) than
the numeric test problems considered in previous sections. Note that many
real-world applications employ extensive computational fitness function soft-
ware (e.g., computational fluid dynamics or computational electromagnetic or

4.6 Real-World MOEA Test Functions 223

bioinformatics) requiring data interchange and data structure mapping (c.f.,
[1045, 805, 152, 1245, 1580, 1200, 1307])

Possible application MOP test suite examples include (see Chapter 7):

- Aeronautical Engineering: wing and airfoil design [1198, 1046, 42, 701,
118, 1171, 1301, 52, 448].

- Chemical Engineering: modelling of chemical processes, polymer extru-
sion [683, 544, 131, 823, 45, 70, 936, 14, 132].

- Electrical Engineering: planning of electrical power distribution system,
circuit design [1317, 1166, 1707, 275, 8, 1374, 65, 9].

- Hydraulic and Environmental Engineering: water quality control,
placement of wells and pumps [232, 1325, 708, 1339, 1338, 1349, 967, 854,
833, 1074].

- Mechanical and Structural Engineering: plane trusses, gear train,
spring, welded beam [366, 269, 636, 242, 1409, 1716, 1254, 1314, 853, 1001,
1002, 1034, 1035, 619].

- Computer Science: distributed database management, coordination of
agents, machine learning [886, 206, 678, 799].

- Finance: investment portfolio, ranking stocks [1012, 226, 1638, 1206, 1444,
1446, 1445, 1443, 1212].

- Scheduling: flowshop scheduling, production scheduling, job shop schedul-
ing, time-tabling [1551, 1425, 1593, 1231, 258, 761, 62, 99, 1478, 245].

A possible test suite example application MOP involves logistics research
in resource allocation. The effort is directed at developing a mission-resource
value assessment for rationally assigning relative value to resources and iden-
tifying alternative resource mixes to logistics and operational planners [1670].
In general, it is desirable to develop a distributed computing architecture
that links current and planned logistics information systems to the deliberate
and priority action planning processes, databases, and policies–an end-to-end
system linking operations and logistics. Note that a mission ready resource
(MRR) is a combination of an asset type and its resources, for example, air-
craft, pilot, fuel, support equipment and personnel, etc., that is designed to
have a certain suitability for a single task. A combination of MRR types is
defined to be an MRR set or resource mix. The objective is that given a choice
among time-phased asset sets, simultaneously minimize resource consumption
(cost) and maximize asset set suitability over time.

The symbolic MOP Formulation is given m tasks and n MRR types, the
solution set is an m× n matrix. A matrix element is a decision variable, xi,j ,
that represents the number of MRRs of type j allocated to tasks of type
i. Assuming that each task is satisfied by exactly one MRR, and that no
interactions exist between differing MRR types, then the suitability, S, for all
MRRs is defined by:

S =
n∑

j=1

m∑
i=1

ai,j xi,j (4.9)

224 4 MOEA Test Suites

where ai,j is the suitability of MRR j for Task i and xi,j is the number of
MRRs j allocated to task type i.

The requirement that all tasks i = 1, . . . , n must be satisfied at a particular
resource level (RL) k is:

RLtaskk,i =
n∑

j=1

xi,j (4.10)

Since the desired capability for a task is set by the decision maker and
defined to be static, the left-hand side of equation (4.10) is an equality con-
straint.

RLmrrj,k ≥
m∑

i=1

xi,j,k (4.11)

In this application, the decision variables are allowed to take on any non-
negative integer value as long as they do not exceed the specified resource level.
Therefore, the left-hand side of equation (4.11) is an inequality constraint.

The maximum number of efforts per day for a particular asset, A, is given
by its turn rate, t. For a quantity d of asset A, the total turn rate is

TTRA = (dA) (turn rateA) (4.12)

Given that A has P configurations corresponding to P MRR types, the
upper bound for any combination of the P MRR types is

TTRA ≥
P∑

r=1

m∑
i=1

xi,Pr
(4.13)

It is difficult to determine what the actual logistical footprint is for a given
asset set. At the very least, it is clear that for each additional asset deployed,
there is a corresponding increase in cost for additional resources, e.g. fuel,
supplies, etc. Assuming that consumption is linear and without interaction,
the weight consumption, W , and volume consumption, V , for all MRRs are

W =
n∑

j=1

m∑
i=1

βj xi,j (4.14)

and

V =
n∑

j=1

m∑
i=1

λj xi,j (4.15)

βj and λj are the weight and volume consumed by a single MRR j.
The form of the suitability maximizing / lift minimizing MOP with A asset

types, m tasks, n MRR types, at a resource level k, and decision variables
(x1,1, xi,j , . . . , xm,n) is to maximize:

4.6 Real-World MOEA Test Functions 225

S =
n∑

j=1

m∑
i=1

ai,j xi,j (4.16)

minimize:

W =
n∑

j=1

m∑
i=1

βj xi,j (4.17)

and minimize:

V =
n∑

j=1

m∑
i=1

λj xi,j (4.18)

subject to:

n∑
j=1

xi,j = RLtaskk,i for i = 1 . . . m (4.19)

m∑
i=1

xi,j ≤ RLmrrk,j (4.20)

for A = 1 . . . a and Pa = number MRR types for a

The number of constraints resulting from equation (4.19) is equal to the
number of tasks. These constraints ensure that the total number of efforts for
Task i is exactly the desired capability at that resource level. The maximum
value for any decision variable is found by using equation (4.19) and allocating
all task capability to one MRR type. The number of constraints resulting from
equation (4.20) is equal to the number of MRR types. These constraints ensure
that no MRR type can be allocated a number of efforts that exceeds the given
resource level. These constraints are also used when there are restrictions on
the available number of any MRR type, e.g. attrition or changes in asset turn
rate. It is important to note that each constraint refers to a single MRR type.

The specific number of tasks in Table 4.7 and MRR types in Table 4.11,
along with their task suitabilities, are defined. The suitabilities reflect no-
tional but reasonable values that clearly differentiate the MRR types. The
same can be said for the consumption values in Table 4.11. To keep the num-
ber of task capability decisions by the decision maker at a reasonable level,
five resource levels in Table 4.8 are specified, equating to 15 separate task
preference decisions. These preferences are reflected in Table 4.9. When the
ratios are applied to their respective resource level values, the result is the
capability matrix in Table 4.9. The values are rounded to a whole number
so that the sum across tasks is equal to the resource level. The values of the
resource levels were chosen to create solution spaces of increasing size. Given
three tasks and five MRR types and a resource level of 300 efforts per day, the

226 4 MOEA Test Suites

worst case number of possible resource mixes is approximately 9.72 x 1019.
For the target MOP, it is assumed that there is no restriction on the available
number of any MRR type; no attrition; and that each asset has one associated
MRR type, i.e. one effort per day. These simplifying assumptions are made to
provide an opportunity to explore the basic problem solution and complexity.

Table 4.7: Tasks

Index Nomenclature

1 Air-to-Air (AA)

2 Air-to-Ground (AG)

3 Precision Locating (PL)

Table 4.8: Resource Levels

Index RL (efforts per day)

1 16

2 32

3 75

4 150

5 300

Table 4.9: Desired Task Capability Ratios

Percent to Task

Index AA AG PL

1 60 30 10

2 30 60 10

3 25 60 15

4 20 50 30

5 20 30 50

Table 4.10: Desired Capability Matrix

TASK (efforts per day)

Index AA AG PB Decision Space Cardinal-
ity

1 10 5 1 630,630

2 10 20 2 159,549,390

3 19 45 11 ≈ 2.56x1012

4 30 75 45 ≈ 1.48x1016

5 60 90 150 ≈ 4.37x1019

4.6 Real-World MOEA Test Functions 227

Table 4.11: Task Suitability / Lift Consumption Matrix

Task Suitability Lift Consumption

IndexMRR
Type

AA AG PL Weight (Short
Tons)

Volume (Cu-
bic feet)

1 FA 0.800 0.400 0.001 20.2 1650.0

2 FB 0.300 0.800 0 001 28.5 2475.0

3 FC 0.600 0.600 0.100 35.7 2887.5

4 B1 0.001 0.001 0.800 19.9 1705.0

5 B2 0.001 0.001 0.400 22.5 2200.0

The complete symbolic MOP formulation is as follows:
Decision variables- Number of MRR j assigned to Task i = (x1,1, . . . , xi,j)

Maximize:

S = 0.8x1,1 + 0.3x1,2 + 0.6x1,3 + 0.001x1,4 + 0.001x1,5 (4.21)
+ 0.4x2,1 + 0.8x2,2 + 0.6x2,3 + 0.001x2,4 + 0.001x2,5

+ 0.001x3,1 + 0.001x3,2 + 0.1x3,3 + 0.8x3,4 + 0.4x3,5

Minimize:

W = 20.2(x1,1 + x2,1 + x3,1) + 28.5(x1,2 + x2,2 + x3,2) (4.22)
+ 35.7(x1,3 + x2,3 + x3,3) + 19.9(x1,4 + x2,4 + x3,4)
+ 22.5(x1,5 + x2,5 + x3,5)

and minimize:

V = 1650(x1,1 + x2,1 + x3,1) + 2475(x1,2 + x2,2 + x3,2) (4.23)
+ 2887.5(x1,3 + x2,3 + x3,3) + 1705(x1,4 + x2,4 + x3,4)
+ 2200(x1,5 + x2,5 + x3,5)

subject to:

(x1,1, . . . x3,5) ≥ 0 (4.24)
(x1,1, . . . x3,5) ∈ I (4.25)

x1,1 + x1,2 + x1,3 + x1,4 + x1,5 = RLtaskm,1 (4.26)
x2,1 + x2,2 + x2,3 + x2,4 + x2,5 = RLtaskm,2 (4.27)
x3,1 + x3,2 + x3,3 + x3,4 + x3,5 = RLtaskm,3 (4.28)

x1,1 + x2,1 + x3,1 ≤ RLmrrm,1 (4.29)
x1,2 + x2,2 + x3,2 ≤ RLmrrm,2 (4.30)
x1,3 + x2,3 + x3,3 ≤ RLmrrm,3 (4.31)
x1,4 + x2,4 + x3,4 ≤ RLmrrm,4 (4.32)
x1,5 + x2,5 + x3,5 ≤ RLmrrm,5 (4.33)

228 4 MOEA Test Suites

where m is the Resource Level index for the current problem.
This specific resource allocation MOP application has three objective func-

tions that produce a PFknown set of discrete points. Of course the objective
function domain is not represented by a continuous line or surface as shown
in Figures 4.65 and 4.66. In fact, the entire genotype space consist of inte-
gers and the phenotype space is also discrete but somewhat dense as reflected
in Figure 4.65. Note that the integer aspect of this problem along with the
equality constraints provide an interesting discrete MOEA test problem that
is similar to the continuous Osyczka and Kundu function in Section 4.3.2.

Fig. 4.65. MOP-ALP Dis-
crete 3D Integer Search Space,
PFtrue on left and along bottom

Fig. 4.66. MOP-ALP PFtrue for
the three functions as directly re-
lated to Figure 4.65

4.7 Summary

In the tradition of providing test suites for evolutionary algorithms, an ex-
tensive list of specific MOEA test functions is proposed. The development of
this list is based upon accepted and historic EA test suite guidelines. Specific
MOEA test suites can evolve from this proposed list based upon individual
research objectives and problem domain characteristic classifications. With
generic MOEA test suites, researchers can compare their multiobjective nu-
meric and combinatorial optimization problem results (regarding effectiveness
and efficiency) with others, over a spectrum of MOEA instantiations. Exam-
ple MOEA comparisons in the next chapter include a variety of presentation
techniques. Using the test suite functions, MOEA comparisons can be made
more precise and their results more informative via metrics and statistical
analysis. But again some say that using a test suite of any kind can be useful
from a pedagogical perspective in comparing MOEAs, but in general, may be
of little importance when solving “real-world” problems!

Further Explorations

Class Exercises

1. Discuss the importance of scalability (both in decision variable space and
objective function space) in the context of MOEA validation.

2. When scaling a test function in its number of decision variables, does it
become more difficult for a MOEA? Why?

3. When scaling a test function in its number of objective functions, does it
become more difficult for a MOEA? Why?

4. Discuss possible limitations of current MOEA test suites.
5. How would you improve the current methodology adopted to validate

MOEAs?
6. Do you consider important to have benchmarks with dynamic MOPs?

Discuss.
7. What would be the main issues that you would consider to be the main

justification to propose a new test suite for MOEAs?
8. Can you think of a possible source of difficulty for modern MOEAs that

is not covered by any of the test suites provided in this chapter?

Class Software Projects

1. Write a program that generates the true Pareto front of a problem using
an enumerative approach. Test your program with some of the most simple
test functions discussed in this chapter (2 decision variables, 2 objectives).

2. Write an interface that allows your program to invoke GNUplot or a sim-
ilar public-domain library to generate graphical representations of both
Ptrue and PFtrue (when dimensionality allows it).

3. Implement a constraint-handling technique to a MOEA that does not
include such type of mechanism (e.g., PAES [886]) and test it with some
of the constrained MOPs presented in this chapter.

230 Further Explorations

4. Write a program that uses spatial data structures (e.g., quadtrees) to store
the nondominated solutions generated. Analyze the efficiency of this pro-
gram, when generating PFtrue by enumeration, with respect to traditional
implementations (i.e., using a flat file).

5. Write a program using parallel processing (implemented in MPI [1230])
for generating the PFtrue of a problem by enumeration. Test your program
with the test functions included in this chapter.

6. Implement the real-world test problem proposed by Gaspar-Cunha and
Covas in [543], and use any of the MOEAs discussed in Chapter 2 to solve
it.

7. Modify one of the sets of test functions discussed in this chapter, so that
they become epistatic.4

8. Implement two MOEA test problems adopting superspheres, as proposed
by Emmerich and Deutz [449]. Use the NSGA-II [374] to attempt to solve
these test problems. Write a report detailing all your work and your sta-
tistical analysis of results (see Chapter 5).

Discussion Questions

1. What is a “good” MOEA test suite? Relate to desired characteristics and
classes of problems.

2. Can a “standard” set of test functions embody a complete set of MOP
problem characteristics? Discuss.

3. What is the advantage (if any) of adding more decision variables to a
continuous multi-objective optimization test problem? Discuss.

4. Discuss the impact of test function characteristics as an advantage for
various MOEA search techniques.

5. Do you consider appropriate to adopt benchmarks with pedagogical test
functions to assess performance of a MOEA? Do you think that such sort
of validation is of any practical use when using a MOEA for solving a
real-world problem? Discuss.

6. Do you think that scalable test functions are really useful to assess per-
formance of a MOEA? Can scalability provide any insights regarding the
performance (and possible limitations) of a MOEA? Discuss.

7. For side-constrained MOPs, is it better to embed in the MOEA the feasi-
bility processing or do post processing to remove the infeasible solutions?

8. How could the genotype variables be discretized in a manner that would
provide better convergence to PFtrue ?

9. Knowles and Corne [876] made publicly available two problem instance
generators for a multi-objective version of the quadratic assignment prob-
lem. Develop an experimental study using these problem instance genera-
tors. It is of particular interest to analyze how difficult is to move towards

4 Epistasis in evolutionary computation refers to a strong interaction among the
genes (or decision variables) in a chromosome [1100].

Further Explorations 231

the true Pareto front. Present a report that discusses your findings in
detail.

10. Consider the so called multiple multi objective problem (M-MOP) as de-
fined by Ponweiser and Vincze [1285]. Discuss how is this problem different
from a traditional MOP.

Possible Research Ideas

1. Continue to develop a detailed classification of the application problem
domain for generic MOEA test purposes. One should include a wealth of
dimensions and variation. The objective is to present a multi-dimensional
table where one can attempt to map their specific problem characteris-
tics into a particular region of the table. This table would therefore also
include appropriate MOEAs and associated parameter values for that re-
gion. Thus, such table would be able to provide expert advice to the
engineer or scientist regarding a “good” algorithmic approach for their
MOPs.

2. Develop a formal mathematical model of simple and difficult Pareto front
problems due to quantization (discretization) of variables and their asso-
ciated fitness landscape.

3. When considering NP -Complete type problems with multiple objectives,
define or classify the search space landscape characteristics regarding the
discrete Pareto front.

4. Develop a set of test suite functions for dynamic (changing) fitness en-
vironments and evaluate specific MOEAs. Attempt to develop insight to
environmental dynamic parameter variables as affecting MOEA perfor-
mance (effectiveness and efficiency). See [473, 474].

5. Address the issue of “stretching” the MOP landscape to improve effec-
tiveness for a minimization problem. This technique for a single objective
function first identifies a local optimum, functionally makes all regional
points above such local optimum disappear in a revised fitness function,
and then stretches upward the modified landscape in the region of the
local minimum. Then, the search continues on the new landscape [1255].

6. Deb et al. [377] proposed the use of explicit linkages among variables
as a way of generating difficult multi-objective optimization problems. To
exemplify their methodology, the authors generated more difficult versions
of some of the ZDT [1772] and DTLZ [379] test problems discussed in
this chapter. Propose other multi-objective test functions that exploit this
concept.

7. Emmerich and Deutz [449] proposed test problems whose Pareto optimal
sets and Pareto fronts are closed-form expressions based on Lamé super-
spheres. These test problems are scalable in the number of objectives and
decision variables, and also in what the authors call resolvability of conflict

232 Further Explorations

(one can move from low conflict resolvability to high conflict resolvabil-
ity). Use the test problems proposed in this paper as building blocks for
generating a more complex test suite. Additionally, explore the use of
hyper-ellipsoids or combinations of other geometric structures different
from the superspheres adopted by Emmerich and Deutz.

8. Develop an experimental design that can help to identify sources of diffi-
culty (for state-of-the-art MOEAs) in a multi-objective optimization prob-
lem. Rely on performance measures and statistical analysis to perform
such a study.

9. Rudolph et al. [1402] point out the need (that sometimes arises in real-
world problems) of being able to preserve Pareto subsets of equivalent
quality. Build test problems that present this property and propose a
novel way of dealing with them.

5

MOEA Testing and Analysis

It doesn’t matter how beautiful your theory is, it doesn’t matter how
smart you are. If it doesn’t agree with experiment, it’s wrong.

Richard P. Feynman

5.1 Introduction

Regarding the scientific method of experimentation, it is desirable to con-
struct an accurate, reliable, consistent and non-arbitrary representation of
multi-objective evolutionary algorithm (MOEA) architectures and perfor-
mance over a variety of multi-objective optimization problems (MOPs). In
particular, through the use of standard procedures and criteria, one should
attempt to minimize the influence of bias or prejudice of the experimenter
when testing a MOEA hypothesis. The design of each experiment must con-
form then to an accepted “standard” approach as reflected in any generic
scientific method. When employing the scientific method, the detailed design
of MOEA experiments can draw heavily from outlines presented by Barr et
al. [93] and Jackson et al. [765]. These generic articles discuss computational
experiment design for heuristic methods, providing guidelines for reporting
results and ensuring their reproducibility. Specifically, they suggest that a
well-designed experiment follows the following steps:

1. Define experimental goals;
2. Choose measures of performance - metrics;
3. Design and execute the experiment;
4. Analyze data and draw conclusions;
5. Report experimental results.

234 5 MOEA Testing and Analysis

The scientific method as a more generic approach has four steps: obser-
vation1, hypothesis, predict using hypothesis, and testing [1706, 911, 94].
Another very important experimental goal is determining how well the test
problems and proposed metrics capture essential MOP and MOEA character-
istics and performance. This chapter follows all these generic guideline con-
cepts in developing experimental MOEA testing procedures. Such comparative
experiments use appropriate MOP benchmarks or test suites as developed in
Chapter 4.

The main goal of testing is usually to compare MOEA effectiveness over
various chosen MOPs by measuring solution quality2. Once a meta-level test-
ing process has been designed using the guidelines, specific MOPs and metrics
must be selected. Observe that metrics usually fall into two performance cat-
egories: (1) Efficiency (measuring computational effort to obtain solutions,
e.g., CPU time, number of evaluations/iterations - use of spatial and temporal
resources), and (2) Effectiveness (measuring the accuracy and convergence
of obtained solutions and the data interface to the environment). Effectiveness
includes Robustness (measuring how well the code recovers from improper in-
put), Scalability (measuring how large a class of problems the code can solve
as related to the increasing problem dimension) and Ease of use (measur-
ing the amount of effort required to use the software - user friendliness). Of
course, there is always the trade-off between effectiveness (solution quality)
and efficiency (execution time).

In order to study and analyze the dynamics of MOEA execution, gener-
ational population measurement of PFknown and Pknown is necessary . In all
cases, the associate measures provide qualitative date that is usually reduced
to qualitative statements through metrics. Such metrics are usually based
upon the concept of Pareto dominance as discussed in Chapter 1. Also, em-
pirical stochastic distributions for effectiveness and efficiency can be evolved
from these measurements using first-order (mean) and second-order (vari-
ance) and higher-order statistics. Using just the mean and variance values of
course is explicitly assuming an underlying normal distribution. Note that the
distribution form is characterized by estimating the cumulative distribution
function.

Many MOEA researchers’ modus operandi is an algorithm’s comparison
(possibly the researcher’s own new and improved variant) against some other
MOEA by analyzing results for specific MOP(s). Results are often “clearly”
shown in visual graphical form indicating the new algorithm is more effective
for selected MOPs. These empirical, relative experiments are of course incom-
plete as regarding robustness and general MOEA comparisons. The litera-
1 Observation in this case is used as a foundation to model and approximate the

real-world problem.
2 Although MOEAs are classified as “stochastic multi-objective optimizers,” the

attainment of a MOP’s true Pareto optimal front can be difficult and may
even be impossible. Thus, the quantitative measurement of performance relies
on PFknown , an attainment set by definition.

5.2 MOEA Experiments: Motivation and Objectives 235

ture’s history of visually comparing MOEA performance on non-standard and
possibly unjustified numeric MOPs does little to determine a given MOEA’s
actual generic efficiency and effectiveness. Extensive experimentation, analy-
sis, and metrics concerning MOEA parameters, components, and approaches
are required as a minimum. For example, statistical analysis techniques be-
yond mean and variance include Kruskal-Wallis hypothesis testing, analysis
of covariance, and F-ratio testing as detailed in Section 5.5.1.

It is not the intent to indicate that one MOEA is better or more robust
than another, but to describe general experimental methodology, appropriate
metrics, statistical analysis and presentation techniques for a wide range of
MOEA testing. In fact, different MOEA performances are directly associated
with the specific operators each MOEA employs as discussed in the previous
chapter. The philosophy, rational and goals of generic MOEA experiments are
presented in Section 5.2 of this chapter. The MOEA experimental method-
ology is proposed in Section 5.3. Section 5.4 formally develops and analyzes
attainment functions as a graphical effectiveness evaluation technique. More
explicit Pareto dominance relations are presented in order to develop Pareto
compliant generic quality indicators. The section concludes with an extensive
listing and discussion of such indicators. Statistical testing approaches coupled
with presentation methods appropriate for comparing MOEAs is reflected in
Section 5.5. Availability of MOEA testing and metric software environments
is discussed in Section 5.6. Following this discussion is a listing of class exer-
cises, MOEA software experiments, discussion questions, and research ideas
regarding MOEA testing and analysis.

5.2 MOEA Experiments: Motivation and Objectives

The major goal of MOEA experiments is to compare well-engineered algo-
rithms in terms of effectiveness and efficiency as regards carefully selected
MOP test problems through the use of appropriate metrics. Such metrics in-
clude quality indicators which attempt to summarize comparative experimen-
tal outcomes. Also, generation of the attainment function which approximates
effectiveness regarding the probability density of PFknown . These measure-
ment approaches should suffice to validate MOEA feasibility and promise.

One should not claim that MOEAs are the only algorithms able to
solve these test problems efficiently and effectively. Consider, for example,
Tabu search, dynamic programming, simulated annealing, depth-first search,
breath-first search, and heuristic search as comparative algorithms. The No
Free Lunch Theorem indicates that these search algorithms as well as MOEAs
are not individually robust over all problems by definition. Regarding MOEAs,
one desires to see if a given MOEA performs “better” than another over a spe-
cific problem domain class or classes, and if so determine why. If all MOEAs
perform equally well, one may wish to determine the reason, as that situation
implies MOEA implementation choice may not be crucial. Other interesting

236 5 MOEA Testing and Analysis

performance observations may also arise during experiment execution and
analysis.

MOEAs (described in Chapter 2 and briefly in Section 5.3.2) are all based
on similar evolutionary mechanisms. These MOEAs should be tested on vari-
ous numeric problems, constrained MOPs, experimental benchmarks, and se-
lected scientific and engineering applications. Examples of course prove noth-
ing, but generally most MOEAs have “good” performance for various MOPs
based upon a finite number of appropriately defined metrics. Each MOEA’s
performance should be statistically compared in solving these carefully se-
lected MOPs. The intent of this chapter is to present a methodology spectrum
addressing the elements of MOEA test and analysis.

Relevant quantitative MOEA performance based on appropriate MOP ex-
periments is discussed in the next chapter. Many comparisons cited in the con-
temporary literature visually compare such algorithmic results through qual-
ity indicators or metrics as defined in this chapter. As experimental MOPs’
Ptrue and PFtrue are often not known, these conclusions are only relative to
PFknown (see Chapter 1). In particular, the definition of dominance (weak,
strict, etc.) and the concept of PFknown also defined as the Pareto front ap-
proximation set, are presented in order to discuss comparison techniques. This
statistical methodology provides a basis for absolute and relative conclusions
regarding MOEA performance based upon various metrics.

5.3 Experimental Methodology

Having discussed MOEA domains previously in Chapter 2 with MOPs test
suites presented in Chapter 4, meaningful MOEA experiments can be con-
ducted. Although test suite functions do provide a common basis for MOEA
comparisons, results are empirical unless the global MOP Pareto optima are
known. However, there are ways to determine Ptrue and PFtrue for certain
problems, either theoretically or with exhaustive search! See Chapter 1 for a
theoretical discussion of modelling known and unknown Pareto fronts. Team-
ing this data with appropriate metrics then allows desired quantitative and
qualitative MOEA comparisons related to Ptrue and PFtrue and respectively
Pknown and PFknown . In general, these metrics are unary quality indicators
in that they map the PFknown set of points in objective space to a real value;
e.g., a mapping of a random set to a random value. In Section 5.4 a formal
development of appropriate metrics is given the stage.

5.3.1 MOP Pareto Front Determination

When the real and continuous world is modelled (e.g., via objective functions)
on a computer (a discrete machine with finite word length), there is a fidelity
loss between the (possibly) continuous mathematical model and its discrete
representation. Any formalized continuous MOP being computationally solved

5.3 Experimental Methodology 237

suffers this fate as the results are approximation sets such as PFknown . At a
“standardized” computational resolution and representation, MOEA results
can be quantitatively compared not only against each other but against cer-
tain benchmark MOPs’ PFtrue . Thus, whether or not the selected MOP’s
PFtrue is actually continuous or discrete is not of experimental concern, as
the representable Ptrue and PFtrue are fixed based on certain assumptions (see
Chapter 1 for a more detailed discussion) such as an underlying computational
grid. Of course, PFknown is in reality a random set of points in the objective
space.

Computational Grid Generation of PFtrue : A computational grid is
defined by placing an equidistantly spaced grid over decision variable space,
allowing a uniform sampling of possible solutions. Each grid intersection point
(computable solution) is then assigned successive numbers using a binary
representation. Of course, Grey scale encoding could also be applied. Given a
fixed length binary string, decision variable values are determined by mapping
the binary (sub)string to an integer int and then solving the following for each
xi:

xi = l +
int ∗ (u− l)

2n − 1
, (5.1)

where l and u correspond to the lower and upper decision variable bounds
and n is the length of the binary string (for each xi). For example, given the
binary string 1011100001, x1 represented by the first three bits and x2 by the
last seven, and upper and lower bounds for both variables set at 4.0 and -4.0
respectively, int for x1 = 5 and x1 = 1.714, while int for x2 = 97 and x2 =
2.110.

Binary encodings have been identified with shortfalls; e.g., Hamming cliffs
[72, pg. 229], so other encodings can be used in MOEAs. Although restricting
MOEA genetic representation to binary strings may result in less effective re-
sults it does allow for desired standard comparisons between MOEAs. If one
algorithm uses real-valued genes, its computational grid’s “fidelity” is much
finer, giving it a search advantage because it is able to “reach” more discrete
points in the solution space, but possibly taking more time. Additionally, dif-
ferent computational platforms may allow different resolutions (i.e., different
ε values – the smallest computable difference between 1 and the next smallest
value) and different numbers of distinct values (i.e., how many distinct num-
bers can be computed). As discussed in Chapter 1, PFknown lies somewhere
on this computational grid.

Thus, even though a binary representation restricts a search space’s size
it allows for a quantitative MOEA comparison, determination of an MOP’s
Ptrue (at some resolution;Pknown), and an enumeration method for determin-
istically searching a solution space (see the next section). The underlying reso-
lution may be increased/decreased as desired, at least up to some point where
computation becomes impractical or intractable. The methodologies pre-
sented are designed for experimentation and can be used to make judgments

238 5 MOEA Testing and Analysis

about proposed MOEA architectures and their implementations.

Search Space Enumeration of PFtrue : Enumerative exhaustive determin-
istic search may be the only viable approach to solving irregular or chaotic
problems [1186]. Harnessing ever-expanding computational capability to ob-
tain the desired solutions should provide better solutions. Such software has
been constructed executing on parallel high-performance computers whose
purpose is to find Ptrue and PFtrue for several numeric MOPs [1626, 287]. The
resulting sets are still only a discrete representation of their continuous coun-
terparts, but are the “best possible” at a given computational resolution for a
given computational platform. Various high performance computational plat-
forms can be employed to deterministically enumerate all possible solutions
for a given MOP at a given computational resolution. References [1626, 287]
present data for a considerable number of selected MOPs. The program is
written in “C” and uses the Message Passing Interface (MPI) to distribute
function evaluations among many processors. Using this Ptrue database, var-
ious MOEA results can be compared not only against each other, but also
against the true MOP optimum. However, these MOEAs should use a binary
encoding and mapping. At least for selected MOPs, a quantitative comparison
is then possible. This methodology allows more absolute performance obser-
vations. Although, the resulting data could just be Pknown and PFknown at a
very high resolution resulting from a Monte-Carlo approach.

5.3.2 MOEA Algorithms Testing

Various MOEAs need to be selected for MOEA testing. Such algorithms and
their original raison d’etre are discussed in detail in Chapter 2 as well as
the referenced literature. In general, one should select a set of MOEA algo-
rithms because they specifically incorporate what appear to be key theoretical
problem/algorithm domain aspects such as Pareto ranking, niching, and fit-
ness sharing (see Chapters 2 and 6). Other researchers appear to share these
thoughts as the MOGA [504], the NPGA [709], the NSGA-II [374], the SPEA
[1782], the SPEA2 [1775] and PAES [886] are some of the literature’s most
cited and imitated. As all these MOEA architectures move towards each other
temporally in terms of data structures, parameters, and operators, the affir-
mation that one MOEA is “better” than another is probably ill-conceived even
when considering the NFL theorems [1708]. In reality, it is the incorporation
of specific operators, which we measure in these performance comparisons.

Most current MOEAs (e.g., MOGA [504], NPGA [709], NPGA 2 [453],
NSGA [1509], NSGA-II [374], PAES [886], M-PAES [873], SPEA [1782], and
SPEA2 [1775]) are based on “traditional” GAs with chromosome individuals;
the MOMGA [1626], MOMGA-II [1788], and MOMGA-III [341] are based
on messy GA (mGA) building blocks and can be considered somewhat non-
traditional. along with the IMOEA [234]. However, the conceptual evolution-
ary process modeled by each algorithm is basically the same and gives the

5.3 Experimental Methodology 239

basis for their direct performance comparison. Table 5.1 lists various MOEAs’
key characteristics which are addressed as to testing in the next section. For
more algorithmic insight, discussion of specific MOEAs along with pseudocode
are presented in Chapter 2.

Other MOEA algorithms could be considered for inclusion in comparative
experiments. These include random search, VEGA [1440], the microGA [284],
the microGA2 [1597], the OMOEA [1757], and MOSGA [48], among many
others. Note that several MOEA comparisons have shown random search per-
forms much worse than other tested algorithms over complex MOPs due to
“rough” fitness or search landscapes.

Observe that VEGA could be excluded because it is biased towards so-
lutions performing “well” in only one dimension [706], and because several
efforts indicate VEGA performs “worse” than other proposed MOEAs. SPEA
is included, observing that because of its explicit incorporation of a secondary
population in the fitness assignment process [1781, 1782] it may unfairly im-
pact comparative performance (See Chapter 2). Of course, these and other
alternative MOEAs can be considered in other experiments. Observe that
we are not considering aggregating functions (e.g., [636]), since they are not
considered true MOEAs by many researchers in this area. Nevertheless, it is
worth indicating that there exist some aggregating schemes that can overcome
the main limitation of linear aggregating functions (i.e., its incapability for
generating non-convex portions of the Pareto front). For example, Jin et al.
[800], uses evolutionary strategies and changes aggregated weights dynami-
cally through uniformly distributed random weight combinations. Probabilis-
tic modelling MOEAs have also been developed including the mBOA [844]
and the IMOEA [234] which also manipulate explicitly building blocks.

5.3.3 Key MOEA Algorithmic Parameters

Many evolutionary algorithm experimenters vary key algorithmic parameters
and associated characteristics (see Table 5.1) in an attempt to determine the
most effective and efficient implementation for a particular problem instanti-
ation or class. Although suggested in general, a complete parameter analysis
investigating effects of differing parameter values is generally beyond the scope
of experiments. It could be to some extent included in comparative studies.
The purpose of such experiments is to determine general MOEA performance
and to explore the specific algorithm domain, not to “tune” MOEAs for good
performance on some MOP. Many algorithms execute with default parameter
values as reported in the literature, implementing each MOEA as “out of the
box.”

The MOEA literature typically reports using default single-objective EA
parameter values, except perhaps for population size. Because MOEAs track
a set of solutions, and because more objectives imply the possibility of more
Pareto optimal solutions (by definition when using a discrete representation),

240 5 MOEA Testing and Analysis

Table 5.1. Key Experimental MOEA Characteristics

EVOPs Fitness
Assignment

Sharing
Niching
Crowding

Population

IMOEA
[234]

Crossover and
Mutation (pc,
pm)

Tournament
Elitism Random

Phenotypic
(σshare - Fitness)

Determin-
istically
initialized;
Nmax1

MOGA
[504]

Crossover and
Mutation (pc = 1,
pm = 1

k
)

Linear interpola-
tion using [504],
Pareto ranking

Phenotypic
(σshare - Fitness)

Randomly
initialized;
N = 50

MOMGA
[1626]

“Cut and splice”
(pcut = 0.02,
psplice = 1)

Tournament
(tdom = 3)

Phenotypic
(σshare - Domina-
tion)

Determin-
istically
initialized;
N = 100

MOMGA-
II [1788]
and
MOMGA-
III [341]

“Cut and splice”
(pcut = 0.02,
psplice = 1)

Tournament
(tdom = 3)

Phenotypic
(σshare - Domina-
tion)

Determin-
istically
initialized;
N = 100

NPGA
[709] and
NPGA 2
[453]

Crossover and
Mutation (pc = 1,
pm = 1

k
)

Tournament
(tdom = 5)

Phenotypic
(σshare - Domina-
tion)

Randomly
initialized;
N = 50, 100

NSGA
[1509]

Crossover and
Mutation (pc = 1,
pm = 1

k
)

“Dummy” fit-
ness using [581],
Pareto ranking

Phenotypic
(σshare - Fitness)

Randomly
initialized;
N = 50, 100

NSGA-II
[374]

Crossover and
Mutation (pc = 1,
pm = 1

k
v

Nondominated
ranking and
crowding

Phenotypic
crowding on
various fronts

Randomly
initialized;
N = 50, 100;

PAES
[886] and
M-PAES
[873]

Crossover and
Mutation (pc = 1,
pm = 1

k
)

(1+1)- single grid Phenotypic
(σshare - Fitness)

Randomly
initialized;
Update
archive
N = 50, 100

PESA
[301] and
PESA-II
[299]

Crossover and
Mutation (pc = 1,
pm = 1

k
)

(1+1)- single grid Phenotypic
(σshare - Fitness)

Randomly
initialized;
Update
archive
N = 50, 100

VEGA
[1440]

Crossover and
Mutation (pc = 1,
pm = 1

k
)

Based on a single
objective

Phenotypic
(σshare - Fitness)

Randomly
initialized;
N = 50, 100

SPEA
[1782] and
SPEA2
[1775]

Crossover and
Mutation (pc = 1,
pm = 1

k
)

“Dummy” fit-
ness using [581],
Pareto ranking

Phenotypic
(σshare - Fitness)

Randomly
initialized;
N = 50, 100

5.3 Experimental Methodology 241

researchers sometimes enlarge the MOEA’s generational population to an up-
per bound. Note that the purpose of most experiments is MOEA performance
comparison and not determination of ideal parameter settings for some (class
of) MOPs. If possible, key MOEA parameter values should be kept identical.
A discussion of these key parameters follows:

Population Size: The MOGA [504], NPGA [709], NSGA-II [374], PAES
[886], SPEA2 [1775] and MOMGA-II [1788] generally use a random popu-
lation initialization scheme. That is, given some genetic representation, all
solutions in the initial generational population are uniformly selected from
the solution space. The MOMGA uses a deterministic scheme. For each era
(signified by k) the MOMGA generates all possible building blocks (BBs) of
size k. Thus, its initial population composition is always known. However,
the initial competitive templates are randomly generated. The NSGA-II, for
example, distributes a constant population across a sequence of ranked fronts.
On the other hand, the IMOEA [234] uses a dynamic population sizing tech-
nique based upon the current number of individuals on PFknown and a desired
population density. Additionally, micro-MOEAs limit their population size to
a few individuals given a large objective function computation cost [284].

Mating Restrictions: Mating restrictions have both its proponents and
opponents. Existing empirical experimental results sometimes indicate it is
necessary for good performance, and at other times various MOEA imple-
mentations seem to operate well without it. These empirical results indicate
the NFL theorems are alive and well [1708]. Observe that incorporating mat-
ing restrictions in some experimental MOEA software usually requires major
code modifications, and because of its uncertain usefulness in the MOP do-
main, mating restriction are not incorporated in most experimental MOEAs.

Fitness Assignment: The MOMGA [1626] and NPGA [709], for exam-
ple, employ tournament selection and so require no specific solution fitness
manipulation besides those values returned by the MOP fitness function. The
MOGA first evaluates all solutions, then assigns fitness by sorting the popu-
lation on rank (‘0’ being the best and ‘N ’ the worst – see Chapter 2). Fitness
is assigned linearly to each ordered solution; final fitness is determined by
averaging the fitness values for identically ranked solutions and then perform-
ing fitness sharing. The NSGA [1509], for example, evaluates and sorts the
population by rank. However, it assigns some large “dummy” fitness to all
solutions of the best rank. Then, a lower “dummy” fitness value is assigned to
the solutions of the next best rank, and so on. Note here that all experimental
MOEAs employ fitness scaling as each objective dimension’s magnitude may
be vastly different.

Fitness Sharing: Most experimental MOEAs incorporate phenotypic-
based sharing using the “distance” between objective vectors for consistency.

242 5 MOEA Testing and Analysis

For the MOGA and NSGA, σshare is computed and a sharing matrix formed
via the standard sharing equation [581]. Fitness sharing occurs only between
solutions with the same rank [511, 1509]. Other approaches use, instead,
crowding (e.g., the NSGA-II [374]).

Various MOEAs such as the NPGA and MOMGA use a slightly different
sharing scheme. Two solutions undergoing tournament selection are actually
compared against those in a small comparison set. Sharing occurs only if both
solutions are dominated or nondominated with respect to the comparison
set. A σshare value is used, however, the associated niche count is simply the
number of vectors within σshare in phenotypic space rather than a degradation
value applied against unshared fitness. The solution with the smaller niche
count is selected for inclusion in the next generation. Horn et al. [709] label this
equivalence class sharing. An identical scheme is implemented in the MOMGA
as it also uses tournament selection. Per Horn’s recommendation, continuously
updated sharing is used by both the NPGA and the MOMGA due to the
observation that chaotic niching behavior may result when combining fitness
sharing and tournament selection [708].

σshare represents how “close” two individuals must be in order to decrease
each other’s fitness. This value commonly depends on the number of optima in
the search space. As this number is generally unknown, and because PFtrue ’s
shape within objective space is also unknown, σshare ’s value is assigned using
Fonseca’s suggested method [511]:

N =
∏k

i=1(∆i + σshare)−
∏k

i=1 ∆i

σk
share

, (5.2)

where N is the number of individuals in the population, ∆i is the difference
between the maximum and minimum objective values in dimension i, and k
is the number of distinct MOP objectives. As all variables but one are known
σshare can be easily computed. For example, if k = 2, ∆1 = ∆2 = 1, and
N = 50, the above equation simplifies to:

σshare =
∆1 + ∆2

N − 1
= 0.041. (5.3)

This appears a reasonable way to obtain σshare values, although Horn also
presents equations bounding PFtrue ’s possible size [708] but leaves the user
to choose specific σshare values. Finally, as each MOP’s objective values may
span widely disparate ranges all objective values are scaled before σshare is
computed. This action is meant to prevent unintentional niching bias.

Representation and Evolutionary Operators (EVOPs): As de-
scribed in Section 5.3.1, experimental methodology generally assumes that
each MOEA uses a binary representation. Thus, if all MOEAs are assumed to
use an l-bit (l = 24) string for each solution and identical minimum/maximum
values in each decision variable dimension, we ensure identical “reachability”

5.4 MOEA Experimental Measurements 243

of the test algorithms for a given MOP. The bit length could be increased
in later experiments to examine larger search spaces. However, some MOEAs
employ different binary-value to real-value mappings. The MOMGA [1626],
MOMGA-II [1788], NPGA [709], and deterministic enumeration programs use
the mapping shown in equation (5.1); the MOGA [504], NSGA [1509], and
NSGA-II [374] execute as part of a larger program (see Section 5.5) that uses
a different mapping. This may result in differing mapped values due to trun-
cation or round-off errors as the schemes are implemented. There is not yet a
“default” MOEA crossover rate but various experiments used crossover prob-
abilities in the range pc ∈ [0.7, 1.0] [708, 512, 1509]. Thus, other experimental
MOEAs use single-point crossover with pc = 1.0. All but the MOMGA used
a mutation rate of pm = 1

l where l is the number of binary digits.
Termination, Solution Evaluations, and Population Size: When

should a MOEA stop executing? The easy answer is after convergence occurs
– but when is that? Some “best guess” is normally made and appropriate
termination flags set. This technique is used in this experimental series with
terminate search based on the number of solution evaluations.

For various MOPs, a MOEA can be executed first and the number of
executed solution evaluations per run determined. Other MOEAs (each with
population size of, for example, N = 50) can be then set to execute the same
number of evaluations (N multiplied by the number of generations), ensuring
a very nearly equivalent computational effort for each tested MOEA.

The literature sometimes indicates that more objectives imply a larger
generational population size is necessary. However, as experiments generally
involve only bi- and tri-objective MOPs, population size is left at the suggested
single-objective GA default size of 50 [72, pg. 123] or some small factor. Again
note that the purpose of these experiments is to explore MOEA performance
and not to determine ideal parameter settings over the selected test functions.

5.4 MOEA Experimental Measurements

When comparing MOEAs numerous ”standardized” metrics have been identi-
fied and employed by various researchers. Initial developers of MOEA bench-
marks include [1626, 355, 1770]. Early use of individual metrics is found for ex-
ample in [1452, 1509, 503, 323, 261]. Others have extended such metrics, added
other metrics, developed more formal metric descriptions, and provided ana-
lytical insight [1631, 874, 287, 882]. Summary of “good” metrics that can be
used to statistically compare MOEAs is found in [1631, 287, 1788, 882, 1783].
In this section, a more formal development of MOEA comparison measures is
presented as explicitly related to the concepts of attainment functions, domi-
nance definitions and characterization of quality indicators/metrics. A MOEA
experimenter then can select an appropriate set of approaches to evaluate
MOEA performance based upon a sound foundation.

244 5 MOEA Testing and Analysis

Table 5.2: Dominance relations on objective vectors and approx-
imation sets when working with compatibility and completeness.
For a graphic illustration of how these relations are used, please
refer to Figure 5.3 on page 255.

Relation Objective Vectors
Strictly Dominates fτ (x1) �� fτ (x2) ∀i∈F , (fτ (x1) is better

than fτ (x2))
Dominates fτ (x1) � fτ (x2) fτ (x1) is not worse than

fτ (x2) in all objs and
better in at least one ob-
jective

Weakly Dominates fτ (x1) � fτ (x2) fτ (x1) is not worse than
fτ (x2) in all objs

Incomparable fτ (x1) ‖ fτ (x2) neither fτ (x1) weakly
dominates fτ (x2) nor
fτ (x2) weakly dominates
fτ (x1)

Indifferent fτ (x1) ∼ fτ (x2) fτ (x1) has the same
value fτ (x2) in each ob-
jective

Approximation Sets
Strictly Dominates A ��B every a2 ∈ B is strictly

dominated by at least
one x1 ∈ A

Dominates A �B every x2 ∈ B is dom-
inated by at least one
x1 ∈ A

Better3 A � B every a2 ∈ B is weakly
dominated by at least
one x1 ∈ A and A �= B

Weakly Dominates A �B every x2 ∈ B is weakly
dominated by at least
one x1 ∈ A

Incomparable A ‖B neither A weakly domi-
nates B nor B weakly
dominates A

Indifferent A ∼B A weakly dominates B
and B weakly dominates
A

3 Indicates that the indicator is dominance compliant and the left side results with
respect to the indicator is better than the right side.

5.4 MOEA Experimental Measurements 245

5.4.1 Selection of MOEA Comparison Measures

In general, theoretical MOEA analysis can be achieved, but extensive simplify-
ing assumptions reduce the utility of the results. Evaluating realistic MOEA
effectiveness requires experimental assessment by executing numerous runs
and applying statistical analysis of the results. Measures of this nonlinear
phenomena is qualified through the use of metrics. Standardized metrics have
been proposed by [1626, 1631, 1788] for MOEA comparison. These include
seven quality indicators based upon mappings from PFknown data, an experi-
mental attainment set. Knowles and others on the other hand recommend two
complementary approaches for comparing MOEA results [882]. They suggest
that an empirical attainment function and set of Pareto dominance-compliant
quality indicators be used to evaluate and compare the approximation sets,
PFknown , from multiple runs. Ziztler also supports this suggestion of having
a reduced set of quality indicators and indicates that it is advantageous to
have metrics that are both complete and compatible to make good compar-
isons between MOEA results [882]. He suggests the following three metrics:
ε indicator and the R2 and R3 utility indicators [1777]. Thus, in addition to
the seven standardized metrics mentioned by Van Veldhuizen and Zydallis,
three more metrics can be added to drive toward a compatible comparison
for stochastic multiobjective algorithms [341]. All these various metrics are
detailed in this section.

Observing in the literature that there are other metrics for evaluating
MOEA performance, the ones suggested are adequate in that they encompass
different aspects of MOEA performance. The later part of this section however
addresses for historical completeness these other metrics that are similar to
those suggested.

Understanding and selecting “quality” MOEA metrics requires the de-
velopment of precise definitions. In order to properly select a specific set of
MOEA measurements, the definition of a generic attainment function is for-
mally discussed and rigorous dominance-compliant (Pareto-compliant) quality
indicators suggested. There are three generic aspects for evaluating MOEA
effectiveness performance. They include the Generic Attainment Functions,
Dominance Relationships, and Quality Indicators over Approximate Pareto
front sets. The definitions in the following sections are provided in order to
prepare the reader for the multitude of terminology, insight, and application
for MOEA testing. Observe that the suggested measurements can be used to
evaluate different types of multi-objective optimizers besides MOEAs.

5.4.2 Generic Attainment Function

Generic attainment function development requires statistical data from a
MOEA generational process in order to present a graphical effectiveness mea-
sure. The attainment function is by definition a first order moment measure
usually for evaluating MOEA results. The experimental data could provide

246 5 MOEA Testing and Analysis

information about MOEA performance differences given any specific metric as
well as providing statistical multivariate distributions and possibility higher
moments [882, 513] for analysis. The attainment function is usually not evalu-
ated for a specific metric in part due to the large amount of memory required
for each generational state storage.

However, its use in generating statistical distributions is reflected in a
graphical evaluation of performance based upon empirical PFknown data. An
empirical attainment function defines a surface that divides objective space
into goals (PFtrue for example) that have been obtained and those that have
not with a frequency bounded below of some a priori defined percent. Thus,
this function provides for each vector in the objective space, the probability
that it is weakly dominated (see Table 5.2) by an approximation set, PFknown .
The empirical attainment function summarizes the outcomes of multiple runs
of the MOEA. Thus in essence it is an implicit form of visualization. However,
the experimental focus is usually on MOEA performance in terms of efficiency
and effectiveness and not where the process differences lie.

The PFknown outcome of any multiobjective optimizer is a set of non-
dominated objective vectors evaluated during one or more executions. If the
optimizer is stochastic, a MOEA for example, the associated Pareto-set ap-
proximations are random, and their distribution is of interest as a performance
metric. In order to develop a more detailed understanding of an attainment
function and its utility, consider the following definitions [513]:

Definition 21 (Random nondominated point set) : A random point-set

X ≡ {(X1, , ..,XM)εRd : P (Xi ≤ Xj) = 0, i �= j} (5.4)

where both the number of elements M and the elements X, themselves are
random and the probability the P (0 ≤ M < ∞) = 1, is called a random
nondominated point set (RNP − set) �

Observe that the minimization of all objective functions is assumed with-
out loss of generality. Random Pareto-set approximations produced by sto-
chastic multiobjective optimizers such as MOEAs on d-objective problems
are thus RNP-sets in Rd. This definition is used to define an “attained set.”

Definition 22 (Attained set) : The random set

Y ≡ {yεRd|X1 ≤ y ∨ . . . ∨XM ≤ y}
= {yεRd|X�y} (5.5)

is the set of all goals yεRd attained by the RNP-set X. �

For a two-dimensional MOP objective space, the nondominated points are
defined by RNP − set{X}. By construction then, Y is defined as the area in
which all the dominated points lie between the nondominated points and a pre-

5.4 MOEA Experimental Measurements 247

selected reference point (boundary point) in objective space.4 The attained
set is then the set of goals (nondominated PFtrue points) possibly attained in
some manner from the set of points in X. Using this definition, an “attain-
ment indicator” focuses on the nondominated points through a mapping of a
selected quality indicator, I, related to obtaining the goal PFtrue .

Definition 23 (Attainment indicator) : . Let I{.} ≡ I{.}(z) denote an
indicator function. Then, the random variable bX(z) = I(X�z) is called the
attainment indicator of X at goal zεRd.
�

The set of all attainment indicators indexed by zεRd is the binary random
field bX(z), zεRd. For the deterministic case, this binary field fully character-
izes a single Pareto-set approximation, as one can always be obtained from the
other. As an infinite-dimensional quality indicator, it could be used to con-
struct a comparison method which is complete and compatible with respect to
weak-dominance [1783] as depicted in Table 5.2. Section 5.4.3 presents a pre-
cise meanings of complete and compatible. This symbolism supports a MOEA
quality indicator formalism as an assessment tool for stochastic algorithmic
evaluation.

Definition 24 (Attainment function) : . The function αX : Rd 	→ [0, 1]
with

αX(z) = P (bX(z) = 1) (5.6)

is called the attainment function of X. �

As identified in Grunert da Fonseca et al. [609], the attainment function is
the first-order moment measure of the binary random field bX(z), zεRd derived
from Y (the set attained from X) and, as such, it offers a useful description
of the location of the distribution of Y (and also of X). Note that for M = 1,
the optimizer produces a single random objective vector X per run, and the
attainment function reduces to the usual multivariate distribution function
FX(z) = P (X ≤ z). A natural empirical counterpart of the (theoretical)
attainment function a(.) may be defined as follows:

Definition 25 (Empirical attainment function)) : . Let bi(z)...b(z) be
n realizations of the attainment indicator bX(z), zεRd. Then, the function
defined as αn : Rd 	→ [0, 1] with

αn(z) =
1
n

n∑
i=1

bi(z) (5.7)

is called the empirical attainment function of X (EAF). �

The realizations bi(z), ..., bn(z) correspond to n runs of the optimizer. In
Figure 5.1, contour plots of the EAFs obtained from various independent
4 The distributions of both random sets, X and Y are equivalent, i.e. knowledge of

the distribution of X automatically provides a characterization of the distribution
of Y , and vice versa given the boundary point.

248 5 MOEA Testing and Analysis

runs each of two simple multiobjective genetic algorithm variants (MOGA-A
and MOGA-B) on a bi-objective optimal control problem are depicted. While
the theoretical attainment function is continuous, the EAF is a discontinuous
function. Thus, it exhibits transitions not only at the data points but also at
other points, the coordinates of which are combinations of the coordinates of
the data points. This is much like in the case of the multivariate empirical
distribution function [790]. In the figure, the “grand” empirical attainment
surfaces (the same in both plots) indicate the borders beyond which the goals
are never attained or always attained. They are computed from the combined
collection of approximation sets. Differences in the frequency with which cer-
tain goals are met by the respective algorithms A and B are represented in
the region between these two surfaces. In the left part of the figure, darker
regions indicate goals that are attained more frequently by MOEA A than
by MOEA B. In the right side, the reverse is shown. The intensity of the
shading can correspond to either the magnitude of a difference in the sample
probabilities, or to the level of statistical significance of a difference in these
probabilities (which is better?).

Fig. 5.1. Individual empirical attainment surfaces differences between the proba-
bilities of attaining different goals on a two-objective minimization problem with
optimizer A and optimizer B [882].

The EAF thus serves as an estimator for the theoretical attainment func-
tion αX(z), in the same way as the multivariate empirical distribution func-
tion estimates the (theoretical) multivariate distribution function FX(z), for
all zεRd.

The optimizer performance on MOP, related to the corresponding RNP −
set distribution, is evaluated via EAF estimates. The farther lower left the
weight of the graphical attainment function, the greater is the probability
of attaining tighter goals, and the better is the algorithm’s performance.
The performance of two (or more) optimizers operating on the same opti-

5.4 MOEA Experimental Measurements 249

mization MOP problem can be compared by comparing the corresponding
attainment functions. A suitable, Smirnov-like, statistical testing procedure
based on (two) EAFs has been applied by [1474]. Rejecting the statistical
null-hypothesis of equal attainment functions indicates that the optimizers
(MOEAs) exhibit different performance. However, if such a null hypothesis
cannot be rejected, optimizers may still exhibit different performance, not only
because of the statistical error involved, but also because of the RNP − set
distribution. Thus, the performance of the specific MOEA is not completely
characterized by the attainment function.

Whereas the attainment function (first-order moment) describes the dis-
tribution of the RNP − setX in terms of location, it does not address the
dependence structure within the nondominated elements of X. Thus, a sec-
ond order moment attainment function is required for that purpose [513]. A
second-order moment type allows pairwise relationships to be analyzed be-
tween elements of an approximation set X. This extended model can thus
provide more definitive statistical analysis of MOEA performance. Thus, as-
suming a minimization MOP, the second-order attainment function is defined
as:

Definition 26 (Second-order attainment function) : . The function
defined as α

(2)
X : RdxRd 	→ [0, 1], with

α
(2)
X (z1, z2) = P (bX(z1) = 1 ∧ bX(z2) = 1) (5.8)

is called the second-order attainment function of X. �

The second-order attainment function is the second, non-centered, moment
measure of the binary random field {bX(z), zεRd} derived from the attained
set.

In random set theory terminology, the second-order attainment function
would be called the covariance of the attained set (see, for example, Stoyan et
al. [1527]). This function expresses the probability of the elements of the same
Pareto-set approximation X simultaneously attaining two different goals, z1,
z2 ε Rd. The second-order attainment function is symmetric in its arguments,
and includes all the information of the (first-order) attainment function, as
a(z, z) = ox(z) for all z ε Rd, and o(zl, z2) = o(z2, zl) = ox(zl) for all z1 <
z2 ε IP . A natural empirical counterpart of the (theoretical) second-order
attainment function can be defined as follows:

Definition 27 (Second-order empirical attainment function) : . Let
b1(z), . . . bn(z) be realizations of the attainment indicator bX(z), zεRd . Then,
the function α

(2)
X : RdvRd 	→ [0, 1] with

α
(2)
X (z1, z2) =

1
n

n∑
n=1

b(z1).b2(z) (5.9)

250 5 MOEA Testing and Analysis

is called the second-order empirical attainment function of X (second −
orderEAF). �

The second-order EAF is a discontinuous function, with the values α
(2)
x

(z1, z2) representing the proportion of optimization runs (Pareto-set approxi-
mations) which attained goals z1 and z2 simultaneously.

The visualization of the second-order EAF is more difficult than that of
the first-order EAF, since it is defined in R2d. Even with only two objectives,
this results in four dimensions, and direct visualization is impossible. A useful
approach is to fix one goal.

Another method of evaluating an optimizer’s second-order behavior is to
define a covariance function [513] and generate an empirical covariance func-
tion formulation. This provides an alternative method of computation for
analyzing second-order behavior.

5.4.3 Dominance Relations

The general MOEA assessment technique is based on pairwise comparisons of
approximation sets, similarly to Pareto dominance-based fitness assignment
comparisons. Approximation sets of PFknown generated by different MOEA
optimizers are collected, pairwisely compared, and ranked according to the
number of approximation sets by which a specific set is dominated. As a re-
sult, each MOEA is associated with a sample of ranks where the ranks are
to be minimized. Statistically, the various rank samples are compared. The
advantage of this approach is that it is based only on Pareto dominance rela-
tions between sets and a ranking procedure, and so is not biased with respect
to preferences. But, it also represents the least informative among itself, at-
tainment functions, and quality indicators. these approaches as differences in
quality cannot be localized. Also, associated first-order and second-order sta-
tistical measures are the Mann-Whitney rank sum for two MOEAs and the
Kruskal-Wallis rank test for more than two MOEAs (see Section 5.5.1).

Since “nondominance” is a critical measure in MOEA operator execution,
one is interested in precisely defining dominance relations. Table 5.2 presents
an expanded definition of new dominance symbols from Chapter 1, including
strict dominance, dominates, weakly dominates, incomparable, and indiffer-
ent. Figure 5.2 indicates that there exists a overlapping of these dominance
relationships that permit the ordering of approximation set pairs, (A,B), for
which A � B.

Let there exist a multi-objective problem having k objective functions:
F1 = {f1(x), · · · , fk(x)}. F1 is to be minimized. Assume also that each ob-
jective function assigns every solution x in the search space Ω a real value
zi = fi(x) reflecting the merit according to the ith criteria for a particular
solution x. Thus, every x ∈ Ω is mapped to a vector z = {z1, · · · , zk} ∈ Ω.
Note that the sets of mutually incomparable objective vectors are the Pareto
front approximations, and for mutually incomparable solutions, the Pareto
set approximation or PFknown is the result of a MOEA search. Accordingly,

5.4 MOEA Experimental Measurements 251

�

� �

� ≺

‖

=

� �

≺ ≺

� ���

Fig. 5.2. The set of overlapping ordered pair relationships between approximation
sets is partitioned based upon the different dominance relationships

the approximation set or generally PFknown , is defined in the following Defi-
nition 28.

Definition 28 (Approximate Set) : Let Â ⊆ Ω be a set of all objective
vectors. Â is called an approximation set if any evaluated individual of Â
evaluates to a vector that does not weakly dominate (see Table 5.2 on page 244
for the definition of weak domination) any other objective vector produced by
evaluating individuals in Â. The set of all approximation sets is denoted as
Ω. �

Given PFknown approximation sets, then an approximation set A domi-
nates an approximation set B if and only if for each element of B there exists
at least one element of A that dominates the element of B as presented in
Chapter 1. Of course this definition could be applied to a specific MOEA
process as well as for comparing the results of different MOEA results. This
definition of approximation sets could also be applied to Pknown , the Pareto
solution set (genotype level), as well.

Since dominance evaluations are independent allowing objective vectors or
approximation sets, they can be compared even though the objectives may be
non-commensurable (not measurable by the same measure).

Statistical evaluation of mapping approximation sets to quality indicator
values can result for example in associated means and standard deviations. A
more formal definition of a quality metric follows:

Definition 29 (Quality Indicator (metric)) : A h-ary quality indicator
is a function Ii : Ωḣ 	→ R, which assigns each vector (Â1, Â2, · · · , Âḣ) of ḣ

approximation sets a real value Ii(Â1, · · · , Âḣ). �

252 5 MOEA Testing and Analysis

These quality operator values for various approximation sets can formally
be defined and ordered to provide a “quality” comparison or relationship
between MOEAs. Such effectiveness relationships may be able to indicate
that one MOEA is better than another.

Definition 30 (Comparison method) : Let A,B ∈ Ω be two approximate
sets, I = (I1, I2, · · · , Ij) a combination of quality indicators, and E:RjxRj 	→
{false, true} a Boolean function which takes two real vectors of length j as
arguments. If all indicators in I, the comparison method C̈I,E defined by I and
E is a Boolean function of the form

C̈I,E = E(I(A), I(B)) (5.10)
= E(I(A1, · · · , Aí), I(B1, · · · , Bj́))
= E({I1(A1, · · · , Aí), · · · , Ij(A1, · · · , Aí)} ,{

I1(B1, · · · , Bj́), · · · , Ij(B1, · · · , Bj́)
}

)

�

Compatible and Complete: Ideally, selection of quality indicators that
are both compatible and complete is something that MOEA statisticians strive
for when selecting metrics for comparing MOP optimization heuristics; never-
theless, one can define unary and binary quality indicators as a mapping from
a set (approximation, vectors, etc.) to the set of real numbers for MOEA eval-
uation. In order to develop and understand these quality indicators, a more
precise definition is needed.

Definition 31 (Compatibility and Completeness) : Let � be a binary
relation on approximation sets. The comparison method C̈I,E is denoted as
�-compatible if either for A,B ∈ Ω

C̈I,E ⇒ A � B

or for any A,B ∈ Ω
C̈I,E ⇒ B � A

The comparison method C̈I,E is denoted as �-complete if either for any A,B ∈
Ω̂

A � B ⇒ C̈I,E

or for any A,B ∈ Ω
B � A ⇒ C̈I,E

Thus, if a set of indicators, I, operating on two approximation sets, A and
B, are said to have compatibility and completeness then the following is true:

C̈I,E ⇒ A � B ⇔ A � B ⇒ C̈I,E and C̈I,E ⇒ B � A ⇔ B � A ⇒ C̈I,E

5.4 MOEA Experimental Measurements 253

�

Zitzler showed that one metric cannot possibly have this quality [1777]. He
showed the best situation is compatibility without any completeness (i.e., ��-
compatibility without any completeness, or � �-compatibility in combination
with �-completeness.). That means either a strong statement can be made
(the evaluated individuals of A strongly dominate the evaluated individuals
of B) for only a few pairs of evaluated members of A � B; or weaker statements
can be made (the evaluated individuals of A are not worse than the evaluated
individuals of B (i.e., A B or A ‖ B) for all pairs A � B [1777]). See
Table 5.2 on page 244 for definitions of symbols described.

Knowles presented a similar idea on the performance assessment of sto-
chastic multiobjective optimizers [882] in which he recommends having quality
indicators that are only Pareto dominance compliant or Pareto compliant, �,
to guarantee that one algorithm’s results are at least better than another be-
fore calling that algorithm itself better. This test is presented within Table 5.2
and called the Better relation. Indicators should be chosen to reduce the di-
mension of approximation sets while respecting the dominance compliance.
Various quality indicators are defined in the next section.

Thus, any metric that yields a preference for an approximation set A over
another approximation set B, when A � B, is unreliable. But when the in-
dicator cannot yield a preference for an approximation set A over B, when
A � B, then it is reliable [882]. Nevertheless, a set of MOEA quality metrics
or indicators is suggested. As indicated in the beginning of this chapter, the
term performance measure usually refers to both effectiveness (quality) and
efficiency (time), while the measures proposed in the literature usually cap-
ture only the former aspect. Therefore, some authors use the term “quality
indicator” instead of “metric” [874].

It is generally desired to maintain consistency with the inherent structure
of the optimization problem under consideration. Thus, the total order of Ω
imposed by the choice of the quality indicator function should not contradict
the partial order of Ω that is imposed by the weak Pareto dominance relation.
That is, whenever an approximation set A is preferable to an approximation
set B with respect to weak Pareto dominance, the indicator value for A should
be at least as good as the indicator value for B; such indicators are Pareto
compliant.

Definition 32 (Pareto Compliant) : An indicator I : Ω → R is Pareto
compliant if for all A,B ∈ Ω : A � B ⇒ I(A) ≥ I(B), assuming that greater
indicator values correspond to higher quality (otherwise A � B ⇒ I(A) ≤
I(B)). In the context of order theory, a Pareto compliant indicator I is an
order-preserving function from (Ω,�) to (R,≥) (respectively (R,≤)). �

Pareto compliant indicators define refinements of the partial order induced
by weak Pareto dominance. Observe that many of the indicators that are
employed in the MOEA literature are not Pareto compliant. Several popular
indicators are designed to assess just one isolated aspect of an approximation

254 5 MOEA Testing and Analysis

set’s quality, such as its proximity to the Pareto optimal front, or its spread
in objective space, or the evenness with which the points in it are distributed.
These quality indicators, sometimes referred to as ‘functionally-independent’
indicators are by definition Pareto noncompliant.

Definition 33 (Pareto Noncompliant) : Any indicator that can yield
for any approximation sets A,B ∈ Ω a preference for A over B, when B is
preferable to A with respect to weak Pareto dominance (B � A ∧ ¬A � B, or
B � A for short), is Pareto noncompliant. �

Various indicators in the following sections are classified as Pareto com-
pliant and Pareto noncompliant. Of course, Pareto noncompliant indicators
are still useful for optimization scenarios based on (weak) Pareto dominance;
for instance, they may be used to refine the preference structure of a Pareto
compliant indicator for approximation sets having identical indicator values.
Furthermore, there may be other multiobjective optimization problems that
are not based on weak Pareto dominance and for which such an indicator
is appropriate - provided it does not contradict the partial order definition.
Finally, note that this discussion is restricted to unary quality indicators only,
although an indicator can take an arbitrary number of approximation sets
as arguments. Several quality indicators have been proposed that assign real
numbers to pairs of approximation sets [1783]. For instance, the unary hyper-
volume indicator can be extended to a binary quality indicator by defining
IH(A,B) as the hypervolume of the subspace of the objective space that is
dominated by A but not by B.

Observe that although the concept and definition of Pareto dominance is
always scale independent and normalization independent, scaling and normal-
ization of quality indicator functions is normally necessary to allow different
objectives to contribute equally to comparative indicator values.

5.4.4 Primary Quality Indicators

Suggested MOEA primary quality indicators are discussed in this section.
Some are Pareto compliant, others are Pareto noncompliant. Other possible
quality indicators are presented in Section 5.4.5 in that they have measure-
ment overlap with the primary indicators. In general, MOEA indicators reflect
a cardinality value related to the number of solution points, a real value for
proximity to the Pareto front or other set of points, or real values for mea-
suring PFknown characteristics (diversity of points, uniformity of points, etc.).
Also, observe that some metrics are easy to understand and compute, others
need to be normalized and scaled (linear, nonlinear) in order to generate com-
parative values. Still others have issues associated with measuring distances
for problem non-commensurable objectives. For some NP-complete problems
such as the knapsack MOP, one can use the absolute values of each objective.

In order to select an appropriate set of quality indicators with associated
statistical values requires insight to formal quality metric relationships as

5.4 MOEA Experimental Measurements 255

discussed. Again, observe that many indicators or metrics are not reliable
in that they can violate dominance ordering. Combining unreliable metrics
does not of course make the overall measurement better. Nevertheless, various
quality indicators provide performance insight. Of course, dominance can be
measured by ranking or nondominated sorting as discussed in the previous
chapter resulting in different statistical measured values. Ranking is generally
preferred since it is a finer grain approach. A rank test can be applied to
determine if there is a statistical significant distribution difference between
MOEA generations or comparative effectiveness of various MOEAs.

BA
f2

f1

Dominance Relations on Objective Vectors and Approximate Sets

f1

P

A

A

A

1

2

3

f2

b

a

d

c

Fig. 5.3. Graphic examples of minimization dominance relations on objective vec-
tors and approximation sets.

From the symbols defined in Table 5.2 and Figure 5.3, the following ob-
jective vector relationships hold: a � b, a � c, a � d, b � d, c � d, a �� d, a � a,
a � b, a � c, a � d, b � b, b � d, c � c, c � d, d � d, and b || c.

Also from the symbols defined in Table 5.2 and Figure 5.3 the following
approximation set dominance relationships hold for algorithm results A1, A2,
and A3 having a PFtrue of P: A1 � A3, A2 � A3, A1 �� A3, A1 � A1, A1 � A2,
A1 � A3, A2 � A2, A2 � A2, A3 � A3, A1 � A2, A1 � A3, and A2 � A3.

Error Ratio (ER): The Error Ratio (ER) metric reports the number of
vectors in PFknown that are not members of PFtrue [1626, 1630]. This metric
which is Pareto compliant, requires that PFtrue is known and that the MOEA
approaches the Pareto front. Mathematically, this metric is represented in
equation (5.11):

ER �
∑|PFknown|

i=1 ei

|PFknown|
(5.11)

where ei is zero when the ith vector of PFknown is an element of PFtrue or ei

is one if the ith vector of PFknown is not an element of PFtrue [287].

256 5 MOEA Testing and Analysis

If ER = 0, the PFknown is the same as PFtrue; but when ER = 1, this
indicates that none of the points in PFknown are in PFtrue. A lower ER is
better. The example in Figure 5.4 has E = 2

3 . A similar metric [1781, 1782]
measures the “percentage of solutions” in some set (e.g., Pknown or PFknown)
dominated by another solution set’s members (e.g., Ptrue or PFtrue)

0 1 2 3 4 5 6
0

2

4

6

8

10

12

(1.5,10)

(2,8)

(3,6)

(4,4)

(2.5,9)

(5,4)

f
1
 Value

f 2 V
al

ue

Example f
1
−f

2
 Plot

PF
true

PF
known

Fig. 5.4. PFknown /PFtrue Example

Generational Distance (GD): The Generational Distance (GD) reports
how far, on average, PFknown is from PFtrue [287, 1627, 1630]. This metric
which is Pareto noncompliant requires that the PFtrue be known. It is math-
ematically defined in equation (5.12).

GD
�
=

(
∑n

i=1 dp
i)

1/p

|PFknown|
(5.12)

where |PFknown| is the number of vectors in PFknown, p = 2, and di is the
Euclidean phenotypic distance between each member, i, of PFknown and the
closest member in PFtrue to that member, i. When GD = 0, PFknown =
PFtrue. The example in Figure 5.4 has d1 =

√
(2.5− 2)2 + (9− 8)2, d2 =√

(3− 3)2 + (6− 6)2, d3 =
√

(5− 4)2 + (4− 4)2, and G =
√

1.1182 + 02 + 12

/3 = 0.5.

5.4 MOEA Experimental Measurements 257

Observe that with p = 1 the absolute error is employed in the metric
which has a linear relationship. For any p value, regions of the Pareto front
can use the same equation and then a weighted sum can be obtained across
the entire Pareto front. Also, the kernel can be modified as (dreli − dave) for
a relative comparison where dreli is the relative distance between two con-
secutive PFknown fronts for the last two generations, and dave is the average
of the distances dreli across a region. This is similar to an empirical conver-
gence metric. Some authors have propose the use of an Inverted Generational
Distance metric [273], in which distances are measured from the true Pareto
front to the Pareto front obtained by a MOEA. This aims to reduce some of
the main problems of this metric in cases in which, for example, PFknown has
very few points, but they all are clustered together.

Schott proposes a “7-Point” average distance measure that is similar to
generational distance [1452]. In his experiments neither Ptrue or PFtrue are
known, so he generates seven points (vectors) in objective space for compar-
ison. Assuming a bi-objective minimization MOP and an (f1, f2) coordinate
system with origin at (0,0). We first have to determine the maximum value in
each objective dimension. Two equidistantly spaced points are then computed
between the origin and each objective’s maximum value (on the objective
axis). The “full” measure is then created by averaging the Euclidean distances
from each of the seven axis points to the member of PFknown closest to each
point. Given a general bi-objective minimization MOP F (x) = (f1(x), f2(x)),
the seven points are:

{(0, (max f2(x))/3), (0, 2 ∗ (max f2(x))/3), (0, (max f2(x))), (0, 0),
((max f1(x))/3, 0), (2 ∗ (max f1(x))/3, 0), ((max f1(x)), 0)} (5.13)

Hyperarea and Ratio (HA,HR): The hyperarea (hypervolume) and
hyperarea ratio metric which are Pareto compliant relate to the area of cov-
erage of PFknown with respect to the objective space [287, 1781] for a two-
objective MOP. This equates to the summation of all the rectangular areas,
bounded by some reference point and (f1(x), f2(x)). Mathematically, this is
described in equation (5.14):

HA �
{⋃

i

areai|veci ∈ PFknown

}
(5.14)

where veci is a nondominated vector in PFknown and areai is the area
between the origin and vector veci. The example in Figure 5.4 has an
HR = 33.5

29 = 1.155. It is important to note that if PFknown is not con-
vex, the results may be misleading [1627]. It is assumed that the reference
point for the hyperarea is the minimum value for each objective. Note, the
Hypervolume (HV) and hyperarea measurements are similar, except the HV
can be used with dimension above two.

258 5 MOEA Testing and Analysis

Also proposed is a hyperarea ratio metric defined as:

HR � H1

H2
, (5.15)

where HA1 is the PFknown hyperarea and HA2 is the hyperarea of PFtrue.
Using the Pareto fronts in Figure 5.4 as an example, the rectangle bounded by
(0, 0) and (4, 4) has an area of 16 units. The rectangle bounded by (0, 0) and
(3, 6) then contributes (3∗ (6−4)) = 6 units to the measure, and so on. Thus,
PFtrue ’s H = 16+6+4+3 = 29 units2, and PFknown ’s H = 20+6+7.5 = 33.5
units2. Zitzler and Thiele do note that this metric may be misleading if
PFknown is non-convex [1781]. They also implicitly assume the MOP’s ob-
jective space origin coordinates are (0, . . . , 0), but this is not always the case.
The vectors in PFknown can be translated to reflect a zero-centered origin, but
as each objective’s ranges may be radically different between MOPs, optimal
H values may vary widely.

Implementation of the hyperarea metric is considered only for maximiza-
tion MOPs. Thus, HR values less than one indicate a found Pareto front
that is not as good as the true Pareto front. When HR equals one, then
PFknown = PFtrue. Of course, this metric generally requires that PFtrue be
known.

Since Pareto fronts are generally unknown, two approximation reference
set techniques are suggested [882]. First, all approximation sets generated by
the algorithms under consideration are combined, and then the dominated
objective vectors are removed from this union. The remaining points, which
are not dominated by any of the approximation sets, form the reference set.
Second, it is proposed to use a reference set that dominates 50% of solutions
in the search space as a kind of median reference set. To this end, a certain
number of points (e.g., 1000) are randomly created, each one representing the
outcome of one run of a random search strategy, and then the 50% attainment
surface of these 1000 artificial runs is taken as the reference set.

The advantage of the first approach is that the reference set weakly dom-
inates all approximation sets under consideration; however, whenever addi-
tional approximation sets are included in the comparison, the reference set
needs to be re-computed. The second approach avoids this problem, but also
gives a slightly different picture: it measures the quality of an approximation
set with respect to a reference set independent of any algorithm; it is also
‘nearly’ independent of how many points are sampled, so that 1000 points
should be enough for its location to have converged. When communicating
the results of an experiment, it is strongly advised to communicate the refer-
ence point and reference sets used, in addition to the indicator values. This
means that others can compare their indicator values, computed using the
same reference point and reference set, directly with the ones reported in the
study, without access to the approximation sets.

5.4 MOEA Experimental Measurements 259

Spacing (S): The spacing (S) metric numerically describes the spread of
the vectors in PFknown [287, 1452]. This Pareto noncompliant metric measures
the distance variance of neighboring vectors in PFknown. Equations (5.16)
and (5.17) define this metric.

S �

√√√√ 1
|PFknown| − 1

|PFknown|∑
i=1

(d̄− di)2 (5.16)

and

di = minj(|f i
1(x)− f j

1 (x)|+ |f i
2(x)− f j

2 (x)|) (5.17)

where di = minj(| f i
1(x)− f j

1 (x) | + | f i
2(x)− f j

2 (x) |), i, j = 1, . . . , n, d is the
mean of all di, and n is the number of vectors in PFknown . When S = 0, all
members are spaced evenly apart. Note that this becomes important in the
deception problems where all Pareto front vectors are equally spaced. This
metric does not require the researcher to know PFtrue, although it is normally
assumed that a MOEA has already converged prior to applying this metric.
Most experimental MOEAs perform fitness sharing (niching or crowding) in an
attempt to spread each generational population (PFcurrent (t)) evenly along
the known front. Because PFknown ’s “beginning” and “end” are known, a
suitably defined metric judges how well PFknown is distributed.

Overall Nondominated Vector Generation (ONVG): The Overall
Nondominated Vector Generation (ONVG) measures the total number of non-
dominated vectors found during MOEA execution [1630, 1626]. This Pareto
noncompliant metric is defined as:

ONVG � |PFknown| (5.18)

Overall Nondominated Vector Generation Ratio (ONVGR): Over-
all Nondominated Vector Generation Ratio (ONVGR) measures the ratio of
the total number of nondominated vectors found PFknown during MOEA exe-
cution to the number of vectors found in PFtrue. Van Veldhuizen [1626] defines
this Pareto noncompliant metric as shown in equation (5.19):

ONVGR � |PFknown|
|PFtrue|

(5.19)

When ONV GR = 1, this states only that the same number of points
have been found in both PFtrue and PFknown. It does not infer that PFtrue =
PFknown. This metric requires that the researcher knows PFtrue. Schott [1452],
uses this unreliable metric (although defined over the Pareto optimal set, i.e.,
| Pknown |). Genotypically or phenotypically defining this metric is probably a

260 5 MOEA Testing and Analysis

matter of preference, but again note multiple solutions may map to an iden-
tical vector, or put another way, | Pknown |≥| PFknown |. Although counting
the number of nondominated solutions gives some feeling for how effective
the MOEA is in generating desired solutions, it does not reflect on how “far”
from PFtrue the vectors in PFknown are. Additionally, too few vectors and
PFknown ’s representation may be poor; too many vectors may overwhelm the
distance measure.

It is difficult to determine what good values for ONV G might be. PFknown ’s
cardinality may change at various computational resolutions as well as differ-
ing (perhaps radically) between MOPs. Reporting the ratio of PFknown ’s
cardinality to the discretized Ptrue ’s gives some feeling for the number of
nondominated vectors found versus how many exist to be found.

The example in Figure 5.4 has an ONV G = 3 and an ONV GR = 0.75.

Maximum Pareto Front error (ME): It is difficult to measure how well
a set of prototype vectors compares to another. For example, in comparing
PFknown to PFtrue , one wishes to determine how far “apart” the two sets are
and how well they conform in shape. The Maximum Pareto Front error (ME)
measures how well a set of vectors compares to another [1630, 1626]. This
particular Pareto noncompliant metric determines a maximum error band
which when considered with respect to PFknown , encompasses every vector
in PFtrue . More specifically, it measures the largest minimum distance be-
tween each vector in PFknown and the corresponding closest vector in PFtrue.
Equation (5.20) presents this metric mathematically.

ME � maxj

⎧
⎨
⎩

⎧
⎨
⎩mini

(
m∑

k=1

|f i
k(x)− f j

k(x)|p
) 1

p

⎫
⎬
⎭

⎫
⎬
⎭ (5.20)

where i = {1, · · · , |PFknown1 |} and j = {1, · · · , |PFknown2 |} index vectors
in PFknown and PFtrue, respectively. A resultant of 0 indicates PFknown ⊆
PFtrue. Any other resultant value indicates that at least one vector of PFknown

is not in PFtrue. The vectors in Figure 5.4’s Pknown are 1.118, 0, and 1 units
away from the closest vector in Ptrue . Thus, ME = 1.118.

The coverage error of Sayin [1437] is identical to ME but is generalized to
a continuous Pareto front. It is also unreliable.

Hypervolume (HV): The hypervolume Pareto compliant indicator is
defined as the area of coverage of PFknown with respect to the objective
space [287, 1781] for a two-objective MOP. This equates to the summation of
all the rectangular areas, bounded by some reference point and (f1(x), f2(x)).
Mathematically, this is described in equation (5.21):

HV �
{⋃

i

voli|veci ∈ PFknown

}
(5.21)

5.4 MOEA Experimental Measurements 261

C

A B

f2

f1 f1

E

F

f2

D

f2

f1 f1

f2

E

F

Zrel Zrel

F

E

Fig. 5.5. Illustrated in this figure are the hypervolume, R2, R3 and ε indicators
as described in a presentation held at EMO 2005 [882]. Graphic “A” indicates a
minimization MOP and an example of how the hypervolume is calculated. Graphic
“B” shaded area indicates how the ε indicator calculates how far Pareto front A
must move in each objective to cover Pareto front B (i.e., How far must the vectors
resulting from evaluating individuals of A be moved to dominate the vectors resulting
from evaluating individuals of B in all objectives). Finally, graphics “C” and “D”
illustrate how the utility functions of R2 and R3 are rendered. Graphic “C” illustrates
how the vectors are evenly spread out from the worst reference point to the best
reference point. Graphic “D” illustrates the difference is calculated with respect to
each vector.

262 5 MOEA Testing and Analysis

This indicator is the same as the hyperarea metric discussed above, but
this indicator does go beyond two dimensions and substitutes voli for the areai

in equation (5.21). Graphic A in Figure 5.5 illustrates how the hyperarea is
calculated for a minimization MOP from two approximation sets, A and B.
All MOPs are translated to maximization MOPs if not already defined as
such; therefore, the areas are summed up from the bottom left.

The hypervolume indicator, described in Section 5.4.4, can be used as the
basis of a dominance compliant comparison [1777, 882]. In fact, given the re-
sults of two algorithms, E and F , it is shown that all cases where E is better
than F are detected by this indicator while respecting the dominance compli-
ance. Also, suggested indicators are the epsilon indicator, R2, and R3 indica-
tors, which are described next. Each indicator is based on different preference
information; therefore, using them all provides a range comparisons rather
than just one.

ε-indicator: Given two approximate sets, A and B, this ε-indicator mea-
sures the smallest amount, ε, that must be used to translate the set, A, so
that every point in B is covered. The B in Figure 5.5 illustrates how far A
must move to cover B. This is a Pareto compliant quality indicator. Formally,
this measure is defined as a:

Definition 34 (ε-indicator) : Let A,B ⊆ X. Then, the ε-indicator Iε(A,B)
is defined as the minimum ε ∈ R such that any solution b ∈ B is ε-dominated
by at least one solution a ∈ A:

Iε(A,B) = min{ε ∈ R|∀b ∈ B∃a ∈ A : a �ε b} (5.22)

�

So, when Iε(A,B) < 1, all solutions in B are dominated by a solution in
A. If Iε(A,B) = 1 and Iε(B,A) = 1, then A and B represent the same Pareto
front approximation. If Iε(A,B) > 1 and Iε(B,A) > 1, then A and B are in-
comparable (i.e., they both contain solutions not dominated by the other set).

RR Indicators: The final two suggested Pareto compliant indicators are
R2 and R3 utility indicators [653]. There is a third indicator, R1, in this same
class; however it is not a member of the basic test criteria (see next section).
The utility, u(A, λ̃), of the approximation set A, on scalarizing vector, λ̃, is
the minimum distance of a point in the set, A, from the reference point.
Equations (5.23) and (5.24) mathematically define these two indicators.

IR2 =
∑

λ̃∈A u(λ̃, B)− u(λ̃, A)

|λ̃|
(5.23)

IR3 =
∑

λ̃∈A[u(λ̃, B)− u(λ̃, A)]/u(λ̃, B)

|λ̃|
(5.24)

5.4 MOEA Experimental Measurements 263

Graphically, R2 and R3 are illustrated in Figure 5.5.C and 5.5.D. These
utility functions, u, require a reference point and a user-specified number of
scalarizing vectors, λ̃. Vectors are uniformly distributed across the objective
space. The distance of the point (in each set) that is closest to the reference
point is measured and the differences in these distances are added up. In order
to obtain an indicator from these two indicators, the set, B, is replaced with
a reference set containing the true Pareto front points, R. These indicator
functions then effectively measure the difference in the mean distance of the
attainment surfaces A and R from a user-defined reference point.

Table 5.3 lists the suggested seven MOEA metrics and the three indica-
tors to use when comparing MOEAs. The table indicates whether each met-
ric/indicator requires PFtrue and explicitly compares results from one gener-
ation to another.

Table 5.3. Summary of the ten Suggested MOEA Metrics/Indicators

Metric Name PFtrue Generational
required? Metric?

1 Error Ratio (ER)* Yes No

2 Generational Distance (GD)** Yes Yes

3 Hyperarea Ratio (HR)* Yes No

4 Spacing (S)** No No

5 Overall Nondominated Vector Generation (ONVG)** No Yes

6 ONVG Ratio (ONVGR)** Yes Yes

7 Max PF error ** Yes No

I1 ε indicator * No No

I2 Utility R2 indicator * Yes/No No

I3 Utility R3 indicator * Yes/No No

* - Pareto Compliant, ** - Pareto Noncompliant

With these ten MOEA quality measures, a generic MOEA metric set is
provided that in general permits extensive comparison of MOEAs across a
multitude of MOPs. Although other measures in the next section have also
been suggested that reflect individual views.

5.4.5 Other MOEA Quality Indicators

What other metrics might adequately measure a MOEA’s results or allow
meaningful comparisons of specific MOEA implementations? Additional met-
rics can be selected upon which to base MOEA performance claims, and as the
literature offers few quantitative MOEA metrics, proposed metrics must be
carefully defined to be useful. Additionally, no single metric can entirely cap-
ture total MOEA performance, as some measure algorithm effectiveness and
others efficiency. Temporal effectiveness and efficiency may also be judged,

264 5 MOEA Testing and Analysis

e.g., measuring a MOEA’s progress at each generation. All may be considered
when judging a MOEA against others. Following are possible metrics devel-
oped for use in analyzing these experiments, but they should not be considered
a complete list although they represent in part those found in the literature
as indicated.

The metrics identified in this section generally measure performance in
the phenotype domain. Whereas Benson and Sayin indicate many OR re-
searchers attempt to generate Ptrue and thus implicitly measure performance
in genotype space [119], MOEA researchers have mainly focused on generat-
ing PFtrue (and thus measure performance in phenotype space). As there is
a direct correspondence between solutions in Ptrue and vectors in PFtrue one
method may not be “better” than another. However, note that multiple solu-
tions may map to an identical vector.

Although described in terms of measuring final MOEA performance, many
of these metrics may also be used to track performance of generational popu-
lations. This utilization indicates performance during execution (e.g., rate of
convergence to the MOEA optimum) in addition to an overall performance
metric. Most examples presented use two-objective examples and associated
metrics for ease of manipulation. Of course, the metrics may be extended to
MOPs with an arbitrary number of objective dimensions. However, in so do-
ing, the reliability of the metric becomes questionable just due to the accuracy
of the computations.

Two Set Coverage (CS): Zitzler et al. [1772] propose a MOEA com-
parative metric which can be termed relative coverage comparison of two sets.
Consider X ′,X ′′ ⊆ X ′ as two sets of phenotype decision vectors. CS is de-
fined as the mapping of the order pair (X ′,X ′′) to the interval [0, 1] per
equation (5.25).

CS(X ′,X ′′) � |{a′′εX ′′;∃a′εX ′ : a′ a′′}|
|X ′′| (5.25)

If all points in X ′ dominate or are equal to all points in X ′′, then by defi-
nition CS = 1. CS = 0 implies the opposite. In general , CS(X ′,X ′′) and
CS(X ′′,X ′) both have to be considered due to set intersections not being
empty. Of course, this metric can be used for X = Pknown or PFknown . The
advantage of this Pareto compliant metric is that it is easy to calculate and
provides a relative comparison based upon dominance numbers between gen-
erations or MOEAs. Observe that it is not a distance measure of how close
these sets are as that is a different metric.

Average Pareto Front Error: This Pareto noncompliant metric also
attempts to measure the convergence property of a MOEA by using dis-
tance to PFtrue . From each solution in PFknown , its perpendicular distance
to PFtrue is determined by approximating PFtrue as a combination of piece-
wise linear segments with the average of these distances defining the metric

5.4 MOEA Experimental Measurements 265

value. For example, Deb et al. [363, 374] use 500 segments. One could also use
the medium.

Distributed Spacing (ι): Srinivas & Deb [1509], define a similar measure
expressing how well a MOEA has distributed Pareto optimal solutions over
a nondominated region (the Pareto optimal set). This Pareto noncompliant
metric is defined as:

ι � (
q+1∑
i=1

(
ni − ni

σi
)p)1/p , (5.26)

where q is the number of desired optimal points and the (q + 1)-th sub-
region is the dominated region, ni is the actual number of individuals in the
ith subregion (niche) of the nondominated region, ni is the expected number
of individuals in the ith subregion of the nondominated region, p = 2, and σ2

i

is the variance of individuals serving the ith subregion of the nondominated
region. They show that if the distribution of points is ideal with ni number
of points in the ith subregion, the performance measure ι = 0. Thus, a low
performance measure characterizes an algorithm with a good distribution ca-
pacity. This metric may be modified to measure the distribution of vectors
within the Pareto front. In that case both metrics (S and ι) then measure
only uniformity of vector distribution and thus complement the generational
distance and maximum Pareto front error metrics.

Progress Measure (P, RP): Bäck defines a parameter used in assessing
single-objective EA convergence velocity called a Progress Measure [72], which
quantifies relative rather than absolute convergence improvement by:

P � ln

√
fmax(0)
fmax(T)

, (5.27)

where fmax(i) is the best objective function value in the parent population at
generation i.

To account for the (possible) multiple solutions in Pknown , this definition
is modified as follows:

RP � ln
√

G1

GT
, (5.28)

where G1 is the generational distance at generation 1, and GT the distance
at generation T .

Generational Nondominated Vector Generation (GNVG): This
Pareto noncompliant metric tracks how many nondominated vectors are pro-
duced at each MOEA generation and is defined as:

GNV G �| PFcurrent(t) | . (5.29)

266 5 MOEA Testing and Analysis

Nondominated Vector Addition (NVA): As globally nondominated vec-
tors are sought, one hopes to add new nondominated vectors (that may or
may not dominate existing vectors) to PFknown each generation. This Pareto
noncompliant metric is then defined as:

NV A �| PFknown(t) | − | PFknown(t− 1) | . (5.30)

However, this metric may be misleading. A single vector added to PFknown (t)
may dominate and thus remove several others. PFknown (t)’s size may also re-
main constant for several successive generations even if GNV G �= 0.

R1 Indicator: The R1 metric [651] calculates the probability that an
approximation set A is better than a set B over a set of utility functions, U,
and R1R is identical to R1 when it is used with a reference set.

R1(A,B,U, p) =
{∫

u∈U

C(A,B, u)p(u)du,

}

subject to:
⎡
⎣C(A,B, u) =

⎧
⎨
⎩

1 : if u(A) > u(B)
1/2 : if u(A) = u(B)

0 : if u(A) < u(B)

⎤
⎦ (5.31)

With this measure, A is better than B if R1 > 1
2 , A is not worse than B

if R1 ≥ 1
2 . Notice that R1(A,B,U, p) = 1 − R1(B,A,U, p). With A and B

the two approximation sets, U is a set of utility functions, u : Rk 	→ R. This
function maps each point in objective space into a measure of utility, p(u)
is the probability density of the utility u ∈ U, and u(A) = maxz∈A{u(z)}
and also for u(B). Joshua Knowles suggests that the R1 indicator requires a
set of utility functions which must be defined. Recently, Fonseca et. al. [513]
presented a method for defining the utility functions for R1. Furthermore,
Zydallis [1788] stated that an indicator such as R1R uses low computational
resources and can differentiate between different levels of complete outperfor-
mance if given a reference set. In addition, he stated that these indicators are
somewhat complex to understand and require the use and determination of
utility functions, reducing the attractiveness of the metric [1788]

Although not mathematically modelled or discussed in detail, other un-
reliable metrics that may be considered for MOEA performance evaluation
are, for example: average best weight combination, distance from reference
set, fraction of Pareto front covered, chi-square deviation indicator, maximum
spread, maximum distance of two solutions, deviation from uniform distribu-
tion, number of distinct choices [1783, 882], among others.

5.4 MOEA Experimental Measurements 267

5.4.6 MOEA Experimental Metrics Summary

Attainment functions can be generated for graphical analysis and quality in-
dicators mapped from PFknown . Although implemented in the phenotype
domain these experimental quality indicators or metrics may also be defined
in a genotypic fashion. For example, the error ratio, generational distance,
spacing, and overall nondominated vector generation metrics are valid when
modified to reflect a genotypic basis. Here, PFtrue is replaced with Ptrue values
and dimensionality. However, note that decision variable dimensionality may
easily exceed the number of objective dimensions, which may require further
metric refinement. In addition, Schott uses three other metrics [1452]: cost
function evaluations, clone proportion, and total clones identified. These mea-
sures although not relevant to the effectiveness experiments discussed here,
they relate to algorithm efficiency.

When experimenting, the number of function (solution) evaluations should
be a constant between MOEAs ensuring “equal” computational effort by each;
Schott [1452] appears interested only in measuring the results of a single
MOEA. No effort to identify clones (previously evaluated solutions) is done
during execution. Generally, MOEAs execute quickly for “simple” computa-
tional MOPs. However, when compared to many real-world MOPs, where
each fitness evaluation may take from minutes to hours, it makes no sense
to incorporate the overhead of clone identification within these experiments.
Thomas’ use of MOEAs in submarine stern design, where each individual’s
fitness evaluation took about 10 minutes, is a case where clone identification
is more useful [1580]. As no clones are identified in these experiments clone
proportion is not considered. Additional experiments can easily include these
and other metrics as appropriate.

Observe that the metrics (E,G,ME, ONVGR, and RP) require that PFtrue

be known, whereas, the metrics (S, ONVG, P, GNVG, and NVA) are relative
to PFknown or PFcurrent . Thus, the later set of metrics is generally more useful
for real-world problems where PFtrue is not known.

Note that combining quality indicators is reflected in much of MOEA
comparative literature. Generally this technique provides excellent quality as-
sessments provided that the indicators are Pareto compliant. In particular,
if two Pareto compliant indicators contradict one another on the preference
ordering of two approximations sets, then this implies that the two sets are
incomparable. However if the indicators used are Pareto noncompliant, a com-
mon approach is to assess isolated aspects of a decision maker’s preferences
with respect to approximation sets, e.g., their proximity to the Pareto front,
diversity, evenness, and cardinality, in terms of distinct quality indicators.
However, it is possible that all of the indicators judge that the approximation
set A is preferable to B, when in fact B is better than A according to Pareto
dominance. Thus, the combination of several indicators does not nullify or
minimize the impact of their Pareto non-compliance: on the contrary, it can
give an unjustified sense of ‘security’ to the interpretations made.

268 5 MOEA Testing and Analysis

5.5 MOEA Statistical Testing Approaches

The mean and standard deviation is collected on each metric for each set
of results found by both MOEAs. The central limit theorem allows for the
assumption that, after a large number of measurements are taken, a normal
distribution for a particular measurement can be assumed. Once a normal
distribution is assumed either a student-t or z test may be performed to
compare results. Note that these tests can be superseded because the non-
parametric Kruskal-Wallis test (KWtest) errs on the side of caution and can
be employed in their place.

If possible, all MOEAs to be statistically compared should be executed
on the same computational platform for consistency (compiler, finite word
length, speed, etc.). This platform should thus be described. The spectrum of
possible performance metrics and statistical testing techniques are presented
along with performance visualization approaches.

Timing results are usually not of specific experimental concern except
for fitness functions that take considerable computation and fitness function
search landscapes that are very rough. For most MOP benchmarks, each
MOEA usually executes in a matter of minutes. Empirical observations in-
dicate that MOEAs run in a MATLAB environment are slower than those
that are compiled codes. Other results are found in referenced papers or re-
ports. Note that MOEAs exhibit roughly the same polynomial computational
complexity (see Chapter 6).

5.5.1 Statistical Testing Techniques

MOEAs generate complex phenomena and as such are difficult to predict
their performance (effectiveness and efficiency). As indicated, the gap be-
tween MOEA theory and practice is wide (see Chapter 6). Of course, one
desires to make performance measurements of MOEA process execution and
associated results. This is suggested for purposes of dynamic process control
via algorithm parameters, preprocessing of data input for testability, and sta-
tistical valid interpretation of results. Associated tools could for example be
online during MOEA execution or offline (post processing). The section on
MOEA software tools provides friendly computational environments for sta-
tistical processing of MOEA experimental quantitative data. The statistical
analysis then permits qualitative inference as to comparative performance.

Statistical testing of MOEAs begins with understanding of basic statistical
concepts such as statistical population, statistical sample, and statistical sig-
nificance. Basic techniques include order statistics (mean, average, variance,
median, max, min, nth quartile deviation,...) confidence intervals, correlation
measures (correlation coefficient, student’s t test, multiple regression) and
testing propositions (F-test and others) as found in copious textbooks. Figure
5.6 presents various methods of displaying individual experimental results per
variable value. Such displays give the viewer an understanding of the data

5.5 MOEA Statistical Testing Approaches 269

variation using the above statistics. One can also add outliers to each vertical
element. Non-overlapping variances indicate experimental significance. Also,
measurements of genotype and phenotype diversity, fitness variance, fitness
histograms, and entropy can be employed. Many examples exist in the lit-
erature reflecting the use of these icons to display the MOEA distributions
at termination [1773]. Although comparison of distributions is desired, such
data may not be available from empirical testing. Normal distributions can
not be assumed i.e., use of means and standard deviations first and second
order statistics) is not appropriate in many cases. Thus, the use of selected
metrics from the proposed list above are appropriate in attempting to rep-
resent the effectiveness/efficiency of a MOEA for a given MOP. In addition,
the sensitivity of each selected metric should be addressed given the specific
MOP regarding PFtrue approximations.

max

min

median

ave, mean

min

max

ave

+SD

+SD

−SD

−SD

ave

max

min

−SD

+SD

confidence
interval

Fig. 5.6. Various techniques of presenting data and variations

As indicated in the Introduction to this chapter, appropriate design of
MOEA experiments should draw heavily from guidelines presented by Barr
et al. [93] and Jackson et al. [765]. These articles discuss computational ex-
periment design for heuristic methods using the indicated set of steps. In this
process, one should determine the use of average and standard deviation vs
medium and max and min for a particular test. It is also important to address
the number of runs in order to acquire enough statistical data; usually 30 or
greater based upon the central limit theorem, but can vary from 10 to 30+
depending upon the MOP domain knowledge.

Also, the experimental results should address the use of analysis-of-
variance testing, the t test and others for determining the logic of a given
hypothesis. Hypothesis testing techniques indicate that one MOEA is more
effective than another over a problem set/class as reflected in Veldhuizen &

270 5 MOEA Testing and Analysis

Lamont [1630] and the Mann-Whitney rank-sum test [32]. Hypothesis testing
as to the consistency of statistical data to support the desired null hypothesis
is computed using a statistical inference test. This test generates the proba-
bility, p-value, of supporting the null hypothesis. The user defined significance
level, α is the largest acceptable p-value. If the p-value generated by the sta-
tistical test is larger than α, the null hypothesis is rejected and an alternative
hypothesis is accepted. Regarding MOEA testing, it is desired to evaluate one
MOEA’s approximation set distribution over another MOEA’s distribution
using this hypothesis evaluation approach.

5.5.2 Non-Parametric Statistics (Analysis of Variance)

Required for comparisons of MOEA performance is a non-parametric hypothe-
sis inference test because the distribution of the population for metric results is
unknown. That is, one assumes that the distribution does not represent a nor-
mal distribution for example where only first-order (mean) and second-order
statistics (variance) are required. Furthermore, if the population for metric
results does turn out to be a normal distribution, other methods may be more
accurate at deciding if there is a difference; however, the non-parametric sta-
tistics are inaccurate only in errors on the side of caution. Thus, there is no
error made if the nonparametric statistic concludes that there is a difference
between the two algorithms.

Nonparametric tests consist of two meta-level approaches: rank tests and
permutation tests. Rank tests pool the values from several samples and convert
them into ranks by sorting them, and then employ tables describing the limited
number of ways in which ranks can be distributed (between two or more
algorithms) to determine the probability that the samples come from the same
source. Permutation tests use the original values without converting them to
ranks but estimate the likelihood that samples come from the same source
explicitly by Monte Carlo simulation. Rank tests are the less powerful but are
also less sensitive to outliers and computationally inexpensive. Permutation
tests are more powerful because information is not discarded, and they are
also better when there are many tied values in the samples, however they can
be expensive to compute for large samples.

There are many statistical tests for MOEA quality indicators that can
be used when comparing if two or more algorithms are different (better or
worse) from one another. One of the most common non-parametric tests is
the Wilcoxon Rank-Sum (Mann-Whitney) test for two independent samples.
If matched samples have been collected, then the Wilcoxon signed rank test
[1477] or Fisher’s matched samples test [1477] can be used instead of the
Mann-Whitney rank sum test or respectively Fisher’s permutation test. The
more general form of the Mann-Whitney test is called the Kruskal-Wallis
statistic where h independent samples can be compared. These statistical
tests can be performed for each comparable quality indicator using gathered
experimental data.

5.5 MOEA Statistical Testing Approaches 271

The Kruskal-Wallis H test (KWtest) is the main statistical method used
in the determination if two samples are from the same population. An alter-
native to the one-way independent-samples Analysis of Variance (ANOVA)
is the Kruskal Wallis Test. This test is primarily used when no knowledge of
the type of distribution is known; however, it can be shown that the sampling
distribution of H is nearly a chi-squared5 distribution with h − 1 degrees of
freedom, given that N1,N2, . . . ,Nh sum to at least 5. In all KWtests accom-
plished, both the Chi-squared-statistic and the F-statistic6 are evaluated. The
definition of the Kruskal-Wallis H Test reflected in equation (5.32).

H =
12

N (N − 1)

h∑
i=1

R̃2
i

Nj
− 3(N + 1) (5.32)

• Given
h sample sizes N1,N2, . . .Nh ∴ N =

∑h
i=1Ni

h samples are ranked together according to size, therefore the ranks are
R̃1, R̃2, . . . , R̃h

Upon calculation of H using equation (5.32), this value, H, is treated as
though it were a value of chi-square sampling distribution with the degrees of
freedom (df) = h− 1. This nonparametric method for analysis of variance is
used for a one-way classification, or one-factor experiments, and generaliza-
tions can be made.

The Fisher permutation test is a non-parametric test for evaluating differ-
ences between two independent (or two matched pair) samples with the result
being p-value.

Other more extensive statistical techniques related to analysis of vari-
ance include analysis of covariance (ANCOVA); one-way, two-way, and n-
way ANOVA; F-ratio related to significance of a null hypothesis; Bonferroni-
adjucted multiple t-tests; Dunn test; Sidak test; q range statistic;HSD test
(honestly significant difference); Newman-Kuels test; Ryan-test; Least signifi-
cant difference test (LSD); Scheffe test; Tukey-Kramer test, Miller-Winer test;
etc., as well as the use of Latin hypersquares to reduce the number of obser-
vations among others necessary to compute ANOVA. One needs to consult
with a statistician as to the utility of such detailed statistics for comparing
MOEA performance.

The confidence levels resulting from a statistical testing procedure for mea-
suring the differences between distributions only has a meaning if certain as-
sumptions are true. One of these assumptions, which is easy to overlook, is
that the data on which the test has been carried out is not being used to
make more than one inference. The situation is made even worse if only the

5 Under the null hypothesis that the positive and negative values are equally likely,
the test statistic follows the chi-square distribution with h− 1 degree of freedom.

6 The F test assumes known population variances of approximately normal distri-
bution and the population variances are homogeneous.

272 5 MOEA Testing and Analysis

cases reported are where the null hypothesis was rejected, and not reported
are other tests: in this case, results can look convincing when, in fact, they
are not significant.

Multiple testing issues in the case of assessing stochastic multiobjective
optimizers can arise for at least two different reasons: 1) there are more than
two algorithms requiring inferences about performance differences between all
or a subset of them. 2) there are multiple hypotheses test that are required
with the same data, e.g., differences in the distributions of more than one
indicator. In order to address this issue six possible approaches are consid-
ered: (1) execute all tests as normal (with uncorrected p-values) but report all
tests done openly and indicate that the significance levels are not, therefore,
Pareto noncompliant; (2) for the special case with multiple algorithms but
just one statistic (e.g. one indicator), use a statistical test that is designed
explicitly for assessing several independent samples; (3) for multiple statis-
tics (e.g. multiple different indicators) for just two algorithms, relate to an
inference derived per-sample from all statistics, (e.g. test the significance of a
difference in hypervolume between those pairs A and B where the diversity
difference between them is positive), then the permutation test can be used
to derive the null distribution, as usual; (4) minimize the number of different
tests carried out on the same data by carefully choosing which tests to apply
before collecting the data; (5) for each test, generate new independent data
which is not to be used for any other test; (6) apply the tests on the same data
but use methods for correcting the p-values for the reduction in confidence
associated with data re-use [882]. When comparing MOEAs for worst case
or best case performance, statistically inference can be found using Fisher’s
permutation test.

5.5.3 Methods for Presentation of MOEA Results

Pareto front point data and Pareto solution set data can be presented with
MOEA comparison tables for any of the selected metrics (see Figure 5.6) as
well as histograms comparing MOEAs across metrics, and scatter plots for
MOEA comparison across a set of MOPS. Also useful for insight are static
and dynamic representations of Ptrue and PFtrue curves or surfaces for one
or more MOEAs per generation or at termination. Use of icons, color and
shading for specific MOEA response are appropriate. Since many MOPs are
multi-dimensional, slicing across three phenotype or genotype variables is ap-
propriate in 3D. Such visualization can be accomplished with MATLAB, or
using other similar tools. Packages such as EXCEL provide spread-sheet sta-
tistical data analysis with associated graphical constructs. Many of the graphs
in this text were generated using these tools.

5.5.4 Visualization of Test Results

Visualization is considered to be one of the elementary ways to distinguish
the difference between two approximation sets. When using this technique the

5.6 Software Support of MOEA Testing 273

researcher visually looks at the graphical representation of the PFknown and
PFtrue set and determines if the results are good/bad or indifferent. For exam-
ple, graphical analysis can help the researcher determine the cardinality of the
set, total number of disjoint fronts, and structure of the front. Advantages of
this method are many and can be concluded faster than statistically analyzing
the approximation sets. Note that the concept of the Attainment Function as
presented in Definition 24 is a specific technique for MOEA approximate set
visualization.

Many MOEA researchers recognize that visualization of MOEA results
provides an easy mechanism to evaluate the general MOEA performance when
compared to another reference set. A more detailed analysis using other met-
rics, like those suggested within this chapter is necessary to statistically com-
pare the performance of multiple MOEAs. One disadvantage to using visual-
ization techniques is that as the dimensionality increases the ability to visually
see difference between approximation sets decreases. Since three dimensions
is typically the maximum that one can easily visualize (3D is also difficult to
recognize differences), it is generally suggested that visual analysis be limited
to three objectives.

5.6 Software Support of MOEA Testing

Various archives on the internet provide MOEA software including most of the
MOEAs measurements in this and the previous Chapter. Also, the integration
of MOEA software with various MOPs and statistical routines is an option
available in integrated environments.

For example, The MOMGA and NPGA are extensions of existing algo-
rithms and specific software (the mGA and SGA-C) from the Illinois Genetic
Algorithms Laboratory [744]. The NPGA is the original code used by Horn
in his MOEA research [708, 709]. Both the MOMGA and NPGA are writ-
ten in “C” and are compiled using the Sun WorkShop Compiler version C
4.2. Much of the associated research and related experimentation employs the
GEATbx v2.0 for use with MATLAB [1279]. This toolbox offers the user sev-
eral “default” EA instantiations (e.g., real- or binary-valued GA, ES, EP) and
excellent visualization output to aid in analysis. GEATbx requires only a lim-
ited amount of user effort to implement a specific EA. Thus, the MOGA
and NSGA are written as self-contained “m-files” using other pre-defined
toolbox routines. They were constructed using definitions given in the lit-
erature [511, 1509]. These MOEAs can also be executed within the MATLAB
5.2 environment.

With the variety of MOEA optimization strategies and evaluation tools, it
is increasingly difficult for an application engineer to choose, implement, and
apply state-of-the art algorithms without in-depth programming knowledge
and expertise in the optimization domain. Also, for a developer of MOEA

274 5 MOEA Testing and Analysis

optimization, methods to test and compare algorithms on different bench-
mark test problems take considerable software development. In both cases,
the main problems are the implementation overhead and potential implemen-
tation errors. Contemporary optimization methods usually involve complex
operations and require a considerable programming effort; the same holds for
the application and test problem side. Thus various MOEA and general op-
timization software environments have been developed. They include KEA,
PISA, Guimoo, and iSIGHT. In most cases, parts of the software environment
can be downloaded for integration into the user’s unique optimization package.

KEA: A software package for development, analysis and application of
multiobjective evolutionary algorithms called KEA (Kit for Evolutionary Al-
gorithms) provides an object-oriented design that offers a good suitable envi-
ronment for various kinds of optimization tasks [96]. It provides an interface
to evaluate multi-objective fitness functions written in Java or C/C++ us-
ing a variety of multi-objective and single-objective evolutionary algorithms;
SPEA2, NSGA-II, MOPSO/DOPS, and Simplex. In addition KEA contains
several state-of-the-art comparison methods for performance measure of al-
gorithms. Furthermore KEA is able to display the progress of optimization
in a dynamic display or just to display the results of optimization in a static
visualization mode. KEA includes pre-defined state-of-the art (e.g., NSGA-II
or SPEA2) that can be easily applied to the problem at hand. On the other
hand, the researchers who design their own algorithms are interested in com-
paring and tuning their algorithms. Due to these two scenarios, the following
targets have been addressed in the design of KEA:

1. Provide a library of:
• some state-of-the-art algorithms, which are able to solve MOP,
• test problems and
• visualization modes

2. Support of useful analysis methods
3. Extensibility

KEA uses a structure based on classes. The main part of the internal man-
agement of the system is done by the KEA - class. This class has the main func-
tionality to coordinate algorithms as well as problems and to control the prepa-
ration and formatting of data. The menu driven user interface KEA GUI takes
care of the presentation of the functionality that KEA provides. The Parser is
used to analyze the input string. In general KEA is a command line based tool.
It includes several MOEA test benchmarks as presented in Chapter 4 along
with code for the various quality indicators discussed in this chapter. KEA
is available at: http://ls11-www.cs.uni-dortmund.de/people/schmitt/
Daten/Kea/kea.jsp.

PISA: This Platform and Programming Language Independent Interface
for Search Algorithms (PISA) includes a text-based interface that allows one

5.6 Software Support of MOEA Testing 275

to separate the algorithm-specific part of an optimizer from the application
specific part [141, 931]. These parts are implemented as independent programs
forming freely combinable modules. It is therefore possible to provide these
modules as ready-to-use packages. As a result, an application engineer can
easily exchange the optimization method and try different variants, while an
algorithm designer has the opportunity to test a search algorithm on various
problems without additional programming effort. PISA uses a control flow
process and a data flow process that the user must integrate for their spe-
cific MOP. Again, the package includes such MOEAs as the NSGA-II [374],
SPEA2 [1776] and the Indicator Based Evolutionary Algorithm [1774]. Var-
ious benchmark test problems are available as libraries. Many of the quality
indicators discussed in this paper are integrated along with visualization se-
lections. PISA is available at: http://www.tik.ee.ethz.ch/pisa/.

Guimoo: The Graphical User Interface for Multi-objective Optimiza-
tion (Guimoo) is free software dedicated to the analysis of results in multi-
objective optimization. Its main features enable on-line visualization of ap-
proximate Pareto frontiers. Such information could be used by the expert
to build more efficient metaheuristics. A Pareto frontier may be character-
ized by its (dis)continuity, (dis)convexity, modality and others. Some met-
rics for quantitative and qualitative performance evaluation include S-metric,
R-metrics, contribution, entropy, generational distance, spacing, size of the
dominated space, coverage of two sets and coverage difference. Guimoo aims
to be generic and its architecture permits one to easily customize it in or-
der to provide the user more functionalities, as a specific problem is tackled.
Beyond generic benchmark problems, problems with related files are sup-
plied for demonstration. They deal with the ‘Vehicle Routing Problem’, ‘Flow
Shop Scheduling’ and ‘Radio Network Optimization.’ Guimoo is available at:
http://guimoo.gforge.inria.fr/.

iSIGHT: iSIGHT is a desktop productivity tool for engineers and scien-
tists that allows them to integrate key steps in the design process and then
automate the execution of those steps through diverse optimization tech-
niques. Various metaheuristics (e.g., the multi-island genetic algorithm and
Adaptive Simulated Annealing) and MOEAs (i.e., the NSGA-II [374] and
the Neighborhood Cultivation Genetic Algorithm [1684]) are integrated in
the package along with other stochastic and deterministic optimization ap-
proaches. One can also easily integrate other MOEAs. A considerable num-
ber of output graphical techniques are available. iSIGHT is available at:
http://www.engineous.com/product iSIGHT.htm.

PARADISEO: The PARAllel and DIStributed Evolving Objects (Par-
adisEO) is a free C++ white-box object-oriented framework dedicated to the
reusable design of parallel metaheuristics for (multi-objective) optimization
[193]. It is basically an extension of the EO (Evolving Objects) evolutionary

276 5 MOEA Testing and Analysis

computation framework. It provides a broad range of new features including
local searches (Hill Climbing, Simulated Annealing and Tabu Search), the
most common parallel models (based on the walk, the solution and the objec-
tive function) and some hybridization mechanisms. ParadisEO is based on a
clear conceptual separation of the solution methods from the problems they
are intended to solve. This separation confers to the user a maximum code
and design reuse. A first implementation relies on a multi-programmed layer
(Posix threads) and some communication libraries (LAM-MPI or PVM) for
execution on dedicated parallel and/or distributed computational resources.
Another implementation relies on Athapascan and Inuktitut for the dynamic
scheduling on a dedicated grid environment. A recent release is now available.
It is based on Condor and the Master/Worker API for High Throughput
Computing and Grid Computing on volatile non dedicated resources. There
is also a new library called MOEO (Multi-Objective Evolving Objects), which
provides a multi-objective package on top of EO.7 PARADISEO is available
at: http://www2.lifl.fr/~cahon/paradisEO/index.html.

5.7 Summary

This chapter presents an experimental methodology for quantitatively and
qualitatively comparing MOEA performance following the presented generic
testing guidelines and techniques. After motivating generic experiments, key
methodology components are discussed. Appropriate quality indicators or
metrics are proposed, classified, and analyzed, and selected based upon certain
criteria. Considering attainment functions, quality indicators, and dominance
ranking, there is of course no best MOEA performance assessment approach.
It is recommended therefore that the unique and complementary character-
istics of all be employed in MOEA testing. Note that a collection of these
approaches are found in various software MOEA computational environments
discussed at the end of this chapter.

Because of the continuing improvements in the variety of MOEAs, their
structures and operators are generally moving towards generating similar re-
sults over a large set of indicator values. Consequentially there is no one best
“robust” MOEA, but any contemporary sophisticated and evolving MOEA
should be able to perform well on real-world multi-objective problems based
upon similar operators. Employing appropriate testing techniques as presented
should reflect this situation.

7 EO is available at: http://eodev.sourceforge.net/.

Further Explorations

Class Exercises

1. Choose a set of (non-Pareto compliant) quality indicators from those dis-
cussed in this chapter, and describe the process required to compare the
performance of two MOEAs (e.g., NSGA-II [374] and SPEA2 [1775]) using
the following test problem:
MOP: Ptrue is connected and PFtrue is concave. The problem will be con-
sidered with 3 decision variables, although it is scalable. F = (f1(x), f2(x)),
where

f1(x) = 1− exp(−
n∑

i=1

(xi −
1√
n

)2),

f2(x) = 1− exp(−
n∑

i+1

(xi +
1√
n

)2)

−4 ≤ xi ≤ 4; i = 1, 2, 3

Justify your choice of quality indicators. If PFtrue is known, does that
affect your choice of quality indicators? Discuss.

2. Using the framework of the previous exercise, analyze performance for
different values of crossover rate, mutation rate and population size. Show
statistical results using mean, median, variance, and quartiles. Do the
selected indicators portrait the actual performance of the MOEA?

3. Add to Table 5.1 other MOEAs and their associated operators and pa-
rameters (see Chapter 2).

4. In Figure 5.2, define those dominance relationships that are contained
within others.

5. Repeat problems 1 and 2, but using only Pareto compliant quality indi-
cators.

278 Further Explorations

6. What statistics should be used to test and compare MOEAs? Does the
choice depend of the problem domain? Why is it important to use Pareto
compliant performance measures?

7. When assessing performance of a MOEA, what are the main issues in-
volved? What do we aim to measure?

8. Analyze performance of a MOEA in a NP-Complete problem (e.g., TSP
or knapsack), using a set of selected Pareto compliant indicators such as
R2, R3, and hypervolume.

9. Generate a table of all possible statistical analysis techniques for evaluat-
ing MOEAs and indicate pros and cons of each using appropriate criteria.

10. Review the paper by Knowles and Corne [874] on the utility of MOEA
performance metrics as employed in problem 2. Is the human eye a better
evaluator in general? Why? or Why not?

11. Regarding the previous problem, describe in as much detail as possible the
informal process used by a human eye to evaluate MOEA performance.
Hint: Consider what metrics are used by an evaluator when performing a
‘sight’ evaluation.

12. Setup a MOEA test plan for a specific MOP domain using appropriate
guidelines and analysis techniques. What are the various phases of your
approach? How much is it going to cost (time and space) to undertake
such test plan?

13. How does the “No Free Lunch” (NFL) theorem [1708] relate to perfor-
mance assessment of MOEAs?

Class Software Projects

1. Download the KEA environment and use it with a set of test functions
from those described in Chapter 4. Study the process of problem domain
and algorithm domain integration. Also, select appropriate MOEA qual-
ity indicators/metrics and evaluate results. Present a written report that
details all your implementations and your results with its corresponding
analysis.

2. Experiment with PISA [141] using some of the benchmark problems in-
cluded therein. Add a MOEA not included, and compare its performance
to algorithms that are already included (e.g., NSGA-II [374] and SPEA2
[1775]). Write a report in which you comment about ease of use, porta-
bility and features of PISA.

3. Use Guimoo8 to solve the DTLZ test problems [379]. Discuss its ease of
use and its flexibility to incorporate new test functions.

4. Evaluate the visualization facilities of iSIGHT9 using several of the test
problems included therein.

8 Guimoo is available at: http://guimoo.gforge.inria.fr/
9 iSIGHT is available at: http://www.engineous.com/product iSIGHT.htm

Further Explorations 279

5. Evaluate ParadisEO-MOEO10 [993], which is a white-box object-oriented
generic framework whose aim is to facilitate the design of MOEAs. Dis-
cuss its ease of use, its flexibility and the main highlights of its overall
architecture.

6. Implement a software tool that allows users to apply any of the per-
formance measures studied in this chapter to the results produced by a
MOEA. Design a user interface that facilitates the use of this tool.

7. Analyze the MO-JGA (multi-objective Java Genetic Algorithm) frame-
work proposed in [1086] for rapid development of MOEAs. Adopt this
framework to implement a MOEA not currently available, and write a
report where you indicate the difficulties (if any) that you had to face
when developing your implementation.

Discussion Questions

1. Why might one MOEA be better than another via testing (consider differ-
ent techniques)? Discuss advantages and disadvantages in achieving the
desired inference result of the different techniques considered.

2. How are quality metrics, dominance ranking, and attainment functions
affected primary by MOEA architectures and operator parameter values?
Discuss.

3. Why are the relatively “simple” MOEA structures adopted in the mid-
1990sbeingreplacedbymorecomplexvariantsnowadays? Identify“generic”
MOEA structures in modern approaches. How do they relate to our choice
of quality indicators? Discuss.

4. What is the utility of an attainment function over a set of quality indica-
tors? Relate to real-world problems.

5. Try to devise a “new” (Pareto compliant) MOEA performance measure
and argue its usefulness and structure. Consider variants of the perfor-
mance measures discussed in this chapter, as well as innovative ones.

6. What performance measures (from those discussed in this chapter) would
you consider appropriate to assess performance of a parallel MOEA (see
Chapter 8)? What other performance measures would you propose?

7. How might one test and evaluate a MOEA designed for a specific real-
world application in which PFtrue is unknown? How would you determine
if the MOEA is performing well? What sort of performance measures
would you adopt in this case?

8. How does weak dominance play a role in the selection of quality indicators
for comparing MOEAs?

9. Consider a problem that has only been solved considering it as single-
objective and is now modeled as a multi-objective problem. Would you
consider appropriate to compare the results obtained by a MOEA for the

10 ParadisEO-MOEO is available at: http://paradiseo.gforge.inria.fr

280 Further Explorations

multi-objective case with those obtained by an EA for the single-objective
case? Why?

10. Some authors have shown that, under certain circumstances, an evolu-
tionary algorithm using a linear aggregating function can provide better
results than a MOEA (see for example [757]). Discuss possible situations in
which one could observe this type of behavior. Why do you think that this
happens? How would you compare the performance of a single-objective
evolutionary algorithm with respect to that of a MOEA?

11. Consider a set of MOEAs to be compared over a set of test problems,
and a set of performance measures to be adopted to assess performance.
How would you use averages, medians, max/min, standard and quartile
deviations, confidence intervals, correlation measures (i.e., correlation co-
efficient, student’s t test and multiple regression) and testing propositions
(e.g., F-test) in assessing performance?

12. Discuss the inclusion of measurements of genotype and phenotype diver-
sity, fitness variance, fitness histograms, and entropy to compare MOEAs
and metrics. Relate to analysis of variance (ANOVA).

13. How would one employ the concepts of mean-squared error or some other
norm to measure the bias of a curve estimator for a nondominated set of
vectors? How do these results relate to the generational distance metric?

14. What test suite characteristics would you suggest for comparative analysis
of a variety of MOEAs to make quantitative or qualitative judgments?

15. What sort of quality indicators would you consider appropriate to measure
the impact of local search in a MOEA? Discuss.

16. How would you measure the dynamics of a MOEA population as it moves
towards PFtrue ?

17. Why is dominance ranking an independent MOEA assessment method
for comparing and ranking pairwise PFknown approximations? How are
the various rank samples compared?

18. Discuss and compare the usefulness of dominance ranking, quality indica-
tors and attainment functions for evaluating MOEA performance?

19. Select MOEA papers from the literature and analyze and criticize their
statistical approaches and performance assessment analysis.

20. Despite being a unary performance measure, the hypervolume indicator
[1781] has several properties that make it a relatively popular quality in-
dicator [888]. However, the computational time required to compute this
quality indicator may limit its use in practice. That is the reason why sev-
eral researchers have proposed a variety of algorithms for computing this
indicator [1713, 491, 1695, 1696, 1697, 514]. Analyze these proposals and
discuss their main differences and their computational efficiency. Discuss.

21. Analyze and criticize the Pareto-rank histograms proposed by Kumar &
Rockett [923] as a performance measure for MOEAs.

22. Address the measurement problems associated with decision variable
space and objective function space scalability using the approaches sug-

Further Explorations 281

gested in this chapter. What performance approximations may permit
efficient computation for MOEA comparison?

23. Use MOEAs and other appropriate algorithms to solve a very difficult,
complex, and high-dimensional engineering or scientific problem. Assess
and compare results with respect to other approaches. Perform a statisti-
cal analysis of results.

24. Which performance measure would you adopt to determine if a MOEA
has converged if the exact location of PFtrue is unknown? Discuss.

Possible Research Ideas

1. Classify the existing metrics for evaluating MOEAs based on their main
features. Propose new metrics based on aspects of performance not covered
by existing metrics.

2. What is the relationship between performance measures and incorporation
of user’s preferences? Propose a framework that integrates both. See for
example [1771].

3. Extend the attainment function concept to higher-order statistical mea-
surements. See for example [513].

4. Develop an integrated inferential methodology using attainment functions,
dominance relations, and quality indicators for MOEA comparison.

5. Develop and evaluate Pareto compliant measurement operators for differ-
ent yet specific genotype MOEA chromosome representations. Consider
binary, real and integer encodings.

6. Propose efficiency measures (related to time and space complexity) and
analyze their performance using a set of modern MOEAs and test func-
tions. Show in graphical form the behavior of these efficiency measures
during MOEA execution. Do these measures assess efficiency as originally
aimed?

7. Create a set of new quality indicators and discuss their Pareto compliance
as well as utility. Modifying known quality indicators is possible.

8. Analyze the performance measure based on entropy proposed by Ali
Farhang-Mehr [466, 467]. Propose a different performance measure based
on entropy.

9. Chiam et al. [244] argue on the usefulness of a more general view of the
empirical evaluation of MOEAs, which includes a structural algorithmic
development plan and a general theory of adequacy. Analyze the frame-
work proposed by the authors and develop a case study to illustrate its
use. Then, identify possible weaknesses of this framework and propose
appropriate modifications to overcome them.

10. Analyze the running performance measures proposed in [369]. Propose a
new running performance measure.

282 Further Explorations

11. Analyze visualization techniques for displaying results produced by
MOEAs (particularly in higher dimensions). See for example [1199, 1014,
1299, 1726].

6

MOEA Theory and Issues

He who loves practice without theory is like the sailor who boards ship
without a rudder and compass and never knows where he may cast.

Leonardo da Vinci

6.1 Introduction

Many MOEA development efforts acknowledge various facets of underlying
MOEA theory, but make limited contributions when simply citing relevant
issues raised by others. Some authors, however, exhibit significant theoreti-
cal detail. Their work provides basic MOEA models and associated theories.
Table 6.1 lists contemporary efforts reflecting MOEA theory development. In
essence, a MOEA is searching for optimal elements in a partially ordered set
or in the Pareto optimal set. Thus, the concept of convergence to Ptrue and
PFtrue is integral to the MOEA search process.

As observed, MOEA theory noticeably lags behind applications, at least
in terms of published papers. This is even clearer when noting few of these
categorized papers (see Chapter 2) concentrate on MOEA theoretical con-
cerns. Others discuss some MOEA theory but do so only as regarding various
parameters of their respective approaches. This quantitative lack of theory is
not necessarily bad but indicates further theoretical development is necessary
to (possibly) increase the effectiveness and efficiency of existing MOEAs. The
rest of this chapter is organized as follows. Section 6.2 presents various MOEA
theoretical definitions, theorems, and corollaries. Appropriate mathematical
definitions are provided to support understanding of theorems and corollaries.
Also, note that certain theorems require specific MOEA structures in order to
prove convergence. Section 6.3 discusses MOEA issues as related to contempo-
rary theoretical results including fitness functions, fitness landscapes, Pareto
ranking, niching, mating restriction, running time analysis and stability. The
chapter concludes with some research ideas and discussion questions.

284 6 MOEA Theory and Issues

Table 6.1: MOEA Theory

Researcher(s) Paper Focus

Fonseca and Fleming [510] MOEA mathematical formulations
Rudolph [1396], Rudolph & Agapie [1401] MOEA convergence
Veldhuizen and Lamont [1627] MOEA convergence and Pareto terminol-

ogy
Veldhuizen and Lamont [1630] MOEA benchmark test problems
Hanne [643] MOEA convergence and Pareto terminol-

ogy
Laumanns et al. [959], Knowles and Corne [877] Archiving techniques
Deb & Meyarivan [371], Deb et al. [375] Constrained test problems
Rudolph [1395, 1397] MOEA search under partially ordered sets
Ehrgott [427] Analysis of the computational complexity

of multiobjective combinatorial optimiza-
tion problems

Rudolph [1399] Limit theory for EAs under partially or-
dered fitness sets

Laumanns et al. [962, 960] Running time analysis
Laumanns et al. [958] Mutation control
Hanne [644] Convergence to the Pareto optimal set
Aguirre and Tanaka [16],
Knowles and Corne [875]

Fitness landscapes

6.2 Pareto-Related Theoretical Contributions

Pareto-based theorems and definitions have been developed to support re-
search objectives and other theoretical results as reflected in Table 6.1. Many
MOEAs assume each generational population contains Pareto optimal solu-
tions (with respect to that population). For example, Theorem 1 substantiates
this assumption. As the MOEA literature offers little guidance concerning pos-
sible Pareto front cardinality and dimensionality, Theorems 4 and 5 provide
an upper bound. Thus, these and other theoretical Pareto contributions as ref-
erenced further bounding both problem and algorithm domains. Appropriate
ones are presented here for coherence. Some theorems are presented without
proof, but such proofs can be found in the associated references. Others have
been reworded in order to reflect the nomenclature used in this book. A limited
number of symbols have also been employed for ease of initial understanding.
But, first the associated definitions of partially ordered sets are discussed as
related to individual fitness function values.

6.2.1 Partially Ordered Sets

Partially ordered sets are an integral aspect of moving a population towards
the Pareto front using dominance. The underlying concept of a mathemati-
cal relation provides the basic foundation for studying partially ordered sets
over MOEA fitness functions. Note that optimality is assumed to reflect a
minimization MOP in the continuing discussion.

Definition 35 (Relation) : Let x, y and z be in X, some set satisfying a bi-
nary relation R such that xRy satisfies one or more of the following properties:

6.2 Pareto-Related Theoretical Contributions 285

reflexive (xRx is true), antireflexive (xRy implies that x�=y), symmetric (xRy
implies yRx), antisymmetric (xRy and yRx imply x=y), asymmetric (xRy im-
plies negation of yRx is true) and transitive (xRy and yRz implies that xRz),
for all x, y and z in X. �

Definition 36 (Equivalence) : If R is reflexive, symmetric, and transitive,
then R is an equivalence relation. �

Definition 37 (Partial Order) : If R is reflexive, antisymmetric, and
transitive, then R is a partial order relation. �

Definition 38 (Dominance) : Per the discussion in Chapter 1 using
Pareto partial order set relations. �

Definition 39 (Poset) : (X,≤), where ≤ is a partial order in X, is called
a poset or a partial ordered set. �

Definition 40 (Minimal Element) : An element x* of X is said to be
minimal of the poset (X,≤) if there is no x in X such that x is less than x* in
terms of the partial order relation ≤ (x≤x*). The set of all minimal elements
is defined as M(X,≤) and is complete if for each x in X there is at least one
x* in M(X,≤) such that x* is less than x (x*≤x). �

If X is a finite set, then the completeness of M(X,≤) is guaranteed. If
the poset (X,≤) is infinite then the set of minimal elements may be incom-
plete. Sufficient conditions for completeness in case of an infinite set exist as
discussed at the end of this section. However, here it is assumed that the car-
dinality of the minimal set is finite. Note that a decision vector is denoted by
x or x in the discussion and usually X = R

n. Likewise F defines the fitness
vector space, R

q.

Pareto Optimal Set Minimal Cardinality

Because of the manner in which Pareto optimality is defined, any non-empty
finite solution set contains at least one Pareto optimal solution (with respect to
that set); i.e., a minimal element. As this may be non-intuitive, and because
it is assumed in many MOEA implementations, the various theorems are
presented based on a finite set W .

Theorem 1: Given an MOP with feasible region Ω in X = R
n and any

non-empty finite solution set W ⊆ Ω, there exists at least one solution x ∈ W
that is Pareto optimal with respect to W [1627, 1626]. �

Proof. Label the k-dimensional objective vectors resulting from evaluating
each xi ∈ W in non-decreasing, lexicographic order as v1, v2, . . . , vn with
vi = (vi,1, vi,2, . . . , vi,k). If all vi are equal then v1 is nondominated because of
the partial order. Otherwise, there exists a smallest j ∈ {1, . . . , k} such that for

286 6 MOEA Theory and Issues

some i ∈ {1, . . . , n− 1}, v1,j = v2,j = . . . = vi,j < vi+1,j ≤ vi+2,j ≤ . . . ≤ vn,j .
This shows that vi+1, vi+2, . . . , vn do not dominate v1.

If i = 1, then v1 is nondominated. On the other hand, if i �= 1 and
j = k, v1 = v2 = . . . = vi and v1 is again nondominated. Otherwise, there
exists a smallest j′ ∈ {j + 1, . . . , k} such that for some i′ ∈ {1, . . . , i − 1},
v1,j′ = v2,j′ = . . . = vi′,j′ < vi′+1,j′ ≤ vi′+2,j′ ≤ . . . ≤ vi,j′ . If either i′ = 1,
or i′ �= 1 and j′ = k, v1 is nondominated. Otherwise continue this process.
Because k is finite, eventually v1 is nondominated and therefore there is at
least one solution that is Pareto optimal with respect to W .

Another approach to showing that Pknown (t) is non-empty is through the
use of the positive variation kernel. This kernel relates to the sequential gener-
ation of MOEA populations consisting of the Pknown (t) set1 (which consist of
minimal elements). The associated theorems are presented without proof and
are basically constructive in nature. The reader is referred to the references
for further details.

Definition 41 (Positive Variation Kernel) : Given the number of and
specific parents participating in producing a single child, the positive variation
kernel (> 0) of a general EA is a function mapping the transition probability
of the parents to the possible child over the search space. The joint transition
probabilities for mating and mutation operators is guaranteed if the operators’
probabilities are bounded. �

Rudolph’s variation kernel (i.e., transition probability function) is equiv-
alent to a reachability condition (appropriate mutation and recombination
operators allowing every point in the search space to be visited). Rudolph
also refers to at least one sequence leading to an associated point on Ptrue ,
as compared to this work which indicates that through Pareto ranking all
decision variable sequences lead towards Ptrue ; likewise, these variables’ phe-
notypical expressions lead towards PFtrue .

Theorem 2: With a finite search set, a MOEA with a “positive variation
kernel” and an elitist selection strategy generates a sequence of populations
(Pknown (t)) such that at least one population individual enters into the set of
minimal elements of the poset in finite time with probability one [1395, 1397].
�

Assuming a MOEA has a positive variation kernel and a strong elitist selection
strategy over a finite search set, a set of minimal elements is generated.

Theorem 3: (sufficient conditions) If the variation kernel of the MOEA is
positive, then the final population, Pknown , completely consists of minimal

1 In this case, the population of the MOEA at time t consists exclusively of the
elements of Pknown (t).

6.2 Pareto-Related Theoretical Contributions 287

elements after a finite number of generations with probability one [1395, 1397].
�

Theoretical PFtrue and Ptrue bounds are useful in defining a given prob-
lem domain. Theoretical statements exist defining the structural bounds any
Pareto front may attain. For example, Corollary 6.1 provides a lower bound
for the cardinality of the Pareto front.

Corollary 6.1. Given a MOP with feasible region Ω in X = R
n and any non-

empty finite solution set W ⊆ Ω, its Pareto front PFtrue is a set containing
at least one vector. This result follows directly from Theorem 1 [1627, 1626].

Theorem 4: The Pareto front PFtrue of any MOP is composed of at most
an uncountably infinite number of vectors [1627, 1626]. �

Proof. The Pareto front’s cardinality is bounded above by the cardinality of
the objective space.

Theorem 4 provides an upper bound on the cardinality of the Pareto front
for MOPs with Euclidean objective spaces (spaces containing all n-tuples of
real numbers, (x1, x2, . . . , xn), denoted by R

n). This includes many MOPs of
interest. One can use the following definition in bounding the Pareto front’s
dimensionality [34, pg. 174]:

Definition 42 (Box-Counting Dimension) : Let R
k be partitioned by a

grid of k-dimensional boxes of side-length ε, where the boxes’ sides are parallel
to the objective axes. A bounded set S in R

k has box-counting dimension

boxdim(S) = lim
ε→0

ln N(ε)
ln(1

ε)
, (6.1)

where the limit exists and where N(ε) is the number of boxes that intersect S.
�

Theorem 5: For a given MOP with X, F, and a Pareto optimal set Ptrue , if
the Pareto front PFtrue is bounded, then it is a set with box-counting dimen-
sion no greater than (q − 1) [1627, 1626]. �

Proof. Without loss of generality assume PFtrue is a bounded set in [0, 1]q.
Take S to be the closure of PFtrue . Because [0, 1]q is closed, S is a bounded set
in [0, 1]q. By hypothesis, [0, 1]q is partitioned by a grid of k-dimensional boxes
of side-length ε, where the boxes’ sides are parallel to the objective axes. For
each r ∈ R � {0, ε, 2ε, . . . , � 1

ε �ε}q−1 define Rr = [r1, r1 + ε]× [r2, r2 + ε]×· · ·×
[rk−1, rk−1 + ε]× [0, 1]. If S ∩Rr �= ∅, define pr to be the point that minimizes

288 6 MOEA Theory and Issues

fq over Rr and Br to be any box that includes pr. Also define Sε = {pr}
and Bε = ∪rBr. Then Bε covers Sε. Because S is closed limε→0 Sε = S, and
B � limε→0 Bε covers S. Because PFtrue ⊆ S, B also covers PFtrue . Hence,
N(ε) = | R |= � 1

ε �q−1, and the box-counting dimension of PFtrue is

lim
ε→0

ln(� 1
ε �q−1)

ln(1
ε)

≤ lim
ε→0

ln((2
ε)q−1)

ln(1
ε)

= lim
ε→0

(q − 1)[ln 2 + ln(1
ε)]

ln(1
ε)

= lim
ε→0

[
(q − 1) ln 2

ln(1
ε)

+ (q − 1)]

= q − 1 (6.2)

In practice, the Pareto front PFtrue is a collection of (q−1) or lower dimen-
sional surfaces termed Pareto surfaces. The special case where q = 2 results
in surfaces termed Pareto curves. Horn & Nafpliotis [708], and Thomas [1580]
state that a q-objective MOP’s Pareto front is a q − 1 dimensional surface.
But this, by Theorem 5, has been shown to be incorrect; the front is at most a
(q−1) dimensional surface [1626]. Although asymptotic bounds are useful, re-
searchers must also account for the Pareto front’s possible shape within those
bounds. Theorem 5 then implies that any proposed MOEA benchmark test
function suite should contain MOPs with Pareto fronts composed of Pareto
curve(s), Pareto surface(s), or some combination of the two (see Chapter 1).

6.2.2 MOEA Convergence

Using the theorems of the previous section, the convergence of PFknown to
PFtrue can be addressed. To provide insight to the development, the support-
ing background of single objective EAs is initially presented using the concepts
of total order and reachability.

Given that x is a single-objective optimization decision variable, I the
space of all feasible decision variables, F a fitness function, and t the genera-
tion number, Bäck proves [72, pg. 129] that an EA converges with probability
one if it fulfills the following conditions:

∀x, x′ ∈ I, x′ is reachable from x

by means of mutation and recombination; (6.3)

and the population sequence P (0), P (1), . . . is monotone, i.e.,

∀t : min{F (x(t + 1) | (x(t + 1) ∈ P (t + 1))}
≤ min{F (x(t) | (x(t) ∈ P (t))} (6.4)

6.2 Pareto-Related Theoretical Contributions 289

Bäck’s definition of monotonicity, appropriate in the context of single ob-
jective EAs, is fitness-based and assumes that the objective space is totally
ordered. Neither of these restrictions is appropriate in the context of MOEAs.
A solution’s Pareto-based fitness depends on the set within which it is evalu-
ated, and consequently may vary from one generation to the next. Also, the
objective space for a MOEA is partially and not necessarily totally ordered.
As previously discussed, a convergence theorem for MOEAs requires a more
general definition of monotonicity that is both fitness independent and ap-
propriate for objective spaces that are not totally ordered. The search for the
Pareto optimal set is a search in partially ordered sets for optimal multiobjec-
tive problem (multi-criteria) solutions. Using a population-based MOEA, an
increasing movement towards the true Pareto front PFtrue from PFknown (t)
can usually be achieved. One such definition is given by the condition

PFknown (t+1) = M(PFcurrent (t) ∪ PFknown (t),�) (6.5)

where � represents the Pareto dominance partial order and PFknown (0) =
∅. It can be shown by induction on t that under this condition, PFknown (t)
consists of the set of solutions evaluated through generation t that are Pareto
optimal with respect to the set of all such solutions. Thus, PFknown (t + 1)
either retains or improves upon solutions in PFknown (t). In this sense, Con-
dition (6.5) ensures that PFknown (t) monotonically moves towards PFtrue .
Employing these conditions results in global convergence to the Pareto opti-
mal solution set.

Theorem 6: A MOEA satisfying (6.3) and (6.5) converges to the global
optimum (Ptrue) of a MOP with probability one, i.e.,

Prob
[

lim
t−→∞

{Ptrue = Pknown (t)}
]

= 1 .

�

Proof. A MOEA may be viewed abstractly as a Markov chain consisting of
two states. In the first state, Ptrue = Pknown (t), and in the second state this
is not the case. By Condition (6.5), there is zero probability of transitioning
from the first state to the second state. Thus, the first state is absorbing.
By Condition (6.3), there is a non-zero probability of transitioning from the
second state to the first state. Thus, the second state is transient. The theorem
follows immediately from Markov chains theory [32].

Another form of Ptrue convergence is associated with the variation kernel
hypothesis of Theorem 2, although the population can grow to a large number.

290 6 MOEA Theory and Issues

Theorem 7: If Theorem 2 holds, the EA population completely converges to
the set of optimal elements Ptrue if the set of minimal elements at Pknown (t)
is the union of parents and generated children [1395, 1397]. �

Rudolph’s other EA convergence theorems employ the concept of the ho-
mogeneous stochastic matrix G instead of the probabilistic variation kernel.
The use of the matrix G can define a chain of population movements. Using
this concept, convergence can then be extended to MOEAs. Initially, the gen-
eralization of finding optimal elements in a partially ordered set is addressed
since multiobjective optimization is a specialized class of such a set. Note that
in general Rudolph’s 2000 theorems are clarifications of his 1998 theorems as
referenced.

Definition 43 (Stochastic Matrix) : Gm×n is a stochastic matrix if the
sum of each of its rows is equal to 1, that is, if

∑n
j=1 gij = 1, i = 1, ...,m. �

The transition probabilities of the population of a MOEA, from the current
to the next generation, can be described by means of a stochastic matrix G.

Definition 44 (MOEA convergence with probability 1 to minimal
set) : A MOEA is said to converge to the entire set of minimal elements
Ptrue with probability one if

d1(PFtrue ,PFknown (t))→ 0 with probability one as t →∞,

where d1(PFtrue ,PFknown (t)) is a distance function between PFtrue and
PFknown (t), and it is defined as:

d1(PFtrue ,PFknown (t)) =|PFtrue ∪ PFknown (t)| − |PFtrue ∩ PFknown (t)|
Or an EA is said to converge to the set of minimal elements if the distance
function

d2(PFtrue ,PFknown (t))=|PFknown (t)| − |PFtrue ∩ PFknown (t)|
satisfies:

d2(PFtrue ,PFknown (t))→ 0 with probability one as t →∞.

[1399]. �

Similar to Theorem 6, another convergence theorem can be proved using
the stochastic transition matrix G.

Theorem 8: Let G be the homogeneous stochastic matrix describing the tran-
sition behavior of a specific MOEA whose population at time t is Pknown (t)
provided that PFknown (t) = M(PFknown (t − 1) ∪ PFcurrent (t − 1),�) (�
represents the Pareto dominance partial order). If matrix G is positive then
the distance function d1(PFtrue ,PFknown (t)) goes to zero with probability
one as t →∞ [1399]. �

6.2 Pareto-Related Theoretical Contributions 291

Note that this approach usually generates larger and larger populations. Re-
garding the computational desire for a smaller population, consider limiting
the number of minimal child individuals passed to the next generation.

Theorem 9: Let G be the homogeneous stochastic matrix describing the
transition behavior of a specific MOEA, as in Theorem 8, but such that it
only draws a limited number of new unique minimal individuals from the
children, for the next generation. If matrix G is positive then the distance
d2(PFtrue ,PFknown (t)) goes to zero with probability one as t →∞ [1399]. �

Constraining the population Pknown (t) size to be constant from generation
to generation, convergence hypotheses can still be stated.

Theorem 10: Let G be the homogeneous stochastic matrix describing the
transition behavior in a specific MOEA, as in Theorem 8, but such that it
limits the population size (population size remains constant by control). If the
matrix G is positive then the distance d2(PFtrue ,PFknown (t)) goes to zero
with probability one as t →∞ [1399]. �

Regarding explicit multiobjective problem formulations, Rudolph has shown
the following:

Corollary 6.2. If F is a vectored valued objective MOP function associated
with Theorem 9, then the population converges with probability one to the
Pareto set, Ptrue . Moreover, the population size converges to the minimum of
the preset number or the cardinality of Ptrue .

Corollary 6.3. If F is a vectored valued objective MOP function associated
with Theorem 10, then the constant population size converges with probability
one to elements in Ptrue .

Rudolph’s Corollary 3 [1395] guarantees that given a countable infinite
MOEA population and a MOP, at least one decision variable (xk) sequence ex-
ists such that f(xk) converges in the mean to PFtrue . Note Rudolph’s nomen-
clature is different than that which is presented here.

Rudolph [1396], also proved that a specific multiobjective ES with (µ + λ
= 1+1) converges with probability one to a member of Ptrue of the MOP. His
distance metric is in the genotype domain, as compared to Van Veldhuizen’s
work, which is phenotypically based. The EVOPs in his model are not able to
search the entire space (in a probabilistic sense) since a step size restriction
is placed upon the probabilistic mutation operator. Thus, convergence only
occurs when the ES’s step size is proportional to the distance to the Pareto set
as shown in the elaborate proof. However, this distance is obviously unknown
in problems of high complexity which is typical of most real-world problems.

Some theorems are for a specific EA and MOP instantiation with con-
strained EVOPs while others requires a less-specific EA structure. The theo-
rems show that what one seeks is possible – given MOEAs do converge to an

292 6 MOEA Theory and Issues

optimal set, although some theorems define a genotypic optimum and others
a phenotypic one. Using phenotypical information may often be more appro-
priate as a decision maker’s costs and profits are more accurately reflected in
attribute space.

Another MOEA convergence theorem variation by Hanne considers con-
tinuous objective functions. His approach employs underlying geometric struc-
tures based primarily on convex sets. Such representations can be found
in the mathematical and operations research literature. For proving theo-
rems Hanne uses concepts of cones, efficient sets, efficiency preservation, and
other sophisticated mathematics. Hanne has embedded these concepts into
a MOEA implementation called LOOPS (Learning Object-Oriented Problem
Solver) [642, 644, 645]. Readers are directed to the associated references for a
detailed description and associated theorem proof details. Some of these con-
structs are presented here in support of the major convergence theorem. Note
that the previous theorems assumed a finite cardinality or countable search
space, here, Hanne assumes a continuous F and X.

Definition 45 (Cone) : K (a vector space) is a cone if and only if αx is
in K for all x in K, α > zero. If K is convex and a cone, then K is a convex
cone. A cone K is pointed if and only if K ∩ -K = {0}. Cones can be used
to induce ordering relations similar to the previous partial order definitions.
For example, if K is pointed, then ≤K is a partial order operator defined as
x ≤K y if and only if y-x is in K (not including zero). �

Thus, K as a cone by definition has the properties of a partial order or
a Pareto order. X is of course the decision space and F is the vector space
of fitness functions, and by construction the vector space F(X) is in K. Note
that F(X) is assumed to be a compact and convex set as defined by the MOP
constraints imposed.

Definition 46 (Efficient/Pareto set) : A set (X,F) is efficient in X (xεX)
with respect to the fitness function F if and only if (F (x̂) + K) ∩ F (X) =
{F (x̂)}. The efficient set is encoded as E(X,F). The efficient set is equivalent
to the Pareto optimal set, Ptrue [643]. �

That is, the intersection of F (x̂) + K with F (X) is the set of some points
on the Pareto optimal front. The fact that F (X) is contained in K guarantees
that the resulting set is nonempty and is F (x̂), a point in Ptrue . Note that
F (x̂) is a boundary point of the compact and convex set F (X).

Definition 47 (Regular MOP) : A multiobjective problem is regular if
and only if the fitness function is continuous, the decision space X is closed
and bounded (compact), the topological interior of X is not zero, and the cone
K is a nontrivial closed convex cone with interior of K not zero, F (X) ⊂ K.
�

Hanne defines the dominating set symbolically as DOM(M t) where the ar-
gument M t is the current population at t which can be compared to Pknown (t).
And DOM(M t) refers to those points in X that of course dominate M t, but

6.2 Pareto-Related Theoretical Contributions 293

therefore specifically reflects those points in Ptrue that can be reached from
M t.

Definition 48 (Efficiency preserving MOEA) : A MOEA is efficiency
preserving if and only if for all t > zero and ∅ �= M0, Dom(M t+1) is in-
cluded in Dom(M t). That is, as t increases the set cardinality of reachable
Ptrue points from M t decreases or stays the same. �

From these definitions, Hanne has developed the following decision vari-
able convergence theorem for multiobjective EAs based upon an evolution
strategies MOEA approach:

Theorem 11: If (X,F) is regular and the MOEA is efficiency preserving,
then Prob [∅ �= (limt→∞M t) ⊆ E(X,F)] = 1 [643]. �

This theorem relates to a “convergence in probability” to within the Pareto
optimal set Ptrue or E(X,F) from Pknown or equivalently M t. Again, Pknown (t)
converges to a nonempty subset of Ptrue based upon the assumptions of an
efficiency preserving MOEA and the regularity of the MOP. In fact, the con-
vergence may be to only one point. Note that this theorem may be extensible
to other MOEA types with other MOEA selection functions and heuristics.

Convergence of Alternative Heuristics

In [1653, 1655], Villalobos et al. present the asymptotic convergence analysis of
Simulated Annealing (SA), an Artificial Immune System (AIS) and a General
Evolutionary Algorithm (GEA), for multiobjective optimization problems. SA
is a heuristic search technique based on some analogies with an annealing
process in which a crystal is produced. On the other hand, the AIS algorithm is
a technique that simulates in a computer certain aspects of an immune system.
For the mathematical model, Villalobos et al. consider the SA proposed in
[1467], and the AIS for multiobjective optimization proposed in [311]. For
these metaheuristics, that use a uniform mutation rule, they show that the
associated Markov chain converges geometrically to its stationary distribution,
but not necessarily to the optimal solution set. Convergence to the optimal
solution set is ensured if elitism is used (by means of an external archive or
elite set of limited size). In fact, Villalobos et al. assume that the size of the
external archive is smaller than the size of the population.

The metaheuristics are modeled as Markov chains with transition prob-
abilities that use uniform mutation and possibly other operations. For the
case of SA, Villalobos et al. define Gij(ck) as the generation probability of
state j from state i, where ck is a parameter that simulates the temperature,
and develop a convergence proof of SA, for multiobjective optimization prob-
lems. They prove that the SA algorithm converges with probability one (as
defined in Theorem 6), if the transition matrix G(c) associated with the gener-
ation probabilities Gij(ck) is irreducible. For the MISA and GEA algorithms,

294 6 MOEA Theory and Issues

Villalobos et al. prove the convergence with probability one, when using
elitism, by providing demonstrations similar, though more detailed, to that
presented for Theorem 6.

In [1723], Xue et al. perform a mathematical modeling and convergence
analysis of a continuous Multi-Objective Differential Evolution (C-MODE)
algorithm. The MODE algorithm is an extension of the Differential Evolution
algorithm, to the multiobjective context. Differential Evolution (DE) is a type
of evolutionary algorithm proposed by Storn and Price [1526] for optimization
problems over a continuous domain. DE is similar to a (µ, λ)-ES in which
mutation plays the key role.

The basic idea of DE is to adapt the search step inherently along the evolu-
tionary process in a manner that trades off exploitation against exploration.
In [1723], the convergence properties of C-MODE are studied in a similar
manner to the work presented by Hanne in [643]. In this way, Xue et al. prove
the convergence of the population of the C-MODE to the Pareto optimal so-
lutions with probability one by means of a theorem analogous to Theorem 11.
On the other hand, Xue et al. study the C-MODE operators and their effects
on the convergence properties of the algorithm, under the Gaussian initial
population assumption.

They first examine the population evolution of the C-MODE with only re-
production operators, and introduce later the selection factor. They show that
the limiting properties of C-MODE depend on the factor (2KF 2 + (1− γ)2),
where K, F and γ are the parameters associated to the approach. If this fac-
tor is greater than 1, the population variance matrix explodes, and C-MODE
with selection successfully identifies the optimal solution set; otherwise, the
population variance matrix vanishes.

Xue et al. confirm the mathematical results developed by simulation results
obtained by applying C-MODE to numerical examples with different parame-
ter settings. Also, they conduct simulation results on complicated continuous
benchmark functions and show that the C-MODE performs better when the
parameters are set to meet the obtained conditions. In this way, the results
obtained by Xue et al. can also be used to guide the parameter setting of the
C-MODE when applied in real world applications.

In [1724, 1720], Xue et al. extend their theoretical work by modeling a dis-
crete version of MODE, D-MODE, in the framework of Markov processes and
develop the corresponding convergence properties. They study the Markov
model for the D-MODE with finite population size. Two situations are con-
sidered: one with a population large enough to contain all the Pareto optimal
solutions while the other is the opposite. In the second situation, an external
archive is needed to store all visited Pareto optimal solutions. In both cases,
Xue et al. prove the convergence with probability one of D-MODE to the
set of Pareto optimal solutions by providing demonstrations similar to those
presented for Theorems 6 and 10.

6.2 Pareto-Related Theoretical Contributions 295

Archiving Strategies

As we can see, the algorithms (and theorems) proposed by Rudolph [1395],
Rudolph and Agapie [1401] and Hanne [643] guarantee convergence to the true
Pareto optimal front, however, they do not guarantee a good distribution of
Pareto optimal solutions.

In [959], Laumanns et al. discuss this behavior and also provide some
analysis to show that other algorithms proposed after those which ensure
convergence, like PAES [886], SPEA [1782] or NSGA-II [374] (where selection
is based only on diversity or density measures), suffer from possible deteriora-
tion and thus, convergence can no longer be guaranteed. Deterioration occurs
when elements of a solution set at a given time are dominated by a solution
set the algorithm maintained some time before. According to Laumanns, this
can happen using the standard Pareto-based selection schemes, even under
elitism.

Based on a new concept named ε-dominance, Laumanns at al. propose new
archiving strategies that overcome this fundamental problem and provably
lead to MOEAs which have both the desired convergence and distribution
properties. The work of Laumanns solely deals with the updating process
of an archive A of limited size, maintained by a generic search algorithm
that generates just one new sample at each iteration (by means of a black
box optimization process). Similar to the definition of Pareto dominance (see
Definition 7), they define the concept of ε-dominance in the following way:

Definition 49 (ε-Dominance) : A vector u = (u1, . . . , uk) is said to
ε-dominate another vector v = (v1, . . . , vk) for some ε > 0, denoted by
u �ε v, if and only if ∀i ∈ {1, . . . , k}, (1− ε)ui ≤ vi. �

On the limit ε → 0, and the ε-dominance becomes the normal dominance.
The concepts of ε-approximate Pareto set and ε-Pareto set are also defined in
the following.

Definition 50 (ε-approximate Pareto set) : Let F ⊂ R
k and ε > 0,

a set Pε is called ε-approximate Pareto set of F , if any vector x′ ∈ F is
ε-dominated by at least one vector x ∈ Pε. �

Definition 51 (ε-Pareto set) : Let F ⊂ R
k and ε > 0, a set P∗

ε is called
ε-Pareto set of F , if P∗

ε is an ε-approximate Pareto set of F and P∗
ε contains

only Pareto optimal solutions (P∗
ε ⊂ P∗, see Definition 8). �

In this way, Laumanns et al. provide the following theorem related to
an updating strategy which converges and preserves diversity of the solution
vectors.

Theorem 12: Let A(t) the archive obtained by a generic algorithm that
updates A(t) at each generation in such a way that new points are only ac-
cepted if they are not ε-dominated by any other point of the current archive
(of course, dominated points are removed). Then A(t) is an ε-approximate

296 6 MOEA Theory and Issues

Pareto set and its size is bounded by:

|A(t)| ≤
(

log K

log(1 + ε)

)m

(6.6)

�

To guarantee that the points in A(t) are Pareto optimal solutions, Lau-
manns et al. propose to discretize the search space by a division into boxes,
where each vector uniquely belongs to one box.

Definition 52 (ε-box) : The ε-box of a point f = (f1, ...fk) is defined by
a box index vector b := (b1, ..., bk) where

bi :=
⌊

log fi

log(1 + ε)

⌋
.

�

Theorem 13: Let A(t) be the archive obtained by a generic algorithm that
updates A(t) at each generation in such a way that it maintains a set of
nondominated ε-boxes (represented by vectors) and at most one element is
kept in each ε-box, which is only replaced by a dominating one. Then A(t) is
an ε-Pareto set and its size is bounded according to Equation 6.6. �

In this way, it is guaranteed that A(t) contains only elements which are
nondominated by any of the generated vectors. Also, the archiving algorithms
suggested by Laumanns are generic and enable convergence with a guaran-
teed spread of solutions. The use of ε-dominance also makes the algorithms
practical by allowing a decision maker to control the resolution of the Pareto
set approximation by choosing an appropriate ε value. In [959], Laumanns et
al. present some additional simulation results to demonstrate the behavior of
the algorithms proposed, and perform comparisons against the SPEA [1782]
and the NSGA-II [374] algorithms, where it is visible that the updating selec-
tion process of the SPEA and NSGA-II approaches suffer from the problem of
partial deterioration. Finally, they provide some discussion about other defin-
itions of ε-dominance and several mechanisms to dynamically adapt the value
of ε.

Although according to Definitions 50 and 51, the sets obtained by the
algorithms proposed by Laumanns et al. represent optimal approximations, it
may be possible that not all regions of the Pareto set are equally represented,
specially the extremes of the Pareto front.

In [877], Knowles and Corne analyze several archiving algorithms including
those proposed by Rudolph and Laumanns et al. and, as previously noted
by Laumanns, they conclude that the strategies proposed by Rudolph do
not encourage the storage of a good distribution of vectors, although they
guarantee convergence. On the other hand, they discuss that the methods

6.2 Pareto-Related Theoretical Contributions 297

proposed by Laumanns et al. have certain problems concerning the initial
setting of important parameters (ε).

According to Knowles and Corne, with the ε-methods one must either pre-
set the value of ε, or bound the size of the archive and use an adaptive setting
of ε (which are also provided by Laumanns et al. in [959]). In the former
case, the number of points in the archive is bounded only by some function
of the (unknown) objective space ranges. In the latter case, ε may become
arbitrarily large and so the final set achieved may be a poor representation of
the sequence of points presented to the archiving algorithm. Specifically, the
number of points in the final archive may be far fewer than desired. However,
in either case, convergence is guaranteed.

In this way, Knowles and Corne propose an Adaptive Grid Archiving
(AGA) algorithm which addresses some of the problems with the archiv-
ing strategies considered previously. The algorithm is based on the archiv-
ing method used in PAES [886], which maintains an archive of bounded size,
encourages an even distribution of points across the Pareto front, is computa-
tionally efficient, and provably converges under certain conditions. The basic
principle of AGA is that as points in the objective space are generated and
archived, the location and size of a grid in the k-dimensional objective space is
adapted so that it just envelops the points. The grid is used to aid in selecting
which points to remove from the archive, should the latter reach its capacity
bound. In this case, a point from the maximally crowded region(s) is selected,
so long as it is not an extremal point. According to Knowles and Corne, this
strategy ensures archived points cover a wide extent in objective space and
are “well distributed”.

The rules of AGA do not constitute an algorithm that converges in the
sense of reaching a state in which the members of the archive do not change
for all future iterations (this is because nondominated vectors can be removed
and cycles of entry and removal of these vectors can ensue). Nevertheless,
Knowles and Corne provide a convergence result for AGA2: when (if) the grid
boundaries converge (i.e. stop moving) a set of regions in the grid become
constantly occupied over time by points in the archive and these grid regions
contain the true Pareto front. In this way, the archive contains points that are
at most a distance l from the true Pareto front, where l is the large diagonal
of a grid region.

Knowles and Corne prove that the lower boundaries of the grid converge in
all cases (assuming a minimization case) and, since such fact is not true for the
upper boundaries in general, they show that the special cases when the upper
boundaries can be proved to converge are when there are only two objectives,
and when the true Pareto front is as broad as the entire search space in
all objective dimensions, that is, it spans the feasible objective space in all

2 All proofs of convergence presented by Knowles and Corne rely on the fact that,
at every time step, the generating process gives every point in the search space a
nonzero probability of being generated.

298 6 MOEA Theory and Issues

objectives. Thus, the convergence of the AGA algorithm is not guaranteed in
the general case because the upper boundaries of the grid may fluctuate.

This occurs when the Pareto front has a smaller extent than the whole
objective space [877]. This causes a problem because points not in the true
Pareto front may cause the grid ranges to be extended, then at some later
time these must be reduced again when the points are removed because they
become dominated. In this way, AGA suffers from a problem related to those
of the adaptive methods proposed by Laumanns et al.

In fact, according to Knowles and Corne, if the ranges of the grid were set
in advance, that is, no adaptive scheme were used, and the archive bound and
number of grid regions were set appropriately, then a result similar to that of
Laumanns et al. algorithm is obtained.

More recently, Knowles and Corne provide a discussion about the prop-
erties of an imaginary ideal archiving algorithm and investigate the extend
to which these properties can be, in principle, attained [878]. In [878], the
main thesis of Knowles and Corne is that those methods that do not assure a
formally guaranteed ε-approximation level may perform much better in prac-
tice. This is especially true under a “blind, one-shot scenario”, where we are
completely ignorant of Pareto front ranges and have only a single algorithm
run from which to collect our solutions. According to Knowles and Corne, the
properties of an ideal archiving algorithm, in terms of the archive At that it
produces at generation t, are the following:

P1 A is itself a nondominated set (A is shorthand for At).
P2 |A| ≤ N , i.e., the size of A is bounded.
P3 The archive A converges to a stable set in the limit of t.
P4 The archive A contains only Pareto optimal points from the sequence

generated by the optimization process.
P5 All extrema Pareto optimal solutions, from the generated sequence, are

in A.
P6 The size of the archive is “as close as possible” to N or the number of

Pareto optimal points from the generated sequence.
P7 For every Pareto optimal point of the generated sequence, there is a point

in A “nearby”.

In [878], Knowles and Corne inquire if any archiving algorithm exists that
can guarantee to produce archives satisfying all of the properties. They discuss
that although P1, P2, P4 and P5 are straightforward and well-defined, P3,
P6 and P7 are not. P3 expresses a feature of the archive in the limit of
t and it is essential because it expresses the requirement that the archive
should eventually converge. On the other hand, P6 and P7 capture the ideas,
respectively, of the final archive not becoming too small, and of being well-
distributed. Regarding property P6, Knowles and Corne provide the following
theorem.

6.2 Pareto-Related Theoretical Contributions 299

Theorem 14: No archiving algorithm can maintain the size of the archive
equal to the minimum between the bound N and the number of Pareto optimal
solutions from the generated sequence. �

In this way, Knowles and Corne showed that trying to keep the minimum
size of the archive high (as large as possible) is impossible in a strict sense.
On the other hand, considering that property P7 means that A should be an
ε-approximate set of size up to N that minimizes ε, they provide the following
theorems.

Theorem 15: No archiving algorithm can maintain an ideal archive, that
is, an ε-approximate set of size up to N that minimizes ε. �

Theorem 16: No archiving algorithm can maintain an ε-approximate set
of size up to N with an ε that is less than a constant κ of the ideal value
of ε, without additional knowledge of the extent of the Pareto front of the
generated sequence. �

Thus, Knowles and Corne demonstrated the existence of some theoretical
limitations on algorithms for maintaining bounded archives. In [878], they also
provide a case of study where they empirically test the archiving performance
of AGA and of the ε-based archiving algorithms proposed by Laumanns et
al. (Theorems 12 and 13). For their experiments, they use several different
sequences of points designed to be difficult for archiving algorithms. The se-
quences include a small Pareto front in a large objective space, a discontinuous
Pareto front, and a highly non-uniformly space Pareto front. They conclude
that, in these situations, AGA performs better than the ε-approximate meth-
ods proposed by Laumanns et al. [959].

In this way, Knowles and Corne showed that for general sequences of
points, no algorithm that respects one bound can maintain an ideal mini-
mum number of points in the archive. That is, no archiving algorithm can, in
general, be expected to maintain an “optimal” representation of the Pareto
front when the size of that set is larger than the archive bound.

As shown, MOEA convergence theorems can use different but similar hy-
potheses based upon underlying decision space and assumptions on the MOP
fitness landscapes and MOEA EVOPs. Minor algorithmic variations in popu-
lation generation operators are assumed in each theorem and proof. However,
convergence results are stated in very similar generic terms. Such generic
convergence is guaranteed to either PFtrue or Ptrue in infinite time per the
previous theorems.

For finite time, the major characteristic of convergence rate is probably and
uniquely associated with the specific MOP. Note that the metrics of Chap-
ter 5 relate to this characteristic. A generic theoretical rate of convergence
formulation is still unknown. The more important issue is the rate at which

300 6 MOEA Theory and Issues

an MOEA converges to PFtrue , and whether PFknown(t) uniformly represents
PFtrue as t → ∞. The MOEA literature is largely silent on these issues, al-
though Rudolph shows the convergence rate for the specific (1+1) EA struc-
ture is sub-exponential [1396]. Also, as we will see in Section 6.3.10, some
researchers have studied simple algorithms when applied to simple problems
and have obtained the corresponding running time. However, further theoret-
ical developments are still needed on this issue.

6.3 MOEA Theoretical Issues

MOEA researchers indicate that MOEA theory is lagging behind MOEA im-
plementations and applications. For example, until recently no proof was of-
fered showing a MOEA is capable of converging to Ptrue or PFtrue (see Sec-
tion 6.2.2). Chapter 2 implies that although the number of MOEA variations
and implementations is significant, this fact alone does not indicate a corre-
sponding depth of associated theory (as reflected by Table 6.1).

Why is there a lack of underlying MOEA theory? Although some math-
ematical foundations exist the current situation seems akin to Goldberg’s
comparisons of engineer and algorithmist [582]. He likens algorithms to “con-
ceptual machines” and implies scientists are hesitant to move forward without
exact models precisely describing their situation. On the other hand, he claims
a design engineer often accepts less accurate models in order to build the de-
sign. MOEA researchers certainly seem to have taken this approach!

Realizing that simple assumptions are sometimes made in order to develop
limited theoretical results, the foundations of single-objective EA theory are
well-established. The Handbook of Evolutionary Computation [73] devotes en-
tire chapters to theoretical EC results established up to 1997. Sample topics
include EA types, selection, representation, crossover, mutation, fitness land-
scapes, and so on. There are also other (more recent) books that are entirely
devoted to EA theory (see for example [814, 1343]). Several foundational text-
books are also available, such as those by Goldberg [581], Michalewicz [1100],
Mitchell [1114], Bäck [72], and by Eiben & Smith [435]. Although much of
this theory is (may be?) valid when regarding MOEAs, some is not. The evo-
lution of the above Handbook into two volumes (Evolutionary Computation
1 & 2) [74, 75] although serving an excellent practitioners perspective, of-
fers little in the way of theory. This section presents contemporary knowledge
concerning selected MOEA theoretical issues.

6.3.1 Fitness Landscapes

The concept of fitness landscape was introduced by Sewall Wright in 1932
[1712] as a metaphor to describe multiple domains of attraction in evolutionary
dynamics. The idea of Wright was to see the search space as having multiple
peaks towards which the population would evolve by climbing up. Wright was

6.3 MOEA Theoretical Issues 301

mainly interested in looking at the way in which populations could escape
from local optima through stochastic fluctuations. Thus, this is certainly one
of the earliest proposals to use stochastic processes for optimizing multimodal
functions [364].

Wright’s concept was conceived as an aid to visualize the behavior of the
selection and variation operators during the evolutionary process. Thus, fit-
ness landscapes are normally used to study the efficacy of evolutionary algo-
rithms [1500]. Particularly, researchers have adopted the so-called NK fitness
landscape proposed by Stuart Kauffman [828, 827, 829] to explore the way in
which epistasis3 controls the ruggedness of an adaptive landscape. Kauffman’s
idea was to specify a family of fitness functions having a ruggedness which
could by tunable through the manipulation of a single parameter.

Although several researchers have used landscape analysis in a single-
objective optimization context (see for example [1500, 364, 1637]), little work
currently exists for multiobjective problems. Next, we will review the most
relevant work in this regard.

Knowles and Corne [875] introduce the multiobjective quadratic assign-
ment problem (mQAP) and investigate some methods for measuring the cor-
responding multiobjective combinatorial landscape. Since local search moves
can be quickly evaluated on the QAP, hybrids of global optimization schemes
and local search techniques are favored for solving the QAP problem. In this
way, they study the correlation between nearby optima in order to design
the best overall search strategy (the best way to move about in the multiob-
jective landscape): approach first PFtrue and then spread around from there,
start repeatedly from new random points, or using a gradual approach towards
PFtrue from all directions in parallel.

According to Knowles and Corne, the best approach will depend on
whether or not points nearby in objective space are also nearby in the permu-
tation space. With this aim, they provide a number of landscape measurement
methods based on measures previously applied to fitness landscapes of QAP
instances: diameter of a population, entropy, fitness distance correlation and
flow dominance. All such methods are mainly based on distances in the pa-
rameter (permutation) space and are applied on the information obtained
after performing several local search runs using a set of evenly distributed
scalarizing vectors. The information recorded consists of the starting points
and the local optimum reached, along with their corresponding multiobjective
evaluations and the number of local search moves applied. For the problems
used, they conclude that it seems to be easy to move along Pknown than to
get to Ptrue in the first place, and to find solutions on Ptrue once one has been
found.

3 A gene is epistatic if its presence suppresses the effect of another one at another
location in the chromosome [1100].

302 6 MOEA Theory and Issues

The methods proposed by Knowles and Corne represent an important
contribution since they seem to be generally appropriate for multiobjective
combinatorial optimization.

Another approach to study the fitness landscape of multiobjective com-
binatorial optimization problems is the one proposed by Stadler and Flamm
[1512]. They show that geometrical properties of ordinary landscapes like sad-
dle points, barriers and basins can be extended to the poset-valued case of
multiobjective optimization in a meaningful way, and describe an algorithm
that efficiently extracts these features from an exhaustive enumeration of a
given generalized landscape. In this way, they assume that they can enumerate
the decision space X exhaustively.

According to Stadler and Flamm, a landscape is formally a triple (X,X , f)
consisting of a set of configurations X, a topological structure X that deter-
mines the mutual accessibility of configurations and a cost (or fitness) function
f : X → R. The neighborhood relation X is typically defined by the move
set of a search heuristic. In this way, their studies are restricted to the sim-
plest case in which the configuration space (X,X) is a finite undirected graph
G = (X,E) with vertex set X and edge set E (edges connect configurations
that can be inter-converted by a single move).

The algorithm described by Stadler and Flamm, called flooding algorithm,
arranges the local minima and the saddle points in a unique hierarchical struc-
ture which is conveniently represented as a tree, termed barrier tree (which
in the case of partially ordered sets is in fact a forest). As a consequence, the
Pareto solutions can be identified from the tips of the barrier forest. Stadler
and Flamm provide a few examples to illustrate the type of information that
can be gained, by applying their algorithm to a knapsack problem, a web
access problem and a RNA secondary structures problem.

In [17], Aguirre et al. present an extension of Kauffman’s NK-Landscapes
to multiobjective MNK-Landscapes in order to use them as a benchmark tool
and as a mean to understand better the working principles of MOEAs. Kauff-
man’s NK-Landscapes model of epistatic interactions, particularly, have been
the center of several theoretical and empirical studies both for the statistical
properties of the generated landscapes and for their EA-hardness [829]. How-
ever, according to Aguirre et al., the effects of epistasis and NK-Landscapes
in the context of MOEAs are almost unexplored topics.

Aguirre et al. define a MNK-Landscape as a vector function

f(x) = (f1(x), f2(x), · · · , fM (x)) : BN → R
M

where M is the number of objectives, fi(x) is the i-th objective function,
B = {0, 1} and N is the bit string length. Also, they define a set of integers
K = {K1,K2, · · · ,KM} where Ki is the number of bits in the string x that
epistatically interact with each bit in the ith-landscape. Each fi is a non-linear
function of x expressed by a Kauffman’s NK-Landscape model of epistatic
interactions.

6.3 MOEA Theoretical Issues 303

Besides defining N and Ki for each fi, it is also possible to arrange the
epistatic pattern between bit xj and the other Ki interacting bits. That is, the
distribution Di of Ki bits among N . Thus, M , N , K and D = {D1, · · · ,DM},
completely specify a multiobjective MNK-Landscape and by varying them we
can analyze the properties of the multiobjective landscapes and study the ef-
fects of the number of objectives, size of the search space, intensity of epistatic
interactions, and epistatic pattern on the performance of multiobjective com-
binatorial optimization algorithms.

Aguirre et al. introduce an elitist multiobjective Random Bit Climber
moRBC(δ : 1 + 1) that at all times keeps one parent individual from which it
creates one offspring. The child is created by cloning the parent and flipping
one bit, then the child is evaluated and replaces the parent if it dominates
the parent. Child creation, evaluation, and (possibly) parent replacement are
repeated N times. If no replacements are detected, a dominance local optimum
has been found and the moRBC(δ : 1 + 1) opts for restart.

The restarting process replaces the parent with one individual chosen from
a population which contains up to δ solutions, which are nondominated by
the parent and amongst themselves. If the population is empty, the parent is
replaced with a newly created random string. This process continues until a
given number of evaluations has been performed. Additionally, the nondomi-
nated solutions found throughout the search are kept in an archive of limited
size, and the ones with better crowding distance are preferred (crowding is
also used to maintain fixed the size of the population).

The performance of the moRBC(δ : 1 + 1) algorithm is compared using
the hypervolume measure against the NSGA-II and SPEA2 algorithms, on
scalable random epistatic problems. Aguirre et al. conduct their study on
MNK-Landscapes with 2 and 3 objectives and 100 bits, varying the number
of epistatic interactions Ki from 0% to 50% in all objectives, and random
epistatic patterns among bits for all objectives (Di random). They study the
effect of population size on the moRBC(δ : 1 + 1) and conclude that when
Ki increases the search performance is worse, but the use of the population
improves it. Also, they conclude that, as the number of objectives increase,
the size of the population also needs to be increased in order to improve the
performance. Finally, for the problems used, they conclude that the overall
performance of the moRBC(δ : 1 + 1) is better than that of the NSGA-II and
SPEA2 algorithms.

In [16], Aguirre and Tanaka extend the work presented in [17] by studying
the working principles, behavior and performance of the NSGA-II, in order to
clarify its poor performance when tested on MNK-Landscapes, as observed in
[17].

First, Aguirre and Tanaka extend the study performed in [17] using NSGA-
II and SPEA2, by varying the value of N = 20, 50, 100. As in [17], they
conclude that the performance of NSGA-II and SPEA2 is worse when Ki

increases. Then, they focus on NSGA-II and look into the effects of selection,
drift, recombination and mutation.

304 6 MOEA Theory and Issues

Aguirre and Tanaka study the effects of selection by comparing the original
NSGA-II(µ + λ) against a version of NSGA-II(µ, λ), in order to analyze the
impact of elitism. They observe that if elitism is not included there is a severe
deterioration in performance for all values of K and M , except for K = M = 5.
Thus, Aguirre and Tanaka conclude that elitism is a very important feature
for multiobjective combinatorial optimization.

However, they indicate that elitism can also bring some undesired side
effects that could severely affect the efficacy and efficiency of the algorithms.
For example, the presence of elitism increases selection pressure making eli-
tist algorithms more prone to the effects of genetic drift. Genetic drift is a
phenomenon that emerges from the stochastic operators of selection, recom-
bination and mutation. It refers to the change on bit frequencies due to chance
alone especially in small populations. It is well-known that genetic drift affects
negatively the performance of EAs especially if a strong selection pressure is
used. Aguirre and Tanaka study the effects of genetic drift by proposing an
enhanced version of NSGA-II that eliminates fitness duplicates from the pop-
ulation.

According to Aguirre and Tanaka, duplicates hinder exploration and selec-
tion as well, since they accumulate rapidly, decreasing the likelihood that the
algorithm will explore a larger number of different candidate solutions during
a run. In this way, after comparing both versions of NSGA-II, they conclude
that elimination of duplicates improves the performance of NSGA-II in two
and five objectives.

On the other hand, Aguirre and Tanaka study the effects of recombination
by comparing the performance of NSGA-II with and without recombination.
They conclude that NSGA-II including recombination and mutation performs
better than using only mutation for small values of K, but, for other values
of K, recombination does not contribute to performance. Also, Aguirre and
Tanaka study the effects of elitism and mutation by assigning an age limit
to elite solutions and bias selection accordingly. Aguirre and Tanaka test two
different versions of NSGA-II. The first version does not include recombina-
tion and increases by one the age of an elite solution each time it is selected
for mutation. Age is also incremented by one at each iteration and individ-
uals with age greater than N are eliminated from the population. The sec-
ond version uses age to guide mutation: the mutation segment is chosen at
random and the bit within the segment is given by the age of the individual.
After the experiments, Aguirre and Tanaka conclude that the new versions in-
crease substantially the performance of NSGA-II. Finally, Aguirre and Tanaka
perform comparisons among the original NSGA-II, NSGA-II without dupli-
cates and with elitist-mutation mechanisms and moRBC(δ : 1 + 1). They
observe that the enhanced NSGA-II has a very similar performance to that of
moRBC(δ : 1+1) in two and three objectives. However, in problems with five
objectives moRBC(δ : 1 + 1) still performs better. The work of Aguirre and
Tanaka constitutes a guide for practitioners on how to set up their algorithms
and gives useful insights on how to design more robust and efficient MOEAs.

6.3 MOEA Theoretical Issues 305

6.3.2 Fitness Functions

2 3 4 5 6 7 8 9 10 11 12 17 23 49 50 65 100 500
0

100

200

300

400

500

600

Number of MOP Functions (k)

N
um

be
r

of
 P

ub
lic

at
io

ns

Fig. 6.1. MOEA Citations by Fitness Function using a sample of papers taken
from the EMOO repository (http://delta.cs.cinvestav.mx/~ccoello/EMOO) (up
to early 2007)

The general manner of fitness function implementation is two-fold. This
is reflected by the work of Wienke et al. [1702] and Fonseca & Fleming [508],
who each solved MOPs with seven fitness functions. Wienke et al. [1702] es-
sentially used seven copies of an identical objective function, which was to
meet atomic emission intensity goals for seven different elements. Although
the elements and associated goals are each different, the fitness functions are
conceptually identical. This does not make the MOP “easier” but perhaps
makes the objective space somewhat easier to understand. On the other hand,
Fonseca and Fleming’s MOP’s seven objectives appear both incommensurable
and independent. Both Pknown and PFknown are hard to visualize, as are their
interrelationships. For example, when considering the mathematical polyno-
mial model constructed by their MOEA, it is unclear how the number of terms
affects the long-term prediction error and how that error may affect variance
and model lag.

With that said, Figure 6.1 shows the number of citations employing a
given number of fitness functions (as of the beginning of year 2007) and using
a sample of references from the EMOO repository. The overwhelming major-
ity use only two fitness functions, most probably for ease and understanding.

306 6 MOEA Theory and Issues

Several use three to nine, and a few go beyond ten. The currently known
maximum is 500 objective functions within a single MOEA. In this approach,
both a linear combination of weights and the ε-constraint method were used
to coordinate agents [206]. In a distant second place is the approach by Coello
Coello and Hernández Aguirre [274] in which up to 65 objective functions
are handled, using a population-based approach similar to VEGA [1440]. The
latter authors also report other applications in constraint-handling and com-
binational circuit design with 49, 23, and 17 objectives [264, 275, 274]. Of
the only two other works that report using 17 objectives, one does not in-
dicate the specific objectives [1305] and the other implements conceptually
identical objectives [1336]. The highest number of conceptually different im-
plemented fitness functions is found in a linkage design problem [1422] where
nine objectives are used.

How many fitness functions are enough? How many objectives are gener-
ally required to adequately capture an MOP’s essential characteristics? Can
all characteristics be captured? The cataloged efforts imply most real-world
MOPs are effectively solved using only two or three. There is a practical
limit to the maximum number of possible objective functions, as the time to
compute several complex MOEA fitness functions quickly becomes unman-
ageable. A theoretical limit exists as far as Pareto optimality is concerned.
As additional objectives are added to an MOP more and more MOEA solu-
tions meet the definition of Pareto optimality. Thus, as Fonseca and Fleming
indicate for most Pareto MOEAs [507], the size of Pcurrent (t), PFcurrent (t),
Pknown (t), and PFknown (t) grows, and Pareto selective pressure decreases.
However, some confusion results from both theirs and Horn’s [706] statements
implying that the size of PFtrue grows with additional objectives. The Pareto
front is composed of Pareto curve(s), Pareto surface(s), or some combination
of the two (see Chapter 1). And, as Cantor proved [612], the infinity of points
on a line, surface, cube, and so on are the same (represented by ℵ1). Thus, the
cardinality of PFtrue does not grow with the number of objectives, only (pos-
sibly) its topological dimension and associated MOEA operators. However,
since MOEAs deal with discretized numerical representations the number of
possible solutions (and therefore the number of computable vectors composing
PFknown) may increase as more objectives are added.

Finally, some limit to human understanding and comprehension exists.
The human mind appears to have a limited capacity for simultaneously dis-
tinguishing between multiple pieces of information or concepts. Perhaps this
is best noted by Miller’s seminal paper proposing a human one-dimensional
span of judgment and immediate memory of 7±2 [1113]. He notes that adding
objective dimensions increases this capacity but at a decreasing rate. This
seems to argue a “more the merrier” viewpoint for the number of MOP objec-
tives, but visualizing and understanding objective interrelationships becomes
more difficult as their numbers grow. Thus, certain techniques are designed
to map high-dimensional information to two or three dimensions for better
understanding (e.g., Sammon mapping [1421] and profiles [352]). Fonseca and

6.3 MOEA Theoretical Issues 307

Fleming [504, 508, 512], often use profiles (or tradeoff graphs) to show MOEA
solution values and their interrelationships. Figure 6.2 is an example profile
for an MOP with seven objectives; the lines simply connect each solution’s
objective values.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Objective Number

C
os

t

Example Profile

Solution 1
Solution 2
Solution 3
Solution 4

Fig. 6.2. Example MOP Profile

Many contemporary MOEA implementation results imply that two or
three objectives are “satisfactory” for most problem domains. Thus, MOEA
application to a given MOP should begin with two or three primary objectives
in an effort to gain problem domain understanding. One may be able to as-
certain how the different objectives affect each other and an idea of the fitness
landscape’s topology. Other fitness functions may then be added in order to
capture other relevant problem characteristics.

6.3.3 Pareto Ranking

Two Pareto fitness assignment methods are primarily used in MOEAs al-
though variations do exist (see Chapter 2). Although the elitist approach has
limited theoretical insight via Theorems 2 and 7, it has found application fa-
vor with good results (see Chapters 2 and 4). This approach as well as the

308 6 MOEA Theory and Issues

other fitness assignment operators should also be addressed from a more gen-
eral theoretical perspective for providing convergence to the Pareto front. In
general, all preferred (Ptrue) solutions are assigned the same rank based upon
fitness value and other solutions assigned some higher (less desirable) rank.
With the scheme proposed by Goldberg [581], where a solution x at genera-
tion t has a corresponding objective vector xu, and N is the population size,
the solution’s rank is defined by the algorithm in Figure 6.3.

curr rank = 1
m = N
while N �= 0 do

For i = 1 : m do
If xu is nondominated

rank(x, t) = curr rank
End For
For i = 1 : m do

If rank(x, t) = curr rank
Store x in temporary population
N = N − 1

End For
curr rank = curr rank + 1
m = N

End While

Fig. 6.3. Rank Assignment Algorithm

The second technique, proposed by Fonseca & Fleming [507] operates
somewhat differently. As before, a solution x at generation t has a correspond-
ing objective vector xu. Let r

(t)
u signify the number of vectors associated with

the current population dominating xu; x’s rank is then defined by:

rank(x, t) = r(t)
u . (6.7)

This ensures all solutions with nondominated vectors receive rank zero.
Some approaches simply split the population in two, e.g., assigning solu-

tions with nondominated vectors rank 1 and all others rank 2 [112]. Using the
same notation, this ranking scheme is defined by:

rank(x, t) =

{
1 if r

(t)
u = 0,

2 otherwise.
(6.8)

When considering Goldberg’s and Fonseca and Fleming’s ranking schemes,
it initially appears that neither is “better” than the other, although it is men-
tioned in the literature that Fonseca and Fleming’s method, which effectively

6.3 MOEA Theoretical Issues 309

assigns a cost value to each solution, might be easier to mathematically an-
alyze [510]. Horn [706] also notes this ranking can determine more ranks (is
finer-grained) than Goldberg’s (assuming a fixed population size).

Another ranking method using Pareto optimality as its basis is proposed
by Zitzler & Thiele [1781, 1782]. Their rank assignment algorithm is lengthy.
Thus, the reader is instead referred to the original sources for implementa-
tion details. Their MOEA implementation uses a secondary population whose
solutions are directly incorporated into the generational population’s fitness
assignment procedure. Effectively, each Pareto optimal solution (at each gen-
eration) is assigned a fitness equal to the proportion of evaluated vectors its
associated vector dominates. Because of the secondary population’s inclusion
in the fitness assignment process this method’s complexity may be signifi-
cantly higher than the other methods. Additionally, this method has a known
shortfall. Deb [357] presents a geometric argument that this fitness assignment
method has inherent bias. Pareto optimal solutions whose associated vectors
dominate more vectors (or dominate a larger portion of objective space) re-
ceive higher fitness than other Pareto optimal solutions. However, each Pareto
optimal solution should receive equal fitness. This method is then biased, as it
may result in some Pareto optimal solutions receiving preference over others
in the selection process.

There is currently no clear evidence as to the benefit(s) of any of these
ranking schemes over another. Only one experiment whose purpose is directly
comparing any of these schemes is reported in the literature. Thomas com-
pared Fonseca and Fleming’s and Goldberg’s Pareto ranking schemes in a
MOEA applied to submarine stern design [1580]. He concludes both outper-
formed tournament selection, and that Fonseca and Fleming’s ranking appears
to provide a fuller, smoother PFknown . However, he cautions that this is a
singular data point. On a similar note, only one paper in the MOEA liter-
ature presents data on the number of population “fronts” using Goldberg’s
ranking. Vedarajan et al. [1638] present a graph showing the number of fronts
found in each generation. With a population size of 300 individuals the first
generation has over 40 fronts. This quickly drops from generations 10 to 100,
and it oscillates between 20 and 25.

Analyzing these schemes’ mathematical complexity is revealing. Table 6.2
(showing each scheme’s best and worst case) and the following analysis only
consider population size in computing complexity, where N is the size of the
generational population and N1 is the size of Pknown . Assume that as compar-
isons are performed appropriate counter or fitness value assignments are made
or updated. Thus, the binary, Fonseca and Fleming’s, and Zitzler’s ranking
schemes require only one “pass” through the population(s) regardless of the
number of nondominated solutions. Their worst and best case complexities are
identical. Goldberg’s scheme, however, requires at most N−1 “passes” through
the population if there is only one Pareto optimal solution per (reduced) pop-
ulation. In addition, Zitzler’s scheme’s complexity increases if Pknown ’s size is
much larger than the generational population’s. Thus, Goldberg’s and Zitzler

310 6 MOEA Theory and Issues

and Thiele’s ranking schemes (potentially) involve significantly more overhead
than do the others.

Table 6.2: MOEA Fitness Ranking Complexities

Technique Best Case Worst Case
Binary N2 −N N2 −N
Fonseca N2 −N N2 −N
Goldberg N2 −N 1

3 (N3 −N)
Zitzler (N + N1)2 −N −N1 (N + N1)2 −N −N1

It is also instructional to look at the possible value ranges for each ranking
scheme. The binary scheme (equation (6.8)) offers only two values, Φ ∈ [0, 1].
Both Fonseca and Fleming’s (equation (6.7)) and Goldberg’s scheme (Fig-
ure 6.3) offer N possible values, Φ ∈ [0, 1, . . . , N − 1]. However, in practice
Goldberg’s scheme uses some subset of these values (resulting in a “coarser”
ranking). Zitzler’s scheme offers (possibly non-integer) values Φ ∈ [1, N). Us-
ing Fonseca’s second function as an example (see Appendix A4), Figure 6.4
shows the resultant solution rankings of three Pareto ranking schemes.

Further clouding the issue is the fact that rank itself is often not directly
used as a solution’s fitness. For example, Fonseca and Fleming first used their
ranking scheme in a MOEA implementation named the MOGA [504]; Srinivas
and Deb implement Goldberg’s scheme in the NSGA [1509]. Both transform
assigned rank before selection occurs. The MOGA sorts solutions by rank
and assigns fitness via linear or exponential interpolation, while the NSGA
uses “dummy” fitness assignment, ensuring only that each “wave” of Pareto
optimal solutions has a maximum fitness smaller than the preceding wave’s
minimum value.

6.3.4 Pareto Niching and Fitness Sharing

Due to stochastic errors associated with its genetic operators, evolutionary
algorithms tend to converge to a single solution when used with a finite pop-
ulation [368]. As long as the goal is to find the global optimum (or at least a
very good approximation of it), this behavior is acceptable. However, there are
certain applications in which the aim is to find not one, but several solutions.
Multiobjective optimization is certainly one of those applications, because the
goal is to find the entire (or at least a considerable portion of the) Pareto front
of a problem, and not only a single nondominated solution. The question is
then how to keep the EA from converging to a single solution.

Early evolutionary computation researchers identified this convergence
phenomenon of EAs, called genetic drift [348], and found that it happens

4 All the Appendices of this book are available for download at:
http://www.cs.cinvestav.mx/~emoobook

6.3 MOEA Theoretical Issues 311

−2
0

2

−2

0

2
0

100

200

300

x−value

Fitness vs. Genotype (Fonseca)

(a)

y−value

P
ar

et
o

R
an

ki
ng

−2
0

2

−2

0

2
0

10

20

x−value

Fitness vs. Genotype (Goldberg)

(b)

y−value

P
ar

et
o

R
an

ki
ng

−2
0

2

−2

0

2
0

0.5

1

x−value

Fitness vs. Genotype (Simple)

(c)

y−value

P
ar

et
o

R
an

ki
ng

Fig. 6.4. Pareto Ranking Schemes

in nature as well. They correctly stated that the key to solve this problem is
to find a way of preserving diversity in the population, and several proposals,
modeled after natural systems were made. Holland [699] suggested the use
of a “crowding” operator, which was intended to identify situations in which
more and more individuals dominate an environmental niche, since in those
cases the competition for limited resources increases rapidly, which results in
lower life expectancies and birth rate. De Jong [348] experimented with such
a crowding operator, which was implemented by having a newly formed off-
spring to replace the existing individual more similar to itself. The similarity
between two individuals was measured in the genotype, by counting the num-
ber of bits along each chromosome that were equal in the two individuals being
compared. De Jong used two parameters in his model: generation gap (G) and
crowding factor (CF) [368]. The first parameter indicates the percentage of
the population that is allowed to reproduce. The second parameter specifies
the number of individuals initially selected as candidates to be replaced by
a particular offspring [348]. Therefore, CF=1 means that no crowding takes
place, and as the value of CF is increased, it becomes more likely that similar
individuals replace one another [348].

Goldberg and Richardson [587] used a different approach in which the
population was divided in different subpopulations according to the similarity
of the individuals in two possible solution spaces: the decoded parameter space

312 6 MOEA Theory and Issues

(phenotype) and the gene space (genotype). They defined a sharing function
φ(dij) as follows [587]:

φ(dij) =

{
1−

(
dij

σsh

)α

, dij < σshare

0, otherwise
(6.9)

where normally α = 1, dij is a metric indicative of the distance between
individuals i and j, and σshare is the sharing parameter which controls the
extent of sharing allowed. The fitness of an individual i is then modified as:

fsi
=

fi∑M
j=1 φ(dij)

(6.10)

where M is the number of individuals located in the vicinity of the i-th indi-
vidual.

Deb and Goldberg [368] proposed a way of estimating the parameter σshare

in both phenotypical and genotypical space. In phenotypical sharing, the dis-
tance between two individuals is measured in decoded parameter space, and
can be calculated with a simple Euclidean distance in an p-dimensional space,
where p refers to the number of variables encoded in the EA; the value of dij

can then be calculated as:

dij =

√√√√
p∑

k=1

(xk,i − xk,j)
2 (6.11)

where x1,i, x2,i, . . . , xp,i and x1,j , x2,j , . . . , xp,j are the variables decoded from
the EA.

To estimate the value of σshare, Deb and Goldberg [368] proposed the
expression:

σshare =
r

p
√

q
=

√∑p
k=1(xk,max − xk,min)2

p
√

2q
(6.12)

where r is the volume of a p-dimensional hypersphere of radius σshare and q
is the number of peaks that the EA aims to find.

In genotypical sharing, dij is defined as the Hamming distance between the
strings and σshare is the maximum number of different bits allowed between
the strings to form separate niches in the population. The experiments per-
formed by Deb and Goldberg [368] showed sharing as a better way of keeping
diversity than crowding, and indicated that phenotypic sharing was better
than genotypic sharing. Several other proposals exist (see [1039] for a more
detailed review of approaches to keep diversity).

Several MOEA Pareto niching and fitness sharing variants have been pro-
posed with the same goal as in traditional single-objective optimization –
finding and maintaining multiple optima. However, MOEAs use sharing in

6.3 MOEA Theoretical Issues 313

an attempt to find a uniform (equidistant) distribution of vectors represent-
ing PFtrue , i.e., one in which PFknown ’s shape is a “good” approximation of
PFtrue . One can compare selected implementations of this concept.

Fonseca and Fleming’s MOGA [511] uses restricted sharing, in the sense
that fitness sharing occurs only between solutions with identical Pareto rank.
They measure niching distance in phenotypic space, i.e., the distance (over
some norm) between two solutions’ evaluated fitness vectors is computed and
compared to σshare (the key sharing parameter). If the distance is less than
σshare the solution’s associated niche count is then adjusted. Srinivas and
Deb’s NSGA [1509] implements a slightly different scheme, where distance is
measured (over some norm) in genotypic space, i.e., the distance between two
solutions is compared to σshare .

Horn and Nafpliotis define niching differently in their MOEA named the
NPGA [708, 709], which performs selection via binary Pareto domination
tournaments. Solutions are selected if they dominate both the other and some
small group (tdom) of randomly selected solutions. However, fitness sharing
occurs only in the cases where both solutions are (non)dominated. Each of the
two solution’s niche counts is computed not by summing computed sharing
values, but by simply counting the number of objective vectors within σshare of
their evaluated vectors in phenotype space. The solution with a smaller niche
count (i.e., fewer phenotypical neighbors) is then selected. Horn et al. [709]
term this equivalence class sharing.

Another fitness sharing variant uses the NSGA’s rank assignment scheme
(i.e., Goldberg’s Pareto ranking [581]) but adopts phenotypic-based shar-
ing [1107]; another combines both genotypic and phenotypic distances in de-
termining niche counts [1382]. Fitness sharing may also be applied to solutions
regardless of rank instead of restricting sharing between equally ranked so-
lutions. The revised version of the NSGA, called NSGA-II (see Chapter 2),
implements a crowding mechanism that does not require a σ parameter [363].

Most of these methods require setting explicit values for the key shar-
ing parameter σshare , which can affect both MOEA efficiency and effective-
ness. Fitness sharing’s performance is also sensitive to the population size
N . Assigning appropriate values to σshare is difficult as it usually requires
some a priori knowledge about the shape and separation of a given problem’s
niches. However, as phenotypic-based niching attempts to obtain equidistantly
spaced vectors along PFknown , both Fonseca and Fleming [511] and Horn et
al. [708, 709] are able to give guidelines for determining appropriate MOEA
σshare values. These values are based on known phenotypical extremes (min-
imum and maximum) in each objective dimension. Horn & Nafpliotis [708]
also suggest appropriate values for the NPGA’s tournament size parameter
(tdom).

To determine σshare ’s value using Fonseca and Fleming’s method, one
uses the number of individuals in the population (which implicitly determines
the number of niches), scales the known attribute values, and determines the
extreme attribute values in each objective dimension. These parameters are

314 6 MOEA Theory and Issues

then used to derive σshare . Horn et al.’s guidelines use the above parameters
to define bounds for σshare ’s value.

How does one find each objective dimension’s extreme values? One sug-
gested approach is by computing objective values using each decision variables’
minimum and maximum value. This is not feasible because decision variable
extrema may not correspond to attribute extrema; the combinatorics and un-
known relationships between different decision variable values is an additional
factor. Thus, the minimum and maximum values of either the generational
or a secondary population may be used. Fonseca and Fleming [511], indicate
that recomputing σshare at each generation (using current generational ex-
trema) yields good results. Note that the MOEA’s stochastic nature may not
preserve these values between generations, i.e., the associated solutions may
not survive. Thus, it is better to select objective extremes from the secondary
population if one is incorporated in the MOEA. By definition, this population
contains each objective dimension’s extrema so far, ensuring the “ends” of
PFknown are not lost.

As with the proposed Pareto ranking schemes, there is then no clear ev-
idence as to the benefit(s) of one Pareto niching and sharing variant over
another. Nor are experiments reported in the literature comparing key com-
ponents of these different approaches (e.g., σshare value assignment).

Note the following in regard to the appropriate sharing domain. Horn et al.
indicate sharing should be performed in a space that one “cares more about”
[708, 709]. Phenotypic-based sharing does make sense if one is attempting to
obtain a “uniform” representation of PFtrue . On the other hand, Benson and
Sayin indicate many operations researchers “care more about” obtaining a
“uniform” representation of Ptrue [119], in which case genotypic-based shar-
ing seems appropriate. The end representation goal should drive the sharing
domain.

6.3.5 Recombination Operators

Most of the current literature on MOEAs focuses mainly on studying the effect
of different selection operators. However, few studies that focus on the effect
of the variation operators (e.g., recombination) currently exist, and they tend
to be normally empirical (see for example [174]). Next, we will review one of
these studies which has a more theoretical orientation.

In [605], Grimme and Schmitt propose new variation operators for MOEAs.
They start from the predator-prey model of Laumanns et al. [957], and ex-
amine the employment of the different search operators in a much better
mode. In the predator-prey model of Laumanns et al. [957], the predators
move across the spatial structure according to a random walk and chase the
prey according to one of the optimization criteria. The worst prey within the
neighborhood of the predator is “eaten” and its position is refilled by a prey
created by recombination (discrete or intermediate) of those preys within its
neighborhood.

6.3 MOEA Theoretical Issues 315

In this way, the selection neighborhood and the recombination neighbor-
hood are not the same. The selection neighborhood is constructed from the
predator and the recombination neighborhood is constructed from the prey.
According to Grimme and Schmitt, in the original study of the predator-prey
model of Laumanns et al. two major problems were observed: the loss of di-
versity and stagnation of the process of convergence to the true Pareto front.

To handle the above problems, Grimme and Schmitt perform two modifi-
cations to the model: (1) They consider the selection neighborhood as being
equal to the reproduction neighborhood and (2) they introduce the use of a
mutation operator and incorporate a second group of predators in order to
achieve the independent execution of mutation and recombination. Further-
more, in addition to discrete and intermediate recombination, the weighted
intermediate recombination is also used. After some experiments on a very
simple test problem, Grimme and Schmitt conclude that the proposed mech-
anisms along with the weighted intermediate recombination lead to both good
convergence and a diverse set of solutions. However, the proposed mechanisms
fail on a problem that does not possess a Pareto set parallel to the axes of
the coordinate system. For this reason, Grimme and Schmitt develop a new
recombination mechanism based on the geometric form of a n-simplex, which
is insensitive to the rotation of the Pareto set.

By using this new recombination operator, Grimme and Schmitt improve
the approximation of the set of efficient solutions significantly. In this way,
the changes proposed by Grimme and Schmitt yield significantly better re-
sults than the original model proposed by Laumanns et al. Finally, Grimme
and Schmitt analyze the influence of variation operators and they conclude
that the recombination operators favor convergence towards the Pareto set,
though they tend to collapse the population for a balance compromise. On the
other hand, they also conclude that the mutation operator is essential for in-
troducing new information since without mutation, the convergence is limited
to the bounds of the area of search space covered by the initial population.

6.3.6 Mating Restrictions

The idea of restricted mating is not new. Goldberg [581], first mentions its
use in single-objective optimization problems to prevent or minimize “low-
performance offspring (lethals).” In other words, restricted mating biases how
solutions are paired for recombination in the hopes of increasing algorithm
effectiveness and efficiency. Goldberg presented an example using genotypic-
based similarity as the mating criteria.

Deb and Goldberg [368] suggested the use of restrictive mating with re-
spect to the phenotypic distance. The idea is to allow two individuals to repro-
duce only if they are very similar (i.e., if their phenotypic distance is less than
a factor called σmate measured over some metric). This is intended to produce
distinct “species” (mating groups) in the population [1114]. Island model GAs
also implement restricted mating but in a geographic sense where solutions

316 6 MOEA Theory and Issues

mate only with neighbors residing within some restricted topology [202]. It is
also noted [261] that other researchers believe restricted mating should allow
recombination of dissimilar (over some metric) individuals to prevent lethals.
However defined, restricted mating is also incorporated within many MOEAs
in an attempt to reduce unfit (e.g., non-Pareto optimal) offspring.

For example, Baita et al. [78], and Loughlin & Ranjithan [1017], place so-
lutions on a grid and restrict the area within which each solution may mate.
Lis & Eiben [1000], allow mating only between solutions of different “sexes.”
Jakob et al. [768], restrict mating to solutions within a particular deme. Ha-
jela & Lin [636], implement a unique form of mating restriction. In their
linear fitness combination (weighted-sum) MOEA formulation, they apply re-
stricted mating based on a solution’s associated weighting variables to prevent
crossover between designs with radically different weight combinations. When
considering general MOEAs phenotypic-based restricted mating between sim-
ilar solutions is of more interest to us. Several MOEA researchers state in
their published reports [504, 506, 1781]: “Following the common practice of
setting σmate = σshare ...”

This may be a common practice, but no background is cited in the lit-
erature. As σshare attempts to define a region within which all vectors are
“related,” setting σmate equal to σshare is intuitive. The same rationale holds
in genotypic sharing and mating restriction. Currently only empirical expla-
nations are offered for the implementation (or lack) of restricted mating in
various MOEA approaches. In fact, Fonseca and Fleming [507] noted that “...
the use of mating restriction in multiobjective EAs does not appear to be
widespread.” Obviously, some researchers believe restricted mating is neces-
sary or they would not have implemented it, but others indicate it is of no
value.

Zitzler & Thiele [1781], state that for several different values of σmate , no
improvements were noted in their test problem results (a MOP with two - four
objectives) when compared against those with no mating restriction. Shaw &
Fleming [1470], report the same qualitative results for their application (a
MOP with three objectives) whether or not mating restriction was incorpo-
rated. Horn et al. [709], offer empirical evidence directly contradicting the
basis for mating restriction. They note that recombining solutions whose as-
sociated vectors are on different portions of PFknown (t) can produce offspring
whose vectors are on PFknown (t + 1) but between their parents. They also
claim that for a specific MOP, a constant (re)generation of vectors through
recombination of “dissimilar” parents maintains PFknown . They believe most
recombinations of solutions in Pknown also yield solutions in Pknown .

Thus, as in single-objective optimization, no clear quantitative evidence
regarding restricted mating’s benefits exists. The empirical evidence presented
in the literature can be interpreted as an argument either for or against this
type of recombination and leaves the MOEA field in an unsatisfactory predica-
ment. This issue clearly benefits from experiments directly comparing its algo-
rithmic inclusion/exclusion. One must also consider the NFL theorems [1708],

6.3 MOEA Theoretical Issues 317

realizing that mating restriction may not always be effective (or needed) for
every problem (class).

6.3.7 Solution Stability and Robustness

Both EAs and MOEAs search for some problem’s optima. At least for MOPs
it has been noted [740] that Ptrue may not, and often is not, the most desir-
able solution set because its members are “unstable” (e.g., due to engineering
tolerances, nonlinear response). It is also suggested that these solutions are
often on the “edge” of optimality and/or feasibility. Thus, just as in single-
objective optimization, any solutions returned as optimal must be evaluated
with respect to any constraints not explicitly considered in the objective func-
tion(s). Or, perhaps a suitably defined sensitivity objective (e.g., engineering
tolerances) may be incorporated into the MOEA.

6.3.8 MOEA Complexity

It is well known that fitness function evaluation (for many real-world prob-
lems) dominates EA execution time. Thus, when discussing various MOEAs’
algorithmic complexity one is concerned mainly about the number of fitness
evaluations. Solution comparisons and additional calculations are considered,
as this overhead is not found in simple GA (SGA) implementations. The com-
plexity of the evolutionary operators is ignored for the current purpose.

Table 6.3: MOEA Solution Technique Complexity

MOEA Technique Computational Complexity
SGA TfGn
Lexicographic TfGnk + Gn2k −Gnk
Linear Combination TfGnk + Gnk −Gn
Multiplicative TfGnk + Gnk −Gn
Target Vector TfGnk + Gk2 + 2Gk
Minimax TfGnk + 3Gnk
Independent Sampling c[TfGnk + Gnk −Gn]
Criterion Selection TfGnk + Gn
Aggregation Selection TfGnk + Gnk − n
Pareto Rank TfGnk + Gn2k −Gnk
Pareto Niche and Share TfGnk + Gn2k −Gnk + n2

Pareto Demes TfGnk + Gm2k
n2 −Gmk

n + m
n Tcomm

Pareto Elitist TfGnk + Gn2k −Gnk

MOEA complexity is generally greater than that of SGAs. After fitness
evaluation in an SGA, resultant values are stored in memory and no further
computation is (normally) required as far as fitness is concerned. However, a

318 6 MOEA Theory and Issues

MOEA sometimes combines and/or compares these stored values which adds
algorithmic complexity. As a reference, the complexity of the various MOEA
techniques is presented in Table 6.3; SGA complexity is included for compar-
ison. Each technique’s “worst-case” was used to generate these figures.

The table’s notation is as follows. Population size is denoted by n and the
number of generations by G. Tf represents fitness computation time (assumed
here to be equal for each objective). The number of fitness functions is des-
ignated by k and the number of solutions per processor (the Pareto demes
case) by m. All table entries are based upon a single generational population,
i.e., no secondary populations are used. All techniques are assumed to store
a solution’s evaluated fitness making selection’s computational cost inconse-
quential. All listed techniques have the identical basic cost of TfGnk fitness
computations. Finally, independent sampling’s complexity was computed us-
ing several runs of a linear fitness combination technique. Randomly assigned
weights (in the fitness functions) were used for the aggregation technique’s
complexity determination. Table 6.3 shows MOEA techniques explicitly in-
corporating Pareto concepts are the most computationally expensive; this is
due primarily to the O(n2) cost of determining which solutions in some set
are Pareto optimal.

MOEA storage requirements are problem dependent. Like other EAs these
requirements are mandated by the specific data structures used. Required
storage increases linearly with the number of fitness functions used, and when
a secondary population is brought into play.

It is noted here that MOEA complexity may be a moot issue in real-world
applications. As fitness function evaluation (for many real-world problems)
dominates EA execution time, the overhead involved in any of the presented
techniques may be miniscule in comparison. If that is the case the complexity
issue “goes away” as long as the technique appears effective and efficient.

MOEA population storage requirements

Although several researchers have explored the use of alternative data struc-
tures to store the external population of a MOEA (see for example [1454,
1141, 485]), very little work has dealt with the use of alternative data struc-
tures for the main population of a MOEA (arrays are normally adopted for
that sake).

In [30], Alberto and Mateo present a new tool for representing and manag-
ing populations of MOEAs, sorted by using Pareto ranking orders, by means
of the use of directed graphs that keep the information on the relations among
the individuals of the populations. The main idea is to build a domination
graph (DG) based on the dominance relations among the individuals of the
population, and to work by inserting and deleting nodes and arcs in this
graph. A DG has its nodes associated with the individuals of the population
of a MOEA, and by means of the arcs, the dominance relations between in-
dividuals are represented in such a way that if there exits an arc from the

6.3 MOEA Theoretical Issues 319

node associated with individual i to the node associated with individual j,
then individual i dominates individual j. Since there is not only one DG as-
sociated with one population of a MOEA, Alberto and Mateo select the DG
which has the fewest number of arcs, in order to make the management of the
DG as efficient as possible. This DG is called irreducible domination graph
(IDG) and, according to Alberto and Mateo, is unique given a population of
a MOEA and can be constructed using the layers classification proposed by
Goldberg [581].

Alberto and Mateo develop algorithms for the construction and updating
(addition and removal of individuals in the population) of the IDG and analyze
their theoretical complexities. They show that the storage requirements of
the entire process is O(m), where m is the maximum between the number
of arcs at the beginning and at the end of the process. Also, they show that
the complexity of the algorithms for constructing the initial IDG, removal
and addition of nodes is O(n3 + n2q + C(q, n)), O(mn + n2) and O(m + nq),
respectively, where C(q, n) is the complexity process for calculating the layers,
q is the number of objectives, and n and m are the number of nodes and arcs,
respectively.

On other hand, Alberto and Mateo present a computational analysis of the
algorithms proposed and they verify that, in practice, the arc number of the
graph is (in almost all cases) O(nb) (b ≈ 1), the IDG construction algorithm
requires a time O(nb) (b ≈ 2) and the removal and addition times have a
practical behavior that can be considered linear.

The methodology proposed by Alberto and Mateo has the important char-
acteristic that it can be used to re-implement existing operators or algorithms.
With this regard, they perform a simplification of the selection process of the
NSGA-II algorithm and show how the dynamic updating of the proposed
graph for making the ranking and selection behaves more efficiently. Accord-
ing to Alberto and Mateo, this is because when, for example, a new population
is constructed, if some elements are retained from the old one, it is only nec-
essary to make the calculations corresponding to the new individuals because
the information of the individuals that are retained is already stored in the
graph. Furthermore, when adding one individual to the population, with their
structure, in general, it will not be generally necessary to compare it with all
the existing ones.

6.3.9 MOEA Scalability

Another interesting topic of research that has been only scarcely studied is
scalability of MOEAs. Some researchers have proposed multi-objective estima-
tion of distribution algorithms5 (MOEDAs) with the aim of carrying over the
5 Estimation of Distribution Algorithms (EDAs) do not use crossover or mutation,

but adopt instead probability distributions to generate the new population. Such
probability distributions are estimated from a set of selected individuals generated
at the previous generation [954].

320 6 MOEA Theory and Issues

polynomial scalability of single-objective EDAs to boundedly-difficult multi-
objective search problems [1430]. As Sastry et al. [1430] indicate, MOEDAs
have been shown to outperform traditional MOEAs in efficiently searching
and maintaining Pareto optimal solutions on such problems. However, the
usual scalability approach used for single-objective EDAs does not work for
multiobjective problems, and it is easy to get into combinatorial difficulty.

In [1430], Sastry et al. analyze the scalability of MOEDAs on a class of
boundedly-difficult additively decomposable problems (m − k deceptive trap
problems). They measure the scalability of MOEDAs as the minimum number
of function evaluations required to maintain at least one copy of all the Pareto-
optimal solutions for problems of different sizes.

In addition, Sastry et al. investigate the population size required to main-
tain at least one copy of all the Pareto solutions. They demonstrate that even
if the building blocks are correctly identified, the combinatorial explosion of
the number of Pareto optimal solutions can overwhelm the niching capability
and, as expected, this leads to exponential scalability. Also, since the number
of Pareto optimal solutions grows exponentially, in order to maintain at least
one copy of all the global solutions, exponentially large population sizes would
be required.

Finally, Sastry et al. show that MOEDAs scale polynomially with problem
size only if the multiple objectives share common building blocks and have
a limited number of building blocks that are different. That is, there is an
imposed limit on the type of additively decomposable problems MOEDAs
can solve in polynomial time.

6.3.10 Running Time Analysis

It is also of theoretical interest to perform a quantitative analysis of a multi-
objective evolutionary algorithm for a given class of problems. Of particular
interest is to be able to determine the expected running time, and the success
probability of a MOEA for a given optimization time. Other researchers have
performed this sort of study for single-objective evolutionary algorithms (see
for example [1394]).

In [962], Laumanns et al. presented a running time analysis of multiobjec-
tive evolutionary algorithms for a discrete optimization problem. They define a
simple pseudo-Boolean problem called Lotz (Leading Ones-Trailing Zeroes),
which maps n binary decision variables into 2 objective functions:

Lotz(x1, x2, ..., xn) =

⎛
⎝

n∑
i=1

i∏
j=1

xj ,
n∑

i=1

n∏
j=i

(1− xj)

⎞
⎠ (6.13)

Based on this definition of the Lotz problem, they investigate the time
required to find the entire set of Pareto optimal solutions.

They shown that different multiobjective generalizations of a (1+1) EA
(like the multi-start option or the random walk performed by PAES [886]) as

6.3 MOEA Theoretical Issues 321

well as the Simple population-based Evolutionary Multiobjective Optimizer
(SEMO) (proposed by them) need on average at least Θ(n3) steps to opti-
mize this function. Also, they propose the Fair population-based Evolutionary
Multiobjective Optimizer (FEMO) (which improves the selection mechanism
of SEMO) and prove that this algorithm is able to find the whole Pareto set in
Θ(n2 log n) steps (function evaluations). In this way, Laumanns et al. showed
for the first time that the concept of population leads to a provable advantage
on a multiobjective optimization problem compared to standard approaches
based on scalarizing functions. The SEMO algorithm, proposed by Laumanns
et al., contains a population of variable size that stores all individuals that
are not dominated by any other individual found so far. At the beginning, the
population is initialized with a single element, which is drawn at random from
the decision space. In each iteration, one parent individual x is drawn from
this population uniformly at random and mutated. The mutation operator
consists of flipping a bit randomly chosen from the individual x. The child
x′ is added to the population if it is not already contained. All individuals
that are dominated by the child are in turn deleted from the population. On
the other hand, the fair sampling strategy implemented by FEMO guarantees
that at the end all individuals receive about the same number of samples. The
selection strategy of FEMO counts the number of offspring each individual
produces and deterministically chooses the individual which has produced the
least number of offspring so far; ties are broken randomly.

According to Giel [560], the mutation operator used by SEMO implies
that SEMO searches locally in the manner of a hill climber, and, since FEMO
differs from SEMO only in the selection operator, both SEMO and FEMO can
only be applied if we have some intuition of the optimization problem that
suggests that such strategies are not very likely to get trapped in local optima.
In this way, in [560], Giel proposes a variant of SEMO, called global SEMO,
which modifies the mutation operator by flipping each bit of an element of
the population (also uniformly selected) independently with probability 1/n,
where n is the dimension of the search space. Thus, global SEMO searches
globally and its population will not get stuck in local optima forever.

Giel analyzes the running time of global SEMO for the Boolean decision
space and proves that the expected running time is O(nn) for all objective
functions {0, 1}n → R

m. Also, Giel shows that the expected running time of
global SEMO for the Lotz function (equation (6.13)) is O(n3). Finally, Giel
adapts the function x → (x2, (x− 2)2), commonly used to test algorithms in
the continuous decision space, to the Boolean space in two different variants,
and shows that the expected running time of global SEMO, under certain
conditions, is O(n log n) and Θ(n(k+1)) (where 0 ≤ k ≤ n− 1), respectively.

More recently, Laumanns et al. extended their work presented in [962],
by introducing two pseudo-Boolean model problems (which are scalable in
the number of decision variables and number of objectives), defining a new
population-based MOEA, proposing methods to analyze these algorithms and
presenting complexity results regarding the expected running time of the

322 6 MOEA Theory and Issues

different algorithms for the different problems analyzed [960, 955]. According
to Laumanns et al., the Lotz problem has a particular feature: all non-Pareto-
optimal decision vectors only have 1-bit Hamming neighbors that are either
better or worse, but never incomparable to it. This fact facilitates the analy-
sis of the population-based algorithms, which certainly cannot be expected
from other multiobjective optimization problems. Therefore, in [960, 955],
they present another simple multiobjective problem, called Cocz (Count Ones
Count Zeroes), where this condition does not hold:

Cocz(x1, x2, ..., xn) =

⎛
⎝

n∑
i=1

xi,

n/2∑
i=1

xi +
n∑

i=n/2+1

(1− xj)

⎞
⎠ (6.14)

where n = 2k and k ∈ N.
Based on this definition of the Cocz problem, and on the hypothesis that

given a dominated solution x, the mutation operator applied to x produces
a dominating decision vector x′ with probability bounded by p(x) > 0, Lau-
manns et al. prove that the expected running time of SEMO applied to Cocz

is O(n2 log n). Also, they prove that the expected running time of FEMO
applied to Cocz is bounded above by O(n2 log n) and below by Ω(n2). On
the other hand, Laumanns et al. prove that the expected running time of a
multistart (1 + 1)-EA based on the ε-constraint method is (1/2)(n3 + n2) for
Lotz and Θ(n2 log n) for Cocz. In this way, the running time of SEMO for
both the Lotz and the Cocz problems is of the same order as the multistart
(1 + 1)-EA.

In [960, 955], Laumanns et al. extended the FEMO algorithm in order to
achieve maximum progress toward the Pareto front. In this way, they proposed
the GEMO (Greedy Evolutionary Multiobjective Optimizer) algorithm, which
uses a greedy selection mechanism whose main idea is to allocate all search
effort to offspring of the most recently successful mutant. As long as only
mutually nondominating individuals are found, GEMO acts like FEMO, in
order to spread out the population and, hence, the search effort, fairly and
equally. However, when further progress toward the Pareto front is achieved (a
new individual is found that dominates elements of the current population),
all other remaining population members are disabled (they cannot produce
any offspring). When GEMO finally reaches the Pareto front and no further
progress is possible, it will again behave like FEMO.

Laumanns et al. mention that the behavior of GEMO in the Lotz problem
is identical to that of FEMO. However, they prove that the expected running
time of GEMO applied to Cocz is bounded by Θ(n2). Furthermore, in [960,
955], Laumanns et al. generalize both the Lotz and the Cocz problems to
arbitrary objective space dimensions. According to Laumanns et al., the Lotz

problem can be generalized to an arbitrary even number of objectives m by
concatenating m/2 biobjective Lotz problems of 2n/m bits each:

6.3 MOEA Theoretical Issues 323

mLotz(x1, x2, ..., xn) = (f1, f2, ...fm) (6.15)

with:

fk =

{∑n′

i=1

∏i
j=1 xj+n′(k−1)/2 if k is odd∑n′

i=1

∏n′

j=i(1− xj+n′(k−2)/2) else

where m = 2m′, m′ ∈ N, and n = m′n′, n′ ∈ N.
Based on this definition of the mLotz problem, Laumanns et al. prove that

the expected running time of the multistart (1+1)-EA, the SEMO and FEMO,
and the GEMO algorithms applied to mLotz is bounded by Θ(nm/2n2),
O(nm+1) and O(nm/2n log n), respectively.

On the other hand, Laumanns et al. define the mCocz problem in the
following way:

mCocz(x1, x2, ..., xn) = (f1, f2, ...fm) (6.16)

with:

fj =
n/2∑
i=1

xi +

{∑n′

i=1 xi+n/2+(j−1)n′/2 if j is odd∑n′

i=1(1− xi+n/2+(j−2)n′/2) else

where m = 2m′, m′ ∈ N, and n = mn′, n′ ∈ N.
Based on this definition of the mCocz problem, Laumanns et al. prove that

the expected running time of the multistart (1+1)-EA, the SEMO and FEMO,
and the GEMO algorithms applied to mCocz is bounded by Θ(nm/2n log n),
O(nm+1) and O(nm/2n log n), respectively.

Finally, in [960, 955], Laumanns et al. provide a short discussion about
the disadvantage of the SEMO, FEMO and GEMO algorithms, derived from
the use of the one-bit mutation operator, as it was already noted in the work
of Giel [560]. Thus, they discuss the possible effects of the independent-bit
mutation operator, that is, a mutation operator in which each bit is flipped
independently with probability 1/n.

In [917], Kumar and Banerjee propose a simple multi-objective evolution-
ary algorithm based on an archiving strategy, which is adapted to work effi-
ciently for problems where the Pareto optimal solutions are Hamming neigh-
bors uniformly distributed over the Pareto front. They call their algorithm
Restricted Evolutionary Multiobjective Optimizer (REMO).

The REMO algorithm uses a restricted mating pool or population of only
two individuals and a separate archive for storing all other points that are
likely to be produced during a run of the algorithm. The two individuals of
the population are selected from the union of the current population and the
archive. With a probability of 0.5, the individuals are selected at random.
Otherwise, the selection is based on a special function that assigns to each
individual a fit value equal to the number of its Hamming neighbors, and
selects the two individuals with the smallest values of fit. The rest of the
individuals are transferred to the archive. Such a mechanism assures that the
individuals selected for mutation are more likely to produce new Hamming

324 6 MOEA Theory and Issues

neighbor individuals. In this way, the expected waiting time till the desired
individual is selected for mutation is considerably reduced. The algorithm
in its main loop selects an individual from the population at random, and
creates a new individual by mutating a single bit randomly chosen. The new
individual is added to the population if it is not dominated by the population
and the archive, and the dominated individuals are removed.

Kumar and Banerjee present a rigorous complexity analysis and prove
that the expected running time of the REMO algorithm when applied to the
Lotz function is O(n2) with a probability of 1− e−Ω(n). However, since they
define the running time of an algorithm in terms of the number of iterations,
the corresponding expected running time of REMO in terms of the number
of evaluations performed when applied to the Lotz function is O(n4). Also,
Kumar and Banerjee prove that the expected running time of the REMO
algorithm when applied to the boolean Quadratic function (QF) defined as:

QF : ((‖x‖ − a)2, (‖x‖ − b)2) ‖x‖ =
n∑

i=1

xi

is O(n log n) (O(n2), in terms of the evaluations performed).
Finally, Kumar and Banerjee analyze REMO when applied to the well-

known bi-objective 0-1 knapsack problem. They perform a partition of the
decision space into fitness layers (by partitioning the items of the knapsack
problem into blocks) and prove that the expected running time of REMO is
O(n2m+1Pknap

m2m+1), where n is the number of items, m is the number of blocks
into which the items can be divided and Pknap refers to the sum of the profits
of the items in the knapsack problem (n �= m).

Since an important open problem is to understand the role of populations
in MOEAs, in [561], Giel and Lehre present a simple biobjective problem
which emphasizes the case in which populations are needed. Rigorous run-
time analysis point out an exponential runtime gap between the population-
based algorithm SEMO and several single individual-based algorithms on this
problem.

All the single individual multi-objective evolutionary algorithms consid-
ered by Giel and Lehre are instantiations of a scheme in which initially one
individual x is randomly chosen from {0, 1}n and, at each iteration, a new
individual x′ is obtained by applying a mutation operator to x; x′ replaces
x if x′ is better than x. The algorithms differ in the choice of the mutation
and selection operators. Giel and Lehre use two different mutation operators:
local mutation (flips a randomly chosen bit) and global mutation (flips each
bit independently with probability 1/n). On the other hand, four selection
operators are used:

• Weakest selection operator: favors x′ over x if x′ weakly dominates x, or
x′ and x are incomparable.

• Weak selection operator: favors x′ over x if x′ weakly dominates x.

6.3 MOEA Theoretical Issues 325

• Strong selection operator: favors x′ over x if x′ dominates x.
• ε-constraint selection operator: if f1(x) < ε, then the operator favors x′

over x if f1(x′) ≥ f1(x). If f1(x) ≥ ε, then the operator favors x′ over x if
f1(x′) ≥ ε and f2(x′) ≥ f2(x).

In this way, Giel and Lehre obtain eight different single individual-based
MOEAs. For the case of SEMO, Giel and Lehre consider two versions: local
SEMO (with local mutation) and global SEMO (with global mutation). The
objective function used by Giel and Lehre is defined in terms of the active
block of a string. Let n = mk and let x be a bit string of length n. We say
that bit string x is divided into k blocks, where each block has length m ≥ 2.

Definition 53 (Block Value, Active Value) : Given a search point
x ∈ {0, 1}km and an integer i, 0 ≤ i ≤ k − 1. Then the i-th block value of
x, denoted by |x|i, is defined as

|x|i :=
m(i+1)−1∑

j=mi

xj

The active block of a search point x is the leftmost block with lowest block
value. The number

j := min argmin0≤i≤k−1{|x|i}
denotes the active block index. �

The multi-objective function f : {0, 1}n → N× N used by Giel and Lehre
is defined as:

f(x) := (2jm(|x|j + 1), 2(k−j−1)m(|x|j + 1))

where j is the active block index of x. The aim is to maximize f . As the entire
Pareto front of f is non-convex, all methods that require a convex Pareto front
are not applicable to f .

In [561], Giel and Lehre prove that search points with the same active
block index are comparable whereas search points with distinct block indices
are incomparable. From this result, they also prove that all search points
selected by either the weak or the strong selection operators have the same
active block index as the initial search point. In this way, Giel and Lehre are
able to prove that there is a large fraction of the Pareto front such that, with
an overwhelming probability, the algorithms that use either the weak or the
strong selection operator have to be started eΩ(n) times before finding any
Pareto optimal point from this fraction.

In this way, both weak and strong selection turn out to be inadequate. The
weakest selection operator alleviates this problem by allowing to change the
active block index. However, Giel and Lehre show that this is not sufficient
and prove that the algorithms that use the weakest selection operator need
with overwhelming probability an exponential time to find any Pareto optimal
solution.

326 6 MOEA Theory and Issues

For the case of the algorithms that use the ε-constraint selection operator,
Giel and Lehre prove a result similar to that proved for the weak and strong
selection operator’s algorithms. Finally, Giel and Lehre prove that, within
polynomial time, the SEMO population covers the entire Pareto front. More
precisely, Giel and Lehre prove that the expected running time until the SEMO
population covers the Pareto front is O(nk2 log m).

In this way, among the algorithms considered, only the population-based
MOEA is successful and all the other algorithms fail. That is, only the
population-based algorithm SEMO finds the Pareto front in expected polyno-
mial time. This result demonstrates the importance of populations for certain
types of multi-objective problems. Also, this result of Giel and Lehre improves
the result provided by Laumanns et al. in [962], since that result yields only a
small polynomial runtime gap, whereas Giel and Lehre provide an exponential
gap.

6.3.11 MOEA Computational “Cost”

When practically considered, MOP evaluation cost limits MOEA search. The
most “expensive” EA component in many real-world MOPs is the fitness func-
tion evaluation. Since all algorithms must eventually terminate the number
of fitness evaluations is then often selected as the finite resource expended in
search, i.e., the choice is made a priori for an EA to execute n fitness evalua-
tions. The “best” solution found is then returned. Assuming solutions are not
evaluated more than once (no clones) a total of n points (possible solutions)
in the search space are explored.

Now consider a k-objective function. Here, k fitness evaluations are per-
formed for each possible solution (one for each objective). Assuming resources
are still limited to n fitness evaluations and that each objective evaluation is
equally “expensive”, only �n

k � points in the search space are now explored.
All else held equal, a k-objective optimization problem may then result in a
k-fold decrease in search space exploration. Note also that in the context of
MOEAs, this implies using the term “fitness function evaluations” to mea-
sure computational effort may be somewhat misleading. The term “solution
evaluations” is clearer.

This result implies a MOEA may require longer (than a single-objective
EA) “wall clock” execution times for good performance. Further search is
never guaranteed to return the optimal answer but one wishes as much explo-
ration as possible in the time allowed. This increases the sense of confidence
one has found the true, and not a local, optimum.

6.3.12 NFL-Theorem for Multiobjective Optimization Algorithms

As we mentioned before, the No Free Lunch Theorems (NFL) [1708] imply
that, if problem domain knowledge is not incorporated into the algorithm

6.3 MOEA Theoretical Issues 327

domain, no formal assurances of an algorithm’s general robust effectiveness
exist.

In [898], Köppen extends the NFL theorems to the case of multiobjective
optimization through of the following theorem:

Theorem 17: For any two deterministic algorithms a and b, any performance
value k ∈ R, and any performance measure c:

∑
f

δ(k, c(m,a, f)) =
∑

f

δ(k, c(m, b, f))

where δ is the Kronecker delta and (m,a, f) represents a sequence of m suc-
cessive applications of the algorithm a to the problem f . �

In other words, the NFL theorem states that, on average, each algorithm
has the same performance when applied to all possible problems f , provided
that no a priori knowledge of the problem is assumed. Nevertheless, Köppen
also shows that even in cases of a priori knowledge, when the performance
measure is related to the set of extrema point sample so far, the NFL theorems
still hold.

According to Köppen, the NFL theorem can also be seen as stating the
impossibility to obtain a concise mathematical definition of algorithm perfor-
mance. However, he shows that a procedure for obtaining function-dependent
algorithm performance can be constructed, the so-called tournament perfor-
mance, which is able to gain different performance measures for different
multiobjective algorithms. Finally, Köppen proposes a heuristic procedure to
measure algorithm performance:

1. Let algorithm a run for k evaluations of cost function f and take the set
M1 of nondominated points obtained by the algorithm.

2. Select k random domain points and compute the Pareto set M2 of the
corresponding f values.

3. Compute the set of M3 of elements of M2 that are not dominated by any
element of M1.

The relation of |M1| to |M3| gives a measure of how algorithm a performs
with respect to random search.

6.3.13 Alternative Definitions of Optimality

According to Farina and Amato [471], when dealing with multi-objective op-
timization problems, the concepts of Pareto dominance and Pareto optimal-
ity may be inefficient in modeling and simulating human decision making.
This occurs when problems with a number of objectives relatively large (more
than two or three) are considered, since the set of Pareto optimal solutions
becomes large and unmanageable. In [471], Farina and Amato discuss that,

328 6 MOEA Theory and Issues

when comparing two solutions according to Pareto definitions, the following
three aspects are not taken into consideration:

• the number of improved (or decreased) objectives,
• the size of such improvements (or decreases) and
• the decision maker preferences between objectives (if any).

Also, they mention that these three issues are crucial in the human decision
making process and may lead to several degrees of dominance, when two solu-
tions are compared and, consequently, to several degrees of optimality among
Pareto optimal solutions. For these reasons, with the aim of generalizing the
definition of Pareto optimality,

Farina and Amato introduce different fuzzy-based definitions of domi-
nance and optimality [471]. They provide three definitions: k-optimality, kF -
optimality (with fuzzy numbers) and fuzzy optimality. Each one is a sound
extension both of the previous one and of Pareto optimality. Moreover, such
definitions can be extended to the case of fuzzy objectives and fuzzy con-
straints. The hypothesis underlying the given definitions is that the satisfac-
tion of the human decision maker linearly increases with the increase of the
improved objectives.

Definition 54 ((1 − k)-Dominance) : v1 is said to (1− k)-dominate v2

if and only if {
ne < M
nb ≥ M−ne

k+1

where ne is the number of objectives, v1 and v2 are equal, nb is the number of
objectives, v1 is better than v2, and 0 ≤ k ≤ 1. �

If we consider nw as the number of objectives where v1 is worst than v2,
we have nb + nw + ne =total number of objectives.

Definition 55 (k-Optimality) : v∗ is k-optimum if and only if there is
no v ∈ Ω such that v k-dominates v∗. �

It can be seen that the former is a loose version of Pareto dominance
(1-dominance) and the latter is a strong version of Pareto optimality (0-
optimality). An extension of the previous definitions is to substitute crisp
relations with fuzzy ones.

Definition 56 ((1 − kF)-Dominance) : v1 is said to (1− kF)-dominate
v2 if and only if {

nF
e < M

nF
b ≥

M−nF
e

kF +1

where nF
b , nF

w and nF
e are defined in terms of the membership functions µb,

µw and µb, respectively, and 0 ≤ kF ≤ 1. �

Definition 57 (kF -Optimality) : v∗ is kF -optimum if and only if there
is no v ∈ Ω such that v kF -dominates v∗. �

6.3 MOEA Theoretical Issues 329

Farina and Amato consider two possible membership shapes: linear and
Gaussian. Both membership shapes require some parameters that can be pro-
vided by the human decision-maker knowledge of the system, defining the
practical meaning of equality and improvement. In addition, Farina and Am-
ato obtain a more general procedure through the introduction of a fuzzy de-
finition for the dominance relation itself, and not only for the quantities nF

b ,
nF

w and nF
e .

Definition 58 (Fuzzy-Dominance) : Let

µD(v1, v2)
�
= fµD

(nF
b (v1, v2), nF

w(v1, v2), nF
e (v1, v2))

a membership function defined in terms of a membership function (or a fuzzy
system) fµD

that depends on nF
b , nF

w and nF
e . Then µD is a fuzzy dominance

relation if for any α ∈ [0, 1], µD(v1, v2) > α implies that v1 kF -dominates v2.
�

A membership function for optimality µO can be implicitly defined through
its α-cuts:

Definition 59 (Fuzzy optimality) : A membership function µO represents
the fuzzy optimality relation if for any kF ∈ [0, 1] v∗ belongs to the kF -cut of
µO if and only if there is no v ∈ Ω such that µD(v, v∗) > kF . �

It is very important to note that Farina and Amato exclude the prefer-
ences of the decision maker from the optimization process and consider fuzzy
memberships as a tool for the numerical formalization and treatment of the
size of improvements in the dominance definition. That is, in the work devel-
oped by Farina and Amato, fuzzy set theory is not related to treatment of
preferences among objectives, but it is related to the size of improvements,
with the underlying hypothesis that all objectives have equal importance.

Based on this definitions, different subsets of Pareto optimal solutions can
be computed using simple and clear information provided by the decision
maker and using a parameter value ranging from zero to one (k). When the
value of the parameter is zero, the introduced definitions coincide with classical
Pareto dominance and optimality. When the parameter value is increased,
different subsets of Pareto optimal solutions can be obtained corresponding to
higher degrees of optimality. In [471], Farina and Amato test their definitions
on analytical cases, in order to show their validity and nearness to human
decision making.

6.3.14 Local Search

The use of local search within a MOEA is another interesting topic that has
been only scarcely studied.6 Although memetic MOEAs7 have existed for some

6 Local search in the context of MOEAs is discussed in more detail in Chapter 3.
7 Memetic MOEAs are discussed in Chapter 10.

330 6 MOEA Theory and Issues

time (see for example [879]), most of the hybridizations between a MOEA and
a local search mechanism are relatively straightforward algorithmic designs,
lacking a careful analysis of the trade-offs involved (i.e., evidently, the use
of local search is expected to improve quality of the solutions, but also in-
troduces extra computational costs). Additionally, the use of more elaborate
local search mechanisms is still a subject of ongoing research.

In [658], Harada et al. propose a local search method, called Pareto Descent
Method (PDM), which finds Pareto descent directions and moves solutions in
such directions thereby improving all objective functions simultaneously.

According to Harada et al. a descent direction is defined in the following
way:

Definition 60 (Descent Direction) : Denote by ∇fi(x) (i = 1, 2, ...,m)
the gradients of the objective functions at a solution x = (x1, x2, ..., xn). A
direction d = (d1, d2, ..., dn) is said to be a descent direction if it satisfies:

d · (−∇fi(x)) ≥ 0 (i = 1, 2, ...,m). (6.17)

�

There are often multiple descent directions and not all descent directions
are similarly capable of improving all objective functions.

Definition 61 (Pareto Descent Direction) : A descent direction d is a
Pareto Descent Direction iff d can be expressed as a convex combination
of the steepest descent directions of objective function, i.e. there exist αi ≥ 0
(i = 1, 2, ...,m) such that:

d =
m∑

i=1

αi(−∇fi(x)) (6.18)

�

In this way, a Pareto descent direction is a descent direction to which no
other descent direction is superior in improving all objective functions. There
are often multiple Pareto descent directions, and none of the Pareto descent
directions is better than any of the others. PDM assumes that the objective
functions are differentiable, and that local Pareto optimal solutions that are
not Pareto optimal solutions do not exist. Since Equation 6.17 is a simul-
taneous linear inequality, the complete set of descent directions and Pareto
descent directions forms a convex cone pointed at the origin in the vector
space. PDM imposes a linear constraint on the convex cone (

∑m
i=1 αi ≤ 1)

and obtains a convex polyhedron which has the origin as one of its vertices.
Then, PDM calculates directions in the convex cone, by finding the vectors
from the origin to the vertices of the convex polyhedron. With this aim, PDM
obtains the vertices of the convex polyhedron by solving the corresponding
linear programming problems (by means of the Simplex method). Thus, PDM
finds a set of feasible Pareto descent directions or feasible descent directions,

6.3 MOEA Theoretical Issues 331

as appropriate, for solutions inside feasible regions or on feasible region bound-
aries.

Having found a feasible Pareto descent or a feasible descent direction at
a solution, PDM moves the solution in that direction until just before any
of the objective functions deteriorate or any of the constraints are violated.
If no feasible descent directions can be found, the corresponding solution is
Pareto optimal. Harada et al. compare the performance of PDM against three
different local search algorithms taken from the literature: Random Direc-
tion Search (RDS, which is an ES-like simple local search method), Weighted
Steepest Descent Method (WSDM, which forms a scalar function and opti-
mizes it with steepest descent method) and Combined Objectives Repeated
Line-Search (CORL, which utilizes the gradients of objective functions to cal-
culate the convex cone of Pareto descent directions) [658]. The experiments
using two different test functions with two and three objectives indicate that
PDM has good speed convergence and does not bias the solutions to a limited
portion of the Pareto optimal set.

In [154], Bosman and de Jong present an adaptive resource-allocation
scheme that uses three gradient techniques in addition to the variation opera-
tor in a MOEA. They investigate the combined use of three gradient tech-
niques by an adaptive means of choosing how often to use each gradient
technique, in order to have the benefits of all of them. The three gradient
techniques used are: Random-Objective Conjugate Gradients (ROCG) which
applies the conjugate gradients algorithm to a randomly chosen objective;
Alternating-Objective Repeated Line-Search (AORL) in which the objective
that is searched locally can be altered during search; and Combined-Objectives
Repeated Line-Search (CORL) (also used by Harada et al. in [658]). Bosman
and de Jong use a generational scheme in which all gradient techniques are
applied to one or more solutions in the population at the end of each gen-
eration. Each gradient technique is applied only as long as the ratio of the
number of evaluations required by that specific gradient technique and the
total number of evaluations required so far is smaller than a ratio parameter
ρe (0 ≤ ρe < 1/3).

According to Bosman and de Jong, a fixed ratio approach is not optimal
in general because if one gradient technique is clearly superior to another
gradient technique, it is more efficient to allow the more superior technique
to spend more search effort. In this way, Bosman and de Jong propose an
adaptive allocation of resources such that during the search the most effective
gradient technique is assigned the largest probability; or, if no technique is
efficient compared to the baseline MOEA, it reduces the use of the gradient
techniques to a minimum. At each generation, the effectivity of each gradi-
ent technique and the variation operator of the MOEA is assessed in terms of
the number of improvements per evaluation. The number of improvements ob-
tained by the variation operator of the baseline MOEA is equal to the number
of offspring solutions that are nondominated but also dominate at least one
solution in the population. On the other hand, the number of improvements

332 6 MOEA Theory and Issues

obtained by a gradient technique is equal to the number of offspring solu-
tions that are nondominated but also dominate the solution that the gradient
technique started from. Since this notion of improvement is strict, Bosman
and de Jong also consider (as a different version of their approach) counting
improvements when a new nondominated solution is created that does not
necessarily dominates the solution(s) it was created from.

Regarding the number of evaluations used by each operator, for the gradi-
ent techniques this number is equal to the number of evaluations used in the
most recent generation. However, in order to make a fair comparison and to
allow an increase in the number of calls to the gradient techniques, the number
of evaluations of the variation operators of the baseline MOEA is obtained
by calculating the sum of all evaluations backwards over previous generations
until the number of evaluations is at least as large as the largest number of
evaluations used by any gradient technique (in the most recent generation).
In this way, after calculating the effectivity of each operator, the total num-
ber of evaluations used in the most recent generation is then redistributed
proportionally to each operator for the next generation.

Bosman and de Jong perform tests on a few well-known benchmark prob-
lems with specific gradient properties. They compare the results of a MOEA
with the adaptive resource-allocation scheme against the results of the same
MOEA without the use of gradient techniques and with a scheme in which
resource allocation is constant. The baseline MOEA used by Bosman and
de Jong is the so-called naive MIDEA [155], which is an EDA designed for
multi-objective optimization. The experiments show that the proposed scheme
makes proper use of the gradient techniques only when required and thereby
leads to results that are close to the best results that can be obtained by
fine-tuning the resource allocation for a specific problem. Also, it is observed
that the scheme for counting improvements that provides the best results is
the less strict one, which improves diversity along the entire Pareto front.

In [1455], Schütze proposes numerical methods for the approximation of
the entire set of solutions of multi-objective optimization problems. More pre-
cisely, he proposes algorithms for the computation of tight coverings of such
sets. He proposes algorithms for different assumptions of smoothness of the
underlying models. Schütze proposes three basic algorithms which can be used
on general MOPs followed by extensions both for non-smooth and for smooth
objectives leading to particular continuation methods. Continuation methods
can be used to compute solution sets efficiently. However, these techniques
are of local nature. Given an initial set S0 of (local) Pareto solutions, all
further solutions computed by these methods are restricted to the connected
components of the set of (local) Pareto points contained in S0.

The three basic algorithms developed by Schütze are the Subdivision Algo-
rithm, the Sampling Algorithm and the Recovering Algorithm. The Subdivi-
sion Algorithm generalizes a known subdivision algorithm for the computation
of invariant sets of single dynamical systems. This algorithm has the advantage
of being very robust with respect to errors by the use of the descent direc-

6.4 Summary 333

tion. However, all the gradients of the objectives have to be available and the
algorithm is unable to distinguish between a local and a global Pareto point.
Also, Schütze discusses that the subdivision techniques are restricted in use to
moderate dimensionality of the parameter space. The Recovering Algorithm
uses a kind of “healing” process which allows to recover those substationary
points which have been previously lost. The recovering algorithms are local in
nature, but on the other hand are not restricted to moderate dimensions like
the algorithms based on subdivision techniques.

Since the main drawback of the two previous algorithms is that the gradi-
ents of the objectives are needed, Schütze proposes the Sampling Algorithm
which takes only the function values of the objective functions into account.
The results of this algorithm show it works quite well, in particular when
the dimensionality of the MOP is moderate. However, this algorithm is not
as robust to errors as the first two. In order to obtain a best overall perfor-
mance, Schütze proposes a combination of the three algorithms (assuming
that the gradients of all objectives are available): start with the subdivision
algorithm, apply the recovering algorithm in order to fill the gaps which have
possibly been generated before, and use the sampling algorithm to tighten the
extended covering.

In cases where the MOP is not continuous (non-differentiable) and/or the
dimension of the parameter space is large, Schütze proposes combinations
of MOEAs with both the subdivision and the recovering techniques. Since
MOEAs typically generate very quickly good approximations of Pareto points,
they only have to run for a short time and the recovering techniques can
merely be applied to improve the obtained results. Schütze proposes the EA-
subdivision algorithm, which uses the sampling algorithm combined with a
short MOEA. The only task of the MOEA is to find as fast as possible one
good approximation of the Pareto set. Also, Schütze proposes two versions of
the recovering algorithm (static and dynamic) for the corresponding process
of “healing”.

6.4 Summary

This chapter presents various MOEA theorems and corollaries providing in-
sight to the Pareto front convergence possibilities in a given MOP applica-
tion. Also, general observations concerning MOEA theoretical issues as re-
lated to operator selection and insight are discussed. Finally, other aspects
such as computational complexity, running time analysis, landscape analysis,
and computational cost of a MOEA are briefly discussed.

Further Explorations

Class Exercises

1. Provide the basic elements required to prove convergence of a MOEA, as
indicated in [1401]. How is this different from the proof provided in [1653]?

2. Describe the basic concepts associated to Markov chains that are required
to prove convergence of a simple (single-objective) genetic algorithm (see
[1393]). What extra elements are required for a multi-objective genetic
algorithm?

3. Why is it a difficult problem to define bounds on the convergence of a
MOEA? Discuss possible ways to tackle this problem.

4. Can you sketch a possible way of incorporating self-adaptation in a theo-
retical model of convergence of a MOEA? Discuss.

5. Discuss scalability (in the number of objective functions) and its implica-
tions for Pareto dominance. Can Pareto ranking be affected by scalability?
How? See for example [880].

6. Does the use of an external archive affect in any way the requirements to
prove convergence of a MOEA? Discuss.

7. Indicate the difference between the traditional Pareto dominance and ε-
dominance [959]. Can we prove convergence of a MOEA if ε-dominance is
adopted instead of Pareto dominance? Discuss.

8. Why do you think that is difficult to derive accurate convergence rates
and convergence bounds for a MOEA?

9. What is the usual mapping of “multimodality” into multi-objective opti-
mization problems? Do you think that this feature increases the degree of
difficulty of a problem?

Class Software Projects

1. If convergence is measured in terms of obtaining elements of the Pareto
optimal set (assuming that the true Pareto optimal set is known), write

336 Further Explorations

a computer program that shows in a graphical form the convergence of a
MOEA in a discrete problem. Analyze the behavior of the MOEA when
different Pareto ranking schemes and variation operators (i.e., crossover
and mutation) are used.

2. Choose a set of test functions that are considered as “very difficult” to
solve for state-of-the-art MOEAs (see for example [721]). Design an em-
pirical study in which the behavior of a MOEA is statistically analyzed
when attempting to solve such difficult test functions. Can you derive
some “sources of difficulty” from this study? Discuss.

3. Introduce variable linkages in a problem (see for example [377]) and an-
alyze (in an empirical way), how does this variable linkage affect the be-
havior of a MOEA. Write a report that details your experimental setup,
your results and your analysis of such results.

4. Using a program that you have written, trace the convergence of a MOEA
to the true Pareto front of a discrete multi-objective optimization problem.

5. Write a program to generate, in graphical form, the fitness landscape of
a multi-objective optimization problem. Use your program to analyze the
fitness landscapes of simple problems (i.e., with two objectives and two
decision variables).

6. Implement 3 different diversity preservation mechanisms (e.g., fitness shar-
ing [368], clusters [1782] and the adaptive grid [886]) within any MOEA
of your choice (see Chapter 2) and compare their performance using the
DTLZ test functions [379] (see Chapter 4).

Discussion Questions

1. Discuss two possible ways in which the development of a specific MOEA
may provide insights regarding the generation of new theoretical results.

2. Develop a series of MOEA experiments to evaluate various population se-
lection operators on (µ, λ) and (µ+λ) multi-objective evolution strategies
and relate to anticipated convergence results based on theoretical analysis.

3. Regarding positive variation kernels and strong elitist preservation proper-
ties, evaluate five MOEAs with respect to their relationship to this model.

4. Discuss some other possible applications of concepts related to MOEAs
in evolutionary computation. For example, Rudolph [1398] proposed the
use of partially ordered sets (and MOEAs) as an alternative way to deal
with noisy fitness functions.

5. Analyze the convergence proofs for multi-modal multi-objective optimiza-
tion presented by Bonnemay et al. [149]. How is this work related to the
proofs described in this chapter? Discuss.

6. Analyze the runtime analysis of a MOEA in the multi-objective minimum
spanning tree problem presented by Neumann [1183]. What sort of MOEA
is adopted for this study? What is the expected runtime derived by the
author? What types of Pareto fronts are considered in this analysis?

Further Explorations 337

Possible Research Ideas

1. Consider the use of recombination and mutation adaptive operators as well
as fitness sharing in the development of an extended MOEA convergence
theory.

2. Relax the concept of positive variation kernel or the strong elitist preser-
vation and attempt to generate new lemmas and theorems related to con-
vergence.

3. Relax the concept of partially order sets for MOEAs and generate new
lemmas and theorems related to convergence.

4. Generate necessary conditions for MOEA convergence for finite search
spaces and infinite search spaces.

5. Attempt to generate necessary and sufficient MOEA convergence condi-
tions for finite search spaces.

6. Extend Hanne’s theoretical convergence results for other selection func-
tions.

7. Formalize selected MOEA algorithms in a generalized Back’s or Merkle’s
notation and develop associated theorems of reachability and convergence
[72, 1092].

8. Consider the extension of a generalized theory of MOEA convergence for
fitness functions with bounded additive noise [1399].

9. Consider the use of the concept of entropy to monitor and control the
diversity of the population of a MOEA. Propose a theoretical framework
that properly models this sort of approach. See some related proposals
such as [312, 465].

10. Attempt to generate the necessary and sufficient conditions to ensure con-
vergence of a multi-objective particle swarm optimizer (MOPSO). Is this
similar to proving convergence for a multi-objective genetic algorithm?
Why?

11. Provide a runtime analysis of a (binary) multi-objective particle swarm
optimizer in a discrete multi-objective optimization problem.

12. Use statistical mechanics to study the population dynamics in a MOEA.
See for example [1469].

7

Applications

In computing, turning the obvious into the useful is a living definition
of the word “frustration”.

Alan Perlis

7.1 Introduction

Although the application of classical multiobjective optimization techniques to
solve problems in different areas (e.g., management, engineering and science)
started as early as 1951 (see Section 1.6.2 from Chapter 1), Multi-Objective
Evolutionary Algorithms (MOEAs) were applied for the first time until the
mid-1980s [764, 1440, 518]. However, since the late 1990s, there has been
a considerable increase in the number of applications of MOEAs. This has
been mainly originated by the success of MOEAs in solving real-world prob-
lems.1 MOEAs have generated either competitive or better results than those
produced using other search techniques. This has made the task of classifying
MOEA applications difficult and subjective. Trying to deal with this problem,
it was decided to use a rather simple and general classification in this chapter,
trying to fit each paper reviewed within the closest category according to the
focus of the work. For example, a paper that is related to scheduling and naval
engineering but is more focused on the second subject, is classified under “en-
vironmental, naval and hydraulic engineering”. This avoids overlapping to a
certain extent, but can be confusing for some people. Therefore, it was decided
to add as many entries as possible to the analytical index provided at the end
of this book to facilitate the search. Additionally, italics characters are used
throughout this chapter to indicate the specific name of an application, in an
attempt to facilitate the search of specific information.
1 In fact, there are several recent surveys on applications of MOEAs in specific areas

(see for example [393, 1445]), and there is even a recent book entirely devoted to
real-world applications of MOEAs [277].

340 7 Applications

Besides indicating the specific application studied, brief discussions about
the type of MOEA used (including encoding, genetic operators and type of
evolutionary algorithm) are provided (if such information is available). Addi-
tionally, if the approach adopted is compared to any other technique, a brief
discussion of the results obtained is also provided.2

To facilitate location of information, each section contains a table with
a summary of the applications reviewed in that section. The table describes
briefly the type of specific application reviewed, the references related to it,
and the type of MOEA adopted in each case.3

For practical purposes, applications of MOEAs have been divided in four
main groups: engineering, scientific, industrial and miscellaneous. Each of
these has been further divided into subgroups, as we will see later on.

7.2 Engineering Applications

Engineering is, by far, the most popular application domain area within the
MOEAs literature. This is mainly because engineering applications normally
have “good” mathematical models (equations/inequalities) that can directly
be associated with a MOEA search. To understand better the particular ar-
eas of interest within this domain, engineering applications have been fur-
ther divided into eight subgroups: (1) environmental, naval & hydraulic, (2)
telecommunications and network optimization, (3) structural & mechanical,
(4) aeronautical, (5) electrical and electronics, (6) robotics and control, (7)
civil and construction, and (8) transport.

7.2.1 Environmental, Naval and Hydraulic Engineering

Table 7.1: Summary of environmental, naval and hydraulic engineering applications

Specific Applications Reference(s) Type of MOEA

Groundwater pollution re-
mediation

[1364] VEGA, GA with Pareto rank-
ing

[708] NPGA
[255] VEGA, GA with Pareto rank-

ing, GA with Tchebycheff
weighting method

[1325] Multi-Niche Crowding GA
[453] NPGA 2
[542] GA with a linear aggregating

function
Water quality control [232] GA with a nonlinear aggregat-

ing function
[1340, 1341, 1342] NSGA
[1507] Noninferior Surface Tracing

Evolutionary Algorithm

2 When no mention to any comparisons is made, it means that the authors did not
report any validation of their approach with respect to other techniques.

3 See Chapter 2 for information on each specific type of MOEA.

7.2 Engineering Applications 341

Table 7.1: (continued)

Specific Applications Reference(s) Type of MOEA

Pumping scheduling [1457, 1432] GA with Pareto ranking
Water distribution network [637] Structured messy GA with

Pareto ranking
[515] NSGA-II
[833] CAMOGA

Gas supply network [1543, 1542] VEGA hybridized with Pareto
ranking

Air quality management [1017, 1016] GA with the Neighborhood
Constraint Method

Calibration of hydrologic
models

[1733, 1734, 622] MOCOM-UA

[849] Accelerated Convergence Ge-
netic Algorithm with a nonlin-
ear aggregating function

Design of marine vehicles [1580, 1581] GA with Pareto ranking,
MOGA and NPGA

[178] GA with Pareto ranking
[969] GA coupled with the ε-

constraint method
Planning of containership
layouts

[1591] MOGA variant

Location of site retail and
service facilities

[616, 615] GA with a linear aggregating
function

Ritzel et al. [1364] use VEGA [1440] and Pareto ranking (also called Pareto
GA) to solve a groundwater pollution containment problem in which two ob-
jectives are considered: reliability and cost of the hydraulic containment sys-
tem. The decision variables considered are the number of wells to install,
their locations and the amount of pumping required from each of them. They
employ binary representation and deterministic binary tournament selection
with both VEGA and the Pareto GA. Results of both techniques are compared
with respect to each other and against those produced with the Mixed Integer
Chance Constrained Programming (MICCP) method [1128]. The Pareto GA
was found to be superior to VEGA in terms of generation of the trade-off
curve. The Pareto GA also compared well against MICCP, but several prob-
lems were found to fine-tune the parameters of the GA and to decrease its
computational cost (initially higher than that of MICCP).

Horn et al. [708, 709] use the NPGA to solve a similar problem: optimal
well placement for groundwater containment monitoring. The problem has two
objectives: find the placement of a set of wells so that the number of detected
leak plumes from a landfill into the surrounding groundwater is maximized,
while the volume of cleanup involved is minimized.

Cieniawski et al. [255] work on the same problem as Horn et al. [708] as-
suming uncertainty. In their study, they consider two objectives: maximize re-
liability and minimize contaminated area at the time of first detection. They
compare the results produced by VEGA, a Pareto GA (with and without
sharing), a GA using a Tchebycheff weighting method as proposed by Steuer
[1522] and simulated annealing using the same Tchebycheff weighting method
adopted with the GA. They also experiment with a combined technique in
which VEGA is run for a certain number of generations after which Pareto

342 7 Applications

ranking is applied. The combined approach between VEGA and Pareto rank-
ing provides the best results (in terms of coverage of the Pareto front) together
with the weighted GA approach (except for some non-convex portions of the
Pareto front that are not found by the algorithm). Apparently, the use of
pure Pareto ranking could not find the extremes of the Pareto curve, and
the authors indicate how their weighted simulated annealing approach could
outperform the GA in terms of CPU time required (while finding the same
points of the Pareto front as the GA). Their preliminary experiments with
sharing led them to advise the use of sharing in objective space rather than in
decision variable space. For these experiments, an integer representation and
binary tournament selection are adopted.

Vemuri and Cedeño [1325, 1326] use a Multi-Niche Crowding GA (MNC
GA) to determine the optimum placement of pumping (and recharge) wells and
optimum pumping schedules during the remediation of contaminated ground-
water aquifers. Three objectives are considered: minimize remediation cost,
maximize the amount of contaminant removed, and minimize the concentra-
tion of contaminant leaving the site. The objective is to find a set of wells
whose cost stays within certain budget restrictions. Instead of using Pareto
ranking, they compute ranks of each solution for each particular objective and
determine fitness by adding these rankings (e.g., considering three objectives,
an individual whose encoded solution ranks second for the first and second
objectives and fourth for the third objective has a fitness of 2 + 2 + 4 = 8).
The representation used is a variable-length integer string.

Erickson et al. [453] use the NPGA 2 to design groundwater remediation
systems. Two objectives are considered: minimize cost and maximize cleanup
performance. The NPGA 2 uses Pareto ranking in a similar way as MOGA
[504], but it keeps tournament selection from its original version [709]. It also
continues using fitness sharing (in objective space), calculating niche counts
using the partially filled next generation population instead of the current one.
Continuously updated fitness sharing is adopted to decrease the high selection
pressure of tournament selection [1205]. Results are compared against an enu-
merated random search approach and against the use of a simple GA in which
the objective function is to minimize cost and cleanup performance is han-
dled as a constraint. The quality of results is assessed in terms of closeness
to PFtrue and spread of solutions along PFtrue . The conclusions indicated
that as the problems increased in complexity (i.e., as the number of decision
variables increased), the NPGA 2 became more effective and efficient than the
two other methods considered, in terms of finding more nondominated vectors
that were closer to PFtrue and better distributed along it.

Garrett et al. [542] use a GA with a linear combination of weights for
bioremediation optimization of trichloroethylene-contaminated groundwater.
Four objectives are considered: aquifer pumping flow, oxygen injection rate
and time period, toluene (bioremediation enzyme) pulsing rate, and well
separation. The complex bioremediation mathematical model incorporates
multi-dimensional flow, advection and dispersion, equilibrium or rate-limited

7.2 Engineering Applications 343

sorption, and biodegradation. Using a real-coded GA and this very high-
dimensional varying-weight model on a parallel computation platform, pa-
rameter results were found to be very similar to those proposed by consulting
experts.

Chen and Chang [232] use a GA with an aggregating approach (a multi-
plication of the aspiration levels of each objective) for a water quality control
problem. Three objectives are considered: maximize the assimilative capac-
ity of the river, minimize the treatment cost for water pollution control and
maximize the economic value of the river flow corresponding to recreational
aspects. A nonlinear fuzzy membership function is used to model the uncer-
tainty involved in the computation of the objectives and a penalty function is
used to incorporate the constraints of the problem into the fitness function.

Reed et al. [1342, 1340, 1341] use the NSGA to perform cost effective
long-term groundwater monitoring. Two objectives are minimized: sampling
costs and local concentration estimation errors. The approach employs binary
representation, phenotypic sharing, and elitism (defined in this case in such a
way that only one individual per niche is retained). Historical data at a single
snapshot in time are also used to identify potential spatial redundancies within
the monitoring network under study. The original NSGA is compared against
an elitist version, concluding that the second version performs considerably
better than the first. Additionally, some guidelines are derived to: (1) identify
the most appropriate population size, (2) choose proper niche sizes, (3) setting
up the elitist selection pressure, and (4) avoid genetic drift.

Srigiriraju [1507] uses the Noninferior Surface Tracing Evolutionary Algo-
rithm (NSTEA) to solve an estuary water quality management problem. Two
objectives are considered: minimize cost of BOD control, and maximize equity
with respect to levels of treatment among the different dischargers. NSTEA
consists of a genetic algorithm that uses a technique similar to the ε-constraint
method (see Section 1.7.2 from Chapter 1). The idea is to use one of the objec-
tives of the problem to cause convergence of a GA to a certain nondominated
vector and handle the other objectives as constraints. Then, each objective
is used sequentially, but to reduce computational costs, the same population
of a previous run of the GA is used as the starting point for generating the
following nondominated vector. This is then similar to the use of an aggre-
gating function in which the weights are adapted after convergence has been
achieved to a certain nondominated vector. The authors use real-numbers rep-
resentation, uniform crossover and non-uniform mutation. Results compared
well with respect to those produced by the ε-constraint method (using linear
programming) in terms of coverage and spread across the Pareto front. The
NSTEA compared well in terms of accuracy, coverage and spread with respect
to the use of linear programming. The NSTEA is also compared to VEGA
[1440], NPGA [709], NSGA [1509] and SPEA [1782] on several test functions
and some instances of the 0/1 knapsack problem. The NSTEA outperformed
almost all the other methods in terms of the same three metrics previously

344 7 Applications

mentioned. The only exception was SPEA that outperformed the NSTEA in
some instances of the 0/1 knapsack problem.

Schwab et al. [1457] and Savic et al. [1432] use a GA with Pareto ranking
in a pump scheduling problem in which the objective is to minimize marginal
costs of supplying water while staying within certain physical and operational
constraints. Two costs are considered: energy consumption and pump switch-
ing (i.e., the cost caused by the switching of the pumps). They use binary
representation and probabilistic tournament selection.

Halhal et al. [637] use Pareto ranking with a structured messy GA to
choose the best possible improvements to make to a water distribution net-
work with a limited budget. Two objectives are considered: minimize capital
cost and maximize benefits. The approach is tested with two problems: a small
looped network consisting of 15 pipes, 9 nodes and 7 loops, and a real wa-
ter distribution network for a town in Morocco, which consists of 115 nodes
and 167 pipes. The proposed technique outperforms a simple GA in terms of
quality of the solutions produced.

Formiga et al. [515] use the NSGA-II [374] hybridized with a hydraulic
simulator based on the method of Nielsen [1185] for the optimal design of a
water distribution system. Three objectives are considered: minimize invest-
ment costs, maximize the entropy of the system and maximize the system
demand supply ratio. The authors adopt BLX-α crossover [457] and Random
Mutation [1100]. Two test networks are adopted to validate the proposed ap-
proach: (1) a two-loop fictitious network and (2) the Hanoi-Vietnam water dis-
tribution system. In both cases, the authors adopt two performance measures
to validate their approach: two set coverage [1770] and Schott’s spacing[1452].

Keedwell and Khu [833] use the cellular automaton and genetic approach to
multi-objective optimization (CAMOGA) to optimize water distribution net-
works. Two objectives are minimized: cost and total head deficit. CAMOGA
is a multiobjective extension of an approach previously proposed by the same
authors, which is called Cellular Automaton for Network Design Algorithm
(CANDA) [832]. CANDA is used for single-objective optimization of water
distribution systems, and it provided good results. However, the determin-
istic nature of CANDA makes it unsuitable for large distribution networks.
However, the authors realized that a CANDA run could be used as a seed for
a standard genetic algorithm, which was able to improve such results [831].
So, CAMOGA is basically this same approach, but instead of using a sim-
ple genetic algorithm, the NSGA-II [374] is adopted as the search engine. The
authors compare the results obtained by CAMOGA with respect to those pro-
duced by the NSGA-II alone. For that sake, the S-metric [1781] is adopted.
CAMOGA is found to outperform the NSGA-II both in terms of Pareto domi-
nance and in terms of spread in two industrial problems. More important is the
fact that CAMOGA only requires a very low number of network simulations
to achieve its results because of the cellular automaton adopted.

Surry et al. [1543, 1542] use VEGA with Pareto ranking based on con-
straint violation to optimize a gas supply network. In this case, the use of

7.2 Engineering Applications 345

a MOEA is focused on the constraint-handling problem, and two objectives
are minimized: cost of the network and constraint violation. The representa-
tion used is a variable cardinality integer string with parameterized uniform
crossover and non-cyclic creep mutation. Results compared fairly with those
produced by a simple GA with a penalty function.

Loughlin and Ranjithan [1017, 1016] use the Neighborhood Constraint
Method (NCM) in an air quality management application. Two objectives are
considered: minimize the cost of controlling air pollutant emissions and max-
imize the amount of emissions reduction. The application is a combinatorial
optimization problem with a considerably large search space (5300). Real-
numbers representation and tournament selection are used. The approach is
compared to Pareto ranking and a hybrid between MOGA [504] and NPGA
[709]. The NCM was able to produce a better spread of solutions along the
Pareto front than the other methods.

Yapo [1733], Yapo et al. [1734] and Gupta et al. [622] use the MOCOM-
UA method to calibrate hydrologic models. In the first case, two objectives are
minimized: the unbiased, minimum variance estimator, and the maximum like-
lihood estimator. In the second case, three objectives are minimized: residual
standard deviation, residual bias, and residual whiteness. MOCOM-UA uses
Pareto ranking starting with a feasible population. Using a downhill simplex
search strategy, a sample of points is improved. The simplex strategy acts as
crossover, but reproduction is not sexual because more than two parents inter-
vene to generate offspring (this is called panmictic reproduction). A triangular
probability distribution is used to select the candidates for reproduction.

Khu [849] uses a nonlinear aggregating approach called Accelerated Con-
vergence Genetic Algorithm (ACGA) [999] to calibrate the NAM rainfall-
runoff model. Two objectives are considered (out of a total of five possible
criteria to be considered): minimize peak flow root mean square error and
minimize the overall root mean square error. Two approaches are studied: one
where objectives are chosen beforehand, and another where objectives are cho-
sen interactively. The author uses binary representation, one-point crossover,
uniform mutation and a special selection procedure that enforces that only
the fittest individuals can mate.

Thomas [1580, 1581] uses Pareto ranking, MOGA and NPGA to investi-
gate the feasibility of full stern submarines. Three objectives are considered:
maximize internal volume, minimize power coefficient for ducted propulsor
submarines, and minimize cavitation index. Binary representation and differ-
ent selection techniques are used. The author also proposes the use of multiple,
non-interbreeding species4 to allow simultaneous optimization of independent
and mutually exclusive options (i.e., rotor-only, rotor-stator, stator-rotor or
stator-rotor-stator). He also uses phenotypic sharing. To compare the different
algorithms under study, several population-based factors are analyzed: mean
volume, mean power coefficient, number of nondominated solutions, and cost

4 Each species refers in this case to a propulsor configuration.

346 7 Applications

function evaluations. Conclusions indicate that MOGA outperforms the other
methods in all of the aspects considered.

Brown and Thomas [178] use a GA with Pareto ranking for naval ship
concept design. Two objectives are considered: maximize overall measure of
effectiveness (this factor represents customer requirements and relates ship
measures of performance to mission effectiveness) and minimize life cycle cost.
Binary representation and roulette wheel selection with stochastic universal
sampling are used.

Lee [969] uses the ε-constraint method coupled with a genetic algorithm
in the preliminary design of a marine vehicle. Two objectives are minimized:
building cost and operating cost. Constraints of three types are considered:
legal (i.e., related to regulations), environmental and technical. The GA is used
to find the separate optima required by the ε-constraint technique. In fact, the
GA is used only for coarse-grained optimization, and it is coupled with the
direct search method to find the global optima of the problem under study.
Binary representation and roulette wheel selection are used. An interesting
aspect of this work is that the author extracts knowledge from the historical
runs performed by the hybrid optimization technique used in order to fine
tune the parameters required by both the GA and the direct search method.

Todd and Sen [1591] use a variant of MOGA for the preplanning of con-
tainership layouts (a large scale combinatorial problem). Four objectives are
considered: maximize proximity of containers, minimize transverse center of
gravity, minimize vertical center of gravity, and minimize unloads. Binary rep-
resentation and roulette wheel selection with elitism based on non-dominance
are used. A multi-attribute decision making tool is used to select solutions
that most closely meet the stevedores’ requirements. They use the same algo-
rithm in the shipyard plane cutting shop problem [1592, 1590]. Two objectives
are considered: minimize makespan and minimize total penalty costs (every
manufactured part is given a due date obtained from the assembly schedule,
and they receive a certain cost penalty for missing such due date). In a fur-
ther paper, Todd and Sen [1593] apply the same schedule builder to a complex
job shop problem that considers 4 machines, and 20 jobs with a maximum of
5 stages and 6 types of operations. Two criteria are considered in this case:
minimize makespan and minimize average job time (i.e., reduce the number of
jobs that are in progress at one time). A special integer representation scheme
is used together with proportional selection.

Guimarães Pereira et al. [616, 615] use a GA with a linear aggregating
function combined with fuzzy logic to generate alternatives for site retail and
service facilities. The location of these stores or service facilities has a direct
impact on their accesibility for consumers, and their environmental impact,
among other things. Five criteria are considered: height, geology, aspect, land
use and the distance from two urban centers. Binary representation, two-
point crossover, proportional selection and elitism are used. The authors only
propose a methodology, but do not present any results. The characteristics

7.2 Engineering Applications 347

of the territory under study are stored in a Geographic Information System
(GIS) coupled to a GA.

7.2.2 Electrical and Electronics Engineering

Table 7.2: Summary of electrical and electronics engineering applications

Specific Applications Reference(s) Type of MOEA

Symbolic layout com-
paction

[518] GA with lexicographic order-
ing

VLSI cell placement [1412] Simulated evolution with
fuzzy rules

[63, 64] GA with a linear aggregating
function

Design of DSP systems [171, 172] GA with Pareto ranking
Optimal planning of an
electrical power distribu-
tion system

[1317, 1316] GA and evolutionary pro-
gramming with Pareto rank-
ing

Design of a voltage refer-
ence circuit

[1166] Evolutionary programming
with Pareto ranking

Power dispatch [1607] Hybrid of a GA and simulated
annealing with a linear aggre-
gating function

Economic load dispatch [1763] Multi-objective particle
swarm optimizer

System-level synthesis [142] GA with a linear aggregating
function

[390] MOGA
[389] Parallel recombinative simu-

lated annealing and MOGA
[391] MOGA

Design of electromagnetic
devices

[36] Evolution strategy with a lin-
ear aggregating function

[1117] GA with a linear aggregating
function

[1419] GA with a linear aggregating
function

[152] Evolution strategy with a lin-
ear aggregating function

[1692] NSGA
[1691] GA with Pareto ranking,

NPGA, NSGA
Design of antennas [1689, 1690] NSGA

[1582] MOGA, simulated annealing
Design of a three-phase in-
duction motor

[857] Evolution strategy with a lin-
ear aggregating function

Fault tolerant system de-
sign

[1452] NPGA

Synthesis of CMOS opera-
tional amplifiers

[1604] Variation of the NSGA-II
(MO-Turtle GA)

[1749] GA with a target vector ap-
proach

Design of filters [659] GA with Pareto ranking
[1750] GA with a target vector ap-

proach
[1707] VEGA, a GA with goal attain-

ment, a GA with a linear ag-
gregating function, a GA with
Pareto ranking

[1450] Evolution strategy and a
dominance-based tournament
selection scheme

348 7 Applications

Table 7.2: (continued)

Specific Applications Reference(s) Type of MOEA

Design of lamps [437, 438, 439] GA with an aggregating func-
tion

Microprocessor design [1518] GA with Pareto ranking
Shape design of a single-
phase reactor

[385] Nondominated sorting evolu-
tion strategy

Design of combinational
circuits

[1369] Multi-objective genetic pro-
gramming

[275, 1030, 1029] VEGA
Design of an electro-
mechanical system

[1344] NSGA-II

Coordinated design of
power system stabilizers
and static var compen-
sators

[1785] MOGA

Design of land grid array
solder joints

[641] multi-objective differential
evolution

Fourman [518] uses a genetic algorithm with lexicographic ordering for sym-
bolic layout compaction. The two main objectives considered are: minimize
cost and satisfy certain design rules. The problem is approached in different
ways. First, the objectives are solved sequentially: remove design-rule viola-
tions first, and then reduce the area of the layout. To avoid the search bias
produced by nearly feasible individuals, Fourman adds an extra criterion:
shorter chromosomes have a larger fitness value. Then, he experiments with
trade-offs between the objectives using a scoring function (i.e., a linear com-
bination of weights). Finally, he decides to select randomly the objective to
be optimized at each generation, and finds this approach to work surpris-
ingly well. Symbolic variable length representation is used in the GA, which
is implemented in ML.

Sait et al. [1412] use simulated evolution [869] and fuzzy rules for VLSI
standard cell placement. Three objectives are minimized: wire-length, power
dissipation and circuit delay. Layout width is considered an additional con-
straint. The proposed approach is compared against a GA with a fuzzy ag-
gregating function. Results indicate that the GA is able to produce circuits
with a better performance for small instances. However, as the number of cells
increases, simulated evolution has a better performance. Additionally, the GA
requires a considerably larger execution time than simulated evolution.

Arslan et al. [63, 64] use a GA with a linear combination of objectives
for structural synthesis of cell-based VLSI circuits. Three objectives are con-
sidered: maximize functionality, minimize delay and minimize physical size
of the circuit. In further work, Bright [171] and Bright and Arslan [172] use
Pareto ranking for high-level low power design of DSP systems. Two objec-
tives are minimized: power consumption and area. Binary representation and
roulette wheel selection are used. Results are compared against some DSP
benchmark designs reported in the literature. The GA proposed was able to
produce feasible circuits that were considered competitive (with respect to
those of the benchmark used), but not necessarily better. The GA, however,

7.2 Engineering Applications 349

was able to converge to these solutions relatively fast as compared to tradi-
tional approaches.

Ramı́rez Rosado et al. [1317, 1316] use a GA and evolutionary program-
ming (EP) with Pareto ranking for the optimal planning of an electrical power
distribution system. Two objectives are considered: minimize global economic
costs and minimize the amount of expected energy not supplied. The GA uses
an integer representation and a “filter” operator that allows to determine a
maximum allowed limit of the global economic cost of the distribution system
solutions. This is used as preference information to avoid the generation of
solutions that are too expensive. When comparing the GA to EP, none of the
two algorithms is found to be superior to the other.

Nam et al. [1166] use Evolutionary Programming with Pareto ranking to
optimize the design of a voltage reference circuit. Two objectives are con-
sidered: minimize the reference voltage at room temperature and minimize
the temperature variation effect. Results are compared to four other (single-
objective optimization) techniques. The approach generates competitive so-
lutions with respect to the other algorithms (solutions are sub-optimal, but
represent better trade-offs between the two objectives).

Tsoi et al. [1607] use a hybrid of a GA and simulated annealing with a
linear combination of weights in a power dispatch problem. Two objectives
are considered: total fuel cost and total emissions (environmental impact).
The authors use an incremental GA [494] with floating point representation,
two-point crossover, roulette wheel selection and uniform mutation. Simulated
annealing is used to maintain diversity in the population through a replace-
ment policy.

Zhao & Cao [1763] use a multi-objective particle swarm optimizer (MOP-
SO) for economic load dispatch. Three objectives are minimized: fuel cost,
emission and total real power loss. The problem has three types of constraints:
power balance, generation capacity and security. The authors adopt a linear
membership function to incorporate the preferences from the user in the rank-
ing process as to select a single solution from the Pareto optimal set. The
authors perform two experiments. In the first, only two objectives are con-
sidered (fuel cost and emission) and results are compared with respect to a
multi-objective evolutionary algorithm.5 Based on a visual comparison, the
authors determine that their MOPSO provides better diversity and better
nondominated solutions than the MOEA. The (single) best compromise so-
lution found by each of the two approaches (MOPSO and MOEA) are also
presented by the authors. In a second experiment, the three objectives are
considered. In this case, however, no comparisons of any type are performed.

Blickle et al. [142] use a GA with a linear combination of weights to solve
a system-level synthesis problem (i.e., map a task-level specification onto a
heterogeneous hardware/software architecture) in an optimal way. Two ob-
jectives are minimized: cost and latency of the implementation. The approach

5 The authors do not indicate exactly what sort of MOEA is adopted.

350 7 Applications

is applied to a video codec for image compression using the H.261 standard
and to a PDE-integrator. A special encoding (consisting of lists of integers
representing allocations) with a repair algorithm and restricted tournament
selection is used. Constraints are handled through the use of a penalty func-
tion. In a further paper, Blickle et al. [143] use Pareto ranking to perform
design space exploration of the same problem.

Dick and Jha [390] use MOGA for the co-synthesis of hardware-software
embedded systems. Two objectives are minimized: price and power consump-
tion. The authors use integer representation, a technique to create clusters of
solutions (similar to niches), cluster-level operators (mutation) and solution-
level operators (crossover). Reproduction is restricted to individuals within
the same cluster. Partial domination is considered to rank clusters. Individ-
uals that violate hard constraints are removed and those which violate soft
constraints are handled through a penalty function. In further work, Dick and
Jha [389] use again a system which incorporates parallel recombinative sim-
ulated annealing [1039] and MOGA for co-synthesis of hardware-software of
embedded systems using dynamically reconfigured FPGAs. In this approach,
clusters are used as well, and each of them is assigned a rank (the sum of ranks
of all the architectures contained within it). Boltzmann trials are used to se-
lect architectures within the same cluster. A global temperature-dependent
criterion is used to keep diversity in the population. Two objectives are con-
sidered: price and deadline violation. In another paper, Dick and Jha [391] use
MOGA for a specific application of co-synthesis of hardware-software of em-
bedded systems: the core-based single-chip system synthesis. Three objectives
are considered in this case: price, IC area and power consumption.

Alotto et al. [36] use an evolution strategy with a linear combination of
weights to optimize electromagnetic devices. Two objectives are considered:
make the value of energy as close as possible to the design goal, and minimize
the flux density RMS error. Results are compared to the use of single-objective
simulated annealing and a global search algorithm. All the algorithms tested
were able to generate optimal configurations close to the design specifications.
However, the evolution strategy required the lowest number of fitness function
evaluations.

Mohammed and Üler [1117] use a GA with a linear combination of weights
to design electromagnetic devices. The approach is applied to a pot core prob-
lem with two objectives: reduce the size of the device while maintaining a
certain magnetic flux density. The authors use binary representation with
Gray coding, linear fitness scaling, stochastic remainder selection (without re-
placement), uniform crossover and uniform mutation. Results are compared
against the use of dynamic search. The GA produced competitive (and in
some cases better) results but did not consider eddy currents and losses as
dynamic programming did.

Saludjian et al. [1419] use a GA with a linear weighted sum to optimize an
electromagnetic superconducting device. Two objectives are considered: the
stored energy in the device has to comply with a previously defined value,

7.2 Engineering Applications 351

and the magnetic induction along two lines of the device has to be as small as
possible. The authors use floating point representation, proportional selection
with linear ranking, four crossover operators (one-point, two-point, uniform
and arithmetic) and two mutation operators (uniform and non-uniform). They
also use a local search operator (a hillclimber).

Borghi et al. [152] use an evolution strategy and a linear combination
of weights to reduce the torque ripple of permanent magnet actuators. Three
objectives are considered: minimize e.m.f. harmonic content, maximize the
e.m.f. fundamental component, and minimize the cogging torque. The authors
use a (1+1) evolution strategy coupled with a filled function acceleration
technique [548].

Weile et al. [1692] use the NSGA [1509] to design electromagnetic devices
(namely, microwave absorbers). Two objectives are considered: reflectance and
thickness. Results are compared to the use of a linear combination of weights.
The NSGA was able to converge to a set of points whereas the aggregating
function converged to a single solution. From their experiments, the authors
conclude that the use of a linear combination of weights is not appropriate
for the application of interest to them. In related work, Weile et al. [1691] use
Pareto ranking, NPGA and NSGA to design multilayer microwave absorbers.
Two objectives are considered: minimize thickness and minimize reflection.
Pareto ranking is implemented using tournament selection and crowding. Bi-
nary representation is adopted in all cases, and phenotypic sharing is used
with both NPGA [709] and NSGA (Pareto ranking is implemented without
niching or fitness sharing). Sharing is done on objective function space in all
cases. NSGA was found (by graphical inspection) to provide the highest qual-
ity Pareto fronts and to preserve diversity for a longer number of generations,
but it was also found to be the most expensive algorithm in terms of CPU
time. The NSGA is also compared to the use of simulated annealing and a
Simple Genetic Algorithm adopting a weighted Tchebycheff procedure [1522].
The NSGA was found to produce better Pareto fronts than these two other
techniques. The approach is applied to the design of microwave absorbers
with five layers of materials selected from representative databases of avail-
able materials in the 0.2-2GHz, 2-8 GHz and 9-11 GHz bands. In further work,
Weile and Michielssen [1689, 1690] use the NSGA to design thinned antenna
arrays with digital phase shifters. Two objectives are minimized: bandwidth
and maximum reduced sidelobe level. Integer representation and triangular
sharing [581] are used. The approach is applied to the design of a 200 element
symmetric linear array of 80 isotropic elements with three bit phase shifters
separated by one-half wavelength.

Thompson [1582] uses MOGA [504] and multiobjective simulated anneal-
ing to design an antenna tuning unit. Two objectives are considered: minimize
the mismatches between the source and load impedances and minimize the
power delivered to the load at the harmonic frequency. The authors use binary
representation, multi-point crossover and uniform mutation. Results produced
by MOGA, a multiobjective version of simulated annealing and MOGA with

352 7 Applications

elitism (called EMOGA) are compared using the two metrics proposed by
Zitzler and Thiele [1782]. Multiobjective simulated annealing produced bet-
ter solutions (in terms of the metric adopted) and at a lower computational
cost than any of the other approaches. Also, the use of elitism is shown to be
beneficial to MOGA. Simulated annealing was found to be superior to both
MOGA and EMOGA.

Kim et al. [857] use an evolution strategy and a linear combination of
weights to design a three-phase induction motor. Two objectives are con-
sidered: efficiency and power density. The authors use a (1+1) evolutionary
strategy where simulated annealing is adopted to perform mutation, and a
“shaking” process is employed to maintain diversity. The process consists of
changing the mutation step length whenever there is diversity loss in the pop-
ulation.

Schott [1452] uses the NPGA [709] for fault tolerant system design. Two
objectives are minimized: unavailability and purchase cost. The NPGA is
compared to the ε-constraint method on two examples. Some of the perfor-
mance criteria considered in the comparison are the number of dominated
points, the number of fitness function evaluations, the number of nondomi-
nated points, etc. Two-point crossover, binary representation, uniform muta-
tion, steady-state selection, equivalence class sharing (on phenotypic space),
variable population size and clone replication are adopted in the GA imple-
mented. The NPGA was found to be superior for three main reasons: (1) it is
difficult to handle three or more objectives with the ε-constraint method, (2)
it is more expensive (computationally speaking) to perform several runs of the
ε-constraint method to match the results of a single run of the NPGA, and (3)
the uncertainty involved in choosing a proper efficient set for the ε-constraint
method is considered an important disadvantage of this technique.

Trefzer et al. [1604] use a variation of the NSGA-II (called MO-Turtle GA)
for the synthesis of operational amplifiers. This approach adopts the variation
operators of the Turtle GA [1605] (namely, the Random Wires mutation and
the Implanting Block of Cells crossover). The implementation of these two op-
erators is done in hardware, in a field programmable transistor array (FPTA).
The authors experiment with different combinations of objectives, going up
to 11 objectives. In all cases, the manually made operational amplifiers are
better than the solutions generated by the MO-Turtle GA in terms of both
distortion (noise) and resource consumption. However, the evolved solutions
present similar performance in terms of other objectives such as offset, slew-
rate, and settling-time and provide better results in terms of phase-margin,
which is the main objective considered in this research. The authors also an-
alyze certain pairwise combinations of objectives and realize that some of
these combinations provide better fitness values over time (e.g., magnitude
versus offset). The authors conclude that the MO-Turtle GA is able to pro-
vide designs competitive with the solutions produced by humans, but fails at
synthesizing additional gain-stages.

7.2 Engineering Applications 353

Zebulum et al. [1749] use a GA with a target vector approach (with adap-
tive weights) for the synthesis of low-power operational amplifiers. Seven ob-
jectives are considered: GBW, gain, linearity, power consumption, area, phase
margin, and slew-rate. GBW, gain and phase margin are maximized, and the
others are minimized. A target vector is defined for all objectives, and weights
are assigned such that large values are used for objectives for which the aver-
age fitness is far from the desired (target) value and small values are adopted
for those objectives whose average fitness is close to the desired value. The
approach is similar to the goal-attainment method. Integer representation,
uniform mutation and proportional selection are used. Results are compared
against other approaches used to optimize operational amplifier designs. The
GA-based approach produced competitive circuits that, at least in some cases,
improved the solutions generated by the other techniques compared. In further
work, Zebulum et al. [1750] use the same approach for the synthesis of analog
active filters. Four objectives are considered in this case: maximize frequency
response, minimize power dissipation, maximize the Maximal Symmetric Ex-
cursion (MSE), and minimize integrated output noise.

Harris and Ifeachor [659] use a GA with Pareto ranking to design non-
linear Finite Impulse Response (FIR) filters. Two objectives are considered:
minimize the maximum error between the actual response and the desired
response template, and minimize the error from linearity of the phase re-
sponse in a specified region of the passband. Binary representation is used,
but the paper focuses on explaining why the GA has a poor performance in
this problem and the use of a higher cardinality representation is suggested.

Wilson and Macleod [1707] use goal attainment, VEGA, a weighted sum of
objectives and Pareto ranking to design multiplierless IIR filters. Two objec-
tives are considered: minimize response error and implementation cost. Binary
and gray coding representations with stochastic universal sampling and linear
ranking are used. The different techniques used are compared against each
other. The comparison is both graphical and based on statistical measures
of performance. Goal-attainment produced the best results, but the weighted
sum of objectives was found to provide consistently good results as well. In-
terestingly, Pareto ranking has a poor performance in this application.

Schnier et al. [1450] use an evolution strategy and a dominance-based
tournament selection scheme (similar to the NPGA [709]) to design digital
filters. Three objectives are minimized: passband maximum amplitude de-
viation, passband maximum delay deviation, and the inverse of maximum
amplitude in stopband. A mechanism that adapts a constraint vector dynam-
ically to the current fitness values in the population is employed. The authors
use real-numbers representation, mating restrictions, Cauchy mutation, and
a form of implicit fitness sharing applied over the combined (i.e., aggregated)
fitness values of each individual. An interesting aspect of this work is that
the authors adopt different schemes for selecting parents than for selecting
individuals for survival into the next generation. In the first case, dominance-
based tournaments are used (ties are solved through niche counts). For the

354 7 Applications

second case, all nondominated individuals generally survive, as long as they
satisfy the constraints, and depending on their number in the population (i.e.,
if there are too many nondominated individuals in the population, then some
of them are removed based on the aggregated value of their different objective
functions). This is obviously done to maintain diversity. Results are found to
be competitive with those generated by a human designer.

Eklund and Embrechts [437, 438, 439] use a GA with an aggregating func-
tion to design optical filters for lamps. Three objectives are considered: mini-
mize the color difference between the desired and the actual light, maximize
relative efficiency of the lamp, and have filters that are relatively “smooth”,
with only a few notches. In practice, only two objectives are considered, since
the third one (smoothness) can be automatically achieved when the two other
objectives are properly met. The authors use floating point representation,
three types of crossover (one-point, arithmetic and heuristic) and three types
of mutation (uniform, non-uniform and boundary). Heuristic knowledge ob-
tained from previous runs is employed to accelerate convergence (something
that the authors call “smoothing the chromosomes”).

Stanley and Mudge [1518] use a GA with Pareto ranking to solve a mi-
croprocessor design problem. The approach considers two design constraints:
chip area and chip power dissipation, and one design objective: maximize per-
formance (number of clock cycles required to execute a certain number of
instructions). An interesting aspect of this application is the fact that the
authors incorporate the constraints of the problem as additional objectives
that have to be satisfied. The implementation is done using a parallel asyn-
chronous scheme (this is necessary since workstations of different types and
speeds are used to distribute the task of evaluating the population fitness of
the GA). The authors use two-point crossover, uniform mutation, steady state
generational replacement, and a mechanism to eliminate duplicates.

Di Barba et al. [385] use a multiobjective evolution strategy (called Non-
dominated Sorting Evolution Strategy) to design the shape of a single-phase
series reactor for power applications. Two objectives are considered: minimize
the material cost of the reactor and minimize the mean radial component
of magnetic induction in the cross-section of the winding. The problem has
also constraints related to the induction in the core, the current density in
the winding and the insulation gaps between winding and core. Emphasis is
placed on efficiency. The authors use a (1+1) evolution strategy with a parallel
implementation of three processes: mutation, an annealing procedure that is
applied right after mutation, and the generation of new individuals. Nondom-
inated sorting is used to classify individuals giving higher (dummy) fitness
values to nondominated solutions (as in the NSGA [1509]). Fitness sharing on
objective function space is used.

Rodŕıguez Vázquez and Fleming [1369] use genetic programming with MO-
GA [504] to design combinational logic circuits (namely, a 6-multiplexer). Two
objectives are considered: correctness (functionality of the circuit) and opti-
mality (reduce nodes of the parse tree encoding of a circuit). The number of

7.2 Engineering Applications 355

input variables is incorporated as a constraint. Results are compared to the
use of a single-objective GP implementation. The multiobjective GP imple-
mentation found better compromises than the single-objective version. Fur-
thermore, the frequency of generating functional circuits was higher when
using the multiobjective approach.

Coello Coello et al. [275] & Coello Coello and Hernández Aguirre [274]
use VEGA [1440] to design combinational circuits. Since each value from the
truth table to be matched by the circuit generated by a genetic algorithm
is considered as an objective, up to 65 objectives are used. The authors use
integer representation to encode a matrix representing a circuit. Each gene
represents either one of the inputs of the circuit (only two inputs per gate are
allowed), or a gate (from a set previously defined by the user). They also use
two-point crossover, elitism and tournament selection. Since results are re-
ally combinational circuits in which the number of gates is minimized, direct
comparisons with other circuit-design techniques are possible. The approach
generates circuits that are either equivalent or more compact (in terms of
the number of gates) than those generated by human designers using Kar-
naugh maps [822] and the Quine-McCluskey method [1309, 1084]. In further
work, Luna et al. [1030] use VEGA in the same problem. However, this time
particle swarm optimization is adopted as the search engine. An interesting
aspect of this work is the use of two integer-based encodings, one of which
is proposed by the authors. The authors compare PSO with several types of
encoding against a version of VEGA that uses a genetic algorithm [274]. The
results indicate that the PSO-based version of VEGA that adopts the pro-
posed integer encoding outperforms all the other techniques. An interesting
aside from this research is that binary PSO was found to be a poor performer
for combinational circuit design.

Régnier et al. [1344] use the NSGA-II [374] for the optimal design of an
electromechanical system. The case study consists of the design of an inverter-
permanent magnet motor-reducer-load association. Two objectives are min-
imized: global losses and the mass of the system. The authors also perform
parametric sensitivity analysis in order to determine the effect of the con-
straints on the Pareto optimality of the solutions produced. Finally, the au-
thors also illustrate the a posteriori nature of MOEAs, by providing a simple
example in which cogging torque is adopted as an additional criterion so that
a single nondominated solution may be chosen from the Pareto optimal set.
Although this application is a simple academic problem, the authors indicate
that their goal is to illustrate how MOEAs can be used, in general, in the
design of electromechanical systems.

Zou et al. [1785] used a MOEA similar to MOGA [504] for the coordinated
design of power system stabilizers (PSS) and static var compensators (SVC).
The aim of the proposed approach was to improve the power angle stability
while maintaining the voltage quality of the power system. The authors adopt
fitness sharing and a criterion based on the use of the progress ratio to stop
the MOEA. The results are not compared with respect to any other approach.

356 7 Applications

Han et al. [641] use a multi-objective differential evolution approach based
on Lampinen’s work [946] for reliability-based design optimization of land
grid array solder joints under thermodinamical load. The idea is to present
a methodology for second level electronic package solder joints. Two objec-
tives are considered: maximize the system performance and minimize the per-
formance variance. These two objectives aim to produce robust designs. A
probability analysis of the system output is performed on the response sur-
face using a Quasi-Monte Carlo simulation method. A very robust design was
produced using this approach (with a reliability of 99.73%), but no direct
comparisons with respect to other techniques are provided.

7.2.3 Telecommunications and Network Optimization

Table 7.3: Summary of telecommunications and network optimization applications

Specific Applications Reference(s) Type of MOEA

Network Design [1572] GA with Pareto ranking
[1096] GA with Pareto ranking
[1740, 1741] Simulated evolution and fuzzy

rules
[919] Pareto converging genetic al-

gorithm
[1124] GA with an aggregating func-

tion
[868] Modified NSGA-II

Multicast flows [401] SPEA
Improve wire-antenna
geometries

[1634] GA with an aggregating func-
tion

Adaptive distributed data-
base management

[886, 889] PAES

Offline routing [885, 886, 889] PAES
Production process plan-
ning

[1764] Evolution strategy with an ag-
gregating function

Minimum spanning tree
problem

[1765] Evolution strategy with an ag-
gregating function

Broadcasting in mobile
networks

[1031] Archive-based Scatter Search

Tang et al. [1572] use a GA with Pareto ranking to design a Wireless Local
Area Network (WLAN). Four objectives are minimized: number of terminals
with their path loss higher than a certain threshold, number of base-stations
required, the mean of the path loss predictions of the terminals in the design
space, and the mean of the maximum path loss predictions of the terminals.
A hierarchical GA (HGA) with two types of genes (control and parameter) is
used. The HGA has a lot of resemblance with the Structured Genetic Algo-
rithm (stGA) proposed by Dasgupta and McGregor [334].

Meunier et al. [1096] use a GA with Pareto ranking to design a mobile
telecommunication network. Three objectives are considered: minimize the
number of sites used, maximize the amount of traffic held by the network,
and minimize the interferences. Additionally, constraints related to coverage
of the area and handover of every cell of the network are considered as well. A

7.2 Engineering Applications 357

steady state GA with fitness sharing (applied in the objective space) is used
by the authors. A parallel implementation is adopted to speed up the search in
this complex multiobjective combinatorial optimization problem. The authors
also use a multilevel encoding (similar to the Structured GA [333]), ad-hoc
genetic operators and a penalty function to handle the constraints of the
problem.

Youssef et al. [1740, 1741] use simulated evolution [869] and fuzzy rules to
design the topology of a campus network. Three objectives are minimized: mon-
etary cost, average network delay and the maximum number of hops between
any source-destination pair in the network. Additionally, three constraints are
also considered: the traffic flow of any link is not allowed to exceed a certain
threshold, the number of clusters attached to a network device is not allowed
to exceed its port capacity, and certain hierarchies on the network devices
can be enforced by the designer. The topology of the network is treated as
a spanning tree. Therefore, this becomes a multiobjective combinatorial op-
timization problem. Simulated evolution operates in three steps: evaluation,
selection and allocation. For evaluation, a fuzzy rule is employed. Selection is
based on the goodness of the links of each candidate topology. Allocation con-
sists of removing links and trying new ones in such a way that they contribute
to the best possible overall solution. A second fuzzy rule that combines the
three objectives of the problem is used for the allocation process. In [1740],
simulated evolution is found to produce better results (in terms of monetary
cost) than simulated annealing, although the second algorithm has slightly
shorter execution times. In [1741], results between two versions of simulated
evolution are proposed: the first is the traditional version (previously used by
the same authors), and the second uses Tabu search for the allocation phase.
From this comparison, it was concluded that the second version of the algo-
rithm provided better performance because it exploits the good exploratory
capabilities of Tabu search.

Kumar et al. [919] use the Pareto Converging Genetic Algorithm (PCGA)
[924] to design the topology of mesh communication networks. Two objectives
are minimized: cost and average packet delay. The authors use selection based
on Pareto ranking and rank-histograms for assessing convergence to PFtrue .
The chromosomes adopted encode the topology of the network (including
link-capacities, details of the link types and the interface components) and
a routing vector that provides the path between every pair of nodes for the
topology encoded.

Montana and Redi [1124] use a genetic algorithm with a linear aggregating
function to optimize the parameters of a mobile ad hoc network protocol. The
authors adopt real-numbers encoding, uniform crossover, flip mutation, expo-
nential selection and a steady-state replacement policy (the new individual
produced after each generation replaces to the worst one in the population).
Two objectives are minimized: dropped packets and transmission delay. Re-
sults are compared with respect to an approach in which the parameters of the
network are set by hand. The authors found that the GA adopted produced

358 7 Applications

results significantly better (for the two objectives considered) than those found
by the manual tuning procedure.

In Kleeman et al. [868], the NSGA-II [374] is is modified and extended to
solve a variation of the multicommodity capacitated network design problem
(MCNDP). This architectural variation represents a hybrid communication
network with multiple objectives including costs, delays, robustness, vulnera-
bility, and reliability. Nodes in such systems can have multiple and varying link
capacities and rates as well as information (commodity) quantities to be deliv-
ered and received. Each commodity has an independent prioritized bandwidth
requirement. Monte Carlo techniques provide insight to the complex fitness
landscape and motivated the use of a novel MOEA initialization procedure and
a mutation method which efficiently generated effective PFknown solutions.

Donoso Meisel [401] apply an algorithm based on SPEA [1782] to optimize
static multicast flows. Eleven objectives are considered: maximal link utiliza-
tion, total hop count, hop count average, maximal hop count, maximal hop
count variation for a flow, total delay, average delay, maximal delay, maxi-
mal delay variation for a flow, total bandwidth consumption, and number of
subflows. An interesting aspect of this work is the encoding adopted, which
the author claims to be the first to allow representing several flows (unicast
and/or multicast) with as many splitting subflows as necessary. This encod-
ing automatically satisfies the constraints of the problem, such that an addi-
tional procedure to handle such constraints becomes unnecessary. Two ad-hoc
crossover operators are adopted: flow crossover and tree crossover. An ad-hoc
mutation operator was also adopted. In order to validate the approach, sev-
eral network scenarios were considered and two metrics were adopted: overall
nondominated vector generation and overall nondominated vector generation
ratio [1626]. The multi-objective evolutionary algorithm adopted produced the
best overall results, improving on the results obtained with analytical models
and other heuristics.

Van Veldhuizen et al. [1634] use a GA with a weighted sum to improve
wire-antenna geometries. Four objectives are considered: radiated power gain,
azimuthal symmetry of radiated power, input resistance and input reactance.
The authors use a steady state GA with real-numbers representation, tour-
nament selection and a variation of arithmetic crossover. Death penalty is
applied to infeasible designs (i.e., they are given a fitness value of zero).

Knowles et al. [886, 889] use PAES to solve the adaptive distributed data-
base management problem [1195]. The problem consists of finding an optimal
choice of client/server connections given the current client access rates, basic
server speeds, and other general details of the communications matrix [886].
Two objectives are minimized: the worst response time (measured in mil-
liseconds) seen by any client, and the mean response time of the remaining
(non-worst) clients. Integer representation and uniform crossover are used.
PAES is compared against several variations of the NSGA [1509] and the
NPGA [709]. A variation of the statistical technique proposed by Fonseca
and Fleming [509] is used to allow a quantitative comparison of the MOEAs.

7.2 Engineering Applications 359

Results indicate that PAES is able to outperform the other MOEAs imple-
mented in this problem, both in terms of the metric adopted and in terms
of the computational time required. In related work, Knowles and co-workers
[885, 886, 889] use PAES to solve the offline routing problem. Two objec-
tives are minimized: communication costs and congestion. A straightforward
integer representation is adopted in this case. Results are compared against
a steady state version of the NPGA using Fonseca and Fleming’s statistical
technique previously mentioned [509]. The authors indicate that PAES was
again able to outperform the other MOEAs implemented. In this case, diploid
chromosomes and specially designed genetic operators are used.

Zhou and Gen [1764] use an evolution strategy with an adaptive evalu-
ation function to solve a production process planning problem (stated as a
network flow problem). The approach consists of a weighted sum of the objec-
tives in which the weights are defined (and modified during the evolutionary
process) in such a way that the evolution strategy approaches the ideal vector
(computed beforehand). This procedure reduces the spread of the popula-
tion, but provides a relatively easy (and relatively efficient) way to solve the
two-objective problem used by the authors. The authors use a (µ + λ)-ES
with a special state permutation encoding, together with a mutation proce-
dure based on a neighborhood search technique (no crossover operator is used
in this case). In related work, Zhou and Gen [1765] use a genetic algorithm
with the same adaptive evaluation function to solve a minimum spanning tree
problem. However, in this case, the NSGA [1509] is also used in the same prob-
lem. They incorporate fitness sharing on the objective function space to keep
diversity with the NSGA. The authors use a special permutation representa-
tion (using Prüfer numbers [1298]), roulette wheel selection, uniform crossover
and uniform mutation. Both approaches are compared against each other and
against an enumeration procedure. The comparison criterion adopted is the
percentage of Pareto optimal solutions found by each method. Both GAs out-
performed the enumeration procedure. However, regarding the two approaches
proposed, the authors suggest to use the adaptive function approach in cases
where a single solution is desired (as tends to happen when using mathemat-
ical programming approaches) and the NSGA when the whole Pareto front
is needed. If possible, a combination of both GA-based approaches is also
recommended.

Luna et al. [1031] used the Archive-based Scatter Search (AbSS) approach
for optimizing the broadcasting strategy of a metropolitan mobile ad-hoc net-
work (MANET). Three objectives were considered: maximizing the network
coverage, minimizing the network usage, and minimizing the makespan. Re-
sults were compared with respect to those produced by a cellular multiobjec-
tive genetic algorithm (cMOGA) using three performance measures: (1) the
number of Pareto optimal solutions found, (2) set coverage [1770] and (3)
hypervolume [1781]. AbSS was found to outperform cMOGA with respect to
set coverage and hypervolume, while slightly improving the number of Pareto
optimal solutions found.

360 7 Applications

7.2.4 Robotics and Control Engineering

Table 7.4: Summary of robotics and control engineering applications

Specific Applications Reference(s) Type of MOEA

Robot path planning [408] Fuzzy tournament selection
[526] Evolution strategy with lexi-

cographic ordering
[679] MOGA

Fault diagnosis [1058] MOGA
[1060] Parallel version of MOGA
[1059] MOGA

Nonlinear system identifi-
cation

[1370, 1367, 56] Multiobjective genetic pro-
gramming

Elevator car routing prob-
lem

[1612] GA with an aggregating func-
tion

Controller design [1453] MOGA
[400] GA with an aggregating func-

tion
[673, 675] Multiobjective robust control

design GA
[830] GA with the Pareto partition-

ing method
[763] MOGA
[137, 138] Multiobjective evolution

strategy
[1040] GA with a fuzzy population

ranking method
Design of control systems [248, 249] MOGA

[1694] MOGA
[1567] Hybrid of MOGA and the

NPGA
[1566, 1565] Incremented multiobjective

evolutionary algorithm
[413] MOGA combined with a

neural network
[939] NSGA-II
[1602, 1603] GA with fuzzy logic and an ag-

gregating function
[327, 326, 247] MOGA
[145] NSGA

Robotic manipulator prob-
lems

[851] GA with a predator fitness ap-
proach

[1223] GA with a variation of
the Pareto set distribution
method

[768] Parallel GA with an aggregat-
ing function

[1214] Evolution strategy with an ag-
gregating function

[270] GA with a weighted min-max
approach

Generation of fuzzy rule
systems

[804] Evolution strategy with an ag-
gregating function

[794] GA with Pareto ranking

Dozier et al. [408] use Fuzzy Tournament Selection (FTS) for evolutionary path
planning. Three objectives are minimized: distances from start to destination,
sums of the changes in slope, and average changes in slope. The membership
functions developed by the authors allow to adapt the focus of the algorithm
on each of the objectives in a similar way as lexicographic ordering. The au-

7.2 Engineering Applications 361

thors use a GA with steady state selection, real-numbers representation, flat
crossover with Gaussian mutation, and uniform mutation. Results are com-
pared against the same system without the use of FTS. The paths generated
by the approach proposed are not only optimal (or at least sub-optimal), but
also diverse. This is considered very important by the authors, since such di-
versity can be used as an error-recovery mechanism for situations in which
replanning is necessary.

Gacôgne [525] uses a GA with a subpopulation scheme based on lexico-
graphic ordering to tune a fuzzy controller for the guidance of an autonomous
vehicle in an elliptic road. Between two and four objectives are considered from
the following: maximize the number of steps, minimize the “road-holding”,
maximize the ratio between the performed distance and the maximum dis-
tance for a vehicle with maximum speed, and maximize the number of mean-
ingful symbols in the set of rules. The author uses variable-length chromosomic
strings that encode different coefficients and rules using mixed variable types
(real numbers and integers). He also employs specialized crossover and mu-
tation operators to deal with this mixed encoding. In related work, Gacôgne
[526] uses an evolution strategy with lexicographic ordering in a similar prob-
lem: optimize rules of a fuzzy controller used by a robot for obstacle avoidance.
The approach, in this case, uses self-adaptation of the parameters of the GA.

Higashihara and Atsumi6 [679] use MOGA to acquire sensory-action net-
work of a mobile robot. The approach is applied to simulations using a corridor
following task and a garbage collecting task. Both problems are considered
with two objectives related to the movements of the robots and their abil-
ity to perform the task desired. The authors actually use a GA to balance
the weights of a neural network. They employ integer representation, special
crossover and mutation operators, and ranking selection. During the search,
they keep two subpopulations based on the ranking of each individual: one
has the highest ranked individuals and the other the lowest ranked. Both sub-
populations are allowed to mix during crossover. Mutation is only applied to
the lowest ranked individuals. MOGA [504] is slightly modified in such a way
that a certain ranking area is established according to a threshold defined
by the user. The use of this threshold allows to decide which individuals fall
into each subpopulation. Results compared well with respect to the use of a
single-objective optimization approach in terms of trade-offs generated.

Marcu [1058] uses MOGA for fault diagnosis thought of as a problem of
pattern recognition. Goal attainment is used to accomodate goal information
that allows to alter the way in which individuals are compared against each
other. The number of objectives is dependent upon the number of classes in a
problem, and are classified in two groups: volumes of decision components and
misclassification errors. Both are minimized. Real-coded representation with
stochastic universal sampling is adopted. The approach is used for feature

6 Thanks to Dr. Tomoyuki Hiroyasu for his help interpreting the contents of this
paper, which was published in Japanese.

362 7 Applications

selection and classifier design in a three-tank system. To identify the number
of components required to approximate a decision region, the author uses a
clustering technique based on fuzzy logic. Results are compared against the
Unknown Input Fault Detection Observer (UIFDO) technique. The author
indicates that MOGA produces solutions with a better performance (i.e., more
faults are detected in the system) than the UIFDO technique.

In a further paper, Marcu and Frank [1060] use a parallel version of MOGA
in the same three-tank problem previously mentioned (see Chapter 8 for more
information on parallel MOEAs). Several recombination operators are con-
sidered in this case (discrete, intermediate and linear) together with non-
uniform mutation [1100]. Three migration topologies are investigated as well:
ring topology, neighborhood migration and unrestricted migration.

Finally, in another paper, Marcu et al. [1059] use MOGA to design a
dynamic artificial neural network employed for fault diagnosis. Six objectives
are minimized: the sum of squared errors that characterize a certain neural
network architecture and its training set, the number of coefficients of active
synaptic filters in the hidden layer, the number of coefficients of active internal
filters in the hidden layer, the number of active back-connections in the hidden
layer, the number of coefficients of active synaptic filters in the output layer,
and the number of coefficients of active internal filters in the output layer. A
Structured GA [333, 334] with binary representation is used in this case. The
same three-tank problem mentioned before is used to test the approach.

Rodŕıguez Vázquez et al. [1370] use genetic programming with MOGA
(the so-called Multi-Objective Genetic Programming approach) for nonlinear
system identification. Several objectives are considered: number of terms in
the model, model degree (of nonlinearity), model lag, residual variance, long-
term prediction error, the autocorrelation function of the residuals and the
crosscorrelation function between the input and the residuals. In some exper-
iments, tree size is considered as an additional objective. A hierarchical tree
representation is used to incorporate preference information (a vector of goals
specified by the decision maker is used for that sake). Results are compared
to traditional nonlinear system identification techniques (e.g., stepwise re-
gression and orthogonal regression). The proposed approach produced model
structures that are either equivalent or (in some cases) better than those orig-
inated with traditional techniques. The same approach has been applied to a
simple Wiener process, to a Surge Tank System and to an aircraft gas turbine
engine [1367, 56].

Tyni and Ylinen [1612] use a genetic algorithm with an aggregating func-
tion to control a group of elevators (the so-called elevator car routing prob-
lem). The proposed approach is called Evolutionary Standardized-Objective
Weighted Aggregation Method. Two objectives are minimized: average pas-
senger waiting time and energy consumption. The proposed approach is really
a linear aggregating function in which the objectives are normalized. The de-
cision maker expresses his/her preferences through the use of weights (from
zero to one). However, in order to be able to generate non-convex portions of

7.2 Engineering Applications 363

the Pareto front, the authors adopt a controller which adjusts the weights us-
ing a target vector approach (i.e., a nonlinear aggregating function) in which
the passenger waiting time is used as the target value to be attained. An in-
teresting aspect of this application is that it is really a real-time optimization
problem, since the optimization has to be performed twice a second. Thus,
the proposed approach is able to come up with a solution within the allow-
able 500 microseconds time frame. The proposed approach is validated using
a simulator. The results indicate that the proposed approach is able to reduce
by 20% the daily energy consumption with respect to a traditional approach,
while also reducing the average passenger waiting time.

Schroder et al. [1453] use MOGA to design active magnetic bearing con-
trollers. The approach is applied to a Rolls-Royce marine turbo machine’s
rotor suspended by active magnetic bearings. Nine objectives are minimized:
steady state error, compliance at 4 Hz, maximum current, and noise suscepti-
bility for two bearings (this makes a total of 8 objectives), plus the minimiza-
tion of controller complexity. Two extra objectives are treated as constraints:
minimize the maximum real part of the eigenvalues of the closed loop system,
and minimize the reciprocal of the length of the simulation time. The authors
use a Gray coded logarithmic representation and fitness sharing. Besides the
large number of objectives of this problem, it has a fairly large search space
(2402).

Donha et al. [400] use a GA with a linear combination of weights for H∞
controller design. Four objectives are minimized: overshoot, controller roll-
off frequency, rise time and settling time. Binary representation, tournament
selection, and elitism are used. Results are compared to a conventional de-
sign methodology. The authors indicate that the proposed approach is more
efficient (computationally speaking) than designing by trial-and-error. The de-
signs generated are used as suboptimal solutions that an experienced designer
can further improve.

Herreros López and co-workers [673, 675, 674] use a hybrid (called MRCD
GA, where MRCD stands for “Multiobjective Robust Control Design”) be-
tween the tournament selection used by the NPGA and the ranking procedure
used by MOGA to design robust controllers. Two algorithms are proposed,
each designed for a specific controller design problem (one of them consid-
ers uncertainties and the other one does not). Problems with two, three and
four objective functions are considered, particularly related to mixed H/H∞
controller design. The implementation has the following features: parallelism
(different subpopulations with different search limits each), migration, dynam-
ical search space boundaries, one-point crossover, uniform mutation, elitism,
and incorporation of constraints as additional objectives. The two algorithms
are compared against LMI (linear matrix inequalities) methods and against
several other MOEAs (MOGA, MOMGA, NPGA and NSGA). Results indi-
cate that the MRCD GA is able to generate highly competitive results and
can even outperform the other methods (from a control perspective) in some
cases.

364 7 Applications

Kawabe and Tagami [830] use a GA with the Pareto partitioning method to
design a robust PID (Proportional, Integral and Derivative actions) controller
with two degrees of freedom. Two objectives are minimized: the maximum dis-
turbance response and the reference response. They use binary representation
with Gray coding, roulette wheel selection with linear scaling, uniform bit
mutation and uniform crossover.

Istepanian and Whidborne [763] use MOGA to design finite word-length
feedback controllers. Two objectives are minimized: the difference between the
closed loop system and the original closed loop system, and the cost of the
implementation. The authors use binary representation, one-point crossover,
uniform mutation and stochastic universal sampling selection.

Binh and Korn [137, 138] use a multiobjective evolution strategy to de-
sign a multivariable controller. The approach enforces satisfaction of the soft
constraints of the problem before checking for non-dominance. A multimodal
function with eight local minima, and a bi-objective problem are used to test
the approach. The authors use two-point crossover, ranking selection, and an
extended representation that includes a life environment (i.e., the information
about constraint violation), and the personal experience (i.e., reproduction ca-
pabilities) of an individual. Results are compared against other techniques on
a benchmark problem. The proposed approach was able to produce solutions
that were either equivalent or better than those generated by traditional tech-
niques used to solve this problem.

Mahfouf et al. [1040] use a GA with a fuzzy population ranking method
to optimize the performance index table of a self-organizing fuzzy logic con-
troller. Two objectives are optimized: the integral of absolute error plus the
integral of absolute value of control effort. Each individual is ranked accord-
ing to its performance on each objective, and then is labeled and placed on
a fuzzy decision table. This decision table gives the overall rank of each rule.
The authors use binary representation, selective breeding, one-point crossover
and uniform mutation. The approach is compared to the use of Pareto rank-
ing [581]. The results indicate that the proposed approach performed better
than Pareto ranking in terms of output rise-time and final produced rule-base
surface around the center area of the controller designed.

Chipperfield and Fleming [248, 249] use MOGA to design a multivari-
able control system for a gas turbine engine. The goal is to find a set of
pre-compensators that satisfy a number of time-response design specifications
while minimizing the interactions between the loops of the system. Nine ob-
jectives related to the foreaft differential thrust and the total engine thrust
are considered. A Structured GA [333, 334] with real-numbers representation
is used in combination with intermediate recombination, mating restrictions,
and fitness sharing on the objective domain.

Whidborne et al. [1694] use MOGA for control system design. Three exam-
ples with three, nine, and seven objectives are considered (e.g., rise-time, over-
shoot, bandwidth, and other functionals of the system step response). MOGA
is compared against the moving boundaries process (a technique based on

7.2 Engineering Applications 365

Rosenbrock’s hill climbing algorithm [1376]), and the Nelder-Mead Minimax
method [1182]. Although the results are inconclusive, the authors indicate
that MOGA required the largest number of fitness function evaluations of
all the methods compared. Also, MOGA was unable to distribute solutions
properly along PFtrue (this happened because the authors do not implement
any niche formation technique).

Tan and Li [1567] use a hybrid of MOGA and the NPGA for time and fre-
quency domain design unification of linear control systems. Nine objectives are
considered: stability, closed-loop sensitivity, disturbance rejection, plant un-
certainty, actuator saturation, rise time, overshoot, settling time, and steady
state error. The authors compute costs for each individual using MOGA’s
ranking, but use a tournament selection scheme (like in the NPGA) to im-
prove the efficiency of the algorithm. Fitness sharing and mating restrictions
are used as well. The GA uses decimal encoding, and two-point crossover. The
approach is used to design an ULTIC controller that satisfies a number of
time domain and frequency domain specifications. In further work, Tan et al.
[1566, 1565] use an incremented multiobjective evolutionary algorithm [1564]
to design control systems. The following objectives are considered: close-loop
stability, tracking thumbprint specification, robust margin, high frequency
gain, and minimum controller order. The authors use an evolutionary algo-
rithm designed by them which employs a dynamic population size (i.e., the
population size is adapted over time) together with a fuzzy boundary local
perturbation scheme that performs the “incrementing” of previously found
nondominated individuals as to fill up the gap among them (i.e., it aims to
get a better coverage of the Pareto front). The authors also use a dynamic
sharing that does not require to compute niche sizes [1562]. Finally, the ap-
proach also allows the incorporation of preferences (or goals) from the decision
maker. Results are compared against those produced by another evolutionary
multiobjective optimization technique previously proposed by the same au-
thors [1562]. Results indicated that the solutions produced by the incremented
multiobjective evolutionary algorithm dominated the solutions generated by
the previous approach of the same authors.

Duarte et al. [413] use MOGA combined with a neural network that ap-
proximates the values of the objectives (in order to reduce the computational
cost) to design a simple control system (a cascade compensator). Six objectives
are considered, related to the design specifications for the compensator. Five
Radial Basis Function (RBFs) neural networks are used to estimate five of
these objectives (one could be obtained directly at a low computational cost).
The use of neural networks significantly reduces the computational cost, pro-
ducing also more nondominated solutions. However, the computational cost
associated with the use of the neural networks themselves is not considered
by the authors.

Lagunas Jiménez [939] uses the NSGA-II [374] for the fine-tuning of a
robust PID controller. Three objectives are minimized: the speed of the re-
sponse when facing a reference signal, the sensitivity when facing changes in

366 7 Applications

the structure of the plant, and the effect of the noise in the output signal. The
author uses 13 plants to validate his approach (some of these plants were taken
from the PhD thesis of Alberto Herreros López [675]). In his experiments, the
author adopts both binary and real-numbers encoding, and a penalty function
to incorporate the constraints of the problem. An interesting aspect of this
work is that the author implements a filtering approach in order to retain only
the best four solutions based on two criteria: best response to changes in the
reference signal (step) and best attenuation to perturbations in the control
signal. The results are found to be competitive with respect to those reported
by Herreros López [675].

Trebi-Ollennu and White [1602, 1603] use a GA with fuzzy logic and a
linear combination of weights to design nonlinear control systems. The objec-
tives considered are: depth, pitch angle, stern and bow thruster input, and
hydroplane input. However, only one of them is considered at each iteration,
with respect to time. Fuzzy logic is used to deal with the uncertainties involved
in the design. A weighting strategy is adopted for the membership function.
This membership function is used to deal with the multiple objectives of the
problem and its constraints. The authors use proportional selection with lin-
ear ranking, one-point crossover, uniform mutation, and binary representation
with Gray coding.

Dakev et al. [327] and Chipperfield et al. [247] use MOGA to design an
electromagnetic suspension system for a maglev vehicle. Seven objectives cor-
responding to the performance parameters of the system are considered. The
authors use real-valued representation, intermediate recombination, breeder
mutation, sharing, and mating restrictions (these last two are applied in
the objective domain). In further work, Dakev et al. [326] use MOGA to
solve optimal control problems. Three examples are considered: (1) determine
time-optimal trajectories for a two-link articulated manipulator, (2) determine
time-optimal following path control of a two-link manipulator, and (3) per-
form the optimal control for a lifting reentry space vehicle. The first problem
consists of a planar two-link articulated manipulator for which the authors
want to determine the time-optimal trajectories for given initial and final
angle configurations. Two feasible controls have to be found such that time
is minimized and torque constraints are satisfied. In the second example, a
model of a robot with one revolute and one prismatic joint is considered. The
goal is to minimize the final time along the trajectories of two controls satisfy-
ing a set of inequality and equality constraints. The last example is based on
a simplified model of a space vehicle flight through the Earth’s atmosphere.
The goal is to find a vehicle control angle minimizing the total stagnation
point convective heating per unit area for given initial and terminal values of
the velocity of the vehicle, its flight path angle, and its altitude. Real-coded
GAs are used in all cases. Results are compared to single-objective optimal
control approaches. The approach proposed is able to find an optimal solution
to the problem using four independent randomly chosen control parameters.
In contrast, the single-objective optimal control approach adopted requires

7.2 Engineering Applications 367

a close approximation which has to be found empirically. Without such an
approximation, the method does not work properly.

Blumel et al. [145, 144] use the NSGA in a robust trajectory tracking prob-
lem. The problem is addressed for a highly nonlinear missile, taking into ac-
count the design of an autopilot. Four objectives are considered: rising time,
steady state error, overshoot and settling time. The NSGA is used to deter-
mine the membership function distribution within the outer loop control sys-
tem of the airframe aerodynamics. A hybrid (binary and real) representation
is used. Intermediate crossover is used for the real part of the chromosomes
and multi-point crossover is used for the binary part. Fitness sharing is also
applied. A normalization process is applied to each objective function, based
on a target vector function (i.e., a function that uses the ideal values for each
criterion considered separately).

Khwaja et al. [851] use a GA with a predator fitness approach to solve the
inverse kinematics problem of an arbitrary robotic manipulator. Three objec-
tives are considered: minimize the Euclidean distance of the tool center point
to its desired position, minimize the rotation angle necessary to achieve the
desired orientation, and minimize the discrete joint velocities. This approach
uses a predator function7 to keep the population size at a certain level by
trying to terminate individuals at certain times (i.e., delete a fraction of the
population at certain intervals to keep diversity). An objective and a chro-
mosome are randomly chosen in the current population and a random value
between zero and one is generated. If this random value is higher than the
survival probability of the selected chromosome (for the objective selected),
the chromosome is deleted. This scheme operates within binary tournament
selection and is applied until the desired population size is achieved. Survival
probabilities of a chromosome are computed using an utility function that
combines the two first objectives (maintain position and orientation accuracy
of the end-effector). Binary representation, one-point crossover and uniform
mutation are used by the authors.

Osyczka et al. [1223] use a GA with a variation of the Pareto set distribu-
tion method [1226] to optimize the design of robot grippers. Two objectives are
minimized: the difference between maximum and minimum gripper forces and
assumed range of the gripper ends displacement, and the force transmission
ratio between the gripper actuator and the gripper ends. A tournament selec-
tion based on feasibility is used to handle constraints. In related work, Osyczka
and Krenich [1222] use the same approach together with the indiscernibility
interval method to reduce the number of solutions within the Pareto optimal
set. This allows a considerable reduction in the computational cost of the
multiobjective optimization algorithm. The approach is applied to the same
problem of designing robot grippers.

7 This “predator function” is a nonlinear aggregating function similar to compro-
mise programming (see Section 1.7.1 from Chapter 1).

368 7 Applications

Jakob et al. [768] use a parallel GA with a weighted sum for two task
planning and learning applications. The first application is to move the tool
center point of a simulated industrial robot to a given location on a “good”
path avoiding obstacles. In this case, five criteria are used: avoid failure checks
(overstep and collisions), get a certain accuracy in reaching the target posi-
tion, obtain a smooth path more or less on a straight line from start to end, get
a short travel time, and get a short action chain or a minimum of energy con-
sumption. The second application is to control the behavior of an autonomous
vehicle. Five criteria are also considered in this case: the distance between the
final and target positions, the time needed for the travel, the deviation from
the direct path between the starting and final points, the number of collision
monitor activations while performing a Collision Avoidance action Sequence
(CAS), and the number of emergency monitor activations. The authors ex-
periment with a wide variety of different parameters for the GA (e.g., survival
rules, population sizes, and ranking parameters).

Ortmann and Weber [1214] use a (µ, λ) evolution strategy with a linear
combination of weights to optimize the trajectory of a robot arm. Six objectives
are considered, each of them corresponding to one joint of a robot arm. Three
types of weighting criteria are compared: fixed weighting, adaptive weighting
depending on one gene and adaptive weighting depending on all genes. Since
the problem is decomposable, all the joints are optimized in parallel. Aim-
ing to produce a smooth trajectory, three types of transition functions are
considered: linear, logarithmic, and squared. The best results were obtained
using adaptive weighting depending on one gene, combined with a logarithmic
transition function.

Coello Coello et al. [270] use a GA with a weighted min-max approach to
optimize the counterweight balancing of a Puma-560 robot arm. Four objec-
tives are considered, related to the minimization of torques and joint forces of
the robot arm. Both binary and integer representation are used, together with
deterministic tournament selection. Results are compared against MOGA,
VEGA, NSGA, Hajela and Lin’s weighted min-max technique, two Monte
Carlo methods, the global criterion method, a conventional weighted min-max
technique, a pure weighting method, a normalized weighting method, and a
GA with a linear combination of objectives. Using as a metric the closeness
to the ideal vector, the proposed approach produced better results than any
of the other techniques.

Jin et al. [804] use an evolution strategy with an aggregating function to
generate fuzzy rule systems. Three objectives are considered: completeness,
consistency and compactness. The approach is tested on the design of a dis-
tance controller for cars. Similar work is reported by Jiménez et al. [794].
In this case, however, an evolutionary algorithm with Pareto ranking is used.
Three objectives are also considered: compactness, transparency and accuracy
of the fuzzy model. Compactness refers to the number of rules of the system,
the number of fuzzy sets and the number of inputs for each rule. Transparency
refers to linguistic interpretability and to locality of the rules. Accuracy refers

7.2 Engineering Applications 369

to how appropriate are the rules generated to model the problem. This is
easy to determine since there is normally an output that it is expected to
be matched. The authors use an evolutionary algorithm with variable-length
chromosomes, real-numbers representation, and an initialization process that
ensures that all the individuals from the initial generation satisfy the con-
straints of the problem. They also experiment with several crossover and
mutation operators and use elitism and a niche formation technique. The
approach is tested on the fuzzy modeling of a second order nonlinear plant.

7.2.5 Structural and Mechanical Engineering

Table 7.5: Summary of mechanical and structural engineering applications

Specific Applications Reference(s) Type of MOEA

Truss design [242] GA with Pareto ranking
[384, 1323] GA with cooperative game

theory
[1190, 310] Two-branch tournament GA
[1422] GA coupled with goal pro-

gramming
[1003, 1671] GA with an aggregating func-

tion
[260, 269, 636] GA with a weighted min-max

approach
[1167, 68] MOGA

Beam design [112, 113] GA with Pareto ranking
[558, 557] GA with Pareto elitist-based

selection
[1221, 1222] GA with the Pareto set distri-

bution method
[260, 268] GA with a weighted min-max

approach
[1714] GA with Pareto ranking

Plate design [1504] GA with an aggregating func-
tion

Motorcycle’s frame design [1366] GA with an aggregating func-
tion

Structural control systems [857, 858] GA with an aggregating func-
tion

[927, 928, 1225, 1224] GA with compromise pro-
gramming

Packing problems [602, 601] Iterative GA
Gear-box design [933] MOGA
Leg mechanism design [380] NSGA-II
Micromechanical densifica-
tion modeling parameters

[1337, 1336] Fuzzy logic based multiobjec-
tive genetic algorithm

Blade design [640] Differential evolution with
Pareto-based selection

Operational cost optimiza-
tion of a steel plant

[697] Nash GA [1463] and the
predator-prey GA [986]

Training a feedforward
neural network using noisy
data from an industrial
blast furnace

[1272] predator-prey GA [986]

Cheng and Li [242] use a GA with Pareto ranking and a fuzzy penalty function
to optimize a four-bar pyramid truss (the objectives considered are: minimize
structural weight and control effort), a 72-bar space truss (the objectives are:

370 7 Applications

minimize structural weight and strain energy), and a four-bar plane truss
(the objectives are: minimize structural weight and vertical displacement).
Results are compared against traditional single-objective optimization tech-
niques. The authors show how their GA is able to produce not only a vari-
ety of nondominated solutions, but also that these solutions dominate those
generated by traditional single-objective optimization methods. Binary rep-
resentation, stochastic remainder selection, uniform crossover and a penalty
function are adopted.

Rao [1323] uses a GA in combination with cooperative game theory for
the optimization of a two-bay truss and a six-bay truss. In both cases three
objectives are considered: minimize weight, minimize deflection and maximize
fundamental frequency of vibration. He also solves the problem of selection of
actuator locations in an actively controlled structure. In this second problem,
two objectives are minimized: energy dissipation and weight. Binary represen-
tation and proportional selection are used. Results are compared against the
global optima produced by a mathematical programming technique (used to
optimize each of the objectives separately). The GA was able to approximate
the global optima in one case (actuator locations) but not in the other. An
inappropriate discretization of the decision variables is considered to be the
cause of this last problem.

A similar approach is used by Dhingra and Lee [384] to optimize a 25 bar
truss, and a two-bay truss. The same three objective functions as before are
used in this case (i.e., minimize weight and deflection and maximize fundamen-
tal frequency of vibration). A bargaining model based on an utility function
is adopted for the cooperative game theoretic approach implemented. The
model also allows the incorporation of degrees of importance to each objec-
tive function. The authors use binary representation, proportional selection,
one-point crossover, linear scaling, a penalty function, and uniform mutation.
Results are compared against branch-and-bound (used to optimize each of the
objectives separately). Results indicate that the GA was able to approximate
the ideal vector at a considerably lower computational cost than branch-and-
bound.

Crossley and co-workers [1190, 310] use the two-branch tournament GA
to optimize a ten-bar plane truss (two objectives are minimized: weight and
vertical displacement) made both of a single and of several materials. Results
are compared against mathematical programming techniques considering each
objective separately. The GA compared fairly against classical optimization
techniques, but it was evident that at least in some cases a portion of the
Pareto front could not be generated by the proposed approach. However,
the lower computational cost of using a MOEA is argued by the authors
as the main advantage of their approach over classical techniques. Binary
representation with Gray coding is used.

Sandgren [1422] uses goal programming coupled with a GA to optimize
plane trusses and to design a planar mechanism. Several examples (each with
different amount of objectives and constraints) are considered: a three-bar

7.2 Engineering Applications 371

plane truss with two objectives (minimize volume and peak stress); the de-
sign of several planar mechanisms with nine objectives (minimize the distance
between the actual motion generated by the mechanism and the desired linear
path, minimize the difference between the desired velocity and the actual cou-
pler point velocity, minimize the closeness of the coupler point to two points
previously defined at the beginning and at the end of the required motion
range, minimize size of the linkage, minimize weight of the linkage, maximize
distance of the mechanism from a position where the mechanism does not
assemble over the required motion range, the change in velocity of the coupler
point over the required range of motion has to be as insensitive as possible to
small fluctuations in the angular velocity of the input link, and the coupler
point path traced has to be as insensitive as possible to: a) a small change
in the length of the input link, and, b) a small change in the location of the
coupler point position). Finally, the author also presents the design of a ten-
bar plane truss with 7 objectives (minimize weight of the structure, minimize
the maximum stress of any member, minimize the maximum displacement of
any node, the maximum stress has to be as insensitive as possible to a change
in loading magnitude or direction, the level of stress in each member has to
be as uniform as possible, minimize the number of different beam sections).
Binary representation and proportional selection are adopted.

Liu et al. [1003] use a GA with an aggregating function to minimize the
linear regulator quadratic control cost, the robustness, and the modal control-
lability of the integrated topology/control system of a 45-bar plane truss with
four actuators, subject to total weight, asymptotical stability and eigenvalue
constraints. They use binary representation and roulette wheel selection.

Wallace et al. [1671] use a GA with a nonlinear aggregating function to
solve design problems. The approach is applied in a truss design problem where
the following criteria are considered: two normal stress safety factors, a design
safety factor for buckling, cost, and two diameter ratios. The same approach is
also applied to a specification optimization problem with three criteria: desired
energy levels to be encouraged by an environmentally-friendly label, cost, and
percentage of existing market within the energy criterion. Entropy (i.e., infor-
mation contents) is used to determine the contribution of each specification
to the fitness of an individual. The authors use binary representation, one-
point crossover, uniform mutation, stochastic remainder selection, a penalty
function, and elitism.

Coello Coello and co-workers [260, 269] use a GA with a weighted min-max
approach to optimize a 25-bar space truss and a 200-bar plane truss. In both
cases the objectives are to minimize the structural weight, the displacement
of each free node and the stress that each member of each of the trusses has
to support. Both binary and integer representation are used, together with
deterministic tournament selection. Results are compared against MOGA,
VEGA, NSGA, Hajela and Lin’s weighted min-max technique, two Monte
Carlo methods, the global criterion method, a conventional weighted min-max
technique, a pure weighting method, a normalized weighting method, and a

372 7 Applications

GA with a linear combination of objectives. The min-max approach proposed
performs better than the other MOEAs with respect to the generation of
solutions that are closest to the ideal vector.

Hajela and Lin [636] use a GA with a weighted min-max approach to
optimize a 10-bar plane truss with two loading cases (two objectives are con-
sidered: minimize structural weight and vertical displacement), and a wing-box
structure (two objectives are considered: minimize structural weight and max-
imize the sum of its first two natural frequencies). Binary representation and
proportional selection with mating restrictions are used in both examples.

Azarm and co-workers [68, 1167] use a variation of MOGA to optimize a
two-bar plane truss, and a vibrating platform design. The four main differences
of this approach with respect to MOGA are the following: (1) the approach
is interactive, (2) an L2-norm is used to decide when to stop the evolution-
ary process (when no improvement is detected), (3) the same norm is used
to detect spread uniformity of the Pareto set, and (4) only nondominated
solutions have their constraints evaluated (a penalty function is used in case
of constraint violation). The approach also uses a filtering procedure during
each generation. This procedure deletes some individuals from each niche to
encourage diversity. Mating restrictions based on phenotypic distance are also
used. The two problems used to test the approach have two objectives each.
In the case of the truss, the objectives are: minimize volume and stress. In
the case of the vibrating platform, the objectives are: minimize cost and fun-
damental frequency of the platform. The authors use binary representation,
stochastic universal selection, one-point crossover, uniform mutation and fit-
ness sharing. Results are compared against MOGA (without the modifications
proposed by the authors). The authors indicate that the modified version of
MOGA has a faster convergence to PFtrue (with a lower computational cost)
and produces nondominated solutions that have a more uniform distribution.

Belegundu et al. [112, 113] use a GA with a variation of Pareto ranking
in which dominated and infeasible solutions are removed from the popula-
tion and replaced by newly (randomly) generated individuals. They apply
their approach to optimize the design of turbomachinery airfoils considering
two objectives: minimize the torsional resonant amplitude and maximize the
torsional flutter margin. They also use their approach to minimize thermal
residual stresses and cost of a 5-ply symmetric laminated composite. Binary
representation with roulette wheel selection are used.

Gero et al. [558, 557] use a GA with a Pareto Elitist-based selection to opti-
mize a beam section in which two criteria are considered: maximize moment of
inertia and minimize perimeter. The authors use exhaustive generate and test
to combine the two objectives considered, and from that set of solutions, they
extract those that are Pareto optimal. The authors also optimize the inverse
problem to obtain the so-called attainable criteria set. Binary representation
with proportional selection are used.

Osyczka and Krenich [1221, 1222] use a GA with the Pareto set distribution
method to design a beam of variable cross-sectional size. Two objectives are

7.2 Engineering Applications 373

minimized: the volume and the displacement of the beam under a certain
force. A penalty function is used to incorporate the stress constraints of the
problem and the indiscernibility interval method is used to reduce the number
of elements of the Pareto optimal set.

Coello Coello and co-workers [260, 268] use a GA with a weighted min-
max approach to optimize an I-beam (two objectives are minimized: its cross-
sectional area and its static deflection). Both binary and integer representation
are used, together with deterministic tournament selection. Results are com-
pared against MOGA, VEGA, NSGA, Hajela and Lin’s weighted min-max
technique, two Monte Carlo methods, the global criterion method, a conven-
tional weighted min-max technique, a pure weighting method, a normalized
weighting method, and a GA with a linear combination of objectives.The min-
max approach proposed performs better than the other MOEAs with respect
to the generation of solutions that are closest to the ideal vector.

Wu and Azarm [1714] use a GA with Pareto ranking to design a vibrating
platform. Two objectives are considered: maximize the fundamental frequency
of the beam and minimize the material cost. A primary-secondary fitness
approach is used to handle constraints. Primary fitness is used to measure
individuals’ performance, and secondary fitness is adopted to interpret the
“matching” of two individuals (this is a mating restriction mechanism whose
purpose is to generate offspring better than their parents). The constraint-
handling technique is compared to a traditional penalty function. The pro-
posed approach performs better in terms of closeness to PFtrue , spread and a
metric proposed by the authors, called “inferiority index” (the ratio between
dominated and nondominated solutions generated by a MOEA).

Soremekun [1504] uses a GA with a linear combination of weights to opti-
mize simply supported composite plates comprised of two materials. The two
objectives minimized are: laminate weight and laminate cost. The author uses
integer representation, one-point crossover, roulette wheel selection with lin-
ear ranking and uniform mutation with ad-hoc operators to add, delete or
swap ply stacks. A penalty function is used to incorporate constraints into
the fitness function. The user of the program decides what trade-offs are the
most appropriate based on experience. However, because of the use of a linear
combination of weights, certain (desirable) portions of the Pareto front can
not be obtained.

Rodriguez et al. [1366] use a GA with a linear aggregating function to
design a motorcycle frame. Two objectives are considered: minimize the mass
and the maximum structural stress of the frame. An interesting aspect of this
application is that the chromosomes contain a hybrid encoding, since some
of the decision variables are discrete (e.g., the tube diameters commercially
available) and others are continuous (e.g., angles and fillets). Thus, the chro-
mosome consists of both real-numbers and integers and a suitable mutation
operator is adopted for each of these two encodings (the same crossover opera-
tor is adopted for both of them). In order to evaluate the fitness of each design
produced, the authors use a finite element analysis commercial package. One

374 7 Applications

of the limitations of the approach is that a single Pareto optimal solution is
obtained for each run of the algorithm (which is computationally expensive).
Nevertheless, some of the solutions obtained were found to be better than
the solutions obtained by a traditional design approach (i.e., based on man-
ual intervention to fine tune the design parameters and run the simulation
iteratively).

Kim and Ghaboussi [857, 858] use a GA with an aggregation approach (a
multiplication of the objective functions) to optimize a controller of a civil
structure. Three objectives are considered, related to the peak accelerations,
peak displacements, RMS accelerations and RMS displacements of an ac-
tive mass driver. Two constraints (maximum displacement and acceleration
of AMD) are incorporated into the fitness function using a penalty function.
The authors use binary representation, roulette wheel selection, two-point
crossover and uniform mutation. Results are compared to the use of sample
optimal control. The proposed method’s performance in the response reduc-
tion was found to be superior to that of the sample optimal control.

Kundu and co-workers [927, 928, 1224, 1225] use a GA with compromise
programming to design a structural control system for seismic vibration isola-
tion. Two objectives are considered, related to the performance of the system.
The authors maintain a set of nondominated solutions at each generation, all
of which have the same fitness value (i.e., the Pareto front found so far).

Grignon and Fadel [601] use the Iterative GA [602] to solve free-form pack-
ing problems. The aim is to optimize multiple system level assembly charac-
teristics of complex mechanical assemblies by placement of their components.
Three objectives are maximized: compactness, static and dynamical balanced
loading and maintainability (this is actually the sum of two objectives: ac-
cessibility of an object and its ease of removal from the system). Mechanical
functional constraints and interference constraints are incorporated into the
ranking process through the use of a penalty function. The approach is tested
with two engineering configuration problems: the design of a satellite and
the design of a car engine. The authors use a steady state GA with binary
representation and roulette wheel selection with sigma truncation.

Kurapati and Azarm [933] use MOGA to solve a gear-box design problem.
Two objectives are minimized: the speed reducer volume (or weight) and the
stress in one of the shafts. This approach is aimed for multidisciplinary de-
sign optimization, and it therefore considers the exploration of hierarchical
systems. The approach uses MOGA [504] to solve each of the multiobjec-
tive optimization problems associated with each hierarchically decomposed
system to be solved. Then, the artificial immune system is used to coordi-
nate the various subsystems present, and to handle the interactions among
them. The best individuals obtained from each subsystem are selected and are
considered antigens. A population of randomly created antibodies is created
and is compared against the antigens using Hamming distances to measure
“similarity” among them. The antibodies are evolved using a simple genetic

7.2 Engineering Applications 375

algorithm, and copies of the resulting antibodies are inserted back into each
subsystem.

Deb & Tiwari [380] use the NSGA-II [374] to design a two degree-of-freedom
leg mechanism consisting of a four-bar crank rocker and a pantograph. Addi-
tionally, the compound leg mechanism was considered with spring elements.
Three objectives are minimized in this case: the peak crank torque required
to operate the mechanism for one complete cycle, the vertical actuating force
required and the normalized leg size, defined as the overall frontal area re-
quired for the leg mechanism compared with the rectangular space within
which the foot point is allowed to move. The problem has also 17 inequality
constraints, related to the geometry of the mechanism (to ensure a smooth op-
eration within a minimal fluctuation in the operating parameters), and to the
foot path curvature to be followed by the leg mechanism. In fact, the authors
indicate that the constraints define a very small feasible region, which makes
this problem still more challenging. An interesting aspect of this work is that
the authors adopt a hybrid approach in which the solutions obtained from an
evolutionary algorithm are further processed by using a local search method,
as suggested in [361]. This is done by applying a k-means clustering algorithm
to identify the most representative regions of nondominated solutions found
by the NSGA-II. After that, a simple GA with a combined weighted objective
is adopted to try to improve the reference solutions identified by the clus-
tering algorithm. The authors argue that this is a recommended procedure
when applying a multi-objective evolutionary algorithm to a high-complexity
problem. Results are compared with respect to a previous study in which only
a few nondominated solutions had been found. The NSGA-II clearly outper-
forms these previous results, and is able to handle a more complex instance of
the problem (adding spring elements to the leg mechanism) which the original
study could not properly solve.

Reardon [1336] uses a fuzzy logic based multiobjective genetic algorithm
to optimize micromechanical densification modeling parameters for warm iso-
pressed beryllium powder. Seventeen objective functions corresponding to ex-
perimental data points are considered. The approach consists of an aggre-
gating function that incorporates all the objectives into a single value, using
fuzzy rule sets. This aggregating function determines fitness for each indi-
vidual in the population of the GA. The author uses binary representation,
one-point crossover, uniform mutation, tournament selection and phenotypic
fitness sharing. In a related paper, Reardon [1337] uses the same approach
to optimize the micromechanical densification modeling parameters for copper
powder. In this case, six objectives related to the differences between the cal-
culated densification values and six data points reported in the literature, are
used as objectives.

Hampsey [640] uses differential evolution with a Pareto-based selection op-
erator to design wind turbine blades. Three objectives are considered: starting
performance, peak power production and induced stresses. The problem is
also subject to different constraints (many of them geometric). The author

376 7 Applications

proposes a mechanism to encode bi-cubic B-spline blade surfaces as real-valued
vectors of geometry parameters. The approach is able to find new blades whose
simulated performance indicates that they may outperform current state-of-
the-art small wind turbine blade designs.

Hodge et al. [697] use the Nash GA [1463] and the predator-prey GA [986]
for optimizing the operational cost of the primary end of an integrated steel
plant containing two blast furnaces utilizing both pellets and sinters, an elec-
tric furnace and a basic oxygen furnace. Two constraints are minimized: the
total cost of steel production and the total constraint violation. The authors
use the predator-prey GA [986] to obtain the Pareto front of the problem, and
the Nash GA to obtain the Nash equilibrium point. This Nash equilibrium
point is determined considering a game between two players with individual
search spaces, and it is used by the authors as a bound (not reachable in their
example) similar to the ideal vector. The authors argue that the Nash equi-
librium point can be used to assess how good is the Pareto front obtained.
However, they also indicate its possible disadvantages, since they were unable
to compute the Nash equilibrium point for another instance of the problem
in which three objectives were considered. In a related paper, Pettersson et
al. [1272] use the predator-prey GA [986] for training a feedforward neural
network using noisy data from an industrial iron blast furnace. Two objec-
tives are minimized: the training error of the neural network and the required
number of active connections in the lower part of it. The decision variables
are the architecture of the lower part of the network and their corresponding
weights. The authors adopt an ad-hoc crossover operator that swaps similarly
positioned hidden nodes of two parents. They also adopt a mutation operator
taken from the differential evolution algorithm [1294].

7.2.6 Civil and Construction Engineering

Table 7.6: Summary of civil and construction engineering applications

Specific Applications Reference(s) Type of MOEA

Building construction
planning

[476] GA with Pareto ranking

[842, 843] GA with a target vector ap-
proach

Design of a thermal system
for a building

[1710, 1711] MOGA

City planning [86, 87, 83, 85] GA with a target vector ap-
proach

Feng et al. [476] use a GA with Pareto ranking to solve construction time-cost
trade-off problems. Two objectives are minimized: project duration and cost.
Integer representation and proportional selection are used. Nondominated in-
dividuals at each generation are retained as a way to maintain diversity in
the population. The approach is tested on an 18-activity CPM (Critical Path
Method) network and compared to the results produced by exhaustive enu-

7.2 Engineering Applications 377

meration. The GA is considered very efficient in this application because it
finds 95% of the nondominated solutions generated by enumeration, but ex-
ploring only 0.00042% of the search space.

Balling et al. [86, 87] use a GA with a target vector approach (similar to
min-max) for optimal future land use and transportation plans for a city. Three
objectives are minimized: travel time, cost and change. Proportional selection,
integer representation, one-point crossover and uniform mutation are used in
this work. Death penalty is adopted to incorporate several constraints to the
problem (i.e., solutions that violate constraints are discarded). In related work,
Balling [83, 85] use a GA with a target vector approach to find the optimum
land use and transportation plans for two adjacent cities. Two objectives are
minimized: the cost minus revenues and the change from the status quo. The
approach proposed is called “maximin fitness function” and is designed to
favor nondominated vectors that are properly distributed along the Pareto
front. The maximin fitness function produced better spread along the Pareto
front than Pareto ranking in the application chosen. The authors use binary
representation, tournament selection (with a tournament size of six), one-point
crossover, non-uniform mutation, and elitism.

Khajehpour and co-authors [842, 843] use a GA with a target vector ap-
proach for optimal cost revenue conceptual design of rectangular office build-
ings. Three objectives are considered: minimize capital cost, minimize oper-
ating cost and maximize income revenue. Death penalty is used to handle the
constraints of the problem. The GA implemented uses binary representation,
roulette wheel selection, two-point crossover, uniform mutation, and elitism.

Wright and co-authors [1710, 1711] use MOGA for designing thermal sys-
tems for a building. In a first study, two objectives are minimized: daily energy
cost and occupant thermal discomfort for a summer design day. Each trial so-
lution is evaluated by running a simulation of the performance of the building.
Such a simulation is based on a finite difference model of the building and a
steady model of the heating, ventilating and air conditioning (HVAC) system.
In a second study, the authors minimize two other objectives: daily energy cost
and capital cost. MOGA is able to produce good trade-offs, but the authors
report some difficulties to handle the constraints of the problem, since they
can not find feasible solutions when performing a low number of evaluations.

7.2.7 Transport Engineering

Table 7.7: Summary of transport engineering applications

Specific Applications Reference(s) Type of MOEA

Train systems [225] GA with an aggregating func-
tion

[965] Unified model for multi-
objective evolutionary algo-
rithms

Road systems [625] NPGA with an outranking ap-
proach

378 7 Applications

Table 7.7: (continued)

Specific Applications Reference(s) Type of MOEA

[613, 614, 617] GA with an outranking ap-
proach

[78] GA with local geographic se-
lection

[40] MOGA
[1305] GA with a target vector ap-

proach
Transportation problems [1728, 736, 243] GA with an aggregating func-

tion
[554, 555, 552] GA with fuzzy logic and an ag-

gregating function
Vehicle routing [809] parallel NSGA hybridized

with Tabu search
[945] GA with Pareto ranking

Chang et al. [225] use a GA with a linear combination of weights for the operat-
ing optimization of electrified railway systems. Two objectives are considered:
minimize high power recovery and minimize load sharing. Binary represen-
tation and roulette wheel selection are used. The weights used are varied in
the multiple runs performed. Results are compared to an approach that con-
siders only one objective. The authors indicate that their proposed approach
improves the power recovery and load sharing by controlling the firing angles
of the traction system under study.

Laumanns et al. [965] use the Unified Model for Multi-objective Evolution-
ary Algorithms to design road trains. Ten objectives are considered, related to
overall weight, gear box, engine and driving strategy minimizing fuel consump-
tion, optimizing the driving performance and increasing driving convenience.
The authors use an evolution strategy that applies only mutation, since the
high interdependence of the design variables in every part of the objective
space make recombination too disruptive.

Haastrup and Guimarães Pereira [625] use the NPGA combined with
an outranking decision making method based on PROMETHEE (Preference
Ranking Organization METHod for Enrichment Evaluations [168]) to opti-
mize the planning of a traffic route. Two objectives are minimized: the num-
ber of people affected by traffic through minimization of driven distance, and
the amount of noise generated by traffic. Binary representation, tournament
selection and phenotypic fitness sharing are used.

In further work, Guimarães Pereira [613, 614, 617] uses a GA with an
outranking approach [1391] combined with preference indexes (inspired by
ELECTRE I [1383]) to compute weights that are linearly combined in a fit-
ness function. This approach is used to generate alternative motorway routes.
Five criteria are considered: height, geology, aspect, land use and distance
from urban centers. Binary representation and tournament selection are used.
Phenotypic sharing is used to keep diversity. The author experiments both
with one-point and uniform crossover, and with or without one-bit mutation.
Since a single fitness value is adopted for each individual, the author is able
to measure on-line and off-line performances of the GA [348].

7.2 Engineering Applications 379

Baita et al. [78] use a GA with Local Geographic Selection (LGS) to solve
a vehicle scheduling problem. Two objectives are minimized: the number of
vehicles and the number of deadheading trips. LGS is based on the idea that
the population has certain spatial structure (a toroidal grid with one individ-
ual per grid location, in this case). Selection takes place locally on this grid,
and each individual competes with its nearby neighbors. Basically, an indi-
vidual finds its mate during a random walk starting from its location and the
individual with the highest fitness found during the walk is selected. This ap-
proach makes unnecessary the use of fitness sharing, since it creates niches in
a natural way. The authors reproduce 85% of the population using crossover
based on LGS and the remaining by means of tournament selection (a small
percentage of the population is evolved using mutation only, to preserve diver-
sity). The technique is applied to the urban public transportation of the city
of Mestre, in Venice. An integer, multiploid chromosomic representation is
used. Results are compared to those produced using a custom-made program
developed by the Mass Transportation Company of Venice (this program per-
forms single-objective optimization). The proposed MOEA is able to produce
solutions with the same number of vehicles than single-objective optimization,
but with a much reduced number of deadheading trips.

Anderson et al. [40] use MOGA to design a fuzzy logic traffic signal con-
troller. Several objectives are considered, but they really deal with only two
objectives at a time: maximize average travel time and minimize emissions
of pollutants. In a further paper, Sayers et al. [1436] concentrate on two
conflicting objectives: minimize delay of both vehicles and pedestrians. As
a secondary criterion to solve ties, the authors use variability of delay across
vehicle streams. The aim is to identify a range of robust (i.e., that can perform
well in different simulated traffic scenarios) parameter sets corresponding to
different policy objectives. MOGA is used again, with integer representation,
tournament selection and niching.

Qiu [1305] uses a GA with a weighted sum of goal deviations to prioritize
and schedule road projects. Seventeen objectives related to maximize the in-
vestment effectiveness subject to the current budget constraints are adopted.
The author uses permutation-based encoding, binary tournament selection,
elitism, partially mapped crossover (PMX), and uniform mutation. Results
are compared to the use of goal programming, and the GA is able to find so-
lutions for a type of problem in which goal programming could not be applied.

Cheng et al. [243] use a GA with a linear combination of weights to solve a
linear transportation problem, a minimum spanning tree problem, and an inter-
val programming problem. Two objectives are considered in all cases. Weights
are computed in terms of the maximum and minimum values for each objec-
tive at each generation. An adaptive penalty approach is used to incorporate
the constraints of each problem. For the linear transportation problem, the
authors use a matrix encoding and the special crossover and mutation opera-
tors proposed by Vignaux and Michalewicz [1652]. For the minimum spanning
tree problem, the authors use a Prüfer number encoding, uniform crossover

380 7 Applications

and perturbation mutation. For the interval programming problem, the au-
thors use integer representation, uniform crossover and perturbation muta-
tion. Only the results of the linear transportation problem are compared to
the method of Aneja and Nair [49]. The authors indicate that their approach
is much more effective than the method of Aneja and Nair because it finds
more nondominated vectors and they are more uniformly spread.

Yang and Gen [1728] use a GA with a linear combination of weights to
solve a bicriteria linear transportation problem. Two objectives are minimized:
total transportation cost and total deterioration. The approach uses problem-
specific knowledge in the form of appropriate data structures and specialized
genetic operators (an “evolution program”, as defined by Michalewicz [1100]).
The authors use the matrix encoding of Vignaux and Michalewicz [1652], a
specialized initialization procedure, special crossover and mutation operators,
and mating restrictions (called extinction and immigration by the authors).
Results are compared to two other techniques in terms of which method pro-
duces the best compromise solution. The GA proposed was found to perform
better than the other techniques. In related work, Ida et al. [736, 988, 989]
use the same type of GA with a linear combination of weights to solve a
multiobjective chance-constrained solid transportation problem. In this case,
the cost coefficients are exactly known and the production and demands (or
transportation capacities) cannot be determined exactly. Although several ob-
jectives are considered, only results with two or three objectives are reported.
The authors use a 3D integer representation, elitism, and specialized genetic
operators to direct the search towards a compromise solution (the Technique
for Order Preference by Similarity to Ideal Solution [941] is used to find such
a “compromise solution”). The authors have also used fuzzy logic and ranking
for this problem [988, 989]. Gen et al. [554, 555, 552] extend this approach to
allow more than two objectives (three objectives are considered in this case),
and add fuzzy logic to handle the uncertainty involved in the decision making
process. A weighted sum is still used in this approach, but it is combined
with a fuzzy ranking technique that helps to identify Pareto solutions. The
coefficients of the objectives are represented with fuzzy numbers reflecting the
existing uncertainty regarding their relative importance.

Jozefowiez et al. [809] use a parallel version of the NSGA [1509] hybridized
with Tabu search for solving bi-objective vehicle routing problems. Two objec-
tives are minimized: the total distance and the difference between the length
of the longest tour and the length of the shortest tour. The authors adopt an
elitist version of the NSGA in which a new diversification mechanism is intro-
duced. This mechanism consists in maintaining several external archives. For
their bi-objective problem, the authors maintain 3 archives: one contains the
Pareto optimal solutions considering the minimization of f1 and f2, the second
considers that f1 is minimized and f2 is maximized, and the third considers
that f1 is maximized and f2 is minimized. The solutions contained in these
archives are moved to the main population of the MOEA. However, since par-
allelism is used, the authors only attach one of the 3 types of archive to each

7.2 Engineering Applications 381

island and when performing migration, the islands exchange their archives,
aiming to explore new regions of the search space during this exchange of in-
formation. The authors experiment with route-based crossover (RBX) [1289],
split crossover [1296, 1297] and sequence-based crossover [1289], and use Or-
opt mutation (this operator moves from one to three consecutive customers
from a tour to another position in the same tour or to another tour). They
also use a 2-opt local search mechanism, whose aim is to improve the total
length of the tours produced. The authors also adopt clustering techniques
(the average linkage method [1132], as in SPEA [1782]) for pruning their ex-
ternal archives in order to keep their size small. The authors also evaluate
a hybridization of their parallel MOEA with Tabu search. This approach is
called Π2-TS (Parallel Pareto Tabu Search), and it takes the Pareto opti-
mal solutions found by the MOEA as its starting point. It uses Or-opt as its
neighborhood operator, and it acts as a local search mechanism that aims to
improve the solutions obtained by the MOEA. As expected, the use of this
local search mechanism improves the convergence of the approach. Results are
compared with respect to the best known total lengths for a set of instances
of the bi-objective vehicle routing problem.

Lamont et al. [945] propose a parallel genetic algorithm based on Pareto
ranking to support the design of a comprehensive mission planning system
for swarms of autonomous aerial vehicles (UAV). This is a three dimensional
vehicle routing problem. Four objectives are considered: cost, encompassing
distance traveled, amount of climbing a vehicle does, and risk resulting from
flying through areas of threat. A one-point midpoint crossover and three dis-
tinct mutation operators are applied with equal probability. Infeasible solu-
tions are repaired. The approach also adopts an external archive to store
the nondominated solutions found during the search, and an elitist selection
scheme. The developed system consists of a terrain-following path planner
(based on a parallel MOEA) and a vehicle router (based on an evolutionary
algorithm). Visualized results indicate effective performance of the proposed
MOEA.

7.2.8 Aeronautical Engineering

Table 7.8: Summary of aeronautical engineering applications

Specific Applications Reference(s) Type of MOEA

Constellation design [443] Two-branch tournament GA
[1079, 1080] Variation of the NSGA
[664, 663, 662] Variation of the NSGA

Helicopter design [309] GA with a Kreisselmeir-
Steinhauser function

[308] Two-branch tournament GA
and Pareto ranking

[493] GA with a modified version of
Pareto ranking

Aerodynamic optimization [1676] GA coupled with game theory
[1281, 1282, 1283, 1284] NPGA

382 7 Applications

Table 7.8: (continued)

Specific Applications Reference(s) Type of MOEA

[1200, 1196, 1202, 1201, 1197,
1198, 1203, 1228, 1227]

MOGA

[564] GA with Pareto ranking
[1057, 1045, 1046] NSGA
[1371, 1372] VEGA
[42, 44, 43, 1645, 1646, 1647] GA with Pareto ranking
[1252] Co-evolutionary multiobjec-

tive GA
[41] GA with an aggregating func-

tion
[1306, 1307] Virtual Subpopulation Ge-

netic Algorithm
[1308] Parallel genetic algorithm
[666, 665] evolution strategy with an ag-

gregating function
[1168] NSGA-II [374]

Ely et al. [443] use the two-branch tournament GA for constellation design
for zonal coverage using eccentric orbits. Two objectives are minimized: the
maximum altitude of the constellation, and the total number of satellites in
the constellation. Binary representation and uniform crossover are used.

Mason et al. [1079, 1080] use a variation of NSGA [1509] called MINSGA
(Modified Illinois NSGA) to design optimal earth orbiting satellite constel-
lations. Two objectives are considered: minimize number of satellites and
maximize continuous coverage. The modifications introduced are the use of
stochastic universal selection (instead of stochastic remainder selection), and
the use of a normalized parameter set in the sharing scheme. Binary repre-
sentation and fitness sharing are used. Results are compared against NSGA
(without the changes proposed by the authors). The MINSGA was found to
exhibit a performance similar to the NSGA in unconstrained problems, and
a better performance in constrained problems. In further work, Hartmann et
al. [663, 664, 662] use another variation of the NSGA to optimize low-thrust
interplanetary spacecraft trajectories. Three objectives are considered: maxi-
mize mass delivered to target, minimize time of flight and maximize heliocen-
tric revolutions. The genetic algorithm is coupled with a calculus-of-variations
based trajectory optimizer, called SEPTOP (Solar Electric Propulsion Trajec-
tory Optimization Program). The hybrid adopted uses a “memetic algorithm”
(i.e., a localized search algorithm used to improve the characteristics of a pre-
viously obtained solution) [1134] (the resulting algorithm is called Nondomi-
nated Sorting Memetic Algorithm, or NSMA for short). Baldwinian learning
was also used (i.e., only the improved fitness values obtained are recorded)
[1700]. The authors use binary representation, one-point crossover, and fitness
sharing (mutation is not applied). The approach found novel Earth-Mars tra-
jectories for a Delta II 7925 launch vehicle with a single 30-cm xenon engine
for spacecraft propulsion. Results are not compared to any other approach,
but the GA was able to produce novel trajectories with very high performance
and non-intuitive structures.

7.2 Engineering Applications 383

Crossley [309] uses a GA with a Kreisselmeir-Steinhauser function that
combines all the objectives and constraints into a single envelope function.
This approach is used to design a helicopter rotor system. Two objectives
are minimized: the hover power required and the weight of the rotor system.
Binary representation and proportional selection are used. Results are com-
pared to a GA with a linear combination of weights that the author uses in
a previous paper [307]. In another paper, Crossley [308] applies a two-branch
tournament GA and Pareto ranking to the same problem.

Flynn and Sherman [493] use a GA with a modified version of Pareto
ranking to optimize the design of helicopter flat panels. Four objectives are
considered: the buckling of a panel and the buckling of a bay have to remain
within a specified range; minimize the panel weight, and minimize the num-
ber of frames and stiffeners. Dominance is checked independently for each
objective function, and zero is assigned to a counter when the individual is
nondominated with respect to that objective; otherwise, one is added to the
counter for each individual that dominates the current solution under evalua-
tion. Then, the ranking of an individual is given by the addition of its counters
for each objective, so that nondominated individuals with respect to the en-
tire population get a range of zero. The authors use one-point crosover, binary
representation with Gray coding, elitism, and uniform mutation. Results are
compared to rule-based optimization and to constrained, partially optimized
designs (the proposed approach performed better in both cases).

Wang and Periaux [1676] use a GA with concepts of game theory for
multipoint aerodynamic optimization. Two objectives are considered, related
to the slat and flap position of a three-element airfoil system. The concepts of
Nash equilibrium [1169] and Stackelberg equilibrium [1013] are used by two
GAs to model a two-person competitive game. Results between the so-called
Nash GA and the Stackelberg GA indicate that the second approach produces
better results (in terms of quality), but at a higher computational cost.

Poloni et al. [1281, 1282, 1283, 1284] use the NPGA for the design of a
multipoint airfoil. Two objectives are considered: to have a high lift at low
speed and a low drag at transonic speed. A parallel GA is used in this case,
placing individuals in a toroidal grid with one individual per grid location.
A local selection mechanism is used, so that each individual has to compete
against its neighbors. A random walk is used to determine the mate with
which an individual reproduces. Two-point crossover and uniform mutation
are adopted.

Marco et al. [1057] use a parallel implementation of the NSGA in a problem
of computational fluid dynamics in which the goal is to exhibit a family of
profiles that have a smooth transition in shape from a certain initial profile
to another. Two objectives are considered: minimize the cost of the low-drag
and the high-lift profiles of a 2D airfoil. Binary representation and binary
tournament selection are used.

Obayashi et al. [1200] use MOGA coupled with an inverse optimiza-
tion technique to design a transonic wing for mid-size regional aircraft. Two

384 7 Applications

objectives are minimized: the difference between the spanwise lift distribution
and an elliptic distribution for a specified total lift, and the induced drag.
Apparently, they use the same sort of representation reported in related work
(i.e., real numbers). In a related paper, Oyama et al. [1228] use MOGA for
aerodynamic design of a transonic wing. Two objectives are considered: max-
imize lift and minimize drag of a wing. The Taguchi method [1380] is used to
analyze the epistasis of the design variables of the problem. A scheme known
as best-N selection [1610] is adopted for elitism. Under this scheme, the best N
individuals from a pool of N parents and N children are selected for the next
generation. The authors use fitness sharing, real numbers representation, tree-
structure encoding of the design variables, one-point crossover, and uniform
mutation. In further work, Obayashi et al. [1204, 1201, 1197, 1198, 1196, 1202]
use MOGA for the multidisciplinary optimization of wing planform design.
Three objectives are considered: minimize aerodynamic drag, minimize wing
weight and maximize fuel weight stored in the wing. Real numbers represen-
tation and stochastic universal selection are used. They also experiment with
coevolutionary shared niching [588] which they find to be superior to fitness
sharing. In related work, Obayashi et al. [1203] use the same approach to
optimize a wing for supersonic transport. Three objectives are considered as
well: minimize the drag for supersonic cruise, the drag for transonic cruise and
the bending moment at the wing root for supersonic cruise. The problem has
high dimensionality (66 variables are considered in this case) and the search
space is constrained (e.g., there are wing area and wing thickness constraints).
In this case, fitness sharing on phenotypic space is adopted and niche sizes
are computed as suggested by Fonseca and Fleming [504]. Average crossover
and non-uniform mutation are used with the real-coded GA adopted. Results
are compared against an existing aerodynamic design of the supersonic wing
for the National Aerospace Laboratory’s Scaled Supersonic Experimental Air-
plane. The proposed approach was able to produce a novel wing design.

Oyama and Liou [1227] use MOGA to optimize turbopumps of cryogenic
rocket engines. Two objectives are considered: maximize total head and mini-
mize input power. The authors use floating point representation, fitness shar-
ing, best-N selection [1610], and blend crossover. The approach is applied to
the redesign of a single-stage centrifugal pump and the redesign of a multistage
liquid oxygen pump.

Giotis and Giannakoglou [564] use a GA with Pareto ranking to solve
transonic airfoil design problems. Two objectives are minimized: drag and the
difference between a given lift and a target value. Fitness sharing in objective
function space is adopted, together with binary representation. A multilayer
perceptron is used to reduce the CPU cost of the GA. The approach is tested
with the optimization of the RAE-2822 isolated profile under inviscid flow
conditions. Results are compared to those produced optimizing the two objec-
tives separately. The authors indicate that Pareto ranking can produce better
trade-offs and the additional use of neural networks considerably reduces the
computational cost of the approach.

7.2 Engineering Applications 385

Mäkinen et al. [1045, 1046] use the NSGA in an airfoil shape optimization
problem. Two objectives are considered: minimize the drag coefficient and am-
plitude of the backscattered wave while the lift coefficient is not less than a
certain given value. A quadratic penalty function is used to incorporate the lift
constraint into the fitness function used for each objective. The authors use
tournament selection, phenotypic sharing on parameter value space and float-
ing point representation. The approach is used to optimize an NACA64A410
airfoil, using 15 design variables.

Rogers [1372, 1371] uses a GA with a population-based approach (similar
to VEGA [1440]) to find the optimum placement of aerodynamic actuators
for aircraft control. Three objectives are considered: provide uncoupled pitch,
roll and yaw moments. Each of these objectives is considered as a separate
subproblem and a separate population is allocated for each of them. A com-
posite fitness function is formed from the members of the three subpopulations
which satisfy their corresponding constraints. Arrays are built to store any in-
dividuals that are feasible in any dimension (i.e., in any of the objectives), so
that they can be combined in different ways. The fitness function consists of
an OR function which is applied to the binary strings of the three members
selected (i.e., the three objectives) for an individual. The result obtained (i.e.,
a binary sum without carry) is adopted as the fitness value of an individual.
The author uses one-point crossover, incest prevention [456], and uniform mu-
tation. Both a sequential and a parallel version of the algorithm are tested.
The author only refers to the computational time saved by his approach with
respect to exhaustive search.

Anderson and Lawrence [43] and Anderson et al. [44] use a GA with Pareto
ranking to extract munition aerodynamic characteristics and initial (launch)
conditions from high quality position and altitude data. Two objectives are
minimized: the root-mean-square (RMS) position error and the RMS Euler
angle error. Binary representation and tournament selection are used.

Anderson and Gebert [42] use a GA with Pareto ranking for preliminary
wing subsonic design. Three objectives are maximized: the lift-to-drag ratio,
area ratio and lift ratio. Binary representation and tournament selection are
used.

Vicini and Quagliarella [1647, 1646, 1645] use a GA with Pareto ranking
hybridized with a conjugate gradient technique whose fitness function is a
linear combination of objectives to optimize the shape of a wing for transonic
flow conditions. Two objectives are considered: minimize aerodynamic drag
and minimize structural weight. The same approach is also used for airfoil de-
sign, considering two objectives: minimize wave drag and maximize thickness.
Binary representation and a “simple random walk” selection scheme (applied
to nondominated parents) are used. Results are compared to those produced
by a conjugate gradient technique using a linear combination of objectives.
Pareto ranking was considered better in terms of robustness and quality of
the solutions produced.

386 7 Applications

Parmee and Watson [1252] use a co-evolutionary multiobjective genetic
algorithm for preliminary design of airframes. The idea of this approach is
to use separate GAs for each of the objective functions of the problem. Such
GAs run concurrently. Then, the fitness values for the individuals within each
of these GAs is adjusted through a comparison with respect to the other GAs.
This is, in fact, similar to a cooperative game theoretical approach such as the
one described by Barbosa [92]. The method is really created to converge to
a single (ideal) trade-off solution. However, through the use of penalties the
algorithm can maintain diversity in the population. These penalties relate to
variability in the decision variables’ values. The authors also store solutions
produced during the evolutionary process so that the user can analyze the
historical paths traversed by the algorithm. Three objectives are considered:
subsonic specific excess power, ferry range, and attained turn rate. The au-
thors use roulette wheel selection and perform some sensitivity analysis of the
parameters used.

Anderson [41] uses a GA with a linear combination of weights to design
subsonic wings. Four objectives are considered: maximize the lift/drag ratio,
maximize the lift/weight ratio, meet design lift goals, and maintain structural
integrity. The most important objective is the first (lift/draft ratio). The au-
thor uses binary representation, one-point crossover and uniform mutation.

Quagliarella and Vicini [1306, 1307] use the Virtual Subpopulation Genetic
Algorithm (VSGA) for wing design. Two objectives related to aerodynamic
and structural requirements are initially defined. The resulting wing is then
modified to further reduce its aerodynamic drag. The authors use a parallel
genetic algorithm with several subpopulations distributed on a single toroidal
topology. The selection scheme is based on random walk: for each subpopula-
tion, random walk is used to select the parents to mate. The Pareto front is
generated by extracting nondominated vectors with respect to the whole pop-
ulation. The authors use binary representation, one-point crossover, elitism,
and a migration policy based on boundaries defined through a certain proba-
bility function.

In a further paper, Quagliarella and Vicini [1308] use a parallel GA with
the same approach to design high-lift airfoils. Two objectives are considered:
maximize the lift force and minimize the pitching moment coefficient. Results
are compared to the use of an “enhanced random walk” selection scheme in
which nondominated parents are selected in two phases: in the first, locally
nondominated individuals are randomly marked as possible parents; in the
second phase, two ranking criteria are used: (a) minimum Euclidean distance
of a solution to the current Pareto front, and (b) minimum value of a given
objective between the solutions belonging to the set of nondominated vectors.
One of these two criteria is used (with a certain probability) to select parents
for the following generation. The parallel GA has a better performance (in
terms of CPU time required) than the scalar GA, but no improvement in the
quality of the results is achieved.

7.2 Engineering Applications 387

Hasenjäger et al. [666, 665] use an evolution strategy with covariance ma-
trix adaptation (the so-called CMA-ES) and a linear aggregating function
to optimize gas turbine stator blades. Two objectives are minimized: mass-
averaged total pressure loss and variation of the circumferential static pres-
sure distribution. The authors indicate that the main difficulty when opti-
mizing 3D aerodynamic designs such as this one is the high computational
cost associated with 3D computational flow analysis. So, the problem to be
solved is high-dimensional and has a very high computational cost associated
with the evaluation of each fitness function. The authors use a parallelized
3D Navier-Stokes flow solver (which adopts MPI [1230]), and a master-slave
model of the optimization loop is implemented using the Parallel Virtual Ma-
chine (PVM) library [549]). Two versions of the problem are solved: a single-
objective one (in which mass-averaged total pressure loss is minimized), and
a multi-objective version in which the second objective previously indicated is
also considered. For the multi-objective version of the problem, the dynamic
weight aggregation approach of Jin et al. [800, 801] is adopted. The main goal
of this work was to identify new design concepts from the optimization results,
rather than improving on a certain (previously known) design. According to
the authors, this goal is achieved in their work.

Nariman-Zadeh et al. [1168] use the NSGA-II [374] for the multiobjec-
tive optimization of the thermodynamic cycle of ideal turbojet engines. Four
objectives are considered: minimize specific thrust, minimize specific fuel con-
sumption, maximize propulsive efficiency, and maximize thermal efficiency.
The decision variables are the input Mach number and the pressure ratio of
the compressor of the turbojet engines being optimized. The authors adopt
the so-called ε-elimination diversity approach, which consists of a procedure
that removes duplicates and individuals that are identical (both in decision
variable space and objective function space) within a certain threshold ε. An
interesting aspect of this work is that the multiobjective optimization task is
not the final goal. The authors use another evolutionary algorithm together
with singular value decomposition for the optimal design of both connectivity
configuration and the values of coefficients involved in group method of data
handling (GMDH)-type neural networks. These GMDH-type neural networks
are used for the inverse modeling of the input-output data table obtained as
the best Pareto front. A special encoding (consisting of symbolic strings) and
appropriate operators are adopted to encode the GMDH-type networks. The
polynomial neural network that is produced by the approach is validated us-
ing 760 data samples which are randomly chosen for training purposes, while
250 more data samples are used for testing purposes. Results indicated a
match between the predicted and the computed values with an accuracy of
two significant digits.

388 7 Applications

7.3 Scientific Applications

Scientific applications occupy the third place in terms of popularity (after
industrial applications). Scientific applications have been subdivided in six
groups: geography, chemistry, physics, medicine, ecology and computer sci-
ence & computer engineering. Not surprisingly, computer science & computer
engineering is, by far, the most popular subdiscipline. Medicine and chemistry
are in (distant) second and third places, respectively. The less usual scientific
application area that resulted from the bibliography survey presented in this
chapter is ecology, from which only two applications are reviewed.

7.3.1 Geography

Table 7.9: Summary of geography applications

Specific Applications Reference(s) Type of MOEA

Environmental modeling [772] GA with an aggregating func-
tion

Site-search problems [1716] MOEA based on nondomi-
nated sorting

Land use planning [1083] MOGA
[1524] GA with goal programming

Jarvis et al. [772] use a GA with a linear combination of weights to choose
the most characteristic pre-located site data from a wider set in the context
of environmental modeling. This is a combinatorial optimization problem in
which the aim is to move the initial data available closer to a form useful in
meeting two main sampling criteria: 1) “representativeness” of sample data
relative to full data set (e.g., to have a distribution of heights representative
of total range within the domain used) and 2) sampling requirements related
to interpolation tasks (e.g., nearby sites are required for successful production
of variogram). These two criteria involve the use of eight objective functions.
A real-coded GA with one-point crossover, uniform mutation and inversion is
used. Results are compared to those found using a deterministic methodology
in which sites are ‘weeded’ in a sequential fashion according to each crite-
rion in turn, ranked according to the importance assigned by the user. The
approach is applied to meteorological data for England and Wales, aiming
to choose 200 sites out of a possible 985. The authors indicate that the GA
produced competitive trade-off solutions with respect to those generated by
an enumerative approach.

Xiao et al. [1716] use a multi-objective evolutionary algorithm based on
nondominated sorting to generate alternatives for multi-objective site-search
problems. Two objectives are minimized: the total cost for the site, the mean
distance between the site and the facility. A special encoding (and associated
crossover and mutation operators) based on undirected graphs is adopted
to represent feasible solutions. Results are only compared with respect to a

7.3 Scientific Applications 389

random search, but the authors argue about the superiority of the MOEA
adopted.

Matthews et al. [1083] use MOGA for rural land use planning. Two objec-
tives are maximized: net present value of the property over 60 years and
the Shannon-Wiener index, which measures the diversity and evenness of
land use. A non-generational genetic algorithm with a mechanism to elim-
inate duplicates and restrict mating is implemented. Two representations
are used: one has a fixed-length genotype and the other uses a variable-
length order-dependent representation. Fitness sharing on phenotypic space
is adopted. The authors use uniform crossover and uniform mutation for the
fixed-length representation, and several ad-hoc operators are defined for the
order-dependent representation. The initial population benefits from the ap-
plication of other heuristics and specific domain knowledge. Both evenness
and extent of coverage (of the Pareto front) are used as comparison criteria
to determine the quality of solutions produced with the two representations
adopted. Both representations produced a good number of nondominated vec-
tors. However, the variable-length representation was found to be more sus-
ceptible to the niche and population sizes.

Stewart et al. [1524] use a GA with goal programming for land use plan-
ning. Three objectives were considered: maximize the natural value of the
area, maximize the recreational value of the area and minimize the cost of
changing land use. The authors use a linear aggregating function and a goal
programming formulation to solve the multiobjective (nonlinear) combinato-
rial optimization problem arising from the model adopted for land use plan-
ning. They adopt a genetic algorithm with ad-hoc crossover and mutation
operators. Payoff tables are constructed for the objectives, so that they can
compute the ideal vector and from them, they approximate the nadir values.
Both of them (ideal vector and nadir values) are used as the lower and upper
level goals for each objective. An interesting aspect of this work is the use of a
factor to encourage aggregations into clusters, and another one to encourage
achievement of the target numbers for each land use. These factors also act
as specific mechanisms to satisfy certain requirements of the problem that
otherwise the GA could not properly handle. After solving some randomly
generated instances, the authors solve a real-world problem related to the
management of the Jisperveld region in the Netherlands. The GA was able to
produce a meaningful range of alternative plans responsive to the changing
preferences of the users, which was very satisfactory for its designers.

7.3.2 Chemistry

Table 7.10: Summary of chemistry applications

Specific Applications Reference(s) Type of MOEA

Intensities of emission lines
of trace elements

[1702] GA coupled with goal pro-
gramming

390 7 Applications

Table 7.10: (continued)

Specific Applications Reference(s) Type of MOEA

Modeling of a chemical
process

[683] Multiobjective genetic pro-
gramming

Search of molecular struc-
tures

[808] GA with an aggregating func-
tion

Polymer extrusion opti-
mization

[544] GA with the reduced Pareto
set approach

[545] NSGA and a GA with the re-
duced Pareto set approach

Design of a chemical plant [221] Pareto Converging Genetic
Algorithm [923]

Wienke et al. [1702] use a GA with goal programming to optimize the intensi-
ties of six emission lines of trace elements in alumina powder as a function of
spectroscopic excitation conditions. Seven objectives are considered (the goal
is to find the best compromise combination of seven relative emission intensi-
ties). Binary representation and proportional selection are used. Results are
verified by an overlapping resolution map and by a control experiment. The
authors indicate that the GA is able to match the results of the overlapping
resolution map and also suggest the use of sharing to maintain diversity.

Hinchliffe et al. [683] use Multi-Objective Genetic Programming (MOGP)
to model a steady state chemical process system. Their approach is based on
MOGA and they also use fitness sharing in the objective domain and the
concept of preferability based on a given goal vector as proposed by Fonseca
and Fleming [504]. Four objectives are minimized: root mean square (RMS)
error on training data set, residual variance, correlation between residuals and
the process output and the model string length. Two industrial case studies
are analyzed: the development of an inferential estimator for bottom product
composition in a vacuum distillation column and the development of a model
for the degree of starch gelatinization in an industrial cooking extruder. Linear
ranking selection and a maximum tree size of 500 characters are used. Results
are compared to a GP approach that considers only one objective, based
on the RMS error. MOGP did not produce significantly better predictions
than the single-objective GP implementation against which it was compared.
However, the capability of generating good trade-offs under several objectives
was considered as the main advantage of MOGP.

Gaspar Cunha et al. [544] use a GA with a ranking procedure called the Re-
duced Pareto Set (RPS) algorithm to solve a polymer extrusion optimization
problem. Four objectives are considered: minimize melt temperature, minimize
length of screw required for melting, minimize power consumption and max-
imize mass output. Binary representation, fitness sharing and roulette wheel
selection are used. Results are compared to the NPGA [709] and a GA with a
linear combination of weights. The fact that the RPS algorithm produces less
elements of PFtrue than the NPGA is considered by its authors as an advan-
tage, since they argue that this facilitates the decision-making process. The
GA with a linear aggregating function was outperformed by the two other
approaches.

7.3 Scientific Applications 391

In a further paper, Gaspar Cunha et al. [545] also compare the RPS al-
gorithm to the NSGA [1509] in the same problem. The authors indicate that
the RPS algorithm produces slightly better results than the NSGA, but the
difference is marginal.

Jones et al. [808] use a GA with a linear combination of weights for con-
formational search of 3D molecular structures. Two objectives are considered:
the distance range between each pair of atoms in the pharmacophore and
the energy of conformation which has to be within certain limits. The authors
use binary representation, one-point crossover, uniform mutation and roulette
wheel selection. Results are compared against a deterministic procedure called
SYBYL CSEARCH [328]. The GA was found to be more effective and more
efficient than CSEARCH since it retrieved more hits and in less time.

Chakraborti et al. [221] use the Pareto Converging Genetic Algorithm
(PCGA) [923] to design the Williams and Otto Chemical Plant. Two ob-
jectives are maximized: annual return and low constraint violation. The ap-
proach adopts binary encoding, binary tournament selection, one- and two-
point crossover, and both Creep and Jump mutations. Results are compared
with respect to several mathematical programming techniques and against
both a single-objective (sequential) genetic algorithm and a single-objective
parallel (island model) genetic algorithm.

7.3.3 Physics

Table 7.11: Summary of physics applications

Specific Applications Reference(s) Type of MOEA

Reflector backscattering [1266, 1267] Nash-GA
Optimization of multilay-
ered anti-reflection coat-
ings

[1028] GA with Pareto ranking

Analysis of experimental
spectra

[591, 590] NPGA

Design of a water reactor [1244, 1245, 1246] GA with Pareto ranking
Electrical impedance to-
mography problem

[711] GA with Pareto ranking

Design of quantum cascade
lasers

[867] GENMOP-LS

Périaux et al. [1266, 1267] use the Nash-GA (based on non-cooperative game
theory) to find an optimal distribution of active control elements in order
to minimize the backscattering of a reflector. Two objectives are minimized:
the radar cross section (RCS) considering a +45◦ incidence wave and the
RCS considering a -45◦ incidence wave. Binary representation and genotypic
sharing are used. Results are compared to the use of the NSGA. The authors
conclude that the NSGA [1509] produces better solutions, but they argue that
the solutions of the Nash-GA are more stable.

Lum et al. [1028] use a GA with Pareto ranking for constrained optimiza-
tion of multilayered anti-reflection coatings. Two objectives are minimized:

392 7 Applications

reflection and thickness. The authors adopt fitness sharing, a penalty func-
tion to handle the constraints of the problem, and binary encoding (with
Gray codes). In their experiments, the authors consider a two-layer structure
of magnetic materials, and consider three cases: (1) single objective (reflectiv-
ity is the only objective), (2) linear aggregating function to combine the two
objectives, and (3) a multi-objective approach. Interestingly, the Pareto front
produced by the GA with Pareto ranking from the third case did not include
nor covered the solutions generated by the GAs adopted for the two previous
cases. This indicated a lack of spread of the MOEA adopted, which is an issue
that the authors recognized and that they aimed to address in their future
work.

Golovkin et al. [591, 590] use the NPGA to analyze experimental spectra
and monochromatic images (i.e., spectroscopic analysis). Two objectives are
minimized: the difference between the data and the fits for both emissivities
and spectra. The main goal of the work is to estimate plasma temperature and
density gradients by performing simultaneous analysis of experimental X-ray
spectra and monochromatic images. Binary representation, uniform crossover,
uniform mutation and equivalence class sharing are used. The authors also
allow competition between parents and offspring for selection purposes.

Parks [1245, 1244, 1246] uses a GA with Pareto ranking to design a pessur-
ized water reactor. Three objectives are considered: minimize the enrichment
of the fresh fuel, maximize the burn-up of the fuel to be discharged, and
minimize the ratio of the peak to average assembly power throughout a cy-
cle. A matrix representation (i.e., two-dimensional arrays) is used together
with the so-called heuristic tie-breaking crossover (HTBX) operator [1286].
An archive of nondominated solutions is kept and updated during the evo-
lutionary process, using reactivity distributions as a criterion to determine
similarity between two solutions. Also, nondominated individuals which are
sufficiently “dissimilar” to current solutions are retained to maintain diversity.

Hsiao et al. [711] use a GA with Pareto ranking for solving an electrical
impedance tomography problem. This is an inverse problem with nonlinear
equations that are normally solved using iterative optimization techniques.
The problem is normally handled as a single-objective optimization prob-
lem, but in this case, two objectives are considered, related to the errors
between the predicted solution and the measured data. The authors compare
the Davidon-Fletcher-Powell method [1292] a simple genetic algorithm, and a
Pareto genetic algorithm. The preliminary results obtained led the authors to
propose a hybrid approach in which the genetic algorithm is used as a global
optimizer, and the Davidon-Fletcher-Powell method acts as a local search pro-
cedure. This hybrid scheme is found to improve convergence and to be very
robust even when applied to complex test cases. The approach was successful
in reconstructing highly irregular internal objects and, by adding one extra
parameter, was also able to reconstruct an image without a priori knowledge of
the exact number of internal objects. The authors also determined that their
approach remains robust in the presence of noise for the test cases analyzed.

7.3 Scientific Applications 393

Kleeman and Lamont [867] modify the General Multiobjective Parallel
Genetic Algorithm (GENMOP), in order to incorporate a neighborhood search
process. This approach is called the “multi-tiered memetic MOEA” and is
adopted to design quantum cascade lasers. This approach incorporates domain
knowledge to change the temporal focus of the neighborhood search based on
the number of generations. The multi-tiered local search procedure is able to
focus the local search on specific critical variables of the quantum cascade
laser design at different stages in the optimization process. It is empirically
shown that this multi-tiered memetic MOEA is able to find excellent solutions
to the quantum cascade laser design problem.

7.3.4 Medicine

Table 7.12: Summary of medicine applications

Specific Applications Reference(s) Type of MOEA

Treatment planning [1743] GA with Pareto ranking
[1271] SPEA

Allocation in radiological
facilities

[239] GA with an aggregating func-
tion

[940] MOGA, the NPGA and SPEA
Prognostic models [1078] Diffusion genetic algorithm
Left ventricle 3D recon-
struction

[15] GA with Pareto ranking

Functional brain imaging [908] 4D-Miner
Breast cancer diagnosis [4] Pareto differential evolution

Yu [1743] uses a GA with Pareto ranking for treatment planning optimization
in radiation therapy. Two problems are considered: stereotactic radio surgery
optimization and prostate implant optimization. In the first problem, four
objectives are minimized: maximum dose in the target volume, average dose
above the mean in the anterior critical structure, average dose above the mean
in the posterior critical structure, and average dose above the mean in the
normal tissue shell. In the second problem, three objectives are considered:
maximize the minimum peripheral dose, minimize the dose to the urethra
and minimize the number of needles used. Binary representation and binary
tournament selection are used.

Petrovski and McCall [1271] use the Strength Pareto Evolutionary Algo-
rithm (SPEA [1782]) to optimize a chemotherapeutic treatment. Two objec-
tives are maximized: tumor eradication and the patient survival time. The
authors really optimize treatment schedules using a progressive articulation
of preferences. They use binary representation and a penalty function to in-
corporate the constraints of the problem.

Chen et al. [239] use a GA with a linear combination of weights to optimize
the worker allocation problem in radiological facilities. Two criteria are min-
imized: (a) the unsatisfaction of the soft constraints of the problem that are
violated, and (b) the number of times that a worker changes workplaces. The
second criterion is really applied only to break a tie between two individuals

394 7 Applications

with the same value for the first criterion. However, the approach is con-
sidered multiobjective because the first criterion is made up of a weighted
combination of up to five values, corresponding to the soft constraints of the
problem: (1) workplace dose constraints, (2) working time limits, (3) special
skill requirements, (4) limits due to extreme environments, and (5) industrial
safety requirements. Different priorities are assigned to each of them. The
authors use a two-dimensional matrix representation, proportional selection,
arithmetic crossover with a repair algorithm, elitism, and a mutation operator
with a mechanism that minimizes the number of times that workers change
workplaces (the second of the two criteria previously described). Results are
compared against goal programming and the simplex method based on the
numerical values of the two criteria previously mentioned. The GA outper-
formed the two other methods in terms of the quality of solutions found.

Lahanas et al. [940] and Milickovic et al. [1112] use MOGA [504], NPGA
[709] and SPEA [1782] for distribution problems in brachytherapy (a treat-
ment method for cancer). Two objectives are minimized: the variance of the
dose distribution of sampling points uniformly distributed on the Planning
Target Volume and the dose distribution variance inside the Planning Target
Volume. The authors use real-numbers representation with several crossover
operators (blend, geometric, two-point and arithmetic) and several muta-
tion operators (uniform, non-uniform, flip, swap and Gaussian). Results are
compared against an aggregating function with variable weights. This ag-
gregating function is optimized using three global optimization methods (the
Polak-Ribiere variant of the Fletcher-Reeves algorithm, the Broyden-Fletcher-
Goldfarb-Shanno quasi-Newton based algorithm and the Powell method). The
MOEAs adopted produce solutions that are either equivalent or better than
those generated by algorithms based on phenomenological methods used in
the majority of treatment planning systems. Within the MOEAs compared,
SPEA produced the best results in terms of closeness to PFtrue and uniform
distribution along the Pareto front.

Marvin et al. [1078] use a diffusion genetic algorithm to derive prognostic
models. Prognostic models are used to determine whether or not a certain
patient who suffers from an uncommon type of cancer has probabilities of
surviving. Three objectives are considered: maximize the correct number of
survival predictions, maximize the correct number of death predictions, and
minimize the number of factors used. The approach is particularly applied
to predict the survival of women with a certain type of cancer (high risk
gestational trophoblastic tumors). The diffusion GA [1382] is a GA whose
population is spatially distributed. Normally, each individual resides at its
own vertex on a square lattice. Selection is applied locally rather than glob-
ally: an individual chooses an immediate neighbor at random and mates with
it to produce an offspring. The offspring competes with its parent and the
fittest (in this case, the nondominated vector) wins. Since selection is local,
this algorithm is more efficient than traditional Pareto ranking. Also, diver-
sity naturally emerges from the topology adopted. Furthermore, the approach

7.3 Scientific Applications 395

naturally follows certain parallel processor architectures where its implemen-
tation is therefore straightforward. The authors use one-point crossover, an
ad-hoc uniform mutation operator, and integer representation.

Aguilar and Miranda [15] apply several MOEAs to the solution of the left
ventricle 3D reconstruction problem, which is related to the diagnosis of car-
diac patients. Six objectives are considered, related to slice fidelity, internal
energy of the reconstructed slice, and energy of similarity between the cur-
rent slice configuration and the adjacent slice previously reconstructed. Four
population-based approaches and Pareto ranking are compared to simulated
annealing and a GA using a linear combination of weights. The best results
in terms of spread and quality of results were provided by Pareto ranking, al-
though the population-based approaches were more efficient in terms of CPU
time required.

Krmicek and Sebag [908] use an algorithm called 4D-Miner for functional
brain imaging, where 3 objectives are maximized: length, area and alignment.
Due to the nature of the problem, a solution is considered important even if it
is dominated with respect to alignment and area, provided that it is located
in different regions of the brain. This led the authors to introduce diversity
as an additional objective, and called this restatement of the problem: multi-
modal multi-objective optimization (MoMOO). The 4D-Miner algorithm uses
a MOEA with Pareto archive-based selection similar to PESA [301], restricted
mating (only sufficiently close parents are allowed to mate), and a steady-state
scheme (at each step, a single individual is selected as parent, to generate
an offspring via crossover and mutation). A special procedure is adopted for
the initialization of the approach, so that relevant spatio-temporal patterns
are generated and the extremities of the Pareto front are excluded. Ad-hoc
crossover and mutation operators are adopted. This approach was validated
using real-world datasets collected from subjects observing a moving ball. Ex-
periments are conducted in two stages. In the first, certain active areas of the
brain are identified. In the second, such specific areas are attempted to be
related to specific cognitive processes. In this case, the authors experimented
with “catch” and “no-catch” activities (the subject sees a ball and decides
either to catch it or to let it go). At this stage, new objectives and constraints
are considered, in order to find discriminant spatio-temporal patterns. The
discriminant patterns extracted were found to be satisfactory by the neuro-
scientists to which they were presented.

Abbass [4] use an evolutionary artificial neural network approach based on
the Pareto Differential Evolution (PDE) algorithm [7] augmented with local
search, for the prediction of breast cancer. Two objectives are minimized: er-
ror and number of hidden units. The author adopts multi-layer perceptrons,
which are evolved using the PDE algorithm, such that the training and num-
ber of hidden units of the network are simultaneously determined. The author
uses a memetic version of the PDE algorithm [3], because a local search pro-
cedure is coupled to the approach. The algorithm is called Memetic Pareto
Artificial Neural Network (MPANN), and is validated using the Wisconsin

396 7 Applications

dataset from the UCI Machine Learning Repository [1184]. Results are com-
pared with respect to those reported by Fogel et al. [495] and by the same
author using an artificial neural network with the backpropagation algorithm
[2]. The author reports that MPANN presents a slightly better performance
than the two other approaches with respect to which it was compared, but
with a much lower standard deviation and a much lower computational cost.

7.3.5 Ecology

Table 7.13: Summary of ecology applications

Specific Applications Reference(s) Type of MOEA

Assessment of ecological
models

[1356, 1357] GA with an aggregating func-
tion and a GA with Pareto
ranking

Fitting of ecological
process models

[894] NSGA [1509]

Reynolds [1356, 1357] use an evolutionary multiobjective optimization tech-
nique to assess ecological process models. The approach consists of an evo-
lutionary algorithm that uses a fitness function that incorporates both the
number of objectives of the problem and membership in the Pareto optimal
set. The initial population of the algorithm consists of a Pareto optimal set
generated from a preliminary search process, augmented with some random
solutions intended to preserve diversity. The approach is applied to the assess-
ment of the canopy competition model WHORL [1505]. Binary interval error
measures are selected for each objective, based on data from a permanent
plot. Ten objectives are considered: mortality, stand height frequency distri-
bution, median live tree height, number of live whorls, crown angle, crown
length ratio, suppressed tree growth rate, variability in suppressed tree height
increment rates, dominant tree slope and variability in dominant tree height
increment rates.

Komuro [894] uses a software called Pareto Evolve, which is based on the
use of the NSGA [1509], for fitting an ecological process model to a set of data.
Fourteen objectives are considered, two for each day of the week. Each objec-
tive corresponds to a difference between measured and simulated data. Due to
the high number of objectives adopted, the author had to add a series of mech-
anisms to the NSGA. Namely, the author adopted an elitist strategy by which
an individual is retained if it satisfies one of four possible conditions, which
include different forms of weak dominance. Also, the number of nondominated
solutions was restricted to one half of the population size (this was evidently
necessary given the high number of objectives which rapidly increased the
number of nondominated solutions in the population) and the other half of
the population was generated by breeding. The author also proposed the use
of dynamic crossover and mutation rates as a way to improve the efficiency of
the search. An interesting outcome of this study was that the model (rather

7.3 Scientific Applications 397

than the selection criteria adopted by the author) was found to have deficien-
cies. The author proposed a revised version of the model which reduces the
bias of the original model, but can not decrease the error produced. The au-
thor then concludes that more biological information is required in the model
in order to improve its accuracy.

7.3.6 Computer Science and Computer Engineering

Table 7.14: Summary of computer science and computer engineering applications

Specific Applications Reference(s) Type of MOEA

Coordination of agents [205, 206, 529] GA with an aggregating func-
tion

Exploration of software im-
plementations for DSP al-
gorithms

[1779] SPEA

Computer-generated ani-
mation

[606] Genetic programming with an
aggregating function

[1481] Interactive genetic algorithm
with a Pareto optimal selec-
tion strategy

Machine learning [924, 920, 916, 921, 922] Pareto converging genetic al-
gorithm

[1556, 1555] GA with Pareto optimal selec-
tion

[1440] VEGA
[1738] Genetic programming with

Pareto selection
[156] Genetic programming with

Pareto ranking
[124] GA with Pareto ranking and

an aggregating function
[332] GA with an aggregating func-

tion
Image processing [130, 19] GA with an aggregating func-

tion
[899] Hybrid of a genetic algorithm

and a multilayer backpropaga-
tion neural network

[21, 20, 22] MOGA
Facial modeling and detec-
tion

[694] GA with an aggregating func-
tion

[1642] GA with Fuzzy-Pareto-
Dominance

Handwritten word recogni-
tion

[1130] NSGA

Simulation [134, 135] GA with different aggregating
functions

Object partition and allo-
cation

[250] NPGA

Games [254] GA with an aggregating func-
tion

Sorting networks [1408] GA with an aggregating func-
tion

Traveling salesperson prob-
lem

[777, 784] GA with an aggregating func-
tion and local search

Genetic programming [436] Tournament selection based
on Pareto dominance

[140] SPEA2
[349] Find only and complete un-

dominated sets

398 7 Applications

Table 7.14: (continued)

Specific Applications Reference(s) Type of MOEA

Automatic programming [950, 951, 952] Genetic programming with
Pareto-based tournament se-
lection

Data mining [678] SPEA2
Natural language process-
ing

[55] aggregating function, NSGA,
MOGA [504] and NSGA-II

Bioinformatics [194] Indicator-based Selection
Method (IBEA)

[1747] Multi-Objective Scatter
Search (MOSS), SPEA and
the (µ + λ) MOEA

Cardon et al. [205, 206] and Galinho et al. [529] use a GA with a linear combi-
nation of weights to coordinate micro and meta-agents adopted to optimize the
Gantt diagram of a job shop scheduling problem. They use as many objectives
as jobs are being considered (up to 500 are considered in their experiments).
The authors also experiment with the ε-constraint method coupled with a
GA. They use a multi-agent system that simulates the behavior of each entity
(a job) that collaborates to accomplish actions on the Gantt diagram so as to
resolve a given economic function. Each agent has a fitness based on its im-
pact on the Gantt diagram. The authors use binary representation with Gray
coding, Gaussian mutation, and uniform crossover (using a toroidal chain of
bits to represent strings prior to recombination).

Zitzler et al. [1779] use the Strength Pareto Evolutionary Algorithm
(SPEA [1782]) to explore trade-offs of software implementations for DSP al-
gorithms (SPEA is really used in a scheduling problem). Three objectives are
minimized: program memory requirements (code size), data memory require-
ments, and execution time. Given a software library for a target processor
(Programmable Digital Signal Processor, or PDSP for short), and a dataflow-
based block diagram specification of a DSP application in terms of this library,
the authors compute Pareto optimal solutions, trading-off the three objectives
previously mentioned. The authors use a mixed representation (characters, in-
tegers and binary numbers), and a mixture of operators: order-based uniform
crossover with scramble sublist mutation [339] for the characters, and one-
point crossover and uniform mutation for the rest of the string. The proposed
approach is tested on several commercial PDSPs for which it produced rea-
sonable trade-offs among the three objectives considered.

Gritz and Hahn [606] use genetic programming and a linear combination
of weights to derive control programs for articulated figure motion. Two main
objectives are considered: achievement of the desired motion sequence, and
style points. These style points are handled as a penalty or a reward depend-
ing on the characteristics of the motion sequence (e.g., hitting an obstacle is
penalized, while performing the action quickly is rewarded). The approach is
applied to the animation of a lamp and a humanoid figure. In both cases, the
main goal is the distance between base center and a desired goal at the end
of the time allotment. Style points are a weighted sum of four things (i.e., five

7.3 Scientific Applications 399

objectives are considered): bonus for completing the motion early, penalty for
excess movement after the goal is met, penalty for hitting obstacles, and bonus
for ending with joints at neutral angles. The authors use one-point crossover
and a reproduction operator, but do not use mutation.

Shibuya et al. [1481] use the Interactive Genetic Algorithm (IGA) [1553]
with a Pareto Optimal Selection Strategy (POSS) [1738] to generate anima-
tion of human-like motion (the motion produced when passing a small object
from one hand to another). Both a 16-link mechanism and a 4-link mech-
anism are used to model the upper half part of the human body and its
two hands. Four objectives are minimized: change of the joint torques, joint
torques, acceleration of the handled object, and completion time of the mo-
tion. Real-numbers representation, unimodal normal distribution crossover,
roulette wheel selection and a penalty function (to incorporate the constraints
of the problem) are adopted. Genotypic clustering is used to search local
Pareto optimal sets in parallel. The user has to participate interactively, since
a certain degree of subjectivity is involved in the decision-making process.
Results compared well against the use of the simple IGA and an interactive
simplex method.

Kumar and Rockett [920, 916, 921, 922, 924] use the Pareto Converging Ge-
netic Algorithm (PCGA) [923] to partition the pattern space into hyperspheres
for subsequent mapping onto a hierarchical neural network for subspace learn-
ing. Seven objectives are considered: minimize the number of hyperspheres,
minimize the learning complexity, maximize the regularity of the decision sur-
face, maximize the fraction of included patterns of each class, minimize the
maximum fraction of included patterns in a single hypersphere, minimize the
overlap of partitions, and minimize the surface area. The authors use real-
numbers representation, variable-length chromosomes, one-point crossover,
and Gaussian mutation. Results are compared against clustering algorithms
using some benchmark problems. The PCGA was found to be superior to K-
means clustering because it does not rely on a similarity measure.

Tamaki et al. [1556, 1555] use a GA with Pareto optimal selection to solve
a decision tree induction problem. Two objectives are minimized: the accu-
racy (error rate of classification) and the simplicity (the number of leaves) of
the decision tree. The authors use S-expressions in LISP, subtree exchange
crossover and uniform mutation. Results are compared against feature subset
selection [35] (FSS), ID3, and OPT [147]. The GA was found to be better
than the other techniques in terms of the number of elements of the Pareto
optimal set found.

Schaffer and Grefenstette [1440] use VEGA for machine learning in a pat-
tern classification domain. The approach is applied to the classification of
muscle activity patterns for several human gait classes (normal and abnor-
mal). Schaffer extends a GA-based machine learning system called LS-1 [1499]
to handle several objectives. Five objectives are considered (one for each gait
class used). The use of VEGA allows to overcome the limitations of the scalar
critic used to evaluate the learning task of each production system encoded by

400 7 Applications

the GA. These limitations are related to complementary knowledge (i.e., con-
flicting objectives) from different structures that are being forced to compete.
A simple GA can not be applied in this case and therefore the motivation to
use a multiobjective approach.

In similar work, Yoshida et al. [1738] use GP with Pareto selection to gen-
erate decision trees. The approach is called Pareto Optimal and Amalgamated
Induction for Decision Trees (PARADE), and it considers two objectives: ac-
curacy (minimize error rate), and simplicity (minimize the number of leaves of
the decision tree). Selection is applied to the population made of the offspring
and mutated individuals after applying crossover and mutation to the origi-
nal population. S-expressions in LISP are used to encode the decision trees.
The authors use subtree exchange crossover and uniform mutation. Results
are compared to combinational approaches such as ID3, FSS, and OPT. GP
with Pareto selection was able to generate a larger number of elements of the
Pareto optimal set and in less time than the other approaches.

Bot [156] uses genetic programming with Pareto ranking to induce optimal
linear classification trees. Two objectives are minimized: the number of errors
and the number of nodes in the tree. The author also experiments with a
domination-based fitness sharing scheme, which is found to perform better or
equally well than Pareto ranking. The author uses tournament selection, a
combination of phenotypic and genotypic sharing, strong typing and elitism.
The approach is compared to several decision tree classification algorithms
(OC1 [1160], C5.0 [1310] and M5 [519]) on a set of classification benchmarks in
machine learning. The proposed approach performed as well or better than the
classification algorithms against which it was compared in two of the examples,
but it performed worse in the another one. Also, genetic programming was
found to be slower than the other approaches.

Bernadó i Mansilla and Garrell i Guiu [124] use several evolutionary mul-
tiobjective optimization approaches to develop optimal set of rules for clas-
sifier systems. Two objectives are considered: maximize accuracy and gener-
ality of each rule. The approaches used are two versions of Pareto ranking,
a population-ranking method, and an aggregating function. Several types of
crowding are used to maintain diversity. Several metrics are adopted to evalu-
ate the performance of each approach: coverage, accuracy, size of the solution
set, learning speed and optimal population characteristics. The approach is
applied to the Wisconsin breast cancer database. Results are competitive with
those obtained using state-of-the-art classifier systems.

Dasgupta and González [332] use a GA with a linear combination of
weights to extract comprehensible linguistic rules. Three objectives are con-
sidered: maximize the sensitivity, maximize the specificity, and minimize the
length of the chromosome. The authors adopt a linear representation of tree
structures, restricted crossover, uniform mutation, gene elimination and gene
addition. The approach produces rules with an accuracy comparable to the
results of other techniques using public-domain data sets such as IRIS [758],
VOTE [501] and WINE [753].

7.3 Scientific Applications 401

Aguirre et al. [19] use a GA with an aggregation function to solve the image
halftoning problem. Two objectives are maximized: the gray level resolution
of an image and its spatial resolution. Several weights are defined to specify
search directions that are explored in parallel. The idea is to split an image
into several segments and apply a GA to each of these segments. Each GA
locates elements that are locally Pareto optimal. To enforce global Pareto
optimality, two error functions are applied globally (i.e., to all the GAs) and
those nondominated individuals with lowest values for both error functions are
chosen. The authors use a GA with two genetic operators with complementary
roles applied in parallel (self-reproduction with mutation and crossover and
mutation), extinctive selection (i.e., individuals with lower fitness are given
a zero survival probability), and an adaptive mutation probability that goes
from high to low values based on the contribution of self-reproduction with
mutation to the performance of the algorithm. This type of GA, called GA-
SRM, has been found useful (in terms of reducing computational costs) in
the same sort of application (i.e., halftoning), considered as a single-objective
optimization problem. The approach is compared against different types of
GAs (single- and multiobjective). The GA-SRM was able to simultaneously
generate several high-quality images at a lower computational cost.

Bhanu and Lee [130] use a GA with a linear combination of weights to solve
adaptive image segmentation problems. Five objectives are considered: edge-
border coincidence, boundary consistency, pixel classification, object overlap,
and object contrast. The authors use a specialized crossover operator, and
binary representation. The population used by the GA is taken from a train-
ing database. An elitism scheme is used to replace the least fit elements of
this training database over time. The GA in this case operates only on the
parameters of the problem.

Köppen and Rudlof [899] use a hybrid between an evolutionary algorithm
and a multilayer backpropagation neural network to solve a texture filtering
problem. The evolutionary algorithm (a GA) is used to balance the weights
of the neural network. The approach uses as many output neurons as objec-
tives has the problem. Each of these neurons determines its error value for
its corresponding objective independently. During each network cycle, a sin-
gle objective is randomly selected by each hidden neuron (this is similar to
the lexicographic method, discussed on Section 1.7.1 from Chapter 1). The
update of weights and the genetic operators applied (a trasduction operator
and Gaussian mutation) are performed on the basis of the objective selected
by each hidden neuron. Two objectives are considered, related to minimizing
the differences between an image produced by the algorithm and a goal image
given by the user. Results are compared against the use of a weighted sum
approach. The proposed algorithm produced solutions of a higher quality than
the weighted sum approach.

Aherne et al. [21, 20, 22] use MOGA to optimize the selection of parameters
for an object recognition scheme: the pairwise geometric histogram paradigm.
Three objectives are considered: minimize repeatability, minimize the area of

402 7 Applications

the histograms, and maximize histogram consistency across different examples
of a given object subject to variable segmentation/fragmentation. The popu-
lation used by MOGA consists of several subpopulations (which are randomly
generated during the first generation) each of which is stored as an array of
individuals. The authors adopt a simple selection scheme in which a newly
generated subpopulation replaces the old one only if it is fitter. Different sub-
populations are allowed to breed. Mutation consists of creating (randomly) a
new subpopulation with a best-replacement policy (each individual of the new
subpopulation is compared against the individuals of the old subpopulation,
and replaces them only if they are fitter).

Ho and Huang [694] use a genetic algorithm with a linear aggregating func-
tion for facial modeling from an uncalibrated face image. The authors adopt
a flexible generic parameterized facial model (FGPFM), which can be easily
modified using the facial features as parameters to construct an accurate spe-
cific 3D facial model from only a photograph of an individual. The authors
adopted the so-called “Intelligent Genetic Algorithm” IGA [695], (which they
had previously proposed) to tackle this problem. The main innovation of the
IGA is that it uses orthogonal arrays and factor analysis (taken from quality
control) to improve the crossover operator (the new operator is called “intelli-
gent crossover”). The problem of reconstructing a 3D facial model (e.g., from
a photograph) is transformed into the problem of how to acquire 3D control
points that are sufficiently accurate as to provide the desired model. This gives
raise to a large parameter optimization problem that is solved using the IGA
previously indicated. Four objectives are minimized: the projection function,
the symmetry function, the depth value function and the model ratio function.
The main aims were that: (a) the projection of the facial model from some
viewpoint must coincide with the features in the given face image, and (b) the
facial model must adhere to the generic knowledge of human faces accepted
by the human perception. The chromosomic strings adopted consist of integer
values and the search proceeds in stages, in an approach called coarse-to-fine,
where “coarse” refers to global searches and “fine” refers to local searches.
The proposed approach was found to be robust in the presence of different
poses of a human face (although the weights of the linear aggregating function
had to be tuned by hand in some cases) and outperformed other GA-based
approaches.

Verschae et al. [1642] use a standard genetic algorithm with Fuzzy-Pareto-
Dominance [900] to improve a face detection system. Rather than just being
a concept, Fuzzy-Pareto-Dominance is considered a metaheuristic by its au-
thors. As such, this approach makes single-objective optimization algorithms
capable of handling multiple objectives by introducing ranking values of the
fitness objective vectors. Roughly, the idea is to fuzzify the Pareto dominance
relation such that we can express relationships of the form “A is being domi-
nated by B in a degree µ”. These degrees are then used to rank a set of data
which in this case are the fitness values of the individuals in the population of
a genetic algorithm. Three objectives are minimized: false positive rate (rela-

7.3 Scientific Applications 403

tive number of non-faces that the system has wrongly output a positive face
detection), false negative rate (relative number of faces the system did not
detect as such) and number of evaluated features (number of features that
were taken into account for the face detection decision). The goal of this work
was to optimize a face detection system based on a boosted cascade archi-
tecture. This system uses a grid to avoid classifying every possible window of
the image in this cascade architecture. By finding appropriate thresholds for
this grid, the processing time of the system can be reduced, by preserving low
error rates. The approach was validated using images taken from a standard
face detection benchmark dataset. The authors optimized 22 decision vari-
ables which were encoded as integers using a precision of 8 bits. The results
indicated that the multi-objective evolutionary algorithm was able to improve
the processing speed of the system by reducing the number of features to be
considered. The approach also improved the false positive rates.

Morita et al. [1130] propose a methodology for feature selection in unsu-
pervised learning which is applied to handwritten word recognition tasks. The
approach is based on the Nondominated Sorting Genetic Algorithm (NSGA)
[1509]. The goal of this work was to find a set of nondominated solutions that
contained the more discriminant features and the more pertinent number of
clusters. The two objectives to be minimized are: the number of features and
a validity index that measures the quality of clusters. A standard K-Means
algorithm was then applied to form the given number of clusters based on
the selected features and the number of selected clusters. After performing
two experiments on synthetic data sets, the authors adopted a word classifier
used in some of their previous work [1129]. In their study, a word image was
segmented into graphemes, each of which consisted of a correctly segmented,
under-segmented, or an over-segmented character. Then, two feature sets were
extracted from the sequence of graphemes to feed the classifiers. In order to
allow a better assessment of their results, the authors considered only one
feature set based on a mixture of segmentation primitives and concavity and
contour features. The methodology of the authors consisted of applying the
NSGA to obtain a set of nondominated solutions. Then, the incorporation
of user’s preferences was necessary as to choose only one solution from the
set produced. The authors decided to train each nondominated solution ob-
tained. Then they used each classifier in the system and chose the solution
that supplied the best word recognition result on the validation set proposed.
The results were compared with respect to the use of the traditional methodol-
ogy previously adopted by the authors for this problem. The authors reported
that the use of an evolutionary multiobjective optimization approach kept the
recognition rates at the same level as the traditional strategy while reducing
the time required for training the discrete Hidden Markov Models adopted.
This was achieved because the approach reduced the number of features (from
34 to 29) and the number of clusters (from 80 to 36) with respect to the use
of a traditional technique.

404 7 Applications

Bingul et al. [134, 135] use a GA with different aggregating functions to
determine force allocations for war simulation. Such allocations are based on
the capabilities of the threat forces, the conditions of the war and the capabil-
ities of the friendly forces. All of these are simulated using a software system
developed for the Air Force Studies and Analyses Agency called THUNDER.
Four objectives are considered: minimize the territory that the friendly forces
side losses, minimize the friendly forces side aircraft lost, maximize the num-
ber of enemy forces side strategic targets killed, and maximize the number of
enemy forces side armor killed. Three fitness assignment schemes are adopted.
One, is a conventional aggregating approach in which each of the objectives is
squared and all of them are added together. The second approach raises each
objective at a different power, aiming to prioritize the objectives as when us-
ing the lexicographic method. The third approach is a target vector approach
in which the differences between the values achieved for the objectives and
certain target values are minimized.

Choi and Wu [250] use the NPGA [709] for the partitioning and allocation
of objects in heterogeneous distributed environments. Three objectives are min-
imized: network communication cost, loss of concurrency and load imbalance.
The authors use binary representation, one-point crossover, fitness sharing,
and tournament size of seven (for the NPGA) in their experiments.

Chow [254] uses a GA with a linear combination of weights to search
three-colored 10×10 NCR boards. The author uses a GA with a hybrid selec-
tion scheme (3

4 of the population is selected using tournament selection and
the rest using roulette wheel), two-point crossover, uniform mutation, and a
two-dimensional integer representation. Four objectives are considered: the
number of red, white, and blue chromatic rectangles8 from a 10 × 10 chess-
board, and a distribution factor for the three colors previously mentioned.

Ryan [1408] uses a steady state (variable-length) GA and a linear combi-
nation of weights to solve K−sorting network problems. Two objectives are
considered: efficiency and length of the solution generated. To avoid prema-
ture convergence, the author uses a method of disassortative mating called
the “Pigmy Algorithm”. In this scheme, two populations are maintained, each
with its corresponding fitness function. The first population is called “Civil
Servants” and it uses its performance (efficiency in this case) as its fitness.
The second population is called “Pygmies”, and is composed of individuals
that can not qualify for the first population. Individuals in this second popu-
lation are evaluated using length as a second criterion in their fitness function.
Recombination is applied considering that each of these two populations repre-
sents a gender (i.e., breeding is allowed only between individuals from different
populations). This aims to produce individuals that have a good balance of
efficiency and length in their encoded solutions. The same approach is also
used with genetic programming.

8 A chromatic rectangle is a rectangle whose four corners are of the same color.

7.3 Scientific Applications 405

Jaszkiewicz [777] uses a GA with local search and a linear combination
of weights to solve multiple objective symmetric traveling salesperson prob-
lems. Two and three objectives related to costs are solved. Instances with
50 and 100 cities are considered. The author uses permutation encoding, dis-
tance preserving crossover [520], and a local search algorithm that operates
in two phases (in the first phase, arcs common to both parents are not con-
sidered, and in the second, all arcs are considered). No mutation operator is
used. The approach, called RD-MOGLS (Random Directions Multiple Objec-
tive Genetic Local Search) is compared to Ishibuchi and Murata’s MOGLS
[751], and against a version of MOGLS based on Multiple Objective Simulated
Annealing (MOSA) [1617]. In related work, Jaszkiewicz [776], compares his
approach to MOGA [504]. The estimation of the expected value of a weighted
Tchebycheff utility function over a set of normalized weight vectors is used
as a quality measure to evaluate performance of the approaches [653]. RD-
MOGLS performs considerably better than the other approaches with respect
to the metric adopted.

Ekárt and Németh [436] use a tournament selection scheme based on non-
dominance (similar to the NPGA) to control code growth in genetic program-
ming. Two objectives are minimized: standardized fitness and program size.
The approach is tested on the Boolean multiplexer problem and on the sym-
bolic regression problem. Both program size and processing time are reduced
by this approach with respect to the solutions generated by a conventional
GP implementation.

Bleuler et al. [140] use SPEA2 to control code size and reduce bloating
in genetic programming. Two objectives are considered: functionality of the
program and code size. Preference incorporation is required in order to apply
SPEA2 to this domain. SPEA2 uses a close-grained fitness assignment strategy
and an adjustable elitism scheme [1775]. SPEA2 compared well with respect to
standard GP, Constant Parsimony Pressure and Adaptive Parsimony Pressure
in several even-parity problems.

de Jong et al. [349] use multiobjective optimization techniques to reduce
bloat and promote diversity in genetic programming. Three objectives are con-
sidered: maximize fitness, minimize tree size and maximize diversity. The
approach, called “Find Only and Complete Undominated Sets” (FOCUS),
consists of using a stricter version of Pareto dominance to select an individ-
ual for recombination.9 Diversity is maintained by considering it as another
objective (i.e., those individuals located at a certain distance from the oth-
ers are preferred). Only nondominated vectors are kept at each generation,
and duplicates are eliminated from the population by mutating them. The
approach is tested on three instances of the n-parity problem. FOCUS was
found to require a lower computational effort and to produce more compact

9 The definition of Pareto dominance is modified in order to get a better spread of
the solutions generated.

406 7 Applications

solutions than both basic genetic programming and another version that uses
automatically defined functions.

Langdon [950, 951, 952] uses genetic programming with Pareto-based tour-
nament selection to evolve primitives implementing a FIFO queue. Six objec-
tives are used: number of tests passed by each of the operations and the
number of memory cells used. The author uses an encoding in which each
individual is composed of six trees, each of which implements a trial solution
to one of five operations that forms the FIFO queue program. An additional
tree can be called from any tree. To reduce premature convergence, the pop-
ulation is treated as a toroidal grid in which each grid point contains a single
individual. When a new individual is created, its parents are selected from
the same deme where it resides the replaced individual.

Hetland and Saetrom [678] use SPEA2 [1775] for rule mining in time se-
ries databases. A few aspects of SPEA2 are modified for this application. For
example, only individuals having different objective values are selected in the
initial archive filling procedure in order to avoid premature convergence. Thus,
if two or more individuals have the same values in objective function space,
only one of them is randomly selected to be added to the external archive.
Since a tree-encoding is adopted, this is really a multi-objective genetic pro-
gramming scheme. Three objectives were considered: the confidence of a rule,
its J-measure [1501], which identifies surprising rules, and rule simplicity. The
authors compare their results with respect to a single-objective version of the
algorithm in which only the J-measure is optimized. The MOEA adopted was
able to generate rules different from those produced by the single-objective
algorithm, and the authors argued that it provided the user a choice of several
different rules for further study and evaluation.

Araujo [55] uses several MOEAs for performing simultaneously statisti-
cal parsing and tagging. Parsing and tagging are two very important tasks
in Natural Language Processing. Parsing refers to searching for the correct
combination of grammatical rules from among those compatible with a given
sentence. Tagging refers to labeling each word in a sentence with its lexical
category and, applying disambiguation criteria to identify its appropriate lex-
ical class. Two objectives are considered in this case: find the best match of
grammar rules and the best combination of lexical categories for the words in
a sentence. The author compares several approaches: (1) an aggregating func-
tion, (2) MOGA [504], (3) NSGA [1509] and (4) NSGA-II [374]. The author
uses genetic programming, because the individuals considered are parses of
segments of a sentence (i.e., they are trees obtained from applying a proba-
bilistic context-free grammar to a sequence of words of a sentence). Because
of the specific application, the initial population is generated in such a way
that it consists of individuals that are leave trees formed only by a lexical cat-
egory of the word (a different individual is generated for each lexical category
of the word). A specialized crossover operator is also adopted by the author.
In the comparative study, the author observes that all the MOEAs outper-
form a classical best-first chart parsing algorithm. Two interesting outcomes

7.4 Industrial Applications 407

of the study are that MOGA outperformed the other approaches regarding
precision, and that the NSGA-II was the MOEA with the largest execution
time.

Calonder et al. [194] use the Indicator-Based Selection Method [1774] for
the identification of gene modules on the basis of different types of biological
data (e.g., gene expression and protein-protein interaction data). In this prob-
lem, the aim is to measure distances between genes and data sets, and such
distances are the objectives, because it is normally the case that if a gene is
close to one data set it is not close on the others. The authors analyze three
different types of biological data: (1) gene expression, (2) protein-protein in-
teraction and (3) metabolic pathway data. They adopt binary encoding with
uniform crossover and a repair mechanism for satisfying the constraints of
the problem. Additionally, they also incorporate a flip-bit mutation operator
and experiment with a local search mechanism, in order to analyze if it helps
to improve the performance of the algorithm. Results are compared with re-
spect to a Tchebycheff scalarization approach with multiple independent runs.
The authors also analyze the different trade-offs resulting from different data
type combinations, and they compare the outcomes with those produced by
a clustering algorithm (k-means). The MOEA adopted is found to be advan-
tageous with respect to the co-clustering techniques traditionally adopted in
this problem (which are based on aggregating functions that combine distance
measures on the different data types into one distance measure).

Romero Zaliz et al. [1747] use their own version of multi-objective scat-
ter search (MOSS) to identify interesting qualitative features in biological se-
quences. The authors adopt a generalized clustering methodology, where the
features being sought correspond to the solutions of a multi-objective prob-
lem. In this problem, some of the objectives correspond to the degree of re-
semblance between features and prototypical structures considered interesting
by database users. Other objectives include feature distance and, even perfor-
mance criteria in some cases. The authors apply a method called Generalized
Analysis of Promoter (GAP) for identifying one of the most important factors
involved in the gene regulation problem in bacteria: the RNA polymerase mo-
tif. Because of the way in which the problem is modeled (using fuzzy logic),
three objectives are considered, each corresponding to one of the degrees of
matching to the fuzzy models adopted. The algorithm proposed was able to
outperform Consensus/Patser [677], which is a typical DNA sequence analy-
sis method, and also outperforms both SPEA [1782] and the (µ + λ) MOEA
[1427].

7.4 Industrial Applications

After engineering, industrial applications are the most popular. Industrial
applications are subdivided in four areas: design and manufacture, schedul-
ing, management and grouping & packing. From these sub-areas, design and

408 7 Applications

manufacture is the most popular, followed by scheduling. The less common
sub-discipline is grouping and packing with only five application reviewed.

7.4.1 Design and Manufacture

Table 7.15: Summary of design and manufacture applications

Specific Applications Reference(s) Type of MOEA

Process planning [1651, 1081, 1650] Hybrid of VEGA and Pareto
ranking

[607] GA with Pareto ranking
[1613, 1125] GA with an aggregating func-

tion
[1468] GA with Pareto ranking
[1347, 1346] Grouping genetic algo-

rithm hybridized with
PROMETHEE

[734] Pareto stratum-niche cubicle
GA

[236] Generalized multi-objective
evolutionary algorithm

VLSI [409] GA and satisfiability classes
[971, 972] GA with Pareto ranking
[454, 411] GA with an aggregating func-

tion
Cellular manufacturing [395, 394] MOGA, Pareto ranking and a

GA with an aggregating func-
tion

[1273] NPGA
Machine design [1215] GA with an aggregating func-

tion
[1116] NSGA
[503, 512] MOGA
[1089] GA with Pareto ranking
[260, 268] GA with a weighted min-max

approach
[1438, 1146] (µ, λ)-ES with SPEA
[1595] modified NSGA

Cutting problems [1649]
SPEA and DPGA [929]

[1587] NSGA-II with tree encoding
Process plants design [1109] NSGA-II
Car design [524] GA with Osyczka and

Kundu’s approach [1225]
[718] NSGA-II [374]

Robust systems design [701] a modified version of SPEA
Enterprise planning [1721] a discrete version of multi-

objective differential evolution

Viennet et al. [1650, 1651] use a hybrid between a population-based approach
(such as VEGA [1440]) and Pareto ranking to optimize the working conditions
of a press used to make animal food. In this approach, separate populations
are used to optimize each of the objectives. Then, all these populations are
combined using a selection scheme that relies on the concept of Pareto domi-
nance. Three objectives are minimized: moisture, friability, and energetic con-
sumption. Diploid chromosomes and multi-crossover are used. Constraints are
handled through a death penalty approach (i.e., infeasible solutions are dis-
carded and new strings are created to replace them). Massebeuf et al. [1081]

7.4 Industrial Applications 409

extend this approach by incorporating a decision support system to automate
the decision making process.

Groppetti and Muscia [607] use a GA with Pareto ranking to generate
and select optimal assembly sequences and plans with reference to the life-
cycle design and redesign of complex mechanical products. Their approach
is tested with the design of an automotive steering box. Six objectives are
considered: minimize assembly cost, minimize assembly cycle-time, maximize
product reliability, minimize maintenance costs, maximize product flexibility,
and minimize redesign and/or modification flexibility. A remarkable charac-
teristic of this problem is its high dimensionality (the authors mention the use
of 224 decision variables). Real-numbers representation and roulette wheel se-
lection are adopted.

Moon et al. [1125] use a GA with a linear combination of weights in con-
junction with Pareto selection to solve a flexible process sequencing problem.
Two objectives are minimized: the total processing and transportation time for
producing the part mix and the workstation load variation between machines.
The authors use an ordinal representation, a special exchange crossover oper-
ator and a uniform mutation operator adapted to handle a higher cardinality
representation. Tzeng and Kuo [1613] use a GA with an aggregating func-
tion based on fuzzy logic to produce new car sampling tests. Three objectives
are considered: minimize the sampling and decision making cost, minimize
the bad-qualified product of cars manufactured, and ensure a high represen-
tativeness of the samples. The authors use binary representation, one-point
crossover, proportional selection, and uniform mutation.

Sette et al. [1468] use a neural network and a GA with Pareto ranking
to optimize a production process in the textile industry. Two objectives are
considered: tenacity and elongation. The production process function is im-
plemented through a backpropagation neural network. The GA is then used
to optimize the backpropagation function. The authors use binary represen-
tation, roulette wheel selection, one-point crossover, uniform mutation, and
fitness sharing. Results are compared to some experimental results generated
by the same authors. The proposed approach was able to generate solutions
that were better than those previously reported for this problem.

Rekiek et al. [1347, 1346] use the Grouping Genetic Algorithm (GGA)
[463] hybridized with an outranking multicriteria decision method called
PROMETHEE [168] to solve the hybrid assembly line balancing problem. Four
objectives are considered: keep the processing time of all workstations from
exceeding one cycle time, minimize the total price of the resources allocated
to the workstations, maximize reliability on each workstation, and reduce con-
gestion of workstations. Each solution is ranked using PROMETHEE (based
on the preferences expressed by the user) and the GGA evaluates them using
this rank as if it was a single-objective optimization problem.

Hyun et al. [734] use the Pareto stratum-niche cubicle GA (PS-NC GA) to
solve sequencing problems in mixed model assembly lines. Three objectives are
considered: total utility work, the difference between the ratio of production

410 7 Applications

and that of demand to all models, and setup cost. The approach proposed
(PS-NC GA) is a combination of Pareto ranking and the NPGA [709]. In this
approach, two concepts are used to assign fitness to each individual: Pareto
optimality (main criterion) and sparseness (secondary criterion). Niche cu-
bicles are constructed for each individual in the population. A niche cubicle
(of an individual) is defined as a rectangular region whose center is the in-
dividual. Nondominated vectors that are located at less populated cubicles,
are assigned higher fitness values. The authors use string representation, im-
mediate successor relation crossover (ISRX) [859], and inversion. Results are
compared to VEGA [1440], Pareto ranking, and the NPGA [709], using as
metrics the number of nondominated vectors found, and a ratio that checks
for nondominance between the solutions produced by each pair of methods
in turn. The PS-NC GA exhibited the best performance with respect to both
metrics in all the examples presented.

Chen and Ho [236] use the generalized multi-objective evolutionary algo-
rithm (GMOEA) [693] for process planning in flexible manufacturing systems.
Four objectives are minimized: total flow time, deviations of machine work-
load, the greatest machine workload, and the tool costs. The GMOEA uses
elitism, a special crossover operator (called “intelligent crossover”), integer
representation, and a ranking procedure that assigns fitness to an individ-
ual based on the number of individuals it dominates and on the number of
individuals by which it is dominated. A highlight of the GMOEA is that it
does not use fitness sharing or niching to maintain diversity (an elite clearing
mechanism is used instead). The GMOEA outperformed SPEA [1782] with
respect to the metric called coverage of two set [1782], and in terms of conver-
gence speed and accuracy (i.e., closeness to PFtrue) within the same number
of fitness function evaluations.

Drechsler et al. [409] use a GA with an approach based on Satisfiability
Classes (a ranking procedure is applied based on these satisfiability classes) to
minimize Binary Decision Diagrams, which is the state-of-the-art data struc-
ture in VLSI CAD. Two objectives are minimized: the number of nodes of
the Ordered Binary Decision Diagram (OBDD) and the execution time of the
newly generated heuristic. The approach consists of defining a relation “favor”
whose definition is similar to “dominance” in multiobjective optimization, but
not equivalent (mathematically speaking, the relation “favor” is not a partial
order, because it is not a transitive relation). The model adopted by the
authors has several advantages: it is efficient (computationally speaking), it
does not require scaling, it supports constraint-handling and preferences from
the decision maker in a natural way, and it dynamically adapts to changes
during the evolutionary process. However, it also has certain disadvantages.
For example, it tends to produce less solutions than the use of Pareto domi-
nance, and it considers only goals or priorities that cannot be relative to each
other. A multi-valued encoding is used to represent a sequence of basic opti-
mization modules. Tournament selection is adopted and results are compared
against the NSGA [1509]. The GA proposed was considered superior to the

7.4 Industrial Applications 411

NSGA because it produced results of a higher quality and performed ranking
of finer granularity. The approach proposed also required less computational
time than the NSGA.

In a previous version of their work, the authors use a linear combination of
weights [411]. In related work, Drechsler et al. [410] compare their approach
against the use of an aggregating function and Pareto ranking in the same
problem of heuristic learning discussed in [409]. In this case, the proposed
approach showed considerably faster convergence times, but not always im-
proved the quality of the solutions produced with respect to the two other
techniques considered. Up to seven objective functions are considered in this
work.

Lee and Esbensen [971] use a GA with Pareto ranking for fuzzy system
design. The GA is used to identify relevant input variables, to partition the
search space and to identify the rule output parameters of a fuzzy system.
The approach is illustrated with the control of a robot arm in which two ob-
jectives are minimized: the training error and the number of rules in the fuzzy
system. The approach is compared to neurofuzzy learning. In an extension of
the system, Lee and Esbensen [972] propose to use a fuzzy system to monitor
and control the parameters of the multiobjective GA used. This approach is
applied in an integrated circuit placement problem in which three objectives
are minimized: the layout area, the deviation of the aspect ratio of the layout
from a user-defined target value, and the maximum estimated time it may
take for some signal in the circuit to propagate from one memory element to
another. The non-generational GA introduced has an inverse Polish notation
in the phenotype, uses linear ranking selection and special crossover and mu-
tation operators that preserve feasibility of the solutions at all times. Results
for the integrated circuit placement problem are compared to the use of ran-
dom walk and a GA with parameters defined beforehand and kept constant
throughout the search process. The GA was found to provide better offline
performance and lower standard deviations than random walk.

Esbensen and Kuhn [454] use a GA with a linear combination of weights
to solve a building block placement problem. Four objectives are considered:
estimate of the maximum path delay, layout area, routing congestion, and
aspect ratio deviation with respect to a certain target. Results are compared
to the use of a random walk algorithm using a quality measure related to
the aggregating function adopted to perform selection. Preference relations
are used to discard infeasible solutions. The GA consistently outperformed
random walk in the examples tried using the metric proposed by the authors.

Dimopoulos and Zalzala [395, 394] use MOGA [504], Pareto ranking and
an aggregating function in a cellular manufacturing optimization problem. Cel-
lular manufacturing divides a plant in a certain number of cells, each of which
contains machines that process similar types of products. Two objectives are
considered: maximize the total number of batches processed per year and min-
imize the overall cost. The approach is tested with the work load projections
of an existing pilot plant facility at the factory of a pharmaceutical company.

412 7 Applications

Integer representation and special genetic operators are used. The three tech-
niques used are compared against each other. MOGA produced competitive
(but not necessarily better) results than the other approaches in terms of
efficiency and number of alternative solutions found.

Pierreval and Plaquin [1273] use the NPGA [709] for manufacturing cell
formation problems. Two objectives are considered: minimize the total in-
tercell traffic and maximize the homogeneity of workload distribution. The
approach is tested on a knife factory cell formation problem. The authors use
integer representation, and ad-hoc recombination and mutation operators, and
fitness sharing (applied on objective function space).

Osman et al. [1215] use a GA with a linear combination of weights to design
vehicle water-pumps. Three objectives are minimized: error of exit pressure,
error of exit flow, and input power. Both real-numbers and binary (with and
without Gray coding) representation are tried, combined with a single popu-
lation and a multipopulation scheme. The authors indicate that the type of
encoding adopted does not affect the results in a significant way. However, the
use of several subpopulations reduces the computational time with respect to
a single population scheme.

Mitra et al. [1116] use the NSGA to optimize an industrial nylon six semi-
batch reactor. Two objectives are minimized: total reaction time and the con-
centration of an undesirable cyclic dimer in the product. Binary representation
and stochastic remainder selection are used. Results are compared to those
produced by another multiobjective optimization approach used before with a
less precise model of the polymer reactor. The NSGA was found to be superior
to the other approach in terms of the quality and number of Pareto optimal
solutions found.

Fonseca and Fleming [503, 512] use MOGA [504] to optimize the low-
pressure spool speed governor of a Pegasus gas turbine engine. Seven objectives
are considered: minimize the maximum pole magnitude, maximize the gain
margin, maximize the phase margin, maintain the rise time taken by the
closed-loop system to reach and stay above 70% of the final output changed
demanded by a step-input, maintain the settling time taken by the closed-loop
system to stay within ±10% of the final output change demanded by the step-
input, maintain the maximum value reached by the output as a consequence
of a step input so that it does not exceed the final output change by more
than 10%, and minimize the output error. They use binary representation
with Gray coding, shuffle crossover [214], uniform mutation, and stochastic
universal sampling.

Meneghetti et al. [1089] use a GA with Pareto ranking to optimize a ductile
iron casting. Three objectives are considered: maximize the hardness of the
material in a particular portion of the cast, minimize the total casting weight
and minimize porosity. Integer representation and directional crossover (a
technique similar to the Nelder and Mead Simplex algorithm [1182]) are used.
An interesting aspect of this work is the use of a multiple criteria decision
making procedure: the Local UTility Approach (LUTA) [1464], which asks the

7.4 Industrial Applications 413

user to express preferences without justifying them. The algorithm constructs
an utility function consistent with the designer’s preferences.

Coello [260] and Coello Coello and Christiansen [268] use a GA with a
weighted min-max approach to formulate machining recommendations under
multiple machining criteria. Four objectives are considered: minimize surface
roughness, maximize surface integrity, maximize tool life and maximize metal
removal rate. Machinability tests on 390 die cast aluminum cut with VC-3
carbide cutting tools are used as a basis to test the approach. Both binary
and integer representation are used, together with deterministic tournament
selection. Results are compared against MOGA [504], VEGA [1440], NPGA
[709], NSGA [1509], Hajela and Lin’s weighted min-max technique, two Monte
Carlo methods, the global criterion method, a conventional weighted min-max
technique, a pure weighting method, a normalized weighting method, and a
GA with a linear combination of objectives. Using as a metric the closeness
to the ideal vector, the proposed approach produced better results than any
of the other techniques.

Sbalzarini et al. [1438] and Müller et al. [1146] apply a (µ, λ) evolution
strategy with SPEA [1782] to a fluidic microchannel design problem. Two
objectives are minimized: the final skewness of the flow inside the channel
and the total deformation of the channel contour. The results produced are
qualitatively equivalent to those generated by gradient-based search methods.
However, the computational costs of the evolution strategy are lower. The
operators used are: intermediate recombination, elitism, and the Covariance
Matrix Adaptation method (employed to adapt online the step sizes of the
evolution strategy).

Toivanen et al. [1595] use a modified version of the NSGA [1509] to design
the shape of a slice channel in a paper machine headbox. Two objectives are
considered: basis weight should be even and the wood fibers of paper should
mainly be oriented to the machine direction across the width of the whole
paper machine. The authors use a modified version of the NSGA in which they
adopt tournament selection and the so-called tournament slot sharing [1047] to
maintain the diversity of the population. They also incorporate floating point
encoding, heuristic crossover and a special mutation operator that promotes
small mutations. From the 166 nondominated solutions that appeared in the
final population of the genetic algorithm six were chosen to be presented
to the decision maker. An interesting aspect of this application is its high
computational cost (a single run required 24 hrs in a workstation).

Vidyakiran et al. [1649] test both the Strength Pareto Evolutionary Al-
gorithm (SPEA) [1782] and the Distance-based Pareto Genetic Algorithm
(DPGA) [929] in a three-dimensional guillotine cutting problem. Two objec-
tives are minimized: the amount of scrap that results after cutting the final
cuboids from the master cuboid block and the number of times the whole sys-
tem needs to be turned around in order to execute a cut. From the analysis
of results, the authors concluded that SPEA provided better solutions, but
DPGA had a faster convergence.

414 7 Applications

Tiwari and Chakraborti [1587] use the NSGA-II [374] with a tree encoding
to solve the two-dimensional cutting problem. The problem consists of opti-
mizing the layout of rectangular parts placed on a rectangular sheet to cut out
several parts. Two objectives are minimized: the length of the mother sheet
required and the total number of cuts required to obtain all the parts from
the mother sheet. The authors study two types of cutting problems: (a) those
in which guillotine cutting (cutting from edge to edge) is required (i.e., when
using metal sheets), and (b) those in which guillotine cutting is not essential
(i.e., when using paper or rubber). An interesting aspect of this work is the use
of inverse Polish notation to encode the genes of the NSGA-II. Such encoding
is adopted to represent trees corresponding to the possible arrangements of
parts in the mother sheet. Results are not compared with respect to any other
approach.

Mierswa [1109] use the NSGA-II [374] for 3D design of process plants. This
problem is really similar to the placement problem of VLSI design, where one
tries to minimize the total space needed by a set of rectangular components
(this is also known as the facility layout problem). Five objectives are con-
sidered: maximize the fulfillment of the absolute position constraints,10 max-
imize the fulfillment of the relative position constraints (relative constraints
correlate two movable components without defining the absolute positions
of the components), maximize the distribution of layer contents, minimize
the connection costs, and minimize the overlap degree. The author adopts
real-numbers encoding, uniform crossover, tournament selection, a special ini-
tialization procedure to produce plants whose components may overlap, and
three different types of mutations to allow movable components to drift, to
rotate or to change to a location in another layer. An interesting aspect of
this work is that the author uses fuzzy constraints to define possible conclu-
sions of weighted design rules. The rule weight defines the importance of such
rule. The complete set of rules is stored in XML format so that the rulebase
can be preprocessed and indexed for any specific application at hand. Three
approaches are compared: (a) a two-membered evolution strategy (one father
that generates a single offspring with respect to which it is compared) using
a linear aggregating function, (b) a multi-membered evolution strategy using
a linear aggregating function and (c) the NSGA-II using Pareto dominance.
The experiments are performed on the data of a real chemical plant that has
been already built. The best results produced by the multi-membered evolu-
tion strategy were very similar to those produced by the NSGA-II. However,
the author favored the use of the NSGA-II due to the diversity of designs that
it produced, which are a useful aid for the plant designer. All the objectives
were normalized and maximized. Results indicated that the evolutionary ap-
proaches were able to improve the values of all the objectives of the original
plant.

10 Absolute constraints refer to a movable component and one of the general prop-
erties of the plant such as forbidden zones.

7.4 Industrial Applications 415

Fujita et al. [524] use a GA with Osyczka and Kundu’s approach [1225]
to design a four-cylinder gasoline engine. Four objectives are maximized:
miles covered by a certain amount of fuel, acceleration performance, starting
response, and follow-up response. Real numbers representation with direct
crossover and selection based on similarity between a pair of design solutions
are used. Results are compared to successive quadratic programming (SQP)
with a weighted sum of objectives. SQP fell into local optimal and could not
find the Pareto front, whereas the GA-based approach was able to generate
it.

Hu et al. [718] use the NSGA-II [374] to optimize the fuel economy and
emissions of a hybrid electric vehicle. Four objectives are minimized: fuel con-
sumption, Hydro Carbons emissions, Carbon Monoxyde emissions, and Ni-
trous Oxides emissions. The decision variables of the model include the sizes
of the energy suppliers (engine, motor and battery stack) as well as the en-
ergy control strategy parameters. The simulations are run within a software
platform called ADVISOR (ADvanced VehIcle SimulatOR), which was devel-
oped by the US National Renewable Energy Laboratory. The authors report
significant improvements with respect to the design of the baseline vehicle,
achieving a reduction in the fuel consumption of about 31% while reducing
each of the emissions over 10%.

Hollingsworth [701] adopts a methodology called Requirements Controlled
Design in which the requirements are treated as a set of behaviors that control
the system, instead of treating them as variables that define the response of
the system. Then, a modified version of SPEA [1782] (called Modified Strength
Pareto Evolutionary Algorithm or MSPEA) is adopted for finding the tech-
nology boundaries of a system in the requirements hyperspace. The author
is interested in boundary discovery, in which the goal is to devise a method
that is capable of identifying points that lie on or very near to the technol-
ogy boundary. Also, it is desirable to find the widest possible variety of these
boundary points. This problem has several interesting aspects when consid-
ered as a multiobjective optimization task. First, it is desirable to check dom-
inance not only in objective function space (as normally done), but also in
decision variable space. However, the definition of dominance needs a further
refinement in order to give preference to points that create a closed surface in
the requirements hyperspace. A second requirement is that external functions
have to be operated in a reverse manner. Thus, the evolutionary algorithm
must be able to record the values of those requirements that are code outputs,
and input those subsystem and component properties that are code inputs. Fi-
nally, it is necessary to allow a significant number of the state variables to vary
as needed. This raised the need to modify SPEA such that it could handle a
set of variables that are not directly optimized by the evolutionary algorithm.
The proposed approach was validated using an evaluation of the U.S. Army’s
Light Helicopter Experimental (LHX) program. MSPEA was found to be a
good search engine, being able to find points on the technology limit induced
Pareto front for single or multiple systems. MSPEA exhibited good runtime

416 7 Applications

scaling properties with respect to the maximum number of generations and
the sizes of both its internal and its external population. Also, MSPEA was
found to be a better choice than a grid search method, except for the fact
that it was harder to visualize its results.

Xue et al. [1721], use a discrete version of multi-objective differential evolu-
tion (D-MODE) for enterprise planning. Two objectives are minimized: cycle
time and cost. The authors study the design, supplier, manufacturing plan-
ning problem using design and supplier data from a real commercial electronic
circuit board product, and data from commercial manufacturing facilities. D-
MODE adopts the selection and diversity mechanisms of the NSGA-II [374].
Results are compared with respect to a revised version of the original NSGA
[1509], which uses an external archive to store the nondominated results ob-
tained during the evolutionary process. However, no comparisons are provided
with respect to the NSGA-II or other approaches representative of the state-
of-the-art in the area.

7.4.2 Scheduling

Table 7.16: Summary of scheduling applications

Specific Applications Reference(s) Type of MOEA

Production [1471, 1470, 1472, 1473] MOGA
[1425] GA with Pareto ranking and

the NPGA
[1556, 1555] GA with the Pareto reserva-

tion strategy
Flowshop [1550, 1551] GA with the Pareto partition-

ing method
[750, 751, 1149] GA with an aggregating func-

tion
[173] NSGA
[1554] NSGA, MOGA, VEGA,

weighted average ranking and
an elitist version of the NSGA

[1506] GA with an aggregating func-
tion

[1151] Cellular multi-objective ge-
netic local search

[312] MOGA coupled with an artifi-
cial immune system

[100] Adaptive genetic algorithm
and a memetic algorithm

Job shop [76]
[1557] GA with the Pareto reserva-

tion strategy
[991] GA with an aggregating func-

tion
Machine [210] Multi-population genetic al-

gorithm and a GA with lo-
cal search and an aggregating
function

[258] Multi-population genetic algo-
rithm

Resource [1545] GA with an aggregating func-
tion

7.4 Industrial Applications 417

Table 7.16: (continued)

Specific Applications Reference(s) Type of MOEA

[304] NSGA-II [374], SPEA2 [1775],
and a GA with an aggregating
function

Time-tabling [1231] GA with a target vector ap-
proach

Personnel [769] GA with Pareto ranking
[440] GA with lexicographic order-

ing
[680, 994] GA with Pareto ranking
[1739] GA with an aggregating func-

tion
Real-time [1123] GA with an aggregating func-

tion
Multi-component [865] GENMOP with variable

length chromosome

Shaw and Fleming [1471, 1470] use MOGA [504] to solve a ready meals pro-
duction scheduling problem in which 45 products have to be assigned to 13
product lines, given certain constraints and aiming to minimize three objec-
tives: number of jobs rejected, the lateness of any order and the variation in
staff shift lengths. Permutation (integer) representation and special genetic
operators are used. Results are compared to a GA with a linear combination
of weights and to a parallel GA in which each objective is evolved using a sep-
arate population. The last approach provided the largest variety of trade-offs
and was therefore considered as the most appropriate for this application. In
further work, Shaw and Fleming [1472, 1473] incorporate pre-expressed user
preferences to automate the decision making process.

Santos and Pereira Correia [1425] use a GA with Pareto ranking and the
NPGA [709] on a problem of production scheduling and energy management
in industrial complexes (namely, kraft pulp and paper mill). Two objectives
are minimized: the total consumption of electrical energy and the production
rate change. They use several crossover (one-point, uniform, heuristic, and
arithmetic) and mutation (uniform, boundary, non-uniform and exchange)
operators. Stochastic universal sampling, fitness sharing and mating restric-
tions are used as well. To handle the constraints of the problem, they use a
method that guarantees the generation of feasible solutions. NPGA is used
with tournament sizes of 10% of the population size. A mixed floating point
and integer representation is used. Different choices of genetic operators and
selection techniques are tried and compared with each other. The two issues
compared are: convergence time (on each objective function), and population
diversity through generations. The best results were produced when fitness
sharing and mating restrictions were adopted.

Tamaki et al. [1556, 1555] use the Pareto reservation strategy to solve a
scheduling problem in a hot rolling process of a steel making factory. Three
objectives are minimized: a complexity index determined by the difference of
width, thickness and hardness between a pair of slabs pressed subsequently,
the total quantity of fuel required for heating all slabs at furnaces, and the
time required for heating all slabs. The scheduling problem is divided into two

418 7 Applications

sub-problems: determine the pressing order (an “ordering problem”) and as-
sign slabs to the furnaces (an “assignment problem”). The authors use parallel
selection, a local search method, multi-point crossover and a mixed encoding
that incorporates the variables for both sub-problems being solved.

Tagami and Kawabe [1550, 1551] use a GA with the Pareto partitioning
method to solve a flowshop scheduling problem. Two objectives are minimized:
makespan and lateness. They test their approach with simulations involving
20, 40 and 50 jobs assigned to 10 machines. The genetic algorithm proposed
uses a permutation-based representation (i.e., strings of integers representing
jobs), partially mapped crossover, reverse mutation and roulette wheel selec-
tion. They compare their results against MOGA [504], a single GA with shar-
ing, and the Iterative Improvement Method (IIM). The comparison of results
is only graphical and it indicates that the Pareto partitioning method pro-
duced solutions that were better distributed than those generated by MOGA.

Ishibuchi and Murata [750, 751] and Murata [1149] use a GA with a linear
combination of weights coupled with a local search strategy to solve flowshop
scheduling problems. Three objectives are minimized: makespan, maximum
tardiness and total flowtime. The approach consists of a GA with an aggre-
gating function in which the weights are randomly generated at the time of
performing recombination. These same weights are used as search directions
for a local search algorithm that is applied to all the offspring that consti-
tute the following generation, after undergoing crossover and mutation. The
local search procedure is bounded by a certain number of movements to avoid
an excessive computational cost. The authors use two-point crossover, shift
mutation, roulette wheel selection with linear scaling and elitism. Results are
compared against VEGA [1440] and the use of a single-objective GA. The
proposed approach outperformed VEGA and a single-objective GA in terms
of quality and spread of the solutions produced.

Brizuela et al. [173] use the NSGA to solve flowshop scheduling problems.
Three objectives are minimized: makespan, mean flow time and mean tar-
diness. Several crossover (order-based, precedence-based and two-point) and
mutation operators are used together with roulette wheel selection and elitism.
The focus of this research is to study the influence of the operators on the
generation of nondominated vectors. The result of the analysis was used to
design a high performance MOEA that outperformed (in terms of closeness
to PFtrue) the ENSGA proposed by Bagchi [76].

Talbi et al. [1554] perform a comparative study of approaches used to
solve flowshop scheduling problems. Several techniques are evaluated: an ag-
gregating function, the NSGA [1509], MOGA [504], VEGA [1440], Weighted
Average Ranking [121], and an elitist version of the NSGA. The authors also
experiment with different types of fitness sharing: phenotypic, genotypic, and
a combination of both. Finally, the effect of local search and parallelism is
also studied. Two objectives are minimized: makespan and total tardiness.
Results are compared based on the number of elements of the Pareto optimal
set produced and on the quality of the solutions generated. However, no clear

7.4 Industrial Applications 419

winner could be established, although elitism and local search were found to
be very useful to improve performance.

Sridhar and Rajendran [1506] use a GA with an aggregating function to
solve a scheduling problem in flowshop and flowline-based cellular manufac-
turing systems. Three objectives are minimized: makespan, total flowtime and
machine idletime. The authors use permutation encoding, partially mapped
crossover (PMX) [586], and a swap mutation operator that exchanges the
position of two jobs randomly selected along the chromosome. Two heuris-
tic procedures developed by other authors are used to minimize (separately)
makespan and flowtime. Two subpopulations are then created: one with the
best solutions in terms of makespan and another with the best in terms of
flowtime (this is similar to VEGA [1440]). The parents for the next genera-
tion are selected based on an aggregating function that considers the three
objectives indicated above. After applying crossover to the parents, their off-
spring compete against them using the same aggregating function as before.
The winners become the new generation of the GA to which mutation is ap-
plied. The proposed approach performed considerably better than a heuristic
proposed for this type of problem by Ho and Chang [690], against which the
approach was solely compared.

Murata et al. [1151] use a linear combination of weights and a cellular
multi-objective genetic local search (C-MOGLS) algorithm to solve flowshop
scheduling problems. Two objectives are minimized: makespan and total tar-
diness. The authors use a cellular structure in which every individual in the
population is assigned to a cell in a spatially structured space (the so-called
“cellular genetic algorithm” [1699]). They also adopt a procedure by which an
individual is relocated in a new cell at every generation based on its current
location in objective space. The authors use two-point crossover, shift muta-
tion, elitism, and permutation encoding. Results are compared to two previ-
ous MOEAs developed by the same authors [1150, 751] using four metrics:
the number of nondominated vectors found, a set quality measure proposed
by Esbensen and Kuh [454], the number of solutions that are not dominated
by other solution sets, and the maximum distance between two solutions in
objective space. The use of a cellular structure favored the generation of solu-
tions closer to PFtrue . The additional use of local search improved the quality
measure proposed by Esbensen and Kuh [455]. Finally, the use of immigration
favored the metric that evaluated maximum distance between two solutions
in objective space.

Cui et al. [312] use MOGA [504] coupled with an approach based on the
immune system to solve flowshop scheduling problems. Two objectives are
minimized: maximum makespan and maximum lateness. The artificial im-
mune system is used to maintain diversity in the population through the
measurement of similarities among the chromosomic strings and the applica-
tion of the concept of entropy. The authors use generational partially mapped
crossover, reverse mutation, and binary tournament selection with replace-
ment. The approach is compared to the use of MOGA with its original fitness

420 7 Applications

sharing scheme. The proposed approach was found to be more effective at
maintaining diversity and was able to produce better results than MOGA
with fitness sharing.

Basseur et al. [100] experiment with an Adaptive Genetic Algorithm and
a Memetic Algorithm to solve a multi-objective flowshop scheduling problem.
Two objectives are minimized: the makespan (total completion time) and the
total tardiness. The Adaptive Genetic Algorithm (AGA) adopted uses the
nondominated ranking of the NSGA [1509], but incorporates elitism, two-
point crossover, and an adaptive selection mechanism that allows to choose
from among 4 mutation operators: insertion, reciprocal exchange, random and
inversion operator. The probability of selecting a certain mutation operator
is modified based on its efficiency [98, 702]. They also use a combined fitness
sharing scheme in which sharing takes place in both decision variable and ob-
jective function space. The authors also experiment with a memetic algorithm
which adopts two-point crossover, insertion mutation and a population-based
local search mechanism. An exact method called two-phases method (TPM),
which is based on the branch & bound algorithm, is also adopted for small
instances of the problem. Then the authors experiment with different cooper-
ative approaches. First, they hybridize the AGA with the memetic algorithm.
After that, this hybrid approach is combined with the TPM. The idea is to
limit the size of the trees obtained by the two-phases method, so that the
approach can be used to solve large instances of the problem. The experimen-
tal study undertaken by the authors showed the benefits of using cooperative
schemes for solving multi-objective flowshop scheduling problems.

Bagchi [76] uses a variation of the NSGA [1509] for job shop scheduling.
The algorithm adopted is called ENSGA because it uses elitism.11 The EN-
SGA uses nondominated sorting, niche formation and fitness sharing as in
the NSGA. Selection, however, is done differently. The ENSGA uses a plus
selection strategy (parents compete against their children). Nondominated
sorting is done on the mixed population of parents and offspring. This selec-
tion strategy is called “elitism” by its author, since good parents are preserved
for several generations. Three objectives are minimized: makespan, mean flow
time and mean tardiness of jobs. A statistical comparison between the NSGA
and the ENSGA is also provided (using the Wilcoxon signed-rank test). Both
approaches are applied to a 49-job 15-machine problem. It was found that the
overall quality of the solutions produced by both approaches was the same.
However, the ENSGA was able to find more elements of the Pareto optimal
set using the same running times than the NSGA. Also, given a pre-specified
number of Pareto optimal solutions that the decision maker wished to achieve,
the ENSGA was able to find them faster than the NSGA.

Tamaki et al. [1557] use the Pareto reservation strategy to solve a job shop
scheduling problem with several jobs and several machines. Two objectives are

11 It is worth mentioning that the reviewed version of the NSGA, called NSGA-II,
uses elitism as well [374] (see Chapter 2).

7.4 Industrial Applications 421

minimized: the total flow time and the total earliness and tardiness. Within
each objective function, they use combinations of weights to deal with the
different machines and jobs available.

Liang and Lewis [991] use a GA with a linear combination of weights
to solve a job shop scheduling problem. Two objectives are minimized: mean
flow time and mean lateness. The authors use permutation encoding, partially
mapped crossover (PMX) [586], and mating restrictions (only the fittest indi-
viduals are allowed to mate).

Carlyle et al. [210] compare the performance of two GAs used to solve par-
allel machine scheduling problems. Two objectives are minimized: makespan
and total weighted tardiness. The authors use the GA proposed by Murata
et al. [1153], which incorporates an aggregating function, local search and
elitism. Results are compared against the Multi-Population Genetic Algo-
rithm (MPGA) of Chochran et al. [258], which combines an aggregating func-
tion with VEGA [1440]. An interesting aspect of this work is that the authors
propose a new metric called integrated convex preference measure, which is
used to compare the two algorithms previously mentioned. According to this
metric, the MPGA generates better sets of approximate solutions than Mu-
rata’s algorithm.

Cochran et al. [258] use a two-stage Multi-Population Genetic Algorithm
(MPGA) to solve parallel machine scheduling problems. Up to three objec-
tives are minimized: total weighted completion times, total weight tardiness,
and makespan. The approach proposed adopts a hybrid selection scheme in
which an aggregating function is used in the first stage, and a subpopula-
tion approach similar to VEGA [1440] is adopted in the second stage. The
aggregating function is a multiplication of the relative measure of each objec-
tive (i.e., the result of dividing each objective function value by the best value
found so far for that objective). In the second stage, the approach generates as
many subpopulations as objectives has the problem plus one. This additional
subpopulation uses the same aggregating function as before to combine all the
objectives; the other subpopulations optimize a single objective each (as in
VEGA). Each subpopulation is evolved separately and the genetic operators
(crossover and mutation) are applied only within each subpopulation (unlike
VEGA). They also use an elitist strategy in which the best solutions for each
separate objective and for the aggregating function are stored and then used
to replace the worst solutions of each subpopulation at the next generation.
The authors use permutation representation, proportional selection, one-point
crossover, and uniform mutation. The approach was found to be better than
the multiobjective genetic algorithm with local search proposed by Murata et
al. [1153], both in terms of closeness to PFtrue and in terms of the number of
elements of the Pareto optimal set found.

Syswerda and Palmucci [1545] use a GA with an aggregating function for a
resource scheduling application. The authors use a priority value for each task
to be scheduled and then add or subtract from it depending on the violations of
the constraints imposed on the problem. Weights are associated to this priority

422 7 Applications

value and to the constraint violations to produce a single fitness value for each
solution. The authors use permutation-based representation, position-based
crossover, swap mutation and domain knowledge to implement their steady
state GA.

Cowling et al. [304] compare several multi-objective evolutionary algo-
rithms on a workforce scheduling problem, which consists of assigning resources
with the appropriate skills to geographically dispersed task locations, while
satisfying certain time window constraints. Three objectives are considered:
maximize schedule priority, minimize travel to and from home locations, and
minimize the completion of tasks or the use of resources at inconvenient times.
The authors compare the results produced by the NSGA-II [374], SPEA2
[1775], and a GA with a linear aggregating function. The authors indicate
that both, the NSGA-II and SPEA2 find solutions which are within 2% of the
best solution found by the aggregating approach. However, such performance
is assessed using an aggregating function, as well. As expected, the NSGA-II
and SPEA2 produced much more diverse populations than the GA with an
aggregating function. The issue of choosing one solution from the Pareto opti-
mal set is addressed in this paper, and therefore the interest of the authors for
using aggregating functions in which the preferences are expressed a priori.

Paechter et al. [1231] use a GA with a weighted target vector approach
for time-tabling the classes of Napier University. Twelve objectives are con-
sidered (e.g., room changes, time restrictions, etc.). A permutation indirect
representation with a multi-point recombination and three mutation opera-
tors are adopted. Objectives are given a priority by the user. Local search
is used to deal with hard constraints and genetic operators to deal with soft
constraints.

Jan et al. [769] use a GA with Pareto ranking for the nurse scheduling
problem. Two objectives are considered: maximize the average of the fitness
of all nurses (defined in terms of three factors), and minimize the variance of
the fitness of all nurses. There are several constraints (e.g., human related
limitations, restrictions on individual nurses’ monthly schedule, etc.), and
also several preferences (from the nurses) have to be taken into consideration
when solving the problem. The authors use a cooperative genetic algorithm
(CGA), which is a population-less approach in which new individuals are cre-
ated through the application of an extended two-point crossover operator. The
CGA requires a special “escape” operator (consisting of an exchange of por-
tions of the chromosome between two individuals) to keep diversity. Results
are compared against a multi-agent approach based on the ant colony system.
The authors indicate that their approach produced schedules that satisfied
all the hard constraints unlike the multi-agent approach. Additionally, the
proposed approach was able to produce better schedules than the multi-agent
system and at a lower computational cost.

El Moudani et al. [440] use a GA with lexicographic ordering to solve the
nominal airline crew rostering problem. Two objectives are considered: the
airline operations cost, and the overall satisfaction degree of the staff. Cost is

7.4 Industrial Applications 423

considered as the main objective, and satisfaction as a secondary objective.
The approach consists of adopting a heuristic that aims to maximize the over-
all degree of satisfaction, regardless of the operations cost that these solutions
have. Then, the GA is used to generate new solutions whose cost is lower.
Through generations, lower crew satisfaction levels are being considered, aim-
ing to reach a compromise between the two objectives. The authors use integer
representation, roulette wheel selection, inversion and a specialized mutation
operator. GAs with different combinations of operators are compared against
the use of a greedy heuristic. Results indicated that the GA was able to
produce competitive results in all cases, but produced better results when a
combination of crossover, mutation and inversion was used.

Hilliard et al. [680] and Liepins et al. [994] use a GA with Pareto ranking
in a military airlift scheduling problem. Two objectives are minimized: the dis-
tance traveled and the lateness of any delayed forces. Constraints are handled
through a penalty function. Binary representation and proportional selection
are used in a parallelized GA. Results are compared to both VEGA [1440]
and a purely random search procedure. The Pareto GA found Pareto fronts
better or equal than those produced by the other approaches.

Yoshimura and Nakano [1739] use a GA with an aggregation function to
solve a telephone operator scheduling problem. Two objectives are minimized:
total operator shortage and total operator surplus. The authors use a steady
state GA with integer representation, uniform crossover, four types of muta-
tion, three types of fitness scaling, and a population reinitialization process
to avoid premature convergence.

Montana et al. [1123] use a GA with a linear combination of weights for
real-time scheduling of large-scale problems. Two examples are solved in this
paper. The first is a field service scheduling problem. Seven costs are mini-
mized in this case: missed target, travel, slack, return home, parts order, un-
scheduled and skills mismatch cost. Ordered-paired representation is used in
this case, together with a mixture of genetic operators (two types of crossover
and two types of mutation). Greedy optimization algorithms are used to keep
diversity in the population. The second problem concerns military land move
scheduling. Two objectives are minimized: staging cost and link overuse cost.
A string-based representation is adopted together with a mixture of genetic
operators similar to the one employed in the first problem. This second prob-
lem is used in a further paper by the same authors [1122], with the same
GA-based approach. In this other paper, the approach is applied to a real-
world problem (move all the equipment of the 1st brigade of the Army’s 3rd
Infantry Division from its home base of Fort Stewart to the port of Savannah).

Kleeman and Lamont [865] apply the General Multiobjective Parallel Ge-
netic Algorithm (GENMOP) to the multi-component maintenance scheduling
problem. This problem consists of a combination of the generic flow-shop and
job-shop (or open-shop) problems. Various real-world problems are discussed
that can be modeled using the proposed multi-component scheduling model.
With a variable length chromosome, a multi-component engine maintenance

424 7 Applications

scheduling problem is addressed. A list of engines is provided listing each
engine’s arrival time, due time, priority (weight), and mean time to repair
(MTTR) for all of its components. The two objectives are to minimize the
makespan and to keep MTTR values within a predetermined range for all en-
gines. GENMOP is a real-valued, parallel MOEA for constrained MOPs based
on GENOCOP [1103]. GENMOPs real-valued crossover and mutation opera-
tors along with a repair operator generated acceptable maintenance scheduling
results along PFknown .

7.4.3 Management

Table 7.17: Summary of management applications

Specific Applications Reference(s) Type of MOEA

Facility [176] GA with an aggregating func-
tion

[907] Evolution strategy with
Pareto selection

[1657] NSGA-II, PAES and the ε-
constraint method

Forest [415] MOGA with elitism and
NSGA-II

Distribution system [784] Multiple objective genetic lo-
cal search, Pareto ranking, hy-
brid of Pareto ranking and lo-
cal search and the multiple
start local search algorithm

Warehouse [1290] GA with a linear aggregating
function

Availability allocation to
repairable systems

[442] GA with a linear aggregating
function

Broekmeulen [176] uses a GA with a linear combination of weights to solve
a facility management problem in a distribution center for vegetables and
fruits. Two objectives are minimized: quality loss and capacity overflow. The
author proposes a hierarchical solution strategy divided in two decision levels:
cluster properties and product group assignment. In the first level, capacity
is allocated to the clusters, and conditions (e.g., temperature) in the different
clusters are to be determined. In the second level, a cluster is assigned to
every product group with respect to quality loss and capacity utilization. The
GA is used only at the first level. The second level is linearized and solved
with the simplex method. The author uses binary representation, two-point
crossover, uniform mutation, a selection operator based on a crowding model,
and elitism.

Krause and Nissen [907] use an evolution strategy with Pareto selection to
solve a facility layout problem. Two objectives are minimized: cost and con-
straint violation. The authors propose two approaches. The first is a (µ + λ)-
ES with Pareto selection (i.e., only the best µ individuals survive to form
the next generation based on Pareto dominance). The second is a (2, λ)-ES
with an external set containing the nondominated vectors found so far (any

7.4 Industrial Applications 425

offspring generated is compared against this set to determine its possible in-
clusion within it). The authors use permutation encoding and a swap mutation
operator. The first approach (Pareto selection) was found to be better than
the second.

Villegas et al. [1657] use three different algorithms to solve an uncapaci-
tated facility location problem. Two objectives are considered: minimize the to-
tal operating cost and maximize the sum of the demand of purchasing centers
attended by depots within the maximal covering distance (this is called “cov-
erage”). The model proposed by the authors represents the Colombian coffee
supply network, and they actually solve a real-world example provided by the
Colombian National Coffee-Growers Federation. The three algorithms imple-
mented are based, respectively, on: (1) the NSGA-II [374], PAES [886] and
a (3) mathematical programming technique (the ε-constraint method). The
authors perform a first series of experiments in which the NSGA-II and PAES
are compared using a randomly generated test instance. The dominated-space
metric [1781] is adopted for this first empirical study, as a way of quantita-
tively assessing the results obtained by each approach. The results indicated
that the NSGA-II was the clear winner. Then, the NSGA-II was compared
to the ε-constraint method. In this case, the results were mixed, since the
quality of the approximations obtained was practically the same (there was
a slight improvement from the mathematical programming technique, but
no higher than 2% in its best scenario). However, regarding CPU times, no
clear winner could be determined, although the authors admitted that the
ε-constraint method was highly variable regarding the CPU time that it re-
quired. Nevertheless, when solving a real-world instance of this problem, the
authors decided to adopt only the mathematical programming technique, with
which they identified unique tradeoff opportunities for the reconfiguration of
the Colombian coffee supply network.

Ducheyne et al. [415] compare MOGA [504] and the NSGA-II [363] in a
forest management problem. Two objectives are maximized: harvest volume
and the benefit that people obtain from the standing forest. They use binary
representation, uniform crossover, linear fitness scaling, uniform mutation and
elitism. MOGA, the NSGA-II and a random search algorithm are compared
using two metrics: size of the dominated space and coverage difference of two
sets. MOGA with elitism performed better than the NSGA-II with respect to
the two metrics adopted, and the random search strategy exhibited the lowest
overall performance.

Jaszkiewicz et al. [784] use several evolutionary multiobjective optimiza-
tion techniques to design a distribution system for a company. Three objectives
are minimized: the total annual distribution cost, the worst case riding time,
and the number of distribution centers. Several MOEAs are applied to this
problem: multiple objective genetic local search (MOGLS) [777], Ishibuchi
and Murata’s MOGLS [751], Pareto ranking [581], a hybrid of Pareto ranking
with local search (called Pareto GLS) and a multiple start local search algo-
rithm (MOMSLS). Two metrics are used: coverage [1782], and an estimation

426 7 Applications

of the expected value of the weighted Tchebycheff scalarizing function used to
generate the ideal point that guides the search of their MOGLS [777]. Their
results indicate that local search and mating restrictions play a very impor-
tant role in multiobjective combinatorial optimization and that their correct
use improves performance.

Poulos et al. [1290] use a GA with a linear aggregating function for multi-
objective warehouse management. Five objectives are considered: distance
from delivery point, distance from collection point, distance from picking loca-
tions, expiration date and seasonal demand. The authors adopt a permutation-
based encoding (using integers in the chromosomic string), restricted mating,
and a specialized crossover and mutation operators that preserve the proper-
ties of a valid permutation (i.e., that avoid the repetition of any integer in the
sequence) upon their application. A fuzzy rule is adopted to define the weights
to be adopted in the (normalized) aggregating function that the GA attempts
to optimize. The authors investigate the dependence of the diversity of the
Pareto optimal solutions obtained with respect to two things: (1) the weights
adopted and (2) the mutation levels adopted. Data from a real warehouse was
used to validate the proposed approach. The authors report improvements in
the aggregate cost of up to 80% with respect to the previously known solution
to the problem studied. The main drawback reported by the authors is the
presence of (apparently unnecessary) small displacements of some products,
which may be easily fixed with human intervention.

Elegbede and Adjallah [442] use a GA with a linear aggregating function to
optimize the availability and the cost of reparable parallel-series systems. Two
objectives are considered: maximize the availability and minimize the total
cost of the system. The constraints of the problem are relaxed and are handled
using an exterior penalty function. The authors adopt a matrix encoding,
tournament selection, one-point crossover, an ad-hoc mutation operator, and a
reinitialization process that the authors call immigration, by which 50% of the
population is replaced by random solutions when they have not changed after
a certain number of generations (the best half of the population is retained).
The authors also perform an empirical study in order to determine the most
appropriate parameters for their GA. The results obtained are claimed to
be promising by the authors, although no comparisons with respect to other
approaches are presented.

7.4.4 Grouping and Packing

Table 7.18: Summary of grouping and packing applications

Specific Applications Reference(s) Type of MOEA

Machine-component
grouping

[1641] Population-based GA

Truck packing [603] GA with an aggregating func-
tion

Object packing [743] GA with an aggregating func-
tion

7.4 Industrial Applications 427

Table 7.18: (continued)

Specific Applications Reference(s) Type of MOEA

Rectangular packing [1685, 1681] Neighborhood Cultivation Ge-
netic Algorithm (NCGA)

Venugopal and Narendan [1641] use a GA with a technique consisting of se-
lecting good trade-offs from two subpopulations (evolved separately and rep-
resenting an objective function each) to solve a machine-component grouping
problem. Two objectives are minimized: the volume of intercell moves and the
total within cell load variation. The approach used is population-based (as
VEGA [1440]), but in this case, each subpopulation is evolved separately and
the genetic operators are applied over one subpopulation at a time. Two sub-
populations are used, one for each objective function. A mechanism similar
to Pareto ranking is used to find the best compromises from the results gen-
erated from each subpopulation. Despite the fact that the authors claim that
their approach produces multiple solutions, a single solution is reported in the
paper. For the implementation of the GA, the authors use integer represen-
tation, one-point and two-point crossover, and uniform crossover. Diversity is
checked at each generation using a measure proposed by Grefenstette [599],
and mutation is used to enforce it whenever it drops below a certain threshold.
Only offspring better than their parents are included at each new generation.

Grignon et al. [603] use a GA with a linear combination of weights to solve
truck packing problems. Two objectives are considered: minimize the differ-
ences in the centers of gravity in X and Y for each box (to be moved into
a truck) with respect to some desired values, and find the optimum ordering
of the boxes as to minimize wasted space. The authors use integer represen-
tation, ranking selection, uniform mutation, one-point crossover (for the first
objective), and order-based crossover (for the second objective). A quadratic
penalty function is used to incorporate the constraints of the problem (i.e.,
all the boxes have to fit within the bounds of the trailer) into the fitness func-
tion. Results are compared using some benchmark problems available in the
literature. The GA proposed was found to be competitive and even able to
explore regions of search space not accessible to other heuristics traditionally
used to solve these packing problems.

Ikonen et al. [743] use a GA with a linear combination of weights for
packing three-dimensional non-convex objects having cavities and holes. Three
objectives are minimized: the sum of distances of parts from the global origin,
the amount of intersection between parts, and the amount of intersection
between parts and the built cylinder. A special representation in which a
chromosome is a list of three sublists of integers is used. This requires special
crossover and mutation operators (since each sublist contains permutations,
they experimented with several order-based crossover operators, deciding to
adopt PMX at the end).

Watanabe et al. [1685, 1681] use the Neighborhood Cultivation Genetic
Algorithm (NCGA) to solve rectangular packing problems. Rectangular packing

428 7 Applications

is a well-known discrete combinatorial optimization problem which has a num-
ber of applications in industry. In this case, the authors consider two objec-
tives: width and height of the packing area (rather than minimizing directly
the packing area, they minimize the aspect ratio of the packing area). The
authors adopt an ad-hoc encoding which consists of the sequence-pair of each
module and some orientation information. The authors adopt the Placement-
based Partially Exchanging Crossover (PPEX) operator [1162] and a bit flip
mutation which only acts on the bit corresponding to the orientation. The
NCGA sorts the population based on a single objective at each generation,
and adopts an external archive and a neighborhood crossover operator. Re-
sults indicate that the NCGA is able to outperform the NSGA-II and SPEA2.
In fact, when dealing with large instances of the problem, the NSGA-II and
SPEA2 tend to concentrate their solutions around the central part of the
Pareto front, while the NCGA is able to spread them along the Pareto front.

7.5 Miscellaneous Applications

Finally, a group of miscellaneous applications is considered. This group is
subdivided in two subgroups: finance and classification & prediction. From
these two sub-disciplines, classification & prediction is the most popular.

7.5.1 Finance

Table 7.19: Summary of finance applications

Specific Applications Reference(s) Type of MOEA

Investment portfolio opti-
mization

[1638] NSGA

[227, 1484] GA with an aggregating func-
tion

[433] Customized local search, sim-
ulated annealing, Tabu search
and a genetic algorithm; all of
them adopt an additive global
utility function

Financial time series [1406, 1787] NPGA
Stock ranking [1145] GA with an aggregating func-

tion
Bank loan management [1144] NSGA-II
Economic models [1061, 1062] GA coupled with a weighted

goal programming approach

Vedarajan et al. [1638] use the NSGA [1509] for investment portfolio optimiza-
tion. Two objectives are initially considered: maximize the expected return of
the portfolio and minimize its risk. Later on, another objective is added: min-
imize transaction costs. Binary representation and phenotypic sharing on the
parameter value space are used. Results are compared to the use of a GA with
a linear combination of weights and to the use of quadratic programming. The

7.5 Miscellaneous Applications 429

approach is applied to a portfolio consisting of five large capital stocks from
diverse industries, considering a period of five years. The NSGA and the GA
with an aggregating function produced similar results. Both GA-based tech-
niques were considered better than quadratic programming because of their
ability to generate several nondominated solutions in a single run.

Chang et al. [227] use a GA with an aggregating function to solve portfo-
lio optimization problems. Two objectives are considered: minimize the total
variance (risk) associated with the portfolio and ensure that the portfolio has
a certain expected return. Constraints related to the desired number of assets
in the portfolio are also considered. An interesting aspect of this application
is that the expected return of the portfolio has to be met exactly. The authors
use a steady state GA with binary tournament selection, uniform crossover
and a boundary mutation operator. The GA is compared against Tabu search
and simulated annealing using the same aggregating function.

Shoaf and Foster [1484] use a GA with a linear combination of weights
for portfolio selection based on the Markowitz model. Two objectives are con-
sidered: minimize portfolio variance and maximize the expected return of the
portfolio. The authors use binary representation, one-point crossover and uni-
form mutation. Results are compared against the use of a traditional approach
to select portfolios. The GA proposed outperformed the traditional method
in terms of the quality of the solutions produced.

Ehrgott et al. [433] propose a model for portfolio optimization which ex-
tends the Markowitz mean-variance model. The authors maximize five ob-
jectives (derived from a cooperation with Standard and Poor’s): 12-month
performance of an asset, 3-year performance of an asset, annual dividend of a
portfolio, Standard and Poor’s star ranking, and volatility. The authors also
allow the incorporation of the user’s preferences through the construction of
decision-maker specific utility functions and an additive global utility function.
Using this global utility function as the objective function to be optimized,
the authors perform a study in which they compare four approaches: (1) a
two phase local search algorithm, (2) simulated annealing, (3) Tabu search,
and (4) a genetic algorithm. The two phase local algorithm, simulated anneal-
ing and Tabu search, shared the same neighborhood structure. Results on a
fund database indicated that the genetic algorithm was the best performer,
followed by simulated annealing. In randomly generated instances, however,
the two phase local search algorithm had a better performance, followed by
the genetic algorithm.

Ruspini and Zwir [1406] & Zwir and Ruspini [1787] use the NPGA [709] for
automatic derivation of qualitative descriptions of complex objects. In particu-
lar, they apply their methodology to the identification of significant technical-
analysis patterns in financial time series. Two objectives are considered: qual-
ity of fit (measures the extent to which the time-series values correspond
to a financial uptrend, downtrend, or head-and-shoulders interval) and ex-
tent (measures, through a linear function, the length of the interval being

430 7 Applications

explained). The NPGA is really used to determine crisp intervals12 corre-
sponding to downtrends, uptrends and head-and-shoulders intervals. Niching
and tournament selection are used in this application.

Mullei and Beling [1145] use a GA with a linear combination of weights
to select rules for a classifier system used to rank stocks based on profitability.
Up to nine objectives are considered, related to conjunctive attribute rule
tests. The Pitt approach is used for the classifier system [581]. The authors
use binary representation, roulette wheel selection, one-point crossover and
uniform mutation. Results are compared against a technique related to the
synthesis of polynomial networks called STATNET. Results were inconclusive
since no technique was able to outperform the other in all cases.

Mukerjee et al. [1144] use the NSGA-II [374] to determine risk-return
trade-offs for a bank loan portfolio manager. Two objectives are considered:
maximize mean return on the portfolio, and minimize the variance on the
return. An interesting aspect of this work is that the authors compare the
performance of the NSGA-II with respect to the ε-constraint method (using a
simple genetic algorithm for the individual single-objective optimizations per-
formed by this method). Based on a simple graphical comparison, the authors
conclude that the two methods have a high degree of overlap.

Mardle et al. [1061, 1062] use a GA with a weighted goal programming
approach to optimize a fishery bioeconomic model. Four objectives are consid-
ered: maximize profit, maintain historic relative quota shares among countries,
maintain employment in the industry and minimize discards. GENOCOP
III [1100] is used for the evolutionary optimization process. Real-numbers
representation and arithmetic crossover are employed. The evolutionary ap-
proach is compared to the application of traditional goal programming (devel-
oped in GAMS (General Algebraic Modeling System) [177] and solved with
CONOPT13) in a model of the North Sea demersal fishery. The GA is con-
sidered competitive but not necessarily better than goal programming in this
application.

7.5.2 Classification and Prediction

Table 7.20: Summary of classification and prediction applications

Specific Applications Reference(s) Type of MOEA

Prediction problems [735] Genetic programming with an
aggregating function

[1758] Genetic programming with an
aggregating function

[856] Evolutionary local selection
algorithm

Feature selection [444] NPGA
[1088] Evolutionary local selection

algorithm

12 Fuzzy logic is used to describe the model.
13 See http://www.conopt.com/

7.5 Miscellaneous Applications 431

Table 7.20: (continued)

Specific Applications Reference(s) Type of MOEA

Pattern classification [752, 753, 1155] GA with an aggregating func-
tion

Partial classification [350, 351] NSGA-II
Data classification [446, 445] NPGA
Failure prediction [257] PAES
Intrusion detection [624] Multiobjective Artificial Im-

mune System

Iba et al. [735] use genetic programming and a linear aggregating function to
solve pattern recognition and time series prediction problems. Two objectives
are considered: tree coding length and exception coding length. The authors
use a minimum description length (MDL) principle [1363] to define fitness
functions that allow to control the growth of trees used by genetic program-
ming.

Zhang and Mühlenbein [1758] use genetic programming and a linear ag-
gregating function to solve two prediction problems: water pollution and far-
infrared laser data (a real-world time series prediction problem). Two objec-
tives are considered: fitting error and complexity of the programs produced
by the approach. The weights used by the aggregating function are adapted
during the evolutionary process. The trees used in this case are neural pro-
grams. The authors use a stochastic hillclimber to adapt the weights of each
neural network between generations of the evolutionary algorithm.

Kim et al. [856] use the Evolutionary Local Selection Algorithm (ELSA)
[1088] to search for promising subsets of features that are used to train an
artificial neural network that predicts customers patterns. Two objectives are
considered in this case: minimize complexity and maximize the hit rate of the
feature set selected. Results are compared to the use of principal component
analysis (PCA) followed by logistic regression. The hybrid of ELSA and the
neural network had a better performance than the PCA model.

Emmanouilidis et al. [444] use the NPGA [709] for feature selection with
applications in neurofuzzy modeling. Two objectives are considered: minimiza-
tion of the number of features and maximization of the modeling performance
(considered as the estimated misclassification rate). An additional term (the
cost function) is used to solve ties between individuals with the same mis-
classification rate. The authors use binary representation, polygamy (every
individual in the population has the chance to mate twice on average, at
each generation), elitism (i.e., they keep the nondominated solutions gener-
ated over time), variable population size, fitness sharing (on both genotypic
and subset size space), and a special crossover operator (called subset size
oriented common features crossover operator, or SSOCF, for short), which
preserves the common features of their parents (in previous work, the authors
use two-point crossover [446, 445]). The mutation rate is adapted over time
according to the progress observed (in terms of the ability of the GA to pro-
duce new nondominated solutions). In order to reduce the computational cost
associated with the use of the GA for feature subset evaluation, two methods

432 7 Applications

are adopted: probabilistic neural networks and multilayer perceptrons. Two
benchmark problems are used: a data set to classify good or bad implying
evidence of some type of structure in the ionosphere, and a data set to train
a network to discriminate between sonar signals bounced off a metal cylinder
and those bounced off a roughly cylindrical rock. In previous work, they ap-
ply the method to classification of cancer data [445], vibration analysis data
[445], fault diagnosis in rotating machinery [446], and energy consumption
prediction [446]. The approach is compared against sequential feature selec-
tion. The NPGA was found to perform better (in terms of computational
efficiency) than sequential feature selection.

Menczer et al. [1088] use the Evolutionary Local Selection Algorithm
(ELSA) to solve a feature selection problem in inductive learning. Two ob-
jectives are maximized: the accuracy of the classifier and its complexity (i.e.,
the number of features being used). ELSA uses a local selection scheme in
which fitness depends on the consumption of certain limited shared resources.
Results are compared to VEGA [1440] and NPGA [709] in terms of spread
and coverage of the Pareto front. ELSA was found to be superior to the other
approaches in both aspects.

Ishibuchi and Murata [752] use a GA with a linear combination of weights
to minimize the number of fuzzy rules for pattern classification problems. Two
objectives are considered: minimize the number of selected fuzzy if-then rules
(i.e., the fuzzy rule base), and maximize the number of correctly classified
patterns (i.e., classification performance). The weights are randomly specified
during selection and prior to crossover. Nondominated vectors are stored in
an external file for further use. Local search is used to improve performance.
The authors use binary representation, roulette wheel selection with linear
scaling, uniform crossover and uniform mutation.

In related work, Ishibuchi and Nakashima [753] and Murata et al. [1155]
use a GA with the same type of linear aggregating function to extract lin-
guistic classification knowledge from numerical data for pattern classification
problems. Three objectives are considered: maximize the number of correctly
classified training patterns, minimize the number of linguistic rules, and min-
imize the total number of antecedent conditions. The approach is a hybrid of
a Pittsburgh- and a Michigan-style genetic-based machine learning technique.
The first is used to represent the linguistic rules of the problem, and the sec-
ond is used as a form of mutation. The authors use variable-length strings
in this case. This same approach has also been used for linguistic function
approximation [755]. Three objectives are minimized in this case: number of
linguistic rules, their total length and the total squared error between inputs
and outputs. The same approach has also been used to solve pattern classifi-
cation problems [754]. Three objectives are considered in this case: minimize
number of features, minimize the number of instances, and maximize a per-
formance measure based on the classification results of a certain number of
instances. The authors use in this case binary representation and uniform mu-
tation (with a biased probability for certain chromosomic segments). The GA

7.5 Miscellaneous Applications 433

proposed was able to outperform some traditional classification techniques in
terms of the quality of the solutions produced.

Iglesia et al. [350, 351] use the NSGA-II [374] for partial classification
(the so-called nugget discovery task). Two objectives are maximized: confi-
dence and coverage. The authors use binary encoding (with Gray codes),
binary tournament selection and the crossover and mutation operators pro-
vided within the NSGA-II. The initial population, however, is created using
a special procedure that looks at the data to ensure that no rules with zero
coverage are produced (as happens when a randomly generated population
is adopted). In order to achieve this, a default rule is adopted (in this de-
fault rule, all limits are maximally spaced and all labels are included), and
the remainder of the population are just mutations of the default rule. This
was found to be effective by the authors. Results are compared with respect
to another approach developed by some of the same authors. This approach
is called ARAC [1359] (All Rules Algorithm Cc-optimal). The authors adopt
databases taken from the UCI repository [1184] in their comparative study.
The results indicate that the NSGA-II can find good sets of rules, being able
to match those of ARAC in some cases, and even to improve them in others.
At the end of the paper, the authors suggest the possibility of hybridizing
ARAC with the NSGA-II to produce a more powerful classifier.

Cochenour et al. [257] use the Pareto Archive Evolution Strategy (PAES)
[886] to design a radial basis function neural network that predicts the failures
in overhead distribution lines of power delivery systems. Two objectives are
minimized: network size and errors. The idea is to use the multi-objective
approach to generate several radial basis function networks of varying sizes.
Each of these networks is trained using historical data, and they are compared
among themselves, so that the best trade-off designs can be selected. An
interesting aspect of this work is that the authors adopt a crowding operator
similar to the one incorporated in the NSGA-II [374]. Mutation is an ad-hoc
operator which consists of invoking an orthogonal least squares procedure
which changes the size of the radial basis function networks. Results were
compared with respect to a fuzzy inference system and with respect to a
multi-layered perceptron trained with standard backpropagation. The multi-
objective evolutionary algorithm outperformed the two other approaches.

Haag [624] develops an innovative Artificial Immune System-inspired Mul-
tiobjective Evolutionary Algorithm as part of a distributed intrusion detection
system. This extended MOEA measures the vector of tradeoff solutions among
detectors with regard to two independent objectives: best classification fitness
and optimal hypervolume size. The antibody detectors promiscuously monitor
network traffic for exact and variant abnormal system events based on only the
detector’s own data structure and the application domain truth set, respond-
ing heuristically. The system structure integrates RNA transcription from the
REtrovirus ALGOrithm [424] (REALGO) into the evaluation operator and
the framework from the Multiobjective Immune System Algorithm (MISA)
[273] with an user friendly menu structure. As applied to the MIT-DARPA

434 7 Applications

1999 insider intrusion detection data set, the software engineered algorithm in
Java (jREMISA: the Java retrovirus-inspired MISA) correctly classifies nor-
mal and abnormal events at a high level which is directly attributed to a
detector affinity threshold found.

7.6 Future Applications

Despite the vast number of applications reported in the literature, there are
still several research areas that have been only scarcely explored or that have
not been approached using multi-objective evolutionary algorithms. The fol-
lowing are a few examples:

Finite Element Model Tuning: Structural models that use finite element
theory normally require to be adjusted or tuned, before they can accurately
simulate the real structure. This tuning process is a natural consequence of
the approximations used to model a real structure (through finite elements)
that cannot exactly duplicate a structural member’s physical characteristics
and boundary conditions. The finite element model can be improved in at
least two ways: by increasing the number of nodes or by adjusting the model’s
parameters. In the first case, the main drawback is that as the number of
nodes in the model is increased, the computational cost of the process also
increases. The second choice, however, is more appropriate for a multiobjective
optimization approach. One can select a few parameters of the model (i.e., the
decision variables) to be adjusted so that the model is forced to have a certain
desired set of performances (the objectives). DeVore et al. [382] proposes such
an approach and solves the resulting multiobjective optimization problem
using a variant of the ε-constraint technique. The approach is applied to the
finite element model of the stabilizer of the T-38 aircraft. Apparently, no
MOEAs have been applied to this domain.

Coordination of distributed agents: The coordination of distributed
agents frequently involves globally conflicting solutions to multiple (local)
objectives. Therefore, the use of the concept of Pareto optimality is quite ap-
propriate in this sort of application. An approach like this, based on tracking
Pareto optimality (using classical multiobjective optimization techniques), is
proposed by Petrie et al. [1269], but there are very few attempts of using
evolutionary techniques in this domain (see for example [206]). Distributed
agents also open other interesting possibilities for evolutionary multiobjective
optimization techniques, because there are many other applications where
such techniques would be quite useful. For example, negotiation mechanisms
(in electronic commerce) where complex decision making strategies might be
involved.

7.7 Summary 435

Shape design: The design of the shape of structural elements has been stud-
ied by engineers for a long time. Vitruvius, for example, devised the aesthetic
ideal for the shape of a column at around 25 B.C. (the design consisted of a
subtle variation on the traditional cylindrical shape, with a bulge at approxi-
mately one third of the column’s height and a diminution near its top). Sev-
eral other scientists and engineers have studied shape optimization problems
over the years. Multiobjective optimization techniques are easily applicable in
this domain, since engineering optimization problems normally have several,
conflicting objectives. In fact, one of the earliest applications of multiobjec-
tive optimization concepts to engineering is related to shape optimization
[1514]. Besides the applications of evolutionary multiobjective optimization
techniques to airfoil design reviewed in this chapter, there are very few at-
tempts to apply such techniques to this domain reported in the literature.
Deb et al. [367, 366], for example, apply the NSGA-II [374] to several shape
optimization problems (a simply supported plate, a hoister plate and a bi-
cycle frame design). However, there are many other shape design problems
that have not been dealt with using evolutionary multiobjective optimization
techniques. An example is the shape optimization of arch dams, which has
been of great interest for many years to structural engineers [1680, 1729].

7.7 Summary

In this chapter, a considerable number of applications of evolutionary multiob-
jective optimization techniques have been reviewed. Engineering applications
are the most common in the current literature, followed (in a distant sec-
ond place) by industrial applications (mainly scheduling). Interestingly, this
seems to follow the historical roots of multiobjective optimization and clearly
indicates the discipline in which most of the current interest in evolutionary
multiobjective optimization lies.

However, despite the large number of applications reviewed, several areas
remain to be explored. That is precisely the subject of the section on future
applications. A few examples of application areas not covered yet by the cur-
rent literature are briefly discussed. This intends to motivate researchers to
work in those areas, so that the distribution of applications becomes more
homogeneous over the following years.

Further Explorations

Class Exercises

1. Read an application paper of your choice (which has not been reviewed
in this chapter) and discuss the following issues:
a) Dimensionality of the problem (how many decision variables and ob-

jectives does the problem have?)
b) Details of the problem (does the author provide enough details about

the application as to reproduce his/her results?) If not, what is miss-
ing?

c) Does the author justify the use of a metaheuristic in this problem?
Do you think that it is justifiable to use a metaheuristic in this appli-
cation?

2. What would you consider to be the most important aspects to highlight in
a paper dealing with a novel application of an existing MOEA? Discuss.

3. When dealing with an application that has been previously tackled using
a MOEA, what would you consider to be the most important issues to
highlight? How is this different from an application that has never been
solved with a MOEA? Discuss.

4. Do you consider that the choice of programming language and operating
system for which a MOEA is implemented plays an important role for a
practitioner? Discuss.

5. What particular MOEA design considerations have to be taken into ac-
count when dealing with problems in which the evaluation of the objective
functions requires a very high computational time? Discuss.

Class Software Projects

1. Adopt a MOEA whose source code is available in the public domain (e.g.,
the NSGA-II [374]) to develop an application of your choice. Write a report

438 Further Explorations

indicating issues such as: encoding, fitness function, parameters, statistics
of the results, etc.

2. Write a library of generic functions in C/C++ that facilitates the use
of different MOEAs based on Pareto ranking to a practitioner. Write a
report documenting the use of the library, and include some examples of
its use.

3. Repeat the previous project, but using MatLab as the programming lan-
guage in which the implementation takes place.

4. Repeat the previous project, but using Java as the programming language
in which the implementation takes place.

5. Perform a comparative study among the 3 implementations required in
the 3 previous software projects (i.e., in C/C++, MatLab and Java).
Indicate the main advantages and disadvantages of using each of these
programming languages, including execution time, memory and space re-
quirements, ease of use, and implementation time, among others.

6. Using the Java retrovirus-inspired MISA (jREMISA) [624], modify various
operator parameters and evaluate intrusion detection performance for the
MIT data (such data are encoded as part of jREMISA).

Discussion Questions

1. Discuss the different aspects that may be of interest when reporting an
application of a MOEA (e.g., novelty of the application, difficulties asso-
ciated with the application, complexity of the search space, novelty of the
genetic operators adopted, etc.).

2. If a MOEA is used to solve a problem that has never been treated consid-
ering multiple objectives, how would you evaluate the performance of the
algorithm used? Would you consider valid to compare your results against
those produced when using a single objective function?

3. What would you consider to be the major issues when trying to apply
evolutionary multiobjective optimization techniques to real-world prob-
lems (e.g., computational cost, complexity of the model used, availability
of real test data, etc.)? Discuss.

4. Why do you think that most of the applications reviewed in this chapter
consider just a few objective functions? What are the main problems that
you anticipate if one attempts to apply MOEAs (particularly those that
use Pareto ranking) to problems with hundreds (or perhaps thousands) of
objectives?

5. Under what conditions would you consider appropriate to use a hybrid ap-
proach (e.g., goal programming coupled with a MOEA) in an application?
Discuss.

6. Would you consider more appropriate to use a local search technique (e.g.,
Tabu search [572]) to deal with multiobjective combinatorial optimization
problems, instead of using a MOEA (see Chapter 3)? Discuss.

Further Explorations 439

7. Luke and Patnaik [1027] proposed the use of lexicographic ordering (see
Chapter 1) to control bloat in genetic programming. In this proposal,
fitness is treated as the main objective, and tree size as a secondary ob-
jective. Analyze this proposal and compare it to other research in which
multiobjective concepts have been used to control bloat (see for example
[349, 436, 140]). Do you see any limitations in using lexicographic ordering
to control bloat? Do you think that multiobjective optimization concepts
are properly applied by the authors? Discuss.

8. Thomson and Arslan [1583, 1584] proposed a MOEA to optimize FIR filter
designs. Given the characteristics of this problem, what type of MOEA
would be more appropriate to use? Discuss the importance of incorpo-
rating user’s preferences (see Chapter 9) into the MOEA used to solve
this problem. Compare this approach to other related proposals (see for
example [659, 1707]).

9. Pullan [1300] proposed a MOEA with special genetic operators to maxi-
mize average network survivability, while minimizing its variability. Ana-
lyze the MOEA proposed and discuss possible improvements. Would you
consider important the use of a parallel MOEA (see Chapter 8) in this
application?

10. Consider the different types of scheduling problems that are discussed
in this chapter (e.g., job shop, flowshop, timetabling, etc.). Perform a
comparative study of MOEAs using a set of different scheduling problems.
Discuss what MOEA operators are the most appropriate for each class
of scheduling problem. Are the Pareto fronts of each class of scheduling
problems different among them? Discuss. See for example [1588, 174].

Possible Research Ideas

1. Think of a possible application of multiobjective optimization to your
main area of interest/expertise. Justify the use of multiobjective optimiza-
tion in this application. Then, investigate if there is any previous applica-
tion of evolutionary multiobjective optimization techniques reported for
this problem. If none is found, discuss why do you think that this problem
has not been dealt with in the specialized literature? Make sure to discuss
issues such as: representation, genetic operators, ways to evaluate perfor-
mance (what techniques are currently used to solve this problem?), and
definition of the fitness function. Then, design and implement a MOEA
to solve this problem. Compare your results against any other technique
normally used to solve it. Has your MOEA improved previous results?

2. Design a new MOEA that emphasizes aspects such as computational ef-
ficiency and ease of use. What type of multiobjective technique do you
consider more appropriate to speed up the generation of nondominated
vectors if time is an important issue? Can you justify the use of non-Pareto
approaches in real-world applications? If yes, in what cases? If not, what

440 Further Explorations

alternatives are available? Investigate approaches used to improve the
computational efficiency of a MOEA and propose new ideas/approaches.
Justify and validate your proposal.

3. Develop a novel application of a parallel MOEA (see Chapter 8). Justify
the use of parallelism in this application, as well as the type of approach
taken. Compare the performance of the proposed approach against the
use of a sequential MOEA.

4. Investigate possible applications of evolutionary multiobjective optimiza-
tion techniques into the following areas: computer vision, pattern recogni-
tion, image processing and computer animation. Propose new applications
within these areas. See for example [160, 1234, 1379, 1622, 1661].

5. Propose a hybridization of a MOEA with a deterministic technique in
solving real-world nonlinear constrained multiobjective problems. What
attributes of the MOEA are advantageous in this sort of application?
How is the deterministic technique integrated to the MOEA? What are
the main advantages of the proposed hybrid approach? See for example
[943].

6. Consider the development of MOEAs that are appropriate for dynamic
environments. What are the main issues to consider when dealing with
dynamic environments? What type of changes do you need to perform
on a MOEA to make it suitable for such environments? See for example
[1725, 125, 1055].

7. Analyze possible novel applications of MOEAs in engineering. See for
example [1075, 852].

8. One of the emergent application areas of MOEAs is DNA computing.
Propose a novel application in this area (see for example [1483, 1482]).

9. Another interesting application area of MOEAs that has been only
scarcely explored is cellular automata. Propose a novel application in this
area (see for example [1210]).

10. Microelectrical Mechanical Systems (MEMS) is an emerging research field
within electrical and electronics engineering, in which MOEAs have also
been used (see for example [815, 816, 1235, 1762, 1761]). Propose a novel
application in this area.

11. Knowledge extraction from very large databases is also an area worth ex-
ploring with MOEAs (see for example [966]). Propose a novel application
in this area.

12. The application of MOEAs in virtual reality (and computer graphics, in
general) is very scarce (see for example [1621]). Propose a novel application
in this area.

13. Few applications of MOEAs in classifier systems exist (see for example
[124, 1004, 1005, 350, 351]). Propose a novel application in this area.

14. An interesting area for using MOEAs is in software engineering (e.g.,
planning of software development projects [646] and in software quality
estimation [848, 847]). Propose a novel application in this area.

Further Explorations 441

15. Cryptography is another area in which there are very few applications
of MOEAs reported in the specialized literature (see for example [1178,
1180]). Propose a novel application in this area.

16. An application domain in which MOEAs have been only scarcely applied is
in game playing (see for example [1189, 1735]). Propose a novel application
in this area.

17. Bioinformatics is another area in which MOEAs can find interesting ap-
plications (see for example [723, 1747, 198]). Propose a novel application
in this area.

8

MOEA Parallelization1

One friend in a lifetime is much, two are many, three are hardly pos-
sible. Friendship needs a certain parallelism of life, a community of
thought, a rivalry of aim.

Henry B. Adams

8.1 Introduction

Successfully engineering Multiobjective Evolutionary Algorithms (MOEAs)
involves thoroughly addressing many different issues. However, the perfor-
mance concepts of efficiency and effectiveness are paramount. MOEAs are
stochastic, population-based computational procedures mimicking evolution-
ary concepts and operations in attempts to find satisfactory, if not optimal, so-
lutions of problems with multiple objectives. Evolutionary Algorithms (EAs)
and MOEAs are adaptive stochastic search techniques classified under the
umbrella of soft computing [1577]; generic EAs such as Genetic Algorithms,
Evolution Strategies, Evolutionary Programming, and Genetic Programming
are all successfully used in MOEA implementations [265].

Satisfactorily solving specific and ever-larger Multiobjective Optimization
Problems (MOPs) with MOEAs is an increasingly popular goal reflected by
the large number of recent research efforts attacking pedagogical and real-
world problems with these algorithms [266, 361]. Such real-world MOPs typ-
ically involve highly constrained design optimization tasks with high computa-
tional cost. Through these applications, MOEA structures continue to evolve
into effective (i.e., “useful”) search algorithms. Once convinced of a MOEA’s
effectiveness (how well it solves the problem), the researcher is then often in-
terested in increasing its efficiency (how “quickly” or “cheaply” it solves the

1 The authors wish to thank Jesse Zydallis for his permission to include previous
collaborative effort in this discussion on MOEA parallelization.

444 8 MOEA Parallelization

problem). The desire to reduce execution time and/or resource expenditures
naturally leads to considering the use of parallel and distributed processing
techniques.

A major computational bottleneck in many contemporary MOEA appli-
cations (as well as in other numerical or real-world design/optimization prob-
lems) is the calculation of complex nonlinear MOP functions, implying al-
gorithmic parallelization may improve computational efficiency. Just as in
single-objective optimization, multiple “expensive” objective function evalu-
ations (in terms of CPU time) are often completed in less wall clock time by
decomposing the computational load across two or more processors. Evaluat-
ing more solutions in the same or reduced time may then result in a larger
or higher-fidelity representation of possible outcomes. This may be especially
productive in MOEA applications, due primarily to the fact that identifying
a (possibly large) set of “good” objective vectors is often the primary goal
driving search. A parallel MOEA (pMOEA) might then be the preferred EA
implementation for solving complex real-world applications where (multiple)
objective function evaluations are the computational bottleneck.

Given a MOEA’s obviously inherent parallelism as well as the relative
ease of gaining access to contemporary multi-processor computing platforms,
interest is increasing for developing pMOEAs (see [266]). However, in publi-
cations solving engineering design and numerical optimization problems with
pMOEAs, very few discuss algorithmic development issues and for the most
part ignore the parallel aspects of the implementation. In general, these papers
lack a thorough presentation of pMOEA employment rationale, algorithmic
settings and structure, test problem selection and metrics, etc. Yet, analyzing
the current corpus yields several key insights into the current pMOEA state-
of-the-art and suggests areas in which further research may be focused. The
most significant findings from this analysis are detailed later in this chapter.

Critical engineering practice requires a disciplined approach as embodied
in the following quote: “...the essence of sound engineering [lies] in clearly
stating the assumptions upon which calculations are based so that they may
be checked at all times for lapses in logic and other errors. It is this im-
perative that engineering premises be set down clearly, and that the calcu-
lations that follow be systematically and unambiguously presented, so that
they may be checked by another engineer with perhaps a different perspec-
tive on the problem [1270, p. 44].” With that thought in mind, this chap-
ter clearly presents pMOEA symbolic formulations, describes pMOEA design
and implementation issues, proposes options for satisfactory issue resolution
and discusses various practical considerations. Known research approaches
and various insights gained from analysis are also integrated into the pre-
sentation. Throughout this discussion a template is evolved for generating a
pMOEA from either an existing (MO)EA or from first principles. The re-
sult is a generic design plan with a list of parameter considerations to be
considered in designing and implementing efficient and effective pMOEAs, re-
gardless of application problem domain. Perhaps this presentation might in-

8.2 pMOEA Fundamental Background 445

spire contemplation by other pMOEA developers; their different perspectives
and critical comments may well result in furthering these ideas or creating
other innovative designs. The reader should note that as much readily avail-
able material describes generic parallel processing techniques and implemen-
tations, incorporation into EAs and various hardware/software configuration
issues [24, 25, 28, 29, 27, 31, 72, 204, 926, 1521, 464], this chapter focuses
only on exploring and analyzing possible benefits of pMOEA development
and instantiation.

The remainder of this chapter is organized as follows. Fundamental back-
ground material and basic underlying pMOEA philosophy are briefly pre-
sented in Sections 8.2 through 8.4; this includes basic pMOEA background,
motivation, paradigms and design issues. Key analyses derived and extended
from known pMOEA implementations are discussed in Section 8.5, where ad-
ditional relevant topics (e.g., hardware platforms, test functions, test suites,
metrics and theory) are also presented. General pMOEA development issues,
along with specific design considerations when implementing pMOEAs follow
in Section 8.6. The development and advantages of a new “generic” pMOEA
are detailed in Section 8.7, followed by conclusions and recommendations for
future pMOEA research in Section 8.8.

8.2 pMOEA Fundamental Background

This section broadly addresses key pMOEA concepts and includes selected
background material to catalyze a better understanding and appreciation of
this research. It defines notational definitions used to describe pMOEA oper-
ation and also discusses the motivation for, and major issues involved with,
pMOEAs.

8.2.1 pMOEA Notation

A pMOEA’s complicated algorithmic structure and operation can confuse the
process of identifying and manipulating sets whose members are selected based
on Pareto concepts. A precise notation is thus required to explicitly identify
various Pareto sets and the specific time at which they exist for parallel op-
eration. Van Veldhuizen’s MOEA notation [1626] is discussed in Section 1.2.4
and thus extended in this section to the pMOEA domain.

Certain pMOEAs use multiple processors and/or populations where each
generates unique MOP solutions. The notation must then allow for represent-
ing the specific Pareto sets resident on a given processor at any given time.
Thus, the sets existing on a given processor are represented by PFcurrent

(
p
t

)
and Pcurrent

(
p
t

)
, where p represents the processor ID and t the generation

number. If so desired, the final computed sets found by each processor can be
tracked and represented in a similar fashion, PFknown

(
p
)

and Pknown

(
p
)
.

446 8 MOEA Parallelization

In some pMOEAs, migration events occur in which select population
members are sent to or exchanged with other processors. Thus, in these
cases the current Pareto sets on any given processor are represented by
PFcurrent

(
p

t bm x

)
and Pcurrent

(
p

t bm x

)
prior to the migration event; the res-

ident sets after migration occurs are PFcurrent

(
p

t am x

)
and Pcurrent

(
p

t am x

)
.(

p
t bm x

)
denotes processor p before the xth migration event at generation t.

Once migration occurs it is possible that some immigrants’ vectors dominate
some of the current members.’ The notation

(
p

t am x

)
then denotes processor p

after the xth migration event at generation t and the corresponding sets have
been updated. In this scenario, PFcurrent

(
p
t

)
and Pcurrent

(
p
t

)
may also be

used to represent the sets after all migration events have occurred for proces-
sor p and generation t. This distinction is necessary as each processor may
conduct multiple migration/replacement events at a given generation, depen-
dent upon its neighborhood size and membership in different neighborhoods.
At pMOEA termination, PFknown

(
p
)

and Pknown

(
p
)

again represent the sets
found on each processor with PFknown and Pknown representing the sets found
by all pMOEA processors combined.

The pMOEA notation described can be employed in the development of
a specific computational pMOEA (algorithm and data structures) to help
ensure the design is implemented with a large degree of confidence that the
code is correctly written. The notation may also be used in mathematically
proving various pMOEA properties such as convergence.

8.2.2 pMOEA Motivation and Issues

Although general MOPs may be solved via a variety of search techniques
developed to address various deficiencies, there is a continuing need to solve
real-world, high-dimensional, complex MOPs with increased effectiveness and
efficiency.

Results achieved using single-objective EAs lacked efficiency and were not
effective for many MOPs. For example, single-objective EA approaches using
aggregated objective functions (e.g., weighted sums) generate only a single
solution per run and thus require multiple executions varying weight aggre-
gations in order to generate a set of multiple solutions. Additionally, some
traditional single-objective EA approaches are known to be unable to identify
the complete Pareto front if certain problem constraints exist. Although it
is possible to solve MOPs with single-objective EAs, MOEAs are expressly
designed to return a number of MOP solutions per run and are typically more
efficient and effective in this domain. Many MOEAs are successfully applied
to real-world design and constrained optimization problems, leading to in-
creased visibility and use, but achieving better efficiency still remains a major
rersearch goal. Thus, attractive pMOEA design characteristics include concur-
rent search for multiple solutions, ease of parallelizing serial MOEAs, reducing
wall clock execution time, hybrid interfaces to other search techniques, and
achieving better overall effectiveness.

8.2 pMOEA Fundamental Background 447

Generally speaking, pMOEAs may be useful when one addresses situations
in which the fitness functions are computationally expensive. One approach
utilizes parallel computational function decomposition techniques; another ap-
proach spatially decomposes the population across a given set of processors.
Of course, the particular pMOEA architectural selection does not have to di-
rectly map onto a given physical computational platform. If carefully planned
the algorithmic model can be explicitly designed and subsequently refined
for mapping to various parallel platforms. Associated testing should include
consideration of the specific implementation’s performance across a variety of
serial, parallel, and distributed architectures. Interesting architectural char-
acteristics may include numerical processing hardware, communication pro-
tocols, network topology, processor speed, memory access, I/O, and the like.

In order to fully understand pMOEAs one must first identify the basic EA
components lending themselves to asynchronous execution and hence paral-
lelization [204]. Parallelizing the objective functions is a simple and potentially
useful idea but one inherently only decreasing execution time and not affect-
ing effectiveness. Although some pMOEAs are potentially more effective than
their serial counterpart, one typically does not gain improved effectiveness
without some cost, which may be realized by increased execution time. These
are tradeoffs researchers must consider. Fully understanding parallel concepts
and their potential usefulness in MOEAs thus requires a brief discussion of
MOEA structures and operators.

Figure 8.1 presents generic MOEA pseudo code reflecting the more com-
mon MOEAs found in the literature (see Chapter 2). As many variants of these
MOEAs are continually evolving the reader is encouraged to study their de-
tails and operators as found in many recently published MOEA papers [266].
In this regard, consider possible areas of parallelization in Figure 8.1. Use
of the previous section’s notation is suggested to represent the populations
associated with each processor, migration events, and generational updates
as the developer transitions from thought to a detailed code implementation.
Subsequent discussion draws upon proposed meta-level design structures in
pursuing high-performance pMOEAs.

Taken as a whole, pMOEAs are not complex algorithms. Represented as a
Directed Acyclic Graph, it is easily seen that MOEA tasks show more prece-
dence relationships than asynchrony. In other words, a pMOEA has a large
grain size with its algorithmic decomposability rapidly reaching a limit (i.e.,
there is only “so much” that can be parallelized). However, in broad terms, a
pMOEA implementation should result in some computational speedup.

An obvious option for parallelizing MOEAs is an exact task to processor
mapping but this is probably not wise.2 Each identified task in Figure 8.2
executes for varying time periods, some extremely short. Additionally, Task 1

2 Note that this discussion is based on Pareto-based MOEAs employing both shar-
ing and niching, as this implementation class is not only the most popular, but
has the most developed theory [1626].

448 8 MOEA Parallelization

Perform Population Initialization (Size P)
Compute Each Population Member’s Fitness (w.r.t. k functions)
Loop

Perform Clustering/Niching/Crowding
Execute EVOPs
Compute Each Population Member’s Fitness (w.r.t. k functions)
Conduct Selection
Generate PFcurrent (t); Update PFknown (t)
Conduct Local Search (If Specified)

End Loop
Conduct Local Search (If Specified)
Generate PFknown and Present to Decision Maker

Fig. 8.1. Generic MOEA Pseudo code

executes only once. Thus, it is easy to see the proposed mapping’s inefficiency.
The first processor completes its task and then sits idle until MOEA termina-
tion; many of the other processors are also unable to operate asynchronously,
a condition resulting in more idle than computational time.

 Parallel MOEA Tasks

1. Initialize Population
2. Fitness Evaluation on k Processors

2a. Pareto Ranking
2b. Share Value Computation
2c. Shared Fitness Assignment

3. Recombination
4. Mutation
5. Selection

Parallel Decomposition

Loop

1 32-2 4 5

2-1

2-k

2-a

2-b

2-c 2-2

2-1

2-k

2-a

2-b

2-c

Fig. 8.2. Parallel MOEA Task Decomposition

The four steps in the execution loop (fitness evaluation, recombination,
mutation, and selection) must occur sequentially. Mutation cannot operate
until recombination finishes. Selection does not (normally) occur until all fit-
ness values are computed. It is conceivable that the fitness evaluation task
can operate on solutions immediately after mutation does or does not occur,
but the resultant overhead of opening/closing a communication channel be-
tween two processors seems prohibitively expensive compared to the minimal
computational gains. Additionally, since data required by some tasks is resi-
dent on separate processors additional communication costs are involved. One
can thus safely conclude the proposed implementation is not very effective.
“Pipelining” the MOEA’s tasks is also ineffective as it is just a special case of
the exact task to processor mapping.

8.2 pMOEA Fundamental Background 449

Another possible pMOEA is an implementation simultaneously executing
several MOEAs on different processors and comparing, contrasting, and/or
combining their results. As sequentially executing the same number of MOEAs
achieves (conceptually) identical results this implementation has obvious
speedup, however, it is also desirable to consider parallelizing innate MOEA
tasks such as objective function evaluation.

Although some EVolutionary OPerators (EVOPs) could theoretically be
parallelized, their operation is so quick (especially as compared to objective
function evaluation costs) that any parallel implementation would most likely
be slower than a serial one, due to the increased communication costs asso-
ciated with population partitioning and distribution between processors. Se-
lection is (generally) especially ill-suited for parallelization; several selection
methods require information about the entire population that would again
require excessive interprocessor communication.

pMOEA Objective Function/Data Decomposition

As was just shown, affecting the ability to effectively and efficiently parallelize
a MOEA is its inherently sequential nature. But, by definition, Task 2 in
Figure 8.2 computes k (k ≥ 2) objective functions. This task can and has
been parallelized and it is instructive to consider how parallelizing multiple
objective function computations may be performed.

Parallelizing MOEA objective function evaluation can occur in one of three
ways. One can assign each function’s evaluation (for a given individual) to dif-
ferent processors, assign subpopulations for evaluation on different processors,
or assign each individual’s evaluation for a single objective function across sev-
eral processors. These options are shown in Figure 8.3 and each discussed in
turn.

1 2 n/p (p-1)(n/p)+1 n

F F

1 2 n 1 2 n

f 1 f k

1 2 n

f i f i

(a) (b)

(c)

Fig. 8.3. Parallel Objective Function Evaluation Possibilities

When implementing the first option (see Figure 8.3a), one must consider
that each objective function’s calculation time may be radically different.

450 8 MOEA Parallelization

Thus, blindly assigning the entire population and each of the k functions
to a different processor may then be imprudent if one objective function eval-
uation takes several times longer than the others. Statically or dynamically
load balancing these computations may help equalize computational effort but
the effort expended may not be worthwhile.

When implementing the second option (see Figure 8.3b), equal fractions of
the population are assigned to different processors where they are evaluated
in light of all objective functions. Here, identical numbers of individuals are
evaluated via identical fitness functions. As long as communication time is not
a significant fraction of each subpopulation’s calculation time, this appears an
efficient objective function evaluation parallelization method.

Finally, the third option (see Figure 8.3c) may be implemented in the case
of extremely expensive objective function computations where each individ-
ual’s, and possibly each function’s evaluations, are split among processors.
This might be the case in problem domains such as computational electro-
magnetics or fluid dynamics where such parallel codes already exist.

Note the preceding discussion focuses on objective function calculations
only. Additional processing is sometimes required to then transform the resul-
tant objective value vectors into fitness vectors or scalars. Several variants of
MOEA fitness assignment and selection techniques exist (e.g., ordering, scalar-
ization, independent sampling, and cooperative search), not all amenable to
parallelization.

A MOEA’s underlying data structures may also affect the ability to effec-
tively and efficiently parallelize the algorithm. In other words, how and where
necessary data is stored, its quantity, and to where (and when) it needs to
be communicated may well affect how easily a MOEA is parallelized and how
well the resultant implementation executes. For example, consider a generic
parallel MOEA implementation evaluating k objective functions. If each slave
processor evaluates only a part of one particular objective function’s value
perhaps just given components of the underlying data set are needed by each
processor. However, if each processor computes a different objective function,
each may require the entire underlying data set. In real-world design and
engineering problems this data set may be quite large! As data communica-
tion significantly affects parallel programs’ efficiency, reducing communication
delays may well speed up overall algorithm execution.

8.3 pMOEA Paradigms

Parallel paradigms can be utilized to decompose some problem (task and/or
data) and in turn decrease execution time. These paradigms may also allow for
exploring more of the solution space, potentially finding “better” solutions in
the same amount of time as a serial implementation. A pMOEA seeks to find as
good or better MOP solutions in less time than its serial MOEA counterpart,
using less resources, and/or searching more of the solution space in the same

8.3 pMOEA Paradigms 451

amount of execution time (i.e., increased efficiency and effectiveness). With
these general performance objectives in mind generic pMOEA architectures
are now addressed.

The four major pMOEA computational paradigms are considered here.
They are the “Master-Slave,” “Island,” and “Diffusion” paradigms; the fourth
includes “hierarchical” or “hybrid” paradigms that may be seen as a combi-
nation(s) of the three other forms. Island paradigms are sometimes referred
to as coarse-grained paradigms and diffusion paradigms as cellular or fine-
grained paradigms. Note that each paradigm may be implemented in either a
synchronized or non-synchronized fashion; each has its own particular consid-
erations. For purposes of this discussion, synchronized implementations are
defined as utilizing “same-generation” populations where some sort of inter-
processor communication synchronizes all processes at each generation’s end.
Non-synchronized implementations can greatly reduce processor idle time (as-
suming varying processor speeds, memory, hardware limitations, and/or data
decomposition), but this implies communications occur at random times and
possibly without guaranteed delivery of messages to their destinations.

Because of the relatively inexpensive cost of Commercial Off The Shelf
(COTS) parallel computing platforms, numerous researchers across many aca-
demic fields are now utilizing parallel or distributed processing in their appli-
cations. However, one soon observes that their level of expertise and famil-
iarity with engineering effective and efficient parallel or distributed codes of
any sort may vary widely. The reduced cost and relative ease of setting up
these systems allows many possible configurations in terms of hardware and
software platforms. While it is virtually impossible to describe each of the
above paradigms in relation to all possible multi-processor configurations, a
generalized technique and explanation is presented such that the reader can
extend the basic designs to more complex systems for use in exploring their
own specialized hardware or software systems.

Researchers can utilize resources ranging from multi-million dollar homo-
geneous parallel supercomputer platforms to COTS heterogeneous worksta-
tion clusters costing only thousands of dollars (see Table 8.1). As these
systems’ costs can vary greatly so also do their respective capabilities. For
example, supercomputers typically have components orders of magnitude
“better” than those of PC Clusters, such as the amount of disk storage,
available RAM, or the electronics required to complete an extremely quick
disk/memory access. These advanced capabilities come at a cost, of course.

For discussion purposes, the design and implementation details presented
in this section assume homogeneous platforms where each processor has iden-
tical available resources (e.g., CPU and RAM) and a homogeneous com-
munications backbone (equal communication costs between each processing
unit). These paradigms are easily extended to heterogeneous systems through
the use of load balancing techniques, specialized system hardware/software,
and/or other parallel processing concepts [926]. The following sections discuss
paradigm-specific details and issues for widely available, easily obtained, and

452 8 MOEA Parallelization

low-cost generic solutions for use in successful pMOEA development culmi-
nating in algorithms achieving desired performance levels.

Note the following discussion focuses only on objective function evalua-
tions whereas additional processing is sometimes required to transform resul-
tant objective value vectors into fitness vectors or scalars. Several variants
of MOEA fitness assignment and selection techniques exist (e.g., ordering,
scalarization, independent sampling, and cooperative search), not all of which
may be amenable to parallelization. This fact must be accounted for in the
final pMOEA implementation, i.e., the choice of a suitable paradigm.

Table 8.1. Parallel Processing System Characteristics

System Attributes

Cluster of PCs – Homogeneous COTS PCs
– Homogeneous COTS communications backbone

Supercomputer – Specialized hardware/software
– Homogeneous CPUs, RAMs, caches, memory
access times, storage capabilities, and communi-
cations backbones

H
o
m

o
g
en

eo
u
s

Cluster of PCs – Heterogeneous COTS PCs
– Heterogeneous CPUs, RAMs, caches, memory
access times, storage capabilities, and communi-
cations backbones

H
et

er
o
g
en

eo
u
s

8.3.1 Master-Slave pMOEA Model

The Master-Slave paradigm is quite easy to visualize from an algorith-
mic management perspective and is fairly simple to implement. Objective
function evaluations are distributed among several slave processors while a
master processor executes evolutionary operators (EVOPs) and other misce-
llaneous overhead functions (e.g., computing the current Pareto front, dis-
tributing/collecting subpopulations, etc.). Its search space exploration is
conceptually identical to that of a MOEA executing on a serial processor. In
other words, the number of processors being used is independent of the partic-
ular solutions being evaluated, but does affect execution time. This paradigm
is illustrated in Figure 8.4 where the master processor distributes population
members, controls when/where objective function evaluations are performed,
and stores returned objective values. Although the master processor may also

8.3 pMOEA Paradigms 453

be used to perform objective function calculations that computational effort
appears best-performed by the slaves.

�� ��Master Processor

�
�
��

�
�

��

�
�

��

�
�

���� ��Slave Processor � � � �� ��Slave Processor

�
� �

etc.

Design
Variables �

�Objective
Values

Fig. 8.4. Master-Slave pMOEA Paradigms

It is important to note that objective function calculations need to be fairly
complex and time consuming in order to realize any computational speedup,
informally defined as the ratio of the best serial MOEA run time divided by
the pMOEA’s run time [926]. In some cases a pMOEA may take more execu-
tion time than a serial MOEA. This is usually encountered with (relatively)
simplistic objective functions; communication time overwhelms computation
time and poor speedup is thus realized.

Distributing objective function evaluations over a number of slave proces-
sors can generally be implemented in three different ways (see Figure 8.3).

1. Evenly distribute population members across the slaves where each slave
performs all k objective function evaluations.

2. Evenly distribute (sets of) population members across (sets of) k slaves
where each slave performs one of the k objective function evaluations.

3. Evenly distribute each objective function calculation for the entire popu-
lation across multiple processors.

In the first method, if the population cannot be evenly distributed the
master may evaluate objective functions for a limited number of individuals.
Each slave processor calculates all k objective function values for each assigned
individual. Since all slaves compute identical objective functions, for (almost)
identical numbers of solutions, each slave usually completes execution at the
same time.

Master-slave pMOEA execution time is easily modeled based on a single-
objective EA master-slave base case [204]. First, EVOP execution time (e.g.,
selection, crossover, and mutation) is ignored as researchers generally accept
their cost to be much less than that of any objective function computation.
Then, letting Tc p be the time required to communicate between processors
prior to calculating the objective function (the entire population must be
transmitted), Tc a the time required to communicate between processors after
objective function evaluation (just objective values must be transmitted), P

the number of processors used, n the total population size,
∑k

i=1 Tfi
the time

454 8 MOEA Parallelization

required to evaluate one individual for all k fitness functions, and G the num-
ber of generations, the running time for the algorithmic variant just described,
TMS , may be estimated as presented in equation (8.1). This equation could
be used to predict performance bounds on various architectures.

TMS = G×
(

P (Tc p + Tc a) +
n
∑k

i=1 Tfi

P

)
(8.1)

In the second method, the k objective functions are uniquely mapped to
the slaves (i.e., P1 evaluates f1, P2 evaluates f2, etc.); a total of P processors
may be used if P = ka, a an integer. Each slave then evaluates its assigned
function for its share of the population. That share may range from one to all
individuals. Letting Tc be the time required to broadcast the entire population
to the processors, Tc a the time required to communicate between processors
after objective function evaluation (just objective values must be transmit-
ted), P = ka the number of processors used, n the total population size,
max(Tfi

), where i = 1, . . . , k, the time required to evaluate the most complex
objective function, and G the number of generations, the running time for
the algorithmic variant just described, T

′

MS , may be estimated as presented
in equation (8.2). This equation may be used to predict performance bounds
on various architectures.

T
′

MS = G× (Tc + PTc a + n ∗ (max(Tfi
))) (8.2)

This method may yield varying computational loads among the slaves as
each is computing a different objective function of potentially radically differ-
ent complexity and resultant wall clock execution time. Thus, blindly assigning
each of the k functions to different processors may then be imprudent if one
function’s evaluation takes several times longer than any of the others (i.e.,
Tc(f1) >> Tc(fi) >> . . . >> Tc(fk)). Compounding the problem is the possi-
ble dissimilarity of the utilized platforms’ capabilities. Static or dynamic load
balancing may help equalize computational cost among employed processors,
but the effort expended there could negate or exceed any gains resulting from
parallelization [926].

The last method distributes the objective function calculations themselves
across multiple processors due to associated high levels of complexity and ex-
ecution time. The objective functions are partitioned so that each is decom-
posed across multiple processors. Here again, no guarantee exists that each
slave experiences equal computational loads, hence, some slaves may sit idle
while others work, indicating load balancing use may be fruitful. For exam-
ple, real-world problem domains such as Computational ElectroMagnetics or
Fluid Dynamics (CEM or CFD) often partition evaluations among slaves.
Parallel CEM and/or CFD codes with load balancing already exist; they
would be of great use in efficiently solving these optimization problems with
a pMOEA [1045, 1046, 1047, 1266]. pMOEAs solving these MOP types are
often interfaced to a specialized problem domain dynamic simulation model

8.3 pMOEA Paradigms 455

written by scientists or engineers from the specific discipline. Such interfacing
is in general “relatively easy” and occurs through file data structures [217].

Letting Tc be the time required to broadcast the entire population to
the processors, Tcom the time required to combine the decomposed objective
function values, Tc a the time required to communicate between processors
after objective function evaluation (just objective values must be transmitted),
P the number of processors in use, n the total population size, max(Tfij) the
time required to evaluate the most complex fitness function where i = 1, . . . , k
and j is the number of partitions each fitness function i is decomposed into,
and G the number of generations, the running time for the algorithmic variant
just described, T

′′

MS , may be estimated as presented in equation (8.3). This
equation may be used to predict performance bounds on various architectures.

T
′′

MS = G× (Tc + Tcom + PTc a + n ∗ (max(Tfij))) (8.3)

Efficiency is the master-slave pMOEA’s main objective and hence the ac-
tual variant utilized is crucial to achieving the highest efficiency levels. One
variant may be a preferred implementation due to available computational
resources and the MOP currently being solved. Lastly, note that in some
design problems different solutions may have widely varying objective func-
tion evaluation costs, thus negating the underlying logic for implementing a
master-slave pMOEA.

8.3.2 Island pMOEA Models

“Island” paradigm pMOEAs are based on the phenomenon of natural popu-
lations evolving in relative isolation, such as might occur within some ocean
island chain with limited migration between various islands. These pMOEAs
are also termed “distributed” as they are sometimes implemented on distrib-
uted memory computers; they are also called multiple-population or multiple-
deme. Finally, this paradigm is sometimes termed coarse-grained parallelism
because each island (processor) contains a large number of individual solu-
tions. Communication backbones can connect multiple processors in logical
or physical geometric structures such as rings, meshes, toruses, triangles, and
hypercubes. A generic island paradigm is illustrated in Figure 8.5 using a ring
topology. Observe the notional communication channels for migration of se-
lected individuals; specific paths are assigned as part of the pMOEA’s design
strategy and are then mapped to the physical communication backbone of the
selected parallel platform upon which pMOEA implementation is realized.

The island pMOEA paradigm conceptually divides the overall pMOEA
population into a number of independent, separate (sub)populations or demes;
an alternate view observes several small, separate, simultaneously executing
MOEAs (each processor often hosts a separate island). Although each island
evolves in isolation for the majority of pMOEA execution, individuals occa-
sionally migrate between an island and its neighbor(s) based on some selection

456 8 MOEA Parallelization

Fig. 8.5. Island pMOEA Migration Paradigm

or fitness criteria. Thus, all island pMOEA paradigms require identification of
suitable migration policies defining how often migration occurs (the number
of generations between events), the number of solutions to migrate, and how
to select emigrating solutions and the solutions replaced by immigrants. Mi-
gration allows relatively thorough gene mixing within each deme but restricts
gene flow between different demes or islands. EVOPs (may) operate differ-
ently within each island, strongly implying each population is searching many
different regions of the overall search space. When using different random
number generators and seeds on each island, as well as different EVOP para-
meter values and MOEA structures, this implication is further strengthened.

Four basic island pMOEA variants are seen to exist, each requiring appro-
priate migration operators. These are:

1. All islands execute identical MOEAs/parameters (homogeneous),
2. All islands execute different MOEAs/parameters (heterogeneous),
3. Each island evaluates different objective function subsets, and
4. Each island represents a different region of the genotype or phenotype

domains.

Given that within each generation Tce is the time for all islands to complete
execution, Tmig the time to complete neighborhood migration, Tcoll the time
to collect/compute the overall Pareto front/Pareto optimal set, and G the
number of generations, the island model’s meta level running time, TI , may
be estimated as presented in equation (8.4). This equation may be used to pre-
dict performance bounds on various architectures. Particular island pMOEA
variants would have very similar equations.

TI = G × (Tce + Tmig + Tcoll) (8.4)

The first two presented variants are self-explanatory. As a specialized ex-
ample of the second variant, consider the utilization of different represen-
tations (i.e., differing resolutions) on each island. Each island’s population
represents solutions to the same problem but are then solving the problem at
different resolutions. However, note that this concept then restricts migration
flow from lower to higher resolution processors.

In the third variant, islands have a (possibly) reduced problem domain,
each executing either a single-objective EA or MOEA to solve j objective

8.3 pMOEA Paradigms 457

functions, 1 ≤ j ≤ k. The employed EAs may be homogeneous or hetero-
geneous as described above. Due to each processor’s searching a (possibly)
reduced problem domain (i.e., mixing single-objective EA & MOEA results),
the migration policy used requires careful thought to ensure the best possible
convergence. A very important example of this approach is the distributed
cooperation MOEA model which uses a parallel multi-objective genetic algo-
rithm (MOGA), the SPEA2 and NSGA-II [1208].

The fourth variant isolates each processor to solve specific, non-overlapping
regions of phenotype (or genotype) space. All possible phenotype space must
be covered, which in general is a very difficult, if not impossible, a priori al-
location for a general MOP. Moreover, when searching regions of phenotype
space each island likely generates phenotype values outside its constrained
phenotype region. One can force processors to generate points until a suit-
able number are found within its assigned region, but for certain MOPs this
process may take too long, if at all possible. Of course, individuals could mi-
grate to the processor assigned that region (causing communication overhead)
or just be deleted from the population, but each of these methods requires
phenotype sorting. Such an approach could also result in some islands not con-
tributing much to the overall search. The “standard” island model, utilizing
each processor to identify the complete Pareto front, appears a more efficient
method. Regardless, neither case guarantees total Pareto front identification.

A specific example illustrating this variant assumes a convex Pareto front.
It uses the concept of isolating each processor to search within a specific region
but still lets each processor devote some effort to exploring the entire possible
space. To address this obvious incongruity a guided domination concept is de-
fined using a weighted function transformation of the objectives and a variant
non-dominated definition [381]. equation (8.5) reflects this transformation.

Ωi(f(x)) = fi(x) +
M∑

j=1,j 	=i

aijfj(x), i = 1, 2, ...M (8.5)

With this Ω transform based upon appropriate weights determined from
known points on the Pareto front, a different definition of domination is de-
fined for which the dominated region (by this new definition) is enlarged (see
Figure 8.6).

This new definition permits processor state-space domain overlap. Thus,
the returned Pareto front may not be completely nondominated. Therefore,
each processor using this new definition finds only the “real” convex Pareto
front in a region based upon the standard nondominated definition. The other
points found above and below this convex Pareto front in the entire search
space are dominated in the real sense, but not in this new sense. In order to
successfully perform the transformation one needs to know a limited number
of vectors on the known Pareto front. The number of vectors selected for
allocating the overlapping regions of processor search is then the number of
processors required.

458 8 MOEA Parallelization

Fig. 8.6. Vector A Domination: (a) Dominated Region (Standard Definition) and
(b) Dominated Region (New Definition) [381]

1

2

1

2

P=4P=1 P=2 P=3

1 2

1

3 4
3

Fig. 8.7. Generic Objective Function Processor Allocation ([381])

Using the Ω transformation, all regions of the convex Pareto front are
accounted for with what one hopes is an “equal slice” of the front. With
known convex examples this concept deserves attention, but it appears to
be somewhat simplistic. In real-world problems it may be infeasible due to
Pareto front structures. Even for convex fronts, problems occur in determining
how to find initial members of the front to ensure each processor generates
vectors in their restricted search region, which is the intent of the revised
domination definition. Figure 8.7 presents a generalized allocation for two
objective functions, given 1 to 4 processors. Observe there is no guarantee
that selecting two or more members of the front on a given processor and
in a certain region, and subsequently performing EVOPs with them, yields
another vector within that region. Therefore, general migration schemes are
suggested by the authors.

8.3.3 Diffusion pMOEA Model

Like the master-slave paradigm, the “diffusion” pMOEA paradigm deals with
one conceptual population, except that each processor holds only between one
and a few individuals, leading some to term it fine-grained parallelism. The
imposition of some neighborhood structure on the employed processors is this
paradigm’s hallmark; EVOPs occur only within these (possibly) overlapping
neighborhoods. Neighborhood geometry could be a square, rectangle, cube,
or other shape depending upon the number of dimensions associated with the

8.3 pMOEA Paradigms 459

diffusion algorithm’s topological design. Each geometry reflects some associ-
ated number and arrangement of neighbors within a multi-dimensional grid.
As “good” solutions arise in different areas of the local topology, the intent
is for them to then spread or diffuse slowly throughout the entire population
due to the overlapping or dynamically changing neighborhoods.

One easily sees this model involves low-level parallelization. That is, there
is no migration per se and communication costs may then be very high within a
neighborhood. This paradigm is illustrated in Figure 8.8. Observe the example
shown is implemented on a logical mesh with a square neighborhood of four
processors; the overall logically gridded communication structure is mapped
onto some physical communication backbone. This paradigm’s meta-level time
equation model would be very similar to equation (8.4).

� � � �� � � �� � � �� � � �

Fig. 8.8. Diffusion pMOEA Migration Paradigm

One may also vary the population density in a diffusion pMOEA. Using
a percolation approach one systematically increases the population size until
the diffusion lattice’s carrying capacity is obtained, which occurs through a
merging of smaller demes into larger ones as the pMOEA executes [983].

8.3.4 Hierarchical Hybrid pMOEA Models

An alternative to the presented paradigms is what Cantú-Paz terms the class
of hierarchical hybrids; at a high level of abstraction these are multiple-deme
algorithms with each associated island executing a particular MOEA instan-
tiation [204, pp.126-128]. He proposes three island model hybrids (here ab-
stracted to the pMOEA domain) where:

1. Each island contains a diffusion pMOEA,
2. Each island contains a master-slave pMOEA and
3. Each island contains an island pMOEA.

Another innovative computational pMOEA design in this class incorpo-
rates a co-evolutionary hierarchical pMOEA [216]. A tree or graph search
structure is employed in an attempt to find better pMOEA algorithmic struc-
tures for a given problem domain. The bottom leaves are various MOEA
instantiations with associated parameter values. As their concurrent execu-
tion completes, the next level of the tree evaluates lower leaf performance and

460 8 MOEA Parallelization

selects new parameter values based on those results; leaves at this new level
may also deterministically or stochastically add other algorithmic constructs
to improve local MOEA instantiations. This development process continues
up through the tree’s levels to the root node. In fact, one can conceive this
bottom-up, co-evolutionary approach evolving new and improved MOEAs as
meta-level evolutionary search. Associated research should address the design,
testing, and analysis of this hierarchical parallel-based process to evolve better
(p)MOEAs [713, 1674]. Assuming a binary tree structure with n MOEAs ex-
ecuting at the lowest level and l levels, this design is illustrated in Figure 8.9.
Note that each leaf may have any number of children, and although the overall
complexity would then be much higher, any particular node may itself be a
pMOEA.

MOEA [1 : 1] MOEA [1 : 2]

MOEA [2 : 1]

MOEA [1 : 3] MOEA [1 : 4]

MOEA [2 : 2]

MOEA [(l − 1) : 1]

MOEA [1 : n− 3] MOEA [1 : n− 2]

. MOEA [2 : n
2 − 1]

MOEA [1 : n− 1] MOEA [1 : n]

MOEA [2 : n
2]

MOEA [(l − 1) : 2]

MOEA [l : 1]

1

Fig. 8.9. Example Hierarchical Design

8.4 pMOEAs From the Literature

This section discusses pMOEAs from the current literature in order to pro-
vide understanding of implementation variations and their impact on results.
Each pMOEA example is classified into one of the paradigm categories. As
previously noted, although some implementations may be classified in multi-
ple categories, the focus is on understanding pMOEA example characteristics.

8.4.1 Master-Slave pMOEAs

The following briefly describes key elements of known master-slave pMOEA
implementations in the literature, highlighting key algorithmic issues and se-
lected comments by the authors.

• In the earliest reported master-slave MOEA, a microprocessor cache mem-
ory design problem is attacked using an implementation named ‘Genetic
Algorithm running on the INternet’ (GAIN) [1518]. This pMOEA used an
Internet-connected network of workstations as slave processors (between
80 and 120 simultaneously) to distribute one chromosome per worksta-
tion for fitness evaluation; a master processor then collated results and

8.4 pMOEAs From the Literature 461

executed the EVOPs. A major issue faced by GAIN’s creators was the
network’s heterogeneous composition consisting of different workstation
models and configurations, thus giving rise to disparate performance be-
tween machines. Additionally, their network’s protocol mandates suspend-
ing remote computations when a user physically logs into a machine; the
user also has the option of terminating the evaluation.
To deal with the (possibly) widely varying objective function evaluation
times and externally terminated evaluations, two extensions to GAIN are
developed by decomposing it into both generational and evaluation pro-
cesses communicating through queues. For synchronization purposes, the
generation process causes the master processor to “sleep” when some maxi-
mum number of pending evaluations was exceeded. The evaluation process
controls Internet workstation communication and tracks chromosomes sent
out for fitness evaluation. If some evaluation is terminated the evaluation
process resubmits it, but after five resubmissions that particular chromo-
some’s evaluation is terminated and GAIN moves to the next in line. GAIN
also monitors the time between a solution’s creation and its first oppor-
tunity to become a parent, as the authors expected lengthy “childhoods”
might adversely affect pMOEA stability and performance. The authors
also expected the implemented steady-state generational replacement pol-
icy (with a small generation gap) would stabilize this largely decoupled
pMOEA; they claim this was confirmed via their limited experiments.

• A modified NSGA [1509] with Pareto ranking is used in solving a mul-
tidisciplinary design problem optimizing two-dimensional airfoils [1045].
The objective functions’ high computational cost drove the authors to use
a distributed parallel architecture. NSGA modifications included replac-
ing its original roulette wheel selection by tournament selection and also
adding an elitist selection mechanism.
This pMOEA executes on an IBM SP2 computer; the MPICH library
is used to control interprocessor communication. A “high-performance”
switch and 8 processors (Model 390) are employed. It is noted that even
when parallelized, wall-clock time for a single run is about 52 hours. To
determine solution fitness, a two-dimensional Euler flow analysis solver
and two-dimensional time-harmonic Maxwell field analysis solver reduced
to a Helmholtz equation are used. Each solution computed using the Euler
solver takes about 160 CPU seconds; using the Helmholtz solver takes
about 8 CPU seconds.

• An aerodynamic and aeroacoustic airfoil optimization problem with ex-
tremely expensive objective function computations is solved via a master-
slave pMOEA [805]. Because individual fitness is evaluated independently
the authors feel this problem well-suited for coarse-grained parallelization.
However, although the master processor performs high-level algorithmic
operations and distributes individuals to slave processors, it has the ad-
ditional task of dynamically load balancing computational effort across
all slaves. The authors note that as airfoil design evolution begins with a

462 8 MOEA Parallelization

random population, large differences may initially exist in the time needed
to evaluate differing solutions (designs). Thus, by using dynamic load bal-
ancing, individuals are distributed for evaluation only as slave processors
become available in an attempt to avoid the potentially large bottleneck
associated with static load balancing.
Their pMOEA incorporates MPI to avoid limiting execution to a specific
computational platform(s); it currently executes on an IBM SP2 computer.
Although no formal efficiency analysis is performed, the authors report
runs conducted using 8, 16, 32, and 64 nodes resulted in speedup values
close to theoretical expectations.

• A modified NSGA [1509] with Pareto ranking is used in solving a Compu-
tational Fluid Dynamics (CFD) problem [1057]. As do others, the authors
note their main concern with employing MOEAs in solving complex de-
sign problems is the computational effort required. To address that concern
they employ a 2-level parallelization strategy: (1) Flow solver paralleliza-
tion combining problem domain partitioning techniques with MPI, and (2)
MOEA parallelization. Each processor appears responsible for evaluating
all of an individual’s k criteria; each must also contain the same number of
individuals. Thus, with p processors (generalizing their pMOEA strategy
and implementation), p individuals are evaluated in parallel, as it appears
only a single individual per processor is used. The pMOEA is executed on
an SGI Origin 2000 with 8 R10000/195 MHz processors.

• A master-slave pMOEA named the Parallel Multi-Objective Genetic Al-
gorithm (PMOGA) attacks eigenstructure assignment problems [157, 325].
An identical copy of the initial randomly generated population is sent to
each slave processor, which then executes a separate MOEA. Each slave
uses different decision-making logic (e.g., solution evaluation may be per-
formed with different fitness function combinations, selection may occur
using Pareto principles). Once the slaves reach some user-defined stopping
criterion they asynchronously communicate their final population to the
master processor, which uses these populations to form a final population
it then evolves. PMOGA executes on a SPARC-SUN network.

• A mobile telecommunication network design problem is tackled by another
master-slave pMOEA, in particular, the positioning of base stations on po-
tential geographic sites in order to fulfill certain objectives and constraints
is investigated [1096]. Solutions identify a set of antenna sites from some
pre-defined candidate set, determine the type and number of antennas
used, and also the particular antenna configurations (tilt, azimuth, power,
etc.).
The authors claim a high computational cost associated with solution
evaluation and constraint testing exists; a large amount of memory is
also required. Computing each individual’s objective function involves key
feature identification (within some area), calculating radiofrequency wave
fields at given points, and updating both network global fitness and han-
dover/processed traffic for each cell.

8.4 pMOEAs From the Literature 463

Each slave processor is assigned a cell (piece) of the total geographical
working area, computing relevant measures only for points in its cell. Al-
lowances are made to communicate required values from neighboring cells
to determine total fitness. The authors use a hardware platform composed
of 24 “modern” homogeneous workstations running Linux; the pMOEA is
implemented using the ‘C’ programming language and PVM routines for
interprocessor communication.

• A master-slave pMOEA is applied to an X-ray plasma spectroscopy ap-
plication [591]. This elitist implementation is based on the Niched Pareto
Genetic Algorithm (NPGA) [709]. The pMOEA is developed and tested
on an 8-node Beowulf cluster (PII-400 processors, 100Mbs network) using
PVM 3.4 for interprocessor communication, which is kept to a minimum by
occurring only when distributing solutions to evaluate and returning ob-
jective values. The authors measure each solution evaluation at about 1.6
CPU seconds in their experiments. Thus, for load balancing they suggest
a total population size evenly divisible by the number of slave processors
multiplied by packet size. Their experiments observe no noticeable change
in pMOEA performance for different packet sizes as long as this condition
is satisfied.
The authors perform further experiments on a 20-node Beowulf cluster
and reportedly achieve linear speedup. They claim a pMOEA allows use
of larger populations thus resulting in improved effectiveness. As a signifi-
cant reduction in computing time due to MOEA parallelization is realized,
population size can be increased and thus improve the algorithm’s effec-
tiveness in finding good solutions.

• A multi-processor computer and master-slave pMOEA is used in solving a
jet actuator placement problem [1372]. After testing on a single processor
the code was modified to execute on four processors and ported to an SGI
Origin 2000 machine. Each of three subproblems executes on a different
processor with the fourth serving as master. Although theoretical speedup
is computed to be 3-fold, system limitations require a manual algorithm
restart each generation. However, this implementation reduces typical op-
timization time from 1100 hours (exhaustive search) to 22 hours.

• A master-slave pMOEA is successfully applied to finding solutions for a
set of benchmark process scheduling problems [1548]. Two algorithmic ver-
sions are implemented, one with heterogeneous (termed HT) and the other
with homogeneous (termed HM) populations. Both versions use k subpop-
ulations (generalizing the authors’ pMOEA strategy) sending immigrants
to a separate “main” population.
In the HT version each of the k subpopulations evolve using one of the
k objective functions as their sole criterion. However, the main popula-
tion is Pareto-oriented and attempts to evolve nondominated solutions. In
contrast, all subpopulations in the HM version are Pareto-oriented. Both
versions utilize unidirectional immigrant flow in attempts to preserve a
higher level of genetic diversity in the total population. Additionally, when

464 8 MOEA Parallelization

a population has met some user-defined convergence criteria the pMOEA
is restarted (noted by the terms HTR and HMR). The authors note a
restart is often necessary as subpopulations working on a single objective
tend to converge much faster than a Pareto-oriented one.
The HTR and HMR variants are then directly compared, apparently find-
ing that for problems in which an inverse relation exists between the differ-
ent objective functions the HTR strategy is more effective. Conversely, for
problems in which a direct relation exists between the different objective
functions the HTR strategy is more efficient. Based on their experimen-
tal results the authors feel that generally speaking, the HTR strategy is
consistently superior to the HMR.

• A Master-Slave with Local Cultivation (MSLC) model is proposed and
implemented in the parallel domain to “gain higher diversity of the solu-
tions [1683].” A mobile telecommunication antenna arrangement problem
is used as the basis with which to compare the MSLC against three other
MOEAs. Their implementation uses a few master and several slave proces-
sors. Master processors randomly select two individuals and send them to
a slave, where EVOPs based on the minimal generation gap model are
executed. Selected individuals are then returned by the slaves to the mas-
ters where they are ranked. The authors’ experiments ran on a PC-cluster
consisting of 16 Pentium II 500 MHz machines each with 128 MB memory.
Comparisons were made between experiments using 2, 4, 8, and 16 slave
processors. Very few MSLC operational details are presented in this paper.

• The master-slave Parallel Single Front Genetic Algorithm (PSFGA) is ap-
plied to several benchmark test problems [353]. The master processor sorts
the population according to objective function values and splits it into m
subpopulations; this process is periodically repeated throughout PSFGA
execution. The master sorts on only one of the k objective functions at
a time, yet the populations upon which sorts are performed are evolved
via global Pareto dominance principles. Population diversity is obtained
by filtering solutions based on a grid overlaid on objective space, using
distance between discovered objective values (the plotted vectors) as the
discriminating factor between which solutions to keep and which to not.
The authors implement PSFGA on a cluster of eight PCs connected by
Fast Ethernet. They test the algorithm using different numbers of proces-
sors and architectures; PSFGA exhibited speedup in most cases although
in others it produced lower-quality solutions.

• A master-slave pMOEA is used to investigate technologies that might be
applied to biologically remediate contaminated groundwater while in place
(i.e., underground) [871]. The authors were driven into the parallel do-
main due to the intensive computational requirements of their technology
model, which incorporates important factors affecting the bioremediation
process. They create a pMOEA called the GENeral Multi-Objective Pro-
gram (GENMOP). Chromosomes contain auxiliary genes devoted to ob-
jective function values, Pareto-ranking, and problem-specific factors, but

8.4 pMOEAs From the Literature 465

these auxiliary genes are not involved in either crossover or mutation. Their
pMOEA executes using RedHat Linux and MPI enabling parallel compu-
tation among 32 Aspen dual 1 GHz Pentium III processors, each with
1GB memory. GENMOP was deemed useful for selecting their technology
model’s parameter values.

8.4.2 Island pMOEAs

The following briefly describes key elements of known island pMOEA imple-
mentations in the literature, highlighting key algorithmic issues and selected
comments by the authors.

• In the earliest reported island pMOEA a vehicle scheduling problem for
Venice’s urban public transportation system is successfully solved [78]. Al-
though the authors did not execute their algorithm on a parallel computer
they did implement an island pMOEA construct on a single processor and
their effort is thus included here. Local geographic selection, which is an
EVOP based on some particular spatial structure imposed over the pop-
ulation, is used within each island. With local geographic selection the
probability of two individuals mating is a fast-declining function based on
the “geographical distance” between them. Thus, islands are defined based
on the distance from their internal solutions to those within other islands.
Individuals are placed on a toroidal grid with one individual per grid inter-
section point; selection takes place locally on this grid as each individual
competes with its nearby neighbors. Specifically, a solution finds a mate
during a “random walk” beginning at its current location. Once a mate is
identified the solution with the best fitness value is selected.
The authors note their adoption of local geographic selection is specifically
due to its applicability within multiobjective optimization. They state this
particular EVOP is a niching technique used as an alternative to fitness
sharing; they believe it naturally creates niches without the difficulties
of problem-dependent parameter tuning. They also employ tournament
selection to complement local geographic selection but only about 15% of
the time.

• An island pMOEA is used to find acceptable solutions in multiple points
airfoil designs [1281]. As does the preceding implementation, local geo-
graphic selection is employed by placing individuals on a 1-D or 2-D 16×8
toroidal grid. The author suggests that although preliminary tests show no
clear advantages of one grid dimensionality over the other, it does appear
a correlation between the number of objectives and the grid’s cardinal-
ity exists. It is observed that in this particular problem, distributing the
objective evaluations on all available processors is efficient only when all
individuals have an equal computational cost of determining their associ-
ated objective values. The CPU time needed for a single CFD simulation
widely varies between different design geometries, thus causing possible
unequal processor loading.

466 8 MOEA Parallelization

A distributed-memory 64-node Cray T3D computer is used. Its architec-
ture enables shared arrays to store the population, which is immediately
updated as new individuals are evaluated. This implementation thus re-
quires no generational synchronization, allows processors to be maximally
utilized, yet limits interprocessor communication to database updates. The
author reports linear speedup and claims test results prove a high compu-
tational efficiency can be obtained on massively parallel computers. How-
ever, he notes this claim is valid only if the problem size is small enough
to completely reside within one processor, which may well not be the case
in large CFD problems.

• This same parallel MOEA is later applied to two other aerodynamic design
optimization problems, again on a Cray T3D [1282]. The authors again ob-
serve that CPU loads for different CFD simulations may be quite different
so synchronization problems may well result between processors at gen-
eration’s end. Shared arrays store the population, limiting interprocessor
communication to database updates, as each computational node holds
a copy of the flow solver along with all data necessary to produce a con-
verged solution. Their experiments used 128 nodes for 8- and 16-generation
pMOEA runs, and 32 nodes for another 16-generation pMOEA run.

• An island pMOEA is used in solving a rotor-blade design problem [970].
Neural networks are employed in developing causality relations facilitating
problem decomposition; optimal solutions are then obtained by solving a
number of coordinated (smaller) subproblems. Once these subproblems are
generated each is assigned to a different island and evolves in parallel for
some fixed number of generations. Changes in one island’s designs are then
communicated to other islands through the migration process. However,
the authors state manual intervention is necessary to coordinate solutions
in different islands as decoupling is seldom complete. Execution ends when
some user-defined decision point is satisfied.

• An island pMOEA is employed in optimizing aerodynamic structural de-
signs [402]. The authors’ experience in solving aerodynamic optimization
problems leads them to conclude algorithmic parallelization is often re-
quired to achieve “reasonable” computation time. Additionally, they find
pMOEAs generally outperform conventional serial MOEAs in many differ-
ent applications. The pMOEA is implemented on nine Ethernet-connected
workstations using MPI; a separate computational process (an individual
MOEA) manages each deme, which may be only one of several resident
on a single processor. Exchange of genetic material occurs only through
migration and occurs to/from a deme’s nearest neighbors (North, South,
East, and West) only. A toroidal array is used to minimize communication
cost.
The authors conclude that given a dedicated parallel computer with one
process per processor, global instructions achieve synchronized exchange of
individuals along rows and columns, thus greatly reducing communication
overhead. The authors also find their pMOEA is far more efficient than

8.4 pMOEAs From the Literature 467

a serial version (as one would expect) even though population sizes are
identical.

• Object recognition problems are attacked by an island pMOEA [20, 22].3

This implementation stores each randomly initialized, equally-sized sub-
population as an array of individuals; each individual is assigned fitness
based on Pareto rank. These fitness values are then used in deriving a fit-
ness value for each subpopulation, each of which is then randomly paired
for crossover and mutation operations resulting in two new subpopulations.
Unique to this pMOEA is that selection is performed at the subpopula-
tion level – the fitness of the original and newly-created subpopulations
are compared and the two subpopulations with highest fitness kept.

• An island pMOEA is employed in solving constrained placement, facility
layout, and Very Large Scale Integration (VLSI) macro-cell layout genera-
tion problems [1449]. Although the authors term their creation a “stepping
stone” model closer examination reveals it as an island implementation.
Their model’s name is selected to reflect periodic migration of individuals
between islands, or “stepping” between them.
The pMOEA’s islands are each composed of 10 individuals, however, each
island uses differing parameters (e.g., mutation frequency, ratio of muta-
tion to recombination) and mating strategies. The algorithm is executed
on a 16-node Motorola MPC 601 processor network. The authors report re-
sults competitive with those resulting from other approaches taking longer
to execute and requiring specialized tools.

• Although the authors report using a master-slave pMOEA in optimizing
wing shape for transonic flow conditions [1307], their approach is classified
as an island pMOEA due to the authors’ explicit definition of islands and
migration strategies. Their implementation is named the Virtual Subpopu-
lation Genetic Algorithm and incorporates a finite-difference, full-potential
flow solver for objective function evaluation.
pMOEA execution begins by distributing all population members across
a single toroidal grid. Islands are created by defining logical boundaries
and selection occurs via a process termed a “random walk.” From some
initial point, two random walks (of some number of steps) are taken. The
individuals located where the random walks end become parents. To im-
plement a migration strategy the random walks are allowed to cross island
boundaries based on some given probability function.
The pMOEA is implemented using native UNIX processes and executes on
an SGI Power Challenge with 16 processors, an architecture allowing data
to be copied to/read from shared memory. One node is designated as the
master processor; the population is then split into subsets and assigned
to slaves (the islands). The master processor waits for all evaluations to

3 Note that regardless of the papers’ titles, of the two given cites the former only
alludes to the authors’ pMOEA. All details discussed here are drawn from the
latter citation.

468 8 MOEA Parallelization

complete (one generation) before synchronizing processes; the authors note
this implementation is effective only when each processor has an equal
computational load, else efficiency is lost as the master stalls each gen-
eration waiting for outstanding evaluations to complete. Of note is the
authors questioning the use of subpopulations in multiobjective optimiza-
tion because they observe any advantages to be strongly dependent on
the problem at hand. They feel it might be useful in some situations but
not in their particular problem, due to limits on the maximum number of
objective function evaluations allowed.

• Another island pMOEA is used in solving numeric optimization prob-
lems [139, 903].4 It is implemented in MATLAB with interprocessor com-
munication handled via PVM. The authors mention their algorithm can be
alternatively implemented using a master-slave model but they are unclear
as to whether this was ever accomplished.
A Linux PC and 3 Sun SPARC workstations were used in their exper-
iments. The authors report that (as expected) quicker run-times and a
better Pareto optimal set representation resulted with their approach.

• An island pMOEA designs models for use in solving a fault diagnosis prob-
lem [1060] where the authors allow for the possibility of seeding the initial
population. Through experimentation they determine fastest results for
this problem occur when using seven islands and conclude their pMOEA
converges faster than a serial version.

• An earlier described pMOEA [1282] instantiation is used in textile machine
guide construction and manufacture [1089]. Although the authors report
implementing only a serial version their code does allow for parallelization.
This algorithm is apparently only one of several variants embedded in
an overall simulation framework implemented in Java, which the authors
selected because of its multithreading features.

• Some researchers target a military application with an island pMOEA, at-
tempting to optimize a flare pattern to be effective against multiple threat
types and angles of attack, as opposed to solution approaches focusing on a
single flare pattern performing well against a single threat at a single angle
of incidence [213, 1373]. This pMOEA incorporates very detailed infrared
seeker and missile simulation models in computing objective functions.
The authors use a 380-bit chromosome, giving about 2.4× 10114 possible
solutions. They report being forced into using a pMOEA implementation
due to the very large search space and computationally expensive objective
functions.
Initial experimentation indicated simulation times ranging from 20 minutes
to 4 hours for a single objective function evaluation, implying a single
pMOEA run taking between 180 days and 6 years. The authors felt an
island pMOEA model best-suited for the purpose at hand as no node syn-

4 Note the former citation is most likely written in German; attempts to verify this
with the authors were unsuccessful.

8.4 pMOEAs From the Literature 469

chronization is required and only low-bandwidth gene pool information is
transferred between islands.
An existing DEC Alpha network is utilized as the computational platform;
inter-node communication uses the standard Network File System. Up to
18 processors are utilized (16-500 MHz and 2-275 MHz). A “gauntlet”
approach is employed to further speed objective evaluation. This approach
first prioritizes all objectives by importance, thus forming the gauntlet.
After the first objective is evaluated for each solution, subsequent tests
(on the lower priority objectives) are not evaluated if the current test fails
some user-defined criterion. As each objective may have largely disparate
evaluation times (and 12 objectives were used) this novel approach appears
quite effective in sparing unneeded computational expense and focusing on
the most important factors.

• The Distributed Genetic Algorithm, applied to solving numeric opti-
mization problems, is actually an island pMOEA and classified as such
here [686]. Although reportedly executed on only a single processor this
MOEA’s extension to the parallel domain is easily accomplished. In this
implementation, sharing occurs not only within each island but through-
out the entire population and is performed when the number of “frontier”
solutions (|PFknown |) exceeds some user-defined cardinality.
The authors state that distributing the population among islands leads to
high solution accuracy and that the “sharing effect” leads to high diver-
sity among solutions. However, although their pMOEA (with ten islands)
executes more quickly than one with a single island, solution diversity is
found to be less. Although not employed here the authors suggest using
dynamic load balancing in appropriate situations.

• A similar pMOEA named the Divided Range Multi-Objective GA is also
applied to solving numeric optimization problems [688]. Here, the overall
population is sorted by objective function values (f1 first); N/m individu-
als (where N is the population size) are then selected based on f1’s value.
These individuals are placed in an island. This process then repeats for the
f2, f3, . . . , fk functions. There are thus m separate islands, each executing
for a set number of generations, at which time all solutions are placed
together and the process repeats.
The authors favorably compare their pMOEA’s results to those derived
via both a “typical” island pMOEA and a serial (one population) MOEA.
Their implementation executes on a PC cluster system using five 500 MHz
PII processors (each with 128 MB of memory), the Linux operating system,
a Fast Ethernet TCP/IP network, and the MPICH communication library.

• An island pMOEA named “Parameter Free” GA is applied to solving
numeric optimization problems [1434]. The authors use parallel processing
in the aim of reaching “better” solutions “faster” than those found by
sequential processing; they expect this result due to the extended search
space exploration performed when several processors are simultaneously
used. The authors employ and compare four pMOEA variations that differ

470 8 MOEA Parallelization

in island connectivity. The pMOEA executes on eight processors connected
via local-area networks and uses PVM for communication; dynamic load
balancing is also employed. The authors are pleased with the pMOEA’s
results when applied to a benchmark problem set.

• The authors apply Jones and Crossley’s simple GA [805], Vicini’s Distrib-
uted Genetic Algorithm (DGA) [1647], and their Divided Range Multi-
Objective Genetic Algorithm (DRMOGA) to block layout problems
[1682]. These problems are selected as they observe test functions used in
evolutionary multiobjective optimization studies are almost always con-
tinuous problems. They claim the DGA produces “calculation waste” in
that some islands might discover identical Pareto solutions, but that their
DRMOGA reduces that waste. Their experiments execute on a 4-node PC
cluster where each node is a Pentium II 400MHZ with 128 MB memory,
each hosting a separate island. A rather superficial treatment of experi-
mental results is presented.

• An island pMOEA is the vehicle used to investigate possible benefits of
an asynchronous migration scheme [705]. The authors believe synchronous
migration introduces migrants to a population before search converges,
thus destroying good schemata and making it harder to generate better
ones. Additionally, their algorithm does not require identification of effec-
tive migration parameters and topologies. They propose migration from
and to subpopulations only when their native solutions have converged;
migrants are then selected from the subpopulation with the “most dif-
ferent” individuals. The authors define measures determining convergence
and difference, and use four test functions in judging performance when
implemented on a PC cluster. They report experimental results of three
test problems gave no significant differences between asynchronous and
synchronous implementations, but the asynchronous pMOEA obtained a
better Pareto front representation, and performed better overall, when
applied to their fourth test problem.

• The Multi-Objective Genetic Algorithm with Distributed Environment
Scheme (MOGADES) is proposed in [817]. Some of the authors of this app-
roach were involved with the development of DRMOGA [1682], results of
which were somewhat disappointing when compared to other MOEAs. In
MOGADES, each island has a different weight parameter (since it employs
a weighted-average approach), and elite and Pareto archives. MOGADES
incorporates search mechanisms of both the SPEA2 [1775] and NSGA-II
[374]. As it executes, solutions with top fitness values are preserved in the
local elite archive; locally Pareto optimal solutions are stored in the local
Pareto archive. After each migration event each island’s weight is changed
based upon the population’s current values and the distance between the
best individuals in both the current and next island in the logical topology.
MOGADES is tested with two numerical MOPs and results compared to
those of SPEA2 and NSGA-II.

8.4 pMOEAs From the Literature 471

• A specialized island pMOEA is implemented and demonstrated using a
three objective MOP, but it must be noted the algorithm is only loosely
based on the island paradigm [1715]. The authors’ implementation divides
an EA into some number of sub-EAs, where each sub-EA is specialized to
solve a modified MOP by searching with respect to a subset of the original
k objective functions. They liken their pMOEA to a generalized version
of VEGA, however, they are silent as to whether or not VEGA’s short-
falls and criticisms remained equally valid with respect to their algorithm.
Seven scenarios were tested with differences in the number of sub-EAs
used, migration strategies, and objective function subsets.

• The authors use a modified version of PGAPack in their pMOEA im-
plementation used to investigate MOEA scalability in the context of de
novo peptide identification [1049, 1050]. Their interest in using pMOEAs
for this particular application arises from three major issues: Many ex-
isting algorithms used in this problem domain are very computationally
expensive; algorithms may not be working with complete (or sufficient)
information to satisfactorily determine possible solutions; and many al-
gorithms have difficulty generating candidate solutions satisfying problem
constraints. The authors implement a ring-based island model incorporat-
ing local search; at each migration interval each island sends one member
to its left neighbor in the ring and replaces that individual by the incoming
immigrant from its right. Pareto ranks are computed separately on each
island. The algorithm is executed on a Terascale HP cluster composed of
1.5 GHz Itanium 64-bit dual-processor workstations, linked by a Quadrics
QSNet 1 interconnect. One, two, four, and eight islands are used in testing.
Although each island may have a different population size each overall test
uses the same total population size.

• López Jaimes and Coello Coello [1010, 1011] propose an approach called
Multiple Resolution Multi-Objective Genetic Algorithm (MRMOGA),
which consists of a pMOEA based on the island paradigm, with hetero-
geneous nodes. The main idea of this approach is to encode the solutions
using a different resolution in each island. Then, variable decision space is
divided into hierarchical levels with well-defined overlaps. Evidently, mi-
gration is only allowed in one direction (from low resolution to high resolu-
tion islands). A conversion scheme is required when migrating individuals,
so that the resolution is properly adjusted. MRMOGA uses an external
population, and the migration strategy considers such population as well.
The approach also uses a strategy to detect nominal convergence of the
islands in order to increase their initial resolution. The rationale behind
this approach is that the true Pareto front can be reached faster using this
change of resolution in the islands, because the search space of the low
resolution islands is proportionally smaller and, therefore, convergence is
faster. This issue was originally identified by Parmee and Vekeria [1251]
when they used an injection island strategy to solve a single-objective en-
gineering optimization problem. MRMOGA was implemented in a cluster

472 8 MOEA Parallelization

with 16 nodes (with 2 processors per node) and 2Gbytes of memory per
node. Each processor was an Intel Xeon, running at 2.45MHz, linked with
FastEthernet and using MPICH 1.12 as its communications library (un-
der Red Hat Linux 3.2.2.5). This approach was validated using several
test functions taken from the specialized literature, and results were com-
pared with respect to a parallel version of the NSGA-II [374] (pNSGA-II).
The results indicated that MRMOGA outperforms the pNSGA-II, with
a more significant difference as the number of processor increases (with
one processor, the NSGA-II outperforms MRMOGA in all the test prob-
lems adopted). This performance improvement is even more remarkable in
problems with very large search spaces.

• Streichert el al. [1528] suggest a divide-and-conquer approach to paral-
lelizing MOEAs which aims to improve the speed of convergence beyond
an island model MOEA with migration parameters. They limit subpop-
ulations to specific regions and implement zone constraints based upon
the dominance principle using k-means cluster centroids. With real-valued
representations, one-point crossover, and self-adaptive mutation, they em-
ploy this cluster-based parallelization scheme for the NSGA-II [374] and
statistically compare it to four alternative MOEA parallelization schemes
on four standard multiobjective test functions. The hypervolume metric is
averaged over 25 runs. Results with this performance measure over their
test functions indicate that the other (less complicated) island approaches
are statistically equivalent, but for complex real-world problems the pro-
posed approach may produce some performance benefit.

• Xiong and Li [1718] developed a parallel Strength Pareto Multi-objective
Evolutionary Algorithm (PSPMEA) in Java. PSPMEA is a parallel com-
puting model designed for solving multiobjective optimization problems
using both global parallelization and island parallel GA models. Each is-
land subpopulation evolves separately with different crossover and muta-
tion probabilities, but all use binary tournament selection. The islands
exchange individuals with an elitist archive using a dynamic island migra-
tion frequency and associated number of individuals. Each island GA can
be steady-state or generational. The benchmark problems adopted to val-
idate this approach include convex, non-convex, discrete, multimodal and
non-uniform test problems such as those discussed in Chapter 4. Experi-
ments indicate that the proposed method with three islands can rapidly
converge close to individual Pareto optimal fronts with regard to the hy-
pervolume metric. This performance is due in no small measure to the
global nondominated archive, size = 100. As to efficiency, no relative time
data was given, but 250 generations were indicated. Both these values were
used in serial SPEA2 [1775] experiments whose results are being compared.
It is worth noting that Gonzalez et al. [594] proposed a parallel structure
for the SPEA2 different from the one adopted in this paper.

8.4 pMOEAs From the Literature 473

8.4.3 Diffusion pMOEAs

The following briefly describes key elements of known diffusion pMOEA imple-
mentations in the literature, highlighting key algorithmic issues and selected
comments by the authors.

• In the earliest reported diffusion pMOEA, solutions to a robot task and
route planning problem are generated [768]. The approach is classified as
a diffusion pMOEA because the authors assign a logical structure to their
processors and allow recombination only within a given neighborhood.
Although originally “solved” using a panmictic population model they felt
the serial MOEA took too long to run and thus implemented a parallel
version. The pMOEA’s population is mapped onto a ring topology where
each individual may choose a mate from some local neighborhood (in this
case set to a total of eight neighbors). Thus, neighborhoods overlap and can
then exchange genetic information. While varying population size from a
minimum of eight to a maximum of sixty, experiments showed the pMOEA
to be at a minimum 15 times faster than the original panmictic population
version.
The pMOEA is executed on a MultiCluster 2 system with thirty-two T800
processors. With this parallel architecture a neighborhood size of eight re-
quires a maximum communication radius of two nodes, thus helping min-
imize communication costs. Finally, the authors believe their algorithm’s
speedup is nearly proportional to the number of processors employed and
that their implementation is scalable.

• A diffusion pMOEA solving a sensitivity analysis problem is notable as it
is one of very few pMOEA citations to explicitly discuss algorithmic oper-
ation [1382]. Selected details are noted here to allow better comprehension
of this implementation’s operation.
The randomly generated initial population (x1, x2, . . . , xn) is spatially dis-
tributed with each member xi residing on a unique vertex in a square
lattice. Recombination and selection are accomplished as follows. For each
xi a random neighbor xj is chosen; these individuals are then crossed to
produce an offspring yi. Then, for each xi, if yi is better than xi, xi = yi.
Lastly, xi is mutated. All individuals in the population are operated upon
simultaneously. The authors hypothesize that as genetic information is
only locally exchanged, allelic diversity is maintained at a higher level
than in a “standard” MOEA, and thus gives rise to a niching effect as
different population “areas” converge to different optima. This pMOEA
utilizes Pareto dominance but does not calculate the Pareto rank of each
individual in the traditional manner (i.e., by comparing each member’s
objective function evaluations to every other’s). Here, dominance is used
only in the local comparisons between two population members. The au-
thors compare the results of two diffusion pMOEA variants (distinguished
by mutation occurring before and after replacement) with a panmictic

474 8 MOEA Parallelization

sharing MOEA, finding both pMOEAs execute faster and require fewer
generations to achieve convergence.

• A diffusion pMOEA evolves prognostic models predicting whether patients
suffering from an uncommon form of cancer might survive [1078]. The au-
thors claim an advantage of distributed populations is different local niches
emerging, representing different ways of trading off the various objectives.
This pMOEA is a close variant of the one just discussed [1382]. The au-
thors state that a square lattice geometry is typically used in diffusion
GAs as it is simple to program and easy to execute on parallel computers.
Thus, they randomly generate an initial population and place it on a 13
by 13 square lattice connected at its opposing edges resulting in a toroidal
topology. For each population member xi, a random neighbor xj of xi is
selected. The two solutions (xi and xj) are then crossed to produce yi,
which is then mutated to produce zi. Then, for each xi, if zi is better than
xi xi = zi.
In trying to improve their results by applying a simple hillclimbing heuris-
tic, evolved solutions are somewhat less robust than those derived via their
pMOEA alone. It is worthy of note that the authors report upon show-
ing their pMOEA’s results to decision makers, “too many” viable options
were produced. Further heuristic application is then indicated to prune
the discovered possibilities.

• A pMOEA capable of arbitrarily scaling between the island and diffusion
paradigms is named the Parallel Evolutionary Multiobjective Optimiza-
tion using Hypergraphs EA (PMOHYPEA) [1087]. It uses a hypergraph
representation of the population. The authors recognize that unless fitness
function evaluation times are constant, the target multiprocessor architec-
ture is homogeneous in terms of computing capability, and processors are
connected by a homogeneous communication network, the highest PMO-
HYPEA efficiency can be reached only with some effort on the researcher’s
part. The algorithm is based on the NSGA-II and is tested with several
well-known test functions.

• Lim et al. [995] present an efficient Grid Enabling Hierarchical Parallel Ge-
netic Algorithm framework (GE-HPGA). The grid computing framework
is developed using standard grid technologies, and has two distinctive fea-
tures: (1)an extended GridRPC API to conceal the high complexity of
the grid environment, and (2)a scheduler for seamless resource discovery
and selection. To assess the practicality of the framework, a theoretical
analysis of the possible speedup offered is presented. The authors also
present an empirical study focused on the GE-HPGA using a benchmark
problem, and a realistic aerodynamic airfoil shape optimization problem.
The computational environment involved diverse grid environments having
different communication protocols, cluster sizes, processing nodes, and at
geographically disparate locations. Operators and parameter values were
one-point crossover with probability 0.9, uniform mutation with probabil-
ity 0.01, a subpopulation of size 50, a maximum generation count of 100,

8.5 pMOEA Analyses and Issues 475

and migration interval of five. Results with 28 heterogeneous processors
indicate that the GE-HPGA offers a credible framework for providing a sig-
nificant speedup to evolutionary design optimization. Of course, speedup
can be attained as long as appropriate bounds on fitness function cost,
cluster size, and communication overheads of the grid environment are
satisfied.

• Nebro et al. [1176] introduce a new cellular genetic algorithm for solving
multiobjective continuous optimization problems, a multiobjective cellu-
lar genetic algorithm (MOCell). Their approach is characterized by us-
ing an external archive to store nondominated solutions and a feedback
mechanism in which solutions from this archive randomly replace existing
individuals in the population after each iteration. Testing was with both
constrained and unconstrained problems from the ZDT problems and the
WFG toolkit (see Chapter 4). Results were compared against NSGA-II
[374] and SPEA2 [1775]. Preliminary experiments indicate that MOCell
obtains competitive results in terms of convergence, and it clearly statisti-
cally outperforms the other two compared MOEAs concerning the diversity
of solutions along the Pareto front. Metrics employed were the generational
distance (GD), the spread, and the hypervolume measurement (see Chap-
ter 5).

8.5 pMOEA Analyses and Issues

This section presents a qualitative analysis of currently known pMOEA re-
search. Relevant meta-level topics are addressed, highlighting several issues
that are treated lightly or even ignored in the literature. Detailed discussions
of pMOEA suitability, hardware/software, test suite, metric, and parameter
issues then follow. The section concludes by broadly discussing major factors
to consider when developing, implementing, and analyzing pMOEAs, as well
as identifying important issues currently unexplored by the field.

In fact, a quick review of Section 8.4 shows a total of only eight master-
slave, eighteen island, and three diffusion parallel MOEAs. As over 2500 total
MOEA citations are known as of this writing (end of 2006) [266], one sees less
than 1.2% of the total MOEA research effort devoted to parallel implementa-
tions. This result is somewhat surprising due to the fact that so many MOEAs
are used in solving engineering applications (often which have inherent compu-
tationally expensive objective functions) that obviously stand to benefit from
parallelization. Additionally, as earlier stated, parallel computing capability
has become more and more accessible. One might then think more researchers
would be employing parallel implementations in the search for more effective
and efficient MOEAs but this appears to not be the case. However, it is inter-
esting to note that of the twenty-nine known parallel MOEAs, two are devoted
to solving scheduling applications, five to numeric optimization problems, and
twenty-two to solving design & engineering problems.

476 8 MOEA Parallelization

8.5.1 pMOEA Observations

Active research interest in pMOEAs is continuing to slowly improve [266].
However, many researchers may not be seriously pursuing pMOEA techniques
because of various complexities involved in detailing parallel and distributed
computation. Thus, discussion in this section and the following sections at-
tempts to motivate a broader interest in developing pMOEAs by providing
appropriate insight.

Although many approaches use a master-slave pMOEA to speed complex
objective function evaluations, island pMOEAs are the most popular, just as
is the case with parallel single-objective EAs [204, p. 49]. Why is this paradigm
so popular? Is it because pMOEA developers love to fiddle with inputs and pa-
rameters? If so, this paradigm certainly gives many knobs and dials to turn, as
beyond the usual EA parameters there exist those such as deme size, number
of demes, deme interconnection topology, migration rate (how many individ-
uals migrate and how often), identifying which individuals migrate, and those
which are replaced. Another possible reason for this paradigm’s popularity
may be the island model’s ease of implementation due to the easy integration
of legacy MOEA code. Additionally, little interprocessor communication may
be necessary, at least as compared to the other paradigms.

Note that current pMOEA papers generally fail to address the theoretical
development of either the algorithm(s) contained within or their specific paral-
lel aspects. Little or no discussion exists of why the selected pMOEA appears
most appropriate for solving the given MOP. Additionally, few papers make
any effort to explain why the MOP was even suitable for a parallel algorithmic
solution. Few or no details regarding communication topology, migration, or
selection are presented. A well-engineered pMOEA may likely be a “good”
(in theory) integration of the problem and algorithm domains, which can be
then fine-tuned for even better results. However, without adequate discussion
of the utilized pMOEA and the MOP being solved one cannot evaluate the
algorithm’s quality or performance.

Few publications exist in which researchers adequately address pMOEA
implementation concepts. Additionally, many important implementation de-
tails are generally missing. No clear explanation or justification for this situa-
tion is apparent. No theoretical or practical studies are yet known comparing
the efficiency and effectiveness of major pMOEA paradigms when applied to
the same problem or some test suite. These contributions are essential to sup-
port well-informed pMOEA implementation decisions. Additionally, the lit-
erature lacks sufficient background details, statistical studies comparing and
contrasting results, and suitable metrics for use in judging pMOEA perfor-
mance. These concepts are addressed in the following sections.

8.5.2 pMOEA Suitability Issues

pMOEAs currently give spectacular results in several disparate engineering
design fields (at least according to their developers), but little or no dis-

8.5 pMOEA Analyses and Issues 477

cussion regarding the application’s suitability for solution with a pMOEA is
available. This begs further explanation of salient details from the problem
and algorithmic domains, e.g., the factors making the problem so computa-
tionally expensive and the rationale for selected data structures. Search space
discussions range from nonexistent to providing little insight. Is global knowl-
edge of other solutions required in determining some solution’s fitness? Is
the value of one candidate solution dependent upon that of another? For a
given problem certain solution restrictions or manipulations may be required;
global knowledge of all evaluated solutions to date (i.e., clone avoidance) may
be desired in attempts to improve performance. Background information such
as this is vital in understanding both the applied pMOEA and its resulting
performance.

Developers must closely examine the problem domain before selecting and
implementing a pMOEA to ensure their expended effort has some promise of
good or improved performance. One should carefully consider whether con-
ditions are suitable for a pMOEA to (probably) find better solutions than a
serial MOEA, just as one would do when pondering using a MOEA vice a
single-objective EA. In some cases pMOEA implementation may be obvious,
as when optimized parallelized code already exists for computationally expen-
sive objective function evaluations. Given that code’s existence, splitting the
evaluations between processors using a master-slave approach seems obvious,
but on the other hand, if a researcher can only access a network of worksta-
tions, then an island approach may be better as communication costs can be
held to some desired level. This example illustrates that the researcher’s goals
and/or available computational platforms may be the deciding/limiting fac-
tors in selecting a suitable pMOEA paradigm for their particular application.

Sound engineering principles should be employed when implementing
pMOEAs. A structured development approach emphasizes the careful inte-
gration of problem domain specifications with the algorithm domain solution,
thus, initial efforts should be focused towards studying and understanding all
relevant facets of the problem at hand before detailed algorithmic integration,
execution and refinement (discussed in Section 8.6). These are the details now
generally lacking in the literature yet are necessary for a better understand-
ing of how to develop effective and efficient pMOEAs. If researchers begin to
share their thoughts and decision-making processes regarding these pMOEA
development issues, others can then profitably use that knowledge to improve
results of their own applications.

8.5.3 pMOEA Hardware and Software Architecture Issues

Parallel and distributed EA/pMOEA references often indicate immersion in a
particular problem environment or broadly discuss possible application areas.
Such presentations are too superficial to be of much help in detailed implemen-
tation decisions, thus, prospective pMOEA developers should consult defini-
tive detailed documents, texts, and experts specializing in appropriate areas.

478 8 MOEA Parallelization

In other words, detailed pMOEA implementations generally require interdis-
ciplinary team effort in order to obtain desired performance objectives. For
example, algorithmic characteristics such as data collection and interchange
options, network dynamics, temporal characteristics, remote execution, and
security issues lie in or cross several computational domains and require expert
input to ensure effective and efficient products.

Standard parallel computer architecture models include Single Instruction,
Single Data stream (SISD), Single Instruction, Multiple Data stream (SIMD),
and Multiple Instruction, Multiple Data stream (MIMD) [926]. SISD archi-
tectures are standard single processor computers. Each processor in a SIMD
architecture executes an identical broadcast instruction on different local data;
this architecture might be useful for a diffusion pMOEA. MIMD architec-
tures are useful for executing different EA/MOEAs with different data. Most
MIMD homogeneous architectures and associated compilers reflect a distrib-
uted memory structure, this being probably the “more” generic environment
for master-slave, island or hierarchical pMOEAs. Computational platform
selection should also address the issue of shared memory in Symmetric Multi-
Processor (SMP) architectures versus distributed memory in other architec-
tures. Moreover, Internet implementations should be considered for pMOEA
implementations using emerging computational grid concepts [810].

As described, various MIMD architectures are used in current pMOEA
implementations. For example, master-slave and island model pMOEAs im-
plementations in the literature are executed on distributed and shared memory
systems for a multitude of providers. These range from large mainframes to
heterogeneous computational grid of workstations, from large LINUX clusters
to personal computers with multiple duo-processors. Master-slave, island, and
distributed paradigms can be implemented on each. The increasing integrated
chip speed and capability along with improved communication backbone per-
formance continues to improve computational performance. This phenom-
enon should provide improved multiprocessor computational capabilities at
the desktop, thus permitting in the future the local solution of more and
more complex MOPs using MOEAs.

Common sense dictates some pMOEA paradigms are better-suited for ex-
ecution on one given multiprocessor architecture than another. For example,
diffusion pMOEAs can use a much greater number of SIMD processors (say
greater than or equal to 128) for effective operation than other paradigms. An
island pMOEA may execute quite well using as few as 4 processors. Thus, re-
searchers’ access to specific parallel computational platforms may well initially
limit their choice of pMOEA paradigm(s) to employ. Consider also that the
platforms’ computational capabilities have tremendous bearing on pMOEA
performance, both effectiveness and efficiency. These capabilities include pro-
cessor speed, cache and local memories, and communication backbones. Com-
monly used high-speed backbones include Ethernet, Fast-Ethernet, Gigabit-
Ethernet, Myrinet, Wulfkit, and the Fiber Distributed Data Interface (FDDI).
These backbones connect processors in physical or logical geometric structures

8.5 pMOEA Analyses and Issues 479

such as rings, meshes, toruses and hypercubes. Their associated communica-
tion software is then generally tuned or optimized for the given hardware
configuration. Although users have parameter control over such variables as
buffer size and placement, execution speed, protocol use, and so on, optimizing
those values for a pMOEA application likely requires an expert.

From a programming standpoint, the choice of implementation language
(e.g., FORTRAN-90, High-Performance FORTRAN, C++, C#, XML, etc.) is
beyond this discussion’s scope. Such decisions depend upon the individ-
ual programmer’s knowledge, expertise, and specific computational hard-
ware/software environment. Moreover, as previously discussed, interfacing
existing physical model simulation packages to a pMOEA may require knowl-
edge of different language communication interfaces. The novice pMOEA
developer should study the many programming languages as well as available
parallelizing tools that might be appropriate for the specific problem domain.
Also, note the problem domain model’s execution efficiency can depend upon
the individual language compiler(s) and parallel communication library(ies)
available in a given computational environment.

Interprocessor exchanges can be implemented via communication libraries
such as the Message Passing Interface (MPI) [1230], or other specialized soft-
ware such as the Parallel Virtual Machine (PVM) [549] or Open-MP [222]. All
include communication routines that are readily incorporated into pMOEA
implementations. Many are portable across a wide variety of homogeneous or
heterogeneous parallel computer architectures or SMPs. Note the above are
only some of many possible methods for controlling pMOEA execution; oth-
ers normally associated with distributed systems include C++ sockets, JAVA,
JAVA RMI (Remote Method Invocation), DCOM (Distributed Component
Object Model), and CORBA (Common Object Request Broker Architecture),
all of which use multi-threading middleware communication techniques [1042].
These protocols are constructed in a hierarchical fashion above the specific
communications backbone. Associated middleware communication libraries
may also open the Internet or other heterogeneous computational grids and
sub-networks for pMOEA execution [517].

In order to have transparency at the level of implementation with com-
puter languages and parallel communication libraries, a distributed MATLAB
approach is suggested. This offers an easier but efficient method of using a
pMOEA, although computation time could be longer than tuned parallel code.
A distributed MOEA approach would employ the MATLAB distributed com-
puting toolbox, together with the MATLAB distributed computing engine,
which allows the execution of MATLAB code, either as a series of distributed
tasks or as a parallel program, on a cluster of computers. A set of jobs is de-
fined on a client machine using the distributed computing toolbox, and a job
scheduler then sends tasks to a set of distributed nodes each having the MAT-
LAB distributed computing engine installed. The primary advantage of using
a MATLAB multiobjective evolutionary algorithm toolbox such as GEATbx

480 8 MOEA Parallelization

in this distributed mode is that code can be run simultaneously on several
nodes in one of the three parallel paradigms.

As a specific example, observe that the choice of heterogeneous or ho-
mogeneous systems requires careful consideration. In the reported case of a
heterogeneous Sun workstation cluster, the master-slave pMOEA distributes
one solution per workstation for evaluation; the master processor collates re-
sults and executes the algorithm’s control components [1518]. A major issue
faced by this pMOEA’s designers is the network’s heterogeneous composition
(different workstation models and configurations) that gives rise to disparate
machine performance. Additionally, the network’s protocol automatically sus-
pends remote computations when a user physically logs into that machine. The
user also has the option of terminating any remote computations executing on
their system. Thus, to deal with possibility of widely varying objective evalu-
ation times and externally suspended or terminated evaluations, the authors
implement unique pMOEA extensions to solve generational synchronization
issues.

See Table 8.1 for a succinct listing of the major issues delimiting homoge-
neous and heterogeneous systems. Although considerable references are pro-
vided here, this general discussion of parallel hardware/software possibilities
emphasizes the need for collaborative research when addressing high perfor-
mance pMOEA design and implementation.

8.5.4 pMOEA Test Function Issues

pMOEA implementations are tested in order to evaluate, compare, classify
and improve algorithm performance. Observe that these comparisons should
mainly focus on the pMOEA’s effectiveness and efficiency and not on which
algorithm performs “best” on a particular problem. Valid tests may include
pedagogical MOP test functions, a pMOEA test suite, combinatoric multiob-
jective problems, benchmarks, MOPs, and/or real-world problems. However,
before constructing such tests one should first search the literature and evalu-
ate historical test function use, test generators, and/or well-known real-world
applications. Many researchers have already spent considerable time on con-
structing, evaluating and analyzing various MOP test suites [361, 1626]. MOPs
may have a spectrum of characteristics that lend themselves to parallelization,
which should be included in any specific pMOEA test suite.

Appropriate pMOEA tests should be developed and evaluated based upon
validated assumptions, computational platform selection, available statisti-
cal tools, metric selection, and experimental design; this is most definitely
an on-going process. Therefore, considerable effort must be spent not only
in defining/generating proper tests, test suites, and experimental processes,
but also in selecting appropriate test metrics and their associated statisti-
cal validations/comparisons. Statistical validation can be based upon max,
min, mean, hypothesis testing, confidence intervals, student T-testing and
Kruskal-Wallis testing [1668] (see Chapter 5). This point is stressed as many

8.5 pMOEA Analyses and Issues 481

researchers identify statistical analyses of results as being extremely impor-
tant, yet such analyses are still often lacking from many current EA, MOEA,
and in particular, pMOEA publications [361, 581].

Many pMOEA research efforts initially select continuous numeric MOP
functions as examples to show or judge algorithmic execution performance.
In order to appreciate the rationale for such selections, a suitable discussion
of MOP landscape issues is required along with explanations of why the se-
lected MOPs may or may not be appropriate pMOEA test functions. MOP
characteristics for discussion include objective function structures and com-
plexity, constrained and unconstrained genotype/phenotype formulations, and
the impacts of numerical approximation of continuous forms.

pMOEA Prototype Test Suite

Since general test suite “pros and cons” and guidelines for construction are
extensively addressed in Chapter 5, only a brief highlight of major issues ger-
mane to pMOEA test functions is presented. To set the stage, note Holland’s
statement that

using “sample” pedagogical problems is of little use in understanding
EA performance when employed in solving complex real-world engi-
neering, scientific design, and analysis problems [700].

In other words, sample problems are useful in comparing various EA per-
formances, but those results may not provide useful insight into real-world
EA applications due to problem domain characteristics and complexities. The
same applies to MOP test functions used in comparing pMOEAs, thus, one
should be very careful in defining and selecting MOPs for inclusion in some
test suite. Moreover, the No Free-Lunch (NFL) theorems imply that if problem
domain knowledge is not properly incorporated into the algorithm domain no
formal assurances of the algorithm’s general robust effectiveness exist [1708].
The NFL theorems additionally imply that incorporating too much problem
domain knowledge into a search algorithm reduces its effectiveness on other
problems outside that particular class; perhaps even within the class, robust-
ness suffers!

Numeric test functions can be suitable representatives of real-world con-
tinuous MOPs. Currently, many modeled real-world problems are defined by a
mathematical functional structure using a single optimization criterion. MOPs
arguably capture more information about the modeled problem as they allow
for incorporation and simultaneous consideration of several problem charac-
teristics. Regardless, accurately modelling a real-world problem may involve
several numeric or combinatorial functions, perhaps simple or perhaps com-
plex. An MOP may contain continuous, discrete, or integer-constrained func-
tions, or even a mixture of these types. Any acceptable test suite must then
contain problems reflective of these aforementioned characteristics and possi-
bly related to a selected complex application domain.

482 8 MOEA Parallelization

Since general MOEA test suite “pros and cons” and guidelines for construc-
tion are discussed in Chapter 4, the unique development of testing benchmarks
for pMOEAs is addressed in this section. As discussed in Chapter 4, sample
problems are useful in comparing various EA performances, but those results
generally do not provide useful insight into real-world EA applications due to
problem domain characteristics and complexities. The same applies to MOP
test functions used in comparing pMOEAs, one should be very careful in
defining and selecting MOPs for inclusion in some test suite. Moreover, the
No Free-Lunch (NFL) theorems imply that if problem domain knowledge is
not properly incorporated into the algorithm domain no formal assurances of
the algorithm’s general robust effectiveness exist [1708]. The NFL theorems
additionally imply that incorporating too much problem domain knowledge
into a search algorithm reduces its effectiveness on other problems outside
that particular class; perhaps even within the class, robustness is sacrificed.

The MOEA research community continues to create and validate various
test suites as discussed in Chapter 4; the pMOEA community is only begin-
ning to develop such suites. It is not immediately clear that the test functions
so far employed in the current MOEA literature are appropriate for inclu-
sion in any generic pMOEA test suite. The community generally accepts that
MOEAs are useful search algorithms when the problem domain has numer-
ous decision variables and the search space is very large. But in the current
literature many numerical examples do not explicitly reflect this multidimen-
sional decision variable criteria. Additionally, of the many distinct pMOEA
numerical test MOPs currently known, most use only two objective functions.
This situation implies that unless the MOP’s search space or landscape is very
large, pMOEA performance claims and comparisons based on these functions
may not be meaningful when considering real-world problems. The pMOEA
may be operating in a problem domain not particularly well-suited to its capa-
bilities or perhaps in one which is not challenging. For example, in his study of
parallel single-objective EAs, Cantú-Paz was forced to construct artificial test
functions; solving the initially selected functions in parallel did not provide
enough computational loading to provide meaningful results regarding paral-
lel speedup [204]. The same may well be true for MOEAs. Existing MOP test
suites may be too simplistic to indicate likely pMOEA performance. The key
is applying a pMOEA in a problem domain the algorithm is well suited for,
one that may be much “harder” than some current test MOPs.

Researchers should also incorporate additional guidelines (suggested by
Whitley et al. [1701]) in their generic test suite development (note the guide-
lines’ extension into the parallel domain):

• Some test functions are resistant to simple search strategies; parallel ap-
proaches may yield “better” results.

• Test suites contain nonlinear, nonseparable, and nonsymmetric prob-
lems requiring the increased computational resources available in parallel
processing systems.

8.5 pMOEA Analyses and Issues 483

• Test suites contain problems with increasing genotype dimensionality.
• Some test suite problems have scalable evaluation cost; this cost may also

be separated and calculated on multiple CPUs.
• Test problems have a canonical or natural representation allowing easy use

by a generic pMOEA.

In general, researchers should include functions both easy and hard for
a pMOEA to solve. This helps identify the strengths and weaknesses of a
pMOEA and possibly the particular parallel paradigm utilized. For example,
one pMOEA strength might be directing an entire island (subpopulation) to
focus on each promising search space area. Some problems might be solved
more effectively by high inter-island communication; conversely, some prob-
lems might be hampered by that same high communication rate. Obviously,
future research is needed in order to characterize function classes in which
multiple populations are advantageous [204, p. 139].

Selecting appropriate test functions for testing and comparing pMOEAs
is a difficult task. Numerous factors must be considered. The MOEA commu-
nity has largely agreed on utilizing a variety of problems from two proposed
test suites; several researchers are extending the state-of-the-art in this area
and their efforts are continuing [361, 374, 1626, 1630, 720]. Many researchers
agree that these test suites, composed of MOPs exhibiting various genotypical
and phenotypical characteristics, are useful in making generalized statements
about MOEA performance in solving MOPs. However, if the test’s goal is
to illustrate performance on a specific type or class of problem then the test
suite should only be composed of MOPs from that class. These test guidelines
and objectives are also applicable in pMOEA comparisons, thus, to better
understand and validate any future pMOEA test function choices a limited
historical perspective is presented.

Binh and Korn [139, 903] use three constrained and three unconstrained
test functions but give no discussion regarding their suitability for pMOEA
testing. All six problems have two objective functions and two decision vari-
ables. Sawai and Adachi [1434] use nine “classic” single-objective EA test
functions (or close variants thereof); they note five of these were used in an
international Evolutionary Computation contest. Again, no discussion as to
their suitability for pMOEA testing is included. All of these problems use
two objective functions and have two cases in which one case uses five de-
cision variables and the other case ten. Hiroyasu et al. [687] implement five
constrained test functions; two are three objective and all use two decision
variables. Again, little discussion is offered regarding problem characteristics
or function suitability for testing. Hiroyasu et al. [688] use four constrained
test problems; three have two objective functions and one has three. Two
problems have two decision variables; the other two have N (with the value
of N not stated). They claim these functions address some range of easy
to hard problems, but leave it unknown and unstated how this is true in a

484 8 MOEA Parallelization

parallel sense. No one in the current literature has yet specified what problem
characteristics might be pMOEA easy or hard.

Kirley [862] states his selected test problems represent two extremes: one
relatively easy (with a convex Pareto front) and the other very difficult (with
a multimodal front). Both of these unconstrained functions use two objective
functions and are created using Deb’s methodology [361]; one has fifty decision
variables and the other one hundred. Again, it remains to be clarified as to
whether a problem easy for a MOEA is also easy for a pMOEA. Finally, Zhu
and Leung [1767, 1768] use three test problems, two of which are created with
Deb’s methodology [361]. Each function has two objectives where one uses
three decision variables and the other two use thirty. Although the phenotype
domain (Pareto front) is complex in these tests, observe that the genotype
domain (Pareto optimal solution set) reflects a quite simple structure. Thus,
although a wide variety of test functions are currently employed their use is
not well-substantiated.

Based on the preceding discussion several known functions appear appro-
priate for initial pMOEA experimentation. Do not treat these suggestions as
gospel; these functions must undergo extensive use and examination before
inclusion in a permanent pMOEA test suite. Initially selected are uncon-
strained functions in order to clearly concentrate on pMOEA performance
and not muddy the issue with questions regarding constraint-handling tech-
niques. Subsequently, constrained functions and benchmark problems, as well
as real-world MOPs, must also be selected in order to better determine overall
pMOEA performance. Pedagogical, medium-, and large-dimensionality prob-
lems should be selected to stress tested algorithms.

8.5.5 pMOEA Metric/Parameter Issues

Is there any “real” difference between various pMOEA implementations? Does
a given implementation generally perform better than another? These ques-
tions have no simple answer. Keeping the NFL Theorem in mind [1708],
the lack of universal metrics prevents directly comparing different pMOEAs
solving identical problems. Thus, appropriate measures or metrics must be
selected and/or developed in order to analyze pMOEA efficiency and effec-
tiveness when applied to a given test suite or application.

A major focus of current MOEA research efforts is identification of suitable
metrics “truly” reflecting some code’s efficiency/effectivess; several authors
(see Chapter 5) propose and support using specific metrics to analyze and
compare general MOEA performance. These metrics are not perfect, often due
to the fact they are single-point mappings of multiple values. Taken in isolation
they can easily mask or inflate some MOEA’s true performance, although
certain metrics are identified as better than others in certain situations [874].
However, as much as one might wish for mathematical certainty, as long as a
derived/known Pareto front can be visualized, pMOEA effectiveness may still
best be initially observed and estimated by the human eye and brain.

8.5 pMOEA Analyses and Issues 485

As the known pMOEA publications give no recommendations regarding
specific metrics to use in analyzing pMOEA performance or in comparing var-
ious pMOEA instantiations, some MOEA metrics are then obviously useful
and relevant when extended to pMOEA performance measurements [874, 883].
These include both relative and exact metrics dependent upon knowledge of
PFtrue . These metrics analyze PFknown’s cardinality and its associated disper-
sion through objective space. The reader should consult appropriate references
as the selection of meaningful metrics depends upon the specific MOP being
solved. Note also that additional metrics are necessary to analyze pMOEA
performance in a parallel sense, so one can determine if any efficiency im-
provements exist as compared to a companion MOEA or single-objective EA.
Taken together, proper metrics then indicate some pMOEA instantiation’s
utility when applied to a particular problem class.

Major parallel domain factors affecting execution time and/or resulting
performance are the number of solution evaluations (problem size) and hard-
ware/software system architecture, including memory size and the number of
available processors. An additional factor affecting efficiency is the scheme
employed to transfer problem data to and from the processors. Several gen-
eral parallel computation metrics already exist and are commonly used by
researchers to aid in measuring and judging some parallel implementation’s
performance. For example, the speedup metric captures the relative benefit of
solving a problem in parallel [926]. Ts denotes the execution time of the fastest
known serial (one-processor) MOEA implementation; of course one may not
know the fastest true implementation. Tp denotes parallel run time and is
the execution time for a given pMOEA implementation assuming identical
processors and input sizes (search space size or number of evaluations). The
speedup metric is then defined as S = Ts/Tp [926, p. 118].

Scaled speedup, efficiency, cost, scalability and isoefficiency are also impor-
tant metrics measuring parallel algorithm, and thus pMOEA, performance.
Scaled speedup is defined as the speedup obtained when the size of the given
problem is increased linearly with respect to the number of processors [926,
p. 144]. Efficiency is a measurement of the fraction of time a processor is
conducting work; it is calculated as the ratio of speedup over the number
of processors [926, p. 120]. A pMOEA’s cost for solving an MOP is defined
as the product of parallel execution time and the number of processors uti-
lized [926, p. 120]. A cost-optimal pMOEA is found when the parallel cost of
solving an MOP is proportional to the execution time of the fastest-known se-
quential algorithm on a single processor [926, p. 120]. Scalability indicates the
pMOEA’s ability to increase its speedup as the number of available proces-
sors is increased [926, p. 128]. Finally, the isoefficiency metric determines how
well a pMOEA maintains a constant efficiency and increases speedup as the
number of employed processors increases. Such metrics can also be modeled
by equations using detailed communication backbone values resulting in a
symbolic complexity function useful for comparison with empirical measure-
ments [926]. All these metrics are important when analyzing overall pMOEA

486 8 MOEA Parallelization

performance. The pMOEA community must incorporate these metrics into
their analyses to support any conclusions that a pMOEA achieves improved
statistical performance versus that of a serial MOEA. Other relevant per-
formance metrics and evaluation techniques may be found in the abundant
parallel and distributed programming literature.

As for current state-of-the-art, note that few known pMOEA papers
report performing formal parallel experiments and analyses, let alone their
details. In fact, only two papers present a speedup graph charting their res-
ults [1769, 591]. Better understanding of the various pMOEA paradigms’ effec-
tiveness and efficiency, or that of some specific pMOEA instantiation, can only
come through well-planned experimentation and extended statistical analysis
of results.

Metrics specific to the parallel paradigm implemented may also be required
when analyzing pMOEA results. For instance, the speedup metric applies to
any of the paradigms, but if an island paradigm is utilized, one may wish
to measure each deme’s performance, the migration scheme’s effectiveness,
and/or some other measure specific to the island paradigm. Note the process
of suitable pMOEA migration and replacement strategy selection is largely
unaddressed and unanalyzed. Although Cantú-Paz presents a thorough analy-
sis of several migration and replacement schemes for parallel single-objective
EAs he does not address their extension to the multiobjective arena [204].
Effective single-objective EA/pMOEA schemes may radically differ and thus
impact performance if unwisely employed.

The current situation does not allow for determining statistical perfor-
mance differences between pMOEA implementations, not even how they per-
form when applied to some standard test suite. Additionally, it is readily
apparent in studying the known citations that no de facto pMOEA parameter
set (parameters, not their values) exists for reporting purposes. To clarify this,
realize that for result reproducibility and comparison purposes most (MO)EA
citations report key parameter values, e.g., crossover and mutation rates, se-
lection methodology, etc. Few citations make any attempt to formally report
these parameter values specifically describing a pMOEA implementation [688];
other papers might mention some subset of these parameters but do so only
in passing.

Table 8.2 proposes key computational reporting characteristics for those
researchers interested in exploring pMOEAs. Although all parameters are per-
haps not always relevant, some subset is certainly necessary for a fuller un-
derstanding of the particular pMOEA paradigm selected, for repeatability of
previous results, and for comparison purposes. Interesting comparisons might
include determining the efficacy of MPI or PVM in a given pMOEA, or per-
haps the performance of a master-slave and island pMOEA applied to the
same MOP.

Another issue concerns reports of superlinear speedups in certain pMOEA
experiments (e.g., [1769]). Claims of superlinear speedup (where parallel ex-
ecution time is reduced by a factor greater than the number of employed

8.5 pMOEA Analyses and Issues 487

Table 8.2. Key Parallel Computational Characteristics

Key Characteristic Description

Computer Machine name (e.g., LINUX Cluster)

CPU CPU Type(s) (e.g., Pentium 2.4 GHz)

Nodes Number of CPUs (e.g., 8, 16, 32, . . . , 256, . . .)

Memory Memory per Machine (e.g., 256 GB)

Operating System Name/Version (e.g., Red Hat Linux vx.x)

Communication Network Network (e.g., Ethernet)

Communication Library Library (e.g., MPICH vx.x)

processors) causes controversy. It is suggested that in general, fair compar-
isons between serial and parallel EAs may only result from each algorithm
giving identical results; as EAs are stochastic algorithms comparisons should
perhaps be based on expected solution quality. The above citation does not
clearly state whether these considerations are taken into account. Cantú-Paz
addresses the superlinear speedup issue in some detail [204, pp. 114-117].
Many researchers report superlinear speedups when parallelizing their EAs;
one might expect pMOEA researchers to do the same. However, the real is-
sue lies within comparing the serial EA’s effort versus that of the parallel
EA’s. For example, one might attribute superlinear speedup to the fact that
a pMOEA finds better solutions by examining a different number of solutions
than a serial MOEA, or through the use of smaller phenotypical regions for
parallel search.

To clarify the issue further, Cantú-Paz follows Punch [1302] and argues
the main reason to distrust superlinear claims is that if one was to execute
all of a parallel program’s tasks using threads on a single processor, the total
execution time cannot be less than that of a serial program performing the
same computations [203]. The underlying assumption in these superlinear
speedup claims is that the serial and parallel programs are executing the
exact same tasks, which is typically not true for parallel EAs or pMOEAs.
Researchers must be careful in utilizing parallel metrics to compare pMOEA
performance.

A pMOEA’s deterministic “work” can be argued to equal an associated
serial MOEA’s. The number of fitness evaluations can be equal and identical
chromosomes could be created. Depending upon the objective function’s com-
plexity one may then obtain performance close to linear speedup. However, an
island or diffusion paradigm’s implementation requires statistically uncorre-
lated random number generators and the resulting landscapes are completely
different than that of some serial MOEA. A pMOEA may then find better
or equivalent solutions faster or possibly slower. Researchers should be very
careful in claiming their pMOEAs exhibit superlinear speedup as the basic
speedup metric may be ill-advised for most pMOEA paradigms. They should
also clearly explain exactly what they are comparing in their speedup calcu-
lations.

488 8 MOEA Parallelization

8.6 pMOEA Development Issues

The preceding discussion lays a foundation to now address pMOEA devel-
opment in some detail, whether one is building the parallel algorithm from
scratch or modifying an existing (MO)EA. Obviously, the first question to
ask is whether or not a MOEA is even suitable for solving the given MOP.
If the answer is affirmative, one then thoroughly studies the MOP to deter-
mine whether a pMOEA truly appears the best algorithmic choice to generate
candidate solutions. One must establish the particular conditions in which a
pMOEA is likely to perform better than any algorithmic alternatives; if these
conditions can’t be easily determined it is then likely a pMOEA is not worth
the time and trouble of implementing for solving this MOP.

Given that a pMOEA does appear appropriate the logical flow of an overall
design strategy is illustrated in Figure 8.10. In a nutshell, an MOP solution
process is seen as the study and specification of the problem domain (i.e., the
problem’s data structure(s)), study and specification of the algorithm domain
(i.e., the problem’s control structure(s)), integration of the two domains, and
subsequent refinement to evolve an effective and efficient software design.

�� ��Problem Domain Decomposition

�� ��Algorithm Domain Decomposition

�
�

	

Problem & Algorithm

Domain Integration

�

�

�

�

�

Iterate
And
Refine

Fig. 8.10. Problem-Algorithm Domain Interaction

Serious consideration of the problem domain is the first step. Issues for
examination here include data input/output, various constraints on solution
states, and the set of candidate solutions. One must also consider whether
candidate solutions meet constraint criteria (feasibility), how to extract one
or more promising feasible candidate solutions (selection), how to define ac-
ceptable solutions (the solution set), and whether members of that set satis-
factorily reflect the selected optimization criteria (the objective functions).

The next step considers the algorithm domain and is primarily concerned
with input set(s) of candidates, output set(s) of solutions, and partial-solution
set(s), those “working” solutions created/identified/tracked during algorithm
execution. One should ensure the MOP is most suitable for attack by the EA
class instead of some other (e.g., random search, branch and bound, depth-
first search, breadth-first search, etc.). Any existing algorithm (with single or

8.6 pMOEA Development Issues 489

multiple objective functions) already being used to solve the MOP should also
be mined for lessons learned. Other significant algorithm domain issues are the
allowable or desirable operations upon candidate solutions; within pMOEAs
these are the EVOPs.

After accomplishing these steps an intelligent decision can be made regard-
ing the applicability and ease of implementing/employing a pMOEA. By this
point one must surely know if the MOP lends itself to parallelism. Further-
more, although it appears MOPs of any complexity can be efficiently solved
via the master-slave pMOEA paradigm, one must still understand the prob-
lem formulation and related details to see if additional parallel techniques or
paradigms might be more fruitfully applied to produce better results.

Problem and algorithm domain integration is next. This step is where any
necessary refinement occurs; the end result is a direct mapping of low-level
designs to some selected computer language. But the pMOEA development
process is not yet complete! Possibilities for error exist in any creative hu-
man endeavor and as a consequence, implemented code should be thoroughly
checked for correct operation over the range of potential inputs. Algorithm re-
finement is another must. However, note that variations in algorithmic imple-
mentations may well imply different problem domain designs and structures;
the reverse also holds. Thus, a series of data and control structure refinements
may be required in order to reach an efficient and effective computer language
implementation, which is this process’ overall goal.

When considering data structures, the data required to compute objec-
tive function values, and when/where that data is needed during code execu-
tion, one must carefully examine how problem data may be assigned to and
transferred between processors. The parallel system’s architecture and com-
munications backbone have significant impacts on interprocessor data transfer
rates. One pMOEA paradigm may utilize them more efficiently than another
can. Perhaps not obvious at first, the problem data’s storage and transfer, as
well as its temporal and physical requirements, also impact a pMOEA’s effi-
ciency and effectiveness. The integration step is where one should determine
the best data and control structure(s) for the available parallel architecture(s).
Of course, if only one parallel architecture is available the choice of structures
and eventually the implemented pMOEA “flavor” may be constrained.

Instantiated pMOEAs may well benefit from applying one of the many
available static or dynamic processor scheduling and load balancing tech-
niques, e.g. [441, 926]. As pMOEAs are more often applied to real-world sci-
entific and engineering problems where objective function calculation time is
quite significant, these scheduling heuristics become more and more impor-
tant [190].

One should also examine current utilization trends of the targeted paral-
lel system. For example, many High Performance Computing (HPC) centers
limit the number of processors or amount of wall-clock time some particu-
lar process may consume. These limits are often dependent on the number
of users currently utilizing the system and the priority of currently running

490 8 MOEA Parallelization

projects. These are important issues as researchers may find greater overall
processing time available on a local cluster than on an HPC supercomputer.
Even though an HPC facility may have more computational resources and
greater raw processing power, the amount of work one may actually see their
program complete in a given time at an HPC may be orders of magnitude
less than the same program executed on a local cluster. This is not meant to
discourage utilizing HPC resources but instead to aid researchers in making
educated decisions regarding specific computational platforms to utilize.

In general, several issues arise during pMOEA design and implementation
not particularly relevant to parallel single-objective EA development; they
present additional challenges for researchers already familiar with parallelism
and MOEAs. Some are initially discussed in Section 8.3 regarding specific
pMOEA paradigms. These and other issues, and suggested solutions, are pre-
sented below in order to better the problem and algorithm domain integration
process.

Researchers should note that no currently known studies (either theoreti-
cal or practical) compare or contrast the major pMOEA paradigms’ efficacy
in solving various test or real-world problems. Any guidelines suggested here
must then be taken with a grain of salt. As with any parallel algorithm de-
velopment one must carefully consider the issues raised by the proposed ar-
chitecture’s communication backbone and physical capabilities. Although the
literature is largely silent on this point one must also examine how paralleliza-
tion affects MOEA performance. For instance, are more evaluated solutions in
a given length of time desired (a master-slave implementation) or is the focus
on discovery and exploration (what solutions arise from several simultaneously
executing MOEAs in an island implementation)?

The following discussion gives general guidelines for implementing one of
the major pMOEA paradigms given some specific system configuration. Re-
searchers may also possibly utilize these ideas to combine concepts from mul-
tiple paradigms into a new pMOEA.

8.6.1 pMOEA Creation Options

Based on the assumption a pMOEA is desired and well-suited for solving some
MOP, four major development options exist.

1. Parallelize an Existing MOEA. Parallelizing working MOEA code is
an attractive option. The process of efficiently parallelizing an existing
MOEA does involve knowledge of parallel processing techniques, parallel
routines and libraries, and the major pMOEA paradigms. However, by
applying the concepts presented in this discussion collaborative developers
can then intelligently extend existing MOEAs into the pMOEA domain.

2. Utilize Existing pMOEA Code. Researchers may utilize existing
pMOEAs in order to reduce algorithmic development time (or cost). While
in general this seems a good idea caution is required. Sound engineering

8.6 pMOEA Development Issues 491

practices are recommended when modifying an algorithm to operate in dif-
ferent problem domains, as well as in different parallel environments. The
key issue is understanding the MOP at hand and pMOEA (the problem
and algorithm domains) and the physical computational platform; with-
out that understanding adapting a pMOEA to effectively and efficiently
solve a new MOP is unlikely.

3. Design a New pMOEA. Designing and implementing a new pMOEA
is an exciting opportunity. This process allows more freedom in code im-
plementation (e.g., ignoring pre-existing data structures) and also allows
for incorporating interesting search concepts and new EVOPs. A new de-
sign could possibly provide efficient execution across a variety of parallel
architectures but does involve a development time cost.

4. Extend an Existing Parallel EA. Extending a proven existing parallel
EA to a pMOEA may appear relatively easy but in actuality is a process
requiring much thought. Modifying a parallel EA to utilize additional
objective functions may not be difficult, however, incorporating migration
and replacement schemes as well as other EVOPs (e.g., niching) are not
trivial tasks.

8.6.2 Master-Slave Implementation Issues

The master-slave pMOEA may be the simplest to understand and implement
(see Section 8.3.1 for details). Generally used for splitting objective function
evaluations among several processors (see Figure 8.4), this paradigm appears
especially useful for computationally expensive objective function evaluations
(e.g., those often found in CFD/CEM problems and where parallel codes may
already exist). Sub-problems may also be solved by separate slave processors
with final values being coordinated/computed by the master processor.

Implementation details are relatively minor. One should first determine
that objective function calculations are suitably complex to justify pMOEA
implementation. This can easily be done by comparing the wall-clock time (es-
timated or actual) required to compute objective function values for the entire
population against the communication time spent by all processor units. The
issue here is ensuring each processor receives enough work so that communi-
cation costs do not overwhelm computational costs. Using equation (8.1) this
is determined by ensuring in a given generation that

PTc <<
n
∑k

i=1 Tfi

P
. (8.6)

In other words, additional processors are useful only to the point that each
processor’s idle time remains small compared to the interprocessor commu-
nication time. If a processor is starved for work or its computational time
is of the same magnitude as the communication time necessary to conduct
the work in parallel, a performance degradation may then result compared
to the serial implementation. Figure 8.11 presents the experimental results of

492 8 MOEA Parallelization

a two-node island implementation with each island using from zero to eight
slave nodes (termed farming nodes in the experiments) for calculating objec-
tive function values.5 The y-axis shows execution time and the x-axis shows
the test number, where the test’s required execution time increases with each
test.

In the figure, one sees a significant decrease in processing time as the
number of slave nodes per island goes from zero to one. This is due to the
large computational effort necessary to complete objective function calcula-
tions now being shared by more processors. As the number of slave nodes per
island increases to two and four, further minor improvements are seen even
as interprocessor communications time becomes a larger share of the overall
execution time. However, the increase from four to eight slaves is detrimental
as execution time becomes worse than in the single slave case. At this point
communication expenses are overwhelming computational costs due to the
population’s partitioning across the slaves. With more slaves in each island
node, each is evaluating fewer members, and communication time (overhead)
becomes a larger percentage of the total execution time. This results in each
slave being under-utilized.

Fig. 8.11. Island Paradigm Execution Time Example

Generational synchronization should not be a large issue as the typical
master-slave approach evenly distributes population members across all slaves.
5 The reader is referred elsewhere for the experimental details; the results are im-

portant here because of what they illustrate [347].

8.6 pMOEA Development Issues 493

Each receives a (set of) chromosome(s) along with other necessary parameters;
each slave returns k objective function values for each chromosome, resulting
in relatively small data sets passing between the master and slaves. However,
researchers must note the worst case synchronization time in generational
master-slave pMOEAs is equal to the evaluation of the most “computationally
expensive” individual on the slowest processor used. If solution evaluation
costs vary widely among utilized processors, idle processor times ranging from
seconds to hours could result.

8.6.3 Island Implementation Issues

The island paradigm may be implemented in numerous ways but is gener-
ally used to simultaneously execute several individual MOEAs. This is per-
haps most useful for concurrently examining different areas of the search
space or a larger amount of the search space in the same wall-clock time
as a serial MOEA, for investigating effects of varied algorithmic parameters
(e.g., population size and EVOPs), and/or to determine how employed mi-
gration/replacement policies affect the MOP solution process.

When considering communication costs it is instructive to look at the
island paradigm’s extremes. One end of the spectrum is represented by sep-
arate MOEAs simultaneously executing on some number of processors with
no communication occurring between nodes until each MOEA completes and
its respective PFknown is transmitted to process “0;” these local sets are com-
bined to arrive at the global front discovered. The other extreme occurs when
each processor performs a one-to-all broadcast of each population member’s
chromosome and fitness at each generation’s end. The former option makes no
use of the information available to improve search; the latter is overwhelmed
with the global ‘state of affairs.’

A more typical implementation involves periodic migration of selected in-
dividuals among selected processors throughout algorithm execution. This can
be conceptually viewed as a single pMOEA population divided among numer-
ous processors. An identically-sized population as some typical serial MOEA
can reside on each processor to keep pMOEA run time approximately the
same as its serial counterpart. This is not a requirement, however, and pop-
ulation size can be set to whatever number of individuals is indicated. Basic
migration and replacement schemes have been discussed in numerous parallel
EA papers; the interested reader is referred to Cantú-Paz’ thorough study for
further information and background [204].

It must be noted that implementing pMOEA migration and replacement
strategies is far more complex than for parallel EA instantiations, which may
explain why the known literature fails to address these issues in any de-
tail. While these topics may seem easy in concept, in actuality, a number
of pMOEA-related issues arise making them more complex. A discussion of
all possible single-objective EA schemes is not presented here due to the large

494 8 MOEA Parallelization

number of possibilities and because there are MOEA-specific issues making
some irrelevant.

Numerous pMOEA migration schemes and subsequent replacement strate-
gies are available. A variety of these are structurally different from one another
and are thus classified as such in this presentation. Table 8.3 presents a concise
listing of potential pMOEA migration schemes and some of their attributes;
analogous replacement schemes are presented in Table 8.4. Note that both mi-
gration and replacement focus on each islands’ local Pareto front (PFcurrent),
as identifying an approximation of PF ∗ is the raison d’etre of (p)MOEAs. As
each Pcurrent contains locally known optimal solutions they must be the focus
of identifying the appropriate information to share between islands. Note also
that these identified strategies apply to each utilized processor.

Table 8.3. pMOEA Migration Schemes

Scheme

Attributes Selection
Pressure

Elitist (random) Migrate a random sample of individuals
(equal to some percentage of the popula-
tion) from PFcurrent

(
p

t bm x

)
Relatively
High

Elitist (niching) Migrate a “uniform” distribution of individ-
uals (equal to some percentage of the pop-
ulation) from PFcurrent

(
p

t bm x

)
High

N
o
n
-

Elitist (front) Migrate the entire local front,
PFcurrent

(
p

t bm x

) High

U
n
if
o
rm

Elitist (front+) Migrate the entire local front,
PFcurrent

(
p

t bm x

)
, plus some number

of randomly selected individuals or some
number of individuals randomly selected
from the ranked Pareto fronts

High

Random Migrate x randomly selected individuals Low
Elitist (random) Migrate x randomly selected individuals

from PFcurrent

(
p

t bm x

)
, randomly selecting

individuals from the ranked Pareto fronts if
necessary

Relatively
High

U
n
if
o
rm

Elitist (niching) Migrate x “uniformly” distributed individ-
uals from PFcurrent

(
p

t bm x

)
, “uniformly” se-

lecting individuals from the ranked Pareto
fronts if necessary

High

In the ensuing discussion a number of parameters may be specified. Two
of most interest here are the number of population members to migrate (x)
and the destination processor(s) (pdest). The former value is of interest as
migrating too many individuals negatively impacts communications cost and

8.6 pMOEA Development Issues 495

may force receiving processors to converge to identical solution sets. A trade-
off must be made between exploration and exploitation; in single-objective
parallel EAs it is typical to migrate a low percentage of the total number of
individuals in the population and there is not immediate evidence to suggest
changing that in pMOEAs. The process of selecting the destination proces-
sor(s) for immigration is also of high interest. As mentioned above, a total
one-to-all broadcast involves every processor migrating individuals to every
other processor but this potentially (probably?) overwhelms the communica-
tions backbone as well as forces all processors to search much the same space.
Conversely, not employing migration defeats the purpose of implementing an
island pMOEA, but not surprisingly, just as is the case with EA parameters
in general, there exists no “best” method for choice of pdest.

For purposes of the following discussion let a given processor have a neigh-
borhood of size N . At specified migration intervals each processor migrates
selected individuals to its N “closest” neighbors. Note the actual definition of
“closest” neighbors often depends on how processors are arranged in various
logical topologies (e.g., ring, mesh, hypercube) or according to a specific phys-
ical hardware configuration. A neighborhood can contain any of the system’s
processors, and can be a static as well as a dynamically changing list.

The migration schemes in Table 8.3 are decomposed into two categories:
non-uniform and uniform. The uniform migration schemes are labeled as such
since a constant number x of population members migrate with each event,
whereas the non-uniform migration schemes involve a varying number of mi-
grating members with each event. Uniform schemes are advantageous in that
the algorithm’s incurred communication costs are consistent and predictable.
However, non-uniform schemes have potential advantages in relation to antic-
ipated pMOEA efficiency and effectiveness.

The simplest scheme to choose migrants is a purely random one, randomly
selecting x population members from a given processor for migration to its
N neighbors. This strategy provides low selection pressure as no guarantee
exists for any members of PFcurrent

(
p

t bm x

)
to be migrated.

This is an obvious option; more thought is required to define and imple-
ment effective migration strategies. Parallel single-objective EA optimization
allows for easy selection of the best x population members or a top per-
centage of the population for migration; these methods are termed elitist.
Migrating the best individuals has an associated high selection pressure as
this method could cause other processors to converge to (closely) identical
solution sets, especially if a destination processor lacks any “better” mem-
bers. But the concept of “best” takes on a different meaning in MOEAs as
there is generally no single best individual solution. Identifying and select-
ing the top x solutions for migration is meaningless within a MOEA as all
members of any given Pareto front are equally optimal (in the Pareto sense).
Thus, one can randomly choose x members from PFcurrent

(
p

t bm x

)
. This is

an elitist random migration method as a portion of the best local members
are utilized. However, this method has the potential to migrate members from

496 8 MOEA Parallelization

only a concentrated region of PFcurrent

(
p

t bm x

)
and hence not provide a good

representation of the current local optimum. An additional problem arises if
if |x| > |PFcurrent

(
p

t bm x

)
|.

In this latter case one can send fewer solutions than |x|, all members of
PFcurrent

(
p

t bm x

)
, migrate PFcurrent

(
p

t bm x

)
plus a random selection of the

remaining population, or migrate all members of PFcurrent

(
p

t bm x

)
plus mem-

bers existing in the successively ranked Pareto fronts until x members are
identified.6 Migrating members from multiple fronts is anticipated to achieve
the quickest convergence due to this method’s “strong” elitism. However, a
possible disadvantage lies in the computational overhead required to deter-
mine successive Pareto fronts until x members are identified. This then adds
to migration’s computational complexity as determining Pareto optimality is
generally of order O(k × n2) [265]. To implement this proposed elitist ran-
dom method, if all x members cannot be found in PFcurrent

(
p

t bm x

)
, the rest

should be selected either randomly from the remaining population or from
the remaining successively ranked Pareto fronts.

Another uniform elitist migration method, termed elitist niching, utilizes
niching in conjunction with individual selection. As opposed to randomly se-
lecting x individuals, niching allows for (the possibility of) migrating a fuller
representation of PFcurrent

(
p

t bm x

)
, not just a localized one. This is accom-

plished by selecting a “uniform” distribution of individuals from the local
Pareto front. If all x members cannot be found in PFcurrent

(
p

t bm x

)
, the rest

are selected from the remaining successively ranked Pareto fronts in the same
manner.

Moving on to non-uniform migration schemes, a conceptually simple
method termed elitist front migrates the entire locally known Pareto front
(PFcurrent

(
p

t bm x

)
) from each processor. This method is non-uniform because

there is no way to a priori determine PFcurrent

(
p

t bm x

)
’s size; it varies both

by processor and by generation. This method has the greatest selection pres-
sure. A modified version of this scheme, termed elitist front+, migrates the
entire local Pareto front with an additional number of solutions either selected
randomly from the remaining population or from the remaining successively
ranked Pareto fronts. This method has the advantage of migrating an elitist
set with some additional individuals for diversity; a disadvantage is unknown
and possibly high communication costs. In an attempt to prevent premature
multiobjective convergence the elitist method with niching (elitist niching)
selects a “uniform” distribution of individuals (equal to some percentage of
the population) across PFcurrent

(
p

t bm x

)
. The elitist random method simply

selects a random number of individuals (equal to some percentage of the pop-
ulation) from PFcurrent

(
p

t bm x

)
.

Regarding these random and niching methods (whether uniform or non-
uniform), note that randomly selecting individuals has the least processing

6 The remaining successively ranked Pareto fronts are determined using the
NSGA/NSGA-II methodology [374, 1509].

8.6 pMOEA Development Issues 497

overhead as niching calculations are not necessary. Niching complexity is high
since some distribution density measure must be calculated for all local Pareto
front members in order to select a “uniform” distribution. Although this com-
plexity may preclude implementing a niching scheme, its potential benefits
may outweigh the additional computational overhead.

Just as multiple pMOEA migration methods exist, so also do multiple
methods for replacing individuals on receiving processors. Replacement strate-
gies generally assume population size remains constant between genera-
tions. Without this requirement each processor’s population size can quickly
grow. Even with a partial replacement scheme, where some number y, y < x
of population members are replaced with migrants and the remaining immi-
grants added to the population, overall population size still increases. So then
does computational cost, especially when dealing with multiple objectives.
Thus, the assumption is made here to hold each processor’s population size
constant. The x individuals replaced on each receiving processor are “thrown
away” after the migration event. Table 8.4 presents a concise listing of replace-
ment schemes holding the greatest potential and some of their attributes.

Table 8.4. pMOEA Replacement Schemes

Scheme

Attributes Selection
Pressure

Random Randomly replace x individuals Low

None No replacement, yields increasing population
size

Medium

Elitist (random) Maintain PFcurrent

(
p

t bm x

)
and randomly re-

place individuals �∈ PFcurrent

(
p

t bm x

) Relatively
High

Elitist (ranking) Rank all Pareto Fronts and replace individu-
als from the “worst” ranked front(s) with the
immigrants

High

Elitist (100%
ranking)

Combine immigrants with the current popula-
tion, rank all Pareto Fronts and remove indi-
viduals from the “worst” ranked front(s)

High

As before, assume each processor has a neighborhood of size N . At spec-
ified replacement intervals each processor replaces selected individuals with
those received from its N neighbors. Just as for migration, the simplest re-
placement scheme is a random one in which immigrants randomly replace
individuals in the target population. This scheme has the lowest selection
pressure as no guarantee exists regarding the quality of solutions being re-
placed, similar to that presented in [204]. For example, a solution might not
be a member of the resulting Pareto front (PFcurrent

(
p

t am x

)
) on the receiving

processor, yet it could potentially replace a solution that would have been on

498 8 MOEA Parallelization

that front. To actually determine that fact requires combining the destina-
tion processor’s population and immigrants, then ranking this newly formed
population. If concerned, researchers may spend some (too much?) overhead
processing to determine this situation’s existence. Otherwise, researchers may
lose desirable solutions and over time the population may then diverge rather
than converge to optimal solutions.

Non-random replacement strategies likely lead to increased execution
times. The major issue with pMOEA replacement strategies really centers
on ranking population members in an efficient manner so an “elitist” replace-
ment strategy can be implemented. Generally speaking, since all processors
perform migration, PFcurrent

(
p

t bm x

)
is already calculated. However, replace-

ment most likely changes PFcurrent

(
p

t bm x

)
on each target processor resulting

in Pcurrent

(
p

t am x

)
. No guarantee exists that the local pre-/post-migration

Pareto fronts are identical, i.e., PFcurrent

(
p

t bm x

)
= Pcurrent

(
p

t am x

)
. Thus,

the question is whether to compute a local front composed of the union of
PFcurrent

(
p

t bm x

)
and the immigrants, or to keep all members belonging to

PFcurrent

(
p

t bm x

)
and replace other individuals. The following replacement

schemes are all elitist as they rely on some type of ranking or replacement to
ensure the best individuals are kept for future generations.

One strategy termed elitist random keeps all members of Pcurrent

(
p

t bm x

)
,

determining which of the remaining population is not Pareto optimal with re-
spect to the immigrants, and then randomly replacing x of those individuals
with the immigrants. A disadvantage of this strategy is computing which exist-
ing solutions’ objective vectors are dominated by the immigrants.’ Addition-
ally, problems arise if the set of remaining members is smaller than the immi-
grant set, i.e., |PopSize− PFcurrent

(
p

t bm x

)
| < |x|. This method does not guar-

antee the worst individuals are removed but does ensure PFcurrent

(
p

t bm x

)
’s

retention.
A strategy termed elitist ranking has increased selection pressure and

replaces individuals constituting the worst ranked Pareto front. Ranking the
fronts increases computational complexity and as before, individuals must be
randomly selected from some front(s) if the number of individuals to be re-
placed does not match the number of individuals represented by the front
being replaced. For example, assume some processor contains four separate
fronts with |F0| = 12 (F0 is PFcurrent

(
p

t bm x

)
), |F1| = 8, |F2| = 6 and |F3| = 4.

Unless x = 4, 10, 18 or 30 some random replacement(s) is then required. This
method provides the greatest selection pressure as the “worst” individuals
are continually removed from the population, however, it likely incurs the
greatest computational/time expense spent in identifying the nondominated
fronts [265]. A slight modification to this method gives elitist 100% ranking in
which immigrants are combined with the current population and the result-
ing population ranked as above to determine all Pareto fronts. The resulting
Pareto front (PFcurrent

(
p

t am x

)
) is kept and individuals in the “worst” fronts

are discarded. This scheme offers a slightly higher selection pressure. Note that

8.6 pMOEA Development Issues 499

problems may arise here if |PFcurrent

(
p

t am x

)
| > |PopSize−x|, i.e., the result-

ing local Pareto front does not leave enough individuals in the population for
discard.

pMOEAs may also employ dynamic migration and replacement schemes.
Dynamic methods have a possible advantage if one has some knowledge of
the fitness landscape or of how one wishes search to progress. The migra-
tion/replacement schemes presented here may also be combined in multiple
ways. Decisions on which schemes to pair are likely driven by their compu-
tational cost, but one must tradeoff this cost against resulting effectiveness
gains. Other EVOPs, such as mutation and crossover, can also be defined a
priori for each island [204] or can dynamically change [18]; different islands
may use static or dynamic settings.

As with many other search algorithms a local search operation such as hill-
climbing may also be utilized. This may increase the quality of MOP solutions
(i.e., PFknown). Periodic use of local search operators throughout algorithm
execution may be beneficial; it remains for researchers to tune their imple-
mentations for their intended applications.

8.6.4 Diffusion Implementation Issues

The diffusion paradigm appears the least discussed paradigm in the EA and
(p)MOEA literature [265]. This is possibly due to its associated complexity
and potentially higher communication costs as compared to the other para-
digms (see Figure 8.8). This model uses one conceptual population distributed
across a number of processors, each typically holding one to a few individu-
als. Topological and neighborhood structures are imposed over the processors
with EVOPs operating only within some specified neighborhood. Due to most
EVOPs’ serial nature, much communication is necessary to execute them as
they may require complete knowledge of an entire neighborhood.

Few diffusion parallel EAs and pMOEAs are found in the literature [204,
p.140]. Much work must yet be accomplished before achieving a good under-
standing of this paradigm’s strengths and weaknesses. This paradigm does
appear a good choice when paired with shared memory and SMP systems.
Furthermore, although no proof is offered, some have suggested this para-
digm allows formation of local niches where each niche represents a different
way of trading off the k objectives.

A basic diffusion paradigm involves a pMOEA executing on a number of
processors where communication is restricted and occurs only between proces-
sors in a specified neighborhood. The neighborhood structure may be static
or dynamically change over time. In either case the neighborhoods overlap to
some degree, allowing for a slow diffusion of desirable individuals throughout
the entire processor pool. The only constraint is that the possibility must exist
for some individual to reach any processor used within a reasonable number

500 8 MOEA Parallelization

of generations.7 The diffusion process continues until some specified stopping
criteria is met.

Shared memory systems are ideal for diffusion pMOEA implementations
as each processor has access to the entire population through a very high speed
backplane, which is likely orders of magnitude faster than any current net-
work communications structure. A disadvantage is that shared memory sys-
tems typically require using propriety communication calls in order to achieve
desired performance levels; these calls cannot be easily ported to other en-
vironments. This may discourage researchers wanting efficient and portable
pMOEA codes.

Implementing a diffusion pMOEA on a shared memory system is fairly
straightforward. Using an SMP-based cluster is a bit more complicated and
should likely use a neighborhood size equal to the number of resident proces-
sors in each SMP unit, allowing one to fully realize the superior communi-
cations backbone capability within an SMP unit. When utilizing a cluster of
multiple networked SMP nodes in executing a pMOEA the communications
picture becomes more complicated, mainly because inter-SMP unit commu-
nication time is much higher than that occurring intra-SMP.

One possible diffusion implementation operates by dividing the population
into small groups of individuals and assigning those groups to different proces-
sors. Another implementation involves a diffusion paradigm operating as part
of an hierarchical pMOEA. With some neighborhood structure imposed on
the overall SMP cluster, an island paradigm treats each SMP unit as a deme,
and a diffusion paradigm operates within any given SMP unit. Other vari-
ants of this general system design are certainly possible. These examples are
provided only to ease understanding of how one might implement an efficient
diffusion pMOEA on a non-shared memory based system.

8.6.5 Parallel Niching Issues

Numerous researchers highly suggest using niching in any (p)MOEA, but how
to optimally implement parallelized niching is a currently open question (e.g.,
see [265, 361]). Parallel niching is addressed here as it is another area of discus-
sion lacking in the current literature, even though the concept is acknowledged
to be of high importance in obtaining high-performance (p)MOEAs.

Niching, crowding, clustering. and σshare are terms widely used within the
MOEA community when discussing the concept of finding a good distribu-
tion of vectors along the Pareto front or solutions among the Pareto optimal
solution set. The many methods for accomplishing MOEA niching are not
discussed in detail here; the interested reader is referred elsewhere [265, 361].

7 In other words, all destination processors must be reachable within a small number
of generations (small as regards the total number of generations during pMOEA
execution).

8.6 pMOEA Development Issues 501

The concept of parallel niching, however, is fairly new. The underlying ques-
tion is how to parallelize niching for pMOEAs and what, if anything, is gained
by doing so.

Niching in either the phenotype or genotype domain involves analyzing
some Pareto front or Pareto optimal solution set, and attempting to achieve
uniform knowledge of the set. In other words, one tries to avoid a clustering
of solutions or vectors in any one particular region. Niching typically occurs
in the phenotype domain since most MOEA researchers desire a uniform dis-
tribution of points along the (known) Pareto front [265]. Phenotype niching
involves removing solutions from a given population, solutions corresponding
to vectors lying within some user-defined distance of others on the Pareto
front. New solutions are then generated in hopes of filling in a sparse frontal
region, i.e., gaining knowledge of a previously or unsatisfactorily unexplored
area of the MOP’s Pareto front. Note that solutions cannot be generated di-
rectly by the process of analyzing some front, selecting a region with a sparse
point distribution, specifying objective function values in that region and then
performing a reverse mapping to find the corresponding decision variable val-
ues. One typically does not know the reverse mapping for objective functions
of any real difficulty. Genotype niching involves analyzing some Pareto opti-
mal solution set and then generating new solutions based on movements away
from previously identified solutions, which is nothing more than a clustering
process [265].

Niching is basically a serial process and is thus difficult to efficiently paral-
lelize. Only a master-slave pMOEA can perform niching in the usual manner;
the other paradigms require different niching processes (implementations). An
island pMOEA offers several niching options. For example, a separate nich-
ing operator can execute on each island. There may be additional utility in
executing a variety of niching operators across the different processors. These
methods do not require extra communication, however, one may well wish
to transmit locally known Pareto front information between (some set of)
processors in an attempt to perform global niching.

Another parallel niching process divides the known front or solution set
into a number of static regions equal to the number of available processors,
so that each processor concentrates search in that specific region. At specified
intervals, the currently known global front is generated by combining currently
known local fronts and the global population is then redistributed according to
the restricted search regions assigned to each processor. This method appears
to be fairly straightforward, but in fact, is so only for those members on the
local Pareto fronts. Dominated members do not map as easily to the imposed
regional structure and then require utilization of some ranking method in
order to determine each processor’s mapping. Ranking the entire population
allows for determining which region each dominated member belongs to. This
method requires additional processing and communication overhead as each
processor’s entire population is redistributed amongst all processors. Another
potential issue encountered here is the possibility for all of the combined

502 8 MOEA Parallelization

populations to be allocated to a single processor; the remaining processors
then receive zero individuals if a static regional scheme is specified a priori. A
simple solution allocates the individuals based on where they currently are in
the landscape, i.e. utilizing a dynamically changing regional structure. This
method may be more useful when employing genotypic-based niching. Here,
one may partition the genotype space into regions and allow the processors
assigned to those regions to explore some space (±ε) outside of the region.
This allows the processors the possibility of finding optimal solutions outside
of the currently known and defined areas.

In order to minimize parallel niching’s communications costs neighborhood
constraints can be imposed on each generation of new solutions. In other
words, a given processor is restricted to generating solutions corresponding
to vectors within its defined region, and continues generating solutions until
enough acceptable ones are generated, discarding the others. This means the
generation of specific frontal areas to analyze is restricted to processors within
a given neighborhood, similar to the diffusion paradigm. This implementation
effectively reduces overall communications costs and allows more of a paral-
lel searching of various frontal areas, but it may increase overall execution
time as each processor must continue generating solutions until it reaches
the specified number of vectors in its region. Another viable method reduc-
ing communications overhead is communicating only every epoch (one epoch
corresponds to a specified number of generations), thereby reducing overall
communications cost yet still achieving the goal of global niching. Dynamic
niching is another promising scheme involving creating variable-sized niches
that (possibly) change over time. Additional constraints must be imposed so
as to focus more on exploring or exploiting during certain pMOEA phases.

When utilizing parallel niching in a pMOEA one must balance the re-
quirements for a satisfactory representation of the Pareto front and Pareto
optimal solution set, and the time required to execute the algorithm. Parallel
niching may improve final pMOEA performance but may also drive com-
munications cost to unacceptable levels if not implemented well, thus, the
underlying hardware and communications backbone must always be carefully
considered. With some forethought the concepts presented here can also be
applied in either the island or diffusion paradigms. With an island pMOEA,
the best choice for parallel niching may be using a local niching operator or
niching operators using different parameter values across the processors. On
the other hand, especially when implemented on some type of shared memory
system, the diffusion paradigm appears well-suited to handle a parallel nich-
ing operation because each processor has fast access to the entire population
and can then perform global niching fairly efficiently.

8.6.6 Parallel Archiving Issues

Archiving strategies are another area of great interest. They have the po-
tential to increase pMOEA efficiency if intelligently addressed. The concept

8.7 A “Generic” pMOEA 503

behind archiving is maintaining a subpopulation or external database of the
best members yet found by the pMOEA. Issues then arise of how to maintain
the archive, how many archives to maintain, and how often to communicate
information between the archives. One method of pMOEA archiving is having
each processor maintain unique archives and at the conclusion of the search
process have one processor combine the archives and present the final Pareto
front or Pareto optimal solution set to the user. More complicated strategies
exist and may increase pMOEA effectiveness, dependent upon their particu-
lar archive use. For those pMOEAs maintaining an archive and actively uti-
lizing an archive(s) throughout the search process, communication between
archives may be beneficial. However, a potential issue arises when combin-
ing the archives each generation, in that this action may lead to pre-mature
convergence in some processors. In terms of actual archive implementation,
synchronization is required to ensure multiple processors do not try and up-
date the archive at the same time, which may increase algorithm execution
time but in certain pMOEAs has the potential to increase their effectiveness.

8.6.7 pMOEA Theory Issues

When considering standard EAs many researchers have contributed to a body
of EA theory regarding a variety of characteristics. Such theory encompasses
issues such as representations, operators, algorithm convergence, equivalence,
etc. Specific theories associated with diffusion and island paradigms relating
to selection pressure and neighborhood size exist. For parallel EAs some ex-
tensions have been made regarding population sizing [204]. For pMOEAs little
has been done except for the population sizing [1788]. The field must develop
formal modelling insights as to pMOEA operator and parameter value impact
as well as the impact of various computational architectures across classes of
MOPs. Use of the notation in Section 8.2 is suggested.

8.7 A “Generic” pMOEA

The previous sections discuss major issues in pMOEA development and test-
ing. A case study is now presented that applies these concepts to create a
generic pMOEA (in that it can be executed in a master-slave, island, or dif-
fusion mode). Note this generic pMOEA’s evolution is an excellent example
of the design strategy suggested in Section 8.6.

Pseudo code for a generic Master-Slave, Island, and Diffusion pMOEA
implementation is presented to provide insight into pMOEA creation using
any of these paradigms. This pseudo code is at a fairly high level as exact
implementation details can vary based on one’s selection of specific EVOPs,
migration and replacement schemes, hardware, parallel libraries, and so on.

In these generic pMOEA formulations the following variables are of im-
portance: p is the process ID, n is number of processes, N is the neighborhood

504 8 MOEA Parallelization

size, P is the Master-Slave’s population, and P ′ is the Island or Diffusion’s
population size (which could be P or P

n). The term process is used instead of
the term processor as multiple processes can execute on a single processor. For
simplicity and generality, it is assumed each process is running on a dedicated
processor (each of equal computational ability) and that the communications
backbone is homogeneous (in terms of bandwidth available for each process).
Note that nothing prevents pMOEA implementation on a heterogeneous clus-
ter or system whose communications backbone provides different bandwidth
to different processors, as long as load balancing techniques are used to max-
imize performance.

Randomly Generate The Population
Randomly Generate Population Of Size P On Processor 0

Evaluate Each Population Member’s Fitness
Send P

n
Population Members To Each Processor From Process 0

Each Processor Conducts k Fitness Evaluations For Each Of The
P
n

Population Members
Each Processor Sends k ∗ P

n
Fitness Values To Process 0

Process 0 Determines PFcurrent (t), Updates PFknown And
Assigns Rank If Necessary

Perform Clustering / Niching / Crowding on Processor 0
Execute Evolutionary Operators (Crossover, Mutation) on Processor 0
Evaluate the New Populations’ Fitness

Send P
n

Population Members To Each Processor From Process 0
Each Processor Conducts k Fitness Evaluations For Each Of The

P
n

Population Members
Each Processor Sends k ∗ P

n
Fitness Values To Process 0

Process 0 Determines PFcurrent (t), Updates PFknown And
Assigns Rank If Necessary

Conduct Selection on Processor 0
Repeat Until Termination Criteria is Met
Conduct Local Search on Processor 0 if Specified
Processor 0 Generates and Presents PFknown as the Solution

Fig. 8.12. Generic Master-Slave pMOEA Pseudo code

8.7.1 Engineering a pMOEA

Goldberg et al. indicated too much attention was being paid to “neat” GA
genotype encodings [585]. They proposed a scheme where genotypes can ex-
hibit redundancy, over- and under- specification, and changing structure and
length, believing this algorithmic modification forms tighter and more useful
building blocks than those formed by standard GAs. Their resultant messy GA
(mGA) proved successful in optimizing deceptive functions; these functions

8.7 A “Generic” pMOEA 505

Randomly Generate The Population
Randomly Generate Population Of Size P ′ On Each Processor

Evaluate Each Population Member’s Fitness
Evaluate Each Population Member’s Fitness on each processor
Each Processor Determines PFcurrent (t), Updates PFknown And

Assigns Rank If Necessary
Perform Clustering / Niching / Crowding on each Processor
Execute Evolutionary Operators (Crossover, Mutation) on each Processor
Evaluate Each Population Member’s Fitness

Evaluate Each Population Member’s Fitness on each process
Each Processor Determines PFcurrent (t), Updates PFknown And

Assigns Rank If Necessary
Conduct Selection on each Processor
Migrate Population Members Among Processes According To Desired Scheme
Repeat Until Termination Criteria is Met
Conduct Local Search on each Processor if Specified
Processor 0 Combines and Presents PFknown as the Solution

Fig. 8.13. Generic Island pMOEA Pseudo code

Randomly Generate The Population
Randomly Generate Population Of Size P ′ On Each Processor

Evaluate Each Population Member’s Fitness
Evaluate Each Population Member’s Fitness on each processor
Each Processor Determines PFcurrent (t), Updates PFknown And

Assigns Rank If Necessary
Perform Clustering / Niching / Crowding on each Processor or

Within the Neighborhood (N)
Execute Evolutionary Operators (Crossover, Mutation) Within

Neighborhood (N) Processors
Evaluate Each Population Member’s Fitness

Evaluate Each Population Member’s Fitness on each process
Each Processor Determines PFcurrent (t), Updates PFknown And

Assigns Rank If Necessary
Conduct Selection Within Neighborhood (N) Processors
Diffuse Population Members Among Processes According To Desired Scheme
Repeat Until Termination Criteria is Met
Conduct Local Search on each Processor if Specified
Processor 0 Combines and Presents PFknown as the Solution

Fig. 8.14. Generic Diffusion pMOEA Pseudo code

misdirect GA search toward some local optimum when the global optimum is
actually elsewhere [585]. The mGA initializes a population of building blocks
via a deterministic process producing all possible building blocks of a speci-

506 8 MOEA Parallelization

fied size, thus fully deserving its reputation as a (potentially) computationally
expensive algorithm.

Goldberg et al. then proposed the fast messy GA (fmGA) to reduce mGA
complexity via probabilistic building block initialization schemes creating a
controlled number of building block clones of specified size [584]. These clones
are filtered ensuring that (in a probabilistic sense) all desired building blocks
exist in the initial population. They claim this variant is as effective as the
mGA but without the associated computational expense. Later, the fmGA
was modified to create a parallel fmGA (pfmGA), where several issues as-
sociated with EA parallelization were considered, addressed, and tested on
the real-world Protein Structure Prediction Problem [547, 1091, 1106]. These
experiments obtained satisfactory speedup results; a large efficiency improve-
ment was also noted as compared to the serial fmGA implementation.

Other original research investigated the role of building blocks in solving
MOPs; the Multi-Objective mGA (MOMGA) was created for that purpose by
heavily modifying the original mGA code [1630]. Good performance resulted
when applying the MOMGA against a validated MOP test function suite.
The MOMGA also compared favorably to or outperformed three other well-
engineered MOEA variants in wide use at the time. The next evolutionary
step was creating the MOMGA-II, which imported the fmGA’s probabilistic
building block initialization scheme into the MOMGA [1790]. The MOMGA-II
differs from the fmGA in that multiple objective functions are solved simul-
taneously and its selection mechanisms are based on the concepts of Pareto
dominance and niching.

Fig. 8.15. pMOEA Evolution

8.8 Conclusions 507

8.7.2 “Genericizing” a pMOEA

The MOMGA-II performed well when compared to other MOEAs and when
applied to real-world applications [1789, 1790]. These results partially moti-
vated parallelization of the MOMGA-II (or pMOMGA-II). The pMOMGA-II
also appeared to be a good test vehicle with which to thoroughly test the
Master-Slave, Island, and Diffusion pMOEA paradigms as applied to a single
MOEA variant. In other words, use the same MOEA as the basis with which
to create three different parallel versions, yet not prevent further modifica-
tions. The pMOMGA-II is also generic in that it can execute on any parallel
architecture hosting an ANSI ‘C’ standard compiler.

A generic pMOEA has an additional advantage in any experimental de-
sign and execution process, as algorithmic differences between variants are
minimized. Of course, any serious pMOEA testing must address not only
pMOEA-specific issues but must provide meaningful parallel statistics as well.
This rigorous testing is still lacking in the pMOEA literature. A thorough
analysis of competing parallel paradigms, while also considering parallel per-
formance issues, should give valuable insights into pMOEA effectiveness and
efficiency. Note also that the (p)MOMGA-II development process is detailed
here not only to illustrate the iterative algorithmic development process de-
picted in Figure 8.15, but to bring home the point that engineering effective
and efficient algorithms, especially algorithms applied to interesting and dif-
ficult problems, is an extensive effort that can span many years and several
researchers.

8.8 Conclusions

This chapter paints a picture of pMOEA state-of-the-art with a broad brush,
yet several significant contributions and innovations are clearly seen. A pre-
vious MOEA notation is extended into the pMOEA domain enabling precise
description and identification of various sets of interest. A thorough discussion
of four pMOEA paradigms (Master-Slave, Island, Diffusion, and Hierarchical)
is included, and many succinct observations made regarding analyses of the
current literature. Innovative concepts for pMOEA migration, replacement,
and niching schemes are discussed and the first known generic pMOEA for-
mulation is presented. Taken together, this chapter’s analyses and original
pMOEA development serve as a pedagogical framework for and example of the
necessary process to design and implement efficient and effective pMOEAs. In-
terspersed throughout the preceding discussion are various recommendations
for creating pMOEA abstractions, designs and implementations. This aids the
community in achieving a fuller understanding of pMOEAs and appropriate
contexts for comparing their performance.

Each pMOEA computational model must be evaluated to determine
its effectiveness and efficiency across a wide spectrum of applications and

508 8 MOEA Parallelization

implementations on various software/hardware architectures. Moreover, if
possible, pMOEA theory should continue to evolve in order to provide a solid
foundation for selecting appropriate computational architectures, associated
operators, and parameter values. This chapter motivates the direction of such
efforts.

In closing, the following quote is offered for the reader’s contempla-
tion [1270, p.51]:

“It is of much greater importance that the engineer, on whom rests the
responsibility of a work, should be competent to select the best devices
proposed by his assistants, or used by others, than to be able to invent
novel ones himself. The obligation to adopt the best is, however, not
incompatible with a generous regard for the rights or merits of others,
and the professional reputation will never suffer by giving such credit
to them as may be justly due.”

This chapter presents and adopts the best devices yet seen (in the authors’
opinion), invents new solutions where needed, and gives credit where credit
is due. Obviously, other pMOEA developers with varying levels of experi-
ence may implement different solutions. These new or similar solutions are
welcome! Well-designed pMOEA studies can only aid in better understand-
ing critical issues, assessing differing paradigms’ impacts on pMOEA efficiency
and effectiveness, and gaining a better grasp of the class’ performance through
careful experimentation and analysis.

Further Explorations

Class Exercises

1. Take the pseudo code of a state-of-the-art MOEA (e.g., the NSGA-II
[374]) and indicate the key components of the approach that have to be
considered when parallelizing it.

2. Discuss possible ways of incorporating external populations to a parallel
MOEA (see Chapter 2).

3. Discuss possible migration policies for parallel MOEAs.
4. What are the main issues when incorporating a migrant into an island,

when dealing with parallel MOEAs? Discuss.
5. Discuss possible topologies for parallel MOEAs and the potential advan-

tages of each of them.
6. Consider the issues of using multiple threads (e.g., in Java) in a MOEA.

What possible benefits do you foresee from incorporating threads into a
MOEA?

7. What are the possible benefits of using different operators (i.e., selection,
crossover and mutation) and different encodings in each deme of an island-
based parallel MOEA? Discuss.

8. What are the main issues when parallelizing a niching technique?
9. Does it make sense to attempt to parallelize a Pareto ranking approach?

Why or Why not? Do you think that there are other selection techniques
used for multiobjective optimization that would benefit from being paral-
lelized? Discuss.

10. Discuss possible parallelization strategies for clustering techniques adopted
with MOEAs.

11. Assuming a homogenous set of processors and a backplane communication
mesh, generate a theoretical speedup equation for an island MOEA para-
digm. Develop your equation for at least three different island migration
schemes. How do these mathematical models relate to MOEA scalability
models considering the communication overhead?

510 Further Explorations

Class Software Projects

1. Use MPI to develop a parallel implementation of the NSGA-II [374] adopt-
ing an island model. Use the test functions provided in [379] to validate
this approach.

2. Repeat the previous project, but using SPEA2 [1776] instead of the
NSGA-II.

3. Use PVM to develop a parallel implementation of the NSGA-II [374]
adopting an island model and compare this implementation to one based
on MPI (see previous project).

4. Repeat the previous project, but using SPEA2 [1776] instead of the
NSGA-II.

5. Perform a comparative study of the 4 implementations developed in the
4 previous software projects adopting the DTLZ test problems [379] (see
Chapter 4). Indicate the main advantages and disadvantages of each im-
plementation language (i.e., PVM vs. MPI) in terms of ease of use, fea-
tures and functionality. Analyze the scalability of each of the 2 pMOEAs
compared using 2, 4, 8 and 16 processors. Can you define a clear win-
ner between the NSGA-II and SPEA2? What performance measures do
you consider appropriate to assess performance of parallel MOEAs (see
Chapter 5)?

6. Develop an experimental study in which you compare parallel versions of
several pMOEAs. Consider performance measures that are relevant both
to evolutionary computation and to parallel computing.

7. Implement 5 of the approaches discussed in the surveys of parallel multi-
objective metaheuristics by Nebro et al. [1174] and Luna et al. [1032].

8. Develop a software library for supporting the development of parallel
MOEAs. See for example [26, 1693].

9. Implement a selected MOEA algorithm in Java RMI. Using several of the
test functions from Chapter 4, compare MOEA results with others using
some of the performance from Chapter 5. Does the performance of the
Java RMI version justify its continuing development? Discuss.

10. Using the MATLAB distributed computing toolbox along with the MAT-
LAB distributed computing engine, develop a MOEA master-slave or
island paradigm software package on a cluster selecting an appropriate
MOEA toolbox. Apply this software package to the solution of some of
the test functions from Chapter 4. Evaluate performance in terms of not
only effectiveness (using the metrics of Chapter 5), but also in terms of
the standard metrics normally adopted in parallelism (speedup, efficiency
and scalability).

11. Using a computational grid environment such as Globus, implement a
MOEA master-slave or island model. Select a large dimensional real-world
problem and evaluate grid results in terms of effectiveness and parallel
efficiency. Also, compare performance results to the analytical grid model

Further Explorations 511

proposed by Lim et al. [995]. Is a computational grid an effective method
for solving the selected MOP? Discuss.

Discussion Questions

1. Based upon problem domain characteristics, when is a specific parallel
MOEA paradigm appropriate? For example, consider the parameters op-
timization for various applications in Chapter 7.

2. Discuss the theoretical performance of various logical grid communication
structures (e.g., ring, star, hypercube) used to implement a parallel island
MOEA. Additionally, relate to various EVOPs and associated parameter
values.

3. Consider a variety of parallel and distributed computational platforms
with different communication backbone configurations. What MOEA
forms utilize such communication backbones more efficiently than oth-
ers? Why?

4. Given a parallel MOEA paradigm, and a real-world application, consider
the performance of different MOEA types and/or different EVOP para-
meter values per processor.

5. Assuming that one has the use of a very high-performance computational
platform with hundreds or thousands of high-speed processors (e.g. IBM
RS/6000 SP or the ASCI (Accelerated Strategic Computing Initiative)-
Red/White/Blue systems), how can a parallelized MOEA be effective and
efficient in using such an architecture? Given that architecture, what are
the limits of MOEA parallelization for a specific application? Do those
limits also hold for a high-performance parallel platform having a very high
number of processors (1024, 4096)? Also relate anticipated performance
to server clusters with 64 processors as well as low-cost multiple processor
desk computers (4-8 processors) having many Gigabytes of local memory.

6. Consider the various parallel MOEAs detailed in this chapter. Do they
fully exploit MOEA decomposition from a task, objective function, or
data perspective? If not, how could the implementations be improved?

7. When attempting to find acceptable solutions to real-world optimization
problems, how can other optimization techniques be integrated into a
given parallelized MOEA?

8. How might dynamic MOEA parameter variation improve performance
for a given parallel implementation? Relate the performance impact to
problem classes or characteristics.

9. Few comparative studies of pMOEA implementations exist (see for ex-
ample [1191], where several parallel implementations of Pareto Simulated
Annealing (PSA) [320] are compared). Why do you think that such com-
parative studies are scarce? Discuss issues that you consider important
when comparing different pMOEA implementations.

512 Further Explorations

10. Rudolph [1400] has raised an interesting issue related to parallelizing ran-
domized algorithms: since a randomized algorithm must be executed more
than once to get a reliable solution, we have the choice of executing the
sequential version of the algorithm in parallel in an independent manner,
or we can execute the parallel version of the algorithm simultaneously
on the parallel hardware in a successive manner. Which of these two ap-
proaches is better? Analyze this issue and discuss the scenarios presented
by Rudolph [1400].

11. Parallel niching techniques have been only scarcely studied in the spe-
cialized literature (see for example [1038]). Elaborate a report on this
topic, in which you discuss its main topics in the context of evolutionary
multiobjective optimization.

12. What is the MOEA performance effect of controlling explicitly distributed
memory of a cluster as compared to shared-memory machine program-
ming? Relate to ease of MOEA software development.

Possible Research Ideas

1. Propose a parallel ant colony optimization algorithm for solving multiob-
jective problems. See for example [771].

2. Propose an island-based parallelization of the NSGA-II [374]. Discuss is-
sues such as migration policies and topologies. Do you consider necessary
to have an external population?

3. Propose a parallel particle swarm optimization algorithm for solving mul-
tiobjective problems. Discuss issues such as selection of leaders, migration
policies and topologies, variability of the cognitive and social factors. See
for example [1137].

4. Propose a parallel simulated annealing algorithm for solving multi-objecti-
ve problems. Analyze the possibility of adopting different cooling schedules
in each subpopulation. See for example [67, 69].

5. Investigate about multi-threaded Tabu search [1552, 294]. Discuss the
potential benefits of performing multiple local searches in parallel when
solving multiobjective optimization problems (e.g., in the context of mul-
tiobjective memetic algorithms [879]). Develop a parallel multi-threaded
version of a multiobjective Tabu search algorithm.

6. Read the survey on parallel strategies for meta-heuristics by Crainic and
Toulouse [305]. Analyze the future research directions that they indicate
in the paper and, if appropriate, explore one of them.

7. The cooperation of different search strategies executed in parallel that
exchange information is another interesting research topic (see for example
[1601]). Propose a cooperative search algorithm that exploits this concept.

8. Compare niching and iterated local search (ILS) [1020] in the context of
evolutionary multiobjective optimization. See for example [1293].

Further Explorations 513

9. Extend the concept of takeover time regarding selection methods used in
evolutionary algorithms [583] to parallel MOEAs with migration.

10. Propose a reconfigurable parallel hardware architecture for MOEAs (see
for example [1179, 1549]).

11. Analyze the use of surrogate methods in the context of parallel MOEAs
(e.g., for solving problems with very costly objective functions evalua-
tions). See for example [1334]. Propose a novel hybridization of a parallel
MOEA with a surrogate method.

12. Propose a parallel genetic programming approach for solving multiobjec-
tive problems. See for example [481, 502].

13. Read about parallelization of exact methods for multiobjective optimiza-
tion (see for example [383], which focuses on multiobjective combinatorial
optimization), and devise a potential use of such techniques within evolu-
tionary multiobjective optimization (e.g., hybridizing them with MOEAs).

14. Study the decomposition of the objective space by Deb et al. [381] and
Streichert et al. [1528] for distributed MOEA computation. Generalize
and combine their approaches directed towards a more realistic dynamic
and adaptive decomposition of the objective space for other than convex
Pareto fronts. Implement and evaluate statistical performance of this new
MOEA.

15. Address the appropriate parallel algorithmic concepts for developing and
using a MOEA on a very large computation grid. Formulize and extend
the efforts of Lim et al. [995] as a first step. Consider MOEA operator
variations, niching approaches, population archiving methods, and data
storage techniques from the distributed perspective.

9

Multi-Criteria Decision Making

Consider what you think justice requires, and decide accordingly. But
never give your reasons; for your judgment will probably be right, but
your reasons will certainly be wrong.

Lord Mansfield

9.1 Introduction

One aspect that most of the current research on evolutionary multiobjective
optimization (EMO) often disregards is the fact that the solution of a multi-
objective optimization problem (MOP) really involves three stages: measure-
ment, search, and decision making.

Being able to find Ptrue does not completely solve an MOP. The decision
maker (DM) still has to choose a single solution out of this set. The process of
selecting a single solution is not trivial. In fact, there is a set of methodologies
regarding how and when to incorporate decisions from the DM into the search
process.

Having several nondominated vectors does not provide any insight into the
process of decision making itself. Nondominated vectors are really a useful gen-
eralization of a utility function under the conditions of minimum information
(i.e., all attributes are considered as having equal importance; the DM does
not express any preferences) [315, 316, 504, 719, 598].

Most of the current EMO research concentrates on adapting an evo-
lutionary algorithm to generate Ptrue (i.e., search). However, the articula-
tion of preferences has been dealt with by few researchers (see for example
[1347, 1346, 315, 316, 314, 706, 504, 719, 598, 263]).

In this chapter, a brief review of the main concepts related to Multi-
Criteria Decision Making (MCDM1) is provided. The most representative
1 After the 1960s, the main emphasis of operations researchers has been to study

the area known as “Multi-Criteria Decision-Aid” (MCDA) [1387, 1658]. The main

516 9 Multi-Criteria Decision Making

research on preference articulation found in the EMO literature is then re-
viewed, analyzing their contributions and weaknesses.

9.2 Multi-Criteria Decision Making

From the Operations Research (OR) perspective, there are two main lines of
thought regarding MCDM [730]:

1. The French school, which is mainly based on the outranking concept
[1659], and

2. The American Multi Attribute Utility Theory (MAUT) school [836].

The French school is based on an outranking relation which is built up
under the form of pairwise comparisons of the objects under study (see Sec-
tion 1.7.1 from Chapter 1). The main goal is to determine, on the basis of all
relevant information for each pair of objects, if there exists preference, indif-
ference, or incomparability between the two. For this purpose, preference or
dominance indicators are defined and compared with certain threshold values.

The main disadvantage of this approach is that it can become very expen-
sive (computationally speaking) when there is a large number of alternatives.
Also, some authors consider the use of outranking methods as complementary
to other techniques (e.g., MAUT) and are therefore intended for problems that
present certain characteristics (e.g., at least one criterion is not quantitative)
[1388].

MAUT is based, in contrast, on the formulation of an overall utility func-
tion, and its underlying assumption is that such a utility function is available
or can be obtained through an interactive process. When this utility function
is not available, the task is then to identify a set of nondominated solutions.
In this case, strong preference can only be concluded if there exists enough
evidence that one of the vectors is clearly dominating the vector against which
it is compared. Weak preference (modeled as weak dominance2 [997]), on the
other hand, expresses a certain lack of conviction. Indifference means that both
vectors are “equivalent” and that it does not matter which of them is selected.
It is important to distinguish this “indifference” from the “incomparability”
used with outranking methods, since the second indicates vectors with strong

difference between MCDM and MCDA is that MCDA assumes multiobjective op-
timization problems are ill-defined mathematical problems. That is, depending on
the algorithm used and the preference information incorporated, different solu-
tions to the same problem could be obtained. While MCDM focuses on finding a
solution to a multiobjective optimization problem, MCDA focuses on the decision
process itself. According to Roy [1387], the main aim of MCDA is “to construct
or create something which is viewed as liable to help an actor taking part in a
decision process either to shape, and/or to argue, and/or to transform the DM’s
preferences”.

2 See Section 1.2.3 from Chapter 1.

9.2 Multi-Criteria Decision Making 517

opposite merits [730]. MAUT does not work when there are intransitivities in
the preferences, which is something that frequently arises when dealing with
“incomparable” objects using an outranking approach [1752].

There are a few issues related to MAUT deserving some discussion. First,
it is important to distinguish between global and local approaches to MAUT
(see Section 1.7.1 from Chapter 1). Despite the fact that it is common practice
to assume a global approach to MAUT in which an overall utility function
that expresses the DM’s global preferences is assumed, operations researchers
tend to favor local approaches. In local approaches, the utility function is
decomposed into simple utility functions (e.g., single attribute functions) that
are easier to handle [1519, 556].

Second, it is important to mention that a utility function does not really
reflect the DM’s inner (psychological) intensity of preference. It just provides a
model of the DM’s behavior [1136]. This is an important distinction, since be-
havior should then be consistent (i.e., it should not originate intransitivities),
according to MAUT’s practitioners.

The main criticism towards MAUT is its inability to handle intransitivities.
There are, however, reasons for not dealing with intransitivities in MAUT
[1024]:

• MAUT is only concerned with behavior of the DM, and behavior is tran-
sitive.

• The transitive is often a “close” approximation to reality.
• MAUT’s interest is limited to “normative” or “idealized” behavior.
• Transitive relations are far more mathematically tractable than intransi-

tive ones

From these arguments, it is often assumed that the main reason to support
MAUT is in fact the mathematical tractability of utility functions [1519].

9.2.1 Operational Attitude of the Decision Maker

The French and American schools of thought lead to three types of operational
attitude of the DM [1385]:

1. Exclude incomparability and completely express preferences by a unique
criterion. This leads to an aggregating approach in which all the criteria
are combined using a single utility function representing the DM’s global
preferences. An example of this approach is the technique called “max-
imim programming” [422].

2. Accept incomparability and to use an outranking relation to model the
DM’s preferences. In this case, the DM only has to model those preferences
that is capable of establishing objectively and reliably, using outranking
only when such preferences cannot be established. In this case, the DM
is asked to compare all criteria two by two; each objective is assigned a
weight derived from the eigenvector of the pairwise comparison matrix

518 9 Multi-Criteria Decision Making

[730]. It is important to be aware that these pairwise comparisons can
lead to intransitive or incomplete relations. One example of this approach
would be ELECTRE in its different versions [1383, 1386, 1488].

3. Determine, through an interactive process, the different possible compro-
mises based on local preferences. In this case the DM experiments with
local preferences at each stage of the search process, which allows explo-
ration of only a certain region of the search space. These local preferences
can be expressed in different ways (e.g., a ranking of objectives, an ad-
justment of aspiration levels, or even detailed trade-off information) [461].
The main issue here is that the DM is not asked preliminary (specific)
preference information. Such preferences are derived from the behavior
exhibited by the DM through the search process. When further improve-
ment is no longer necessary or is impossible then a compromise has been
reached. This can be seen as a local optimum relative to an implicit cri-
terion. An example of this approach is the STEP Method (STEM) [116].

9.2.2 When to Get the Preference Information?

A very important issue in MCDM is the moment at which the DM is required
to provide preference information. There are three ways of doing this [461,
706]:

1. Prior to the search (a priori approaches).
2. During the search (interactive approaches).
3. After the search (a posteriori approaches).

There is a considerable body of work in OR involving approaches perform-
ing prior articulation of preferences (i.e., a priori techniques) (see for example
[289, 836, 722]). The reason for its popularity is that any optimization process
using this a priori information becomes trivial. The main difficulty (and dis-
advantage of the approach) is finding this preliminary global preference infor-
mation.

That is the reason why despite the popularity of a priori schemes to ar-
ticulate preferences, interactive approaches (i.e., the progressive articulation
of preferences) have been normally favored by researchers [539] for several
reasons [1121]:

1. Perception is influenced by the total set of elements in a situation and the
environment in which the situation is embedded.

2. Individual preference functions or value structures cannot be expressed
analytically, although it is assumed that the DM subscribes to a set of
beliefs.

3. Value structures change over time, and preferences of the DM can change
over time as well.

4. Aspirations or desires change as a result of learning and experience.

9.2 Multi-Criteria Decision Making 519

5. The DM normally looks at trade-offs satisfying a certain set of criteria,
rather than at optimizing all the objectives at a time.

However, interactive approaches also have some problems, mainly related
to the preference information that the DM has to provide during the search
[1519]. For example, the DM can be asked to rank a set of solutions, to estimate
weights or to adjust a set of aspiration levels for each objective. None of these
tasks is trivial and very often DMs have problems providing answers that can
guide the search in a systematic way towards a best compromise solution [461].
In fact, despite the existence of sophisticated algorithms to transform the in-
formation given by the DM to a mathematical model that can be used to guide
the search, it has been shown that interactive approaches that adopt a simple
trial-and-error procedure tend to be highly competitive [1672]. This indicates
that the preference information provided by a DM tends to be so contradic-
tory and inconsistent that in some cases it can be even disregarded without
significantly affecting the outcome of a decision-making algorithm. That is the
reason why MCDA emphasizes the decision-making process itself, as there are
many factors that could contribute to this inconsistent behavior.

The use of a posteriori approaches is also popular in OR field [289, 732].
The main advantage of these approaches is that no utility function is required
for the analysis, since they rely on the use of a “more is better” assumption
[461]. The main disadvantages of a posteriori approaches are [461]:

1. The algorithms used with these approaches are normally very complex
and tend to be difficult for the DM to understand.

2. Many real-world problems are too large and complex to be solved using
this sort of approach.

3. The number of elements of the Pareto optimal set that tends to be gen-
erated is normally too large to allow an effective analysis from the DM.

It is also possible to combine two or more of these approaches. For example,
one could devise an approach in which the DM is asked some preliminary
information before the search, and then ask the DM to adjust those preferences
during the search. This may be more efficient than using either of the two
approaches independently.

Finally, it is worth mentioning that EMO researchers often disregard the
importance of MCDM without taking into consideration that it normally re-
quires a considerable amount of time (perhaps more than the search itself). It
is well known in the OR community that defining a good utility function or
preference structure for a real-world problem is normally a complex task that
may take days or even weeks [1135]. In fact, operations researchers distinguish
a trade-off between spending more time working on a good utility function
(or preference structure) and spending more time searching through a larger
set of solutions [461].

520 9 Multi-Criteria Decision Making

9.3 Incorporation of Preferences in MOEAs

The previous classification of stages at which preferences can be provided by
the DM (i.e., a priori, interactively, a posteriori) is also used with respect to
MOEAs as indicated in Chapter 1 [706].

The current EMO literature indicates a priori approaches, i.e., aggregat-
ing approaches in which weights are defined beforehand to combine all the
objectives into a single objective function, are very popular.

Specific interactive approaches are less common in the EMO literature,
although several of the approaches reviewed in this chapter can be used
interactively. Additionally, several MOEAs could be used interactively if de-
sired. From the current volume of research, however, one infers that most
MOEA researchers assume an a posteriori incorporation of preferences. That
is because the main research emphasis is in generating Pareto optimal solu-
tions assuming no prior information from the DM.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f2

f1

true Pareto front
f1 is less important than f2

������������������������������

�

Fig. 9.1. This plot indicates with diamonds the case in which f1 is considered
less important than f2 (only f2 is minimized). PFtrue for the problem (obtained by
enumeration) is shown as a continuous line.

Regardless of the stage at which preferences are incorporated into a
MOEA, the goals are clear: the aim is to magnify (i.e., concentrate search
on) a certain portion of the Pareto front by favoring certain objectives (or
trade-offs) over others. An example better illustrates this goal. Assume the
following multiobjective optimization problem is to be solved [357]:

9.3 Incorporation of Preferences in MOEAs 521

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f2

f1

true Pareto front
f2 is less important than f1

�
��
����

������
���

�������
������

�

Fig. 9.2. This plot indicates with diamonds the case in which f2 is considered
less important than f1 (only f1 is minimized). PFtrue for the problem (obtained by
enumeration) is shown as a continuous line.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f2

f1

true Pareto front
f1 is equally preferred to f2

��������
��������������������� ����

�

Fig. 9.3. This plot indicates with diamonds the case in which f1 and f2 are equally
preferred (both are minimized). PFtrue for the problem (obtained by enumeration)
is shown as a continuous line.

522 9 Multi-Criteria Decision Making

Minimize f1(x1, x2) = x1 (9.1)

Minimize f2(x1, x2) = g(x1, x2) · h(x1, x2) (9.2)

where:

g(x1, x2) = 11 + x2
2 − 10 · cos(2πx2) (9.3)

h(x1, x2) =

{
1−

√
f1(x1,x2)
g(x1,x2

if f1(x1, x2) ≤ g(x1, x2)
0 otherwise

(9.4)

and 0 ≤ x1 ≤ 1, −30 ≤ x2 ≤ 30.
For this example there are three main preference situations that could be

expressed by the DM:

1. f1 is considered less important than f2. In this case, only the lower por-
tion of the Pareto front is generated, because only f2 is being optimized,
regardless of the values achieved by f1. This situation is depicted in
Figure 9.1.

2. f2 is considered less important than f1. This is the exact opposite of the
previous case, and only the upper portion of the Pareto front is generated,
because only f1 is being optimized. This situation is depicted in Figure 9.2.

3. Both objectives are given equal importance. In this case, solutions around
the “knee” of the Pareto curve are generated because none of the objec-
tives is given preference over the other. This is the situation assumed by
most MOEAs when the DM does not express any preferences. This sit-
uation is shown in Figure 9.3. Note that solutions could be generated so
that the entire Pareto front is covered (as normally done with MOEAs),
but only solutions around the “knee” of the curve are illustrated to em-
phasize the fact that this preference situation is the complement of the
two previous.

The goal of incorporating DM’s preferences is to find a mechanism allowing
a certain MOEA to generate only the portion of the Pareto front corresponding
to the preferences expressed by the DM (i.e., each of the three situations
depicted in Figures 9.1, 9.2 and 9.3).

A comprehensive search through the current EMO literature makes evident
that there is very little work in which the handling of preferences is explicitly
dealt with. Most of this research is briefly described and analyzed in the
remainder of this section.

9.3.1 Definition of Desired Goals

Apparently, the earliest attempt to incorporate preferences from the user in
a MOEA is the multicriteria decision support system developed by Tanaka

9.3 Incorporation of Preferences in MOEAs 523

and Tanino [1570] and further developed by Tanino et al. [1574]. In this work,
a genetic algorithm was used to generate members of the Pareto optimal set
(using selection based on nondominance) and an interactive approach was
adopted to incorporate preferences from the DM. This system allowed the
DM to express preferences in three different ways:

1. By choosing satisfactory and unsatisfactory solutions from the set pre-
sented to the DM.

2. By defining aspiration levels (i.e., goals) in objective space. Solutions far
from these goals are then considered unsatisfactory and vice-versa.

3. By defining the worst acceptable levels for each objective. Any value below
this level is then considered unsatisfactory.

Regardless of the approach taken, satisfactory solutions are replicated
whereas unsatisfactory solutions are eliminated from the population.

Fonseca and Fleming [504] made a similar proposal at about the same
time as Tanaka & Tanino. The proposal consisted of extending the ranking
mechanism of MOGA to accommodate goal information as an additional cri-
terion. The goal attainment method [550] (see Section 1.7.1 in Chapter 1) was
used, so that the DM could supply goals at each generation of the MOEA, red-
ucing in consequence the size of the set under inspection and learning, at the
same time, about the trade-offs between the objectives. It should be clear
that this is an interactive approach (Fonseca and Fleming call it “progres-
sive”) since the DM must express preferences along the evolutionary process.

This work was extended in a further paper in which Fonseca & Fleming
mathematically define a relational operator incorporating the preference in-
formation given by the DM [511]. The ranking performed by MOGA is then
based on this operator. This operator relies on the use of priorities defined
by the DM. In the absence of information all objectives are then given the
same priority. These mathematical definitions provide a much more flexible
scheme to incorporate preferences, since their formulation can encompass dif-
ferent decision making strategies (e.g., goal programming and lexicographic
ordering).

Hinchliffe et al. [683] use Fonseca & Fleming’s approach to incorporate
DM’s preferences into a multiobjective genetic programming (MOGP) sys-
tem applied to chemical process systems modeling. His approach is also used
interactively, since the goals are tightened as the search progresses.

Shaw and Fleming [1472, 1473] experiment with different approaches to
incorporating preferences into a multiobjective scheduling problem (solved us-
ing MOGA). Their experiments showed that the use of preferences expressed
a priori (in the form of attainable or desirable goals provided in a matrix) by
the DM was better than using a problem-specific heuristic. They concluded
that over constraining the preferences has a significant impact on the perfor-
mance of the MOEA and therefore, the use of flexible schemes is encouraged.
Since interactive approaches provide some extra flexibility (particularly as it
is assumed that certain events may change the DM’s preferences over time),

524 9 Multi-Criteria Decision Making

an implication of these experiments is that interactive approaches may be
more appropriate in real-world applications.

Another approach based on the definition of desired goals is proposed by
Tan et al. [1562, 1559]. In this case the DM can define goals that are then used
to modify the MOEA’s ranking assignment process. The approach also allows
the use of both soft and hard constraints. The approach ranks separately those
individuals that satisfy the goals from those that do not satisfy them. This
scheme is more flexible than the original proposal by Fonseca and Fleming
[504] because it allows the use of the logical operators AND & OR (these
operators were defined using concepts from fuzzy logic), and also allows the
specification of “don’t care” priorities and non-attainable goals. This aims to
reduce the human intervention in the decision-making process. Although the
authors suggest a possible interactive use of the approach they seem to have
used it only as an a priori technique.

Sait and Youssef [1411] and Sait et al. [1410] propose a similar technique
in which the DM defines a set of goals (or acceptable limits) for each objective
function. Using these goals, the selection mechanism of a MOEA can be mod-
ified such that only those solutions that are “nearest” to all the individual
goals established are selected. The definition of “nearest” is, in this case, also
made using fuzzy logic and is similar to the proposal of Tan et al. [1562].

Deb [359] proposes a technique to transform goal programming prob-
lems into multiobjective optimization problems which are then solved using
a MOEA. As discussed in Chapter 1 (see Section 1.7.1), in goal program-
ming the DM has to assign targets or goals that wishes to achieve for each
objective, and these values are incorporated into the problem as additional
constraints. The objective function then attempts to minimize the absolute
deviations from the targets to the objectives. Deb’s approach is used only to
perform the transformation from goals to objectives, but it could also be used
for incorporating preferences into a MOEA. The use of weights (i.e., an utility
function), deviations from ideal goals (e.g., min-max method) or the direct use
of priorities (e.g., the lexicographic method) are all good candidates to incor-
porate preferences in an approach of this kind (in fact, these three techniques
have been coupled to goal programming in the past [1111]).

Shibuya et al. [1481] propose an approach in which the DM has to provide
preferences interactively during the evolutionary process. The DM expresses
preferences through pairwise comparisons of images in a computer-generated
animation application. The approach then sorts the solutions available based
on the DM’s preferences (the approach seems to use a mechanism similar to
the lexicographic method).

Barbosa and Barreto [91] propose a co-evolutionary genetic algorithm with
two populations: a population of solutions to the problem (i.e., individuals
that encode coordinates of all vertices of a graph, since the application is
a graph layout problem) and a population of weights (i.e., individuals that
contain, each one, a set of weights to be applied on the different aesthetic
objectives imposed on the problem). The decision maker is then presented a

9.3 Incorporation of Preferences in MOEAs 525

set of nondominated solutions and asked to rank them based on subjective
preferences. This ranking is then used to determine fitness of the population
of weights. The process is interactive, since these preferences are expressed at
each iteration of the system. The subjective criteria adopted by the decision
maker can be seen as goals that the system has to achieve.

Borges and Barbosa [151] propose an approach that is similar to goal at-
tainment. The decision maker is required to provide a constant vector that
contains the limit values for each objective function. These limit values repre-
sent the minimum (or maximum) values that are acceptable by the decision
maker. Then, the original objective functions are penalized based on the values
attained (if the values are within the requirements of the decision maker, there
is no penalty and the original objective function values are adopted). The form
of the penalty function proposed is similar to compromise programming (see
Section 1.7.1 from Chapter 1). This is clearly an a priori approach, because
the decision maker needs to have prior knowledge of the behavior of each
objective function.

Kato et al. [824] propose an interactive fuzzy satisficing3 method in which
fuzzy goals are defined and a membership function is elicited from the decision
maker for each objective function of the problem to be solved. The method
relies on the concept of M-Pareto optimality [1414] in which an aggregating
function is adopted to represent the degree of satisfaction or preference of
the decision maker for all the (fuzzy) goals of the problem. Under this ap-
proach, there is one membership function for each objective function. All the
membership functions are aggregated into a single expression that uses a min-
imax formulation, and the decision maker expresses his/her aspiration levels
using the so-called reference membership levels. The approach then finds a
solution which is as near as possible to the aspiration levels from the decision
maker (or even better if such aspiration levels are attainable). This approach is
incorporated into a genetic algorithm which is used to solve integer program-
ming problems (namely, multidimensional integer knapsack problems). The
GA adopted uses double strings [1416], a special method for generating the
initial population that uses linear programming relaxation based on reference
solution updating, linear scaling of the fitness function, partially matched
crossover (PMX) [586], inversion, Gaussian mutation and a combination of
elitist preserving selection with expected value selection. This approach out-
performed a branch and bound method in several test problems.

Yun et al. [1744] propose the use of generalized data envelopment analysis
(GDEA) [1745] with aspiration levels for choosing desirable solutions from
the Pareto optimal set. This is an interactive approach in which a nonlinear
aggregating function is optimized by a genetic algorithm in order to generate
the Pareto optimal solutions of the multiobjective optimization problem. The

3 Satisficing defines the DM’s selection of an acceptable result but the underlying
computation does not address the finding of the “optimal” solution possibly due
to temporal computational constraints.

526 9 Multi-Criteria Decision Making

decision maker must define his/her aspiration levels for each objective, as
well as the ideal values for each of them (these “ideal” values may be, but
not necessarily are the components of the ideal vector). Then, the aspiration
levels are adopted as constraints during the optimization, so that the Pareto
optimal solutions are filtered out and those closest to the aspiration levels
are given the highest fitness. The approach allows the definition of more than
two aspiration levels simultaneously. However, the authors indicate that if the
number of aspiration levels is increased, then the computational cost required
by the approach also increases.

Criticism of Definition of Desired Goals

The main advantage of using some previously defined (or ideal) goals is that
the approach is easy to implement, flexible and relatively simple. Addition-
ally, approaches previously developed in OR (such as goal-attainment) can be
used to incorporate these preferences into a MOEA. The main disadvantage
of this approach is that it requires the DM to know beforehand the ranges
of variation of each objective in order to establish coherent goals. This can
be an expensive process (in terms of CPU time) if not impossible in many
real-world applications. Also, the use of an interactive method implies the
generation of a significant number of nondominated vectors so that the deci-
sion making process can be meaningful. This may also become very expensive
(computationally speaking).

9.3.2 Utility Functions

Fonseca and Fleming [504] also propose the use of an expert system to au-
tomate the task of the DM. Such an expert system uses built-in knowledge
obtained from the preferences expressed a priori by the (human) DM. In
this case, a utility function continuously evaluated through the evolutionary
process is used.

Tanaka et al. [1571] experiment with an interactive approach using a utility
function. In this case the DM expresses preferences and the system uses a
normalized radial basis function network to bias the selection pressure of a
GA towards those regions that better approximate the preferences.

Hu et al. [719] and Greenwood et al. [598] used elements of imprecisely
specified multi-attribute value theory (ISMAUT) to perform imprecise ranking
of attributes [1698]. The idea is that the DM has to rank a set of solutions
to the MOP instead of explicitly rank the attributes of the problem (this is
implicitly done by the approach). Preference information is also incorporated
into the survival criteria used by the MOEA in order to bias the search to-
wards the region of main interest by the DM. Using as a basis the preferences
expressed by the DM, the approach derives a set of equations that are solved
to find the values of the weights of a utility function that bias the ranking
procedure used by the MOEA. Assuming that no intransitivities occur, only

9.3 Incorporation of Preferences in MOEAs 527

linear equations have to be solved to find these weights. This approach is then
a compromise between using no preference information of the problem (i.e.,
pure nondominance) and a utility function (the weights of each attribute are
not provided by the DM). This is also an a priori approach, since the DM has
to express preferences before the search begins.

An interesting approach called “Guided Multi-Objective Evolutionary Al-
gorithm” also exploiting the concept of utility function is proposed by Branke
et al. [163, 164]. The idea is to express the DM’s preferences in terms of
maximal and minimal linear weighting functions, corresponding directly to
slopes of a linear utility function. The authors determine the optimal solution
from a population using both of the previously mentioned weighting func-
tions. Those individuals are given rank one and are considered the borderline
solutions (since they represent extreme cases of the DM’s preferences). Then
all nondominated vectors are evaluated in terms of these two linear weighting
functions. After that, all solutions that have a better fitness than either of the
two borderline individuals (according to at least one of the two linear weight-
ing functions) are assigned the same rank (these are the individuals preferred
by the DM). These solutions are removed from the population and a similar
ranking scheme is applied to the remaining individuals. It should be clear
that this approach is a biased version of the NSGA [1509]. The authors use a
biased version of fitness sharing, in which the maximum and minimum niche
counts are incorporated into a formula assigning each individual a fitness at
least as good as that of any other individual with inferior rank [163]. In more
recent work [161], this approach was coupled to the NSGA-II [374]. This is
also an a priori technique.

Meneghetti et al. [1089] use a technique called LUTA (Local UTility Ap-
proach) [1464]. In this approach, the DM is asked which solution prefers (out
of a set of nondominated vectors previously generated). No other specific in-
formation is required (e.g., to perform pairwise comparisons or to justify a
certain choice). The algorithm then proceeds in two stages. In the first stage,
it checks any possible inconsistencies in the DM’s preferences (e.g., intransi-
tivities) and advises the DM to remove them. In the second stage, it proposes
a composite utility function made up of the sum of a set of piecewise lin-
ear utility functions, one for each objective function under consideration. The
DM’s preferences are then stated as inequalities between the utility functions
and the solutions available. In other words, these inequalities define a feasible
search space for the algorithm, so that the definition of the composite utility
function can be modified such that the search is constrained to solutions that
lie within the feasible region of the problem. This is really an a posteriori
approach, although some further (local) search may be required to refine the
final solution that is presented to the DM. This search is, however, performed
with a hillclimber and not with the MOEA used to generate the elements of
the Pareto optimal set.

528 9 Multi-Criteria Decision Making

Criticism of Utility Functions

Fonseca and Fleming [504] recognized that the use of a utility function as-
sumes that the DM can determine a priori what sort of trade-offs prefers (i.e.,
the DM can state preferences in a precise way), and this may not be always
the case, particularly in real-world problems. However, utility functions have
been quite popular among operations researchers (particularly in the USA)
because of their mathematical tractability. In contrast, Europeans tend to pre-
fer outranking approaches that allow intransitivities. In fact, the incapability
of utility functions to handle intransitivities is their most commonly criticized
feature.

The main disadvantage of Greenwood et al.’s proposal [598] is that their
method assumes that all attributes are mutually, preferentially independent
(i.e., the value function associated with attribute ai is not affected by the
values of some other attribute aj , where j �= i). That is not always the case,
and despite the fact that the approach would still work when this assumption
does not hold, it would certainly become more complicated since a nonlin-
ear system of equations would have to be solved. In fact, Greenwood et al.
[598] implemented an algorithm to check intransitivities in the preferences ex-
pressed by the DM. The algorithm is also capable of identifying minimum sets
of preferences that, if removed, can produce a consistent set of preferences.
However, this increases the computational cost of the approach.

The main problem with the proposal of Branke et al. [163] is that it has
been used only with two objective functions. The generalization of this ap-
proach to a higher number of objectives does not seem trivial. In fact, in more
recent work, Branke & Deb [161] indicate that the approach requires the spec-
ification of a higher number of trade-offs as the number of objectives increases
and the dominance calculations involved also become increasingly complex.

LUTA has the same problems commonly associated with utility functions
(e.g., it cannot deal with intransitivities). Also, due to the way in which it
operates, the approach may have the same problems as Greenwood et al.’s
methodology.

9.3.3 Preference Relations

Cvetković and co-workers [316, 318, 314, 319, 315] propose the use of binary
preference relations that can be expressed qualitatively (i.e., using words such
as “less important”). These preferences are translated to quantitative terms
(i.e., weights) to narrow the search of a MOEA.

The weights generated can be used with a simple aggregating approach
(i.e., a sum of weights) or with Pareto ranking. In the second case, the weights
are used to modify the definition of nondominance used by the ranking scheme
of the MOEA.4 This approach has some resemblance with the Surrogate
4 The new nondominance relationship defined is really a form of weak-dominance

[1111].

9.3 Incorporation of Preferences in MOEAs 529

Worth Trade-Off method [631], but unlike that method, binary preference
relations can find concave portions of PFtrue .

This is also an a priori approach since the weights are assumed constant
throughout the optimization process, but nothing in the approach really pre-
cludes its use in an interactive way. However, there may be some practical
issues to take into account if the approach is used interactively, since the DM
is asked a considerably high number of questions to make it possible to trans-
late qualitative preferences into quantitative values. This could become too
expensive (computationally speaking) if done repeatedly along the evolution-
ary process.

The direct use of weights to estimate the importance of solutions that
have been already identified as Pareto optimal has been suggested by other
researchers in the evolutionary computation community in the past. For ex-
ample, Bentley and Wakefield [121] define a property called “importance”
which provides additional information regarding the sort of solutions that are
preferred by the DM. This property is then coupled to a GA using ranking,
but no Pareto ranking. The authors sort the fitness values of each objective
separately and then rank solutions based on their ordering; the average rank-
ing of each individual is then used as its fitness. This ranking scheme is very
similar to the one previously proposed by Vemuri and Cedeño [1325, 1326] and
does not quite correspond to the concept of Pareto ranking normally adopted
by EMO researchers.

Once individuals are ranked, the “importance” that the DM assigns to
each objective can be used as a weight and the fitness of an individual is now
a weighted sum of its average ranking. Since the weights are assigned by the
DM before actually performing the search, this is also an a priori technique.
Obviously, it could also be used interactively, but apparently was never tested
that way.

It is important to mention that the focus of the research conducted by
Cvetković [314] is broader and more related to some OR work (see for exam-
ple [1009]). Also, it is worth mentioning that this is the only known attempt
to develop a formal decision making model explicitly for evolutionary multi-
objective optimization algorithms.

Drechsler and co-workers [410, 409, 1447] propose the use of satisfiability
classes to model preferences from the decision maker. The approach consists of
defining a relation “favor”, whose concept is similar to Pareto dominance, but
not equivalent (mathematically speaking, the relation “favor” is not a partial
order, because it is not a transitive relation). In this case, the search space
is divided into several categories (e.g., superior, very good, good, satisfiable,
and invalid). Solutions generated are then analyzed in terms of their “quality”
(defined in terms of the priorities of the decision maker) and divided into
several satisfiability classes (i.e., solutions of similar quality belong to the
same satisfiability class). After sorting the satisfiability classes with respect
to their quality, a ranking of the solutions is obtained. Preference relations
are modeled in this case using a directed graph that is recomputed at each

530 9 Multi-Criteria Decision Making

generation without any human intervention. In this approach, incomparable
solutions may be placed in different satisfiability classes, even if the decision
maker wants them to be within the same class. Also, goals are considered in
parallel and not relative to each other.

Another interesting proposal to directly modify the ranking procedure of
an evolutionary algorithm using preference information provided by the user
is made by Hughes [724, 725]. In this case, the author proposes the use of
expressions that incorporate information about constraint violation and pri-
ority satisfaction into the formulas used to compute domination probabilities
(i.e., this information is used to alter the ranking procedure of the popula-
tion). The approach is simple and elegant, and the author finds it particularly
useful when dealing with noisy fitness functions.

Criticism of Preference Relations

Since Cvetković’s approach relies on the use of transitive relationships, it
is also incapable of handling intransitivities. Scalability is also an important
disadvantage of the approach. Cvetković [314] and Cvetković and Parmee [319]
empirically show that the number of questions that the DM needs to answer
in their approach is, on average, much less than the theoretical upper bound,5

but the figures still get fairly large as the number of objectives increases
(e.g., for 21 objectives, “only” 62 questions must be answered although the
theoretical upper bound is 210). The authors argue that a dynamic ordering
of the questions could significantly reduce the number of questions needed.
However, such a scheme has not been implemented.

Hughes’ proposal is quite interesting and could be a way to solve both
the constraint-handling and the priority handling problems at the same time.
Although the idea is very promising, it is necessary to test the approach more
extensively and to analyze how other MOEAs behave with this integrated
scheme. Of particular interest is analyzing how strong the search bias of each
of these processes (constraint-handling and preference articulation) is and how
they interact. For example, problems with highly constrained search spaces
may strongly bias the search towards certain specific regions from which it
may not be possible to move away. Although such behavior may be desirable,
it is important to be aware of it before using this sort of technique.

The model adopted by Drechsler et al. [410] has several advantages: it is
efficient (computationally speaking), it does not require scaling, it supports
constraint-handling and preferences from the DM in a natural way, and it
dynamically adapts to changes during the evolutionary process. However, it
also has certain disadvantages. For example, it tends to produce less solutions
than the use of Pareto dominance, and it considers only goals or priorities
that cannot be relative to each other. As a historical note on the work of

5 The theoretical upper bound is k(k−1)
2

questions, where k is the number of objec-
tives.

9.3 Incorporation of Preferences in MOEAs 531

Drechsler, it is interesting to indicate that the favor relation that he proposed
was originally established by baron de Condorcet in 1785 [1056] in the context
of voting. Marchant et al. [1056] indicate some of the potential problems of
this approach with an example:

Let {a, . . . , z} be the set of 26 candidates for 100 voters election. Suppose
that:

• 51 voters have preferences aPbPcP . . . PyPz;
• 49 voters have preferences zPbPcP . . . PyPa.

It is clear that 51 voters vote for a while 49 vote for z. Thus, a will win
although almost 50% of the voters consider this as the worst one. In the above
example, b would be a much better compromise.

9.3.4 Outranking

Rekiek and co-workers [1347, 1346, 1348] propose the use of an outranking
method called PROMETHEE II [166] (for more details on the PROMETHEE
methods see section 1.7.1 from Chapter 1) combined with a MOEA. PRO-
METHEE II computes a net flow for each individual and this value is used
to rank the population (it imposes a complete preordering of preferences).
Weights assigned to each objective by the DM (called preference indexes)
have an impact in the computation of the net flows and impose an ordering
on the solutions found. The approach is used in an interactive way since the
DM has to adjust the weights along the evolutionary process. An interesting
aspect of this work is the use of what the authors called “branching on pop-
ulation” which basically consists of creating intermediate states based on the
preferences expressed by the DM interactively. This allows the evolutionary
algorithm to restart from one of these intermediate states rather than from
the very beginning.

Guimarães Pereira [613, 614] uses ELECTRE I (see Section 1.7.1 from
Chapter 1) coupled with a genetic algorithm to generate alternative routes be-
tween two geographical locations. Routes generated are compared in a pairwise
fashion for each of the objectives under consideration. An index describing the
outranking relation (i.e., the DM’s preferences) of a pair of individuals is cal-
culated based on these pairwise comparisons. Then, an aggregating formula
is used to combine the different indexes generated from these comparisons.
Thus, this aggregating formula is used in an interactive way to narrow the
search of the GA.

In further work, Guimarães Pereira [617] and Haastrup & Guimarães
Pereira [625] couple PROMETHEE to a MOEA. In this case, at each gen-
eration of the MOEA, a set of alternatives (i.e., nondominated vectors) are
generated and pairwise comparisons of alternatives are performed. The dif-
ferent alternatives available are then ranked in terms of preferences defined
over certain suitability values defined by the DM. An aggregating approach is

532 9 Multi-Criteria Decision Making

used to measure if a certain alternative is preferred over another one.6 This
approach is applied in an interactive way during the evolutionary process.

Massebeuf et al. [1081] also use PROMETHEE II combined with a MOEA
(in this case, a technique called “Diploid Genetic Algorithm” [1268]). The DM
is asked to express preferences for each pairwise comparison of alternatives
(e.g., preference or indifference). Additionally, the DM has to assign weights
that express relative importance of the objectives. This information is used to
compute a global concordance index and a discordance index (as in ELECTRE
III [1390]). Using these indexes, the authors generate outranking degrees for
every pair of alternatives. This allows to rank the alternatives so that a final
recommendation can be made to the DM.

Parreiras and Vasconcelos [1253] also use PROMETHEE II combined with
a MOEA. In this case, the authors adopt a Gaussian preference function and a
(normalized) aggregating function for computing the global preferences. The
implementation developed by the authors is called Smart and is applied in an
a posteriori way, to nondominated solutions generated by the NSGA-II [374].

Criticism of Outranking

Brans et al. [169] criticize outranking methods because they require too many
parameters (this is more evident in papers such as [1081]), the values of which
are to be fixed by the DM and the analyst. They argue that even though some
of these parameters have a real practical meaning and can therefore be fixed
clearly, some others (such as concordance discrepancies and discrimination
thresholds) playing an essential role in the procedure, only have a technical
character, and their influence on the results is not always well understood.
Moreover, in some outranking approaches, the notion of “degree of credibility”
is rather difficult for the DM to assess [169].

Also, the procedure involved in the generation of the final ranking of al-
ternatives is rather complex. Since intransitivities are allowed in outranking
approaches, contradictions may occur (e.g., when dealing with group prefer-
ences) that modify the contents of a previously established global outranking
relation. In fact, the problem is of such complexity that some researchers
(e.g., [980, 480, 479, 981, 979]) have suggested the use of a GA to improve the
quality of an outranking relation by reducing differences between the global
model of preferences and the final ranking produced by the algorithm used to
incorporate the DM’s preferences.

Researchers who have adopted outranking methods normally omit many
important details that are required to reproduce their results. For example,
PROMETHEE uses six different preference types. Also, it is rather unfor-
tunate that several authors have adopted PROMETHEE II which gives the
6 Actually, the author computes differences between the intensity of preference (this

is defined as a membership function, using fuzzy logic) on each objective for each
pair of alternatives under consideration.

9.3 Incorporation of Preferences in MOEAs 533

complete order of alternatives without taking advantage of the incomparabil-
ity information that outranking methods usually provide.

9.3.5 Fuzzy Logic

Voget [1662] and Voget and Kolonko [1663] use a fuzzy controller that auto-
matically regulates the selection pressure of a MOEA by using a set of pre-
established goals defining the “desirable” behavior of the population. A set
of fuzzy rules is used to modify the selection mechanism of the MOEA when
it is deviating from the goals defined by the DM. Although the approach is
used only to keep diversity in the population, it could easily be extended to
incorporate preferences of the DM. The idea is similar to goal attainment,
except that in this case membership functions are used to express goals in
vague terms (i.e., it allows uncertainties). This is an a priori approach, but it
could also be used interactively.

A similar fuzzy controller was proposed by Lee et al. [973], Lee & Har-
tani [974], Esbensen & Kuh [454], and Lee & Esbensen [972] but in this last
case, on-line and off-line performance (properly generalized for MOPs) of the
MOEA are used to guide the search, so that the following conditions are
satisfied [972]:

• Maximize the diversity of the nondominated vectors in the population.
• Maximize the number of nondominated vectors in the population.
• Maximize the bounding volume of the set of nondominated vectors.
• Make the center of gravity of the final solution set close to the origin.

All of these conditions aim to promote diversity and bias the MOEA to-
wards PFtrue of the problem solved. Additionally, the DM’s preferences are
incorporated using a simple utility function (a weighted sum). The approach
is used a priori, but the authors suggest its possible use as an interactive
method.

Pirjanian [1275] uses fuzzy rules to generate weights that would narrow
the search of a traditional multiobjective optimization technique. This work is
extended in Pirjanian & Matarić [1276] where, instead of adopting the usual
fuzzy behavior-based control, where fuzzy rules are combined using standard
fuzzy inferencing, the authors use multicriteria decision making for optimizing
the behavior of a robot: an action is chosen which maximizes the objective
corresponding to different behaviors. The process operates in four stages:

1. Find feasible actions, based on physical and other hard constraints.
2. Find Pareto optimal solutions.
3. Find satisficing actions from the Pareto optimal solutions incorporating

subjective knowledge.
4. Find the most preferred action, using other criteria.

534 9 Multi-Criteria Decision Making

In [1276], a single robot is used with the task of reaching a certain target.
However, in [1277], the method is generalized to several robots (in the
experiments reported, two robots are used) with the task of surrounding
and capturing the target. The authors use weighted sums to generate the
Pareto front (by varying the weights) and adopt lexicographic ordering, goal
programming and interval criterion weights for finding satisficing actions
[1275, 1276, 1278]. In all cases, the approaches seem to be applied a posteriori.

Jin & Sendhoff [802] propose an approach for converting fuzzy preference
relations into interval-based weights which are then combined with a dynamic
weighted aggregation method proposed by the same authors [801]. This ap-
proach is very similar to the proposal of Cvetković & Parmee [319], but in-
stead of converting the fuzzy preferences into single-valued weights, they are
converted to interval-based weights. So, the authors adopt preference matri-
ces and real-valued preference relation matrices. One interesting side-effect
of using intervals is that the dynamic weighted aggregation method cannot
properly work with non-convex Pareto fronts in this case, because in such
situations the movements of the individuals cannot be controlled based on
the fuzzy preferences. However, this approach could obviously be used with
an alternative multi-objective evolutionary algorithm that does not have this
limitation.

Wang and Terpenny [1675] propose an approach based on the use of a fuzzy
set-based aggregating function to express the preferences from the user. This
aggregating function relies on two things: (1) a set of weights that express the
importance of the design attributes and (2) a degree of compensation among
these design attributes. By changing the weights and the compensation fac-
tors, different portions of the Pareto front can be obtained. The authors also
combine their fuzzy preference aggregating function with a penalty function
in order to transform a constrained problem into an unconstrained one. This
approach is used in an interactive way within an agent-based system in which
the user expresess his/her preferences and a set of agents produce subsolutions
that are later refined based on the constraints and the fuzzy preference aggre-
gating function previously indicated. An interesting aspect of this work is that
the actual parameters of the fuzzy preference aggregating function are really
learnt using a neural network that attempts to minimize the cumulative error
of the network. This approach is validated using a panel meter configuration
design problem, which is a combinatorial optimization problem. The authors
found the approach to be very efficient and quick in terms of convergence to
the Pareto optimal set.

Farina and Amato [469, 470, 471] analyze the limitations and drawbacks
of the Pareto optimality definition when dealing with problems that have
more than 3 objectives. The three main reasons that the authors provide
for considering the definition of Pareto optimality as unsatisfactory are the
following:

9.3 Incorporation of Preferences in MOEAs 535

1. It does not consider the number of improved or equal objective function
values.

2. It does not consider the (normalized) size of the improvements.
3. It does not consider preference among objectives.

Based on this analysis, they propose three alternative definitions of opti-
mality that aim to generalize the definition of Pareto optimality: k-optimality,
kF -optimality (with fuzzy numbers) and fuzzy optimality. These definitions
cope with the previous limitations of the definition of Pareto optimality. An
important aspect of this work is the fact that in this case fuzzy logic is not
adopted for the treatment of the user’s preferences, but for modeling the size
of the improvements done in each objective. Thus, in this model, all objec-
tives are given the same importance as traditionally done with the Pareto
optimality definition. The approach, however, is adopted to extract subsets
of solutions from the Pareto optimal set, but instead of directly expressing
preferences as membership functions, the approach allows the definition of
fuzzy tolerances for the objectives.

Criticism of Fuzzy Logic

The main issue that deserves attention when extending fuzzy logic to incorpo-
rate user’s preferences is (just as in the case of goal-attainment) the definition
of the goals. The definition of an appropriate membership function that can
manage the uncertainties implied in the multi-criteria decision making stage
remains as a key issue when using fuzzy logic to incorporate user’s preferences
into a MOEA.

9.3.6 Compromise Programming

Deb [356] suggests a variation of compromise programming (see Section 1.7.1
from Chapter 1) to bias the sharing procedure of the NSGA [1509]. Deb uses a
normalized Euclidean distance between objective vectors (as normally used to
compute sharing distances in the NSGA), but introduces unequal weights such
that different importance can be assigned to each objective. This allows one to
bias the niche-formation procedure of a MOEA, but does not produce a single
final solution as normally done with multi-criteria decision making techniques.
That means that further intervention of the DM is still required. Therefore,
this is an a posteriori approach. In more recent work, Branke & Deb [161]
propose a biased crowding measure that is applied to the NSGA-II [374]. The
idea is that the user provides his/her preference as a direction vector, which is
really a central linearly weighted utility function. The crowding measure will
be biased based on this direction vector, so that only a fraction of the Pareto
front is produced. This crowding measure has the advantage of being easily
scalable to any number of objectives and to work well even in the presence of
non-convex portions of the Pareto front. It is worth indicating that the version

536 9 Multi-Criteria Decision Making

of the NSGA-II adopted in this work uses a modified crowding distance that
is more appropriate to deal with problems of higher dimensionality than the
original proposal [161].

Sakawa et al. [1415] also suggest an approach based on compromise pro-
gramming. In this case, the DM establishes goals for each objective using
membership functions (i.e., fuzzy logic). A minimum operator is defined so
that it can integrate all the preferences from the DM into a single membership
function. Several expressions inspired on compromise programming are then
used to guide the search of the MOEA. These expressions are used as online
performance measures having a direct impact on the selection process. The
approach was applied to multidimensional versions of the knapsack problem.

Criticism of Compromise Programming

One of the main problems with Deb’s approach [356] is the definition of the
weights determining the importance of each objective. Moreover, it is not triv-
ial to estimate the effect that a certain weight combination produces in the
search and it may be necessary to perform a considerable number of exper-
iments to obtain the desired effect. The more recent proposal from Branke
& Deb [161] for using a biased crowding distance is not as fast (in terms of
convergence) as other schemes (namely, the guided dominance scheme pro-
posed by Branke et al. [164]), but it scales better as the number of dimensions
increases.

Regarding Sakawa et al.’s approach [1415], the definition of membership
functions for each of the DM’s goals and the further integration of preferences
into a single membership function are tasks that are far from trivial.

It is worth mentioning that more sophisticated articulations of preferences
are also possible with compromise programming. Some approaches such as
dynamic compromise programming were suggested in OR long ago [1546], but
have not been coupled with a MOEA so far, to the authors’ best knowledge.

9.4 Issues Deserving Attention

Regardless of the approach used to handle DM’s preferences in an MOEA,
there are several issues that should be kept in mind:

• Preserving dominance.
• Transitivity.
• Scalability.
• Group decision making.

Each of these is briefly discussed in the remainder of this section.

9.4 Issues Deserving Attention 537

9.4.1 Preserving Dominance

It is important to make sure that the preference relationships introduced in
the MOEA preserve existing dominance relationships. Otherwise, the search
would be biased towards undesired regions of the search space. Despite the fact
that this property can be easily preserved in most cases (e.g., [598]), it should
be nevertheless kept in mind when proposing approaches that incorporate
preferences into a MOEA.

9.4.2 Transitivity

The use or lack of intransitivities has been the subject of much debate in
the OR field [318, 314, 1147]. It has been argued by some researchers that
human beings tend to define preferences that are not necessarily transitive,
and there are several examples in the OR literature in which intransitivities
of preferences easily occur (e.g., [730, 490]).

The main argument against allowing intransitivities is that their absence
considerably simplifies the modeling of preferences; intransitivities can lead
to contradictions that are much more difficult to handle. Also, by leaving
intransitivities out, the decision model becomes mathematically tractable.

However, the issue remains open, and the French school of MCDM prefers
to use outranking procedures that allow intransitivities. However, outranking
procedures have been combined with MOEAs by only a few researchers (as
seen in the previous section) and utility functions seem to be preferred.

9.4.3 Scalability

Some early researchers indicated that MAUT was sound only when few at-
tributes were considered [1752]. MOEAs in general are victim of the “dimen-
sionality curse” [115], because they tend to become cumbersome or even use-
less as the number of objectives is increased (see for example [1304, 1303, 727]).

Some of the approaches reviewed in this chapter, such as preference rela-
tions, are very sensitive to the number of objectives and to changes in the order
of the questions asked to the DM. Therefore, they are most likely impractical
in applications with a large number of objectives.

Interestingly, aggregating approaches are less sensitive to scalability. An
aggregating approach can easily manipulate a large number of objective func-
tions and preferences, because they are integrated into a single scalar value
(e.g., [206] where up to 500 objectives are considered at a time). However,
the effect of aggregation is diluted as the number of factors to be mixed is
increased.

9.4.4 Group Decision Making

It is not trivial to get a DM to express preferences in a consistent way for an
arbitrary problem. If this task is by itself difficult, incorporation of preferences

538 9 Multi-Criteria Decision Making

from a group of DMs is even more complicated. Unfortunately, the use of group
preferences is not an uncommon situation in real-world applications but its
introduction raises additional questions.

If there is a group of DMs, each of them probably has their own objec-
tives and priorities. Therefore, some form of negotiation is necessary in order
to reach a consensus. Normally, a moderator intervenes to solve the many
conflicts that could arise from these situations. The members of the group
can express their preferences independently and leave it to the moderator to
integrate them. Alternatively, they could be asked to debate and to establish
a consensus regarding their priorities (even if this could take a considerable
amount of time). In the latter case, the approach used to integrate prefer-
ences has to adapt to the ordering of preferences that represents the collective
opinion of the group [731].

Table 9.1: The voting preferences of three rational individuals on
three candidates. A > B means that A is preferred over B.

Individual Preferences A vs. B B vs. C A vs. C
1 A > B > C A B A

A > C
2 B > C > A B B C

B > A
3 C > A > B A C C

C > B
Group
Preferences A > B B > C C > A

The most common approach is the first, in which the preferences of every
individual DM are aggregated into a single utility function that represents the
unified preferences of the group. However, the economist Kenneth J. Arrow
[59] showed that apart from some very special cases, utility functions cannot
be used to aggregate individual preferences into a group utility function. The
so-called Arrow’s Impossibility Theorem has very important consequences in
MCDM. To explain how it works, consider the following assumptions [836]:

• Complete Domain: The utility function should be able to define an
ordering for the group, regardless of the individual members’ ordering.

• Positive Association of Social and Individual Values: If the group
ordering indicates that alternative x is preferred to alternative y for a
certain set of individual rankings, and (1) if there are no changes on the
ordering of each individual, and (2) each individual’s paired comparison
against x remains unchanged or is modified in x’s favor, then the group
ordering must imply that x is still preferred to y.

• The Independence of Irrelevant Alternatives: If an alternative is
eliminated and the preference relations for the remaining alternatives

9.4 Issues Deserving Attention 539

remain unchanged for all the individuals, then the new group ordering
should remain the same as before.

• Individual’s Sovereignity: For each pair of alternatives x and y, there
is some set of individual orderings which causes x to be preferred to y.

• Non-dictatorship: It is impossible that the preferences of the group be
always in agreement with the preferences of a single individual.

So, what Arrow’s Impossibility Theorem says is that any joint decision
process which is reasonably democratic and respectful of individuality (fol-
lowing the assumptions described before) is also irrational or unreliable. It
is likely to have at least one of the following problems: a) the order of the
decisions affects the final outcome, b) the independence of its elements might
not be respected, and c) the unanimous will of its elements might be ignored.
A classical example of Arrow’s Impossibility Theorem uses three candidates
and three voters with the preferences indicated on Table 9.1.

While each individual has a rational set of preferences, it is obvious that
combining these to form a group utility function presents a problem (the group
utility relation is cyclic, i.e., it is not transitive). In consequence, optimization
for the group using this data is impossible. Some authors such as Hazelrigg
[668] argue that this situation is not a rare case, but is in fact the norm
and as greater detail about the preferences of individuals within a group are
provided, the higher the chance of encountering this type of problem.

Some authors have shown that Arrow’s conditions can be ignored in prac-
tical problems [1461, 1147], but its mere existence has triggered a considerable
amount of research in economics [1389], and cannot be disregarded by EMO
researchers.

9.4.5 Other important issues

Finally, it is important to establish a set of characteristics that the ideal
scheme to incorporate preferences should have. In that regard, the seven pre-
requisites for a good MCDA approach, defined by Brans and Mareschal [166]
are provided next:

1. The approach should take into account the amplitude of the deviations
between the alternatives.

2. Scaling should not be required, despite the fact that the criteria of a
problem could be (and normally are) expressed in different units.

3. When comparing two alternatives a and b, the MCDA technique should
arrive at one of the following conclusions:
• a is preferred to b, or b is preferred to a.
• a and b are indifferent.
• a and b are incomparable.

4. The method should be understandable by the DM. Therefore, black-box
effects should be avoided.

540 9 Multi-Criteria Decision Making

5. Parameters that have no economical significance should not be included
in the approach.

6. The analysis of the conflicting aspects of the criteria must be available.
7. It is important to have a clear interpretation of the weights of the criteria.

Some recent EMO research (e.g., [318]) has considered these issues, but
much more work is still needed.

9.5 Summary

In this chapter, some of the main concepts relating to multi-criteria decision
making that have been developed by operations researchers are reviewed. As-
pects such as the operational attitude of the DM and the different stages
at which preferences can be incorporated are discussed. Also, the two main
schools of thought regarding MCDM (outranking and multi-attribute utility
theory), are discussed and compared.

Other important issues such as scalability, transitivity and group decision
making are also briefly discussed. However, the main emphasis of this chapter
is to describe the most representative work regarding preference articulation
into MOEAs. The review is very comprehensive and includes brief descriptions
of the approaches reported in the literature as well as some discussion of their
advantages and disadvantages.

Further Explorations

Class Exercises

1. Explain the importance of adopting mechanisms for the incorporation of
user’s preferences into a MOEA.

2. Explain the main differences between the French school and the American
school of multi-criteria decision making.

3. Design a set of preferences for a certain problem that you propose (or
choose from the literature) such that intransitivities occur. These pref-
erences should look sound and logical when analyzed independently, but
should “naturally” lead to contradictions when put together.

4. Real-world problems pose great challenges, since many other factors such
as uncertainty, noise, and human errors, among others, must be consid-
ered in the model of preferences to be used with a MOEA [1249, 1248].
Discuss the role of preference incorporation in the context of real-world
applications.

5. Design an artificial multi-criteria decision making problem in which sev-
eral people play the role of decision makers. Then, simulate a situation
in which the decision makers express conflicting preferences. Propose sev-
eral schemes to incorporate the conflicting preferences into a single set of
preferences and discuss the advantages and disadvantages of each of these
schemes.

Class Software Projects

1. Implement one of the methods to incorporate user’s preferences that was
discussed in this chapter (e.g., Cvetković’s approach [319]).

2. Implement a scheme for incorporation of user’s preferences based on a
utility function and incorporate it into a multi-objective evolutionary al-
gorithm.

542 Further Explorations

3. Implement a scheme for incorporation of user’s preferences based on out-
ranking and incorporate it into a multi-objective evolutionary algorithm.

4. Design and implement a new scheme to incorporate preferences from the
decision maker into a MOEA. Justify your design choices and validate
your approach with a set of test functions such as those discussed in
Chapter 4. There is a considerable number of MCDM approaches re-
ported in the OR literature that have not been coupled with MOEAs.
For example: PROTRADE (see Section 1.7.3 from Chapter 1), SEMOPS
(see Section 1.7.3 from Chapter 1), the concept of stochastic dominance
[489], the conflict analysis method [730], the expected utility maximiza-
tion [1620], EVAMIX [1666], NAIADE [1148], QUALIFLEX [1232], and
the multiobjective statistical method (this is an extension of the surrogate
worth trade-off method discussed in Section 1.7.1 from Chapter 1) [627].

5. Read the available surveys on the incorporation of preferences in MOEAs
by Coello Coello [263] and Rachmawati & Srinivasan [1313], and discuss
the relevance of the research topics covered. Do you consider that the
salient research issues that they discuss are still relevant nowadays? Dis-
cuss.

Discussion Questions

1. Investigate the different versions of ELECTRE in more detail (see Sec-
tion 1.7.1 from Chapter 1). Then, choose an application domain in which
some version of ELECTRE could be used. What advantages and disad-
vantages did you find when using ELECTRE to incorporate preferences
into a MOEA with respect to the use of a utility function?

2. Write a report containing a comparative study of outranking vs. utility
functions. Discuss issues such as ease of use, foundations, parameters re-
quired, generality, advantages and disadvantages and limitations. Can you
identify certain “standard” situations in which one of these two families
of approaches could be more appropriate than the other?

3. Investigate the “conflict analysis method” [730]. What are the preference
articulation mechanisms that this method hybridizes? What advantages
does the author argue that his hybrid method has? Do you consider this
method as a good candidate to be coupled to a MOEA? Why? Why not?

4. Read:
Bernard Roy, “A Conceptual Framework for a Prescriptive Theory of Deci-
sion-Aid”, In Martin K. Starr and Milan Zeleny, editors, Multiple Criteria
Decision Making, volume 6 of TIMS Studies in the Management Sciences,
pages 179–210. North-Holland Publishing Company, Amsterdam, 1977.

What is the formal definition provided by Roy for the fundamental prob-
lem of global preference modeling? What is the axiom of complete tran-
sitive comparability? From the three types of operational attitude of the

Further Explorations 543

DM described by Roy, which do you think that is more appropriate in
general terms (i.e., in the absence of specific information)? Why? Discuss.

5. Investigate “evolutionary game theory” [1493, 698, 1688] and discuss its
potential applicability to multi-criteria decision making using MOEAs.
What are the differences between classical game theory and evolutionary
game theory?

6. Some authors have suggested that the so-called “transitivity of indiffer-
ence” must be removed in multi-criteria decision making. Luce [1023] gives
an example: since a DM cannot make a difference between coffee with n
grains of sugar and n + 1 grains of sugar, using transitivity we can infer
that the DM cannot make a difference between coffee with 1 grain of sugar
and a coffee with 1000 grains of sugar (2 full spoons). This is evidently
a bad thing. Investigate this notion and its corresponding order, which is
called semiorder, and write an essay where you discuss some of its possible
implications when designing preference models.

7. Some researchers (see for example [1056]) have discussed the implications
of “indifference” in the modeling of preferences. It is usually assumed that
if the DM is indifferent between A and B, and prefers C to A, then the
DM prefers C to B. However, this should not be taken for granted as the
following example (taken from [1056]) shows:
A child is asked to choose between two birthday presents: a pony and
a blue bicycle. Since it likes both of them very much, it cannot choose
and is therefore indifferent between the pony and the bicycle. The child
is further asked to choose between the blue bicycle and a red bicycle with
a small bell. The child then chooses the red bicycle. However, we cannot
infer that the child would prefer the red bicycle to the pony, since it can
still be indifferent between them.
Investigate the notion of “indifference” in more depth and write an es-
say where you discuss some of its possible implications when designing
preference models.

8. Read the comparative study of progressive preference articulation tech-
niques presented by Adra et al. [13] and summarize the main issues raised
by the authors when dealing with many-objective problems. Do you agree
with such issues? Would you add others? Discuss.

Possible Research Ideas

1. Develop a formal framework for incorporating preferences into a MOEA.
Your framework should support an interactive MCDM approach and
should be coupled to a MOEA based on Pareto ranking. It is desirable
that the framework can also deal with uncertainties in the preferences
expressed by the DM. Refer to Cvetković & Parmee [319] for work in this
area.

544 Further Explorations

2. Relate the concept of ε-dominance proposed by Laumanns et al. [959]
to the incorporation of preferences from the DM into an MOEA. Derive
a formal framework that allows the use of this concept interactively to
narrow the search space explored by a MOEA.

3. Develop a new scheme to incorporate preferences into a MOEA using as
a basis an outranking method. Compare your approach to the use of a
utility function with respect to: ease of use, degree of difficulty of the
implementation, flexibility, and computational cost. Can you think of an
application in which the use of this sort of scheme (i.e., based on an
outranking approach) may be undesirable?

4. The use of MOEAs coupled with a decision-making approach could be
useful in many application domains. It would be interesting, for example,
to use such an approach to control a behavior-based system (e.g., a ro-
bot). This problem has a multiobjective nature since there are multiple
(heterogeneous) behaviors that interact with each other and it is desirable
to take an action such that all of them are simultaneously satisfied. The
use of fuzzy rules to generate weights that would narrow the search of
a traditional multiobjective optimization technique was proposed by Pir-
janian [1275]. Propose a MOEA-based decision-making approach for this
application domain.

5. Another interesting application of preference articulation schemes is in
constraint-handling [1105, 265]. If preference information is incorporated
into a constraint-handling approach, the search can become more efficient,
because domain knowledge can be used to bias the selection mechanism of
a MOEA [684]. Furthermore, the integration of a multiobjective scheme
to handle constraints with some preference information extracted from
the problem itself, can produce very efficient constraint-handling schemes
to be used with evolutionary algorithms (see for example [1329]). Develop
a novel MOEA-based constraint-handling scheme using incorporation of
preferences.

6. Some researchers showed several years ago that some of the most com-
monly used multiobjective optimization approaches of that time could be
integrated in what they called a “unified algorithm” [539, 538]. The idea is
to factor out common portions of several algorithms. Then, these portions
can be used as an engine to which other small modules (representing each
a different technique) can be coupled. Adopt this same idea to unify the
different approaches used within Multi Attribute Utility Theory (MAUT).

7. The analogy between decision making and social choice was identified sev-
eral years ago [59, 58], and it is still an active area of research in MCDM
[306]. The main idea of this approach is to replace criteria by voters and
the choices by candidates. This transforms a multi-criteria decision making
problem into one of voting [158]. Since social choice theory has a very solid
foundation and the use of a voting scheme does not impose constraints
in the number of voters, this transformation is appealing. It should be
clear, however, that this transformation is not as simple as it may seem.

Further Explorations 545

For example, the mapping from criteria to voters requires the considera-
tion of several important differences [60]. Propose a MOEA-based voting
scheme to incorporate preferences. Some interesting work regarding vot-
ing schemes in the context of behavior-based robotics is presented by
Pirjanian [1275].

8. Consider the use of rough sets [1262, 1263] for multicriteria decision analy-
sis and their possible incorporation into a MOEA. See for example the
survey presented by Greco et al. [597].

9. Venkat et al. [1639] proposed a method for obtaining a set of (preferred)
solutions from a larger set. This approach is called the Greedy Reduction
algorithm and its selection is based on maximizing a scalarizing function of
the vector of percentile ordinal rankings of the Pareto optimal solutions
obtained. The user is allowed to set the size of the subset desired, and
the quality of the solutions obtained is a function of the size of the subset
required (high percentile values of the Pareto optimal solutions correspond
to a small subset). Study the way in which this sort of mechanism could
be coupled to a MOEA.

10. Some researchers have proposed modifications to the selection mechanism
of a MOEA, such that it converges towards the “knees”, which are solu-
tions in which, a small improvement in one objective produces a large dete-
rioration in at least one other objective (see for example [162, 1312, 1311]).
Discuss the relevance of these knees in real-world applications, and pro-
pose a novel selection scheme that moves the population of a MOEA
towards them.

11. Physical programming [1094] is a multi-objective optimization technique
that requires that the decision maker provides a general classification of
the goals and objectives using his/her knowledge of the problem. Then,
this information is mapped into a utility function for which it is not neces-
sary to define weights. Study physical programming, and propose a hybrid
of this technique with a MOEA.

12. Coupling evolutionary algorithms to outranking methods for classification
tasks is an interesting area that has been scarcely explored in the special-
ized literature (see for example [589]). Propose a novel application within
this area.

10

Alternative Metaheuristics

Nature is trying very hard to make us succeed, but nature does not
depend on us. We are not the only experiment.

R. Buckminster Fuller

10.1 Introduction

Evolutionary Algorithms (EAs) are not the only search techniques that have
been used to deal with multiobjective optimization problems. In fact, as other
search techniques (e.g., Tabu search and simulated annealing) have proved to
have very good performance in many combinatorial (as well as other types
of) optimization problems, it is only natural to think of extensions of such
approaches to deal with multiple objectives.

The Operations Research (OR) and EA communities have shown a clear
interest in pursuing these extensions. Since the multiobjective formulation
of combinatorial optimization problems (e.g., the quadratic assignment prob-
lem) are known to be NP -complete [1465, 429], they present real challenges
to researchers. Additionally, many real-world problems (e.g., scheduling) re-
quire efficient approaches that can at least approximate Ptrue and PFtrue in a
reasonable amount of time.

Any search technique such as those discussed in this chapter, can be ex-
tended to deal with multiple objectives in several ways, just as in the case of
EAs (see Chapter 2). One could just aggregate the objective functions to form
a single scalar value, or to use a target vector approach (defining ideal goals to
be achieved by each objective and aggregating their differences with respect
to the values obtained). However, dominance can also be checked locally (be-
tween two solutions generated by the algorithm) and then keep in an archive
every nondominated solution generated over time, so that dominance can also
be checked globally (i.e., with respect to this archive). Knowles and Corne
[886] have argued that the use of a naive two-membered evolution strategy

548 10 Alternative Metaheuristics

(with an external archive) is sufficient to generate PFtrue for relatively com-
plex multiobjective optimization problems.

The issues are then of a different nature. For example: how to move from a
certain state to another, or how to ensure that different portions of PFtrue are
being generated rather than only a certain fraction of it. Additionally, other
issues such as diversity are an important concern with the heuristics of this
chapter as well as with MOEAs.

This chapter is organized as follows. Section 10.2 discusses simulated
annealing and the main proposals to extend it to problems with multiple
objectives. Tabu search and scatter search as well as their corresponding mul-
tiobjective extensions are discussed in Section 10.3. The ant system (including
the Ant-Q algorithm) is the subject of Section 10.4. Distributed reinforcement
learning is analyzed in Section 10.5. Particle swarm optimization, differential
evolution and artificial immune systems are discussed in Sections 10.6, 10.7
and 10.8, respectively.

Finally, Section 10.9 covers other promising heuristics that are good can-
didates for solving multiobjective optimization problems (i.e., cultural algo-
rithms and cooperative search).

10.2 Simulated Annealing

As mentioned in Chapter 1 (Section 1.4), simulated annealing is a stochas-
tic search algorithm based on the concept called “annealing”. The annealing
process consists of first raising the temperature of a solid to a point where
its atoms can freely (i.e., randomly) move and then to lower the temperature,
forcing the atoms to rearrange themselves into a lower energy state (i.e., a
crystallization process). During this process the free energy of the solid is
minimized (the crystalline state is the state of minimum energy of the sys-
tem). The cooling schedule is vital in this process. If the solid is cooled too
quickly, or if the initial temperature of the system is too low, it is not able
to become a crystal and instead the solid arrives at an amorphous state with
higher energy. In this case, the system reaches a local minimum (a higher
energy state) instead of the global minimum (i.e., the minimal energy state)
[407, 1292].

10.2.1 Basic Concepts

Nicholas C. Metropolis et al. [1095] proposed an algorithm to simulate the
evolution of a solid in a heat bath until it reached its thermal equilibrium.
The Monte Carlo method was used to simulate the process, which started from
a certain thermodynamic state of the system, defined by a certain energy
and temperature. Then, the state was slightly perturbed. If the change in
energy produced by this perturbation was negative, the new configuration
was accepted. If it was positive, it was accepted with a probability given by

10.2 Simulated Annealing 549

e
−∆E

kT , where k is the so-called Boltzmann constant, which is a constant of
nature that relates temperature to energy [1292]. This process is repeated
until a frozen state is achieved [407, 1410].

Thirty years after the publication of Metropolis’ approach, Kirkpatrick
et al. [861] and Černy [219] independently pointed out the analogy between
this “annealing” process and combinatorial optimization. These researchers
indicated several important analogies: a system state is analogous to a solution
of the optimization problem; the free energy of the system (to be minimized)
corresponds to the cost of the objective function to be optimized; the slight
perturbation1 imposed on the system to change it to another state corresponds
to a movement into a neighboring position (with respect to the local search
state); the cooling schedule corresponds to the control mechanism adopted by
the search algorithm; and the frozen state of the system corresponds to the
final solution generated by the search algorithm (using a population size of
one). These important analogies led to the development of an algorithm called
“Simulated Annealing”.

1. Select an initial (feasible) solution s0

2. Select an initial temperature t0 > 0
3. Select a cooling schedule CS
4. Repeat

Repeat
Randomly select s ∈ N(s0) (N = neighborhood structure)
δ = f(s) − f(s0) (f = objective function)
If δ < 0 then s0 ← s
Else
Generate random x (uniform distribution in the range (0, 1))

If x < exp(−δ/t) then s0 ← s
Until max. number of iterations ITER reached
t ← CS(t)

5. Until stopping condition is met

Fig. 10.1. Simulated annealing pseudo code

The pseudo code of simulated annealing is shown in Figure 10.1 [407].
In this pseudo code, s0 contains the solution, and minimization is assumed.
This algorithm generates local movements in the neighborhood of the current
state, and accepts a new state based on a function depending on the current
“temperature” t. The two main parameters of the algorithm are ITER (the
number of iterations to apply the algorithm) and CS (the cooling schedule),
since they have the most serious impact on the algorithm’s performance.

1 This slight perturbation is analogous to the mutation operator used in EAs.

550 10 Alternative Metaheuristics

Despite the fact that it was originally intended for combinatorial optimiza-
tion, other variations of simulated annealing have been proposed to deal with
continuous search spaces (e.g., [1635]).

10.2.2 Multiobjective Versions

The use of simulated annealing in multiobjective (combinatorial) optimization
was initially proposed by Serafini [1466]. His proposal is to use a target-vector
approach to solve a bi-objective optimization problem (several possible tran-
sition rules are proposed). A solution x′ is generated in the neighborhood of
the current solution x. If f(x′) is nondominated with respect to f(x), then it
is accepted as the current state, and a set of nondominated solutions is also
updated. This is the basic approach used with local search procedures. The
set or archive of nondominated solutions constitutes the “memory” of the ap-
proach and it allows the generation of several elements of the Pareto optimal
set in a single run. Notice, however, that in this case, only local nondominance
is used to fill up the archive of solutions and a further filtering procedure is
required to reduce the number of nondominated solutions presented to the
decision maker (DM).

The key in extending simulated annealing to handle multiple objectives
lies in determining how to compute the probability of accepting an individual
x′ where f(x′) is dominated with respect to f(x). Serafini [1466] proposed the
use of an L∞-Tchebycheff norm:

P (x′,x, T) = min
{

1, emaxj{λj(fj(x)−fj(x
′))/T}

}
(10.1)

where P (x′,x, T) is the probability of accepting x′, given x, and the tem-
perature T . The weights λj are initialized to one and modified during the
search process. Serafini [1466] also proposed several other rules, including
“cone ordering”, which is similar to lexicographic ordering (see Section 1.7.1
in Chapter 2).

Ulungu [1614] and Ulungu et al. [1616, 1618, 1617] propose an approach
very similar to Serafini’s (called “Multi-Objective Simulated Annealing”, or
MOSA for short). In their case, however, besides experimenting with the same
L∞-Tchebycheff norm, they also use the following weighted sum in computing
acceptance probability:

P (x′,x, T) = min
{

1, e
∑k

j=1 λj(fj(x)−fj(x
′)/T)

}
(10.2)

where P (x′,x, T) is defined as before, and k is the number of objective func-
tions of the problem. The weights λj are again defined by the user based on a
set of goals (or minimum satisfaction levels for each objective) defined by the
DM. Results in this case are compared against PFtrue of several instances of
bi-objective knapsack problems. Such solutions are generated with an enumer-
ative approach based on the branch and bound algorithm [1660]. Obviously,

10.2 Simulated Annealing 551

other norms are possible for computing the probability of accepting a domi-
nated solution, and the DM is free to choose any that can bias the algorithm
towards promising regions of the search space. Also, in combinatorial opti-
mization problems it may be particularly useful to start the search not with
a randomly generated solution, but with a value previously found by another
heuristic (e.g., a greedy algorithm [1611]).

Ray et al. [1328] use simulated annealing to solve a multiobjective design
problem in which the objectives are handled through a weighted sum. Weights
are computed following the guidelines of MAUT (see Chapter 9) [836]. To han-
dle the incommensurable units of each objective function, fuzzy membership
functions are used. Because of the aggregating function adopted, the result-
ing global optimization problem becomes highly multimodal and the authors
propose several approaches to deal with it. One of these proposals is a hy-
brid of simulated annealing and a nonlinear local optimization algorithm that
explores the neighborhood of solutions produced by a random perturbation
method, attempting to improve the quality of the comparison set used by the
acceptance criterion function. The Hooke and Jeeves algorithm [703] with an
external penalty function is used. Simulated annealing is found to produce
better solutions (in terms of closeness to a global optimum defined by assign-
ing equal weights to the three objective functions of the problem) than two
random multi-start search methods that use traditional global optimization
approaches (e.g., Hooke and Jeeves algorithm).

Ruiz-Torres et al. [1403] use simulated annealing with Pareto dominance as
the selection criterion to solve bi-objective parallel machine scheduling prob-
lems. Two types of searches are employed in this case: one to minimize the
number of jobs late and other to minimize the average flow-time. Then, neigh-
borhood search is performed and nondominated solutions with respect to the
two objectives are considered as the “best” moves. The approach is compared
against another heuristic based on pure neighborhood search and against an
enumerative approach. Simulated annealing performed well, generating more
than sixty percent of the elements of Ptrue .

Czyzak and Jaszkiewicz [322, 323] propose a technique called Pareto Sim-
ulated Annealing (PSA). This approach also uses a weighted sum like MOSA.
However, the technique adopts a population instead of relying on a single solu-
tion at each iteration. An external file is still used to store nondominated vec-
tors, but quad trees are adopted to ensure efficient storage and retrieval of such
vectors [626]. Also, when a solution f(x′) is generated in the neighborhood
of f(x) (actually, f(x′) represents the closest neighborhood solution to f(x)),
the weights are increased in those objectives in which f(x) dominates f(x′)
and are decreased in those objectives in which f(x) is dominated by f(x′).
This is intended to increase the probability of moving as far as possible from
f(x). Another interesting aspect of this approach is that it can be easily
parallelized, since the computations required for each solution can be done in-
dependently from each other. PSA was compared against Serafini’s algorithm
[1466]. PSA was able to generate a larger number of elements of PFtrue and

552 10 Alternative Metaheuristics

distribute them more uniformly. PSA has been applied to capital budgeting
[320], the design of a cellular manufacturing system [321], software project
scheduling under fuzziness [784], agricultural project scheduling [656], and to
a nurse scheduling problem [773].

Hansen [648] uses a normalized aggregating function to combine several
objective functions related to a decision making problem in education. Since
a single aggregating function is produced, the author uses conventional simu-
lated annealing with a geometric cooling scheme [1648]. An interesting aspect
of this work, however, is the use of a fitness sharing function [368] to allow
the generation of diverse solutions (something difficult to achieve when a pure
aggregating approach is used). In order to make the application of the fitness
sharing function possible, the author defines euclidean distances on variable
decision space. The approach outperforms both a random search procedure
and a hillclimbing search algorithm.

A more naive aggregating function is used by Chang et al. [226] in a
portfolio optimization problem. In this case, two objectives are combined into
a single value. An interesting aspect of this application, however, is that one
of the constraints of the problem (expected return value) has to match exactly
a certain specific value. This requires the use of an additional heuristic that
can manage this constraint. The same aggregating function is used with a
genetic algorithm and with Tabu search. Their results show the GA is able to
generate more elements of the Pareto optimal set, but the authors favor the
combination of results produced by the three techniques (i.e., Tabu search,
the genetic algorithm and simulated annealing).

Lučić & Teodorović [1033] also use an aggregating function in a aircrew
rostering problem with two objectives. A set of weights is used to combine
the two objective functions of this application, and the result of this combi-
nation is used to compute the probability of acceptance of the new solution
produced. They also propose the use of a certain threshold to determine ther-
mal equilibrium and therefore, convergence of the algorithm. This threshold
is computed using another aggregating function in which the intention is to
check the improvement achieved in each objective after an epoch (some num-
ber of iterations) and stop whenever such improvement is minimum. The
authors also propose an interactive algorithm in which the DM proposes a set
of aspiration levels for each objective, given the ideal points for them (i.e., the
set of optima considering each of the objectives separately). Weights are also
defined in this case, but their values are computed using the aspiration levels
defined by the DM and the ideal points. A min-max approach is used in this
case to compute the probability of acceptance of the new solution produced.
Results are not compared to any other approach.

Matos and Melo [1082] propose the use of simulated annealing for the
multi-objective reconfiguration of radial distribution networks. Two objectives
are minimized: (1) power losses and (2) number of switching actions. The
authors do not provide much information about their multi-objective scheme,
but they seem to use some form of lexicographic ordering, since one objective

10.2 Simulated Annealing 553

is minimized while the other is maintained at a certain level of satisfaction.
Constraints are handled using penalty functions, and the approach is validated
using a 52-bus distribution network. An interesting aspect of this work is that
the authors introduce, in one of their case studies, a second objective which is
non-conflicting, and this leads to better solutions. This is an early application
of the concept of “multi-objectivity” that other researchers would later explore
with great success [890, 787].

Chipperfield et al. [246] use simulated annealing with an energy function
that transforms the multiobjective problem into a single objective min-max
problem. The resulting problem is to minimize the maximum deviations of
each objective with respect to a set of goals previously defined by the user.
The approach also requires a set of weights to properly scale the different
units in which the objective functions may be expressed. After performing this
transformation, the authors are able to use the conventional Metropolis ac-
ceptance criterion described above. The authors suggest the use of simulated
annealing for problems in which the choice of initial parameters is difficult
or when hillclimbing methods can get easily trapped in local optima. From
their experiments, they conclude that a MOEA (MOGA [504]) is easier to
use than their multiobjective simulated annealing algorithm, mainly because
the MOEA does not require weights for the objectives. However, MOGA was
found to be slower than simulated annealing, and the quality of results pro-
duced by both techniques was similar.

Suppapitnarm et al. [1541, 1539] propose an approach in which Pareto
dominance is used to select nondominated vectors. These nondominated vec-
tors are then stored in an external file. Although the approach manipulates
a single solution at a time (which is modified randomly at each iteration), to
add it to the file, it has to be nondominated with respect to the contents of
the file. Therefore, the external file takes the role of the population in this
case (such as in PAES [886]). If a newly generated solution is archived, then
it becomes the new search starting point. If the new solution is not archived,
then its acceptance probability is given by the following expression:

p =
k∏

i=1

exp
{
−fi(x)− fi(x)

Ti

}
(10.3)

where k is the number of objective functions, and Ti is the temperature as-
sociated with objective fi(x). Based on this probability, a potential solution
(which is not added to the external file) is evaluated. If accepted, then it
becomes the new starting point for the search. If rejected, then the previous
solution is adopted again as the starting point. Initially, every Ti = ∞ so
that all feasible perturbations are accepted. Periodically, Ti is reduced using
T ′

i = αiTi, where 0.5 ≤ α < 1. The authors also use a strategy called “return
to base” by which at some point along the optimization process, the currently
accepted solution is replaced by another one randomly selected from the ex-
ternal file. This aims to maintain diversity and avoid convergence to a local

554 10 Alternative Metaheuristics

Pareto front. This approach has been used to solve pressurized water reac-
tor reload core design problems [1243] and to design bicycle frames [1540].
However, the authors of this approach admit that in their own comparative
studies, this technique was not able to produce better results (or in less time)
than MOGA [504], and its only obvious advantage (according to its authors)
is its simplicity.

Karasakal and Köksalan [820] propose the use of simulated annealing for
solving bi-objective scheduling problems on a single machine. In a first series
of experiments, two objectives are minimized: (1) total flowtime and (2) max-
imum earliness. In this case, the objectives are optimized separately, and the
goal is to minimize total flowtime for a (given) maximum earliness value. In
this case, simulated annealing provided better results than those obtained
with a heuristic proposed by Koksalan et al. [893]. In a second series of exper-
iments, two different objectives are minimized: (1) flowtime and (2) number
tardy. In this case, a nonlinear aggregating function (a weighted Tchebycheff
function) is adopted. The results in this case are found to be superior to those
generated using a descent algorithm.

Nam and Park [1164] propose a multiobjective simulated annealing algo-
rithm which is based on Pareto dominance. The main novelty of this proposal
relies on the six criteria that the authors propose for the transition probabil-
ity: (1) minimum cost criterion, (2) maximum cost criterion, (3) random cost
criterion, (4) self cost criterion, (5) average cost criterion, and (6) fixed cost
criterion. After performing a small comparative study, the authors conclude
that the criteria that work best are the random, average and fixed criterion.
So, in order to compare this approach with respect to a MOEA, the authors
adopt the average criterion. Results are compared with respect to the NPGA
[709] using a multidimensional version of Kauffman’s NK fitness landscape
model [827]. The proposed approach presents a competitive performance, but
has some diversity problems. The authors suggest the use of niches to deal
with this problem. In further work, Nam and Park [1165] propose the Pareto-
based Cost Simulated Annealing (PCSA), which estimates the cost of a state
by sampling (either the neighborhood or the whole population). These two
schemes are really analogous to adopting the tournament selection of the
NPGA using a small tournament size in the first case and the whole popula-
tion in the second. The authors compare their PCSA with respect to MOGA
[504], NSGA [1509] and NPGA [709] in 18 test problems of low dimensional-
ity (two objective functions, and between 2 and 4 decision variables). For a
quantitative analysis of performance, a uniformity measure is adopted by the
authors. Their approach is able to outperform the three other algorithms 67%
of the time, but fails to do so in cases in which the Pareto front is disconnected.

Another aggregating approach is used by Thompson [1582] in an appli-
cation where multiobjective simulated annealing is compared to a multiob-
jective genetic algorithm. In this case, the total probability of acceptance is

10.2 Simulated Annealing 555

the product of the single probabilities of each of the objective functions.2

A comparative study against MOGA [504] both with and without elitism,
indicated that multiobjective simulated annealing was better both in terms
of the quality of the solutions produced and in terms of convergence time.

Sarker and Netwon [1428] use simulated annealing with an approach based
on deviations from the best values found so far (similar to compromise pro-
gramming, but linear in nature). This approach is used to solve bi-objective
linear programming problems.

Baykasoǧlu [105] proposes the use of simulated annealing with preemptive
goal programming, for solving multi-objective optimization problems. Pre-
emptive goal programming is a special case of goal programming in which
the most important goals are optimized first, followed by the secondary goals.
This is then, a form of lexicographic ordering approach in which the aim
is to minimize deviations with respect to a certain set of pre-defined goals.
For handling constraints, a death penalty approach is adopted by the author
(i.e., infeasible solutions are discarded). Six examples are adopted to validate
the proposed approach (3 are linear problems, and the other 3 are nonlinear
problems). The results obtained are either comparable with those generated
by other methods, or better than them.

Suman [1533, 1534] propose a multi-objective version of simulated an-
nealing based on Pareto dominance, an external archive and a scheme that
handles constraints within the expression used to determine the probability
of moving to a certain state. For that sake, the author uses a weight vec-
tor for the acceptance criterion. Such weight vector considers the number
of constraints satisfied by a certain solution. In further work, Suman [1535]
compares five multi-objective extensions of simulated annealing in several con-
strained multi-objective optimization problems. The algorithms compared are:
SMOSA [1539], UMOSA [1616, 1618], PSA [322, 323], WMOSA [1533, 1534],
and PDMOSA, which is proposed in the paper. PDMOSA uses the selection
criterion adopted by SPEA [1782], in which the solutions stored in the external
archive participate in the selection process. A penalty function is adopted to
handle the constraints of the problems studied. From the comparative study,
the author concludes that PSA provides the best overall results with respect
to quality of the solutions obtained, and PDMOSA with respect to diversity.

It is also possible to define hybrids between simulated annealing and other
heuristics. For example, Dick and Jha [389] use clusters of solutions (similar
to niches), and each of them is assigned a rank (the sum of ranks of all the so-
lutions contained within it). Cluster-level operators (mutation) and solution-
level operators (crossover) are adopted in this case. Reproduction is restricted
to individuals within the same cluster and partial domination is considered
in ranking clusters. Individuals that violate hard constraints are removed and
those which violate soft constraints are handled through a penalty function.
Boltzmann trials are also used to select solutions within the same cluster. A

2 This sort of nonlinear aggregating function was also proposed by Serafini [1466].

556 10 Alternative Metaheuristics

global temperature-dependent criteria is used to keep diversity in the popu-
lation. As the authors recognize, their approach shares similarities both with
MOGA [504] and with parallel recombinative simulated annealing [1039].

Alves and Cĺımaco [38] propose an interactive method for solving 0-1 mul-
tiobjective linear problems using simulated annealing and Tabu search. First,
the authors describe separately simulated annealing and Tabu search, and use
each of them to solve multiple-constraint knapsack problems, a p-median prob-
lem and a set covering problem. Then, they propose an interactive method in
which they impose bounds on the objective function values (which they call
“reservation levels”). The idea is to focus the search towards regions in which
there are potentially nondominated solutions (which are solutions that are
currently nondominated, but could be globally dominated by other solutions
that haven’t been found yet). The decision maker then chooses a subregion
to be explored, and a metaheuristic is run to explore such region. Simulated
annealing or Tabu search are selected at each run performed. However, the
same objective function is adopted, in order to avoid hurting the convergence
of the approach. Pareto dominance is not used as the acceptance criterion, to
avoid converging to a local Pareto front. Instead, each objective is separately
optimized in turns, aiming to find a good compromise between the two ob-
jectives when changing the objective to be optimized. The authors argue that
despite the convergence towards the extreme portions of the Pareto front, they
can find a diversified set of nondominated solutions due to both the unsteady
behavior of simulated annealing at high temperatures, and the diversification
phase of Tabu search. These diverse results are shown in graphical form with
several examples.

10.2.3 Advantages and Disadvantages of Simulated Annealing

One of the main reasons for the popularity of simulated annealing in single-
objective combinatorial optimization has been the existence of convergence
proofs for this method [1625, 1]. These convergence proofs are based on the fact
that the behavior of simulated annealing can be modeled using Markov chains.
Hajek [633], for example, has proved that if the cooling schedule defined by
tk = c/ log(1+k) is used (where k is the number of iterations and c is at least
as great as the depth of the deepest local minimum), simulated annealing is
guaranteed to converge in asymptotic time. This result, although interesting,
is not very useful in practice because it implies that the computational time
required by simulated annealing grows exponentially with respect to the size of
the problem. Therefore, under certain circumstances, simulated annealing may
end up requiring more iterations than exhaustive search [407]. Nevertheless,
convergence proofs provide a more solid foundation to the technique.

The first attempt to extend the convergence proofs of simulated anneal-
ing to multiobjective optimization problems seems to be the work of Serafini
[1466]. Using arguments substantiated on some analysis based on Markov
chains, Serafini [1466] shows that by combining two different acceptance rules,

10.3 Tabu Search and Scatter Search 557

it is possible to obtain an expression that gives a higher probability of accep-
tance to Pareto optimal solutions. The cooling schedule tk = c/ log(1 + k)
(mentioned above) is used in this analysis. Villalobos et al. [1654] provide a
more complete proof of convergence of multi-objective simulated annealing
adopting a suitable choice of acceptance probabilities.

Approaches such as the one proposed by Suppapitnarm et al. [1541, 1539]
may be an interesting future research path, because they combine the advan-
tages of local search with Pareto ranking. However, in practice, the authors of
this approach found that it had not really been able to outperform a MOEA
as indicated before, and it is offered more as an alternative possibly easier to
implement rather than being a heuristic designed to replace a MOEA.

A well-known disadvantage of simulated annealing is the difficulty in defin-
ing a good cooling schedule. This issue is important both in single- and in mul-
tiobjective optimization. Also, the multiobjective strategy adopted should be
able to keep diversity along the Pareto front. This is difficult for any local
search method.

Finally, the suitability of simulated annealing for parallel implementation
(i.e., the main search algorithm) is an important advantage [1039, 323] when
efficiency is emphasized. However, few applications of parallel versions of this
algorithm applied to multiobjective optimization problems have been reported
in the literature, and comparative studies against other heuristics (e.g., par-
allel MOEAs) are lacking.

10.3 Tabu Search and Scatter Search

Fred Glover proposed Tabu search in a paper that dates back to the mid-
1980s [566]3, although this technique has roots that date back to the late
1960s and early 1970s [568, 572]. As credited by Glover [568], the basic ideas
of Tabu search (which is nowadays a well-established optimization technique)
were also sketched by Hansen in the mid-1980s [655].

The optimum in Tabu search is approached iteratively (as in simulated
annealing). At each iteration, an admissible move is applied to the current so-
lution, accepting the neighbor with the smallest cost. Tabu search acts then as
a local search procedure. However, unlike conventional hillclimbing schemes,
Tabu search allows movements to positions that may not seem favorable as
seen from the current state. Tabu search also forbids reverse moves to avoid
cycling (these forbidden movements are recorded in a data structure called
Tabu list). Restrictions are based on the maintenance of a short term memory
function which determines for how long a Tabu restriction is enforced or, alter-
natively, which moves are admissible at each iteration. A given movement can
override its forbidden or “tabu” status when a certain (aspiration) criterion is

3 As an interesting historical note, the term metaheuristic (or metaheuristic), was
also proposed in this same paper from Glover [566].

558 10 Alternative Metaheuristics

satisfied (e.g., a reduction of the total cost). Due to its memory Tabu search
is able to escape local optima (unlike conventional local search procedures).

10.3.1 Basic Concepts

In general terms, Tabu search has the three following components [572]:

• A short-term memory that stores the recently visited points and considers
them as “tabu” (or forbidden), such that they are not revisited. This avoids
cycling.

• An intermediate-term memory, which stores optimal or near-optimal points
that are used as seeds to intensify the search.

• A long-term memory, which records the regions of the search space which
have been explored and is used to diversify the search, since it redirects
the search towards regions that have been under-explored so far.

1. Select x ∈ F (F represents feasible solutions)
2. x∗ = x (x∗ is the best solution found so far)
3. c = 0 (iteration counter)
4. T = ∅ (T set of “tabu” movements)
5. If N (x) − T = ∅, goto step 4

(N (x) is the neighborhood function)
6. Otherwise, c ← c + 1

Select nc ∈ N (x) − T such that:
nc(x) = opt(n(x) : n ∈ N (x) − T)
opt() is an evaluation function defined by the user

7. x ← nc(x)
If f(x) < f(x∗) then x∗ ← x

8. Check stopping conditions:
Maximum number of iterations has been reached
N (x) − T = ∅ after reaching this

step directly from step 2.
9. If stopping conditions are not met, update T

and return to step 2

Fig. 10.2. Tabu search pseudo code

The general algorithm of Tabu search is shown in Figure 10.2 [567]. The
basic idea of Tabu search is to create a subset T of N , whose elements are
called “tabu moves” (historical information of the search process is used to
create T). Membership in T is conferred either by a historical list of moves
previously detected as not productive, or by a set of tabu conditions (e.g.,
constraints that need to be satisfied). Therefore, the subset T constrains the

10.3 Tabu Search and Scatter Search 559

search and keeps Tabu search from becoming a simple hillclimber. At each
step of the algorithm, a “best” movement (defined in terms of the evaluation
function opt()) is chosen. Note that this approach is more aggressive than the
gradual descent of simulated annealing.

Scatter search was originally introduced by Fred Glover in 1977 [565], as a
heuristic for integer programming. It was originally conceived as an extension
of a heuristic called surrogate constraint relaxation, which was designed for
the solution of integer programming problems. In his original proposal, Glover
described scatter search as a method that adopts a series of different initializa-
tions to generate new solutions. Thus, a reference set of solutions is adopted in
this approach. An interesting aspect of scatter search is that, in this case, the
approach performs a deterministic search instead of a random one (as done,
for example, with genetic algorithms). The idea is to start by identifying a
convex combination of the points in the reference set, and then combine them
with subsets of the initial reference points in order to define new subregions
of the search space to be explored. After that, the central points of these new
subregions are examined in a systematic way until no further changes are de-
tected in the reference set. It was until the mid-1990s that Glover provided
more implementation details of scatter search [569], which allowed its exten-
sion to nonlinear, binary and permutation optimization problems. Glover also
proposes to couple scatter search with Tabu search using different types of
adaptive memories and aspiration criteria to influence the selection of points
from the reference set. However, the interest in scatter search really increased
after the publication of a seminal paper in which Glover presents the so-called
scatter search template [570]. This template is an algorithmic description of
scatter search which simplifies the details previously available, and provides
more information regarding the generation of initial solutions and their diver-
sification [1077].

10.3.2 Multiobjective Versions

There are several proposals to extend Tabu search in order to handle multiple
objectives. Gandibleux et al. [534] propose a technique (also called multi-
objective Tabu search, or MOTS) based on the use of an utopian reference
point.4 A measure of each objective improvement with respect to this utopian
point is recorded in the tabu memory and used later to update the search
direction (this is basically an aggregating function). The utopian point used
is the best objective function value for each objective from the solutions in the
neighborhood of the current solutions. The weights used in the aggregating
function are changed periodically to encourage diversity. Two tabu lists are
used in this case: one of normal attributes considered tabu that prevents the

4 It is interesting to note that Gandibleux et al. [534] used the term MOTS to denote
their method shortly before Hansen’s method, which was also called MOTS. That
is the reason why Hansen renamed his technique MOTS* [651].

560 10 Alternative Metaheuristics

algorithm from returning to already visited solutions, and another one used
to vary the weights. In a further paper, Gandibleux and Freville [533] apply
a variant of MOTS to the 0-1 multiobjective knapsack problem. In this case,
the authors adopt a procedure, based on the definition of bounds, to reduce
decision variable space. The experiments performed validated this procedure
in instances up to 500 variables. The algorithm works in two steps. In the
first, initial solutions are generated using a greedy algorithm with a convex
combination of the objectives. During the second step, the algorithm performs
an exploration along the Pareto front based on Tabu search. This procedure
allows to produce a quick first approximation of the Pareto optimal set, so
that most of the search effort concentrates on this region with a less intensive
exploration in other regions.

Hansen [651] proposes MOTS* (Multi-Objective Tabu Search). MOTS*
first generates random solutions as starting points for the algorithm. A weight
vector is determined for each of these solutions, based on a λ-weighted Tcheby-
cheff metric (weak dominance is the concept adopted by Hansen5). The idea
is to set these weights in such a way that points can be uniformly spread over
the Pareto front. Alternative solutions are generated by varying the weights.
Then, one chooses the best neighbor (determined by the maximum value ob-
tained from the product of the weights and the objective functions) that does
not violate the tabu list. Nondominated solutions are archived throughout
the process. As mentioned before, Tabu search tends to generate moves that
are in the area surrounding a candidate solution. Therefore, the main prob-
lem when extending this technique to deal with multiple objectives is how to
maintain diversity so that the entire Pareto front can be generated. Hansen
[651] proposes the use of a counter to keep track of the number of solutions
by which a point is dominated (this is similar to MOGA’s ranking proce-
dure [504]). Diversity is then introduced whenever it is needed according to
this counter. To introduce diversity, certain solutions can, for example, be
replaced by others that are randomly generated. Hansen [651] also discusses
possible ways to incorporate preferences from the user into his algorithm in
an interactive way. MOTS* is applied to multiobjective knapsack problems in
[649]. Additionally, other extensions are discussed, mainly related to operators
normally associated with (single-objective) Tabu search. In a further paper,
Hansen [647] presents TAMOCO (Tabu search for multiobjective combinato-
rial optimization), which is a variation of his MOTS*. In TAMOCO, Hansen
adopts a mechanism that forces solutions to drift over the Pareto front. This
can be done, for example, by simply replacing a randomly selected solution by
another one, which is randomly generated. Hansen also discusses schemes to
deal with situations in which most solutions are nondominated, and a “deg-
ree of domination” has to be considered, stressing the inherent limitations
of pure Pareto ranking. Hansen uses quad trees [626], and finds the point in
a quad tree that is closest to a given new point according to a λ-weighted

5 For a definition of “weak dominance”, see Section 1.2.3 in Chapter 2.

10.3 Tabu Search and Scatter Search 561

Tchebycheff metric. He also discusses other issues such as restricting the
search to a certain nondominated region, and the possible use of interactive
procedures. TAMOCO is validated using a multiobjective capital budgeting
problem with 3 objectives: (1) maximize expected short term profit, (2) max-
imize expected long term profit and (3) minimize the negative environmental
impact. This problem is modeled as a knapsack problem and results are com-
pared with respect to Pareto Simulated Annealing (PSA) [320]. Results indi-
cated that PSA produced better solutions with respect to a metric defined in
terms of an achievement scalarizing function. However, Hansen indicated that
PSA could not generate the entire Pareto front, whereas TAMOCO succeeded
at this. There is also another paper by Hansen [652], where he discusses the
use of substitute scalarizing functions based on the Lp norm as an alternative
mechanism to guide a local search based heuristic. This idea is tested using a
Tabu search algorithm which is applied to the multi-objective traveling sales-
person problem (moTSP). The experiments performed by the author show
a significant improvement when introducing substitute scalarizing functions,
although the author admits that this sort of approach may not be as useful
in other multi-objective combinatorial optimization problems.

Hertz et al. [676] propose three approaches to deal with multiple objec-
tives. The first is a simple weighted sum of objectives. However, the authors
realize that the approach cannot handle properly more than two objectives.
In such cases, it becomes too difficult to generate proper weights for each
objective so that such weights reflect the importance of each objective. This
process can also become computationally expensive due to the interaction re-
quired with the DM (see Chapter 9).6 The second approach is to define a
hierarchy of objective functions. This is basically lexicographic ordering. One
objective is considered at each iteration, but additional objectives can be used
to break ties. The authors indicate that this approach does not work properly
either, because the ordering imposed on the objectives affects the search (i.e.,
the most important objective in the hierarchy is given higher priority in all
the trade-offs generated). The third approach, which the authors finally adopt
for the cell formation problem under study, is the ε-constraint method (see
section 1.7.2 in Chapter 2): objectives are processed sequentially, using only
one at a time and treating the others as constraints. A strategic oscillation
procedure [572] is used to deal with the constraints (i.e., the secondary ob-
jectives) of the problem. The main idea of the strategic oscillation is to drive
the search in such a way that alternatively seeks inside and outside the feasi-
ble region, whose boundaries are previously selected. This is achieved either
by directly manipulating the objective function (e.g., with a penalty function
[303, 212, 482]) or by enforcing a set of moves that lead to certain specified
regions.

6 Other researchers have also used simple aggregating functions to handle multiple
objectives with Tabu search (e.g., [226]).

562 10 Alternative Metaheuristics

Baykasoǧlu [104, 106] proposes an approach, which he also calls MOTS,
to solve multiobjective optimization problems using Tabu search. The pro-
posed approach has two lists. The first is called the Pareto list, and stores the
nondominated solutions found during the search. The second is called the can-
didate list and stores all the solutions which are not globally nondominated,
but were locally nondominated at some stage during the search. Such solu-
tions in the candidate list are used as seeds in order to diversify the search.
For the diversification, variable movement strategies are applied to generate
neighboring solutions around the seed solutions. The author claims that his
approach can be used to problems with any type of variables (integer, zero-
one, discrete or continuous) and to any type of functions (linear, nonlinear,
convex and nonconvex). He also suggests the use of compromise programming
to choose a single solution out of the Pareto optimal set. The approach is
validates using several engineering optimization problems taken from the spe-
cialized literature. Results are indirectly compared with respect to the NSGA
[1509], but the author only argues that no much detail about the solutions
produced by the NSGA are provided and only indicates that his solutions are
of similar quality. Results are also compared with respect to MOSES [260],
but in this case, numerical values are actually compared.

Ho et al. [692] extend Tabu search in several ways, in order to solve multi-
objective optimization problems. The authors adopt Pareto ranking (similar
to Fonseca and Fleming’s ranking scheme [504]), an external archive (which
is bounded in size), fitness sharing, and a neighborhood generation based
on the construction of concentric “hypercrowns”, as suggested by Siarry and
Berthiau [1486]. An interesting aspect of this work is that the authors adopt
the contact theorem [1217] to test if a solution is Pareto optimal. The ap-
proach has two possible termination criteria. The first consists of reaching
a maximum number of (pre-defined) iterations. The second is reached when
the external archive is full and the point density of each of its members ex-
ceeds a certain threshold value. This approach is validated on four different
cases of an engineering optimization problem, in which the aim is to deter-
mine the optimal geometry parameters of a multisectional pole arc of large
hydro-generators. Two objectives are considered: (1) maximize the amplitude
of the fundamental component of the flux density in the air gap, and (2) min-
imize the distortion factor of a sinusoidal voltage of the machine on no-load
condition. The results are not compared with respect to any other approach.

Jaeggi et al. [766] propose a multi-objective parallel Tabu search approach
that operates on continuous search spaces. This approach (which, was also
called MOTS) uses as its search engine a Tabu search implementation pro-
posed by Connor and Tilley [295], which uses the Hooke and Jeeves opti-
mization method [703] coupled with short, medium and long term memories.
In this case, however, the search point comparison adopts Pareto dominance
and the Hooke and Jeeves movements are also generalized in order to consider
problems with multiple objectives. The multiobjective version of Hooke and
Jeeves allows both downhill and uphill movements, since the next point is

10.3 Tabu Search and Scatter Search 563

simply any nondominated solution from those produced so far. The authors
also adopt a pattern move strategy that repeats the previous move before
applying Hooke and Jeeves. This accelerates the search along known down-
hill directions. The medium term list is replaced by an external archive that
stores the nondominated solutions found so far. The intensification process
adopted relies on the use of the points discarded by the Hooke and Jeeves
method during the search. The authors also adopt a functional decomposition
scheme that allows to execute in parallel the objective function evaluations at
two stages during the search: when performing the Hooke and Jeeves’ moves
and during the diversification process. The parallel Tabu search algorithm
is implemented using a master/slave scheme, under MPI. This approach is
compared with respect to the NSGA-II [374] using some benchmark problems
taken from the specialized literature, in which it’s found to produce competi-
tive results, except for one problem where it converges to a local Pareto front.
Additionally, the approach is also adopted to solve an aerodynamic shape
optimization problem. In this case, however, results are not compared with
respect to any other technique. In a further paper, Jaeggi et al. [767] add a
constraint-handling mechanism to this approach. Constraints are handled in
a very simple way: a solution that violates any constraint is considered tabu
and the search is not allowed to visit that point. During diversification, the
algorithm is forced to loop until a feasible solution is generated, but the use
of a penalty function is also considered as an alternative by the authors. In
this case, the approach is validated using several constrained multiobjective
optimization problems, and results are compared with respect to the NSGA-II
[374].

Kulturel-Konak [915] proposes the multinomial Tabu search (MTS) algo-
rithm for multi-objective combinatorial optimization problems. The idea is
to use a multinomial probability mass function to select an objective at each
iteration. Such objective is called “active” and is optimized at that iteration.
The approach uses an external archive in which solutions are added based on
Pareto dominance. The approach also performs neighborhood moves, and uses
a diversification scheme based on restarts (i.e., if, during a certain number of
moves, the external archive hasn’t been updated, then one of its solutions is
kept as the new current solution and all the others are deleted). The length of
the tabu list is dynamically varied at every 20 iterations, and the algorithm
adopts a stopping criterion based on the maximum number of iterations during
which the external archive hasn’t been updated. Finally, a constraint-handling
technique, based on a penalty function, is also adopted. MTS is used to solve
different versions of the series parallel system redundancy allocation prob-
lem, including instances with two and three objectives. Results are compared
with respect to TAMOCO [647]. MTS clearly outperformed TAMOCO, since
it produced more nondominated solutions and such solutions dominated the
solutions produced by TAMOCO.

Xu et al. [1719] use Tabu search with an aggregating function to solve
a multi-objective flight instructor scheduling problem. Three objectives are

564 10 Alternative Metaheuristics

considered: (1) minimize labor cost, (2) maximize workload consistency and
(3) maximize flight instructor satisfaction and their assignments. Dynamic
neighborhood moves are adopted, which allows, for example, to jump into
different feasible regions, and also changes the weights used in the aggregating
function, so that a single objective is explored during each move. However,
an interesting aspect of this algorithm is that a set of rules based on Pareto
dominance are used when evaluating neighborhood moves, so that some moves
during the search may be based on Pareto dominance. The authors adopt
a greedy algorithm to generate a starting solution (this is called the “pre-
heuristic”). The proposed approach is validated using real-world data from an
US airline. The authors also indicate that this approach has been implemented
in a computerized decision-making system for flight instructor scheduling at
a major US airline.

Tan et al. [1560] present the Exploratory Multiobjective Evolutionary Al-
gorithm (EMOEA), which combines features of Tabu search and evolutionary
algorithms for multiobjective optimization. EMOEA uses an evolutionary al-
gorithm with Pareto ranking as its search engine, but it incorporates several
mechanisms from Tabu search in order to improve its performance. EMOEA
uses two lists: an individual list and a tabu list. Both lists interact and influ-
ence each other along the evolutionary process. The approach adopts conven-
tional genetic operators such as tournament selection, crossover and mutation.
However, it also incorporates a mechanism called lateral interference, which
is based on a population distribution method which can be applied either
in decision variable space or in objective function space. This method is in-
spired on a resources competition scheme, which is based on two general rules:
exploitation competition and interference competition. In exploitation compe-
tition, individuals with higher fitness are more likely to survive. Interference
competition only takes place among individuals with the same fitness level,
and it consists of a procedure similar to fitness sharing in which a niche ra-
dius is defined (this is called “territory” in EMOEA). Lateral interference is,
however, claimed to be advantageous with respect to fitness sharing, since it
does not require any user-defined parameter settings. EMOEA also incorpo-
rates an individual examination rule that incorporates a tabu restriction that
avoids repetition of currently found good individuals. Given a tabu list and an
individual list, every individual in the EMOEA is examined (with respect to
the tabu list) for acceptance or rejection from the individual list. At the same
time, the tabu list is updated when an individual dominates any member of
the tabu list (the individual being dominated is replaced in that case). Indi-
viduals that are dominated by the tabu list are kept in the individual list, as
long as they are not in the tabu list. If an individual is not dominated by the
tabu list, and such tabu list still has room, then the individual will be added
to it. EMOEA is validated using several benchmark problems reported in the
specialized literature. Results are compared mainly with respect to MOGA
[504], although in one test problem, the authors also refer to the NSGA [1509].

10.3 Tabu Search and Scatter Search 565

An interesting hybrid approach between genetic algorithms and Tabu
search for multiobjective optimization is proposed by Kurahashi and Terano
[932]. This approach keeps two tabu lists with the best individuals generated
by a GA. The best individual produced at each generation (i.e., the only
nondominated vector) is stored in a short-term tabu list, so that it cannot
bias the selection process. The best individuals found along the evolutionary
process and having different genotypes are stored in a long-term tabu list (i.e.,
Pknown).

Another hybrid approach is proposed by Khor et al. [846]. In this case, an
evolutionary algorithm is used to perform multiobjective optimization based
on Pareto ranking. A tabu list is used to avoid the repetition of any search
paths previously explored. The aspiration criteria are defined in such a way
that a uniform distribution of elements is enforced within the tabu list. The
authors also use lateral interference (as in [1560]), which intends to promote
diversity efficiently and without the need of extra parameters (as in the case of
fitness sharing). As indicated before, lateral interference is a form of dynamic
niching technique in which there are two types of competition: exploitation
competition (based on fitness) and interference competition (based on ter-
ritory).7 The authors argue that the use of Tabu search coupled with an
evolutionary algorithm improves the search and avoids the algorithm being
trapped in local optima.

Burke et al. [185] propose a population-based hybrid metaheuristic that
combines hillclimbing, simulated annealing, Tabu search and a mutation oper-
ator. The algorithm initializes and improves the population using hillclimbing.
Then, simulated annealing with a distributed cooling scheme for all individ-
uals is applied as a self-adaptation process. Mutation is employed as a way
to maintain diversity. Finally, cooperation among individuals is induced us-
ing principles from Tabu search (i.e., a list of forbidden and attractive moves
is kept). The approach is used to solve a bi-objective space allocation prob-
lem. Results are compared to a single-objective optimization technique. The
authors indicate that their proposed approach produces results with better
overall quality, but at a higher computational expense than a single-objective
optimization technique.

Balicki and Kitowski [82] propose the use of Tabu search to perform muta-
tion in an adaptive evolutionary multiobjective optimization algorithm. The
idea is to use Tabu search to perform local search around solutions that have
been previously produced by an evolutionary algorithm. Since the authors
were interested in combinatorial optimization problems, the use of local search
seems an obvious choice to enhance the performance of an evolutionary al-
gorithm. The authors use both genetic algorithms and evolution strategies in
their work.

7 A territory refers to the area within which a certain individual can interfere with
others in consuming a certain resource.

566 10 Alternative Metaheuristics

Beausoleil Delgado [111] proposes an interesting approach in which Tabu
search is used with an aggregating function to generate an initial set of so-
lutions. The weights used by Tabu search are modified such that a sufficient
variety of points can be generated. Instead of using Pareto ranking, the ap-
proach uses the Kramer choice function [1044]. These solutions are later used
as reference points for scatter search [569] and path relinking [572, 573]. Scat-
ter search then creates new points from linear combinations of subsets of the
current reference points. Path relinking generates new solutions by exploring
trajectories that “connect” high-quality solutions. The idea is to start from a
certain solution and then generate a path in neighborhood space that leads to-
wards the other solutions, which are called “guiding” solutions. As Glover and
Laguna [572, 573] indicate, path relinking is really a direct extension of scat-
ter search. The author uses path relinking in conjunction with extrapolated
path relinking [572] in order to integrate intensification and diversification
strategies. Also, some further refinements to reduce the number of iterations
required by the algorithm are used. For example, duplicates are eliminated
from the reference set of solutions and a filtering is performed to ensure that
the contents of such a set consists of only nondominated vectors (this has to
be done separately because the approach does not use nondominance to select
solutions). The approach is used to solve multiobjective combinatorial opti-
mization problems. In further work, Beausoleil [110], proposes a revised ver-
sion of his approach, which he calls “MOSS” (multiobjective scatter search).
The main extensions have to do with the capabilities to handle constrained
nonlinear optimization problems (the original version was designed for uncon-
strained combinatorial optimization problems). MOSS adopts a Multistart
Tabu Search (TS) procedure as a diversification generation method. This pro-
cedure can be seen as a sequence of Tabu searches where each of these searches
has a different starting point, recency memory, and aspiration threshold. All
these searches share the frequency memory to bias the search to unvisited or
less visited regions. Initially, the seeds for the search are just randomly gen-
erated positions. However, over time, the current nondominated set is used
as the reference set from which new solutions are generated. This allows the
combination of exploration and exploitation of the search space. The approach
also has a mechanism (called critical event design) that avoids duplicates both
in decision variable space and objective function space. The Kramer Choice
function is used to divide the reference solutions in two subsets. Euclidean
distances are adopted as a measure of dissimilarity in order to identify diverse
solutions to be combined (using linear combinations). MOSS is compared
with respect to the NSGA-II [374], SPEA2 [1775] and PESA [301] in a set of
benchmark problems of two and three objectives.

Zaliz et al. [1747] propose a multi-objective version of scatter search which
adopts Pareto ranking. The reference set is divided in two halves: one con-
tains nondominated solutions stored in an arbitrary order, and the other half

10.3 Tabu Search and Scatter Search 567

contains the most diverse solutions8 from the first half. If there are not enough
solution to fill the second half, then dominated solutions are adopted. This
approach also uses a local search technique, and combination operators which,
however, are not properly described. This approach is able to outperform both
SPEA [1782] and the (µ+λ) MOEA [1427] in the identification of interesting
qualitative features in biological sequences.

Vasconcelos et al. [1636] proposes an approach in which the scatter search
algorithm is modified with a nondominated sorting procedure similar to the
one adopted by the NSGA [1509]. The proposed approach is called M-scatter
search. In this case, the reference set contains the solutions obtained so far,
and they are ranked based on Pareto dominance and on a niched penalty
technique. This niched penalty technique penalizes each solution of a certain
front (the NSGA creates several fronts or layers of nondominated individuals)
based on the number of points of this front that are closer than a certain
predefined niche radius. The authors adopt an external archive (called offline
set). M-scatter search is validated using two benchmark problems and an
electromagnetic problem. Results are compared with respect to the NSGA
and the NPGA.

Corberán et al. [297] use scatter search to solve the problem of routing
school buses in a rural area. Two objectives are minimized: (1) the number
of buses used to transport students from their homes to school and back,
and (2) the time that a given student spends on the bus. This approach con-
siders each objective separately, but uses a filtering procedure in which the
best trade-off solutions with respect to the two objectives are identified. Two
constructive heuristics are adopted: one is based on a clustering mechanism,
where each cluster corresponds to a route, and the other is based on creat-
ing sectors around locations that are sequentially selected. The approach also
contains a mechanism that allows to create new solutions from the combina-
tion of two other existing solutions (a voting scheme is used for this sake),
as well as other mechanisms to reduce the length of a route and to remove a
location from one route and insert it into another route. In this case, the ref-
erence set contains nondominated solutions, although the objectives are really
optimized separately. Thus, this approach can be seen as a variation of lexi-
cographic ordering in which there is an external archive that considers Pareto
optimality as its filtering criterion. Results are compared with respect to a
Tabu search scheme previously proposed. The authors indicate that scatter
search produces an average improvement of 23.4% over the approach based
on Tabu search.

Gomes da Silva et al. [592] propose a scatter search approach to solve
bi-criteria multi-dimensional {0,1}-knapsack problems. The approach, how-
ever, consists on using surrogate multipliers in order to transform the original
bi-criteria problem into a single-objective problem. Nevertheless, in a further
paper, Gomes da Silva et al. [593] develop a truly multiobjective approach
based on scatter search. In this case, the initial set of solutions is obtained by
8 The authors do not indicate in which space is diversity measured.

568 10 Alternative Metaheuristics

optimizing each of the two objectives separately. These solutions are used to
generate the others. During the improvement stage, two heuristics are adopted
in order to satisfy each of the two objectives separately, and then a combi-
nation method is adopted, but maintaining feasibility at all times. Nondom-
inated solutions are retained in a secondary population (the reference set).
The update method for the reference set is based on a property that says that
given a nondominated solution, another solution may be found by changing
a small number of variables. Both proximity and diversity of the nondomi-
nated solutions produced by the approach are evaluated. Additionally, results
were also compared with respect to the use of exact methods for small prob-
lem instances. The authors conclude that their approach requires a relatively
small amount of time to obtain a good estimate of the Pareto optimal set,
even when considering fairly large problem instances. However, the method is
also found to be unable to generate the complete Pareto optimal set for large
problem instances. Thus, the authors recommend to adopt this approach to
locate promising regions of the search space which could be further explored
using exact methods.

Nebro et al. [1177] propose a scatter search algorithm for solving both
constrained and unconstrained numerical multiobjective optimization prob-
lems. The proposed approach is based on a template introduced in [570], and
contains five methods:

1. Diversification generation method: It is responsible for obtaining an
initial set of diverse solutions.

2. Improvement method: Uses local search to improve the initial set of
solutions. Pareto dominance and feasibility rules are adopted as part of
this method.

3. Reference set update method: The reference set contains solutions
which combine high quality with diversity. Such solutions are used to gen-
erate new individuals through the application of the solution combination
method. The authors use in this case nondominated sorting and a crowd-
ing procedure similar to the one adopted in the NSGA-II [374].

4. Subset generation method: It generates subsets of individuals which
are used for creating new solutions.

5. Solution combination method: It finds linear combinations of the ref-
erence solutions.

The proposed approach, which is called Scatter Search for Multiobjec-
tive Optimization (SSMO) is compared with respect to the NSGA-II using
a wide variety of test functions. Two versions of SSMO are evaluated: the
first (called SSMOv1) select the best individuals from the reference set using
Pareto ranking and crowding, and the second (called SSMOv2) uses clustering
to obtain the centroids that compose the reference set. Both approaches are
found to be competitive with respect to the NSGA-II. SSMOv2 is found to
provide better convergence than SSMv1, and the authors claim that the use
of centroids to build the reference set is a promising scheme to improve the

10.3 Tabu Search and Scatter Search 569

accuracy of the algorithm. In further work, Nebro et al. [1173] propose an
approach called Archive-based Scatter Search (AbSS). This approach is based
on the same template (and on the same five methods) than SSMO. How-
ever, AbSS introduces features from three other MOEAs. It uses the archive
management scheme of PAES [886], but instead of using the adaptive grid of
PAES, it adopts the crowding distance of the NSGA-II [374]. Additionally,
the selection of solutions from the initial set adopted to build the reference
set, relies on the density estimation mechanism of SPEA2 [1775]. AbSS is
compared with respect to SSMO [1177], NSGA-II [374] and SPEA2 [1775],
using a variety of test functions (both constrained and unconstrained) and
three performance measures: (1) generational distance [1626], spread [374],
and Hypervolume [1770]. Results indicate that AbSS outperforms the other
approaches with respect to diversity, but in terms of convergence, there is no
clear winner.

Molina et al. [1118] propose a Scatter Search Procedure for nonlinear
Multiobjective Optimization (SSPMO). This approach includes two different
phases: (1) generation of an initial set of nondominated solutions using several
Tabu searches and (2) combination of solutions and updating of the reference
set via scatter search. For the first phase, the authors adopt MOAMP [191],
which links several tabu searches using a global criterion method (see Section
1.7.1). The ideal vector is also found during this initial phase. In the second
phase, the solutions previously found are combined to produce new ones. The
improvement method in this case tries to fill the gap between the extreme
points of the Pareto front and the compromise point (located in the “knee”
of the Pareto front). SSPMO is compared with respect to MOAMP [191],
SPEA2 [1775] and MOSS [110], using four performance measures. Results in-
dicate that SSPMO is a competitive approach, generating better solutions in
terms of both convergence and distribution along the Pareto front.

Rao and Arvind [1319] propose the use of scatter search for lay-up sequence
optimization of laminate composite panels. Two objectives are minimized:
(1) weight and (2) cost. The problem is subject to buckling and frequency
constraints. In the initial population creation method, the authors adopt two
different approaches to ensure that the solutions generated are sufficiently di-
verse. Since this is a combinatorial optimization problem, local search schemes
are used for the improvement solution method adopted. In the first set of ex-
periments, a single-objective version of scatter search is compared with respect
to other approaches previously reported in the specialized literature. In this
case, buckling load is maximized. Then, a constrained version of the prob-
lem is considered. Finally, the authors consider the optimization of a com-
posite laminate made from two materials. This problem is considered both
as single-objective and was later transformed into a multiobjective one. The
multiobjective approach consists of a linear aggregating function in which the
weights are varied in order to generate the Pareto front. The authors discuss
the advantages of the multiobjective approach, indicating that when cost is
a primary consideration, the plate was made of glass-epoxy and when weight

570 10 Alternative Metaheuristics

is a primary consideration, it is made of graphite-epoxy. In between, several
compromises are possible.

Basseur et al. [100, 97] propose to hybridize a genetic algorithm with
path relinking for solving bi-objective permutation flowshop problems. The
authors adopt as their search engine an adaptive genetic algorithm, which
uses the Pareto ranking scheme from the NSGA [1509], two-point crossover,
a combined sharing scheme (i.e., sharing is applied both in decision variable
space and objective function space), and an adaptive selection scheme that
chooses among four mutation operators designed for permutation problems.
The main idea of the hybrid proposed in this paper is to use path relinking to
improve the solutions produced by the genetic algorithm. For that sake, the
authors propose the following mechanisms:

• A neighborhood operator which generates intermediate solutions.
• A distance measure (in decision variable space).
• A selection criteria for the solutions to be linked. In this case, Pareto op-

timal solutions generated by the genetic algorithm are randomly selected.
• Path selection and path generation schemes.
• A Pareto local search algorithm, which refines the solutions found by the

path relinking scheme.

This hybrid approach is validated using several instances of the flowshop
scheduling problem, whose sizes are 50 and 100 jobs. Results are compared
with respect to the use of the genetic algorithm itself. Results indicate that
the introduction of path relinking significantly improves convergence.

Finally, it is important to mention that there are few comparative studies of
heuristics such as multiobjective simulated annealing and multiobjective Tabu
search. Viana and Pinho de Sousa [1643], for example, compare PSA [323]
against MOTS* [650] in the resource constrained project scheduling problem
(a generalization of the job shop scheduling problem). Three objectives are
minimized in this case: project completion time (makespan), mean weighted
lateness of activities, and the sum of the violation of resource availability. In
their study, the authors use two metrics suggested by Czyzak and Jaszkiewicz
[323] and Zeleny’s ideal point [1752] to compare their results. MOTS* is found
to be better than PSA both in terms of the quality of the solutions produced
and in terms of their corresponding computational cost.

Gil et al. [562] perform a study in which they compare the perfor-
mance of Serafini’s Multi-Objective Simulated Annealing (SMOSA) [1466],
Ulungu’s Multi-Objective Simulated Annealing (UMOSA) [1616], Czyzak’s
Pareto Simulated Annealing (PSA) [320], Hansen’s Multi-Objective Tabu
Search (MOTS) [651] and Knowles’ Pareto Archived Evolution Strategy
(PAES) [886], in multi-objective network partitioning. Two objectives are
considered: (1) load balancing among subnetworks, and (2) the amount of
communication among nodes belonging to different sub-domains. The authors
adopt two performance measures to compare their results: (1) coverage of two

10.3 Tabu Search and Scatter Search 571

sets [1782] and (2) average size of the space covered [1782]. The results indi-
cated that simulated annealing was able to outperform both Tabu search and
evolutionary algorithms. From the three multi-objective versions of simulated
annealing that the authors evaluated, UMOSA had the best performance, but
PSA produced the highest number of nondominated solutions. When compar-
ing results with respect to single-objective versions of the network partitioning
problem, the authors found that in several cases, the results obtained by the
multi-objective algorithms studied (particularly, simulated annealing) were
very close to the values obtained by the single-objective optimizers.

Marett and Wright [1064] perform a study in which multiobjective ver-
sions of simulated annealing and Tabu search are compared in flow scheduling
problems. Four objectives are minimized: total setup time, total setup cost,
total holding time, and total late time. A linear combination of weights is used
by all the heuristics used. The authors use a geometric temperature reduction
scheme with feedback [426] for their simulated annealing implementation, and
ten versions of Tabu search (using different acceptance criteria). The authors
also implement a best improvement repeated descent (BIRD) algorithm, and
a first improvement repeated descent (FIRD) algorithm. Simulated annealing
and Tabu search are found to be superior to both BIRD and FIRD. How-
ever, when comparing simulated annealing against Tabu search, the results
seem to indicate that the first becomes better than the second only when the
complexity of the problem increases.

10.3.3 Advantages and Disadvantages of Tabu Search and Scatter
Search

Tabu search has been widely and successfully used in combinatorial optimiza-
tion [572]. However, its use in continuous search spaces has not been common
due to the difficulties of performing neighborhood movements in continuous
search spaces. In fact, the extension of multiobjective Tabu search to con-
tinuous search spaces while feasible, may become impractical because of the
discretization of the search space required. Hybrids with other techniques (e.g.,
GAs) seem more promising to deal with continuous search spaces [569, 571].

The main issue when extending Tabu search to handle multiple objectives
is how to keep diversity so that points not necessarily within the neighborhood
of a candidate solution can be generated. It is important to devise clever
procedures to build the tabu lists and to decide the next state to which the
algorithm should move.

The use of Tabu search for exploring the neighborhood of solutions pro-
duced by another approach (e.g., an evolutionary algorithm) seems a natural
choice when dealing with combinatorial optimization problems. However, the
main disadvantage of this hybrid approach is the extra computational cost
associated with the local search. For example, Balicki and Kitowski [82] indi-
cate that the use of Tabu search implies an extra O(n3) complexity in their
approach. It also becomes harder to design a good Tabu search method as the

572 10 Alternative Metaheuristics

number of objective functions increases, as indicated by some experimental
studies [1064].

10.4 Ant System

The Ant System (AS) is a metaheuristic developed by Marco Dorigo, which
was inspired by colonies of real ants, that deposit a chemical substance on
the ground called pheromone [403, 293, 405, 406]. This substance influences
the behavior of the ants: they tend to take those paths where there is a
larger amount of pheromone. Pheromone trails can thus be seen as an indirect
communication mechanism among ants. From a computer science perspective,
the AS is a multi-agent system where low level interactions between single
agents9 (i.e., artificial ants) result in a complex behavior of the entire ant
colony.

10.4.1 Basic Concepts

Figure 10.3 graphically shows an example of the typical behavior of a colony
of real ants. When the ants leave initially the nest, (1) they follow random
patterns. (2) Over time, they start following a common path. (3,4) When
faced with an obstacle, some choose to go around it through the left side of
the obstacle and others avoid it going through the right. (5) Over time, the
whole colony follows a common path (the shortest way) due to the pheromone
trials.

There are three main ideas from colonies of real ants that have been
adopted in the AS:

1. Indirect communication through pheromone trails.
2. Shortest paths tend to have a higher pheromone growth rate.
3. Ants have a higher preference (with a certain probability) for paths that

have a higher amount of pheromone.

Additionally, an AS has certain capabilities nonexistent in colonies of real
ants. For example:

1. Each ant is capable of estimating how far it is from a certain state.
2. Ants have information about the environment and use it to make decisions.

Therefore, their “behavior” is not only adaptive, but also exhaustive.
3. Ants have memory, since this is necessary to ensure that only feasible

solutions are generated at each step of the algorithm.

9 An “agent” in artificial intelligence is something that perceives and acts, and is
normally used as an abstraction model of human behavior [1407].

10.4 Ant System 573

Fig. 10.3. Behavior of a colony of real ants

The AS was originally proposed for the traveling salesman problem (TSP),
and most of the current applications of the algorithm require the problem to
be reformulated as one in which the goal is to find the optimal path of a graph.
A way to measure the distances between nodes is also required in order to
apply the algorithm [404].

Gambardella and Dorigo [530] realized the AS can be interpreted as a
particular kind of distributed learning technique and proposed a family of al-
gorithms called Ant-Q. This family of algorithms is really a hybrid between Q-
learning [1687] and the AS. The algorithm is basically a reinforcement learning
approach [1544] with some aspects incrementing its exploratory capabilities:

1. Ant-Q uses several agents (each of which is looking for a solution to the
problem) instead of only one.

2. Ant-Q uses a domain dependent heuristic function that indicates how
good is an action performed by an agent going from a certain state s to
another state s′.

3. Ant-Q uses an action selection rule. This selection rule considers both
the heuristic function previously mentioned and the evaluation function
for each pair state-action, Q(s, a). This combined function can be called
C(s, s′), and the action selection rule can be described as:

s′ =
{

arg maxs′C(s, s′) if q ≤ q0

srand otherwise (10.4)

where q is a value randomly selected with a uniform probability in the
range [0,1], q0 (0 ≤ q0 ≤ 1) is a constant parameter. The value of q0 must
be chosen such that to greater q0, lower probability of randomly selecting
srand ∈ S (S is a state randomly selected according to a probability

574 10 Alternative Metaheuristics

function formed by the values of the heuristic function and the value
function Q(s, a)).

1. Initialize Q(s, a) arbitrarily
2. For i = 1 to N (N = number of episodes)

For i = 1 to m (m = number of agents)
Initialize s = s0 for the m agents
Repeat for f steps in the episode

For i = 1 to m
Select a in s using rule (10.4)
Apply a and observe r, s′

Q(s, a) ← Q(s, a) + α[γmaxa′Q(s′, a′) − Q(s, a)]
s ← s′

End Loop
Until s is a terminal state

End Loop
3. Compare the m solutions found and select best

For all the Q(s, a) in the best solution
Q(s, a) ← Q(s, a) + α[r + γmaxa′Q(s′, a′) − Q(s, a)]
(α is the learning step)
(γ is the discount factor)

4. End Loop
5. Report best solution found

Fig. 10.4. Ant-Q pseudo code

The general Ant-Q algorithm consists of four stages as shown in Figure 10.4
[530]. In the first, all the evaluation functions Q(s, a) are initialized. As in tra-
ditional reinforcement learning the initialization is performed using arbitrary
values.

The second stage consists of a cycle that starts by assigning to each agent
a starting state s0 from which they build their solutions. At each iteration, the
agents select one of the possible actions for their current state, based on the
action selection rule (10.4). At each transition, the agents update the value
function for the pair state-action used in the following equation:

Q(s, a) ← Q(s, a) + α[γmaxa′Q(s′, a′)−Q(s, a)] (10.5)

This is the update rule of Q-learning, without considering the reward term
r.

The cycle terminates when all the n agents have finished building a solution
(i.e., when a terminal state is reached).

In the third stage, the solutions built by the agents are evaluated and the
best overall solution is rewarded. All the action value functions involved in the

10.4 Ant System 575

generation of this (best) solution are rewarded as well. Updates are performed
using the following equation:

Q(s, a) ← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)] (10.6)

where r is the reward.
Finally, in the fourth stage the termination condition is evaluated to see if

the algorithm should stop or continue. The values of α and γ, as well as the
number of agents, have to be defined by the user and their setup normally
requires a trial-and-error process.

10.4.2 Multiobjective Versions

Mariano and Morales [1067, 1068] propose an extension of the Ant-Q algo-
rithm (called MOAQ, or Multi-Objective Ant-Q) to deal with multiple objec-
tives. This algorithm makes the following considerations [1072, 1067]:

• There is a family of agents for each objective function of the problem, (i.e.,
there are as many families as objectives in the problem).

• The agents within each family search for optimal solutions to their assigned
objective function. This search is conducted by an Ant-Q algorithm using
a cooperation mechanism (any information updated by a certain agent
becomes available for all the remaining agents within the same family).

• Families are “independent” of each other, but action selection is performed
using the same action value functions for all families.

• Solutions proposed by the agents of a family are transmitted to the agents
of another family. The agents that receive a certain solution try to modify
it in terms of their own objective function, following a certain negotiation
mechanism (i.e., the agent tries to satisfy its own objective without altering
in a significant way the solution previously obtained from the agents of
another family).

• Objective functions are solved incrementally. This means that agents in
families propose solutions following a certain predefined order imposed on
the objective functions (this is similar to the approach called “lexicographic
ordering”, which is discussed in Section 1.7.1 from Chapter 2).

• A solution is obtained when all the families have participated in its con-
struction.

• Solutions found after completing an iteration (for all the families) are
evaluated using dominance relationships. Nondominated solutions are re-
warded and stored in an external file that contains the Pareto optimal
solutions found in the process. These nondominated solutions are used as
starting points for the following iteration of the algorithm.

The algorithm of MOAQ is shown in Figure 10.5 [1072]. Its basic idea is
to consider a family of m agents for each of the k objective functions of a
problem (i.e., m× k agents cooperate to produce a solution to the problem).

576 10 Alternative Metaheuristics

1. Initialize Q(s, a) arbitrarily
2. Arbitrarily sort objective functions
3. For i = 1 to N (N = number of episodes)

For i = 1 to m (m = number of agents in family1)
Initialize s = s0 for the m agents in family1

Apply step 2 of Ant-Q algorithm and find
solution1 for objective1

End Loop
For j = 2 to k (k = objective functions)

For i = 1 to m
Use solution found by agent i of familyj−1

as a basis to apply step 2 of the Ant-Q algorithm
to the solution of objectivej attempting to
improve the value found so far

End Loop
4. End Loop
5. Evaluate the m solutions compromised and find

nondominated vectors (ND)
6. Compare ND to P; Update P
7. For the value functions in the elements of P, apply:

Q(s, a) ← Q(s, a) + α[r + γmaxa′Q(s′, a′) − Q(s, a)]

Fig. 10.5. MOAQ pseudo code

An iteration of MOAQ starts by establishing an arbitrary ordering of the
objective functions. Agents of family1 that solve objective1 are required to
behave according to the guidelines of the Ant-Q algorithm (see Figure 10.4).
Once all the agents in family1 have a solution, this is transferred to the agents
in family2. Agents in family2 go through each of the states that made up
the solution received and evaluate the possibility of applying an action that
improves the performance of the solution in objective2, but without harming
objective1. Once the agents in family2 finish, their solutions are transferred
to family3 and the process is repeated as before. This continues until all the
objective functions have been considered. Note how this algorithm has a great
resemblance with the “behavioral memory” method proposed to handle con-
straints by Schoenauer and Xanthakis [1451].

Once all the families have finished an iteration, there are m negotiated
solutions (considering m agents). These negotiated solutions are evaluated
according to Pareto dominance, producing the set ND. These solutions are
used to update the archive P that contains the globally (i.e., with respect to all
the iterations) nondominated vectors found. The update implies a comparison
of ND with the elements of P. Dominated vectors are discarded from this
comparison. Finally, the elements of ND that dominate elements of P are
rewarded (with a term r as in the Ant-Q). The solutions in P are used to

10.4 Ant System 577

initiate the new iteration of MOAQ, looking to improve them (i.e., to get
closer to PFtrue of the problem).

MOAQ has been validated with several test functions defined in the spe-
cialized literature and has been applied in a real-world application (the opti-
mization of a water distribution irrigation network where two objectives were
considered: minimize network cost and maximize profits) [1067, 1068, 1072].
The results produced by the MOAQ have compared satisfactorily against those
produced by the NPGA [709] and VEGA [1440].

MOAQ is not the only attempt reported in the literature to solve mul-
tiobjective optimization problems using the ant system. Gambardella et al.
[531] propose a scheme based on the ant system to solve a bi-criterion vehi-
cle routing problem (the approach was called “Multiple Ant Colony System
for Vehicle Routing Problems with Time Windows,” or MACS-VRPTW for
short). The idea in this case is to use two ant colonies (one for each objec-
tive). One of the colonies tries to decrease the number of vehicles used and the
other to optimize the feasible solutions found by the other ant colony based
on total travel time (the second objective). The approach is incremental and
it can be clearly seen that one objective (number of vehicles in this case) takes
precedence over the other. This is also another variation of the lexicographic
method.

Iredi et al. [748] propose a multi colony approach to handle the two objec-
tives of a single machine total tardiness problem. The idea is to use hetero-
geneous colonies of ants, each of which weights objectives differently. Then, a
global criterion is used to combine the solutions found by each of the colonies.
The cooperation mechanism in this case is an exchange of solutions that belong
to the other colony. Two pheromone matrices are considered in this approach
(one for each objective), and each ant decides its following action using a prob-
ability defined in terms of the two objectives and a weight that estimates the
relative importance of each of them. Each colony finds locally nondominated
solutions, but a global selection mechanism forces the ants to obtain globally
nondominated solutions. An interesting aspect of the approach is that the so-
lutions found are sorted with respect to one objective so that the Pareto front
can be divided in segments. This information is also used to force the ants
to explore less densely populated regions of the search space and is intended
to produce a smoother distribution of solutions. Notice the similarities of this
scheme with the adaptive grid proposed by Knowles and Corne [886].

Gagné et al. [527, 528] propose an approach in which the heuristic values
used to decide the movements of an ant take into consideration several ob-
jectives. However, when updating the pheromone trails, only one objective is
considered. Therefore, the approach requires that the DM decides what is the
most important objective to ensure that the agents converge towards solutions
that primarily favor that objective and that consider trade-offs with respect
to other objectives only as a secondary priority. This technique is applied to
solve a single machine total tardiness problem with sequence dependent se-
tups, where the main objective is to minimize changeover costs. The ant colony

578 10 Alternative Metaheuristics

optimization algorithm incorporates look-ahead information in the transition
rule, in an attempt to improve its performance. The approach performed well
in a set of standard test functions when compared to a branch-and-bound
algorithm, a genetic algorithm, simulated annealing and a local improvement
procedure proposed by Rubin and Ragatz [1392]. In related work, Gravel et
al. [595, 596] use the same approach to solve an industrial scheduling problem
in an aluminum casting center. The objectives considered in this case are:
minimize total tardiness for all orders, minimize unused production capacity
over the planning horizon, and minimize the total number of drainings for
the furnaces. Efficient transportation is treated as a constraint, incorporated
through a penalty function. Results are reported using each of the objectives
as the “primary objective function”, and are compared to a single-objective
ant colony optimization algorithm.

McMullen [1085] uses ant colony optimization to solve a just-in-time (JIT)
sequencing problem. Two objectives are minimized: (1) setups and (2) usage
rates. The authors transforms the problem into spatial data so that a traveling
salesperson problem (TSP) approach can be used to find production sequences
with the levels of setups and usage rates desirable for the user. Six different
spatial approaches are then analyzed. Each of them offers a specific strategy to
attempt to find desirable production sequences. Some of such strategies only
focus on optimizing one objective, while others attempt to optimize both.
When both objectives are considered, they are optimized separately (e.g.,
during the first 50% of the sequence, minimal usage rates are preferred, and
during the second 50% of the sequence, minimal setups are preferred). Thus,
the approach adopts lexicographic ordering. Results are compared with re-
spect to simulated annealing, Tabu search, genetic algorithms, and artificial
neural networks, using several standard test problems.

T’kindt et al. [1589] propose an approach called SACO, which uses
ant colony optimization to solve a 2-machine bicriteria flowshop scheduling
problem. The two objectives minimized are: (1) total completion time and
(2) makespan criteria. This approach also adopts lexicographic ordering, since
total completion time is optimized before makespan criteria. SACO incorpo-
rates a local search operator which is applied for a certain (fixed) number
of iterations. This local search procedure is ad-hoc to the problem and is
computationally expensive (the algorithm is O(N3)). An interesting aspect of
this approach is that the authors consider that diversification is preferred at
the beginning of the search and intensification is preferred at the end. This is
enforced using a variable selection probability which is based on simulated an-
nealing. This makes unnecessary to initially randomly generate the pheromone
trails. Results are compared with respect to other heuristics, including branch
and bound when small problems are considered.

Shelokar et al. [1475, 1476] propose a multiobjective ant algorithm which is
used to solve both combinatorial and continuous optimization problems. The
approach can really be considered as a version of SPEA [1782] in which the
search engine is an ant system, because it incorporates most of its mechanisms

10.4 Ant System 579

(strength Pareto fitness assignment, an external archive and a clustering pro-
cedure to prune the contents of the external archive when overcrowded). In
fact, the approach even adopts crossover and mutation, as any regular evolu-
tionary algorithm, although it also incorporates a local search mechanism. An
interesting aspect of this work is the use of thermodynamic clustering, which
is based on the thermodynamic free energy minimization technique proposed
by Kita et al. [863]. Results are compared with respect to a random search
technique and two simulated annealing approaches in several reliability prob-
lems.

Barán and Schaerer [90] extends the MACS-VRPTW (A Multiple Ant
Colony System for Vehicle Routing Problems with Time Windows) algorithm
[531] using a Pareto-based approach. In this case, all the objectives share the
same pheromone trails, so that the knowledge of good solutions is equally im-
portant for every objective function. The approach maintains a list of Pareto
optimal solutions, and each new generated solution is compared with respect
to the contents of this list. An interesting aspect of this work is that the
pheromone trail is reinitialized at the end of each generation using the aver-
age values of the Pareto optimal set. This aims to improve the exploration
capabilities of the algorithm. Results are compared with respect to the original
MACS-VRPTW.

Cardoso et al. [207] propose an approach called Multi-Objective Network
Optimization using ACO (MONACO). This approach was designed for a dy-
namic problem and it is therefore atypical with respect to other MOEAs,
because only the individual edge costs of the networks are used to guide the
search, without waiting for the algorithm to finish building an entire network.
The partial construction of a network considers a multi-pheromone trail (the
number of trails corresponds to the number of objectives to be optimized) and
performs a local search over a partially built solution in order to assess effi-
ciency of the network. An interesting aspect of this work is that it apparently
does not enforce a Pareto-based selection, although the authors indicate in a
further paper [209] that MONACO does use an external archive to store the
nondominated solutions found so far and that the solutions are evaluated us-
ing a Pareto-based selection operator. Nevertheless, reference [207] indicates
the use of a random heuristic selection which is not based on Pareto dom-
inance but on efficiency of the network built. Garćıa Mart́ınez et al. [537]
propose a static version of MONACO in which the notion of nondominance
is incorporated,10 together with the use of an external archive to retain all
the nondominated solutions found so far. In [209], MONACO is applied to
the multiobjective minimum spanning tree problem. The authors show that
MONACO outperforms a linear aggregating function, which evidently cannot
generate nondominated solutions in the concave portions of the Pareto front.
In a related paper, Cardoso et al. [208] apply MONACO to the multiple

10 Garćıa Mart́ınez et al. [537] also indicate that MONACO does not produce non-
dominated solutions.

580 10 Alternative Metaheuristics

objective traveling salesperson problem. In this case, results are compared
with respect to the Multiple Objective Genetic Local Search (MOGLS) ap-
proach proposed by Jaszkiewicz [779].

Doerner et al. [397, 398] propose an approach called Pareto Ant Colony
Optimization (P-ACO) which is adopted to solve portfolio selection problems.
An interesting aspect of this approach is that it uses a quadtree data struc-
ture [488] for identifying, storing and retrieving nondominated solutions. This
approach considers the use of weights to assess the relative importance of each
objective from the user’s perspective. The approach follows the conventional
structure of the ant colony optimization heuristic, except for the pheromone
updates, which are done using two ants: the best and the second best val-
ues generated in the current iteration for each objective function. Results are
compared with respect to Pareto Simulated Annealing (PSA) [323] and with
respect to the NSGA-II [374] in 18 randomly generated problem instances and
one problem with real-world data. In further work, Doerner et al. [396] use
P-ACO is extended with an integer linear programming (ILP) preprocessing
procedure that identifies several efficient portfolios. This information is used
to initialize the pheromone trails before running P-ACO. This preprocessing
is shown to clearly benefit P-ACO in a numerical example based on real world
data. P-ACO has also been used for solving bi-objective flowshop scheduling
problems in [1260]. In this case, besides adopting the original P-ACO algo-
rithm, the authors also experiment with a second implementation that incor-
porates path relinking. The use of path relinking is found to be advantageous
and very promising by the authors.

Guntsch and Middendorf [621] propose the Population-based Ant Colony
Optimization (PACO) approach which is used to solve single-machine schedul-
ing problems. The idea of this approach was originally proposed in [620] in the
context of dynamic optimization. Under the population-based ACO, the first
generation of ants works the same as in the standard ACO: the ants search
solutions using the initial pheromone matrix and the best agent (ant) in the
population adds pheromone to the pheromone matrix. However, in this case,
no pheromone evaporation takes place. The best solution is placed in a popu-
lation which is initially empty. This process is repeated for a (given) number
of generations after which one solution in the population is removed and its
corresponding amount of pheromone is subtracted from the elements of the
pheromone matrix. This amount of pheromone subtracted corresponds to the
amount that this solution contributed when it was added to the population.
In a multiobjective context, the population is formed with a subset of the
nondominated solutions found so far. First, one solution is selected at ran-
dom, but then the remainder solutions are chosen so that they are closest to
this initial solution with respect to some distance measure. An average-rank-
weight method is adopted to construct a selection probability distribution
for the ants and the new derivation of the active population to determine
the pheromone matrices. The results are not compared with respect to any

10.4 Ant System 581

other approach, although the authors studied the effect of different parameter
settings on the behavior of their algorithm.

Doerner et al. [399] propose COMPETants, which is inspired on the rank-
based ant system originally proposed in [184]. COMPETants was specifically
designed for a bi-objective optimization problem and it consists of two ant
populations with different priority rules. The first of these colonies uses a pri-
ority rule that emphasizes one of the objectives (maximize utilization), and
the second one emphasizes the other objective (minimize empty vehicle move-
ments). The idea is to combine the best solutions from these two populations
as to find good trade-offs. An interesting aspect of this algorithm is that the
population sizes are not constant, but are adapted based on performance. The
population that finds better solutions gets more ants for the next iteration.
Additionally, information spillovers between the two populations occur, be-
cause ants can observe and utilize not only their own pheromone information,
but also the foreign (i.e., from the other population) pheromone information.
The decision of whether or not to utilize the foreign pheromone is based on the
best solution found in each population. The ants who decide to utilize foreign
information are called spies. The main motivation for using these spies is to
get solutions of good overall quality (i.e., good trade-offs with respect to the
two objectives).

Garćıa Mart́ınez et al. [536, 537] perform a comprehensive comparative
study in which they include eight multiobjective ant systems plus SPEA2
[1775] and the NSGA-II [374]. For the comparative study, several instances
of the symmetric TSP are adopted. The assessment of results is done using
the coverage of two sets performance measure [1772]. Results indicate that
the ant system approaches are able to outperform the MOEAs adopted in the
study. In [537] the same authors also discuss and analyze each of the eight
multiobjective ant systems adopted.

10.4.3 Advantages and Disadvantages of the Ant System

There are several interesting aspects of the MOAQ. For example, it does not
require an explicit mechanism to keep diversity (e.g., niching), since diversity
is really produced in an emergent fashion by the action selection mechanism
adopted (this mechanism performs a random action with a low probability).
Another interesting aspect is that the changes proposed by the negotiation
mechanism of the algorithm are done in decision variable space rather than in
objective function space. This follows the suggestion of some researchers with
respect to the definition of an appropriate sharing function [1509].

One of the main disadvantages of the MOAQ is that the algorithm requires
the DM to impose a certain ordering in the objective functions, because despite
the fact that the authors argue that an arbitrary ordering can be used, in
certain cases (e.g., the application reported in [1067]), a specific ordering is
required so that the algorithm can work properly. Another problem is that
the MOAQ requires the fine tuning of several parameters. Also, it requires the

582 10 Alternative Metaheuristics

definition of a certain heuristic function which is domain-dependent, and not
necessarily easy to establish.

MACS-VRPTW also requires certain domain knowledge in order to decide
which objective takes precedence and, therefore, the algorithm is also sensitive
to the particular ordering imposed on the objective functions.

The multiple colony approach of Iredi et al. [748] is really a linear aggre-
gating function in which the weights are distributed among several colonies of
ants. The interval of weights can be automatically computed. However, this
approach has the typical problems associated with linear aggregating func-
tions (e.g., it cannot cover a concave portion of a Pareto front). Furthermore,
the technique requires extra parameters (e.g., the number of colonies and their
size) and it does not seem trivial to extend it to more than two objectives.

10.5 Distributed Reinforcement Learning

Mariano Romero [1072] and Mariano & Morales [1066, 1069, 1070, 1071] pro-
pose an extension to Q-learning [1686] to solve multiobjective optimization
problems. Q-learning was originally proposed in the PhD thesis of Christopher
J.C.H. Watkins [1687]. The algorithm of Mariano Romero, called multiobjec-
tive distributed Q-learning (MDQL) was motivated by some of the disadvan-
tages of the MOAQ [1072].

10.5.1 Basic Concepts

Instead of requiring a heuristic function in the action selection rule (as does
the MOAQ), MDQL uses an algorithm developed by the authors, which is
called distributed Q-learning (DQL). The main idea behind DQL is allowing
several agents to interact in a common environment, cooperating to establish
an optimal policy over states and actions that allows achievement of a common
goal. The communication mechanism among the agents is a “map” of the
environment. This map is built based on the updates of the value function
adopted for the problem. Such updates are performed each time an agent visits
a state and selects an action (i.e., when it leaves a trace for the other agents).
In order to decide its next move, an agent considers those traces previously
left by other agents.

The algorithm of MDQL is shown in Figure 10.6. The main concept is
the following: a family of agents is assigned to each of the objectives of the
problem to be solved. The solutions obtained by the agents in one family are
compared with the solutions obtained by the other families. To perform this
comparison, a negotiation mechanism is adopted. The proposed mechanism
aims to produce elements of Ptrue by favoring those solutions that are non-
dominated with respect to all objective functions. The states involved in such
solutions are then rewarded (this is done dynamically, using a comparison of
reinforcement values) and stored for further use. An external file P is used (as

10.5 Distributed Reinforcement Learning 583

1. Initialize Q(s, a) arbitrarily
2. Arbitrarily sort objective functions
3. Assign a family to each objective function
4. For i = 1 to N (N = number of episodes)

Copy Q(s, a) in Qc(s, a) (update “map”)
For j = 1 to k (k = number of families)

For r = 1 to m (m = agents in familyj)
Initialize s = s0 for the m agents
in familyr (start from initial state)
Repeat

Select a ∈ s using a policy derived from Q-learning
(i.e., use ε-greedy)
Apply a; observe r and s′

Qc(s, a) ← Qc(s, a)
+α[γmaxa′Qc(s

′, a′) − Qc(s, a)]
Until s is a terminal state

End Loop
End Loop

5. End Loop
6. Compromise solution is obtained through

negotiation among f solutions
7. If (Compromise solution is nondominated) add to P
8. For the elements of P apply:

Q(s, a) ← Q(s, a) + α[r + γmaxa′Q(s′, a′) − Q(s, a)]

Fig. 10.6. MDQL pseudo code

in the MOAQ of Section 10.4) to maintain the nondominated vectors gener-
ated during the search. Note that the parameters α and γ, and the reward r
adopted in the MOAQ, are still used here.

MDQL has been used by its authors to solve real-world problems, mainly
related to water-using systems (see [1073]).

10.5.2 Advantages and Disadvantages of Distributed
Reinforcement Learning

MDQL has several advantages with respect to MOAQ. For example, it does
not require a heuristic function in the action-selection rule. Also, it needs fewer
parameters than the MOAQ (it requires only two, instead of the five required
by the MOAQ) and it does not require that the DM imposes a certain ordering
in the processing of the objective functions. More remarkable is the fact that
DQL can apparently maintain the nice convergence properties of Q-learning
which is an important step towards formalizing the MDQL algorithm [1072].
The algorithm can be easily parallelized. It also uses a relatively easy penalty-
based approach (these penalties are applied to the rewards rather than to the
values of the objective functions) to handle constraints [1066, 1072].

584 10 Alternative Metaheuristics

One of the most important disadvantages of the MDQL is that it requires
a discretized decision variable space for each variable of the problem. Since
the authors consider the intersections between intervals of the decision vari-
ables as states of the environment, there is an implicit exponential growth
in the number of possible actions as the number of decision variables is in-
creased [1072]. This may certainly limit the use of this approach in real-world
problems.

The algorithm may also become very expensive in terms of memory re-
quirements (this is related to the storage of nondominated vectors and value
functions associated to each state) [1072].

10.6 Particle Swarm Optimization

James Kennedy and Russell Eberhart [838] proposed an approach called “par-
ticle swarm optimization” (PSO) inspired by the choreography of a bird flock.
The idea of this approach is to simulate the movements of a group (or pop-
ulation) of birds which aim to find food. The approach can be seen as a
distributed behavioral algorithm that performs (in its more general version)
multidimensional search.

10.6.1 Basic Concepts

The general algorithm of PSO is shown in Figure 10.7 [1479]. In the simu-
lation, the behavior of each individual (or particle) is affected by either the
best local (i.e., within a certain neighborhood) or the best global individual.
The approach uses then the concept of population and a measure of perfor-
mance similar to the fitness value used with evolutionary algorithms. Also, the
adjustments of individuals are analogous to the use of a crossover operator.
Additionally, this approach introduces the use of flying potential solutions
through hyperspace (used to accelerate convergence). Note that PSO allows
individuals to benefit from their past experiences whereas in an evolutionary
algorithm, normally the current population is the only “memory” used by the
individuals. PSO has been successfully used for both continuous nonlinear and
discrete binary optimization [838, 423, 839, 840, 450].

The analogy of particle swarm optimization with evolutionary algorithms
makes evident the notion that using a Pareto ranking scheme can be the
straightforward way to extend the approach to handle multiobjective opti-
mization problems. The historical record of best solutions found by a particle
(i.e., an individual) can be used to store nondominated solutions generated
in the past (this would be similar to the notion of elitism used in evolution-
ary multiobjective optimization). The use of global attraction mechanisms
combined with a historical archive of previously found nondominated vectors
motivates convergence towards Ptrue .

10.6 Particle Swarm Optimization 585

1. For i = 1 to M (M = population size)
Initialize P [i] randomly
(P is the population of particles)
Initialize V [i] = 0 (V = speed of each particle)
Evaluate P [i]
GBEST = Best particle found in P [i]

2. End For
3. For i = 1 to M

PBESTS[i] = P [i]
(Initialize the “memory” of each particle)

4. End For
5. Repeat

For i = 1 to M
V [i] = w × V [i] + C1 × R1 × (PBESTS[i] − P [i])

+C2 × R2 × (PBESTS[GBEST] − P [i])
(Calculate speed of each particle)
(W = Inertia weight, C1 & C2 are positive constants)
(R1 & R2 are random numbers in the range [0..1])
POP [i] = P [i] + V [i]
If a particle gets outside the pre-defined hypercube

then it is reintegrated to its boundaries
Evaluate P [i]
If new position is better then PBESTS[i] = P [i]
GBEST = Best particle found in P [i]

End For
6. Until stopping condition is reached

Fig. 10.7. Particle swarm optimization pseudo code

10.6.2 Multiobjective Versions

In the last few years, a variety of proposals for extending PSO to handle
multiple objectives have been published in the specialized literature. We will
review next the most representative of them.

Moore and Chapman [1126] present an algorithm based on Pareto dom-
inance in an unpublished document. The authors emphasize the importance
of performing both an individual and a group search (a cognitive component
and a social component). However, the authors did not adopt any scheme to
maintain diversity.

Ray and Liew [1332] propose the so-called swarm metaphor algorithm,
which also uses Pareto dominance and combines concepts of evolutionary
techniques with the particle swarm. The approach uses crowding to main-
tain diversity and a multilevel sieve to handle constraints (for this, the au-
thors adopt the constraint and objective matrices proposed in some of their
previous research [1329]).

586 10 Alternative Metaheuristics

Unlike the previous proposals, Parsopoulos and Vrahatis [1259] adopted
an aggregating function (three types of approaches were implemented: a con-
ventional linear aggregating function, a dynamic aggregating function and
the bang bang weighted aggregation approach [801]) for their multi-objective
PSO approach. In more recent work, Parsopoulos et al. [1257] studied a par-
allel version of the Vector Evaluated Particle Swarm (VEPSO) method for
multiobjective problems. VEPSO is a multi-swarm variant of PSO, which
is inspired on the Vector Evaluated Genetic Algorithm (VEGA) [1440]. In
VEPSO, each swarm is evaluated using only one of the objective functions
of the problem under consideration, and the information it possesses for this
objective function is communicated to the other swarms through the exchange
of their best experience.

Hu and Eberhart [713] propose an approach called “dynamic neighbor-
hood”, in which only one objective is optimized at a time using a scheme
similar to lexicographic ordering. In further work, Hu et al. [716] adopt a sec-
ondary population (called “extended memory”) and introduce some further
improvements to their dynamic neighborhood PSO approach.

Fieldsend and Singh [486] propose an approach which uses an uncon-
strained elite archive (in which a special data structure called “dominated
tree” is adopted) to store the nondominated individuals found along the search
process. The archive interacts with the primary population in order to define
local guides. Their approach also uses a “turbulence” operator that is basically
a mutation operator that acts on the velocity value used by PSO.

Coello Coello and Salazar Lechuga [282] and Coello Coello et al. [286]
propose an approach based on the idea of having a global repository in
which every particle deposits its flight experiences after each flight cycle.
Additionally, the updates to the repository are performed considering a
geographically- based system defined in terms of the objective function values
of each individual; this repository is used by the particles to identify a leader
that will guide the search. The approach also uses a mutation operator that
acts both on the particles of the swarm, and on the range of each design vari-
able of the problem to be solved. In more recent work, Toscano Pulido and
Coello Coello [1599] use the concept of Pareto dominance to determine the
flight direction of a particle. The authors adopt clustering techniques to divide
the population of particles into several swarms in order to have a better distri-
bution of solutions in decision variable space. In each sub-swarm, a PSO algo-
rithm is executed and, at some point, the different sub-swarms exchange infor-
mation: the leaders of each swarm are migrated to a different swarm in order to
vary the selection pressure. Also, this approach does not use an external pop-
ulation since elitism in this case is an emergent process derived from the mi-
gration of leaders. A variation of Coello’s approach [286] is adopted by Baltar
and Fontane [88] for solving water quality problems. The main change is that
Baltar and Fontane [88] do not use the adaptive grid of the original proposal,
but instead, they calculate in objective function space, the density of points

10.6 Particle Swarm Optimization 587

around each solution stored in the repository11 and perform a roulette wheel
selection such that the probability of choosing a point is inversely proportional
to its density. Thus, the repository in this case is a simple archive that stores
the nondominated solutions found along the evolutionary process, but it does
not work as a diversity-preserving mechanism, as in the original proposal [286].
An interesting aspect of this work is that the algorithm is implemented in a
spreadsheet format using Microsoft Excel c© and Visual Basic.

Tayal [1575] use PSO with a linear aggregating function to solve several
engineering optimization problems, including the design of: (1) a 2 degrees-of-
freedom spring mass system, (2) a coil compression spring, (3) a two-bar truss,
(4) a gear train and (5) a welded beam. Constraints are handled through the
use of an external penalty, and the weights for the linear aggregating function
are varied from one run to the other (i.e., several independent runs are required
in order to generate the Pareto front of each problem). Summarizing, this work
illustrates the most straightforward way of using PSO as a single-objective
optimizer to solve multiobjective optimization problems.

Mostaghim and Teich [1139] propose a sigma method in which the best
local guides for each particle are adopted to improve the convergence and di-
versity of a PSO approach used for multiobjective optimization. They also use
a “turbulence” operator, but applied on decision variable space. The idea of
the sigma method is similar to compromise programming. The use of the sigma
values increases the selection pressure of PSO (which was already high). This
may cause premature convergence in some cases. In further work, Mostaghim
and Teich [1138] study the influence of ε-dominance [959] on MOPSO meth-
ods. ε-dominance is compared with existing clustering techniques for fixing the
archive size and the solutions are compared in terms of computational time,
convergence and diversity. The results show that the ε-dominance method can
find solutions much faster than the clustering technique with a comparable
(and even better in some cases) convergence and diversity. The authors sug-
gest a new diversity measure (sigma method) inspired on their previous work
[1139]. Also, based on the idea that the initial archive from which the par-
ticles have to select a local guide has influence on the diversity of solutions,
the authors propose the use of successive improvements adopting a previous
archive of solutions. In more recent work, Mostaghim and Teich [1140] pro-
pose a new method called coveringMOPSO (cvMOPSO). This method works
in two phases. In phase 1, a MOPSO algorithm is run with a restricted archive
size and the goal is to obtain a good approximation of the Pareto-front. In
phase 2, the nondominated solutions obtained from phase 1 are considered
as the input archive of the cvMOPSO. The particles in the population of the
cvMOPSO are divided into subswarms around each nondominated solution
after the first generation. The task of the subswarms is to cover the gaps be-
tween the nondominated solutions obtained from the phase 1. No restrictions
on the archive are imposed during phase 2.

11 This seems to be similar to niching.

588 10 Alternative Metaheuristics

Li [985] proposes an approach that incorporates the main mechanisms of
the NSGA-II [374] to the PSO algorithm. This approach combines the pop-
ulation of particles and all the personal best positions of each particle, and
selects the best particles among them to conform the next population. It also
selects the leaders randomly from the leaders set among the best of them,
based on two different mechanisms: a niche count and a crowding distance.
In more recent work, Li [987] proposes the maximinPSO, which uses a fitness
function derived from the maximin strategy [84] to determine Pareto dom-
ination. The author shows that one advantage of this approach is that no
additional clustering or niching technique is needed, since the maximin fitness
of a solution can tell us not only if a solution is dominated or not, but also if
it is clustered with other solutions, i.e., the approach also provides diversity
information.

Srinivasan and Hou [1510, 1511] propose an approach, called Particle
Swarm Inspired Evolutionary Algorithm (PS-EA), which is a hybrid between
PSO and an evolutionary algorithm. The authors argue that the traditional
PSO equations are too restrictive when applied to multiconstrained search
spaces. Thus, they propose to replace the PSO equations with the so-called
self-updating mechanism, which emulates the workings of the equations. Such
mechanism uses an inheritance probability tree to update each individual in
the population. An interesting aspect of this approach is that the authors also
use a dynamic inheritance probability adjuster to dynamically adjust the in-
heritance probabilities in the inheritance probability tree based on the status
of the algorithm at a certain moment in time. The approach uses a memory
to store the elite particles and does not use a recombination operator.

Zhang et al. [1759] propose an approach that attempts to improve the
selection of gbest and pbest when the velocity of each particle is updated. For
each objective function, there exists both a gbest and a pbest for each particle.
In order to update the velocity of a particle, the algorithm defines the gbest

of a particle as the average of the complete set of gbest particles. Analogously,
the pbest is computed using either a random choice or the average from the
complete set of pbest values. This choice depends on the dispersion degree
between the gbest and pbest values of each particle.

Zhao & Cao [1763] propose a multi-objective particle swarm optimizer
based on Pareto dominance. This is very similar to the proposal of Coello
and Lechuga [282], since it adopts a gbest topology. However, this approach
maintains not one but two repositories additionally to the main population:
one keeps the global best individuals found so far and the other one12 keeps a
single local best for each member of the swarm. A truncated archive is adopted
to store the nondominated solutions found along the evolutionary process.
This truncated archive is similar to the adaptive grid of PAES [886]. An
interesting aspect of this work is that the authors adopt a linear membership
function to represent the goals of each objective function. The membership

12 This second “repository” is actually a list.

10.6 Particle Swarm Optimization 589

function is adopted to modify the ranking of the nondominated solutions as to
focus the search on the single solution that attains the maximum membership
in the fuzzy set. This approach was adopted to solve an economic load dispatch
problem.

Bartz-Beielstein et al. [95] propose an approach that starts from the idea
of introducing elitism (archiving) into PSO. Different methods for selecting
and deleting particles from the archive are analyzed to generate a satisfac-
tory approximation of the Pareto front. The selection methods analyzed are
based on the contribution of each particle to the diversity of the Pareto front.
Deleting methods are either inversely related to the selection fitness or based
on the previous success of each particle. The authors provide some statistical
analysis in order to assess the impact of each of the parameters used by their
approach.

Baumgartner et al. [103] propose an approach which uses weighted sums
(i.e., linear aggregating functions) to solve multiobjective optimization prob-
lem. In this approach, the swarm is equally partitioned into n subswarms,
each of which uses a different set of weights and evolves into the direction of
its own swarm leader. The approach adopts a gradient technique to identify
the Pareto optimal solutions.

Chow and Tsui [253] propose an autonomous agent response learning algo-
rithm. The authors propose to decompose the award function into a set of local
award functions and, in this way, to model the response extraction process as
a multiobjective optimization problem. A modified PSO called “Multi-Species
PSO” is introduced by considering each objective function as a species swarm.
A communication channel is established between the neighboring swarms for
transmitting the information of the best particles, in order to provide guid-
ance for improving their objective values. Also, the authors propose to modify
the equation used to update the velocity of each particle, considering also the
global best particle of its neighboring species.

Mahfouf et al. [1041] present an enhancement of the original PSO al-
gorithm which is aimed to improve the performance of this heuristic in
multi-objective optimization problems. The approach is called the Adaptive
Weighted PSO (AWPSO) algorithm, and its main idea is to modify the ve-
locity by including an acceleration term which increases with the number of
iterations. This aims to enhance the global search ability of the algorithm
towards the end of the run thus helping the approach to escape from local
optima. A weighted aggregating function is also used to guide the selection
of the personal and global best leaders. The authors use dynamic weights to
generate different elements of the Pareto optimal set. A nondominated sorting
scheme is adopted to select the particles from one iteration to the next one.
The approach was applied to the design of heat treated alloy steels based on
data-driven neural-fuzzy predictive models.

Ho et al. [691] propose a new PSO-based algorithm for multiobjective
optimization. As a result of three main modifications to the known formula for
updating velocity and position of particles, a novel formula is described. Also,

590 10 Alternative Metaheuristics

the authors introduce a “craziness” operator in order to maintain diversity
into the swarm. This “craziness” operator is applied (with certain probability)
to the velocity vector before updating the position of a particle. On the other
hand, in order to assign a fitness value to particles, the authors adopt the
mechanism proposed originally in [1778], for the SPEA algorithm. Finally, the
authors introduce one repository for each particle and one global repository
for the whole swarm. The repository of each particle stores the latest Pareto
solutions found by the particle and the global repository stores the current
Pareto set. Every time a particle updates its position, it selects its personal
best from its own repository and the global best from the global repository.
In both cases, the authors use a roulette selection mechanism based on the
fitness values of the particles and also based on an “age” variable proposed by
the authors. The proposed method is tested on two numerical examples with
promising results.

Reyes and Coello [1351] propose an approach based on Pareto dominance
and the use of a crowding factor for the selection of leaders (by means of a
binary tournament). This proposal uses two external archives: one for storing
the leaders currently being used for performing the flight and another one for
storing the final solutions. The crowding factor is used to filter out the list of
leaders whenever the maximum limit imposed on such list is exceeded. Only
the leaders with the best crowding values are retained. On the other hand, the
concept of ε-dominance is used to select the particles that will remain in the
archive of final solutions. Additionally, the authors propose a scheme in which
they subdivide the population (or swarm) into three different subsets. A dif-
ferent mutation operator is applied to each subset. Note however, that for all
other purposes, a single swarm is considered (e.g., for selecting leaders).

Villalobos-Arias et al. [1656] propose a new mechanism to maintain di-
versity in multi-objective optimization problems. Although the approach is
independent of the search engine adopted, they incorporate it into the multi-
objective particle swarm optimizer introduced in [286]. The new approach is
based on the use of stripes that are applied on the objective function space.
Based on an analysis for a bi-objective problem, the main idea of the approach
is that the Pareto front of the problem is “similar” to the line determined
by the minimal points of the objective functions. In this way, several points
(that the authors call stripe centers) are distributed uniformly along such line,
and the individuals of the population are assigned to the nearest stripe center.
When using this approach for solving multi-objective problems with PSO, one
leader is used in each stripe. Such leader is selected minimizing a weighted
sum of the minimal points of the objective functions. The authors show that
their approach overcomes the drawbacks on other popular mechanisms such
as ε-dominance [959] and the sigma method proposed in [1139].

Raquel and Naval [1327] incorporate the concept of crowding distance
for selecting the global best particle and also for deleting particles from the
external archive of nondominated solutions. When selecting a leader, the set
of nondominated solutions is sorted in descending order with respect to the

10.6 Particle Swarm Optimization 591

crowding factor, and a particle is randomly chosen from the top part of the
list. On the other hand, when the external archive is full, it is again sorted in
descendent order with respect to the crowding value and a particle is randomly
chosen to be deleted, from the bottom part of the list. This approach uses the
mutation operator proposed in [286] in such a way that it is applied only on
a certain number of generations at the beginning of the process. The authors
adopt the constraint-handling technique proposed in [374].

Alvarez-Benitez et al. [37] propose PSO-based methods based exclusively
on Pareto dominance for selecting guides from an unconstrained nondomi-
nated archive. Three different techniques are presented: Rounds which explic-
itly promotes diversity, Random which promotes convergence and Prob which
is a weighted probabilistic method and forms a compromise between Ran-
dom and Rounds. Also, the authors propose and evaluate four mechanisms
for confining particles to the feasible region, that is, constraint-handing meth-
ods. The authors showed that probabilistic selection favoring archival particles
that dominate few particles provides good convergence towards and coverage
of the Pareto front. Also, they concluded that allowing particles to explore
regions close to the constraint boundaries is important to ensure convergence
to the Pareto front.

Salazar-Lechuga and Rowe [1417] propose an approach in which PSO is
used to guide the search with the help of fitness sharing (applied on objec-
tive function space) [587] to spread the particles along the Pareto front. The
approach uses an external archive to store the best particles (nondominated
particles) found by the algorithm. Since this repository helps to guide the
search, fitness sharing is calculated for each of the particles in the reposi-
tory and leaders are chosen from this set by means of an stochastic sampling
method (roulette wheel). Also, fitness sharing is used as a criterion to update
the repository. Each time the repository is full and a new particle wants to
get in, its fitness sharing is compared with the fitness sharing of the worst
solution of the repository. If the new particle is better than the worst parti-
cle, then the new particle enters into the repository and the worst particle is
deleted. Fitness sharing is updated when inserting or deleting a particle from
the repository.

Xiao-hua et al. [1717] propose the Intelligent Particle Swarm Optimiza-
tion (IPSO) algorithm for multi-objective problems based on an Agent-
Environment-Rules (AER) model to provide an appropriate selection pressure
to propel the swarm population towards the Pareto optimal front. In this
model, the authors modify the global best flight formula including the local
best position of the neighborhood of each particle. On the other hand, each
particle is taken as an agent particle with the ability of memory, communi-
cation, response, cooperation and self-learning. Each particle has its position,
velocity and energy, which is related to its fitness. All particles live in a lat-
ticelike environment, which is called an agent lattice, and each particle is
fixed on a lattice-point. In order to survive in the system, they compete or
cooperate with their neighbors so that they can gain more resources (increase

592 10 Alternative Metaheuristics

energies). Each particle has the ability of cloning itself, and the number of
clones produced depends of the energy of the particle. General agent parti-
cles and latency agent particles (those who have smaller energy but contain
certain features—e.g., favoring diversity—that make them good candidates to
be cloned) will be cloned. The aim of the clonal operator (which is modeled
in the clonal selection theory also adopted with artificial immune systems
[1193]) is to increase the competition between particles, maintain diversity
of the swarm and improve the convergence of the process. Finally, a clonal
mutation operator is used.

Janson and Merkle [770] proposed a hybrid particle swarm optimization
algorithm for multi-objective optimization, called ClustMPSO. ClustMPSO
combines the PSO algorithm with clustering techniques to divide all particles
into several subswarms. For this aim, the authors use the K-means algorithm.
Each subswarm has its own nondominated front and the total nondominated
front is obtained from the union of the fronts of all the subswarms. Each
particle randomly selects its neighborhood best (nbest) particle from the non-
dominated front of the swarm to which it belongs. Also, a particle only selects
a new nbest particle when the current is no longer a nondominated solution.
On the other hand, the personal best (pbest) of each particle is updated based
on dominance relations. Finally, the authors define that a subswarm is domi-
nated when none of its particles belongs to the total nondominated front. In
this way, when a subwarm is dominated for a certain number of consecutive
generations, the subswarm is relocated. The proposed algorithm is tested on
an artificial multi-objective optimization function and on a real-world prob-
lem from biochemistry, called the molecular docking problem. The authors
reformulate the molecular docking problem as a multi-objective optimization
problem and, in this case, the updating of the pbest particle is also based on
the weighted sum of the objectives of the problem. ClustMPSO outperforms a
well-known Lamarckian Genetic Algorithm that had been previously adopted
to solve such problem.

Branke and Mostaghim [165] present a study of the influence of the per-
sonal best particles in a MOPSO. Different strategies for updating the personal
guide for each particle in the population are analyzed. The authors conclude
that the selection of a proper personal guide has a significant impact on the
performance of MOPSOs, and they also propose to allow each particle to
memorize all nondominated personal best particles it has encountered. When
having such a scheme, it becomes crucial how is the best particle selected from
the personal archive of each particle. Thus, several strategies for performing
such a selection of the personal best are also empirically compared in this
work.

Santana-Quintero et al. [1424] propose a hybrid algorithm, in which parti-
cle swarm optimization is used to generate a few solutions on the Pareto front
(or very close to it), and rough sets [1262] are adopted as a local search mech-
anism to generate the rest of the front. The authors adopt a PSO algorithm
with a very small population size (only 5 particles). Leaders are selected such

10.6 Particle Swarm Optimization 593

that each objective is separately optimized (disregarding the others), while
the rest of the particles try to converge towards the “knee” of the Pareto
front. So, when solving problems with two objectives, two particles try to op-
timize these two objectives, while the other three use a nonlinear aggregating
function (based on compromise programming) in order to converge towards
the ideal vector (which is composed by the best values known so far). This
approach adopts an external archive, which uses Pareto dominance as its main
entrance criterion. For the secondary population, the authors adopt a vari-
ant of ε-dominance [959] called paε-dominance (see [672] for further details).
Individuals rejected from the secondary population are sent to a third popula-
tion, which retains individuals which have been locally nondominated, but are
globally dominated. Such individuals are used in the second phase of the al-
gorithm in order to define the search region in which rough sets operate. This
approach uses both crossover (BLX-α [457]) and mutation (parameter-based
mutation [374]). This approach is able to generate good approximations of the
true Pareto front of problems with relatively high dimensionality (between 10
and 30 decision variables), while performing only 4,000 fitness function eval-
uations.

Krami et al. [906] use the MOPSO proposed in [286] to solve reactive
power planning problems in which two objectives are minimized: (1) cost and
(2) active power losses. This problem has constraints related to the acceptable
voltage profiles at each node, which are treated using a death penalty approach
(i.e., solutions not satisfying the voltage constraints are discarded).

The numerous PSO variants for multiobjective optimization that have
been proposed in the last few years has motivated the first surveys and com-
parative studies on MOPSOs (see for example [1353, 483, 451]).

It is worth mentioning that PSO is an unconstrained search technique.
Therefore, it is also necessary to develop an additional mechanism to deal
with constrained multiobjective optimization problems. The design of such a
mechanism is also a matter of current research even in single-objective opti-
mization [1331, 1258, 1236, 256, 715, 714, 1598].

10.6.3 Advantages and Disadvantages of Particle Swarm
Optimization

With no doubt, the greatest advantages of PSO are its simplicity (both con-
ceptually, and at the implementation level), its ease of use and its high con-
vergence rate. In fact, PSO is a good candidate to design an “ultra-efficient”
MOEA, and some initial steps in that direction have been already reported
(see for example [1596, 1600]).

The main disadvantages of PSO, when used for multiobjective optimiza-
tion, are mainly related to the apparent difficulties to control diversity. The
loss of diversity of multiobjective PSO approaches is normally compensated
using mutation (also called “turbulence”) operators. However, the role of the
parameters of the PSO algorithm in its convergence and its loss of diversity

594 10 Alternative Metaheuristics

has been only scarcely studied. Other subtle details such as the criteria to
select leaders also seem to play a very important role in multiobjective opti-
mization, but little work in that regard is currently available.

10.7 Differential Evolution

Differential Evolution (DE) is a relatively recent heuristic (it was created in
the mid-1990s) proposed by Kenneth Price and Rainer Storn [1525, 1526,
1295], which was designed to optimize problems over continuous domains.
This approach originated from Kenneth’s Price attempts to solve the Tcheby-
cheff Polynomial fitting Problem that had been posed to him by Rainer Storn.
In one of the different attempts to solve this problem, Price came up with the
idea of using vector differences for perturbing the vector population. Upon its
implementation, the algorithm was further improved and refined, after many
discussions between Price and Storn [1295]. DE is an evolutionary (direct-
search) algorithm which has been mainly used to solve continuous optimiza-
tion problems. DE shares similarities with traditional EAs. However it does
not use binary encoding as a simple genetic algorithm [581] and it does not
use a probability density function to self-adapt its parameters as an Evolution
Strategy [1460]. Instead, DE performs mutation based on the distribution of
the solutions in the current population. In this way, search directions and pos-
sible step sizes depend on the location of the individuals selected to calculate
the mutation values.

There is a nomenclature scheme developed to reference the different DE
variants. The most popular is called “DE/rand/1/bin”, where “DE” means
Differential Evolution, the word “rand” indicates that individuals selected to
compute the mutation values are chosen at random, “1” is the number of pairs
of solutions chosen and finally “bin” means that a binomial recombination is
used. The corresponding algorithm of this variant is presented in Figure 10.8.

The “CR” parameter controls the influence of the parent in the generation
of the offspring. Higher values mean less influence of the parent. The “F” pa-
rameter scales the influence of the set of pairs of solutions selected to calculate
the mutation value (one pair in the case of the algorithm in Figure 10.8).

It is important to note that, increasing either the population size or the
number of pairs of solutions to compute the mutation values will also increase
the diversity of possible movements, promoting the exploration of the search
space. However, the probability to find the correct search direction decreases
considerably. Then, the balance between the population size and the num-
ber of differences determines the efficiency of the algorithm [478]. Besides
this balance, another important factor when using DE is the selection of the
variant. Each one varies the way mutation is computed and also the type of
recombination operator.

Several DE variants are possible. To exemplify this point, we took from the
paper by Mezura et al. [1099] the eight DE variants adopted, each of which

10.7 Differential Evolution 595

1 Begin
2 G=0
3 Create a random initial population xi,G ∀i, i = 1, . . . , NP
4 Evaluate f(xi,G) ∀i, i = 1, . . . , NP
5 For G=1 to MAX GEN Do
6 For i=1 to NP Do
7 ⇒ Select randomly r1 �= r2 �= r3 :
8 ⇒ jrand = randint(1, D)
9 ⇒ For j=1 to D Do

10 ⇒ If (randj [0, 1) < CR or j = jrand) Then
11 ⇒ ui,j,G+1 = xr3,j,G + F (xr1,j,G − xr2,j,G)
12 ⇒ Else
13 ⇒ ui,j,G+1 = xi,j,G

14 ⇒ End If
15 ⇒ End For
16 If (f(ui,G+1) ≤ f(xi,G)) Then
17 xi,G+1 = ui,G+1

18 Else
19 xi,G+1 = xi,G

20 End If
21 End For
22 G = G + 1
23 End For
24 End

Fig. 10.8. “DE/rand/1/bin” algorithm. randint(min,max) is a function that returns
an integer number between min and max. rand[0, 1) is a function that returns a real
number between 0 and 1. Both are based on a uniform probability distribution.
“NP”, “MAX GEN”, “CR” and “F” are user-defined parameters. “D” is the dimen-
sionality of the problem. Steps pointed with arrows change depending on the version
adopted.

will be briefly described next. The modifications from variant to variant are
in the recombination operator used (steps 9 to 15 in Figure 10.8) and also in
the way individuals are selected to calculate the mutation vector (step 7 in
Figure 10.8). The variants adopted by Mezura et al. [1099] are the following:

• Four variants whose recombination operator is discrete, always using two
individuals: the original parent and the DE mutation vector (step 11 in
Figure 10.8). Two discrete recombination operators: binomial and expo-
nential. The main difference between them is that for binomial recombina-
tion, each variable value of the offspring is taken at every time from one of
the two parents, based on the “CR” parameter value. On the other hand,
in the exponential recombination, each variable value of the offspring is
taken from the first parent until a random number surpasses the “CR”
value. From this point, all the offspring variable values will be taken from

596 10 Alternative Metaheuristics

the second parent. These variants are: “DE/rand/1/bin”, “DE/rand/1/-
exp”, “DE/best/1/bin” and “DE/best/1/exp” [1294]. The “rand” variants
select all the individuals to compute mutation at random and the “best”
variants use the best solution in the population besides the random ones.

• Two variants with arithmetic recombination, which, unlike discrete re-
combination, is rotation invariant. These are “DE/current-to-rand/1” and
variant “DE/current-to-best/1” [1294]. The only difference between them
is that the first selects the individuals for mutation at random and the
second one uses the best solution in the population besides random solu-
tions.

• “DE/rand/2/dir” [478], which incorporates objective function information
to the mutation and recombination operators. The aim of this approach is
to guide the search to promising areas faster than traditional DE. Their
authors argue that the best results are obtained when the number of pairs
of solutions is two [478].

• Finally, a variant with a combined discrete-arithmetic recombination, the
“DE/current-to-rand/1/bin” [1294].

Each variant’s implementation details are summarized in Table 10.1.

10.7.1 Multiobjective Versions

Apparently, Chang et al. [224] constitutes the first reported attempt to extend
differential evolution for multiobjective problems. In this paper, the authors
adopt an external archive (called “Pareto optimal set” by the authors) to
store the nondominated solutions obtained during the search. The approach
also incorporates fitness sharing to maintain diversity. An interesting aspect
of this approach is that the selection mechanism of the differential evolution
algorithm is modified in order to enforce that the members of the new gen-
eration are both nondominated and at a certain minimum distance from the
previously found nondominated solutions. This approach is adopted to fine-
tune the fuzzy automatic train operation (ATO) for a typical mass transit
system, in which three objectives are considered: (1) punctuality (least de-
viation from scheduled arrival time), (2) least energy consumption and (3)
maximum passenger comfort. This application is discussed in further detail
in [223].

As indicated by Kukkonen and Lampinen [914], Bergey [123] also reported
a multi-objective evolutionary algorithm based on differential evolution at
about the same time as Chang et al. [224]. This approach (which was called
Pareto Differential Evolution, or PDE) is not described in detail in the paper.
The author only indicates that PDE generated nondominated solutions and
that it is implemented as a general-purpose spreadsheet solver designed as an
add-in for Microsoft Excel. PDE is then meant to be used for multi-criteria
decision making by offering a set of alternative nondominated solutions from
which the user has to choose the most appropriate one(s).

10.7 Differential Evolution 597

N
o
m

e
n
c
la

tu
re

V
a
ri

a
n
t

ra
n
d
/
p
/
b
in

u
i,

j
=

{ x
r
3
,j

+
F

·∑
p k
=

1
(x

r
p 1

,j
−

x
r

p 2
,j

)
if

U
j
(0

,
1
)

<
C

R
o
r

j
=

j
r

x
i,

j
o
th

e
rw

is
e

ra
n
d
/
p
/
e
x
p

u
i,

j
=

{ x
r
3
,j

+
F

·∑
p k
=

1
(x

r
p 1

,j
−

x
r

p 2
,j

)
fr

o
m

U
j
(0

,
1
)

<
C

R
o
r

j
=

j
r

x
i,

j
o
th

e
rw

is
e

b
e
st

/
p
/
b
in

u
i,

j
=

{ x
b
e
s
t,

j
+

F
·∑

p k
=

1
(x

r
p 1

,j
−

x
r

p 2
,j

)
if

U
j
(0

,
1
)

<
C

R
o
r

j
=

j
r

x
i,

j
o
th

e
rw

is
e

b
e
st

/
p
/
e
x
p

u
i,

j
=

{ x
b
e
s
t,

j
+

F
·∑

p k
=

1
(x

r
p 1

,j
−

x
r

p 2
,j

)
fr

o
m

U
j
(0

,
1
)

<
C

R
o
r

j
=

j
r

x
i,

j
o
th

e
rw

is
e

c
u
rr

e
n
t-

to
-r

a
n
d
/
p

u
i
=

x
i
+

K
·(

x
r
3
−

x
i
)
+

F
·∑

p k
=

1
(x

r
p 1
−

x
r

p 2
)

c
u
rr

e
n
t-

to
-b

e
st

/
p

u
i
=

x
i
+

K
·(

x
b
e
s
t
−

x
i
)
+

F
·∑

p k
=

1
(x

r
p 1
−

x
r

p 2
)

c
u
rr

e
n
t-

to
-r

a
n
d
/
p
/
b
in

u
i,

j
=

{ x
i,

j
+

K
·(

x
r
3
,j
−

x
i,

j
)
+

F
·∑

p k
=

1
(x

r
p 1

,j
−

x
r

p 2
,j

)
if

U
j
(0

,
1
)

<
C

R
o
r

j
=

j
r

x
i,

j
o
th

e
rw

is
e

ra
n
d
/
2
/
d
ir

v
i
=

v
1

+
F 2

(v
1
−

v
2

+
v

3
−

v
4
)

w
h
e
re

f
(v

1
)

<
f
(v

2
)

a
n
d

f
(v

3
)

<
f
(v

4
)

T
a
b
le

1
0
.1

.
D

E
va

ri
a
n
ts

a
d
o
p
te

d
b
y

M
ez

u
ra

et
a
l.

[1
0
9
9
].

j r
is

a
ra

n
d
o
m

in
te

g
er

n
u
m

b
er

g
en

er
a
te

d
b
et

w
ee

n
[0

,n
],

w
h
er

e
n

is
th

e
n
u
m

b
er

o
f
va

ri
a
b
le

s
o
f
th

e
p
ro

b
le

m
.
U

j
(0

,1
)

is
a

re
a
l
n
u
m

b
er

g
en

er
a
te

d
a
t

ra
n
d
o
m

b
et

w
ee

n
0

a
n

1
.
B

o
th

n
u
m

b
er

s
a
re

g
en

er
a
te

d
u
si

n
g

a
u
n
if
o
rm

d
is

tr
ib

u
ti

o
n
.
In

th
ei

r
ex

p
er

im
en

ts
,
M

ez
u
ra

et
a
l.

[1
0
9
9
]
u
se

p
=

1
.

598 10 Alternative Metaheuristics

Abbass et al. [7, 6, 1426] propose the Pareto-frontier Differential Evolu-
tion (also abbreviated as PDE) approach. The algorithm works as follows. The
initial population is initialized using a Gaussian distribution with mean 0.5
and standard deviation 0.15. Only the nondominated solutions are retained
in the population for recombination (all dominated solutions are removed).
If the number of nondominated solutions exceeds a certain threshold (50 was
adopted in [7]), a distance metric is adopted to remove parents which are
too close from each other (this can be seen as a niching procedure in which
this distance metric is the niche radius). Three parents are randomly selected
and a child is generated with them. The offspring is placed in the population
only if it dominates the first selected parent; otherwise, the selection process
is repeated. This process continues until the population is completed. In this
approach, the step-length parameter F is generated from a Gaussian distrib-
ution N(0, 1) and the boundary constraints are preserved either by reversing
the sign if the variable is ≤ 0 or by repetitively subtracting 1 if it is ≥ 0, until
the variable is within the allowable boundaries. PDE is compared with respect
to SPEA [1778] in [7] and with respect to many other approaches (including
PAES [886], the NSGA [1509] and the NPGA [709]) in [6]. In [5], a new version
of PDE is introduced. This version is called Self-Adaptive Pareto Differential
Evolution (SPDE) algorithm, because it self-adapts its crossover and its muta-
tion rates. Abbass [3] proposes an approach called Memetic Pareto Artificial
Neural Networks (MPANN). This approach consists of a version of Pareto
Differential Evolution (PDE) [6] enhanced with local search, which is used
to evolve neural networks in which an attempt is made to obtain a trade-
off between the architecture and generalization ability of the network. So,
two objectives are minimized: (1) error and (2) the number of hidden units.
MPANN is validated using two benchmark data sets: the Australian credit
card assessment problem and the diabetes problem (both were taken from
the UCI Machine Learning Repository [1184]). Results are compared with
respect to 23 algorithms, which include decision trees, rule-based methods,
neural networks, and statistical algorithms. MPANN was able to outperform
the traditional back propagation approach and obtained results competitive
against the other 23 algorithms with respect to which it was compared.

The Pareto-Based Differential Evolution approach is proposed in [1037]. In
this algorithm, Differential Evolution is extended to multi-objective optimiza-
tion by incorporating a nondominated sorting and ranking selection procedure
proposed by Deb et al. [363, 374]. Once the new candidate is obtained using
DE operators, the new population is combined with the existing parents pop-
ulation and then the best members of the combined population (parents plus
offspring) are chosen. This algorithm is not compared with respect to any
other approach and is tested on 10 different unconstrained problems perform-
ing 250,000 evaluations. The authors indicate that the approach has difficulties
to converge to the true Pareto front in two problems (Kursawe’s test function
[934] and ZDT4 [1772]).

10.7 Differential Evolution 599

Xue et al. [1722, 1720] propose the Multi-Objective Differential Evolution
(MODE) approach. This algorithm uses a variant of the original DE, in which
the best individual is adopted to create the offspring. A Pareto-based approach
is introduced to implement the selection of the best individual. If a solution is
dominated, a set of nondominated individuals can be identified and the “best”
turns out to be any individual (randomly picked) from this set. Also, the
authors adopt (µ+λ) selection, Pareto ranking and crowding distance in order
to produce and maintain well-distributed solutions. MODE is used to solve
five high dimensionality unconstrained problems with 250,000 evaluations and
the results are compared only to those obtained by SPEA [1782].

Babu and Jehan [71] propose the Differential Evolution for Multi-Objective
Optimization approach. This algorithm uses the single-objective Differential
Evolution strategy with an aggregating function to solve bi-objective prob-
lems. A single optimal solution is obtained after N iterations using both a
Penalty Function Method (to handle the constraints) and the Weighting Fac-
tor Method (to provide the importance of each objective from the user’s per-
spective) [361] to optimize a single value. The authors present results for two
bi-objective problems and compare them with respect to a simple GA. The
authors indicate that the DE algorithm provides the exact optimum with a
lower number of evaluations than the GA.

The Vector Evaluated Differential Evolution for Multi-Objective Opti-
mization (VEDE) is proposed by Parsopoulos et al. [1256]. It is a parallel,
multi-population Differential Evolution algorithm, which is inspired by the
Vector Evaluated Genetic Algorithm (VEGA) [1440] approach. A number
M of subpopulations are considered in a ring topology. Each population is
evaluated using one of the objective functions of the problem, and there is
an exchange of information among the populations through the migration of
the best individuals. VEDE is validated using four bi-objective unconstrained
problems and is compared with respect to VEGA. The authors indicate that
the proposed approach outperformed VEGA in all cases.

Iorio and Li [746] propose the Nondominated Sorting Differential Evolu-
tion (NSDE). This approach is a simple modification of the NSGA-II [374].
The only difference between this approach and the NSGA-II is in the method
for generating new individuals. The NSGA-II uses a real-coded crossover and
mutation operator, but in the NSDE, these operators are replaced with the
operators of Differential Evolution. New candidates are generated using the
DE/current-to-rand/1 strategy. NSDE is used to solve rotated problems with
a certain degree of rotation on each plane. The results of the NSDE outper-
formed those produced by the NSGA-II. In further work, Iorio and Li [747]
propose a variation of NSDE that incorporates directional information reg-
arding both convergence and spread. For convergence, the authors modify
NSDE so that offspring are generated in the direction of the previously gen-
erated solutions with better rank. For spread, the authors modify NSDE so
that it favors the selection of individuals from different regions of decision
variable space. The modified approach is called NSDE-DCS (DCS stands for

600 10 Alternative Metaheuristics

“directional convergence and spread”) and is compared with respect to the
NSGA-II, the original NSDE, NSDE-DC (NSDE only with the directional
convergence mechanism), and NSDE-DS (NSDE only with the directional
spread mechanism). Results indicate that all the NSDE versions outperform
the NSGA-II, but NSDE-DS practically provides the same results as NSDE-
DCS. This is a very interesting outcome that indicates that improving spread
may, in some cases, also improve convergence.

Kukkonen and Lampinen [913] propose a revised version of Generalized
Differential Evolution (GDE), which was originally proposed in [946]. This
approach extends the selection operation of the basic DE algorithm for con-
strained multi-objective optimization. The basic idea in this selection rule
is that the trial vector is required to dominate the old population member
used as a reference either in constraint violation space or in objective func-
tion space. If both vectors are feasible and nondominated with respect to each
other, the one residing in a less crowded region is chosen to become part of
the population of the next generation. GDE is validated using five bi-objective
unconstrained problems. Results are compared with respect to the NSGA-II
and SPEA [1782]. The authors report that the performance of GDE is similar
to the NSGA-II, but they claim that their approach requires a lower CPU
time. GDE is able to outperform SPEA in all the test functions adopted.
In a further paper, Kukkonen and Lampinen [914] introduce GDE3, which
is a new version of Generalized Differential Evolution that can handle both
single- and multi-objective optimization problems (either constrained or un-
constrained). Kukkonen and Lampinen [914] indicate that the main drawback
of GDE2 (reported in [913]) is that its selection mechanism slows down con-
vergence. Also, GDE2 seems to be too sensitive to its selection and control
parameters. So, GDE3 extends the DE/rand/1/bin method to problems with
any number of objectives and constraints. This approach is in fact a combina-
tion of the earlier GDE versions and the Pareto-Based Differential Evolution
algorithm [1037]. The selection mechanism in GDE3 considers Pareto dom-
inance (in objective function space) when comparing feasible solutions, and
weak dominance (in constraint violation space) when comparing infeasible so-
lutions. Feasible solutions are always preferred over infeasible ones, regardless
of Pareto dominance. Nondominated sorting and crowding (as in the NSGA-II
[374]) are also adopted in this approach. GDE3 is compared with respect to
the NSGA-II in several test functions, including some from the DTLZ test
suite [379].

Robič and Filipič [1365] propose an approach called Differential Evolution
for Multi-Objective Optimization (DEMO). This algorithm combines the ad-
vantages of DE with the mechanisms of Pareto-based ranking and crowding
distance sorting. DEMO only maintains one population and it is extended
when newly created candidates take part immediately in the creation of
the subsequent candidates. This enables a fast convergence towards the true
Pareto front, while the use of nondominated sorting and crowding distance
(derived from the NSGA-II [374]) of the extended population promotes the

10.7 Differential Evolution 601

uniform spread of solutions. DEMO is compared in five high-dimensionality
unconstrained problems outperforming in some problems to the NSGA-II,
PDE [5], PAES [886], SPEA [1782] and MODE [1722].

Santana-Quintero and Coello Coello [1423] propose the ε-MyDE, whose
pseudo code is shown in Algorithm 28. This approach keeps two populations:
the main population (which is used to select the parents) and a secondary
(external) population, in which the concept of ε-dominance [959] is adopted
to retain the nondominated solutions found and to distribute them in an
uniform way. The concept of ε-dominance does not allow two solutions with a
difference less than εi in the i-th objective to be nondominated with respect
to each other, thereby allowing a good spread of solutions. ε-MyDE uses real
numbers representation, and incorporates a constraint-handling mechanism
that allows infeasible solutions to intervene during recombination.

Algorithm 28 Proposed Algorithm: ε - MyDE
1: Initialize vectors of the population P
2: Evaluate the cost of each vector
3: for i = 0 to G do
4: repeat
5: Select three distinct vectors randomly
6: Perform crossover using DE scheme
7: Perform mutation
8: Evaluate objective values
9: if offspring is better than main parent then

10: replace main parent in the population
11: end if
12: until population is completed
13: Identify nondominated solutions in the population
14: Add nondominated solutions into secondary population
15: end for

At the beginning of the evolutionary process, ε-MyDE randomly initializes
all the individuals of the population. Each decision variable is normalized
within its allowable bounds. The approach has two selection mechanisms that
are activated based on the total number of generations and a parameter called
sel2 ∈ (0.2 - 1), which regulates the selection pressure:

Type of Selection =
{

Random, gen < (sel2 ∗Gmax)
Elitist, otherwise

where:
gen = generation number
Gmax = total number of generations

In both selections (random and elitist), a single parent is selected as a
reference. This parent is used to compare the offspring generated by three

602 10 Alternative Metaheuristics

different parents. This mechanism guarantees that all the parents of the main
population will be reference parents for only one time during the generating
process. Both types of selection are described next:

1. Random Selection.- 3 different parents are randomly selected from the
primary population.

2. Elitist Selection.- 3 different parents are selected from the secondary
population such that they maintain a close distance fnear among them. If
no parent exist which fulfills this condition, another parent is randomly
selected from the secondary population.

fnear =

√∑FUN
i=0 (Xi,max −Xi,min)2

2FUN

where:
FUN = number of objective functions
Xi,max = upper bound of i− th objective function of the secondary pop-
ulation
Xi,min = lower bound of i − th objective function of the secondary pop-
ulation

Recombination in ε-MyDE is performed using the following procedure. For
each parent vector −→pi ; i = 0, 1, 2, . . . , P − 1(P = population), the offspring
vector

−→
h is generated as:

hj =
{

pr1,j + F · (pr2,j − pr3,j), if x < pcrossover;
pref,j , otherwise.

where: j = 0, 1, 2, . . . , var−1 (var = number of variables for each solution vec-
tor), x ∈ U(0, 1), pr1, pr2, pr3 ∈ [0, P − 1], are integers and mutually different.
F > 0. The integers r1, r2 and r3 are the indexes of the selected parents ran-
domly chosen from the interval [0, N -1] and ref is the index of the reference
parent. F is a constant factor (a real number) which controls the amplification
of the differential variation pr2,j − pr3,j .

In a further paper [671], ε-MyDE is hybridized with rough sets to give raise
to a new approach called DEMORS (Differential Evolution for Multiobjective
Optimization with Rough Sets). DEMORS operates in two phases. During
the first phase, an improved version of ε-MyDE13 is applied for 2000 fitness
function evaluations. During the second phase, a local search procedure based
on rough sets theory [1262] is applied for 1000 fitness function evaluations, in
order to improve the solutions produced at the previous phase. The idea is
13 The main improvement is the incorporation of the so-called Pareto-adaptive ε-grid

[672] for the secondary population. The concept of Pareto-adaptive ε-dominance
eliminates several of the drawbacks of ε-dominance [959].

10.7 Differential Evolution 603

to combine the high convergence rate of differential evolution with the high
local search capabilities of rough sets. DEMORS is able to converge to the
true Pareto front (or very close to it) in test problems with up to 30 decision
variables, while only performing 3000 fitness function evaluations. Results are
compared with respect to the NSGA-II.

Portilla Flores [1287] proposes a multi-objective version of differential evo-
lution, which is used for concurrent design of pinion–rack continuously vari-
able transmission (CVT). This mechatronic design problem is formulated as
a dynamic multi-objective optimization problem in which two objectives are
considered: (1) maximize the mechanical CVT efficiency, and (2) minimize the
controller energy. The multi-objective algorithm adopted is based on Pareto
ranking, it incorporates a secondary population to retain the nondominated
solutions found during the evolutionary process, and it uses the feasibility rules
from [1097] to handle the constraints of the problem. However, the approach
does not include an explicit mechanism to maintain diversity (although a set
of diverse solutions is actually generated). An interesting aspect of this work
is that results are compared with respect to a mathematical programming
technique: the goal attainment method. The comparison of results indicated
that, as expected, the goal attainment method was very sensitive to its initial
search point. Also, in several runs, it was not able to converge to a feasible
solution. In contrast, the differential evolution algorithm was able to converge
to feasible solutions in all the runs performed. However, the solutions gen-
erated by the goal attainment method were nondominated with respect to
the solutions produced by differential evolution. Additionally, the CPU time
required by differential evolution was about twice the time required by the
goal attainment method.

Landa Becerra and Coello Coello [948] propose the use of the ε-constraint
technique [632] hybridized with a single-objective evolutionary optimizer: the
cultured differential evolution [947]. The ε-constraint method transforms a
multi-objective optimization problem into several single-objective optimiza-
tion problems (each of these optimizations leads to a single Pareto opti-
mal point). This method has been normally disregarded in the evolution-
ary multi-objective optimization literature due to its high computational cost
[1507, 1318]. However, the authors argue that, if care is placed in the single-
objective optimizer, this sort of hybrid can generate the true Pareto front of
very difficult multi-objective optimization problems at a reasonable compu-
tational cost. Such a hypothesis is validated by solving DTLZ8 and DTLZ9
from the benchmark proposed in [379] together with several other test prob-
lems from the benchmark proposed in [720, 721]. All of these test functions
are considered very hard to solve by current MOEAs, and this is illustrated
by showing the results obtained by the NSGA-II in them. In most cases,
even when performing a very high number of fitness function evaluations, the
NSGA-II is unable to reach the true Pareto front. In contrast, the hybrid al-
gorithm proposed in this paper is able to converge to the true Pareto front
(or very close to it) of all the problems.

604 10 Alternative Metaheuristics

Li and Zhang [982] propose a multi-objective differential evolution al-
gorithm based on decomposition (MODE/D) for continuous multi-objective
optimization problems with variable linkages. The authors use the weighted
Tchebycheff approach to decompose a multi-objective optimization problem
into several scalar optimization subproblems. The differential evolution opera-
tor is used for generating new trail solutions, and a neighborhood relationship
among all the subproblems generated is defined, such that they all have sim-
ilar optimal solutions. For validating their approach, the authors adopt test
problems with variable linkages [1207] and propose variants of some of the
ZDT test problems [1772]. Results are compared with respect to the NSGA-
II [374], the Nondominated Sorting Differential Evolution (NSDE) [746] and
GD3 [914]. The authors report that MODE/D clearly outperformed the other
approaches with respect to which it was compared.

10.7.2 Advantages and Disadvantages of Differential Evolution

Differential evolution is with no doubt, a very powerful search engine in single-
objective optimization, which has been found to be very robust by a number
a researchers in a wide variety of (mainly nonlinear) optimization problems
[1295, 1099]. However, its use in multiobjective optimization still raises some
issues. For example, differential evolution seems to have a high convergence
rate (similar to PSO, but with a higher degree of robustness), but has difficul-
ties to reach the true Pareto front. Most multi-objective versions of differential
evolution seem to converge very fast to the vicinity of the true Pareto front,
but present problems to actually reach it and to spread solutions along the
front (see for example [1423]). This seems to indicate that multi-objective
differential evolution approaches require additional mechanisms to maintain
diversity (e.g., crowded-based operators or good mutation operators, such as
those adopted in multi-objective particle swarm optimizers).

Another issue that deserves attention is that differential evolution was
proposed only for problems in which the decision variables are real numbers,
unlike PSO, for which binary versions exist [840]. Thus, one topic of interest
is to develop alternative encodings that allow the use of differential evolution
in problems requiring alternative encodings (e.g., combinatorial optimization
problems). The use of encodings such as the random keys [108] or other pro-
posals that have been made mostly in the context of PSO (see for example
[839, 717, 276, 1233]) may be alternatives worth exploring in such cases.

10.8 Artificial Immune Systems

Our immune system protects the organism from bacteria, viruses and other
foreign pathogens. Its main task is to recognize all cells within the body and
characterize them into self and foreign (or antigens). The immune system
further characterizes foreign cells and develops defensive mechanisms against

10.8 Artificial Immune Systems 605

them (i.e., antibodies). If a foreign pathogen (i.e., an antigen) enters the body,
then the immune system can launch a specific response against it. Specialized
B cells must interact with Helper T cells (other specialized white blood cells)
to initiate antibody production. Antibodies are specific to only one type of
antigen, and they immobilize antigens, preventing them from causing infec-
tions.

Computationally speaking, the immune system is a highly parallel intelli-
gent system that is able to learn and retrieve previous knowledge (i.e., it has
“memory”) to solve recognition and classification tasks. Due to these inter-
esting features, several researchers have developed computational models of
the immune system and have used it for a variety of tasks [331, 944].

Hughes Bersini and Francisco J. Varela are considered the first to apply
immune algorithms to problem solving in the early 1990s [128]. Stephanie
Forrest and Alan S. Perelson also developed important pioneering work on
what is now known computer immunology. For example, they used genetic
algorithms to study the pattern recognition capabilities of binary immune
system models in the early 1990s [516].

10.8.1 Basic Concepts

Repeat
1. Select an antigen A from PA

(PA = Population of Antigens)
2. Take (randomly) R antibodies from PS

(PS = Population of Antibodies)
3. For each antibody r ∈ R, match it against

the selected antigen A
Compute its match score (e.g., using Hamming distance)

4. Find the antibody with the highest match score
Break ties at random

5. Add match score of winning antibody to its fitness
Until maximum number of cycles is reached

Fig. 10.9. Immune system model (fitness scoring) pseudo code

One of the applications in which the emulations of the immune system has
been found useful is to maintain diversity in the population of a genetic algo-
rithm used to solve multimodal optimization problems [516, 1496, 1498]. The
proposal in this case has been to use binary strings to model both antibodies
and antigens. Then, matching of an antibody and an antigen is determined
if their bit strings are complementary (i.e., maximally different). The algo-
rithm proposed in this case to compute fitness is shown in Figure 10.9 (this

606 10 Alternative Metaheuristics

algorithm, assumes a population that includes antigens and antibodies both
represented with binary strings) [1498]. The main idea of this approach is to
construct a population of antigens and a population of antibodies. Antibod-
ies are then matched against antigens and a fitness value is assigned to each
antibody based on this matching (i.e., maximize matching between antigens
and antibodies). This is precisely the process illustrated in the algorithm of
Figure 10.9. Finally, a conventional genetic algorithm is used to replicate the
antibodies that better match the antigens present.

10.8.2 Multiobjective Versions

Smith et al. [1498] show that fitness sharing emerges when their emulation of
the immune system is used. Furthermore, this approach is more efficient (com-
putationally speaking) than traditional fitness sharing [368], and it does not
require additional information regarding the number of niches to be formed.

This same approach has been used to handle constraints in evolutionary
optimization [634, 635], has also been hybridized with a MOEA [933, 312]
(see Chapter 7 for more details of these applications), and has even been
parallelized [272]. However, the first direct use of the immune system to solve
multiobjective optimization problems reported in the literature is the work
of Yoo and Hajela [1737]. This approach uses a linear aggregating function
to combine objective function and constraint information into a scalar value
that is used as the fitness function of a GA. Then, the best designs according
to this value are defined as antigens and the rest of the population as a pool
of antibodies. The simulation of the immune system is then done as in the
previous work of the authors where the technique is used to handle constraints
[635]. The algorithm is the following

1. Select randomly a single antigen from the antigens population.
2. From the population of antibodies, take a sample (randomly selected)

without replacement (Yoo and Hajela [1737] suggest three times the num-
ber of antigens).

3. Each antibody in the sample is matched against the selected antigen, and
a match score (based on the Hamming distance measured on the genotype)
is computed.

4. The antibody with the highest score is identified, and ties are broken at
random.

5. The matching score of the winning antibody is added to its fitness value
(i.e., it is “rewarded”).

6. The process is repeated a certain number of times (typically three times
the number of antibodies).

This approach is applied to some structural optimization problems with
two objectives (a two-bar truss structure, a simply supported I-beam, and
a 10-bar truss structure). The use of different weights allows the authors to

10.8 Artificial Immune Systems 607

converge to a certain (pre-specified) number of points of the Pareto front, since
they make no attempt to use any specific technique to preserve diversity. In
this study, the approach is not compared to any other technique.

Anchor et al. [39] use both lexicographic ordering and Pareto-based se-
lection in an evolutionary programming algorithm combined with an artificial
immune system to detect virus and computer intrusion. In this work, however,
emphasis is placed on the application rather than on the multiobjective as-
pects of the algorithm, since that is the main aim of this work. Therefore, the
algorithm is not compared to other multiobjective optimization approaches.

Luh et al. [1026] propose the multi-objective immune algorithm (MOIA)
which adopts several biologically inspired concepts. This is a fairly elaborate
approach which adopts a binary encoding. In MOIA, each decision variable
is divided into two parts: a heavy chain (high order bits) and a light chain
(low order bits). The ratio between heavy and light portions of the string is
a user-defined parameter. The antigens are the objectives and the constraint
values that we wish to achieve. Thus, affinity of the antibodies is measured
in such a way that the best antibodies are the feasible nondominated solu-
tions. The approach has a germinal center where the nondominated solutions
are cloned and hypermutated. Hypermutation (i.e., mutation with high muta-
tion rates) is only applied to the light chain portion of the strings in order to
avoid abrupt changes in the current solutions. The antibodies with the highest
affinity (called mature antibodies) are divided into plasma cells (i.e., solutions
to which local search has been applied) and antibodies, both of which are
stored in a memory pool. Dominated solutions (called immature antibodies)
are deleted. Dominated antibodies are removed from the memory pool, but
some of them become part of the so-called germ-line DNA library (another
user-defined parameter specifies how many of them become part of the li-
brary). After that, the avidity of the nondominated antibodies is computed
as the inverse of the rank value of an antibody multiplied by its similar value
with other antibodies. This aims to combine nondominance with diversity,
since the expression adopted is similar to the computation of fitness sharing,
and also requires a niche radius (allowable difference between antibodies).
The approach adopts a tournament selection scheme to select antibodies ex-
hibiting higher avidity values to serve in the construction of germ-line DNA
libraries. These DNA libraries are made up of fragments of antibodies that
come from two sources: the tournament selection process and the memory
pool. A random selection of some fragments from the DNA library takes place
and new antibodies are produced using gene fragments randomly selected from
the DNA library. Then, a somatic point mutation is applied. This mutation
changes a bit from 1 to 0 and vice versa according to a predefined mutation
rate, and aims to act as a local search mechanism. The approach also uses
other operators such as: somatic recombination, gene conversion, gene inver-
sion, gene shift and nucleotide addition. At the end of the run, the memory
pool contains the approximation of the Pareto optimal set produced by the
algorithm. The approach was validated using six test functions taken from

608 10 Alternative Metaheuristics

the specialized literature. Results were compared against SPEA [1782] adopt-
ing five performance measures: (1) generational distance [1626], (2) spacing
[1452], (3) spread [363], (4) two set coverage [1782] and (5) extreme distance,
which computes the Euclidean distance between the extremes of the Pareto
front. The results indicated that MOIA outperformed SPEA in most cases.
The authors carefully justify the (many) mechanisms of this approach using
biological analogies. Nevertheless, from a purely algorithmic point of view, the
approach seems complex, and it may be argued that some of its mechanisms
are perhaps unnecessary or even redundant (e.g., the different mechanisms
used to maintain diversity could be merged into a single operator).

In related work, Luh & Chueh [1025] present a slight variation of MOIA
called constrained multi-objective immune algorithm (CMOIA). The only
change is the use of a penalty function to handle constraints. CMOIA is
validated using six test functions taken from [375] and two truss optimiza-
tion problems. Results of the six test functions are compared with respect
to the NSGA-II [374]. Results of the trusses are compared with respect to
mathematical programming techniques and with respect to single-objective
genetic algorithms. However, the comparisons are only graphical,14 since no
performance measures were adopted in this case.

Campelo et al. [195] propose the Multiobjective Clonal Selection Algorithm
(MOCSA). This approach combines ideas from both CLONALG [1194] and
opt-aiNet [1192]. MOCSA uses real-numbers encoding, nondominated sort-
ing, cloning, maturation (i.e., Gaussian mutation) and replacement (based on
nondominated sorting). The worst solutions (those not selected for cloning)
are eliminated and generated anew in a random manner. MOCSA also uses
an external population where the nondominated individuals found along the
search process are stored. Niching is used to avoid the storage of very similar
solutions (similarity is measured both in decision variable space and objective
function space). In a further paper, Guimarães et al. [618] adopt this approach
to solve a multi-objective problem from the area of electromagnetic design.

Balicki [80, 81] extend the Adaptive Multicriteria Evolutionary Algorithm
with tabu mutation (AMEA) [82] with a constraint-handling mechanism based
on an artificial immune system. Basically, he adopts the constraint-handling
scheme from Coello Coello & Cruz Cortés [272] with a slight modification15

and couples it to his AMEA. The algorithm is used to solve a task assignment
problem in which the goal is to find allocations of program modules that reduce
the total time of a program execution by taking advantage of the properties of
some workstations or of a certain computer load within a distributed system.
Results are compared with respect to the previous version of AMEA. The

14 The comparisons with respect to the NSGA-II are not shown in the paper.
15 The change is that instead of using only the Hamming distance between antigens

and antibodies to determine affinity, Balicki also adds Pareto ranking. Thus, anti-
bodies that are closest (with respect to a Hamming distance) from their antigens
AND are nondominated, are selected as the winners.

10.8 Artificial Immune Systems 609

results indicated that the use of the constraint-handling mechanism based on
an artificial immune system produced an improvement of about 30% with
respect to the previous version of AMEA.

Coello Coello and Cruz Cortés [271, 273] propose a multiobjective opti-
mization approach called Multiobjective Immune System Algorithm (MISA),
which is based on the clonal selection principle. MISA adopts a secondary
population which uses the adaptive grid from PAES [886]. The antibodies in
this case are the decision variables of the problem, and there is no popula-
tion of antigens. Instead, only Pareto dominance and feasibility are used to
identify the best solutions, which are cloned and then hypermutated. The hy-
permutation rate is proportional to the affinity value of each antibody. The
approach also adopts a non-uniform mutation operator to the “not so good”
antibodies found. This operator is initially applied with a high probability,
but such probability value is linearly decreased over time. This approach is
validated using several standard test functions taken from the specialized lit-
erature. Results are compared with respect to the NSGA-II [374], PAES [886]
and the micro genetic algorithm for multiobjective optimization [283, 284].

Cutello et al. [313] extend PAES [886] with a different representation (ad
hoc to the protein structure prediction problem of their interest) and with
immune inspired operators.16 The original mutation stage of PAES, which
consists of two steps (mutate and evaluate) is replaced by four steps: (1) a
clonal expansion phase, (2) an affinity maturation phase, (3) an evaluation
phase, and (4) a selection phase (the best solution is chosen). During the
affinity maturation phase, the authors adopt two mutation operators, which
are also specifically designed for the problem of their interest. Two mutation
rates are analyzed: (1) a static scheme and (2) a dynamic scheme in which
the number of mutations decreases in a nonlinear way. The proposed approach
(called I-PAES) is compared with respect to several techniques (both single-
objective and multiobjective), including the NSGA-II [374].

Jiao et al. [791] propose the Immune Dominance Clonal Multiobjective
Algorithm (IDCMA). This approach is based on clonal selection and adopts
Pareto dominance (called “immune dominance” by the authors). In IDCMA,
the antigens are the objective functions and constraints that must be satisfied.
The antibodies are the candidate solutions. The affinity antibody-antigen is
based on the objective function values and the feasibility of the candidate
solutions. The authors also determine an antibody-antibody affinity using
Hamming distances (the authors adopt the scheme proposed in [271]). This
approach also adopts the so-called “immune differential degree”, which is a
value that denotes the relative distribution of nondominated solutions in the
population, and is computed using a expression similar to the one adopted in
fitness sharing [368]. The complete algorithm of IDCMA consists of 13 steps,
and divides all the antibodies into three groups, which are stored in three

16 It is interesting to note that Cutello et al. [313] indicate that this paper reports
the first attempt to use a MOEA to fold medium size proteins (40–70 residues).

610 10 Alternative Metaheuristics

different populations. A different search strategy is applied to each of these
populations, but at some point, the populations are combined in order to
increase the search ability of the approach. The approach is validated using
several standard test functions taken from the specialized literature. Results
are compared with respect to SPEA2 [1775], the Random Weight Approach
[751] and the Multiobjective Immune System Algorithm (MISA) [271].

Lu et al. [1022] propose the Immune Forgetting Multiobjective Optimiza-
tion Algorithm (IFMOA), which adopts the fitness assignment scheme of
SPEA [1782], a clonal selection operator, and an Immune Forgetting Op-
erator. The clonal selection operator implements clonal proliferation, affinity
maturation, and clonal selection on the antibody population (the antibodies
are the possible solutions to the problem). Affinity maturation is implemented
through a mutation operator. Affinity is determined using both the strength
value (computed as in SPEA [1782]), and the sum of distances between one
antibody and its two nearest individuals (in decision variable space). Clonal
selection is used to update the antibody population. The best individuals (i.e.,
those with the highest affinity) are cloned, and an antibody archive is used
to store the nondominated solutions obtained during the search. An interest-
ing aspect of IFMOA is that a certain percentage of the main population is
periodically “forgotten” (such solutions are sent to a clonal forgetting pool),
and are replaced by solutions from the antibody archive (i.e., the external
population). In [1760], IFMOA is used for unsupervised feature selection.

Freschi and Repetto [521] propose an approach called Vector Artificial
Immune System (VAIS). This approach is based on the multimodal AIS op-
timization algorithm proposed by De Castro and Timmis [1192], called opt-
aiNet. VAIS assigns fitness using the strength value of SPEA [1782], so that all
the nondominated solutions have fitness values lower than 1, while all domi-
nated solutions have fitness values greater than 1. After assigning fitness to an
initially random population, the approach clones each solution and mutates
them. Then, it applies a Pareto-based selection and the nondominated indi-
viduals are stored in an external memory. The best mutated clone for each
individual replaces its parent (clonal selection). An affinity operator is applied
to the external memory, acting as a diversity mechanism, since it computes
Euclidean distances among solutions using thresholds in a way very similar to
fitness sharing [368]. Then, the solutions that are too close together in objec-
tive function space are suppressed (i.e., deleted) from the external memory.
Then, the contents of this memory is copied into the original population, and
the rest of the individuals are randomly generated. If an infeasible solution is
produced when creating new individuals, then it is discarded and generated
again (i.e., the constraint-handling mechanism is a death penalty [265]). If
a mutation produces an infeasible individual, then VAIS adopts a bisection
rule to decrease the mutation rate in a progressive manner, until a feasible
solution is produced. The authors indicate that this sort of approach works
without making any prior assumptions about the types of constraints of the
problem, but this is not true. If active constraints are considered, this sort

10.8 Artificial Immune Systems 611

of constraint-handling approach may not work properly or may become too
expensive, computationally speaking (see for example [1097]). VAIS is com-
pared with respect to the NSGA-II [374] using some standard test functions
and performance measures reported in the specialized literature. A revised
version of this approach, called Vector Immune System (VIS) is presented in
[522]. VIS uses an adaptive mutation operator based on the deterministic 1/5
success rule (the self-adaptation mechanism normally adopted with evolution
strategies [1460]). In this case, results are compared with respect to MISA
[273] and PAES [886].

Wang and Mahfouf [1677] propose the Adaptive Clonal Selection Algo-
rithm for Multiobjective Optimization (ACSAMO), which is a multi-objective
artificial immune system based on the clonal selection principle. This approach
adopts a linear aggregating function, so that the multi-objective problem is
transformed into a single-objective one. The weights are dynamically varied
during the search, so that several Pareto optimal solutions can be generated.
However, selection is based on Pareto dominance (the authors adopt non-
dominated sorting), and a crowding operator is used for eliminating extra
individuals (individuals residing in the least crowded regions are eliminated).
The number of clones generated is fixed and is proportional to the population
size. The mutation rate, on the other hand, is proportional to the affinity
(i.e., the distance from an individual to the best found so far), so that the
worst individuals (i.e., those farthest from the best individual) are mutated
at a higher rate than the best one. Evidently, this approach shares several
similarities with the NSGA-II [374], since it uses nondominated sorting and
crowding, besides adopting the main population to retain the nondominated
solutions found during the search (rather than using an external population
for that sake). Results are compared with respect to SPEA [1782] and the
NSGA-II [374] using four of the ZDT test functions [1772]. The results shown
indicate that the proposed approach outperforms the other two MOEAs in
most cases.

Finally, and just to give an idea of the increasing popularity of multi-
objective artificial immune systems, Campelo et al. [196] recently presented
a survey of such types of approaches, as well as a proposal for a common
framework for the description and analysis of multi-objective artificial immune
systems.

10.8.3 Advantages and Disadvantages of Artificial Immune
Systems

Artificial immune systems are relatively simple algorithms with very nice prop-
erties that make them naturally suitable for pattern recognition and classifica-
tion tasks. Additionally, researchers have realized that this heuristic can also
be successfully adopted for optimization tasks. However, not many researchers
have explored this area, since most of the current work on artificial immune
systems is focused on architectures, models and applications not related to

612 10 Alternative Metaheuristics

optimization [1161]. Note however, that extending an artificial immune sys-
tem so that it can deal with multiobjective optimization problem is not a
trivial task. If one wants to keep the essence of the biological metaphor, re-
combination must not be incorporated. Although the use of clonal selection,
hypermutation and local search mechanisms can compensate for the lack of
recombination, in practice it may take longer to converge to the true Pareto
front of certain test functions in current use if no recombination is adopted.
There are, however, highly competitive multiobjective artificial immune sys-
tems, as we have seen in this section, but their main weakness is normally
the additional parameters that they require (some of which may be difficult
to fine tune for an arbitrary problem). In fact, some of these parameters may
not be obvious at first sight (e.g., the proportion of antigens and antibodies
in the population, the number of clones to be produced, etc.), but can be-
come cumbersome when trying to use them. It is worth noting that current
multiobjective artificial immune systems have mainly focused on the solution
of standard test functions, rather than on application. It seems, for exam-
ple, that their great potential for (multiobjective) classification and pattern
recognition tasks is yet to be explored.

The clonal selection principle has been found suitable to solve multiob-
jective optimization problems by some researchers who justify choosing this
artificial immune system model (see for example [273]), but this does not
mean that other models cannot be used (e.g., immune networks [789]). It
would be also interesting to explore the potential of some other concepts nor-
mally adopted in the specialized literature of artificial immune systems (e.g.,
gene libraries [218]) in the context of multiobjective optimization.

10.9 Other Heuristics

In this section, other heuristics that can be extended to handle multiple ob-
jectives are briefly discussed. For at least some of them, there are no imple-
mentations currently available that handle multiple objectives.

10.9.1 Cultural Algorithms

Some social researchers have suggested that culture might be symbolically
encoded and transmitted within and between populations, as another in-
heritance mechanism [421, 1350]. Using this idea, Robert Reynolds [1358]
developed a computational model in which cultural evolution is seen as an
inheritance process that operates at two levels: the micro-evolutionary and
the macro-evolutionary levels.

At the micro-evolutionary level, individuals are described in terms of “be-
havioral traits” (which can be socially acceptable or unacceptable). These
behavioral traits are passed from generation to generation using several so-
cially motivated operators. At the macro-evolutionary level, individuals are

10.9 Other Heuristics 613

able to generate “mappa” [1350], or generalized descriptions of their experi-
ences. Individual mappa can be merged and modified to form “group mappa”
using a set of generic or problem specific operators. Both levels share a com-
munication link.

Reynolds [1358] proposed the use of genetic algorithms to model the
micro-evolutionary process, and Version Spaces [1115] to model the macro-
evolutionary process of a cultural algorithm.

1. t = 0 (t = iteration counter)
2. Initialize POP (0) (POP = Population)
3. Initialize BELF (0) (BELF = Belief Network)
4. Initialize CHAN(0) (CHAN = Communication Channel)
5. Evaluate POP (0)
6. t=1
Repeat

Communicate (POP (0), BELF (t))
Adjust (BELF (t))
Communicate (BELF (t), POP (t))
Modulate Fitness (BELF (t), POP (t))
t ← t + 1
Select POP (t) from POP (t − 1)
Evolve POP (t)
Evaluate POP (t)

Until Stopping Condition is Reached

Fig. 10.10. Cultural algorithm pseudo code

The pseudo code of a cultural algorithm is shown in Figure 10.10 [1358].
A population of individuals is used in this case, as with genetic algorithms.
Each of these individuals are, however, described in terms of a set of traits
or behaviors. An evaluation function is required to evaluate the performance
of each individual in solving a problem, analogously to the fitness function
of GAs. Each individual has its own set of beliefs, but these are adjusted
over time using the “group mappa” or general experiences from the popula-
tion. Each individual contributes to such “group mappa” at the end of each
generation. When an individual mixes its individual mappa with the group
mappa, there is a certain combination of beliefs. If an individual has a result-
ing combined mappa less than certain acceptable value, it is then pruned from
the belief space. A selection process is then used to choose the parents to be
evolved in the next generation (in fact, selection can be parallelized). The evo-
lution process is done with certain operators that tend to be domain-specific.
The interactions between belief space and the population depend on the

614 10 Alternative Metaheuristics

communication channel used, as well as its protocols. For details refer to
Reynolds [1358].

The concept is to preserve beliefs that are socially accepted and discard
(or prune) unacceptable beliefs. It is possible to extend this technique to
multiobjective optimization problems if nondominance is incorporated in the
acceptance mechanism of the approach. The approach could work in a similar
way to some proposals to extend the ant system to handle multiple objec-
tives. In this case, an individual’s cultural component could lead it to a local
nondominated solution, and the global mechanism of the approach (intended
for sharing group’s solving experiences and behaviors) could lead the popu-
lation towards global nondominated solutions. The same acceptance mecha-
nism could incorporate additional criteria to encourage a smooth distribution
of nondominated solutions (e.g., make unacceptable a nondominated solution
generated in a region of the search space that is already too densely popu-
lated).

Multiobjective Versions

The only proposal known to date to extend the framework of cultural al-
gorithms to multiobjective optimization is the one introduced by Coello &
Landa [278]. In this approach, the search engine is evolutionary programming,
it uses Pareto ranking and the belief space consists of two parts: the pheno-
typic normative part and a grid which is used to emphasize the generation
of nondominated solutions that are uniformly distributed along the Pareto
front. This grid is a variation of the adaptive grid proposed by Knowles and
Corne [886]. The phenotypic normative part contains only the lower and up-
per bounds of the intervals for each objective function within which the grid
is built. This grid is used to place each nondominated solution in some sort
of coordinate system where the values of the objective functions are used to
place each solution. The results obtained by this approach were found to be
competitive with respect to those generated by the NSGA-II [374].

There is, however, plenty of room to exploit the different spaces adopted
with cultural algorithms in order to produce a MOEA that can reduce its
total number of objective function evaluations by exploiting domain knowl-
edge extracted during the evolutionary search. Also, other search engines may
be adopted (e.g., particle swarm optimization [840] or differential evolution
[1525, 1294]).

10.9.2 Cooperative Search

Murthy et al. [1159, 1158] and Salman et al. [1418] propose an approach in
which multiple agents (i.e., problem-solving methods) work together on the
solution of a common problem. The approach is a sort of blackboard system
[1187] in which communication and cooperation of the different agents takes
place through a shared population of candidate solutions.

10.9 Other Heuristics 615

Repeat
1. Use constructors to generate initial population P
2. Apply improvers to generate new individuals

that are added to P
3. Apply destroyers to remove redundant individuals

from P
Until maximum number of cycles is reached

Fig. 10.11. Cooperative search pseudo code

It is worth mentioning that the population-based nature of the approach
has certain resemblance with a genetic algorithm. However, unlike genetic
algorithms, the operators in this case are based on domain specific knowledge.
The general algorithm of cooperative search as defined by Murthy et al. [1159,
1158] is shown in Figure 10.11.

Three types of agents are considered in this work:

1. Constructors: Are used to create initial solutions.
2. Improvers: Modify existing solutions and produce new solutions that are

added to the current population. The control strategy of the improvers
produces nondominated vectors.

3. Destroyers: Delete redundant or bad solutions from the population. The
control strategy of the destroyers encourages diversity.

This approach is used to generate Ptrue for a paper mill scheduling prob-
lem. This technique allows that the DM’s preferences can be added interac-
tively.

Berro and Duthen [125] propose another approach based on a set of au-
tonomous agents randomly created by a control system. In this case, each
agent does not really know the function that it is solving, but simply tries to
“colonize” an optimum. If an agent succeeds at colonizing an optimum, then
it protects it by creating a zone of influence around it. Any other agent trying
to penetrate this zone of influence is eliminated. An agent that has found an
optimum also acquires reproduction capacity. This allows it to explore the sur-
rounding area looking for new optima. This searching and “fighting” process
encourages the dispersion of agents in the search space. The approach, that
does not really use evolutionary algorithms, is proposed as an alternative to
deal with multimodal and multiobjective problems. In this last case, it is ar-
gued that this system may be highly competitive with MOEAs. Additionally,
it seems to be particularly appropriate to deal with dynamic environments in
which traditional MOEAs are normally not applied.

There is also some work in which an agent-based model has been used
as a basis to develop an evolutionary multiobjective optimization algorithm.
For example, Menczer et al. [1088] propose an approach called “evolutionary

616 10 Alternative Metaheuristics

local search algorithm” (ELSA), that uses a local selection scheme in which
fitness depend on the consumption of certain limited shared resources. The
authors show how local selection can actually act as a fitness sharing scheme
in a natural way. The approach has several advantages (e.g., it is efficient
and easy to be parallelized). However, they also detect some of its limitations
(e.g., the potentially high communication costs when dealing with too many
agents). Consequently, they advise its use mainly in distributed tasks (such
as inductive learning and distributed robotics). ELSA is compared against
VEGA [1440] and NPGA [709] on two problems (unitation versus pairs and
feature selection in inductive learning), producing better results than the other
approaches in terms of the fraction of the Pareto front covered.

A number of researchers have also used approaches (mainly based on par-
allel procedures) in which different evolutionary algorithms work separately
and, at some point, cooperate so that globally nondominated solutions can
emerge from the search (see for example the cellular multiobjective genetic
algorithm of Murata et al. [1151, 1152] and the co-evolutionary multiobjective
genetic algorithm of Parmee and Watson [1252]). However, the idea can still
be exploited further, particularly when dealing with problems that have a high
number of objectives. In that regard, the use of approaches such as cooperative
game theory seem a promising alternative (see for example [92, 1189]).

10.10 Summary

In this chapter, several alternative heuristic search techniques (some of which
are not evolutionary algorithms) that have been used to solve multiobjective
optimization problems are discussed: simulated annealing, Tabu search (and
scatter search), the ant system, distributed reinforcement learning, particle
swarm optimization, artificial immune systems and differential evolution.

In the second part of this chapter, some other techniques that can be
extended to deal with multiple objectives are discussed (namely, cultural algo-
rithms and cooperative search). Each of these algorithms is briefly described,
together with some discussion of how can they be extended to deal with mul-
tiple objectives. Such extensions constitute obvious paths for future research.

Further Explorations

Class Exercises

1. Compare and contrast the algorithmic components of a particle swarm
optimization algorithm and a genetic algorithm. Discuss similarities and
differences regarding operators, search bias and biological inspiration.

2. Describe the basic components of Tabu search and scatter search and
discuss ways to adapt such components to the solution of multi-objective
problems.

3. Describe the basic components of the ant system, and contrast them with
the components of the ant colony system [148], and the approximated
non-deterministic tree search (ANTS) [1052].

4. Discuss the role of the leader selection in particle swarm optimization and
its possible impact in multi-objective optimization (see for example [165]).

5. Describe possible diversification techniques that could be adopted in a
multi-objective version of a scatter search algorithm.

Class Software Projects

1. Implement three multi-objective versions of particle swarm optimization
and compare them using some challenging test functions (see for example
[1772, 379, 721]) and standard performance measures [1783, 874].

2. Design a generic framework for supporting different types of metaheuris-
tics used for multi-objective optimization. See for example: A Platform
and Programming Language Independent Interface for Search Algorithms
(PISA) [141].

3. Implement 4 of the multi-objective versions of simulated annealing de-
scribed in [1536] and compare them using the DTLZ test functions [379].
Adopt 3 of the performance measures suggested in [1783].

618 Further Explorations

4. Implement 4 of the multi-objective particle swarm optimizers described
in [1353] and compare them using the test functions proposed in [721].
Adopt 3 of the performance measures suggested in [1783].

5. Implement 3 different multi-objective algorithms based on Tabu search
and compare them using the test functions proposed in [379]. Adopt 3 of
the performance measures suggested in [1783]. Analyze the impact of using
different diversification strategies on the performance of the approach.

6. Implement 4 different multi-objective algorithms based on differential evo-
lution and compare them using the test functions proposed in [1772].
Adopt 3 of the performance measures suggested in [1783]. Analyze the
impact of changing the differential evolution model on the performance of
each multi-objective version.

7. Implement 3 different multi-objective algorithms based on the ant system
and compare them using the test functions proposed in [379]. Adopt 3 of
the performance measures suggested in [1783].

8. Implement 3 different multi-objective algorithms based on artificial im-
mune systems and compare them using the test functions proposed in
[379]. Adopt 3 of the performance measures suggested in [1783].

Discussion Questions

1. Investigate stochastic combinatorial optimization [523] and develop a bio-
inspired heuristic for solving such problems. See for example the Stochastic
Pareto-Ant Colony Optimization (SP-ACO) and Stochastic Pareto Simu-
lated Annealing (SPSA) approaches proposed by Gutjahr [623].

2. Analyze the possibility of adding Mendel’s laws of inheritance to an
evolutionary multiobjective optimization algorithm. What sort of data
structures would you need? What advantages do you think that this
new algorithm could present? Discuss and experiment with such an algo-
rithm. See for example the Mendelian Multi-Objective Genetic Algorithm
(MMOSGA) [812] which attempts to accurately model the reproductive
process of meiosis. The MMOSGA uses diploids and a dominance table
that helps the algorithm to converge to Ptrue .

3. It is known that genetic algorithms are normally implemented with a
haploid chromosomic structure. However, diploids (and multiploids) have
been considered as a form of “historical record” that protects certain
alleles (and combinations of them) from the damage that natural selection
could cause them in a hostile environment. Diploids have been used by
some evolutionary computation researchers to deal with dynamic fitness
functions (i.e., that change over time). What role would diploids have in
the context of multiobjective optimization? Do you see an advantage of
using a diploid chromosomic structure in this context? Investigate about
this topic (see for example [1651, 889]).

Further Explorations 619

4. Suppose that you are asked to design an evolutionary multiobjective opti-
mization algorithm that deals with a real-time application. What are the
implications of such an algorithm? What processes could be parallelized?
What processes should better be implemented in hardware? Discuss. The
current attempts to design GA architectures for real-time response should
be helpful. See for example [199].

5. Read the survey of Suman and Kumar [1536] on simulated annealing (par-
ticularly, the discussion on multi-objective optimization). Discuss some of
the future areas of research discussed by the authors. Discuss the impor-
tance of the annealing schedule and the avoidance of repeated solutions
in multi-objective simulated annealing.

6. Read the survey of Reyes-Sierra and Coello Coello [1353] on multi-
objective particle swarm optimization. Which are the future paths of
research that you consider the most promising? Discuss the role of the
parameters of the particle swarm optimization algorithm in the context
of multi-objective problems.

7. Analyze and criticize some of the multi-objective particle swarm optimiz-
ers not reviewed in this chapter (see for example [1090, 710, 1188, 563,
1608, 580, 1732]).

8. Analyze and criticize some of the multi-objective artificial immune systems
not reviewed in this chapter (see for example [233, 259, 181]).

9. Discuss the main issues involved in designing a parameterless multi-
objective particle swarm optimizer. Are these issues applicable to any
other type of MOEA? Discuss.

10. Zhu and Leung [1769] proposed an enhanced annealing genetic algorithm
for multiobjective optimization. Analyze the way in which simulated an-
nealing is hybridized with a genetic algorithm and compare it to other sim-
ilar hybrids previously proposed in the literature (see for example [389]).
Relate the Coverage Quotient used by this method with any of the met-
rics discussed in Chapter 5. Criticize this approach and outline some of
its possible limitations/disadvantages.

Possible Research Ideas

1. Design and implement a new MOEA with some biological inspiration (e.g.,
one of the algorithms discussed in this chapter that have not been extended
to handle multiple objectives). Analyze the time and space complexity of
your algorithm, and use the metrics discussed in Chapter 5 to validate
its performance. Compare it against other MOEAs (e.g., NSGA-II [363],
NPGA2 [453], PESA-II [299]). Adopt the ZDT [1772] and DTLZ [379]
test functions.

2. There are several algorithms that exploit the property called global con-
vexity, which is discussed by Castro Borges and Pilegaard Hansen [215]

620 Further Explorations

and that have been rarely extended (or not extended at all) to multiobjec-
tive combinatorial optimization problems. For example: greedy random-
ized adaptive search procedure (GRASP)17 [477], heuristic concentration
[1378], and jump search [1609]. Propose a multiobjective extension of one
of these algorithms and implement it. Evaluate the performance of such an
algorithm using some well-known multiobjective combinatorial optimiza-
tion problems and metrics such as those adopted in [1783, 874, 779, 777,
886, 1782, 1626, 1630]. What advantages (if any) presents your algorithm?
What are the main drawbacks that you foresee? Discuss.

3. Consider the development of a multiobjective optimization technique that
combines the ant system and particle swarm optimization (see for example
[1462]). What potential benefits could you obtain from this sort of hybrid?
In what domain(s) could such an algorithm be advantageous?

4. Although several researchers have considered the use of hybrids between
MOEAs and artificial neural networks for diverse tasks (see for example
[998, 1089]), the use of artificial neural networks themselves as a heuristic
for multi-objective optimization is still scarce in the specialized literature
(see for example [1048, 1537, 1538]). Explore the possible neural network
models that could be suitable for approaching multi-objective optimiza-
tion, and identify potential areas of opportunity within this field.

5. Investigate about Optimal Pattern Matching [1754] and discuss possible
ways of integrating this scheme with MOEAs. Do you consider this as a
viable multi-objective optimization technique when using MOEAs?

6. Design an experimental framework that allows a fair comparison of dif-
ferent types of metaheuristics used for multi-objective optimization. Your
framework must consider issues such as memory usage, CPU time per eval-
uation, features of the test problems selected (e.g., some that are more
suitable for methods based on local search and others that are very difficult
for such methods), and number of evaluations performed. Few compara-
tive studies of this type exist (see for example [291]), which makes this an
interesting research path.

7. Propose a multi-objective version of the Max-Min Ant System (MMAS)
[1529]. Attempt to extend the theoretical bounds of maximum pheromone
concentration derived by Stützle and Hoos [1529] to the multi-objective
case.

8. Sunil Nakrani and Craig Tovey [1163] proposed the honey bee algorithm
for dynamically allocating servers to satisfy unpredictable request loads.
This algorithm is based on the self-organization of honey bee colonies to
allocate foragers among food sources. Propose a multi-objective extension
of the honey bee algorithm and discuss some of its possible applications.

17 One of the few multi-objective extensions of GRASP reported in the specialized
literature is the paper of Vianna and Arroyo [1644].

Further Explorations 621

9. Analyze the strategies for multi-objective simulated annealing proposed
by Smith [1494] and design a new algorithm based on them. Explore the
idea, discussed by Smith, of using an estimate of the Jacobian matrix to
produce perturbations that properly guide the search.

10. Propose a multi-objective cultural algorithm that properly exploits knowl-
edge extracted during the evolutionary process to speed up convergence
towards PFtrue . Any state-of-the-art MOEA can be used as the search
engine of this approach (see Chapter 2). Show evidence of the efficiency
gains achieved by the proposed approach.

11. Incorporate local search to a multi-objective particle swarm optimizer
used to solve continuous problems. Show evidence of the improvements
achieved with this memetic MOPSO. See Chapter 3 for more information
on memetic MOEAs.

12. Propose a MOEA based on hybridizing differential evolution and particle
swarm optimization. See for example [1211].

Epilog

As indicated in the Preface, the intent of this book is to provide a synergistic
foundation for the study, development and use of multiobjective evolutionary
algorithms (MOEAs). Together, the chapters provide a comprehensive frame-
work for the examination and extension of such stochastic search algorithms;
the general goal being to generate the Pareto optimal front with a uniform den-
sity of points along with the optimal values of the associated decision variables.
The varieties of proposed MOEAs are classified in Chapter 2 along with their
subjective advantages and disadvantages. In order to support obtainment of
more accurate Pareto front solutions, local search and co-evolutionary MOEA
methods are discussed in 3. Various generic test suites are given in Chapter 4
including unconstrained numerical problems, constrained numerical problems,
NP -complete problems and real-world applications. A review of performance
measures (metrics) that have been proposed to evaluate MOEAs is provided
in Chapter 5. This chapter also includes information on statistical testing and
visualization.

With the considerable number of MOEA techniques and the volume of
applications of MOEAs reported in the contemporary literature as discussed
in Chapters 2 and 7, it may be quite confusing for a student or practitioner new
to the field to determine what type of MOEA to use for a specific application.
The material exhibited attempts to demystify the selection of specific MOEA
operators for a given multiobjective optimization problem (MOP) through an
appropriate flow of prose, examples and historical perspective. Starting with
Chapters 1 and 2, the reader is initially presented with foundational concepts
and development, then simple MOPs and MOEA models leading to more
sophisticated techniques and operators. Given this approach, an appropriate
selection of a MOEA can be made for a given MOP. Given the current state-
of-the-art in MOEA theory as reflected in Chapter 6, convergence to the
Pareto optimal front in finite time is not guaranteed, but one can usually
get close given enough time and assuming a stable algorithm. Considerable
more theoretical MOEA research is required in order to glean insight to the
convergence effect of various operators.

624 Further Explorations

Although no specific guidelines for choosing a certain MOEA in a par-
ticular case can be generally provided, at least some generic suggestions can
be drawn from an analysis of the current literature. Obviously, from an evo-
lutionary computation perspective, the use of Pareto ranking and niching
together with a secondary population is always advisable, regardless of the
application domain. However, some researchers have reported that the use of
linear aggregating functions with adaptive weights is highly competitive (and
computationally efficient) when dealing with certain types of multiobjective
combinatorial optimization problems (see Chapter 4). On the other hand, if
the problem to be solved has a very large number of objectives, Pareto rank-
ing tends to generate nondominated vectors easier, but in relatively limited
quantity. Furthermore, the computational complexity of Pareto ranking may
become significant. Therefore, some researchers have proposed as an alterna-
tive the use of criterion selection and linear aggregating functions despite their
known limitations. MOEA techniques for solving these many multiobjective
problems is an exciting area of study and research (see Chapter 2).

In real-world applications, the incorporation of preferences from the deci-
sion maker is normally required. Therefore, it is advisable to have at least a
general understanding of the main preference incorporation techniques used
with MOEAs (see Chapter 9). This discussion is paramount to providing the
decision maker with a very limited number of possibilities if “quick” decisions
are to be achieved.

Parallel or distributed MOEAs are an obvious recommendation for com-
putationally intensive applications, but their use has to be justified from a
performance perspective (efficiency and effectiveness). Additionally, since the
design and implementation of a parallel MOEA is generally not straightfor-
ward, it is advisable to be aware of at least the basic MOEA parallelization
schemes currently in use and their associated computational performance met-
rics (see Chapter 8).

Specific genotypic encodings such as binary, integer and real representa-
tions may be particularly useful in certain applications. Also, the use of a tree
encoding (i.e., genetic programming) is commonly adopted in nonlinear regres-
sion, classification and prediction tasks [1254, 678, 54]. Multilevel encodings
(such as the structured GA [333]) have been adopted in applications that deal
with hierarchical systems (e.g., in telecommunications [1572, 1096]). Some au-
thors also report the use of EAs that employ only mutation because recombi-
nation turns out to be too disruptive in those cases due to the high epistasis of
the problem (e.g., [965]); additional research is needed to answer this question.
Many of these general issues are discussed in Chapter 5. Additional issues such
as uncertainty, noise, high-dimensionality and epistasis are also important
when solving real-world MOPs. These topics are only beginning to be studied
in the current MOEA literature and thus, more research is required. Neverthe-
less the interested reader is referred to the few sources that discuss these topics
(e.g., [1586, 575, 101, 880, 1303, 484, 996, 386]). These MOEA approaches and
the possible extension of other single-objective innovative approaches such as

Further Explorations 625

simulated annealing, Tabu search, particle swarms, and artificial ant colonies
are summarized in Chapter 10.

This extensive text indicates that MOEAs are quite effective in moving
the initial nondominated population close to the Pareto front and provid-
ing the decision maker with viable decision alternatives over a wide range
of MOP classes. As indicated, the ultimate generation of decision variable
values has been shown to be achievable across a wide range of MOPs. The
material provided makes the structure and execution of MOEAs more under-
standable, selectable, and applicable to new and exciting real-world problems.
The positive research directions and discussion questions at the end of each
chapter provide more insight and areas for creative investigation. Again, the
Evolutionary Multi-Objective (EMOO) Repository at:

http://delta.cs.cinvestav.mx/~ccoello/EMOO

is continually updated with new papers and theses from the MOEA re-
search community. Additionally, a website has been devoted to this book at:

http://www.cs.cinvestav.mx/~emoobook

This website includes the Appendices of the book (not included due to
space constraints), tutorial slides, and some other material to support the use
of this text in a course.

References

1. E. H. Aarts and J. H. Korst. Simulated Annealing and Botzmann Machines: A
Stochastic Approach to Combinatorial Optimization and Neural Computing.
John Wiley & Sons, Chichester, UK, 1989.

2. H. Abbass, M. Towsey, and G. Finn. C-net: a method for generating non-
deterministic and dynamic multivariate decision trees. Knowledge and Infor-
mation Systems, 3:184–197, 2001.

3. H. A. Abbass. A Memetic Pareto Evolutionary Approach to Artificial Neural
Networks. In The Australian Joint Conference on Artificial Intelligence, pages
1–12, Adelaide, Australia, December 2001. Springer. Lecture Notes in Artifi-
cial Intelligence Vol. 2256.

4. H. A. Abbass. An Evolutionary Artificial Neural Networks Approach for
Breast Cancer Diagnosis. Artificial Intelligence in Medicine, 25(3):265–281,
2002.

5. H. A. Abbass. The Self-Adaptive Pareto Differential Evolution Algorithm. In
Congress on Evolutionary Computation (CEC’2002), volume 1, pages 831–
836, Piscataway, New Jersey, May 2002. IEEE Service Center.

6. H. A. Abbass and R. Sarker. The Pareto Differential Evolution Algorithm.
International Journal on Artificial Intelligence Tools, 11(4):531–552, 2002.

7. H. A. Abbass, R. Sarker, and C. Newton. PDE: A Pareto-frontier Differ-
ential Evolution Approach for Multi-objective Optimization Problems. In
Proceedings of the Congress on Evolutionary Computation 2001 (CEC’2001),
volume 2, pages 971–978, Piscataway, New Jersey, May 2001. IEEE Service
Center.

8. Y. Abdel-Magid and M. Abido. Optimal Multiobjective Design of Robust
Power System Stabilizers Using Genetic Algorithms. IEEE Transactions on
Power Systems, 18(3):1125–1132, August 2003.

9. M. Abido. Multiobjective Evolutionary Algorithms for Electric Power Dis-
patch Problem. IEEE Transactions on Evolutionary Computation, 10(3):
315–329, June 2006.

10. A. Abraham, L. Jain, and R. Goldberg, editors. Evolutionary Multiobjective
Optimization. Theoretical Advances and Applications. Springer, USA, 2005.
ISBN 1-85233-787-7.

11. S. Adra, I. Griffin, and P. Fleming. An Adaptive Memetic Algorithm for En-
hanced Diversity. In I. Parmee, editor, Adaptive Computing in Design and

628 References

Manufacture 2006. Proceedings of the Seventh International Conference, pages
251–254, Bristol, UK, April 2006. The Institute for People-centred Computa-
tion.

12. S. F. Adra, I. Griffin, and P. J. Fleming. Hybrid Multiobjective Genetic Algo-
rithm with a New Adaptive Local Search Process. In H.-G. B. et al., editor,
2005 Genetic and Evolutionary Computation Conference (GECCO’2005),
volume 1, pages 1009–1010, New York, USA, June 2005. ACM Press.

13. S. F. Adra, I. Griffin, and P. J. Fleming. A Comparative Study of Progres-
sive Preference Articulation Techniques for Multiobjective Optimisation. In
S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, editors, Evo-
lutionary Multi-Criterion Optimization, 4th International Conference, EMO
2007, pages 908–921, Matshushima, Japan, March 2007. Springer. Lecture
Notes in Computer Science Vol. 4403.

14. N. Agrawal, G. Rangaiah, A. Ray, and S. Gupta. Multi-Objective Optimiza-
tion of the Operation of an Industrial Low-Density Polyethylene Tubular Re-
actor Using Genetic Algorithm and Its Jumping Gene Adaptations. Industrial
and Engineering Chemistry Research, 45:3182–3199, 2006.

15. J. Aguilar and P. Miranda. Approaches Based on Genetic Algorithms for Mul-
tiobjective Optimization Problems. In W. Banzhaf, J. Daida, A. E. Eiben,
M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO’99),
volume 1, pages 3–10, Orlando, Florida, USA, 1999. Morgan Kaufmann Pub-
lishers.

16. H. Aguirre and K. Tanaka. Selection, Drift, Recombination, and Mutation
in Multiobjective Evolutionary Algorithms on Scalable MNK-Landscapes. In
C. A. Coello Coello, A. Hernández Aguirre, and E. Zitzler, editors, Evolu-
tionary Multi-Criterion Optimization. Third International Conference, EMO
2005, pages 355–369, Guanajuato, México, March 2005. Springer. Lecture
Notes in Computer Science Vol. 3410.

17. H. E. Aguirre, M. Sato, and K. Tanaka. Preliminary Study on the Perfor-
mance of Multi-objective Evolutionary Algorithms with MNK-Landscapes. In
Proceedings of the 2004 RISP International Workshop on Nonlinear Circuits
and Signal Processing (NCSP 2004), pages 315–318, Hawaii, USA, March
2004. The Research Institute of Signal Processing Japan.

18. H. E. Aguirre and K. Tanaka. Parallel Varying Mutation Genetic Algorithms.
In Proceedings of the 2002 IEEE World Congress on Computational Intelli-
gence, pages 795–800, Piscataway, NJ, May 2002. IEEE Service Center.

19. H. E. Aguirre, K. Tanaka, T. Sugimura, and S. Oshita. Halftone Image
Generation with Improved Multiobjective Genetic Algorithm. In E. Zitzler,
K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne, editors, First In-
ternational Conference on Evolutionary Multi-Criterion Optimization, pages
501–515. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.

20. F. J. Aherne, N. A. Thacker, and P. I. Rockett. Automatic Parameter Se-
lection for Object Recognition using a Parallel Multiobjective Genetic Al-
gorithm. In Proceedings of the 7th International Conference on Computer
Analysis of Images and Patterns (CAIP’97), Lecture Notes in Computer Sci-
ence 1296, pages 559–566, Kiel, Germany, September 1997. Springer Verlag.

21. F. J. Aherne, N. A. Thacker, and P. I. Rockett. Optimal Pairwise Geometric
Histograms. In A. F. Clark, editor, Electronic Proceedings of the Eighth British

References 629

Machine Vision Conference, BMVC97, pages 480–490, University of Essex,
United Kingdom, September 1997.

22. F. J. Aherne, N. A. Thacker, and P. I. Rockett. Optimising Object Recog-
nition Parameters using a Parallel Multiobjective Genetic Algorithm. In
Proceedings of the 2nd IEE/IEEE International Conference on Genetic Algo-
rithms in Engineering Systems: Innovations and Applications (GALESIA’97),
pages 1–6, Glasgow, Scotland, September 1997. IEE.

23. C. W. Ahn. Advances in Evolutionary Algorithms. Theory, Design and Prac-
tice. Springer, 2006. ISBN 3-540-31758-9.

24. S. G. Akl. The Design and Analysis of Parallel Algorithms. Prentice-Hall,
Englewood Cliffs, NJ, 1989.

25. J. T. Alander. An Indexed Bibliography of Genetic Algorithms: Years 1957–
1993. Technical report, University of Vaasa, Department of Information Tech-
nology and Production Economics, Vaasa, Finland, 1994. Technical Report
Report Series No. 94-1.

26. E. Alba, F. Almeida, M. J. Blesa, J. Cabeza, C. Cotta, M. Dı́az, I. Dorta,
J. Gabarró, C. León, J. Luna, L. M. Moreno, C. Pablos, J. Petit, A. Rojas,
and F. Xhafa. MALLBA: A Library of Skeletons for Combinatorial Optimisa-
tion. In Proceedings of the 8th International Euro-Par Conference on Parallel
Processing, pages 927–932. Springer-Verlag. Lecture Notes in Computer Sci-
ence Vol. 2400, 2002.

27. E. Alba and M. Tomassini. Parallelism and Evolutionary Algorithms. IEEE
Transactions on Evolutionary Computation, 6(5):443–462, 2002.

28. E. Alba and J. Troya. Analyzing Synchronous and Asynchronous Paral-
lel Distributed Genetic Algorithms. Future Generation Computer Systems,
17(4):451–465, 2001.

29. E. Alba and J. Troya. Improving Flexibility and Efficiency by Adding Paral-
lelism to Genetic Algorithms. Statistics and Computing, 12(2):91–114, 2002.

30. I. Alberto and P. Mateo. Representation and management of MOEA popu-
lations based on graphs. European Journal of Operational Research, 159(1):
52–65, November 2004.

31. V. N. Alexandrov and G. M. Megson. Parallel Algorithms for Knapsack Type
Problems. World Scientific Publishing Company, New Jersey, 1999.

32. A. O. Allen. Probability, Statistics, and Queuing Theory with Computer
Science Applications. Academic Press, Inc., Boston, Massachusetts, second
edition, 1990.

33. R. Allenson. Genetic Algorithms with Gender for Multi-function Optimisa-
tion. Technical Report EPCC-SS92-01, Edinburgh Parallel Computing Cen-
tre, Edinburgh, Scotland, 1992.

34. K. T. Alligood. Chaos: An Introduction to Dynamical Systems. Springer,
New York, 1996.

35. H. Almuallin and T. G. Dietterich. Learning with many irrelevant features. In
Proceedings of the Ninth National Conference on Artificial Intelligence, pages
547–552, Menlo Park, California, 1991. AAAI Press.

36. P. Alotto, A. V. Kuntsevitch, C. Magele, G. Molinari, C. Paul, K. Preis,
M. Repetto, and K. R. Richter. Multiobjective Optimization in Magneto-
statics: A Proposal for Benchmark Problems. Technical report, Institut für
Grundlagen und Theorie Electrotechnik, Technische Universität Graz, Graz,
Austria, 1996. http://www-igte.tu-graz.ac.at/team/berl01.htm.

630 References

37. J. E. Alvarez-Benitez, R. M. Everson, and J. E. Fieldsend. A MOPSO Al-
gorithm Based Exclusively on Pareto Dominance Concepts. In C. A. Coello
Coello, A. Hernández Aguirre, and E. Zitzler, editors, Evolutionary Multi-
Criterion Optimization. Third International Conference, EMO 2005, pages
459–473, Guanajuato, México, March 2005. Springer. Lecture Notes in Com-
puter Science Vol. 3410.

38. M. J. Alves and J. Cĺımaco. An Interactive Method for 0-1 Multiobjective
Problems Using Simulated Annealing and Tabu Search. Journal of Heuristics,
6(3):385–403, August 2000.

39. K. P. Anchor, J. B. Zydallis, G. H. Gunsch, and G. B. Lamont. Extending
the Computer Defense Immune System: Network Intrusion Detection with
a Multiobjective Evolutionary Programming Approach. In J. Timmis and
P. J. Bentley, editors, First International Conference on Artificial Immune
Systems (ICARIS’2002), pages 12–21. University of Kent at Canterbury, UK,
September 2002. ISBN 1-902671-32-5.

40. J. M. Anderson, T. M. Sayers, and M. G. H. Bell. Optimization of a Fuzzy
Logic Traffic Signal Controller by a Multiobjective Genetic Algorithm. In
Proceedings of the Ninth International Conference on Road Transport Infor-
mation and Control, pages 186–190, London, April 1998. IEE.

41. M. B. Anderson. The Potential of Genetic Algorithms for Subsonic Wing De-
sign. In 1st AIAA Aircraft Engineering, Technology, and Operations Congress,
Los Angeles, California, September 1995. AIAA Paper 95-3925.

42. M. B. Anderson and G. A. Gebert. Using Pareto Genetic Algorithms for Pre-
liminary Subsonic Wing Design. Technical Report AIAA-96-4023-CP, AIAA,
Washington, D.C., 1996.

43. M. B. Anderson and W. R. Lawrence. Launch Conditions and Aerodynamic
Data Extraction By An Elitist Pareto Genetic Algorithm. In AIAA At-
mospheric Flight Mechanics Conference, San Diego, California, July 1996.
AIAA Paper 96-3361.

44. M. B. Anderson, W. R. Lawrence, and G. A. Gebert. Using an Elitist Pareto
Genetic Algorithm for Aerodynamic Data Extraction. In 4th Aerospace Sci-
ences Meeting and Exhibit, Reno, Nevada, January 1996. AIAA Paper 96-
0514.

45. S. Anderson, V. Kadirkamanathan, A. Chipperfield, V. Sharifi, and
J. Swithenbank. Multi-objective optimization of operational variables in a
waste incineration plant. Computers & Chemical Engineering, 29(5):1121–
1130, April 2005.

46. J. Andersson and P. Krus. Metamodel Representations for Robustness Assess-
ment in Multiobjective Optimization. In Proceedings of the 13th International
Conference on Engineering Design (ICED 01), Glasgow, UK, August 2001.

47. J. Andersson and P. Krus. Multiobjective Optimization of Mixed Variable De-
sign Problems. In E. Zitzler, K. Deb, L. Thiele, C. A. C. Coello, and D. Corne,
editors, First International Conference on Evolutionary Multi-Criterion Opti-
mization, pages 624–638. Springer-Verlag. Lecture Notes in Computer Science
No. 1993, 2001.

48. J. Andersson and D. Wallace. Pareto optimization using the struggle ge-
netic crowding algorithm. Engineering Optimization, 34(6):623–643, Decem-
ber 2002.

49. Y. Aneja and K. Nair. Bicriteria transportation problem. Management Sci-
ence, 25:73–78, 1978.

References 631

50. A. Angantyr, J. Andersson, and J.-O. Aidanpaa. Constrained Optimization
based on a Multiobjective Evolutionary Algorithm. In Proceedings of the
2003 Congress on Evolutionary Computation (CEC’2003), volume 3, pages
1560–1567, Canberra, Australia, December 2003. IEEE Press.

51. P. J. Angeline and J. B. Pollack. Competitive Environments Evolve Better
Solutions for Complex Tasks. In S. Forrest, editor, Proceedings of the Fifth
International Conference on Genetic Algorithms, pages 264–270, San Mateo,
California, 1993. University of Illinois at Urbana-Champaign, Morgan Kauf-
mann Publishers.

52. N. E. Antoine. Aircraft Optimization for Minimal Environmental Impact.
PhD thesis, Department of Aeronautics and Astronautics, Stanford Univer-
sity, Stanford, California, USA, August 2004.

53. H. Anton. Calculus with Analytic Geometry. John Wiley & Sons, New York,
2nd edition, 1984.

54. M. Arakawa, K. Hasegawa, and K. Funatsu. QSAR study of anti-HIV
HEPT analogues based on multi-objective genetic programming and counter-
propagation neural network. Chemometrics and Intelligent Laboratory Sys-
tems, 83(2):91–98, September 2006.

55. L. Araujo. Multiobjective Genetic Programming for Natural Language Pars-
ing and Tagging. In T. P. Runarsson, H.-G. Beyer, E. Burke, J. J. Merelo-
Guervós, L. D. Whitley, and X. Yao, editors, Parallel Problem Solving from
Nature - PPSN IX, 9th International Conference, pages 433–442. Springer.
Lecture Notes in Computer Science Vol. 4193, Reykjavik, Iceland, September
2006.

56. B. Arkov, D. Evans, P. Fleming, D. Hill, J. Norton, I. Pratt, D. Rees, and
K. Rodŕıguez Vázquez. System Identification Strategies Applied to Aircraft
Gas-Turbine Engines. In 14th IFAC World Congress, volume 1, pages 145–
152, Beijing, China, July 1999.

57. V. A. Armentano and J. E. Claudio. An Application of a Multi-Objective
Tabu Search Algorithm to a Bicriteria Flowshop Problem. Journal of Heuris-
tics, 10(5):463–481, September 2004.

58. K. Arrow and H. Raynaud. Social Choice and Multicriterion Decison-Making.
The MIT Press, Cambridge, Massachusetts, 1986.

59. K. J. Arrow. Social Choice and Individual Values. John Wiley, New York,
1951.

60. K. J. Arrow. Social Choice and Individual Values. Yale University Press,
second edition, 1963.

61. K. J. Arrow, E. W. Barankin, and D. Blackwell. Admissible Points of Convex
Sets. In H. W. Kuhn and A. W. Tucker, editors, Contributions to the Theory
of Games, pages 87–91. Princeton University Press, Princeton, New Jersey,
1953.

62. J. Arroyo and V. Armentano. Genetic local search for multi-objective flowshop
scheduling problems. European Journal of Operational Research, 167(3):717–
738, December 2005.

63. T. Arslan, D. H. Horrocks, and E. Ozdemir. Structural Synthesis of Cell-based
VLSI Circuits using a Multi-Objective Genetic Algorithm. IEE Electronic
Letters, 32(7):651–652, March 1996.

64. T. Arslan, E. Ozdemir, M. S. Bright, and D. H. Horrocks. Genetic Synthesis
Techniques for Low-Power Digital Signal Processing Circuits. In Proceedings

632 References

Of The IEE Colloquium On Digital Synthesis, pages 7/1–7/5, London, UK,
February 1996. IEE.

65. A. Augugliaro, L. Dusonchet, S. Favuzza, and E. R. Sanseverino. A Fuzzy-
Logic based Evolutionary Multiobjective Approach for Automated Distribu-
tion Networks Management. In 2004 Congress on Evolutionary Computation
(CEC’2004), volume 1, pages 847–854, Portland, Oregon, USA, June 2004.
IEEE Service Center.

66. B. Awadh, N. Sepehri, and O. Hawaleshka. A Computer-Aided Process Plan-
ning Model Based on Genetic Algorithms. Computers in Operations Research,
22(8):651–652, 1995.

67. M. E. Aydin and V. Y. git. Parallel Simulated Annealing. In E. Alba, editor,
Parallel Metaheuristics, pages 267–287. Wiley-Interscience, 2005.

68. S. Azarm, B. J. Reynolds, and S. Narayanan. Comparison of Two Multi-
objective Optimization Techniques With and Within Genetic Algorithms. In
CD-ROM Proceedings of the 25th ASME Design Automation Conference, vol-
ume Paper No. DETC99/DAC-8584, Las Vegas, Nevada, September 1999.

69. R. Azencott. Simulated Annealing: Parallelization Techniques. John Wiley
and Sons, 1992.

70. B. Babu, P. Chakole, and J. Mubeen. Multiobjective differential evolution
(MODE) for optimization of adiabatic styrene reactor. Chemical Engineering
Science, 60(17):4822–4837, September 2005.

71. B. Babu and M. M. L. Jehan. Differential Evolution for Multi-Objective Op-
timization. In Proceedings of the 2003 Congress on Evolutionary Computa-
tion (CEC’2003), volume 4, pages 2696–2703, Canberra, Australia, December
2003. IEEE Press.

72. T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University
Press, New York, 1996.

73. T. Bäck, D. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary
Computation, volume 1. IOP Publishing Ltd. and Oxford University Press,
1997.

74. T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Evolutionary Computation
1: Basic Algorithms and Operators, volume 1. Institute of Physics Publishing,
first edition, May 2000.

75. T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Evolutionary Computa-
tion 2: Advances Algorithms and Operators, volume 2. Institute of Physics
Publishing, first edition, July 2000.

76. T. P. Bagchi. Multiobjective Scheduling by Genetic Algorithms. Kluwer Aca-
demic Publishers, Boston, Massachusetts, 1999.

77. T. P. Bagchi. Pareto-Optimal Solutions for Multi-objective Production
Scheduling Problems. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello,
and D. Corne, editors, First International Conference on Evolutionary Multi-
Criterion Optimization, pages 458–471. Springer-Verlag. Lecture Notes in
Computer Science No. 1993, 2001.

78. F. Baita, F. Mason, C. Poloni, and W. Ukovich. Genetic algorithm with
redundancies for the vehicle scheduling problem. In J. Biethahn and V. Nissen,
editors, Evolutionary Algorithms in Management Applications, pages 341–353.
Springer-Verlag, Berlin, 1995.

79. J. M. Baldwin. Development and Evolution: Including Psychophysical Evolu-
tion, Evolution by Orthoplasy and the Theory of Genetic Modes. Macmillan,
New York, 1902.

References 633

80. J. Balicki. Multi-criterion Evolutionary Algorithm with Model of the Immune
System to Handle Constraints for Task Assignments. In L. Rutkowski, J. H.
Siekmann, R. Tadeusiewicz, and L. A. Zadeh, editors, Artificial Intelligence
and Soft Computing - ICAISC 2004, 7th International Conference. Proceed-
ings, pages 394–399, Zakopane, Poland, June 2004. Springer. Lecture Notes
in Computer Science. Volume 3070.

81. J. Balicki. Immune systems in multi-criterion evolutionary algorithm for task
assignments in distributed computer system. In Advances in Web Intelligence,
pages 51–56. Springer. Lecture Notes in Computer Science Vol. 3528, 2005.

82. J. Balicki and Z. Kitowski. Multicriteria Evolutionary Algorithm with Tabu
Search for Task Assignment. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello
Coello, and D. Corne, editors, First International Conference on Evolutionary
Multi-Criterion Optimization, pages 373–384. Springer-Verlag. Lecture Notes
in Computer Science No. 1993, 2001.

83. R. Balling. Pareto sets in decision-based design. Journal of Engineering
Valuation and Cost Analysis, 3:189–198, 2000.

84. R. Balling. The Maximin Fitness Function; Multiobjective City and Re-
gional Planning. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and
L. Thiele, editors, Evolutionary Multi-Criterion Optimization. Second Inter-
national Conference, EMO 2003, pages 1–15, Faro, Portugal, April 2003.
Springer. Lecture Notes in Computer Science. Volume 2632.

85. R. Balling and S. Wilson. The Maximim Fitness Function for Multi-objective
Evolutionary Computation: Application to City Planning. In L. Spector, E. D.
Goodman, A. Wu, W. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo,
S. Pezeshk, M. H. Garzon, and E. Burke, editors, Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO’2001), pages 1079–1084,
San Francisco, California, 2001. Morgan Kaufmann Publishers.

86. R. J. Balling, J. T. Taber, M. R. Brown, and K. Day. Multiobjective Urban
Planning Using a Genetic Algorithm. ASCE Journal of Urban Planning and
Development, 125(2):86–99, June 1999.

87. R. J. Balling, J. T. Taber, K. Day, and S. Wilson. City Planning with a Multi-
objective Genetic Algorithm and a Pareto Set Scanner. In I. C. Parmee, editor,
Proceedings of the Fourth International Conference on Adaptive Computing
in Design and Manufacture (ACDM’2000), pages 237–247. PEDC, University
of Plymouth, UK, Springer London, 2000.

88. A. M. Baltar and D. G. Fontane. A generalized multiobjective particle swarm
optimization solver for spreadsheet models: application to water quality. In
Hydrology Days 2006, Fort Collins, Colorado, USA, March 2006.

89. W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Fancone. Genetic Program-
ming. An Introduction. Morgan Kaufmann Publishers, San Francisco,
California, 1998.

90. B. Barán and M. Schaerer. A Multiobjective Ant Colony System for Vehicle
Routing Problem with Time Windows. In Proceedings of the 21st IASTED
International Conference on Applied Informatics, pages 97–102, Innsbruck,
Austria, February 2003. IASTED.

91. H. J. Barbosa and A. M. Barreto. An interactive genetic algorithm with
co-evolution of weights for multiobjective problems. In L. Spector, E. D.
Goodman, A. Wu, W. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo,
S. Pezeshk, M. H. Garzon, and E. Burke, editors, Proceedings of the Genetic

634 References

and Evolutionary Computation Conference (GECCO’2001), pages 203–210,
San Francisco, California, 2001. Morgan Kaufmann Publishers.

92. H. J. C. Barbosa. A coevolutionary genetic algorithm for a game approach
to structural optimization. In T. Bäck, editor, Proceedings of the Sev-
enth International Conference on Genetic Algorithms, pages 545–552, San
Mateo, California, July 1997. Michigan State University, Morgan Kaufmann
Publishers.

93. R. S. Barr, B. L. Golden, J. P. Kelly, M. G. C. Resende, and J. William
R. Stewart. Designing and Reporting on Computational Experiments with
Heuristic Methods. Journal of Heuristics, 1:9–32, 1995.

94. J. Barrow. Theories of Everything. Oxford University Press, 1991.
95. T. Bartz-Beielstein, P. Limbourg, K. E. Parsopoulos, M. N. Vrahatis,

J. Mehnen, and K. Schmitt. Particle Swarm Optimizers for Pareto Opti-
mization with Enhanced Archiving Techniques. In Proceedings of the 2003
Congress on Evolutionary Computation (CEC’2003), volume 3, pages 1780–
1787, Canberra, Australia, December 2003. IEEE Press.

96. T. Bartz-Beielstein, K. Schmitt, J. Mehnen, B. Naujoks, and D. Zibold. KEA
– A software package for development, analysis, and application of multiple
objective evolutionary algorithms. Interner Bericht des Sonderforschungs-
bereichs 531 Computational Intelligence CI–185/04, Universität Dortmund,
November 2004.

97. M. Basseur. Conception d’Algorithmes Coopératifs Pour L’Optimisation
Multi-Objectif: Application aux Problèmes d’Ordonnancement de Type Flow-
Shop. PhD thesis, Université des Sciences et Technologies de Lille, France,
2005. (in French).

98. M. Basseur, F. Seynhaeve, and E. ghazali Talbi. Design of multi-objective
evolutionary algorithms: Application to the flow-shop. In Congress on Evo-
lutionary Computation (CEC’2002), volume 2, pages 1151–1156, Piscataway,
New Jersey, May 2002. IEEE Service Center.

99. M. Basseur, F. Seynhaeve, and E.-G. Talbi. A Cooperative Metaheuristic
Applied to Multi-Objective Flow-Shop Scheduling Problem. In N. Nedjah
and L. de Macedo Mourelle, editors, Real-World Multi-Objective System En-
gineering, pages 139–162. Nova Science Publishers, New York, 2005.

100. M. Basseur, F. Seynhaeve, and E.-G. Talbi. Path Relinking in Pareto Multi-
objective Genetic Algorithms. In C. A. Coello Coello, A. Hernández Aguirre,
and E. Zitzler, editors, Evolutionary Multi-Criterion Optimization. Third
International Conference, EMO 2005, pages 120–134, Guanajuato, México,
March 2005. Springer. Lecture Notes in Computer Science Vol. 3410.

101. M. Basseur and E. Zitzler. Handling Uncertainty in Indicator-Based Multi-
objective Optimization. International Journal of Computational Intelligence
Research, 2(3):255–272, 2006.

102. M. Basseur and E. Zitzler. A Preliminary Study on Handling Uncer-
tainty in Indicator-Based Multiobjective Optimization. In F. R. et al., edi-
tor, Applications of Evolutionary Computing. EvoWorkshops 2006: EvoBIO,
EvoCOMNET, EvoHOT, EvoIASP, EvoINTERACTION, EvoMUSART, and
EvoSTOC, pages 727–739, Budapest, Hungary, April 2006. Springer, Lecture
Notes in Computer Science Vol. 3907.

103. U. Baumgartner, C. Magele, and W. Renhart. Pareto Optimality and Particle
Swarm Optimization. IEEE Transactions on Magnetics, 40(2):1172–1175,
March 2004.

References 635

104. A. Baykasoǧlu. Goal Programming using Multiple Objective Tabu Search.
Journal of the Operational Research Society, 52(12):1359–1369, December
2001.

105. A. Baykasoǧlu. Preemptive goal programming using simulated annealing.
Engineering Optimization, 37(1):49–63, January 2005.

106. A. Baykasoǧlu, S. Owen, and N. Gindy. A taboo search based approach to
find the Pareto optimal set in multiple objective optimisation. Engineering
Optimization, 31(6):731–748, 1999.

107. A. Baykasoǧlu, L. Özbakýr, and S. A.I. A Tabu Search Based Linguistic
Optimization Approach to Due Date Determination in Earliness-Tardiness
Flexible Job Shop Scheduling. International Journal of Advanced Manufac-
turing Systems, 6(1):81–90, 2003.

108. J. C. Bean. Genetics and random keys for sequencing and optimization. ORSA
Journal on Computing, 6(2):154–160, 1994.

109. J. R. Beasley. OR Library. Online, 1999. Available: http://mscmga.ms.ic.
ac.uk/info.html.

110. R. P. Beausoleil. “MOSS” multiobjective scatter search applied to non-linear
multiple criteria optimization. European Journal of Operational Research,
169(2):426–449, March 2006.

111. R. P. Beausoleil Delgado. Multiple Criteria Scatter Search. In J. P.
de Sousa, editor, Proceedings of the 4th Metaheuristics International Confer-
ence (MIC’2001), pages 539–543. Program Operational Ciencia, Tecnologia,
Inovaçao do Quadro Comunitário de Apoio III de Fundaçao para a Ciencia e
Tecnologia, Porto, Portugal, July 16–20 2001.

112. A. D. Belegundu, D. V. Murthy, R. R. Salagame, and E. W. Constants. Mul-
tiobjective Optimization of Laminated Ceramic Composites Using Genetic
Algorithms. In Fifth AIAA/USAF/NASA Symposium on Multidisciplinary
Analysis and Optimization, pages 1015–1022, Panama City, Florida, 1994.
AIAA. Paper 84-4363-CP.

113. A. D. Belegundu and P. L. N. Murthy. A New Genetic Algorithm for
Multiobjective Optimization. Technical Report AIAA-96-4180-CP, AIAA,
Washington, D.C., 1996.

114. S. M. Belenson and K. C. Kapur. An algorithm for solving multicriterion
linear programming problems with examples. Operations Research Quarterly,
24(1):65–77, 1973.

115. R. Bellman and S. Dreyfus. Applied Dynamic Programming. Princeton Uni-
versity Press, Princeton, New Jersey, 1962.

116. R. Benayoun, J. Montgolfier, J. Tergny, and O. Laritchev. Linear program-
ming with multiple objective functions: Step Method (STEM). Mathematical
Programming, 1(3):366–375, 1971.

117. R. Benayoun, B. Roy, and B. Sussman. Electre: Une méthode pour guider
le choix en présence de points de vue multiple. Direction Scientifique, 1966.
Note de Travail, No. 49.

118. E. Benini and A. Toffolo. Development of High-Performance Airfoils for Axial
Flow Compressors Using Evolutionary Computation. Journal of Propulsion
and Power, 18(3):544–554, May-June 2002.

119. H. P. Benson and S. Sayin. Towards Finding Global Representations of the Ef-
ficient Set in Multiple Objective Mathematical Programming. Naval Research
Logistics, 44:47–67, 1997.

636 References

120. J. Bentley, H. Kung, M. Schkolnick, and C. Thomson. On the Average Number
of Maxima in a Set of Vectors and Applications. Journal of the Association
for Computing Machinery, 25(4):536–543, October 1978.

121. P. J. Bentley and J. P. Wakefield. Finding Acceptable Solutions in the Pareto-
Optimal Range using Multiobjective Genetic Algorithms. In P. K. Chawdhry,
R. Roy, and R. K. Pant, editors, Soft Computing in Engineering Design and
Manufacturing, Part 5, pages 231–240, London, June 1997. Springer Verlag
London Limited. (Presented at the 2nd On-line World Conference on Soft
Computing in Design and Manufacturing (WSC2)).

122. J. O. Berger. Statistical Decision Theory: Foundations, Concepts and Meth-
ods. Springer-Verlag, New York, 1980.

123. P. Bergey. An agent enhanced intelligent spreadsheet solver for multi-criteria
decision making. In Proceedings of the Fifth Americas Conference on Infor-
mation Systems (AMCIS’99), pages 966–968, Milwaukee, USA, August 1999.

124. E. Bernadó i Mansilla and J. M. Garrell i Guiu. MOLeCS: Using Multiobjec-
tive Evolutionary Algorithms for Learning. In E. Zitzler, K. Deb, L. Thiele,
C. A. Coello Coello, and D. Corne, editors, First International Conference on
Evolutionary Multi-Criterion Optimization, pages 696–710. Springer-Verlag.
Lecture Notes in Computer Science No. 1993, 2001.

125. A. Berro and Y. Duthen. Search for optimum in dynamic environment: a
efficient agent-based method. In 2001 Genetic and Evolutionary Computation
Conference. Workshop Program, pages 51–54, San Francisco, California, July
2001.

126. A. Berry and P. Vamplew. The Combative Accretion Model–Multiobjective
Optimisation Without Explicit Pareto Ranking. In C. A. Coello Coello,
A. Hernández Aguirre, and E. Zitzler, editors, Evolutionary Multi-Criterion
Optimization. Third International Conference, EMO 2005, pages 77–91,
Guanajuato, México, March 2005. Springer. Lecture Notes in Computer Sci-
ence Vol. 3410.

127. A. Berry and P. Vamplew. An Efficient Approach to Unbounded Bi-Objective
Archives—Introducing the Mak Tree Algorithm. In M. K. et al., editor,
2006 Genetic and Evolutionary Computation Conference (GECCO’2006), vol-
ume 1, pages 619–626, Seattle, Washington, USA, July 2006. ACM Press.
ISBN 1-59593-186-4.

128. H. Bersini and F. J. Varela. A Variant of Evolution Strategies for Vector Opti-
mization. In H.-P. Schwefel and R. Männer, editors, Parallel Problem Solving
from Nature. 1st Workshop, PPSN I, pages 343–354, Dortmund, Germany,
October 1991. Springer-Verlag. Lecture Notes in Computer Science No. 496.

129. N. Beume, B. Naujoks, and M. Emmerich. SMS-EMOA: Multiobjective se-
lection based on dominated hypervolume. European Journal of Operational
Research, 181(3):1653–1669, 16 September 2007.

130. B. Bhanu and S. Lee. Genetic Learning for Adaptive Image Segmentation.
Kluwer Academic Publishers, Boston, 1994.

131. V. Bhaskar, S. Gupta, and A. Ray. Applications of multiobjective optimiza-
tion in chemical engineering. Reviews in Chemical Engineering, 16(1):1–54,
2000.

132. N. Bhutani, G. Rangaiah, and A. Ray. First Principles, Data Based and
Hybrid Modeling and Optimization of an Industrial Hydrocracking Unit. In-
dustrial and Engineering Chemistry Research, 45:7807–7816, 2006.

References 637

133. D. Billings, L. P. na, J. Schaeffer, and D. Szafron. Learning to play strong
poker. In J. Furnkranz and M. Kubat, editors, Machines that learn to play
games, pages 225–242. Nova Science Publishers, Inc., Commack, NY, USA,
2001.

134. Z. Bingul, A. Sekmen, and S. Zein-Sabatto. Adaptive Genetic Algorithms
Applied to Dynamic Multi-Objective Problems. In C. H. Dagli, A. L. Buczak,
J. Ghosh, M. Embrechts, O. Ersoy, and S. Kercel, editors, Proceedings of the
Artificial Neural Networks in Engineering Conference (ANNIE’2000), pages
273–278, New York, 2000. ASME Press.

135. Z. Bingul, A. Sekmen, and S. Zein-Sabatto. Genetic Algorithms Applied
to Real Time Multi-Objective Optimization Problems. In Proceedings of
the 2000 IEEE SouteastCon Conference (SoutheastCON’00), pages 95–103,
Nashville, Tennessee, April 2000. IEEE.

136. T. T. Binh and U. Korn. An evolution strategy for the multiobjective op-
timization. In The Second International Conference on Genetic Algorithms
(Mendel 96), pages 23–28, Brno, Czech Republic, 1996.

137. T. T. Binh and U. Korn. Multicriteria control system design using an in-
telligent evolution strategy. In Proceedings of the Conference for Control of
Industrial Systems (CIS’97), volume 2, pages 242–247, Belfort, France, 1997.

138. T. T. Binh and U. Korn. Multiobjective Evolution Strategy for Constrained
Optimization Problems. In Proc. of the 15th IMACS World Congress on
Scientific Computation, Modelling and Applied Mathematics, pages 357–362,
Berlin, Germany, 1997.

139. T. T. Binh and U. Korn. A parallel multiobjective evolutionary algorithm.
Technical report, Institute for Automation and Communication, Barleben,
Germany, 1999.

140. S. Bleuler, M. Brack, L. Thiele, and E. Zitzler. Multiobjective Genetic Pro-
gramming: Reducing Bloat Using SPEA2. In Proceedings of the Congress
on Evolutionary Computation 2001 (CEC’2001), volume 1, pages 536–543,
Piscataway, New Jersey, May 2001. IEEE Service Center.

141. S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. PISA—A Platform and
Programming Language Independent Interface for Search Algorithms. In
C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele, editors, Evolu-
tionary Multi-Criterion Optimization. Second International Conference, EMO
2003, pages 494–508, Faro, Portugal, April 2003. Springer. Lecture Notes in
Computer Science. Volume 2632.

142. T. Blickle, J. Teich, and L. Thiele. System-level synthesis using evolutionary
algorithms. Technical Report TIK Report-Nr. 16, Computer Engineering and
Communication Networks Lab (TIK), Swiss Federal Institute of Technology
(ETH), Gloriastrasse 35, 8092 Zurich, April 1996.

143. T. Blickle, J. Teich, and L. Thiele. An evolutionary approach to system-
level synthesis. In Proc. 5th International Workshop on Hardware/Software
Codesign, pages 167–172. IEEE Computer Society Press, 1997.

144. A. L. Blumel. Robust Fuzzy Autopilot Design Using Multi-objective Optimi-
sation for a Highly Non-linear Missile. PhD thesis, Department of Aerospace,
Power & Sensors, Cranfield University, UK, March 2001.

145. A. L. Blumel, E. J. Hughes, and B. A. White. Fuzzy Autopilot Design using
a Multiobjective Evolutionary Algorithm. In 2000 Congress on Evolutionary
Computation, volume 1, pages 54–61, Piscataway, New Jersey, July 2000.
IEEE Service Center.

638 References

146. K. D. Boese. Models for iterative global optimization. PhD thesis, Department
of Computer Science, University of California at Los Angeles, Los Angeles,
California, USA, 1996.

147. M. Bohanec and I. Bratko. Trading accuracy for Simplicity in Decision Trees.
Machine Learning, 15(3):223–250, 1994.

148. E. Bonabeu, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural
to Artificial Systems. Oxford University Press, 1999.

149. Y. Bonnemay, M. Sebag, and O. Teytaud. Convergence proofs for multi-modal
multi-objective optimization. In 7th International Conference on Artificial
Evolution (EA’05), University of Lille, France, October 2005.

150. C. C. Borges and H. J. Barbosa. A Non-generational Genetic Algorithm
for Multiobjective Optimization. In 2000 Congress on Evolutionary Com-
putation, volume 1, pages 172–179, San Diego, California, July 2000. IEEE
Service Center.

151. C. C. Borges and H. J. Barbosa. Obtaining a Restricted Pareto Front in
Evolutionary Multiobjective Optimization. Foundations of Computing and
Decision Sciences, 26(1):5–21, 2001.

152. C. A. Borghi, D. Casadei, M. Fabbri, and G. Serra. Reduction of the torque
ripple in permanent magnet actuators by a multiobjective minimization tech-
nique. IEEE Transactions on Magnetics, 34(5):2869–2872, September 1998.

153. P. A. Bosman and E. D. de Jong. Exploiting Gradient Information in Numer-
ical Multi-Objective Evolutionary Optimization. In H.-G. B. et al., editor,
2005 Genetic and Evolutionary Computation Conference (GECCO’2005), vol-
ume 1, pages 755–762, New York, USA, June 2005. ACM Press.

154. P. A. Bosman and E. D. de Jong. Combining Gradient Techniques for Nu-
merical Multi-Objective Evolutionary Optimization. In M. K. et al., editor,
2006 Genetic and Evolutionary Computation Conference (GECCO’2006), vol-
ume 1, pages 627–634, Seattle, Washington, USA, July 2006. ACM Press.
ISBN 1-59593-186-4.

155. P. A. Bosman and D. Thierens. The Naive MIDEA: A Baseline Multi-
objective EA. In C. A. Coello Coello, A. Hernández Aguirre, and E. Zitzler,
editors, Evolutionary Multi-Criterion Optimization. Third International Con-
ference, EMO 2005, pages 428–442, Guanajuato, México, March 2005.
Springer. Lecture Notes in Computer Science Vol. 3410.

156. M. C. Bot. Improving Induction of Linear Classification Trees with Genetic
Programming. In D. Whitley, D. Goldberg, E. Cantú-Paz, L. Spector,
I. Parmee, and H.-G. Beyer, editors, Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO’2000), pages 403–410, San Francisco,
California, 2000. Morgan Kaufmann.

157. C. P. Bottura and J. V. da Fonseca Neto. Rule-based Decision-making Unit for
Eigenstructure Assignment via Parallel Genetic Algorithm and LQR Designs.
In Proceedings of the 2000 American Control Conference, volume 1, pages
467–471, 2000.

158. D. Bouyssou, T. Marchant, P. Perny, A. Tsoukias, and P. Vincke. Evaluation
and Decision Models: A Critical Perspective. Kluwer Academic Publishers,
2000.

159. L. M. Boychuk and V. O. Ovchinnikov. Principal Methods of Solution of
Multicriterial Optimization Problems (survey). Soviet Automatic Control,
6:1–4, 1973.

References 639

160. H. I. Bozma and J. S. Duncan. A Game–Theoretic Approach to Integration of
Modules. IEEE Transactions on Pattern Analysis and Machine Intelligence,
16(11):1074–1086, November 1994.

161. J. Branke and K. Deb. Integrating User Preferences into Evolutionary Multi-
Objective Optimization. In Y. Jin, editor, Knowledge Incorporation in Evolu-
tionary Computation, pages 461–477. Springer, Berlin Heidelberg, 2005. ISBN
3-540-22902-7.

162. J. Branke, K. Deb, H. Dierolf, and M. Osswald. Finding Knees in Multi-
Objective Optimization. In Parallel Problem Solving from Nature - PPSN
VIII, pages 722–731, Birmingham, UK, September 2004. Springer-Verlag. Lec-
ture Notes in Computer Science Vol. 3242.

163. J. Branke, T. Kaußler, and H. Schmeck. Guiding Multi-Objective Evolution-
ary Algorithms Towards Interesting Regions. In I. C. Parmee, editor, Fourth
International Conference on Adaptive Computing in Design and Manufacture
(ACDM 2000), Poster Proceedings, pages 1–4. Plymouth Engineering Design
Centre, University of Plymouth, April 2000.

164. J. Branke, T. Kaußler, and H. Schmeck. Guidance in Evolutionary Multi-
Objective Optimization. Advances in Engineering Software, 32:499–507, 2001.

165. J. Branke and S. Mostaghim. About Selecting the Personal Best in Multi-
Objective Particle Swarm Optimization. In T. P. Runarsson, H.-G. Beyer,
E. Burke, J. J. Merelo-Guervós, L. D. Whitley, and X. Yao, editors, Parallel
Problem Solving from Nature - PPSN IX, 9th International Conference, pages
523–532. Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik,
Iceland, September 2006.

166. J. P. Brans and B. Mareschal. The PROMCALC & GAIA decision support
system for multicriteria decision aid. Decision Support Systems, 12:297–310,
1994.

167. J.-P. Brans and B. Mareschal. PROMETHEE methods. In J. Figueira,
S. Greco, and M. Ehrgott, editors, Multiple Criteria Decision Analysis. State
of the Art Surveys, pages 163–195. Springer, New York, USA, 2005.

168. J. P. Brans and P. Vincke. A Preference Ranking Organisation Method (The
PROMETHEE Method for Multiple Criteria Decision-Making). Management
Science, 31(6):647–656, June 1985.

169. J. P. Brans, P. Vincke, and B. Mareschal. How to select and how to rank
projects: the PROMETHEE method. European Journal of Operational Re-
search, 24(2):228–238, February 1986.

170. G. Brassard and P. Bratley. Algorithmics: Theory and Practice. Prentice-Hall,
Englewood Cliffs, New Jersey, 1988.

171. M. S. Bright. Evolutionary Strategies for the High-Level Synthesis of VLSI-
Based DSP Systems for Low Power. PhD thesis, University Of Wales Cardiff,
School Of Engineering, Circuits And Systems Research Group, Cardiff, Wales,
UK, October 1998.

172. M. S. Bright and T. Arslan. Multi-Objective Design Strategies for High-
Level Low-Power Design of DSP Systems. In IEEE International Symposium
on Circuits and Systems, ISCAS 99, volume 1, pages 80–83, Florida, USA,
May–June 1999.

173. C. Brizuela, N. Sannomiya, and Y. Zhao. Multi-Objective Flow-Shop: Pre-
liminary Results. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello,
and D. Corne, editors, First International Conference on Evolutionary Multi-

640 References

Criterion Optimization, pages 443–457. Springer-Verlag. Lecture Notes in
Computer Science No. 1993, 2001.

174. C. A. Brizuela and R. Aceves. Experimental Genetic Operators Analysis for
the Multi-objective Permutation Flowshop. In C. M. Fonseca, P. J. Fleming,
E. Zitzler, K. Deb, and L. Thiele, editors, Evolutionary Multi-Criterion Opti-
mization. Second International Conference, EMO 2003, pages 578–592, Faro,
Portugal, April 2003. Springer. Lecture Notes in Computer Science. Volume
2632.

175. D. Brockhoff and E. Zitzler. Are All Objectives Necessary? On Dimensionality
Reduction in Evolutionary Multiobjective Optimization. In T. P. Runarsson,
H.-G. Beyer, E. Burke, J. J. Merelo-Guervós, L. D. Whitley, and X. Yao,
editors, Parallel Problem Solving from Nature - PPSN IX, 9th International
Conference, pages 533–542. Springer. Lecture Notes in Computer Science Vol.
4193, Reykjavik, Iceland, September 2006.

176. R. A. C. M. Broekmeulen. Facility Management of Distribution Centers for
Vegetables and Fruits. In J. Biethahn and V. Nissen, editors, Evolution-
ary Algorithms in Management Applications, pages 199–210. Springer-Verlag,
Berlin, 1995.

177. A. D. Brooke, D. Kendrick, and A. Meerhaus. GAMS: A User’s Guide. Sci-
entific Press, California, 1988.

178. A. J. Brown and M. Thomas. Reengineering the Naval Ship Design Process.
In Proceedings of From Research to Reality in Ship Systems Engineering Sym-
posium, page 277, University of Essex, United Kingdom, 1998. ASNE.

179. M. Brown and R. E. Smith. Effective Use of Directional Information in Multi-
objective Evolutionary Computation. In E. C.-P. et al., editor, Genetic and
Evolutionary Computation—GECCO 2003. Proceedings, Part I, pages 778–
789. Springer. Lecture Notes in Computer Science Vol. 2723, July 2003.

180. M. Brown and R. E. Smith. Directed Multi-Objective Optimisation. Inter-
national Journal of Computers, Systems and Signals, 6(1):3–17, 2005.

181. J. Brownlee. IIDLE: An Immunological Inspired Distributed Learning
Environment for Multiple Objective and Hybrid Optimisation. In 2006
IEEE Congress on Evolutionary Computation (CEC’2006), pages 1614–1620,
Vancouver, BC, Canada, July 2006. IEEE.

182. J. T. Buchanan. A Näıve Approach for Solving MCDM Problems: The GUESS
Method. Journal of the Operational Research Society, 48(2):202–206, 1997.

183. L. Bull, editor. Applications of Learning Classifier Systems. Springer, June
2004. ISBN 3-5402-110-98.

184. B. Bullnheimer, R. F. Hartl, and C. Strauss. A New Rank Based Version
of the Ant System: A Computational Study. Central European Journal for
Operations Research and Economics, 7(1):25–38, 1999.

185. E. Burke, P. Cowling, J. Landa Silva, and S. Petrovic. Combining Hybrid
Metaheuristics and Populations for the Multiobjective Optimisation of Space
Allocation Problems. In L. Spector, E. D. Goodman, A. Wu, W. Langdon,
H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and
E. Burke, editors, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’2001), pages 1252–1259, San Francisco, California, 2001.
Morgan Kaufmann Publishers.

186. E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg. Hyper-
heuristics: An emerging direction in modern search technology. In F. Glover

References 641

and G. A. Kochenberger, editors, Handbook of Metaheuristics, pages 457–474.
Kluwer Academic Publishers, Boston/Dordrecht/London, 2003.

187. E. Burke, J. D. Landa Silva, and E. Soubeiga. Hyperheuristic Approaches
for Multiobjective Optimisation. In Proceedings of the 5th Metaheuristics
International Conference (MIC 2003), pages 11.1–11.6, Kyoto, Japan, August
2003.

188. E. Burke and J. L. Silva. The influence of the fitness evaluation method on
the performance of multiobjective search algorithms. European Journal of
Operational Research, 169(3):875–897, March 2006.

189. E. K. Burke, J. D. Landa Silva, and E. Soubeiga. Multi-objective Hyper-
heuristic Approaches for Space Allocation and Timetabling. In T. Ibaraki,
K. Nonobe, and M. Yagiura, editors, Meta-heuristics: Progress as Real Prob-
lem Solvers, Selected Papers from the 5th Metaheuristics International Con-
ference (MIC 2003), pages 129–158. Springer, 2005.

190. R. Buyya, editor. High Performance Cluster Computing: Architectures and
Systems, volume 1. Prentice-Hall, NJ, 1999.

191. R. Caballero, X. Gandibleux, and J. Molina. MOAMP - A Generic Multiob-
jective Metaheuristic using an Adaptive Memory. Technical report, University
of Valenciennes, France, 2004.

192. J. M. Cadenas and F. Jiménez. A genetic algorithm for the multiobjective
solid transportation problem: a fuzzy approach. In International Symposium
on Automotive Technology and Automation, Proceedings for the dedicated con-
ferences on Mechatronics and Supercomputing Applications in the Transporta-
tion Industries, pages 327–334, Aachen, Germany, 1994.

193. S. Cahon, N. Melab, and E.-G. Talbi. ParadisEO: A Framework for the
Reusable Design of Parallel and Distributed Metaheuristics. Journal of
Heuristics, 10(3):357–380, 2004.

194. M. Calonder, S. Bleuler, and E. Zitzler. Module Identification from Hetero-
geneous Biological Data Using Multiobjective Evolutionary Algorithms. In
T. P. Runarsson, H.-G. Beyer, E. Burke, J. J. Merelo-Guervós, L. D. Whitley,
and X. Yao, editors, Parallel Problem Solving from Nature - PPSN IX, 9th In-
ternational Conference, pages 573–582. Springer. Lecture Notes in Computer
Science Vol. 4193, Reykjavik, Iceland, September 2006.

195. F. Campelo, F. Guimarães, R. Saldanha, H. Igarashi, S. Noguchi, D. Lowther,
and J. Ramirez. A novel multiobjective immune algorithm using nondomi-
nated sorting. In 11th International IGTE Symposium on Numerical Field
Calculation in Electrical Engineering, Seggauberg, Austria, September 2004.

196. F. Campelo, F. G. Guimarães, and H. Igarashi. Overview of Artificial Immune
Systems for Multi-Objective Optimization. In S. Obayashi, K. Deb, C. Poloni,
T. Hiroyasu, and T. Murata, editors, Evolutionary Multi-Criterion Optimiza-
tion, 4th International Conference, EMO 2007, pages 937–951, Matshushima,
Japan, March 2007. Springer. Lecture Notes in Computer Science Vol. 4403.

197. E. Camponogara and S. N. Talukdar. A Genetic Algorithm for Constrained
and Multiobjective Optimization. In J. T. Alander, editor, 3rd Nordic Work-
shop on Genetic Algorithms and Their Applications (3NWGA), pages 49–62,
Vaasa, Finland, August 1997. University of Vaasa.

198. W. Cancino and A. C. B. Delbem. A Multi-objective Evolutionary Approach
for Phylogenetic Inference. In S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu,
and T. Murata, editors, Evolutionary Multi-Criterion Optimization, 4th

642 References

International Conference, EMO 2007, pages 428–442, Matshushima, Japan,
March 2007. Springer. Lecture Notes in Computer Science Vol. 4403.

199. B. S. Canova and J. G. Tyler. An Adaptive Distributed Architecture for Near
Real-Time Genetic Algorithm Execution. In 1998 International Conference
on Web-Based Modeling and Simulation, San Diego, California, January 11–
14 1998. The Society for Computer Simulation International.

200. G. Cantor. Contributions to the Foundation of Transfinite Set Theory. Math-
ematische Annalen, 46:481–512, 1895.

201. G. Cantor. Contributions to the Foundation of Transfinite Set Theory. Math-
ematische Annalen, 49:207–246, 1897.

202. E. Cantú-Paz. A Survey of Parallel Genetic Algorithms. Technical Re-
port 97003, Illinois Genetic Algorithms Laboratory, University of Illinois at
Urbana-Champaign, Urbana, Illinois, May 1997.

203. E. Cantú-Paz. Migration Policies, Selection Pressure, and Parallel Evolution-
ary Algorithms. Technical report, Department of Computer Science, Univer-
sity of Illinois, Urbana, IL, June 1999. IlliGAL Report No. 99015.

204. E. Cantú-Paz. Efficient and Accurate Parallel Genetic Algorithms. Kluwer
Academic Publishers, Boston, Massachusetts, 2000.

205. A. Cardon, T. Galinho, and J.-P. Vacher. A Multi-Objective Genetic Algo-
rithm in Job Shop Scheduling Problem to Refine an Agents’ Architecture. In
K. Miettinen, M. M. Mäkelä, P. Neittaanmäki, and J. Periaux, editors, Pro-
ceedings of EUROGEN’99, Jyväskyl, Finland, 1999. University of Jyváskylä.

206. A. Cardon, T. Galinho, and J.-P. Vacher. Genetic Algorithms using Multi-
Objectives in a Multi-Agent System. Robotics and Autonomous Systems,
33(2–3):179–190, November 2000.

207. P. Cardoso, M. Jesus, and A. Márquez. MONACO - Multi-Objective Network
Optimisation based on ACO. In X Encuentros de Geometŕıa Computacional,
Seville, Spain, June 2003.

208. P. Cardoso, M. Jesus, and A. Márquez. Multiple Objective TSP based on
ACO. In III Encuentro Andaluz de Matemáticas Discretas, Almeria, Spain,
2003.

209. P. Cardoso, M. Jesus, and A. Márquez. Multiple Criteria Minimum Spanning
Trees. In XI Encuentros de Geometŕıa Computacional, Santander, Spain,
2005.

210. W. M. Carlyle, B. Kim, J. W. Fowler, and E. S. Gel. Comparison of Multiple
Objective Genetic Algorithms for Parallel Machine Scheduling Problems. In
E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne, editors,
First International Conference on Evolutionary Multi-Criterion Optimization,
pages 472–485. Springer-Verlag. Lecture Notes in Computer Science No. 1993,
2001.

211. D. G. Carmichael. Computation of Pareto Optima in Structural Design. In-
ternational Journal for Numerical Methods in Engineering, 15:925–952, 1980.

212. C. W. Carroll. The created response surface technique for optimizing nonlin-
ear restrained systems. Operations Research, 9:169–184, 1961.

213. C. Carstensen, G. Rohling, and C. E. Hunt. Optimization of Covert Flares on
the C-17 via Genetic Algorithms. In Proceedings of Military Sensing Sympo-
sium Specialty Group Meeting on Infrared Countermeasures Conference (Clas-
sified), Monterey, California, May 2000.

References 643

214. R. A. Caruana, L. J. Eshelman, and J. D. Schaffer. Representation and hidden
bias II: Eliminating defining length bias in genetic search via shuffle crossover.
In N. S. Sridharan, editor, Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, pages 750–755, San Mateo, California,
1989. Morgan Kaufmann.

215. P. Castro Borges and M. Pilegaard Hansen. A basis for future successes in mul-
tiobjective combinatorial optimization. Technical Report IMM-REP-1998-8,
Institute of Mathematical Modelling, Technical University of Denmark, March
1998.

216. D. J. Caswell. Active Processor Scheduling Using Evolutionary Algorithms.
Master’s thesis, Air Force Institute of Technology, Wright-Patterson Air Force
Base, Ohio, December 2002. AFIT/GCS/ENG/02-36.

217. D. J. Caswell and G. B. Lamont. Wire-Antenna Geometry Design with Mul-
tiobjective Genetic Algorithms. In Congress on Evolutionary Computation
(CEC’2002), volume 1, pages 103–108, Piscataway, New Jersey, May 2002.
IEEE Service Center.

218. S. Cayzer, J. Smith, J. A. Marshall, and T. Kovacs. What Have Gene Li-
braries Done for AIS? In C. Jacob, M. L. Pilat, P. J. Bentley, and J. Timmis,
editors, Artificial Immune Systems. 4th International Conference, ICARIS
2005, pages 86–99, Banff, Canada, August 2005. Springer. Lecture Notes in
Computer Science Vol. 3627.

219. V. Cerny. A Thermodynamical Approach to the Traveling Salesman Prob-
lem: An Efficient Simulation Algorithm. Journal of Optimization Theory and
Applications, 45(1):41–51, 1985.

220. N. Chakraborti, R. Kumar, and D. Jain. A study of the continuous cast-
ing mold using a pareto-converging genetic algorithm. Applied Mathematical
Modelling, 25:287–297, 2001.

221. N. Chakraborti, P. Mishra, A. Aggarwal, A. Banerjee, and S. Mukherjee.
The Williams and Otto Chemical Plant re-evaluated using a Pareto-optimal
formulation aided by Genetic Algorithms. Applied Soft Computing, 6:189–197,
2006.

222. R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. McDonald.
Parallel Programming in OpenMP. Morgan Kaufmann, 2000.

223. C. Chang and D. Xu. Differential Evolution Based Tuning of Fuzzy Auto-
matic Train Operation for Mass Rapid Transit System. IEE Proceedings of
Electric Power Applications, 147(3):206–212, May 2000.

224. C. Chang, D. Xu, and H. Quek. Pareto-optimal set based multiobjective
tuning of fuzzy automatic train operation for mass transit system. IEE Pro-
ceedings on Electric Power Applications, 146(5):577–583, September 1999.

225. C. S. Chang, W. Wang, A. C. Liew, F. S. Wen, and D. Srinivasan. Genetic
Algorithm Based Bicriterion Optimization for Traction Sustations in DC Rail-
way System. In Proceedings of the Second IEEE International Conference on
Evolutionary Computation, pages 11–16, Piscataway, New Jersey, 1995. IEEE
Press.

226. T. J. Chang, N. Meade, and J. E. Beasley. Heuristics for Cardinality Con-
strained Portfolio Optimization. Technical report, The Management School,
Imperial College, London SW7 2AZ, England, May 1998.

227. T. J. Chang, N. Meade, and J. E. Beasley. Heuristics for Cardinality
Constrained Portfolio Optimization. Computers and Operations Research,
27(13):1271–1302, 2000.

644 References

228. A. Charnes and W. W. Cooper. Management Models and Industrial Appli-
cations of Linear Programming. Management Science, 4(1):81–87, 1957.

229. A. Charnes and W. W. Cooper. Management Models and Industrial Applica-
tions of Linear Programming, volume 1. John Wiley, New York, 1961.

230. A. Charnes, W. W. Cooper, R. J. Niehaus, and A. Stedry. Static and dynamic
assignment models with multiple objectives and some remarks on organization
design. Management Science, 15(8):B365–B375, 1969.

231. K. Chellapilla. Combining mutation operators in evolutionary program-
ming. IEEE Transactions on Evolutionary Computation, 2(3):91–96, Sep-
tember 1998.

232. H. W. Chen and N.-B. Chang. Water pollution control in the river basin by
fuzzy genetic algorithm-based multiobjective programming modeling. Water
Science and Technology, 37(8):55–63, 1998.

233. J. Chen and M. Mahfouf. A population adaptive based immune algo-
rithm for solving multi-objective optimization problems. In H. Bersini and
J. Carneiro, editors, Artificial Immune Systems, 5th International Conference,
ICARIS 2006, Proceedings, pages 280–293, Oeiras, Portugal, September 2006.
Springer-Verlag, Lecture Notes in Computer Science Vol. 4163.

234. J.-H. Chen. Theory and Applications of Efficient Multi-Objective Evolutionary
Algorithms. PhD thesis, College of Information and Electrical Engineering of
the Feng Chia University, Taichung, Taiwan, R.O.C., 2004.

235. J.-H. Chen, D. E. Goldberg, S.-Y. Ho, and K. Sastry. Fitness Inheri-
tance in Multi-Objective Optimization. In W. Langdon, E. Cantú-Paz,
K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar,
G. Rudolph, J. Wegener, L. Bull, M. Potter, A. Schultz, J. Miller, E. Burke,
and N. Jonoska, editors, Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO’2002), pages 319–326, San Francisco, California,
July 2002. Morgan Kaufmann Publishers.

236. J.-H. Chen and S.-Y. Ho. Multi-Objective Optimization of Flexible Manu-
facturing Systems. In L. Spector, E. D. Goodman, A. Wu, W. Langdon,
H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and
E. Burke, editors, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’2001), pages 1260–1267, San Francisco, California, 2001.
Morgan Kaufmann Publishers.

237. Q. Chen and S.-U. Guan. Incremental Multiple Objective Genetic Algorithms.
IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics,
34(3):1325–1334, June 2004.

238. X. Chen. Pareto Tree Searching Genetic Algorithm: Approaching Pareto
Optimal Front by Searching Pareto Optimal Tree. Technical Report NK-
CS-2001-002, Department of Computer Science, Nankai University, Tianjin,
China, 2001.

239. Y. Chen, M. Narita, M. Tsuji, and S. Sa. A Genetic Algorithm Approach
to Optimization for the Radiological Worker Allocation Problem. Health
Physics, 70(2):180–186, February 1996.

240. Y. L. Chen and C. C. Liu. Multiobjective VAR planning using the goal-
attainment method. IEE Proceedings on Generation, Transmission and Dis-
tribution, 141(3):227–232, May 1994.

241. F. Cheng and X. Li. Generalized Center Method for Multiobjective Engineer-
ing Optimization. Engineering Optimization, 31:641–661, 1999.

References 645

242. F. Y. Cheng and D. Li. Multiobjective Optimization Design with Pareto Ge-
netic Algorithm. Journal of Structural Engineering, 123(9):1252–1261, Sep-
tember 1997.

243. R. Cheng, M. Gen, and S. S. Oren. An Adaptive Hyperplane Approach
for Multiple Objective Optimization Problems with Complex Constraints.
In D. Whitley, D. Goldberg, E. Cantú-Paz, L. Spector, I. Parmee, and H.-
G. Beyer, editors, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’2000), pages 299–306, San Francisco, California, 2000.
Morgan Kaufmann.

244. S. C. Chiam, C. K. Goh, and K. C. Tan. Adequacy of Empirical Perfor-
mance Assessment for Multiobjective Evolutionary Optimizer. In S. Obayashi,
K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, editors, Evolutionary Multi-
Criterion Optimization, 4th International Conference, EMO 2007, pages 893–
907, Matshushima, Japan, March 2007. Springer. Lecture Notes in Computer
Science Vol. 4403.

245. T.-C. Chiang and L.-C. Fu. Multiobjective Job Shop Scheduling using Ge-
netic Algorithm with Cyclic Fitness Assignment. In 2006 IEEE Congress on
Evolutionary Computation (CEC’2006), pages 11035–11042, Vancouver, BC,
Canada, July 2006. IEEE.

246. A. Chipperfield, J. Whidborne, and P. Fleming. Evolutionary Algorithms
and Simulated Annealing for MCDM. In T. Gal, T. Stewart, and T. Hanne,
editors, Multicriteria Decicion Making—Advances in MCDM Models, Algo-
rithms, Theory, and Applications, pages 16.1–16.32. Kluwer Academic Pub-
lishing, Boston, Massachusetts, 1999.

247. A. J. Chipperfield, N. V. Dakev, J. F. Whidborne, and P. J. Fleming. Mul-
tiobjective robust control using evolutionary algorithms. In IEEE Interna-
tional Conference on Industrial Technology, pages 269–274, Shanghai, China,
December 1996.

248. A. J. Chipperfield and P. J. Fleming. Gas Turbine Engine Controller Design
using Multiobjective Genetic Algorithms. In A. M. S. Zalzala, editor, Proceed-
ings of the First IEE/IEEE International Conference on Genetic Algorithms
in Engineering Systems : Innovations and Applications, GALESIA’95, pages
214–219, Halifax Hall, University of Sheffield, UK, September 1995. IEEE.

249. A. J. Chipperfield and P. J. Fleming. Multiobjective Gas Turbine Engine Con-
troller Design Using Genetic Algorithms. IEEE Transactions on Industrial
Electronics, 43(5):583–587, October 1996.

250. S. Choi and C. Wu. Partitioning and Allocation of Objects in Heterogeneous
Distributed Environments Using the Niched Pareto Genetic-Algorithm. In
K. Kelly, editor, Proc. of 1998 Asia Pacific Software Engineering Conference
(APSEC 98), pages 322–329. IEEE, Taipei, Taiwan, December 1998.

251. S. Y. Chong, M. K. Tan, and J. D. White. Observing the Evolution of Neural
Networks Learning to Play the Game of Othello. IEEE Transactions on
Evolutionary Computation, 9(3):240–251, June 2005.

252. S. Y. Chong and X. Yao. Behavioral Diversity, Choices and Noise in the Iter-
ated Prisoner’s Dilemma. IEEE Transactions on Evolutionary Computation,
9(6):540–551, December 2005.

253. C. Chow and H. Tsui. Autonomous Agent Response Learning by a Multi-
Species Particle Swarm Optimization. In 2004 Congress on Evolutionary
Computation (CEC’2004), volume 1, pages 778–785, Portland, Oregon, USA,
June 2004. IEEE Service Center.

646 References

254. C. R. Chow. An Evolutionary Approach to Search for NCR-Boards. In D. B.
Fogel, editor, Proceedings of the 1998 International Conference on Evolution-
ary Computation, pages 295–300, Piscataway, New Jersey, 1998. IEEE.

255. S. E. Cieniawski, J. W. Eheart, and S. Ranjithan. Using Genetic Algorithms
to Solve a Multiobjective Groundwater Monitoring Problem. Water Resources
Research, 31(2):399–409, February 1995.

256. G. Coath and S. K. Halgamuge. A Comparison of Constraint-Handling Meth-
ods for the Application of Particle Swarm Optimization to Constrained Non-
linear Optimization Problems. In Proceedings of the Congress on Evolutionary
Computation 2003 (CEC’2003), volume 4, pages 2419–2425, Piscataway, New
Jersey, December 2003. Canberra, Australia, IEEE Service Center.

257. G. Cochenour, J. Simon, S. Das, A. Pahwa, and S. Nag. A Pareto
Archive Evolutionary Strategy Based Radial Basis Function Neural Network
Training Algorithm for Failure Rate Prediction in Overhead Feeders. In
H.-G. B. et al., editor, 2005 Genetic and Evolutionary Computation Con-
ference (GECCO’2005), volume 2, pages 2127–2132, New York, USA, June
2005. ACM Press.

258. J. K. Cochran, S.-M. Horng, and J. W. Fowler. A Multi-Population Ge-
netic Algorithm to Solve Multi-Objective Scheduling Problems for Parallel
Machines. Computers and Operations Research, 30(7):1087–1102, 2003.

259. G. P. Coelho and F. V. Zuben. Omni-aiNet: An immune-inspired approach for
omni optimization. In H. Bersini and J. Carneiro, editors, Artificial Immune
Systems, 5th International Conference, ICARIS 2006, Proceedings, pages 294–
308, Oeiras, Portugal, September 2006. Springer-Verlag, Lecture Notes in
Computer Science Vol. 4163.

260. C. A. Coello Coello. An Empirical Study of Evolutionary Techniques for
Multiobjective Optimization in Engineering Design. PhD thesis, Department
of Computer Science, Tulane University, New Orleans, LA, April 1996.

261. C. A. Coello Coello. A Comprehensive Survey of Evolutionary-Based Multi-
objective Optimization Techniques. Knowledge and Information Systems. An
International Journal, 1(3):269–308, August 1999.

262. C. A. Coello Coello. Constraint-handling using an evolutionary multiobjec-
tive optimization technique. Civil Engineering and Environmental Systems,
17:319–346, 2000.

263. C. A. Coello Coello. Handling Preferences in Evolutionary Multiobjective
Optimization: A Survey. In 2000 Congress on Evolutionary Computation,
volume 1, pages 30–37, Piscataway, New Jersey, July 2000. IEEE Service
Center.

264. C. A. Coello Coello. Treating Constraints as Objectives for Single-Objective
Evolutionary Optimization. Engineering Optimization, 32(3):275–308, 2000.

265. C. A. Coello Coello. Theoretical and Numerical Constraint-Handling Tech-
niques used with Evolutionary Algorithms: A Survey of the State of the Art.
Computer Methods in Applied Mechanics and Engineering, 191(11–12):1245–
1287, January 2002.

266. C. A. Coello Coello. EMOO Repository (Online), Last Download: May 28th,
2007, 2007. http://delta.cs.cinvestav.mx/˜ccoello/EMOO/.

267. C. A. Coello Coello and A. D. Christiansen. Two new GA-based methods for
multiobjective optimization. Civil Engineering Systems, 15(3):207–243, 1998.

References 647

268. C. A. Coello Coello and A. D. Christiansen. MOSES : A Multiobjective Opti-
mization Tool for Engineering Design. Engineering Optimization, 31(3):337–
368, 1999.

269. C. A. Coello Coello and A. D. Christiansen. Multiobjective optimization of
trusses using genetic algorithms. Computers and Structures, 75(6):647–660,
May 2000.

270. C. A. Coello Coello, A. D. Christiansen, and A. Hernández Aguirre. Using a
new GA-based multiobjective optimization technique for the design of robot
arms. Robotica, 16(4):401–414, July-August 1998.

271. C. A. Coello Coello and N. Cruz Cortés. An Approach to Solve Multiob-
jective Optimization Problems Based on an Artificial Immune System. In
J. Timmis and P. J. Bentley, editors, First International Conference on Arti-
ficial Immune Systems (ICARIS’2002), pages 212–221. University of Kent at
Canterbury, UK, September 2002. ISBN 1-902671-32-5.

272. C. A. Coello Coello and N. Cruz Cortés. Hybridizing a genetic algorithm with
an artificial immune system for global optimization. Engineering Optimiza-
tion, 36(5):607–634, October 2004.

273. C. A. Coello Coello and N. Cruz Cortés. Solving Multiobjective Optimiza-
tion Problems using an Artificial Immune System. Genetic Programming and
Evolvable Machines, 6(2):163–190, June 2005.

274. C. A. Coello Coello and A. Hernández Aguirre. Design of Combinational
Logic Circuits through an Evolutionary Multiobjective Optimization Ap-
proach. Artificial Intelligence for Engineering, Design, Analysis and Man-
ufacture, 16(1):39–53, January 2002.

275. C. A. Coello Coello, A. Hernández Aguirre, and B. P. Buckles. Evolutionary
Multiobjective Design of Combinational Logic Circuits. In J. Lohn, A. Stoica,
D. Keymeulen, and S. Colombano, editors, Proceedings of the Second
NASA/DoD Workshop on Evolvable Hardware, pages 161–170, Los Alamitos,
California, July 2000. IEEE Computer Society.

276. C. A. Coello Coello, E. Hernández Luna, and A. Hernández Aguirre. Use
of particle swarm optimization to design combinational logic circuits. In
A. M. Tyrell, P. C. Haddow, and J. Torresen, editors, Evolvable Systems:
From Biology to Hardware. 5th International Conference, ICES 2003, pages
398–409, Trondheim, Norway, 2003. Springer, Lecture Notes in Computer Sci-
ence Vol. 2606.

277. C. A. Coello Coello and G. B. Lamont, editors. Applications of Multi-Objective
Evolutionary Algorithms. World Scientific, Singapore, 2004. ISBN 981-256-
106-4.

278. C. A. Coello Coello and R. Landa Becerra. Evolutionary Multiobjective Op-
timization using a Cultural Algorithm. In 2003 IEEE Swarm Intelligence
Symposium Proceedings, pages 6–13, Indianapolis, Indiana, USA, April 2003.
IEEE Service Center.

279. C. A. Coello Coello and E. Mezura-Montes. Constraint-handling in genetic al-
gorithms through the use of dominance-based tournament selection. Advanced
Engineering Informatics, 16(3):193–203, July 2002.

280. C. A. Coello Coello and M. Reyes Sierra. A Coevolutionary Multi-Objective
Evolutionary Algorithm. In Proceedings of the 2003 Congress on Evolution-
ary Computation (CEC’2003), volume 1, pages 482–489, Canberra, Australia,
December 2003. IEEE Press.

648 References

281. C. A. Coello Coello, M. Rudnick, and A. D. Christiansen. Using Genetic
Algorithms for Optimal Design of Trusses. In Proceedings of the Sixth Inter-
national Conference on Tools with Artificial Intelligence, pages 88–94, New
Orleans, Louisiana, USA, November 1994. IEEE Computer Society Press.

282. C. A. Coello Coello and M. Salazar Lechuga. MOPSO: A Proposal for Mul-
tiple Objective Particle Swarm Optimization. In Congress on Evolution-
ary Computation (CEC’2002), volume 2, pages 1051–1056, Piscataway, New
Jersey, May 2002. IEEE Service Center.

283. C. A. Coello Coello and G. Toscano Pulido. A Micro-Genetic Algorithm for
Multiobjective Optimization. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello
Coello, and D. Corne, editors, First International Conference on Evolutionary
Multi-Criterion Optimization, pages 126–140. Springer-Verlag. Lecture Notes
in Computer Science No. 1993, 2001.

284. C. A. Coello Coello and G. Toscano Pulido. Multiobjective Optimization
using a Micro-Genetic Algorithm. In L. Spector, E. D. Goodman, A. Wu,
W. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H.
Garzon, and E. Burke, editors, Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO’2001), pages 274–282, San Francisco,
California, 2001. Morgan Kaufmann Publishers.

285. C. A. Coello Coello and G. Toscano Pulido. Multiobjective Structural Opti-
mization using a Micro-Genetic Algorithm. Structural and Multidisciplinary
Optimization, 30(5):388–403, November 2005.

286. C. A. Coello Coello, G. Toscano Pulido, and M. Salazar Lechuga. Handling
Multiple Objectives With Particle Swarm Optimization. IEEE Transactions
on Evolutionary Computation, 8(3):256–279, June 2004.

287. C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publish-
ers, New York, first edition, May 2002. ISBN 0-3064-6762-3.

288. J. L. Cohon. Multiobjective Programming and Planning. Academic Press,
1978.

289. J. L. Cohon and D. H. Marks. A Review and Evaluation of Multiobjective Pro-
gramming Techniques. Water Resources Research, 11(2):208–220, apr 1975.

290. Y. Collette and P. Siarry. Multiobjective Optimization. Principles and Case
Studies. Springer, August 2003.

291. Y. Collette, P. Siarry, and H.-I. Wong. A Systematic Comparison of Perfor-
mance of Various Multiple Objective Metaheuristics Using a Common Set of
Analytical Test Functions. Foundations of Computing and Decision Sciences,
25(4):249–271, 2000.

292. G. Colombo and C. Mumford. Comparing Algorithms, Representations
and Operators for the Multi-Objective Knapsack Problem. In 2005 IEEE
Congress on Evolutionary Computation (CEC’2005), volume 2, pages 1268–
1275, Edinburgh, Scotland, September 2005. IEEE Service Center.

293. A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by
ant colonies. In F. J. Varela and P. Bourgine, editors, Proceedings of the
First European Conference on Artificial Life, pages 134–142. MIT Press,
Cambridge, MA, 1992.

294. A. Connor. A multi-thread Tabu Search algorithm. Design Optimization,
1(3):293–304, 1999.

References 649

295. A. Connor and D. Tilley. A tabu search method for the optimisation of fluid
power circuits. Proceedings of IMechE Part I: Journal of Systems and Control
Engineering, 212(5):373–381, 1998.

296. A. Corana, M. Marchesi, C. Martini, and S. Ridella. Minimizing multimodal
functions of continuous variables with the “Simulated Annealing” algorithm.
ACM Transactions on Mathematical Software, 13(3):262–280, 1987.

297. A. Corberán, E. Fernández, M. Laguna, and R. Mart́ı. Heuristic Solutions to
the Problem of Routing School Buses with Multiple Objectives. Journal of
the Operational Research Society, 53(4):427–435, 2002.

298. D. Corne and J. Knowles. Some Multiobjective Optimizers are Better than
Others. In Proceedings of the 2003 Congress on Evolutionary Computa-
tion (CEC’2003), volume 4, pages 2506–2512, Canberra, Australia, December
2003. IEEE Press.

299. D. W. Corne, N. R. Jerram, J. D. Knowles, and M. J. Oates. PESA-II: Region-
based Selection in Evolutionary Multiobjective Optimization. In L. Spector,
E. D. Goodman, A. Wu, W. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo,
S. Pezeshk, M. H. Garzon, and E. Burke, editors, Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO’2001), pages 283–290,
San Francisco, California, 2001. Morgan Kaufmann Publishers.

300. D. W. Corne and J. D. Knowles. No Free Lunch and Free Leftovers Theorems
for Multiobjective Optimisation Problems. In C. M. Fonseca, P. J. Fleming,
E. Zitzler, K. Deb, and L. Thiele, editors, Evolutionary Multi-Criterion Opti-
mization. Second International Conference, EMO 2003, pages 327–341, Faro,
Portugal, April 2003. Springer. Lecture Notes in Computer Science. Volume
2632.

301. D. W. Corne, J. D. Knowles, and M. J. Oates. The Pareto Envelope-based Se-
lection Algorithm for Multiobjective Optimization. In M. Schoenauer, K. Deb,
G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel, editors, Pro-
ceedings of the Parallel Problem Solving from Nature VI Conference, pages
839–848, Paris, France, 2000. Springer. Lecture Notes in Computer Science
No. 1917.

302. L. Costa and P. Oliveira. An Evolution Strategy for Multiobjective Opti-
mization. In Congress on Evolutionary Computation (CEC’2002), volume 1,
pages 97–102, Piscataway, New Jersey, May 2002. IEEE Service Center.

303. R. Courant. Variational Methods for the Solution of Problems of Equilibrium
and Vibrations. Bulletin of the American Mathematical Society, 49:1–23, 1943.

304. P. Cowling, N. Colledge, K. Dahal, and S. Remde. The Trade Off Between Di-
versity and Quality for Multi-objective Workforce Scheduling. In J. Gottlieb
and G. R. Raidl, editors, Evolutionary Computation in Combinatorial Opti-
mization, 6th European Conference, EvoCOP 2006, pages 13–24, Budapest,
Hungary, April 2006. Springer. Lecture Notes in Computer Science Vol. 3906.

305. T. G. Crainic and M. Toulouse. Parallel Strategies for Meta-Heuristics. In
F. Glover and G. A. Kochenberger, editors, Handbook of Metaheuristics, pages
475–513. Kluwer Academic Publishers, Boston/Dordrecht/London, 2002.

306. L. F. Cranor. Declared Strategy Voting: An Instrument for Group Decision
Making. PhD thesis, Washington University, Department of Engineering and
Policy, St. Louis, Missouri, December 1996.

307. W. A. Crossley. The Potential of Genetic Algorithms for Conceptual Design
of Rotor Systems. Engineering Optimization, 24(3):221–238, 1995.

650 References

308. W. A. Crossley. Genetic Algorithm Approaches for Multiobjective Design of
Rotor Systems. In Proceedings of the 6th AIAA/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, pages 384–394, Bellevue,
Washington, September 1996. AIAA Paper 96-4025.

309. W. A. Crossley. Genetic Algorithm with the Kreisselmeier-Steinhauser Func-
tion for Multiobjective Constrained Optimization of Rotor Systems. In AIAA
35th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 1997.
AIAA Paper 97-0080.

310. W. A. Crossley, A. M. Cook, D. W. Fanjoy, and V. B. Venkayya. Using the
Two-Branch Tournament Genetic Algorithm for Multiobjective Design. In
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Ma-
terials Conference, Long Beach, California, April 1998. AIAA Paper 98-1914.

311. N. Cruz Cortés and C. A. Coello Coello. Multiobjective Optimization Using
Ideas from the Clonal Selection Principle. In E. C.-P. et al., editor, Genetic
and Evolutionary Computation—GECCO 2003. Proceedings, Part I, pages
158–170. Springer. Lecture Notes in Computer Science Vol. 2723, July 2003.

312. X. Cui, M. Li, and T. Fang. Study of Population Diversity of Multiobjec-
tive Evolutionary Algorithm Based on Immune and Entropy Principles. In
Proceedings of the Congress on Evolutionary Computation 2001 (CEC’2001),
volume 2, pages 1316–1321, Piscataway, New Jersey, May 2001. IEEE Service
Center.

313. V. Cutello, G. Narzisi, and G. Nicosia. A Class of Pareto Archived Evolution
Strategy Algorithms Using Immune Inspired Operators for Ab-Initio Protein
Structure Prediction. In F. R. et al., editor, Applications of Evolutionary Com-
puting. Evoworkshops 2005: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP,
EvoMUSART, and EvoSTOC, pages 54–63. Springer. Lecture Notes in Com-
puter Science Vol. 3449, Lausanne, Switzerland, March/April 2005.

314. D. Cvetković. Evolutionary Multi–Objective Decision Support Systems for
Conceptual Design. PhD thesis, School of Computing, University of Ply-
mouth, Plymouth, UK, November 2000.

315. D. Cvetković and C. A. Coello Coello. Human Preferences and Their Applica-
tions in Evolutionary Multi-Objective Optimization. In Y. Jin, editor, Knowl-
edge Incorporation in Evolutionary Computation, pages 479–502. Springer,
Berlin Heidelberg, 2005. ISBN 3-540-22902-7.

316. D. Cvetković and I. C. Parmee. Genetic Algorithm–based Multi–objective
Optimisation and Conceptual Engineering Design. In Congress on Evolution-
ary Computation – CEC99, volume 1, pages 29–36, Washington D.C., USA,
1999. IEEE.

317. D. Cvetković and I. C. Parmee. Use of Preferences for GA–based Multi–
objective Optimisation. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon,
V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO’99), volume 2, pages
1504–1509, Orlando, Florida, USA, 1999. Morgan Kaufmann Publishers.

318. D. Cvetković and I. C. Parmee. Designer’s preferences and multi–objective
preliminary design processes. In I. C. Parmee, editor, Proceedings of the
Fourth International Conference on Adaptive Computing in Design and Man-
ufacture (ACDM’2000), pages 249–260. PEDC, University of Plymouth, UK,
Springer London, 2000.

References 651

319. D. Cvetković and I. C. Parmee. Preferences and their Application in Evo-
lutionary Multiobjective Optimisation. IEEE Transactions on Evolutionary
Computation, 6(1):42–57, February 2002.

320. P. Czyzak and A. Jaszkiewicz. A multiobjective metaheuristic approach to
the localization of a chain of petrol stations by the capital budgeting model.
Control and Cybernetics, 25(1):177–187, 1996.

321. P. Czyzak and A. Jaszkiewicz. The Multiobjective Metaheuristic Approach for
Optimization of Complex Manufacturing Systems. In G. Fandel and T. Gal,
editors, Multiple Criteria Decision Making. Proceedings of the XIIth Interna-
tional Conference, pages 591–592, Hagen, Germany, 1997. Springer-Verlag.

322. P. Czyzak and A. Jaszkiewicz. Pareto Simulated Annealing. In G. Fandel and
T. Gal, editors, Multiple Criteria Decision Making. Proceedings of the XIIth
International Conference, pages 297–307, Hagen, Germany, 1997. Springer-
Verlag.

323. P. Czyzak and A. Jaszkiewicz. Pareto simulated annealing—a metaheuristic
technique for multiple-objective combinatorial optimization. Journal of Multi-
Criteria Decision Analysis, 7:34–47, 1998.

324. N. O. Da Cunha and E. Polak. Constrained Minimization under Vector-
Valued Criteria in Finite-Dimensional Spaces. Technical Report ERL–188,
Electronic Research Laboratory, University of California, Berkeley, California,
1966.

325. J. da Fonseca Neto and C. P. Bottura. Parallel Genetic Algorithm Fitness
Function Team for Eigenstructure Assignment via LQR. In 1999 Congress on
Evolutionary Computation, volume 21, pages 1035–1042, Washington, D.C.,
July 1999. IEEE Service Center.

326. N. V. Dakev, A. J. Chipperfield, J. F. Whidborne, and P. J. Fleming. An
evolutionary algorithm approach for solving optimal control problems. In
Proceedings of the 13th International Federation of Automatic Control (IFAC)
World Congress, volume D, pages 321–326, San Francisco, California, 1996.

327. N. V. Dakev, J. F. Whidborne, A. J. Chipperfield, and P. J. Fleming. H∞
design of an EMS control system for a maglev vehicle using evolutionary
algorithms. Proceedings of IMechE-I Part I: Journal of Systems and Control
Engineering, 311(4):345–355, 1997.

328. R. Dammkoehler, S. Karasek, E. Shands, and G. Marshal. Constrained Search
of Conformational Hyperspace. Journal of Computer-Aided Molecular Design,
3:3–21, 1989.

329. I. Das and J. Dennis. A Closer Look at Drawbacks of Minimizing Weighted
Sums of Objectives for Pareto Set Generation in Multicriteria Optimization
Problems. Structural Optimization, 14(1):63–69, 1997.

330. P. Das and Y. Y. Haimes. Multiobjective optimization in water quality and
land management. Water Resources Research, 15(6):1313–1322, December
1979.

331. D. Dasgupta, editor. Artificial Immune Systems and Their Applications.
Springer-Verlag, Berlin, 1999.

332. D. Dasgupta and F. A. González. Evolving Complex Fuzzy Classifier
Rules Using a Linear Tree Genetic Representation. In L. Spector, E. D.
Goodman, A. Wu, W. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo,
S. Pezeshk, M. H. Garzon, and E. Burke, editors, Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO’2001), pages 299–305,
San Francisco, California, 2001. Morgan Kaufmann Publishers.

652 References

333. D. Dasgupta and D. R. McGregor. Nonstationary Function Optimization
using the Structured Genetic Algorithm. In R. Männer and B. Manderick,
editors, Proceedings of Parallel Problem Solving from Nature (PPSN 2), pages
145–154, Brussels, Belgium, September 1992. Elsevier Science.

334. D. Dasgupta and D. R. McGregor. A more Biologically Motivated Genetic
Algorithm: The Model and some Results. Cybernetics and Systems: An In-
ternational Journal, 25(3):447–469, May-June 1994.

335. P. Dasgupta, P. Chakrabarti, and S. DeSarkar. Multiobjective Heuristic
Search. An Introduction to intelligent Search Methods for Multicriteria Opti-
mization. Vieweg, Germany, 1999. ISBN 3-528-05708-4.

336. L. David and L. Duckstein. Multi-criterion ranking of alternative long-range
water resource systems. Water Resources Bulletin, 12(4):731–745, 1976.

337. G. D’Avignon, M. Turcotte, L. Beaudry, and Y. Duperre. Degré de
spécialisation des hôpitaux de Quebec. Technical report, Université Laval,
Quebec, Canada, July 1983.

338. J. E. Davis and G. Kendall. An Investigation, using Co-Evolution, to Evolve
an Awari Player. In Congress on Evolutionary Computation (CEC’2002),
volume 2, pages 1408–1413, Piscataway, New Jersey, May 2002. IEEE Service
Center.

339. L. Davis. Genetic Algorithms and Simulated Annealing. Pitman, London,
1987.

340. R. Dawkins. The Selfish Gene. Oxford University Press, Oxford, UK, 1990.
341. R. O. Day. Explicit Building Block Multiobjective Evolutionary Computation:

Methods and Application. PhD thesis, Air Force Institute of Technology,
AFIT/ENG, BLDG 642, 2950 HOBSON WAY, WPAFB (Dayton) OH 45433-
7765, USA, June 2005.

342. R. O. Day, M. P. Kleeman, and G. B. Lamont. Multi-Objective fast messy
Genetic Algorithm Solving Deception Problems. In 2004 Congress on Evo-
lutionary Computation (CEC’2004), volume 2, pages 1502–1509, Portland,
Oregon, USA, June 2004. IEEE Service Center.

343. R. O. Day and G. B. Lamont. An Effective Explicit Building Block MOEA,
the MOMGA-IIa. In 2005 IEEE Congress on Evolutionary Computation
(CEC’2005), volume 1, pages 17–24, Edinburgh, Scotland, September 2005.
IEEE Service Center.

344. R. O. Day and G. B. Lamont. Extended Multi-objective fast messy Genetic
Algorithm Solving Deception Problems. In C. A. Coello Coello, A. Hernández
Aguirre, and E. Zitzler, editors, Evolutionary Multi-Criterion Optimization.
Third International Conference, EMO 2005, pages 296–310, Guanajuato,
México, March 2005. Springer. Lecture Notes in Computer Science Vol. 3410.

345. R. O. Day and G. B. Lamont. Multiobjective Quadratic Assignment Problem
Solved by an Explicit Building Block Search Algorithm - MOMGA-IIa. In
G. R. Raidl and J. Gottlieb, editors, Evolutionary Computation in Combina-
torial Optimization. 5th European Conference, EvoCOP 2005, pages 91–100,
Lausanne, Switzerland, March/April 2005. Springer, Lecture Notes in Com-
puter Science Vol. 3448.

346. R. O. Day, J. B. Zydallis, and G. B. Lamont. Solving the Protein struc-
ture Prediction Problem through a Multi-Objective Genetic Algorithm. In
Proceedings of IEEE/DARPA International Conference on Computational
Nanoscience (ICCN’02), pages 32–35, 2002.

References 653

347. R. O. Day, J. B. Zydallis, G. B. Lamont, and R. Pachter. Fine Granularity
and Building Block Sizes of the Parallel Fast Messy Genetic Algorithm. In
Proceedings of the 2002 IEEE World Congress on Computational Intelligence,
pages 127–132, Piscataway, NJ, May 2002. IEEE Service Center.

348. A. K. De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. PhD thesis, University of Michigan, 1975.

349. E. D. de Jong, R. A. Watson, and J. B. Pollack. Reducing Bloat and Promot-
ing Diversity using Multi-Objective Methods. In L. Spector, E. D. Goodman,
A. Wu, W. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk,
M. H. Garzon, and E. Burke, editors, Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO’2001), pages 11–18, San Francisco,
California, 2001. Morgan Kaufmann Publishers.

350. B. de la Iglesia, A. Reynolds, and V. J. Rayward-Smith. Developments on
a Multi-objective Metaheuristic (MOMH) Algorithm for Finding Interesting
Sets of Classification Rules. In C. A. Coello Coello, A. Hernández Aguirre, and
E. Zitzler, editors, Evolutionary Multi-Criterion Optimization. Third Inter-
national Conference, EMO 2005, pages 826–840, Guanajuato, México, March
2005. Springer. Lecture Notes in Computer Science Vol. 3410.

351. B. de la Iglesia, G. Richards, M. Philpott, and V. Rayward-Smith. The ap-
plication and effectiveness of a multi-objective metaheuristic algorithm for
partial classification. European Journal of Operational Research, 169:898–917,
2006.

352. R. de Neufville. Applied Systems Analysis: Engineering Planning and Tech-
nology Management. McGraw-Hill, New York, New York, 1990.

353. F. de Toro, J. Ortega, J. Fernández, and A. Dı́az. PSFGA: A Parallel Genetic
Algorithm for Multiobjective Optimization. In F. Vajda and N. Podhorszki,
editors, 10th Euromicro Workshop on Parallel, Distributed and Network-
Based Processing, pages 384–391. IEEE, 2002.

354. K. Deb. Binary and Floating-Point Function Optimization using Messy Ge-
netic Algorithms. PhD thesis, University of Alabama, Tuscaloosa, Alabama,
1991.

355. K. Deb. Evolutionary Algorithms for Multi-Criterion Optimization in En-
gineering Design. In K. Miettinen, M. M. Mäkelä, P. Neittaanmäki, and
J. Periaux, editors, Evolutionary Algorithms in Engineering and Computer
Science, chapter 8, pages 135–161. John Wiley & Sons, Ltd, Chichester, UK,
1999.

356. K. Deb. Multi–Objective Evolutionary Algorithms: Introducing Bias Among
Pareto–Optimal Solutions. KanGAL report 99002, Indian Institute of Tech-
nology, Kanpur, India, 1999.

357. K. Deb. Multi-Objective Genetic Algorithms: Problem Difficulties and Con-
struction of Test Problems. Evolutionary Computation, 7(3):205–230, Fall
1999.

358. K. Deb. Non-linear goal programming using Multi-Objective Genetic Al-
gorithms. Technical Report CI-60/98, Dortmund: Department of Computer
Science/LS11, University of Dortmund, Germany, 1999.

359. K. Deb. Solving Goal Programming Problems Using Multi-Objective Genetic
Algorithms. In 1999 Congress on Evolutionary Computation, pages 77–84,
Washington, D.C., July 1999. IEEE Service Center.

654 References

360. K. Deb. An Efficient Constraint Handling Method for Genetic Algorithms.
Computer Methods in Applied Mechanics and Engineering, 186(2/4):311–338,
2000.

361. K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John
Wiley & Sons, Chichester, UK, 2001. ISBN 0-471-87339-X.

362. K. Deb and R. B. Agrawal. Simulated Binary Crossover for Continuous Search
Space. Complex Systems, 9:115–148, 1995.

363. K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A Fast Elitist Non-
Dominated Sorting Genetic Algorithm for Multi-Objective Optimization:
NSGA-II. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J.
Merelo, and H.-P. Schwefel, editors, Proceedings of the Parallel Problem Solv-
ing from Nature VI Conference, pages 849–858, Paris, France, 2000. Springer.
Lecture Notes in Computer Science No. 1917.

364. K. Deb, L. Altenberg, B. Manderick, T. Bäck, Z. Michalewicz, M. Mitchell,
and S. Forrest. Fitness landscapes. In T. Bäck, D. Fogel, and Z. Michalewicz,
editors, Handbook of Evolutionary Computation, volume 1, pages B2.7:1–
B2.7:25. IOP Publishing Ltd. and Oxford University Press, 1997.

365. K. Deb and T. Goel. Controlled Elitist Non-dominated Sorting Genetic Al-
gorithms for Better Convergence. In E. Zitzler, K. Deb, L. Thiele, C. A. C.
Coello, and D. Corne, editors, First International Conference on Evolutionary
Multi-Criterion Optimization, pages 67–81. Springer-Verlag. Lecture Notes in
Computer Science No. 1993, 2001.

366. K. Deb and T. Goel. A Hybrid Multi-Objective Evolutionary Approach to
Engineering Shape Design. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello
Coello, and D. Corne, editors, First International Conference on Evolutionary
Multi-Criterion Optimization, pages 385–399. Springer-Verlag. Lecture Notes
in Computer Science No. 1993, 2001.

367. K. Deb and T. Goel. Multi-Objective Evolutionary Algorithms for Engi-
neering Shape Design. In R. Sarker, M. Mohammadian, and X. Yao, editors,
Evolutionary Optimization, pages 146–175. Kluwer Academic Publishers, New
York, February 2002. ISBN 0-7923-7654-4.

368. K. Deb and D. E. Goldberg. An Investigation of Niche and Species Formation
in Genetic Function Optimization. In J. D. Schaffer, editor, Proceedings of
the Third International Conference on Genetic Algorithms, pages 42–50, San
Mateo, California, June 1989. George Mason University, Morgan Kaufmann
Publishers.

369. K. Deb and S. Jain. Running Performance Metrics for Evolutionary Multi-
Objective Optimization. In L. Wang, K. C. Tan, T. Furuhashi, J.-H. Kim, and
X. Yao, editors, Proceedings of the 4th Asia-Pacific Conference on Simulated
Evolution and Learning (SEAL’02), volume 1, pages 13–20, Orchid Country
Club, Singapore, November 2002. Nanyang Technical University.

370. K. Deb and A. Kumar. Real-coded Genetic Algorithms with Simulated Binary
Crossover: Studies on Multimodal and Multiobjective Problems. Complex
Systems, 9:431–454, 1995.

371. K. Deb and T. Meyarivan. Constrained Test Problems for Multi-Objective
Evolutionary Optimization. KanGAL report 200005, Indian Institute of Tech-
nology, Kanpur, India, 2000.

372. K. Deb, M. Mohan, and S. Mishra. Towards a Quick Computation of Well-
Spread Pareto-Optimal Solutions. In C. M. Fonseca, P. J. Fleming, E. Zitzler,

References 655

K. Deb, and L. Thiele, editors, Evolutionary Multi-Criterion Optimization.
Second International Conference, EMO 2003, pages 222–236, Faro, Portugal,
April 2003. Springer. Lecture Notes in Computer Science. Volume 2632.

373. K. Deb, M. Mohan, and S. Mishra. Evaluating the ε-Domination Based
Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-
Optimal Solutions. Evolutionary Computation, 13(4):501–525, Winter 2005.

374. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast and Elitist Multi-
objective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, April 2002.

375. K. Deb, A. Pratap, and T. Meyarivan. Constrained Test Problems for Multi-
objective Evolutionary Optimization. In E. Zitzler, K. Deb, L. Thiele, C. A.
Coello Coello, and D. Corne, editors, First International Conference on Evo-
lutionary Multi-Criterion Optimization, pages 284–298. Springer-Verlag. Lec-
ture Notes in Computer Science No. 1993, 2001.

376. K. Deb and D. K. Saxena. Searching for Pareto-optimal solutions through
dimensionality reduction for certain large-dimensional multi-objective opti-
mization problems. In 2006 IEEE Congress on Evolutionary Computation
(CEC’2006), pages 3353–3360, Vancouver, BC, Canada, July 2006. IEEE.

377. K. Deb, A. Sinha, and S. Kukkonen. Multi-Objective Test Problems, Link-
ages, and Evolutionary Methodologies. In M. K. et al., editor, 2006 Genetic
and Evolutionary Computation Conference (GECCO’2006), volume 2, pages
1141–1148, Seattle, Washington, USA, July 2006. ACM Press. ISBN 1-59593-
186-4.

378. K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Multi-Objective
Optimization Test Problems. In Congress on Evolutionary Computation
(CEC’2002), volume 1, pages 825–830, Piscataway, New Jersey, May 2002.
IEEE Service Center.

379. K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Test Problems
for Evolutionary Multiobjective Optimization. In A. Abraham, L. Jain, and
R. Goldberg, editors, Evolutionary Multiobjective Optimization. Theoretical
Advances and Applications, pages 105–145. Springer, USA, 2005.

380. K. Deb and S. Tiwari. Multi-objective optimization of a leg mechanism using
genetic algorithms. Engineering Optimization, 37(4):325–350, June 2005.

381. K. Deb, P. Zope, and A. Jain. Distributed Computing of Pareto-Optimal
Solutions with Evolutionary Algorithms. In C. M. Fonseca, P. J. Fleming,
E. Zitzler, K. Deb, and L. Thiele, editors, Evolutionary Multi-Criterion Opti-
mization. Second International Conference, EMO 2003, pages 534–549, Faro,
Portugal, April 2003. Springer. Lecture Notes in Computer Science. Volume
2632.

382. C. R. DeVore, H. C. Briggs, and A. R. DeWispelares. Application of Mul-
tiple Objective Optimization Techniques to Finite Element Model Tuning.
Computers and Structures, 24(5):683–690, 1986.

383. C. Dhaenens, J. Lemesre, N. Melab, M.-S. Mezmaz, and E.-G. Talbi. Par-
allel Exact Methods for Multiobjective Combinatorial Optimization. In
E.-G. Talbi, editor, Parallel Combinatorial Optimization, pages 187–210.
Wiley-Interscience, 2006.

384. A. K. Dhingra and B. H. Lee. A Genetic Algorithm Approach to Single and
Multiobjective Structural Optimization with Discrete-Continuous Variables.
International Journal for Numerical Methods in Engineering, 37:4059–4080,
1994.

656 References

385. P. Di Barba, M. Farina, and A. Savini. Multiobjective Design Optimization
of Real-Life Devices in Electrical Engineering: A Cost-Effective Evolutionary
Approach. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne,
editors, First International Conference on Evolutionary Multi-Criterion Opti-
mization, pages 560–573. Springer-Verlag. Lecture Notes in Computer Science
No. 1993, 2001.

386. F. di Pierro. Many-Objective Evolutionary Algorithms and Applications to
Water Resources Engineering. PhD thesis, School of Engineering, Computer
Science and Mathematics, UK, August 2006.

387. F. di Pierro, S.-T. Khu, and D. A. Savić. An Investigation on Preference
Order Ranking Scheme for Multiobjective Evolutionary Optimization. IEEE
Transactions on Evolutionary Computation, 11(1):17–45, February 2007.

388. R. P. Dick and N. K. Jha. MOGAC: A Multiobjective Genetic Algorithm for
the Co-Synthesis of Hardware-Software Embedded Systems. In IEEE/ACM
Conference on Computer Aided Design, pages 522–529, Los Alamitos,
California, 1997. IEEE Computer Society Press.

389. R. P. Dick and N. K. Jha. CORDS: Hardware-Software Co-Synthesis of Re-
configurable Real-Time Distributed Embedded Systems. In Proceedings of the
International Conference on Computer-Aided Design, pages 62–68, November
1998.

390. R. P. Dick and N. K. Jha. MOGAC: A Multiobjective Genetic Algorithm
for Hardware-Software Co-synthesis of Hierarchical Heterogeneous Distrib-
uted Embedded Systems. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 17(10):920–935, October 1998.

391. R. P. Dick and N. K. Jha. MOCSYN: Multiobjective Core-Based Single-Chip
System Synthesis. In Proc. Design, Automation and Test in Europe, pages
263–270, March 1999.

392. J. G. Digalakis and K. G. Margaritis. An Experimental Study of Benchmark-
ing Functions for Genetic Algorithms. In Proceedings of IEEE International
Conference on Systems, Man, and Cybernetics (SMC’200), pages 3810–3815,
Nashville, Tennessee, October 2000. IEEE.

393. C. Dimopoulos. A Review of Evolutionary Multiobjective Optimization Ap-
plications in the Area of Production Research. In 2004 Congress on Evo-
lutionary Computation (CEC’2004), volume 2, pages 1487–1494, Portland,
Oregon, USA, June 2004. IEEE Service Center.

394. C. Dimopoulos and A. M. S. Zalzala. Evolutionary Computation Approaches
to Cell Optimisation. In I. Parmee, editor, The Integration of Evolutionary
and Adaptive Computing Technologies with Product/System Design and Re-
alisation, pages 69–83, Plymouth, United Kingdom, April 1998. Plymouth
Engineering Design Centre, Springer-Verlag.

395. C. Dimopoulos and A. M. S. Zalzala. Optimization of Cell Configuration and
Comparisons using Evolutionary Computation Approaches. In D. B. Fogel,
editor, Proceedings of the 1998 International Conference on Evolutionary
Computation, pages 148–153, Piscataway, New Jersey, 1998. IEEE.

396. K. Doerner, W. Gutjahr, R. Hartl, C. Strauss, and C. Stummer. Pareto
ant colony optimization with ILP preprocessing in multiobjective portfolio
selection. European Journal of Operational Research, 171(3):830–841, June
2006.

397. K. Doerner, W. J. Gutjahr, R. F. Hartl, C. Strauss, and C. Stummer. Ant
Colony Optimization in Multiobjective Portfolio Selection. In Proceedings of

References 657

the 4th Metaheuristics International Conference (MIC’2001), pages 243–248,
Porto, Portugal, July 2001.

398. K. Doerner, W. J. Gutjahr, R. F. Hartl, C. Strauss, and C. Stummer. Pareto
Ant Colony Optimization: A Metaheuristic Approach to Multiobjective Port-
folio Selection. Annals of Operations Research, 131(1–4):79–99, October 2004.

399. K. Doerner, R. F. Hartl, and M. Reimann. Are COMPETants more competent
for problem solving? - The Case of Full Truckload Transportation. Central
European Journal of Operations Research, 11(2):115–141, 2003.

400. D. C. Donha, D. S. Desanj, and M. R. Katebi. Genetic Algorithm for Weight
Selection in h∞ Control Design. In T. Bäck, editor, Proceedings of the Sev-
enth International Conference on Genetic Algorithms, pages 599–606. Morgan
Kaufmann Publishers, San Mateo, California, July 1997.

401. Y. Donoso Meisel. Multi-Objective Optimization Scheme for Static and Dy-
namic Multicast Flows. PhD thesis, Department of Electronics, Computer
Science and Automatic Control, Universitat de Girona, Girona, Spain, April
2005.

402. D. J. Doorly, J. Peir, and J.-P. Oesterle. Optimisation of Aerodynamic and
Coupled Aerodynamic-Structural Design Using Parallel Genetic Algorithms.
In 6th AIAA/NASA/USAF Multidisciplinary Analysis & Optimization Sym-
posium, Monterey, California, September 1996.

403. M. Dorigo and G. D. Caro. The Ant Colony Optimization Meta-Heuristic.
In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization.
McGraw-Hill, 1999.

404. M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search strat-
egy. Technical Report 91-016, Dipartimento di Elettronica, Politecnico di
Milano, Italy, 1991.

405. M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by
a colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics – Part B, 26(1):29–41, 1996.

406. M. Dorigo and T. Stützle. Ant Colony Optimization. The MIT Press, 2004.
ISBN 0-262-04219-3.

407. K. A. Dowsland. Simulated Annealing. In C. R. Reeves, editor, Modern
Heuristic Techniques for Combinatorial Problems, chapter 2, pages 20–69.
John Wiley & Sons, 1993.

408. G. V. Dozier, S. McCullough, A. Homaifar, and L. Moore. Multiobjective
Evolutionary Path Planning via Fuzzy Tournament Selection. In IEEE In-
ternational Conference on Evolutionary Computation (ICEC’98), pages 684–
689, Piscataway, New Jersey, May 1998. IEEE Press.

409. N. Drechsler, R. Drechsler, and B. Becker. Multi-Objected Optimization in
Evolutionary Algorithms Using Satisfyability Classes. In B. Reusch, editor,
International Conference on Computational Intelligence, Theory and Appli-
cations, 6th Fuzzy Days, pages 108–117, Dortmund, Germany, 1999. Springer-
Verlag. Lecture Notes in Computer Science Vol. 1625.

410. N. Drechsler, R. Drechsler, and B. Becker. Multi-objective Optimisation
Based on Relation favour. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello
Coello, and D. Corne, editors, First International Conference on Evolution-
ary Multi-Criterion Optimization, pages 154–166. Springer-Verlag. Lecture
Notes in Computer Science No. 1993, 2001.

658 References

411. R. Drechsler, N. Göckel, and B. Becker. Learning Heuristics for OBDD Mini-
mization by Evolutionary Algorithms. In H.-M. Voigt, W. Ebeling, I. Rechen-
berger, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature
(PPSN IV), pages 730–739, Berlin, Germany, 1996. Springer-Verlag. Lecture
Notes in Computer Science No. 1141.

412. R. Drezewski and L. Siwik. Co-Evolutionary Multi-Agent System with
Sexual Selection Mechanism for Multi-Objective Optimization. In 2006
IEEE Congress on Evolutionary Computation (CEC’2006), pages 2784–2791,
Vancouver, BC, Canada, July 2006. IEEE.

413. N. Duarte, A. E. Ruano, C. Fonseca, and P. Fleming. Accelerating Multi-
Objective Control System Design Using a Neuro-Genetic Approach. In 2000
Congress on Evolutionary Computation, volume 1, pages 392–397, Piscataway,
New Jersey, July 2000. IEEE Service Center.

414. E. Ducheyne, B. De Baets, and R. De Wulf. Even Flow Scheduling Problems
in Forest Management. In C. A. Coello Coello and G. B. Lamont, editors, Ap-
plications of Multi-Objective Evolutionary Algorithms, pages 701–726. World
Scientific, Singapore, 2004.

415. E. I. Ducheyne, R. R. De Wulf, and B. De Baets. Bi-objective genetic al-
gorithm for forest management: a comparative study. In Proceedings of the
2001 Genetic and Evolutionary Computation Conference. Late-Breaking Pa-
pers, pages 63–66, San Francisco, California, July 2001.

416. L. Duckstein. Multiobjective Optimization in Structural Design: The Model
Choice Problem. In E. Atrek, R. H. Gallagher, K. M. Ragsdell, and O. C.
Zienkiewicz, editors, New Directions in Optimum Structural Design, pages
459–481. John Wiley and Sons, 1984.

417. L. Duckstein and M. Gershon. Multi-objective analysis of a vegetation man-
agement problem using ELECTRE II. Technical Report 81–11, Department of
Systems and Industrial Engineering, University of Arizona, Tucson, Arizona,
1981.

418. L. Duckstein, M. Gershon, and R. McAniff. Development of the Santa Cruz
River Basin: A Comparison of Multi-Criterion Approaches. Technical Re-
port 51, Engineering Experimentation Station, University of Arizona, Tucson,
Arizona, 1981.

419. L. Duckstein and S. Opricovic. Multiobjective optimization in river basin
development. Water Resources Research, 16(1):14–20, feb 1980.

420. J. M. Dujardin. Une évaluation multicritère de projets de remédiation à
l’échec dans l’enseignement secondaire Belge. In XIX Meeting of the European
Working Group on Multiple Criteria Decision Aid, Liège, France, March 1984.

421. W. H. Durham. Co-evolution: Genes, Culture, and Human Diversity. Stanford
University Press, Stanford, California, 1994.

422. R. G. Dyson. Maximim Programming, Fuzzy Linear Programming and
Multi-Criteria Decision Making. Journal of the Operational Research Soci-
ety, 31:263–267, 1980.

423. R. Eberhart and Y. Shi. Comparison between Genetic Algorithms and Par-
ticle Swarm Optimization. In V. W. Porto, N. Saravanan, D. Waagen, and
A. Eibe, editors, Proceedings of the Seventh Annual Conference on Evolution-
ary Programming, pages 611–619. Springer-Verlag, March 1998.

424. K. S. Edge, G. B. Lamont, and R. A. Raines. A Retrovirus Inspired Algorithm
for Virus Detection & Optimization. In M. K. et al., editor, 2006 Genetic and

References 659

Evolutionary Computation Conference (GECCO’2006), volume 1, pages 103–
110, Seattle, Washington, USA, July 2006. ACM Press. ISBN 1-59593-186-4.

425. F. Y. Edgeworth. Mathematical Psychics. P. Keagan, London, England, 1881.
426. R. Eglese. Heuristics in operational research. In V. Belton and R. O’Keefe, ed-

itors, Recent Developments in Operational Research, pages 49–67. Pergamon
Press, Oxford, 1986.

427. M. Ehrgott. Approximation algorithms for combinatorial multicriteria opti-
mization problems. International Transactions in Operational Research, 7:5–
31, 2000.

428. M. Ehrgott. Multicriteria Optimization. Springer, Berlin, second edition,
2005. ISBN 3-540-21398-8.

429. M. Ehrgott and X. Gandibleux. A Survey and Annotated Bibliography of
Multiobjective Combinatorial Optimization. OR Spektrum, 22:425–460, 2000.

430. M. Ehrgott and X. Gandibleux. Multiobjective Combinatorial
Optimization—Theory, Methodology, and Applications. In M. Ehrgott
and X. Gandibleux, editors, Multiple Criteria Optimization: State of the
Art Annotated Bibliographic Surveys, pages 369–444. Kluwer Academic
Publishers, Boston, 2002.

431. M. Ehrgott and X. Gandibleux. Approximative Solution Methods for Multi-
objective Combinatorial Optimization. Top, 12(1):1–89, June 2004.

432. M. Ehrgott and K. Klamroth. Connectedness of efficient solutions in mul-
tiple criteria combinatorial optimization. European Journal of Operational
Research, 97:159–166, 1997.

433. M. Ehrgott, K. Klamroth, and C. Schwehm. An MCDM approach to portfo-
lio optimization. European Journal of Operational Research, 155(3):752–770,
June 2004.

434. P. Ehrlich and P. Raven. Butterflies and Plants: A Study in Coevolution.
Evolution, 18:586–608, 1964.

435. A. Eiben and J. Smith. Introduction to Evolutionary Computing. Springer,
Berlin, 2003. ISBN 3-540-40184-9.

436. A. Ekárt and S. Németh. Selection Based on the Pareto Nondomination
Criterion for Controlling Code Growth in Genetic Programming. Genetic
Programming and Evolvable Machines, 2(1):61–73, March 2001.

437. N. H. Eklund and M. J. Embrechts. GA-Based Multi-Objective Optimization
of Visible Spectra for Lamp Design. In C. H. Dagli, A. L. Buczak, J. Ghosh,
M. J. Embrechts, and O. Ersoy, editors, Smart Engineering System Design:
Neural Networks, Fuzzy Logic, Evolutionary Programming, Data Mining and
Complex Systems, pages 451–456, New York, November 1999. ASME Press.

438. N. H. Eklund and M. J. Embrechts. Determining the Color-Efficiency Pareto
Optimal Surface for Filtered Light Sources. In E. Zitzler, K. Deb, L. Thiele,
C. A. Coello Coello, and D. Corne, editors, First International Conference on
Evolutionary Multi-Criterion Optimization, pages 603–611. Springer-Verlag.
Lecture Notes in Computer Science No. 1993, 2001.

439. N. H. W. Eklund. Multiobjective Visible Spectrum Optimization: A Genetic
Algorithm Approach. PhD thesis, Rensselaer Polytechnic Institute, Troy, New
York, USA, September 2002.

440. W. El Moudani, C. A. Nunes Cosenza, M. de Coligny, and F. Mora-Camino. A
Bi-Criterion Approach for the Airlines Crew Rostering Problem. In E. Zitzler,

660 References

K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne, editors, First Interna-
tional Conference on Evolutionary Multi-Criterion Optimization, pages 486–
500. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.

441. H. El-Rewini, T. G. Lewis, and H. H. Ali. Task Scheduling in Parallel and
Distributed Systems. Prentice-Hall, 1994.

442. C. Elegbede and K. Adjallah. Availability allocation to repairable systems
with genetic algorithms: a multi-objective formulation. Reliability Engineering
& Systems Safety, 82(3):319–330, December 2003.

443. T. A. Ely, W. A. Crossley, and E. A. Williams. Satellite Constellation Design
for Zonal Coverage using Genetic Algorithms. In 8th AAS/AIAA Space Flight
Mechanics Meeting, Monterey, California, February 1998.

444. C. Emmanouilidis, A. Hunter, and J. MacIntyre. A Multiobjective Evolu-
tionary Setting for Feature Selection and a Commonality-Based Crossover
Operator. In 2000 Congress on Evolutionary Computation, volume 1, pages
309–316, Piscataway, New Jersey, July 2000. IEEE Service Center.

445. C. Emmanouilidis, A. Hunter, J. MacIntyre, and C. Cox. Multiple Criteria
Genetic Algorithms for Feature Selection in Neurofuzzy Modeling. In 1999
International Joint Conference on Neural Networks, volume 6, pages 4387–
4392, Washington, D.C., July 1999.

446. C. Emmanouilidis, A. Hunter, J. MacIntyre, and C. Cox. Selecting Features
in Neurofuzzy Modelling by Multiobjective Genetic Algorithms. In 9th Inter-
national Conference on Artificial Neural Networks, volume 2, pages 749–754.
IEE, Edinburgh, UK, September 1999.

447. M. Emmerich, N. Beume, and B. Naujoks. An EMO Algorithm Using
the Hypervolume Measure as Selection Criterion. In C. A. Coello Coello,
A. Hernández Aguirre, and E. Zitzler, editors, Evolutionary Multi-Criterion
Optimization. Third International Conference, EMO 2005, pages 62–76,
Guanajuato, México, March 2005. Springer. Lecture Notes in Computer Sci-
ence Vol. 3410.

448. M. Emmerich and B. Naujoks. Metamodel Assisted Multiobjective Optimisa-
tion Strategies and their Application in Airfoil Design. In I. Parmee, editor,
Adaptive Computing in Design and Manufacture VI, pages 249–260, London,
2004. Springer.

449. M. T. Emmerich and A. H. Deutz. Test Problems Based on Lamé Super-
spheres. In S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Murata,
editors, Evolutionary Multi-Criterion Optimization, 4th International Confer-
ence, EMO 2007, pages 922–936, Matshushima, Japan, March 2007. Springer.
Lecture Notes in Computer Science Vol. 4403.

450. A. P. Engelbrecht. Computational Intelligence: An Introduction. John Wiley
& Sons, 2003. ISBN 0-47084-870-7.

451. A. P. Engelbrecht. Fundamentals of Computational Swarm Intelligence. John
Wiley & Sons, Ltd, 2005. ISBN 978-0-470-09191-3.

452. A. Eremeev. A genetic algorithm with a non-binary representation for the
set covering problem. In Proceedings of Operations Research (OR’98), pages
175–181. Springer-Verlag, 1999.

453. M. Erickson, A. Mayer, and J. Horn. The Niched Pareto Genetic Algorithm
2 Applied to the Design of Groundwater Remediation Systems. In E. Zitzler,
K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne, editors, First In-
ternational Conference on Evolutionary Multi-Criterion Optimization, pages
681–695. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.

References 661

454. H. Esbensen and E. S. Kuh. Design space exploration using the genetic
algorithm. In IEEE International Symposium on Circuits and Systems (IS-
CAS’96), pages 500–503, Piscataway, NJ, 1996. IEEE.

455. H. Esbensen and E. S. Kuh. EXPLORER: An Interactive Floorplaner for
Design Space Exploration. In Proceedings of the European Design Automation
Conference, pages 356–361, 1996.

456. L. J. Eshelman and J. D. Schaffer. Preventing Premature Convergence in
Genetic Algorithms by Preventing Incest. In R. K. Belew and L. B. Booker,
editors, Proceedings of the Fourth International Conference on Genetic Algo-
rithms, pages 115–122, San Mateo, California, July 1991. Morgan Kaufmann
Publishers.

457. L. J. Eshelman and J. D. Schaffer. Real-coded Genetic Algorithms and
Interval-Schemata. In L. D. Whitley, editor, Foundations of Genetic Algo-
rithms 2, pages 187–202. Morgan Kaufmann Publishers, San Mateo, Califor-
nia, 1993.

458. S. Esquivel, S. Ferrero, and R. Gallard. Parameter settings and representa-
tions in pareto-based optimization for job shop scheduling. Cybernetics and
Systems, 33(6):559–578, September 2002.

459. S. Esquivel, S. Ferrero, R. Gallard, C. Salto, H. Alfonso, and M. Schütz.
Enhanced evolutionary algorithms for single and multiobjective optimization
in the job scheduling problem. Knowledge-Based Systems, 15(1–2):13–25,
January 2002.

460. S. C. Esquivel, H. A. Leiva, and R. H. Gallard. Multiplicity in Genetic Algo-
rithms to face Multicriteria Optimization. In 1999 Congress on Evolutionary
Computation, pages 85–90, Washington, D.C., July 1999. IEEE Service Cen-
ter.

461. G. W. Evans. An Overview of Techniques for Solving Multiobjective Mathe-
matical Programs. Management Science, 30(11):1268–1282, November 1984.

462. R. M. Everson, J. E. Fieldsend, and S. Singh. Full Elite Sets for Multi-
Objective Optimisation. In I. Parmee, editor, Proceedings of the Fifth Inter-
national Conference on Adaptive Computing Design and Manufacture (ACDM
2002), volume 5, pages 343–354, University of Exeter, Devon, UK, April 2002.
Springer-Verlag.

463. E. Falkenauer. Genetic Algorithms and Grouping Problems. John Wiley &
Sons, New York, 1998.

464. A. F. Farahani, M. Kamal, and M. Salmani-Jelodar. Parallel-Genetic-
Algorithm-Based HW/SW Partitioning. In International Symposium on Par-
allel Computing in Electrical Engineering (PARELEC), pages 337–342. IEEE
Computer Society, September 2006.

465. A. Farhang-Mehr and S. Azarm. Multi-Objective Genetic Algorithms With
Concepts from Statistical Thermodynamics. In L. Spector, E. D. Goodman,
A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk,
M. H. Garzon, and E. Burke, editors, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO’2001), page 1075. Morgan
Kaufmann Publishers, San Francisco, California, July 2001.

466. A. Farhang-Mehr and S. Azarm. Diversity Assessment of Pareto Optimal
Solution Sets: An Entropy Approach. In Congress on Evolutionary Compu-
tation (CEC’2002), volume 1, pages 723–728, Piscataway, New Jersey, May
2002. IEEE Service Center.

662 References

467. A. Farhang-Mehr and S. Azarm. Entropy-based multi-objective genetic algo-
rithm for design optimization. Structural and Multidisciplinary Optimization,
24(5):351–361, November 2002.

468. M. Farina. A Neural Network Based Generalized Response Surface Multiob-
jective Evolutionary Algorithm. In Congress on Evolutionary Computation
(CEC’2002), volume 1, pages 956–961, Piscataway, New Jersey, May 2002.
IEEE Service Center.

469. M. Farina and P. Amato. On the Optimal Solution Definition for Many-
criteria Optimization Problems. In Proceedings of the NAFIPS-FLINT Inter-
national Conference’2002, pages 233–238, Piscataway, New Jersey, June 2002.
IEEE Service Center.

470. M. Farina and P. Amato. Fuzzy Optimality and Evolutionary Multiobjec-
tive Optimization. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and
L. Thiele, editors, Evolutionary Multi-Criterion Optimization. Second Inter-
national Conference, EMO 2003, pages 58–72, Faro, Portugal, April 2003.
Springer. Lecture Notes in Computer Science. Volume 2632.

471. M. Farina and P. Amato. A fuzzy definition of “optimality” for many-criteria
optimization problems. IEEE Transactions on Systems, Man, and Cybernetics
Part A—Systems and Humans, 34(3):315–326, May 2004.

472. M. Farina, A. Bramanti, and P. Di Barba. A GRS Method for Pareto-Optimal
Front Identification in Electromagnetic Synthesis. IEE Proceedings—Science,
Measurement and Technology, 149(5):207–213, September 2002.

473. M. Farina, K. Deb, and P. Amato. Dynamic Multiobjective Optimization
Problems: Test Cases, Approximation, and Applications. In C. M. Fonseca,
P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele, editors, Evolutionary Multi-
Criterion Optimization. Second International Conference, EMO 2003, pages
311–326, Faro, Portugal, April 2003. Springer. Lecture Notes in Computer
Science. Volume 2632.

474. M. Farina, K. Deb, and P. Amato. Dynamic Multiobjective Optimization
Problems: Test Cases, Approximations, and Applications. IEEE Transactions
on Evolutionary Computation, 8(5):425–442, October 2004.

475. R. Farmani and J. A. Wright. Self-Adaptive Fitness Formulation for Con-
strained Optimization. IEEE Transactions on Evolutionary Computation,
7(5):445–455, October 2003.

476. C.-W. Feng, L. Liu, and S. A. Burns. Using Genetic Algorithms to Solve
Construction Time-Cost Trade-Off Problems. Journal of Computing in Civil
Engineering, 10(3):184–189, 1999.

477. T. A. Feo and M. G. Resende. Greedy Randomized Adaptive Search Proce-
dures. Journal of Global Optimization, 6:109–133, 1995.

478. V. Feoktistov and S. Janaqi. Generalization of the Strategies in Differential
Evolution. In Proceedings of the 18th International Parallel and Distributed
Processing Symposium (IPDPS 2004), 2004, Santa Fe, New Mexico, USA,
page 165a, New Mexico, USA, April 2004. IEEE Computer Society.

479. E. Fernández and J. C. Leyva. A method based on multiobjective optimization
for deriving a ranking from a fuzzy preference relation. European Journal of
Operational Research, 154(1):110–124, April 2004.

480. E. Fernández and R. Olmedo. An improved method for deriving final ranking
from a fuzzy preference relation via multiobjective optimization. Foundations
of Computing and Decision Sciences, 28(3):143–157, 2003.

References 663

481. F. Fernández, G. Spezzano, M. Tomassini, and L. Vanneschi. Parallel genetic
programming. In E. Alba, editor, Parallel Metaheuristics, pages 127–153.
Wiley-Interscience, 2005.

482. A. V. Fiacco and G. P. McCormick. Extensions of SUMT for nonlinear
programming: equality constraints and extrapolation. Management Science,
12(11):816–828, 1968.

483. J. Fieldsend. Multi-Objective Particle Swarm Optimisation Methods. Tech-
nical Report 419, Department of Computer Science, University of Exeter,
Exeter, UK, March 2004.

484. J. E. Fieldsend and R. M. Everson. Multi-objective Optimisation in the Pres-
ence of Uncertainty. In 2005 IEEE Congress on Evolutionary Computation
(CEC’2005), volume 1, pages 243–250, Edinburgh, Scotland, September 2005.
IEEE Service Center.

485. J. E. Fieldsend, R. M. Everson, and S. Singh. Using Unconstrained Elite
Archives for Multiobjective Optimization. IEEE Transactions on Evolution-
ary Computation, 7(3):305–323, June 2003.

486. J. E. Fieldsend and S. Singh. A Multi-Objective Algorithm based upon Par-
ticle Swarm Optimisation, an Efficient Data Structure and Turbulence. In
Proceedings of the 2002 U.K. Workshop on Computational Intelligence, pages
37–44, Birmingham, UK, September 2002.

487. J. Figueira, V. Mousseau, and B. Roy. ELECTRE methods. In J. Figueira,
S. Greco, and M. Ehrgott, editors, Multiple Criteria Decision Analysis. State
of the Art Surveys, pages 133–162. Springer, New York, USA, 2005.

488. R. A. Finkel and J. L. Bentley. Quad-Trees: A Data Structure for Retrieval
on Composite Keys. Acta Informatica, 4:1–9, 1974.

489. P. C. Fishburn. A Survey of Multiattribute/Multicriterion Evaluation Theo-
ries. In S. Zionts, editor, Multiple Criteria Problem Solving, pages 181–224,
Berlin, 1978. Springer-Verlag.

490. P. C. Fishburn. Nontransitive Preferences in Decision Theory. Journal of
Risk and Uncertainty, 4:113–134, 1991.

491. M. Fleischer. The Measure of Pareto Optima. Applications to Multi-objective
Metaheuristics. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and
L. Thiele, editors, Evolutionary Multi-Criterion Optimization. Second Inter-
national Conference, EMO 2003, pages 519–533, Faro, Portugal, April 2003.
Springer. Lecture Notes in Computer Science. Volume 2632.

492. J. Fliege and B. Fux Svaiter. Steepest descent methods for multicriteria
optimization. Mathematical Methods of Operations Research, 51(3):479–494,
2000.

493. R. Flynn and P. D. Sherman. Multicriteria Optimization of Aircraft Panels:
Determining Viable Genetic Algorithm Configurations. International Journal
of Intelligent Systems, 10:987–999, 1995.

494. T. C. Fogarty. An Incremental Genetic Algorithm for Real-Time Optimisa-
tion. In Proceedings of the 1989 IEEE International Conference on Systems,
Man, and Cybernetics, volume 1, pages 321–326. IEEE, 1989.

495. D. Fogel, E. Wasson, and E. Boughton. Evolving neural networks for detecting
breast cancer. Cancer Letters, 96(1):49–53, 1995.

496. D. B. Fogel. Evolutionary Computation. Toward a New Philosophy of Machine
Intelligence. The Institute of Electrical and Electronic Engineers, New York,
1995.

664 References

497. D. B. Fogel, editor. Evolutionary Computation. The Fossil Record. Selected
Readings on the History of Evolutionary Algorithms. The Institute of Elec-
trical and Electronic Engineers, New York, 1998.

498. D. B. Fogel and A. Ghozeil. A Note on Representations and Variation Oper-
ators. IEEE Transactions on Evolutionary Computation, 1(2):159–161, July
1997.

499. L. J. Fogel. Artificial Intelligence through Simulated Evolution. John Wiley,
New York, 1966.

500. L. J. Fogel. Artificial Intelligence through Simulated Evolution. Forty Years
of Evolutionary Programming. John Wiley & Sons, Inc., New York, 1999.

501. G. Folino, C. Pizzuti, and F. Spezzano. A Cellular Genetic Programming
Approach to Classification. In W. Banzhaf, J. Daida, A. E. Eiben, M. H.
Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO’99), volume 2,
pages 1015–1020, San Francisco, California, July 1999. Morgan Kaufmann.

502. G. Folino, C. Pizzuti, and G. Spezzano. CAGE: A Tool for Parallel Genetic
Programming Applications. In J. Miller, M. Tomassini, P. L. Lanzi, C. Ryan,
A. G. Tettamanzi, and W. B. Langdon, editors, Genetic Programming. 4th
European Conference, EuroGP 2001, pages 64–73. Springer. Lecture Notes in
Computer Science Vol. 2038, Lake Como, Italy, April 2001.

503. C. M. Fonseca. Multiobjective Genetic Algorithms with Applications to Con-
trol Engineering Problems. PhD thesis, Department of Automatic Control
and Systems Engineering, University of Sheffield, Sheffield, UK, 1995.

504. C. M. Fonseca and P. J. Fleming. Genetic Algorithms for Multiobjective
Optimization: Formulation, Discussion and Generalization. In S. Forrest, edi-
tor, Proceedings of the Fifth International Conference on Genetic Algorithms,
pages 416–423, San Mateo, California, 1993. University of Illinois at Urbana-
Champaign, Morgan Kaufmann Publishers.

505. C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms
in multiobjective optimization. Technical report, Department of Automatic
Control and Systems Engineering, University of Sheffield, Sheffield, U. K.,
1994.

506. C. M. Fonseca and P. J. Fleming. Multiobjective Genetic Algorithms Made
Easy: Selection, Sharing, and Mating Restriction. In Proceedings of the First
International Conference on Genetic Algorithms in Engineering Systems: In-
novations and Applications, pages 42–52, Sheffield, UK, September 1995. IEE.

507. C. M. Fonseca and P. J. Fleming. An Overview of Evolutionary Algorithms
in Multiobjective Optimization. Evolutionary Computation, 3(1):1–16, Spring
1995.

508. C. M. Fonseca and P. J. Fleming. Nonlinear System Identification with Mul-
tiobjective Genetic Algorithms. In Proceedings of the 13th World Congress
of the International Federation of Automatic Control, pages 187–192, San
Francisco, California, 1996. Pergamon Press.

509. C. M. Fonseca and P. J. Fleming. On the Performance Assessment and Com-
parison of Stochastic Multiobjective Optimizers. In H.-M. Voigt, W. Ebeling,
I. Rechenberg, and H.-P. Schwefel, editors, Parallel Problem Solving from
Nature—PPSN IV, pages 584–593. Springer-Verlag. Lecture Notes in Com-
puter Science No. 1141, Berlin, Germany, September 1996.

References 665

510. C. M. Fonseca and P. J. Fleming. Multiobjective Optimization. In T. Bäck,
D. B. Fogel, and Z. Michalewicz, editors, Handbook of Evolutionary Compu-
tation, volume 1, pages C4.5:1–C4.5:9. Institute of Physics Publishing and
Oxford University Press, 1997.

511. C. M. Fonseca and P. J. Fleming. Multiobjective Optimization and Multiple
Constraint Handling with Evolutionary Algorithms—Part I: A Unified For-
mulation. IEEE Transactions on Systems, Man, and Cybernetics, Part A:
Systems and Humans, 28(1):26–37, 1998.

512. C. M. Fonseca and P. J. Fleming. Multiobjective Optimization and Multi-
ple Constraint Handling with Evolutionary Algorithms—Part II: Application
Example. IEEE Transactions on Systems, Man, and Cybernetics, Part A:
Systems and Humans, 28(1):38–47, 1998.

513. C. M. Fonseca, V. Grunert da Fonseca, and L. Paquete. Exploring the
Performance of Stochastic Multiobjective Optimisers with the Second-Order
Attainment Function. In C. A. Coello Coello, A. Hernández Aguirre, and
E. Zitzler, editors, Evolutionary Multi-Criterion Optimization. Third Inter-
national Conference, EMO 2005, pages 250–264, Guanajuato, México, March
2005. Springer. Lecture Notes in Computer Science Vol. 3410.

514. C. M. Fonseca, L. Paquete, and M. López-Ibáñez. An Improved Dimension-
Sweep Algorithm for the Hypervolume Indicator. In 2006 IEEE Congress
on Evolutionary Computation (CEC’2006), pages 3973–3979, Vancouver, BC,
Canada, July 2006. IEEE.

515. K. T. Formiga, F. H. Chaufhry, P. B. Cheung, and L. F. Reis. Optimal Design
of Water Distribution System by Multiobjective Evolutionary Methods. In
C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele, editors, Evolu-
tionary Multi-Criterion Optimization. Second International Conference, EMO
2003, pages 677–691, Faro, Portugal, April 2003. Springer. Lecture Notes in
Computer Science. Volume 2632.

516. S. Forrest and A. S. Perelson. Genetic algorithms and the immune system. In
H.-P. Schwefel and R. Männer, editors, Parallel Problem Solving from Nature,
Lecture Notes in Computer Science, pages 320–325. Springer-Verlag, Berlin,
Germany, 1991.

517. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organization. International Journal of Supercomputer Ap-
plications, 15(3):200–222, 2001.

518. M. P. Fourman. Compaction of Symbolic Layout using Genetic Algorithms.
In J. J. Grefenstette, editor, Genetic Algorithms and their Applications: Pro-
ceedings of the First International Conference on Genetic Algorithms, pages
141–153. Lawrence Erlbaum, Hillsdale, New Jersey, 1985.

519. E. Frank, Y. Wang, S. Inglis, G. Holmes, and I. H. Witten. Using model trees
for classification. Machine Learning, 32(1):63–76, 1998.

520. B. Freisleben and P. Merz. New Genetic Local Search Algorithm for the
Traveling Salesman Problem. In H.-M. Voigt, W. Ebeling, I. Rechenberg,
and H.-P. Schwefel, editors, Parallel Problem Solving from Nature—PPSN
IV, pages 890–899. Springer-Verlag. Lecture Notes in Computer Science No.
1141, Berlin, Germany, September 1996.

521. F. Freschi and M. Repetto. Multiobjective Optimization by a Modified Arti-
ficial Immune System Algorithm. In C. Jacob, M. L. Pilat, P. J. Bentley, and
J. Timmis, editors, Artificial Immune Systems. 4th International Conference,

666 References

ICARIS 2005, pages 248–261, Banff, Canada, August 2005. Springer. Lecture
Notes in Computer Science Vol. 3627.

522. F. Freschi and M. Repetto. VIS: an artificial immune network for multi-
objective optimization. Engineering Optimization, 38(8):975–996, December
2006.

523. M. C. Fu. Optimization for Simulation: Theory vs. Practice. INFORMS
Journal on Computing, 14:192–215, 2002.

524. K. Fujita, N. Hirokawa, S. Akagi, S. Kitamura, and H. Yokohata. Multi-
objective optimal design of automotive engine using genetic algorithm. In
Proceedings of DETC’98 – ASME Design Engineering Technical Conferences,
page 11, 1998.

525. L. Gacôgne. Research of Pareto Set by Genetic Algorithm, Application to
Multicriteria Optimization of Fuzzy Controller. In 5th European Congress
on Intelligent Techniques and Soft Computing EUFIT’97, pages 837–845,
Aachen, Germany, September 1997.

526. L. Gacôgne. Multiple Objective Optimization of Fuzzy Rules for Obstacles
Avoiding by an Evolution Algorithm with Adaptative Operators. In Pro-
ceedings of the Fifth International Mendel Conference on Soft Computing
(Mendel’99), pages 236–242, Brno, Czech Republic, June 1999.

527. C. Gagné, M. Gravel, and W. L. Price. Scheduling a single machine where
setup times are sequence dependent using an ant-colony heuristic. In Ab-
stract Proceedings of ANTS’2000, pages 157–160, Brussels, Belgium, Septem-
ber 2000.

528. C. Gagné, W. L. Price, and M. Gravel. Scheduling a Single Machine with
Sequence Dependent Setup Time Using Ant Colony Optimization. Technical
Report 2001–003, Faculté des Sciences de L’Administration, Université Laval,
Québec, Canada, April 2001. Available at http://www.fsa.ulaval.ca/rd.

529. T. Galinho, A. Cardon, and J.-P. Vacher. Genetic Integration in a Multiagent
System for Job-Shop Scheduling. In H. Coelho, editor, Progress in Artificial
Intelligence—IBERAMIA’98, pages 76–87, Lisbon, Portugal, October 1998.
Springer-Verlag.

530. L. M. Gambardella and M. Dorigo. Ant-Q: A Reinforcement Learning ap-
proach to the traveling salesman problem. In A. Prieditis and S. Russell,
editors, Proceedings of the 12th International Conference on Machine Learn-
ing, pages 252–260. Morgan Kaufmann, 1995.

531. L. M. Gambardella, Éric Taillard, and G. Agazzi. MACS-VRPTW: A Multiple
Ant Colony System for Vehicle Routing Problems with Time Windows. In
D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages
63–76. McGraw-Hill, 1999.

532. X. Gandibleux and M. Ehrgott. 1984-2004 – 20 Years of Multiobjective Meta-
heuristics. But What About the Solution of Combinatorial Problems with
Multiple Objectives? In C. A. Coello Coello, A. Hernández Aguirre, and
E. Zitzler, editors, Evolutionary Multi-Criterion Optimization. Third Inter-
national Conference, EMO 2005, pages 33–46, Guanajuato, México, March
2005. Springer. Lecture Notes in Computer Science Vol. 3410.

533. X. Gandibleux and A. Freville. Tabu Search Based Procedure for Solving the
0-1 Multi-Objective Knapsack Problem: The Two Objectives Case. Journal
of Heuristics, 6(3):361–383, August 2000.

534. X. Gandibleux, N. Mezdaoui, and A. Fréville. A Tabu Search Procedure to
Solve Combinatorial Optimisation Problems. In R. Caballero, F. Ruiz, and

References 667

R. E. Steuer, editors, Advances in Multiple Objective and Goal Programming,
volume 455 of Lecture Notes in Economics and Mathematical Systems, pages
291–300. Springer-Verlag, 1997.

535. X. Gandibleux, H. Morita, and N. Katoh. The Supported Solutions Used as a
Genetic Information in a Population Heuristic. In E. Zitzler, K. Deb, L. Thiele,
C. A. Coello Coello, and D. Corne, editors, First International Conference on
Evolutionary Multi-Criterion Optimization, pages 429–442. Springer-Verlag.
Lecture Notes in Computer Science No. 1993, 2001.

536. C. Garćıa-Mart́ınez, O. Cordón, and F. Herrera. An Empirical Analysis of
Multiple Objective Ant Colony Optimization Algorithms for the Bi-criteria
TSP. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada,
and T. Stützle, editors, Proceedings of the 4th International Workshop on Ant
Colony Optimization and Swarm Intelligence, pages 61–72. Springer. Lecture
Notes in Computer Science Vol. 3172, 2004.

537. C. Garćıa-Mart́ınez, O. Cordón, and F. Herrera. A taxonomy and an empirical
analysis of multiple objective ant colony optimization algorithms for the bi-
criteria TSP. European Journal of Operational Research, 180:116–148, 2007.

538. L. R. Gardiner and R. E. Steuer. Unified Interactive Multiple Objective
Programming. European Journal of Operational Research, 74:391–406, 1994.

539. L. R. Gardiner and R. E. Steuer. Unified Interactive Multiple Objective
Programming: An Open Architecture For Accommodating New Procedures.
Journal of the Operational Research Society, 45(12):1456–1466, 1994.

540. J. Garen. A Genetic Algorithm for Tackling Multiobjective Job-Shop Schedul-
ing Problems. In X. Gandibleux, M. Sevaux, K. Sörensen, and V. T’kindt, ed-
itors, Metaheuristics for Multiobjective Optimisation, pages 201–219, Berlin,
2004. Springer. Lecture Notes in Economics and Mathematical Systems Vol.
535.

541. M. Garey and D. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1979.

542. C. A. Garrett, J. Huang, M. N. Goltz, and G. B. Lamont. Parallel Real-Valued
Genetic Algorithms for Bioremediation Optimization of TCE-Contaminated
Groundwater. In 1999 Congress on Evolutionary Computation, pages 2183–
2189, Washington, D.C., July 1999. IEEE Service Center.

543. A. Gaspar-Cunha and J. Covas. A Real-World Test Problem for EMO
Algorithms. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and
L. Thiele, editors, Evolutionary Multi-Criterion Optimization. Second Inter-
national Conference, EMO 2003, pages 752–766, Faro, Portugal, April 2003.
Springer. Lecture Notes in Computer Science. Volume 2632.

544. A. Gaspar Cunha, P. Oliveira, and J. A. Covas. Use of Genetic Algorithms in
Multicriteria Optimization to Solve Industrial Problems. In T. Bäck, editor,
Proceedings of the Seventh International Conference on Genetic Algorithms,
pages 682–688, San Mateo, California, July 1997. Michigan State University,
Morgan Kaufmann Publishers.

545. A. Gaspar Cunha, P. Oliveira, and J. A. Covas. Genetic Algorithms in Mul-
tiobjective Optimization Problems: An Application to Polymer Extrusion. In
A. S. Wu, editor, Proceedings of the 1999 Genetic and Evolutionary Compu-
tation Conference. Workshop Program, pages 129–130, Orlando, Florida, July
1999.

546. S. Gass and T. L. Saaty. The computational algorithm for the parametric
objective function. Naval Research Logistics Quarterly, 2:39–45, 1955.

668 References

547. G. H. Gates. Predicting Protein Structure Using Parallel Genetic Algorithms.
Master’s thesis, Air Force Institute of Technology, Wright Patterson AFB,
March 1994. AFIT/GCS/ENG/94D-03.

548. R. Ge and Y. Qin. A class of filled function for finding global minimizers of
a function of several variables. Journal of Optimization Theory and Applica-
tions, 54:241–251, 1987.

549. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for Networked
Parallel Computing. MIT Press, Cambridge, Massachusetts, 1994.

550. F. W. Gembicki. Vector Optimization for Control with Performance and
Parameter Sensitivity Indices. PhD thesis, Case Western Reserve University,
Cleveland, Ohio, 1974.

551. F. W. Gembicki and Y. Y. Haimes. Approach to performance and sensitivity
multiobjective optimization: the goal attainment method. IEEE Transactions
on Automatic Control, AC-15:591–593, 1975.

552. M. Gen and R. Cheng. Genetic Algorithms and Engineering Optimization.
Wiley Series in Engineering Design and Automation. John Wiley & Sons,
New York, 2000.

553. M. Gen, K. Ida, and J. Kim. A Spanning Tree-Based Genetic Algorithm for
Bicriteria Topological Network Design. In Proceedings of the 5th IEEE Con-
ference on Evolutionary Computation, pages 15–20, Piscataway, New Jersey,
1998. IEEE Press.

554. M. Gen, K. Ida, and Y. Li. Solving bicriteria solid transportation problem
with fuzzy numbers by genetic algorithm. International Journal of Computers
and Industrial Engineering, 29:537–543, 1995.

555. M. Gen and Y.-Z. Li. Solving Multi-Objective Transportation Problems by
Spanning Tree-based Genetic Algorithm. In I. Parmee, editor, The Integration
of Evolutionary and Adaptive Computing Technologies with Product/System
Design and Realisation, pages 95–108, Plymouth, United Kingdom, April
1998. Plymouth Engineering Design Centre, Springer-Verlag.

556. A. M. Geoffrion, J. S. Dyer, and A. Feinberg. An interactive approach for
multi-criterion optimization, with an application to the operation of an aca-
demic department. Management Science, 19(4):357–368, 1972.

557. J. S. Gero and S. J. Louis. Improving Pareto Optimal Designs Using Genetic
Algorithms. Microcomputers in Civil Engineering, 10(4):241–249, 1995.

558. J. S. Gero, S. J. Louis, and S. Kundu. Evolutionary learning of novel gram-
mars for design improvement. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 8:83–94, 1994.

559. M. Gershon, L. Duckstein, and A. Bardossy. Differential Dynamic Program-
ming Application to Multi-objective decision making. In Proceedings of the
CORS/ORSA/TIMS Joint Meeting, Toronto, Canada, 1981.

560. O. Giel. Expected Runtimes of a Simple Multi-objective Evolutionary Al-
gorithm. In Proceedings of the 2003 Congress on Evolutionary Computa-
tion (CEC’2003), volume 3, pages 1918–1925, Canberra, Australia, December
2003. IEEE Press.

561. O. Giel and P. K. Lehre. On the Effect of Populations in evolutionary multi-
objective optimization. In M. K. et al., editor, 2006 Genetic and Evolutionary
Computation Conference (GECCO’2006), volume 1, pages 651–658, Seattle,
Washington, USA, July 2006. ACM Press. ISBN 1-59593-186-4.

References 669

562. C. Gil, R. B. nos, M. Montoya, and J. Gómez. Performance of Simulated
Annealing, Tabu Search, and Evolutionary Algorithms for Multi-objective
Network Partitioning. Algorithmic Operations Research, 1(1):55–64, 2006.

563. M. Gill, Y. Kaheil, A. Khalil, M. Mckee, and L. Bastidas. Multiobjective
particle swarm optimization for parameter estimation in hydrology. Water
Resources Research, 42(7, Art. No. W07417), July 22 2006.

564. A. P. Giotis and K. C. Giannakoglou. Single- and Multi-Objective Airfoil
Design Using Genetic Algorithms and Artificial Intelligence. In K. Miettinen,
M. M. Mäkelä, P. Neittaanmäki, and J. Periaux, editors, Proceedings of EU-
ROGEN’99, Jyväskyl, Finland, 30 May-6 June 1999. University of Jyváskylä.

565. F. Glover. Heuristics for integer programming using surrogate constraints.
Decision Sciences, 8:156–166, 1977.

566. F. Glover. Future Paths for Integer Programming and Links to Artificial
Intelligence. Computers and Operations Research, 13(5):533–549, 1986.

567. F. Glover. Tabu Search—Part I. ORSA Journal on Computing, 1(3):190–206,
Summer 1989.

568. F. Glover. A user’s guide to tabu search. Annals of Operations Research,
41:3–28, 1993.

569. F. Glover. Tabu search for nonlinear and parametric optimization (with links
to genetic algorithms). Discrete Applied Mathematics, 49:231–255, 1994.

570. F. Glover. A Template for Scatter Search and Path Relinking. In J.-K.
Hao, E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers, editors, Artificial
Evolution. Third European Conference, AE’97, pages 3–51, Nı̂mes, France,
October 1997. Springer-Verlag. Lecture Notes in Computer Science Vol. 1363.

571. F. Glover, J. Kelly, and M. Laguna. Genetic Algorithms and Tabu Seach:
Hybrid for Optimization. Computers and Operations Research, 22(1):111–
134, 1995.

572. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston,
Massachusetts, 1997.

573. F. Glover and M. Laguna. Fundamentals of scatter search and path relinking.
Control and Cybernetics, 29:653–684, 1999.

574. T. Goel and K. Deb. Hybrid Methods for Multi-Objective Evolutionary Algo-
rithms. In L. Wang, K. C. Tan, T. Furuhashi, J.-H. Kim, and X. Yao, editors,
Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and
Learning (SEAL’02), volume 1, pages 188–192, Orchid Country Club, Singa-
pore, November 2002. Nanyang Technical University.

575. C. K. Goh and K. C. Tan. Noise Handling in Evolutionary Multi-
Objective Optimization. In 2006 IEEE Congress on Evolutionary Compu-
tation (CEC’2006), pages 4497–4504, Vancouver, BC, Canada, July 2006.
IEEE.

576. A. Goicoechea. A multi-objective stochastic programming model in watershed
management. Dept. of systems and industrial engineering, University of Ari-
zona, Tucson, Arizona, 1977. (Unpublished).

577. A. Goicoechea, L. Duckstein, and M. Fogel. Multi-objective programming in
watershed management: A study of the Charleston watershed. Water Re-
sources Research, 12(6):1085–1092, December 1976.

578. A. Goicoechea, L. Duckstein, and M. Fogel. Multiple objectives under uncer-
tainty: An illustrative application of PROTRADE. Water Resources Research,
15(2):203–210, April 1979.

670 References

579. A. Goicoechea, D. R. Hansen, and L. Duckstein. Multiobjective Analysis with
Engineering and Business Applications. John Wiley and Sons, New York,
1982.

580. E. F. Goldbarg, G. R. de Souza, and M. C. Goldbarg. Particle Swarm Op-
timization for the Bi-objective Degree-constrained Minimum Spanning Tree.
In 2006 IEEE Congress on Evolutionary Computation (CEC’2006), pages
1527–1534, Vancouver, BC, Canada, July 2006. IEEE.

581. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Company, Reading, Massachusetts,
1989.

582. D. E. Goldberg. From Genetic and Evolutionary Optimization to the Design
of Conceptual Machines. Technical Report IlliGAl Report 98008, Department
of General Engineering, University of Illinois at Urbana-Champaign, Urbana,
Illinois, USA, 1998.

583. D. E. Goldberg and K. Deb. A Comparison of Selection Schemes Used in
Genetic Algorithms. In G. J. E. Rawlins, editor, Foundations of Genetic
Algorithms, pages 69–93. Morgan Kaufmann, San Mateo, California, 1991.

584. D. E. Goldberg, K. Deb, H. Kargupta, and G. Harik. Rapid, Accurate Op-
timization of Difficult Problems Using Fast Messy Genetic Algorithms. In
S. Forrest, editor, Proceedings of the Fifth International Conference on Ge-
netic Algorithms, pages 56–64, San Mateo, CA, July 1993. Morgan Kaufmann
Publishers.

585. D. E. Goldberg, B. Korb, and K. Deb. Messy Genetic Algorithms: Motivation,
Analysis, and First Results. Complex Systems, 3:493–530, 1989.

586. D. E. Goldberg and R. Lingle. Alleles, Loci, and the Traveling Salesman
Problem. In J. J. Grefenstette, editor, Proceedings of the First International
Conference on Genetic Algorithms and Their Applications, pages 154–159.
Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1985.

587. D. E. Goldberg and J. Richardson. Genetic algorithm with sharing for multi-
modal function optimization. In J. J. Grefenstette, editor, Genetic Algorithms
and Their Applications: Proceedings of the Second International Conference
on Genetic Algorithms, pages 41–49, Hillsdale, New Jersey, 1987. Lawrence
Erlbaum.

588. D. E. Goldberg and L. Wang. Adaptive niching via coevolutionary sharing.
In D. Quagliarella, J. Périaux, C. Poloni, and G. Winter, editors, Genetic
Algorithms and Evolution Strategies in Engineering and Computer Science.
Recent Advances and Industrial Applications, pages 21–38. John Wiley and
Sons, West Sussex, England, 1998.

589. Y. Goletsis, C. Papaloukas, D. I. Fotiadis, A. Likas, and L. K. Michalis. Au-
tomated Ischemic Beat Classification Using Genetic Algorithms and Multi-
criteria Decision Analysis. IEEE Transactions on Biomedical Engineering,
51(10):1717–1725, October 2004.

590. I. Golovkin, R. Mancini, S. Louis, Y. Ochi, K. Fujita, H. Nishimura, H. Shirga,
N. Miyanaga, H. Azechi, R. Butzbach, I. Uschmann, E. Förster, J. Delettrez,
J. Koch, R. Lee, and L. Klein. Spectroscopic Determination of Dynamic
Plasma Gradients in Implosion Cores. Physical Review Letters, 88(4), January
2002.

591. I. E. Golovkin, R. C. Mancini, S. J. Louis, R. W. Lee, and L. Klein. Multi-
criteria Search and Optimization: an Application to X-ray Plasma Spec-

References 671

troscopy. In 2000 Congress on Evolutionary Computation, volume 2, pages
1521–1527, Piscataway, New Jersey, July 2000. IEEE Service Center.

592. C. Gomes da Silva, J. Cĺımaco, and J. Figueira. A scatter search method
for the bi-criteria multi-dimensional {0,1}-knapsack problem using surrogate
relaxation. Journal of Mathematical Modelling and Algorithms, 3(3):183–208,
2004.

593. C. Gomes da Silva, J. Cĺımaco, and J. Figueira. A scatter search method for bi-
criteria {0,1}-knapsack problems. European Journal of Operational Research,
169(2):373–391, March 2006.

594. O. Gonzalez, C. Leon, G. Miranda, C. Rodriguez, and C. Segura. A Parallel
Skeleton for the Strength Pareto Multiobjective Evolutionary Algorithm 2.
In Proceedings of 15th EUROMICRO International Conference on Parallel,
Distributed and Network-Based Processing (PDP’07), pages 434–441. IEEE
Computer Society, February 2007.

595. M. Gravel, W. L. Price, and C. Gagné. Scheduling Continuous Cast-
ing of Aluminum Using a Multiple-Objective Ant Colony Optimiza-
tion Metaheuristic. Technical Report 2001–004, Faculté des Sciences de
L’Administration, Université Laval, Québec, Canada, April 2001. Available
at http://www.fsa.ulaval.ca/rd.

596. M. Gravel, W. L. Price, and C. Gagné. Scheduling continuous casting of
aluminum using a multiple objective ant colony optimization metaheuristic.
European Journal of Operational Research, 143(1):218–229, November 2002.

597. S. Greco, B. Matarazzo, and R. Slowinski. Rough sets theory for multicriteria
decision analysis. European Journal of Operational Research, 129:1–47, 2001.

598. G. W. Greenwood, X. S. Hu, and J. G. D’Ambrosio. Fitness Functions
for Multiple Objective Optimization Problems: Combining Preferences with
Pareto Rankings. In R. K. Belew and M. D. Vose, editors, Foundations of Ge-
netic Algorithms 4, pages 437–455. Morgan Kaufmann, San Mateo, California,
1997.

599. J. J. Grefenstette. Incorporating problem specific knowledge into genetic
algorithms. In L. Davis, editor, Genetic Algorithms and Simulated Annealing,
pages 49–67. Pitman Press, New York, 1987.

600. D. Greiner, G. Winter, J. M. Emperador, and B. Galván. Gray Coding
in Evolutionary Multicriteria Optimization: Application in Frame Struc-
tural Optimum Design. In C. A. Coello Coello, A. Hernández Aguirre, and
E. Zitzler, editors, Evolutionary Multi-Criterion Optimization. Third Inter-
national Conference, EMO 2005, pages 576–591, Guanajuato, México, March
2005. Springer. Lecture Notes in Computer Science Vol. 3410.

601. P. Grignon and G. M. Fadel. Configuration design optimization method. In
Proceedings of DETC’99 – ASME Design Engineering Technical Conferences,
Las Vegas, Nevada, September 1999.

602. P. Grignon and G. M. Fadel. Multiobjective optimization by iterative genetic
algorithm. In Proceedings of DETC’99 – ASME Design Engineering Technical
Conferences, Las Vegas, Nevada, September 1999.

603. P. Grignon, J. Wodziack, and G. M. Fadel. Bi-Objective optimization of com-
ponents packing using a genetic algorithm. In NASA/AIAA/ISSMO Mul-
tidisciplinary Design and Optimization Conference, pages 352–362, Seattle,
Washington, September 1996. AIAA-96-4022-CP.

672 References

604. C. Grimme and J. Lepping. Designing Multi-objective Variation Opera-
tors Using a Predator-Prey Approach. In S. Obayashi, K. Deb, C. Poloni,
T. Hiroyasu, and T. Murata, editors, Evolutionary Multi-Criterion Optimiza-
tion, 4th International Conference, EMO 2007, pages 21–35, Matshushima,
Japan, March 2007. Springer. Lecture Notes in Computer Science Vol. 4403.

605. C. Grimme and K. Schmitt. Inside a Predator-Prey Model for Multi-Objective
Optimization: A Second Study. In M. K. et al., editor, 2006 Genetic and
Evolutionary Computation Conference (GECCO’2006), volume 1, pages 707–
714, Seattle, Washington, USA, July 2006. ACM Press. ISBN 1-59593-186-4.

606. L. Gritz and J. K. Hahn. Genetic Programming for Articulated Figure Motion.
Journal of Visualization and Computer Animation, 6:129–142, 1995.

607. R. Groppetti and R. Muscia. On a Genetic Multiobjective Approach for
the Integration and Optimization of Assembly Product Design and Process
Planning. In P. Chedmail, J. C. Bocquet, and D. Dornfeld, editors, Integrated
Design and Manufacturing in Mechanical Engineering, pages 61–70. Kluwer
Academic Publishers, The Netherlands, 1997.

608. T. Grueninger and D. Wallace. Multi-modal optimization using genetic al-
gorithms. Technical Report 96.02, CADlab, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts, USA, 1996.

609. V. Grunert da Fonseca, C. M. Fonseca, and A. O. Hall. Inferential Perfor-
mance Assessment of Stochastic Optimisers and the Attainment Function.
In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne, editors,
First International Conference on Evolutionary Multi-Criterion Optimization,
pages 213–225. Springer-Verlag. Lecture Notes in Computer Science No. 1993,
2001.

610. S.-U. Guan and S. Li. Incremental Learning with Respect to New Incoming
Input Attributes. Neural Processing Letters, 14(3):241–260, December 2001.

611. S.-U. Guan and J. Liu. Incremental Ordered Neural Network Training. Jour-
nal of Intelligent Systems, 12(3):137–172, 2002.

612. M. Guillen. Bridges to Infinity. Jeremy P. Tarcher, Inc., Los Angeles, 1983.
613. A. Guimarães Pereira. Generating Alternative Routes using Genetic Algo-

rithms and Multi-Criteria Analysis Techniques. In R. Wyatt and H. Hossain,
editors, Fourth International Conference on Computers in Urban Planning
and Urban Management), pages 547–560, Melbourne, Australia, July 11–14
1995.

614. A. Guimarães Pereira. Generating alternative routes by multicriteria evalu-
ation and a genetic algorithms. Environment and Planning B: Planning and
Design, 23:711–720, 1996.

615. A. Guimarães Pereira, G. Munda, and M. Pariccini. Generating alternatives
for siting retail and service facilities using genetic algorithms and multiple
criteria devision techniques. Journal of Retailing and Consumer Services,
1(2):40–47, 1994.

616. A. Guimarães Pereira, R. J. Peckham, and M. P. Antunus. GENET: A Method
to Generate Alternatives for Facilities Siting using Genetic Algorithms. In
J. Harts, H. F. L. Ottens, and H. J. Scholten, editors, Fourth European Confer-
ence and Exhibition on Geographical Information Systems (EGIS’93), pages
973–981, Genoa, Italy, March 29–April 1 1993.

617. A. C. M. Guimarães Pereira. Extending Environmental Impact Assessment
Processes: Generation of Alternatives for Siting and Routing Infraestructural

References 673

Facilities by Multi-Criteria Evaluation and Genetic Algorithms. PhD thesis,
New University of Lisbon, Lisbon, Portugal, 1997.

618. F. G. Guimarães, F. Campelo, R. R. Saldanha, H. Igarashi, R. H. Takahashi,
and J. A. Ramı́rez. A Multiobjective Proposal for the TEAM Benchmark
Problem 22. IEEE Transactions on Magnetics, 42(4):1471–1474, April 2006.

619. S. Gunawan and S. Azarm. Multi-objective robust optimization using a
sensitivity region concept. Structural and Multidisciplinary Optimization,
29(1):50–60, January 2005.

620. M. Guntsch and M. Middendorf. A Population Based Approach for ACO.
In Applications of Evolutionary Computing. EvoWorkshops 2002: EvoCOP,
EvoIASP, EvoSTIM/EvoPLAN, pages 72–81, Kinsale, Ireland, April 2002.
Springer. Lecture Notes in Computer Science Vol. 2279.

621. M. Guntsch and M. Middendorf. Solving Multi-criteria Optimization Prob-
lems with Population-Based ACO. In C. M. Fonseca, P. J. Fleming, E. Zitzler,
K. Deb, and L. Thiele, editors, Evolutionary Multi-Criterion Optimization.
Second International Conference, EMO 2003, pages 464–478, Faro, Portugal,
April 2003. Springer. Lecture Notes in Computer Science. Volume 2632.

622. H. V. Gupta, S. Sorroshian, and P. O. Yapo. Towards Improved Calibra-
tion of Hydrologic Models: Multiple and Non-Commensurable Measures of
Information. Water Resources Research, 34(4):751–763, 1998.

623. W. J. Gutjahr. Two Metaheuristics for Multiobjective Stochastic Combi-
natorial Optimization. In O. Lupanov, O. Kasim-Zade, A. Chaskin, and
K. Steinhoefl, editors, Stochastic Algorithms: Foundations and Applications,
SAGA 2005, Proceedings, pages 116–125, Moscow, Russia, October 2005.
Springer. Lecture Notes in Computer Science Vol. 3777.

624. C. R. Haag. An Artificial Immune System-inspired Multiobjective Evolution-
ary Algorithm with Application to the Detection of Distributed Computer
Network Intrusions. Master’s thesis, Department of Electrical and Computer
Engineering, Graduate School of Engineering and Management, Air Force
Institute of Technology (AFIT), WPAFB, Dayton, Ohio, USA, March 2007.

625. P. Haastrup and A. Guimarães Pereira. Exploring the Use of Multi-Objective
Genetic Algorithms for Reducing Traffic Generated Urban Air and Noise
Pollution. In Proceedings of the 5th European Congress on Intelligent and
Soft Computing, pages 819–825, Aachen, Germany, September 1997.

626. W. Habenicht. Quad trees: A data structure for discrete vector optimization
problems. In Lecture Notes in Economics and Mathematical Systems No. 209,
pages 136–145, 1982.

627. Y. Haimes, K. Loparo, S. C. Olenik, and S. Nanda. Multi-objective statistical
method for interior drainage systems. Water Resources Research, 16(3):465–
475, 1980.

628. Y. Y. Haimes. Hierarchical Analysis of Water Resource Systems: Modeling
and Optimization of Large-Scale Systems. McGraw-Hill International Book
Co., New York, 1977.

629. Y. Y. Haimes, P. Das, and K. Sung. Multi-objective Analysis in the Maumee
River Basin: A Case Study on Level B Planning. Technical Report SED-
WRG-77-1, Case Western Reserve University, Cleveland, Ohio, 1977.

630. Y. Y. Haimes, W. Hall, and H. Freedman. Multi-Objective Optimization
in Water Resources Systems: The Surrogate Trade-Off Method. Elsevier,
Amsterdam, 1975.

674 References

631. Y. Y. Haimes and W. A. Hall. Multiobjectives in water resources sys-
tems analysis: The surrogate trade-off method. Water Resources Research,
10(4):615–624, aug 1974.

632. Y. Y. Haimes, L. S. Lasdon, and D. A. Wismer. On a Bicriterion Formulation
of the Problems of Integrated System Identification and System Optimization.
IEEE Transactions on Systems, Man, and Cybernetics, 1(3):296–297, July
1971.

633. B. Hajek. Cooling schedules for optimal annealing. Mathematics of Operations
Research, 13(2):311–329, 1988.

634. P. Hajela and J. Lee. Constrained Genetic Search via Schema Adaptation.
An Immune Network Solution. In N. Olhoff and G. I. N. Rozvany, editors,
Proceedings of the First World Congress of Stuctural and Multidisciplinary
Optimization, pages 915–920, Goslar, Germany, 1995. Pergamon.

635. P. Hajela and J. Lee. Constrained Genetic Search via Schema Adaptation.
An Immune Network Solution. Structural Optimization, 12:11–15, 1996.

636. P. Hajela and C. Y. Lin. Genetic search strategies in multicriterion optimal
design. Structural Optimization, 4:99–107, 1992.

637. D. Halhal, G. A. Walters, D. Ouazar, and D. A. Savic. Multi-objective im-
provement of water distribution systems using a structured messy genetic
algorithm approach. Journal of Water Resources Planning and Management
ASCE, 123(3):137–146, 1997.

638. N. Hallam, P. Blanchfield, and G. Kendall. Handling Diversity in Evolution-
ary Multiobjective Optimisation. In 2005 IEEE Congress on Evolutionary
Computation (CEC’2005), volume 3, pages 2233–2240, Edinburgh, Scotland,
September 2005. IEEE Service Center.

639. N. Hallan, G. Kendall, and P. Blanchfield. Solving Multi-objective Optimisa-
tion Problems Using the Potential Pareto Regions Evolutionary Algorithm. In
T. P. Runarsson, H.-G. Beyer, E. Burke, J. J. Merelo-Guervós, L. D. Whitley,
and X. Yao, editors, Parallel Problem Solving from Nature - PPSN IX, 9th In-
ternational Conference, pages 503–512. Springer. Lecture Notes in Computer
Science Vol. 4193, Reykjavik, Iceland, September 2006.

640. M. Hampsey. Multiobjective Evolutionary Optimisation of Small Wind Tur-
bine Blades. PhD thesis, Department of Mechanical Engineering, University
of Newcastle, Australia, August 2002.

641. Z. X. Han, L. Xu, R. Wei, B. P. Wang, and T. Reinikainen. Reliability-
Based Design Optimization for Land Grid Array Solder Joints Under Thermo-
Mechanical Load. In Proceedings of the 5th International Conference on
Thermal and Mechanical Simulation and Experiments in Microelectronics and
Microsystems (EuroSimE 2004), pages 219–224. IEEE, May 2004.

642. T. Hanne. Concepts of a learning objected-oriented problem solver LOOPS.
In Proceedings of the 12th International Conference on Multiple Criteria De-
cision Making, pages 330–339. Springer-Verlag, 1995.

643. T. Hanne. On the convergence of multiobjective evolutionary algorithms.
European Journal of Operational Research, 117(3):553–564, 1999.

644. T. Hanne. Global Multiobjective Optimization with Evolutionary Algorithms:
Selection Mechanisms and Mutation Control. In E. Zitzler, K. Deb, L. Thiele,
C. A. Coello Coello, and D. Corne, editors, First International Conference on
Evolutionary Multi-Criterion Optimization, pages 197–212. Springer-Verlag.
Lecture Notes in Computer Science No. 1993, 2001.

References 675

645. T. Hanne. Intelligent Strategies for Meta Multiple Criteria Decision Making.
Kluwer Academic Publishers, Boston, 2001.

646. T. Hanne and S. Nickel. A multiobjective evolutionary algorithm for schedul-
ing and inspection planning in software development projects. European Jour-
nal of Operational Research, 167(3):663–678, December 2005.

647. M. Hansen. Tabu search for multiobjective combinatorial optimization: TA-
MOCO. Control and Cybernetics, 29(3):799–818, 2000.

648. M. P. Hansen. Generating a Diversity of Good Solutions to a Practical
Combinatorial Problem using Vectorized Simulated Annealing. Technical re-
port, Institute of Mathematical Modelling, Technical University of Denmark,
August 1997. Working Paper.

649. M. P. Hansen. Solving multiobjective knapsack problems using MOTS. In 2nd
Metaheuristics International Conference (MIC’97), Sophia Antopolis, France,
July 1997.

650. M. P. Hansen. Tabu Search in Multiobjective Optimisation : MOTS. In Pro-
ceedings of the 13th International Conference on Multiple Criteria Decision
Making (MCDM’97), Cape Town, South Africa, January 1997.

651. M. P. Hansen. Metaheuristics for multiple objective combinatorial optimiza-
tion. PhD thesis, Institute of Mathematical Modelling, Technical University
of Denmark, Lyngby, Denmark, March 1998.

652. M. P. Hansen. Use of Substitute Scalarizing Functions to Guide a Local Search
Based Heuristic: The Case of moTSP. Journal of Heuristics, 6:419–431, 2000.

653. M. P. Hansen and A. Jaszkiewicz. Evaluating the quality of approximations
to the non-dominated set. Technical Report IMM-REP-1998-7, Technical
University of Denmark, March 1998.

654. N. Hansen and A. Ostermeier. Completely Derandomized Self-adaptation
in Evolution Strategies. Evolutionary Computation, 9(2):159–195, Summer
2001.

655. P. Hansen. The steepest ascent mildest descent heuristic for combinatorial
programming. In Congress on Numerical Methods in Combinatorial Opti-
mization, Capri, Italy, 1986.

656. M. Hapke, A. Jaszkiewicz, and R. Slowinski. Pareto Simulated Annealing for
Fuzzy Multi-Objective Combinatorial Optimization. Journal of Heuristics,
6(3):329–345, August 2000.

657. K. Harada, K. Ikeda, and S. Kobayashi. Hybridizing of Genetic Algorithm
and Local Search in Multiobjective Function Optimization: Recommenda-
tion of GA then LS. In M. K. et al., editor, 2006 Genetic and Evolutionary
Computation Conference (GECCO’2006), volume 1, pages 667–674, Seattle,
Washington, USA, July 2006. ACM Press. ISBN 1-59593-186-4.

658. K. Harada, J. Sakuma, and S. Kobayashi. Local Search for Multiobjective
Function Optimization: Pareto Descent Method. In M. K. et al., editor,
2006 Genetic and Evolutionary Computation Conference (GECCO’2006),
volume 1, pages 659–666, Seattle, Washington, USA, July 2006. ACM Press.
ISBN 1-59593-186-4.

659. S. P. Harris and E. C. Ifeachor. Nonlinear FIR Filter Design by Genetic
Algorithm. In 1st Online Conference on Soft Computing, August 1996.

660. W. E. Hart. Adaptive Global Optimization with Local Search. PhD thesis,
The University of California, San Diego, San Diego, California, USA, 1994.

676 References

661. W. E. Hart, N. Krasnogor, and J. Smith, editors. Recent Advances in Memetic
Algorithms. Studies in Fuzziness and Soft Computing. Springer, Germany,
2005. ISBN 3-540-22904-3.

662. J. W. Hartmann. Low-thrust Trajectory Optimization Using Stochastic Op-
timization Methods. Master’s thesis, Department of Aeronautical and Astro-
nautical Engineering, University of Illinois at Urbana-Champaign, January
1999.

663. J. W. Hartmann, V. L. Coverstone-Carroll, and S. N. Williams. Optimal
Interplanetary Spacecraft Trajectories via a Pareto Genetic Algorithm. The
Journal of the Astronautical Sciences, 46(3):267–282, July–September 1998.

664. J. W. Hartmann, V. L. Coverstone-Carroll, and S. N. Williams. Optimal
Interplanetary Spacecraft Trajectories Via A Pareto Genetic Algorithm. In
AAS/AIAA Space Flight Mechanics Meeting, Monterey, California, February
1998. Paper No. AAS-98-202.

665. M. Hasenjäger and B. Sendhoff. Crawling Along the Pareto Front: Tales
From the Practice. In 2005 IEEE Congress on Evolutionary Computation
(CEC’2005), volume 1, pages 174–181, Edinburgh, Scotland, September 2005.
IEEE Service Center.

666. M. Hasenjäger, B. Sendhoff, T. Sonoda, and T. Arima. Three Dimen-
sional Evolutionary Aerodynamic Design Optimization with CMA-ES. In
H.-G. B. et al., editor, 2005 Genetic and Evolutionary Computation Confer-
ence (GECCO’2005), volume 2, pages 2173–2180, New York, USA, June 2005.
ACM Press.

667. F. Hausdorff. Investigations Concerning Order Types. In Berichte über die
Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu
Leipzig, Mathematisch-Physische Klasse, volume 58, pages 106–169, 1906.

668. G. A. Hazelrigg. The implications of Arrow’s impossibility theorem on
approaches to optimal engineering design. Journal of Mechanical Design,
118:161–164, June 1996.

669. A. Hernández Aguirre and S. Botello Rionda. Evolutionary Multi-Objective
Optimization of Trusses. In C. A. Coello Coello and G. B. Lamont, edi-
tors, Applications of Multi-Objective Evolutionary Algorithms, pages 201–226.
World Scientific, Singapore, 2004.

670. A. Hernández Aguirre, S. Botello Rionda, C. A. Coello Coello, G. Lizárraga
Lizárraga, and E. Mezura Montes. Handling Constraints using Multiobjec-
tive Optimization Concepts. International Journal for Numerical Methods in
Engineering, 59(15):1989–2017, April 2004.

671. A. G. Hernández-Dı́az, L. V. Santana-Quintero, C. Coello Coello,
R. Caballero, and J. Molina. A New Proposal for Multi-Objective Optimiza-
tion using Differential Evolution and Rough Sets Theory. In M. K. et al., edi-
tor, 2006 Genetic and Evolutionary Computation Conference (GECCO’2006),
volume 1, pages 675–682, Seattle, Washington, USA, July 2006. ACM Press.
ISBN 1-59593-186-4.

672. A. G. Hernández-Dı́az, L. V. Santana-Quintero, C. A. Coello Coello, and
J. Molina. Pareto adaptive - ε-dominance. Technical Report EVOCINV-
02-2006, Evolutionary Computation Group at CINVESTAV, México, March
2006.

673. A. Herreros, E. Baeyens, and J. R. Perán. Design of Multiobjective Robust
Controllers Using Genetic Algorithms. In A. S. Wu, editor, Proceedings of the

References 677

1999 Genetic and Evolutionary Computation Conference. Workshop Program,
pages 131–132, Orlando, Florida, July 1999.

674. A. Herreros, E. Baeyens, and J. R. Perán. MRCD: A Genetic Algorithm for
Multiobjective Robust Control Design. Engineering Applications of Artificial
Intelligence, 15(3–4):285–301, June-August 2002.

675. A. Herreros López. Diseño de Controladores Robustos Multiobjetivo por Medio
de Algoritmos Genéticos. PhD thesis, Departamento de Ingenieŕıa de Sis-
temas y Automática, Universidad de Valladolid, Valladolid, España, Septiem-
bre 2000. (In Spanish).

676. A. Hertz, B. Jaumard, C. Ribeiro, and W. F. Filho. A multi-criteria tabu
search approach to cell formation problems in group technology with multiple
objectives. RAIRO/Operations Research, 28(3):303–328, 1994.

677. G. Hertz and G. Stormo. Identifying DNA and protein patterns with
statistically significant alignments of multiple sequences. Bioinformatics,
15(7/8):563–577, 1999.

678. M. L. Hetland and P. Saetrom. Evolutionary Rules Mining in Time Series
Databases. Machine Learning, 58(2–3):107–125, February–March 2005.

679. T. Higashishara and M. Atsumi. Evolutionary Acquisition of Sensory—Action
Network of Mobile Robot using Multiobjective Genetic Algorithm. IPSJ SIG-
ICS, 98-ICS-111:1–6, 1998. (In Japanese).

680. M. R. Hilliard, G. E. Liepins, M. Palmer, and G. Rangarajen. The computer
as a partner in algorithmic design: Automated discovery of parameters for a
multiobjective scheduling heuristic. In R. Sharda, B. L. Golden, E. Wasil,
O. Balci, and W. Stewart, editors, Impacts of Recent Computer Advances
on Operations Research, pages 321–331. North-Holland Publishing Company,
New York, 1989.

681. F. S. Hillier and G. J. Lieberman. Introduction to Operations Research.
Holden-Day, Inc., San Francisco, 1967.

682. W. D. Hillis. Co-evolving pasasites improve simulated evolution as an opti-
mization procedure. Physica D, 42(1–3):228–234, 1990.

683. M. Hinchliffe, M. Willis, and M. Tham. Chemical Process Systems Modelling
using Multi-Objective Genetic Programming. In J. R. Koza, W. Banzhaf,
K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg,
H. Iba, and R. L. Riolo, editors, Proceedings of the Third Annual Conference
on Genetic Programming, pages 134–139, San Mateo, California, July 1998.
University of Wisconsin at Madison, Morgan Kaufmann Publishers.

684. R. Hinterding and Z. Michalewicz. Your Brains and My Beauty: Parent
Matching for Constrained Optimisation. In Proceedings of the 5th Interna-
tional Conference on Evolutionary Computation, pages 810–815, Anchorage,
Alaska, May 1998.

685. K. Hirasawa, Y. Ishikawa, J. Hu, J. Murata, and J. Mao. Genetic Symbio-
sis Algorithm. In 2000 Congress on Evolutionary Computation (CEC’2000),
volume 2, pages 1377–1384, Piscataway, New Jersey, July 2000. IEEE Service
Center.

686. T. Hiroyasu, M. Miki, and S. Watanabe. Distributed Genetic Algorithms with
a New Sharing Approach in Multiobjective Optimization Problems. In 1999
Congress on Evolutionary Computation, pages 69–76, Washington, D.C., July
1999. IEEE Service Center.

678 References

687. T. Hiroyasu, M. Miki, and S. Watanabe. Divided Range Genetic Algorithms
in Multiobjective Optimization Problems. In Proceedings of International
Workshop on Emergent Synthesis, pages 57–66, Kobe, Japan, December 1999.

688. T. Hiroyasu, M. Miki, and S. Watanabe. The New Model of Parallel Genetic
Algorithm in Multi-Objective Optimization Problems—Divided Range Multi-
Objective Genetic Algorithm—. In 2000 Congress on Evolutionary Compu-
tation, volume 1, pages 333–340, Piscataway, New Jersey, July 2000. IEEE
Service Center.

689. C. J. Hitch. Sub-Optimization in Operations Research. Operations Research,
1(3):87–99, 1953.

690. J. Ho and Y.-L. Chang. A new heuristic for the n-job, m-machine flowshop
problem. European Journal of Operational Research, 52:194–202, 1991.

691. S. Ho, S. Yang, G. Ni, E. W. Lo, and H. Wong. A Particle Swarm
Optimization-Based Method for Multiobjective Design Optimizations. IEEE
Transactions on Magnetics, 41(5):1756–1759, May 2005.

692. S. Ho, S. Yang, G. Ni, and H. Wong. A Tabu Method to Find the Pareto
Solutions of Multiobjective Optimal Design Problems in Electromagnetics.
IEEE Transactions on Magnetics, 38(2):1013–1016, March 2002. Part 1.

693. S.-Y. Ho and X.-I. Chang. An Efficient Generalized Multiobjective Evolu-
tionary Algorithm. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon,
V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO’99), volume 1, pages
871–878, Orlando, Florida, USA, 1999. Morgan Kaufmann Publishers.

694. S.-Y. Ho and H.-L. Huang. Facial modeling from an uncalibrated face image
using a coarse-to-fine genetic algorithm. Pattern Recognition, 34:1015–1031,
2001.

695. S.-Y. Ho, L.-S. Shu, and H.-M. Chen. Intelligent Genetic Algorithm with
a New Intelligent Crossover Using Orthogonal Arrays. In GECCO-99: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, volume 1,
pages 289–296, San Francisco, California, USA, July 1999. Morgan Kaufmann
Publishers.

696. W. M. Hoag. The Relevance of Cost in Operations Research. Operations
Research, 4:448–459, 1956.

697. B.-M. Hodge, F. Pettersson, and N. Chakraborti. Re-evaluation of the op-
timal operating conditions for the primary end of an integrated steel plant
using multi-objective genetic algorithms and nash equilibrium. Steel Research
International, 77(7):459–461, July 2006.

698. J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dynamics.
Cambridge University Press, Cambridge, UK, 1998.

699. J. H. Holland. Adaptation in Natural and Artificial Systems. An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. Uni-
versity of Michigan Press, Ann Arbor, Michigan, USA, 1975.

700. J. H. Holland. Building Blocks, Cohort Genetic Algorithms, and Hyperplane-
Defined Functions. Evolutionary Computation, 8(4):373–391, 2000.

701. P. M. Hollingsworth. Requirements Controlled Design: A Method for Dis-
covery of Discontinuous System Boundaries in the Requirements Hyperspace.
PhD thesis, School of Aerospace Engineering, Georgia Institute of Technology,
USA, March 2004.

References 679

702. T.-P. Hong, H.-S. Wang, and W.-C. Chen. Simultaneous applying multiple
mutation operators in genetic algorithm. Journal of Heuristics, 6(4):439–455,
September 2000.

703. R. Hooke and T. Jeeves. Direct Search Solution of Numerical and Statistical
Problems. Journal of the ACM, 8(2):212–229, 1961.

704. H. H. Hoos and T. Stützle. Stochastic Local Search. Foundations and Appli-
cations. Morgan Kaufmann Publishers, 2005. ISBN 1-55860-872-9.

705. H. Horii, M. Miki, T. Koizumi, and N. Tsujiuchi. Asynchronous Migration of
Island Parallel GA for Multi-Objective Optimization Problem. In L. Wang,
K. C. Tan, T. Furuhashi, J.-H. Kim, and X. Yao, editors, Proceedings of the
4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL’02),
volume 1, pages 86–90, Orchid Country Club, Singapore, November 2002.
Nanyang Technical University.

706. J. Horn. Multicriterion Decision making. In T. Bäck, D. Fogel, and
Z. Michalewicz, editors, Handbook of Evolutionary Computation, volume 1,
pages F1.9:1–F1.9:15. IOP Publishing Ltd. and Oxford University Press, 1997.

707. J. Horn. Shape Nesting by Coevolving Species. In H.-G. B. et al., editor,
2005 Genetic and Evolutionary Computation Conference (GECCO’2005), vol-
ume 1, pages 557–558, New York, USA, June 2005. ACM Press.

708. J. Horn and N. Nafpliotis. Multiobjective Optimization using the Niched
Pareto Genetic Algorithm. Technical Report IlliGAl Report 93005, University
of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 1993.

709. J. Horn, N. Nafpliotis, and D. E. Goldberg. A Niched Pareto Genetic Al-
gorithm for Multiobjective Optimization. In Proceedings of the First IEEE
Conference on Evolutionary Computation, IEEE World Congress on Com-
putational Intelligence, volume 1, pages 82–87, Piscataway, New Jersey, June
1994. IEEE Service Center.

710. X. Hou, L. Shen, and H. Zhu. A smart particle swarm optimization algorithm
for multi-objective problems. In Computational Intelligence and Bioinformat-
ics, Part 3, pages 72–80. Springer-Verlag. Lecture Notes in Computer Science
Vol. 4115, 2006.

711. C.-T. Hsiao, G. Chahine, and N. Gumerov. Application of a hybrid ge-
netic/powell algorithm and a boundary element to electrical impedance to-
mography. Journal of Computational Physics, 173(2):433–454, November
2001.

712. J. Hu, K. Hirasawa, J. Mutata, M. Ohbayashi, and Y. Eki. A new random
search method for neural network learning—RasID. In Proceedings of the
1998 IEEE International Joint Conference on Neural Networks, volume 3,
pages 2346–2351. IEEE Press, 1998.

713. X. Hu and R. Eberhart. Multiobjective Optimization Using Dynamic Neigh-
borhood Particle Swarm Optimization. In Congress on Evolutionary Compu-
tation (CEC’2002), volume 2, pages 1677–1681, Piscataway, New Jersey, May
2002. IEEE Service Center.

714. X. Hu and R. Eberhart. Solving Constrained Nonlinear Optimization Prob-
lems with Particle Swarm Optimization. In Proceedings of the 6th World
Multiconference on Systemics, Cybernetics and Informatics (SCI 2002), vol-
ume 5. Orlando, USA, IIIS, July 2002.

715. X. Hu, R. C. Eberhart, and Y. Shi. Engineering Optimization with Particle
Swarm. In Proceedings of the 2003 IEEE Swarm Intelligence Symposium,
pages 53–57. Indianapolis, Indiana, USA, IEEE Service Center, April 2003.

680 References

716. X. Hu, R. C. Eberhart, and Y. Shi. Particle Swarm with Extended Memory for
Multiobjective Optimization. In 2003 IEEE Swarm Intelligence Symposium
Proceedings, pages 193–197, Indianapolis, Indiana, USA, April 2003. IEEE
Service Center.

717. X. Hu, R. C. Eberhart, and Y. Shi. Swarm intelligence for permutation
optimization: A case study on N-queens problem. In Proceedings of the IEEE
Swarm Intelligence Symposium 2003 (SIS 2003), pages 243–246, Indianapolis,
Indiana, USA, 2003. IEEE Press.

718. X. Hu, Z. Wang, and L. Liao. Multi-Objective Optimization of HEV Fuel
Economy and Emissions using Evolutionary Computation. In Proceedings
of the Society of Automotive Engineering World Congress 2004, Electronics
Simulation and Optimization (SP-1856), pages 117–128, Detroit, USA, March
2004. Society of Automotive Engineers.

719. X. S. Hu, G. Greenwood, and J. G. D’Ambrosio. An Evolutionary Approach to
Hardware/Software Partitioning. In H.-M. Voigt, W. Ebeling, I. Rechenberg,
and H.-P. Schwefel, editors, Parallel Problem Solving from Nature—PPSN IV,
pages 900–909. Springer-Verlag. Lecture Notes in Computer Science No. 1141,
September 1996.

720. S. Huband, L. Barone, L. While, and P. Hingston. A Scalable Multi-objective
Test Problem Toolkit. In C. A. Coello Coello, A. Hernández Aguirre, and
E. Zitzler, editors, Evolutionary Multi-Criterion Optimization. Third Inter-
national Conference, EMO 2005, pages 280–295, Guanajuato, México, March
2005. Springer. Lecture Notes in Computer Science Vol. 3410.

721. S. Huband, P. Hingston, L. Barone, and L. While. A Review of Multiobjective
Test Problems and a Scalable Test Problem Toolkit. IEEE Transactions on
Evolutionary Computation, 10(5):477–506, October 2006.

722. G. P. Huber. Multi-Attribute Utility Models: A Review of Field and Field-like
Structures. Management Science, 20:1393–1402, 1974.

723. R. Hubley, E. Zitzler, and J. Roach. Evolutionary algorithms for the selection
of single nucleotide polymorphisms. BMC Bioinformatics, 4(30), July 2003.

724. E. J. Hughes. Multi-Objective Probabilistic Selection Evolutionary Algo-
rithm. Technical Report DAPS/EJH/56/2000, Department of Aerospace,
Power, & Sensors, Cranfield University, RMCS, Shrivenham, UK, SN6 8LA,
September 2000.

725. E. J. Hughes. Constraint Handling With Uncertain and Noisy Multi-Objective
Evolution. In Proceedings of the Congress on Evolutionary Computation 2001
(CEC’2001), volume 2, pages 963–970, Piscataway, New Jersey, May 2001.
IEEE Service Center.

726. E. J. Hughes. Evolutionary Multi-objective Ranking with Uncertainty and
Noise. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne,
editors, First International Conference on Evolutionary Multi-Criterion Opti-
mization, pages 329–343. Springer-Verlag. Lecture Notes in Computer Science
No. 1993, 2001.

727. E. J. Hughes. Evolutionary Many-Objective Optimisation: Many Once or One
Many? In 2005 IEEE Congress on Evolutionary Computation (CEC’2005),
volume 1, pages 222–227, Edinburgh, Scotland, September 2005. IEEE Service
Center.

728. L. Hurwicz. Programming in Linear Spaces. In K. J. Arrow, L. Hurwicz,
and H. Uzawa, editors, Studies in Linear and Nonlinear Programming, pages
38–102. Oxford University Press, London, England, 1964.

References 681

729. P. Husbands. Genetic Algorithms in Optimization and Adaptation. In
L. Kronsjö and D. Shumsherudin, editors, Advances in Parallel Algorithms,
chapter 8, pages 227–276. Halsted Press, New York, 1992.

730. G. V. Huylenbroeck. The Conflict Analysis Method: bridging the gap between
ELECTRE, PROMETHEE and ORESTE. European Journal of Operational
Research, 82(3):490–502, May 1995.

731. C.-L. Hwang and M.-J. Lin. Group Decision Making under Multiple Criteria.
Methods and Applications. Springer-Verlag. Lecture Notes in Economics and
Mathematical Systems, Vol. 281, 1988.

732. C. L. Hwang and A. S. M. Masud. Multiple Objective Decision-Making Meth-
ods and Applications. In Lecture Notes in Economics and Mathematical Sys-
tems, volume 164. Springer-Verlag, New York, 1979.

733. C. L. Hwang, S. R. Paidy, and K. Yoon. Mathematical Programming with
Multiple Objectives: A Tutorial. Computing and Operational Research, 7:5–
31, 1980.

734. C. J. Hyun, Y. Kim, and Y. K. Kim. A Genetic Algorithm for Multiple
Objective Sequencing Problems in Mixed Model Assembly Lines. Computers
& Operations Research, 25(7/8):675–690, 1998.

735. H. Iba, H. de Garis, and T. Sato. Genetic Programming Using a Minimum
Description Length Principle. In J. Kenneth E. Kinnear, editor, Advances in
Genetic Programming, pages 265–284. MIT Press, 1994.

736. K. Ida, M. Gen, and Y.-Z. Li. Solving Multiobjective Chance-constrained
Solid Transportation Problem by Evolutionary Computation. In 5th European
Congress on Intelligent Techniques and Soft Computing EUFIT’97, pages
743–747, Aachen, Germany, September 1997.

737. C. Igel, N. Hansen, and S. Roth. Covariance Matrix Adaptation for Multi-
objective Optimization. Evolutionary Computation, 15(1):1–28, Spring 2007.

738. J. P. Ignizio. Goal Programming and Extensions. Heath, Lexington,
Massachusetts, 1976.

739. J. P. Ignizio. The determination of a subset of efficient solutions via goal
programming. Computers and Operations Research, 3:9–16, 1981.

740. J. P. Ignizio. Integrating Cost, Effectiveness, and Stability. Acquisition Review
Quarterly, pages 51–60, Winter 1998.

741. H. Iima. Proposition of Selection Operation in a Genetic Algorithm for a Job
Shop Rescheduling Problem. In C. A. Coello Coello, A. Hernández Aguirre,
and E. Zitzler, editors, Evolutionary Multi-Criterion Optimization. Third
International Conference, EMO 2005, pages 721–735, Guanajuato, México,
March 2005. Springer. Lecture Notes in Computer Science Vol. 3410.

742. Y. Ijiri. Management Goals and Accounting for Control. North-Holland,
Amsterdan, 1965.

743. I. Ikonen, W. E. Biles, A. Kumar, J. C. Wissel, and R. K. Ragade. Ge-
netic Algorithm for Packing Three-Dimensional Non-Convex Objects Having
Cavities and Holes. In Proceedings of the 7th International Conference on Ge-
netic Algortithms, pages 591–598, East Lansing, Michigan, July 1997. Morgan
Kaufmann Publishers.

744. IlliGAL. Illigal website. Online, 2007. Available: http://www-illigal.ge.
uiuc.edu/.

745. A.W. Iorio and X. Li. A Cooperative Coevolutionary Multiobjective Algo-
rithm Using Non-dominated Sorting. In K. D. et al., editor, Genetic and

682 References

Evolutionary Computation–GECCO 2004. Proceedings of the Genetic and
Evolutionary Computation Conference. Part I, pages 537–548, Seattle,
Washington, USA, June 2004. Springer-Verlag, Lecture Notes in Computer
Science Vol. 3102.

746. A. W. Iorio and X. Li. Solving rotated multi-objective optimization problems
using differential evolution. In AI 2004: Advances in Artificial Intelligence,
Proceedings, pages 861–872. Springer-Verlag, Lecture Notes in Artificial In-
telligence Vol. 3339, 2004.

747. A. W. Iorio and X. Li. Incorporating Directional Information within
a Differential Evolution Algorithm for Multi-objective Optimization. In
M. K. et al., editor, 2006 Genetic and Evolutionary Computation Confer-
ence (GECCO’2006), volume 1, pages 691–697, Seattle, Washington, USA,
July 2006. ACM Press. ISBN 1-59593-186-4.

748. S. Iredi, D. Merkle, and M. Middendorf. Bi-Criterion Optimization with
Multi Colony Ant Algorithms. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello
Coello, and D. Corne, editors, First International Conference on Evolutionary
Multi-Criterion Optimization, pages 358–372. Springer-Verlag. Lecture Notes
in Computer Science No. 1993, 2001.

749. H. Ishibuchi and S. Kaige. Comparison of Multiobjective Memetic Algorithms
on 0/1 Knapsack Problems. In A. Barry, editor, 2003 Genetic and Evolution-
ary Computation Conference. Workshop Program, pages 222–227, Chicago,
Illinois, USA, July 2003. AAAI.

750. H. Ishibuchi and T. Murata. Multi-Objective Genetic Local Search Algo-
rithm. In T. Fukuda and T. Furuhashi, editors, Proceedings of the 1996 In-
ternational Conference on Evolutionary Computation, pages 119–124, Nagoya,
Japan, 1996. IEEE.

751. H. Ishibuchi and T. Murata. Multi-Objective Genetic Local Search Algorithm
and Its Application to Flowshop Scheduling. IEEE Transactions on Systems,
Man and Cybernetics, 28(3):392–403, August 1998.

752. H. Ishibuchi and T. Murata. Multi-Objective Genetic Local Search for Min-
imizing the Number of Fuzzy Rules for Pattern Classification Problems. In
D. B. Fogel, editor, Proceedings of the 1998 IEEE International Conference
on Evolutionary Computation, pages 1100–1105, Piscataway, New Jersey, May
1998. IEEE.

753. H. Ishibuchi and T. Nakashima. Linguistic Rule Extraction by Genetics-Based
Machine Learning. In D. Whitley, D. Goldberg, E. Cantú-Paz, L. Spector,
I. Parmee, and H.-G. Beyer, editors, Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO’2000), pages 195–202, San Francisco,
California, 2000. Morgan Kaufmann.

754. H. Ishibuchi and T. Nakashima. Multi-Objective Pattern and Feature Se-
lection by a Genetic Algorithm. In D. Whitley, D. Goldberg, E. Cantú-Paz,
L. Spector, I. Parmee, and H.-G. Beyer, editors, Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO’2000), pages 1069–1076,
San Francisco, California, 2000. Morgan Kaufmann.

755. H. Ishibuchi and T. Nakashima. Three-Objective Optimization in Linguistic
Function Approximation. In Proceedings of the Congress on Evolutionary
Computation 2001 (CEC’2001), volume 1, pages 340–347, Piscataway, New
Jersey, May 2001. IEEE Service Center.

756. H. Ishibuchi and K. Narukawa. Some Issues on the Implementation of Local
Search in Evolutionary Multiobjective Optimization. In K. D. et al., editor,

References 683

Genetic and Evolutionary Computation–GECCO 2004. Proceedings of the Ge-
netic and Evolutionary Computation Conference. Part I, pages 1246–1258,
Seattle, Washington, USA, June 2004. Springer-Verlag, Lecture Notes in Com-
puter Science Vol. 3102.

757. H. Ishibuchi, Y. Nojima, and T. Doi. Comparison between Single-Objective
and Multi-Objective Genetic Algorithms: Performance Comparison and Per-
formance Measures. In 2006 IEEE Congress on Evolutionary Computation
(CEC’2006), pages 3959–3966, Vancouver, BC, Canada, July 2006. IEEE.

758. H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka. Selecting Fuzzy
If-Then Rules for Classification Problems using Genetic Algorithms. IEEE
Transactions on Fuzzy Systems, 3(3):260–270, 1995.

759. H. Ishibuchi and Y. Shibata. An Empirical Study on the Effect of Mating
Restriction on the Search Ability of EMO Algorithms. In C. M. Fonseca,
P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele, editors, Evolutionary Multi-
Criterion Optimization. Second International Conference, EMO 2003, pages
433–477, Faro, Portugal, April 2003. Springer. Lecture Notes in Computer
Science. Volume 2632.

760. H. Ishibuchi and Y. Shibata. Mating Scheme for Controlling the Diversity-
Convergence Balance for Multiobjective Optimization. In K. D. et al., ed-
itor, Genetic and Evolutionary Computation–GECCO 2004. Proceedings of
the Genetic and Evolutionary Computation Conference. Part I, pages 1259–
1271, Seattle, Washington, USA, June 2004. Springer-Verlag, Lecture Notes
in Computer Science Vol. 3102.

761. H. Ishibuchi and Y. Shibata. Single-Objective and Multi-Objective Evolu-
tionary Flowshop Scheduling. In C. A. Coello Coello and G. B. Lamont,
editors, Applications of Multi-Objective Evolutionary Algorithms, pages 529–
554. World Scientific, Singapore, 2004.

762. H. Ishibuchi, T. Yoshida, and T. Murata. Balance Between Genetic Search
and Local Search in Memetic Algorithms for Multiobjective Permutation
Flowshop Scheduling. IEEE Transactions on Evolutionary Computation,
7(2):204–223, April 2003.

763. R. S. H. Istepanian and J. F. Whidborne. Multi-objective design of finite
word-length controller structures. In 1999 Congress on Evolutionary Compu-
tation, pages 61–68, Washington, D.C., July 1999. IEEE Service Center.

764. K. Ito, S. Akagi, and M. Nishikawa. A Multiobjective Optimization Approach
to a Design Problem of Heat Insulation for Thermal Distribution Piping Net-
work Systems. Journal of Mechanisms, Transmissions and Automation in
Design (Transactions of the ASME), 105:206–213, jun 1983.

765. R. H. F. Jackson, P. T. Boggs, S. G. Nash, and S. Powell. Guidelines for
Reporting Results of Computational Experiments – Report of the Ad Hoc
Committee. Mathematical Programming, 49:413–425, 1991.

766. D. Jaeggi, C. Asselin-Miller, G. Parks, T. Kipouros, T. Bell, and J. Clarkson.
Multi-objective Parallel Tabu Search. In Parallel Problem Solving from
Nature - PPSN VIII, pages 732–741, Birmingham, UK, September 2004.
Springer-Verlag. Lecture Notes in Computer Science Vol. 3242.

767. D. Jaeggi, G. Parks, T. Kipouros, and J. Clarkson. A Multi-objective Tabu
Search Algorithm for Constrained Optimisation Problems. In C. A. Coello
Coello, A. Hernández Aguirre, and E. Zitzler, editors, Evolutionary Multi-
Criterion Optimization. Third International Conference, EMO 2005, pages

684 References

490–504, Guanajuato, México, March 2005. Springer. Lecture Notes in Com-
puter Science Vol. 3410.

768. W. Jakob, M. Gorges-Schleuter, and C. Blume. Application of Genetic Al-
gorithms to Task Planning and Learning. In R. Männer and B. Manderick,
editors, Parallel Problem Solving from Nature, 2nd Workshop, Lecture Notes
in Computer Science, pages 291–300, Amsterdam, 1992. North-Holland Pub-
lishing Company.

769. A. Jan, M. Yamamoto, and A. Ohuchi. Evolutionary Algorithms for Nurse
Scheduling Problem. In 2000 Congress on Evolutionary Computation, vol-
ume 1, pages 196–203, Piscataway, New Jersey, July 2000. IEEE Service
Center.

770. S. Janson and D. Merkle. A New Multi-objective Particle Swarm Optimiza-
tion Algorithm Using Clustering Applied to Automated Docking. In M. J.
Blesa, C. Blum, A. Roli, and M. Sampels, editors, Hybrid Metaheuristics,
Second International Workshop, HM 2005, pages 128–142, Barcelona, Spain,
August 2005. Springer. Lecture Notes in Computer Science Vol. 3636.

771. S. Janson, D. Merkle, and M. Middendorf. Parallel ant colony algorithms. In
E. Alba, editor, Parallel Metaheuristics, pages 171–201. Wiley-Interscience,
2005.

772. C. H. Jarvis, N. Stuart, K. Kelsey, and R. H. A. Baker. Towards a Method-
ology for Selecting a “characteristic” Sample from an Existing Database: An
Evolutionary Approach. In Third International Conference/Workshop on In-
tegrating GIS and Environmental Modeling, Santa Fe, New Mexico, January
21–26 1996. National Center for Geographic Information and Analysis.

773. A. Jaszkiewicz. A metaheuristic approach to multiple objective nurse schedul-
ing. Foundations of Computing and Decision Sciences, 22(3):169–184, 1997.

774. A. Jaszkiewicz. On the computational effectiveness of multiple objective
metaheuristics. In Proceedings of the Fourth International Conference on
Multi-Objective Programming and Goal Programming MOPGP’00. Theory &
Applications, pages 201–214, Ustron, Poland, May 29–June 1 2000. University
of Economics in Katowice.

775. A. Jaszkiewicz. Comparison of Local Search-Based Metaheuristics on the Mul-
tiple Objective Knapsack Problem. Foundations of Computing and Decision
Sciences, 26(1):99–120, 2001.

776. A. Jaszkiewicz. Multiple objective metaheuristic algorithms for combinato-
rial optimization. Poznan University of Technology, Poznan, Poland, 2001.
Habilitation thesis.

777. A. Jaszkiewicz. Genetic local search for multiple objective combinatorial op-
timization. European Journal of Operational Research, 137(1):50–71, 2002.

778. A. Jaszkiewicz. On the Computational Effectiveness of Multiple Objective
Metaheuristics. In T. Traskalik and J. Michnik, editors, Multiple Objective
and Goal Programming. Recent Developments, pages 86–100. Physica-Verlag,
Heidelberg, 2002.

779. A. Jaszkiewicz. On the Performance of Multiple-Objective Genetic Local
Search on the 0/1 Knapsack Problem—A Comparative Experiment. IEEE
Transactions on Evolutionary Computation, 6(4):402–412, August 2002.

780. A. Jaszkiewicz. Do Multiple-Objective Metaheuristics Deliver on Their
Promises? A Computational Experiment on the Set-Covering Problem. IEEE
Transactions on Evolutionary Computation, 7(2):133–143, April 2003.

References 685

781. A. Jaszkiewicz. A Comparative Study of Multiple-Objective Metaheuristics
on the Bi-Objective Set Covering Problem and the Pareto Memetic Algo-
rithm. Annals of Operations Research, 131(1–4):135–158, October 2004.

782. A. Jaszkiewicz. Evaluation of Multiple Objective Metaheuristics. In
X. Gandibleux, M. Sevaux, K. Sörensen, and V. T’kindt, editors, Metaheuris-
tics for Multiobjective Optimisation, pages 65–89, Berlin, 2004. Springer. Lec-
ture Notes in Economics and Mathematical Systems Vol. 535.

783. A. Jaszkiewicz. On the Computational Efficiency of Multiple Objective Meta-
heuristics. The Knapsack Problem Case Study. European Journal of Opera-
tional Research, 158(2):418–433, October 2004.

784. A. Jaszkiewicz, M. Hapke, and P. Kominek. Performance of Multiple Ob-
jective Evolutionary Algorithms on a Distribution System Design Problem—
Computational Experiment. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello
Coello, and D. Corne, editors, First International Conference on Evolutionary
Multi-Criterion Optimization, pages 241–255. Springer-Verlag. Lecture Notes
in Computer Science No. 1993, 2001.

785. A. Jaszkiewicz and R. Slowinski. The Light Beam Search—Outranking Based
Interactive Procedure for Multiple-Objective Mathematical Programming. In
P. Pardalos, Y. Siskos, and C. Zopounidis, editors, Advances in Multicriteria
Analysis, pages 129–146. Kluwer Academic Publishers, Dordrecht, 1995.

786. A. Jaszkiewicz and R. Slowinski. The ‘Light Beam Search’ approach – an
overview of methodology and applications. European Journal of Operational
Research, 113:300–314, 1999.

787. M. T. Jensen. Guiding Single-Objective Optimization Using Multi-objective
Methods. In G. R. et al., editor, Applications of Evolutionary Computing.
Evoworkshops 2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB,
and EvoSTIM, pages 199–210, Essex, UK, April 2003. Springer. Lecture Notes
in Computer Science Vol. 2611.

788. M. T. Jensen. Reducing the Run-Time Complexity of Multiobjective EAs:
The NSGA-II and Other Algorithms. IEEE Transactions on Evolutionary
Computation, 7(5):503–515, October 2003.

789. N. K. Jerne. The immune system. Scientific American, 229(1):52–60, 1973.
790. A. Jestel, D. Pena, and R. Zamar. A Multivariate Kolmogorov-Smirnov Test

of Goodness of Fit. Statistics and Probability Letters, 35:251–259, 1997.
791. L. Jiao, M. Gong, R. Shang, H. Du, and B. Lu. Clonal Selection with Im-

mune Dominance and Anergy Based Multiobjective Optimization. In C. A.
Coello Coello, A. Hernández Aguirre, and E. Zitzler, editors, Evolutionary
Multi-Criterion Optimization. Third International Conference, EMO 2005,
pages 474–489, Guanajuato, México, March 2005. Springer. Lecture Notes in
Computer Science Vol. 3410.

792. F. Jiménez and J. M. Cadenas. An evolutionary program for the multiobjec-
tive solid transportation problem with fuzzy goals. Operations Research and
Decisions, 2:5–20, 1995.

793. F. Jiménez, A. Gómez-Skarmeta, and G. Sánchez. How Evolutionary Multi-
objective Optimization can be used for Goals and Priorities based Optimiza-
tion. In Primer Congreso Español de Algoritmos Evolutivos y Bioinspirados
(AEB’02), pages 460–465. Mérida, Spain, 2002.

794. F. Jiménez, A. F. Gómez-Skarmeta, H. Roubos, and R. Babuška. Accu-
rate, transparent, and compact fuzzy models for function approximation and

686 References

dynamic modeling through multi-objective evolutionary optimization. In
E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne, editors,
First International Conference on Evolutionary Multi-Criterion Optimiza-
tion, pages 653–667. Springer-Verlag. Lecture Notes in Computer Science
No. 1993, 2001.

795. F. Jiménez and J. L. Verdegay. Interval multiobjective solid transportation
problem via genetic algorithms (IPMU’96). In Proceedings of Information
Processing and Management of Uncertainty in Knowledge-Based Systems,
pages 787–792, Granada, Spain, 1996.

796. F. Jiménez and J. L. Verdegay. Constrained multiobjective optimization by
evolutionary algorithms. In Proceedings of the International ICSC Symposium
on Engineering of Intelligent Systems (EIS’98), pages 266–271, University of
La Laguna, Tenerife, Spain, 1998.

797. F. Jiménez, J. L. Verdegay, and A. F. Gómez-Skarmeta. Evolutionary Tech-
niques for Constrained Multiobjective Optimization Problems. In A. S. Wu,
editor, Proceedings of the 1999 Genetic and Evolutionary Computation Con-
ference. Workshop Program, pages 115–116, Orlando, Florida, July 1999.

798. H. Jin and M.-L. Wong. Adaptive Diversity Maintenance and Convergence
Guarantee in Multiobjective Evolutionary Algorithms. In Proceedings of the
2003 Congress on Evolutionary Computation (CEC’2003), volume 4, pages
2498–2505, Canberra, Australia, December 2003. IEEE Press.

799. Y. Jin, editor. Multi-Objective Machine Learning. Springer, Berlin, 2006.
ISBN 3-540-30676-6.

800. Y. Jin, T. Okabe, and B. Sendhoff. Adapting Weighted Aggregation for Mul-
tiobjective Evolution Strategies. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello
Coello, and D. Corne, editors, First International Conference on Evolutionary
Multi-Criterion Optimization, pages 96–110. Springer-Verlag. Lecture Notes
in Computer Science No. 1993, 2001.

801. Y. Jin, T. Okabe, and B. Sendhoff. Dynamic Weighted Aggregation for Evo-
lutionary Multi-Objective Optimization: Why Does It Work and How? In
L. Spector, E. D. Goodman, A. Wu, W. Langdon, H.-M. Voigt, M. Gen, S. Sen,
M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, editors, Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO’2001), pages
1042–1049, San Francisco, California, 2001. Morgan Kaufmann Publishers.

802. Y. Jin and B. Sendhoff. Incorporation of Fuzzy Preferences into Evo-
lutionary Multiobjective Optimization. In W. Langdon, E. Cantú-Paz,
K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar,
G. Rudolph, J. Wegener, L. Bull, M. Potter, A. Schultz, J. Miller, E. Burke,
and N. Jonoska, editors, Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO’2002), page 683, San Francisco, California, July
2002. Morgan Kaufmann Publishers.

803. Y. Jin and B. Sendhoff. Connectedness, Regularity and the Success of Local
Search in Evolutionary Multi-objective Optimization. In Proceedings of the
2003 Congress on Evolutionary Computation (CEC’2003), volume 3, pages
1910–1917, Canberra, Australia, December 2003. IEEE Press.

804. Y. Jin, W. von Seelen, and B. Sendhoff. On generating flexible, complete,
consistent and compact(FC3) fuzzy rule systems from data using evolution
strategies. IEEE Transactions on Systems, Man, and Cybernetics, 29(4):829–
845, 1999.

805. B. R. Jones, W. A. Crossley, and A. S. Lyrintzis. Aerodynamic and Aeroa-
coustic Optimization of Airfoils via a Parallel Genetic Algorithm. In Proceed-

References 687

ings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, AIAA-98-4811. AIAA, 1998.

806. D. Jones, S. Mirrazavi, and M. Tamiz. Multi-objective metaheuristics: An
overview of the current state-of-the-art. European Journal of Operational
Research, 137(1):1–9, February 2002.

807. D. F. Jones and M. Tamiz. Goal Programming in the Period 1990–2000. In
M. Ehrgott and X. Gandibleux, editors, Multiple Criteria Optimization. State
of the Art. Annotated Bibliographic Surveys, pages 129–170. Kluwer Academic
Publishers, Boston/Dordrecht/London, 2002.

808. G. Jones, R. D. Brown, D. E. Clark, P. Willett, and R. C. Glen. Searching
Databases of Two-Dimensional and Three-Dimensional Chemical Structures
using Genetic Algorithms. In S. Forrest, editor, Proceedings of the Fifth In-
ternational Conference on Genetic Algorithms, pages 597–602, San Mateo,
California, 1993. Morgan Kaufmann Publishers.

809. N. Jozefowiez, F. Semet, and E.-G. Talbi. Parallel and Hybrid Models for
Multi-objective Optimization: Application to the Vehicle Routing Problem.
In J. J. Merelo Guervós, P. Adamidis, H.-G. Beyer, J.-L. F.-V. nas, and H.-P.
Schwefel, editors, Parallel Problem Solving from Nature—PPSN VII, pages
271–280, Granada, Spain, September 2002. Springer-Verlag. Lecture Notes in
Computer Science No. 2439.

810. Z. Juhasz, P. Kacsuk, and D. Kranzlmuller, editors. Distributed and Parallel
Systems : Cluster and Grid Computing. Springer, 2004. ISBN 0-38723-094-7.

811. H. Jutler. Liniejnaja modiel z nieskolkimi celevymi funkcjami (Linear Model
with Several Objective Functions). Ekonomika i matematiceckije Metody,
3:397–406, 1967. (In Polish).

812. B. A. Kadrovach, S. R. Michaud, J. B. Zydallis, G. B. Lamont, B. Secrest,
and D. Strong. Extending the Simple Genetic Algorithm into Multi-Objective
Problems via Mendelian Pressure. In 2001 Genetic and Evolutionary Com-
putation Conference. Workshop Program, pages 181–188, San Francisco,
California, July 2001.

813. S. Kaige, T. Murata, and H. Ishibuchi. Performance evaluation of memetic
EMO algorithms using dominance relation-based replacement rules on MOO
test problems. In Proceedings of the 2003 IEEE International Conference on
Systems, Man, and Cybernetics, volume 1, pages 14–19. IEEE Press, 2003.

814. L. Kallel, B. Naudts, and A. Rogers, editors. Theoretical Aspects of Evolu-
tionary Computing. Springer, Berlin, 2001. ISBN 3-540-67396-2.

815. R. Kamalian, H. Takagi, and A. M. Agogino. Optimized Design of MEMS
by Evolutionary Multi-objective Optimization with Interactive Evolutionary
Computation. In K. D. et al., editor, Genetic and Evolutionary Computation–
GECCO 2004. Proceedings of the Genetic and Evolutionary Computation
Conference. Part II, pages 1030–1041, Seattle, Washington, USA, June 2004.
Springer-Verlag, Lecture Notes in Computer Science Vol. 3103.

816. R. R. Kamalian. Evolutionary Synthesis of MEMS. PhD thesis, Mechanical
Engineering, University of California, Berkeley, USA, 2004.

817. J. Kamiura, T. Hiroyasu, M. Miki, and S. Watanabe. MOGADES: Multi-
objective genetic algorithm with distributed environment scheme. In Compu-
tational Intelligence and Applications (Proceedings of the Second International
Workshop on Intelligent Systems Design and Applications: ISDA’02), pages
143–148, 2002.

688 References

818. M. K. Karakasis and K. C. Giannakoglou. Metamodel-Assisted Multi-
Objective Evolutionary Optimization. In R. Schilling, W. Haase, J. Periaux,
H. Baier, and G. Bugeda, editors, EUROGEN 2005. Evolutionary Methods for
Design, Optimization and Control with Applications to Industrial Problems,
Munich, Germany, 2005.

819. M. K. Karakasis and K. C. Giannakoglou. On the use of metamodel-
assisted, multi-objective evolutionary algorithms. Engineering Optimization,
38(8):941–957, December 2006.

820. E. K. Karasakal and M. Köksalan. A Simulated Annealing Approach to
Bicriteria Scheduling Problems on a Single Machine. Journal of Heuristics,
6(3):311–327, August 2000.

821. S. Karlin. Mathematical Methods and Theory in Games. In Programming
and Economics, volume 1, pages 216–217. Addison-Wesley, Reading, Massa-
chusetts, 1959.

822. M. Karnaugh. A Map Method for Synthesis of Combinational Logic Circuits.
Transactions of the AIEE, Communications and Electronics, 72 (I):593–599,
November 1953.

823. R. Kasat, D. Kunzru, D. Saraf, and S. Gupta. Multiobjective optimization
of industrial FCC units using elitist nondominated sorting genetic algorithm.
Industrial & Engineering Chemistry Research, 41(19):4765–4776, September
2002.

824. K. Kato, C. Perkgoz, and M. Sakawa. An Interactive Fuzzy Satisficing Method
for Multiobjective Integer Programming Problems through Genetic Algo-
rithms. In Y. Jin, editor, Knowledge Incorporation in Evolutionary Computa-
tion, pages 503–523. Springer, Berlin Heidelberg, 2005. ISBN 3-540-22902-7.

825. K. Kato, M. Sakawa, and T. Ikegame. Interactive Decision Making for Multi-
objective Block Angular 0-1 Programming Problems with Fuzzy Parameters
Through Genetic Algorithms. Japanese Journal of Fuzzy Theory and Systems,
9(1):49–59, 1997.

826. Y. Katsumata and T. Terano. Bayesian Optimization Algorithm for Multi-
Objective Solutions: Application to Electric Equipment Configuration Prob-
lems in a Power Plant. In Proceedings of the 2003 Congress on Evolutionary
Computation (CEC’2003), volume 2, pages 1101–1107, Canberra, Australia,
December 2003. IEEE Press.

827. S. Kauffman. Adaptation on rugged fitness landscapes. In D. Sein, editor,
Lectures in the Sciences of Complexity, pages 527–618. Addison-Wesley, Red-
wood City, USA, 1989.

828. S. Kauffman and S. Levin. Towards a general theory of adaptive walks on
rugged landscapes. Journal of Theoretical Biology, 128:11–45, 1987.

829. S. A. Kauffman. The Origins of Order: Self-Organization and Selection in
Evolution. Oxford University Press, New York, 1993.

830. T. Kawabe and T. Tagami. A New Genetic Algorithm using Pareto Partition-
ing Method for Robust Partial Model Matching PID Design with Two Degrees
of Freedom. In Proceedings of the Third International ICSC (International
Computer Science Conventions) Symposia on Intelligent Industrial Automa-
tion (IIA’99) and Soft Computing (SOCO’99), pages 562–567, Genova, 1999.

831. E. Keedwell and S.-T. Khu. A hybrid genetic algorithm for the design of wa-
ter distribution networks. Engineering Applications of Artificial Intelligence,
18(4):461–472, 2005.

References 689

832. E. Keedwell and S.-T. Khu. A novel cellular automata approach to optimal
water distribution network design. Journal of Computers in Civil Engineering,
20(1):1–8, 2006.

833. E. Keedwell and S.-T. Khu. A novel evolutionary meta-heuristic for the multi-
objective optimization of real-world water distribution network. Engineering
Optimization, 38(3):319–336, April 2006.

834. T. W. Keelin. A protocol and procedure for assessing multi-attribute prefer-
ence functions. PhD thesis, Department of Engineering Economic Systems,
Stanford University, Stanford, California, 1976.

835. R. L. Keeney. Multi-dimensional Utility Functions: Theory, Assessment and
Applications. Technical Report 43, Massachusetts Institute of Technology,
Operations Research Center, Cambridge, Massachusetts, USA, 1969.

836. R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives. Preferences
and Value Tradeoffs. Cambridge University Press, Cambridge, UK, 1993.

837. N. Keerativuttiumrong, N. Chaiyaratana, and V. Varavithya. Multi-objective
Co-operative Co-evolutionary Genetic Algorithm. In J. J. Merelo Guervós,
P. Adamidis, H.-G. Beyer, J.-L. F.-V. nas, and H.-P. Schwefel, editors, Parallel
Problem Solving from Nature—PPSN VII, pages 288–297, Granada, Spain,
September 2002. Springer-Verlag. Lecture Notes in Computer Science No.
2439.

838. J. Kennedy and R. C. Eberhart. Particle Swarm Optimization. In Proceedings
of the 1995 IEEE International Conference on Neural Networks, pages 1942–
1948, Piscataway, New Jersey, 1995. IEEE Service Center.

839. J. Kennedy and R. C. Eberhart. A Discrete Binary Version of the Particle
Swarm Algorithm. In Proceedings of the 1997 IEEE Conference on Systems,
Man, and Cybernetics, pages 4104–4109, Piscataway, New Jersey, 1997. IEEE
Service Center.

840. J. Kennedy and R. C. Eberhart. Swarm Intelligence. Morgan Kaufmann
Publishers, San Francisco, California, 2001.

841. Z. Khairullah and S. Zionts. An experiment with some approaches for solv-
ing problems with multiple criteria. In Third International Conference on
Multiple Criteria Decision-Making, Konigswinger, Germany, 1979.

842. S. Khajehpour. Optimal Conceptual Design of High-Rise Office Buldings.
PhD thesis, Civil Engineering Department, University of Waterloo, Ontario,
Canada, 2001.

843. S. Khajehpour and D. Grierson. Conceptual Design using Adaptive Comput-
ing. In 2001 Genetic and Evolutionary Computation Conference. Workshop
Program, pages 62–67, San Francisco, California, July 2001.

844. N. Khan. Bayesian Optimization Algorithms for Multiobjective and Hierarchi-
cally Difficult Problems. Master’s thesis, Graduate College of the University
of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 2003.

845. N. Khan, D. E. Goldberg, and M. Pelikan. Multi-Objective Bayesian Opti-
mization Algorithm. Technical Report 2002009, Illinois Genetic Algorithms
Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois,
March 2002.

846. E. Khor, K. Tan, and T. Lee. Tabu-Based Exploratory Evolutionary Al-
gorithm for Effective Multi-objective Optimization. In E. Zitzler, K. Deb,
L. Thiele, C. A. Coello Coello, and D. Corne, editors, First International
Conference on Evolutionary Multi-Criterion Optimization, pages 344–358.
Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.

690 References

847. T. Khoshgoftaar, Y. Liu, and N. Seliya. A Multiobjective Module-Order
Model for Software Quality Enhancement. IEEE Transactions on Evolution-
ary Computation, 8(6):593–608, 2004.

848. T. M. Khoshgoftaar, Y. Liu, and N. Seliya. Genetic Programming-Based
Decision Trees for Software Quality Classification. In Proceedings of the Fif-
teenth International Conference on Tools with Artificial Intelligence (ICTAI
03), pages 374–383, Los Alamitos, California, November 2003. IEEE Com-
puter Society.

849. S.-T. Khu. Automatic Calibration of NAM Model with Multi-Objectives Con-
sideration. Technical Report 1298-1, National University of Singapore/Danish
Hydraulic Institute, December 1998.

850. S. Khuri, T. Bäck, and J. Heitkötter. The zero/one multiple knapsack prob-
lem and genetic algorithms. In Proceedings of the 1994 ACM Symposium on
Applied Computing, pages 188–193, New York, 1994. ASME Press.

851. A. A. Khwaja, M. O. Rahman, and M. Wagner. Inverse Kinematics of Ar-
bitrary Robotic Manipulators using Genetic Algorithms. In J. Lenarcic and
M. L. Justy, editors, Advances in Robot Kinematics: Analysis and Control,
pages 375–382. Kluwer Academic Publishers, 1998.

852. R. Kicinger, T. Arciszewski, and K. De Jong. Evolutionary computation and
structural design: A survey of the state-of-the-art. Computers & Structures,
83:1943–1978, 2005.

853. D. Kim. Structural Risk Minimization on Decision Trees Using an Evolution-
ary Multiobjective Optimization. In M. Keijzer, U.-M. O’Reilly, S. M. Lucas,
E. Costa, and T. Soule, editors, Genetic Programming. 7th European Confer-
ence, EuroGP 2004, pages 338–348, Coimbra, Portugal, April 2004. Springer.
Lecture Notes in Computer Science, Vol. 3003.

854. K. Kim and R. Smith. Systematic procedure for designing processes with
multiple environmental objectives. Environmental Science & Technology,
39(7):2394–2405, April 2005.

855. Y. Kim, J.-H. Kim, and K.-H. Han. Quantum-inspired Multiobjective Evolu-
tionary Algorithm for Multiobjective 0/1 Knapsack Problems. In 2006 IEEE
Congress on Evolutionary Computation (CEC’2006), pages 9151–9156,
Vancouver, BC, Canada, July 2006. IEEE.

856. Y. Kim, W. N. Street, and F. Menczer. An Evolutionary Multi-Objective
Local Selection Algorithm for Customer Targeting. In Proceedings of the
Congress on Evolutionary Computation 2001 (CEC’2001), volume 2, pages
759–766, Piscataway, New Jersey, May 2001. IEEE Service Center.

857. Y.-J. Kim and J. Ghaboussi. A New Genetic Algorithm Based Control
Method Using State Space Reconstruction. In Proceedings of the Second
World Conference on Struc. Control, pages 2007–2014, Kyoto, Japan, 1998.

858. Y.-J. Kim and J. Ghaboussi. A New Method of Reduced Order Feedback
Control Using Genetic Algorithms. Earthquake Engineering and Structural
Dynamics, 28(2):193–212, 1999.

859. Y. K. Kim, C. J. Hyun, and Y. Kim. Sequencing in mixed model assembly
lines: a genetic algorithm approach. Computers and Operations Research,
23:1131–1145, 1996.

860. K. E. Kinnear, R. E. Smith, and Z. Michalewicz. Derivative Methods. In
T. Bäck, D. Fogel, and Z. Michalewicz, editors, Handbook of Evolutionary
Computation, volume 1, pages B1.5:1–B1.5:15. IOP Publishing Ltd. and
Oxford University Press, 1997.

References 691

861. S. Kirkpatrick, C. Gellatt, and M. Vecchi. Optimization by Simulated An-
nealing. Science, 220(4598):671–680, 1983.

862. M. Kirley. MEA: A metapopulation evolutionary algorithm for multi-
objective optimisation problems. In Proceedings of the Congress on Evolu-
tionary Computation 2001 (CEC’2001), volume 1, pages 949–956, Piscataway,
New Jersey, May 2001. IEEE Service Center.

863. H. Kita, Y. Yabumoto, N. Mori, and Y. Nishikawa. Multi-Objective Opti-
mization by Means of the Thermodynamical Genetic Algorithm. In H.-M.
Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors, Parallel Prob-
lem Solving from Nature—PPSN IV, pages 504–512. Springer-Verlag. Lecture
Notes in Computer Science No. 1141, Berlin, Germany, September 1996.

864. C. N. Klahr. Multiple Objectives in Mathematical Programming. Operations
Research, 6(6):849–855, 1958.

865. M. P. Kleeman and G. B. Lamont. Solving the Aircraft Engine Maintenance
Scheduling Problem Using a Multi-objective Evolutionary Algorithm. In C. A.
Coello Coello, A. Hernández Aguirre, and E. Zitzler, editors, Evolutionary
Multi-Criterion Optimization. Third International Conference, EMO 2005,
pages 782–796, Guanajuato, México, March 2005. Springer. Lecture Notes in
Computer Science Vol. 3410.

866. M. P. Kleeman and G. B. Lamont. Coevolutionary Multi-Objective EAs:
The Next Frontier? In 2006 IEEE Congress on Evolutionary Computation
(CEC’2006), pages 6190–6199, Vancouver, BC, Canada, July 2006. IEEE.

867. M. P. Kleeman, G. B. Lamont, A. Cooney, and T. R. Nelson. A Multi-tiered
Memetic Multiobjective Evolutionary Algorithm for the Design of Quantum
Cascade Lasers. In S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Mu-
rata, editors, Evolutionary Multi-Criterion Optimization, 4th International
Conference, EMO 2007, pages 186–200, Matshushima, Japan, March 2007.
Springer. Lecture Notes in Computer Science Vol. 4403.

868. M. P. Kleeman, G. B. Lamont, K. M. Hopkinson, and S. R. Graham. Solving
Multicommodity Capacitated Network Design Problems using a Multiobjec-
tive Evolutionary Algorithm. In IEEE Symposium on Computational Intelli-
gence in Security and Defense Applications (CISDA 2007), pages 33–41. IEEE
Press, April 2007.

869. R. M. Kling. Optimization by Simulated Evolution and its Application to Cell
Placement. PhD thesis, University of Illinois at Urbana-Champaign, Urbana,
Illinois, 1990.

870. A. Klinger. Vector-Valued Performance Criteria. IEEE Transactions on Au-
tomatic Control, AC-9(1):117–118, 1964.

871. M. R. Knarr, M. N. Goltz, G. B. Lamont, and J. Huang. In Situ Bioremedia-
tion of Perchlorate-Contaminated Groundwater using a Multi-Objective Par-
allel Evolutionary Algorithm. In Proceedings of the 2003 Congress on Evo-
lutionary Computation (CEC’2003), volume 3, pages 1604–1611, Canberra,
Australia, December 2003. IEEE Press.

872. J. Knowles. ParEGO: A Hybrid Algorithm With On-Line Landscape Approx-
imation for Expensive Multiobjective Optimization Problems. IEEE Trans-
actions on Evolutionary Computation, 10(1):50–66, February 2006.

873. J. Knowles and D. Corne. M-PAES: A Memetic Algorithm for Multiobjective
Optimization. In 2000 Congress on Evolutionary Computation, volume 1,
pages 325–332, Piscataway, New Jersey, July 2000. IEEE Service Center.

692 References

874. J. Knowles and D. Corne. On Metrics for Comparing Nondominated Sets. In
Congress on Evolutionary Computation (CEC’2002), volume 1, pages 711–
716, Piscataway, New Jersey, May 2002. IEEE Service Center.

875. J. Knowles and D. Corne. Towards Landscape Analyses to Inform the Design
of Hybrid Local Search for the Multiobjective Quadratic Assignment Problem.
In A. Abraham, J. R. del Solar, and M. Köppen, editors, Soft Computing
Systems: Design, Management and Applications, pages 271–279, Amsterdam,
2002. IOS Press. ISBN 1-58603-297-6.

876. J. Knowles and D. Corne. Instance Generators and Test Suites for the Mul-
tiobjective Quadratic Assignment Problem. In C. M. Fonseca, P. J. Fleming,
E. Zitzler, K. Deb, and L. Thiele, editors, Evolutionary Multi-Criterion Opti-
mization. Second International Conference, EMO 2003, pages 295–310, Faro,
Portugal, April 2003. Springer. Lecture Notes in Computer Science. Volume
2632.

877. J. Knowles and D. Corne. Properties of an Adaptive Archiving Algorithm for
Storing Nondominated Vectors. IEEE Transactions on Evolutionary Compu-
tation, 7(2):100–116, April 2003.

878. J. Knowles and D. Corne. Bounded Pareto Archiving: Theory and Practice. In
X. Gandibleux, M. Sevaux, K. Sörensen, and V. T’kindt, editors, Metaheuris-
tics for Multiobjective Optimisation, pages 39–64, Berlin, 2004. Springer. Lec-
ture Notes in Economics and Mathematical Systems Vol. 535.

879. J. Knowles and D. Corne. Memetic Algorithms for Multiobjective Optimiza-
tion: Issues, Methods and Prospects. In W. E. Hart, N. Krasnogor, and
J. Smith, editors, Recent Advances in Memetic Algorithms, pages 313–352.
Springer. Studies in Fuzziness and Soft Computing, Vol. 166, 2005.

880. J. Knowles and D. Corne. Quantifying the Effects of Objective Space Dimen-
sion in Evolutionary Multiobjective Optimization. In S. Obayashi, K. Deb,
C. Poloni, T. Hiroyasu, and T. Murata, editors, Evolutionary Multi-Criterion
Optimization, 4th International Conference, EMO 2007, pages 757–771, Mat-
shushima, Japan, March 2007. Springer. Lecture Notes in Computer Science
Vol. 4403.

881. J. Knowles and E. J. Hughes. Multiobjective Optimization on a Budget
of 250 Evaluations. In C. A. Coello Coello, A. Hernández Aguirre, and
E. Zitzler, editors, Evolutionary Multi-Criterion Optimization. Third Inter-
national Conference, EMO 2005, pages 176–190, Guanajuato, México, March
2005. Springer. Lecture Notes in Computer Science Vol. 3410.

882. J. Knowles, L. Thiele, and E. Zitzler. A Tutorial on the Performance Assess-
ment of Stochastic Multiobjective Optimizers. 214, Computer Engineering
and Networks Laboratory (TIK), ETH Zurich, Switzerland, Feb. 2006. re-
vised version.

883. J. D. Knowles. Local-Search and Hybrid Evolutionary Algorithms for Pareto
Optimization. PhD thesis, The University of Reading, Department of Com-
puter Science, Reading, UK, January 2002.

884. J. D. Knowles and D. W. Corne. Local Search, Multiobjective Optimiza-
tion and the Pareto Archived Evolution Strategy. In B. e. a. McKay, editor,
Proceedings of Third Australia-Japan Joint Workshop on Intelligent and Evo-
lutionary Systems, pages 209–216, Ashikaga, Japan, November 1999. Ashikaga
Institute of Technology.

885. J. D. Knowles and D. W. Corne. The Pareto Archived Evolution Strategy: A
New Baseline Algorithm for Multiobjective Optimisation. In 1999 Congress

References 693

on Evolutionary Computation, pages 98–105, Washington, D.C., July 1999.
IEEE Service Center.

886. J. D. Knowles and D. W. Corne. Approximating the Nondominated Front
Using the Pareto Archived Evolution Strategy. Evolutionary Computation,
8(2):149–172, 2000.

887. J. D. Knowles and D. W. Corne. Benchmark Problem Generators and Results
for the Multiobjective Degree-Constrained Minimum Spanning Tree Prob-
lem. In L. Spector, E. D. Goodman, A. Wu, W. Langdon, H.-M. Voigt,
M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke,
editors, Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO’2001), pages 424–431, San Francisco, California, 2001. Morgan
Kaufmann Publishers.

888. J. D. Knowles, D. W. Corne, and M. Fleischer. Bounded Archiving using
the Lebesgue Measure. In Proceedings of the 2003 Congress on Evolutionary
Computation (CEC’2003), volume 4, pages 2490–2497, Canberra, Australia,
December 2003. IEEE Press.

889. J. D. Knowles, M. J. Oates, and D. W. Corne. Multiobjective Evolutionary
Algorithms Applied to two Problems in Telecommunications. BT Technology
Journal, 18(4):51–64, October 2000.

890. J. D. Knowles, R. A. Watson, and D. W. Corne. Reducing Local Optima in
Single-Objective Problems by Multi-objectivization. In E. Zitzler, K. Deb,
L. Thiele, C. A. Coello Coello, and D. Corne, editors, First International
Conference on Evolutionary Multi-Criterion Optimization, pages 268–282.
Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.

891. T. E. Koch and A. Zell. MOCS: Multi-Objective Clustering Selection Evo-
lutionary Algorithm. In W. Langdon, E. Cantú-Paz, K. Mathias, R. Roy,
D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener,
L. Bull, M. Potter, A. Schultz, J. Miller, E. Burke, and N. Jonoska, edi-
tors, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’2002), pages 423–430, San Francisco, California, July 2002. Mor-
gan Kaufmann Publishers.

892. I. Kokolo, K. Hajime, and K. Shigenobu. Failure of Pareto-based MOEAs:
Does Non-dominated Really Mean Near to Optimal? In Proceedings of the
Congress on Evolutionary Computation 2001 (CEC’2001), volume 2, pages
957–962, Piscataway, New Jersey, May 2001. IEEE Service Center.

893. M. Koksalan, M. Azizoglu, and S. Kondakci. Minimizing flowtime and maxi-
mum earliness in a single machine. IIE Transactions, 30:192–200, 1998.

894. R. Komuro. Multi-Objective Evolutionary Algorithms for Ecological Process
Models. PhD thesis, University of Washington, Seattle, Washington, USA,
December 2005.

895. B. O. Koopman. The Optimum Distribution of Effort. Operations Research,
1(2):52–63, 1953.

896. B. O. Koopman. Fallacies in Operations Research. Operations Research,
4(4):422–426, 1956.

897. T. C. Koopmans. Analysis of Production as an efficient combination of ac-
tivities. In T. C. Koopmans, editor, Activity Analysis of Production and
Allocation, Cowles Commision Monograph No. 13, pages 33–97. John Wiley
and Sons, New York, New York, 1951.

898. M. Köppen. On the Benchmarking of Multiobjective Optimization Algo-
rithm. In V. Palade, R. J. Howlett, and L. C. Jain, editors, Proceedings of

694 References

the 7th International Conference on Knowledge-Based Intelligent Information
and Engineering Systems (KES 2003). Part I, pages 379–385, Oxford, UK,
September 2003. Springer. Lecture Notes on Computer Science Vol. 2773.

899. M. Köppen and S. Rudlof. Multiobjective Optimization by Nessy Algorithm.
In R. Roy, T. Furuhashi, and P. Chawdhry, editors, Advances in Soft Com-
puting, pages 357–368, London, 1998. Springer.

900. M. Köppen, R. Vicente-Garcia, and B. Nickolay. Fuzzy-Pareto-Dominance
and Its Application in Evolutionary Multi-objective Optimization. In C. A.
Coello Coello, A. Hernández Aguirre, and E. Zitzler, editors, Evolutionary
Multi-Criterion Optimization. Third International Conference, EMO 2005,
pages 399–412, Guanajuato, México, March 2005. Springer. Lecture Notes in
Computer Science Vol. 3410.

901. M. Köppen and K. Yoshida. Substitute Distance Assignments in NSGA-
II for Handling Many-Objective Optimization Problems. In S. Obayashi,
K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, editors, Evolutionary Multi-
Criterion Optimization, 4th International Conference, EMO 2007, pages 727–
741, Matshushima, Japan, March 2007. Springer. Lecture Notes in Computer
Science Vol. 4403.

902. P. Korhonen. Reference direction approach to multiple objective linear pro-
gramming: Historical overview. In M. H. Karwan, J. Spronk, and J. Wallenius,
editors, Essays in Decision Making: A Volume in Honour of Stanley Zionts,
pages 72–94. Springer-Verlag, Berlin, 1997.

903. U. Korn and T. T. Binh. The parallel evolution strategy toolbox. Automa-
tisierungstechnik, 4:207–208, 1998.

904. K. Koski. Multicriterion Optimization in Structural Design. In E. Atrek, R. H.
Gallagher, K. M. Ragsdell, and O. C. Zienkiewicz, editors, New Directions in
Optimum Structural Design, pages 483–503. John Wiley and Sons, 1984.

905. J. R. Koza. Genetic Programming. On the Programming of Computers by
Means of Natural Selection. The MIT Press, Cambridge, Massachusetts, 1992.

906. N. Krami, M. A. El-Sharkawi, and M. Akherraz. Multi Objective Particle
Swarm Optimization Technique for Reactive Power Planning. In 2006 Swarm
Intelligence Symposium (SIS’06), pages 170–174, Indianapolis, Indiana, USA,
May 2006. IEEE Press.

907. M. Krause and V. Nissen. On Using Penalty Functions and Multicriteria
Optimisation Techniques in Facility Layout. In J. Biethahn and V. Nissen,
editors, Evolutionary Algorithms in Management Applications, pages 153–166.
Springer-Verlag, Berlin, 1995.

908. V. Krmicek and M. Sebag. Functional Brain Imaging with Multi-objective
Multi-modal Evolutionary Optimization. In T. P. Runarsson, H.-G. Beyer,
E. Burke, J. J. Merelo-Guervós, L. D. Whitley, and X. Yao, editors, Parallel
Problem Solving from Nature - PPSN IX, 9th International Conference, pages
382–391. Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik,
Iceland, September 2006.

909. R. Krzysztofowicz and L. Duckstein. Preference criterion for flood control
under uncertainty. Water Resources Research, 15(3):513–520, 1979.

910. H. W. Kuhn and A. W. Tucker. Nonlinear Programming. In J. Neyman,
editor, Proceedings of the Second Berkeley Symposium on Mathematical Sta-
tistics and Probability, pages 481–492, Berkeley, California, 1951. University
of California Press.

References 695

911. T. Kuhn. The Structure of Scientific Revolutions. University of Chicago Press,
1962.

912. S. Kukkonen and K. Deb. A Fast and Effective Method for Pruning of Non-
dominated Solutions in Many-Objective Problems. In T. P. Runarsson, H.-G.
Beyer, E. Burke, J. J. Merelo-Guervós, L. D. Whitley, and X. Yao, editors,
Parallel Problem Solving from Nature - PPSN IX, 9th International Confer-
ence, pages 553–562. Springer. Lecture Notes in Computer Science Vol. 4193,
Reykjavik, Iceland, September 2006.

913. S. Kukkonen and J. Lampinen. An Extension of Generalized Differential Evo-
lution for Multi-objective Optimization with Constraints. In Parallel Problem
Solving from Nature - PPSN VIII, pages 752–761, Birmingham, UK, Septem-
ber 2004. Springer-Verlag. Lecture Notes in Computer Science Vol. 3242.

914. S. Kukkonen and J. Lampinen. GDE3: The third Evolution Step of Gen-
eralized Differential Evolution. In 2005 IEEE Congress on Evolutionary
Computation (CEC’2005), volume 1, pages 443–450, Edinburgh, Scotland,
September 2005. IEEE Service Center.

915. S. Kulturel-Konak, A. E. Smith, and B. A. Norman. Multi-objective tabu
search using a multinomial probability mass function. European Journal of
Operational Research, 169:918–931, 2006.

916. R. Kumar. Feature Selection, Representation and Classification. PhD thesis,
University of Sheffield, Sheffield, UK, 1997.

917. R. Kumar and N. Banerjee. Running time analysis of a multiobjective evolu-
tionary algorithm on simple and hard problems. In A. H. Wright, M. D. Vose,
K. A. D. Jong, and L. M. Schmitt, editors, Foundations of Genetic Algorithms.
8th International Workshop, FOGA 2005, pages 112–131, Aizu-Wakamatsu
City, Japan, January 2005. Springer. Lecture Notes in Computer Science Vol.
3469.

918. R. Kumar and N. Banerjee. Analysis of a multiobjective evolutionary
algorithm on the 0-1 knapsack problem. Theoretical Computer Science,
358(1):104–120, July 2006.

919. R. Kumar, S. Prasanth, and M. Sudarshan. Topological Design of
Mesh Communication Networks using Multiobjecitve Genetic Optimisation.
In PPSN/SAB Workshop on Multiobjective Problem Solving from Nature
(MPSN), Paris, France, September 2000.

920. R. Kumar and P. Rockett. Decomposition of High Dimensional Pattern Spaces
for Hierarchical Classification. In Proceedings of the Workshop on Statistical
Techniques in Pattern Recognition, Prague, Czech Republic, June 1997.

921. R. Kumar and P. Rockett. Decomposition of High Dimensional Pattern Spaces
for Hierarchical Classification. Kybernetika, 34(4):435–442, 1998.

922. R. Kumar and P. Rockett. Multiobjective Genetic Algorithm Partitioning
for Hierarchical Learning of High-Dimensional Pattern Spaces: A Learning-
Follows-Decomposition Strategy. IEEE Transactions on Neural Networks,
9(5):822–830, 1998.

923. R. Kumar and P. Rockett. Improved Sampling of the Pareto-Front in Mul-
tiobjective Genetic Optimizations by Steady-State Evolution: A Pareto Con-
verging Genetic Algorithm. Evolutionary Computation, 10(3):283–314, Fall
2002.

924. R. Kumar and P. I. Rockett. Assessing the Convergence of Rank-Based Mul-
tiobjective Genetic Algorithms. In Proceedings of the 2nd IEE/IEEE Interna-
tional Conference on Genetic Algorithms in Engineering Systems: Innovations

696 References

and Applications (GALESIA’97), pages 19–23, Glasgow, Scotland, September
1997. IEE.

925. S. V. Kumar and S. R. Ranjithan. Evaluation of the Constraint Method-Based
Evolutionary Algorithm (CMEA) for a Tree-Objective Optimization Prob-
lem. In W. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli,
K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. Potter,
A. Schultz, J. Miller, E. Burke, and N. Jonoska, editors, Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO’2002), pages 431–
438, San Francisco, California, July 2002. Morgan Kaufmann Publishers.

926. V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel
Computing: Design and Analysis of Algorithms. The Benjamin/Cummings
Publishing Company, Inc., Redwood City, CA, 1994.

927. S. Kundu. A multicriteria genetic algorithm to solve optimization problems in
structural engineering design. In B. Kumar, editor, Information Processing in
Civil and Structural Engineering Design, pages 225–233, Glasgow, Scotland,
August 1996. Civil-Comp Press Ltd.

928. S. Kundu and S. Kawata. AI in Control System Design Using a New Par-
adigm for Design Representation. In J. S. Gero and F. Sudweeks, editors,
Artificial Intelligence in Design, pages 135–150. Kluwer Academic Publish-
ers, The Netherlands, 1996.

929. S. Kundu and A. Osyczka. The effect of genetic algorithm selection mecha-
nisms on multicriteria optimization using the distance method. In Proceedings
of the Fifth International Conference on Intelligent Systems, pages 164–168,
Reno, Nevada, 1996. International Society for Computers and Their Applica-
tions (ISCA).

930. H. Kung, F. Luccio, and F. Preparata. On finding the maxima of a set of
vectors. Journal of the Association for Computing Machinery, 22(4):469–476,
1975.

931. S. Künzli, S. Bleuler, L. Thiele, and E. Zitzler. A Computer Engineering
Benchmark Application for Multiobjective Optimizers. In C. A. Coello Coello
and G. B. Lamont, editors, Applications of Multi-Objective Evolutionary Al-
gorithms, pages 269–294. World Scientific, Singapore, 2004.

932. S. Kurahashi and T. Terano. A Genetic Algorithm with Tabu Search
for Multimodal and Multiobjective Function Optimization. In D. Whit-
ley, D. Goldberg, E. Cantú-Paz, L. Spector, I. Parmee, and H.-G. Beyer,
editors, Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO’2000), pages 291–298, San Francisco, California, 2000. Morgan
Kaufmann.

933. A. Kurapati and S. Azarm. Immune Network Simulation with Multiobjective
Genetic Algorithms for Multidisciplinary Design Optimization. Engineering
Optimization, 33:245–260, 2000.

934. F. Kursawe. A Variant of Evolution Strategies for Vector Optimization. In
H.-P. Schwefel and R. Männer, editors, Parallel Problem Solving from Nature.
1st Workshop, PPSN I, pages 193–197, Dortmund, Germany, October 1991.
Springer-Verlag. Lecture Notes in Computer Science No. 496.

935. F. Kursawe. Evolution strategies for vector optimization. In Preliminary
Procedings of the Tenth International Conference on Multiple Criteria Deci-
sion Making, pages 187–193, Taipei, China, July 1992. National Chiao Tung
University.

References 697

936. A. Kurup, K. Hidajat, and A. Ray. Comparative study of modified simu-
lated moving bed systems at optimal conditions for the separation of ternary
mixtures of xylene isomers. Industrial & Engineering Chemistry Research,
45(18):6251–6265, August 30 2006.

937. O. Labé, I. Abi-Zeid, and J.-M. Martel. Comparaison de deux méthodes
multicritères traitant de l’information mixte : NAIADE et PAMSSEM. In
Journées de l’Optimisation 1999, Montreal, Canada, May 1999.

938. M. Laguna and R. Mart́ı. Scatter Search : Methodology and Implementations
in C. Kluwer Academic Publishers, 2003. ISBN 1-402-07376-3.

939. J. R. F. Lagunas Jiménez. Sintonización de controladores PID mediante un
algoritmo genético multiobjetivo (NSGA-II). PhD thesis, Departamento de
Control Automático, CINVESTAV-IPN, México, D.F., April 2004. (in Span-
ish).

940. M. Lahanas, N. Milickovic, D. Baltas, and N. Zamboglou. Application of
Multiobjective Evolutionary Algorithms for Dose Optimization Problems in
Brachytherapy. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and
D. Corne, editors, First International Conference on Evolutionary Multi-
Criterion Optimization, pages 574–587. Springer-Verlag. Lecture Notes in
Computer Science No. 1993, 2001.

941. Y.-J. Lai and C.-L. Hwang. Fuzzy Multiple Objective Decision Making: Meth-
ods and Applications. Springer-Verlag, 1994.

942. G. B. Lamont, editor. Compendium of Parallel Programs for the Intel iPSC
Computers. Department of Electrical and Computer Engineering, Graduate
School of Engineering, Air Force Institute of Technology, Wright-Patterson
AFB, OH 45433, 1993.

943. G. B. Lamont, S. M. Brown, and G. H. G. Jr. Evolutionary Algorithms
Combined with Deterministic Search. In V. Porto, N. Saravanan, D. Waagen,
and A. Eiben, editors, Evolutionary Programming VII, Proceedings of the
7th Annual Conference on Evolutionary Programming, pages 517–526, Berlin,
1998. Springer.

944. G. B. Lamont, R. Marmelstein, and D. A. Van Veldhuizen. A Distributed Ar-
chitecture for a Self-Adaptive computer Virus Immune System. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 167–183.
McGraw-Hill, 2000.

945. G. B. Lamont, J. N. Slear, and K. Melendez. UAV Swarm Mission Plan-
ning and Routing using Multi-Objective Evolutionary Algorithms. In IEEE
Symposium on Computational Intelligence in Multicriteria Decision Making
(MCDM 2007), pages 10–20. IEEE Press, April 2007.

946. J. Lampinen. DE’s selection rule for multiobjective optimization. Technical
report, Lappeenranta University of Technology, Department of Information
Technology, 2001.

947. R. Landa Becerra and C. A. Coello Coello. Cultured differential evolution
for constrained optimization. Computer Methods in Applied Mechanics and
Engineering, 195(33–36):4303–4322, July 1 2006.

948. R. Landa Becerra and C. A. Coello Coello. Solving Hard Multiobjective
Optimization Problems Using ε-Constraint with Cultured Differential Evolu-
tion. In T. P. Runarsson, H.-G. Beyer, E. Burke, J. J. Merelo-Guervós, L. D.
Whitley, and X. Yao, editors, Parallel Problem Solving from Nature - PPSN
IX, 9th International Conference, pages 543–552. Springer. Lecture Notes in
Computer Science Vol. 4193, Reykjavik, Iceland, September 2006.

698 References

949. J. D. Landa Silva. Metaheuristic and Multiobjective Approaches for Space
Allocation. PhD thesis, School of Computer Science and Information Tech-
nology, University of Nottingham, UK, November 2003.

950. W. B. Langdon. Evolving data structures using genetic programming. In
L. Eshelman, editor, Proceedings of the Sixth International Conference on
Genetic Algorithms (ICGA’95), pages 295–302, San Mateo, California, July
1995. Morgan Kaufmann Publishers.

951. W. B. Langdon. Data Structures and Genetic Programming. In P. J. Angeline
and K. E. Kinnear, Jr., editors, Advances in Genetic Programming 2,
chapter 20, pages 395–414. MIT Press, Cambridge, MA, USA, 1996.

952. W. B. Langdon. Using Data Structures within Genetic Programming. In
J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors, Genetic
Programming 1996: Proceedings of the First Annual Conference, pages 141–
148, Stanford University, CA, USA, 28–31 July 1996. MIT Press.

953. P. L. Lanzi, W. Stolzmann, and S. W. Wilson, editors. Advances in Learning
Classifier Systems. Springer. Lecture Notes in Computer Science Vol. 2321,
San Francisco, California, USA, August 2002.

954. P. Larrañaga and J. A. Lozano, editors. Estimation of Distribution Algo-
rithms. A New Tool for Evolutionary Computation. Kluwer Academic Pub-
lishers, Boston/Dordrecht/London, 2002.

955. M. Laumanns. Analysis and Applications of Evolutionary Multiobjective Op-
timization Algorithms. PhD thesis, Swiss Federal Institute of Technology,
Zürich, Switzerland, 2003.

956. M. Laumanns and J. Ocenasek. Bayesian Optimization Algorithms for
Multi-objective Optimization. In J. J. Merelo Guervós, P. Adamidis, H.-G.
Beyer, J.-L. F.-V. nas, and H.-P. Schwefel, editors, Parallel Problem Solving
from Nature—PPSN VII, pages 298–307, Granada, Spain, September 2002.
Springer-Verlag. Lecture Notes in Computer Science No. 2439.

957. M. Laumanns, G. Rudolph, and H.-P. Schwefel. A Spatial Predator-Prey
Approach to Multi-Objective Optimization: A Preliminary Study. In A. E.
Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem
Solving From Nature — PPSN V, pages 241–249, Amsterdam, Holland, 1998.
Springer-Verlag. Lecture Notes in Computer Science No. 1498.

958. M. Laumanns, G. Rudolph, and H.-P. Schwefel. Mutation Control and Con-
vergence in Evolutionary Multi-Objective Optimization. In Proceedings of the
7th International Mendel Conference on Soft Computing (MENDEL 2001),
pages 24–29, Brno, Czech Republic, June 2001. Brno University of Technol-
ogy.

959. M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining Convergence
and Diversity in Evolutionary Multi-objective Optimization. Evolutionary
Computation, 10(3):263–282, Fall 2002.

960. M. Laumanns, L. Thiele, and E. Zitzler. Running Time Analysis of Mul-
tiobjective Evolutionary Algorithms on Pseudo-Boolean Functions. IEEE
Transactions on Evolutionary Computation, 8(2):170–182, April 2004.

961. M. Laumanns, L. Thiele, and E. Zitzler. An efficient, adaptive parameter
variation scheme for metaheuristics based on the epsilon-constraint method.
European Journal of Operational Research, 169:932–942, 2006.

962. M. Laumanns, L. Thiele, E. Zitzler, E. Welzl, and K. Deb. Running Time
Analysis of Multi-objective Evolutionary Algorithms on a Simple Discrete

References 699

Optimization Problem. In J. J. Merelo Guervós, P. Adamidis, H.-G. Beyer,
J.-L. F.-V. nas, and H.-P. Schwefel, editors, Parallel Problem Solving from
Nature—PPSN VII, pages 44–53, Granada, Spain, September 2002. Springer-
Verlag. Lecture Notes in Computer Science No. 2439.

963. M. Laumanns, E. Zitzler, and L. Thiele. A Unified Model for Multi-Objective
Evolutionary Algorithms with Elitism. In 2000 Congress on Evolutionary
Computation, volume 1, pages 46–53, Piscataway, New Jersey, July 2000.
IEEE Service Center.

964. M. Laumanns, E. Zitzler, and L. Thiele. On the Effects of Archiving, Elitism,
and Density Based Selection in Evolutionary Multi-objective Optimization.
In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne, editors,
First International Conference on Evolutionary Multi-Criterion Optimization,
pages 181–196. Springer-Verlag. Lecture Notes in Computer Science No. 1993,
2001.

965. N. Laumanns, M. Laumanns, and D. Neunzig. Multi-objective Design Space
Exploration of Road Trains with Evolutionary Algorithms. In E. Zitzler,
K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne, editors, First In-
ternational Conference on Evolutionary Multi-Criterion Optimization, pages
612–623. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.

966. M. Lawrence. Multiobjective Genetic Algorithms for Materialized View Se-
lection in OLAP Data Warehouses. In M. K. et al., editor, 2006 Genetic and
Evolutionary Computation Conference (GECCO’2006), volume 1, pages 699–
706, Seattle, Washington, USA, July 2006. ACM Press. ISBN 1-59593-186-4.

967. A. Lazzaretto and A. Toffolo. Energy, economy and environment as objectives
in multi-criterion optimization of thermal systems design. Energy, 29(8):1139–
1157, June 2004.

968. R. G. Le Riche and R. T. Haftka. Optimization of Laminate Stacking Se-
quence for Buckling Load Maximization by Genetic Algorithm. AIAA Jour-
nal, 31(5):951–970, 1993.

969. D. Lee. Multiobjective Design of a Marine Vehicle with Aid of Design Knowl-
edge. International Journal for Numerical Methods in Engineering, 40:2665–
2677, 1997.

970. J. Lee and P. Hajela. Parallel Genetic Algorithm Implementation in Multidis-
ciplinary Rotor Blade Design. Journal of Aircraft, 33(5):962–969, September-
October 1996.

971. M. A. Lee and H. Esbensen. Multiobjective Optimization using Fuzzy/
Evolutionary Algorithms. In Proceedings of the International Society for
Computers and Their Applications (ISCA’96), pages 67–70, San Francisco,
California, 1996.

972. M. A. Lee and H. Esbensen. Fuzzy/Multiobjective Genetic Systems for
Intelligent Systems Design Tools and Components. In W. Pedrycz, editor,
Fuzzy Evolutionary Computation, pages 57–80. Kluwer Academic Publishers,
Boston, Massachusetts, 1997.

973. M. A. Lee, H. Esbensen, and L. Lemaitre. The Design of Hybrid Fuzzy/
Evolutionary Multiobjective Optimization Algorithms. In Proceedings of the
1995 IEEE/Nagoya University World Wiseperson Workshop, pages 118–125,
Nagoya, Japan, 1995.

974. M. A. Lee and R. Hartani. A multiobjective evolutionary algorithms app-
roach to fuzzy modeling. In Proceedings of the Second Annual Conference on

700 References

Information Science (JCIS’95), pages 460–463, Shell Island, North Carolina,
1995.

975. S. Lee. Goal Programming for Decision Analysis. Auerbach, Philadelphia,
1972.

976. S. Lee and V. Jaaskelainen. Goal Programming: Management’s math model.
Industrial Engineering, pages 30–35, February 1971.

977. H. A. Leiva, S. C. Esquivel, and R. H. Gallard. Multiplicity and Local Search
in Evolutionary Algorithms to Build the Pareto Front. In Proceedings of the
XX International Conference of the Chilean Computer Science Society, pages
7–13, Piscataway, New Jersey, 2000. IEEE Computer Society Press.

978. A. Levy, A. Montalvo, S. Gomez, and A. Calderon. Topics in Global Optimiza-
tion. In J. Hennart, editor, Numerical Analysis, pages 18–33. Springer-Verlag.
Lecture Notes in Mathematics Vol. 909, New York, 1981.

979. J. C. Leyva-Lopez and M. A. Aguilera-Contreras. A Multiobjective Evolution-
ary Algorithm for Deriving Final Ranking from a Fuzzy Outranking Relation.
In C. A. Coello Coello, A. Hernández Aguirre, and E. Zitzler, editors, Evolu-
tionary Multi-Criterion Optimization. Third International Conference, EMO
2005, pages 235–249, Guanajuato, México, March 2005. Springer. Lecture
Notes in Computer Science Vol. 3410.

980. J. C. Leyva López and E. Fernández González. A Genetic Algorithm for
Deriving Final Ranking from a Fuzzy Outranking Relation. Foundations of
Computing and Decision Sciences, 24(1):33–47, 1999.

981. J. C. Leyva-López and E. Fernández-González. A new method for group
decision support based on ELECTRE III methodology. European Journal of
Operational Research, 148(1):14–27, July 2003.

982. H. Li and Q. Zhang. A Multiobjective Differential Evolution Based on
Decomposition for Multiobjective Optimization with Variable Linkages. In
T. P. Runarsson, H.-G. Beyer, E. Burke, J. J. Merelo-Guervós, L. D. Whitley,
and X. Yao, editors, Parallel Problem Solving from Nature - PPSN IX, 9th In-
ternational Conference, pages 583–592. Springer. Lecture Notes in Computer
Science Vol. 4193, Reykjavik, Iceland, September 2006.

983. J. Li and N. Satofuka. Optimization design of a compressor cascade airfoil
using a Navier-stokes solver and genetic algorithms. Proceedings of the In-
stitution of Mechanical Engineering Part A—Journal of Power and Energy,
216(A2):195–202, 2002.

984. J.-P. Li, M. E. Balazs, G. T. Parks, and P. J. Clarkson. A Species Conserv-
ing Genetic Algorithm for Multimodal Function Optimization. Evolutionary
Computation, 10(3):207–234, Fall 2002.

985. X. Li. A Non-dominated Sorting Particle Swarm Optimizer for Multiob-
jective Optimization. In E. C.-P. et al., editor, Genetic and Evolutionary
Computation—GECCO 2003. Proceedings, Part I, pages 37–48. Springer. Lec-
ture Notes in Computer Science Vol. 2723, July 2003.

986. X. Li. A Real-Coded Predator-Prey Genetic Algorithm for Multiobjective
Optimization. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and
L. Thiele, editors, Evolutionary Multi-Criterion Optimization. Second Inter-
national Conference, EMO 2003, pages 207–221, Faro, Portugal, April 2003.
Springer. Lecture Notes in Computer Science. Volume 2632.

987. X. Li. Better Spread and Convergence: Particle Swarm Multiobjective Opti-
mization Using the Maximin Fitness Function. In K. D. et al., editor, Genetic

References 701

and Evolutionary Computation–GECCO 2004. Proceedings of the Genetic
and Evolutionary Computation Conference. Part I, pages 117–128, Seattle,
Washington, USA, June 2004. Springer-Verlag, Lecture Notes in Computer
Science Vol. 3102.

988. Y. Li, M. Gen, and K. Ida. Evolutionary Computation for Multicriteria Solid
Transportation Problem with Fuzzy Numbers. In T. Bäck, Z. Michalewicz,
and H. Kitano, editors, Proceedings of the Third IEEE Conference on Evo-
lutionary Computation, pages 596–601, Piscataway, New Jersey, 1996. IEEE
Service Center.

989. Y. Li, K. Ida, and M. Gen. Improved Genetic Algorithm for Solving Multi-
objective Solid Transportation Problem with Fuzzy Numbers. Computers in
Industrial Engineering, 33(3-4):589–592, 1997.

990. J. Liang and P. Suganthan. Dynamic Multi-Swarm Particle Swarm Opti-
mizer with a Novel Constraint-Handling Mechanism. In 2006 IEEE Congress
on Evolutionary Computation (CEC’2006), pages 316–323, Vancouver, BC,
Canada, July 2006. IEEE.

991. S. J. Liang and J. M. Lewis. Job Shop Scheduling Using Multiple Criteria.
In Proceedings of the Joint Hungarian-British Mechatronic Conference, pages
77–82. Computational Mechanics, September 1994.

992. E. R. Lieberman. Soviet multi-objective mathematical programming methods:
An Overview. Management Science, 37(9):1147–1165, September 1991.

993. A. Liefooghe, M. Basseur, L. Jourdan, and E.-G. Talbi. ParadisEO-MOEO:
A Framework for Evolutionary Multi-objective Optimization. In S. Obayashi,
K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, editors, Evolutionary Multi-
Criterion Optimization, 4th International Conference, EMO 2007, pages 386–
400, Matshushima, Japan, March 2007. Springer. Lecture Notes in Computer
Science Vol. 4403.

994. G. E. Liepins, M. R. Hilliard, J. Richardson, and M. Palmer. Genetic al-
gorithms application to set covering and travelling salesman problems. In
D. E. Brown and C. C. White, editors, Operations research and Artificial In-
telligence: The integration of problem-solving strategies, pages 29–57. Kluwer
Academic, Norwell, Massachusetts, 1990.

995. D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, and B.-S. Lee. Efficient Hierarchi-
cal Parallel Genetic Algorithms using Grid Computing. Future Generation
Computer Systems, 23(4):658–670, May 2007.

996. P. Limbourg. Multi-objective Optimization of Problems with Epistemic Un-
certainty. In C. A. Coello Coello, A. Hernández Aguirre, and E. Zitzler, edi-
tors, Evolutionary Multi-Criterion Optimization. Third International Confer-
ence, EMO 2005, pages 413–427, Guanajuato, México, March 2005. Springer.
Lecture Notes in Computer Science Vol. 3410.

997. J. G. Lin. Maximal Vectors and Multi-Objective Optimization. Journal of
Optimization Theory and Applications, 18(1):41–64, January 1976.

998. S.-Y. Liong, S.-T. Khu, and W. T. Chan. Novel Application of Genetic Al-
gorithm and Neural Network in Water Resources: Development of Pareto
Front. In Eleventh Congress of the International Association for Hydraulic
Research—Asia and Pacific Division, pages 185–194, Yogyakarta, Indonesia,
1998.

999. S.-Y. Liong, S. T. Khu, and W. T. Chang. Derivation of Pareto Front with
Accelerated Convergence Genetic Algorithm, ACGA. In V. Babovic and

702 References

L. Larsen, editors, Proceedings of the Third Hydroinformatics Conference,
1998.

1000. J. Lis and A. E. Eiben. A Multi-Sexual Genetic Algorithm for Multiobjective
Optimization. In T. Fukuda and T. Furuhashi, editors, Proceedings of the
1996 International Conference on Evolutionary Computation, pages 59–64,
Nagoya, Japan, 1996. IEEE.

1001. T. R. Liszkai. Modern Heuristics in Structural Damage Detection using Fre-
quency Response Functions. PhD thesis, Civil Engineering Department, Texas
A&M University, USA, August 2003.

1002. T. R. Liszkai and A. M. Raich. Solving Inverse Problems in Structural Dam-
age Identification Using Advanced Genetic Algorithm Representations. In
6th World Congress of Structural and Multidisciplinary Optimization, Rio de
Janeiro, Brazil, June 2005.

1003. X. Liu, D. W. Begg, and R. J. Fishwick. Genetic approach to optimal topol-
ogy/controller design of adaptive structures. International Journal for Nu-
merical Methods in Engineering, 41:815–830, 1998.

1004. X. Llorà, D. Goldberg, I. Traus, and E. Bernadó. Accuracy, parsimony, and
generality in evolutionary learning systems via multiobjective selection. In
Learning Classifier Systems, pages 118–142. Springer. Lecture Notes in Arti-
ficial Intelligence Vol. 2661, 2002.

1005. X. Llorà and D. E. Goldberg. Bounding the Effect of Noise in Multiobjective
Learning Classifier Systems. Evolutionary Computation, 11(3):279–298, Fall
2003.

1006. J. D. Lohn, G. L. Haith, S. P. Colombano, and D. Stassinopoulos. A Com-
parison of Dynamic Fitness Schedules for Evolutionary Design of Amplifiers.
In A. Stoica, D. Keymeulen, and J. Lohn, editors, Proceedings of The First
NASA/DoD Workshop on Evolvable Hardware, pages 87–92, Los Alamitos,
California, USA, July 1999. IEEE Computer Society.

1007. J. D. Lohn, W. F. Kraus, and G. L. Haith. Comparing a Coevolutionary
Genetic Algorithm for Multiobjective Optimization. In Congress on Evolu-
tionary Computation (CEC’2002), volume 2, pages 1157–1162, Piscataway,
New Jersey, May 2002. IEEE Service Center.

1008. J. D. Lohn, W. F. Kraus, D. S. Linden, and S. P. Colombano. Evolution-
ary Optimization of Yagi-Uda Antennas. In Y. Liu, K. Tanaka, M. Iwata,
T. Higuchi, and M. Yasunaga, editors, Evolvable Systems: From Biology to
Hardware, 4th International Conference, ICES 2001, pages 236–243, Tokyo,
Japan, October 2001. Springer. Lecture Notes in Computer Science Vol. 2210.

1009. F. A. Lootsma. Fuzzy Logic for Planning and Decision Making. Delft Uni-
versity of Technology, The Netherlands, 1997.

1010. A. López-Jaimes and C. C. Coello. MRMOGA: Parallel Evolutionary Multi-
objective Optimization using Multiple Resolutions. In 2005 IEEE Congress
on Evolutionary Computation (CEC’2005), volume 3, pages 2294–2301,
Edinburgh, Scotland, September 2005. IEEE Service Center.

1011. A. López Jaimes and C. A. Coello Coello. MRMOGA: A New Parallel
Multi-Objective Evolutionary Algorithm Based on the Use of Multiple Reso-
lutions. Concurrency and Computation: Practice and Experience, 19(4):397–
441, March 2007.

1012. A. Loraschi, A. Tettamanzi, M. Tomassini, and P. Verda. Distributed genetic
algorithms with an application to portfolio selection problems. In N. Steele

References 703

and R. Albrecht, editors, Artificial Neural Networks and Genetic Algorithms
(ICANNGA’95), pages 384–387, Wien, 1995. Springer.

1013. P. Loridan and J. Morgan. A Theoretical Approximation Scheme for Stack-
elberg Games. Optimization Theory and Applications, 61(1):95–110, 1989.

1014. A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev. Interactive Decision
Maps. Approximation and Visualization of Pareto Frontier. Kluwer Academic
Publishers, Boston, Massachusetts, February 2004. ISBN 1-4020-7631-2.

1015. D. P. Loucks. Conflict and choice: Planning for multiple objectives. In
C. Blitzer, P. Clark, and L. Taylor, editors, Economy wide Models and Devel-
opment Planning, New York, New York, 1975. Oxford University Press.

1016. D. H. Loughlin. Genetic Algorithm-Based Optimization in the Development
of Tropospheric Ozone Control Strategies: Least Cost, Multiobjective, Alter-
native Generation, and Chance-Constrained Applications (Air Quality Man-
agement). PhD thesis, North Carolina State University, February 1998.

1017. D. H. Loughlin and S. Ranjithan. The Neighborhood constraint method: A
Genetic Algorithm-Based Multiobjective Optimization Technique. In T. Bäck,
editor, Proceedings of the Seventh International Conference on Genetic Al-
gorithms, pages 666–673, San Mateo, California, July 1997. Michigan State
University, Morgan Kaufmann Publishers.

1018. S. J. Louis and G. J. E. Rawlins. Pareto Optimality, GA-easiness and Decep-
tion. In S. Forrest, editor, Proceedings of the Fifth International Conference
on Genetic Algorithms, pages 118–123, San Mateo, California, 1993. Morgan
Kaufmann Publishers.

1019. Z. Lounis and M. Z. Cohn. Multiobjective Optimization of Prestressed Con-
crete Structures. Journal of Structural Engineering, 119(3):794–808, mar
1993.

1020. H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated Local Search. In
F. Glover and G. A. Kochenberger, editors, Handbook of Metaheuristics, pages
321–353. Kluwer Academic Publishers, Boston/Dordrecht/London, 2002.

1021. H. Lu and G. G. Yen. Rank-Density Based Multiobjective Genetic Algorithm.
In Congress on Evolutionary Computation (CEC’2002), volume 1, pages 944–
949, Piscataway, New Jersey, May 2002. IEEE Service Center.

1022. N. Lu, L. Jiao, H. Du, and M. Gong. IFMOA: Immune Forgetting Multi-
objective Optimization Algorithm. In Proceedings of the First International
Conference on Advances in Natural Computation, ICNC 2005, Part III, pages
399–408, Changsha, China, August 2005. Springer. Lecture Notes in Com-
puter Science Vol. 3612.

1023. R. Luce. Semiorders and a theory of utility discrimination. Econometrica,
24:178–191, 1956.

1024. R. Luce and H. Raiffa. Games and Decisions: Introduction and Critical Sur-
vey. John Wiley, New York, 1957.

1025. G.-C. Luh and C.-H. Chueh. Multi-objective optimal design of truss structure
with immune algorithm. Computers and Structures, 82:829–844, 2004.

1026. G.-C. Luh, C.-H. Chueh, and W.-W. Liu. MOIA: Multi-Objective Immune
Algorithm. Engineering Optimization, 35(2):143–164, April 2003.

1027. S. Luke and L. Panait. Lexicographic Parsimony Pressure. In W. Langdon,
E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan,
V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. Potter, A. Schultz, J. Miller,

704 References

E. Burke, and N. Jonoska, editors, Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO’2002), pages 829–836, San Francisco,
California, July 2002. Morgan Kaufmann Publishers.

1028. K.-Y. Lum, P.-M. Jacquart, and M. Sefrioui. Constrained Optimization of
Multilayered Anti-Reflection Coatings using Genetic Algorithms. In L. Wang,
K. C. Tan, T. Furuhashi, J.-H. Kim, and X. Yao, editors, Proceedings of the
4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL’02),
volume 1, pages 172–177, Orchid Country Club, Singapore, November 2002.
Nanyang Technical University.

1029. E. H. Luna and C. A. Coello Coello. Using a Particle Swarm Optimizer with a
Multi-Objective Selection Scheme to Design Combinational Logic Circuits. In
C. A. Coello Coello and G. B. Lamont, editors, Applications of Multi-Objective
Evolutionary Algorithms, pages 101–124. World Scientific, Singapore, 2004.

1030. E. H. Luna, C. A. Coello Coello, and A. H. Aguirre. On the Use of a
Population-Based Particle Swarm Optimizer to Design Combinational Logic
Circuits. In R. S. Zebulum, D. Gwaltney, G. Hornby, D. Keymeulen, J. Lohn,
and A. Stoica, editors, Proceedings of the 2004 NASA/DoD Conference on
Evolvable Hardware, pages 183–190, Los Alamitos, California, USA, June
2004. IEEE Computer Society.

1031. F. Luna, A. Nebro, B. Dorronsoro, E. Alba, P. Bouvry, and L. Hogie. Optimal
Broadcasting in Metropolitan MANETs Using Multiobjective Scatter Search.
In F. Rothlauf, J. Branke, S. Cagnoni, E. Costa, C. Cotta, R. Drechsler,
E. Lutton, P. Machado, J. Moore, J. Romero, G. Smith, G. Squillero,
and H. Takagi, editors, Applications of Evolutionary Computing, EvoWork-
shops 2006: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoINTERAC-
TION, EvoMUSART, pages 255–266. Springer. Lecture Notes in Computer
Science Vol. 3907, 2006.

1032. F. Luna, A. J. Nebro, and E. Alba. Parallel Evolutionary Multiobjective Opti-
mization. In N. Nedjah, E. Alba, and L. de Macedo Mourelle, editors, Parallel
Evolutionary Computations, pages 33–56. Springer, Berlin Heidelberg, 2006.

1033. P. Lučić and D. Teodorović. Simulated annealing for the multi-objective
aircrew rostering problem. Transportation Research Part A, 33:19–45, 1999.

1034. N. Lyu and K. Saitou. Decomposition-based assembly synthesis of a three-
dimensional body-in-white model for structural stiffness. Journal of Mechan-
ical Design, 127(1):34–48, January 2005.

1035. N. Lyu and K. Saitou. Topology optimization of multicomponent beam struc-
ture via decomposition-based assembly synthesis. Journal of Mechanical De-
sign, 127(2):170–183, March 2005.

1036. K. R. MacCrimmon. An overview of multiple objective decision making. In
J. L. Cochrane and M. Zeleny, editors, Multiple Criteria Decision Making,
pages 18–44. University of South Carolina Press, 1973.

1037. N. K. Madavan. Multiobjective Optimization Using a Pareto Differential
Evolution Approach. In Congress on Evolutionary Computation (CEC’2002),
volume 2, pages 1145–1150, Piscataway, New Jersey, May 2002. IEEE Service
Center.

1038. S. W. Mahfoud. A Comparison of Parallel and Sequential Niching Methods.
In L. J. Eshelman, editor, Proceedings of the Sixth International Confnerence
on Genetic Algorithms, pages 136–143, San Francisco, California, July 1995.
Morgan Kaufmann Publishers.

References 705

1039. S. W. Mahfoud and D. E. Goldberg. Parallel recombinative simulated an-
nealing: A genetic algorithm. Parallel Computing, 21:45–52, January 1995.

1040. M. Mahfouf, M. F. Abbod, and D. A. Linkens. Multi-Objective Genetic Op-
timization of the Performance Index of Self-Organizing Fuzzy Logic Control
Algorithm Using a Fuzzy Ranking Approach. In H. J. Zimmerman, editor,
Proceedings of the Sixth European Congress on Intelligent Techniques and Soft
Computing, pages 1799–1808, Aachen, 1998. Verlag Mainz.

1041. M. Mahfouf, M.-Y. Chen, and D. A. Linkens. Adaptive Weighted Parti-
cle Swarm Optimisation for Multi-objective Optimal Design of Alloy Steels.
In Parallel Problem Solving from Nature - PPSN VIII, pages 762–771,
Birmingham, UK, September 2004. Springer-Verlag. Lecture Notes in Com-
puter Science Vol. 3242.

1042. Q. H. Mahmoud. Distributed Programming with Java. Manning Publications
Company, Greenwich, CT, 2000.

1043. C. Maier-Rothe and J. M. F. Stankard. A linear programming approach
to choosing between multi-objective alternatives. In Proceedings of the 7th
Mathematical Programming Symposium, The Hague, 1970.

1044. I. Makarov, T. Vinigradskaia, A. Rubinski, and V. Sokolov. Choice Theory
and Decision Making. Nauka, 1982. (In Russian).

1045. R. Mäkinen, P. Neittaanmäki, J. Periaux, M. Sefrioui, and J. Toivanen. Par-
allel Genetic Solution for Multiobjective MDO. In A. Schiano, A. Ecer,
J. Périaux, and N. Satofuka, editors, Parallel CFD’96 Conference, pages 352–
359, Capri, 1996. Elsevier.

1046. R. Mäkinen, P. Neittaanmäki, J. Périaux, and J. Toivanen. A genetic Algo-
rithm for Multiobjective Design Optimization in Aerodynamics and Elec-
tromagnetics. In K. Papailiou, editor, Computational Fluid Dynamics ’98,
Proceedings of the ECCOMAS 98 Conference, volume 2, pages 418–422,
Athens, Greece, September 1998. Wiley.

1047. R. A. Mäkinen, J. Periaux, and J. Toivanen. Multidisciplinary shape op-
timization in aerodynamics and electromagnetics using genetic algorithms.
International Journal for Numerical Methods in Fluids, 30(2):149–159, May
1999.

1048. B. Malakooti, J. Wang, and E. Tandler. A sensor-based accelerated approach
for multi-attribute machinability and tool life evaluation. International Jour-
nal of Production Research, 28:23–73, 1990.

1049. J. Malard, A. Heredia-Langner, D. Baxter, K. Jarman, and W. Cannon. Con-
strained De Novo Peptide Identification via Multi-objective Optimization. In
Online Proceedings of the Third IEEE International Workshop on High Per-
formance Computational Biology (HiCOMB 2004), Santa Fe, New Mexico,
April 2004.

1050. J. Malard, A. Heredia-Langner, W. Cannon, R. Mooney, and D. Baxter. Pep-
tide identification via constrained multi-objective optimization: Pareto-based
genetic algorithms. Computation & Concurrency: Practice and Experience,
17(14):1687–1704, December 2005.

1051. L. Mandow and J. Pérez de la Cruz. Multicriteria heuristic search. European
Journal of Operational Research, 150:253–280, 2003.

1052. V. Maniezzo and A. Carbonaro. An ants heuristic for the frequency assign-
ment problem. Future Generation Computer Systems, 16(9):927–935, 2000.

706 References

1053. J. Mao, K. Hirasawa, J. Hu, and J. Murata. Genetic Symbiosis Algorithm
for Multiobjective Optimization Problem. In Proceedings of the 9th IEEE In-
ternational Workshop on Robot and Human Interactive Communication (RO-
MAN 2000), pages 137–142. IEEE, 2000.

1054. J. Mao, K. Hirasawa, J. Hu, and J. Murata. Genetic Symbiosis Algorithm for
Multiobjective Optimization Problems. In Proceedings of the 2001 Genetic
and Evolutionary Computation Conference. Late-Breaking Papers, pages 267–
274, San Francisco, California, July 2001.

1055. D. Maravall and J. de Lope. Multi-objective dynamic optimization with
genetic algorithms for automatic parking. Soft Computing, 11(3):249–257,
February 2007.

1056. T. Marchant, D. Bouyssou, P. Perny, M. Pirlot, A. Tsoukias, and P. Vincke.
Choosing on the basis of several viewpoints: the example of voting. Service
de Mathématiques de la Gestion, U.L.B., 99(3), 1999.

1057. N. Marco, S. Lanteri, J.-A. Desideri, and J. Périaux. A Parallel Genetic Algo-
rithm for Multi-Objective Optimization in Computational Fluid Dynamics.
In K. Miettinen, M. M. Mäkelä, P. Neittaanmäki, and J. Périaux, editors,
Evolutionary Algorithms in Engineering and Computer Science, chapter 22,
pages 445–456. John Wiley & Sons, Ltd, Chichester, UK, 1999.

1058. T. Marcu. A multiobjective evolutionary approach to pattern recognition
for robust diagnosis of process faults. In R. J. Patton and J. Chen, editors,
IFAC Symposium on Fault Detection, Supervision and Safety for Technical
Processes: SAFEPROCESS’97, pages 1183–1188, Kington Upon Hull, United
Kingdom, August 1997.

1059. T. Marcu, L. Ferariu, and P. M. Frank. Genetic Evolving of Dynamic Neural
Networks with Application to Process Fault Diagnosis. In Procedings of the
EUCA/IFAC/IEEE European Control Conference ECC’99, Karlsruhe, Ger-
many, 1999. CD-ROM, F-1046,1.

1060. T. Marcu and P. M. Frank. Parallel Evolutionary Approach to System Identi-
fication for Process Fault Diagnosis. In P. S. Dhurjati and S. Cauvin, editors,
Procedings of the IFAC Workshop on ‘On-line Fault Detection and Super-
vision in the Chemical Process Industries’, pages 113–118, Solaize (Lyon),
France, 1998.

1061. S. Mardle, S. Pascoe, and M. Tamiz. An Investigation of Genetic Algorithms
for the Optimization of Multiobjective Fisheries Bioeconomic Models. In
Proceedings of the Third International Conference on Multi-Objective Pro-
gramming and Goal Programming: Theory and Applications (MOPGP’98),
Quebec City, Canada, 1998.

1062. S. Mardle, S. Pascoe, and M. Tamiz. An investigation of genetic algorithms
for the optimisation of multi-objective fisheries bioeconomic models. Interna-
tional Transactions of Operations Research, 7(1):33–49, 2000.

1063. B. Mareschal and J.-P. Brans. Geometrical Representations for MCDA.
European Journal of Operational Research, 34(1):69–77, February 1988.

1064. R. Marett and M. Wright. A Comparison of Neighborhood Search Techniques
for Multi-Objective Combinatorial Problems. Computers and Operations Re-
search, 23(5):465–483, 1996.

1065. S. Marglin. Public Investment Criteria. MIT Press, Cambridge, Massa-
chusetts, 1967.

1066. C. Mariano and E. Morales. A New Approach for the Solution of Multi-
ple Objective Optimization Problems Based on Reinforcement Learning. In

References 707

O. Cairo, L. E. Sucar, and F. J. Cantu, editors, MICAI 2000: Advances in
Artificial Intelligence. Mexican International Conference on Artificial Intelli-
gence, pages 212–223, Acapulco, Mexico, April 2000. Springer-Verlag.

1067. C. E. Mariano and E. Morales. MOAQ an Ant-Q Algorithm for Multiple
Objective Optimization Problems. In W. Banzhaf, J. Daida, A. E. Eiben,
M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Genetic and
Evolutionary Computing COnference (GECCO 99), volume 1, pages 894–901,
San Francisco, California, July 1999. Morgan Kaufmann.

1068. C. E. Mariano and E. Morales. A Multiple Objective Ant-Q Algorithm for the
Design of Water Distribution Irrigation Networks. Technical Report HC-9904,
Instituto Mexicano de Tecnoloǵıa del Agua, June 1999.

1069. C. E. Mariano and E. Morales. A New Distributed Reinforcement Learning
Algorithm for Multiple Objective Optimization Problems. Technical Report
HC-200001, Instituto Mexicano de Tecnoloǵıa del Agua, January 2000.

1070. C. E. Mariano and E. F. Morales. Distributed Reinforcement Learning for
Multiple Objective Optimization Problems. In 2000 Congress on Evolutionary
Computation, volume 1, pages 188–195, Piscataway, New Jersey, July 2000.
IEEE Service Center.

1071. C. E. Mariano and E. F. Morales. MDQL: A Reinforcement Learning
Approach for the Solution of Multiple Objective Optimization Problems.
In PPSN/SAB Workshop on Multiobjective Problem Solving from Nature
(MPSN), Paris, France, September 2000.

1072. C. E. Mariano Romero. Aprendizaje por Refuerzo en Optimización Multi-
objetivo. PhD thesis, Departamento de Ciencias Computacionales, Instituto
Tecnológico y de Estudios Superiores de Monterrey, Cuernavaca, Morelos,
México, Marzo 2001. (In Spanish).

1073. C. E. Mariano-Romero and V. H. Alcocer-Yamanaka. Multiobjective Opti-
mization of Water-Using Systems. In N. Nedjah and L. de Macedo Mourelle,
editors, Real-World Multi-Objective System Engineering, pages 163–192. Nova
Science Publishers, New York, 2005.

1074. C. E. Mariano-Romero, V. H. Alcocer-Yamanaka, and E. F. Morales. Multi-
objective optimization of water-using systems. European Journal of Opera-
tional Research, 181(3):1691–1707, 16 September 2007.

1075. R. Marler and J. Arora. Survey of multi-objective optimization methods for
engineering. Structural and Multidisciplinary Optimization, 26:369–395, 2004.

1076. J.-M. Martel, L. N. Kiss, and M. A. Rousseau. PAMSSEM: Une
Procédure d’Agrégation Multicritère de type Surclassement de Synthèse pour
Évaluations Mixtes. Unpublished Working Document, 1996.

1077. R. Mart́ı. Scatter Search–Wellsprings and Challenges. European Journal of
Operational Research, 169:351–358, 2006.

1078. N. Marvin, M. Bower, and J. E. Rowe. An evolutionary approach to con-
structing prognostic models. Artificial Intelligence in Medicine, 15(2):155–
165, February 1999.

1079. W. Mason, V. Coverstone-Carroll, and J. Hartmann. Optimal Earth Or-
biting Satellite Constellations via a Pareto Genetic Algorithm. In 1998
AIAA/AAS Astrodynamics Specialist Conference and Exhibit, pages 169–177,
Boston, Massachusetts, August 1998. Paper No. AIAA 98-4381.

1080. W. J. Mason. Satellite Constellation Design Via Evolutionary Computation.
Master’s thesis, Department of Aeronautical and Astronautical Engineering,
University of Illinois at Urbana Champaign, December 2001. (In process).

708 References

1081. S. Massebeuf, C. Fonteix, L. N. Kiss, I. Marc, F. Pla, and K. Zaras. Multicri-
teria Optimization and Decision Engineering of an Extrusion Process Aided
by a Diploid Genetic Algorithm. In 1999 Congress on Evolutionary Compu-
tation, pages 14–21, Washington, D.C., July 1999. IEEE Service Center.

1082. M. Matos and P. Melo. Multiobjective Reconfiguration for Loss Reduction and
Service Restorating Using Simulated Annealing. In International Conference
on Electric Power Engineering, 1999. PowerTech Budapest 99, pages 213–218,
Budapest, Hungary, 1999. IEEE.

1083. K. B. Matthews, S. Craw, S. Elder, A. R. Sibbald, and I. MacKenzie. Applying
Genetic Algorithms to Multi-Objective Land Use Planning. In D. Whitley,
editor, Genetic and Evolutionary Computation Conference, pages 613–620,
Las Vegas, Nevada, July 2000. Morgan Kaufmann Publishers.

1084. E. J. McCluskey. Minimization of Boolean Functions. Bell Systems Technical
Journal, 35 (5):1417–1444, November 1956.

1085. P. R. McMullen. An ant colony optimization approach to addessing a JIT
sequencing problem with multiple objectives. Artificial Intelligence in Engi-
neering, 15:309–317, 2001.

1086. A. L. Medaglia, E. Gutiérrez, and J. G. Villegas. Solving Facility Location
Problems with a Tool for Rapid Development of Multi-Objective Evolutionary
Algorithms (MOEAs). In J.-P. Rennard, editor, Handbook of Research on
Nature Inspired Computing for Economy and Management, volume 2, pages
642–660, Hershey, UK, 2006. Idea Group Reference. ISBN 1-59140-984-5.

1087. J. Mehnen, T. Michelitsch, K. Schmitt, and T. Kohlen. pMOHypEA: Paral-
lel Evolutionary Multiobjective Optimization using Hypergraphs. Technical
Report Reihe CI-189/04, SFB 531, University of Dortmund, Dortmund,
Germany, ISSN 1433-3325, 2004.

1088. F. Menczer, M. Degeratu, and W. N. Street. Efficient and Scalable Pareto
Optimization by Evolutionary Local Selection Algorithms. Evolutionary Com-
putation, 8(2):223–247, Summer 2000.

1089. G. Meneghetti, V. Pediroda, and C. Poloni. Application of a Multi Objective
Genetic Algorithm and a Neural Network to the Optimisation of Foundry
Processes. In K. Miettinen, M. M. Mäkelä, P. Neittaanmäki, and J. Périaux,
editors, Evolutionary Algorithms in Engineering and Computer Science, chap-
ter 23, pages 457–470. John Wiley & Sons, Ltd, Chichester, UK, 1999.

1090. H. Meng, X. Zhang, and S. Liu. A co-evolutionary particle swarm
optimization-based method for multiobjective optimization. In S. Zhang and
R. Jarvis, editors, AI 2005: Advances in Artificial Intelligence, pages 349–359.
Springer-Verlag. Lecture Notes in Artificial Intelligence Vol. 3809, 2005.

1091. L. D. Merkle, G. H. Gates, Jr., G. B. Lamont, and R. Pachter. Application
of the Parallel Fast Messy Genetic Algorithm to the Protein Structure Pre-
diction Problem. Proceedings of the Intel Supercomputer Users’ Group Users
Conference, pages 189–195, 1994.

1092. L. D. Merkle and G. B. Lamont. A Random Function Based Framework
for Evolutionary Algorithms. In T. Bäck, editor, Proceedings of the Sev-
enth International Conference on Genetic Algorithms, pages 105–112. Morgan
Kaufmann Publishers, San Mateo, California, July 1997.

1093. P. Merz and B. Freisleben. Genetic Local Search for the TSP: New Results.
In Proceedings of the 1997 IEEE International Conference on Evolutionary
Computation, pages 159–164. IEEE Press, 1997.

References 709

1094. A. Messac. Physical programming: effective optimization for computational
design. AIAA Journal, 34(1):149–158, January 1996.

1095. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equa-
tion of State Calculations by Fast Computing Machines. Journal of Chemical
Physics, 21(6):1087–1092, 1953.

1096. H. Meunier, E.-G. Talbi, and P. Reininger. A Multiobjective Genetic Algo-
rithm for Radio Network Optimization. In 2000 Congress on Evolutionary
Computation, volume 1, pages 317–324, Piscataway, New Jersey, July 2000.
IEEE Service Center.

1097. E. Mezura-Montes and C. A. Coello Coello. A Simple Multimembered Evo-
lution Strategy to Solve Constrained Optimization Problems. IEEE Trans-
actions on Evolutionary Computation, 9(1):1–17, February 2005.

1098. E. Mezura-Montes and C. A. Coello Coello. A Survey of Constraint-Handling
Techniques Based on Evolutionary Multiobjective Optimization. Technical
Report EVOCINV-04-2006, Evolutionary Computation Group at CINVES-
TAV, Departamento de Computación, CINVESTAV-IPN, México, October
2006.

1099. E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello. Comparing
Differential Evolution Models for Global Optimization. In M. K. et al., edi-
tor, 2006 Genetic and Evolutionary Computation Conference (GECCO’2006),
volume 1, pages 485–492, Seattle, Washington, USA, July 2006. ACM Press.

1100. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, third edition, 1996.

1101. Z. Michalewicz and D. B. Fogel. How to Solve It: Modern Heuristics. Springer.
Second, Revised and Extended Edition, Berlin, 2004. ISBN 3-540-22494-7.

1102. Z. Michalewicz and D. B. Fogel. How to Solve It: Modern Heuristics. Springer,
Berlin, Germany, second edition, 2004. ISBN 3-540-22494-7.

1103. Z. Michalewicz and C. Z. Janikow. GENOCOP: a genetic algorithm for nu-
merical optimization problems with linear constraints. Communications of
the ACM, 39(12):223–240, December 1996.

1104. Z. Michalewicz and G. Nazhiyath. Genocop III: A Co-Evolutionary Algorithm
for Numerical Optimization Problems with Nonlinear Constraints. In D. B.
Fogel, editor, Proceedings of the Second IEEE Conference on Evolutionary
Computation, pages 647–651, Piscataway, New Jersey, 1995. IEEE Service
Center.

1105. Z. Michalewicz and M. Schoenauer. Evolutionary Algorithms for Constrained
Parameter Optimization Problems. Evolutionary Computation, 4(1):1–32,
1996.

1106. S. R. Michaud. Solving the Protein Structure Prediction Problem with Par-
allel Messy Genetic Algorithms. Master’s thesis, Air Force Institute of Tech-
nology, Wright-Patterson AFB, March 2001. AFIT/GCS/ENG/01M-06.

1107. E. Michielssen and D. S. Weile. Electromagnetic System Design using Genetic
Algorithms. In Genetic Algorithms and Evolution Strategies in Engineering
and Computer Science, pages 267–288. John Wiley and Sons, England, 1995.

1108. T. Miconi. When Evolving Populations is Better than Coevolving Individuals:
The Blind Mice Problem. In G. Gottlob and T. Walsh, editors, IJCAI-03,
Proceedings of the Eighteenth International Joint Conference on Artificial In-
telligence, pages 647–652. Morgan Kaufmann, August 2003.

1109. I. Mierswa. Incorporating Fuzzy Knowledge Into Fitness: Multiobjective Evo-
lutionary 3D Design of Process Plants. In H.-G. B. et al., editor, 2005 Genetic

710 References

and Evolutionary Computation Conference (GECCO’2005), volume 2, pages
1985–1992, New York, USA, June 2005. ACM Press.

1110. K. Miettinen. Interactive Nonlinear Multiobjective Procedures. In M. Ehrgott
and X. Gandibleux, editors, Multiple Criteria Optimization: State of the Art
Annotated Bibliographic Surveys, pages 227–276. Kluwer Academic Publish-
ers, Boston, 2002.

1111. K. M. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic
Publishers, Boston, Massachusetts, 1999.

1112. N. Milickovic, M. Lahanas, D. Baltas, and N. Zamboglou. Comparison of
Evolutionary and Deterministic Multiobjective Algorithms for Dose Opti-
mization in Branchytherapy. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello
Coello, and D. Corne, editors, First International Conference on Evolutionary
Multi-Criterion Optimization, pages 167–180. Springer-Verlag. Lecture Notes
in Computer Science No. 1993, 2001.

1113. G. A. Miller. The Magical Number Seven, Plus or Minus Two: Some Limits on
Our Capacity for Processing Information. The Psychological Review, 63(2):81–
97, 1956.

1114. M. Mitchell. An Introduction to Genetic Algorithms. The MIT Press,
Cambridge, Massachusetts, 1996.

1115. T. Mitchell. Version Spaces: An Approach to Concept Learning. PhD the-
sis, Computer Science Department, Stanford University, Stanford, California,
1978.

1116. K. Mitra, K. Deb, and S. K. Gupta. Multiobjective Dynamic Optimization of
an Industrial Nylon 6 Semibatch Reactor Using Genetic Algorithm. Journal
of Applied Polymer Science, 69(1):69–87, 1998.

1117. O. A. Mohammed and G. F. Üler. Genetic Algorithms for the Optimal Design
of Electromagnetic Devices. In Conference on the Annual Review of Progress
in Applied Computational Electromagnetics, volume 11, pages 386–393, 1995.

1118. J. Molina, M. Laguna, R. Mart́ı, and R. Caballero. SSPMO: A Scatter Search
Procedure for Non-Linear Multiobjective Optimization. Technical Report
TR11-2004, Departamento de Estad́ıstica e Investigación Operativa, Univer-
sidad de Valencia, Valencia, Spain, 2004.

1119. A. Molyneaux, G. Leyland, and D.Favrat. A New, Clustering Evolution-
ary Multi-Objective Optimisation Technique. In Proceedings of the Third
International Symposium on Adaptive Systems—Evolutionary Computation
and Probabilistic Graphical Models, pages 41–47, Havana, Cuba, March 19–23
2001. Institute of Cybernetics, Mathematics and Physics.

1120. D. E. Monarchi. Interactive Algorithm for Multiple Objective Decision Mak-
ing. Technical Report 6, Hydrology and Water Resources Department, The
University of Arizona, Tucson, Arizona, 1972.

1121. D. E. Monarchi, C. C. Kisiel, and L. Duckstein. Interactive multiobjective
programming in water resources: a case study. Water Resources Research,
9(4):837–850, August 1973.

1122. D. Montana, G. Bidwell, G. Vidaver, and J. Herrero. Scheduling and Route Se-
lection for Military Land Moves Using Genetic Algorithms. In 1999 Congress
on Evolutionary Computation, volume 2, pages 1118–1123, Washington, D.C.,
July 1999. IEEE Service Center.

1123. D. Montana, M. Brinn, S. Moore, and G. Bidwell. Genetic Algorithms for
Complex, Real-Time Scheduling. In Proceedings of the 1998 IEEE Interna-

References 711

tional Conference on Systems, Man, and Cybernetics, pages 2213–2218, La
Jolla, California, October 1998. IEEE.

1124. D. Montana and J. Radi. Optimizing Parameters of a Mobile Ad Hoc Network
Protocol with a Genetic Algorithm. In H.-G. B. et al., editor, 2005 Genetic
and Evolutionary Computation Conference (GECCO’2005), volume 2, pages
1993–1998, New York, USA, June 2005. ACM Press.

1125. C. Moon, Y.-Z. Lin, and M. Gen. Evolutionary Algorithm for Flexible Process
Sequencing with Multiple Objectives. In D. B. Fogel, editor, Proceedings of
the 1998 International Conference on Evolutionary Computation, pages 27–
32, Piscataway, New Jersey, 1998. IEEE.

1126. J. Moore and R. Chapman. Application of Particle Swarm to Multiobjective
Optimization. Department of Computer Science and Software Engineering,
Auburn University. (Unpublished manuscript), 1999.

1127. J. J. Moré, B. S. Garbow, and K. E. Hillstrom. Testing Unconstrained Opti-
mization Software. ACM Transactions on Mathematical Software, 7(1):17–41,
1981.

1128. D. R. Morgan, J. W. Eheart, and A. J. Valocchi. Aquifer remediation design
under uncertainty using a new chance constrained programming technique.
Water Resources Research, 29(3):551–561, 1993.

1129. M. Morita, R. Sabourin, F. Bortolozzi, and C. Suen. Segmentation and recog-
nition of handwritten dates. In Proceedings of the Eighth International Work-
shop on Frontiers of Handwriting Recognition (IWFHR’02), pages 105–110,
Ontario, Canada, August 2002. IEEE Computer Society.

1130. M. Morita, R. Sabourin, F. Bortolozzi, and C. Suen. Unsupervised Feature
Selection Using Multi-Objective Genetic Algorithm for Handwritten Word
Recognition. In Proceedings of the 7th International Conference on Docu-
ment Analysis and Recognition (ICDAR’2003), pages 666–670, Edinburgh,
Scotland, August 2003.

1131. R. W. Morrison and K. A. De Jong. A Test Problem Generator for Non-
Stationary Environments. In 1999 Congress on Evolutionary Computation,
pages 2047–2053, Washington, D.C., July 1999. IEEE Service Center.

1132. J. Morse. Reducing the size of the nondominated set: Pruning by clustering.
Computers and Operations Research, 7(1–2):55–66, 1980.

1133. P. Moscato. On Evolution, Search, Optimization, Genetic Algorithms and
Martial Arts. Towards Memetic Algorithms. Technical Report 158–79, Cal-
tech Concurrent Computation Program, California Institute of Technology,
Pasadena, California, September 1989.

1134. P. Moscato. Memetic Algorithms: A Short Introduction. In D. Corne,
F. Glover, and M. Dorigo, editors, New Ideas in Optimization, pages 219–
234. McGraw-Hill, 1999.

1135. H. Moskowitz, G. W. Evans, and I. Jiménez-Lerma. Development of A Mul-
tiattribute Value Function for Long Range Electrical Generation Expansion.
IEEE Transactions on Engineering Management, EM–25:78–87, 1978.

1136. J. Mossin. Theory of Financial Markets. Prentice-Hall, Englewood Cliffs,
New Jersey, 1973.

1137. S. Mostaghim, J. Branke, and H. Schmeck. Multi-Objective Particle Swarm
Optimization on Computer Grids. Technical Report 502, AIFB Institute,
December 2006. available at: http://www.aifb.uni-karlsruhe.de/EffAlg/smo/
paper-12-06.pdf.

712 References

1138. S. Mostaghim and J. Teich. The role of ε-dominance in multi objective particle
swarm optimization methods. In Proceedings of the 2003 Congress on Evo-
lutionary Computation (CEC’2003), volume 3, pages 1764–1771, Canberra,
Australia, December 2003. IEEE Press.

1139. S. Mostaghim and J. Teich. Strategies for Finding Good Local Guides
in Multi-objective Particle Swarm Optimization (MOPSO). In 2003 IEEE
Swarm Intelligence Symposium Proceedings, pages 26–33, Indianapolis,
Indiana, USA, April 2003. IEEE Service Center.

1140. S. Mostaghim and J. Teich. Covering Pareto-optimal Fronts by Subswarms
in Multi-objective Particle Swarm Optimization. In 2004 Congress on Evo-
lutionary Computation (CEC’2004), volume 2, pages 1404–1411, Portland,
Oregon, USA, June 2004. IEEE Service Center.

1141. S. Mostaghim, J. Teich, and A. Tyagi. Comparison of Data Structures for
Storing Pareto-sets in MOEAs. In Congress on Evolutionary Computation
(CEC’2002), volume 1, pages 843–848, Piscataway, New Jersey, May 2002.
IEEE Service Center.

1142. V. Mousseau and R. Slowinski. Inferring an ELECTRE TRI Model from
Assignment Examples. Journal of Global Optimization, 12:157–174, 1998.

1143. V. Mousseau, R. Slowinski, and P. Zielniewicz. A user-oriented implementa-
tion of the ELECTRE-TRI method integrating preference elicitation support.
Computers & Operations Research, 27:757–777, 2000.

1144. A. Mukerjee, R. Biswas, K. Deb, and A. P. Mathur. Multi-objective evo-
lutionary algorithms for the risk-return trade-off in bank-load management.
International Transactions in Operational Research, 9(5):583–597, September
2002.

1145. S. Mullei and P. Beling. Hybrid Evolutionary Algorithms for a Multiobjective
Financial Problem. In Proceedings of the 1998 IEEE International Conference
on Systems, Man, and Cybernetics, pages 3925–3930. IEEE, October 1998.

1146. S. D. Müller, I. F. Sbalzarini, J. H. Walther, and P. D. Koumoutsakos. Evo-
lution Strategies for the Optimization of Microdevices. In Proceedings of the
Congress on Evolutionary Computation 2001 (CEC’2001), volume 1, pages
302–309, Piscataway, New Jersey, May 2001. IEEE Service Center.

1147. G. Munda. Multiple-Criteria Decision-Aid: Some Epistemological Considera-
tions. Journal of Multi-Criteria Decision Analysis, 2:41–55, 1993.

1148. G. Munda. Multicriteria Evaluation in a Fuzzy Environment. Springer-Verlag,
New York, 1995.

1149. T. Murata. Genetic Algortithms for Multi-Objective Optimization. PhD thesis,
Osaka Prefecture University, Japan, 1997.

1150. T. Murata and H. Ishibuchi. MOGA: Multi-Objective Genetic Algorithms.
In Proceedings of the 2nd IEEE International Conference on Evolutionary
Computing, pages 289–294, Perth, Australia, November 1995.

1151. T. Murata, H. Ishibuchi, and M. Gen. Cellular Genetic Local Search for
Multi-Objective Optimization. In D. Whitley, D. Goldberg, E. Cantú-Paz,
L. Spector, I. Parmee, and H.-G. Beyer, editors, Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO’2000), pages 307–314,
San Francisco, California, 2000. Morgan Kaufmann.

1152. T. Murata, H. Ishibuchi, and M. Gen. Specification of Genetic Search Direc-
tions in Cellular Multi-objective Genetic Algorithms. In E. Zitzler, K. Deb,

References 713

L. Thiele, C. A. Coello Coello, and D. Corne, editors, First International Con-
ference on Evolutionary Multi-Criterion Optimization, pages 82–95. Springer-
Verlag. Lecture Notes in Computer Science No. 1993, 2001.

1153. T. Murata, H. Ishibuchi, and H. Tanaka. Multi-Objective Genetic Algorithm
and Its Application to Flowshop Scheduling. Computers and Industrial En-
gineering Journal, 30(4):957–968, September 1996.

1154. T. Murata and R. Itai. Local Search in Two-Fold EMO Algorithm to En-
hance Solution Similarity for Multi-objective Vehicle Routing Problems. In
S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, editors, Evo-
lutionary Multi-Criterion Optimization, 4th International Conference, EMO
2007, pages 201–215, Matshushima, Japan, March 2007. Springer. Lecture
Notes in Computer Science Vol. 4403.

1155. T. Murata, S. Kawakami, H. Nozawa, M. Gen, and H. Ishibuchi. Three-
Objective Genetic Algorithms for Designing Compact Fuzzy Rule-Based Sys-
tems for Pattern Classification Problems. In L. Spector, E. D. Goodman,
A. Wu, W. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk,
M. H. Garzon, and E. Burke, editors, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO’2001), pages 485–492, San
Francisco, California, 2001. Morgan Kaufmann Publishers.

1156. T. Murata, H. Nozawa, H. Ishibuchi, and M. Gen. Modifications of Local
Search Directions for Non-dominated Solutions in Cellular Multiobjective
Genetic Algorithms for Pattern Classification Problems. In C. M. Fonseca,
P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele, editors, Evolutionary Multi-
Criterion Optimization. Second International Conference, EMO 2003, pages
593–607, Faro, Portugal, April 2003. Springer. Lecture Notes in Computer
Science. Volume 2632.

1157. T. Murata, H. Nozawa, Y. Tsujimura, M. Gen, and H. Ishibuchi. Effect of Lo-
cal Search on the Performance of Cellular Multi-Objective Genetic Algorithms
for Designing Fuzzy Rule-based Classification Systems. In Congress on Evo-
lutionary Computation (CEC’2002), volume 1, pages 663–668, Piscataway,
New Jersey, May 2002. IEEE Service Center.

1158. S. Murthy, R. Akkiraju, R. Goodwin, P. Keskinocak, J. Rachlin, F. Wu,
S. Kumaran, and R. Daigle. Enhancing the Decision-Making Process for
Paper Mill Schedulers. Tappi Journal, 82(7):42–47, July 1999.

1159. S. Murthy, R. Akkiraju, J. Raclin, and F. Wu. Agent-Based Cooperative
Scheduling. In Proceedings of the AAAI’97 Workshop on Constraints and
Agents, pages 112–117, 1997.

1160. S. Murthy, S. Kasif, and S. Salzberg. OC1: Randomized induction of oblique
decision trees. In Proceedings of the Eleventh National Conference on Artificial
Intelligence, pages 322–327. AAAI, MIT Press, 1993.

1161. L. N. de Castro and J. Timmis. An Introduction to Artificial Immune Systems:
A New Computational Intelligence Paradigm. Springer, London, 2002. ISBN
1-85233-594-7.

1162. S. Nakaya, S. Wakabayashi, and T. Koide. An adaptive genetic algorithm
for VLSI floorplanning based on sequence-pair. In 2000 IEEE International
Symposium on Circuits and Systems (ISCAS’2000), volume 3, pages 65–68.
IEEE Press, 2000.

1163. S. Nakrani and C. Tovey. On honey bees and dynamic allocation in an internet
server colony. In C. Anderson and T. Balch, editors, Proceedings of the Second

714 References

International Workshop on the Mathematics and Algorithms of Social Insects,
pages 115–122, Atlanta, Georgia, USA, December 2003. Georgia Institute of
Technology.

1164. D. Nam and C. H. Park. Multiobjective Simulated Annealing: A Comparative
Study to Evolutionary Algorithms. International Journal of Fuzzy Systems,
2(2):87–97, 2000.

1165. D. Nam and C. H. Park. Pareto-Based Cost Simulated Annealing for Mul-
tiobjective Optimization. In L. Wang, K. C. Tan, T. Furuhashi, J.-H. Kim,
and X. Yao, editors, Proceedings of the 4th Asia-Pacific Conference on Sim-
ulated Evolution and Learning (SEAL’02), volume 2, pages 522–526, Orchid
Country Club, Singapore, November 2002. Nanyang Technical University.

1166. D. Nam, Y. D. Seo, L.-J. Park, C. H. Park, and B. Kim. Parameter Opti-
mization of a Voltage Reference Circuit using EP. In D. B. Fogel, editor,
Proceedings of the 1998 International Conference on Evolutionary Computa-
tion, pages 245–266, Piscataway, New Jersey, 1998. IEEE.

1167. S. Narayanan and S. Azarm. On Improving Multiobjective Genetic Algo-
rithms for Design Optimization. Structural Optimization, 18:146–155, 1999.

1168. N. Nariman-Zadeh, K. Atashkari, A. Jamali, A. Pilechi, and X. Yao. Inverse
modelling of multi-objective thermodynamically optimized turbojet engines
using GMDH-type neural networks and evolutionary algorithms. Engineering
Optimization, 37(5):437–462, July 2005.

1169. J. Nash. Two-person cooperative games. Econometrica, 21:128–140, 1953.
1170. B. Naujoks, N. Beume, and M. Emmerich. Multi-objective Optimization using

S-metric Selection: Application to three-dimensional Solution Spaces. In 2005
IEEE Congress on Evolutionary Computation (CEC’2005), volume 2, pages
1282–1289, Edinburgh, Scotland, September 2005. IEEE Service Center.

1171. B. Naujoks, L. Willmes, T. Bäck, and W. Haase. Evaluating Multi-criteria
Evolutionary Algorithms for Airfoil Optimization. In J. J. Merelo Guervós,
P. Adamidis, H.-G. Beyer, J.-L. F.-V. nas, and H.-P. Schwefel, editors, Parallel
Problem Solving from Nature—PPSN VII, pages 841–850, Granada, Spain,
September 2002. Springer-Verlag. Lecture Notes in Computer Science No.
2439.

1172. R. Neapolitan and K. Naimipour. Foundations of Algorithms. D. C. Heath
and Company, Lexington, Massachusetts, 1996.

1173. A. Nebro, F. Luna, E. Alba, A. Beham, and B. Dorronsoro. AbYSS: Adapting
Scatter Search for Multiobjective Optimization. Technical Report ITI-2006-2,
Dept. Lenguajes y Ciencias de la Computación, University of Málaga, Malaga,
Spain, 2006.

1174. A. Nebro, F. Luna, E.-G. Talbi, and E. Alba. Parallel Multiobjective Opti-
mization. In E. Alba, editor, Parallel Metaheuristics, pages 371–394. Wiley-
Interscience, New Jersey, USA, 2005. ISBN 13-978-0-471-67806-9.

1175. A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba. A Cellu-
lar Genetic Algorithm for Multiobjective Optimization. In D. A. Pelta and
N. Krasnogor, editors, Proceedings of the Workshop on Nature Inspired Co-
operative Strategies for Optimization (NICSO 2006), pages 25–36, Granada,
Spain, 2006.

1176. A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba. Design Is-
sues in a Multiobjective Cellular Genetic Algorithm. In S. Obayashi, K. Deb,
C. Poloni, T. Hiroyasu, and T. Murata, editors, Evolutionary Multi-Criterion

References 715

Optimization, 4th International Conference, EMO 2007, pages 126–140,
Matshushima, Japan, March 2007. Springer. Lecture Notes in Computer Sci-
ence Vol. 4403.

1177. A. J. Nebro, F. Luna, and E. Alba. New Ideas in Applying Scatter Search to
Multiobjective Optimization. In C. A. Coello Coello, A. Hernández Aguirre,
and E. Zitzler, editors, Evolutionary Multi-Criterion Optimization. Third
International Conference, EMO 2005, pages 443–458, Guanajuato, México,
March 2005. Springer. Lecture Notes in Computer Science Vol. 3410.

1178. N. Nedjah and L. de Macedo Mourelle. Multi-Objective Evolutionary Hard-
ware for RSA-Based Cryptosystems. In Proceedings of the International
Conference on Information Technology: Coding and Computing (ITCC’04),
volume 2, pages 503–507, Las Vegas, Nevada, April 2004. IEEE.

1179. N. Nedjah and L. de Macedo Mourelle. A Reconfigurable Parallel Hardware
for Genetic Algorithms. In N. Nedjah, E. Alba, and L. de Macedo Mourelle,
editors, Parallel Evolutionary Computations, pages 59–69. Springer, Berlin
Heidelberg, 2006.

1180. N. Nedjah and L. M. Mourelle. Secure Evolutionary Hardware for Public-Key
Cryptosystems. In 2004 Congress on Evolutionary Computation (CEC’2004),
volume 2, pages 2130–2137, Portland, Oregon, USA, June 2004. IEEE Service
Center.

1181. M. Neef, D. Thierens, and H. Arciszewski. A Case Study of a Multiobjec-
tive Recombinative Genetic Algorithm with Coevolutionary Sharing. In 1999
Congress on Evolutionary Computation, pages 796–803, Washington, D.C.,
July 1999. IEEE Service Center.

1182. J. Nelder and R. Mead. A simplex method for function minimization. Com-
puter Journal, 7(4):308–313, 1965.

1183. F. Neumann. Expected runtimes of a simple evolutionary algorithm for the
multi-objective minimum spanning tree problem. European Journal of Oper-
ational Research, 181(3):1620–1629, 16 September 2007.

1184. D. Newman, S. Hettich, C. Blake, and C. Merz. UCI Repository
of machine learning databases, 1998. http://www.ics.uci.edu/∼mlearn/
MLRepository.html.

1185. H. B. Nielsen. Methods for Analyzing Pipe Networks. Journal of Hydraulic
Engineering, 125(2):139–157, February 1989.

1186. J. Nievergelt, R. Gasser, F. Mäser, and C. Wirth. All the Needles in a
Haystack: Can Exhaustive Search Overcome Combinatorial Chaos? In J. van
Leeuwen, editor, Computer Science Today: Lecture Notes in Computer Sci-
ence 1000, pages 254–274. Springer, Berlin, 1995.

1187. P. Nii. The Blackboard Model of Problem Solving. AI Magazine, 7(2):38–53,
Summer 1986.

1188. Y. Niu and L. Shen. Multi-resolution image fusion using AMOPSO-II. In
Intelligent Computing in Signal Processing and Pattern Recognition, pages
343–352. Springer-Verlag. Lecture Notes in Control and Information Sciences
Vol. 345, 2006.

1189. J. Noble and R. A. Watson. Pareto coevolution: Using performance against co-
evolved opponents in a game as dimensions for Pareto selection. In L. Spector,
E. D. Goodman, A. Wu, W. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo,
S. Pezeshk, M. H. Garzon, and E. Burke, editors, Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO’2001), pages 493–500,
San Francisco, California, 2001. Morgan Kaufmann Publishers.

716 References

1190. S. R. Norris and W. A. Crossley. Pareto-Optimal Controller Gains Gener-
ated by a Genetic Algorithm. In AIAA 36th Aerospace Sciences Meeting and
Exhibit, Reno, Nevada, January 1998. AIAA Paper 98-0010.

1191. R. B. nos, C. Gil, B. Paechter, and J. Ortega. Parallelization of Population-
based Multi-objective Metaheuristics: An Empirical Study. Applied Mathe-
matical Modelling, 30(7):578–592, 2006.

1192. L. Nunes de Castro and J. Timmis. An Artificial Immune Network for Mul-
timodal Function Optimization. In Proceedings of the 2002 IEEE World
Congress on Computational Intelligence, volume 1, pages 699–704, Honolulu,
Hawaii, May 2002. IEEE Service Center.

1193. L. Nunes de Castro and J. Timmis. An Introduction to Artificial Immune
Systems: A New Computational Intelligence Paradigm. Springer-Verlag, 2002.

1194. L. Nunes de Castro and F. J. Von Zuben. Learning and Optimization Using
the Clonal Selection Principle. IEEE Transactions on Evolutionary Compu-
tation, 6(3):239–251, 2002.

1195. M. Oates and D. Corne. QoS based GA Parameter Selection for Au-
tonomously Managed Distributed Information Systems. In H. Prade, editor,
Proceedings of the Thirteenth European Conference on Artificial Intelligence,
pages 670–674, Chichester, England, 1998. John Wiley & Sons.

1196. S. Obayashi. Pareto Genetic Algorithm for Aerodynamic Design using the
Navier-Stokes Equations. In D. Quagliarella, J. Périaux, C. Poloni, and
G. Winter, editors, Genetic Algorithms and Evolution Strategies in Engi-
neering and Computer Science. Recent Advances and Industrial Applications,
chapter 12, pages 245–266. John Wiley and Sons, West Sussex, England, 1997.

1197. S. Obayashi. Multidisciplinary Design Optimization of Aircraft Wing Plan-
form Based on Evolutionary Algorithms. In Proceedings of the 1998 IEEE
International Conference on Systems, Man, and Cybernetics, La Jolla, Cali-
fornia, October 1998. IEEE.

1198. S. Obayashi, K. Nakahashi, A. Oyama, and N. Yoshino. Design Optimiza-
tion of Supersonic Wings Using Evolutionary Algorithms. In Proceedings of
the Fourth ECCOMAS Computational Fluid Dynamics Conference, Athens,
Greece, September 1998.

1199. S. Obayashi and D. Sasaki. Visualization and Data Mining of Pareto Solutions
Using Self-Organizing Map. In C. M. Fonseca, P. J. Fleming, E. Zitzler,
K. Deb, and L. Thiele, editors, Evolutionary Multi-Criterion Optimization.
Second International Conference, EMO 2003, pages 796–809, Faro, Portugal,
April 2003. Springer. Lecture Notes in Computer Science. Volume 2632.

1200. S. Obayashi, S. Takahashi, and I. Fejtek. Transonic Wing Design by Inverse
Optimization using MOGA. In Sixth Annual Conference of the Computational
Fluid Dynamics Society of Canada, Quebec, Canada, June 1998.

1201. S. Obayashi, S. Takahashi, and Y. Takeguchi. Niching and Elitist Models
for MOGAs. In A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel,
editors, Parallel Problem Solving From Nature — PPSN V, pages 260–269,
Amsterdam, Holland, 1998. Springer-Verlag. Lecture Notes in Computer Sci-
ence No. 1498.

1202. S. Obayashi, T. Tsukahara, and T. Nakamura. Cascade Airfoil Design by
Multiobjective Genetic Algorithms. In Second International Conference on
Genetic Algorithms in Engineering Systems: Innovations and Applications,
pages 24–29. IEEE Conference Publication No. 446, September 1997.

References 717

1203. S. Obayashi, T. Tsukahara, and T. Nakamura. Multiobjective Evolutionary
Computation for Supersonic Wing-Shape Optimization. IEEE Transactions
on Evolutionary Computation, 4(2):182–187, July 2000.

1204. S. Obayashi, Y. Yamaguchi, and T. Nakamura. Multiobjective Genetic Algo-
rithm for Multidisciplinary Design of Transonic Wing Planform. Journal of
Aircraft, 34(5):690–693, September-October 1997.

1205. C. K. Oei, D. E. Goldberg, and S.-J. Chang. Tournament Selection, Niching,
and the Preservation of Diversity. Technical Report 91011, Illinois Genetic
Algorithms Laboratory, University of Illinois at Urbana-Champaign, Urbana,
Illinois, December 1991.

1206. I. Oesterreichter, A. Mitschele, F. Schlottmann, and D. Seese. Comparison
of Multi-Objective Evolutionary Algorithms in Optimizing Combinations of
Reinsurance Contracts. In M. K. et al., editor, 2006 Genetic and Evolutionary
Computation Conference (GECCO’2006), volume 1, pages 747–748, Seattle,
Washington, USA, July 2006. ACM Press. ISBN 1-59593-186-4.

1207. T. Okabe, Y. Jin, M. Olhofer, and B. Sendhoff. On Test Functions for Evolu-
tionary Multi-objective Optimization. In X. Y. et al., editor, Parallel Problem
Solving from Nature - PPSN VIII, pages 792–802, Birmingham, UK,
September 2004. Springer-Verlag. Lecture Notes in Computer Science Vol.
3242.

1208. T. Okuda, T. Hiroyasu, M. Miki, and S. Watanabe. DCMOGA: Distributed
Cooperation Model of Multi-Objective Genetic Algorithm. In PPSN/SAB
Workshop on Multiobjective Problem Solving from Nature II (MPSN-II),
Granada, Spain, September 2002.

1209. S. C. Olenik and Y. Y. Haimes. A hierarchical multi-objective method for wa-
ter resources planning. IEEE Transactions on Systems, Man and Cybernetics,
SMC-9(9):534–544, 1979.

1210. G. M. B. Oliveira, J. C. Bortot, and P. P. de Oliveira. Multiobjective evo-
lutionary search for one-dimensional cellular automata in the density classi-
fication task. In R. Standish, M. Bedau, and H. Abbass, editors, Artificial
Life VIII: The 8th International Conference on Artificial Life, pages 202–206,
Cambridge, Massachusetts, 2002. MIT Press.

1211. M. G. Omran, A. P. Engelbrecht, and A. Salman. Differential Evolution
Based Particle Swarm Optimization. In Proceedings of the 2007 IEEE Swarm
Intelligence Symposium (SIS’2007), pages 112–119, Honolulu, Hawaii, USA,
April 2007.

1212. C. Ong, H. Huang, and G. Tzeng. A novel hybrid model for portfolio selection.
Applied Mathematics and Computation, 169(2):1195–1210, October 2005.

1213. K. R. Oppenheimer. A proxy approach to multi-attribute decision making.
Management Science, 24(6):675–689, February 1978.

1214. M. Ortmann and W. Weber. Multi-Criterion Optimization of Robot Trajec-
tories with Evolutionary Strategies. In Proceedings of the 2001 Genetic and
Evolutionary Computation Conference. Late-Breaking Papers, pages 310–316,
San Francisco, California, July 2001.

1215. K. A. Osman, A. M. Higginson, and J. Moore. Improving the efficiency of ve-
hicle water-pump designs using genetic algorithms. In C. Dagli, M. Akay,
A. Buczak, O. Ersoy, and B. Fernandez, editors, Smart Engineering Sys-
tems: Proceedings of the Artificial Neural Networks in Engineering Conference
(ANNIE ’98), volume 8, pages 291–296, New York, 1998. ASME, ASME Press.

718 References

1216. A. Osyczka. An Approach to Multicriterion Optimization Problems for En-
gineering Design. Computer Methods in Applied Mechanics and Engineering,
15:309–333, 1978.

1217. A. Osyczka. Multicriterion Optimization in Engineering with FORTRAN pro-
grams. Ellis Horwood Limited, 1984.

1218. A. Osyczka. Multicriteria optimization for engineering design. In J. S. Gero,
editor, Design Optimization, pages 193–227. Academic Press, 1985.

1219. A. Osyczka. Evolutionary Algorithms for Single and Multicriteria Design
Optimization. Physica Verlag, Germany, 2002. ISBN 3-7908-1418-0.

1220. A. Osyczka and J. Koski. Selected Works related to Multicriterion Optimiza-
tion Methods for Engineering Design. In Proceedings of Euromech Colloquium,
University of Siegen, 1982.

1221. A. Osyczka and S. Krenich. A New Constraint Tournament Selection Method
for Multicriteria Optimization using Genetic Algorithm. In 2000 Congress on
Evolutionary Computation, volume 1, pages 501–507, Piscataway, New Jersey,
July 2000. IEEE Service Center.

1222. A. Osyczka and S. Krenich. Evolutionary Algorithms for Multicriteria Opti-
mization with Selecting a Representative Subset of Pareto Optimal Solutions.
In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne, editors,
First International Conference on Evolutionary Multi-Criterion Optimization,
pages 141–153. Springer-Verlag. Lecture Notes in Computer Science No. 1993,
2001.

1223. A. Osyczka, S. Krenich, and K. Karaś. Optimum Design of Robot Grippers
using Genetic Algorithms. In Proceedings of the Third World Congress of
Structural and Multidisciplinary Optimization (WCSMO), Buffalo, New York,
May 1999.

1224. A. Osyczka and S. Kundu. A Genetic Algorithm-Based Multicriteria Opti-
mization Method. In Proceedings of First World Congress of Structural and
Multidisciplinary Optimization, pages 909–914, Goslar, Germany, May 1995.
Elsevier Science.

1225. A. Osyczka and S. Kundu. A new method to solve generalized multicriteria
optimization problems using the simple genetic algorithm. Structural Opti-
mization, 10:94–99, 1995.

1226. A. Osyczka and H. Tamura. Pareto set distribution method for multicriteria
optimization using genetic algorithm. In Proceedings of the Second Interna-
tional Conference on Genetic Algorithms (Mendel’96), pages 97–102, Brno,
Czech Republic, June 1996.

1227. A. Oyama and M.-S. Liou. Multiobjective Optimization of Rocket Engine
Pumps using Evolutionary Algorithm. In Proceedings of the 15th AIAA
Computational Fluid Dynamics Conference, Paper A01-31074, Anaheim,
California, June 2001.

1228. A. Oyama, S. Obayashi, K. Nakahashi, and N. Hirose. Coding by Taguchi
Method for Evolutionary Algorithms Applied to Aerodynamic Optimization.
In Proceedings of the Fourth ECCOMAS Computational Fluid Dynamics Con-
ference, pages 196–203, Athens, Greece, September 1998. John Wiley & Sons.

1229. A. Oyama, K. Shimoyama, and K. Fujii. New Constraint-Handling Method for
Multi-Objective Multi-Constraint Evolutionary Optimization and Its Appli-
cation to Space Plane Design. In R. Schilling, W. Haase, J. Periaux, H. Baier,
and G. Bugeda, editors, Evolutionary and Deterministic Methods for Design,

References 719

Optimization and Control with Applications to Industrial and Societal Prob-
lems (EUROGEN 2005), Munich, Germany, 2005.

1230. P. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1996.
1231. B. Paechter, R. Rankin, A. Cumming, and T. C. Fogarty. Timetabling the

Classes of an Entire University with an Evolutionary Algorithm. In A. E.
Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Prob-
lem Solving From Nature — PPSN V, Amsterdam, Holland, 1998. Springer-
Verlag. Lecture Notes in Computer Science No. 1498.

1232. J. Paelinck. Qualiflex, a Flexible Multiple Criteria Method. Ecnomic Letters,
3:193–197, 1978.

1233. G. Pampara, N. Franken, and A. Engelbrecht. Combining Particle Swarm
Optimisation with angle modulation to solve binary problems. In 2005 IEEE
Congress on Evolutionary Computation (CEC’2005), volume 1, pages 89–96,
Edinburgh, Scotland, September 2005. IEEE Service Center.

1234. S. Pankanti and A. K. Jain. Integrating Vision Modules: Stereo, Shading,
Grouping, and Line Labeling. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(8):831–842, September 1995.

1235. M. Papila, R. T. Haftka, T. Nishida, and M. Sheplak. Piezoresistive
Microphone Design Pareto Optimization: Tradeoff Between Sensitivity and
Noise Floor. Journal of Microelectromechanical Systems, 15(6):1632–1643,
December 2006.

1236. U. Paquet and A. P. Engelbrecht. A New Particle Swarm Optimiser for
Linearly Constrained Optimization. In Proceedings of the Congress on Evolu-
tionary Computation 2003 (CEC’2003), volume 1, pages 227–233, Piscataway,
New Jersey, December 2003. Canberra, Australia, IEEE Service Center.

1237. L. Paquete, M. Chiarandini, and T. Stützle. Pareto Local Optimum Sets
in the Biobjective Traveling Salesman Problem: An Experimental Study. In
X. Gandibleux, M. Sevaux, K. Sörensen, and V. T’kindt, editors, Metaheuris-
tics for Multiobjective Optimisation, pages 177–199, Berlin, 2004. Springer.
Lecture Notes in Economics and Mathematical Systems Vol. 535.

1238. L. Paquete and T. Stützle. A Two-Phase Local Search for the Biobjective
Traveling Salesman Problem. In C. M. Fonseca, P. J. Fleming, E. Zitzler,
K. Deb, and L. Thiele, editors, Evolutionary Multi-Criterion Optimization.
Second International Conference, EMO 2003, pages 479–493, Faro, Portugal,
April 2003. Springer. Lecture Notes in Computer Science. Volume 2632.

1239. L. Paquete and T. Stützle. A study of stochastic local search algorithms
for the biobjective QAP with correlated flow matrices. European Journal of
Operational Research, 169:943–959, 2006.

1240. J. Paredis. Coevolutionary computation. Artificial Life, 2(4):355–375, 1995.
1241. J. Paredis. Coevolutionary algorithms. In T. Bäck, D. B. Fogel, and

Z. Michalewicz, editors, The Handbook of Evolutionary Computation, 1st Sup-
plement, pages 225–238. Institute of Physics Publishing and Oxford University
Press, 1998.

1242. V. Pareto. Cours D’Economie Politique, volume I and II. F. Rouge, Lausanne,
1896.

1243. G. Parks and A. Suppapitnarm. Multiobjective optimization of PWR reload
core designs using simulated annealing. In Mathematics & Computation, Re-
actor Physics and Environmental Analysis in Nuclear Applications, volume 2,
pages 1435–1444, Madrid, Spain, 1999.

720 References

1244. G. T. Parks. Multiobjective PWR Reload Core Optimization Using Genetic
Algorithms. In Proceedings of the International Conference on Mathematics
and Computations, Reactor Physics, and Environmental Analyses, pages 615–
624, La Grange Park, Illinois, 1995. American Nuclear Society.

1245. G. T. Parks. Multiobjective Pressurized Water Reactor Reload Core Design
by Nondominated Genetic Algorithm Search. Nuclear Science and Engineer-
ing, 124(1):178–187, 1996.

1246. G. T. Parks. Multiobjective Pressurised Water Reactor Reload Core Design
using a Genetic Algorithm. In G. D. Smith, N. C. Steele, and R. F. Albrecht,
editors, Artificial Neural Nets and Genetic Algorithms, pages 53–57, Norwich,
UK, 1997. Springer-Verlag.

1247. G. T. Parks and I. Miller. Selective Breeding in a Multiobjective Genetic Al-
gorithm. In A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors,
Parallel Problem Solving From Nature — PPSN V, pages 250–259, Amster-
dam, Holland, 1998. Springer-Verlag. Lecture Notes in Computer Science No.
1498.

1248. I. Parmee. Poor-Definition, Uncertainty, and Human Factors—Satisfying
Multiple Objectives in Real-World Decision-Making Environments. In
E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne, editors,
First International Conference on Evolutionary Multi-Criterion Optimization,
pages 67–81. Springer-Verlag. Lecture Notes in Computer Science No. 1993,
2001.

1249. I. C. Parmee, D. Cvetković, A. H. Watson, and C. R. Bonham. Multiob-
jective Satisfaction within an Interactive Evolutionary Design Environment.
Evolutionary Computation, 8(2):197–222, Summer 2000.

1250. I. C. Parmee and G. Purchase. The development of a directed genetic search
technique for heavily constrained design spaces. In I. C. Parmee, editor,
Adaptive Computing in Engineering Design and Control-’94, pages 97–102,
Plymouth, UK, 1994. University of Plymouth, University of Plymouth.

1251. I. C. Parmee and H. D. Vekeria. Co-operative Evolutionary Strategies for
Single Component Design. In T. Bäck, editor, Proceedings of the Seventh In-
ternational Conference on Genetic Algorithms, pages 529–536, San Francisco,
California, USA, 1997. Morgan Kaufmann Publishers.

1252. I. C. Parmee and A. H. Watson. Preliminary Airframe Design Using Co-
Evolutionary Multiobjective Genetic Algorithms. In W. Banzhaf, J. Daida,
A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, edi-
tors, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’99), volume 2, pages 1657–1665, San Francisco, California, July
1999. Morgan Kaufmann.

1253. R. O. Parreiras and J. A. Vasconcelos. Decision Making in Multiobjective
Optimization Problems. In N. Nedjah and L. de Macedo Mourelle, editors,
Real-World Multi-Objective System Engineering, pages 29–52. Nova Science
Publishers, New York, 2005.

1254. R. Parsons and S. Canfield. Developing genetic programming techniques for
the design of compliant mechanisms. Structural and Multidisciplinary Opti-
mization, 24(1):78–86, August 2002.

1255. K. Parsopoulos, V. Plagianakos, G. Magoulas, and M. Vrahatis. Stretch tech-
nique for obtaining global minimizers through Particle Swarm Optimization.
In Proceedings of Particle Swarm Optimization Workshop, Indiana University
Purdue University at Indianapolis, pages 22–38, Indianapolis, Indiana, April
2001.

References 721

1256. K. Parsopoulos, D. Taoulis, N. Pavlidis, V. Plagianakos, and M. Vrahatis.
Vector Evaluated Differential Evolution for Multiobjective Optimization. In
2004 Congress on Evolutionary Computation (CEC’2004), volume 1, pages
204–211, Portland, Oregon, USA, June 2004. IEEE Service Center.

1257. K. Parsopoulos, D. Tasoulis, and M. Vrahatis. Multiobjective Optimization
Using Parallel Vector Evaluated Particle Swarm Optimization. In Proceedings
of the IASTED International Conference on Artificial Intelligence and Appli-
cations (AIA 2004), volume 2, pages 823–828, Innsbruck, Austria, February
2004. ACTA Press.

1258. K. Parsopoulos and M. Vrahatis. Particle Swarm Optimization Method for
Constrained Optimization Problems. In P. Sincak, J.Vascak, V. Kvasnicka,
and J. Pospicha, editors, Intelligent Technologies - Theory and Applications:
New Trends in Intelligent Technologies, pages 214–220. IOS Press, 2002. Fron-
tiers in Artificial Intelligence and Applications series, Vol. 76 ISBN: 1-58603-
256-9.

1259. K. Parsopoulos and M. Vrahatis. Particle Swarm Optimization Method in
Multiobjective Problems. In Proceedings of the 2002 ACM Symposium on
Applied Computing (SAC’2002), pages 603–607, Madrid, Spain, 2002. ACM
Press.

1260. J. M. Pasia, R. F. Hartl, and K. F. Doerner. Solving a Bi-objective Flowshop
Scheduling Problem by Pareto-Ant Colony Optimization. In M. Dorigo, L. M.
Gambardella, M. Birattari, A. Martinoli, R. Poli, and T. Stützle, editors, Ant
Colony Optimization and Swarm Intelligence. 5th International Workshop,
ANTS 2006, pages 294–305. Springer. Lecture Notes in Computer Science
Vol. 4150, Brussels, Belgium, September 2006.

1261. H. Pastijn and J. Leysen. Constructing an outranking relation with ORESTE.
Mathematical and Computer Modelling, 12(10–11):1255–1268, 1989.

1262. Z. Pawlak. Rough sets. International Journal of Computer and Information
Sciences, 11(1):341–356, Summer 1982.

1263. Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1991. ISBN 0-471-87339-
X.

1264. J. Pearl. Heuristics. Addison–Wesley Publishing Company, Reading, Massa-
chusetts, 1989.

1265. M. Pelikan, K. Sastry, and D. E. Goldberg. Multiobjective hBOA, Cluster-
ing, and Scalability. In H.-G. B. et al., editor, 2005 Genetic and Evolution-
ary Computation Conference (GECCO’2005), volume 1, pages 663–670, New
York, USA, June 2005. ACM Press.

1266. J. Périaux, M. Sefrioui, and B. Mantel. RCS multi-objective optimization
of scattered waves by active control elements using GAs. In Proceedings of
the Fourth International Conference on Control, Automation, Robotics and
Vision (ICARCV’96), Singapore, 1996.

1267. J. Périaux, M. Sefrioui, and B. Mantel. GA Multiple Objective Optimization
Strategies for Electromagnetic Backscattering. In D. Quagliarella, J. Périaux,
C. Poloni, and G. Winter, editors, Genetic Algorithms and Evolution Strate-
gies in Engineering and Computer Science. Recent Advances and Industrial
Applications, chapter 11, pages 225–243. John Wiley and Sons, West Sussex,
England, 1997.

722 References

1268. E. Perrin, A. Mandrille, M. Oumoun, C. Fonteix, and I. Marc. Optimi-
sation Globale par Stratégie d’Evolution. RAIRO-Recherche Opérationelle,
32(2):161–201, 1997.

1269. C. J. Petrie, T. A. Webster, and M. R. Cutkosky. Using Pareto Optimality to
Coordinate Distributed Agents. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 9:269–281, 1995.

1270. H. Petroski. Engineers of Dreams: Great Bridge Builders and the Spanning
of American. Morgan Kaufmann Publishers, 1996.

1271. A. Petrovski and J. McCall. Multi-objective Optimisation of Cancer
Chemotherapy Using Evolutionary Algorithms. In E. Zitzler, K. Deb,
L. Thiele, C. A. Coello Coello, and D. Corne, editors, First International
Conference on Evolutionary Multi-Criterion Optimization, pages 531–545.
Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.

1272. F. Pettersson, N. Chakraborti, and H. Saxén. A genetic algorithms based
multi-objective neural net applied to noisy blast furnace data. Applied Soft
Computing, 7:387–397, 2007.

1273. H. Pierreval and M.-F. Plaquin. An Evolutionary Approach of Multicriteria
Manufacturing Cell Formation. International Transactions in Operational
Research, 5(1):13–25, January 1998.

1274. C. Pimpawat and N. Chaiyaratana. Using a co-operative co-evolutionary
genetic algorithm to solve a three-dimensional container loading problem. In
Proceedings of the Congress on Evolutionary Computation 2001 (CEC’2001),
volume 2, pages 1197–1204, Piscataway, New Jersey, May 2001. IEEE Service
Center.

1275. P. Pirjanian. Multiple Objective Action Selection & Behavior Fusion using
Voting. PhD thesis, Department of Medical Informatics and Image Analy-
sis, Institute of Electronic Systems, Aalborg University, Aalborg, Denmark,
August 1998.

1276. P. Pirjanian and M. Matarić. A decision-theoretic approach to fuzzy be-
havior coordination. In IEEE International Symposium on Computational
Intelligence in Robotics & Automation (CIRA’99), pages 101–106, Monterey,
California, USA, November 1999.

1277. P. Pirjanian and M. Matarić. Multi-robot target acquisition using multiple ob-
jective behavior coordination. In Proceedings of the International Conference
on Robotics and Automation (ICRA’2000), pages 2696–2702, San Francisco,
California, USA, 2000.

1278. P. Pirjanian and M. Matarić. Multiple objective vs. fuzzy behavior coordi-
nation. In D. Drainkov and A. Saffiotti, editors, Fuzzy Logic Techniques for
Autonomous Vehicle Navigation, pages 235–253. Springer. Studies on Fuzzi-
ness and Soft Computing, 2000.

1279. H. Pohlheim. Genetic and Evolutionary Algorithm Toolbox for use with
MATLAB. Technical report, Technical University Ilmenau, 1998.

1280. J. B. Pollack, A. D. Blair, and M. Land. Coevolution of a Backgammon
Player. In C. Langton, editor, Artificial Life V, pages 92–98. The MIT Press,
Cambridge, Massachusetts, USA, 1996.

1281. C. Poloni. Hybrid GA for Multi-Objective Aerodynamic Shape Optimization.
In G. Winter, J. Périaux, M. Galan, and P. Cuesta, editors, Genetic Algo-
rithms in Engineering and Computer Science, pages 397–416. Wiley & Sons,
Chichester, 1995.

References 723

1282. C. Poloni, M. Fearon, and D. Ng. Parallelisation of Genetic Algorithms for
Aerodynamic Design Optimisation. In I. C. Parmee and M. J. Denham, edi-
tors, Proceedings of the Second International Conference on Adaptive Comput-
ing in Engineering Design and Control, pages 59–64. University of Plymouth,
Plymouth, UK, 1996.

1283. C. Poloni, G. Mosetti, and S. Contessi. Multiobjective Optimization by GAs:
Application to System and Component Design. In Computational Methods
in Applied Sciences ’96: Invited Lectures and Special Technological Sessions
of the Third ECCOMAS Computational Fluid Dynamics Conference and the
Second ECCOMAS Conference on Numerical Methods in Engineering, pages
258–264, Chichester, 1996. Wiley.

1284. C. Poloni and V. Pediroda. GA coupled with computationally expensive sim-
ulations: tools to improve efficiency. In D. Quagliarella, J. Périaux, C. Poloni,
and G. Winter, editors, Genetic Algorithms and Evolution Strategies in Engi-
neering and Computer Science. Recent Advances and Industrial Applications,
chapter 13, pages 267–288. John Wiley and Sons, West Sussex, England, 1997.

1285. W. Ponweiser and M. Vincze. The Multiple Multi Objective Problem—
Definition, Solution and Evaluations. In S. Obayashi, K. Deb, C. Poloni,
T. Hiroyasu, and T. Murata, editors, Evolutionary Multi-Criterion Optimiza-
tion, 4th International Conference, EMO 2007, pages 877–892, Matshushima,
Japan, March 2007. Springer. Lecture Notes in Computer Science Vol. 4403.

1286. P. W. Poon and G. T. Parks. Application of genetic algorithms to in-core nu-
clear fuel management optimization. In H. Küsters, E. Stein, and W. Werner,
editors, Proceedings of the Joint Conference on Mathematical Methods and
Supercomputing in Nuclear Applications, pages 777–786, Karlsruhe, Germany,
1993. Kernforschungszentrum Karlsruhe GmbH.

1287. E. A. Portilla Flores. Integración Simultánea de Aspectos Estructurales y
Dinámicos para el Diseño Óptimo de un Sistema de Transmisión de Variación
Continua. PhD thesis, Departamento de Ingenieŕıa Eléctrica, Sección de
Mecatrónica, CINVESTAV-IPN, México, D.F., México, June 2006. (In
Spanish).

1288. M. A. Potter and K. de Jong. A Cooperative Coevolutionary Approach
to Function Optimization. In Y. Davidor, H.-P. Schwefel, and R. Männer,
editors, Parallel Problem Solving from Nature—PPSN III, pages 249–257,
Jerusalem, Israel, October 1994. Springer-Verlag. Lecture Notes in Computer
Science Vol. 866.

1289. J.-Y. Potvin and S. Bengio. The Vehicle Routing Problem with Time
Windows–Part II: Genetic Search. INFORMS Journal on Computing, 8:165–
172, 1996.

1290. P. Poulos, G. Rigatos, S. Tzafestas, and A. Koukos. A Pareto-optimal genetic
algorithm for warehouse multi-objective optimization. Engineering Applica-
tions of Artificial Intelligence, 14:737–749, 2001.

1291. D. Powell and M. M. Skolnick. Using genetic algorithms in engineering design
optimization with non-linear constraints. In S. Forrest, editor, Proceedings of
the Fifth International Conference on Genetic Algorithms (ICGA-93), pages
424–431, San Mateo, California, July 1993. Morgan Kaufmann Publishers.

1292. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes in Pascal. Cambridge University Press, Cambridge, UK, 1989.

724 References

1293. M. Preuss. Niching Prospects. In B. Filipič and J. Šilc, editors, Bioinspired
Optimization Methods and their Applications, pages 25–34. Jožef Stefan In-
stitute, October 2006.

1294. K. V. Price. An Introduction to Differential Evolution. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 79–108.
McGraw-Hill, London, UK, 1999.

1295. K. V. Price, R. M. Storn, and J. A. Lampinen. Differential Evolution. A
Practical Approach to Global Optimization. Springer, Berlin, 2005. ISBN
3-540-20950-6.

1296. C. Prins. A simple and effective evolutionary algorithm for the vehicle routing
problem. In J. P. de Sousa, editor, Proceedings of the 4th Metaheuristics Inter-
national Conference (MIC’2001), pages 143–148. Program Operational Cien-
cia, Tecnologia, Inovaçao do Quadro Comunitário de Apoio III de Fundaçao
para a Ciencia e Tecnologia, Porto, Portugal, July 16–20 2001.

1297. C. Prins. A simple and effective evolutionary algorithm for the vehicle routing
problem. Computers & Operations Research, 31(12):1985–2002, 2004.

1298. H. Prüfer. Neuer beweis eines satzes über permutationen. Archiv fue Mathe-
matische und Physik, 27:742–744, 1918.

1299. A. Pryke, S. Mostaghim, and A. Nazemi. Heatmap Visualization of Popula-
tion Based Multi Objective Algorithms. In S. Obayashi, K. Deb, C. Poloni,
T. Hiroyasu, and T. Murata, editors, Evolutionary Multi-Criterion Optimiza-
tion, 4th International Conference, EMO 2007, pages 361–375, Matshushima,
Japan, March 2007. Springer. Lecture Notes in Computer Science Vol. 4403.

1300. W. Pullan. Optimising Multiple Aspects of Network Survivability. In Congress
on Evolutionary Computation (CEC’2002), volume 1, pages 115–120, Piscat-
away, New Jersey, May 2002. IEEE Service Center.

1301. T. Pulliam, M. Nemec, T. Hoslt, and D. Zingg. Comparison of Evolutionary
(Genetic) Algorithm and Adjoint Methods for Multi-Objective Viscous Airfoil
Optimizations. In 41st Aerospace Sciences Meeting. Paper AIAA 2003-0298,
Reno, Nevada, January 2003.

1302. W. F. Punch. How Effective are Multiple Poplulations in Genetic Program-
ming. In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B.
Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. L. Riolo, editors, Pro-
ceedings of the Third Annual Conference on Genetic Programming, pages 308–
313, San Mateo, California, July 1998. University of Wisconsin at Madison,
Morgan Kaufmann Publishers.

1303. R. C. Purshouse. On the Evolutionary Optimisation of Many Objectives.
PhD thesis, Department of Automatic Control and Systems Engineering, The
University of Sheffield, Sheffield, UK, September 2003.

1304. R. C. Purshouse and P. J. Fleming. Conflict, Harmony, and Independence:
Relationships in Evolutionary Multi-criterion Optimisation. In C. M. Fonseca,
P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele, editors, Evolutionary Multi-
Criterion Optimization. Second International Conference, EMO 2003, pages
16–30, Faro, Portugal, April 2003. Springer. Lecture Notes in Computer
Science. Volume 2632.

1305. M. Qiu. Prioritizing and Scheduling Road Projects by Genetic Algorithm.
Mathematics and Computers in Simulation, 43:569–574, 1997.

1306. D. Quagliarella and A. Vicini. Coupling Genetic Algorithms and Gradient
Based Optimization Techniques. In D. Quagliarella, J. Périaux, C. Poloni,

References 725

and G. Winter, editors, Genetic Algorithms and Evolution Strategies in Engi-
neering and Computer Science. Recent Advances and Industrial Applications,
chapter 14, pages 289–309. John Wiley and Sons, West Sussex, England, 1997.

1307. D. Quagliarella and A. Vicini. Sub-population Policies for a Parallel Mul-
tiobjective Genetic Algorithm with Applications to Wing Design. In 1998
IEEE International Conference On Systems, Man, And Cybernetics, pages
3142–3147, San Diego, California, October 1998. Institute of Electrical and
Electronic Engineers (IEEE).

1308. D. Quagliarella and A. Vicini. Designing High-Lift Airfoils Using Genetic
Algorithms. In K. Miettinen, M. M. Mäkelä, and J. Toivanen, editors, Pro-
ceedings of EUROGEN’99 — Short Course on Evolutionary Algorithms in
Engineering and Computer Science, pages 143–149, Jyväskyl, Finland, May
1999. University of Jyväskylä. (Reports of the Department of Mathematical
Information Technology, Series A. Collections, No. 2/1999, ISBN 951-39-0473-
3).

1309. W. V. Quine. A Way to Simplify Truth Functions. American Mathematical
Monthly, 62 (9):627–631, 1955.

1310. J. R. Quinlan. C4.5 Programs for Machine Learning. Morgan Kaufmann
Publishers, 1993.

1311. L. Rachmawati and D. Srinivasan. A Multi-objective Evolutionary Algo-
rithm with Weighted-Sum Niching for Convergence on Knee Regions. In
M. K. et al., editor, 2006 Genetic and Evolutionary Computation Conference
(GECCO’2006), volume 1, pages 749–750, Seattle, Washington, USA, July
2006. ACM Press. ISBN 1-59593-186-4.

1312. L. Rachmawati and D. Srinivasan. A Multi-Objective Genetic Algorithm
with Controllable Convergence on Knee Regions. In 2006 IEEE Congress
on Evolutionary Computation (CEC’2006), pages 6807–6814, Vancouver, BC,
Canada, July 2006. IEEE.

1313. L. Rachmawati and D. Srinivasan. Preference Incorporation in Multi-objective
Evolutionary Algorithms: A Survey. In 2006 IEEE Congress on Evolutionary
Computation (CEC’2006), pages 3385–3391, Vancouver, BC, Canada, July
2006. IEEE.

1314. A. M. Raich and T. R. Liszkai. Multi-Objective Genetic Algorithms for Sensor
Layout Optimization in Structural Damage Detection. In C. H. Dagli, A. L.
Buczak, J. Ghosh, M. J. Embrechts, and O. Ersoy, editors, Smart Engineering
System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming,
Complex Systems, and Artificial Life (ANNIE’2003), pages 889–894. ASME
Press, November 2003.

1315. H. Raiffa. Preferences for Multi-Attributed Alternatives. Technical Report
RM-5868-DOT/RC, Rand Corporation, Santa Monica, California, 1969.

1316. I. J. Ramı́rez Rosado and J. L. Bernal Agust́ın. Reliability and Cost Optimiza-
tion for Distribution Networks Expansion Using an Evolutionary Algorithm.
IEEE Transactions on Power Systems, 16(1):111–118, February 2001.

1317. I. J. Ramı́rez Rosado, J. L. Bernal Agust́ın, L. M. Barbosa Proença, and
V. Miranda. Multiobjective Planning of Power Distribution Systems Using
Evolutionary Algorithms. In M. H. Hamza, editor, 8th IASTED International
Conference on Modelling, Identification and Control—MIC’99, pages 185–188,
Innsbruck, Austria, February 1999.

1318. S. R. Ranjithan, S. K. Chetan, and H. K. Dakshima. Constraint Method-
Based Evolutionary Algorithm (CMEA) for Multiobjective Optimization. In

726 References

E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne, editors,
First International Conference on Evolutionary Multi-Criterion Optimization,
pages 299–313. Springer-Verlag. Lecture Notes in Computer Science No. 1993,
2001.

1319. A. R. M. Rao and N. Arvind. A scatter search algorithm for stacking sequence
optimisation of laminate composites. Composite Structures, 70(4):383–402,
October 2005.

1320. S. Rao. Game Theory Approach for Multiobjective Structural Optimization.
Computers and Structures, 25(1):119–127, 1986.

1321. S. S. Rao. Multiobjective Optimization in Structural Design with Uncer-
tain Parameters and Stochastic Processes. AIAA Journal, 22(11):1670–1678,
November 1984.

1322. S. S. Rao. Game Theory Approach for Multiobjective Structural Optimiza-
tion. Computers and Structures, 25(1):119–127, 1987.

1323. S. S. Rao. Genetic Algorithmic Approach for Multiobjective Optimization
of Structures. In ASME Annual Winter Meeting, Structures and Controls
Optimization, volume AD-Vol. 38, pages 29–38, New Orleans, Louisiana, No-
vember 1993. ASME.

1324. S. S. Rao. Engineering Optimization. John Wiley & Sons, third edition, 1996.
1325. V. Rao Vemuri and W. Cedeño. A New Genetic Algorithm for Multi Objective

Optimization in Water Resource Management. In Proceedings of the Second
IEEE International Conference on Evolutionary Computation, pages 495–500,
Piscataway, New Jersey, 1995. IEEE Press.

1326. V. Rao Vemuri and W. Cedeño. A New Genetic Algorithm for Multi-Objective
Optimization in Water Resource Management. In 1996 Knowledge-based
Computer Systems, Bombay, India, December 1996. KBIS Proceedings.

1327. C. R. Raquel and P. C. Naval, Jr. An Effective Use of Crowding Distance
in Multiobjective Particle Swarm Optimization. In H.-G. B. et al., editor,
2005 Genetic and Evolutionary Computation Conference (GECCO’2005), vol-
ume 1, pages 257–264, New York, USA, June 2005. ACM Press.

1328. T. Ray, R. Gokarn, and O. Sha. A global optimization model for ship design.
Computers in Industry, 26:175–192, 1995.

1329. T. Ray, T. Kang, and S. K. Chye. An Evolutionary Algorithm for Con-
strained Optimization. In D. Whitley, D. Goldberg, E. Cantú-Paz, L. Spector,
I. Parmee, and H.-G. Beyer, editors, Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO’2000), pages 771–777, San Francisco,
California, 2000. Morgan Kaufmann.

1330. T. Ray, T. Kang, and S. K. Chye. Multiobjective Design Optimization by an
Evolutionary Algorithm. Engineering Optimization, 33(3):399–424, 2001.

1331. T. Ray and K. Liew. A Swarm with and Effective Information Sharing Mech-
anism for Unconstrained and Constrained Single Objective Optimization. In
Proceedings of the Congress on Evolutionary Computation 2001 (CEC’2001),
volume 1, pages 75–80, Piscataway, New Jersey, May 2001. IEEE Service
Center.

1332. T. Ray and K. Liew. A Swarm Metaphor for Multiobjective Design Opti-
mization. Engineering Optimization, 34(2):141–153, March 2002.

1333. T. Ray and K. Liew. Society and Civilization: An Optimization Algorithm
Based on the Simulation of Social Behavior. IEEE Transactions on Evolu-
tionary Computation, 7(4):386–396, August 2003.

References 727

1334. T. Ray and W. Smith. A surrogate assisted parallel multiobjective evolu-
tionary algorithm for robust engineering design. Engineering Optimization,
38(8):997–1011, December 2006.

1335. T. Ray and K. Tai. An Evolutionary Algorithm with a Multilevel Pairing
Strategy for Single and Multiobjective Optimization. Foundations of Com-
puting and Decision Sciences, 26:75–98, 2001.

1336. B. J. Reardon. Optimization of Densification Modeling Parameters of Beryl-
lium Powder using a Fuzzy Logic Based Multiobjective Genetic Algorithm.
Technical Report LA-UR-98-1036, Los Alamos National Laboratory, Los
Alamos, New Mexico, March 1998.

1337. B. J. Reardon. Optimization of Micromechanical Densification Modeling Pa-
rameters For Copper Powder using a Fuzzy Logic Based Multiobjective Ge-
netic Algorithm. Technical Report LA-UR-98-0419, Los Alamos National
Laboratory, Los Alamos, New Mexico, January 1998.

1338. P. Reed and V. Devireddy. Groundwater Monitoring Design: A Case Study
Combining Epsilon Dominance Archiving and Automatic Parameterization
for the NSGA-II. In C. A. Coello Coello and G. B. Lamont, editors, Ap-
plications of Multi-Objective Evolutionary Algorithms, pages 79–100. World
Scientific, Singapore, 2004.

1339. P. Reed, B. S. Minsker, and D. E. Goldberg. Simplifying multiobjective op-
timization: An automated design methodology for the nondominated sorted
genetic algorithm-II. Water Resources Research, 39(7):TNN 2.1–2.5, July
2003.

1340. P. M. Reed, B. S. Minsker, and D. E. Goldberg. Designing a New Elitist
Nondominated Sorted Genetic Algorithm for a Multiobjective Long Term
Groundwater Monitoring Application. In Proceedings of the 2001 Genetic and
Evolutionary Computation Conference. Late-Breaking Papers, pages 352–358,
San Francisco, California, July 2001.

1341. P. M. Reed, B. S. Minsker, and D. E. Goldberg. A multiobjective approach
to cost effective long-term groundwater monitoring using an elitist nondom-
inated sorted genetic algorithm with historical data. Journal of Hydroinfor-
matics, 3(2):71–89, April 2001.

1342. P. M. Reed, B. S. Minsker, and D. E. Goldberg. Why Optimize Long Term
Groundwater Monitoring Design? A Multiobjective Case Study of Hill Air
Force Base. In D. Phelps and G. Sehlke, editors, Bridging the Gap: Meeting
the World’s Water and Environmental Resources Challenges. Proceedings of
the World Water and Environmental Resources Congress, Washington, DC,
2001. American Society of Civil Engineers. ISBN 0-7844-0569-7.

1343. C. R. Reeves and J. E. Rowe. Genetic Algorithms—Principles and
Perspectives. A Guide to GA Theory. Kluwer Academic Publishers,
Boston/Dordrecht/London, 2003. ISBN 1-4020-7240-6.

1344. J. Régnier, B. Sareni, and X. Roboam. System optimization by multiobjective
genetic algorithms and analysis of the coupling between variables, constraints
and objectives. COMPEL-The International Journal for Computation and
Mathematics in Electrical and Electronic Engineering, 24(3):805–820, 2005.

1345. G. Reinelt. Traveling Salesman Problem Library. Online, 1995. Available:
http://softlib.rice.edu/softlib

1346. B. Rekiek. Assembly Line Design (multiple objective grouping genetic algo-
rithm and the balancing of mixed-model hybrid assembly line). PhD thesis,

728 References

Free University of Brussels, CAD/CAM Department, Brussels, Belgium,
December 2000.

1347. B. Rekiek, P. D. Lit, F. Pellichero, T. L’Eglise, E. Falkenauer, and
A. Delchambre. Dealing With User’s Preferences in Hybrid Assembly Lines
Design. In Z. Binder, editor, Proceedings of the Management and Control
of Production and Logistics 2000 (MCPL’2000) Conference, volume 3, pages
989–994. Pergamon, Grenoble, France, July 2000.

1348. B. Rekiek, F. Pellichero, P. D. Lit, E. Falkenauer, and A. Delchambre. A
Resource Planner for Hybrid Assembly Lines. In Proceedings of the 15th
International Conference on CAD/CAM Robotics & Factories of the Future
CAR & FOF’99, volume 1, pages MW6–18–MW6–23, August 1999.

1349. X. Ren and B. Minsker. Which Groundwater Remediation Objective is Better,
a Realistic One or a Simple One? In American Society of Civil Engineers
(ASCE) Environmental & Water Resources Institute (EWRI) World Water
& Environmental Resources Congress 2003 & Related Symposia, Philadelphia,
PA, 2003.

1350. A. C. Renfrew. Dynamic Modeling in Archaeology: What, When, and Where?
In S. E. van der Leeuw, editor, Dynamical Modeling and the Study of Change
in Archaelogy. Edinburgh University Press, Edinburgh, Scotland, 1994.

1351. M. Reyes Sierra and C. A. Coello Coello. Improving PSO-Based Multi-
objective Optimization Using Crowding, Mutation and ε-Dominance. In C. A.
Coello Coello, A. Hernández Aguirre, and E. Zitzler, editors, Evolutionary
Multi-Criterion Optimization. Third International Conference, EMO 2005,
pages 505–519, Guanajuato, México, March 2005. Springer. Lecture Notes in
Computer Science Vol. 3410.

1352. M. Reyes Sierra and C. A. Coello Coello. A Study of Fitness Inheritance and
Approximation Techniques for Multi-Objective Particle Swarm Optimization.
In 2005 IEEE Congress on Evolutionary Computation (CEC’2005), volume 1,
pages 65–72, Edinburgh, Scotland, September 2005. IEEE Service Center.

1353. M. Reyes-Sierra and C. A. Coello Coello. Multi-Objective Particle Swarm
Optimizers: A Survey of the State-of-the-Art. International Journal of Com-
putational Intelligence Research, 2(3):287–308, 2006.

1354. M. M. Reyes Sierra. Use of Coevolution and Fitness Inheritance for Multiob-
jective Particle Swarm Optimization. PhD thesis, Computer Science Section,
Department of Electrical Engineering, CINVESTAV-IPN, Mexico, August
2006.

1355. C. Reynolds. Competition, coevolution and the game of tag. In R. Brooks
and P. Maes, editors, Proceedings of the Fourth International Workshop on
the Synthesis and Simulation of Living Systems, pages 59–69. The MIT Press,
Cambridge, Massachusetts, USA, 1994.

1356. J. Reynolds. Multi-Criteria Assessment of Ecological Process Models using
Pareto Optimization. PhD thesis, University of Washington, Seattle,
Washington, USA, 1997.

1357. J. H. Reynolds and E. D. Ford. Multi-criteria assessment of ecological process
models. Ecology, 80(5):538–553, may 1999.

1358. R. G. Reynolds. An Introduction to Cultural Algorithms. In A. V. Sebald
and L. J. Fogel, editors, Proceedings of the Third Annual Conference on Evo-
lutionary Programming, pages 131–139. World Scientific, River Edge, New
Jersey, USA, 1994.

References 729

1359. G. Richards and V. Rayward-Smith. The Discovery of Association Rules from
Tabular Databases Comprising Nominal and Ordinal Attributes. Intelligent
Data Analysis, 9(3):289–307, 2005.

1360. J. T. Richardson, M. R. Palmer, G. Liepins, and M. Hilliard. Some Guidelines
for Genetic Algorithms with Penalty Functions. In J. D. Schaffer, editor,
Proceedings of the Third International Conference on Genetic Algorithms,
pages 191–197, San Mateo, California, 1989. Morgan Kaufmann Publishers.

1361. R. G. L. Riche, C. Knopf-Lenoir, and R. T. Haftka. A Segregated Genetic
Algorithm for Constrained Structural Optimization. In L. J. Eshelman, edi-
tor, Proceedings of the Sixth International Conference on Genetic Algorithms,
pages 558–565, San Mateo, California, July 1995. Morgan Kaufmann Publish-
ers.

1362. P. Rietveld. Multiple Objective Decision Methods and Regional Planning.
North-Holland, New York, 1980.

1363. J. Rissanen. Modeling by Shortest Data Description. Automatica, 14:465–471,
1978.

1364. B. J. Ritzel, J. W. Eheart, and S. Ranjithan. Using genetic algorithms to
solve a multiple objective groundwater pollution containment problem. Water
Resources Research, 30(5):1589–1603, may 1994.

1365. T. Robič and B. Filipič. DEMO: Differential Evolution for Multiobjective
Optimization. In C. A. Coello Coello, A. Hernández Aguirre, and E. Zitzler,
editors, Evolutionary Multi-Criterion Optimization. Third International Con-
ference, EMO 2005, pages 520–533, Guanajuato, México, March 2005.
Springer. Lecture Notes in Computer Science Vol. 3410.

1366. J. E. Rodŕıguez, A. L. Medaglia, and J. P. Casas. Approximation to the Opti-
mum Design of a Motorcycle Frame using Finite Element Analysis and Evolu-
tionary Algorithms. In E. J. Bass, editor, Proceedings of the 2005 IEEE Sys-
tems and Information Engineering Design Symposium, pages 277–285. IEEE
Press, 2005.

1367. K. Rodŕıguez Vázquez. Multiobjective Evolutionary Algorithms in Non-Linear
System Identification. PhD thesis, Department of Automatic Control and
Systems Engineering, The University of Sheffield, Sheffield, UK, 1999.

1368. K. Rodriguez-Vazquez and P. Fleming. Evolution of mathematical models
of chaotic systems based on multiobjective genetic programming. Knowledge
and Information Systems, 8(2):235–256, August 2005.

1369. K. Rodŕıguez Vázquez and P. J. Fleming. Functionality and Optimality in
Circuit Design: A Genetic Programming Approach. In Proceedings of the
Third International Symposium on Adaptive Systems—Evolutionary Compu-
tation and Probabilistic Graphical Models, pages 23–28, Havana, Cuba, March
19–23 2001. Institute of Cybernetics, Mathematics and Physics.

1370. K. Rodŕıguez Vázquez, C. M. Fonseca, and P. J. Fleming. Multiobjective Ge-
netic Programming : A Nonlinear System Identification Application. In J. R.
Koza, editor, Late Breaking Papers at the Genetic Programming 1997 Con-
ference, pages 207–212, Stanford University, California, July 1997. Stanford
Bookstore.

1371. J. L. Rogers. Optimum Actuator Placement with a Genetic Algorithm for
Aircraft Control. In C. H. Dagli, A. L. Buczak, J. Ghosh, M. J. Embrechts,
and O. Ersoy, editors, Smart Engineering System Design: Neural Networks,
Fuzzy Logic, Evolutionary Programming, Data Mining, and Complex Systems
(ANNIE’99), pages 355–360, New York, November 1999. ASME Press.

730 References

1372. J. L. Rogers. A Parallel Approach to Optimum Actuator Selection With A
Genetic Algorithm. In AIAA Paper No. 2000-4484, AIAA Guidance, Navi-
gation, and Control Conference, Denver, Colorado, August 14–17 2000.

1373. G. Rohling, D. Lamm, C. Carstensen, and C. E. Hunt. Flare Pattern Design
for Imaging and Reticle Based Missile Seekers Using Genetic Algorithms. In
Proceedings of Threats Countermeasures and Situational Awareness Confer-
ence, Virginia Beach, Virginia, June 2000.

1374. P. Roosen, S. Uhlenbruck, and K. Lucas. Pareto optimization of a combined
cycle power system as a decision support tool for trading off investment vs.
operating costs. International Journal of Thermal Sciences, 42(6):553–560,
June 2003.

1375. R. S. Rosenberg. Simulation of genetic populations with biochemical proper-
ties. PhD thesis, University of Michigan, Ann Arbor, Michigan, USA, 1967.

1376. H. Rosenbrock. An automatic method for finding the greatest or least value
of a function. Computer Journal, 3(3):175–184, 1960.

1377. C. Rosin and R. Belew. New methods for competitive coevolution. Evolu-
tionary Computation, 5(1):1–29, 1996.

1378. K. Rosing and C. S. ReVelle. Heuristic concentration: two stage solution
construction. European Journal of Operational Research, 97(19):75–86, 1997.

1379. B. J. Ross, W. Ralph, and H. Zong. Evolutionary Image Synthesis Using a
Model of Aesthetics. In 2006 IEEE Congress on Evolutionary Computation
(CEC’2006), pages 3832–3839, Vancouver, BC, Canada, July 2006. IEEE.

1380. P. J. Ross. Taguchi Methods for Quality Engineering: Loss Function, Orthog-
onal Experiments, Parameter and Tolerance Design. McGraw-Hill, New York,
second edition, 1995.

1381. M. Roubens. Preference Relations on actions and criteria in multicriteria
decision making. European Journal of Operational Research, 10:51–55, 1982.

1382. J. Rowe, K. Vinsen, and N. Marvin. Parallel GAs for Multiobjective Func-
tions. In J. T. Alander, editor, Proceedings of the Second Nordic Workshop on
Genetic Algorithms and Their Applications (2NWGA), pages 61–70, Vaasa,
Finland, August 1996. University of Vaasa.

1383. B. Roy. Classement et choix en présence de points de vue multiples:
La méthode Electre. Revue Francaise d’Informatique et de Recherche
Opérationalle, 8:207–218, 1968.

1384. B. Roy. Problems and methods with multiple objective functions. Mathemat-
ical programming, 1(2):239–266, 1971.

1385. B. Roy. A Conceptual Framework for a Prescriptive Theory of “Decision-
Aid”. In M. K. Starr and M. Zeleny, editors, Multiple Criteria Decision
Making, volume 6 of TIMS Studies in the Management Sciences, pages 179–
210. North-Holland Publishing Company, Amsterdam, 1977.

1386. B. Roy. Electre III: Algorithme de classement basé sur une représentation
floue des préférences en présence de critères multiples. Cahiers du C.E.R.O.,
20(1):3–24, 1978.

1387. B. Roy. Decision-aid and Decision-making. In C. Bana e Costa, editor, Read-
ings in Multiple Criteria Decision Aid, pages 17–35. Springer-Verlag, Berlin,
1990.

1388. B. Roy. Multicriteria Methodology for Decision Aiding. Kluwer Academic
Publishers, 1996.

References 731

1389. B. Roy and P. Bertier. La méthode Electre: Une application du média plan-
ning. In M. Ross, editor, Operational Research, pages 291–302. North-Holland,
Amsterdam, 1973.

1390. B. Roy and D. Bouyssou. Aide Multicritère à la décision: Méthodes et Cas.
Economica, Paris, 1993.

1391. B. Roy and P. Vincke. Multicriteria analysis: survey and new directions.
European Journal of Operational Research, 11:207–218, 1981.

1392. P. A. Rubin and G. Ragatz. Scheduling in a Sequence Dependent Setup Envi-
ronment with Genetic Search. Computers and Operations Research, 22(2):85–
99, 1995.

1393. G. Rudolph. Convergence Analysis of Canonical Genetic Algorithms. IEEE
Transactions on Neural Networks, 5:96–101, January 1994.

1394. G. Rudolph. Convergence Properties of Evolutionary Algorithms. Verlag Dr.
Kovač, Hamburg, 1997.

1395. G. Rudolph. Evolutionary Search for Minimal Elements in Partially Ordered
Finite Sets. In V. Porto, N. Saravanan, D. Waagen, and A. Eiben, editors,
Evolutionary Programming VII, Proceedings of the 7th Annual Conference on
Evolutionary Programming, pages 345–353, Berlin, 1998. Springer.

1396. G. Rudolph. On a Multi-Objective Evolutionary Algorithm and Its Conver-
gence to the Pareto Set. In Proceedings of the 5th IEEE Conference on Evo-
lutionary Computation, pages 511–516, Piscataway, New Jersey, 1998. IEEE
Press.

1397. G. Rudolph. Evolutionary Search under Partially Ordered Fitness Sets. In
Proceedings of the International NAISO Congress on Information Science In-
novations (ISI 2001), pages 818–822. ICSC Academic Press: Millet/Sliedrecht,
2001.

1398. G. Rudolph. A Partial Order Approach to Noisy Fitness Functions. In
Proceedings of the Congress on Evolutionary Computation 2001 (CEC’2001),
volume 1, pages 318–325, Piscataway, New Jersey, May 2001. IEEE Service
Center.

1399. G. Rudolph. Some Theoretical Properties of Evolutionary Algorithms under
Partially Ordered Fitness Values. In C. Fabian and I. Intorsureanu, editors,
Proceedings of the Evolutionary Algorithms Workshop (EAW-2001), pages 9–
22, Bucharest, Romania, January 2001.

1400. G. Rudolph. Deployment Scenarios of Parallelized Code in Stochastic Opti-
mization. In B. Filipič and J. Šilc, editors, Bioinspired Optimization Methods
and their Applications, pages 3–11. Jožef Stefan Institute, October 2006.

1401. G. Rudolph and A. Agapie. Convergence Properties of Some Multi-Objective
Evolutionary Algorithms. In Proceedings of the 2000 Conference on Evolu-
tionary Computation, volume 2, pages 1010–1016, Piscataway, New Jersey,
July 2000. IEEE Press.

1402. G. Rudolph, B. Naujoks, and M. Preuss. Capabilities of EMOA to Detect
and Preserve Equivalent Pareto Subsets. In S. Obayashi, K. Deb, C. Poloni,
T. Hiroyasu, and T. Murata, editors, Evolutionary Multi-Criterion Optimiza-
tion, 4th International Conference, EMO 2007, pages 36–50, Matshushima,
Japan, March 2007. Springer. Lecture Notes in Computer Science Vol. 4403.

1403. A. J. Ruiz-Torres, E. E. Enscore, and R. R. Barton. Simulated Annealing
Heuristics for the Average Flow-Time and the Number of Tardy Jobs Bi-
Criteria Identical Parallel Machine Problem. Computers and Industrial En-
gineering, 33(1–2):257–260, 1997.

732 References

1404. T. P. Runarsson and X. Yao. Stochastic Ranking for Constrained Evo-
lutionary Optimization. IEEE Transactions on Evolutionary Computation,
4(3):284–294, September 2000.

1405. T. P. Runarsson and X. Yao. Search biases in constrained evolutionary op-
timization. IEEE Transactions on Systems, Man, and Cybernetics Part C—
Applications and Reviews, 35(2):233–243, May 2005.

1406. E. H. Ruspini and I. S. Zwir. Automated Qualitative Description of Measure-
ments. In Proceedings of the 16th IEEE Instrumentation and Measurement
Technology Conference, volume 2, pages 1086–1091, Venice, Italy, 1999. IEEE
Press.

1407. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Upper Saddle River, New Jersey, 1995.

1408. C. Ryan. Pygmies and Servants. In J. Kenneth E. Kinnear, editor, Advances
in Genetic Programming, pages 243–263. The MIT Press, Cambridge, Massa-
chussets, 1994.

1409. J. Ryoo. Adaptation of Evolutionary Search in Topology and Decomposition
Based Design Optimization. PhD thesis, Mechanical Engineering Department,
Rensselaer Polytechnic Institute, Troy, New York, USA, August 2002.

1410. S. M. Sait, H. Youseff, and H. Ali. Fuzzy Simulated Evolution Algorithm
for Multi-objective Optimization of VLSI Placement. In 1999 Congress on
Evolutionary Computation, pages 91–97, Washington, D.C., July 1999. IEEE
Service Center.

1411. S. M. Sait and H. Youssef. Iterative Computer Algorithms with Applications in
Engineering. Solving Combinatorial Optimization Problems. IEEE Computer
Society, Los Alamitos, California, 1999.

1412. S. M. Sait, H. Youssef, and J. A. Khan. Fuzzy Evolutionary Algorithm for
VLSI Placement. In L. Spector, E. D. Goodman, A. Wu, W. Langdon, H.-M.
Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke,
editors, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’2001), pages 1056–1063, San Francisco, California, 2001. Morgan
Kaufmann Publishers.

1413. M. Sakawa. Genetic Algorithms and Fuzzy Multiobjective Optimization.
Kluwer Academic Publishers, Boston, 2002. ISBN 0-7923-7452-5.

1414. M. Sakawa. Fuzzy Sets and Interactive Multiobjective Optimization. Springer,
2003. ISBN 0-306-44337-6.

1415. M. Sakawa, M. Inuiguchi, H. Sunada, and K. Sawada. Fuzzy Multiobjective
Combinatorial Optimization Through Revised Genetic Algorithms. Japanese
Journal of Fuzzy Theory and Systems, 6(1):77–88, 1994.

1416. M. Sakawa, K. Kato, and T. Shibano. Fuzzy Programming For Multiobjective
0-1 Programming Problems Through Revised Genetic Algorithms. European
Journal of Operational Research, 97(1):149–158, 1997.

1417. M. Salazar-Lechuga and J. E. Rowe. Particle Swarm Optimization and Fit-
ness Sharing to solve Multi-Objective Optimization Problems. In 2005 IEEE
Congress on Evolutionary Computation (CEC’2005), volume 2, pages 1204–
1211, Edinburgh, Scotland, September 2005. IEEE Service Center.

1418. F. S. Salman, J. Kalagnanam, and S. Murthy. Cooperative Strategies for
Solving the Bicriteria Sparse Multiple Knapsack Problem. In 1999 Congress
on Evolutionary Computation, pages 53–60, Washington, D.C., July 1999.
IEEE Service Center.

References 733

1419. L. Saludjian, J. L. Coulomb, and A. Izabelle. Genetic Algorithm and Taylor
Development of the Finite Element Solution for Shape Optimization of Elec-
tromagnetic Devices. IEEE Transactions on Magnetics, 34(5):2841–2844,
September 1998.

1420. M. E. Salukvadze. On the Existence of Solution in Problems of Optimization
under Vector Valued Criteria. Journal of Optimization Theory and Applica-
tions, 12(2):203–217, 1974.

1421. J. W. Sammon. A nonlinear mapping for data structure analysis. IEEE
Transactions on Computers, C-18(5):401–408, 1969.

1422. E. Sandgren. Multicriteria design optimization by goal programming. In
H. Adeli, editor, Advances in Design Optimization, pages 225–265. Chapman
& Hall, London, 1994.

1423. L. V. Santana-Quintero and C. A. Coello Coello. An Algorithm Based on
Differential Evolution for Multi-Objective Problems. International Journal
of Computational Intelligence Research, 1(2):151–169, 2005.

1424. L. V. Santana-Quintero, N. Ramı́rez-Santiago, C. A. Coello Coello, J. Molina
Luque, and A. G. Hernández-Dı́az. A New Proposal for Multiobjective Op-
timization Using Particle Swarm Optimization and Rough Sets Theory. In
T. P. Runarsson, H.-G. Beyer, E. Burke, J. J. Merelo-Guervós, L. D. Whitley,
and X. Yao, editors, Parallel Problem Solving from Nature - PPSN IX, 9th In-
ternational Conference, pages 483–492. Springer. Lecture Notes in Computer
Science Vol. 4193, Reykjavik, Iceland, September 2006.

1425. A. Santos and A. D. Pereira Correia. Constrained GA Applied to Production
and Energy Mangement of a Pulp and Paper Mill. In J. Carroll, H. Haddad,
D. Oppenheim, B. Bryant, and G. B. Lamont, editors, Proceedings of the 1999
ACM Symposium on Applied Computing, pages 324–332, San Antonio, Texas,
1999. ACM.

1426. R. Sarker, H. A. Abbass, and C. S. Newton. Solving Two Multi-objective
Optimization Problems using Evolutionary Algorithm. In M. Mohammadian,
R. A. Sarker, and X. Yao, editors, Computational Intelligence in Control,
pages 218–232. Idea Group Publishing, USA, 2003.

1427. R. Sarker, K. Liang, and C. Newton. A New Evolutionary Algorithm for
Multiobjective Optimization. European Journal of Operational Research,
140(1):12–23, 2002.

1428. R. Sarker and C. Netwon. Solving a Multiple Objective Linear Program using
Simulated Annealing. Asia-Pacific Journal of Operational Research, 18:109–
120, 2001.

1429. G. V. Sarma, L. Sellami, and K. D. Houam. Application of Lexicographic
Goal Programming in Production Planning—Two case studies. Opsearch,
30(2):141–162, 1993.

1430. K. Sastry, M. Pelikan, and D. E. Goldberg. Limits of Scalability of Mul-
tiobjective Estimation of Distribution Algorithms. In 2005 IEEE Congress
on Evolutionary Computation (CEC’2005), volume 3, pages 2217–2224, Ed-
inburgh, Scotland, September 2005. IEEE Service Center.

1431. H. Sato, H. E. Aguirre, and K. Tanaka. Local Dominance Using Polar
Coordinates to Enhance Multiobjective Evolutionary Algorithms. In 2004
Congress on Evolutionary Computation (CEC’2004), volume 1, pages 188–
195, Portland, Oregon, USA, June 2004. IEEE Service Center.

734 References

1432. D. A. Savic, G. A. Walters, and M. Schwab. Multiobjective Genetic Algo-
rithms for Pump Scheduling in Water Supply. In AISB International Work-
shop on Evolutionary Computing. Lecture Notes in Computer Science 1305,
pages 227–236, Berlin, April 1997. Springer-Verlag.

1433. D. Savir. Multi-objective linear programming. Technical Report ORC 66-21,
Operations Research Center, University of California, Berkeley, California,
1966.

1434. H. Sawai and S. Adachi. Effects of Hierarchical Migration in a Parallel Distrib-
uted Parameter-Free GA. In 2000 Congress on Evolutionary Computation,
volume 2, pages 1117–1124, Piscataway, New Jersey, July 2000. IEEE Service
Center.

1435. D. K. Saxena and K. Deb. Non-linear Dimensionality Reduction Proce-
dures for Certain Large-Dimensional Multi-objective Optimization Problems:
Employing Correntropy and a Novel Maximum Variance Unfolding. In
S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, editors, Evo-
lutionary Multi-Criterion Optimization, 4th International Conference, EMO
2007, pages 772–787, Matshushima, Japan, March 2007. Springer. Lecture
Notes in Computer Science Vol. 4403.

1436. T. M. Sayers and J. M. Anderson. The multi-objective optimisation of a traffic
control system. In A. Ceder, editor, Proceedings of 14th International Sym-
posium on Transportation and Traffic Theory, pages 153–176. Transportation
Research Institute, Haifa, Israel, July 1999.

1437. S. Sayin. Measuring the Quality of Discrete Representations of Efficient Sets
in Multiple Objective Mathematical Programming. Mathematical Program-
ming, 87(3):543–560, 2000.

1438. I. F. Sbalzarini, S. Müller, and P. Koumoutsakos. Microchannel Optimization
Using Multiobjective Evolution Strategies. In E. Zitzler, K. Deb, L. Thiele,
C. A. Coello Coello, and D. Corne, editors, First International Conference on
Evolutionary Multi-Criterion Optimization, pages 516–530. Springer-Verlag.
Lecture Notes in Computer Science No. 1993, 2001.

1439. J. D. Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms. PhD thesis, Vanderbilt University, Nashville, Tennessee, 1984.

1440. J. D. Schaffer. Multiple Objective Optimization with Vector Evaluated Ge-
netic Algorithms. In Genetic Algorithms and their Applications: Proceedings
of the First International Conference on Genetic Algorithms, pages 93–100,
Hillsdale, New Jersey, 1985. Lawrence Erlbaum.

1441. J. D. Schaffer and J. J. Grefenstette. Multiobjective Learning via Genetic
Algorithms. In Proceedings of the 9th International Joint Conference on Ar-
tificial Intelligence (IJCAI-85), pages 593–595, Los Angeles, California, 1985.
AAAI.

1442. S. Schäffler, R. Schultz, and K. Weinzierl. Stochastic method for the solu-
tion of unconstrained vector optimization problems. Journal of Optimization
Theory and Applications, 114(1):209–222, 2002.

1443. F. Schlottmann, A. Mitschele, and D. Seese. A Multi-objective Approach to
Integrated Risk Management. In C. A. Coello Coello, A. Hernández Aguirre,
and E. Zitzler, editors, Evolutionary Multi-Criterion Optimization. Third
International Conference, EMO 2005, pages 692–706, Guanajuato, México,
March 2005. Springer. Lecture Notes in Computer Science Vol. 3410.

1444. F. Schlottmann and D. Seese. Hybrid multi-objective evolutionary computa-
tion of constrained downside risk-return efficient sets for credit portfolio. In

References 735

Proceedings of the 8th International Conference of the Society for Computa-
tional Economics. Computing in Economics and Finance, Aix-en-Provence,
France, June 2002.

1445. F. Schlottmann and D. Seese. Financial Applications of Multi-Objective Evo-
lutionary Algorithms: Recent Developments and Future Research Directions.
In C. A. Coello Coello and G. B. Lamont, editors, Applications of Multi-
Objective Evolutionary Algorithms, pages 627–652. World Scientific, Singa-
pore, 2004.

1446. F. Schlottmann and D. Seese. A Hybrid Heuristic Approach to Discrete Multi-
Objective Optimization of Credit Portfolios. Computational Statistics & Data
Analysis, 47(2):373–399, September 2004.

1447. F. Schmiedle, N. Drechsler, D. Große, and R. Drechsler. Priorities in Multi-
Objective Optimization for Genetic Programming. In L. Spector, E. D.
Goodman, A. Wu, W. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo,
S. Pezeshk, M. H. Garzon, and E. Burke, editors, Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO’2001), pages 129–136,
San Francisco, California, 2001. Morgan Kaufmann Publishers.

1448. K. Schmitt, J. Mehnen, and T. Michelitsch. Using Predators and Preys in
Evolution Strategies. In H.-G. B. et al., editor, 2005 Genetic and Evolution-
ary Computation Conference (GECCO’2005), volume 1, pages 827–828, New
York, USA, June 2005. ACM Press.

1449. V. Schnecke and O. Vornberger. Hybrid Genetic Algorithms for Constrained
Placement Problems. IEEE Transactions on Evolutionary Computation,
1(4):266–277, November 1997.

1450. T. Schnier, X. Yao, and P. Liu. Digital Filter Design Using Multiple Pareto
Fronts. In D. Keymeulen, A. Stoica, J. Lohn, and R. Salem Zebulum, editors,
Proceedings of the Third NASA/DoD Workshop on Evolvable Hardware, pages
136–145, Long Beach, California, July 2001. IEEE Computer Society Press.

1451. M. Schoenauer and S. Xanthakis. Constrained GA Optimization. In
S. Forrest, editor, Proceedings of the Fifth International Conference on Gene-
tic Algorithms, pages 573–580. Morgan Kaufmann Publishers, San Mateo,
California, July 1993.

1452. J. R. Schott. Fault Tolerant Design Using Single and Multicriteria Genetic
Algorithm Optimization. Master’s thesis, Department of Aeronautics and As-
tronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts,
May 1995.

1453. P. Schroder, A. J. Chipperfield, P. J. Fleming, and N. Grum. Multi-Objective
Optimization of Distributed Active Magnetic Bearing Controllers. In Genetic
Algorithms in Engineering Systems: Innovations and Applications, pages 13–
18. IEE, September 1997.

1454. O. Schütze. A New Data Structure for the Nondominance problem in Multi-
objective Optimization. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb,
and L. Thiele, editors, Evolutionary Multi-Criterion Optimization. Second
International Conference, EMO 2003, pages 509–518, Faro, Portugal, April
2003. Springer. Lecture Notes in Computer Science. Volume 2632.

1455. O. Schütze. Set Oriented Methods for Global Optimization. PhD thesis,
Fakultät für Elektrotechnik, Informatik und Mathematik, Universität
Paderborn, Paderborn, Germany, December 2004.

736 References

1456. O. Schütze, S. Mostaghim, M. Dellnitz, and J. Teich. Covering Pareto
Sets by Multilevel Evolutionary Subdivision Techniques. In C. M. Fonseca,
P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele, editors, Evolutionary Multi-
Criterion Optimization. Second International Conference, EMO 2003, pages
118–132, Faro, Portugal, April 2003. Springer. Lecture Notes in Computer
Science. Volume 2632.

1457. M. Schwab, D. A. Savic, and G. A. Walters. Multi-Objective Genetic Al-
gorithm for Pump Scheduling in Water Supply Systems. Technical Report
96/02, Centre For Systems And Control Engineering, School of Engineering,
University of Exeter, Exeter, United Kingdom, 1996.

1458. J. Schwarz and J. Ocenasek. Evolutionary Multiobjective Bayesian Opti-
mization Algorithm: Experimental Study. In Proceedings of the 35th Spring
International Conference: Modelling and Simulation of Systems (MOSIS’01),
pages 101–108, Czech Republic, 2001. MARQ, Hradec and Moravici.

1459. J. Schwarz and J. Ocenasek. Multiobjective Bayesian Optimization Algorithm
for Combinatorial Problems: Theory and Practice. Neural Network World,
11(5):423–441, 2001.

1460. H.-P. Schwefel. Evolution and Optimum Seeking. John Wiley & Sons, New
York, 1995.

1461. M. Scott and E. Antonsson. Arrow’s theorem and engineering design decision
making. Research in Engineering Design, 11(4):218–228, 1999.

1462. B. R. Secrest and G. B. Lamont. Communication in Particle Swarm Opti-
mization Illustrated by the Traveling Salesman Problem. In Proceedings of
Particle Swarm Optimization Workshop, Indiana University Purdue Univer-
sity at Indianapolis, pages 14–21, Indianapolis, Indiana, April 2001.

1463. M. Sefrioui and J. Periaux. Nash Genetic Algorithms: examples and appli-
cations. In 2000 Congress on Evolutionary Computation, volume 1, pages
509–516, Piscataway, NJ, July 2000. IEEE Service Center.

1464. P. Sen and J. B. Yang. Multiple-Criteria Decision-Making in Design Selection
and Synthesis. Journal of Engineering Design, 6(3):207–230, 1995.

1465. P. Serafini. Some considerations about computational complexity for multi-
objective combinatorial problems. In J. Jahn and W. Krabs, editors, Recent
Advances and Historical Developments of Vector Optimization, pages 222–
232. Springer. Lecture Notes in Economics and Mathematical Systems Vol.
249, 1987.

1466. P. Serafini. Simulated Annealing for Multiple Objective Optimization Prob-
lems. In G. Tzeng, H. Wang, U. Wen, and P. Yu, editors, Proceedings of the
Tenth International Conference on Multiple Criteria Decision Making: Ex-
pand and Enrich the Domains of Thinking and Application, volume 1, pages
283–292, Berlin, 1994. Springer-Verlag.

1467. P. Serafini. Simulated Annealing for Multiple Objective Optimization Prob-
lems. In G. Tzeng, H. Wang, U. Wen, and P. Yu, editors, Proceedings of the
Tenth International Conference on Multiple Criteria Decision Making: Ex-
pand and Enrich the Domains of Thinking and Application, volume 1, pages
283–294, Berlin, 1994. Springer-Verlag.

1468. S. Sette, L. Boullart, and L. V. Langenhove. Optimizing a Production Process
by a Neural Network/Genetic Algorithm Approach. Engineering Applications
in Artificial Intelligence, 9(6):681–689, 1996.

References 737

1469. J. L. Shapiro. Statistical Mechanics Theory of Genetic Algorithms. In
L. Kallel, B. Naudts, and A. Rogers, editors, Theoretical Aspects of Evo-
lutionary Computing, pages 87–108. Springer, Berlin, Germany, 2001.

1470. K. J. Shaw and P. J. Fleming. Initial Study of Practical Multi-Objective
Genetic Algorithms for Scheduling the Production of Chilled Ready Meals.
In Proceedings of Mendel’96, the 2nd International Mendel Conference on
Genetic Algorithms, Brno, Czech Republic, September 1996.

1471. K. J. Shaw and P. J. Fleming. An Initial Study of Practical Multi-Objective
Production Scheduling using Genetic Algorithms. In Proceedings of the
UKACC International Conference on Control’96, volume 1, pages 479–484,
University of Exeter, UK, September 1996.

1472. K. J. Shaw and P. J. Fleming. Including Real-Life Preferences in Genetic Al-
gorithms to Improve Optimisation of Production Schedules. In GALESIA’97:
Proceedings of the Conference on Genetic Algorithms in Engineering Systems:
Innovations and Applications, pages 239–244, Glasgow, Scotland, September
1997. IEE.

1473. K. J. Shaw and P. J. Fleming. Use of Rules and Preferences for Schedule
Builders in Genetic Algorithms Production Scheduling. In D. Corne and
J. L. Shapiro, editors, Selected Papers from AISB Workshop on Evolutionary
Computing, pages 237–250, Manchester, UK, 1997. Springer-Verlag. Lecture
Notes in Computer Science Vol. 1305.

1474. K. J. Shaw, A. L. Nortcliffe, M. Thompson, J. Love, C. M. Fonseca, and
P. J. Fleming. Assessing the Performance of Multiobjective Genetic Algo-
rithms for Optimization of a Batch Process Scheduling Problem. In 1999
Congress on Evolutionary Computation, pages 37–45, Washington, D.C., July
1999. IEEE Service Center.

1475. P. Shelokar, V. Jayaraman, and B. Kulkarni. Ant algorithm for single and
multiobjective reliability optimization problems. Quality and Reliability En-
gineering International, 18(6):497–514, November-December 2002.

1476. P. S. Shelokar, S. Adhikari, R. Vakil, V. Jayaraman, and B. Kulkarni. Multi-
objective ant algorithm for continuous function optimization: Combination of
strength Pareto fitness assignment and thermodynamic clustering. Founda-
tions of Computing and Decision Sciences, 25(4):213–229, 2000.

1477. D. J. Sheskin. Handbook of Parametric and Nonparametric Statistical Proce-
dures. Chapman & Hall/CRC, third edition, 2003. ISBN 1-5848-8440-1.

1478. R. Shi. Studies on Multi-objective Evolutionary Algorithms with Applications
to Production Scheduling. PhD thesis, School of Economics and Management,
Beihang University, Beijing, China, 2006.

1479. Y. Shi and R. C. Eberhart. Parameter Selection in Particle Swarm Opti-
mization. In V. W. Porto, N. Saravanan, D. Waagen, and A. Eibe, editors,
Proceedings of the Seventh Annual Conference on Evolutionary Programming,
pages 591–600. Springer-Verlag, March 1998.

1480. T. Shibano and M. Sakawa. Interactive Decision Making for Fuzzy Multiob-
jective 0-1 Programs Through Genetic Algorithms with Double Strings. In
Proceedings of the Sixth IEEE Conference on Fuzzy Systems, pages 1639–1644,
1997.

1481. M. Shibuya, H. Kita, and S. Kobayashi. Integration of multi-objective and
interactive genetic algorithms and its application to animation design. In
Proceedings of IEEE Systems, Man, and Cybernetics, volume III, pages 646–
651, 1999.

738 References

1482. S.-Y. Shin. Multi-Objective Evolutionary Optimization of DNA Sequences for
Molecular Computing. PhD thesis, School of Computer Science and Engineer-
ing, Seoul, South Korea, August 2005.

1483. S.-Y. Shin, I.-H. Lee, D. Kim, and B.-T. Zhang. Multiobjective Evolution-
ary Optimization of DNA Sequences for Reliable DNA Computing. IEEE
Transactions on Evolutionary Computation, 9(2):143–158, April 2005.

1484. J. S. Shoaf and J. A. Foster. A Genetic Algorithm Solution to the Efficient
Set Problem: A Technique for Portfolio Selection Based on the Markowitz
Model. In Proceedings of the Decision Sciences Institute Annual Meeting,
pages 571–573, Orlando, Florida, 1996.

1485. P. K. Shukla. On Gradient Based Local Search Methods in Uncons-
trained Evolutionary Multi-objective Optimization. In S. Obayashi, K. Deb,
C. Poloni, T. Hiroyasu, and T. Murata, editors, Evolutionary Multi-Criterion
Optimization, 4th International Conference, EMO 2007, pages 96–110,
Matshushima, Japan, March 2007. Springer. Lecture Notes in Computer Sci-
ence Vol. 4403.

1486. P. Siarry and G. Berthiau. Fitting of tabu search to optimize functions of
continuous variables. International Journal for Numerical Methods in Engi-
neering, 40(13):2449–2457, 1997.

1487. W. Siedlecki and J. Sklanski. Constrained Genetic Optimization via Dy-
namic Reward-Penalty Balancing and Its Use in Pattern Recognition. In
J. D. Schaffer, editor, Proceedings of the Third International Conference on
Genetic Algorithms, pages 141–150, San Mateo, California, June 1989. Mor-
gan Kaufmann Publishers.

1488. J. M. Skalka. Electre III et IV. Aspects méthodologiques et guide d’utilisation.
Document 25, 1984. Lamsade, Paris.

1489. A. E. Smith and D. W. Coit. Constraint Handling Techniques—Penalty
Functions. In T. Bäck, D. B. Fogel, and Z. Michalewicz, editors, Handbook
of Evolutionary Computation, chapter C 5.2. Oxford University Press and
Institute of Physics Publishing, 1997.

1490. A. E. Smith and D. M. Tate. Genetic Optimization Using a Penalty Function.
In S. Forrest, editor, Proceedings of the Fifth International Conference on
Genetic Algorithms, pages 499–503, San Mateo, California, July 1993. Morgan
Kaufmann Publishers.

1491. J. Smith. Co-evolving Memetic Algorithms: Initial Investigations. In J. J.
Merelo Guervós, P. Adamidis, H.-G. Beyer, J.-L. F.-V. nas, and H.-P. Schwe-
fel, editors, Parallel Problem Solving from Nature—PPSN VII, pages 537–546,
Granada, Spain, September 2002. Springer-Verlag. Lecture Notes in Com-
puter Science No. 2439.

1492. J. Smith. The Co-Evolution of Memetic Algorithms for Protein Structure Pre-
diction. In W. E. Hart, N. Krasnogor, and J. Smith, editors, Recent Advances
in Memetic Algorithms, pages 105–128. Springer, 2005.

1493. J. M. Smith. Evolution and the Theory of Games. Cambridge University
Press, Cambridge, UK, 1982.

1494. K. I. Smith. A Study of Simulated Annealing Techniques for Multi-Objective
Optimisation. PhD thesis, University of Exeter, UK, October 2006.

1495. R. E. Smith, B. A. Dike, and S. A. Stegmann. Fitness Inheritance in Ge-
netic Algorithms. In Proceedings of the 1995 ACM Symposium on Applied
Computing, pages 345–350, Nashville, Tennessee, USA, 1995. ACM Press.

References 739

1496. R. E. Smith, S. Forrest, and A. S. Perelson. Searching for diverse, cooperative
populations with genetic algorithms. Technical Report TCGA No. 92002,
University of Alabama, Tuscaloosa, Alabama, 1992.

1497. R. E. Smith, S. Forrest, and A. S. Perelson. Population diversity in an im-
mune system model: Implications for genetic search. In L. D. Whitley, edi-
tor, Foundations of Genetic Algorithms 2, pages 153–165. Morgan Kaufmann
Publishers, San Mateo, CA, 1993.

1498. R. E. Smith, S. Forrest, and A. S. Perelson. Population Diversity in an Im-
mune System Model: Implications for Genetic Search. In L. D. Whitley, edi-
tor, Foundations of Genetic Algorithms 2, pages 153–165. Morgan Kaufmann
Publishers, San Mateo, California, 1993.

1499. S. F. Smith. Flexible learning of problem solving heuristics through adaptive
search. In A. Bundy, editor, Proceedings of the 8th International Joint Con-
ference on Artificial Intelligence, pages 422–425, Karlsruhe, Germany, August
1983.

1500. T. Smith, P. Husbands, P. Layzell, and M. O’Shea. Fitness Landscapes and
Evolvability. Evolutionary Computation, 10(1):1–34, Spring 2002.

1501. P. Smyth and R. Goodman. Rule induction using information theory. In
G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Data-
bases, pages 159–176. The MIT Press, Cambridge, Massachusetts, USA, 1991.

1502. K. Socha and M. Kisiel-Dorohinicki. Agent-based Evolutionary Multiobjec-
tive Optimisation. In Congress on Evolutionary Computation (CEC’2002),
volume 1, pages 109–114, Piscataway, New Jersey, May 2002. IEEE Service
Center.

1503. R. Solich. Zadanie programowania liniowego z wieloma funkcjami celu (Linear
Programming Problem with Several Objective Functions). Przeglad Statysty-
czny, 16:24–30, 1969. (In Polish).

1504. G. A. Soremekun. Genetic Algorithms for Composite Laminate Design and
Optimization. Master’s thesis, Department of Mechanical Engineering, Vir-
ginia Polytechnic Institute, Blacksburgh, Virginia, February 5 1997.

1505. K. Sorrensen-Cothern, E. Ford, and D. Sprugel. A process based model of
competition for light incorporating plasticity through modular foliage and
crown development. Ecological Monographs, 63:277–304, 1993.

1506. J. Sridhar and C. Rajendran. Scheduling in Flowshop and Cellular Manufac-
turing Systems with Multiple Objectives – A Genetic Algorithmic Approach.
Production Planning & Control, 7(4):374–382, 1996.

1507. K. C. Srigiriraju. Noninferior Surface Tracing Evolutionary Algorithm
(NSTEA) for Multi Objective Optimization. Master’s thesis, North Carolina
State University, Raleigh, North Carolina, August 2000.

1508. N. Srinivas and K. Deb. Multiobjective optimization using nondominated
sorting in genetic algorithms. Technical report, Department of Mechanical
Engineering, Indian Institute of Technology, Kanput, India, 1993.

1509. N. Srinivas and K. Deb. Multiobjective Optimization Using Nondominated
Sorting in Genetic Algorithms. Evolutionary Computation, 2(3):221–248, fall
1994.

1510. D. Srinivasan and T. H. Seow. Particle Swarm Inspired Evolutionary Al-
gorithm (PS-EA) for Multiobjective Optimization Problem. In Proceedings
of the 2003 Congress on Evolutionary Computation (CEC’2003), volume 4,
pages 2292–2297, Canberra, Australia, December 2003. IEEE Press.

740 References

1511. D. Srinivasan and T. H. Seow. Particle Swarm Inspired Evolutionary Algo-
rithm (PS-EA) for Multi-Criteria Optimization Problems. In A. Abraham,
L. Jain, and R. Goldberg, editors, Evolutionary Multiobjective Optimization:
Theoretical Advances And Applications, pages 147–165. Springer-Verlag,
London, 2005. ISBN 1-85233-787-7.

1512. P. F. Stadler and C. Flamm. Barrier Trees on Poset-Valued Landscapes.
Genetic Programming and Evolvable Machines, 4(1):7–20, March 2003.

1513. W. Stadler. Preference optimality and applications to Pareto optimality.
In G. Leitmann and A. Marzollo, editors, Multi-Criteria Decision Making,
volume 211. Springer-Verlag, New York, 1975.

1514. W. Stadler. Natural Structural Shapes (The Static Case). The Quarterly
Journal of Mechanics and Applied Mathematics, XXXI, Pt. 2:169–217, 1978.

1515. W. Stadler. A Survey of Multicriteria Optimization or the Vector Maximum
Problem, Part I : 1776-1960. Journal of Optimization Theory and Applica-
tions, 29(1):1–52, sep 1984.

1516. W. Stadler. Initiators of Multicriteria Optimization. In J. Jahn and W. Krabs,
editors, Recent Advances and Historical Development of Vector Optimization,
pages 3–47. Springer-Verlag, Berlin, 1986.

1517. W. Stadler. Fundamentals of multicriteria optimization. In W. Stadler, edi-
tor, Multicriteria Optimization in Engineering and the Sciences, pages 1–25.
Plenum Press, New York, 1988.

1518. T. J. Stanley and T. Mudge. A Parallel Genetic Algorithm for Multiobjective
Microprocessor Design. In L. J. Eshelman, editor, Proceedings of the Sixth
International Conference on Genetic Algorithms, pages 597–604, San Mateo,
California, July 1995. Morgan Kaufmann Publishers.

1519. M. K. Starr and M. Zeleny. MCDM-state and future of the arts. In M. K. Starr
and M. Zeleny, editors, Multiple Criteria Decision Making, volume 6 of TIMS
Studies in the Management Sciences, pages 5–29. North-Holland Publishing
Company, Amsterdam, 1977.

1520. E. J. Steele, R. A. Lindley, and R. V. Blanden. Lamarck’s Signature. How Ret-
rogenes are Changing Darwin’s Natural Selection Paradigm. Perseus Books,
Reading, Massachusetts, 1998.

1521. J. Stender, editor. Parallel Genetic Algorithms, Theory and Applications,
volume 14 of Frontiers in Artificial Intelligence and Applications. IOS Press,
The Netherlands, 1993.

1522. R. E. Steuer. Multiple Criteria Optimization: Theory, Computation, and Ap-
plication. John Wiley, New York, 1986.

1523. B. S. Stewart and C. C. White. Multiobjective A∗. Journal of the ACM,
38(4):775–814, October 1991.

1524. T. J. Stewart, R. Janssen, and M. van Herwijnen. A genetic algorithm ap-
proach to multiobjective land use planning. Computers & Operations Re-
search, 31:2293–2313, 2004.

1525. R. Storn and K. Price. Differential Evolution: A Simple and Efficient Adaptive
Scheme for Global Optimization over Continuous Spaces. Technical Report
TR-95-012, International Computer Science Institute, Berkeley, California,
March 1995.

1526. R. Storn and K. Price. Differential Evolution - A Fast and Efficient Heuristic
for Global Optimization over Continuous Spaces. Journal of Global Optimiza-
tion, 11:341–359, 1997.

References 741

1527. D. Stoyan. Random sets: Models and Statistics. International Statistical
Review, 66:1–27, 1998.

1528. F. Streichert, H. Ulmer, and A. Zell. Parallelization of Multi-objective Evo-
lutionary Algorithms Using Clustering Algorithms. In C. A. Coello Coello,
A. Hernández Aguirre, and E. Zitzler, editors, Evolutionary Multi-Criterion
Optimization. Third International Conference, EMO 2005, pages 92–107,
Guanajuato, México, March 2005. Springer. Lecture Notes in Computer Sci-
ence Vol. 3410.

1529. T. Stützle and H. Hoos. Max-min ant system. Future Generation Computer
Systems, 16(8):889–914, 2000.

1530. R. Subbu, P. P. Bonissone, N. Eklund, S. Bollapragada, and
K. Chalermkraivuth. Multiobjective Financial Portfolio Design: A Hy-
brid Evolutionary Approach. In 2005 IEEE Congress on Evolutionary
Computation (CEC’2005), volume 2, pages 1722–1729, Edinburgh, Scotland,
September 2005. IEEE Service Center.

1531. A. Sülflow, N. Drechsler, and R. Drechsler. Robust Multi-objective Opti-
mization in High Dimensional Spaces. In S. Obayashi, K. Deb, C. Poloni,
T. Hiroyasu, and T. Murata, editors, Evolutionary Multi-Criterion Optimiza-
tion, 4th International Conference, EMO 2007, pages 715–726, Matshushima,
Japan, March 2007. Springer. Lecture Notes in Computer Science Vol. 4403.

1532. A. M. Sultan and A. M. Templeman. Generation of Pareto Solutions by
Entropy-Based Methods. In M. Tamiz, editor, Multiobjecitve and Goal Pro-
gramming: Theories and Application, pages 164–195. Springer-Verlag, Berlin,
1996.

1533. B. Suman. Multiobjective simulated annealing–A metaheuristic technique
for multiobjective optimization of a constrained problem. Foundations of
Computing and Decision Sciences, 27(3):171–191, 2002.

1534. B. Suman. Simulated Annealing-Based Multiobjective Algorithms and Their
Application for System Reliability. Engineering Optimization, 35(4):391–416,
August 2003.

1535. B. Suman. Study of simulated annealing based algorithms for multiobjective
optimization of a constrained problem. Computers & Chemical Engineering,
28:1849–1871, 2004.

1536. B. Suman and P. Kumar. A survey of simulated annealing as a tool for single
and multiobjective optimization. Journal of the Operational Research Society,
57(10):1143–1160, October 2006.

1537. M. Sun, A. Stam, and R. Steuer. Solving multiple objective program-
ming problems using feed-forward artificial neural networks: The interactive
FFANN procedure. Management Science, 42:835–849, 1996.

1538. M. Sun, A. Stam, and R. Steuer. Interactive multiple objective programming
using tchebycheff programs and artificial neural networks. Computers and
Operations Research, 27:601–620, 2000.

1539. A. Suppapitnarm, K. Seffen, G. Parks, and P. Clarkson. A simulated an-
nealing algorithm for multiobjective optimization. Engineering Optimization,
33(1):59–85, 2000.

1540. A. Suppapitnarm, K. Seffen, G. Parks, and A. Connor. Multiobjective opti-
misation of bicycle frames using simulated annealing. In Proceedings of the
First ASMO/ISSMO Conference on Engineering Design Optimization, vol-
ume 1, pages 357–364, Ilkley, West Yorkshire, 1999.

742 References

1541. A. Suppapitnarm, K. Seffen, G. Parks, and J.-S. Liu. Design by multi-
objective optimisation using simulated annealing. In Proceedings of the 12th
International Conference in Engineering Design (ICED’99), volume 3, pages
1395–1400, Munich, Germany, 1999.

1542. P. D. Surry and N. J. Radcliffe. The COMOGA Method: Constrained Op-
timisation by Multiobjective Genetic Algorithms. Control and Cybernetics,
26(3):391–412, 1997.

1543. P. D. Surry, N. J. Radcliffe, and I. D. Boyd. A Multi-Objective Approach to
Constrained Optimisation of Gas Supply Networks : The COMOGA Method.
In T. C. Fogarty, editor, Evolutionary Computing. AISB Workshop. Selected
Papers, pages 166–180. Springer-Verlag. Lecture Notes in Computer Science
No. 993, Sheffield, U.K., 1995.

1544. R. S. Sutton and A. G. Barto. Reinforcement Learning. An Introduction. The
MIT Press, Cambridge, Massachusetts, 1999.

1545. G. Syswerda and J. Palmucci. The Application of Genetic Algorithms to
Resource Scheduling. In R. K. Belew and L. B. Booker, editors, Proceedings
of the Fourth International Conference on Genetic Algorithms, pages 502–508,
San Mateo, California, 1991. Morgan Kaufmann Publishers.

1546. F. Szidarovszky. Notes on multi-objective dynamic programming. Technical
Report 79-1, Department of Systems and Industrial Engineering, University
of Arizona, Tucson, Arizona, 1979.

1547. F. Szidarovszky and L. Duckstein. Basic Properties of MODM problems. In
Classnotes 82-1. Department of Systems and Industrial Engineering, Univer-
sity of Arizona, Tucson, Arizona, 1982.

1548. R. Szmit and A. Barak. Evolution Strategies for a Parallel Multi-Objective
Genetic Algorithm. In D. Whitley, D. Goldberg, E. Cantú-Paz, L. Spector,
I. Parmee, and H.-G. Beyer, editors, Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO’2000), pages 227–234, San Francisco,
California, 2000. Morgan Kaufmann.

1549. T. Tachibana, Y. Murata, N. Shibata, K. Yasumoto, and M. Ito. A Hard-
ware Implementation Method of Multi-Objective Genetic Algorithms. In 2006
IEEE Congress on Evolutionary Computation (CEC’2006), pages 10922–
10929, Vancouver, BC, Canada, July 2006. IEEE.

1550. T. Tagami and T. Kawabe. Genetic Algorithm with a Pareto Partition-
ing Method for Multi-objective Flowshop Scheduling. In Proceedings of
the 1998 International Symposium of Nonlinear Theory and its Applications
(NOLTA’98), pages 1069–1072, Crans-Montana, 1998.

1551. T. Tagami and T. Kawabe. Genetic Algorithm based on a Pareto Neigh-
borhood Search for Multiobjective Optimization. In Proceedings of the
1999 International Symposium of Nonlinear Theory and its Applications
(NOLTA’99), pages 331–334, Hawaii, 1999.

1552. E. Taillard. Parallel taboo search techniques for the job shop scheduling
problem. ORSA Journal on Computing, 6(2):108–117, 1994.

1553. H. Takagi. Interactive Evolutionary Computation—Cooperation of Compu-
tational Intelligence and Human KANSEI—. In Proceedings of the 5th Inter-
national Conference on Soft Computing and Information/Intelligent Systems
(IIZUKA’98), pages 41–50, Iizuka, Fukuoka, Japan, October 1998. World Sci-
entific.

1554. E.-G. Talbi, M. Rahoual, M. H. Mabed, and C. Dhaenens. A Hybrid Evolu-
tionary Approach for Multicriteria Optimization Problems: Application to the

References 743

Flow Shop. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne,
editors, First International Conference on Evolutionary Multi-Criterion Opti-
mization, pages 416–428. Springer-Verlag. Lecture Notes in Computer Science
No. 1993, 2001.

1555. H. Tamaki, H. Kita, and S. Kobayashi. Multi-Objective Optimization by
Genetic Algorithms : A Review. In T. Fukuda and T. Furuhashi, editors,
Proceedings of the 1996 International Conference on Evolutionary Computa-
tion (ICEC’96), pages 517–522, Nagoya, Japan, 1996. IEEE.

1556. H. Tamaki, M. Mori, M. Araki, Y. Mishima, and H. Ogai. Multi-Criteria Opti-
mization by Genetic Algorithms : A Case of Scheduling in Hot Rolling Process.
In Proceedings of the 3rd Conference of the Association of Asian-Pacific Oper-
ational Research Societies within IFORS (APORS’94), pages 374–381. World
Scientific, 1995.

1557. H. Tamaki, E. Nishino, and S. Abe. A Genetic Algorithm Approach to Multi-
Objective Scheduling Problems with Earliness and Tardiness Penalties. In
1999 Congress on Evolutionary Computation, pages 46–52, Washington, D.C.,
July 1999. IEEE Service Center.

1558. K. C. Tan, E. F. Khor, and T. H. Lee. Multiobjective Evolutionary Algorithms
and Applications. Springer-Verlag, London, 2005. ISBN 1-85233-836-9.

1559. K. C. Tan, E. F. Khor, T. H. Lee, and R. Sathikannan. An Evolutionary
Algorithm with Advanced Goal and Priority Specification for Multi-objective
Optimization. Journal of Artificial Intelligence Research, 18:183–215, 2003.

1560. K. C. Tan, E. F. Khor, T. H. Lee, and Y. J. Yang. A tabu-based exploratory
evolutionary algorithm for multiobjective optimization. Artificial Intelligence
Review, 19(3):231–260, May 2003.

1561. K. C. Tan, T. H. Lee, Y. H. Chew, and L. H. Lee. A Hybrid Multiobjec-
tive Evolutionary Algorithm For Solving Truck and Trailer Vehicle Routing
Problems. In Proceedings of the 2003 Congress on Evolutionary Computa-
tion (CEC’2003), volume 3, pages 2134–2141, Canberra, Australia, December
2003. IEEE Press.

1562. K. C. Tan, T. H. Lee, and E. F. Khor. Evolutionary Algorithms with Goal
and Priority Information for Multi-Objective Optimization. In 1999 Congress
on Evolutionary Computation, pages 106–113, Washington, D.C., July 1999.
IEEE Service Center.

1563. K. C. Tan, T. H. Lee, and E. F. Khor. Evolutionary Algorithms with Dynamic
Population Size and Local Exploration for Multiobjective Optimization. IEEE
Transactions on Evolutionary Computation, 5(6):565–588, December 2001.

1564. K. C. Tan, T. H. Lee, and E. F. Khor. Incrementing Multi-Objective Evo-
lutionary Algorithms: Performance Studies and Comparisons. In E. Zitzler,
K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne, editors, First In-
ternational Conference on Evolutionary Multi-Criterion Optimization, pages
111–125. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.

1565. K. C. Tan, T. H. Lee, E. F. Khor, and K. Ou. Control system design uni-
fication and automation using an incremented multi-objective evolutionary
algorithm. In M. H. Hamza, editor, Proceedings of the 19th IASTED Inter-
national Conference on Modeling, Identification and Control. IASTED, Inns-
bruck, Austria, 2000.

1566. K. C. Tan, T. H. Lee, E. F. Khor, and R. Sathikannan. Incremented multi-
objective evolutionary design automation of robust tracking thumbprint

744 References

performances in QFT. In Proceedings of the International Conference on Evo-
lutionary Computation for Computer, Communication, Control and Power,
pages 137–142, Chennai, India, 2000.

1567. K. C. Tan and Y. Li. Multi-objective genetic algorithm based time and fre-
quency domain design unification of linear control systems. In IFAC Inter-
national Symposium on Artificial Intelligence and Real-Time Control, pages
61–66, Kuala Lumpar, Malaysia, September 1997.

1568. K. C. Tan, Y. J. Yang, and C. K. Goh. A Distributed Cooperative Coevo-
lutionary Algorithm for Multiobjective Optimization. IEEE Transactions on
Evolutionary Computation, 10(5):527–549, October 2006.

1569. K. C. Tan, Y. J. Yang, and T. H. Lee. A Distributed Cooperative Coevo-
lutionary Algorithm for Multiobjective Optimization. In Proceedings of the
2003 Congress on Evolutionary Computation (CEC’2003), volume 4, pages
2513–2520, Canberra, Australia, December 2003. IEEE Press.

1570. M. Tanaka and T. Tanino. Global optimization by the genetic algorithm in
a multiobjective decision support system. In Proceedings of the 10th Inter-
national Conference on Multiple Criteria Decision Making, volume 2, pages
261–270, 1992.

1571. M. Tanaka, H. Watanabe, Y. Furukawa, and T. Tanino. GA-Based Decision
Support System for Multicriteria Optimization. In Proceedings of the 1995
IEEE International Conference on Systems, Man, and Cybernetics, volume 2,
pages 1556–1561, Piscataway, NJ, 1995. IEEE.

1572. K.-S. Tang, K.-F. Man, and K.-T. Ko. Wireless LAN Design using Hierarchi-
cal Genetic Algorithm. In T. Bäck, editor, Proceedings of the Seventh Interna-
tional Conference on Genetic Algorithms, pages 629–635. Morgan Kaufmann
Publishers, San Mateo, California, July 1997.

1573. T. Tanino and H. Kuk. Nonlinear Multiobjective Programming. In R. Sarker,
M. Mohammadian, and X. Yao, editors, Evolutionary Optimization, pages 71–
128. Kluwer Academic Publishers, New York, February 2002. ISBN 0-7923-
7654-4.

1574. T. Tanino, M. Tanaka, and C. Hojo. An interactive multicriteria decision
making method by using a genetic algorithm. In Proceedings of 2nd Interna-
tional Conference on Systems Science and Systems Engineering, pages 381–
386, 1993.

1575. M. Tayal. Particle Swarm Optimization for Mechanical Design. Master’s the-
sis, The University of Texas at Arlington, Arlington, Texas, USA, December
2003.

1576. J. Teich. Pareto-Front Exploration with Uncertain Objectives. In E. Zitzler,
K. Deb, L. Thiele, C. A. C. Coello, and D. Corne, editors, First Interna-
tional Conference on Evolutionary Multi-Criterion Optimization, pages 314–
328. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.

1577. A. Tettamanzi and M. Tomassini. Soft Computing: Integrating Evolutionary,
Neural and Fuzzy Systems. Springer, New York, 2001.

1578. D. Thierens and P. A. Bosman. Multi-Objective Mixture-based Iterated Den-
sity Estimation Evolutionary Algorithms. In L. Spector, E. D. Goodman,
A. Wu, W. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk,
M. H. Garzon, and E. Burke, editors, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO’2001), pages 663–670, San
Francisco, California, 2001. Morgan Kaufmann Publishers.

References 745

1579. D. Thierens and P. A. Bosman. Multi-Objective Optimization with Iter-
ated Density Estimation Evolutionary Algorithms using Mixture Models. In
Proceedings of the Third International Symposium on Adaptive Systems—
Evolutionary Computation and Probabilistic Graphical Models, pages 129–136,
Havana, Cuba, March 19–23 2001. Institute of Cybernetics, Mathematics and
Physics.

1580. M. W. Thomas. A Pareto Frontier for Full Stern Submarines via Genetic Al-
gorithm. PhD thesis, Ocean Engineering Department, Massachusetts Institute
of Technology, Cambridge, Massachusetts, USA, June 1998.

1581. M. W. Thomas. Multi-Species Pareto Frontiers in Preliminary Submarine
Design. Foundations of Computing and Decision Sciences, 25(4):273–289,
2000.

1582. M. Thompson. Application of Multi Objective Evolutionary Algorithms to
Analogue Filter Tuning. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello,
and D. Corne, editors, First International Conference on Evolutionary Multi-
Criterion Optimization, pages 546–559. Springer-Verlag. Lecture Notes in
Computer Science No. 1993, 2001.

1583. R. Thomson and T. Arslan. An Evolutionary Algorithm for the Multi-
Objective Optimisation of VLSI Primitive Operator Filters. In Congress on
Evolutionary Computation (CEC’2002), volume 1, pages 37–42, Piscataway,
New Jersey, May 2002. IEEE Service Center.

1584. R. Thomson and T. Arslan. The Evolutionary Design and Synthesis of
Non-Linear Digital VLSI Systems. In J. Lohn, R. Zebulum, J. Steincamp,
D. Keymeulen, A. Stoica, and M. I. Ferguson, editors, Proceedings of the 2003
NASA/DoD Conference on Evolvable Hardware, pages 125–134, Los Alamitos,
California, July 2003. IEEE Computer Society Press.

1585. G. Timmel. Ein stochastisches suchverrahren zur bestimmung der optimalen
kompromilsungen bei statischen polzkriteriellen optimierungsaufgaben. Wiss.
Z. TH Ilmenau, 26(5):159–174, 1980.

1586. A. Tiwari, R. Roy, G. Jared, and O. Munaux. Challenges in Real-Life Engi-
neering Design Optimization: An Analysis. In 2001 Genetic and Evolutionary
Computation Conference. Workshop Program, pages 289–294, San Francisco,
California, July 2001.

1587. S. Tiwari and N. Chakraborti. Multi-objective optimization of a two-
dimensional cutting problem using genetic algorithms. Journal of Materials
Processing Technology, 173:384–393, 2006.

1588. V. T’kindt and J.-C. Billaut. Multicriteria Scheduling. Theory, Models and
Algorithms. Springer, Berlin, 2002. ISBN 3-540-43617-0.

1589. V. T’kindt, N. Monmarché, F. Tercinet, and D. Laügt. An Ant Colony
Optimization algorithm to solve a 2-machine bicriteria flowshop scheduling
problem. European Journal of Operational Research, 142(2):250–257, October
2002.

1590. D. S. Todd. Multiple Criteria Genetic Algorithms in Engineering Design and
Operation. PhD thesis, University of Newcastle, Newcastle-upon-Tyne, UK,
October 1997.

1591. D. S. Todd and P. Sen. A Multiple Criteria Genetic Algorithm for Contain-
ership Loading. In T. Bäck, editor, Proceedings of the Seventh International
Conference on Genetic Algorithms, pages 674–681, San Mateo, California,
July 1997. Morgan Kaufmann Publishers.

746 References

1592. D. S. Todd and P. Sen. Multiple Criteria Scheduling using Genetic Algorithms
in a Shipyard Environment. In Proceedings of the 9th International Conference
on Computer Applications in Shipbuilding, Yokohama, Japan, October 1997.

1593. D. S. Todd and P. Sen. Tackling Complex Job Shop Problems Using Opera-
tion Based Scheduling. In I. Parmee, editor, The Integration of Evolutionary
and Adaptive Computing Technologies with Product/System Design and Re-
alisation, pages 45–58, Plymouth, United Kingdom, April 1998. Plymouth
Engineering Design Centre, Springer-Verlag.

1594. A. Toffolo and E. Benini. Genetic Diversity as an Objective in Multi-Objective
Evolutionary Algorithms. Evolutionary Computation, 11(2):151–167, Summer
2003.

1595. J. Toivanen, J. P. Hämäläinen, K. Miettinen, and P. Tarvainen. Designing
Paper Machine Headbox using GA. Materials and Manufacturing Processes,
18(3):533–541, 2003.

1596. G. Toscano Pulido. On the Use of Self-Adaptation and Elitism for Multiob-
jective Particle Swarm Optimization. PhD thesis, Computer Science Section,
Department of Electrical Engineering, CINVESTAV-IPN, Mexico, September
2005.

1597. G. Toscano Pulido and C. A. Coello Coello. The Micro Genetic Algorithm 2:
Towards Online Adaptation in Evolutionary Multiobjective Optimization. In
C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele, editors, Evolu-
tionary Multi-Criterion Optimization. Second International Conference, EMO
2003, pages 252–266, Faro, Portugal, April 2003. Springer. Lecture Notes in
Computer Science. Volume 2632.

1598. G. Toscano Pulido and C. A. Coello Coello. A Constraint-Handling Mech-
anism for Particle Swarm Optimization. In 2004 Congress on Evolution-
ary Computation (CEC’2004), volume 2, pages 1396–1403, Portland, Oregon,
USA, June 2004. IEEE.

1599. G. Toscano Pulido and C. A. Coello Coello. Using Clustering Techniques to
Improve the Performance of a Particle Swarm Optimizer. In K. D. et al.,
editor, Genetic and Evolutionary Computation–GECCO 2004. Proceedings of
the Genetic and Evolutionary Computation Conference. Part I, pages 225–
237, Seattle, Washington, USA, June 2004. Springer-Verlag, Lecture Notes in
Computer Science Vol. 3102.

1600. G. Toscano-Pulido, C. A. Coello Coello, and L. V. Santana-Quintero.
EMOPSO: A Multi-Objective Particle Swarm Optimizer with Emphasis on
Efficiency. In S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Murata,
editors, Evolutionary Multi-Criterion Optimization, 4th International Confer-
ence, EMO 2007, pages 272–285, Matshushima, Japan, March 2007. Springer.
Lecture Notes in Computer Science Vol. 4403.

1601. M. Toulouse, T. G. Crainic, and B. Sansó. Systemic behavior of cooperative
search algorithms. Parallel Computing, 30:57–79, 2004.

1602. A. Trebi-Ollennu and B. A. White. Multiobjective Fuzzy Genetic Algorithm
Optimisation Approach to Nonlinear Control System Design. In IFAC World
Congress, pages 1–10, San Francisco, California, September 1996.

1603. A. Trebi-Ollennu and B. A. White. Multiobjective Fuzzy Genetic Algorithm
Optimization Approach to Nonlinear Control System Design. IEE Proceed-
ings, Control Theory and Applications, 144(2):137–142, March 1997.

1604. M. Trefzer, J. Langeheine, K. Meier, and J. Schemmel. Operational am-
plifiers: An example for multi-objective optimization on an analog evolvable

References 747

hardware platform. In J. M. Moreno, J. Madrenas, and J. Cosp, editors,
Evolvable Systems: From Biology to Hardware, 6th International Conference,
ICES 2005, pages 86–97, Sitges, Spain, September 2005. Springer. Lecture
Notes in Computer Science Vol. 3637.

1605. M. Trefzer, J. Langeheine, J. Schemmel, and K. Meier. New Genetic Operators
to Facilitate Understanding of Evolved Transistor Circuits. In R. S. Zebulum,
D. Gwaltney, G. Hornby, D. Keymeulen, J. Lohn, and A. Stoica, editors,
Proceedings of the 2004 NASA/DoD Conference on Evolvable Hardware, pages
217–224, Los Alamitos, California, USA, June 2004. IEEE Computer Society.

1606. C. H. Tseng and T. W. Lu. Minimax Multiobjective Optimization in Struc-
tural Design. International Journal for Numerical Methods in Engineering,
30:1213–1228, 1990.

1607. E. Tsoi, K. P. Wong, and C. C. Fung. Hybrid GA/SA Algorithms for Evalu-
ating Trade-off Between Economic Cost and Environmental Impact in Gen-
eration Dispatch. In D. B. Fogel, editor, Proceedings of the Second IEEE
Conference on Evolutionary Computation (ICEC’95), pages 132–137, Piscat-
away, New Jersey, 1995. IEEE Press.

1608. C.-S. Tsou, H.-H. Fang, H.-H. Chang, and C.-H. Kao. An Improved Particle
Swarm Pareto Optimizer with Local Search and Clustering. In T.-D. Wang,
X. Li, S.-H. Chen, X. Wang, H. A. Abbass, H. Iba, G. Chen, and X. Yao, edi-
tors, Simulated Evolution and Learning, 6th International Conference, SEAL
2006, Proceedings, pages 400–407, Hefei, China, October 2006. Springer. Lec-
ture Notes in Computer Science Vol. 4247.

1609. S. Tsumakitani and J. Evans. An empirical study of a new metaheuristic for
the traveling salesman problem. European Journal of Operational Research,
104:113–128, 1998.

1610. S. Tsutsui and Y. Fujimoto. Forking Genetic Algorithm with Blocking and
Shrinking Modes (fGA). In S. Forrest, editor, Proceedings of the Fifth In-
ternational Conference on Genetic Algorithms, pages 206–213, San Mateo,
California, 1993. Morgan Kaufmann Publishers.

1611. D. Tuyttens, J. Teghem, P. Fortemps, and K. V. Nieuwenhuyze. Performance
of the MOSA Method for the Bicriteria Assignment Problem. Journal of
Heuristics, 6(3):295–310, August 2000.

1612. T. Tyni and J. Ylinen. Evolutionary bi-objective optimisation in the elevator
car routing problem. European Journal of Operational Research, 169(3):960–
977, March 2006.

1613. G.-H. Tzeng and J.-S. Kuo. Fuzzy Multiobjective Double Samplig Plans
with Genetic Algorithms Based on Bayesian Model. In W. Chiang
and J. Lee, editors, Proceedings of the International Joint Conference of
CFSA/IFIS/SOFT95 on Fuzzy Theory and Applications, pages 59–64, Sin-
gapore, 1995. World Scientific.

1614. E. Ulungu. Optimisation Combinatoire multicritere: Determination de
l’ensemble des solutions efficaces et methodes interactives. PhD thesis, Faculté
des Sciences, Université de Mons-Hainaut, Mons, Belgium, 1993.

1615. E. Ulungu and J. Teghem. Multi-objective Combinatorial Optimization Prob-
lems: A Survey. Journal of Multi-Criteria Decision Analysis, 3:83–104, 1994.

1616. E. Ulungu, J. Teghem, and P. Fortemps. Heuristics for multi-objective
combinatorial optimization by simulated annealing. In J. Gu, G. Chen,
Q. Wei, and S. Wang, editors, Multiple Criteria Decision Making: Theory and

748 References

Applications. Proceedings of the 6th National Conference on Multiple Criteria
Decision Making, pages 228–238, Windsor, UK, 1995. Sci-Tech.

1617. E. Ulungu, J. Teghem, P. Fortemps, and D. Tuyttens. MOSA Method: A Tool
for Solving Multiobjective Combinatorial Optimization Problems. Journal of
Multi-Criteria Decision Analysis, 8(4):221–236, 1999.

1618. E. Ulungu, J. Teghem, and C. Ost. Efficiency of interactive multi-objective
simulated annealing through a case study. Journal of the Operational Research
Society, 49:1044–1050, 1998.

1619. R. K. Ursem. Models for Evolutionary Algorithms and Their Applications in
System Identification and Control Optimization. PhD thesis, Department of
Computer Science, University of Aarhus, Denmark, April 2003.

1620. S. Vajda. Probabilistic Programming. Academic Press, New York, 1972.
1621. J. J. Valdés and A. J. Barton. Multi-objective Evolutionary Optimization for

Visual Data Mining with Virtual Reality Spaces: Application to Alzheimer
Gene Expressions. In M. K. et al., editor, 2006 Genetic and Evolutionary
Computation Conference (GECCO’2006), volume 1, pages 723–730, Seattle,
Washington, USA, July 2006. ACM Press. ISBN 1-59593-186-4.

1622. J. J. Valdés and A. J. Barton. Virtual Reality Spaces for Visual Data Mining
with Multiobjective Evolutionary Optimization: Implicit and Explicit Func-
tion Representations Mixing Unsupervised and Supervised Properties. In 2006
IEEE Congress on Evolutionary Computation (CEC’2006), pages 5591–5598,
Vancouver, BC, Canada, July 2006. IEEE.

1623. C. L. Valenzuela. A Simple Evolutionary Algorithm for Multi-Objective Opti-
mization (SEAMO). In Congress on Evolutionary Computation (CEC’2002),
volume 1, pages 717–722, Piscataway, New Jersey, May 2002. IEEE Service
Center.

1624. M. Valenzuela Rendón and E. Uresti Charre. A Non-Generational Genetic
Algorithm for Multiobjective Optimization. In T. Bäck, editor, Proceedings
of the Seventh International Conference on Genetic Algorithms, pages 658–
665, San Mateo, California, July 1997. Michigan State University, Morgan
Kaufmann Publishers.

1625. P. van Laarhoven and E. Aarts. Simulated Annealing: Theory and Applica-
tions. Kluwer Academic Publishers, Dordrecht, 1987.

1626. D. A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifica-
tions, Analyses, and New Innovations. PhD thesis, Department of Electrical
and Computer Engineering. Graduate School of Engineering. Air Force Insti-
tute of Technology, Wright-Patterson AFB, Ohio, May 1999.

1627. D. A. Van Veldhuizen and G. B. Lamont. Evolutionary Computation and
Convergence to a Pareto Front. In J. R. Koza, editor, Late Breaking Pa-
pers at the Genetic Programming 1998 Conference, pages 221–228, Stanford
University, California, July 1998. Stanford University Bookstore.

1628. D. A. Van Veldhuizen and G. B. Lamont. Multiobjective Evolutionary Al-
gorithm Research: A History and Analysis. Technical Report TR-98-03,
Department of Electrical and Computer Engineering, Graduate School of En-
gineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio,
1998.

1629. D. A. Van Veldhuizen and G. B. Lamont. Genetic Algorithms, Building
Blocks, and Multiobjective Optimization. In A. S. Wu, editor, Proceedings
of the 1999 Genetic and Evolutionary Computation Conference. Workshop
Program, pages 125–126, Orlando, Florida, July 1999.

References 749

1630. D. A. Van Veldhuizen and G. B. Lamont. Multiobjective Evolutionary Algo-
rithm Test Suites. In J. Carroll, H. Haddad, D. Oppenheim, B. Bryant, and
G. B. Lamont, editors, Proceedings of the 1999 ACM Symposium on Applied
Computing, pages 351–357, San Antonio, Texas, 1999. ACM.

1631. D. A. Van Veldhuizen and G. B. Lamont. Multiobjective Evolutionary Algo-
rithms: Analyzing the State-of-the-Art. Evolutionary Computation, 7(3):1–26,
2000.

1632. D. A. Van Veldhuizen and G. B. Lamont. Multiobjective Optimization with
Messy Genetic Algorithms. In Proceedings of the 2000 ACM Symposium on
Applied Computing, pages 470–476, Villa Olmo, Como, Italy, 2000. ACM.

1633. D. A. Van Veldhuizen and G. B. Lamont. On Measuring Multiobjective Evo-
lutionary Algorithm Performance. In 2000 Congress on Evolutionary Com-
putation, volume 1, pages 204–211, Piscataway, New Jersey, July 2000. IEEE
Service Center.

1634. D. A. Van Veldhuizen, B. S. Sandlin, R. M. Marmelstein, and G. B. Lamont.
Finding Improved Wire-Antenna Geometries with Genetic Algorithms. In
D. B. Fogel, editor, Proceedings of the 1998 International Conference on Evo-
lutionary Computation, pages 102–107, Piscataway, New Jersey, 1998. IEEE.

1635. D. Vanderbilt and S. Louie. A Monte Carlo Simulated Annealing Approach to
Optimization over Continuous Variables. Journal of Computational Physics,
56:259–271, 1984.

1636. J. Vasconcelos, J. Maciel, and R. O. Parreiras. Scatter Search Techniques
Applied to Electromagnetic Problems. IEEE Transactions on Magnetics,
41(5):1804–1807, May 2005.

1637. V. K. Vassilev, T. C. Fogarty, and J. F. Miller. Information Characteris-
tics and the Structure of Landscapes. Evolutionary Computation, 8(1):31–60,
Spring 2000.

1638. G. Vedarajan, L. C. Chan, and D. E. Goldberg. Investment Portfolio Op-
timization using Genetic Algorithms. In J. R. Koza, editor, Late Breaking
Papers at the Genetic Programming 1997 Conference, pages 255–263, Stan-
ford University, California, July 1997. Stanford Bookstore.

1639. V. Venkat, S. H. Jacobson, and J. A. Stori. A Post-Optimality Analysis
Algorithm for Multi-Objective Optimization. Computational Optimization
and Applications, 28:357–372, 2004.

1640. S. Venkatraman and G. G. Yen. A Generic Framework for Constrained Op-
timization Using Genetic Algorithms. IEEE Transactions on Evolutionary
Computation, 9(4), August 2005.

1641. V. Venugopal and T. T. Narendran. A Genetic Algorithm Approach to the
Machine-Component Grouping Problem with Multiple Objectives. Computers
and Industrial Engineering, 22(4):469–480, 1992.

1642. R. Verschae, J. Ruiz del Solar, M. Köppen, and R. V. Garcia. Improvement of
a Face Detection System by Evolutionary Multi-Objective Optimization. In
N. Nedjah, L. M. Mourelle, M. M. Vellasco, A. Abraham, and M. Köppen, ed-
itors, Fifth International Conference on Hybrid Intelligent Systems (HIS’05),
pages 361–366, Los Alamitos, California, USA, November 2005. IEEE Com-
puter Society.

1643. A. Viana and J. Pinho de Sousa. Using metaheuristics in multiobjective
resource constrained project scheduling. European Journal of Operational
Research, 120:359–374, 2000.

750 References

1644. D. S. Vianna and J. E. C. Arroyo. A GRASP algorithm for the multi-objective
knapsack problem. In XXIV International Conference of the Chilean Com-
puter Science Society (SCCC’04), pages 69–75, Arica, Chile, November 2004.
IEEE Computer Society.

1645. A. Vicini and D. Quagliarella. Inverse and Direct Airfoil Design Using a Mul-
tiobjective Genetic Algorithm. AIAA Journal, 35(9):1499–1505, September
1997.

1646. A. Vicini and D. Quagliarella. Multipoint transonic airfoil design by means of
a multiobjective genetic algorithm. In 35th AIAA Aerospace Sciences Meeting
and Exhibit, Reno, Nevada, January 1997. American Institute of Aeronautics
and Astronautics (AIAA). AIAA Paper 97-0082.

1647. A. Vicini and D. Quagliarella. Airfoil and Wing Design Through Hybrid
Optimization Strategies. In 16th Applied Aerodynamics Conference, pages
536–546, Albuquerque, New Mexico, June 1998. American Institute of Aero-
nautics and Astronautics (AIAA). AIAA Paper 98-2729.

1648. R. V. Vidal, editor. Applied Simulated Annealing. Springer-Verlag. Lecture
Notes in Economics and Mathematical Systems Vol. 396, 1993.

1649. Y. Vidyakiran, B. Mahanty, and N. Chakraborti. A genetic-algorithms-based
multiobjective approach for a three-dimensional guillotine cutting problem.
Materials and Manufacturing Processes, 20(4):697–715, 2005.

1650. R. Viennet, C. Fontiex, and I. Marc. New Multicriteria Optimization Method
Based on the Use of a Diploid Genetic Algorithm: Example of an Indus-
trial Problem. In J. M. Alliot, E. Lutton, E. Ronald, M. Schoenauer, and
D. Snyers, editors, Proceedings of Artificial Evolution (European Conference,
selected papers), pages 120–127. Springer-Verlag, Brest, France, September
1995.

1651. R. Viennet, C. Fontiex, and I. Marc. Multicriteria Optimization Using a
Genetic Algorithm for Determining a Pareto Set. Journal of Systems Science,
27(2):255–260, 1996.

1652. G. Vignaux and Z. Michalewicz. A Nonstandard Genetic Algorithm for the
Linear Transportation Problem. IEEE Transactions on Systems, Man, and
Cybernetics, 21(2):445–452, 1991.

1653. M. Villalobos-Arias, C. A. Coello Coello, and O. Hernández-Lerma. Asymp-
totic Convergence of some Metaheuristics used for Multiobjetive Optimiza-
tion. In A. W. et al., editor, Foundations of Genetic Algorithms (FOGA
2005), pages 95–111, Aizu, Japan, 2005. Springer-Verlag. Lecture Notes in
Computer Science Vol. 3469.

1654. M. Villalobos-Arias, C. A. Coello Coello, and O. Hernández-Lerma. Asymp-
totic convergence of a simulated annealing algorithm for multiobjective opti-
mization problems. Mathematical Methods of Operations Research, 64(2):353–
362, October 2006.

1655. M. A. Villalobos Arias. Analysis of Optimization Heuristics for Multiobjec-
tive Problems. PhD thesis, Department of Mathematics, CINVESTAV-IPN,
Mexico, D.F., Mexico, August 2005.

1656. M. A. Villalobos-Arias, G. Toscano Pulido, and C. A. Coello Coello. A
Proposal to Use Stripes to Maintain Diversity in a Multi-Objective Particle
Swarm Optimizer. In 2005 IEEE Swarm Intelligence Symposium (SIS’05),
pages 22–29, Pasadena, California, USA, June 2005. IEEE Press.

1657. J. Villegas, F. Palacios, and A. Medaglia. Solution methods for the bi-
objective (cost-coverage) unconstrained facility location problem with an

References 751

illustrative example. Annals of Operations Research, 147(1):109–141, October
2006.

1658. P. Vincke. Multicriteria Decision-aid. John Wiley & Sons, Chichester, UK,
1992. ISBN 0-471-93184-5.

1659. P. Vincke. Analysis of MCDA in Europe. European Journal of Operational
Research, 25:160–168, 1995.

1660. M. Visée, J. Teghem, M. Pirlot, and E. Ulungu. Two-phases method and
branch and bound to solve bi-objective knapsack problem. Journal of Global
Optimization, 12:139–155, 1998.

1661. I. Vite-Silva, N. Cruz-Cortés, G. Toscano-Pulido, and L. G. de la Fraga. Op-
timal Triangulation in 3D Computer Vision Using a Multi-objective Evo-
lutionary Algorithm. In M. G. et al., editor, Applications of Evolutionary
Computing. EvoWorkshops 2007: EvoCOMNET, EvoFIN, EvoIASP, EvoIN-
TERACTION, EvoMUSART, EvoSTOC and EvoTRANSLOG, pages 330–
339, Valencia, Spain, April 2007. Springer. Lecture Notes in Computer Science
Vol. 4448.

1662. S. Voget. Multiobjective optimization with genetic algorithm and fuzzy con-
trol. In Proceedings of the Fourth European Conference on Intelligent Tech-
niques and Soft Computing (EUFIT’96), pages 391–394, Aachen, Germany,
1996.

1663. S. Voget and M. Kolonko. Multidimensional Optimization with a Fuzzy Ge-
netic Algorithm. Journal of Heuristics, 4(3):221–244, September 1998.

1664. J. von Neumann and O. Morgenstern. Theory of Games and Economic Be-
havior. Princeton University Press, Princeton, New Jersey, 1944.

1665. J. von Neumann and O. Morgenstern. Theory of Game and Economic Be-
havior. Princeton University Press, Princeton, New Jersey, second edition,
1947.

1666. H. Voogd. Multicriteria evaluation for urban and regional planning. Pion
Ltd., London, 1983.

1667. I. Voutchkov and A. Keane. Multiobjective Optimization using Surrogates.
In I. Parmee, editor, Adaptive Computing in Design and Manufacture 2006.
Proceedings of the Seventh International Conference, pages 167–175, Bristol,
UK, April 2006. The Institute for People-centred Computation.

1668. D. D. Wackerly, William Mendenhall III, and R. L. Scheaffer. Mathematical
Statistics with Applications. Duxbury Press, New York, 5th edition, 1996.

1669. T. Wagner, N. Beume, and B. Naujoks. Pareto-, Aggregation-, and Indicator-
Based Methods in Many-Objective Optimization. In S. Obayashi, K. Deb,
C. Poloni, T. Hiroyasu, and T. Murata, editors, Evolutionary Multi-Criterion
Optimization, 4th International Conference, EMO 2007, pages 742–756, Mat-
shushima, Japan, March 2007. Springer. Lecture Notes in Computer Science
Vol. 4403.

1670. D. Wakefield. Multi-Objective Mission-Resource Value Assessment Devel-
opment using Evolutionary Algoritms. Master’s thesis, Air Force Institute
of Technology, Graduate School of Engineering and Management, Wright-
Patterson AFB, Dayton, Ohio, 2001.

1671. D. R. Wallace, M. J. Jakiela, and W. Flowers. Design Search Under Prob-
abilistic Specifications Using Genetic Algorithms. Computer-Aided Design,
28(5):405–421, 1996.

1672. J. Wallenius. Comparative Evaluation of Some Interactive Approaches to
Multicriterion Optimization. Management Science, 21:1387–1396, 1975.

752 References

1673. D. Wallin, C. Ryan, and R. Azad. Symbiogenetic coevolution. In 2005 IEEE
Congress on Evolutionary Computation (CEC’2005), volume 1, Edinburgh,
Scotland, September 2005. IEEE Service Center.

1674. G. Wang, E. Goodman, and W. Punch III. Simultaneous Multi-Level Evolu-
tion. Technical Report 96-03-01, Department of Computer Science, Michigan
State University, East Lansing, Michigan, 1996.

1675. J. Wang and J. P. Terpenny. Interactive Preference Incorporation in Evolu-
tionary Engineering Design. In Y. Jin, editor, Knowledge Incorporation in
Evolutionary Computation, pages 525–543. Springer, Berlin Heidelberg, 2005.
ISBN 3-540-22902-7.

1676. J. F. Wang and J. Periaux. Multi-Point Optimization using GAs and
Nash/Stackelberg Games for High Lift Multi-airfoil Design in Aerodynam-
ics. In Proceedings of the Congress on Evolutionary Computation 2001
(CEC’2001), volume 1, pages 552–559, Piscataway, New Jersey, May 2001.
IEEE Service Center.

1677. X. Wang and M. Mahfouf. ACSAMO: An Adaptive Multiobjective Optimiza-
tion Algorithm using the Clonal Selection Principle. In 2nd European Sym-
posium on Nature-Inspired Smart Information Systems, Puerto de la Cruz,
Tenerife, Spain, November 29–December 1 2006.

1678. Y. Wang, D. Liu, and Y.-M. Cheung. Preference bi-objective evolutionary
algorithm for constrained optimization. In Y. H. et al., editor, Computational
Intelligence and Security. International Conference, CIS 2005, pages 184–191,
Xi’an, China, December 2005. Springer, Lecture Notes in Artificial Intelligence
Vol. 3801.

1679. E. F. Wanner, F. G. Guimaraes, R. H. Takahashi, and P. J. Fleming. A
Quadratic Approximation-Based Local Search Procedure for Multiobjective
Genetic Algorithms. In 2006 IEEE Congress on Evolutionary Computation
(CEC’2006), pages 3361–3368, Vancouver, BC, Canada, July 2006. IEEE.

1680. K. Wassermann. Three-Dimensional Shape Optimization of Arch Dams with
Prescribed Shape Functions. Journal of Structural Mechanics, 11(4):465–489,
1983.

1681. S. Watanabe and T. Hiroyasu. Multi-Objective Rectangular Packing Prob-
lem. In C. A. Coello Coello and G. B. Lamont, editors, Applications of
Multi-Objective Evolutionary Algorithms, pages 581–602. World Scientific,
Singapore, 2004.

1682. S. Watanabe, T. Hiroyasu, and M. Miki. Parallel Evolutionary Multi-Criterion
Optimization for Block Layout Problems. In 2000 International Confer-
ence on Parallel and Distributed Processing Techniques and Applications
(PDPTA’2000), pages 667–673, 2000.

1683. S. Watanabe, T. Hiroyasu, and M. Miki. Parallel Evolutionary Multi-Criterion
Optimization for Mobile Telecommunication Networks Optimization. In
K. Giannakoglou, D. Tsahalis, J. Periaux, K. Papailiou, and T. Fogarty, edi-
tors, Evolutionary Methods for Design, Optimization and Control with Appli-
cations to Industrial Problems. Proceedings of the EUROGEN’2001. Athens.
Greece, September 19-21, pages 167–172, Baracelona, Spain, 2001. Interna-
tional Center for Numerical Methods in Engineering(CIMNE).

1684. S. Watanabe, T. Hiroyasu, and M. Miki. NCGA: Neighborhood Culti-
vation Genetic Algorithm for Multi-Objective Optimization Problems. In
E. Cantú-Paz, editor, 2002 Genetic and Evolutionary Computation Confer-
ence. Late-Breaking Papers, pages 458–465, New York, July 2002.

References 753

1685. S. Watanabe, T. Hiroyasu, and M. Miki. Multi-objective Rectangular Packing
Problem and Its Applications. In C. M. Fonseca, P. J. Fleming, E. Zitzler,
K. Deb, and L. Thiele, editors, Evolutionary Multi-Criterion Optimization.
Second International Conference, EMO 2003, pages 565–577, Faro, Portugal,
April 2003. Springer. Lecture Notes in Computer Science. Volume 2632.

1686. C. J. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3):279–292,
1992.

1687. C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, Department
of Psychology, King’s College, Cambridge University, Cambridge, UK, 1989.

1688. J. W. Weibull. Evolutionary Game Theory. The MIT Press, Cambridge,
Massachusetts, 1997.

1689. D. S. Weile and E. Michielssen. Integer coded Pareto genetic algorithm design
of constrained antenna arrays. Technical Report CCEM-13-96, Electrical and
Computer Engineering Department, Center for Computational Electromag-
netics, University of Illinois at Urbana-Champaign, November 1996.

1690. D. S. Weile and E. Michielssen. Integer coded Pareto genetic algorithm de-
sign of constrained antenna arrays. Electronics Letters, 32(19):1744–1745,
September 1996.

1691. D. S. Weile, E. Michielssen, and D. E. Goldberg. Genetic algorithm design
of Pareto optimal broadband microwave absorbers. IEEE Transactions on
Electromagnetic Compatibility, 38(3):518–525, August 1996.

1692. D. S. Weile, E. Michielssen, and D. E. Goldberg. Multiobjective synthesis
of electromagnetic devices using nondominated sorting genetic algorithms.
In 1996 IEEE Antennas and Propagation Society International Symposium
Digest, volume 1, pages 592–595, Baltimore, Maryland, July 1996.

1693. T. Weise and K. Geihs. DGPF–An Adaptable Framework for Distributed
Multi-Objective Search Algorithms Applied to the Genetic Programming of
Sensor Networks. In B. Filipič and J. Šilc, editors, Bioinspired Optimiza-
tion Methods and their Applications, pages 157–166. Jožef Stefan Institute,
October 2006.

1694. J. F. Whidborne, D.-W. Gu, and I. Postlethwaite. Algorithms for the Method
of Inequalities — A Comparative Study. In Procedings of the 1995 American
Control Conference, pages 3393–3397, Seattle, Washington, 1995.

1695. L. While. A New Analysis of the LebMeasure Algorithm for Calculating
Hypervolume. In C. A. Coello Coello, A. Hernández Aguirre, and E. Zitzler,
editors, Evolutionary Multi-Criterion Optimization. Third International Con-
ference, EMO 2005, pages 326–340, Guanajuato, México, March 2005.
Springer. Lecture Notes in Computer Science Vol. 3410.

1696. L. While, L. Bradstreet, L. Barone, and P. Hingston. Heuristics for Optimising
the Calculation of Hypervolume for Multi-Objective Optimization Problems.
In 2005 IEEE Congress on Evolutionary Computation (CEC’2005), volume 3,
pages 2225–2232, Edinburgh, Scotland, September 2005. IEEE Service Center.

1697. L. While, P. Hingston, L. Barone, and S. Huband. A Faster Algorithm for
Calculating Hypervolume. IEEE Transactions on Evolutionary Computation,
10(1):29–38, February 2006.

1698. C. White, A. Sage, and S. Dozono. A model of multiattribute decisionmaking
and tradeoff weight determination under uncertainty. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-14:223–229, 1984.

1699. D. Whitley. Cellular Genetic Algorithms. In S. Forrest, editor, Proceedings
of the Fifth International Conference on Genetic Algorithms, page 658, San

754 References

Mateo, California, 1993. University of Illinois at Urbana-Champaign, Morgan
Kaufmann Publishers.

1700. D. Whitley, S. gordon, and K. Mathias. Larmarckian Evolution, The Baldwin
Effect and Function Optimization. In H.-P. S. Y. Davidor and R. Männer,
editors, Parallel Problem Solving from Nature III, pages 6–15. Springer Verlag,
1994.

1701. D. Whitley, K. Mathias, S. Rana, and J. Dzubera. Evaluating Evolutionary
Algorithms. Artificial Intelligence, 85:245–276, 1996.

1702. P. B. Wienke, C. Lucasius, and G. Kateman. Multicriteria target optimization
of analytical procedures using a genetic algorithm. Analytical Chimica Acta,
265(2):211–225, 1992.

1703. A. P. Wierzbicki. On the use of Penalty functions in Multiobjective optimiza-
tion. In Proceedings of the International Symposium on Operations Research,
Mannheim, Germany, 1978.

1704. A. P. Wierzbicki. A Methodological Guide to Multiobjective Optimization. In
IIASA Working Paper, WP-79-122, Laxenburg, Austria, 1979. International
Institute for Applied System Analysis.

1705. A. P. Wierzbicki. The Use of Reference Objectives in Multiobjective Opti-
mization. In G. Fandel and T. Gal, editors, Multiple Criteria Decision Making
Theory and Application, pages 469–486. Springer-Verlag, New York, 1980.

1706. E. B. Wilson. An Introduction to Scientific Research. Courier Dover, 1991.
1707. P. B. Wilson and M. D. Macleod. Low implementation cost IIR digital filter

design using genetic algorithms. In IEE/IEEE Workshop on Natural Algo-
rithms in Signal Processing, pages 4/1–4/8, Chelmsford, U.K., 1993.

1708. D. H. Wolpert and W. G. Macready. No Free Lunch Theorems for Optimiza-
tion. IEEE Transactions on Evolutionary Computation, 1(1):67–82, April
1997.

1709. J. Wright and H. Loosemore. An Infeasibility Objective for Use in Con-
strained Pareto Optimization. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello
Coello, and D. Corne, editors, First International Conference on Evolutionary
Multi-Criterion Optimization, pages 256–268. Springer-Verlag. Lecture Notes
in Computer Science No. 1993, 2001.

1710. J. Wright and H. Loosemore. The Multi-Criterion Optimization of Building
Thermal Design and Control. In 7th IBPSA Conference: Building Simulation,
volume 2, pages 873–880, Rio de Janeiro, Brazil, 2001. ISBN 85-901939-3-4.

1711. J. Wright, H. Loosemore, and R. Farmani. Optimization of building thermal
design and control by multi-criterion genetic algorithm. Energy and Buildings,
34(9):959–972, October 2002.

1712. S. Wright. The roles of mutation, inbreeding, crossbreeding, and selection in
evolution. In D. Jones, editor, Proceedings of the 6th International Congress
on Genetics, volume 1, pages 356–366, Ithaca, New York, 1932. Brooklyn
Botanical Gardens.

1713. J. Wu and S. Azarm. Metrics for Quality Assessment of a Multiobjective
Design Optimization Solution Set. Transactions of the ASME, Journal of
Mechanical Design, 123:18–25, 2001.

1714. J. Wu and S. Azarm. On a New Constraint Handling Technique for Multi-
Objective Genetic Algorithms. In L. Spector, E. D. Goodman, A. Wu,
W. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H.
Garzon, and E. Burke, editors, Proceedings of the Genetic and Evolutionary

References 755

Computation Conference (GECCO’2001), pages 741–748, San Francisco,
California, 2001. Morgan Kaufmann Publishers.

1715. N. Xiao and M. P. Armstrong. A Specialized Island Model and Its Application
in Multiobjective Optimization. In E. C.-P. et al., editor, Genetic and Evolu-
tionary Computation—GECCO 2003. Proceedings, Part II, pages 1530–1540.
Springer. Lecture Notes in Computer Science Vol. 2724, July 2003.

1716. N. Xiao, D. A. Bennet, and M. P. Armstrong. Using evolutionary algorithms
to generate alternatives for multiobjective site-search problems. Environment
and Planning A, 34(4):639–656, April 2002.

1717. Z. Xiao-hua, M. Hong-yun, and J. Li-cheng. Intelligent Particle Swarm Op-
timization in Multiobjective Optimization. In 2005 Congress on Evolution-
ary Computation, pages 714–719, Edinburgh, Scotland, UK, September 2005.
IEEE Press.

1718. S. Xiong and F. Li. Parallel Strength Pareto Multi-objective Evolutionary
Algorithm. In Proceedings of the Fourth International Conference on Appli-
cations and Technologies (PDCAT’2003), pages 681–683. IEEE, August 2003.

1719. J. Xu, M. Sohoni, M. McCleery, and T. G. Bailey. A dynamic neighbor-
hood based tabu search algorithm for real-world flight instructor scheduling
problems. European Journal of Operational Research, 169:978–993, 2006.

1720. F. Xue. Multi-Objective Differential Evolution: Theory and Applications. PhD
thesis, Rensselaer Polytechnic Institute, Troy, New York, September 2004.

1721. F. Xue, A. C. Sanderson, and R. J. Graves. Multi-Objective Differential
Evolution and Its Application to Enterprise Planning. In Proceedings of the
2003 IEEE International Conference on Robotics and Automation (ICRA’03),
volume 3, pages 3535–3541, Taipei, Taiwan, September 2003. IEEE.

1722. F. Xue, A. C. Sanderson, and R. J. Graves. Pareto-based Multi-Objective
Differential Evolution. In Proceedings of the 2003 Congress on Evolutionary
Computation (CEC’2003), volume 2, pages 862–869, Canberra, Australia, De-
cember 2003. IEEE Press.

1723. F. Xue, A. C. Sanderson, and R. J. Graves. Modeling and convergence analysis
of a continuous multi-objective differential evolution algorithm. In 2005 IEEE
Congress on Evolutionary Computation (CEC’2005), volume 1, pages 228–
235, Edinburgh, Scotland, September 2005. IEEE Service Center.

1724. F. Xue, A. C. Sanderson, and R. J. Graves. Multi-objective differential evo-
lution - algorithm, convergence analysis, and applications. In 2005 IEEE
Congress on Evolutionary Computation (CEC’2005), volume 1, pages 743–
750, Edinburgh, Scotland, September 2005. IEEE Service Center.

1725. K. Yamasaki. Dynamic Pareto Optimum GA against the changing environ-
ments. In 2001 Genetic and Evolutionary Computation Conference. Workshop
Program, pages 47–50, San Francisco, California, July 2001.

1726. D. Yamashiro, T. Yoshikawa, and T. Furuhashi. Visualization of Search
Process and Improvement of Search Performance in Multi-Objective Ge-
netic Algorithm. In 2006 IEEE Congress on Evolutionary Computation
(CEC’2006), pages 3967–3972, Vancouver, BC, Canada, July 2006. IEEE.

1727. Z. Yan, L. Zhang, L. Kang, and G. Lin. A New MOEA for Multi-objective
TSP and Its Convergence Property Analysis. In C. M. Fonseca, P. J. Fleming,
E. Zitzler, K. Deb, and L. Thiele, editors, Evolutionary Multi-Criterion Opti-
mization. Second International Conference, EMO 2003, pages 342–354, Faro,
Portugal, April 2003. Springer. Lecture Notes in Computer Science. Volume
2632.

756 References

1728. X. Yang and M. Gen. Evolution Program for Bicriteria Transportation Prob-
lem. Computers and Industrial Engineering, 27(1–4):481–484, 1994.

1729. T.-M. Yao and K. Choi. Shape Optimal Design of an Arch Dam. Journal of
Structural Engineering, 115(9):2401–2405, September 1989.

1730. X. Yao and Y. Liu. Fast Evolutionary Programming. In L. J. Fogel, P. J.
Angeline, and T. Bäck, editors, Evolutionary Programming V:Proceedings of
the Fifth Annual Conference on Evolutionary Programming (EP ’96), pages
451–460. MIT Press, Cambridge, Massachusetts, 1996.

1731. X. Yao and Y. Liu. Fast Evolution Strategies. In P. J. Angeline, R. G.
Reynolds, J. R. McDonnell, and R. Eberhart, editors, Evolutionary Pro-
gramming VI: Proceedings of the Sixth Annual Conference on Evolutionary
Programming (EP ’97), pages 151–161. Springer-Verlag. Lecture Notes in
Computer Science No. 1213, 1997.

1732. H. Yapicioglu, G. Dozier, and A. E. Smith. Neural Network Enhancement of
Multiobjective Evolutionary Search. In 2006 IEEE Congress on Evolutionary
Computation (CEC’2006), pages 6800–6806, Vancouver, BC, Canada, July
2006. IEEE.

1733. P. O. Yapo. A multiobjective global optimization algorithm with application to
the calibration of hydrologic models. PhD thesis, Department of Systems and
Industrial Engineering, The University of Arizona, Tucson, Arizona, 1996.

1734. P. O. Yapo, H. V. Gupta, and S. Sorooshian. Multi-Objective Global Opti-
mization for Hydrologic Models. Journal of Hydrology, 204:83–97, 1998.

1735. Y. J. Yau, J. Teo, and P. Anthony. Pareto Evolution and Co-evolution in Cog-
nitive Game AI Synthesis. In S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu,
and T. Murata, editors, Evolutionary Multi-Criterion Optimization, 4th Inter-
national Conference, EMO 2007, pages 227–241, Matshushima, Japan, March
2007. Springer. Lecture Notes in Computer Science Vol. 4403.

1736. W. Yong and C. Zixing. A Constrained Optimization Evolutionary Algorithm
Based on Multiobjective Optimization Techniques. In 2005 IEEE Congress
on Evolutionary Computation (CEC’2005), volume 2, pages 1081–1087,
Edinburgh, Scotland, September 2005. IEEE Service Center.

1737. J. Yoo and P. Hajela. Immune network simulations in multicriterion design.
Structural Optimization, 18:85–94, 1999.

1738. K. Yoshida, M. Yamamura, and S. Kobayashi. Generating Pareto Optimal
Decision Trees by GAs. In Proceedings of the 4th International Conference
on Soft Computing, pages 854–859, 1996.

1739. K. Yoshimura and R. Nakano. Genetic Algorithms for Information Operator
Scheduling. In D. B. Fogel, editor, Proceedings of the 1998 International
Conference on Evolutionary Computation, pages 277–282, Piscataway, New
Jersey, 1998. IEEE.

1740. H. Youssef, S. M. Sait, and S. A. Khan. Fuzzy Simulated Evolution Algorithm
for Topology Design on Campus Networks. In 2000 Congress on Evolutionary
Computation, volume 1, pages 180–187, Piscataway, New Jersey, July 2000.
IEEE Service Center.

1741. H. Youssef, S. M. Sait, and S. A. Khan. Fuzzy Evolutionary Hybrid Meta-
heuristic for Network Topology Design. In E. Zitzler, K. Deb, L. Thiele,
C. A. Coello Coello, and D. Corne, editors, First International Conference on
Evolutionary Multi-Criterion Optimization, pages 400–415. Springer-Verlag.
Lecture Notes in Computer Science No. 1993, 2001.

References 757

1742. P. L. Yu. Decision dynamics with an application to persuasion and nego-
tiation. In M. K. Starr and M. Zeleny, editors, Multiple Criteria Decision
Making, pages 159–177. North-Holland Publish. Co., New York, 1977.

1743. Y. Yu. Multi-objective decision theory for computational optimization in
radiation therapy. Medical Physics, 24:1445–1454, 1997.

1744. Y. Yun, H. Nakayama, and M. Arakawa. Multiple criteria decision making
with generalized DEA and an aspiration level method. European Journal of
Operational Research, 158(3):697–706, November 2004.

1745. Y. Yun, H. Nakayama, and T. Tanino. A generalization of DEA model. Jour-
nal of the Society of Instrument and Control Engineers (SICE), 35(8):1813–
1818, 1999.

1746. L. A. Zadeh. Optimality and Nonscalar-Valued Performance Criteria. IEEE
Transactions on Automatic Control, AC-8(1):59–60, 1963.

1747. R. R. Zaliz, I. Zwir, and E. Ruspini. Generalized Analysis of Promoters:
A Method for DNA Sequence Description. In C. A. Coello Coello and
G. B. Lamont, editors, Applications of Multi-Objective Evolutionary Algo-
rithms, pages 427–449. World Scientific, Singapore, 2004.

1748. R. S. Zebulum, M. A. Pacheco, and M. Vellasco. A multi-objective optimisa-
tion methodology applied to the synthesis of low-power operational amplifiers.
In I. J. Cheuri and C. A. dos Reis Filho, editors, Proceedings of the XIII In-
ternational Conference in Microelectronics and Packaging, volume 1, pages
264–271, Curitiba, Brazil, August 1998.

1749. R. S. Zebulum, M. A. Pacheco, and M. Vellasco. Synthesis of CMOS opera-
tional amplifiers through Genetic Algorithms. In Proceedings of the Brazilian
Symposium on Integrated Circuits, SBCCI’98, pages 125–128, Rio de Janeiro,
Brazil, September 1998. IEEE.

1750. R. S. Zebulum, M. A. Pacheco, and M. Vellasco. Artificial Evolution of Active
Filters: A Case Study. In Proceedings of the First NASA/DoD Workshop on
Evolvable Hardware, pages 66–75, Los Alamitos, California, July 1999. IEEE
Computer Society.

1751. M. Zeleny. Compromise Programming. In J. Cochrane and M. Zeleny, edi-
tors, Multiple Criteria Decision Making, pages 262–301. University of South
Carolina Press, Columbia, South Carolina, 1973.

1752. M. Zeleny. Adaptive displacement of preferences in decision making. In M. K.
Starr and M. Zeleny, editors, Multiple Criteria Decision Making, volume 6 of
TIMS Studies in the Management Sciences, pages 147–157. North-Holland
Publishing Company, Amsterdam, 1977.

1753. M. Zeleny. Multiple Criteria Decision Making. McGraw-Hill Book Company,
New York, 1982.

1754. M. Zeleny. Multiple criteria decision making: Eight concepts of optimality.
Human Systems Management, 17:97–107, 1998.

1755. S. Zeng, L. Ding, Y. Chen, and L. Kang. A New Multiobjective Evolutionary
Algorithm: OMOEA. In Proceedings of the 2003 Congress on Evolutionary
Computation (CEC’2003), volume 2, pages 898–905, Canberra, Australia,
December 2003. IEEE Press.

1756. S. Zeng, S. Yao, L. Kang, and Y. Liu. An Efficient Multi-objective Evolution-
ary Algorithm: OMOEA-II. In C. A. Coello Coello, A. Hernández Aguirre,
and E. Zitzler, editors, Evolutionary Multi-Criterion Optimization. Third
International Conference, EMO 2005, pages 108–119, Guanajuato, México,
March 2005. Springer. Lecture Notes in Computer Science Vol. 3410.

758 References

1757. S. Y. Zeng, L. S. Kang, and L. X. Ding. An Orthogonal Multi-objective Evo-
lutionary Algorithm for Multi-objective Optimization Problems with Con-
straints. Evolutionary Computation, 12(1):77–98, Spring 2004.

1758. B.-T. Zhang and H. Mühlenbein. Adaptive Fitness Functions for Dynamic
Growing/Pruning of Program Trees. In P. J. Angeline and J. Kenneth E. Kin-
near, editors, Advances in Genetic Programming 2, pages 241–256. MIT Press,
1996.

1759. L. Zhang, C. Zhou, X. Liu, Z. Ma, and Y. Liang. Solving Multi Objective
Optimization Problems Using Particle Swarm Optimization. In Proceedings
of the 2003 Congress on Evolutionary Computation (CEC’2003), volume 4,
pages 2400–2405, Canberra, Australia, December 2003. IEEE Press.

1760. X. Zhang, B. Lu, S. Gou, and L. Jiao. Immune Multiobjective Optimiza-
tion Algorithm Using Unsupervised Feature Selection. In F. R. et al., edi-
tor, Applications of Evolutionary Computing. EvoWorkshops 2006: EvoBIO,
EvoCOMNET, EvoHOT, EvoIASP, EvoINTERACTION, EvoMUSART, and
EvoSTOC, pages 484–494, Budapest, Hungary, April 2006. Springer, Lecture
Notes in Computer Science Vol. 3907.

1761. Y. Zhang. MEMS Design Synthesis Based on Hybrid Evolutionary Com-
putation. PhD thesis, Civil and Environmental Engineering, University of
California, Berkeley, USA, 2006.

1762. Y. Zhang, R. Kamalian, A. M. Agogino, and C. H. Séquin. Design Synthesis of
Microelectromechanical Systems Using Genetic Algorithms with Component-
Based Genotype Representation. In M. K. et al., editor, 2006 Genetic and
Evolutionary Computation Conference (GECCO’2006), volume 1, pages 731–
738, Seattle, Washington, USA, July 2006. ACM Press. ISBN 1-59593-186-4.

1763. B. Zhao and Y. j. Cao. Multiple objective particle swarm optimization tech-
nique for economic load dispatch. Journal of Zhejiang University SCIENCE,
6A(5):420–427, 2005.

1764. G. Zhou and M. Gen. Evolutionary Computation on Multicriteria Production
Process Planning Problem. In W. Porto, editor, Proceedings of the 1997
IEEE International Conference on Evolutionary Computation, pages 419–424,
Piscataway, New Jersey, April 1997. IEEE Press.

1765. G. Zhou and M. Gen. Genetic Algorithm Approach on Multi-Criteria Min-
imum Spanning Tree Problem. European Journal of Operational Research,
114(1), April 1999.

1766. Y. Zhou, Y. Li, J. He, and L. Kang. Multi-objective and MGG Evolutionary
Algorithm for Constrained Optimization. In Proceedings of the 2003 Congress
on Evolutionary Computation (CEC’2003), volume 1, pages 1–5, Canberra,
Australia, December 2003. IEEE Press.

1767. Z.-Y. Zhu. An Evolutionary Approach to Multi-Objective Optimization Prob-
lems. PhD thesis, The Chinese University of Hong Kong, August 2002.

1768. Z.-Y. Zhu and K.-S. Leung. Asynchronous Self-Adjustable Island Genetic
Algorithm for Multi-Objective Optimization Problems. In Congress on Evo-
lutionary Computation (CEC’2002), volume 1, pages 837–842, Piscataway,
New Jersey, May 2002. IEEE Service Center.

1769. Z.-Y. Zhu and K.-S. Leung. An Enhanced Annealing Genetic Algorithm
for Multi-Objective Optimization Problems. In W. Langdon, E. Cantú-
Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar,
G. Rudolph, J. Wegener, L. Bull, M. Potter, A. Schultz, J. Miller, E. Burke,

References 759

and N. Jonoska, editors, Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO’2002), pages 658–665, San Francisco, California,
July 2002. Morgan Kaufmann Publishers.

1770. E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods
and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH),
Zurich, Switzerland, November 1999.

1771. E. Zitzler, D. Brockhoff, and L. Thiele. The Hypervolume Indicator Revis-
ited: On the Design of Pareto-compliant Indicator Via Weighted Integration.
In S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, editors, Evo-
lutionary Multi-Criterion Optimization, 4th International Conference, EMO
2007, pages 862–876, Matshushima, Japan, March 2007. Springer. Lecture
Notes in Computer Science Vol. 4403.

1772. E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective Evolution-
ary Algorithms: Empirical Results. Evolutionary Computation, 8(2):173–195,
Summer 2000.

1773. E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne, editors.
Evolutionary Multi-Criterion Optimization. First International Conference
(EMO’01). Lecture Notes in Computer Science 1993. Springer, Berlin, 2001.

1774. E. Zitzler and S. Künzli. Indicator-based Selection in Multiobjective Search.
In X. Y. et al., editor, Parallel Problem Solving from Nature - PPSN VIII,
pages 832–842, Birmingham, UK, September 2004. Springer-Verlag. Lecture
Notes in Computer Science Vol. 3242.

1775. E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. In K. Giannakoglou, D. Tsahalis, J. Periaux,
P. Papailou, and T. Fogarty, editors, EUROGEN 2001. Evolutionary Methods
for Design, Optimization and Control with Applications to Industrial Prob-
lems, pages 95–100, Athens, Greece, 2001.

1776. E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. Technical Report 103, Computer Engineering
and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH)
Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland, May 2001.

1777. E. Zitzler, M. Laumanns, L. Thiele, C. M. Fonseca, and V. Grunert da
Fonseca. Why Quality Assessment of Multiobjective Optimizers Is Diffi-
cult. In W. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli,
K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. Potter,
A. Schultz, J. Miller, E. Burke, and N. Jonoska, editors, Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO’2002), pages
666–673, San Francisco, California, July 2002. Morgan Kaufmann Publish-
ers.

1778. E. Zitzler, J. Teich, and S. S. Bhattacharyya. Evolutionary Algorithm
Based Exploration of Software Schedules for Digital Signal Processors. In
W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela,
and R. E. Smith, editors, Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO’99), volume 2, pages 1762–1769, San Francisco,
California, July 1999. Morgan Kaufmann.

1779. E. Zitzler, J. Teich, and S. S. Bhattacharyya. Multidimensional Exploration
of Software Implementations for DSP Algorithms. Journal of VLSI Signal
Processing, 24(1):83–98, February 2000.

1780. E. Zitzler and L. Thiele. An Evolutionary Algorithm for Multiobjective Op-
timization: The Strength Pareto Approach. Technical Report 43, Computer

760 References

Engineering and Communication Networks Lab (TIK), Swiss Federal Institute
of Technology (ETH), Zurich, Switzerland, May 1998.

1781. E. Zitzler and L. Thiele. Multiobjective Optimization Using Evolutionary
Algorithms—A Comparative Study. In A. E. Eiben, editor, Parallel Problem
Solving from Nature V, pages 292–301, Amsterdam, The Netherlands,
September 1998. Springer-Verlag. Lecture Notes in Computer Science No.
1498.

1782. E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A Com-
parative Case Study and the Strength Pareto Approach. IEEE Transactions
on Evolutionary Computation, 3(4):257–271, November 1999.

1783. E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca.
Performance Assessment of Multiobjective Optimizers: An Analysis and Re-
view. IEEE Transactions on Evolutionary Computation, 7(2):117–132, April
2003.

1784. X. Zou, M. Liu, L. Kang, and J. He. A High Performance Multi-objective
Evolutionary Algorithm Based on the Principles of Thermodynamics. In X. Y.
et al., editor, Parallel Problem Solving from Nature - PPSN VIII, pages 922–
931, Birmingham, UK, September 2004. Springer-Verlag. Lecture Notes in
Computer Science Vol. 3242.

1785. Z. Zou, Q. Jiang, P. Zhang, and Y. Cao. Application of Multi-objective
Evolutionary Algorithm in Coordinated Design of PSS and SVC Controllers.
In Y. H. et al., editor, Computational Intelligence and Security. Interna-
tional Conference, CIS 2005, pages 1106–1111, Xi’an, China, December 2005.
Springer, Lecture Notes in Artificial Intelligence Vol. 3801.

1786. K. Zuse. Mathematical Programming Testdata. Online, 1997. Available:
ftp://ftp.zib.de/Packages/mp-testdata/index.html.

1787. I. S. Zwir and E. H. Ruspini. Qualitative Object Description: Initial Reports
of the Exploration of the Frontier. In Procedings of the Joint EUROFUSE—
SIC’99 International Conference, Budapest, Hungary, 1999.

1788. J. B. Zydallis. Explicit Building-Block Multiobjective Genetic Algorithms:
Theory, Analysis, and Development. PhD thesis, Air Force Institute of Tech-
nology, Department of the Air Force, Air University, Wright-Patterson, Air-
force Base, Ohio, USA, March 2003.

1789. J. B. Zydallis and G. B. Lamont. Solving of Discrete Multiobjective Problems
Using an Evolutionary Algorithm with a Repair Mechanism. In Proceedings
of the IEEE 2001 Midwest Symposium on Circuits and Systems, volume 1,
pages 470–473. IEEE, 2001.

1790. J. B. Zydallis, D. A. V. Veldhuizen, and G. B. Lamont. A Statistical Compari-
son of Multiobjective Evolutionary Algorithms Including the MOMGA–II. In
E. Zitzler, K. Deb, L. Thiele, C. A. C. Coello, and D. Corne, editors, First In-
ternational Conference on Evolutionary Multi-Criterion Optimization, pages
226–240. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.

Index

(µ + λ) selection, 26

(µ + λ)-ES, 359

(µ, λ) selection, 26

(µ, λ)-ES, 368, 413

H∞ controller design, 363

NP -Complete problems, 22, 220

ε-MyDE, 601

ε-Pareto Set, 295

ε-approximate Pareto Set, 295

ε-box, 296

ε-constraint method, 46, 76, 352, 430,
561

applications, 344, 346, 398, 434

hybridized with differential evolution,
603

ε-dominance, 84, 295, 544, 587, 590, 593

ε-indicator, 262

µGA, see micro genetic algorithm, 609

µGA2, see micro genetic algorithm 2

k-optimality, 535

kF -optimality, 535

m − k deceptive trap problems, 320

n-parity problem, 406

r(n)-approximate algorithms, 129

(µ + λ) MOEA, 407, 567

PFtrue

definition, 11

0/1 knapsack problem, 139, 221, 344

1/5 success rule, 611

2-opt local search, 381

3D Navier-Stokes flow solver, 387

3D aerodynamic design design

evolutionary multiobjective optimiza-
tion in, 387

3D bin packing, 427
evolutionary multiobjective optimiza-

tion in, 427
3D integer representation, 380
3D molecular structures

evolutionary multiobjective optimiza-
tion in, 391

4D-Miner, 395
7-point average distance measure, 257

A Platform and Programming Language
Interface for Search Algorithms,
275, 617

a posteriori preference articulation
advantages, 519

a priori preference articulation, 518
A∗, 22
AbSS, see Archive-based Scatter Search
accelerated convergence genetic

algorithm, 345
ACGA, see accelerated convergence

genetic algorithm
applications, 345

Ackley’s function, 177
ACSAMO, see Adaptive Clonal Selec-

tion Algorithm for Multiobjective
Optimization

active magnetic bearing controllers, 363
design, 363

active mass driver, 374
actuator placement

762 Index

evolutionary multiobjective optimiza-
tion in, 370, 371, 385

ad-hoc networks, 357
Adaptive Clonal Selection Algorithm

for Multiobjective Optimization,
611

adaptive evaluation function
applications, 359

adaptive genetic algorithm, 420, 570
adaptive grid, 614
adaptive image segmentation, 401
adaptive multicriteria evolutionary

algorithm with tabu mutation, 608
adaptive mutation, 432
adaptive parsimony pressure, 405
adaptive population size, 365
Adaptive Weighted PSO, 589
admissible solutions, 11
ADvanced VehIcle SimulatOR

(ADVISOR), 415
AER, see agent-environment-rules
aerodynamic design, 466

evolutionary multiobjective optimiza-
tion in, 376, 383, 387

aerodynamic shape optimization
using Tabu search, 563

aeronautical engineering
applications, 382
evolutionary multiobjective optimiza-

tion in, 382–386
affinity, 607, 611
affinity maturation, 610
affinity operator, 610
agent-based model, 616
agent-based system, 534
agent-environment-rules model, 591
agents, 398, 434
agents coordination

evolutionary multiobjective optimiza-
tion in, 398

agents for multiobjective optimization,
614

aggregating function, 385, 566
applications, 343, 345, 347–354, 359,

362, 363, 366, 368, 371, 373–375,
378–380, 383, 386–388, 391, 394,
395, 398–401, 404, 405, 409, 411,
412, 417–419, 421–424, 426, 427,
429–432, 571

aggregation selection, 75
agricultural project scheduling, 552

Pareto Simulated Annealing in, 552
air quality management, 345
aircrew rostering, 552
airfoil design, 383, 385, 386, 465

evolutionary multiobjective optimiza-
tion in, 383, 385

airfoil shape optimization, 385
airframe

preliminary design, 386
airline crew rostering

evolutionary multiobjective optimiza-
tion in, 423

algorithmic parameters, 239
All Rules Algorithm Cc-optimal, 433
allele, 24
alternating-objective repeated line-

search, 331
AMEA, see adaptive multicriteria

evolutionary algorithm with tabu
mutation

analog active filters
synthesis, 353

analog filter tuning
evolutionary multiobjective optimiza-

tion in, 352
analysis of variance, 271
analytical solutions

of MOPs, 181
annealing, 548
ANOVA, see analysis of variance
ant colony optimization, 575, 578

cooperation mechanism, 577
multiobjective, 577

ant colony system, 617
ant system

applications, 578
multiobjective, 572
multiobjective optimization, 575

ant-Q, 573
pseudo code, 574

antenna arrays
evolutionary multiobjective optimiza-

tion in, 351
antenna design

evolutionary multiobjective optimiza-
tion in, 358

antenna tuning unit design, 352

Index 763

anti-reflection coatings, 392
antibody, 374, 605, 606

archive, 610
antigen, 374, 605, 606
applications

3D aerodynamic design, 387
3D bin packing, 427
actuator placement, 370, 385
adaptive distributed database

management, 359
aerodynamic optimization, 387
aeronautical engineering, 223,

382–386
agents, 398
agricultural project scheduling, 552
air quality management, 345
aircraft control, 385
aircraft gas turbine engine design,

362
airfoil design, 383, 385, 386
airfoil shape optimization, 385
airline crew rostering, 423
analog filter tuning, 352
antenna design, 358
articulated figure motion, 399
assembly line balancing, 409
beam design, 372, 373, 377, 607
bin packing, 427
bioinformatics, 407
bioremediation of contaminated

groundwater, 343
bloat reduction, 406
brachytherapy, 394
breast cancer prediction, 395
building block placement problem,

411
cancer treatment, 393, 394
capital budgeting, 552
car sampling tests, 409
cascade compensator, 365
cell formation, 412
cellular manufacturing, 412, 552
chance-constrained solid transporta-

tion problem, 380
chemical engineering, 223
chemistry, 390, 391
chemotherapeutic treatment, 393
chromatic rectangles, 404
circuit design, 355

circuit optimization, 355
civil and construction engineering,

377
classification and prediction, 399,

400, 432
clustering, 399
code growth in GP, 405
coloring problems, 404
composite plate optimization, 373
computer aided design, 411
computer generated animation, 399
computer graphics, 399
computer science, 223, 398, 401,

404–407, 432
computer vision, 402
configuration problems, 374
conformational search, 391
constellation design, 382
constraint-handling, 116
construction, 377
control, 364, 365, 368, 369

of a civil structure, 374
control system design, 364–366
controller design, 364, 365
core-based single-chip system

synthesis, 350
data extraction, 385
data sampling, 388
data structures evolution, 406
decision tree induction, 399
design and manufacture, 371, 372,

408, 409, 411–415, 417
design of control systems, 365
design of controllers, 363
design of electromagnetic devices, 350
design of fuzzy controllers, 361
design of multiplierless IIR filters, 353
design of permanent magnet

actuators, 351
design of robust controllers, 364, 366
design of turbomachinery airfoils, 372
design unification of linear control

systems, 365
digital filter design, 354
distance controller, 368
distributed database management,

359
distributed object systems, 404
distributed systems, 404

764 Index

distribution system design, 426
ecological model assessment, 396
ecological process model fitting, 397
ecology, 396, 397
economic load dispatch, 349
economic model optimization, 430
economics, 430
electrical and electronics engineering,

223, 348–353
electrical impedance tomography

problem, 392
electromagnetic devices design, 351
elevators control, 363
environmental modeling, 388
environmental, naval and hydraulic

engineering, 341–347, 383, 577
extraction of munition aerodynamic

characteristics, 385
face detection, 403
face modeling, 402
facility layout, 425
facility location problem, 425
facility management, 424
fault diagnosis, 362
fault tolerant system design, 352
feature selection, 403, 432
finance, 223, 429, 430
finite word-length feedback controller

design, 364
fishery bioeconomic model optimiza-

tion, 430
flexible manufacturing, 410
flexible process sequencing, 409
flowshop scheduling, 418–420
food industry, 408, 417
forest management, 425
fuzzy system design, 368, 369, 411
gas turbine design, 412
gear-box design, 375
generation of optimal rules, 400
genetic programming, 406
geography, 388, 389
groundwater monitoring networks,

343
grouping problem, 427
handwritten word recognition, 403
hardware-software embedded systems

co-synthesis, 350
helicopter flat panels design, 383

helicopter rotor system design, 383

high-lift airfoil design, 386

hydraulic and environmental
engineering, 223

image processing, 392, 401

image segmentation, 401

induction motor design, 352

inductive learning, 432

industrial, 359, 408, 409, 412, 413,
415, 417–422, 427

integrated circuit placement, 411

inverse kinematics of a robotic
manipulator, 367

investment portfolio optimization,
429

job shop scheduling, 346, 398, 420,
421

knapsack problem, 142, 344

knowledge extraction, 432

lamp design, 354

land use, 377, 389

planning, 389

launch conditions, 385

line balancing, 409

linguistic function approximation,
432

machine learning, 400, 432

machine-component grouping
problem, 427

machining recommendations, 413

magnetically levitated vehicle design,
366

management, 426

manufacturing, 409

mechanical and structural engineer-
ing, 223, 374, 375

medicine, 393–395

metallurgy, 375

microchannel design, 413

microprocessor design, 354

microwave absorbers design, 351

military, 404, 423

airlift scheduling, 423

land moves scheduling, 423

minimum spanning tree, 359

mobile robots, 361

motor design, 352

motorway routes planning, 378

Index 765

multipoint aerodynamic optimization,
383

multipoint airfoil design, 383
multivariable control system design,

364
natural language processing, 406
network design, 356, 357
network topology design, 357
neural networks architecture design,

399
nonlinear FIR filters design, 353
nonlinear system identification, 362
nuclear engineering, 392
nurse scheduling, 422, 552
object recognition, 402
obstacle avoidance, 361
office design, 377
offline routing problem, 359
operating of electrified railway

systems, 378
optical filter design, 354
optimal control of a space vehicle, 367
optimization of laminated composites,

372
optimization of rocket engine pumps,

384
optimization of working conditions of

a press, 408
packing problems, 374
paper mill scheduling, 616
parallel machine scheduling, 421
parameter optimization of a mobile

network, 358
partial classification, 433
path planning, 361
pattern classification, 400, 433
pattern recognition, 431
pattern space partitioning, 399
permutation scheduling, 142
physics, 391, 392
plane truss design, 372
plant modeling, 369
portfolio optimization, 429
power distribution system planning,

349
prediction, 431
pressurized water reactor design, 392
process planning, 359, 410
process plants design, 414

process sequencing, 409
production process optimization, 409
production process planning, 359
production scheduling, 417
prostate implant optimization, 393,

394
radiation therapy, 393
radiology, 394
reactor design, 354, 392
ready meals production scheduling,

417
real-time scheduling, 423
rectangular packing, 427
road train design, 378
robot arm optimization, 368
robot grippers design, 367
robotics and control engineering,

361–369
robust PID controller design, 364
robust trajectory tracking problem,

367
routing, 359
satellite constellation design, 382
scheduling, 223, 393, 398, 418–423,

570
self-organizing fuzzy logic controller,

364
sensory-action network acquisition,

361
sequencing problems, 410
shape design of electromagnetic

devices, 354
shipyard plane cutting shop problem,

346
site-search, 388
software implementations for DSP

algorithms, 398
software project scheduling, 552
sorting networks, 404
spacecraft trajectories, 382
specification optimization problem,

371
spectroscopic analysis, 392
stock ranking, 430
structural control system design, 374
structural engineering, 370–374
structural synthesis of cell-based

VLSI circuits, 349
surge tank system, 362

766 Index

suspension system design, 366
symbolic layout compaction, 348
synthesis of analog filters, 353
synthesis of low-power operational

amplifiers, 353
synthesis of operational amplifiers,

352
system-level synthesis, 350
task planning, 368
telecommunications, 356–359
telephone operator scheduling, 423
textile industry, 409
texture filtering, 401
thermodynamic cycle of ideal turbojet

engines, 387
thinned antenna arrays, 351
three-colored NCR boards, 404
time series prediction, 431
time-optimal following paths, 367
time-optimal trajectories, 367
time-series prediction, 430
time-tabling of classes, 422
topology design, 357
transonic airfoil design, 384
transonic wing design, 384
transport engineering, 378, 379
transportation plans, 377
traveling salesperson problem, 405
tree size control, 406
truck packing, 427
truss design, 371, 607
truss optimization, 370–372
turbine design, 412
vehicle routing, 380
vehicle scheduling, 379
vehicle water-pumps design, 412
ventricle 3D reconstruction problem,

395
vibrating platform design, 372, 373
VLSI, see very large scale integration
VLSI CAD, 411
VLSI cell placement, 348
VLSI design, 411
voltage reference circuit design, 349
war simulation, 404
warehouse management, 426
water quality control, 343
water quality management, 344
Wiener process, 362

wing design, 386
wing planform design, 384
wing shape optimization, 385
wing subsonic design, 385
word recognition, 403

approximated non-deterministic tree
search, 617

aquifer remediation, 342
arch dam design

evolutionary multiobjective optimiza-
tion in, 435

Archive-based Scatter Search, 359, 569
areto memetic algorithm, 141
arithmetic crossover, 358, 394, 417
Arrow, Kenneth J., 30

impossibility theorem, 538
articulated figure motion

evolutionary multiobjective optimiza-
tion in, 399

artificial immune system, 592
artificial neural networks, 395, 578

in multi-objective optimization, 620
aspiration levels, 343, 525
assembly line balancing

evolutionary multiobjective optimiza-
tion in, 409

assembly sequences and plans
generate and select optimal, 409

attainable criteria set, 372
attainable goals

advantages, 526
disadvantages, 526

attained set, 246
attainment function, 243, 249
attribute, 6

definition, 6
aussian mutation, 399
automatically defined functions, 406
automotive industry

evolutionary multiobjective optimiza-
tion in, 409, 415

automotive steering box design, 409
autonomous aerial vehicles

mission planning and routing, 381
autonomous agent

for multiobjective optimization, 615
autonomous vehicle guidance, 361
availability allocation, 426
average crossover, 384

Index 767

average linkage method, 98, 381
average Pareto front error, 265
average size of the space covered, 571
awari, 147
AWPSO, see Adaptive Weighted PSO

B cells, 605
B-splines, 376
backgammon, 147
backpropagation function, 409
backscattered waves, 385
backscattering of a reflector

minimization of, 391
backtracking, 22
Baldwin effect, 133, 382
Baldwin, James Mark, 133
Baldwinian fitness assignment, 133
bank loan management, 430
bargaining model, 370
beam design, 373, 377

evolutionary multiobjective optimiza-
tion in, 372, 373

behavior-based system, 544
behavioral trait, 613
beryllium powder modeling, 375
best improvement repeated descent, 571
best-first chart parsing algorithm, 407
best-first search, 22
best-N selection, 384
bi-citeria knapsack problem, 567
biased fitness sharing, 527
bicycle design

evolutionary multiobjective optimiza-
tion in, 435

bicycle frame design, 435, 554
bin packing

evolutionary multiobjective optimiza-
tion in, 427

binary encoding, 237
binary preference relations, 528
binary representation, 350, 364, 366,

368, 371, 375, 377, 383, 385, 386,
409, 429

binary tournament selection, 391
bioinformatics, 407
bioremediation, 343

evolutionary multiobjective optimiza-
tion in, 343

BIRD, see best improvement repeated
descent

blackboard architecture, 614

blade design, 375

blend crossover, 384, 394

blind search, 22

bloat

in genetic programming, 439

bloat reduction

evolutionary multiobjective optimiza-
tion in, 406

BLX-α crossover, 344, 593

Boltzmann constant, 549

Borel, Félix Édouard Émile, 29

boundary discovery, 415

boundary mutation, 354, 417, 429

box counting dimension, 287

box packing

evolutionary multiobjective optimiza-
tion in, 427

brachytherapy

evolutionary multiobjective optimiza-
tion in, 394

branch and bound, 22, 420, 578

breadth-first search, 22

breast cancer database, 400

breast cancer prediction, 395

Broyden-Fletcher-Goldfarb-Shanno
quasi-Newton algorithm, 394

Buchanan, John, 59

building block filtering, 101

building block placement problem

evolutionary multiobjective optimiza-
tion in, 411

C-MOGLS, see cellular multiple
objective genetic local search

applications, 419

C5.0, 400

CAD, see computer aided design

calculus-based search, 22

CAMOGA, see cellular automa-
ton and genetic approach to
multi-objective optimization

cancer classification, 432

cancer treatment, 393

evolutionary multiobjective optimiza-
tion in, 393, 394

768 Index

CANDA, see cellular automaton for
network design algorithm

candidate list, 562
Cantor, Georg, 30
capital budgeting, 552

Pareto Simulated Annealing in, 552
capital budgeting problem, 561
car design, 415
car engine design, 415
car sampling tests, 409

evolutionary multiobjective optimiza-
tion in, 409

cardiac diseases
diagnosis of, 395

cardinality, 285
CAS, see collision avoidance action

sequence
cascade compensator

evolutionary multiobjective optimiza-
tion in, 365

Cauchy mutation, 354
cell formation, 412
cellular automata, 344, 440
cellular automaton and genetic

approach to multi-objective
optimization, 344

cellular automaton for network design
algorithm, 344

cellular genetic algorithm, 130, 419
cellular manufacturing, 412, 419, 552

evolutionary multiobjective optimiza-
tion in, 412

Pareto Simulated Annealing in, 552
cellular multiobjective genetic algo-

rithm, 616
cellular multiple objective genetic local

search, 419
applications, 419

chance-constrained solid transportation
problem, 380

Charnes, Abraham, 30
chemical process modeling, 523
chemical process system

modeling of, 390
chemistry

evolutionary multiobjective optimiza-
tion in, 390, 391

chemotherapeutic treatment, 393
chi-square distribution, 59

chromatic rectangle, 404

chromosome, 24

circuit design, 355

evolutionary multiobjective optimiza-
tion in, 355

city planning, 377

civil and construction engineering

evolutionary multiobjective optimiza-
tion in, 377

classification

of MOEA techniques, 54

classification and prediction

applications, 399

evolutionary multiobjective optimiza-
tion in, 399, 431–433

classification trees, 400

classifier systems, 24, 130, 400, 430, 440

clonal mutation operator, 592

clonal selection, 609, 610

algorithm, 608

principle, 609

theory, 592

CLONALG, see clonal selection
algorithm

clone identification, 267

clones, 352

clustering, 399, 407, 568, 586, 592

applications, 399

evolutionary multiobjective optimiza-
tion in, 399

clusters, 350, 556

ClustMPSO, 592

CMA-ES, see covariance matrix
adaptation evolution strategy

CMOIA, see constrained multi-objective
immune algorithm

co-evolutionary genetic algorithm, 525

co-evolutionary hierarchical pMOEA,
459

co-evolutionary multiobjective genetic
algorithm, 616

applications, 386

co-evolutionary shared niching, 384

coarse-grained parallelism, 455

code growth in GP

evolutionary multiobjective optimiza-
tion in, 405

code size control

Index 769

evolutionary multiobjective optimiza-
tion in, 405

coevolution, 146
competitive, 147
cooperative, 147

coevolutionary genetic algorithm, 148,
159

coevolutionary multi-objective evolu-
tionary algorithms, 147

coevolutionary multi-objective genetic
algorithm, 163

coevolutionary shared niching, 153
coevolutionary sharing, 153
collision avoidance

evolutionary multiobjective optimiza-
tion in, 368

collision avoidance action sequence, 368
coloring problems

evolutionary multiobjective optimiza-
tion in, 404

combinational circuit design, 306, 355
combinatorial MOEA test functions,

220
combinatorial optimization, 346, 388,

534
problem

definition, 220
COMPETants, see competing ant

colonies
competing ant colonies, 581
competitive fitness, 147

comprehensive, 147
minimal, 147

competitive species, 345
completeness, 285
complex objects

qualitative descriptions of, 430
composite plate optimization

applications, 373
evolutionary multiobjective optimiza-

tion in, 373
composite utility function, 527
compromise programming, 33, 374, 535,

536, 555
compromise solution, 380
computable difference, 237
computational fluid dynamics, 383, 462
computational grid, 237
computer aided design, 411

evolutionary multiobjective optimiza-
tion in, 411

computer generated animation
applications, 399
evolutionary multiobjective optimiza-

tion in, 399
computer graphics

evolutionary multiobjective optimiza-
tion in, 399

computer immunology, 605
computer science

evolutionary multiobjective
optimization in, 388, 398–407,
432

computer vision
evolutionary multiobjective optimiza-

tion in, 401, 402
concavity, 9
concordance, 42
concordance index, 532
cone, 292
configuration problems, 374
conflict analysis model, 45, 542
conformational search, 391

evolutionary multiobjective optimiza-
tion in, 391

connectedness, 137
CONOPT, 430
constant parsimony pressure, 405
constellation design, 382
constrained multi-objective immune

algorithm, 608
constrained test functions, 189
constraint-handling, 116, 544

in MOPs, 113
in multiobjective Tabu search, 563
using nondominance, 188

constraints
definition, 5
equality, 6
explicit, 6
implicit, 6
inequality, 6
overconstrained problem, 6

construction time-cost trade-off
problems, 377

contact theorem, 562
containership layouts

preplanning of, 346

770 Index

contaminated groundwater aquifers
remediation, 342

continuously updated fitness sharing,
95, 342

control
applications, 364–367
of a civil structure

applications, 374
evolutionary multiobjective

optimization in, 374
control of elevators, 362
control system design, 365

applications, 365
evolutionary multiobjective optimiza-

tion in, 364–366
controller

design, 364, 366, 368, 379
applications, 364
evolutionary multiobjective

optimization in, 363, 364, 379
design of a finite word-length

feedback, 364
convergence

evolutionary algorithm, 288
convex hull, 67
convex set

definition, 9
example, 9

convexity, 8
Cooper, William Wager, 30
cooperative coevolutionary genetic

algorithms, 149
cooperative genetic algorithm, 422
cooperative search, 614
coordination of distributed agents, 434

applications, 434
copper powder modeling, 375
Corana functions, 177
core-based single-chip system synthesis,

350
evolutionary multiobjective optimiza-

tion in, 350
covariance matrix adaptation evolution

strategy, 130, 387
covariance matrix adaptation method,

413
coverage difference of two sets, 425
coverage of two sets, 410, 571, 581
coveringMOPSO, 587

craziness, 590
creep mutation, 391
criterion, 6
critical event design, 566
critical path method (CPM), 377
crossover, 25

intelligent, 410
one-point, 370
order-based uniform, 398
partially mapped, 418
unimodal normal distribution, 399

crowding, 311, 351, 568, 611
applications, 400

crowding factor, 590
crowding model, 424
cryogenic rocket engines, 384
cryptography, 441
CSN, see coevolutionary shared niching
cultural algorithm, 603, 613

in multiobjective optimization, 614
cultured differential evolution, 603
cumulative distribution function, 234
customer patterns prediction

evolutionary multiobjective optimiza-
tion in, 431

cutting problem
evolutionary multiobjective optimiza-

tion in, 413, 414
cvMOPSO, see coveringMOPSO

D-MODE, see discrete multi-objective
differential evolution

data extraction, 385
data mining, 406
data sampling

evolutionary multiobjective optimiza-
tion in, 388

data structures evolution, 406
evolutionary multiobjective optimiza-

tion in, 406
databases

knowledge extraction, 440
Davidon-Fletcher-Powell method, 392
DC railway system, 378
death penalty, 358, 377, 593
Deb-Thiele-Laumanns-Zitzler (DTLZ)

test problems, 200
deceptive functions, 177
decision maker, 5, 7, 515

Index 771

operational attitude, 517
decision making, 409, 515

social choice, 545
system, 564

decision tree induction, 399
evolutionary multiobjective optimiza-

tion in, 399
decision variables

definition, 5
degree of domination, 560
degrees of freedom, 6
Delta II 7925, 382
deme, 406
DEMO, see differential evolution for

multi-objective optimization
DEMORS, see differential evolution for

multiobjective optimization with
rough sets

depth-first search, 22
descent algorithm, 554
design and manufacture

evolutionary multiobjective opti-
mization in, 371, 376, 408–417,
427

design of H∞ controllers
evolutionary multiobjective optimiza-

tion in, 363
design of active magnetic bearing

controllers
evolutionary multiobjective optimiza-

tion in, 363
design of fuzzy controllers

evolutionary multiobjective optimiza-
tion in, 361

design of multiplierless IIR filters
evolutionary multiobjective optimiza-

tion in, 353
design unification of linear control

systems, 365
evolutionary multiobjective optimiza-

tion in, 365
deterministic search, 22
differential evolution, 376

applications, 375
multi-objective, 356, 416
multiobjective, 594
parallel, 599

differential evolution for multi-objective
optimization, 599, 600

differential evolution for multiobjective
optimization with rough sets, 602

diffusion, 451
diffusion genetic algorithm

applications, 395
diffusion implementation issues, 499
diffusion pMOEA model, 458
diffusion pMOEAs, 473
digital filter design

evolutionary multiobjective optimiza-
tion in, 354

digital phase shifters, 351
dimensionality curse, 537
diploid genetic algorithm, 532
diploidy, 119, 408, 618
directional convergence and spread, 599
disassortative mating, 404
discordance, 42
discordance index, 43, 532
discrete multi-objective differential

evolution, 416
displaced ideal, 33
distance preserving crossover, 141, 405
distance-based Pareto genetic algo-

rithm, 63, 413
distributed cooperative coevolutionary

algorithm, 161
distributed database management

evolutionary multiobjective optimiza-
tion in, 359

distributed genetic algorithm, 469
distributed object systems

applications, 404
distributed Q-learning, 582
distributed spacing, 265
distributed systems

applications, 404
evolutionary multiobjective optimiza-

tion in, 404
distribution system, 344

design, 426
evolutionary multiobjective

optimization in, 426
diversity, 178, 310, 427

as an objective in a MOEA, 129
using entropy, 337
using the immune system, 606

diversity preservation, 81
diversity techniques

772 Index

shaking, 352
divided range multi-objective genetic

algorithm, 469
DM, see decision maker
DNA

computing, 440
library, 607
sequence analysis, 407

dominance, 119
weak, 517

dominance compliant, 245
dominance count, 79
dominance depth, 79
dominance rank, 79
dominated tree, 586
dominated-space metric, 425
domination graph, 318

irreducible, 319
domination probability, 530
domination-based fitness sharing, 400
domination-free quadtrees, 125
downhill simplex search, 345
DPGA, see distance-based Pareto

genetic algorithm
DQL, see distributed Q-learning
DSP algorithms

evolutionary multiobjective optimiza-
tion in, 398

ductile iron casting
optimization, 412, 413

duplicates removal, 389
dynamic compromise programming, 536
dynamic environment, 231, 615

MOEAs in, 440
dynamic neighborhood, 586
dynamic neural networks, 362
dynamic sharing, 365
dynamic weight aggregation

applications, 387
dynamic weighted aggregation, 534

EA, see evolutionary algorithm
earthquake engineering

evolutionary multiobjective optimiza-
tion in, 374

easy MOPs, 186
EC, see evolutionary computation
ecological model assessment, 396
ecological process model fitting, 397

ecology
evolutionary multiobjective optimiza-

tion in, 396, 397
economic equilibrium, 29
economic load dispatch, 349, 589
economics

evolutionary multiobjective optimiza-
tion in, 430

Edgeworth, Francis Ysidro, 10, 29
effectiveness, 234
efficiency, 234
efficiency preservation, 292
efficiency preserving MOEA, 293
efficient set, 292
efficient solutions, 11
efficient vector, 30
ELECTRE, 42, 45, 518
ELECTRE I, 42, 531

applications, 378
ELECTRE II, 44
ELECTRE III, 44, 532
ELECTRE IS, 44
ELECTRE IV, 44
ELECTRE TRI, 44
electrical and electronics engineering

evolutionary multiobjective optimiza-
tion in, 348–356

electrical impedance tomography
problem, 392

electrified railway systems, 378
electromagnetic design, 608
electromagnetic devices design, 350,

351, 354
evolutionary multiobjective optimiza-

tion in, 351
electromagnetic superconducting device,

351
electromagnetic suspension system

design, 366
electromechanical systems, 355

evolutionary multiobjective optimiza-
tion in, 355

elevator car routing problem, 362
elimination and choice translating

algorithm, see ELECTRE
elite clearing mechanism, 410
elitism, 103, 343, 355, 371, 379, 380,

383, 386, 400, 405, 413, 418–421,
424, 425, 432

Index 773

elitist NSGA, 420
elitist preservation selection, 525
elitist recombinative multiobjec-

tive genetic algorithm with
coevolutionary sharing, 153

elitist selection pressure, 343
ELSA, 431, see evolutionary local selec-

tion algorithm, see evolutionary
local search algorithm

endosymbiosis, 144, 150
energy consumption prediction, 432
engineering configuration problems, 374
entreprise planning, 416
entropy, 337, 371
enumerative search, 21
environmental engineering

evolutionary multiobjective
optimization in, 341–345, 347,
378

environmental modeling
evolutionary multiobjective optimiza-

tion in, 388
EP, see evolutionary programming
epistasis, 230, 301
equivalence, 285
equivalence class sharing, 94, 242, 313,

352, 392
error ratio, 256
ES, see evolution strategy
escape operator, 422
estimation of distribution algorithms,

130
estuary, 344
euclidean space, 7
EVAMIX, 542
evenness coverage, 389
evolution program, 380
evolution strategy, 23, 239, 359, 414

applications, 351, 352, 354, 368, 378,
413, 425

convergence, 291
multiobjective, 364, 368

evolutionary algorithm, 1, 23
evolutionary computation, 23

terminology, 24
evolutionary dynamic weighted

aggregation algorithm, 137
evolutionary game theory, 543
evolutionary local search algorithm, 616

evolutionary local selection algorithm,
432

applications, 432
evolutionary operators, 25, 449
evolutionary programming, 349, 614
Evolutionary Standardized-Objective

Weighted Aggregation Method,
362

Evolving Objects, 276
EVOP, see evolutionary operators
exchange mutation, 417
expected return, 429
expected utility maximization, 542
expected value selection, 525
experimental goals, 234
expert system, 526
exploration vs. exploitation, 27
exploratory multiobjective evolutionary

algorithm, 564
exponential selection, 357
extent of coverage, 389
external file of nondominated vectors,

425
extinction, 380
extinctive selection, 401
extraction of munition aerodynamic

characteristics, 385
extrapolated path relinking, 566

face detection system, 403
facial modeling, 402
facility layout, 414, 467
facility layout problem

evolutionary multiobjective optimiza-
tion in, 425

facility location problem, 425
evolutionary multiobjective optimiza-

tion in, 425
facility management

evolutionary multiobjective optimiza-
tion in, 424

fair population-based evolutionary
multiobjective optimizer, 321

fast messy genetic algorithm, 101, 506
fault diagnosis, 362, 432

evolutionary multiobjective optimiza-
tion in, 362

fault diagnosis problems, 468
fault tolerant system design, 352

774 Index

evolutionary multiobjective optimiza-
tion in, 352

favor relationship, 530
potential problems, 531

feasible descent direction, 60
feature selection, 403, 616

evolutionary multiobjective optimiza-
tion in, 432

in biological sequences, 407
feature subset selection, 399
feedforward neural network, 376
field programmable gate array, 350
field programmable transistor array, 352
FIFO queue, 406
filled function acceleration technique,

351
finance

evolutionary multiobjective optimiza-
tion in, 429, 430

find only and complete undominated
sets, 406

fine-grained parallelism, 458
finite element model tuning, 434
Finite Impulse Response (FIR) filters,

353
finite word-length feedback controller

design of a, 364
FIR filter design, 439
FIRD, see first improvement repeated

descent
first improvement repeated descent, 571
Fisher permutation test, 271
fishery bioeconomic model optimization,

430
evolutionary multiobjective optimiza-

tion in, 430
fitness, 25
fitness function, 23
fitness functions used with MOEAs, 306
fitness landscape, 231, 300
fitness landscape analysis, 139
fitness proportional, 25
fitness scaling, 241, 423
fitness sharing, 64, 242, 357, 359, 364,

367, 372, 382, 384, 389, 404, 409,
417, 420, 552, 591, 607, 610

continuously updated, 95, 342
domination-based, 400
implicit, 354

phenotypic, 375
flat crossover, 361
Fletcher-Powell function, 179
Fletcher-Reeves algorithm, 394
flexible generic parameterized facial

model, 402
flexible manufacturing

evolutionary multiobjective optimiza-
tion in, 410

flexible process sequencing
evolutionary multiobjective optimiza-

tion in, 409
flight instructor scheduling problem,

563
flip mutation, 394
floating point representation, 349, 384
flow crossover, 358
flowshop scheduling, 418–420, 570, 578,

580
evolutionary multiobjective optimiza-

tion in, 418–420
fluidic microchannel design, 413
fmGA, see fast messy genetic algorithm
FOCUS, see find only and complete

undominated sets
food industry, 408

evolutionary multiobjective optimiza-
tion in, 408, 417

force allocations for war simulation, 404
forest management

evolutionary multiobjective optimiza-
tion in, 425

foundry processes, 413
evolutionary multiobjective optimiza-

tion in, 413
four-cylinder gasoline engine

design, 415
FPGA, see field programmable gate

array
free-form packing problems, 374
freedom

degrees of, 6
Freudenstein-Roth functions, 177
FTS, see fuzzy tournament selection
fuel consumption, 415
fuel economy

evolutionary multiobjective optimiza-
tion in, 415

full stern submarines

Index 775

feasibility, 346
functional brain imaging, 395
future applications

evolutionary multiobjective optimiza-
tion, 434, 435

future applications of evolutionary
multiobjective optimization, 434

fuzzy automatic train operation, 596
fuzzy boundary local perturbation, 365
fuzzy controller

design, 361
fuzzy decision table, 364
fuzzy logic, 220, 343, 347, 348, 357, 361,

364, 368, 369, 375, 379, 380, 430,
536

applications, 366
fuzzy logic traffic signal controller, 379
fuzzy modeling, 369
fuzzy ranking, 364, 380
fuzzy rule, 426
fuzzy satisficing method, 525
fuzzy set-based aggregating function,

534
fuzzy system design, 368, 369, 411

evolutionary multiobjective optimiza-
tion in, 368, 369, 411

fuzzy tournament selection, 361
applications, 361

Fuzzy-Pareto-Dominance, 402

GA, see genetic algorithm
GA with a target vector approach

applications, 353, 377, 422
GA with compromise programming

applications, 374
GA with lexicographic ordering

applications, 361
GA with linear aggregating function,

358, 426
GA with Pareto ranking, 392
GAIN, see genetic algorithm running

on the internet
game of tag, 147
game playing, 441
game theory, 29, 30, 386, 543, 616

applications, 370, 383, 391
GAMS, see general algebraic modeling

system
Gantt diagram optimization, 398

GAP, see generalized analysis of
promoter

gas supply network optimization, 345
gas turbine blades design

evolutionary multiobjective optimiza-
tion in, 387

gas turbine design
evolutionary multiobjective optimiza-

tion in, 412
gas turbine engine

design of its control system, 364
gas turbine stator blades

optimization, 387
gaussian mutation, 361, 394, 398, 401,

525, 608
GD3, 604
GDE, see generalized differential

evolution
GDEA, see generalized data envelop-

ment analysis
GE-HPGA, see grid enabling hierarchi-

cal parallel genetic algorithm
gear-box design, 375
gene, 24

conversion, 607
expression, 407
inversion, 607
shift, 607

general algebraic modeling system, 430
general MOP

formal definition, 8
general multi-objective program, 464
general multiobjective evolutionary

algorithm, 108
generalized analysis of promoter, 407
generalized data envelopment analysis,

525
generalized differential evolution, 600
generalized multi-objective evolutionary

algorithm, 410
generation gap, 311
generational distance, 256, 569
generational nondominated vector

generation, 266
generational population knowledge, 234
generic attainment function, 245
generic MOEA, 86
genetic algorithm, 23, 344, 429, 578

aggregating function, 552

776 Index

with fuzzy logic, 375
with goal programming, 389

genetic algorithm running on the
internet, 460

genetic diversity evolutionary algorithm,
129

genetic drift, 153, 311, 343
genetic pMOEA, 503
genetic programming, 24, 362, 390, 399,

406, 439
applications, 399, 404, 406, 431
evolutionary multiobjective optimiza-

tion in, 405, 406
genetic symbiosis algorithm, 155
genMOGA pseudo code, 88
GENMOP, 108, see general multi-

objective program
GENOCOP III, 430
genotype, 24

in evolutionary multiobjective
optimization, 54

genotypic clustering, 399
genotypic sharing, 312, 400, 419
geographic information system, 347
geography

applications, 389
evolutionary multiobjective optimiza-

tion in, 388, 389
geometric crossover, 394
geometric temperature reduction, 571
germinal center, 607
GGA, see grouping genetic algorithm

applications, 409
Gibbs entropy, 130
GIS, see geographic information system
global convexity, 134, 620
global criterion method, 32, 368, 569
global minimum

definition, 4
global optimization problem

definition, 4
global preferences, 532
global repository, 590
GMDH, see group method of data

handling
GMDH-type neural networks, 387
GMOEA, see generalized multi-

objective evolutionary algorithm
goal attainment, 35, 362, 523

applications, 353, 362

versus multi-objective differential
evolution, 603

goal definition, 524

goal programming, 30, 34, 57, 379, 389,
523, 524, 534

applications, 371, 390

lexicographic, 35

Goldstein-Price functions, 177

goundwater monitoring wells

optimal location, 341

GP, see genetic programming

gradient information

coupled to a MOEA, 142

graph-based encoding, 389

graphical user interface for multi-
objective optimization, 275

GRASP, see greedy randomized
adaptive search procedure

multi-objective, 620

Gray coding, 350, 366, 370, 383, 398,
412

greedy algorithm, 22, 564

greedy heuristic, 423

greedy randomized adaptive search
procedure, 620

greedy reduction algorithm, 545

grid enabling hierarchical parallel
genetic algorithm, 474

Griewank quartic, 177

groundwater monitoring networks

evolutionary multiobjective optimiza-
tion in, 343

groundwater monitoring wells

optimal location, 342

groundwater pollution containment, 341

groundwater remediation, 342

evolutionary multiobjective optimiza-
tion in, 342

group decision making, 54, 538

group method of data handling, 387

group technology, 412

group utility, 33

grouping genetic algorithm, 409

grouping problem

evolutionary multiobjective optimiza-
tion in, 427

GUESS method, 59

Index 777

guided multi-objective evolutionary
algorithm, 527

guillotine cutting problem
evolutionary multiobjective optimiza-

tion in, 413
Guimoo, see graphical user interface for

multi-objective optimization

H∞, 366
halftoning problem, 401
Hamming cliffs, 237
Hamming distance, 312
handwritten word recognition, 403
hard selection, 27
hardware-software embedded systems

co-synthesis, 350
evolutionary multiobjective optimiza-

tion in, 350
Hausdorff, Felix, 30
heating, ventilating and air conditioning

system, 377
heavy chain, 607
helicopeter flat panels design, 383
helicopter design, 415
heuristic concentration, 620
heuristic crossover, 354, 413, 417
heuristic knowledge, 354
heuristic learning, 411
heuristic tie-breaking crossover, 392
HGA, see hierarchical genetic algorithm

applications, 356
Hidden Markov Models, 403
hierarchical decision system, 424
hierarchical genetic algorithm, 356
hierarchical hybrid pMOEA models,

459
hierarchical systems, 375
hierarchical tree representation, 362
high performance multi-objective

evolutionary algorithm, 130
high-dimensional problems, 22
high-lift airfoil design, 386
hillclimbing, 22, 351, 527, 565
honey bee algorithm, 620
Hooke and Jeeves, 562
hot rolling process, 421
HPMOEA, see high performance

multi-objective evolutionary
algorithm

HTBX, see heuristic tie-breaking
crossover

human-like motion, 399
humanoid figure

animation of, 399
Hurwitz, Leonid, 30
HVAC system, see heating, ventilating

and air conditioning system
hybrid approaches, 564, 570

genetic algorithm and simulated
annealing, 349

hybrid electric vehicle
design, 415

hybrid metaheuristic
applications, 565

hybrid of neural network and genetic
algorithm

applications, 401
hybrid representation, 367, 374
hybrid selection, 404

applications, 142
hydraulic engineering

evolutionary multiobjective op-
timization in, 341–345, 383,
577

hydro-generators design, 562
hydrologic model calibration, 345

evolutionary multiobjective optimiza-
tion in, 345

hydrology
evolutionary multiobjective optimiza-

tion in, 345
hyperarea ratio, 258
hypercrowns, 562
hyperheuristic, 173
hypermutation, 607, 609
hypervolume, 257, 359, 569

ID3, 399
IDCMA, see immune dominance clonal

multiobjective algorithm
ideal vector, 526

definition, 8
identification of gene modules, 407
IFMOA, see immune forgetting

multiobjective optimization
algorithm

IGA, see interactive genetic algorithm
IIM, see iterative improvement method

778 Index

IIR filters
design, 353

Illinois Genetic Algorithms Laboratory,
273

ILP, see integer linear programming
image compression, 350
image halftoning, 401
image processing

evolutionary multiobjective optimiza-
tion in, 392, 401

image segmentation
evolutionary multiobjective optimiza-

tion in, 401
immediate successor relation crossover,

410
immigration, 380, 426
immune differential degree, 609
immune dominance, 609
immune dominance clonal multiobjec-

tive algorithm, 609
immune forgetting multiobjective

optimization algorithm, 610
immune forgetting operator, 610
immune system, 420, 605, 606

applications, 375, 607
multiobjective, 607

IMOEA, see incremented multi-
objective evolutionary algorithm

Implanting Block of Cells crossover, 352
implicit fitness sharing, 354
impossibility theorem, 539
imprecisely specified multi-attribute

value theory, 527
incest prevention, 385
incomparability, 517
incremental genetic algorithm

applications, 349
incremental learning, 126
incremental multiple objective genetic

algorithm, 126
incremented multi-objective evolution-

ary algorithm, 365
independent sampling techniques, 72
indicator-based evolutionary algorithm,

130, 275, 407
indifference, 543
indirect representation, 422
indiscernibility interval method, 367,

373

individual, 23, 24
induction motor design, 352

evolutionary multiobjective optimiza-
tion in, 352

inductive learning, 432
industrial applications

evolutionary multiobjective optimiza-
tion in, 422

industrial nylon 6 semibatch reactor
optimization, 412

industrial scheduling, 578
industry

evolutionary multiobjective optimiza-
tion in, 427

inferential estimator
development, 390

inferiority index, 373
initialization phase, 101
insertion mutation, 420
integer linear programming, 580
integer programming, 525, 559
integer representation, 353, 368, 373,

377, 380, 423
integrated circuit placement, 411

evolutionary multiobjective optimiza-
tion in, 411

integrated convex preference, 421
intelligent crossover, 402, 410
intelligent genetic algorithm, 402
intelligent particle swarm optimization,

591
intensities of emission lines of trace

elements
optimization of, 390

interactive articulation of preferences,
523

interactive genetic algorithm, 399
with co-evolving weighting factors,

157
interactive preference articulation

advantages, 518
disadvantages, 519

intermediate crossover, 367
intermediate recombination, 364, 413
interval criterion weights, 534
interval programming problem

evolutionary multiobjective optimiza-
tion in, 380

intransitivities, 537

Index 779

intrusion detection, 434
inverse kinematics of a robotic

manipulator
solution of the, 367

inverse Polish notation
phenotype using, 411

inversion, 410, 420, 423, 525
inverted generational distance, 257
inverter-permanent magnet motor-

reducer-load association
design, 355

investment portfolio optimization, 429
evolutionary multiobjective optimiza-

tion in, 429
IPSO, see intelligent particle swarm

optimization
iron blast furnace, 376
irregular problems, 22
iSIGHT, 275
island, 451

implementation issues, 493
model, 316
pMOEAs, 465

isoefficiency, 485
iterated prisoner’s dilemma, 147
iterative genetic algorithm

applications, 374
iterative improvement method, 418

J-measure, 406
Java retrovirus-inspired MISA, 434
Jevons, William Stanley, 29
job shop scheduling, 346, 420, 421, 570

evolutionary multiobjective optimiza-
tion in, 398, 420, 421

jREMISA, see Java retrovirus-inspired
MISA

jump mutation, 391
jump search, 620
just-in-time sequencing problem, 578
juxtapositional phase, 101, 243

K-means algorithm, 403, 592
Karnaugh maps, 355
KEA, see kit for evolutionary algorithms
kit for evolutionary algorithms, 274
knapsack problem, 142, 536, 556

bicriteria, 567

evolutionary multiobjective optimiza-
tion in, 344

multiobjective, 139, 560

knees

in MOEAs, 545

knowledge extraction, 432

evolutionary multiobjective optimiza-
tion in, 432

Koopmans, Tjalling C., 30

Kramer choice function, 566

Kreisselmeir-Steinhauser function, 383

Kruskal Wallis Test, 271

Kuhn, Harold W., 30

Kuhn-Tucker conditions, 30

Lamarck, Jean Baptiste Pierre Antoine
de Monet, 133

Lamarckian fitness assignment, 133

Lamarckian Genetic Algorithm, 592

Lamarckism, 133

laminate composite panels, 569

laminated composites

optimization, 372

lamp animation, 399

lamp design, 354

evolutionary multiobjective optimiza-
tion in, 354

land use, 377

applications, 389

planning, 389

applications, 389

lateral interference, 564, 565

launch conditions, 385

layout problems, 222

leading ones-trailing zeroes, 320

learning

applications, 368

evolutionary multiobjective optimiza-
tion in, 368

learning object-oriented problem solver,
292

learning speed, 400

leg mechanism, 375

Levy functions, 177

lexicographic GA

applications, 348, 423

lexicographic goal programming, 59

780 Index

lexicographic ordering, 36, 63, 67, 361,
401, 439, 523, 524, 534, 553, 578,
586

advantages, 66

applications, 361

disadvantages, 66

scatter search, 567

light chain, 607

linear aggregating function, 69, 358,
362, 414, 569

advantages, 69

disadvantages, 69

linear control systems, 365

linear fitness scaling, 350, 425

linear matrix inequalities, 364

linear programming, 24, 344, 555

linear programming relaxation, 525

linear ranking, 27, 351, 366, 373, 411

linear representation, 400

linear scaling, 370, 418, 432, 525

linear transportation problem, 380

evolutionary multiobjective optimiza-
tion in, 380

linear weighting function, 527

linguistic function approximation

evolutionary multiobjective optimiza-
tion in, 432

linguistic rule extraction

evolutionary multiobjective optimiza-
tion in, 400

LMI, see linear matrix inequalities

local geographic selection genetic
algorithm, 379, 465

local search, 132, 142, 330, 395, 418,
419, 421, 527, 569, 578

importance, 426

tiered, 140

local selection, 383, 432

role in multiobjective optimization,
616

local utility approach, 413, 527

locus, 24

logistic regression, 431

LOOPS, see learning object-oriented
problem solver

low-power operational amplifiers

synthesis, 353

LS-1, 400

LSGA, see local geographic selection
genetic algorithm

applications, 379

LUTA, see local utility approach, 527

M-PAES, 97, 124, 136, see memetic
Pareto archived evolution strategy,
238

M-Pareto optimality, 525

M-scatter search, 567

M5, 400

machine design, 413

machine job scheduling, 578

machine learning, 432

evolutionary multiobjective optimiza-
tion in, 400

MACS-VRPTW, 577, see multiple ant
colony system for vehicle routing
problems with time windows

maglev vehicle, see magnetically
levitated vehicle

magnetically levitated vehicle, 366

design, 366

electromagnetic suspension system
for a, 366

management

evolutionary multiobjective optimiza-
tion in, 424, 426

Mann-Whitney rank-sum test, 270

manufacturing

evolutionary multiobjective optimiza-
tion in, 412

mappa, 613

marine vehicle design, 346

evolutionary multiobjective optimiza-
tion in, 346

Markov chain, 289

Markowitz mean-variance model, 429

master-slave, 451

pMOEA, 460, 463

pMOEA implementation issues, 491

with local cultivation, 464

matching

of individuals, 373

mathematical complexity

of MOEAs, 310

mathematical programming, 24

mating groups, 316

Index 781

mating restrictions, 221, 241, 313, 315,
345, 350, 354, 364, 372, 386, 404,
421

importance, 426
MATLAB, 273
matrix encoding, 380, 426
mature antibodies, 607
MAUT, see multi-attribute utility

theory
criticism, 517
intransitivities, 517

max-min ant system, 620
maximal symmetric excursion, 353
maximim programming, 517
maximin fitness function, 377
maximinPSO, 588
maximum independent set (clique)

problem, 222
maximum Pareto front error, 264
mBOA, see multi-objective Bayesian

optimization algorithm
MCDM, see multi-criteria decision

making
MDQL, see multiobjective distributed

Q-learning
applications, 583

measurement, 515
mechanical and structural engineering

evolutionary multiobjective optimiza-
tion in, 374–376

mechatronic design problem, 603
medicine

evolutionary multiobjective optimiza-
tion in, 393–395

meiosis, 128
membership function, 361, 525, 589

multiobjective, 366
memetic algorithm, 97, 382, 395, 420

applications, 142
definition, 132

memetic MOEAs, 330
memetic Pareto archived evolution

strategy, 139
memetic Pareto artificial neural

network, 396, 598
memory pool, 607
MEMS, see microelectrical mechanical

systems
Mendel, Gregor, 618

laws, 618
mendelian multi-Objective genetic

algorithm, 618
Menger, Carl, 29
mesh communication networks, 357
Message Passing Interface, 238, 387
messy genetic algorithm, 238, 344
metabolic pathway data, 407
metaheuristic, 63
metallurgy

evolutionary multiobjective optimiza-
tion in, 375

metrics, 234, 236, 267
coverage, 426
integrated convex preference, 421

metrics for pMOEAs, 486
metropolitan mobile ad-hoc network,

359
MICCP, see mixed integer chance

constrained programming
Michigan-style machine learning, 432
micro genetic algorithm

for multiobjective optimization, 63,
102, 125, 609

micro genetic algorithm 2, 63
microchannel design, 413

evolutionary multiobjective optimiza-
tion in, 413

microelectrical mechanical systems, 440
microprocessor design, 354

evolutionary multiobjective optimiza-
tion in, 354

microwave absorbers design, 351
evolutionary multiobjective optimiza-

tion in, 351
middling, 73
migration, 456
military airlift scheduling

evolutionary multiobjective optimiza-
tion in, 423

military applications, 468
evolutionary multiobjective optimiza-

tion in, 404, 423
military land moves scheduling

evolutionary multiobjective optimiza-
tion in, 423

min-max GA
applications, 364

min-max optimization, 38, 524

782 Index

minimal element, 285
minimum description length, 431
minimum penalty rule, 114
minimum spanning tree, 222

evolutionary multiobjective optimiza-
tion in, 359

MINSGA, see modified Illinois NSGA
applications, 382

MISA, 433, see multiobjective immune
system algorithm, 610, 611

missile trajectory tracking
evolutionary multiobjective optimiza-

tion in, 367
mission ready resource, 223
mitosis, 128
mixed integer chance constrained

programming, 341
mixed model assembly lines, 410
MMOSGA, see mendelian multi-

objective genetic algorithm
MNC GA, see multi-niche crowding

genetic algorithm
applications, 342

MO-Turtle GA, 352
MOAMP, 569
MOAQ, see multi-objective ant-Q

applications, 577
mobile networks, 357
mobile robots, 544

applications, 361
mobile telecommunication network, 357
MOCell, see multiobjective cellular

genetic algorithm
MOCOM-UA, see multi-objective

complex evolution
applications, 345

MOCSA, see multiobjective clonal
selection algorithm

MODE, see multi-objective differential
evolution, 601

MODE/D, 604
model optimization, 430
modified Illinois NSGA, 382
modified strength Pareto evolutionary

algorithm, 415
MODM, see multiple objective decision

making
MOEA, see multi-objective evolutionary

algorithm

challenging functions, 179
comparison, 236
complexity, 318
computational cost, 326
convergence, 288

with probability one, 290
generic algorithm, 78
goals, 78
metrics, 264
Primary goals, 3
storage requirements, 318
test function suite issues, 176
test suites, 175
theoretical issues, 300
used with noisy functions, 336

MOEDAs, see multi-objective estima-
tion of distribution algorithms

MOEP, see multi-objective evolutionary
programming

applications, 349
MOGA, see multiple objective genetic

algorithm, 158, 238, 239, 345, 364,
554, 556

applications, 345, 346, 350, 352, 355,
361–365, 367, 368, 372, 375, 377,
379, 384, 389, 390, 394, 402, 405,
406, 412, 413, 417–419, 425

compared to multiobjective simulated
annealing, 555

definition, 88
parallel implementation, 362
preferences, 523
pseudo code, 89
vs. EMOEA, 564
with elitism, 352

MOGA/NPGA hybrid, 365
MOGADES, see Multi-Objective Ge-

netic Algorithm with Distributed
Environment Scheme

MOGLS, see multiple objective genetic
local search, 426, 580

applications, 405
MOGP, see multi-objective genetic

programming, see multi-objective
genetic programming

applications, 355, 362, 390
MOIA, see multi-objective immune

algorithm
molecular docking problem, 592

Index 783

MOMGA, see multi-objective messy
genetic algorithm, 99, 238, 364

pseudo code, 98

MOMGA-II, 63, 101, 238

pseudo code, 101

MOMGA-III, 63, 101, 238

MOMSLS, see multiple start local
search algorithm

MONACO, see multi-objective network
optimization using ant colony
optimization

static version, 579

monopolistic competition, 153

monotonicity, 289

Monte Carlo method, 23, 368, 549

applications, 372, 413

MOP, see multiobjective optimization
problem

characteristics, 195

domain characteristics, 180

example, 19

plane truss, 19

global minimum, 13

global minimum solution set, 13

global optimization problem, 13

landscape

stretching, 231

Pareto front determination, 237

MOPSO, 349, see multi-objective
particle swarm optimizer

Morgenstern, Oskar, 30

MOSA, 140, see multi-objective
simulated annealing, 550

applications, 351, 608

MOSGA, see multi-objective struggle
genetic algorithm

MOSS, see multi-objective scatter
search, 566, 569

motorcycle frame design, 374

motorway routes planning

evolutionary multiobjective optimiza-
tion in, 378

MOTS, 560, see multi-objective Tabu
search, 570

MOTS*, 560

compared to PSA, 570

moving boundaries process, 365

MP-Testdata, 222

MPANN, see memetic Pareto artificial
neural network, 598

MPGA, 421, see multi-population
genetic algorithm

MPI, see Message Passing Interface,
387

MPICH library, 461

MRCD, see multiobjective robust
control design

MRCD GA

applications, 364

MRMOGA, see multiple resolution
multiobjective genetic algorithm

MSGA, see multisexual genetic
algorithm

MSPC-GA, see multi-sexual-parents-
crossover genetic algorithm

MSPEA, see modified strength Pareto
evolutionary algorithm

multi ant colony, 577

multi-agent system, 398

multi-attribute utility theory, 39, 516

multi-component maintenance schedul-
ing, 424

multi-criteria decision making, 52, 66,
409, 516

multi-criteria decision-aid, 516

multi-dimensional surface, 181

multi-layered perceptron, 433

multi-membered evolution strategy, 58

multi-modal multi-objective optimiza-
tion, 395

multi-niche crowding genetic algorithm,
342

multi-objective ant-Q, 575

multi-objective artificial immune
systems, 608

common framework, 611

multi-objective Bayesian optimization
algorithm, 63, 94

multi-objective covariance matrix
adaptation evolution strategy, 130

multi-objective differential evolution,
599, 604

applications, 356, 603

discrete, 416

multi-objective estimation of distribu-
tion algorithms, 319

784 Index

multi-objective evolutionary algorithm,
2

multi-objective evolutionary program-
ming, 349

Multi-Objective Evolving Objects, 276
Multi-Objective Genetic Algorithm

with Distributed Environment
Scheme, 470

multi-objective genetic programming,
362, 390, 405, 406

multi-objective immune algorithm, 607
multi-objective Java Genetic Algorithm,

279
multi-objective linear programming,

556
multi-objective messy genetic algorithm,

63, 99
multi-objective network optimization

using ant colony optimization, 579
multi-objective optimizers, 245
multi-objective particle swarm

optimization
applications, 587, 593
survey, 619

multi-objective particle swarm
optimizer, 337, 349, 584

multi-objective scatter search, 407, 566
multi-objective simulated annealing,

550, 552, 554–556
comparative study, 555
compared to MOGA, 555
survey, 619

multi-objective struggle genetic
algorithm, 105

multi-objective Tabu search, 556, 560,
561, 563, 565

applications, 562, 563, 570
constraint-handling, 563

multi-objective traveling salesperson
problem, 561

multi-objectivity, 553
multi-objectivizing, 126
multi-pheromone trail, 579
multi-point crossover, 352, 367
multi-point recombination, 422
multi-population genetic algorithm

applications, 421
multi-sexual-parents-crossover genetic

algorithm, 138

multi-species PSO, 589
multicast flows

optimization, 358
multicommodity capacitated network

design problem, 358
multicriteria optimization, see multiob-

jective optimization
multicriteria scheduling, 60
multidimensional integer knapsack

problems, 525
multidisciplinary design optimization,

375
multilayer backpropagation neural

network, 401
multilayer perceptron, 384, 432
multilevel sieve, 585
multimodal functions, 177
multimodal optimization, 606
multimodal problems, 22
multinomial Tabu search, 563
multiobjective 0-1 programming

problems, 220
multiobjective ant algorithm, 578
multiobjective ant systems, 581
multiobjective cellular genetic algo-

rithm, 475
multiobjective clonal selection

algorithm, 608
multiobjective co-operative co-

evolutionary genetic algorithm,
158

multiobjective combinatorial optimiza-
tion, 81, 388, 394, 418, 419, 421,
423, 560, 566, 569

multiobjective distributed Q-learning,
582

multiobjective evolution strategy, 352
applications, 354, 364

multiobjective flowshop scheduling, 221
multiobjective heuristic search, 22
multiobjective immune system

algorithm, 609, 610
multiobjective job shop scheduling, 221
multiobjective knapsack problems, 221
multiobjective minimum spanning tree

problem, 579
multiobjective optimization

definition, 5
formal definition, 7

Index 785

metrics, 352
origins of research in, 30
using evolutionary programming, 614

multiobjective optimization problem, 5
definition, 5
stages, 515

multiobjective quadratic assignment,
139

multiobjective solid transportation
problems, 220

multiperformance optimization, see
multiobjective optimization

multiple ant colony system for vehicle
routing problems with time
windows, 579

multiple instruction, multiple data
stream, 478

multiple objective decision making, 54
multiple objective genetic algorithm, 63
multiple objective genetic local search,

141, 405, 580
applications, 426

multiple objective multiple start local
search with random weight
vectors, 141

multiple objective simulated annealing,
141, 405

multiple objective traveling salesperson
problem, 580

multiple resolution multiobjective
genetic algorithm, 471

multiple start local search algorithm,
426

applications, 426
multiplexer, 355, 405
multiplicative aggregation genetic

algorithm
applications, 374

multipoint airfoil design, 383
multipopulation scheme, 412
multisexual genetic algorithm, 138
multistage liquid oxygen pump, 384
multistart Tabu search, 566
multivariable control system design, 364
multivariable controller design

applications, 364
mutation, 25, 565

neighborhood search, 359
reverse, 418

scramble sublist, 398
uniform, 370

NACA64A410 airfoil
optimization, 385

nadir objective vector, 59
nadir values, 389
NAIADE, see novel approach to

imprecise assessment and decision
environments, 542

NAM
calibration, 345
rainfall-runoff model, 345

Nash equilibrium, 383
point, 376

Nash genetic algorithm, 383
applications, 376, 391

natural language processing, 406
naval engineering

evolutionary multiobjective optimiza-
tion in, 346

naval ship concept design, 346
NCGA, see neighborhood cultivation

genetic algorithm
NCM, see neighborhood constraint

method
applications, 345

NCR boards, 404
neighborhood constraint method, 345
neighborhood cultivation genetic

algorithm, 427
neighborhood migration, 362
neighborhood operator, 570
neighborhood search, 359
Nelder-Mead method, 365
Nelder-Mead minimax, 365
NESSY, see neural evolutional strategy

system
network design, 356, 357

evolutionary multiobjective optimiza-
tion in, 356, 357

network optimization
evolutionary multiobjective optimiza-

tion in, 359
network survivability, 439
network topology design, 357

evolutionary multiobjective optimiza-
tion in, 357

neural evolutional strategy system, 401

786 Index

neural networks, 384, 401, 431, 433,
534, 598

applications, 365, 409
architecture design

applications, 399
evolutionary multiobjective

optimization in, 399
design, 362
hybrids with evolutionary algorithms,

365
optimization

evolutionary multiobjective
optimization in, 361

neural programs, 431
neural-fuzzy predictive models, 589
neuroscience, 395
niche count, 313
niche cubicles, 410
niched Pareto genetic algorithm, 63, 94
niched Pareto genetic algorithm 2, 63
niching, 372, 554

bias, 242
techniques, 64

NK fitness landscape, 301
model, 554

No Free-Lunch Theorems, 178, 317,
327, 481, 482

noise, 530
noisy fitness function, 336, 530
non-generational genetic algorithm, 411
non-inferior solutions, 11
non-supported points, 67
non-uniform mutation, 351, 354, 384,

394, 417
nonconvex set

definition, 9
example, 9

nondominated solutions, 11, 53
nondominated sorting, 388
nondominated sorting cooperative

coevolutionary genetic algorithm,
165

nondominated sorting differential
evolution, 599

nondominated sorting evolution
strategy

applications, 354
nondominated sorting genetic algo-

rithm, 63, 91

nondominated sorting genetic
algorithm-II, 63

nondominated sorting memetic
algorithm

applications, 382
nondominated vector addition, 266
noninferior surface tracing evolutionary

algorithm, 344
nonlinear aggregating function

applications, 371
criticism, 70

nonlinear digital circuits
synthesis, 140

nonlinear FIR filters
design, 353
evolutionary multiobjective optimiza-

tion in, 353
nonlinear programming, 24
nonlinear system identification, 362
normative part, 614
novel approach to imprecise assessment

and decision environments, 45
NPGA, see niched Pareto genetic

algorithm, 94, 238, 273, 364, 554,
567

applications, 142, 341, 344–346, 351,
352, 354, 359, 364, 365, 372, 378,
383, 391, 392, 394, 404, 405, 410,
412, 413, 417, 430, 432, 577

NPGA 2, see niched Pareto genetic
algorithm 2, 95, 238, see niched
Pareto genetic algorithm 2

applications, 342
NPGA/MOGA hybrid, 365
NSDE, see nondominated sorting

differential evolution, 604
NSDE-DCS, 599
NSGA, see nondominated sorting

genetic algorithm, 91, 141, 238,
364, 383, 420, 554, 567, 570

applications, 343, 344, 351, 359,
367, 368, 372, 380, 382, 383, 385,
391, 396, 403, 406, 411–413, 416,
418–420, 429, 462

compromise programming, 536
hybridized with Tabu search, 380
parallel, 380
pseudo code, 91
with elitism, 419

Index 787

NSGA-II, see nondominated sorting
genetic algorithm-II, 93, 126, 137,
238, 275, 319, 416, 420, 428, 532,
566, 568, 569, 580, 581, 599–601,
603, 604, 608, 609, 611, 614

applications, 344, 352, 355, 366, 375,
387, 406, 414, 415, 422, 425, 430,
433, 435, 563

hybridized, 344

incorporation of preferences, 536

parallel version, 472

pseudo code, 93

with ε elimination, 387

with tree encoding, 414

NSMA, see nondominated sorting
memetic algorithm

applications, 382

NSTEA, see noninferior surface tracing
evolutionary algorithm

applications, 344

nuclear engineering, 554

evolutionary multiobjective optimiza-
tion in, 392

nucleotide addition, 607

nugget discovery, 433

evolutionary multiobjective optimiza-
tion in, 433

null hypothesis, 249

nurse scheduling, 422, 552

evolutionary multiobjective optimiza-
tion in, 422

Pareto Simulated Annealing in, 552

nylon 6, 412

OBDD, see ordered binary decision
diagram

object recognition, 467

evolutionary multiobjective optimiza-
tion in, 402

objective function, 6, 25

commensurable, 6

non-commensurable, 6

space, 6

obstacle avoidance

evolutionary multiobjective optimiza-
tion in, 361

OC1, 400

office design

evolutionary multiobjective optimiza-
tion in, 377

offline performance, 378
offline routing, 359
offline set, 567
OMOEA, see orthogonal multi-objective

evolutionary algorithm
OMOEA-II, 107
one-point crossover, 351, 354, 364, 366,

370–373, 375, 377, 383–386, 391,
399, 404, 409, 417, 421, 426, 429

online performance, 378
operational amplifiers

synthesis, 352
operations research, 1

influence on MOEAs, 54
operators, 23
opt-aiNet, 608, 610
optical filter design, 354

evolutionary multiobjective optimiza-
tion in, 354

optics, 392
optimal control, 367
optimal pattern matching, 620
optimal rules

generation of, 400
optimal set, 292
optimization of land grid array solder

joints, 356
optimization of rocket engine pumps

evolutionary multiobjective optimiza-
tion in, 384

optimization techniques
classification, 21

optimum placement of pumping wells,
342

optimum pumping schedules, 342
OR, see operations research
OR Library, 222
Or-opt mutation, 381
order-based crossover, 418
order-based uniform crossover, 398
ordered binary decision diagram, 411
organic selection, 133
orthogonal least squares, 433
orthogonal multi-objective evolutionary

algorithm, 106
orthogonal regression, 362
Osyczka and Kundu’s approach

788 Index

applications, 415
othello, 147
outranking methods, 45, 516, 531
overall nondominated vector generation,

358
overall nondominated vector generation

ratio, 358
overconstrained problem, 6

P-ACO, see Pareto Ant Colony
Optimization

p-median problem, 556
paε-dominance, 593
packet switched networks, 357
packing

evolutionary multiobjective optimiza-
tion in, 427

PACO, see population-based ant colony
optimization

PAES, see Pareto archived evolution
strategy, 95, 126, 238, 569, 570,
588, 601, 609, 611

adaptive grid, 96
applications, 359, 425, 433
hybridized with immune inspired

principles (I-PAES), 609
pairwise geometric histogram, 402
PAMSSEM, see procédure d’aggrégation

multicritére de type surclassement
de syntèse pour évaluations mixtes

panel meter configuration design, 534
panmictic reproduction, 345
paper industry

evolutionary multiobjective optimiza-
tion in, 417

paper mill scheduling, 616
PARADE, see Pareto optimal and

amalgamated induction for
decision trees

ParadisEO, see PARAllel and
DIStributed Evolving Objects

PARAllel and DIStributed Evolving
Objects, 275

parallel archiving issues, 502
parallel evolutionary multiobjective

optimization using hypergraphs
evolutionary algorithm, 474

parallel genetic algorithm, 383, 385,
386, 391, 395, 417

parallel machine scheduling, 421
parallel MOEAs, 368, 439

applications, 343, 354, 362, 383, 386
examples, 460
objective function decomposition, 449
task decomposition, 447

parallel MOGA, 362
parallel multi-objective genetic

algorithm, 462
parallel multiobjective evolutionary

algorithm, 444
parallel niching issues, 500
parallel niching techniques, 512
parallel Pareto Tabu search, 381
parallel recombinative simulated

annealing, 350, 556
Parallel Single Front Genetic Algorithm,

464
parallel strength Pareto multi-objective

evolutionary algorithm, 472
parallel virtual machine, 387

library, 387
parallel-series systems, 426
parallelism, 419
parameter free genetic algorithm, 469
parameter-based mutation, 593
parameters selection

evolutionary multiobjective optimiza-
tion in, 402

Pareto Ant Colony Optimization, 580
Pareto archived evolution strategy, 63,

95
Pareto compliant, 245, 253
Pareto converging genetic algorithm,

357, 399
applications, 399

Pareto deme-based selection, 110
Pareto descent method, 330
Pareto Differential Evolution, 395, 596,

598
Pareto dominance, 11, 79, 395

applications, 406
Pareto elitist-based selection, 111

applications, 372
Pareto envelope-based selection

algorithm, 63
Pareto envelope-based selection

algorithm-II, 63
Pareto epsilon Dominance, 17

Index 789

Pareto epsilon Front, 17
Pareto epsilon model, 17
Pareto epsilon Optimal Set, 17
Pareto epsilon Optimality, 17
Pareto front, 11

approximation set, 236
cardinality, 284, 287
characteristics, 195
structure, 287
width distribution, 18

Pareto genetic algorithm, 341
applications, 392

Pareto list, 562
Pareto noncompliant, 254
Pareto notation, 53
Pareto optimal and amalgamated

induction for decision trees, 400
Pareto optimal selection strategy, 399

applications, 399
Pareto optimal set, 11, 396

cardinality, 286
minimal cardinality, 285
reducing its size, 367

Pareto optimality, 10
Pareto optimum, 10
Pareto partitioning

applications, 418
Pareto ranking, 63, 79, 241, 308, 392

applications, 142, 341, 342, 344–346,
349–351, 353, 354, 357, 364, 369,
370, 372, 377, 383–386, 392, 393,
395, 400, 409–413, 417, 422, 423,
426

Pareto reservation strategy
applications, 421

Pareto selection, 425
applications, 409

Pareto set distribution method
applications, 367, 373

Pareto Simulated Annealing, 141, 511,
551, 561, 580

applications, 552, 570
Pareto stratum-niche cubicle GA

applications, 410
Pareto Tree Searching Genetic

Algorithm, 126
Pareto, Vilfredo, 10, 29
Pareto-based Cost Simulated Annealing,

554

Pareto-based Differential Evolution, 598

Pareto-frontier Differential Evolution,
598

Pareto-rank histograms, 280

Pareto-tournament selection, 406

parsimony, 405

parsing and tagging, 406

partial classification, 433

evolutionary multiobjective optimiza-
tion in, 433

partial order, 52

partial order relation, 285

partially mapped crossover, 379,
418–421

partially matched crossover, 525

partially ordered sets, 284, 336

particle swarm inspired evolutionary
algorithm, 588

particle swarm optimization, 584

multiobjective, 355

with VEGA, 355

path planning, 361

evolutionary multiobjective optimiza-
tion in, 361

path relinking, 566, 570, 580

path selection, 570

pattern classification

evolutionary multiobjective op-
timization in, 399, 400, 432,
433

pattern move strategy, 563

pattern recognition

evolutionary multiobjective optimiza-
tion in, 431

pattern space partition

applications, 399

evolutionary multiobjective optimiza-
tion in, 399

PCGA, 357, see Pareto converging
genetic algorithm

applications, 357, 391

PCSA, see Pareto-based Cost Simulated
Annealing

PDE, see Pareto-frontier Differential
Evolution, 601

PDMOSA, 555

PDSP, see programmable digital signal
processor

790 Index

penalty function, 114, 343, 357, 371,
373, 393, 399, 561, 599, 608

exterior, 113
interior, 114

performance measures, 234
permanent magnet actuators, 351
permutation-based encoding, 359, 419,

421, 422, 425, 426
personal best

in MOPSOs, 592
perturbation mutation, 380
PESA, see Pareto envelope-based

selection algorithm, 395, 566
PESA II, see Pareto envelope-based

selection algorithm-II
phenotype, 24

in evolutionary multiobjective
optimization, 54

phenotypic sharing, 242, 312, 343, 345,
351, 378, 384, 385, 400, 419

physical programming, 545
physics

evolutionary multiobjective optimiza-
tion in, 391, 392

PID controller design, 364, 365
pinion-rack continuously variable

transmission, 603
PISA, see A Platform and Programming

Language Interface for Search
Algorithms, 617

Pitt approach, 430
Pittsburgh-style machine learning, 432
placement of pumping wells

optimum placement, 342
placement-based partially exchanging

crossover, 428
planar mechanism

optimization, 371
plane truss

design, 372
planning

evolutionary multiobjective optimiza-
tion in, 377

plant cost optimization, 376
plate design

evolutionary multiobjective optimiza-
tion in, 435

pMOEA, see parallel multiobjective
evolutionary algorithm

creation options, 490
development issues, 488
hardware and software, 477
implementations, 479
notation, 446
paradigms, 450

cellular, 458
coarse-grained, 455
diffusion, 451, 458
fine-grained, 458
hierarchical, 451
hybrid, 451, 459
island, 451, 455
master-slave, 451, 452

scalability, 476
task decomposition, 448
test functions, 480
theory issues, 503

PMOGA, see parallel multi-objective
genetic algorithm

PMOHYPEA, see parallel evolutionary
multiobjective optimization
using hypergraphs evolutionary
algorithm

PMX, 419, see partially mapped
crossover, 525

Polak-Ribiere algorithm, 394
pollution reduction

evolutionary multiobjective optimiza-
tion in, 378

polygamy, 432
polymer extrusion optimization, 391

evolutionary multiobjective optimiza-
tion in, 391

polymer reactor optimization, 412
evolutionary multiobjective optimiza-

tion in, 412
population, 23, 24

heuristic, 142
reinitialization, 423

population size
adaptive, 365
setting up, 343

population-based ant colony optimiza-
tion, 580

population-based multiobjective
optimization, 385

portfolio optimization, 429, 552
portfolio selection, 580

Index 791

poset, 285
position-based crossover, 422
positive variation kernel, 286
POSS, see Pareto optimal selection

strategy
pot core problem, 350
potential Pareto regions evolutionary

algorithm, 128
power delivery systems, 433
power dispatch problem

evolutionary multiobjective optimiza-
tion in, 349

power distribution system planning
evolutionary multiobjective optimiza-

tion in, 349
power system stabilizers, 355
PPEX, see placement-based partially

exchanging crossover
PPREA, see potential Pareto regions

evolutionary algorithm
Prüfer number, 119, 359

encoding, 380
pre-heuristic, 564
precedence-based crossover, 418
predator fitness

applications, 367
predator-prey genetic algorithm

applications, 376
predator-prey model, 147, 314
prediction, 431, 433

evolutionary multiobjective optimiza-
tion in, 431

preemptive goal programming, 555
preference articulation, 518

a posteriori, 518
a priori, 518, 524, 526, 527
automation, 526
compromise programming, 536
dynamic compromise programming,

536
ELECTRE I, 531
fuzzy logic, 524
goals, 524, 525
group, 538
interactive, 518, 519, 523–526
outranking, 531, 532
PROMETHEE, 532
social choice, 545
unified model, 544

utility function, 527
voting, 545

preference by similarity to ideal
solution, 380

preference incorporation, 405, 534
example, 522

preference management, 417
preference ranking organization method

for enrichment evaluations, 45
preference relations, 411, 528
preferences

a posteriori, 536
articulation of, 515
expressed in a qualitative way, 528
incorporation of, 362
progressive articulation, 393

preliminary wing subsonic design, 385
pressurized water reactor design, 392,

554
primary-secondary fitness, 373
principal component analysis, 431
priority articulation

novel applications, 544
probabilistic complete initialization, 101
probabilistic neural network, 432
probabilistic trade-off development

method, 47
procédure d’aggrégation multicritére

de type surclassement de syntèse
pour évaluations mixtes, 45

process planning
evolutionary multiobjective optimiza-

tion in, 410
process plants design, 414
production process optimization

evolutionary multiobjective optimiza-
tion in, 409

production process planning
evolutionary multiobjective optimiza-

tion in, 359
production scheduling, 417

evolutionary multiobjective optimiza-
tion in, 417

prognostic models, 395, 474
programmable digital signal processor,

398
progress measure, 265
progressive MOEAs, 71

criticism, 71

792 Index

PROMETHEE, see preference rank-
ing organization method for
enrichment evaluations, 531, 532

applications, 378, 409
PROMETHEE I, 45
PROMETHEE II, 45, 532
proportional selection, 351, 366, 409,

421
prostate implant optimization, 393
protein structure prediction, 609
protein-protein interaction, 407
PROTRADE, see probabilistic trade-off

development method
PSA, see Pareto Simulated Annealing,

570, 580
applications, 552
compared to MOTS*, 570

pseudo-Boolean problems, 320
PSFGA, see Parallel Single Front

Genetic Algorithm
PSO, see particle swarm optimization

with a linear aggregating function,
587

PSPMEA, see parallel strength Pareto
multi-objective evolutionary
algorithm

pump scheduling, 344
PVM, see parallel virtual machine, 468
pygmies and servants, 404

Q-learning, 573, 575, 582
quad trees, 125, 551, 561

data structure, 580
in multiobjective optimization, 140

QUALIFLEX, 542
quality indicator, 243
quantitative MOEA performance, 236
quantum cascade laser design, 393
quantum computing, 130
Quine-McCluskey method, 355

radial basis function, 365
network, 433, 526

radiation therapy
evolutionary multiobjective optimiza-

tion in, 393
radiology

evolutionary multiobjective optimiza-
tion in, 394

RAE-2822

optimization, 384

rainfall-runoff model calibration

evolutionary multiobjective optimiza-
tion in, 345

random directions multiple objective
genetic local search, 140, 405

applications, 405

random mutation, 344, 420

random nondominated point set, 246

random search, 23

random search with intensification and
diversification, 157

random set theory, 249

random walk, 23, 383, 386, 411, 465

random weight approach, 610

random wires mutation, 352

random-objective conjugate gradients,
331

rank-based ant system, 581

rank-histograms, 357

ranking selection, 26, 364, 427

rapid prototyping, 427

RasID, see random search with
intensification and diversification

Rastrigin’s function, 179

Rastrigrin steps, 177

RD-MOGLS, see random directions
multiple objective genetic local
search

applications, 405

reachability, 243

reactive power planning, 593

reactor design, 354, 392

ready meals production scheduling, 417

real-coded genetic algorithm, 343, 384

real-numbers representation, 354

real-time scheduling, 423

evolutionary multiobjective optimiza-
tion in, 423

real-world MOEA test functions, 223

REALGO, see retrovirus algorithm

recessive genetic information, 119

reciprocal exchange mutation, 420

recombination, 25

reconfiguration of radial distribution
networks, 552

rectangular packing

Index 793

evolutionary multiobjective optimiza-
tion in, 427

reduced Pareto set algorithm, 391

applications, 391

reference set, 567, 568

regular MOP, 292

relation, 285

antireflexive, 285

antisymmetric, 285

reflexive, 285

symmetric, 285

transitive, 285

relative coverage comparison of two
sets, 264

relaxed forms of dominance, 84

reliability-based design, 356

repair algorithm, 114

repair procedure, 394

replacement policy, 349

reproduction, 399

requirements controlled design, 415

resolvability of conflict, 232

resource allocation, 223

resource constrained project scheduling,
570

resource scheduling

evolutionary multiobjective optimiza-
tion in, 422

restricted crossover, 400

restricted mating, 85, 316, 395, 426

restricted sharing, 313

retrovirus algorithm, 433

return to base, 553

reverse mutation, 418, 420

ring topology, 362

risk-return trade-offs, 430

RNA polymerase motif, 407

road projects

scheduling, 379

road train design, 378

evolutionary multiobjective optimiza-
tion in, 378

robot arm optimization, 368

evolutionary multiobjective optimiza-
tion in, 368

robot behavior, 533

robot grippers design

applications, 367

evolutionary multiobjective optimiza-
tion in, 367

robot task and route planning, 473

robotics and control engineering, 544

evolutionary multiobjective optimiza-
tion in, 361–369

robust control, 366

robust systems design, 415

Rosenbrock ridge, 177

Rosenbrock’s hillclimbing, 365

rotor system design, 383

rotor-blade design, 466

rough sets, 172, 545

for multicriteria decision analysis, 545

hybridized with particle swarm
optimization, 592

rough sets theory, 602

roulette wheel selection, 25, 349, 359,
373, 377, 391, 399, 404, 409, 418,
423, 432

route-based crossover, 381

routing, 359

evolutionary multiobjective optimiza-
tion in, 359

routing school buses, 567

RPS, see reduced Pareto set algorithm

rule-based optimization, 383

running time analysis, 320

S metric, 344

S metric selection multi-objective
evolutionary algorithm, 130

S-expressions, 399

S-MOGLS, see simple multiple objective
genetic local search

SA, see simulated annealing

satisfiability classes, 411, 530

satisficing

definition, 525

scalability, 234, 485, 537

scalable MOPs, 186

scaled speedup, 485

scatter search, 559

applications, 567, 569

methods, 568

multiobjective, 359, 566, 567, 569

reference set, 568

template, 559, 568

794 Index

scatter search for multiobjective
optimization, 568

scatter search procedure for nonlinear
multiobjective optimization, 569

Schaffer, David, 51
scheduling, 393, 420–422, 524

evolutionary multiobjective optimiza-
tion in, 142, 393, 398, 418–423,
570

road projects, 379
scheduling problems, 222
scientific applications

evolutionary multiobjective optimiza-
tion in, 389

scientific method, 234
scramble sublist mutation, 398
search, 515
search space enumeration, 238
search techniques

classification, 21
second-order attainment function, 249
secondary population, 85
seeding strategy, 142
selection, 25
selective breeding, 364
selective laser sintering, 427
self-adaptation, 354, 565
Self-adaptive Pareto Differential

Evolution, 598
semiorder, 543
SEMOPS, see sequential multiobjective

problem solving method
sensitivity analysis, 386
sensory action network acquisition

evolutionary multiobjective optimiza-
tion in, 361

SEPTOP, see solar electric propulsion
trajectory optimization program

sequence-based crossover, 381
sequencing problems, 410

evolutionary multiobjective optimiza-
tion in, 410

sequential multiobjective problem
solving method, 49

series parallel system redundancy
allocation problems, 563

set coverage, 359
set covering problem, 556
set/vertex covering problem, 222

SGA-C, 273

Shannon-Wiener index, 389

shape design, 137, 413

evolutionary multiobjective optimiza-
tion in, 435

shape design of electromagnetic devices

evolutionary multiobjective optimiza-
tion in, 354

shape design of single-phase reactor,
354

shape optimization

evolutionary multiobjective optimiza-
tion in, 413

sharing

equivalence class, 242, 352

triangular, 351

sharing function, 312

shift mutation, 418, 419

ship design

evolutionary multiobjective optimiza-
tion in, 346

shipyard plane cutting shop problem,
346

shuffle crossover, 412

side-constrained MOEA test functions,
187

sigma method, 587

simple multiple objective genetic local
search, 135

simplex method, 399, 424

simulated annealing, 23, 138, 350, 395,
429, 548, 565, 571, 578, 579

aggregating function, 552

and goal programming, 555

applications, 349, 352, 554

compared to Tabu search, 571

coupled to an evolution strategy, 352

hybridized with Tabu search, 556

min-max, 552

multi-objective, 556

multiobjective, 351, 405, 550, 552

parallel recombinative, 556

Pareto dominance, 551

simulated binary crossover, 165

simulated evolution

applications, 348, 357

single convex Pareto curve, 182

single DM/group methods, 54

Index 795

single instruction, multiple data stream,
478

single instruction, single data stream,
478

single-machine scheduling problems,
580

single-objective evolutionary algo-
rithms, 446

single-objective optimization
definition, 4

single-point crossover, 25
site location, 347

evolutionary multiobjective optimiza-
tion in, 347

size of the dominated space, 425
Smart, 532
Smith, Adam, 29
SMS-MOEA, see S metric selection

multi-objective evolutionary
algorithm

social choice, 545
soft selection, 27
software engineering, 440

evolutionary multiobjective optimiza-
tion in, 404

software project scheduling, 552
Pareto Simulated Annealing in, 552

solar electric propulsion trajectory
optimization program, 382

somatic point mutation, 607
somatic recombination, 607
sonar signal discrimination, 432
sorting networks, 404
SP-ACO, see Stochastic Pareto-Ant

Colony Optimization
space allocation problem

evolutionary multiobjective optimiza-
tion in, 565

space vehicle
optimal control, 367

spacecraft trajectories
applications, 382
optimization, 382

spacing, 344
spanning tree problem

evolutionary multiobjective optimiza-
tion in, 380

runtime analysis, 336
spatio-temporal patterns, 395

SPDE, see Self-adaptive Pareto
Differential Evolution

SPEA, see strength Pareto evolutionary
algorithm, 86, 97, 137, 140, 141,
358, 381, 407, 410, 567, 578, 590,
600, 601, 610, 611

applications, 344, 393, 394, 398, 413,
415

SPEA2, see strength Pareto evolution-
ary algorithm 2, 98, 126, 238, 275,
428, 566, 569, 581, 610

applications, 405, 406, 422
parallel, 472

speciation, 73
species, 316
specification optimization

evolutionary multiobjective optimiza-
tion in, 371

spectroscopic analysis
evolutionary multiobjective optimiza-

tion in, 392
spies, 581
split crossover, 381
spread, 569
SPSA, see Stochastic Pareto Simulated

Annealing
SSMO, see scatter search for multiob-

jective optimization, 569
SSPMO, see scatter search procedure

for nonlinear multiobjective
optimization

Stackelberg equilibrium, 383
Stackelberg genetic algorithm, 383
standard test suite, 186
standardized computational resolution,

237
starch gelatinization

model for the degree of, 390
static var compensators, 355
statistical tests, 269
STATNET, 430
steady state chemical process system,

390
steady state generational replacement,

354, 357
steady state genetic algorithm, 357,

404, 411, 423, 429
steady state selection, 361
steel plant cost optimization, 376

796 Index

steel rolling mill, 364

steepest descent methods

for multiobjective optimization, 60

STEM, see STEP method, 518

STEP method, 48, 518

stepwise regression, 362

stereotactic radio surgery optimization,
393

stochastic combinatorial optimization,
618

stochastic dominance, 542

stochastic hillclimbing, 431

stochastic local search, 172

stochastic matrix, 290

Stochastic Pareto Simulated Annealing,
618

Stochastic Pareto-Ant Colony Opti-
mization, 618

stochastic programming, 24

stochastic remainder selection, 350, 371

stochastic search techniques, 23

stochastic universal selection, 362, 372,
382, 384, 412, 417

stock ranking, 430

evolutionary multiobjective optimiza-
tion in, 430

strategic oscillation, 561

strength, 610

in SPEA, 97

strength Pareto evolutionary algorithm,
63, 97, 98, 139, 344, 398

strength Pareto evolutionary algorithm
2, 63

strict Pareto optimality, 12

strict partial order, 79

string representation, 410

stripes

to maintain diversity, 590

strong typing, 400

structural control system design

evolutionary multiobjective optimiza-
tion in, 374

structural engineering

evolutionary multiobjective optimiza-
tion in, 370–374

structural optimization

evolutionary multiobjective optimiza-
tion in, 607

structural synthesis of cell-based VLSI
circuits

evolutionary multiobjective optimiza-
tion in, 349

structure, 24
structured genetic algorithm, 356, 357,

362, 364
struggling crowding genetic algorithm,

105
style points, 399
submarine design

evolutionary multiobjective optimiza-
tion in, 346

subpopulations, 419
subset size oriented common features

crossover operator, 432
substitute scalarizing functions, 561
subtree exchange crossover, 399
superconducting device, 351
superlinear speedups, 486
surge tank system, 362
surrogate constraint relaxation, 559
surrogate methods, 513
surrogate multipliers, 567
surrogate objective function, 48
surrogate worth trade-off method, 41,

528, 542
swap mutation, 394, 422, 425
swarm metaphor, 585
SYBYL CSEARCH, 391
symbiosis, 144, 149
symbiotic coevolutionary algorithm, 151
symbolic layout compaction, 348

evolutionary multiobjective optimiza-
tion in, 348

symbolic regression, 405
symmetric traveling salesperson

problem, 581
synthesis of amplifiers

evolutionary multiobjective optimiza-
tion in, 352, 353

synthesis of analog filters
evolutionary multiobjective optimiza-

tion in, 353
system-level synthesis, 350

evolutionary multiobjective optimiza-
tion in, 350

T cells, 605

Index 797

tabu list, 564, 565
Tabu search, 23, 357, 429, 560, 565, 567,

571, 578
aggregating function, 552
compared to simulated annealing, 571
dynamic neighborhood, 564
hybrid with genetic algorithm, 565
multiobjective, 560, 561, 566
multiobjective optimization, 560
used for mutation, 565

Tabu search for multiobjective
combinatorial optimization, 560

takeover time, 513
TAMOCO, see Tabu search for

multiobjective combinatorial
optimization

applications, 563
tardiness problem, 578
target vector approaches

applications, 404
task assignment problem, 608
task decomposition, 52
task planning

applications, 368
evolutionary multiobjective optimiza-

tion in, 368
Tchebycheff goal programming, 59
Tchebycheff scalarization, 407
Tchebycheff scalarizing function, 141
Tchebycheff weighting GA

applications, 342, 351
Tchebycheff weights, 140
TDGA, see thermodynamical genetic

algorithm, 130
technique for order preference by

similarity to ideal solution, 380
telecommunications, 356–359

evolutionary multiobjective optimiza-
tion in, 356–359

test functions, 176
controlling difficulty, 192
side-constrained, 187
unconstrained, 182

test suite
design, 178
functions, 182
guidelines, 178

testing, 234
textile industry, 409

textile machine guide construction and
manufacture, 468

texture filtering
evolutionary multiobjective optimiza-

tion in, 401
The Wealth of Nations, 29
thermal systems design, 377
thermodynamic clustering, 579
thermodynamical genetic algorithm, 63,

130
thinned antenna arrays

design, 351
threads, 509
three-colored NCR-boards

evolutionary multiobjective optimiza-
tion in, 404

three-dimensional bin packing, 427
three-dimensional cutting problem, 413
three-phase induction motor

design, 352
thumbprint specification, 365
THUNDER, 404
tic tac toe, 147
time and frequency domain design

unification, 365
time-optimal control, 367
time-optimal trajectories

applications, 367
time-series prediction, 431

evolutionary multiobjective optimiza-
tion in, 430

time-tabling of classes, 422
evolutionary multiobjective optimiza-

tion in, 422
topology optimization

evolutionary multiobjective optimiza-
tion in, 371, 372

of a network, 357
TOPSIS, see technique for order

preference by similarity to ideal
solution

toroidal grid, 383, 406
toroidal topology, 386
tournament selection, 26, 241, 342, 355,

358, 368, 375, 377, 379, 400, 404,
414, 420, 426, 429, 430

based on nondominance, 405
tournament slot sharing, 413
trade-off method, 41, 47

798 Index

traffic route planning
evolutionary multiobjective optimiza-

tion in, 378
traffic signal controller design

evolutionary multiobjective optimiza-
tion in, 379

trajectory tracking
evolutionary multiobjective optimiza-

tion in, 367
transition probability criteria, 554
transitivity of indifference, 543
transonic airfoil design, 384
transonic flow conditions

wing shape optimization, 385
transonic wing design, 384
transport engineering

evolutionary multiobjective optimiza-
tion in, 378–380

transportation plans, 377
transportation problem

evolutionary multiobjective optimiza-
tion in, 380

transportation system, 465
trasduction operator, 401
traveling salesperson problem, 140, 222,

578
evolutionary multiobjective optimiza-

tion in, 405
symmetric, 405

treatment schedules
optimization, 393

tree crossover, 358
tree encoding

in the NSGA-II, 414
triangular probability distribution, 345
truck packing

evolutionary multiobjective optimiza-
tion in, 427

truncated archive, 588
truss design

evolutionary multiobjective optimiza-
tion in, 371

truss optimization
evolutionary multiobjective optimiza-

tion in, 370–372
TSP, see traveling salesperson problem
TSP library of sample instances, 222
TSPLIB, see TSP library of sample

instances

Tucker, Albert W., 30
turbojet engines, 387
turbomachinery airfoils

design, 372
turbulence operator, 586, 587
two and a half dimensional packing

evolutionary multiobjective optimiza-
tion in, 427

two dimensional packing
evolutionary multiobjective optimiza-

tion in, 427
two phase local search algorithm, 429
two set coverage, 264, 344
two-branch tournament genetic

algorithm
applications, 370, 382, 383

two-dimensional cutting problem, 414
evolutionary multiobjective optimiza-

tion in, 414
two-dimensional integer representation,

404
two-link manipulator

path control, 367
trajectory control, 367

two-phases method, 420
two-point crossover, 349, 351, 352, 354,

355, 365, 377, 383, 394, 404, 418,
419, 424

UCI machine learning repository, 396,
433, 598

UIFDO, see unknown input fault
detection observer

ULTIC controller design, 365
UMMEA, see unified model for

multi-objective evolutionary
algorithms

unary quality indicators, 236
unconstrained nondominated archive,

591
unified model for multi-objective

evolutionary algorithms, 378
uniform crossover, 344, 350, 351, 354,

357, 359, 380, 389, 398, 407, 414,
417, 423, 425, 427, 429, 432

uniform mutation, 351, 352, 354, 361,
372, 383, 391, 394, 417

uniformity
along the Pareto front, 195

Index 799

unimodal functions, 177
unimodal normal distribution crossover,

399
uninformed search, 22
unitation function, 220
unknown input fault detection observer,

362
unrestricted migration, 362
unsupervised feature selection, 610
unsupervised learning, 403
urban planning, 377

evolutionary multiobjective optimiza-
tion in, 377

utility function, 40, 41, 370, 429, 517,
524, 526, 527

advantages, 528
disadvantages, 528

utopian point, 560

VAIS, see vector artificial immune
system

variable length encoding, 361
variable length genetic algorithm, 389,

432
variable linkage, 604
vector artificial immune system, 610
vector evaluated differential evolution

for multi-objective optimization,
599

vector evaluated genetic algorithm, 63,
66, 72, 74

vector evaluated particle swarm, 586
vector immune system, 611
vector maximum problem, 30
vector optimization, see multiobjective

optimization
vector optimized evolution strategy, 63,

75
VEDE, see vector evaluated differential

evolution for multi-objective
optimization

VEGA, 51, see vector evaluated genetic
algorithm, 66, 74, 471, 586, 599

applications, 142, 341, 342, 344, 345,
353, 355, 368, 385, 400, 408, 410,
418, 421, 427, 432, 577

vehicle routing problem, 222, 577
evolutionary multiobjective optimiza-

tion in, 380

vehicle scheduling

evolutionary multiobjective optimiza-
tion in, 379

optimize the planning of a, 379

vehicle water-pumps design, 412

evolutionary multiobjective optimiza-
tion in, 412

ventricle 3D reconstruction problem

evolutionary multiobjective optimiza-
tion in, 395

VEPSO, see vector evaluated particle
swarm

version space, 613

very large scale integration, 411

vibrating platform design, 372, 373

evolutionary multiobjective optimiza-
tion in, 373

vibration analysis, 432

virtual subpopulation genetic algorithm,
386, 467

VIS, see vector immune system

VLSI

circuits

structural synthesis, 349

design, 414

evolutionary multiobjective optimiza-
tion in, 411

layout, 348

evolutionary multiobjective
optimization in, 348

macro-cell layout generation
problems, 467

VOES, see vector optimized evolution
strategy

voltage reference circuit design, 349

evolutionary multiobjective optimiza-
tion in, 349

von Neumann, John, 29, 30

voting schemes, 545

VSGA, see virtual subpopulation
genetic algorithm

applications, 386

Walras, Léon, 29

war simulation

evolutionary multiobjective optimiza-
tion in, 404

warehouse management, 426

800 Index

evolutionary multiobjective optimiza-
tion in, 426

water distribution irrigation network

optimization, 577

water distribution networks, 344

improvements, 344

water quality control

evolutionary multiobjective optimiza-
tion in, 343

water quality management problem

evolutionary multiobjective optimiza-
tion in, 344

water-using systems, 583

WBGA, see weight-based genetic
algorithm, see weight-based
genetic algorithm

weak dominance, 517

weak Pareto optimality, 12

Weierstrass function, 177

weight-based genetic algorithm, 63, 75

weighted average ranking

applications, 419

weighted goal programming, 59

weighted goal programming genetic
algorithm

applications, 430

weighted min-max genetic algorithm

applications, 368, 372, 373, 413

weighted Tchebycheff utility function,
405, 426

weighting factor method, 599

weighting method, 46
WHORL, 396
Wilcoxon Rank-Sum Test, 270
Wilcoxon signed-rank test, 420
Williams and Otto chemical plant, 391
wind turbine blades, 375
wing design, 384, 386

evolutionary multiobjective optimiza-
tion in, 386

wing planform design, 384
wing shape optimization for transonic

flow conditions, 385
wing-box structure

optimization, 372
wireless local area network

design
evolutionary multiobjective

optimization in, 356
WLAN, see wireless local area network

design, 356
word classifier, 403
worker allocation in radiological

facilities, 394
workforce scheduling, 422
working conditions of a press

optimization, 408

X-ray plasma spectroscopy, 463

Zadeh, Lofti, 31
ZDT test problems, 611
Zeleny’s ideal point, 570

	cover-image-large.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	back-matter.pdf

