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PREFACE 

This book of problems is intended as a textbook for students at 
higher educational institutions studying advanced course in physics. 
Besides, because of the great number of simple problems it may be used 
by students studying a general course in physics. 

The book contains about 1900 problems with hints for solving the 
most complicated ones. 

For students' convenience each chapter opens with a time-saving 
summary of the principal formulas for the relevant area of physics. As a 
rule the formulas are given without detailed explanations since a stu-
dent, starting solving a problem, is assumed to know the meaning of the 
quantities appearing in the formulas. Explanatory notes are only given 
in those cases when misunderstanding may arise. 

All the formulas in the text and answers are in SI system, except in 
Part Six, where the Gaussian system is used. Quantitative data and 
answers are presented in accordance with the rules of approximation and 
numerical accuracy. 

The main physical constants and tables are summarised at the end of 
the book. 

The Periodic System of Elements is printed at the front end sheet 
and the Table of Elementary Particles at the back sheet of the book. 

In the present edition, some misprints are corrected, and a number 
of problems are substituted by new ones, or the quantitative data in 
them are changed or refined (1.273, 1.361, 2.189, 3.249, 3.97, 4.194 and 
5.78). 

In conclusion, the author wants to express his deep gratitude to col-
leagues from MIPhI and to readers who sent their remarks on some prob-
lems , helping thereby to improve the book. 

I.E. Irodov 
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A FEW HINTS FOR SOLVING 
THE PROBLEMS 

1. First of all, look through the tables in the Appendix, for many 
problems cannot be solved without them. Besides, the reference data 
quoted in the tables will make your work easier and save your time. 

2. Begin the problem by recognizing its meaning and its formula-
tion. Make sure that the data given are sufficient for solving the 
problem. Missing data can be found in the tables in the Appendix. 
Wherever possible, draw a diagram elucidating the essence of the 
problem; in many cases this simplifies both the search for a solution 
and the solution itself. 

3. Solve each problem, as a rule, in the general form, that is in 
a letter notation, so that the quantity sought will be expressed in 
the same terms as the given data. A solution in the general form is 
particularly valuable since it makes clear the relationship between 
the sought quantity and the given data. What is more, an answer ob-
tained in the general form allows one to make a fairly accurate judge-
ment on the correctness of the solution itself (see the next item). 

4. Having obtained the solution in the general form, check to see 
if it has the right dimensions. The wrong dimensions are an obvious 
indication of a wrong solution. If possible, investigate the behaviour 
of the solution in some extreme special cases. For example, whatever 
the form of the expression for the gravitational force between two 
extended bodies, it must turn into the well-known law of gravitational 
interaction of mass points as the distance between the bodies increases. 
Otherwise, it can be immediately inferred that the solution is wrong. 

5. When starting calculations, remember that the numerical values 
of physical quantities are always known only approximately. There-
fore, in calculations you should employ the rules for operating with 
approximate numbers. In particular, in presenting the quantitative 
data and answers strict attention should be paid to the rules of 
approximation and numerical accuracy. 

6. Having obtained the numerical answer, evaluate its plausibil 
ity. In some cases such an evaluation may disclose an error in the 
result obtained. For example, a stone cannot be thrown by a man 
over the distance of the order of 1 km, the velocity of a body cannot 
surpass that of light in a vacuum, etc. 



NOTATION 

Vectors are written in boldface upright type, e.g., r, F; the same 
letters printed in lightface italic type (r, F) denote the modulus of 
a vector. 

Unit vectors 
j, k are the unit vectors of the Cartesian coordinates x, y, z (some- 

times the unit vectors are denoted as ex, ey, e z), 
ep, eq), e z  are the unit vectors of the cylindrical coordinates p, p, z, 
n, i are the unit vectors of a normal and a tangent. 

Mean values are taken in angle brackets ( ), e.g., (v), (P). 

Symbols A, d, and 6 in front of quantities denote: 
A, the finite increment of a quantity, e.g. Ar = r2  — r1; AU = 

U 2 - U1, 

d, the differential (infinitesimal increment), e.g. dr, dU, 
8, the elementary value of a quantity, e.g. 6A, the elementary work. 

Time derivative of an arbitrary function f is denoted by dfldt, 

or by a dot over a letter, f. 

Vector operator V ("nabla"). It is used to denote the following 
operations: 
Vy, the gradient of q) (grad (p). 
V •E, the divergence of E (div E), 
V X E, the curl of E (curl E). 

Integrals of any multiplicity are denoted by a single sign S and 

differ only by the integration element: dV, a volume element, dS, 

a surface element, and dr, a line element. The sign denotes an 

integral over a closed surface, or around a closed loop. 



PART ONE 

PHYSICAL FUNDAMENTALS 
OF MECHANICS 

1.1. KINEMATICS 

• Average vectors of velocity and acceleration of a point: 

(vi 	 At 
, 	r 	 A v 

' (w)= 	 (1.1a) 

where Ar is the displacement vector (an increment of a radius vector). 
• Velocity and acceleration of a point: 

dr 	dv 
(1.1b) 

v—  dt ' w  = dt 

• Acceleration of a point expressed in projections on the tangent and the 
normal to a trajectory: 

dv, 	V2  
wt = 	

— 	
(1.1c) 

dt ' w n 	R ' 

where R is the radius of curvature of the trajectory at the given point. 
• Distance covered by a point: 

s = 	v dt, 	 (1.1d) 

where v is the modulus of the velocity vector of a point. 
• Angular velocity and angular acceleration of a solid body: 

dtp 	do) 
cu 	

dt 	 clt 
(1.1e) 

• Relation between linear and angular quantities for a rotating solid 
body: 

v = [ow], wn  = o)2R, I w, I 	 (1.1.f) 

where r is the radius vector of the considered point relative to an arbitrary point 
on the rotation axis, and R is the distance from the rotation axis. 

1.1. A motorboat going downstream overcame a raft at a point A; 
T = 60 min later it turned back and after some time passed the raft 
at a distance 1 = 6.0 km from the point A. Find the flow velocity 
assuming the duty of the engine to be constant. 

1.2. A point traversed half the distance with a velocity v0. The 
remaining part of the distance was covered with velocity vl  for half 
the time, and with velocity v2  for the other half of the time. Find 
the mean velocity of the point averaged over the whole time of mo-
tion. 



1.3. A car starts moving rectilinearly, first with acceleration w = 
5.0 m/s2  (the initial velocity is equal to zero), then uniformly, and 

finally, decelerating at the same rate w, comes to a stop. The total 
time of motion equals t = 25 s. The average velocity during that 
time is equal to (v) = 72 km per hour. How long does the car move 
uniformly? 

1.4. A point moves rectilinearly in one direction. Fig. 1.1 shows 

s,m 
Ea 

0 
	

70 	 20 tis 

Fig. 1.1. 

the distance s traversed by the point as a function of the time t. 
Using the plot find: 

(a) the average velocity of the point during the time of motion; 
(b) the maximum velocity; 
(c) the time moment to  at which the instantaneous velocity is 

equal to the mean velocity averaged over the first to  seconds. 

1.5. Two particles, 1 and 2, move with constant velocities v1  and 
v2. At the initial moment their radius vectors are equal to r1  and r2. 
How must these four vectors be interrelated for the particles to col-
lide? 

1.6. A ship moves along the equator to the east with velocity 
vo  = 30 km/hour. The southeastern wind blows at an angle cp = 60° 
to the equator with velocity v = 15 km/hour. Find the wind velocity 
v' relative to the ship and the angle p' between the equator and the 
wind direction in the reference frame fixed to the ship. 

1.7. Two swimmers leave point A on one bank of the river to reach 
point B lying right across on the other bank. One of them crosses 
the river along the straight line AB while the other swims at right 
angles to the stream and then walks the distance that he has been 
carried away by the stream to get to point B. What was the velocity u 
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of his walking if both swimmers reached the destination simulta-
neously? The stream velocity v, = 2.0 km/hour and the velocity if 
of each swimmer with respect to water equals 2.5 km per hour. 

1.8. Two boats, A and B, move away from a buoy anchored at the 
middle of a river along the mutually perpendicular straight lines: 
the boat A along the river, and the boat B across thg river. Having 
moved off an equal distance from the buoy the boats returned. 
Find the ratio of times of motion of boats TA /T B  if the velocity of 
each boat with respect to water is i1 = 1.2 times greater than the 
stream velocity. 

1.9. A boat moves relative to water with a velocity which is n 
= 2.0 times less than the river flow velocity. At what angle to the 
stream direction must the boat move to minimize drifting? 

1.10. Two bodies were thrown simultaneously from the same point: 
one, straight up, and the other, at an angle of 0 = 60° to the hori-
zontal. The initial velocity of each body is equal to vo  = 25 m/s. 
Neglecting the air drag, find the distance between the bodies t = 
= 1.70 s later. 

1.11. Two particles move in a uniform gravitational field with an 
acceleration g. At the initial moment the particles were located at 
one point and moved with velocities v1  = 3.0 m/s and v2  = 4.0 m/s 
horizontally in opposite directions. Find the distance between the 
particles at the moment when their velocity vectors become mutu-
ally perpendicular. 

1.12. Three points are located at the vertices of an equilateral 
triangle whose side equals a. They all start moving simultaneously 
with velocity v constant in modulus, with the first point heading 
continually for the second, the second for the third, and the third 
for the first. How soon will the points converge? 

1.13. Point A moves uniformly with velocity v so that the vector v 
is continually "aimed" at point B which in its turn moves recti-
linearly and uniformly with velocity u< v. At the initial moment of 
time v J  u and the points are separated by a distance 1. How soon 
will the points converge? 

1.14. A train of length 1 = 350 m starts moving rectilinearly with 
constant acceleration w = 3.0.10-2  m/s2; t = 30 s after the start 
the locomotive headlight is switched on (event 1) , and t = 60 s 
after that event the tail signal light is switched on (event 2) . Find the 
distance between these events in the reference frames fixed to the 
train and to the Earth. How and at what constant velocity V rela-
tive to the Earth must a certain reference frame K move for the two 
events to occur in it at the same point? 

1.15. An elevator car whose floor-to-ceiling distance is equal to 
2.7 m starts ascending with constant acceleration 1.2 m/s2; 2.0 s 
after the start a bolt begins falling from the ceiling of the car. Find: 

(a) the bolt's free fall time; 
(b) the displacement and the distance covered by the bolt during 

the free fall in the reference frame fixed to the elevator shaft. 



2 	5 6 7t 

1.16. Two particles, 1 and 2, move with constant velocities vi 
and v2  along two mutually perpendicular straight lines toward the 
intersection point 0. At the moment t = 0 the particles were located 
at the distances 11  and 1 2  from the point 0. How soon will the distance 
between the particles become the smallest? What is it equal to? 

1.17. From point A located on a highway (Fig. 1.2) one has to get 
by car as soon as possible to point B located in the field at a distance 1 
from the highway. It is known that the car moves in the field ri 
times slower than on the highway. At what distance from point D 
one must turn off the highway? 

1.18. A point travels along the x axis with a velocity whose pro-
jection vx  is presented as a function of time by the plot in Fig. 1.3. 

vs 
1 

0 
-1 

-2 

Fig. 1.2.  Fig. 1.3. 

Assuming the coordinate of the point x = 0 at the moment t = 0, 
draw the approximate time dependence plots for the acceleration wx, 
the x coordinate, and the distance covered s. 

1.19. A point traversed half a circle of radius R = 160 cm during 
time interval x = 10.0 s. Calculate the following quantities aver-
aged over that time: 

(a) the mean velocity (v); 
(b) the modulus of the mean velocity vector (v) I; 
(c) the modulus of the mean vector of the total acceleration I (w)I 

if the point moved with constant tangent acceleration. 
1.20. A radius vector of a particle varies with time t as r = 

= at (1 — cct), where a is a constant vector and a is a positive factor. 
Find: 

(a) the velocity v and the acceleration w of the particle as functions 
of time; 

(b) the time interval At taken by the particle to return to the ini-
tial points, and the distance s covered during that time. 

1.21. At the moment t = 0 a particle leaves the origin and moves 
in the positive direction of the x axis. Its velocity varies with time 
as v = vc, (1 — tit), where v(, is the initial velocity vector whose 
modulus equals vo  = 10.0 cm/s; i = 5.0 s. Find: 

(a) the x coordinate of the particle at the moments of time 6.0, 
10, and 20 s; 

(b) the moments of time when the particle is at the distance 10.0 cm 
from the origin; 



(c) the distance s covered by the particle during the first 4.0 and 
8.0 s; draw the approximate plot s (t). 

1.22. The velocity of a particle moving in the positive direction 

of the x axis varies as v = al/x, where a is a positive constant. 
Assuming that at the moment t = 0 the particle was located at the 
point x = 0, find: 

(a) the time dependence of the velocity and the acceleration of the 
particle; 

(b) the mean velocity of the particle averaged over the time that 
the particle takes to cover the first s metres of the path. 

1.23. A point moves rectilinearly with deceleration whose modulus 
depends on the velocity v of the particle as w = al/ v, where a is a 
positive constant. At the initial moment the velocity of the point 
is equal to va. 'What distance will it traverse before it stops? What 
time will it take to cover that distance? 

1.24. A radius vector of a point A relative to the origin varies with 
time t as r = ati — bt2 j, where a and b are positive constants, and i 
and j are the unit vectors of the x and y axes. Find: 

(a) the equation of the point's trajectory y (x); plot this function; 
(b) the time dependence of the velocity v and acceleration w vec-

tors, as well as of the moduli of these quantities; 
(c) the time dependence of the angle a between the vectors w and v; 
(d) the mean velocity vector averaged over the first t seconds of 

motion, and the modulus of this vector. 
1.25. A point moves in the plane xy according to the law x = at, 

y = at (1. — at), where a and a are positive constants, and t is 
time. Find: 

(a) the equation of the point's trajectory y (x); plot this function; 
(b) the velocity v and the acceleration w of the point as functions 

of time; 
(c) the moment t, at which the velocity vector forms an angle It/4 

with the acceleration vector_ 
1.26. A point moves in the plane xy according to the law x = 

= a sin cot, y = a (1 — cos wt), where a and co are positive constants. 
Find: 

(a) the distance s traversed by the point during the time T; 
(b) the angle between the point's velocity and acceleration vectors. 
1.27. A particle moves in the plane xy with constant acceleration w 

directed along the negative y axis. The equation of motion of the 
particle has the form y = ax — bx2, where a and b are positive con-
stants. Find the velocity of the particle at the origin of coordinates. 

1.28. A small body is thrown at an angle to the horizontal with 
the initial velocity vo. Neglecting the air drag, find: 

{a) the displacement of the body as a function of time r (t); 
(b) the mean velocity vector (v) averaged over the first t seconds 

and over the total time of motion. 
1.29. A body is thrown from the surface of the Earth at an angle a 
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to the horizontal with the initial velocity v0. Assuming the air drag 
to be negligible, find: 

(a) the time of motion; 
(b) the maximum height of ascent and the horizontal range; at 

what value of the angle a they will be equal to each other; 
(c) the equation of trajectory y (x), where y and x are displacements 

of the body along the vertical and the horizontal respectively; 
(d) the curvature radii of trajectory at its initial point and at its 

peak. 
1.30. Using the conditions of the foregoing problem, draw the ap-

proximate time dependence of moduli of the normal Lyn  and tangent iv, 
acceleration vectors, as well as of the projection of the total accele-
ration vector w,, on the velocity vector direction. 

1.31. A ball starts falling with zero initial velocity on a smooth 
inclined plane forming an angle a with the horizontal. Having fall-
en the distance h, the ball rebounds elastically off the inclined plane. 
At what distance from the impact point will the -ball rebound for 
the second time? 

1.32. A cannon and a target are 5.10 km apart and located at the 
same level. How soon will the shell launched with the initial velocity 
240 m/s reach the target in the absence of air drag? 

1.33. A cannon fires successively two shells with velocity vo  = 
= 250 m/s; the first at the angle 01  = 60° and the second at the angle 
0 2  = 45° to the horizontal, the azimuth being the same. Neglecting 
the air drag, find the time interval between firings leading to the 
collision of the shells. 

1.34. A balloon starts rising from the surface of the Earth. The 
ascension rate is constant and equal to vo. Due to the wind the bal-
loon gathers the horizontal velocity component vx  = ay, where a 
is a constant and y is the height of ascent. Find how the following 
quantities depend on the height of ascent: 

(a) the horizontal drift of the balloon x (y); 
(b) the total, tangential, and normal accelerations of the balloon. 
1.35. A particle moves in the plane xy with velocity v = ai bxj, 

where i and j are the unit vectors of the x and y axes, and a and b 
are constants. At the initial moment of time the particle was located 
at the point x = y = 0. Find: 

(a) the equation of the particle's trajectory y (x); 
(b) the curvature radius of trajectory as a function of x. 
1.36. A particle A moves in one direction along a given trajectory 

with a tangential acceleration u), = at, where a is a constant vector 
coinciding in direction with the x axis (Fig. 1.4), and T is a unit vector 
coinciding in direction with the velocity vector at a given point. 
Find how the velocity of the particle depends on x provided that its 
velocity is negligible at the point x = 0. 

1.37. A point moves along a circle with a velocity v = at, where 
a = 0.50 m/s2. Find the total acceleration of the point at the mo- 

16 



merit when it covered the n-th (n -= 0.10) fraction of the circle after 
the beginning of motion. 

1.38. A point moves with deceleration along the circle of radius R 
so that at any moment of time its tangential and normal accelerations 

Fig. 1.4. 

are equal in moduli. At the initial moment t = 0 the velocity of the 
point equals vo. Find: 

(a) the velocity of the point as a function of time and as a function 
of the distance covered s; 

(b) the total acceleration of the point as a function of velocity and 
the distance covered. 

1.39. A point moves along an arc of a circle of radius R. Its velocity 
depends on the distance covered s as v = aYi, where a is a constant. 
Find the angle a between the vector of the total acceleration and 
the vector of velocity as a function of s. 

1.40. A particle moves along an arc of a circle of radius R according 
to the law 1 = a sin cot, where 1 is the displacement from the initial 
position measured along the arc, and a and co are constants. Assum-
ing R = 1.00 m, a = 0.80 m, and co = 2.00 rad/s, find: 

(a) the magnitude of the total acceleration of the particle at the 
points 1 = 0 and 1 = ±a; 

(b) the minimum value of the total acceleration wmin  and the cor-
responding displacement lm. 

1.41. A point moves in the plane so that its tangential acceleration 
w, = a, and its normal acceleration wn  = bt4, where a and b are 
positive constants, and t is time. At the moment t = 0 the point was 
at rest. Find how the curvature radius R of the point's trajectory and 
the total acceleration w depend on the distance covered s. 

1.42. A particle moves along the plane trajectory y (x) with velo-
city v whose modulus is constant. Find the acceleration of the par-
ticle at the point x = 0 and the curvature radius of the trajectory 
at that point if the trajectory has the form 

(a) of a parabola y = ax2; 
(b) of an ellipse (xla)2 	(y/b)2  = 1; a and b are constants here. 
1.43. A particle A moves along a circle of radius R = 50 cm so 

that its radius vector r relative to the point 0 (Fig. 1.5) rotates with 
the constant angular velocity w = 0.40 rad/s. Find the modulus of 
the velocity of the particle, and the modulus and direction of its 
total acceleration. 
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Fig. 1.5. 

1.44. A wheel rotates around a stationary axis so that the rotation 
angle p  varies with time as cp = ate, where a = 0.20 rad/s2. Find the 
total acceleration w of the point A at the rim at the moment t = 2.5 s 
if the linear velocity of the point A at this moment v = 0.65 m/s. 

1.45. A shell acquires the initial velocity v = 320 m/s, having 
made n = 2.0 turns inside the barrel whose length is equal to 1 = 
= 2.0 m. Assuming that the shell moves 
inside the barrel with a uniform accelera- 	 A 
tion, find the angular velocity of its axial 
rotation at the moment when the shell 
escapes the barrel. 

1.46. A solid body rotates about a station-
ary axis according to the law IT = at -
- bt3, where a = 6.0 rad/s and b = 2.0 
rad/s3. Find: 

(a) the mean values of the angular velo-
city and angular acceleration averaged over 
the time interval between t = 0 and the 
complete stop; 

(b) the angular acceleration at the moment when the body stops. 
1.47. A solid body starts rotating about a stationary axis with an 

angular acceleration 13 = at, where a = 2.0.10-2  rad/s3. How soon 
after the beginning of rotation will the total acceleration vector of 
an arbitrary point of the body form an angle a = 60° with its velo-
city vector? 

1.48. A solid body rotates with deceleration about a stationary 
axis with an angular deceleration f3 oc -troT, where co is its angular 
velocity. Find the mean angular velocity of the body averaged over 
the whole time of rotation if at the initial moment of time its angular 
velocity was equal to co,. 

1.49. A solid body rotates about a stationary axis so that its angu-
lar velocity depends on the rotation angle cp as co = coo  — acp, where 
co o  and a are positive constants. At the moment t = 0 the angle 

= 0. Find the time dependence of 
(a) the rotation angle; 
(b) the angular velocity. 
1.50. A solid body starts rotating about a stationary axis with an 

angular acceleration it = 1 0  cos p, where Po  is a constant vector and cp 
is an angle of rotation from the initial position. Find the angular 
velocity of the body as a function of the angle cp. Draw the plot of 
this dependence. 

1.51. A rotating disc (Fig. 1.6) moves in the positive direction of 
the x axis. Find the equation y (x) describing the position of the 
instantaneous axis of rotation, if at the initial moment the axis C 
of the disc was located at the point 0 after which it moved 

(a) with a constant velocity v, while the disc started rotating coun-
terclockwise with a constant angular acceleration 13 (the initial angu-
lar velocity is equal to zero); 
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(b) with a constant acceleration w (and the zero initial velocity), 
while the disc rotates counterclockwise with a constant angular velo- 
city (0. 

1.52. A point A is located on the rim of a wheel of radius R 
0.50 m which rolls without slipping along a horizontal surface 

with velocity v = 1.00 m/s. Find: 
(a) the modulus and the direction of the acceleration vector of the 

point A; 
(b) the total distance s traversed by the point A between the two 

successive moments at which it touches the surface. 
1.53. A ball of radius R = 10.0 cm rolls without slipping down 

an inclined plane so that its centre moves with constant acceleration 

Fig. 1.6. Fig. 1.7. 

w = 2.50 cm/s2; t = 2.00 s after the beginning of motion its position 
corresponds to that shown in Fig. 1.7. Find: 

(a) the velocities of the points A, B, and 0; 
(b) the accelerations of these points. 
1.54. A cylinder rolls without slipping over a horizontal plane. 

The radius of the cylinder is equal to r. Find the curvature radii of 
trajectories traced out by the points A and B (see Fig. 1.7). 

1.55. Two solid bodies rotate about stationary mutually perpen-
dicular intersecting axes with constant angular velocities col  

3.0 rad/s and c02  = 4.0 rad/s. Find the angular velocity and angu-
lar acceleration of one body relative to the other. 

1.56. A solid body rotates with angular velocity co = ati 	bt2 j, 
where a = 0.50 rad/s2, b = 0.060 rad/0, and i and j are the unit 
vectors of the x and y axes. Find: 

(a) the moduli of the angular velocity and the angular acceleration 
at the moment t = 10.0 s; 

(b) the angle between the vectors of the angular velocity and the 
angular acceleration at that moment. 

1.57. A round cone with half-angle a = 30° and the radius of the 
base R = 5.0 cm rolls uniformly and without slipping over a hori-
zontal plane as shown in Fig. 1.8. The cone apex is hinged at the 
point 0 which is on the same level with the point C, the cone base 
centre. The velocity of point C is v = 10.0 cm/s. Find the moduli of 
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(a) the vector of the angular velocity of the cone and the angle it 
forms with the vertical; 

(b) the vector of the angular acceleration of the cone. 
1,58. A solid body rotates with a constant angular velocity coo  = 
0.50 rad/s about a horizontal axis AB. At the moment t = 0 

Fig. 1.8. 

the axis AB starts turning about the vertical with a constant angu-
lar acceleration 60  ---- 0.10 rad/s2. Find the angular velocity and 
angular acceleration of the body after t = 3.5 s. 

1.2. THE FUNDAMENTAL EQUATION OF DYNAMICS 

• The fundamental equation of dynamics of a mass point (Newton's sec.. 
ond law): 

dv 
=r. m 

d 
—

t  

• The same equation expressed in projections on the tangent and the 
normal of the point's trajectory: 

d 	
R d

v
t 
., 	 v2 

M - =FT, rit - = F, . 	 (1.2b) 

• The equation of dynamics of a point in the non-inertial reference frame 
K' which rotates with a constant angular velocity co about an axis translating 
with an acceleration wo: 

mw' = F — mwo  mco2R + 2m Iv'e.)], 	(1.2c) 

where R is the radius vector of the point relative to the axis of rotation of the 
K' frame. 

1.59. An aerostat of mass m starts coming down with a constant 
acceleration w. Determine the ballast mass to be dumped for the 
aerostat to reach the upward acceleration of the same magnitude. 
The air drag is to be neglected. 

1.60. In the arrangement of Fig. 1.9 the masses mo, m1, and m2  
of bodies are equal, the masses of the pulley and the threads are 
negligible, and there is no friction in the pulley. Find the accel-
eration w with which the body mo  comes down, and the tension of 
the thread binding together the bodies m1  and m2, if the coefficient 
of friction between these bodies and the horizontal surface is equal 
to k. Consider possible cases. 
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1.61. Two touching bars 1 and 2 are placed on an inclined plane 
forming an angle a with the horizontal (Fig. 1.10). The masses of 
the bars are equal to m1  and m2, and the coefficients of friction be- 

Fig. 1.9. Fig. 1.10. 

tween the inclined plane and these bars are equal to k1  and k2  re-
spectively, with k1 > k2. Find: 

(a) the force of interaction of the bars in the process of motion; 
(b) the minimum value of the angle a at which the bars start slid-

ing down. 
1.62. A small body was launched up an inclined plane set at an 

angle a = 15° against the horizontal. Find the coefficient of friction, 
if the time of the ascent of the body is ri = 2.0 times less than the 
time of its descent. 

1.63. The following parameters of the arrangement of Fig. 1.11 
are available: the angle a which the inclined plane forms with the 
horizontal, and the coefficient of friction k between the body m1  
and the inclined plane. The masses of the pulley and the threads, 
as well as the friction in the pulley, are negligible. Assuming both 
bodies to be motionless at the initial moment, find the mass ratio 
m2/m1  at which the body m2  

(a) starts coming down; 
(b) starts going up; 
(c) is at rest. 
1.64. The inclined plane of Fig. 1.11 forms an angle a = 30° with 

the horizontal. The mass ratio m2/m1  = rl = 2/3. The coefficient of 
friction between the body m1  and the inclined plane is equal to k = 
= 0.10. The masses of the pulley and the threads are negligible. 
Find the magnitude and the direction of acceleration of the body m2  
when the formerly stationary system of masses starts moving. 

1.65. A plank of mass m1  with a bar of mass m2  placed on it lies on 
a smooth horizontal plane. A horizontal force growing with time t 
as F = at (a is constant) is applied to the bar. Find how the acceler-
ations of the plank w1  and of the bar w2  depend on t, if the coefficient 
of friction between the plank and the bar is equal to k. Draw the ap-
proximate plots of these dependences. 

1.66. A small body A starts sliding down from the top of a wedge 
(Fig. 1.12) whose base is equal to 1 = 2.10 m. The coefficient of 
friction between the body and the wedge surface is k = 0.140. At 
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what value of the angle a will the time of sliding be the least? What 
will it be equal to? 

1.67. A bar of mass m is pulled by means of a thread up'an inclined 
plane forming an angle a with the horizontal (Fig. 1.13). The coef- 

Fig. 1.11. 

ficient of friction is equal to k. Find the angle 13 which the thread 
must form with the inclined plane for the tension of the thread to be 
minimum. What is it equal to? 

1.68. At the moment t = 0 the force F = at is applied to a small 
body of mass m resting on a smooth horizontal plane (a is a constant). 

Fig. 1.14. 

The permanent direction of this force forms an angle a with the hori-
zontal (Fig. 1.14). Find: 

(a) the velocity of the body at the moment of its breaking off the 
plane; 

(b) the distance traversed by the body up to this moment. 
1.69. A bar of mass m resting on a smooth horizontal plane starts 

moving due to the force F = mg/3 of constant magnitude. In the 
process of its rectilinear motion the angle a between the direction of 
this force and the horizontal varies as a = as, where a is a constant, 
and s is the distance traversed by the bar from its initial position. 
Find the velocity of the bar as a function of the angle a. 

1.70. A horizontal plane with the coefficient of friction k supports 
two bodies: a bar and an electric motor with a battery on a block. 
A thread attached to the bar is wound on the shaft of the electric 
motor. The distance between the bar and the electric motor is equal 
to 1. When the motor is switched on, the bar, whose mass is twice 



as great as that of the other body, starts moving with a constant ac-
celeration w. How soon will the bodies collide? 

1.71. A pulley fixed to the ceiling of an elevator car carries a 
thread whose ends are attached to the loads of masses m1  and m 2. 
The car starts going up with an acceleration wo. Assuming the masses 
of the pulley and the thread, as well as the friction, to be negligible 
find: 

(a) the acceleration of the load m1  relative to the elevator shaft 
and relative to the car; 

(b) the force exerted by the pulley on the ceiling of the car. 
1.72. Find the acceleration w of body 2 in the arrangement shown 

in Fig. 1.15, if its mass is times as great as the mass of bar 1 and 

Fig. 1.15. 	 Fig. 1.16. 

the angle that the inclined plane forms with the horizontal is equal 
to a. The masses of the pulleys and the threads, as well as the fric-
tion, are assumed to be negligible. Look into possible cases. 

1.73. In the arrangement shown in Fig. 1.16 the bodies have masses 
mo, m1,  m2,  the friction is absent, the masses of the pulleys and 
the threads are negligible. Find the acceleration of the body ml. 
Look into possible cases. 

1.74. In the arrangement shown in Fig. 1.17 the mass of the rod M 
exceeds the mass m of the ball. The ball has an opening permitting 

Fig. 1.17. Fig. 1.19. 

it to slide along the thread with some friction. The mass of the pulley 
and the friction in its axle are negligible. At the initial moment the 
ball was located opposite the lower end of the rod. When set free, 



both bodies began moving with constant accelerations. Find the 
friction force between the ball and the thread if t seconds after the 
beginning of motion the ball got opposite the upper end of the rod. 
The rod length equals 1. 

1.75. In the arrangement shown in Fig. 1.18 the mass of ball 1 
is = 1.8 times as great as that of rod 2. The length of the latter is 
1 = 100 cm. The masses of the pulleys and the threads, as well as 
the friction, are negligible. The ball is set on the same level as the 
lower end of the rod and then released. How soon will the ball be 
opposite the upper end of the rod? 

1.76. In the arrangement shown in Fig. 1.19 the mass of body 1 
is z = 4.0 times as great as that of body 2. The height h = 20 cm. 
The masses of the pulleys and the threads, as well as the friction, 
are negligible. At a certain moment body 2 is released and the arrange-
ment set in motion. What is the maximum height that body 2 will 
go up to? 

1.77. Find the accelerations of rod A and wedge B in the arrange-
ment shown in Fig. 1.20 if the ratio of the mass of the wedge to that 
of the rod equals 11, and the friction between all contact surfaces is 
negligible. 

1.78. In the arrangement shown in Fig. 1.21 the masses of the 
wedge M and the body m are known. The appreciable friction exists 

Fig. 1.20. Fig. 1.21. 

only between the wedge and the body m, the friction coefficient being 
equal to k. The masses of the pulley and the thread are negligible. 
Find the acceleration of the body m relative to the horizontal surface 
on which the wedge slides. 

1.79. What is the minimum acceleration with which bar A (Fig. 1.22) 
should be shifted horizontally to keep bodies 1 and 2 stationary 
relative to the bar? The masses of the bodies are equal, and the coef-
ficient of friction between the bar and the bodies is equal to k. The 
masses of the pulley and the threads are negligible, the friction in 
the pulley is absent. 

1.80. Prism 1 with bar 2 of mass m placed on it gets a horizontal 
acceleration w directed to the left (Fig. 1.23). At what maximum 
value of this acceleration will the bar be still stationary relative to 
the prism, if the coefficient of friction between them k< cot a? 
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Fig. 1.24. 

1.81. Prism 1 of mass ml and with angle a (see Fig. 1.23) rests on 
a horizontal surface. Bar 2 of mass m2  is placed on the prism. Assum-
ing the friction to be negligible, find the acceleration of the prism. 

1.82. In the arrangement shown in Fig. 1.24 the masses m of the 
bar and M of the wedge, as well as the wedge angle a, are known. 

Fig. 1.22. Fig. 1.23. 

The masses of the pulley and the thread are negligible. The friction 
is absent. Find the acceleration of the wedge M. 

1.83. A particle of mass m moves along a circle of radius R. Find 
the modulus of the average vector of the force acting on the particle 
over the distance equal to a quarter of the 
circle, if the particle moves 

(a) uniformly with velocity v; 
(b) with constant tangential acceleration 

iv.„ the initial velocity being equal to zero. 
1.84. An aircraft loops the loop of radius 

R = 500 m with a constant velocity v = 
360 km per hour. Find the weight of the 

flyer of mass m = 70 kg in the lower, upper, 
and middle points of the loop. 

1.85. A small sphere of mass m suspended by a thread is first taken 
aside so that the thread forms the right angle with the vertical and 
then released. Find: 

(a) the total acceleration of the sphere and the thread tension as 
a function of 0, the angle of deflection of the thread from the vertical; 

(b) the thread tension at the moment when the vertical component 
of the sphere's velocity is maximum; 

(c) the angle 0 between the thread and the vertical at the moment 
when the total acceleration vector of the sphere is directed horizon-
tally. 

1.86. A ball suspended by a thread swings in a vertical plane so 
that its acceleration values in the extreme and the lowest position 
are equal. Find the thread deflection angle in the extreme position. 

1.87. A small body A starts sliding off the top of a smooth sphere 
of radius R. Find the angle 0 (Fig. 1.25) corresponding to the point 
at which the body breaks off the sphere, as well as the break-off veloc-
ity of the body. 

1.88. A device (Fig. 1.26) consists of a smooth L-shaped rod locat-
ed in a horizontal plane and a sleeve A of mass m attached by a weight- 
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less spring to a point B. The spring stiffness is equal to x. The whole 
system rotates with a constant angular velocity co about a vertical 
axis passing through the point 0. Find the elongation of the spring. 
How is the result affected by the rotation direction? 

1.89. A cyclist rides along the circumference of a circular horizontal 
plane of radius R, the friction coefficient being dependent only on 

Fig. 1.26. 

distance r from the centre 0 of the plane as k= ko (1—rIR), where 
k, is a constant. Find the radius of the circle with the centre at the 
point along which the cyclist can ride with the maximum velocity. 
What is this velocity? 

1.90. A car moves with a constant tangential acceleration wti  = 
= 0.62 m/s2  along a horizontal surface circumscribing a circle of 
radius R = 40 m. The coefficient of sliding friction between the 
wheels of the car and the surface is k = 0.20. What distance will 
the car ride without sliding if at the initial moment of time its veloc-
ity is equal to zero? 

1.91. A car moves uniformly along a horizontal sine curve y 
= a sin (xla), where a and a are certain constants. The coefficient of 
friction between the wheels and the road is equal to k. At what veloc-
ity will the car ride without sliding? 

1.92. A chain of mass m forming a circle of radius R is slipped on a 
smooth round cone with half-angle 0. Find the tension of the chain 
if it rotates with a constant angular velocity co about a vertical axis 
coinciding with the symmetry axis of the cone. 

1.93. A fixed pulley carries a weightless thread with masses m1  
and m2  at its ends. There is friction between the thread and the pul-
ley. It is such that the thread starts slipping when the ratio m2im1  = 
= ry a. Find: 

(a) the friction coefficient; 
(b) the acceleration of the masses when m21m1  = > 
1.94. A particle of mass m moves along the internal smooth sur-

face of a vertical cylinder of radius R. Find the force with which the 
particle acts on the cylinder wall if at the initial moment of time 
its velocity equals vo  and forms an angle a with the horizontal. 
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1.95. Find the magnitude and direction of the force acting on the 
particle of mass in during its motion in the plane xy according to the 
law x = a sin cot, y = b cos cot, where a, b, and co are constants. 

1.96. A body of mass in is thrown at an angle to the horizontal 
with the initial velocity v0. Assuming the air drag to be negligible, 
find: 

(a) the momentum increment Op that the body acquires over the 
first t seconds of motion; 

(b) the modulus of the momentum increment ip during the total 
time of motion. 

1.97. At the moment t = 0 a stationary particle of mass in expe-
riences a time-dependent force F = at (r — t), where a is a constant 
vector, r is the time during which the given force acts. Find: 

(a) the momentum of the particle when the action of the force dis-
continued; 

(b) the distance covered by the particle while the force acted. 
1.98. At the moment t = 0 a particle of mass m starts moving due 

to a force F = F, sin cot, where F0  and co are constants. Find the 
distance covered by the particle as a function of t. Draw the approx-
imate plot of this function. 

1.99. At the moment t = 0 a particle of mass m starts moving due 
to a force F = F, cos cot, where F, and co are constants. How long 
will it be moving until it stops for the first time? What distance will 
it traverse during that time? What is the maximum velocity of the 
particle over this distance? 

1.100. A motorboat of mass m moves along a lake with velocity v0. 
At the moment t = 0 the engine of the boat is shut down. Assuming 
the resistance of water to be proportional to the velocity of the boat 
F = —rv, find: 

(a) how long the motorboat moved with the shutdown engine; 
(b) the velocity of the motorboat as a function of the distance cov-

ered with the shutdown engine, as well as the total distance covered 
till the complete stop; 

(c) the mean velocity of the motorboat over the time interval 
(beginning with the moment t = 0), during which its velocity de-
creases it  times. 

1.101. Having gone through a plank of thickness h, a bullet 
changed its velocity from v, to v. Find the time of motion of the 
bullet in the plank, assuming the resistance force to be proportional 
to the square of the velocity. 

1.102. A small bar starts sliding down an inclined plane forming 
an angle cc with the horizontal. The friction coefficient depends on 
the distance x covered as k = ax, where a is a constant. Find the 
distance covered by the bar till it stops, and its maximum velocity 
over this distance. 

1.103. A body of mass m rests on a horizontal plane with the fric-
tion coefficient lc. At the moment t = 0 a horizontal force is applied 
to it, which varies with time as F = at, where a is a constant vector. 
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Fig. 1.27. 

Find the distance traversed by the body during the first t seconds after 
the force action began. 

1.104. A body of mass m is thrown straight up with velocity vo. 
Find the velocity v' with which the body comes down if the air drag 
equals kv2, where k is a constant and v is the velocity of the body. 

1.105. A particle of mass m moves 
in a certain plane P due to a force 
F whose magnitude is constant and 
whose vector rotates in that plane with 
a constant angular velocity co. Assum-
ing the particle to be stationary at 
the moment t = 0, find: 

(a) its velocity as a function of 
time; 

(b) the distance covered by the 
particle between two successive stops, 
and the mean velocity over this time. 

1.106. A small disc A is placed on an inclined plane forming an 
angle a with the horizontal (Fig. 1.27) and is imparted an initial 
velocity v0. Find how the velocity of the disc depends on the angle y 
if the friction coefficient k = tan a and at the initial moment yo  = 
= nI2. 

1.107. A chain of length 1 is placed on a smooth spherical surface 
of radius R with one of its ends fixed at the top of the sphere. What 
will be the acceleration w of each element of the chain when its upper 

end is released? It is assumed that the length of the chain 1<--2.1  nR. 

1.108. A small body is placed on the top of a smooth sphere of 
radius R. Then the sphere is imparted a constant acceleration wo  
in the horizontal direction and the body begins sliding down. Find: 

(a) the velocity of the body relative to the sphere at the moment of 
break-off; 

(b) the angle 00  between the vertical and the radius vector drawn 
from the centre of the sphere to the break-off point; calculate 00  
for w0  = g. 

1.109. A particle moves in a plane under the action of a force 
which is always perpendicular to the particle's velocity and depends 
on a distance to a certain point on the plane as 1/rn, where n is a 
constant. At what value of n will the motion of the particle along 
the circle be steady? 

1.110. A sleeve A can slide freely along a smooth rod bent in the 
shape of a half-circle of radius R (Fig. 1.28). The system is set in rota-
tion with a constant angular velocity co about a vertical axis 00'. 
Find the angle 0 corresponding to the steady position of the sleeve. 

1.111. A rifle was aimed at the vertical line on the target located 
precisely in the northern direction, and then fired. Assuming the air 
drag to be negligible, find how much off the line, and in what direc-
tion, will the bullet hit the target. The shot was fired in the horizontal 



direction at the latitude q = 60°, the bullet velocity v = 900 m/s, 
and the distance from the target equals s = 1.0 km. 

1.112. A horizontal disc rotates with a constant angular velocity 
= 6.0 rad/s about a vertical axis passing through its centre. A 

small body of mass m = 0.50 kg moves along a 
diameter of the disc with a velocity v' = 50 cm/s 
which is constant relative to the disc. Find the 
force that the disc exerts on the body at the 
moment when it is located at the distance 
r = 30 cm from the rotation axis. 

1.113. A horizontal smooth rod AB rotates 
with a constant angular velocity co = 2.00 rad/s 

11–)NR about a vertical axis passing through its end 	
I 8  A. A freely sliding sleeve of mass m = 0.50 kg 

moves along the rod from the point A with the 
initial velocity vo  = 1.00 m/s. Find the Coriolis 	0'1  
force acting on the sleeve (in the reference frame 
fixed to the rotating rod) at the moment when 	Fig. 1.28. 
the sleeve is located at the distance r = 50 cm 
from the rotation axis. 

1.114. A horizontal disc of radius R rotates with a constant angu-
lar velocity co about a stationary vertical axis passing through its 
edge. Along the circumference of the disc a particle of mass m moves 
with a velocity that is constant relative to the disc. At the moment 
when the particle is at the maximum distance from the rotation axis, 
the resultant of the inertial forces Fin  acting on the particle in the 
reference frame fixed to the disc turns into zero. Find: 

(a) the acceleration 	of the particle relative to the disc; 
(b) the dependence of Fin  on the distance from the rotation axis. 
1.115. A small body of mass m = 0.30 kg starts sliding down from 

the top of a smooth sphere of radius R = 1.00 m. The sphere rotates 
with a constant angular velocity co = 6.0 rad/s about a vertical 
axis passing through its centre. Find the centrifugal force of inertia 
and the Coriolis force at the moment when the body breaks off the 
surface of the sphere in the reference frame fixed to the sphere. 

1.116. A train of mass m = 2000 tons moves in the latitude p — 
= 60° North. Find: 

(a) the magnitude and direction of the lateral force that the train 
exerts on the rails if it moves along a meridian with a velocity v = 
= 54 km per hour; 

(b) in what direction and with what velocity the train should move 
for the resultant of the inertial forces acting on the train in the ref-
erence frame fixed to the Earth to be equal to zero. 

1.117. At the equator a stationary (relative to the Earth) body 
falls down from the height h = 500 m. Assuming the air drag to be 
negligible, find how much off the vertical, and in what direction, 
the body will deviate when it hits the ground. 



1.3. LAWS OF CONSERVATION OF ENERGY, MOMENTUM, AND 
ANGULAR MOMENTUM 

• Work and power of the force F: 

A = F dr = Fs  ds, P = Fv. 	 (1.3a) 

• Increment of the kinetic energy of a particle: 

	

T2 — T1 = A, 	 (1.3b) 

where A is the work performed by the resultant of all the forces acting on the 
particle. 

• Work performed by the forces of a field is equal to the decrease of the 
potential energy of a particle in the given field: 

A = U1  — U2. 	 (1.3c) 

• Relationship between the force of a field and the potential energy of a 
particle in the field: 

	

F = — VU, 	 (1.3d) 

i.e. the force is equal to the antigradient of the potential energy. 
• Increment of the total mechanical energy of a particle in a given poten-

tial field: 

E2 — El =Aextr 	 (1.3e) 

where A xtr  is the algebraic sum of works performed by all extraneous forces, 
that is, by the forces not belonging to those of the given field. 

• Increment of the total mechanical energy of a system: 
Annot  E 2  — E1 = Aext+ 	

acons 	 (1.3f) 

where E = T 	U, and U is the inherent potential energy of the system. 
• Law of momentum variation of a system: 

	

dpIrlt = F, 	 (1.3g) 

where F is the resultant of all external forces. 
• Equation of motion of the system's centre of inertia: 

dvc =r m 
dt 

where F is the resultant of all external forces. 
• Kinetic energy of a system 

T = 	In  2'1  

where i;  is its kinetic energy in the system of centre of inertia. 
• Equation of dynamics of a body with variable mass: 

, dm 
m 

dv 
—=r-r--- 
dt 	dt 

(1.3h) 

(1.3i) 

(1.3j) 

where u is the velocity of the separated (gained) substance relative to the body 
considered. 



• Law of angular momentum variation of a system: 
dM 

=N, 
dt 

(1.3k) 

where M is the angular momentum of the system, and N is the total moment of 
all external forces. 

• Angular momentum of a system: 

M = 	[rip], 	 (1.31) 

where M is its angular momentum in the system of the centre of inertia, rc  is 
the radius vector of the centre of inertia, and p is the momentum of the system. 

1.118. A particle has shifted along some trajectory in the plane xy 
from point 1 whose radius vector r1  = i 2j to point 2 with the 
radius vector r 2  = 2i — 3j. During that time the particle experi-
enced the action of certain forces, one of which being F = 3i 4j. 
Find the work performed by the force F. (Here 7.1, r2, and F are given 
in SI units). 

1.119. A locomotive of mass m starts moving so that its velocity 
varies according to the law v = ars, where a is a constant, and s 
is the distance covered. Find the total work performed by all the 
forces which are acting on the locomotive during the first t seconds 
after the beginning of motion. 

1.120. The kinetic energy of a particle moving along a circle of 
radius R depends on the distance covered s as T = as2, where a is 
a constant. Find the force acting on the par- 
ticle as a function of S. 

1.121. A body of mass m was slowly hauled 
up the hill (Fig. 1.29) by a force F which at 
each point was directed along a tangent to the 
trajectory. Find the work performed by this 
force, if the height of the hill is h, the length 

/  of its base 1, and the coefficient of friction k. 
1.122. A disc of mass m = 50 g slides with 

the zero initial velocity down an inclined 	Fig. 1.29. 

plane set at an angle a= 30° to the horizontal; 
having traversed the distance 1 = 50 cm along the horizontal plane, 
the disc stops. Find the work performed by the friction forces over 
the whole distance, assuming the friction coefficient k = 0.15 for 
both inclined and horizontal planes. 

1.123. Two bars of masses m1  and m2  connected by a non-deformed 
light spring rest on a horizontal plane. The coefficient of friction 
between the bars and the surface is equal to k. What minimum constant 
force has to be applied in the horizontal direction to the bar of mass m1  
in order to shift the other bar? 

1.124. A chain of mass m = 0.80 kg and length 1 = 1.5 m rests 
on a rough-surfaced table so that one of its ends hangs over the edge. 
The chain starts sliding off the table all by itself provided the over-
hanging part equals i1 = 1/3 of the chain length. What will be the 
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total work performed by the friction forces acting on the chain by 
the moment it slides completely off the table? 

1.125. A body of mass m is thrown at an angle a to the horizontal 
with the initial velocity vo. Find the mean power developed by gravity 
over the whole time of motion of the body, and the instantaneous power 
of gravity as a function of time. 

1.126. A particle of mass m moves along a circle of radius R with 
a normal acceleration varying with time as wn  = at2, where a is 
a constant. Find the time dependence of the power developed by all 
the forces acting on the particle, and the mean value of this power 
averaged over the first t seconds after the beginning of motion. 

1.127. A small body of mass m is located on a horiiontal plane at 
the point 0. The body acquires a horizontal velocity vo. Find: 

(a) the mean power developed by the friction force during the 
whole time of motion, if the friction coefficient k = 0.27, m = 1.0 kg, 
and 1), = 1.5 m/s; 

(b) the maximum instantaneous power developed by the friction 
force, if the friction coefficient varies as k = ax, where a is a constant, 
and x is the distance from the point 0. 

1.128. A small body of mass m = 0.10 kg moves in the reference 
frame rotating about a stationary axis with a constant angular veloc-
ity to = 5.0 rad/s. What work does the centrifugal force of inertia 
perform during the transfer of this body along an arbitrary path 
from point 1 to point 2 which are located at the distances r1  = 30 cm 
and r 2  = 50 cm from the rotation axis? 

1.129. A system consists of two springs connected in series and 
having the stiffness coefficients lc1  and lc,. Find the minimum work 
to be performed in order to stretch this system by A/. 

1.130. A body of mass m is hauled from the Earth's surface by 
applying a force F varying with the height of ascent y as F = 2 (ay -
- 1) mg, where a is a positive constant. Find the work performed 
by this force and the increment of the body's potential energy in 
the gravitational field of the Earth over the first half of the ascent. 

1.131. The potential energy of a particle in a certain field has the 
form U = alr2  — blr, where a and b are positive constants, r is the 
distance from the centre of the field. Find: 

(a) the value of r0  corresponding to the equilibrium position of the 
particle; examine whether this position is steady; 

(b) the maximum magnitude of the attraction force; draw the 
plots U (r) and FT  (r) (the projections of the force on the radius vec-
tor r). 

1.132. In a certain two-dimensional field of force the potential 
energy of a particle has the form U = ax2  3y2, where a and 13 
are positive constants whose magnitudes are different. Find out: 

(a) whether this field is central; 
(b) what is the shape of the equipotential surfaces and also of the 

surfaces for which the magnitude of the vector of force F = const. 
1.133. There are two stationary fields of force F = ayi and F = 
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Fig. 1.30. Fig. 1.31. 

A 	 A 

axi 	byj, where i and j are the unit vectors of the x and y axes, 
and a and b are constants. Find out whether these fields are potential. 

1.134. A body of mass in is pushed with the initial velocity vo  
up an inclined plane set at an angle a to the horizontal. The friction 
coefficient is equal to k. What distance will the body cover before it 
stops and what work do the friction forces perform over this dis-
tance? 

1.135. A small disc A slides down with initial velocity equal to 
zero from the top of a smooth hill of height H having a horizontal 
portion (Fig. 1.30). What must be the height of the horizontal por-
tion h to ensure the maximum distance s covered by the disc? What 
is it equal to? 

1.136. A small body A starts sliding from the height h down an 
inclined groove passing into a half-circle of radius h/2 (Fig. 1.31). 

Assuming the friction to be negligible, find the velocity of the body 
at the highest point of its trajectory (after breaking off the groove). 

1.137. A ball of mass m is suspended by a thread of length 1. With 
what minimum velocity has the point of suspension to be shifted 
in the horizontal direction for the ball to move along the circle about 
that point? What will be the tension of the thread at the moment it 
will be passing the horizontal position? 

1.138. A horizontal plane supports a stationary vertical cylinder 
of radius R and a disc A attached to the cylinder by a horizontal 
thread AB of length /0  (Fig. 1.32, top view). An initial velocity vo  

B 

Fig. 1.32. 

B 

Fig. 1.33. 

is imparted to the disc as shown in the figure. How long will it 
move along the plane until it strikes against the cylinder? The fric-
tion is assumed to be absent. 
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1.139. A smooth rubber cord of length 1 whose coefficient of elas-
ticity is k is suspended by one end from the point 0 (Fig. L33). 
The other end is fitted with a catch B. A small sleeve A of mass m 
starts falling from the point 0. Neglecting the masses of the thread 
and the catch, find the maximum elongation of the cord. 

1.140. A small bar A resting on a smooth horizontal plane is at-
tached by threads to a point P (Fig. 1.34) and, by means of a weightless 
pulley, to a weight B possessing the same mass as the bar itself. 

Fig. 1.34. Fig. 1.35. 

Besides, the bar is also attached to a point 0 by means of a light non-
deformed spring of length 1, = 50 cm and stiffness x = 5 mg/to, 
where m is the mass of the bar. The thread PA having been burned, 
the bar starts moving. Find its velocity at the moment when it is 
breaking off the plane. 

1.141. A horizontal plane supports a plank with a bar of mass 
m = 1.0 kg placed on it and attached by a light elastic non-de-
formed cord of length /0  = 40 cm to a point 0 (Fig. 1.35). The coef-
ficient of friction between the bar and the plank equals k = 0.20. 
The plank is slowly shifted to the right until the bar starts sliding 
over it. It occurs at the moment when the cord deviates from the 
vertical by an angle 0 = 30°. Find the work that has been performed 
by that moment by the friction force acting on the bar in the ref-
erence frame fixed to the plane. 

1.142. A smooth light horizontal rod AB can rotate about a ver-
tical axis passing through its end A. The rod is fitted with a small 
sleeve of mass m attached to the end A by a weightless spring of length 
to  and stiffness x. What work must be performed to slowly get this 
system going and reaching the angular velocity o? 

1.143. A pulley fixed to the ceiling carries a thread with bodies of 
masses m1  and m2  attached to its ends. The masses of the pulley and 
the thread are negligible, friction is absent. Find the acceleration 
we of the centre of inertia of this system. 

1.144. Two interacting particles form a closed system whose centre 
of inertia is at rest. Fig. 1.36 illustrates the positions of both par-
ticles at a certain moment and the trajectory of the particle of mass 
Draw the trajectory of the particle of mass m2  if m2  = m1/2. 
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1.145. A closed chain A of mass m = 0.36 kg is attached to a ver-
tical rotating shaft by means of a thread (Fig. 1.37), and rotates with 
a constant angular velocity co = 35 rad/s. The thread forms an angle 
0 = 45° with the vertical. Find the distance between the chain's 
centre of gravity and the rotation axis, and the tension 
of the thread. 

1.146. A round cone A of mass m = 3.2 kg and half-
angle a = 10°  rolls uniformly and without slipping 
along a round conical surface B so that its apex 0 re-
mains stationary (Fig. 1.38). The centre of gravity of 
the cone A is at the same level as the point 0 and at a 
distance 1 = 17 cm from it. The cone's axis moves 
with angular velocity w. Find: 

(a) the static friction force acting on the cone A, Fig. 1.36. if co = 1.0 rad/s; 
(b) at what values of co the cone A will roll without 

sliding, if the coefficient of friction between the surfaces is equal 
to k = 0.25. 

1.147. In the reference frame K two particles travel along the x 
axis, one of mass m1  with velocity v1, and the other of mass m2  with 
velocity v2. Find: 

(a) the velocity V of the reference frame K' in which the cumulative 
kinetic energy of these particles is minimum; 

(b) the cumulative kinetic energy of these particles in the K' 
frame. 

1.148. The reference frame, in which the centre of inertia of a given 
system of particles is at rest, translates with a velocity V relative 

Bj 

I 

Fig. 1.37. 	 Fig. 1.38. 

to an inertial reference frame K. The mass of the system of particles 
equals m, and the total energy of the system in the frame of the centre 
of inertia is equal to E. Find the total energy E of this system of 
particles in the reference frame K. 

1.149. Two small discs of masses m1  and m2  interconnected by a 
weightless spring rest on a smooth horizontal plane. The discs are 
set in motion with initial velocities v1  and v2  whose directions are 

3* 



172 F 

Fig. 1.41. 

mutually perpendicular and lie in a horizontal plane. Find the total 
energy of this system in the frame of the centre of inertia. 

1.150. A system consists of two small spheres of masses ml  and m2  
interconnected by a weightless spring. At the moment t = 0 the 
spheres are set in motion with the initial velocities v1  and v2  after 
which the system starts moving in the Earth's uniform gravitational 
field. Neglecting the air drag, find the time dependence of the total 
momentum of this system in the process of motion and of the radius 
vector of its centre of inertia relative to the initial position of the 
centre. 

1.151. Two bars of masses ml  and m2  connected by a weightless 
spring of stiffness x (Fig. 1.39) rest on a smooth horizontal plane. 

Fig. 1.39. 	 Fig. 1.40. 

Bar 2 is shifted a small distance x to the left and then released. Find 
the velocity of the centre of inertia of the system after bar 1 breaks 
off the wall. 

1.152. Two bars connected by a weightless spring of stiffness x 
and length (in the non-deformed state) /0  rest on a horizontal plane. 
A constant horizontal force F starts acting on one of the bars as shown 
in Fig. 1.40. Find the maximum and minimum distances between the 
bars during the subsequent motion of the system, if the masses of 
the bars are: 

(a) equal; 
(b) equal to ml  and m2, and the force F is applied to the bar of 

mass m2. 
1.153. A system consists of two identical cubes, each of mass 7n, 

linked together by the compressed weightless spring of stiffness x 
(Fig. 1.41). The cubes are also connected by a thread 
which is burned through at a certain moment. Find: 

(a) at what values of Al, the initial compression 
of the spring, the lower cube will bounce up after 
the thread has been burned through: 

(b) to what height h the centre of gravity of this 
system will rise if the initial compression of the spring 
Al = 7 mg/x. 

1.154. Two identical buggies 1 and 2 with one man 
in each move without friction due to inertia along 
the parallel rails toward each other. When the buggies get opposite 
each other, the men exchange their places by jumping in the direc- 
tion perpendicular to the motion direction. As a consequence, buggy 



1 stops and buggy 2 keeps moving in the same direction, with its ve-
locity becoming equal to v. Find the initial velocities of the buggies 
v1  and v2  if the mass of each buggy (without a man) equals M and 
the mass of each man m. 

1.155. Two identical buggies move one after the other due to inertia 
(without friction) with the same velocity vo. A man of mass in rides 
the rear buggy. At a certain moment the man jumps into the front 
buggy with a velocity u relative to his buggy. Knowing that the 
mass of each buggy is equal to M, find the velocities with which the 
buggies will move after that. 

1.156. Two men, each of mass m, stand on the edge of a stationary 
buggy of mass M. Assuming the friction to be negligible, find the 
velocity of the buggy after both men jump off with the same hori-
zontal velocity u relative to the buggy: (1) simultaneously; (2) one 
after the other. In what case will the velocity of the buggy be greater 
and how many times? 

1.157. A chain hangs on a thread and touches the surface of a table 
by its lower end. Show that after the thread has been burned through, 
the force exerted on the table by the falling part of the chain at any 
moment is twice as great as the force of pressure exerted by the part 
already resting on the table. 

1.158. A steel ball of mass m = 50 g falls from the height h 
1.0 m on the horizontal surface of a massive slab. Find the cumu-

lative momentum that the ball imparts to the slab after numerous 
bounces, if every impact decreases the velocity of the ball 11 = 1.25 
times. 

1.159. A raft of mass M with a man of mass m aboard stays motion-
less on the surface of a lake. The man moves a distance 1' relative 
to the raft with velocity v'(t) and then stops. Assuming the water 
resistance to be negligible, find: 

(a) the displacement of the raft 1 relative to the shore; 
(b) the horizontal component of the force with which the man acted 

on the raft during the motion. 
1.160. A stationary pulley carries a rope whose one end supports 

a ladder with a man and the other end the counterweight of mass M. 
The man of mass m climbs up a distance 1' with respect to the ladder 
and then stops. Neglecting the mass of the rope and the friction in 
the pulley axle, find the displacement 1 of the centre of inertia of 
this system. 

1.161. A cannon of mass M starts sliding freely down a smooth 
inclined plane at an angle a to the horizontal. After the cannon cov-
ered the distance 1, a shot was fired, the shell leaving the cannon in 
the horizontal direction with a momentum p. As a consequence, the 
cannon stopped. Assuming the mass of the shell to be negligible, 
as compared to that of the cannon, determine the duration of the 
shot. 

1.162. A horizontally flying bullet of mass m gets stuck in a body 
of mass M suspended by two identical threads of length 1 (Fig. 1.42). 



Fig. 1.42. 

Fig. 1.44. 

As a result, the threads swerve through an angle 0. Assuming m << M, 
find: 

(a) the velocity of the bullet before striking the body; 
(b) the fraction of the bullet's initial kinetic energy that turned 

into heat. 
1.163. A body of mass M (Fig. 1.43) with a small disc of mass m 

placed on it rests on a smooth horizontal plane. The disc is set in 

Fig. 1.43. 

motion in the horizontal direction with velocity v. To what height 
(relative to the initial level) will the disc rise after breaking off the 
body M? The friction is assumed to be absent. 

1.164. A small disc of mass m slides down a smooth hill of height h 
without initial velocity and gets onto a plank of mass M lying on 

the horizontal plane at the base of the hill (Fig. 1.44). Due to friction 
between the disc and the plank the disc slows down and, beginning 
with a certain moment, moves in one piece with the plank 

(1) Find the total work performed by the friction forces in this 
process. 

(2) Can it be stated that the result obtained does not depend on 
the choice of the reference frame? 

1.165. A stone falls down without initial velocity from a height h 
onto the Earth's surface. The air drag assumed to be negligible, the 
stone hits the ground with velocity v0  = -1/2gh relative to the Earth. 
Obtain the same formula in terms of the reference frame "falling" 
to the Earth with a constant velocity v0. 

1.166. A particle of mass 1.0 g moving with velocity v1  = 3.0i -
- 2.0j experiences a perfectly inelastic collision with another par-
ticle of mass 2.0 g and velocity v2  = 4.0j — 6.0k. Find the veloc-
ity of the formed particle (both the vector v and its modulus), if 
the components of the vectors v1  and v2  are given in the SI units. 
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1.167. Find the increment of the kinetic energy of the closed system 
comprising two spheres of masses ml  and m2  due to their perfectly 
inelastic collision, if the initial velocities of the spheres were equal 
to v1  and v2. 

1.168. A particle of mass m1  experienced a perfectly elastic col-
lision with a stationary particle of mass m2. What fraction of the 
kinetic energy does the striking particle lose, if 

(a) it recoils at right angles to its original motion direction; 
(b) the collision is a head-on one? 
1.169. Particle 1 experiences a perfectly elastic collision with 

a stationary particle 2. Determine their mass ratio, if 
(a) after a head-on collision the particles fly apart in the opposite 

directions with equal velocities; 
(b) the particles fly apart symmetrically relative to the initial 

motion direction of particle 1 with the angle of divergence 0 = 60°. 
1.170. A ball moving translationally collides elastically with 

another, stationary, ball of the same mass. At the moment of impact 
the angle between the straight line passing through the centres of 
the balls and the direction of the initial motion of the striking ball 
is equal to a = 45°. Assuming the balls to be smooth, find the frac-
tion ri of the kinetic energy of the striking ball that turned into poten-
tial energy at the moment of the maximum deformation. 

1.171. A shell flying with velocity v = 500 m/s bursts into three 
identical fragments so that the kinetic energy of the system increases 

= 1.5 times. What maximum velocity can one of the frag-
ments obtain? 

1.172. Particle 1 moving with velocity v = 10 m/s experienced 
a head-on collision with a stationary particle 2 of the same mass. 
As a result of the collision, the kinetic energy of the system decreased 
by = 1.0%. Find the magnitude and direction of the velocity 
of particle 1 after the collision. 

1.173. A particle of mass m having collided with a stationary 
particle of mass M deviated by an angle n/2 whereas the particle M 
recoiled at an angle 0 = 30° to the direction of the initial motion 
of the particle tn. How much (in per cent) and in what way has the 
kinetic energy of this system changed after the collision, if M/m 
= 5.0? 

1.174. A closed system consists of two particles of masses mt  
and m, which move at right angles to each other with velocities v1  
and v2. Find: 

(a) the momentum of each particle and 
(b) the total kinetic energy of the two particles in the reference 

frame fixed to their centre of inertia. 
1.175. A particle of mass m1  collides elastically with a stationary 

particle of mass m2  (mi.  > m2). Find the maximum angle through 
which the striking particle may deviate as a result of the collision. 

1.176. Three identical discs A, B, and C (Fig. 1.45) rest on a smooth 
horizontal plane. The disc A is set in motion with velocity v after 
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which it experiences an elastic collision simultaneously with the 
discs B and C. The distance between the centres of the latter discs 
prior to the collision is ri times greater than the diameter of each disc. 
Find the velocity of the disc A after the 
collision. At what value of rl will the disc 
A recoil after the collision; stop; move on? A 

1.177. A molecule collides with another, 	 1 
stationary, molecule of the same mass. 
Demonstrate that the angle of divergence 

(a) equals 90° when the collision is ideally 
elastic; 

(b) differs from 90° when the collision 
is inelastic. 

1.178. A rocket ejects a steady jet whose velocity is equal to u 
relative to the rocket. The gas discharge rate equals .t kg/s. Demon-
strate that the rocket motion equation in this case takes the form 

mw = F — 

where m is the mass of the rocket at a given moment, w is its accel-
eration, and F is the external force. 

1.179. A rocket moves in the absence of external forces by eject-
ing a steady jet with velocity u constant relative to the rocket. 
Find the velocity v of the rocket at the moment when its mass is 
equal to m, if at the initial moment it possessed the mass mo  and 
its velocity was equal to zero. Make use of the formula given in the 
foregoing problem. 

1.180. Find the law according to which the mass of the rocket 
varies with time, when the rocket moves with a constant accelera-
tion w, the external forces are absent, the gas escapes with a con-
stant velocity u relative to the rocket, and its mass at the initial 
moment equals m0. 

1.181. A spaceship of mass mo  moves in the absence of external 
forces with a constant velocity vo. To change the motion direction, 
a jet engine is switched on. It starts ejecting a gas jet with velocity u 
which is constant relative to the spaceship and directed at right 
angles to the spaceship motion. The engine is shut down when the 
mass of the spaceship decreases to m. Through what angle a did the 
motion direction of the spaceship deviate due to the jet engine op-
eration? 

1.182. A cart loaded with sand moves along a horizontal plane due 
to a constant force F coinciding in direction with the cart's velocity 
vector. In the process, sand spills through a hole in the bottom with 
a constant velocity tt kg/s. Find the acceleration and the velocity of 
the cart at the moment t, if at the initial moment t = 0 the cart 
with loaded sand had the mass mo  and its velocity was equal to zero. 
The friction is to be neglected. 

1.183. A flatcar of mass mo  starts moving to the right due to a 
constant horizontal force F (Fig: 1.46). Sand spills on the flatcar 

C 
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Fig. 1.48. 

from a stationary hopper. The velocity of loading is constant and 
equal to p, kg/s. Find the time dependence of the velocity and the 
acceleration of the flatcar in the process of loading. The friction is 
negligibly small. 

1.184. A chain AB of length 1 is located in a smooth horizontal 
tube so that its fraction of length h hangs freely and touches the 
surface of the table with its end B (Fig. 1.47). At a-certain moment 

Fig. 1.46. Fig. 1.47. 

the end A of the chain is set free. With what velocity will this end 
of the chain slip out of the tube? ' 

1.185. The angular momentum of a particle relative to a certain 
point 0 varies with time as M = a + bt2, where a and b are con-
stant vectors, with a _L b. Find the force moment N relative to the 
point 0 acting on the particle when the angle between the vectors N 
and M equals 45°. 

1.186. A ball of mass m is thrown at an angle a to the horizontal 
with the initial velocity vo. Find the time dependence of the mag-
nitude of the ball's angular momentum vector relative to the point 
from which the ball is thrown. Find the angular momentum M at 
the highest point of the trajectory if m = 130 g, a = 45°, and vo  = 
= 25 m/s. The air drag is to be neglected. 

1.187. A disc A of mass m sliding over a smooth horizontal surface 
with velocity v experiences a perfectly elastic collision with a smooth 
stationary wall at a point 0 (Fig. 1.48). The 
angle between the motion direction of the disc A 
and the normal of the wall is equal to a. Find: 

(a) the points relative to which the angular 
momentum M of the disc remains constant in 
this process; 

(b) the magnitude of the increment of the 
vector of the disc's angular momentum relative 
to the point 0' which is located in the plane 
of the disc's motion at the distance 1 from the 
point 0. 

1.188. A small ball of mass m suspended 
from the ceiling at a point 0 by a thread 
of length 1 moves along a horizontal circle with a constant angular 
velocity co. Relative to which points does the angular momentum 
M of the ball remain constant? Find the magnitude of the increment 
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of the vector of the ball's angular momentum relative to the point 
0 picked up during half a revolution. 

1.189. A ball of mass m falls down without initial velocity from 
a height h over the Earth's surface. Find the increment of the ball's 
angular momentum vector picked up during the time of falling (rela-
tive to the point 0 of the reference frame moving translationally in 
a horizontal direction with a velocity 17). The ball starts falling 
from the point 0. The air drag is to be neglected. 

1.190. A smooth horizontal disc rotates with a constant angular 
velocity co about a stationary vertical axis passing through its centre, 
the point 0. At a moment t = 0 a disc is set in motion from that 

177 Vg 
Im/2 

m/2 

   

Fig. 1.49. 	 Fig. 1.50. 

point with velocity vo. Find the angular momentum M (t) of the 
disc relative to the point 0 in the reference frame fixed to the disc. 
Make sure that this angular momentum is caused by the Coriolis 
force. 

1.191. A particle moves along a closed trajectory in a central 
field of force where the particle's potential energy U = kr2  (k is a 
positive constant, r is the distance of the particle from the centre 0 
of the field). Find the mass of the particle if its minimum distance 
from the point 0 equals r1  and its velocity at the point farthest from 0 
equals v2. 

1.192. A small ball is suspended from a point 0 by a light thread 
of length 1. Then the ball is drawn aside so that the thread deviates 
through an angle 0 from the vertical and set in motion in a hori-
zontal direction at right angles to the vertical plane in which the 
thread is located. What is the initial velocity that has to be imparted 
to the ball so that it could deviate through the maximum angle at/2 
in the process of motion? 

1.193. A small body of mass m tied to a non-stretchable thread 
moves over a smooth horizontal plane. The other end of the thread 
is being drawn into a hole 0 (Fig. 1.49) with a constant velocity. 
Find the thread tension as a function of the distance r between the 
body and the hole if at r = ro  the angular velocity of the thread is 
equal to coo. 

1.194. A light non-stretchable thread is wound on a massive fixed 
pulley of radius R. A small body of mass m is tied to the free end 
of the thread. At a moment t = 0 the system is released and starts 
moving. Find its angular momentum relative to the pulley axle as 
a function of time t. 
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1.195. A uniform sphere of mass m and radius R starts rolling 
without slipping down an inclined plane at an angle a to the hori-
zontal. Find the time dependence of the angular momentum of the 
sphere relative to the point of contact at the initial moment. How 
will the obtained result change in the case of a perfectly smooth 
inclined plane? 

1.196. A certain system of particles possesses a total momentum p 
and an angular momentum M relative to a point 0. Find its angular 
momentum M' relative to a point 0' whose position with respect to 
the point 0 is determined by the radius vector r0. Find out when 
the angular momentum of the system of particles does not depend 
on the choice of the point 0. 

1.197. Demonstrate that the angular momentum M of the system 
of particles relative to a point 0 of the reference frame K can be re-
presented as 

M = 	Ira], 

where M is its proper angular momentum (in the reference frame 
moving translationally and fixed to the centre of inertia), r0  is the 
radius vector of the centre of inertia relative to the point 0, p is the 
total momentum of the system of particles in the reference frame K. 

1.198. A ball of mass m moving with velocity vo  experiences a 
head-on elastic collision with one of the spheres of a stationary 
rigid dumbbell as whown in Fig. 1.50. The mass of each sphere equals 
m/2, and the distance between them is 1. Disregarding the size of the 
spheres, find the proper angular momentum M of the dumbbell after 
the collision, i.e. the angular momentum in the reference frame mov-
ing translationally and fixed to the dumbbell's centre of inertia. 

1.199. Two small identical discs, each of mass m, lie on a smooth 
horizontal plane. The discs are interconnected by a light non-de-
formed spring of length 10  and stiffness x. At a certain moment one of 
the discs is set in motion in a horizontal direction perpendicular 
to the spring with velocity vo. Find the maximum elongation of the 
spring in the process of motion, if it is known to be considerably 
less than unity. 

1.4. UNIVERSAL GRAVITATION 

• Universal gravitation law 

F — y  min12
•  r2  
	 (1.4a) 

• The squares of the periods of revolution of any two planets around the 
Sun are proportional to the cubes of the major semiaxes of their orbits (Kepler): 

T2  oc as. 	 (1.4b) 

• Strength G and potential q  of the gravitational field of a mass point: 

(1.4c) 

• Orbital and escape velocities: 
-= 	gR, v2=  17 v1. 	 (1..4d) 



1.200. A planet of mass M moves along a circle around the Sun 
with velocity v = 34.9 km/s (relative to the heliocentric reference 
frame). Find the period of revolution of this planet around the Sun. 

1.201. The Jupiter's period of revolution around the Sun is 12 
times that of the Earth. Assuming the planetary orbits to be circular, 
find: 

(a) how many times the distance between the Jupiter and the Sun 
exceeds that between the Earth and the Sun; 

(b) the velocity and the acceleration of Jupiter in the heliocentric 
reference frame. 

1.202. A planet of mass M moves around the Sun along an ellipse 
so that its minimum distance from the Sun is equal to r and the maxi-
mum distance to R. Making use of Kepler's laws, find its period of 
revolution around the Sun. 

1.203. A small body starts falling onto the Sun from a distance 
equal to the radius of the Earth's orbit. The initial velocity of the 
body is equal to zero in the heliocentric reference frame. Making 
use of Kepler's laws, find how long the body will be falling. 

1.204. Suppose we have made a model of the Solar system scaled 
down in the ratio but of materials of the same mean density as 
the actual materials of the planets and the Sun. How will the orbital 
periods of revolution of planetary models change in this case? 

1.205. A double star is a system of two stars moving around the 
centre of inertia of the system due to gravitation. Find the distance 
between the components of the double star, if its total mass equals M 
and the period of revolution T. 

1.206. Find the potential energy of the gravitational interaction 
(a) of two mass points of masses ml  and m2  located at a distance r 

from each other; 
(b) of a mass point of mass m and a thin uniform rod of mass M 

and length 1, if they are located along a straight line at a distance a 
from each other; also find the force of their interaction. 

1.207. A planet of mass m moves along an ellipse around the Sun 
so that its maximum and minimum distances from the Sun are equal 
to r1  and r 2  respectively. Find the angular momentum M of this 
planet relative to the centre of the Sun. 

1.208. Using the conservation laws, demonstrate that the total 
mechanical energy of a planet of mass m moving around the Sun 
along an ellipse depends only on its semi-major axis a. Find this 
energy as a function of a. 

1.209. A planet A moves along an elliptical orbit around the Sun. 
At the moment when it was at the distance r0  from the Sun its velo-
city 'was equal to vo  and the angle between the radius vector r0  and 
the velocity vector vo  was equal to a. Find the maximum and mini-
mum distances that will separate this planet from the Sun during 
its orbital motion. 

1.210. A cosmic body A moves to the Sun with velocity vo  (when 
far from the Sun) and aiming parameter 1 the arm of the vector v 



relative to the centre of the Sun (Fig. 1.51). Find the minimum dis-
tance by which this body will get to the Sun. 

1.211. A particle of mass in is located outside a uniform sphere of 
mass M at a distance r from its centre. Find: 

(a) the potential energy of gravitational interaction of the particle 
and the sphere; 

(b) the gravitational force which the sphere exerts on the particle. 
1.212. Demonstrate that the gravitational force acting on a par- 

ticle A inside a uniform spherical layer of matter is equal to zero. 
1.213. A particle of mass m was transferred from the centre of the 

base of a uniform hemisphere of mass M and radius R into infinity. 

va  
Fig. 1.51. 

What work was performed in the process by the gravitational force 
exerted on the particle by the hemisphere? 

1.214. There is a uniform sphere of mass M and radius R. Find 
the strength G and the potential qo of the gravitational field of this 
sphere as a function of the distance r from its centre (with r < R 
and r > R). Draw the approximate plots of the functions G (r) 
and q  (r). 

1.215. Inside a uniform sphere of density p there is a spherical 
cavity whose centre is at a distance 1 from the centre of the sphere. 
Find the strength G of the gravitational field inside the cavity. 

1.216. A uniform sphere has a mass M and radius R. Find the 
pressure p inside the sphere, caused by gravitational compression, 
as a function of the distance r from its centre. Evaluate p at the 
centre of the Earth, assuming it to be a uniform sphere. 

1.217. Find the proper potential energy of gravitational interac-
tion of matter forming 

(a) a thin uniform spherical layer of mass m and radius R; 
(b) a uniform sphere of mass m and radius R (make use of the answer 

to Problem 1.214). 
1.218. Two Earth's satellites move in a common plane along cir-

cular orbits. The orbital radius of one satellite r = 7000 km while 
that of the other satellite is Ar = 70 km less. What time interval 
separates the periodic approaches of the satellites to each other over 
the minimum distance? 

1.219. Calculate the ratios of the following accelerations: the 
acceleration zvi  due to the gravitational force on the Earth's surface, 



the acceleration w2  due to the centrifugal force of inertia on the 
Earth's equator, and the acceleration w3  caused by the Sun to the 
bodies on the Earth. 

1.220. At what height over the Earth's pole the free-fall accele-
ration decreases by one per cent; by half? 

1.221. On the pole of the Earth a body is imparted velocity v0  
directed vertically up. Knowing the radius of the Earth and the free-
fall acceleration on its surface, find the height to which the body 
will ascend. The air drag is to be neglected. 

1.222. An artificial satellite is launched into a circular orbit around 
the Earth with velocity v relative to the reference frame moving trans-
lationally and fixed to the Earth's rotation axis. Find the distance 
from the satellite to the Earth's surface. The radius of the Earth and 
the free-fall acceleration on its surface are supposed to be known. 

1.223. Calculate the radius of the circular orbit of a stationary 
Earth's satellite, which remains motionless with respect to its sur-
face. What are its velocity and acceleration in the inertial reference 
frame fixed at a given moment to the centre of the Earth? 

1.224. A satellite revolving in a circular equatorial orbit of ra-
dius R = 2.00-104  km from west to east appears over a certain point 
at the equator every i = 11.6 hours. Using these data, calculate 
the mass of the Earth. The gravitational constant is supposed to be 
known. 

1.225. A satellite revolves from east to west in a circular equatorial 
orbit of radius R = 1.00.104  km around the Earth. Find the velocity 
and the acceleration of the satellite in the reference frame fixed to 
the Earth. 

1.226. A satellite must move in the equatorial plane of the Earth 
close to its surface either in the Earth's rotation direction or against 
it. Find how many times the kinetic energy of the satellite in the 
latter case exceeds that in the former case (in the reference frame fixed 
to the Earth). 

1.227. An artificial satellite of the Moon revolves in a circular 
orbit whose radius exceeds the radius of the Moon rl times. In the 
process of motion the satellite experiences a slight resistance due to 
cosmic dust. Assuming the resistance force to depend on the velocity 
of the satellite as F = av2, where a is a constant, find how long the 
satellite will stay in orbit until it falls onto the Moon's surface. 

1.228. Calculate the orbital and escape velocities for the Moon. 
Compare the results obtained with the corresponding velocities for 
the Earth. 

1.229. A spaceship approaches the Moon along a parabolic trajec-
tory which is almost tangent to the Moon's surface. At the moment 
of the maximum approach the brake rocket was fired for a short time 
interval, and the spaceship was transferred into a circular orbit of 
a Moon satellite. Find how the spaceship velocity modulus increased 
in the process of braking. 

1.230. A spaceship is launched into a circular orbit close to the 
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Earth's surface. What additional velocity has to be imparted to the 
spaceship to overcome the gravitational pull? 

1.231. At what distance from the centre of the Moon is the point 
at which the strength of the resultant of the Earth's and Moon's 
gravitational fields is equal to zero? The Earth's mass is assumed to 
be 11 = 81 times that of the Moon, and the distance between the cen-
tres of these planets n = 60 times greater than the radius of the Earth 
R. 

1.232. What is the minimum work that has to be performed to 
bring a spaceship of mass m = 2.0.103  kg from the surface of the Earth 
to the Moon? 

1.233. Find approximately the third cosmic velocity v3, i.e. the 
minimum velocity that has to be imparted to a body relative to the 
Earth's surface to drive it out of the Solar system. The rotation of 
the Earth about its own axis is to be neglected. 

1.5. DYNAMICS OF A SOLID BODY 

• Equation of dynamics of a solid bOdy rotating about a stationary axis z: 
Ipz  = N (1.5a) 

where N , is the algebraic sum of the moments of external forces relative to the 
z axis. 

• According to Steiner's theorem: 

	

/ = /c 	ma2. 	 (1.5b) 

• Kinetic energy of a solid body rotating about a stationary axis: 

1 T= —2- 10. 	 (1.5c) 

• Work performed by external forces during the rotation of a solid body 
about a stationary axis: 

A = J N z  dcp. 

• Kinetic energy of a solid body in plane motion: 

T — 
 /CO  nwb 

	

2 	2 

• Relationship between the angular velocity w' of gyroscope precession, 
its angular momentum M equal to Ro, and the moment N of the external forces: 

[w' M] = N. 	 (1.51) 

1.234. A thin uniform rod AB of mass m = 1.0 kg moves transla-
tionally with acceleration w = 2.0 m/s2  due to two antiparallel forces 
F1  and F2  (Fig. 1.52). The distance between the points at which these 
forces are applied is equal to a = 20 cm. Besides, it is known that 
F2 = 5.0 N. Find the length of the rod. 

1.235. A force F = Ai + Bj is applied to a point whose radius 
vector relative to the origin of coordinates 0 is equal to r = ai 

bj, where a, b, A, B are constants, and i, j are the unit vectors of 

(1.5d) 

(1.5e) 
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the x and y axes. Find the moment N and the arm 1 of the force F 
relative to the point 0. 

1.236. A force Fl  = Aj is applied to a point whose radius vector 
rl  = al, while a force F2 = Bi is applied to the point whose radius 
vector r2  = bj. Both radius vectors are determined relative to the 
origin of coordinates 0, i and j are the unit vectors of the x and y 

dr; Ale—r— A 

a 
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Fig. 1.52. 	 Fig. 1.53. 

axes, a, b, A, B are constants. Find the arm 1 of the resultant force 
relative to the point 0. 

1.237. Three forces are applied to a square plate as shown in 
Fig. 1.53. Find the modulus, direction, and the point of application 
of the resultant force, if this point is taken on the side BC. 

1.238. Find the moment of inertia 
(a) of a thin uniform rod relative to the axis which is perpendicular 

to the rod and passes through its end, if the mass of the rod is m and 
its length 1; 

(b) of a thin uniform rectangular plate relative to the axis passing 
perpendicular to the plane of the plate through one of its vertices, 
if the sides of the plate are equal to a and b, and its mass is m. 

1.239. Calculate the moment of inertia 
(a) of a copper uniform disc relative to the symmetry axis perpen-

dicular to the plane of the disc, if its thickness is equal to b=2.0 mm 
and its radius to R = 100 mm; 

(b) of a uniform solid cone relative to its symmetry axis, if the 
mass of the cone is equal to m and the radius of its base to R. 

1.240. Demonstrate that in the case of a thin plate of arbitrary 
shape there is the following relationship between the moments of 
inertia: /1  -I- /2 = 4, where subindices 1, 2, and 3 define three mu-
tually perpendicular axes passing through one point, with axes 1 and 
2 lying in the plane of the plate. Using this relationship, find the 
moment of inertia of a thin uniform round disc of radius R and mass 
m relative to the axis coinciding with one of its diameters. 

1.241. A uniform disc of radius R = 20 cm has a round cut as 
shown in Fig. 1.54. The mass of the remaining (shaded) portion of the 



Fig. 1.54. 

disc equals m = 7.3 kg. Find the moment of inertia of such a disc 
relative to the axis passing through its centre of inertia and perpen-
dicular to the plane of the disc. 

1.242. Using the formula for the moment of inertia of a uniform 
sphere, find the moment of inertia of a thin spherical layer of mass 
m and radius R relative to the axis passing through its centre. 

1.243. A light thread with a body of mass m tied to its end is wound 
on a uniform solid cylinder of mass M and radius R (Fig. 1.55). At 
a moment t = 0 the system is set in motion. 
Assuming the friction in the axle of the cylin-
der to be negligible, find the time dependence 
of 

(a) the angular velocity of the cylinder; 
(b) the kinetic energy of the whole system. 
1.244. The ends of thin threads tightly 

wound on the axle of radius r of the Maxwell 
disc are attached to a horizontal bar. When 
the disc unwinds, the bar is raised to keep the 
disc at the same height. The mass bf the disc 
with the axle is equal to m, the moment of 
inertia of the arrangement relative to its axis is I. Find the tension of 
each thread and the acceleration of the bar. 

1.245. A thin horizontal uniform rod AB of mass m and length 1 
can rotate freely about a vertical axis passing through its end A. 
At a certain moment the end B starts experiencing a constant force 

Fig. 1.55. Fig. 1.56. 

F which is always perpendicular to the original position of the sta-
tionary rod and directed in a horizontal plane. Find the angular ve-
locity of the rod as a function of its rotation angle op counted relative 
to the initial position. 

1.246. In the arrangement shown in Fig. 1.56 the mass of the uni-
form solid cylinder of radius R is equal to m and the masses of two 
bodies are equal to m, and m2. The thread slipping and the friction 
in the axle of the cylinder are supposed to be absent. Find the angular 
acceleration of the cylinder and the ratio of tensions Ti/T, of the 
vertical sections of the thread in the process of motion. 
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1.247. In the system shown in Fig. 1.57 the masses of the bodies 
are known to be m1  and m2, the coefficient of friction between the body 
mi  and the horizontal plane is equal to k, and a pulley of mass m 
is assumed to be a uniform disc. The thread does not slip over the 
pulley. At the moment t = 0 the body m2  starts descending. Assum-
ing the mass of the thread and the friction in the axle of the pulley 
to be negligible, find the work performed by the friction forces acting 
on the body m1  over the first t seconds after the beginning of motion. 

1.248. A uniform cylinder of radius R is spinned about its axis to 
the angular velocity coo  and then placed into a corner (Fig. 1.58). 

m, 

Fig. 1.57. 	 Fig. 1.58. 

The coefficient of friction between the corner walls and the cylinder 
is equal to k. How many turns will the cylinder accomplish before 
it stops? 

1.249. A uniform disc of radius R is spinned to the angular velocity 
co and then carefully placed on a horizontal surface. How long will 
the disc be rotating on the surface if the friction coefficient is equal 
to k? The pressure exerted by the disc on the surface can be regarded 
as uniform. 

1.250. A flywheel with the initial angular velocity coo  decelerates 
due to the forces whose moment relative to the axis is proportional 
to the square root of its angular velocity. Find the mean angular 
velocity of the flywheel averaged over the total deceleration time. 

1.251. A uniform cylinder of radius R and mass M can rotate free-
ly about a stationary horizontal axis 0 (Fig. 1.59). A thin cord of 
length 1 and mass m is wound on the cylinder in a single layer. Find 
the angular acceleration of the cylinder as a function of the length 
x of the hanging part of the cord. The wound part of the cord is sup-
posed to have its centre of gravity on the cylinder axis. 

1.252. A uniform sphere of mass m and radius R rolls without 
slipping down an inclined plane set at an angle a to the horizontal. 
Find: 

(a) the magnitudes of the friction coefficient at which slipping 
is absent; 

(b) the kinetic energy of the sphere t seconds after the beginning 
of motion. 

1.253. A uniform cylinder of mass m = 8.0 kg and radius R = 
1.3 cm (Fig. 1.60) starts descending at a moment t = 0 due to 

gravity. Neglecting the mass of the thread, find: 
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(a) the tension of each thread and the angular acceleration of the 
cylinder; 

(b) the time dependence of the instantaneous power developed by 
the gravitational force. 

1.254. Thin threads are tightly wound on the ends of a uniform 
solid cylinder of m ass m. The free ends of the threads are attached to 

Fig. 1.59. Fig. 1.60. 

the ceiling of an elevator car. The car starts going up with an accelera- 
tion wo. Find the acceleration w' of the cylinder relative to the car and 
the force F exerted by the cylinder on the ceiling (through the threads). 

1.255. A spool with a thread wound on it is placed on an inclined 
smooth plane set at an angle a = 30° to the horizontal. The free end 
of the thread is attached to the wall as shown in Fig. 1.61. The mass 
of the spool is m = 200 g, its moment of inertia relative to its own 
axis I = 0.45 g • m2, the radius of the wound thread layer r = 3.0 cm. 
Find the acceleration of the spool axis. 

1.256. A uniform solid cylinder of mass m rests on two horizontal 
planks. A thread is wound on the cylinder. The hanging end of the 
thread is pulled vertically down with a constant force F (Fig. 1.62). 

Find the maximum magnitude of the force F which still does not 
bring about any sliding of the cylinder, if the coefficient of friction 
between the cylinder and the planks is equal to k. What is the ac- 
4* 



Fig. 1.63. 

celeration w„,„„ of the axis of the cylinder rolling down the inclined 
plane? 

1.257. A spool with thread wound on it, of mass m, rests on a rough 
horizontal surface. Its moment of inertia relative to its own axis is 
equal to I = TmR2, where y is a numerical factor, and R is the out-
side radius of the spool. The radius of the wound thread layer is equal 

to r. The spool is pulled without sliding by the thread with a constant 
force F directed at an angle a to the horizontal (Fig. 1.63). Find: 

(a) the projection of the acceleration vector of the spool axis on the 
x-axis; 

(b) the work performed by the force F during the first t seconds af-
ter the beginning of motion. 

1.258. The arrangement shown in Fig. 1.64 consists of two identical 
uniform solid cylinders, each of mass m, on which two light threads 

Fig. 1.64. Fig. 1.65. 

are wound symmetrically. Find the tension of each thread in the pro-
cess of motion. The friction in the axle of the upper cylinder is as-
sumed to be absent. 

1.259. In the arrangement shown in Fig. 1.65 a weight A possesses 
mass m, a pulley B possesses mass M. Also known are the moment of 
inertia I of the pulley relative to its axis and the radii of the pulley 
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Fig. 1.66. 

R and 2R. The mass of the threads is negligible. Find the accelera-
tion of the weight A after the system is set free. 

1.260. A uniform solid cylinder A of mass m1  can freely rotate about 
a horizontal axis fixed to a mount B of mass m2  (Fig. 1.66). A con-
stant horizontal force F is applied to the end K of a light thread tight-
ly wound on the cylinder. The fric-
tion between the mount and the sup-
porting horizontal plane is assumed 
to be absent. Find: 

(a) the acceleration of the point K; 
(b) the kinetic energy of this sys-

tem t seconds after the beginning of 
motion. 

1.261. A plank of mass m1  with a 
uniform sphere of mass m2  placed on 
it rests on a smooth horizontal plane. 
A constant horizontal force F is applied to the plank. With what 
accelerations will the plank and the centre of the sphere move pro-
vided there is no sliding between the plank and the sphere? 

1.262. A uniform solid cylinder of mass m and radius R is set in 
rotation about its axis with an angular velocity coo, then lowered with 
its lateral surface onto a horizontal plane and released. The coeffi-
cient of friction between the cylinder and the plane is equal to k. 
Find: 

(a) how long the cylinder will move with sliding; 
(b) the total work performed by the sliding friction force acting 

on the cylinder. 
1.263. A uniform ball of radius r rolls without slipping down from 

the top of a sphere of radius R. Find the angular velocity of the ball 
at the moment it breaks off the sphere. The initial velocity of the 
ball is negligible. 

1.264. A uniform solid cylinder of radius R = 15 cm rolls over a 
horizontal plane passing into an inclined plane forming an angle 

Fig. 1.67. Fig. 1.68. 

a = 30°  with the horizontal (Fig. 1.67). Find the maximum value of 
the velocity vo  which still permits the cylinder to roll onto the inclined 
plane section without a jump. The sliding is assumed to be absent. 
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Fig. 1.69. 

Fig. 1.71. 

1.265. A small body A is fixed to the inside of a thin rigid hoop of 
radius R and mass equal to that of the body A. The hoop rolls without 
slipping over a horizontal plane; at the moments when the body A 
gets into the lower position, the centre of the hoop moves with velocity 

vo  (Fig. 1.68). At what values of vo  will the hoop move without bounc-
ing? 

1.266. Determine the kinetic energy of a tractor crawler belt of 
mass m if the tractor moves with velocity v (Fig. 1.69). 

1.267. A uniform sphere of mass In and radius r rolls without slid-
ing over a horizontal plane, rotating about a horizontal axle OA 
(Fig. 1.70). In the process, the centre of the 
sphere moves with velocity v along a circle 
of radius R. Find the kinetic energy of the 
sphere. 

1.268. Demonstrate that in the reference 
frame rotating with a constant angular 
velocity o about a stationary axis a body 
of mass m experiences the resultant 

(a) centrifugal force of inertia Fit  = 
= mw2Rc, where Rc  is the radius vector 
of the body's centre of inertia relative to 
the rotation axis; 

(b) Coriolis force Fec„. = 2m [Irto], where 
is the velocity of the body's centre of 

inertia in the rotating reference frame. 
1.269. A midpoint of a thin uniform rod AB of mass m and length 

1 is rigidly fixed to a rotation axle 00' as shown in Fig. 1.71. The 
rod is set into rotation with a constant angular velocity w. Find the 
resultant moment of the centrifugal forces of inertia relative to the 
point C in the reference frame fixed to the axle 00' and to the rod. 

1.270. A conical pendulum, a thin uniform rod of length 1 and 
mass nt, rotates uniformly about a vertical axis with angular velocity 
oi (the upper end of the rod is hinged). Find the angle 0 between the 
rod and the vertical. 

1.271. A uniform cube with edge a rests on a horizontal plane whose 
friction coefficient equals k. The cube is set in motion with an initial 
velocity, travels some distance over the plane and comes to a stand- 
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still. Explain the disappearance of the angular momentum of the 
cube relative to the axis lying in the plane at right angles to the 
cube's motion direction. Find the distance between the resultants of 
gravitational forces and the reaction forces exerted by the support-
ing plane. 

1.272. A smooth uniform rod AB of mass M and length 1 rotates 
freely with an angular velocity co, in a horizontal plane about a sta-
tionary vertical axis passing through its end A. A small sleeve of 
mass m starts sliding along the rod from the point A. Find the veloc-
ity v' of the sleeve relative to the rod at the moment it reaches its 
other end B. 

1.273. A uniform rod of mass m = 5.0 kg and length 1= 90 cm 
rests on a smooth horizontal surface. One of the ends of the rod is struck 
with the impulse J = 3.0 N• s in a horizontal direction perpendicular to 
the rod. As a result, the rod obtains the momentum p = 3.0 N • s. Find 
the force with which one half of the rod will act on the other in 
the process of motion. 

1.274. A thin uniform square plate with side 1 and mass M can 
rotate freely about a stationary vertical axis coinciding with one of 
its sides. A small ball of mass m flying with velocity v at right angles 
to the plate strikes elastically the centre of it. Find: 

(a) the velocity of the ball v' after the impact; 
(b) the horizontal component of the resultant force which the axis 

will exert on the plate after the impact. 
1.275. A vertically oriented uniform rod of mass M and length 1 

can rotate about its upper end. A horizontally flying bullet of mass 
m strikes the lower end of the rod and gets stuck in it; as a result, the 
rod swings through an angle a. Assuming that r n << M, find: 

(a) the velocity of the flying bullet; 
(b) the momentum increment in the system "bullet-rod" during 

the impact; what causes the change of that momentum; 
(c) at what distance x from the upper end of the rod the bullet must 

strike for the momentum of the system "bullet-rod" to remain con-
stant during the impact. 

1.276. A horizontally oriented uniform disc of mass M and radius 
R rotates freely about a stationary vertical axis passing through its 
centre. The disc has a radial guide along which can slide without 
friction a small body of mass m. A light thread running down through 
the hollow axle of the disc is tied to the body. Initially the body 
was located at the edge of the disc and the whole system rotated with 
an angular velocity coo. Then by means of a force F applied to the 
lower end of the thread the body was slowly pulled to the rotation 
axis. Find: 

(a) the angular velocity of the system in its final state; 
(b) the work performed by the force F. 
1.277. A man of mass ml  stands on the edge of a horizontal uni-

form disc of mass m2  and radius R which is capable of rotating freely 
about a stationary vertical axis passing through its centre. At a cer- 
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tain moment the man starts moving along the edge of the disc; he 
shifts over an angle cp' relative to the disc and then stops. In the pro-
cess of motion the velocity of the man varies with time as v' (t). 
Assuming the dimensions of the man to be negligible, find: 

(a) the angle through which the disc had turned by the moment the 
man stopped; 

(b) the force moment (relative to the rotation axis) with which 
the man acted on the disc in the process of motion. 

1.278. Two horizontal discs rotate freely about a vertical axis pass-
ing through their centres. The moments of inertia of the discs relative 
to this axis are equal to /1  and /2, and the angular velocities to oh 
and co,. When the upper disc fell on the lower one, both discs began 
rotating, after some time, as a single whole (due to friction). Find: 

(a) the steady-state angular rotation velocity of the discs; 
(b) the work performed by the friction forces in this process. 
1.279. A small disc and a thin uniform rod of length 1, whose mass 

is i  times greater than the mass of the disc, lie on a smooth horizon-
tal plane. The disc is set in motion, in horizontal direction and per-
pendicular to the rod, with velocity v, after which it elastically 
collides with the end of the rod. Find 
the velocity of the disc and the angu-
lar velocity of the rod after the colli-
sion. At what value of ii  will the 
velocity of the disc after the colli-
sion be equal to zero? reverse its di-
rection? 

1.280. A stationary platform P 
which can rotate freely about a ver-
tical axis (Fig. 1.72) supports a motor M 
and a balance weight N. The mo- 

0 ment of inertia of the platform 
with the motor and the balance weight 	 Fig. 1.72.  
relative to this axis is equal to I. A 
light frame is fixed to the motor's shaft with a uniform sphere A rotat-
ing freely with an angular velocity o about a shaft BB' coincid-
ing with the axis 00'. The moment of inertia of the sphere relative 
to the rotation axis is equal to I. Find: 

(a) the work performed by the motor in turning the shaft BB' 
through 90'; through 180°; 

(b) the moment of external forces which maintains the axis of the 
arrangement in the vertical position after the motor turns the shaft 
BB' through 90°. 

1.281. A horizontally oriented uniform rod AB of mass m = 
= 1.40 kg and length 1, = 100 cm rotates freely about a stationary 
vertical axis 00' passing through its end A. The point A is located 
at the middle of the axis 00' whose length is equal to 1= 55 cm. 
At what angular velocity of the rod the horizontal component of the 
force acting on the lower end of the axis 00' is equal to zero? What 
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Fig. 1.73. 

is in this case the horizontal component of the force acting on the 
upper end of the axis? 

1.282. The middle of a uniform rod of mass m and length 1 is rig-
idly fixed to a vertical axis 00' so that the angle between the rod 
and the axis is equal to 0 (see Fig. 1.71). The ends of the axis 00' are 
provided with bearings. The system rotates without friction with an 
angular velocity co. Find: 

(a) the magnitude and direction of the rod's angular momentum 
M relative to the point C, as well as its angular momentum relative to 
the rotation axis; 

(b) how much the modulus of the vector M relative to the point 
C increases during a half-turn; 

(c) the moment of external forces N acting on the axle 00' in 
the process of rotation. 

1.283. A top of mass m = 0.50 kg, whose axis is tilted by an angle 
0 = 30° to the vertical, precesses due to gravity. The moment of 
inertia of the top relative to its symmetry axis is equal to I = 
= 2.0 g• m2, the angular velocity of rotation about that axis is equal 
to co = 350 rad/s, the distance from the point of rest to the centre of 
inertia of the top is 1= 10 cm. Find: 

(a) the angular velocity of the top's precession; 
(b) the magnitude and direction of the horizontal component of 

the reaction force acting on the top at the point of rest. 
1.284. A gyroscope, a uniform disc of radius R = 5.0 cm at the 

end of a rod of length 1= 10 cm (Fig. 1.73), is mounted on the floor 
of an elevator car going up with a constant accel-
eration w = 2.0 m/s'. The other end of the rod 
is hinged at the point 0. The gyroscope preces-
ses with an angular velocity n = 0.5 rps. 
Neglecting the friction and the mass of the rod, 
find the proper angular velocity of the disc. 

1.285. A top of mass m = 1.0 kg and moment 
of inertia relative to its own axis I = 4.0 g•m2  
spins with an angular velocity co = 
= 310 rad/s. Its point of rest is located on a block which is shifted 
in a horizontal direction with a constant acceleration w = 1.0 m/s2. 
The distance between the point of rest and the centre of inertia of the 
top equals 1 = 10 cm. Find the magnitude and direction of the an-
gular velocity of precession w'. 

1.286. A uniform sphere of mass m = 5.0 kg and radius R 
6.0 cm rotates with an angular velocity w = 1250 rad/s about 

a horizontal axle passing through its centre and fixed on the mount-
ing base by means of bearings. The distance between the bearings 
equals 1= 15 cm. The base is set in rotation about a vertical axis 
with an angular velocity co' = 5.0 rad/s. Find the modulus and di-
rection of the gyroscopic forces. 

1.287. A cylindrical disc of a gyroscope of mass m = 15 kg and 
radius r = 5.0 cm spins with an angular velocity co = 330 rad/s. 
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The distance between the bearings in which the axle of the disc is 
mounted is equal to 1 = 15 cm. The axle is forced to oscillate about 
a horizontal axis with a period T = 1.0 s and amplitude cpm, = 20°. 
Find the maximum value of the gyroscopic forces exerted by the axle 
on the bearings. 

1.288. A ship moves with velocity v = 36 km per hour along an 
arc of a circle of radius R = 200 m. Find the moment of the gyroscop-
ic forces exerted on the bearings by the shaft with a flywheel whose 
moment of inertia relative to the rotation axis equals I = 
= 3.8.103  kg•m2  and whose rotation velocity n = 300 rpm. The 
rotation axis is oriented along the length of the ship. 

1.289. A locomotive is propelled by a turbine whose axle is paral-
lel to the axes of wheels. The turbine's rotation direction coincides 
with that of wheels. The moment of inertia of the turbine rotor rel-
ative to its own axis is equal to I = 240 kg• m2. Find the additional 
force exerted by the gyroscopic forces on the rails when the locomo-
tive moves along a circle of radius R =- 250 m with velocity v = 

50 km per hour. The gauge is equal to / = 1.5 m. The angular 
velocity of the turbine equals n = 1500 rpm. 

1.6. ELASTIC DEFORMATIONS OF A SOLID BODY 

• Relation between tensile (compressive) strain a and stress a: 

= alE, 	 (1.6a) 

where E is Young's modulus. 

• Relation between lateral compressive (tensile) strain a' and longitudi-
nal tensile (compressive) strain a: 

a' = —lie, 	 (1.6b) 

where p, is Poisson's ratio. 

• Relation between shear strain y and tangential stress t: 

y = 't/G, 	 (1.6c) 

where G is shear modulus. 

• Compressibility: 

1 dV 
0= --17- dp • (1.6d) 

• Volume density of elastic strain- energy: 

u = E82/2, u = Gy2/2. 	 (1.6e) 
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1.290. What pressure has to be applied to the ends of a steel cyl-
inder to keep its length constant on raising its temperature by 100 °C? 

1.291. What internal pressure (in the absence of an external pres-
sure) can be sustained 

(a) by a glass tube; (b) by a glass spherical flask, if in both cases 
the wall thickness is equal to Or = 1.0 mm and the radius of the 
tube and the flask equals r = 25 mm? 

1.292. A horizontally oriented copper rod of length 1 = 1.0 m 
is rotated about a vertical axis passing through its middle. What 
is the number of rps at which this rod ruptures? 

1.293. A ring of radius r = 25 cm made of lead wire is rotated 
about a stationary vertical axis passing through its centre and per-
pendicular to the plane of the ring. What is the number of rps at 
which the ring ruptures? 

1.294. A steel wire of diameter d = 1.0 mm is stretched horizon-
tally between two clamps located at the distance 1 = 2.0 m from 
each other. A weight of mass m = 0.25 kg is suspended from the mid-
point 0 of the wire. What will the resulting descent of the point 0 
be in centimetres? 

1.295. A uniform elastic plank moves over a smooth horizontal 
plane due to a constant force Fo  distributed uniformly over the end 
face. The surface of the end face is equal to S, and Young's modulus 
of the material to E. Find the compressive strain of the plank in the 
direction of the acting force. 

1.296. A thin uniform copper rod of length 1 and mass m rotates 
uniformly with an angular velocity w in a horizontal plane about a 
vertical axis passing through one of its ends. Determine the tension 
in the rod as a function of the distance r from the rotation axis. Find 
the elongation of the rod. 

1.297. A solid copper cylinder of length 1 = 65 cm is placed on a 
horizontal surface and subjected to a vertical compressive force 
F = 1000 N directed downward and distributed uniformly over the 
end face. What will be the resulting change of the volume of the 
cylinder in cubic millimetres? 

1.298. A copper rod of length 1 is suspended from the ceiling by one 
of its ends. Find: 

(a) the elongation Al of the rod due to its own weight; 
(b) the relative increment of its volume AVIV. 
1.299. A bar made of material whose Young's modulus is equal to 

E and Poisson's ratio to 11, is subjected to the hydrostatic pressure 
p. Find: 

(a) the fractional decrement of its volume; 
(b) the relationship between the compressibility 3  and the elastic 

constants E and 1.1. 
Show that Poisson's ratio IA cannot exceed 1/2. 
1.300. One end of a steel rectangular girder is embedded into a 

wall (Fig. 1.74). Due to gravity it sags slightly. Find the radius of 
curvature of the neutral layer (see the dotted line in the figure) in 
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the vicinity of the point 0 if the length of the protruding section of 

/MO  	 in  

Fig. 1.74. 

the girder is equal to 1 = 6.0 m and the thickness of the girder equals 
h= 10 cm. 

1.301. The bending of an elastic rod is described by the elastic 
curve passing through centres of gravity of rod's cross-sections. At 
small bendings the equation of this curve takes the form 

d2y 
N (x)— EI dx2  , 

where N (x) is the bending moment of the elastic forces in the cross- 
section corresponding to the x coordinate, E is Young's modulus, 
I is the moment of inertia of the cross-section relative to the axis pass- 

ing through the neutral layer (I = .z2dS, Fig. 1.75). 

Suppose one end of a steel rod of a square cross-section with side 
a is embedded into a wall, the protruding section being of length 1 

dS 

Neutral 
layer 

Fig. 1.75. Fig. 1.76. 

(Fig. 1.76). Assuming the mass of the rod to be negligible, find the 
shape of the elastic curve and the deflection of the rod X, if its end A 
experiences 

(a) the bending moment of the couple N0; 
(b) a force F oriented along the y axis. 
1.302. A steel girder of length 1 rests freely on two supports 

(Fig. 1.77). The moment of inertia of its cross-section is equal to I 
(see the foregoing problem). Neglecting the mass of the girder and 
assuming the sagging to he slight, find the deflection X due to the force 
F applied to the middle of the girder. 

1.303. The thickness of a rectangular steel girder equals h. Using 
the equation of Problem 1.301, find the deflection X caused by the 
weight of the girder in two cases: 

(a) one end of the girder is embedded into a wall with the length 
of the protruding section being equal to 1 (Fig. 1.78a); 

(b) the girder of length 21 rests freely on two supports (Fig. 1.78b). 



1.304. A steel plate of thickness h has the shape of a square whose 
side equals 1, with h <<  1. The plate is rigidly fixed to a vertical axle 

Fig. 1.77. 

00 which is rotated with a constant angular acceleration 13 (Fig. 1.79). 
Find the deflection k, assuming the sagging to be small. 

1.305. Determine the relationship between the torque N and the 
torsion angle IT for 

(a) the tube whose wall thickness Ar is considerably less than the 
tube radius; 

(b) for the solid rod of circular cross-section. Their length 1, ra-
dius r, and shear modulus G are supposed to be known. 

X 

 

	2l 	 

(b) 
Fig. 1.78. Fig. 1.79. 

1.306. Calculate the torque N twisting a steel tube of length 1 = 
= 3.0 m through an angle cp = 2.0° about its axis, if the inside and 
outside diameters of the tube are equal to d1  = 30 mm and d 2  = 
= 50 mm. 

1.307. Find the maximum power which can be transmitted by 
means of a steel shaft rotating about its axis with an angular velocity 

= 120 rad/s, if its length 1 = 200 cm, radius r = 1.50 cm, and 
the permissible torsion angle cp = 2.5°. 

1.308. A uniform ring of mass m, with the outside radius r 2, is 
fitted tightly on a shaft of radius r1. The shaft is rotated about its 
axis with a constant angular acceleration (3. Find the moment of 
elastic forces in the ring as a function of the distance r from the ro-
tation axis. 

1.309. Find the elastic deformation energy of a steel rod of mass 
m = 3.1 kg stretched to a tensile strain E = 1.0-10-3. 

1.310. A steel cylindrical rod of length 1 and radius r is suspended 
by its end from the ceiling. 

(a) Find the elastic deformation energy U of the rod. 
(b) Define U in terms of tensile strain A111 of the rod. 



1.311. What work has to be performed to make a hoop out of a 
steel band of length 1 = 2.0 m, width h = 6.0 cm, and thickness 
6 = 2.0 mm? The process is assumed to proceed within the elasticity 
range of the material. 

1.312. Find the elastic deformation energy of a steel rod whose 
one end is fixed and the other is twisted through an angle cp = 6.0°. 
The length of the rod is equal to 1 = 1.0 m, and the radius to r = 
= 10 mm. 

1.313. Find how the volume density of the elastic deformation 
energy is distributed in a steel rod depending on the distance r from 
its axis. The length of the rod is equal to 1, the torsion angle to (p. 

1.314. Find the volume density of the elastic deformation energy 
in fresh water at the depth of h = 1000 m. 

1.7. HYDRODYNAMICS 

• The fundamental equation of hydrodynamics of ideal fluid (Eulerian 
equation): 

dv 
P  dt f —V P' 

where p is the fluid density, f is the volume density of mass forces (f = pg i n 
the case of gravity), Vp is the pressure gradient. 

• Bernoulli's equation. In the steady flow of an ideal fluid 

pv2  

	

2 
-Fpgh+p= const 	 (1.7b) 

along any streamline. 

• Reynolds number defining the flow pattern of a viscous fluid: 

Re = p 	 (1.7c) 

where 1 is a characteristic length, 11 is the fluid viscosity. 
• Poiseuille's law. The volume of liquid flowing through a circular tube 

(in m3/s): 
70 4 Pi- Pa    Q —

(1.7d) 
811 	/ 	' 

where R and 1 are the tube's radius and length, pi — p2  is the pressure differ-
ence between the ends of the tube. 

• Stokes' law. The friction force on the sphere of radius r moving through 
a viscous fluid: 

F 	 (1.7e) 

1.315. Ideal fluid flows along a flat tube of constant cross-section, 
located in a horizontal plane and bent as shown in Fig. 1.80 (top 
view). The flow is steady. Are the pressures and velocities of the fluid 
equal at points / and 2? What is the shape of the streamlines? 

1.316. Two manometric tubes are mounted on a horizontal pipe 
of varying cross-section at the sections Si  and 82 (Fig. 1.81). Find 

(1.7a) 



Fig. 1.82. 

the volume of water flowing across the pipe's section per unit time 
if the difference in water columns is equal to Ah. 

1.317. A Pitot tube (Fig. 1.82) is mounted along the axis of a gas 
pipeline whose cross-sectional area is equal to S. Assuming the vis-
cosity to be negligible, find the volume of gas flowing across the 

5, 

Fig. 1.80. 	 Fig. 1.81. 

section of the pipe per unit time, if the difference in the liquid col-
umns is equal to Ah, and the densities of the liquid and the gas are 
Po and p respectively;  

1.318. A wide vessel with a small hole in the bottom is filled 
with water and kerosene. Neglecting the viscosity, find the velo-
city of the water flow, if the thickness of the 
water layer is equal to h1  = 30 cm and that of 
the kerosene layer to h2  = 20 cm. 

1.319. A wide cylindrical vessel 50 cm in 
height is filled with water and rests on a table. 
Assuming the viscosity to be negligible, find at 
what height from the bottom of the vessel a small 
hole should be perforated for the water jet com-
ing out of it to hit the surface of the table at 
the maximum distance /max  from the vessel. 
Find /max  . 

1.320. A bent tube is lowered into a water stream as shown in 
Fig. 1.83. The velocity of the stream relative to the tube is equal to 
v = 2.5 m/s. The closed upper end of the tube located at the height 

12, 0  = 12 cm has a small orifice. To what height h will the water jet 
spurt? 

1.321. The horizontal bottom of a wide vessel with an ideal fluid 
has a round orifice of radius R1  over which a round closed cylinder is 
mounted, whose radius 112 >111  (Fig. 1.84). The clearance between 
the cylinder and the bottom of the vessel is very small, the fluid den-
sity is p. Find the static pressure of the fluid in the clearance as a 
function of the distance r from the axis of the orifice (and the cylin-
der), if the height of the fluid is equal to h. 

1.322. What work should be done in order to squeeze all water 
from a horizontally located cylinder (Fig. 1.85) during the time t 
by means of a constant force acting on the piston? The volume of wa-
ter in the cylinder is equal to V, the cross-sectional area of the ori- 



fice to s, with s being considerably less than the piston area. The 
friction and viscosity are negligibly small. 

1.323. A cylindrical vessel of height h and base area S is filled 
with water. An orifice of area s < S is opened in 
vessel. Neglecting the 	viscosity 	of wa- 
ter, determine how soon all 	the water 
will pour out of the vessel. 

1.324. 	A 	horizontally 	oriented 	tube 

the bottom of the 

1.1! 

h 
AB of length 1 rotates with a constant 
angular 	velocity 	co 	about a stationary 

II 

vertical axis 00' passing through the end ho A (Fig. 1.86). The tube is filled with an 
ideal fluid. The 	A 	the tube is ---  end 	of 	 open, 
the closed end B has a very small orifice. 
Find the velocity of the fluid relative to 
the 	tube 	as 	a 	function of the column 

v _ 

"height" h. 
1.325. 	Demonstrate that in 	the 	case 

of a steady 	flow 	of 	an 	ideal fluid Eq. 	 Fig. 1.83. 
 

(1.7a) turns into Bernoulli equation. 
1.326. On the opposite sides of a wide vertical vessel filled with 

water two identical holes are opened, each having the cross-sectional 

Fig. 1.84. Fig. 1.85. 

area S = 0.50 cm2. The height difference between them is equal to 
Ah = 51 cm. Find the resultant force of reaction of the water flow-
ing out of the vessel. 

1.327. The side wall of a wide vertical cylindrical vessel of height 
h = 75 cm has a narrow vertical slit running all the way down to 
the bottom of the vessel. The length of the slit is 1 = 50 cm and the 
width b = 1.0 mm. With the slit closed, the vessel is filled with 
water. Find the resultant force of reaction of the water flowing out of 
the vessel immediately after the slit is opened. 

1.328. Water flows out of a big tank along a tube bent at right an-
gles: the inside radius of the tube is equal to r = 0.50 cm (Fig. 1.87). 
The length of the horizontal section of the tube is equal to 1 = 22 cm. 
The water flow rate is Q = 0.50 litres per second. Find the moment 
of reaction forces of flowing water, acting on the tube's walls, relative 
to the point 0. 
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Fig. 1.87. 

Fig. 1.89. 

1.329. A side wall of a wide open tank is provided with a narrow-
ing tube (Fig. 1.88) through which water flows out. The cross-sectional 
area of the tube decreases from S = 3.0 cm2  to s = 1.0 cm2. The 
water level in the tank is h = 4.6 m higher than that in the tube. 

0 

W 

Fig. 1.86. 

Neglecting the viscosity of the water, find the horizontal component 
of the force tending to pull the tube out of the tank. 

Fig. 1.88. 

1.330. A cylindrical vessel with water is rotated about its ver-
tical axis with a constant angular velocity co. Find: 

(a) the shape of the free surface of the water; 
(b) the water pressure distribution over the bottom of the vessel 

along its radius provided the pressure at the central point is equal to 
Po. 

1.331. A thin horizontal disc of radius R = 10 cm is located with-
in a cylindrical cavity filled with oil whose viscosity it = 0.08 P 
(Fig. 1.89). The clearance between the disc and the horizontal planes 

of the cavity is equal to h = 1.0 mm. Find the power developed by 
the viscous forces acting on the disc when it rotates with the angular 
velocity co = 60 rad/s. The end effects are to be neglected. 
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1.332. A long cylinder of radius R1  is displaced along its axis 
with a constant velocity vo  inside a stationary co-axial cylinder of 
radius R2. The space between the cylinders is filled with viscous liq-
uid. Find the velocity of the liquid as a function of the distance r 
from the axis of the cylinders. The flow is laminar. 

1.333. A fluid with viscosity 1 fills the space between two long 
co-axial cylinders of radii R, and R 2, with R1  < R2. The inner cyl-
inder is stationary while the outer one is rotated with a constant 
angular velocity co 2. The fluid flow is laminar. Taking into account 
that the friction force acting on a unit area of a cylindrical surface 
of radius r is defined by the formula a = 1r (th.o/ar), find: 

(a) the angular velocity of the rotating fluid as a function of ra-
dius r; 

(b) the moment of the friction forces acting on a unit length of the 
outer cylinder. 

1.334. A tube of length 1 and radius R carries a steady flow of 
fluid whose density is p and viscosity 	The fluid flow velocity de- 
pends on the distance r from the axis of the tube as v = vo  (1 	r2/R2). 
Find: 

(a) the volume of the fluid flowing across the section of the tube 
per unit time; 

(b) the kinetic energy of the fluid within the tube's volume; 
(c) the friction force exerted on the tube by the fluid; 
(d) the pressure difference at the ends of the tube. 
1.335. In the arrangement shown in Fig. 1.90 a viscous liquid 

whose density is p = 1.0 g/cm3  flows along a tube out of a wide tank 

Fig. 1.90. 

A. Find the velocity of the liquid flow, if hi  = 10 cm, h2  = 20 cm, 
and h 3  = 35 cm. All the distances 1 are equal. 

1.336. The cross-sectional radius of a pipeline decreases gradually 
as r = roe-as, where a = 0.50 m-1, x is the distance from the pipe-
line inlet. Find the ratio of Reynolds numbers for two cross-sections 
separated by Ax = 3.2 m. 

1.337. When a sphere of radius r1  = 1.2 mm moves in glycerin, 
the laminar flow is observed if the velocity of the sphere does not 
exceed v1  = 23 cm/s. At what minimum velocity v2  of a sphere of 
radius r2  = 5.5 cm will the flow in water become turbulent? The 
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viscosities of glycerin and water are equal to rh = 13.9 P and 12 = 
= 0.011 P respectively. 

1.338. A lead sphere is steadily sinking in glycerin whose viscosity 
is equal toil = 13.9 P. What is the maximum diameter of the sphere 
at which the flow around that sphere still remains laminar? It is 
known that the transition to the turbulent flow corresponds to Rey-
nolds number Re = 0.5. (Here the characteristic length is taken to 
be the sphere diameter.) 

1.339. A steel ball of diameter d = 3.0 mm starts sinking with 
zero initial velocity in olive oil whose viscosity is 1 = 0.90 P. How 
soon after the beginning of motion will the velocity of the ball differ 
from the steady-state velocity by n = 1.0%? 

1.8. RELATIVISTIC MECHANICS 

1 — (v/c)2  

where /0  is the proper length and Ato  is the proper time of the moving clock. 
• Lorentz transformation*: 

x—Vt t 

1

— XVIC 2  
— 	 e — 	 

	

(V/c)2 	 — (V/c)2 	• 	(1.8b)  

• Interval 812  is an invariant: 
s2 

2 f  =c2t22_1q2  

	

1 	 -= in , 	 (I .8c) 

where t12  is the time interval between events 1 and 2, /12  is the distance between 
the points at which these events occurred. 

• Transformation of velocity*: 

• (1.8d) 

(1.8e) 

(1.8f) 

(1.8g) 

vs—  V 	 vy  "1/-1 — (V/c)2  
' 

voc 	1 —vxV/c2 	' 	
v, 	

1 —vxV/c2  

• Relativistic mass and relativistic momentum: 

mo 	 MoV 
M 	 my = — 	 p= 

y 1— (v/02 	 y 1— (v/02 

where mo  is the rest mass, or, simply, the mass. 
• Relativistic equation of dynamics for a particle: 

dp 	F  
dt 

where p is the relativistic momentum of the particle. 
• Total and kinetic energies of a relativistic particle: 

E = mc2 = m0,2 + T, 	T -= (m — mo ) c2. 

* The reference frame K' is assumed to move with a velocity V in the posi-
tive direction of the x axis of the frame K, with the x' and x axes coinciding and 
the y' and y axes parallel. 

• Lorentz contraction of length and slowing of a moving chick: 

/ = /0  -V 1 —(v/c)2  , 	At= 	
A to 

(1.8a) 
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• Relationship between the energy and momentum of a relativistic par- 
tide 

E2  — p2c2  = mic4, pc = YT (T ±2moc4). 	 (1.8h) 

• When considering the collisions of particles it helps to use the follow-
ing invariant quantity: 

E2 p2c2 = mic4, 	 (1.81) 

where E and p are the total energy and momentum of the system prior to the 
collision, and mo  is the rest mass of the particle (or the system) formed. 

1.340. A rod moves lengthwise with a constant velocity v relative 
to the inertial reference frame K. At what value of v will the length 
of the rod in this frame be 1 = 0.5% less than its proper length? 

1.341. In a triangle the proper length of each side equals a. Find 
the perimeter of this triangle in the reference frame moving relative 
to it with a constant velocity V along one of its 

(a) bisectors; (b) sides. 
Investigate the results obtained at V <c and V -4- c, where c is the 
velocity of light. 

1.342. Find the proper length of a rod if in the laboratory frame 
of reference its velocity is v = c/2, the length 1 = 1.00 m, and the 
angle between the rod and its direction of motion is 0 = 45°. 

1.343. A stationary upright cone has a taper angle 0 =. 45°, 
and the area of the lateral surface So  = 4.0 m2. Find: (a) its 
taper angle; (b) its lateral surface area, in the reference frame 
moving with a velocity v = (4/5)c along the axis of the cone. 

1.344. With what velocity (relative to the reference frame K) did 
the clock move, if during the time interval t = 5.0 s, measured by 
the clock of the frame K, it became slow by At = 0.10 s? 

1.345. A rod flies with constant velocity past a mark which is 
stationary in the reference frame K. In the frame K it takes At 

20 ns for the rod to fly past the mark. In the reference frame fixed 
to the rod the mark moves past the rod for At' = 25 ns. Find the prop-
er length of the rod. 

1.346. The proper lifetime of an unstable particle is equal to 
Ato  = 10 ns. Find the distance this particle will traverse till its 
decay in the laboratory fraine of reference, where its lifetime is equal 
to At = 20 ns. 

1.347. In the reference frame K a muon moving with a velocity 
v = 0.990c travelled a distance 1 = 3.0 km from its birthplace to 
the point where it decayed. Find: 

(a) the proper lifetime of this muon; 
(b) the distance travelled by the muon in the frame K "from the 

muon's standpoint". 
1.348. Two particles moving in a laboratory frame of reference 

along the same straight line with the same velocity v = (314)c strike 
against a stationary target with the time interval At = 50 ns. Find 



the proper distance between the particles prior to their hitting the 
target. 

1.349. A rod moves along a ruler with a constant velocity. When 
the positions of both ends of the rod are marked simultaneously in 
the reference frame fixed to the ruler, the difference of readings on the 
ruler is equal to Axi  = 4.0 m. But when the positions of the rod's 
ends are marked simultaneously in the reference frame fixed to the 
rod, the difference of readings on the same ruler is equal to Axe  = 
= 9.0 m. Find the proper length of the rod and its velocity relative 
to the ruler. 

1.350. Two rods of the same proper length /0  move toward each 
other parallel to a common horizontal axis. In the reference frame 
fixed to one of the rods the time interval between the moments, when 
the right and left ends of the rods coincide, is equal to At. What is 
the velocity of one rod relative to the other? 

1.351. Two unstable particles move in the reference frame K 
along a straight line in the same direction with a velocity v = 0.990c. 
The distance between them in this reference frame is equal to / = 
= 120 m. At a certain moment both particles decay simultaneously 
in the reference frame fixed to them. What time interval between the 
moments of decay of the two particles will be observed in the frame 
K? Which particle decays later in the frame K? 

1.352. A rod AB oriented along the x axis of the reference frame K 
moves in the positive direction of the x axis with a constant velocity 
v. The point A is the forward end of the rod, and the point B its rear 
end. Find: 

(a) the proper length of the rod, if at the moment to  the coordi-
nate of the point A is equal to xA, and at the moment t8  the coordi-
nate of the point B is equal to x8; 

(b) what time interval should separate the markings of coordinates 
of the rod's ends in the frame K for the difference of coordinates to 
become equal to the proper length of the rod. 

1.353. The rod A'B' moves with a constant velocity v relative to 
the rod AB (Fig. 1.91). Both rods have the same proper length /0  and 

0 	 0--9- u 
0 	 0 
A 

Fig. 1.91. 

at the ends of each of them clocks are mounted, which are synchro-
nized pairwise: A with B and A' with B'. Suppose the moment when 
the clock B' gets opposite the clock A is taken for the beginning of 
the time count in the reference frames fixed to each of the rods. De-
termine: 
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(a) the readings of the clocks B and B' at the moment when they 
are opposite each other; 

(b) the same for the clocks A and A'. 
1.354. There are two groups of mutually synchronized clocks K 

and K' moving relative to each other with a velocity v as shown in 
Fig. 1.92. The moment when the clock A' gets opposite the clock A 

A' 

Fig. 1.92. 

is taken for the beginning of the time count. Draw the approximate 
position of hands of all the clocks at this moment "in terms of the 
K clocks"; "in terms of the K' clocks". 

1.355. The reference frame K' moves in the positive direction of 
the x axis of the frame K with a relative velocity V. Suppose that 
at the moment when the origins of coordinates 0 and 0' coincide, the 
clock readings at these points are equal to zero in both frames. Find 

the displacement velocity x of the point (in the frame K) at which 
the readings of the clocks of both reference frames will be permanent- 

ly identical. Demonstrate that x < V. 
1.356. At two points of the reference frame K two events occurred 

separated by a time interval At. Demonstrate that if these events obey 
the cause-and-effect relationship in the frame K (e.g. a shot fired 
and a bullet hitting a target), they obey that relationship in any 
other inertial reference frame K'. 

1.357. The space-time diagram of Fig. 1.93 shows three events A, 
B, and C which occurred on the x axis of some inertial reference 
frame. Find: 

(a) the time interval between the events A and B in the reference 
frame where the two events occurred at the same point; 

(b) the distance between the points at which the events A and C 
occurred in the reference frame where these two events are simulta-
neous. 

1.358. The velocity components of a particle moving in the xy 
plane of the reference frame K are equal to vx  and vi,. Find the veloc-
ity v' of this particle in the frame K' which moves with the velocity 
V relative to the frame K in the positive direction of its x axis. 

1.359. Two particles move toward each other with velocities 
vl  = 0.50c and v2  = 0.75c relative to a laboratory frame of reference. 
Find: 
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(a) the approach velocity of the particles in the laboratory frame 
of reference; 

(b) their relative velocity. 
1.360. Two rods having the same proper length / 0  move lengthwise 

toward each other parallel to a common axis with the same velocity 

C 

A 
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Fig. 1.93. 

v relative to the laboratory frame of reference. What is the length of 
each rod in the reference frame fixed to the other rod? 

1.361. Two relativistic particles move at right angles to each other 
in a laboratory frame of reference, one 'with the velocity v1  and the 
other with the velocity v2. Find their relative velocity. 

1.362. An unstable particle moves in the reference frame K' 
along its y' axis with a velocity v'. In its turn, the frame K' moves 
relative to the frame K in the positive direction of its x axis with a 
velocity V. The x' and x axes of the two reference frames coincide, the 
y' and y axes are parallel. Find the distance which the particle tra-
verses in the frame K, if its proper lifetime is equal to At0. 

1.363. A particle moves in the frame K with a velocity v at an 
angle 0 to the x axis. Find the corresponding angle in the frame K' 
moving with a velocity V relative to the frame K in the positive di-
rection of its x axis, if the x and x' axes of the two frames coincide. 

1.364. The rod AB oriented parallel to the x' axis of the reference 
frame K' moves in this frame with a velocity v' along its y' axis. In 
its turn, the frame K' moves with a velocity V relative to the frame 
K as shown in Fig. 1.94. Find the angle 0 between the rod and the 
x axis in the frame K. 

1.365. The frame K' moves with a constant velocity V relative to 
the frame K. Find the acceleration w' of a particle in the frame K', 

ct, m 

5 
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if in the frame K this particle moves with a velocity v and accelera-
tion w along a straight line 

(a) in the direction of the vector V; 
(b) perpendicular to the vector V. 
1.366. An imaginary space rocket launched from the Earth moves 

with an acceleration w' = 10g which is the same in every instanta-
neous co-moving inertial reference frame. The boost stage lasted 

y 

.*" 
Fig. 1.94. 

=1.0 year of terrestrial time. Find how much (in per cent) does 
the rocket velocity differ from the velocity of light at the end of 
the boost stage. What distance does the rocket cover by that moment? 

1.367. From the conditions of the foregoing problem determine 
the boost time To  in the reference frame fixed to the rocket. Remember 
that this time is defined by the formula 

ti 

do =-7 S yi —(v1c)2 dt, 

where dt is the time in the geocentric reference frame. 
1.368. How many times does the relativistic mass of a particle 

whose velocity differs from the velocity of light by 0.010% exceed 
its rest mass? 

1.369. The density of a stationary body is equal to po. Find the 
velocity (relative to the body) of the reference frame in which the 
density of the body is i1 = 25% greater than po. 

1.370. A proton moves with a momentum p = 10.0 GeV/c, where 
c is the velocity of light. How much (in per cent) does the proton 
velocity differ from the velocity of light? 

1.371. Find the velocity at which the relativistic momentum of 
a particle exceeds its Newtonian momentum yi = 2 times. 

1.372. What work has to be performed in order to increase the 
velocity of a particle of rest mass mo  from 0.60 c to 0.80 c? Compare 
the result obtained with the value calculated from the classical for-
mula. 

1.373. Find the velocity at which the kinetic energy of a particle 
equals its rest energy. 

1.374. At what values of the ratio of the kinetic energy to rest 
energy can the velocity of a particle be calculated from the classical 
formula with the relative error less than a = 0.010? 



1.375. Find how the momentum of a particle of rest mass m 0  de-
pends on its kinetic energy. Calculate the momentum of a proton 
whose kinetic energy equals 5C0 MeV. 

1.376. A beam of relativistic particles with kinetic energy T strikes 
against an absorbing target. The beam current equals I, the charge 
and rest mass of each particle are equal to e and mo  respectively. Find 
the pressure developed by the beam on the target surface, and the 
power liberated there. 

1.377. A sphere moves with a relativistic velocity v through a gas 
whose unit volume contains n slowly moving particles, each of mass 
m. Find the pressure p exerted by the gas on a spherical surface ele-
ment perpendicular to the velocity of the sphere, provided that the 
particles scatter elastically. Show that the pressure is the same both 
in the reference frame fixed to the sphere and in the reference frame 
fixed to the gas. 

1.378. A particle of rest mass mo  starts moving at a moment t = 
due to a constant force F. Find the time dependence of the particle's 
velocity and of the distance covered. 

1.379. A particle of rest mass mo  moves along the x axis of the 
frame K in accordance with the law x = y a2 c2t2, where a is 
a constant, c is the velocity of light, and t is time. Find the force 
acting on the particle in this reference frame. 

1.380. Proceeding from the fundamental equation of relativistic 
dynamics, find: 

(a) under what circumstances the acceleration of a particle coin-
cides in direction with the force F acting on it; 

(b) the proportionality factors relating the force F and the accele-
ration w in the cases when F.1 v and F II v, where v is the velocity 
of the particle. 

1.381. A relativistic particle with momentum p and total energy 
E moves along the x axis of the frame K. Demonstrate that in the 
frame K' moving with a constant velocity V relative to the frame K 
in the positive direction of its axis x the momentum and the total 
energy of the given particle are defined by the formulas: 

, px —Ev/c2 	 E- p,V 
Px 	, 	— 	 

1/1-132 
where [3 = V/c. 

1.382. The photon energy in the frame K is equal to a. Making use 
of the transformation formulas cited in the foregoing problem, find 
the energy a' of this photon in the frame K' moving with a velocity 
V relative to the frame K in the photon's motion direction. At what 
value of V is the energy of the photon equal to a' = 6/2? 

1.383. Demonstrate that the quantity E2  — p2c2  for a particle is 
an invariant, i.e. it has the same magnitude in all inertial reference 
frames. What is the magnitude of this invariant? 

1.384. A neutron with kinetic energy T = 2m0c2, where mo  is its 
rest mass, strikes another, stationary, neutron. Determine: 



(a) the combined kinetic energy T of both neutrons in the frame 
of their centre of inertia and the momentum of of each neutron in that 
frame; 

(b) the velocity of the centre of inertia of this system of particles. 
Instruction. Make use of the invariant E2  — p2c2  remaining con-

stant on transition from one inertial reference frame to another (E 
is the total energy of the system, p is its composite momentum). 

1.385. A particle of rest mass mo  with kinetic energy T strikes a 
stationary particle of the same rest mass. Find the rest mass and the 
velocity of the compound particle formed as a result of the collision. 

1.386. How high must be the kinetic energy of a proton striking 
another, stationary, proton for their combined kinetic energy in the 
frame of the centre of inertia to be equal to the total kinetic energy 
of two protons moving toward each other with individual kinetic 
energies T = 25.0 GeV? 

1.387. A stationary particle of rest mass mo  disintegrates into three 
particles with rest masses m1, m2, and m3. Find the maximum total 
energy that, for example, the particle m1  may possess. 

1.388. A relativistic rocket emits a gas jet with non-relativistic 
velocity u constant relative to the rocket. Find how the velocity v 
of the rocket depends on its rest mass m if the initial rest mass of 
the rocket equals mo. 



PART TWO 

THERMODYNAMICS 
AND MOLECULAR PHYSICS 

2.1. EQUATION OF THE GAS STATE. PROCESSES 

• Ideal gas law: 

pV = M RT, 

where M is the molar mass. 
• Barometric formula: 

Poe 
MghIRT 

where Po  is the pressure at the height h = 0. 
• Van der Weals equation of gas state (for a mole): 

a 
(p -HTI-1 ) (V m—b)-=RT, 

where VM  is the molar volume under given p and T. 

2.1. A vessel of volume V = 30 1 contains ideal gas at the tempera-
ture 0 °C. After a portion of the gas has been let out, the pressure in 
the vessel decreased by Op = 0.78 atm (the temperature remaining 
constant). Find the mass of the released gas. The gas density under 
the normal conditions p = 1.3 WI. 

2.2. Two identical vessels are connected by a tube with a valve 
letting the gas pass from one vessel into the other if the pressure differ-
ence Op 1.10 atm. Initially there was a vacuum in one vessel 
while the other contained ideal gas at a temperature t1  = 27 °C 
and pressure pi  = 1.00 atm. Then both vessels were heated to a tem-
perature t 2  = 107 °C. Up to what value will the pressure in the first 
vessel (which had vacuum initially) increase? 

2.3. A vessel of volume V = 20 1 contains a mixture of hydrogen 
and helium at a temperature t = 20 °C and pressure p = 2.0 atm. 
The mass of the mixture is equal to m ---- 5.0 g. Find the ratio of the 
mass of hydrogen to that of helium in the given mixture. 

2.4. A vessel contains a mixture of nitrogen (m1  = 7.0 g) and 
carbon dioxide (m2  = 11 g) at a temperature T = 290 K and pres-
sure pc, = 1.0 atm. Find the density of this mixture, assuming the 
gases to be ideal. 

2.5. A vessel of volume V = 7.5 1 contains a mixture of ideal gases 
at a temperature T = 300 K: v1  = 0.10 mole of oxygen, v2  = 0.20 
mole of nitrogen, and v3  = 0.30 mole of carbon dioxide. Assuming 
the gases to be ideal, find: 

(a) the pressure of the mixture; 

(2.1a) 

(2.1b) 

(2.1c) 
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Fig. 2.1. 

(b) the mean molar mass M of the given mixture which enters its 
equation of state pV = (mIM) RT, where m is the mass of the mix-
ture. 

2.6. A vertical cylinder closed from both ends is equipped with an 
easily moving piston dividing the volume into two parts, each con-
taining one mole of air. In equilibrium at T o  = 300 K the volume of 
the upper part is it = 4.0 times greater than that of the lower part. 
At what temperature will the ratio of these volumes be equal to 

= 3.0? 
2.7. A vessel of volume V is evacuated by means of a piston air 

pump. One piston stroke captures the volume AV. How many strokes 
are needed to reduce the pressure in the vessel times? The process 
is assumed to be isothermal, and the gas ideal. 

2.8. Find the pressure of air in a vessel being evacuated as a func-
tion of evacuation time t. The vessel volume is V, the initial pressure 
is Po. The process is assumed to be isothermal, and the evacuation 
rate equal to C and independent of pressure. 

Note. The evacuation rate is the gas volume being evacuated per 
unit time, with that volume being measured under the gas pressure 
attained by that moment. 

2.9. A chamber of volume V = 87 1 is evacuated by a pump whose 
evacuation rate (see Note to the foregoing problem) equals C 
= 10 1/s. How soon will the pressure in the cham-
ber decrease by it = 1000 times? 

2.10. A smooth vertical tube having two different 
sections is open from both ends and equipped with 
two pistons of different areas (Fig. 2.1). Each 
piston slides within a respective tube section. One 
mole of ideal gas is enclosed between the pistons 
tied with a non-stretchable thread. The cross-
sectional area of the upper piston is AS = 10 cm2  
greater than that of the lower one. The combined 
mass of the two pistons is equal to m = 5.0 kg. 
The outside air pressure is Po  = 1.0 atm. By how 
many kelvins must the gas between the pistons 
be heated to shift the pistons through 1 = 5.0 cm? 

2.11. Find the maximum attainable temperature of ideal gas in 
each of the following processes: 

(a) p = Po  — aV2; (b) p = Poe-Ov, 
where po,,a and p are positive constants, and V is the volume of one 
mole of gas. 

2.12. Find the minimum attainable pressure of ideal gas in the 
process T = To  + aV2, where To  and a are positive constants, and 
V is the volume of one mole of gas. Draw the approximate p vs V 
plot of this process. 

2.13. A tall cylindrical vessel with gaseous nitrogen is located in 
a uniform gravitational field in which the free-fall acceleration 
is equal to g. The temperature of the nitrogen varies along the height 



h so that its density is the same throughout the volume. Find the 
temperature gradient dT/dh. 

2.14. Suppose the pressure p and the density p of air are related 
as plpn = const regardless of height (n is a constant here). Find the 
corresponding temperature gradient. 

2.15. Let us assume that air is under standard conditions close to 
the Earth's surface. Presuming that the temperature and the molar 
mass of air are independent of height, find the air pressure at the 
height 5.0 km over the surface and in a mine at the depth 5.0 km 
below the surface. 

2.16. Assuming the temperature and the molar mass of air, as 
well as the free-fall acceleration, to be independent of the height, 
find the difference in heights at which the air densities at the tempe-
rature 0 °C differ 

(a) e times; (b) by = 1.0%. 
2.17. An ideal gas of molar mass M is contained in a tall vertical 

cylindrical vessel whose base area is S and height h. The temperature 
of the gas is T, its pressure on the bottom base is Po. Assuming the 
temperature and the free-fall acceleration g to be independent of the 
height, find the mass of gas in the vessel. 

2.18. An ideal gas of molar mass M is contained in a very tall 
vertical cylindrical vessel in the uniform gravitational field in which 
the free-fall acceleration equals g. Assuming the gas temperature to 
be the same and equal to T, find the height at which the centre of 
gravity of the gas is located. 

2.19. An ideal gas of molar mass /If is located in the uniform gravi-
tational field in which the free-fall acceleration is equal to g. Find 
the gas pressure as a function of height h, if p = Po  at h = 0, and 
the temperature varies with height as 

(a) T = To  (1 — ah); (b) T = To  (1 	ah), 
where a is a positive constant. 

2.20. A horizontal cylinder closed from one end is rotated with 
a constant angular velocity (0 about a vertical axis passing through 
the open end of the cylinder. The outside air pressure is equal to 
Po, the temperature to T, and the molar mass of air to M. Find the 
air pressure as a function of the distance r from the rotation axis. The 
molar mass is assumed to be independent of r. 

2.21. Under what pressure will carbon dioxide have the density 
p = 500 g/1 at the temperature T = 300 K? Carry out the calculations 
both for an ideal and for a Van der Waals gas. 

2.22. One mole of nitrogen is contained in a vessel of volume V = 
= 1.00 1. Find: 

(a) the temperature of the nitrogen at which the pressure can be 
calculated from an ideal gas law with an error = 10% (as compared 
with the pressure calculated from the Van der Waals equation of state); 

(b) the gas pressure at this temperature. 
2.23. One mole of a certain gas is contained in a vessel of volume 

V = 0.250 1. At a temperature Ti  = 300 K the gas pressure is pi  
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= 90 atm, and at a temperature T2 = 350 K the pressure is p, = 
= 110 atm. Find the Van der Waals parameters for this gas. 

2.24. Find the isothermal compressibility x of a Van der Waals 
gas as a function of volume V at temperature T. 

I. ay Note. By definition, x = — 

2.25. Making use of the result obtained in the foregoing problem, 
find at what temperature the isothermal compressibility x of a Van 
der Waals gas is greater than that of an ideal gas. Examine the case 
when the molar volume is much greater than the parameter b. 

2.2. THE FIRST LAW OF THERMODYNAMICS. 
HEAT CAPACITY 

• The first law of thermodynamics: 

Q= + A , 

where AU is the increment of the internal energy of the system. 
• Work performed by gas: 

A= p dV . 

• Internal energy of an ideal gas: 

m RT 	pV 
U C vT =— 	 — 

	

M 	M y-1 y- 1 • 

• Molar heat capacity in a polytropic process (p Vn = const): 

(n—  R 

	

C — 
 — 1 	n — 1 	(n — 1) (17 — 1) ' 

• Internal energy of one mole of a Van der Waals gas: 

U=CvT— a  V m  

2.26. Demonstrate that the interval energy U of the air in a room 
is independent of temperature provided the outside pressure p is 
constant. Calculate U, if p is equal to the normal atmospheric pres-
sure and the room's volume is equal to V = 40 m3. 

2.27. A thermally insulated vessel containing a gas whose molar 
mass is equal to M and the ratio of specific heats CpICv  = y moves 
with a velocity v. Find the gas temperature increment resulting from 
the sudden stoppage of the vessel. 

2.28. Two thermally insulated vessels 1 and 2 are filled with air 
and connected by a short tube equipped with a valve. The volumes 
of the vessels, the pressures and temperatures of air in them are 
known (V1, pi, T1  and V 2, p2, 7'2). Find the air temperature and 
pressure established after the opening of the valve. 

2.29. Gaseous hydrogen contained initially under standard con-
ditions in a sealed vessel of volume V = 5.0 1 was cooled by AT = 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

(2.2e) 



= 55 K . Find how much the internal energy of the gas will change and 
what amount of heat will be lost by the gas. 

2.30. What amount of heat is to be transferred to nitrogen in the 
isobaric heating process for that gas to perform the work A = 2.0 J? 

2.31. As a result of the isobaric heating by AT = 72 K one mole 
of a certain ideal gas obtains an amount of heat Q = 1..60 kJ. Find 
the work performed by the gas, the increment of its internal energy, 
and the value of y = Cp/Cv. 

2.32. Two moles of a certain ideal gas at a temperature To  = 300 K 
were cooled isochorically so that the gas pressure reduced n = 2.0 
times. Then, as a result of the isobaric process, the gas expanded till 
its temperature got back to the initial value. Find the total amount 
of heat absorbed by the gas in this process. 

2.33. Calculate the value of y = Cp/Cv  for a gaseous mixture con-
sisting of vi  = 2.0 moles of oxygen and v2  = 3.0 moles of carbon 
dioxide. The gases are assumed to be ideal. 

2.34. Find the specific heat capacities cv  and cp  for a gaseous mix-
ture consisting of 7.0 g of nitrogen and 20 g of argon. The gases are 
assumed to be ideal. 

2.35. One mole of a certain ideal gas is contained under a weight-
less piston of a vertical cylinder at a temperature T. The space over 
the piston opens into the atmosphere. What work has to be performed 
in order to increase isothermally the gas volume under the piston it 
times by slowly raising the piston? The friction of the piston against 
the cylinder walls is negligibly small. 

2.36. A piston can freely move inside a horizontal cylinder closed 
from both ends. Initially, the piston separates the inside space of 
the cylinder into two equal parts each of volume Vo, in which an 
ideal gas is contained under the same pressure Po  and at the same tem-
perature. What work has to be performed in order to increase isother-
mally the volume of one part of gas i1  times compared to that of the 
other by slowly moving the piston? 

2.37. Three moles of an ideal gas being initially at a temperature 
T o  = 273 K were isothermally expanded n = 5.0 times its initial 
volume and then isochorically heated so that the pressure in the final 
state became equal to that in the initial state. The total amount of 
heat transferred to the gas during the process equals Q = 80 kJ. 
Find the ratio y = Cp/Cv  for this gas. 

2.38. Draw the approximate plots of isochoric, isobaric, isother-
mal, and adiabatic processes for the case of an ideal gas, using the 
following variables: 

(a) p, T; (b) V, T. 
2.39. One mole of oxygen being initially at a temperature To  = 

= 290 K is adiabatically compressed to increase its pressure 
= 10.0 times. Find: 

(a) the gas temperature after the compression; 
(b) the work that has been performed on the gas. 
2.40. A certain mass of nitrogen was compressed ii = 5.0 times 
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(in terms of volume), first adiabatically, and then isothermally. In 
both cases the initial state of the gas was the same. Find the ratio of 
the respective works expended in each compression. 

2.41. A heat-conducting piston can freely move inside a closed 
thermally insulated cylinder with an ideal gas. In equilibrium the 
piston divides the cylinder into two equal parts, the gas temperature 
being equal to To. The piston is slowly displaced. Find the gas tem-
perature as a function of the ratio of the volumes of the greater and 
smaller sections. The adiabatic exponent of the gas is equal to y. 

2.42. Find the rate v with which helium flows out of a thermally 
insulated vessel into vacuum through a small hole. The flow rate of 
the gas inside the vessel is assumed to be negligible under these con-
ditions. The temperature of helium in the vessel is T = 1,000 K. 

2.43. The volume of one mole of an ideal gas with the adiabatic 
exponent y is varied according to the law V = alT, where a is a con-
stant. Find the amount of heat obtained by the gas in this process 
if the gas temperature increased by AT. 

2.44. Demonstrate that the process in which the work performed 
by an ideal gas is proportional to the corresponding increment of its 
internal energy is described by the equation pVn = const, where n 
is a constant. 

2.45. Find the molar heat capacity of an ideal gas in a polytropic 
process pVn = const if the adiabatic exponent of the gas is equal to 
'. At what values of the polytropic constant n will the heat capacity 
of the gas be negative? 

2.46. In a certain polytropic process the volume of argon was in-
creased a = 4.0 times. Simultaneously, the pressure decreased 

= 8.0 times. Find the molar heat capacity of argon in this process, 
assuming the gas to be ideal. 

2.47. One mole of argon is expanded polytropically, the polytrop-
ic constant being n = 1.50. In the process, the gas temperature 
changes by AT = — 26 K. Find: 

(a) the amount of heat obtained by the gas; 
(b) the work performed by the gas. 
2.48. An ideal gas whose adiabatic exponent equals y is expanded 

according to the law p = aV , where a is a constant. The initial vol-
ume of the gas is equal to V0. As a result of expansion the volume in-
creases i  times. Find: 

(a) the increment of the internal energy of the gas; 
(b) the work performed by the gas; 
(c) the molar heat capacity of the gas in the process. 
2.49. An ideal gas whose adiabatic exponent equals y is expanded 

so that the amount of heat transferred to the gas is equal to the de-
crease of its internal energy. Find: 

(a) the molar heat capacity of the gas in this process; 
(b) the equation of the process in the variables T, V; 
(c) the work performed by one mole of the gas when its volume 

increases 11 times if the initial temperature of the gas is To. 



2.50. One mole of an ideal gas whose adiabatic exponent equals 
y undergoes a process in which the gas pressure relates to the tempera-
ture as p = aTa, where a and a are constants. Find: 

(a) the work performed by the gas if its temperature gets an in-
crement AT; 

(b) the molar heat capacity of the gas in this process; at what value 
of a will the heat capacity be negative? 

2.51. An ideal gas with the adiabatic exponent y undergoes a 
process in which its internal energy relates to the volume as U = aVa, 
where a and a are constants. Find: 

(a) the work performed by the gas and the amount of heat to be 
transferred to this gas to increase its internal energy by AU; 

(b) the molar heat capacity of the gas in this process. 
2.52. An ideal gas has a molar heat capacity Cv  at constant 

volume. Find the molar heat capacity of this gas as a function of its 
volume V, if the gas undergoes the following process: 

(a) T = T oeav ; (b) p = poeary, 
where To, po, and a are constants. 

2.53. One mole of an ideal gas whose adiabatic exponent equals y 
undergoes a process p = po  alV, where Po  and a are positive con-
stants. Find: 

(a) heat capacity of the gas as a function of its volume; 
(b) the internal energy increment of the gas, the work performed 

by it, and the amount of heat transferred to the gas, if its volume 
increased from V1  to V2. 

2.54. One mole of an ideal gas with heat capacity at constant 
pressure Cp  undergoes the process T = T o  + aV, where T o  and a 
are constants. Find: 

(a) heat capacity of the gas as a function of its volume; 
(b) the amount of heat transferred to the gas, if its volume in-

creased from V1  to V 2. 
2.55. For the case of an ideal gas find the equation of the process 

(in the variables T, V) in which the molar heat capacity varies as: 
(a) C Cv  aT; (b) C = Cv  1W; (c) C = Cv  ap, 

where a, 3, and a are constants. 
2.56. An ideal gas has an adiabatic exponent y. In some process 

its molar heat capacity varies as C = alT, where a is a constant. 
Find: 

(a) the work performed by one mole of the gas during its heating 
from the temperature To  to the temperature n times higher; 

(b) the equation of the process in the variables p, V. 
2.57. Find the work performed by one mole of a Van der Waals 

gas during its isothermal expansion from the volume V1  to V2 at 
a temperature T. 

2.58. One mole of oxygen is expanded from a volume V1  = 
= 1.00 1 to V2 = 5.0 1 at a constant temperature T = 280 K. Cal-
culate: 

(a) the increment of the internal energy of the gas: 
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(b) the amount of the absorbed heat. 
The gas is assumed to be a Van der Waals gas. 

2.59. For a Van der Waals gas find: 
(a) the equation of the adiabatic curve in the variables T, V; 
(b) the difference of the molar heat capacities CI, — Cv  as a func-

tion of T and V. 
2.60. Two thermally insulated vessels are interconnected by a 

tube equipped with a valve. One vessel of volume V1  = 10 1 contains 
v = 2.5 moles of carbon dioxide. The other vessel of volume V 2  = 
100 1 is evacuated. The valve having been opened, the gas adiabatic-
ally expanded. Assuming the gas to obey the Van der Waals equation, 
find its temperature change accompanying the expansion. 

2.61. What amount of heat has to be transferred to v = 3.0 moles 
of carbon dioxide to keep its temperature constant while it ex-
pands into vacuum from the volume V1  = 5.0 1 to V 2  = 10 1? The 
gas is assumed to be a Van der Waals gas. 

2.3. KINETIC THEORY OF GASES. 
BOLTZMANN' S LAW AND MAXWELL'S DISTRIBUTION 

• Number of collisions exercised by gas molecules on a unit area of the 
wall surface per unit time: 

1 
v= 

4 
— n (v), 

where n is the concentration of molecules, and (v) is their mean velocity. 
• Equation of an ideal gas state: 

p = nkT. 

• Mean energy of molecules: 

(e) = 
2 
— kT, 	 (2.3c) 

where i is the sum of translational, rotational, and the double number of vibra-
tional degrees of freedom. 

• Maxwellian distribution: 
m  11/2 -mv2/21a 

dvx, 	 (2.3d) dN (vx)=-- N ( 
2nkT ) e s  

dN (v)= N 	 e-mv2/2kT 4:tv2 dv. 	 (2.3e) ( 

m   \ 3/2 

 2nkT ) 

• Maxwellian distribution in a reduced form: 

dN (u)= N 
4

e-u2  U2  du, 	 (2.3f) 

where u = v/vp, vp  is the most probable velocity. 
• The most probable, the mean, and the root mean square velocities of 

molecules: 

(2.3a) 

(2.3b) 

n  kT 	kT 	 kT 
Vp 	(V) = 	 Vsq  = 	- . 	(2.3g) 



• Boltzmann's formula: 
n=  noe—(u—uo/hT, 	 (2.3h) 

where U is the potential energy of a molecule. 

2.62. Modern vacuum pumps permit the pressures down to p = 
= 4.10-13  atm to be reached at room temperatures. Assuming that 
the gas exhausted is nitrogen, find the number of its molecules per 
1 cm3  and the mean distance between them at this pressure. 

2.63. A vessel of volume V .= 5.0 1 contains m = 1.4 g of nitrogen 
at a temperature T = 1800 K. Find the gas pressure, taking into 
account that 11 = 30% of molecules are disassociated into atoms at 
this temperature. 

2.64. Under standard conditions the density of the helium and 
nitrogen mixture equals p = 0.60 g/l. Find the concentration of 
helium atoms in the given mixture. 

2.65. A parallel beam of nitrogen molecules moving with velocity 
v = 400 m/s impinges on a wall at an angle 0 = 30° to its normal. 
The concentration of molecules in the beam n = 0.9.1019  cm-3. 
Find the pressure exerted by the beam on the wall assuming the mo-
lecules to scatter in accordance with the perfectly elastic collision 
law. 

2.66. How many degrees of freedom have the gas molecules, if 
under standard conditions the gas density is p = 1.3 mg/cm3  and the 
velocity of sound propagation in it is v = 330 m/s. 

2.67. Determine the ratio of the sonic velocity v in a gas to the 
root mean square velocity of molecules of this gas, if the molecules 
are 

(a) monatomic; (b) rigid diatomic. 
2.68. A gas consisting of N-atomic molecules has the temperature 

T at which all degrees of freedom (translational, rotational, and vi-
brational) are excited. Find the mean energy of molecules in such 
a gas. What fraction of this energy corresponds to that of transla-
tional motion? 

2.69. Suppose a gas is heated up to a temperature at which all 
degrees of freedom (translational, rotational, and vibrational) of 
its molecules are excited. Find the molar heat capacity of such a gas 
in the isochoric process, as well as the adiabatic exponent y, if the 
gas consists of 

(a) diatomic; 
(b) linear N-atomic; 
(c) network N-atomic 

molecules. 
2.70. An ideal gas consisting of N-atomic molecules is expanded 

isobarically. Assuming that all degrees of freedom (translational, 
rotational, and vibrational) of the molecules are excited, find what 
fraction of heat transferred to the gas in this process is spent to 
perform the work of expansion. How high is this fraction in the case 
of a monatomic gas? 
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2.71. Find the molar mass and the number of degrees of freedom 
of molecules in a gas if its heat capacities are known: cv  
= 0.65 J/(g•K) and cp  = 0.91 J/(g•K). 

2.72. Find the number of degrees of freedom of molecules in a gas 
whose molar heat capacity 

(a) at constant pressure is equal to Cp  = 29 J/(mol.K); 
(b) is equal to C = 29 J/(mol•K) in the process pT = const. 
2.73. Find the adiabatic exponent y for a mixture consisting of 

v1  moles of a monatomic gas and v2  moles of gas of rigid diatomic 
molecules. 

2.74. A thermally insulated vessel with gaseous nitrogen at a 
temperature t = 27 °C moves with velocity v = 100 m/s. How much 
(in per cent) and in what way will the gas pressure change on a sudden 
stoppage of the vessel? 

2.75. Calculate at the temperature t = 17 °C: 
(a) the root mean square velocity and the mean kinetic energy of 

an oxygen molecule in the process of translational motion; 
(b) the root mean square velocity of a water droplet of diameter 

d = 0.10 tim suspended in the air. 
2.76. A gas consisting of rigid diatomic molecules is expanded 

adiabatically. How many times has the gas to be expanded to reduce 
the root mean square velocity of the molecules = 1.50 times? 

2.77. The mass m = 15 g of nitrogen is enclosed in a vessel at 
a temperature T = 300 K. What amount of heat has to be transferred 
to the gas to increase the root mean square velocity of its molecules 

= 2.0 times? 
2.78. The temperature of a gas consisting of rigid diatomic mole-

cules is T = 300 K. Calculate the angular root mean square velocity 
of a rotating molecule if its moment of inertia is equal to I = 
= 2.1.10-39  g• cm2. 

2.79. A gas consisting of rigid diatomic molecules was initially 
under standard conditions. Then the gas was compressed adiaba-
tically rl = 5.0 times. Find the mean kinetic energy of a rotating 
molecule in the final state. 

2.80. How will the rate of collisions of rigid diatomic molecules 
against the vessel's wall change, if the gas is expanded adiabatically 
rl times? 

2.81. The volume of gas consisting of rigid diatomic molecules 
was increased ri = 2.0 times in a polytropic process with the molar 
heat capacity C = R. How many times will the rate of collisions of 
molecules against a vessel's wall be reduced as a result of this pro-
cess? 

2.82. A gas consisting of rigid diatomic molecules was expanded 
in a polytropic process so that the rate of collisions of the molecules 
against the vessel's wall did not change. Find the molar heat capacity 
of the gas in this process. 

2.83. Calculate the most probable, the mean, and the root mean 
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square velocities of a molecule of a gas whose density under stan-
dard atmospheric pressure is equal to p = 1.00 g/1. 

2.84. Find the fraction of gas molecules whose velocities differ 
by less than 6r) = 1.00% from the value of 

(a) the most probable velocity; 
(b) the root mean square velocity. 
2.85. Determine the gas temperature at which 
(a) the root mean square velocity of hydrogen molecules exceeds 

their most probable velocity by Av = 400 m/s; 
(b) the velocity distribution function F (v) for the oxygen mole-

cules will have the maximum value at the velocity v = 420 m/s. 
2.86. In the case of gaseous nitrogen find: 
(a) the temperature at which the velocities of the molecules v1  = 

= 300 m/s and v2  = 600 m/s are associated with equal values of 
the Maxwell distribution function F (v); 

(b) the velocity of the molecules v at which the value of the Max-
well distribution function F (v) for the temperature To  will be the 
same as that for the temperature rl times higher. 

2.87. At what temperature of a nitrogen and oxygen mixture do 
the most probable velocities of nitrogen and oxygen molecules differ 
by Av = 30 m/s? 

2.88. The temperature of a hydrogen and helium mixture is T 
300 K. At what value of the molecular velocity v will the Maxwell 

distribution function F (v) yield the same magnitude for both gases? 
2.89. At what temperature of a gas will the number of molecules, 

whose velocities fall within the given interval from v to v dv, 
be the greatest? The mass of each molecule is equal to m. 

2.90. Find the fraction of molecules whose velocity projections on 
the x axis fall within the interval from vx  to vx  dv x, while the 
moduli of perpendicular velocity components fall within the inter-
val from v1  to v1  + dv1. The mass of each molecule is m, and the 
temperature is T. 

2.91. Using the Maxwell distribution function, calculate the 
mean velocity projection (vx ) and the mean value of the modulus of 
this projection (I vx  I) if the mass of each molecule is equal to m 
and the gas temperature is T. .  

2.92. From the Maxwell distribution function find (vi), the mean 
value of the squared vx  projection of the molecular velocity in a gas 
at a temperature T. The mass of each molecule is equal to m. 

2.93. Making use of the Maxwell distribution function, calculate 
the number v of gas molecules reaching a unit area of a wall per unit 
time, if the concentration of molecules is equal to n, the temperature 
to T, and the mass of each molecule is m. 

2.94. Using the Maxwell distribution function, determine the 
pressure exerted by gas on a wall, if the gas temperature is T and 
the concentration of molecules is n. 

2.95. Making use of the Maxwell distribution function, find 
(1/v), the mean value of the reciprocal of the velocity of molecules 
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in an ideal gas at a temperature T, if the mass of each molecule is 
equal to m. Compare the value obtained with the reciprocal of the 
mean velocity. 

2.96. A gas consists of molecules of mass m and is at a temperature 
T. Making use of the Maxwell velocity distribution function, find 
the corresponding distribution of the molecules over the kinetic 
energies c. Determine the most probable value of the kinetic energy 
cp. Does ep correspond to the most probable velocity? 

2.97. What fraction of monatomic molecules of a gas in a thermal 
equilibrium possesses kinetic energies differing from the mean value 
by 61 = 1.0 % and less? 

2.98. What fraction of molecules in a gas at a temperature T 
has the kinetic energy of translational motion exceeding co  if co  
>> kT? 

2.99. The velocity distribution of molecules in a beam coming 
out of a hole in a vessel is described by the function F (v)= A V3e-mv2/2117', 

where T is the temperature of the gas in the vessel. Find the most 
probable values of 

(a) the velocity of the molecules in the beam; compare the result 
obtained with the most probable velocity of the molecules in the 
vessel; 

(b) the kinetic energy of the molecules in the beam. 
2.100. An ideal gas consisting of molecules of mass m with concen-

tration n has a temperature T. Using the Maxwell distribution func-
tion, find the number of molecules reaching a unit area of a wall 
at the angles between 0 and 0 dO to its normal per unit time. 

2.101. From the conditions of the foregoing problem find the num-
ber of molecules reaching a unit area of a wall with the velocities 
in the interval from v to v dv per unit time. 

2.102. Find the force exerted on a particle by a uniform field if 
the concentrations of these particles at two levels separated by the 
distance Ala = 3.0 cm (along the field) differ by 1 = 2.0 times. 
The temperature of the system is equal to T = 280 K. 

2.103. When examining the suspended gamboge droplets under 
a microscope, their average numbers in the layers separated by the 
distance h = 40 urrn were found to differ by ri = 2.0 times. The envi-
ronmental temperature is equal to T = 290 K. The diameter of 
the droplets is d = 0.40 um, and their density exceeds that of the 
surrounding fluid by Ap = 0.20 g/cm3. Find Avogadro's number 
from these data. 

2.104. Suppose that Tio  is the ratio of the molecular concentration 
of hydrogen to that of nitrogen at the Earth's surface, while 11  is 
the corresponding ratio at the height h = 3000 m. Find the ratio 
TA°  at the temperature T = 280 K, assuming that the temperature 
and the free fall acceleration are independent of the height. 

2.105. A tall vertical vessel contains a gas composed of two kinds 
of molecules of masses m1  and m2, with m2  > m1. The concentrations 
of these molecules at the bottom of the vessel are equal to n1  and n2 



respectively, with n2  > n1. Assuming the temperature T and the 
free-fall acceleration g to be independent of the height, find the height 
at which the concentrations of these kinds of molecules are equal. 

2.106. A very tall vertical cylinder contains carbon dioxide at 
a certain temperature T. Assuming the gravitational field to be uni-
form, find how the gas pressure on the bottom of the vessel will 
change when the gas temperature increases times. 

2.107. A very tall vertical cylinder contains a gas at a tempera-
ture 7'. Assuming the gravitational field to be uniform, find the mean 
value of the potential energy of the gas molecules. Does this value 
depend on whether the gas consists of one kind of molecules or of 
several kinds? 

2.108. A horizontal tube of length 1 = 100 cm closed from both 
ends is displaced lengthwise with a constant acceleration w. The tube 
contains argon at a temperature T = 330 K. At what value of w will 
the argon concentrations at the tube's ends differ by i = 1.0%? 

2.109. Find the mass of a mole of colloid particles if during their 
centrifuging with an angular velocity co about a vertical axis the con-
centration of the particles at the distance r2  from the rotation axis is 
11 times greater than that at the distance r1  (in the same horizontal 
plane). The densities of the particles and the solvent are equal to 
p and to Po  respectively. 

2.110. A horizontal tube with closed ends is rotated with a cons-
tant angular velocity co about a vertical axis passing through one of 
its ends. The tube contains carbon dioxide at a temperature T 

300 K. The length of the tube is 1 = 100 cm. Find the value co 
at which the ratio of molecular concentrations at the opposite ends 
of the tube is equal to 1-1 = 2.0. 

2.111. The potential energy of gas molecules in a certain central 
field depends on the distance r from the field's centre as U (r) = ar2, 
where a is a positive constant. The gas temperature is 7', the concen-
tration of molecules at the centre of the field is no. Find: 

(a) the number of molecules located at the distances between 
r and r + dr from the centre of the field; 

(b) the most probable distance separating the molecules from the 
centre of the field; 

(c) the fraction of molecules located in the spherical layer between 
r and r ± dr; 

(d) how many times the concentration of molecules in the centre 
of the field will change if the temperature decreases i  times. 

2.112. From the conditions of the foregoing problem find: 
(a) the number of molecules whose potential energy lies within 

the interval from U to U dU; 
(b) the most probable value of the potential energy of a molecule; 

compare this value with the potential energy of a molecule located 
at its most probable distance from the centre of the field. 
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2.4. THE SECOND LAW OF THERMODYNAMICS. 
ENTROPY 

• Heat engine efficiency: 

(2.4a) 

where Q1  is the heat obtained by the working substance, if); is the heat released 
by the working substance. 

• Efficiency of a Carnot cycle: 

	

_  -r2 	
(2.4b) 

' 

where T1  and T2 are the temperatures of the hot and cold bodies respectively. 
• Clausius inequality: 

(2  (2.4c) 

where 6Q is the elementary amount of heat transferred to the system (6Q is an 
algebraic quantity). 

• Entropy increment of a system: 

	

AS . 	 (2.4d) 

• Fundamental relation of thermodynamics: 

T dS 	dU 	p dV. 	 (2.4e) 

• Relation between the entropy and the statistical weight SZ (the thermo-
dynamic probability): 

	

S = k In 52, 	 (2.4f) 

where k is the Boltzmann constant. 
2.113. In which case will the efficiency of a Carnot cycle be higher: 

when the hot body temperature is increased by AT, or when the cold 
body temperature is decreased by the same magnitude? 

2.114. Hydrogen is used iu a Carnot cycle as a working substance. 
Find the efficiency of the cycle, if as a result of an adiabatic expansion 

(a) the gas volume increases n = 2.0 times; 
(b) the pressure decreases n = 2.0 times. 
2.115. A heat engine employing a Carnot cycle with an efficiency 

of i = 10% is used as a refrigerating machine, the thermal reservoirs 
being the same. Find its refrigerating efficiency E. 

2.116. An ideal gas goes through a cycle consisting of alternate 
isothermal and adiabatic curves (Fig. 2.2). The isothermal processes 
proceed at the temperatures T1, T2, and T3. Find the efficiency of 
such a cycle, if in each isothermal expansion the gas volume increases 
in the same proportion. 

2.117. Find the efficiency of a cycle consisting of two isochoric 
and two adiabatic lines, if the volume of the ideal gas changes 
n = 10 times within the cycle. The working substance is nitrogen. 
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2.118. Find the efficiency of a cycle consisting of two isobaric and 
two adiabatic lines, if the pressure changes n times within the cycle. 
The working substance is an ideal gas whose adiabatic exponent is 
equal to y. 

2.119. An ideal gas whose adiabatic exponent equals y goes through 
a cycle consisting of two isochoric and two isobaric lines. Find the 
efficiency of such a cycle, if the absolute temperature of the gas rises 
n times both in the isochoric heating and in 
the isobaric expansion. 	 7; 

2.120. An ideal gas goes through a cycle 
consisting of 

(a) isochoric, adiabatic, and isothermal 
lines; 

(b) isobaric, adiabatic, and isothermal 
lines, 
with the isothermal process proceeding at 	 V 
the minimum temperature of the whole cycle. 
Find the efficiency of each cycle if the abso- 
lute temperature varies n-fold within the cycle. 

2.121. The conditions are the same as in the foregoing problem 
with the exception that the isothermal process proceeds at the max-
imum temperature of the whole cycle. 

2.122. An ideal gas goes through a cycle consisting of isothermal, 
polytropic, and adiabatic lines, with the isothermal process proceed-
ing at the maximum temperature of the whole cycle. Find the effic-
iency of such a cycle if the absolute temperature varies n-fold within 
the cycle. 

2.123. An ideal gas with the adiabatic exponent y goes through 
a direct (clockwise) cycle consisting of adiabatic, isobaric, and isocho-
ric lines. Find the efficiency of the cycle if in the adiabatic process 
the volume of the ideal gas 

(a) increases n-fold; (b) decreases n-fold. 
2.124. Calculate the efficiency of a cycle consisting of isothermal, 

isobaric, and isochoric lines, if in the isothermal process the volume 
of the ideal gas with the adiabatic exponent y 

(a) increases n-fold; (b) decreases n-fold. 
2.125. Find the efficiency of a cycle consisting of two isochoric and 

two isothermal lines if the volume varies v-fold and the absolute 
temperature r-fold within the cycle. The working substance is an 
ideal gas with the adiabatic exponent y. 

2.126. Find the efficiency of a cycle consisting of two isobaric and 
two isothermal lines if the pressure varies n-fold and the absolute 
temperature ti-fold within the cycle. The working substance is an 
ideal gas with the adiabatic exponent y. 

2.127. An ideal gas with the adiabatic exponent y goes through 
a cycle (Fig. 2.3) within which the absolute temperature varies 
t-fold. Find the efficiency of this cycle. 

2.128. Making use of the Clausius inequality, demonstrate that 

Fig. 2.2. 
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all cycles having the same maximum temperature Tmax  and the 
same minimum temperature Tmin  are less efficient compared to the 
Carnot cycle with the same Tmax  and Tniin • 

2.129. Making use of the Carnot theorem, show that in the case 
of a physically uniform substance whose state is defined by the para-
meters T and V 

(aU/aV)T  = T (01310T)v — 

where U (T, V) is the internal energy of the substance. 
Instruction. Consider the infinitesimal Carnot cycle in the variables 

p, V. 
2.130. Find the entropy increment of one mole of carbon dioxide 

when its absolute temperature increases n = 2.0 times if the process 
of heating is 

(a) isochoric; (b) isobaric. 
The gas is to be regarded as ideal. 
2.131. The entropy of v = 4.0 moles of an ideal gas increases by 

AS = 23 J/K due to the isothermal expansion. How many times 
should the volume v = 4.0 moles of the gas 
be increased? 

2.132. Two moles of an ideal gas are cooled 
isochorically and then expanded isobarically to 
lower the gas temperature back to the initial val-
ue. Find the entropy increment of the gas if in 
this process the gas pressure changed n = 3.3 
times. 

2.133. Helium of mass m =1.7 g is expanded 
adiabatically n = 3.0 times and then compressed 
isobarically down to the initial volume. 	0 
Find the entropy increment of the gas in this 	Fig. 2.3. 
process. 

2.134. Find the entropy increment of v = 2.0 
moles of an ideal gas whose adiabatic exponent y = 1.30 if, as 
a result of a certain process, the gas volume increased a = 2.0 
times while the pressure dropped 13 = 3.0 times. 

2.135. Vessels l and 2 contain v = 1.2 moles of gaseous helium. 
The ratio of the vessels' volumes V21V1  = a = 2.0, and the ratio of 
the absolute temperatures of helium in them T1/T2  = 6 = 1.5. 
Assuming the gas to be ideal, find the difference of gas entropies in 
these vessels, S2 - S1. 

2.136. One mole of an ideal gas with the adiabatic exponent y goes 
through a polytropic process as a result of which the absolute tem-
perature of the gas increases T--fold. The polytropic constant equals n. 
Find the entropy increment of the gas in this process. 

2.137. The expansion process of v = 2.0 moles of argon proceeds 
so that the gas pressure increases in direct proportion to its volume. 



Find the entropy increment of the gas in this process provided its 
volume increases a = 2.0 times. 

2.138. An ideal gas with the adiabatic exponent y goes through 
a process p = po  — aV, where pc, and a are positive constants, 
and V is the volume. At what volume will the gas entropy have the 
maximum value? 

2.139. One mole of an ideal gas goes through a process in which 
the entropy of the gas changes with temperature T as S = aT 

Cv  In T, where a is a positive constant, Cv  is the molar heat 
capacity of this gas at constant volume. Find the volume dependence 
of the gas temperature in this process if T = T o  at V = Vo. 

2.140. Find the entropy increment of one mole of a Van der Waals 
gas due to the isothermal variation of volume from V1  to V 2. The 
Van der Waals corrections are assumed to be known. 

2.141. One mole of a Van der Waals gas which had initially the 
volume V1  and the temperature T1  was transferred to the state with 
the volume V2 and the temperature T2. Find the corresponding 
entropy increment of the gas, assuming its molar heat capacity 
Cy to be known. 

2.142. At very low temperatures the heat capacity of crystals is 
equal to C = a T3, where a is a constant. Find the entropy of a crystal 
as a function of temperature in this temperature interval. 

2.143. Find the entropy increment of an aluminum bar of mass 
m = 3.0 kg on its heating from the temperature T1  = 300 K up 
to T2 = 600 K if in this temperature interval the specific heat capac-
ity of aluminum varies as c = a + bT, where a = 0.77 J/(g• K), 
b = 0.46 mJ/(g• K2). 

2.144. In some process the temperature of a substance depends on 
its entropy S as T = aSn, where a and n are constants. Find the 
corresponding heat capacity C of the substance as a function of S. 
At what condition is C < 0? 

2.145. Find the temperature T as a function of the entropy S 
of a substance for a polytropic process in which the heat capacity of 
the substance equals C. The entropy of the substance is known to be 
equal to So  at the temperature To. Draw the approximate plots 
T (S) for C > 0 and C < 0. 

2.146. One mole of an ideal gas with heat capacity Cv  goes through 
a process in which its entropy S depends on T as S = a/T, where a 
is a constant. The gas temperature varies from T1  to T2. Find: 

(a) the molar heat capacity of the gas as a function of its tempe-
rature; 

(b) the amount of heat transferred to the gas; 
(c) the work performed by the gas. 
2.147. A working substance goes through a cycle within which 

the absolute temperature varies n-fold, and the shape of the cycle 
is shown in (a) Fig. 2.4a; (b) Fig. 2.4b, where T is the absolute 
temperature, and S the entropy. Find the efficiency of each cycle. 



2.148. One of the two thermally insulated vessels interconnected 
by a tube with a valve contains v = 2.2 moles of an ideal gas. The 
other vessel is evacuated. The valve having been opened, the gas 
increased its volume n = 3.0 times. Find the entropy increment of 
the gas. 

2.149. A weightless piston divides a thermally insulated cylinder 
into two equal parts. One part contains one mole of an ideal gas 
with adiabatic exponent y, the other is evacuated. The initial gas 
temperature is To. The piston is released and the gas fills the whole 
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Fig. 2.4. 

volume of the cylinder. Then the piston is slowly displaced back to 
the initial position. Find the increment of the internal energy and 
the entropy of the gas resulting from these two processes. 

2.150. An ideal gas was expanded from the initial state to the 
volume V without any heat exchange with the surrounding bodies. 
Will the final gas pressure be the same in the case of (a) a fast and 
in the case of (b) a very slow expansion process? 

2.151. A thermally insulated vessel is partitioned into two parts 
so that the volume of one part is n = 2.0 times greater than that of 
the other. The smaller part contains v1  = 0.30 mole of nitrogen, and 
the greater one v2  = 0.70 mole of oxygen. The temperature of the 
gases is the same. A hole is punctured in the partition and the gases 
are mixed. Find the corresponding increment of the system's entropy, 
assuming the gases to be ideal. 

2.152. A piece of copper of mass m1  = 300 g with initial tem-
perature t1  = 97 °C is placed into a calorimeter in which the water 
of mass m2  = 100 g is at a temperature t2  = 7 °C. Find the entropy 
increment of the system by the moment the temperatures equalize. 
The heat capacity of the calorimeter itself is negligibly small. 

2.153. Two identical thermally insulated vessels interconnected 
by a tube with a valve contain one mole of the same ideal gas each. 
The gas temperature in one vessel is equal to T1  and in the other, T2. 
The molar heat capacity of the gas of constant volume equals Cv. 
The valve having been opened, the gas comes to a new equilibrium 
state. Find the entropy increment AS of the gas. Demonstrate that 
AS > 0. 

2.154. N atoms of gaseous helium are enclosed in a cubic vessel 
of volume 1.0 cm3  at room temperature. Find: 
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(a) the probability of atoms gathering in one half of the vessel; 
(b) the approximate numerical value of N ensuring the occurrence 

	

of this event within the time interval t 	101° years (the age of the 
Universe). 

2.155. Find the statistical weight of the most probable distribution 
of N = 10 identical molecules over two halves of the cylinder's 
volume. Find also the probability of such a distribution. 

2.156. A vessel contains N molecules of an ideal gas. Dividing 
mentally the vessel into two halves A and B, find the probability 
that the half A contains n molecules. Consider the cases when N = 5 
and n = 0, 1, 2, 3, 4, 5. 

2.157. A vessel of volume V, contains N molecules of an ideal 
gas. Find the probability of n molecules getting into a certain separat-
ed part of the vessel of volume V. Examine, in particular, the case 
V = V0/2. 

2.158. An ideal gas is under standard conditions. Find the diame-
ter of the sphere within whose volume the relative fluctuation of the 
number of molecules is equal to i = 1.0.10-3. What is the average 
number of molecules inside such a sphere? 

2.159. One mole of an ideal gas consisting of monatomic molecules 
is enclosed in a vessel at a temperature T, = 300 K. How many 
times and in what way will the statistical weight of this system 
(gas) vary if it is heated isochorically by AT = 1.0 K? 

2.5. LIQUIDS. CAPILLARY EFFECTS 

• Additional (capillary) pressure in a liquid under an arbitrary surface 
(Laplace's formula): 

1 	1 \ 
" a  

where a is the surface tension of a given liquid. 
• Free energy increment of the surface layer of a liquid: 

	

dF = a dS, 	 (2.5b) 

where dS is the area increment of the surface layer. 
• Amount of heat required to form a unit area of the liquid surface layer 

during the isothermal increase of its surface: 

„, du 
(2.5c) 

dT 

2.160. Find the capillary pressure 
(a) in mercury droplets of diameter d = 1.5 pm; 
(b) inside a soap bubble of diameter d = 3.0 mm if the surface 

tension of the soap water solution is a = 45 mN/m. 
2.161. In the bottom of a vessel with mercury there is a round 

hole of diameter d = 70 pm. At what maximum thickness of the 
mercury layer will the liquid still not flow out through this hole? 

(2.5a) 
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2.162. A vessel filled with air under pressure Po  contains a soap 
bubble of diameter d. The air pressure having been reduced isother-
mally n-fold, the bubble diameter increased mfold. Find the surface 
tension of the soap water solution. 

2.163. Find the pressure in an air bubble of diameter d = 4.0 pm, 
located in water at a depth h = 5.0 m. The atmospheric pressure 
has the standard value P o. 

2.164. The diameter of a gas bubble formed at the bottom of a pond 
is d = 4.0 1.tm. When the bubble rises to the surface its diameter 
increases n = 1.1 times. Find how deep is the pond at that spot. 
The atmospheric pressure is standard, the gas expansion is assumed 
to be isothermal. 

2.165. Find the difference in height of mercury columns in two 
communicating vertical capillaries whose diameters are 
= 0.50 mm and d 2  = 1.00 mm, if the contact angle 0 = 138°. 

2.166. A vertical capillary with inside diameter 0.50 mm is 
submerged into water so that the length of its part protruding over 
the water surface is equal to h = 25 mm. Find the curvature radius 
of the meniscus. 

2.167. A glass capillary of length 1 = 110 mm and inside dia-
meter d = 20 pAn is submerged vertically into water. The upper end 
of the capillary is sealed. The outside pressure is standard. To what 
length x has the capillary to be submorged to make the water levels 
inside and outside the capillary coincide? 

2.168. When a vertical capillary of length 1 with the sealed upper 
end was brought in contact with the surface of a liquid, the level 
of this liquid rose to the height h. The liquid density is p, the inside 
diameter of the capillary is d, the contact angle is 0, the atmospheric 
pressure is Po. Find the surface tension of the liquid. 

2.169. A glass rod of diameter d1  = 1.5 mm is inserted sym-
metrically into a glass capillary with inside diameter d 2  = 2.0 mm. 
Then the whole arrangement is vertically oriented and brought in 
contact with the surface of water. To what height will the water rise 
in the capillary? 

2.170. Two vertical plates submerged partially in a wetting liquid 
form a wedge with a very small angle 6cp. The edge of this wedge is 
vertical. The density of the liquid is p, its surface tension is a, the 
contact angle is 0. Find the height h, to which the liquid rises, as a 
function of the distance x from the edge. 

2.171. A vertical water jet flows out of a round hole. One of the 
horizontal sections of the jet has the diameter d = 2 0 mm while 
the other section located / = 20 mm lower has the diameter which 
is n = 1.5 times less. Find the volume of the water flowing from 
the hole each second. 

2.172. A water drop falls in air with a uniform velocity. Find 
the difference between the curvature radii of the drop's surface at 
the upper and lower points of the drop separated by the distance 
h = 2.3 mm. 
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2.173. A mercury drop shaped as a round tablet of radius R 
and thickness h is located between two horizontal glass plates. Assum-
ing that h <<R , find the mass m of a weight which has to be placed 
on the upper plate to diminish the distance between the plates n-times. 
The contact angle equals 0. Calculate m if R = 2.0 cm, h = 0.38 mm, 
n = 2.0, and 0 = 135°. 

2.174. Find the attraction force between two parallel glass plates, 
separated by a distance h = 0.10 mm, after a water drop of mass 
m = 70 mg was introduced between them. The wetting is assumed 
to be complete. 

2.175. Two glass discs of radius R = 5.0 cm were wetted with 
water and put together so that the thickness of the water layer be-
tween them was h = 1.9 p.m. Assuming the wetting to he complete, 
find the force that has to be applied at right angles to the plates in 
order to pull them apart. 

2.176. Two vertical parallel glass plates are partially submerged 
in water. The distance between the plates is d = 0.10 mm, and 
their width is 1 = 12 cm. Assuming that the water between the 
plates does not reach the upper edges of the plates and that the wetting 
is complete, find the force of their mutual attraction. 

2.177. Find the lifetime of a soap bubble of radius R connected 
with the atmosphere through a capillary of length 1 and inside 
radius r. The surface tension is a, the viscosity coefficient of the 
gas is 11. 

2.178. A vertical capillary is brought in contact with the water 
surface. What amount of heat is liberated while the water rises 
along the capillary? The wetting is assumed to be complete, the sur-
face tension equals a. 

2.179. Find the free energy of the surface layer of 
(a) a mercury droplet of diameter d = 1.4 mm; 
(b) a soap bubble of diameter d = 6.0 mm if the surface tension 

of the soap water solution is equal to a = 45 mN/m. 
2.180. Find the increment of the free energy of the surface layer 

when two identical mercury droplets, each of diameter d = 1.5 mm, 
merge isothermally. 

2.181. Find the work to be performed in order to blow a soap 
bubble of radius R if the outside air pressure is equal to p, and 
the surface tension of the soap water solution is equal to a. 

2.182. A soap bubble of radius r is inflated with an ideal gas. 
The atmospheric pressure is po, the surface tension of the soap water 
solution is a. Find the difference between the molar heat capacity 
of the gas during its heating inside the bubble and the molar heat 
capacity of the gas under constant pressure, C — Cp. 

2.183. Considering the Carnot cycle as applied to a liquid film, 
show that in an isothermal process the amount of heat required for 
the formation of a unit area of the surface layer is equal to q = 
= —T•daldT, where daldT is the temperature derivative of the 
surface tension. 
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2.184. The surface of a soap film was increased isothermally by 
CI at a temperature T. Knowing the surface tension of the soap 

water solution a and the temperature coefficient daldT, find the 
increment 

(a) of the entropy of the film's surface layer; 
(b) of the internal energy of the surface layer. 

2.6. PHASE TRANSFORMATIONS 

• Relations between Van der Waals constants and the parameters of the 
critical state of a substance: 

a 	 8a 
Vm cr= 3b, Pcr= 	27ba ' Tcr= 27Rb • 

• Relation between the critical parameters for a mole of substance: 

PcrV m cr= (3/8) RTcr• 

• Clausius-Clapeyron equation: 

dP 	q12 

dT T (17 —Vi) ' 

where q12  is the specific heat absorbed in the transformation 1 	2, Vi and V; 
are the specific volumes of phases 1 and 2. 

2.185. A saturated water vapour is contained in a cylindrical 
vessel under a weightless piston at a temperature t = 100 °C. As 
a result of a slow introduction of the piston a small fraction of the 
vapour Am = 0.70 g gets condensed. What amount of work was 
performed over the gas? The vapour is assumed to be ideal, the 
volume of the liquid is to be neglected. 

2.186. A vessel of volume V = 6.0 1 contains water together with 
its saturated vapour under a pressure of 40 atm and at a temperature 
of 250 °C. The specific volume of the vapour is equal to V; = 50 1/kg 
under these conditions. The total mass of the system water-vapour 
equals m = 5.0 kg. Find the mass and the volume of the vapour. 

2.187. The saturated water vapour is enclosed in a cylinder under 
a piston and occupies a volume Vo  = 5.0 1 at the temperature t 
= 100 °C. Find the mass of the liquid phase formed after the volume 
under the piston decreased isothermally to V = 1.6 1. The saturated 
vapour is assumed to be ideal. 

2.188. A volume occupied by a saturated vapour is reduced iso-
thermally n-fold. Find what fraction ri of the final volume is occupied 
by the liquid phase if the specific volumes of the saturated vapour 
and the liquid phase differ by N times (N > n). Solve the same 
problem under the condition that the final volume of the substance 
corresponds to the midpoint of a horizontal portion of the isothermal 
line in the diagram p, V. 

2.189. An amount of water of mass m = 1.00 kg, boiling at stan-
dard atmospheric pressure, turns completely into saturated vapour. 

(2.6a) 

(2.6b) 

(2.6c) 
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Assuming the saturated vapour to be an ideal gas find the increment 
of entropy and internal energy of the system. 

2.190. Water of mass m = 20 g is enclosed in a thermally insulat-
ed cylinder at the temperature of 0 °C under a weightless piston 
whose area is S = 410 cm2. The outside pressure is equal to 
standard atmospheric pressure. To what height will the piston 
rise when the water absorbs Q = 20.0 kJ of heat? 

2.191. One gram of saturated water vapour is enclosed in a therm-
ally insulated cylinder under a weightless piston. The outside pres-
sure being standard, m = 1.0 g of water is introduced into the cyl-
inder at a temperature to  = 22 °C. Neglecting the heat capacity of 
the cylinder and the friction of the piston against the cylinder's 
walls, find the work performed by the force of the atmospheric pres-
sure during the lowering of the piston. 

2.192. If an additional pressure Ap of a saturated vapour over 
a convex spherical surface of a liquid is considerably less than the 
vapour pressure over a plane surface, then Ap (pc Ipi )2oar, where 
p c  and Pt are the densities of the vapour and the liquid, a is the sur-
face tension, and r is the radius of curvature of the surface. Using 
this formula, find the diameter of water droplets at which the satu-
rated vapour pressure exceeds the vapour pressure over the plane 
surface by = 1.0% at a temperature t = 27 °C. The vapour is 
assumed to be an ideal gas. 

2.193. Find the mass of all molecules leaving one square centi-
metre of water surface per second into a saturated water vapour above 
it at a temperature t = 100 °C. It is assumed that i1 = 3.6% of 
all water vapour molecules falling on the water surface are retained 
in the liquid phase. 

2.194. Find the pressure of saturated tungsten vapour at a tem-
perature T = 2000 K if a tungsten filament is known to lose a mass 

= 1.2-10-13  g/(s•cm2) from a unit area per unit time when 
evaporating into high vacuum at this temperature. 

2.195. By what magnitude would the pressure exerted by water 
on the walls of the vessel have increased if the intermolecular attrac-
tion forces had vanished? 

2.196. Find the internal pressure pi  of a liquid if its density 
p and specific latent heat of vaporization q are known. The heat 
q is assumed to be equal to the work performed against the forces 
of the internal pressure, and the liquid obeys the Van der Waals 
equation. Calculate pi  in water. 

2.197. Demonstrate that Eqs. (2.6a) and (2.6b) are valid for a 
substance, obeying the Van der Waals equation, in critical 
state. 

Instruction. Make use of the fact that the critical state corresponds 
to the point of inflection in the isothermal curve p (V). 

2.198. Calculate the Van der Waals constants for carbon dioxide 
if its critical temperature T„ = 304 K and critical pressure pc ,. = 
= 73 atm. 
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Fig. 2.5. 

2.199. Find the specific volume of benzene (C6H6) in critical state 
if its critical temperature T „ = 562 K and critical pressure p„ 
= 47 atm. 

2.200. Write the Van der Waals equation via the reduced para-
meters n, v, and r, having taken the corresponding critical values 
for the units of pressure, volume, and temperature. Using the equa-
tion obtained, find how many times the gas temperature exceeds its 
critical temperature if the gas pressure is 12 times as high as critical 
pressure, and the volume of gas is equal to half the critical volume. 

2.201. Knowing the Van der Waals constants, find: 
(a) the maximum volume which water of mass m = 1.00 kg can 

occupy in liquid state; 
(b) the maximum pressure of the saturated water vapour. 
2.202. Calculate the temperature and density of carbon dioxide 

in critical state, assuming the gas to be a Van der Waals one. 
2.203. What fraction of the volume of a vessel must liquid ether 

occupy at room temperature in order to pass into critical state when 
critical temperature is reached? Ether 
has T , = 467 K, per  = 35.5 atm, p 
M = 74 g/mol. 

2.204. Demonstrate that the straight 
line 1-5 corresponding to the isother-
mal-isobaric phase transition cuts the 
Van der Waals isotherm so that 
areas I and II are equal (Fig. 2.5). 

2.205. What fraction of water su-
percooled down to the temperature 
t = —20 °C under standard pressure 
turns into ice when the system passes 
into the equilibrium state? At what 
temperature of the supercooled water 
does it turn into ice completely? 

2.206. Find the increment of the ice melting temperature in the 
vicinity of 0 °C when the pressure is increased by Ap = 1.00 atm. 
The specific volume of ice exceeds that of water byiAV' = 0.091 cm3/g. 

2.207. Find the specific volume of saturated water vapour under 
standard pressure if a decrease of pressure by Ap = 3.2 kPa is known 
to decrease the water boiling temperature by AT = 0.9 K. 

2.208. Assuming the saturated water vapour to be ideal, find 
its pressure at the temperature 101.1 °C. 

2.209. A small amount of water and its saturated vapour are en-
closed in a vessel at a temperature t = 100 °C. How much (in per cent) 
will the mass of the saturated vapour increase if the temperature of 
the system goes up by AT = 1.5 K? Assume that the vapour is an 
ideal gas and the specific volume of water is negligible as compared 
to that of vapour. 

2.210. Find the pressure of saturated vapour as a function of 
temperature p (T) if at a temperature To  its pressure equals po. 
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Assume that: the specific latent heat of vaporization q is independent 
of T, the specific volume of liquid is negligible as compared to that 
of vapour, saturated vapour obeys the equation of state for an ideal 
gas. Investigate under what conditions these assumptions are permis-
sible. 

2.211. An ice which was initially under standard conditions was 
compressed up to the pressure p = 640 atm. Assuming the lowering 
of the ice melting temperature to be a linear function of pressure 
under the given conditions, find what fraction of the ice melted. The 
specific volume of water is less than that of ice by AV' = 0.09 cm3/g. 

2.212. In the vicinity of the triple point the saturated vapour 
pressure p of carbon dioxide depends on temperature T as log p 
= a — bIT, where a and b are constants. If p is expressed in atmo-
spheres, then for the sublimation process a = 9.05 and b = 1.80 kK, 
and for the vaporization process a = 6.78 and b = 1.31 kK. Find: 

(a) temperature and pressure at the triple point; 
(b) the values of the specific latent heats of sublimation, vapori-

zation, and melting in the vicinity of the triple point. 
2.213. Water of mass m = 1.00 kg is heated from the temperature 

t1  = 10 °C up to t 2  = 100 °C at which it evaporates completely. 
Find the entropy increment of the system. 

2.214. The ice with the initial temperature t1  = 0 °C was first 
melted, then heated to the temperature t 2  = 100 °C and evaporated. 
Find the increment of the system's specific entropy. 

2.215. A piece of copper of mass m = 90 g at a temperature t1  
= 90 °C was placed in a calorimeter in which ice of mass 50 g was 
at a temperature —3 °C. Find the entropy increment of the piece 
of copper by the moment the thermal equilibrium is reached. 

2.216. A chunk of ice of mass m1  = 100 g at a temperature t1  = 
= 0 °C was placed in a calorimeter in which water of mass m2  = 
= 100 g was at a temperature t 2. Assuming the heat capacity of 
the calorimeter to be negligible, find the entropy increment of the 
system by the moment the thermal equilibrium is reached. Consider 
two cases: (a) t 2  = 60 °C; (b) t2  = 94 °C. 

2.217. Molten lead of mass m = 5.0 g at a temperature t2  = 327 °C 
(the melting temperature of lead) was poured into a calorimeter packed 
with a large amount of ice at a temperature t1  = 0 °C. Find the ent-
ropy increment of the system lead-ice by the moment the thermal 
equilibrium is reached. The specific latent heat of melting of lead is 
equal to q = 22.5 7/g and its specific heat capacity is equal to c 
= 0.125 J/(g • K). 

2.218. A water vapour filling the space under the piston of a cylin-
der, is compressed (or expanded) so that it remains saturated all 
the time, being just on the verge of condensation. Find the molar 
heat capacity C of the vapour in this process as a function of tem-
perature T, assuming the vapour to be an ideal gas and neglecting 
the specific volume of water in comparison with that of vapour. 
Calculate C at a temperature t = 100 °C. 
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2.219. One mole of water being in equilibrium with a negligible 
amount of its saturated vapour at a temperature T1  was completely 
converted into saturated vapour at a temperature T2. Find the ent-
ropy increment of the system. The vapour is assumed to be an ideal 
gas, the specific volume of the liquid is negligible in comparison with 
that of the vapour. 

2.7. TRANSPORT PHENOMENA 

• Relative number of gas molecules traversing the distance s without col.. 
lisions: 

NIN0=e –sik 	 (2.7a) 

where X is the mean free path. 
• Mean free path of a gas molecule: 

X=  _ 1 	 (2.7b) 
Y2 ad2n 

where d is the effective diameter of a molecule, and n is the number of mole-
cules per unit volume. 

• Coefficients of diffusion D, viscosity 	and heat conductivity x of gases: 

1 	 1 
D = 

3 
(v) 2, 	

3 
= — (v4, x = — 3 (v)kpcv., 	(2.7c) 

where p is the gas density, and cir  is its specific heat capacity at constant volume. 
• Friction force acting on a unit area of plates during their motion parallel 

to each other in a highly rarefied gas: 
1 F= 
6 
— 	 p I ui  — u2 	 (2.7d) 

where u1  and u2  are the velocities of the plates. 
• Density of a thermal flux transferred between two walls by highly 

rarefied gas: 
1 

q = 	pcv  Ti  — T2 I, 	 (2.7e) 

where T1  and T 2  are the temperatures of the walls. 

2.220. Calculate what fraction of gas molecules 
(a) traverses without collisions the distances exceeding the mean 

free path X; 
(b) has the free path values lying within the interval from X 

to a. 
2.221. A, narrow molecular beam makes its way into a vessel 

filled with gas under low pressure. Find the mean free path of mole-
cules if the beam intensity decreases ri-fold over the distance Al. 

2.222. Let adt be the probability of a gas molecule experiencing 
a collision during the time interval dt; a is a constant. Find: 

(a) the probability of a molecule experiencing no collisions during 
the time interval t; 

(b) the mean time interval between successive collisions. 
2.223. Find the mean free path and the mean time interval be- 

tween successive collisions of gaseous nitrogen molecules 
(a) under standard conditions; 
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(b) at temperature t = 0 °C and pressure p = 1.0 nPa (such a pres-
sure can be reached by means of contemporary vacuum pumps). 

2.224. How many times does the mean free path of nitrogen mole-
cules exceed the mean distance between the molecules under stan-
dard conditions? 

2.225. Find the mean free path of gas molecules under standard 
conditions if the Van der Waals constant of this gas is equal to b = 
= 40 ml/mol. 

2.226. An acoustic wave propagates through nitrogen under stan-
dard conditions. At what frequency will the wavelength be equal 
to the mean free path of the gas molecules? 

2.227. Oxygen is enclosed at the temperature 0 °C in a vessel 
with the characteristic dimension 1 = 10 mm (this is the linear 
dimension determining the character of a physical process in ques-
tion). Find: 

(a) the gas pressure below which the mean free path of the mole-
cules k > 1; 

(b) the corresponding molecular concentration and the mean 
distance between the molecules. 

2.228. For the case of nitrogen under standard conditions find: 
(a) the mean number of collisions experienced by each molecule 

per second; 
(b) the total number of collisions occurring between the molecules 

within 1 cm3  of nitrogen per second. 
2.229. How does the mean free path and the number of collisions 

of each molecule per unit time v depend on the absolute temperature 
of an ideal gas undergoing 

(a) an isochoric process; 
(b) an isobaric process? 
2.230. As a result of some process the pressure of an ideal gas 

increases n-fold. How many times have the mean free path A. and 
the number of collisions 'of each molecule per unit time v changed 
and how, if the process is 

(a) isochoric; (b) isothermal? 
2.231. An ideal gas consisting of rigid diatomic molecules goes 

through an adiabatic process. How do the mean free path A, and the 
number of collisions of each molecule per second v depend in this 
process on 

(a) the volume V; (b) the pressure p; (c) the temperature T? 
2.232. An ideal gas goes through a polytropic process with ex-

ponent n. Find the mean free path and the number of collisions of 
each molecule per second v as a function of 

(a) the volume V; (b) the pressure p; (c) the temperature T. 
2.233. Determine the molar heat capacity of a polytropic process 

through which an ideal gas consisting of rigid diatomic molecules 
goes and in which the number of collisions between the molecules 
remains constant 

(a) in a unit volume; (b) in the total volume of the gas. 



2.234. An ideal gas of molar mass M is enclosed in a vessel of 
volume V whose thin walls are kept at a constant temperature T. 
At a moment t = 0 a small hole of area S is opened, and the gas 
starts escaping into vacuum. Find the gas concentration n as a func-
tion of time t if at the initial moment n (0) = no. 

2.235. A vessel filled with gas is divided into two equal parts 
1 and 2 by a thin heat-insulating partition with two holes. One 
hole has a small diameter, and the other has a very large diameter 
(in comparison with the mean free path of molecules). In part 2 
the gas is kept at a temperature ii  times higher than that of part 1. 
How will the concentration of molecules in part 2 change and how 
many times after the large hole is closed? 

2.236. As a result of a certain process the viscosity coefficient of 
an ideal gas increases a = 2.0 times and its diffusion coefficient 
6 = 4.0 times. How does the gas pressure change and how many 
times? 

2.237. How will a diffusion coefficient D and the viscosity coeffi-
cient of an ideal gas change if its volume increases n times: 

(a) isothermally; (b) isobarically? 
2.238. An ideal gas consists of rigid diatomic molecules. How will 

a diffusion coefficient D and viscosity coefficient rl  change and how 
many times if the gas volume is decreased adiabatically n =10 times? 

2.239. An ideal gas goes through a polytropic process. Find the 
polytropic exponent n if in this process the coefficient 

(a) of diffusion; (b) of viscosity; (c) of heat conductivity remains 
constant. 

2.240. Knowing the viscosity coefficient of helium under standard 
conditions, calculate the effective diameter of the helium atom. 

2.241. The heat conductivity of helium is 8.7 times that of argon 
(under standard conditions). Find the ratio of effective diameters 
of argon and helium atoms. 

2.242. Under standard conditions helium fills up the space between 
two long coaxial cylinders. The mean radius of the cylinders is equal 
to R, the gap between them is equal to AR, with AR < R. The 
outer cylinder rotates with a fairly low angular velocity o about 
the stationary inner cylinder. Find the moment of friction forces 
acting on a unit length of the inner cylinder. Down to what magnitude 
should the helium pressure be lowered (keeping the temperature cons-
tant) to decrease the sought moment of friction forces n = 10 times 
if OR = 6 mm? 

2.243. A gas fills up the space between two long coaxial cylinders 
of radii R1  and R2, with R1  < R2. The outer cylinder rotates with 
a fairly low angular velocity co about the stationary inner cylinder. 
The moment of friction forces acting on a unit length of the inner 
cylinder is equal to N1. Find the viscosity coefficient ri of the gas 
taking into account that the friction force acting on a unit area of the 
cylindrical surface of radius r is determined by the formula a = 
= iir (tho/ar). 
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2.244. Two identical parallel discs have a common axis and are 
located at a distance h from each other. The radius of each disc is 
equal to a, with a > h. One disc is rotated with a low angular veloc-
ity co relative to the other, stationary, disc. Find the moment of 
friction forces acting on the stationary disc if the viscosity coeffi-
cient of the gas between the discs is equal to 

2.245. Solve the foregoing problem, assuming that the discs 
are located in an ultra-rarefied gas of molar mass M, at temperature T 
and under pressure p. 

2.246. Making use of Poiseuille's equation (1.7d), find the mass 
of gas flowing per unit time through the pipe of length 1 and radius a 

if constant pressures pi  and p, are maintained at its ends. 
2.247. One end of a rod, enclosed in a thermally insulating sheath, 

is kept at a temperature Ti  while the other, at T2. The rod is com-
posed of two sections whose lengths are 11  and 12 and heat conductiv-
ity coefficients xi  and x2. Find the temperature of the interface. 

2.248. Two rods whose lengths are li  and 12 and heat conductivity 
coefficients xi  and x2  are placed end to end. Find the heat conductivity 
coefficient of a uniform rod of length 11 + /2  whose conductivity 
is the same as that of the system of these two rods. The lateral surfaces 
of the rods are assumed to be thermally insulated. 

2.249. A rod of length 1 with thermally insulated lateral surface 
consists of material whose heat conductivity coefficient varies with 
temperature as x = air, where a is a constant. The ends of the rod 
are kept at temperatures T1  and T2. Find the function T (x), where 
x is the distance from the end whose temperature is T1, and 
the heat flow density. 

2.250. Two chunks of metal with heat capacities C1  and C2 are 
interconnected by a rod of length 1 and cross-sectional area S and 
fairly low heat conductivity x. The whole system is thermally insu-
lated from the environment. At a moment t = 0 the temperature 
difference between the two chunks of metal equals (AT)0. Assuming 
the heat capacity of the rod to be negligible, find the temperature 
difference between the chunks as a function of time. 

2.251. Find the temperature distribution in a substance placed 
between two parallel plates kept at temperatures Ti  and T2. The 
plate separation is equal to 1, the heat conductivity coefficient of 
the substance x o-Z-1/ T. 

2.252. The space between two large horizontal plates is filled 
with helium. The plate separation equals 1 = 50 mm. The lower 
plate is kept at a temperature Ti  = 290 K, the upper, at T2 = 
= 330 K. Find the heat flow density if the gas pressure is close 
to standard. 

2.253. The space between two large parallel plates separated by 
a distance 1 = 5.0 mm is filled with helium under a pressure p = 
= 1.0 Pa. One plate is kept at a temperature ti  = 17 °C and the 
other, at a temperature t 2  = 37 °C. Find the mean free path of helium 
atoms and the heat flow density. 



2.254. Find the temperature distribution in the space between 
two coaxial cylinders of radii R1  and R 2  filled with a uniform heat 
conducting substance if the temperatures of the cylinders are constant 
and are equal to T1  and T2 respectively. 

2.255. Solve the foregoing problem for the case of two concentric 
spheres of radii. R1  and R2 and temperatures T1  and T2. 

2.256. A constant electric current flows along a uniform wire 
with cross-sectional radius R and heat conductivity coefficient x. 
A unit volume of the wire generates a thermal power w. Find the 
temperature distribution across the wire provided the steady-state 
temperature at the wire surface is equal to To. 

2.257. The thermal power of density w is generated uniformly 
inside a uniform sphere of radius R and heat conductivity coefficient 
x. Find the temperature distribution in the sphere provided the 
steady-state temperature at its surface is equal to To. 



PART THREE 

ELECTRODYNAMICS 

3.1. CONSTANT ELECTRIC FIELD IN VACUUM 

• Strength and potential of the field of a point charge q: 

1 	q 
E=— r, 

4nso  r3  
1 	q 

ID 	4ns, F.-  
(3.1a) 

• Relation between field strength and potential: 

E = —VT, 	 (3.1b) 

i.e. field strength is equal to the antigradient of the potential. 
• Gauss's theorem and circulation of the vector E: 

IS)E dS = q/so, 	1;;,E dr = 0. 	 (3.1c) 

• Potential and strength of the field of a point dipole with electric mo-
ment p: 

1 pr 
4ns, r3  

1 
eo 

p 
E 

4n
= 	171+3cos2  0, 

r3  
(3.1d) 

where 0 is the angle between the vectors r and p. 
• Energy W of the dipole p in an external electric field, and the moment 

N of forces acting on the dipole: 

W = —pE, N = [pE]. 	 (3.1e) 

• Force F acting on a dipole, and its projection Fx: 

DE 
' 

F=p-- 	 (3.1f) 
0/  

where alai is the derivative of the vector E with respect to the dipole direction, 
VE is the gradient of the function Ex. 

3.1. Calculate the ratio of the electrostatic to gravitational inter-
action forces between two electrons, between two protons. At what 
value of the specific charge qlm of a particle would these forces be-
come equal (in their absolute values) in the case of interaction of 
identical particles? 

3.2. What would be the interaction force between two copper 
spheres, each of mass 1 g, separated by the distance 1 m, if the total 
electronic charge in them differed from the total charge of the nuclei 
by one per cent? 

3.3. Two small equally charged spheres, each of mass m, are 
suspended from the same point by silk threads of length 1. The 
distance between the spheres x << 1. Find the rate dqldt with which 



the charge leaks off each sphere if their approach velocity varies as 
v = all/ x, where a is a constant. 

3.4. Two positive charges q1  and q2  are located at the points with 
radius vectors r1  and r2. Find a negative charge q3  and a radius vector 
r3  of the point at which it has to be placed for the force acting on 
each of the three charges to be equal to zero. 

3.5. A thin wire ring of radius r has an electric charge q. What 
will be the increment of the force stretching the wire if a point charge 
q0  is placed at the ring's centre? 

3.6. A positive point charge 50 RC is located in the plane xy 
at the point with radius vector r0  = 2i + 3j, where i and j are 
the unit vectors of the x and y axes. Find the 
vector of the electric field strength E and its 

	

magnitude at the point with radius vector 	
\ 	

 T#4 

	

r = 8i — 5j. Here I-, and r are expressed in 	
\) , x/  metres. 

	

3.7. Point charges q and —q are located at the 	I // 

	

vertices of a square with diagonals 2/ as shown 	4-q 
in Fig. 3.1. Find the magnitude of the electric 
field strength at a point located symmetrically 

Fig. 3.1. 
with respect to the vertices of the square at a 
distance x from its centre. 

3.8. A thin half-ring of radius R = 20 cm is uniformly charged 
with a total charge q = 0.70 nC. Find the magnitude of the electric 
field strength at the curvature centre of this half-ring. 

3.9. A thin wire ring of radius r carries a charge q. Find the magni-
tude of the electric field strength on the axis of the ring as a function 
of distance 1 from its centre. Investigate the obtained function at 
1> r. Find the maximum strength magnitude and the correspond-
ing distance 1. Draw the approximate plot of the function E(l). 

3.10. A point charge q is located at the centre of a thin ring of 
radius R with uniformly distributed charge —q. Find the magnitude 
of the electric field strength vector at the point lying on the axis 
of the ring at a distance x from its centre, if x » R. 

3.11. A system consists of a thin charged wire ring of radius R 
and a very long uniformly charged thread oriented along the axis 
of the ring, with one of its ends coinciding with the centre of the 
ring. The total charge of the ring is equal to q. The charge of the 
thread (per unit length) is equal to 2■,. Find the interaction force be-
tween the ring and the thread. 

3.12. A thin nonconducting ring of radius R has a linear charge 
density = A.0  cos cp, where X0  is a constant, p  is the azimuthal 
angle. Find the magnitude of the electric field strength 

(a) at the centre of the ring; 
(b) on the axis of the ring as a function of the distance x from its 

centre. Investigate the obtained function at x >> R. 
3.13. A thin straight rod of length 2a carrying a uniformly distri-

buted charge q is located in vacuum. Find the magnitude of the 
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electric field strength as a function of the distance r from the rod's 
centre along the straight line 

(a) perpendicular to the rod and passing through its centre; 
(b) coinciding with the rod's direction (at the points lying outside 

the rod). 
Investigate the obtained expressions at r >> a. 
3.14. A very long straight uniformly charged thread carries 

a charge A. per unit length. Find the magnitude and direction of 
the electric field strength at a point which is at a distance y from 
the thread and lies on the perpendicular passing through one of the 
thread's ends. 

3.15. A thread carrying a uniform charge X per unit length has 
the configurations shown in Fig. 3.2 a and b. Assuming a curvature 

R
L 

(a) 	 (b) 

Fig. 3.2. 	 Fig. 3.3. 

radius R to be considerably less than the length of the thread, find 
the magnitude of the electric field strength at the point 0. 

3.16. A sphere of radius r carries a surface charge of density a 
ar, where a is a constant vector, and r is the radius vector of 

a point of the sphere relative to its centre. Find the electric field 
strength vector at the centre of the sphere. 

3.17. Suppose the surface charge density over a sphere of radius R 
depends on a polar angle 0 as a = ao  cos 0, where ao  is a positive 
constant. Show that such a charge distribution can be represented as 
a result of a small relative shift of two uniformly charged balls 
of radius R whose charges are equal in magnitude and opposite in 
sign. Resorting to this representation, find the electric field strength 
vector inside the given sphere. 

3.18. Find the electric field strength vector at the centre of a ball 
of radius R with volume charge density p = ar, where a is a constant 
vector, and r is a radius vector drawn from the ball's centre. 

3.19. A very long uniformly charged thread oriented along the 
axis of a circle of radius R rests on its centre with one of the ends. 
The charge of the thread per unit length is equal to Find the flux 
of the vector E across the circle area. 

3.20. Two point charges q and —q are separated by the distance 
21 (Fig. 3.3). Find the flux of the electric field strength vector across 
a circle of radius R. 

3.21. A ball of radius R is uniformly charged with the volume 
density p. Find the flux of the electric field strength vector across 



the ball's section formed by the plane located at a distance 7.0  < R 
from the centre of the ball. 

3.22. Each of the two long parallel threads carries a uniform 
charge per unit length. The threads are separated by a distance 1. 
Find the maximum magnitude of the electric field strength in the 
symmetry plane of this system located between the threads. 

3.23. An infinitely long cylindrical surface of circular cross-
section is uniformly charged lengthwise with the surface density 
a = ao  cos cp, where p  is the polar angle of the cylindrical coordinate 
system whose z axis coincides with the axis of the given surface. 
Find the magnitude and direction of the electric field strength vector 
on the z axis. 

3.24. The electric field strength depends only on the x and y coor-
dinates according to the law E = a (xi + yj)/(x2  + y2), where a 
is a constant, i and j are the unit vectors of the x and y axes. Find 
the flux of the vector E through a sphere of radius R with its centre 
at the origin of coordinates. 

3.25. A ball of` radius R carries a positive charge whose volume 
density depends only on a separation r from the ball's centre as 

Po (1 — rIR), where Po  is a constant. Assuming the permittivities 
of the ball and the environment to be equal to unity, find: 

(a) the magnitude of the electric field strength as a function of the 
distance r both inside and outside the ball; 

(b) the maximum intensity Ema, and the corresponding distance rm. 
3.26. A system consists of a ball of radius R carrying a spherically 

symmetric charge and the surrounding space filled with a charge of 
volume density p = air, where a is a constant, r is the distance 
from the centre of the ball. Find the ball's charge at which the mag-
nitude of the electric field strength vector is independent of r outside 
the ball. How high is this strength? The permittivities of the ball 
and the surrounding space are assumed to be equal to unity. 

3.27. A space is filled up with a charge with volume density 
p = Poe-a''3, where Po  and a are positive constants, r is the distance 
from the centre of this system. Find the magnitude of the electric 
field strength vector as a function of r. Investigate the obtained expres-
sion for the small and large values of r, i.e. at ar3  < 1 and ar3  >> 1. 

3.28. Inside a ball charged uniformly with volume density p 
there is a spherical cavity. The centre of the cavity is displaced with 
respect to the centre of the ball by a distance a. Find the field strength 
E inside the cavity, assuming the permittivity equal to unity. 

3.29. Inside an infinitely long circular cylinder charged uniformly 
with volume density p there is a circular cylindrical cavity. The 
distance between the axes of the cylinder and the cavity is equal 
to a. Find the electric field strength E inside the cavity. The permit-
tivity is assumed to be equal to unity. 

3.30. There are two thin wire rings, each of radius R, whose axes 
coincide. The charges of the rings are q and —q. Find the potential 
difference between the centres of the rings separated by a distance a. 
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3.31. There is an infinitely long straight thread carrying a charge 
with linear density X, = 0.40 RC/m. Calculate the potential difference 
between points 1 and 2 if point 2 is removed it = 2.0 times farther 
from the thread than point I. 

3.32. Find the electric field potential and strength at the centre 
of a hemisphere of radius R charged uniformly with the surface 
density a. 

3.33. A very thin round plate of radius R carrying a uniform sur-
face charge density a is located in vacuum. Find the electric field 
potential and strength along the plate's axis as a function of a dis-
tance 1 from its centre. Investigate the obtained expression at 1--4- 0 
and / » R. 

3.34. Find the potential p  at the edge of a thin disc of radius R 
carrying the uniformly distributed charge with surface densi-
ty a. 

3.35. Find the electric field strength vector if the potential of 
this field has the form p = ar, where a is a constant vector, and r 
is the radius vector of a point of the field. 

3.36. Determine the electric field strength vector if the potential 
of this field depends on x, y coordinates as 

a) cp = a (x2  — y2); (b) q = axy, 
where a is a constant. Draw the approximate shape of these fields 

.using lines of force (in the x, y plane). 
3.37. The potential of a certain electrostatic field has the form 

cp = a (x2  + y2) + bz2, where a and b are constants. Find the mag-
nitude and direction of the electric field strength vector. What shape 
have the equipotential surfaces in the following cases: 

(a) a > 0, b> 0; (b) a > 0, b < 0? 
3.38. A charge q is uniformly distributed over the volume of 

a sphere of radius R. Assuming the permittivity to be equal to unity 
throughout, find the potential 

(a) at the centre of the sphere; 
(b) inside the sphere as a function of the distance r from its centre. 
3.39. Demonstrate that the potential of the field generated by 

a dipole with the electric moment p (Fig. 3.4) may be represented as 
pr/4nsor3, where r is the radius vector. 

Using this expression, find the magnitude of the 
electric field strength vector as a function of r z  
and 0. 

9 3.40. A point dipole with an electric moment p 
oriented in the positive direction of the z axis is 
located at the origin of coordinates. Find the p 
projections E z  and E1  of the electric field strength 
vector (on the plane perpendicular to the z axis at Fig. 3.4. 
the point S (see Fig. 3.4)). At which points is E 
perpendicular to p? 

3.41. A point electric dipole with a moment p is placed in the 
external uniform electric field whose strength equals E0, with 



p t t E0. In this case one of the equipotential surfaces enclosing the 
dipole forms a sphere. Find the radius of this sphere. 

3.42. Two thin parallel threads carry a uniform charge with linear 
densities X and —X. The distance between the threads is equal to 1. 
Find the potential of the electric field and the magnitude of its strength 
vector at the distance r >> 1 at the angle 0 to the vector 1 (Fig. 3.5). 

3.43. Two coaxial rings, each of radius R, made of thin wire are 
separated by a small distance 1 (1 < R) and carry the charges q and 
—q. Find the electric field potential and strength at the axis of the 

   

2' 
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Fig. 3.5. 	 Fig. 3.6. 	 Fig. 3.7. 

system as a function of the x coordinate (Fig. 3.6). Show in the same 
drawing the approximate plots of the functions obtained. Investigate 
these functions at x I >> R. 

3.44. Two infinite planes separated by a distance 1 carry a uniform 
surface charge of densities a and —u (Fig. 3.7). The planes have 
round coaxial holes of radius //, with 1 < R. Taking the origin 
O and the x coordinate axis as shown in the figure, find the potential 
of the electric field and the projection of its strength vector E x  on the 
axes of the system as functions of the x coordinate. Draw the approx-
imate plot cp (x). 

3.45. An electric capacitor consists of thin round parallel plates, 
each of radius R, separated by a distance 1 (1 << R) and uniformly 
charged with surface densities a and —a. Find the potential of the 
electric field and the magnitude of its strength vector at the axes 
of the capacitor as functions of a distance x from the plates if x > 1. 
Investigate the obtained expressions at x » R. 

3.46. A dipole with an electric moment p is located at a distance 
r from a long thread charged uniformly with a linear density X. 
Find the force F acting on the dipole if the vector p is oriented 

(a) along the thread; 
(b) along the radius vector r; 
(c) at right angles to the thread and the radius vector r. 
3.47. Find the interaction force between two water molecules 

separated by a distance 1 = 10 nm if their electric moments are 
oriented along the same straight line. The moment of each molecule 
equals p = 0.62.10-29  C • m. 

3.48. Find the potential cp (x, y) of an electrostatic field E = 
= a (yi xj), where a is a constant, i and j are the unit vectors 
of the x and y axes. 



3.49. Find the potential cp (x, y) of an electrostatic field E 
2axyi 	a (x2  — y2) j, where a is a constant, i and j are the unit 

vectors of the x and y axes. 
3.50. Determine the potential cp (x, y, z) of an electrostatic field 

E = ayi (ax bz) j byk, where a and b are constants, i, j, k 
are the unit vectors of the axes x, y, z. 

3.51. The field potential in a certain region of space depends only 
on the x coordinate as cp = — ax3  b, where a and b are constants. 
Find the distribution of the space charge p (x). 

3.52. A uniformly distributed space charge fills up the space be-
tween two large parallel plates separated by a distance d. The poten-
tial difference between the plates is equal to Ay. At what value of 
charge density p is the field strength in the vicinity of one of the 
plates equal to zero? What will then be the field strength near 
the other plate? 

3.53. The field potential inside a charged ball depends only on 
the distance from its centre as cp = are b, where a and b are cons-
tants. Find the space charge distribution p (r) inside the ball. 

3.2. CONDUCTORS AND DIELECTRICS 
IN AN ELECTRIC FIELD 

• Electric field strength near the surface of a conductor in vacuum: 

En  = crieo. 	 (3.2a) 
• Flux of polarization P across a closed surface: 

dS = —q', 	 (3.2b) 

where q' is the algebraic sum of bound charges enclosed by this surface. 

• Vector D and Gauss's theorem for it: 

D = e,)E 	P, 	(11) dS = q, 	 (3.2c) 

where q is the algebraic sum of extraneous charges inside a closed surface. 
• Relations at the boundary between two dielectrics: 

Pan — Pin= — a', D271 	= a, E2T = Err, 	(3.2d) 
where a' and a are the surface densities of bound and extraneous charges, and 
the unit vector n of the normal is directed from medium 1 to medium 2. 

• In isotropic dielectrics: 
P = xe0 E, D = ce0 E, e = 1 	x. 	 (3.2e) 

• In the case of an isotropic uniform dielectric filling up all the space 
between the equipotential surfaces: 

E = Ede. 	 (3.2f) 

3.54. A small ball is suspended over an infinite horizontal con-
ducting plane by means of an insulating elastic thread of stiffness k. 
As soon as the ball was charged, it descended by x cm and its sepa-
ration Horn the plane became equal to 1. Find the charge of the 
ball. 
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3.55. A point charge q is located at a distance 1 from the infinite 
conducting plane. What amount of work has to be performed in 
order to slowly remove this charge very far from the plane. 

3.56. Two point charges, q and —q, are separated by a distance 1, 
both being located at a distance //2 from the infinite conducting 
plane. Find: 

(a) the modulus of the vector of the electric force acting on each 
charge; 

(b) the magnitude of the electric field strength vector at the mid-
point between these charges. 

3.57. A point charge q is located between two mutually perpendi-
cular conducting half-planes. Its distance from each half-plane 
is equal to 1. Find the modulus of the vector of the force acting 
on the charge. 

3.58. A point dipole with an electric moment p is located at 
a distance 1 from an infinite conducting plane. Find the modulus 
of the vector of the force acting on the dipole if the vector p is 
perpendicular to the plane. 

3.59. A point charge q is located at a distance 1 from an infinite 
conducting plane. Determine the surface density of charges induced 
on the plane as a function of separation r from the base of the perpen-
dicular drawn to the plane from the charge. 

3.60. A thin infinitely long thread carrying a charge X per unit 
length is oriented parallel to the infinite conducting plane. The 
distance between the thread and the plane is equal to 1. Find: 

(a) the modulus of the vector of the force acting on a unit length 
of the thread; 

(b) the distribution of surface charge density a (x) over the plane, 
where x is the distance from the plane perpendicular to the conducting 
surface and passing through the thread. 

3.61. A very long straight thread is oriented at right angles to 
an infinite conducting plane; its end is separated from the plane 
by a distance 1. The thread carries a uniform charge of linear den-
sity X. Suppose the point 0 is the trace of the thread on the plane. 
Find the surface density of the induced charge on the plane 

(a) at the point 0; 
(b) as a function of a distance r from the point 0. 
3.62. A thin wire ring of radius R carries a charge q. The ring 

is oriented parallel to an infinite conducting plane and is separated 
by a distance 1 from it. Find: 

(a) the surface charge density at the point of the plane symmetrical 
with respect to the ring; 

(b) the strength and the potential of the electric field at the centre 
of the ring. 

3.63. Find the potential cp of an uncharged conducting sphere out-
side of which a point charge q is located at a distance 1 from the 
sphere's centre. 
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3.64. A point charge q is located at a distance r from the centre 0 
of an uncharged conducting spherical layer whose inside and outside 
radii are equal to R1  and R2 respectively. Find the potential at 
the point 0 if r < R1. 

3.65. A system consists of two concentric conducting spheres, 
with the inside sphere of radius a carrying a positive charge q1. 
What charge q5  has to be deposited on the outside sphere of radius b 
to reduce the potential of the inside sphere to zero? How does the 
potential cp depend in this case on a distance r from the centre of 
the system? Draw the approximate plot of this dependence. 

3.66. Four large metal plates are located at a small distance d 
from one another as shown in Fig. 3.8. The extreme plates are inter- 

   

1 

Fig. 3.8. 

.u2 

connected by means of a conductor while a potential difference 
AT is applied to internal plates. Find: 

(a) the values of the electric field strength between neighbouring 
plates; 

(b) the total charge per unit area of each plate. 
3.67. Two infinite conducting plates I and 2 are separated by 

a distance 1. A point charge q is located between the plates at a dis-
tance x from plate I. Find the charges induced on each plate. 

3.68. Find the electric force experienced by a charge reduced 
to a unit area of an arbitrary conductor if the surface density of the 
charge equals a. 

3.69. A metal ball of radius R = 1.5 cm has a charge q = 10 RC. 
Find the modulus of the vector of the resultant force acting on a charge 
located on one half of the ball. 

3.70. When an uncharged conducting ball of radius R is placed 
in an external uniform electric field, a surface charge density a = 
= a°  cos 0 is induced on the ball's surface (here ao  is a constant, 

is a polar angle). Find the magnitude of the resultant electric force 
acting on an induced charge of the same sign. 

3.71. An electric field of strength E = 1.0 kV/cm produces polari-
zation in water equivalent to the correct orientation of only one out 
of N molecules. Find N. The electric moment of a water molecule 
equals p = 0.62-10-29  C•m. 

3.72. A non-polar molecule with polarizability 13 is located at 
a great distance 1 from a polar molecule with electric moment p. 
Find the magnitude of the interaction force between the molecules 
if the vector p is oriented along a straight line passing through both 
molecules. 
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3.73. A non-polar molecule is located at the axis of a thin uniformly 
charged ring of radius R. At what distance x from the ring's centre 
is the magnitude of the force F acting on the given molecule 

(a) equal to zero; (b) maximum? 
Draw the approximate plot Fx (x). 

3.74. A point charge q is located at the centre of a ball made of 
uniform isotropic dielectric with permittivity e. Find the polari-
zation P as a function of the radius vector r relative to the centre 
of the system, as well as the charge q' inside a sphere whose 
radius is less than the radius of the ball. 

3.75. Demonstrate that at a dielectric-conductor interface the 
surface density of the dielectric's bound charge a' = (e — 1)/e, 
where a is the permittivity, a is the surface density of the charge 
on the conductor. 

3.76. A conductor of arbitrary shape, carrying a charge q, is 
surrounded with uniform dielectric of permittivity 8 (Fig. 3.9). 

Fig. 3.9. Fig. 3A0. 

Find the total bound charges at the inner and outer surfaces of the 
dielectric. 

3.77. A uniform isotropic dielectric is shaped as a spherical layer 
with radii a and b. Draw the approximate plots of the electric field 
strength E and the potential IT vs the distance r from the centre of 
the layer if the dielectric has a certain positive extraneous charge 
distributed uniformly: 

(a) over the internal surface of the layer; (b) over the volume of 
the layer. 

3.78. Near the point A (Fig. 3.10) lying on the boundary between 
glass and vacuum the electric field strength in vacuum is equal to 
E0  = 10.0 V/m, the angle between the vector E0  and the normal 
n of the boundary line being equal to ac, = 30°. Find the field strength 
E in glass near the point A , the angle a between the vector E and n, 
as well as the surface density of the bound charges at the point A. 

3.79. Near the plane surface of a uniform isotropic dielectric 
with permittivity a the electric field strength in vacuum is equal 
to Bo, the vector E0  forming an angle 0 with the normal of the dielec-
tric's surface (Fig. 3.11). Assuming the field to be uniform both inside 
and outside the dielectric, find: 

(a) the flux of the vector E through a sphere of radius R with 
centre located at the surface of the dielectric; 
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Fig. 3.11. 

(b) the circulation of the vector D around the closed path 
of length I (see Fig. 3.11) whose plane is perpendicular to the surface 
of the dielectric and parallel to the vector Eo. 

3.80. An infinite plane of uniform dielectric with permittivity a 
is uniformly charged with extraneous charge of space density p. 
The thickness of the plate is equal to 2d. Find: 

(a) the magnitude of the electric field strength and the potential 
as functions of distance 1 from the middle point of the plane (where 
the potential is assumed to be equal to zero); having chosen the 
x coordinate axis perpendicular to the plate, draw the approximate 
plots of the projection E. (x) of the vector E and the potential w  (x); 

(b) the surface and space densities of the bound charge. 
3.81. Extraneous charges are uniformly distributed with space 

density p > 0 over a ball of radius R made of uniform isotropic 
dielectric with permittivity a. Find: 

(a) the magnitude of the electric field strength as a function of 
distance r from the centre of the ball; draw the approximate plots 
E (r) and cp (r); 

(b) the space and surface densities of the bound charges. 
3.82. A round dielectric disc of radius R and thickness d is stat-

ically polarized so that it gains the uniform polarization P, with 
the vector P lying in the plane of the disc. Find the strength E of 
the electric field at the centre of the disc if d << R. 

3.83. Under certain conditions the polarization of an infinite 
uncharged dielectric plate takes the form P = P, (1 — x2/d2), where 
Po  is a vector perpendicular to the plate, x is the distance from the 
middle of the plate, d is its half-thickness. Find the strength E 
of the electric field inside the plate and 
the potential difference between its sur-
faces. 

3.84. Initially the space between the 
plates of the capacitor is filled with air, 
and the field strength in the gap is equal 
to Ea. Then half the gap is filled with 
uniform isotropic dielectric with permittivity a as shown in Fig. 3.12. 
Find the moduli of the vectors E and D in both parts of the gap 
(1 and 2) if the introduction of the dielectric 

Are, zaert,,z 
Fig. 3.12. 

8* 	 115 



(a) does not change the voltage across the plates; 
(b) leaves the charges at the plates constant. 
3.85. Solve the foregoing problem for the case when half the gap 

is filled with the dielectric in the way shown in Fig. 3.13. 

   

 

/// ///z/ 

 

Fig. 3.13. 	 Fig. 3.14. 

3.86. Half the space between two concentric electrodes of a spher-
ical capacitor is filled, as shown in Fig. 3.14, with uniform isotropic 
dielectric with permittivity e. The charge of the capacitor is q. 
Find the magnitude of the electric field strength between the elec-
trodes as a function of distance r from the curvature centre of the 
electrodes. 

3.87. Two small identical balls carrying the charges of the same 
sign are suspended from the same point by insulating threads of 
equal length. When the surrounding space was filled with kerosene 
the divergence angle between the threads remained constant. What 
is the density of the material of which the balls are made? 

3.88. A uniform electric field of strength E = 100 V/m is gener-
ated inside a ball made of uniform isotropic dielectric with permit-
tivity a = 5.00. The radius of the ball is R = 3.0 cm. Find the 
maximum surface density of the bound charges and the total bound 
charge of one sign. 

3.89. A point charge q is located in vacuum at a distance 1 from 
the plane surface of a uniform isotropic dielectric filling up all the 
half-space. The permittivity of the dielectric equals a. Find: 

(a) the surface density of the bound charges as a function of distance 
r from the point charge q; analyse the obtained result at 1 	0; 

(b) the total bound charge on the surface of the dielectric. 
3.90. Making use of the formulation and the solution of the fore-

going problem, find the magnitude of the force exerted by the charges 
bound on the surface of the dielectric on the point charge q. 

3.91. A point charge q is located on the plane dividing vacuum 
and infinite uniform isotropic dielectric with permittivity a. Find 
the moduli of the vectors D and E as well as the potential q  as func-
tions of distance r from the charge q. 

3.92. A small conducting ball carrying a charge q is located in 
a uniform isotropic dielectric with permittivity a at a distance 1 
from an infinite boundary plane between the dielectric and vacuum. 
Find the surface density of the bound charges on the boundary plane 
as a function of distance r from the ball. Analyse the obtained result 
for 1 O. 
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3.93. A half-space filled with uniform isotropic dielectric with 
permittivity a has the conducting boundary plane. Inside the dielec-
tric, at a distance 1 from this plane, there is a small metal ball pos-
sessing a charge q. Find the surface density of the bound charges at 
the boundary plane as a function of distance r from the ball. 

3.94. A plate of thickness h made of uniform statically polarized 
dielectric is placed inside a capacitor whose parallel plates are inter-
connected by a conductor. The polarization of the dielectric is equal 

C 	/7 

Fig. 3.15. 

to P (Fig. 3.15). The separation between the capacitor plates is d. 
Find the strength and induction vectors for the electric field both 
inside and outside the plates. 

3.95. A long round dielectric cylinder is polarized so that the 
vector P = ar, where a is a positive constant and r is the distance 
from the axis. Find the space density p' of bound charges as a function 
of distance r from the axis. 

3.96. A dielectric ball is polarized uniformly and statically. Its 
polarization equals P. Taking into account that a ball polarized in 
this way may be represented as a result of a small shift of all positive 
charges of the dielectric relative to all negative charges, 

(a) find the electric field strength E inside the ball; 
(b) demonstrate that the field outside the ball is that of a dipole 

located at the centre of the ball, the potential of that field being 
equal to q = por/4a co, where Po  is the electric moment of the ball, 
and r is the distance from its centre. 

3.97. Utilizing the solution of the foregoing problem, find the elec-
tric field strength E0  in a spherical cavity in an infinite statically polariz-
ed uniform dielectric if the dielectric's polarization is P, and far from 
the cavity the field strength is E. 

3.98. A uniform dielectric ball is placed in a uniform electric 
field of strength E0. Under these conditions the dielectric becomes 
polarized uniformly. Find the electric field strength E inside the ball 
and the polarization P of the dielectric whose permittivity equals e. 
Make use of the result obtained in Problem 3.96. 

3.99. An infinitely long round dielectric cylinder is polarized 
uniformly and statically, the polarization P being perpendicular 
to the axis of the cylinder. Find the electric field strength E inside the 
dielectric. 

3.100. A long round cylinder made of uniform dielectric is placed 
in a uniform electric field of strength E0. The axis of the 
cylinder is perpendicular to vector E0. Under these conditions 
the dielectric becomes polarized uniformly. Making use of the result 
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obtained in the foregoing problem, find the electric field strength 
E in the cylinder and the polarization P of the dielectric whose per-
mittivity is equal to 8. 

3.3. ELECTRIC CAPACITANCE. 
ENERGY OF AN ELECTRIC FIELD 

• Capacitance of a parallel-plate capacitor: 

C = 880S/d. 	 (3.3a) 

• Interaction energy of a system of point charges: 
1 

2 qicpi• 	 (3.3b) 

• Total electric energy of a system with continuous charge distribution: 
1 

= 	cpp dV 	 (3.3c) 

• Total electric energy of two charged bodies 1. and 2: 

	

W = WI+ W2+ Wi2, 	 (3.3d) 

where WI  and W2  are the self-energies of the bodies, and W12 is the interaction 
energy, 

• Energy of a charged capacitor: 
qV 	q2 	CV2  

W 
" = 2 = 2C — 2 	

(3.3e) 

• Volume density of electric field energy: 
ED 880E2  

(3.3f) 
2 

3.101. Find the capacitance of an isolated ball-shaped conductor 
of radius Ri  surrounded by an adjacent concentric layer of dielectric 
with permittivity s and outside radius R2. 

3.102. Two parallel-plate air capacitors, each of capacitance C, 
were connected in series to a battery with emf 6. Then one of the 
capacitors was filled up with uniform dielectric with permittivity a. 
How many times did the electric field strength in that capacitor 
decrease? What amount of charge flows through the battery? 

3.103. The space between the plates of a parallel-plate capacitor 
is filled consecutively with two dielectric layers 1 and 2 having 
the thicknesses d1  and d2  and the permittivities 81  and 82  respectively. 
The area of each plate is equal to S. Find: 

(a) the capacitance of the capacitor; 
(b) the density a' of the bound charges on the boundary plane if 

the voltage across the capacitor equals V and the electric field is 
directed from layer 1 to layer 2. 

3.104. The gap between the plates of a parallel-plate capacitor 
is filled with isotropic dielectric whose permittivity 8 varies linearly 
from el  to 62  (82  > 81) in the direction perpendicular to the plates. 
The area of each plate equals S, the separation between the plates 
is equal to d. Find: 

(a) the capacitance of the capacitor; 
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Fig. 3.16. 

(b) the space density of the bound charges as a function of a 
if the charge of the capacitor is q and the field E in it is directed toward 
the growing a values. 

3.105. Find the capacitance of a spherical capacitor whose elec-
trodes have radii R1  and R2  > Ri  and which is filled with isotropic 
dielectric whose permittivity varies as a = air, where a is a constant, 
and r is the distance from the centre of the capacitor. 

3.106. A cylindrical capacitor is filled with two cylindrical layers 
of dielectric with permittivities el  and 82. The inside radii of the 
layers are equal to RI  and R 2  > RI. The maximum permissible 
values of electric field strength are equal to Elm  and Elm  for these 
dielectrics. At what relationship between a, R, and En, will the 
voltage increase result in the field strength reaching the breakdown 
value for both dielectrics simultaneously? 

3.107. There is a double-layer cylindrical capacitor whose para-
meters are shown in Fig. 3.16. The breakdown field strength values 
for these dielectrics are equal to Ei  and E2 re-
spectively. What is the breakdown voltage of 
this capacitor if eiRlEi< E 2R 2E2? 

3.108. Two long straight wires with equal 
cross-sectional radii a are located parallel to each 
other in air. The distance between their axes 
equals b. Find the mutual capacitance of the 
wires per unit length under the condition b>> a. 

3.109. A long straight wire is located parallel to 
an infinite conducting plate. The wire cross-sec-
tional radius is equal to a, the distance between 
the axis of the wire and the plane equals b. Find the mutual ca-
pacitance of this system per unit length of the wire under the condi-
tion a « b. 

3.110. Find the capacitance of a system of two identical metal 
balls of radius a if the distance between their centres is equal to b, 
with b >> a. The system is located in a uniform dielectric with 
permittivity a. 

3.111. Determine the capacitance of a system consisting of a metal 
ball of radius a and an infinite conducting plane separated from the 
centre of the ball by the distance 1 if 1 >> a. 

3.112. Find the capacitance of a system of identical capacitors 
between points A and B shown in 

(a) Fig. 3.17a; (b) Fig. 3.17b. 

C 

Aid 	 A I  	II 	I e 	 i II I II 1  II 1 -r-11 1  1°3  
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CII 	1 8  

	

(a) 	 (b) 
Fig. 3.17. 
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3.113. Four identical metal plates are located in air at equal 
distances d from one another. The area of each plate is equal to S. 
Find the capacitance of the system between points A and B if the 
plates are interconnected as shown 

(a) in Fig. 3.18a; (b) in Fig. 3.18b. 

A 8 A 8 

(a) 	 (b) 

Fig. 3.18. 

3.114. A capacitor of capacitance C1  =-- 1.0 p.F withstands the 
maximum voltage V1  = 6.0 kV while a capacitor of capacitance 
C2 = 2.0 RF, the maximum voltage V2 = 4.0 kV. What voltage 
will the system of these two capacitors withstand if they are con-
nected in series? 

3.115. Find the potential difference between points A and B 
of the system shown in Fig. 3.19 if the emf is equal to g = 110 V 
and the capacitance ratio C2/C1  = = 2.0. 

Fig. 3.19. 

3.116. Find the capacitance of an infinite circuit formed by the 
repetition of the same link consisting of two identical capacitors, 
each with capacitance C (Fig. 3.20). 

c o--Ili  c If 	11-1 	A 	& 	8 

TC.  T C -Fe  
Fig. 3.20. 	 Fig. 3.21. 

3.117. A circuit has a section AB shown in Fig. 3.21. The emf 
of the source equals g = 10 V, the capacitor capacitances are equal 
to C1  = 1.0 RF and C2 = 2.0 laF, and the potential difference WA -
- cp a = 5.0 V. Find the voltage across each capacitor. 

3.118. In a circuit shown in Fig. 3.22 find the potential difference 
between the left and right plates of each capacitor. 
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3.119. Find the charge of each capacitor in the circuit shown in 
Fig. 	3.22. 

[ Cf  

	 62 

11 C,  

0  

II C2  

II 
6:5 

11 4  

C2  
6 

	

Fig. 3.22. 	 Fig. 3.23. 

3.120. Determine the potential difference TA  - IT B between points 
A and B of the circuit shown in Fig. 3.23. Under what condition is 
it equal to zero? 

3.121. A capacitor of capacitance Cl  = 1.0 ttF charged up to 
a voltage V = 110 V is connected in parallel to the terminals 
of a circuit consisting of two uncharged capacitors connected in 
series and possessing the capacitances C2 = 2.0 RF and C3 = 3.0 IR. 
What charge will flow through the connecting wires? 

3.122. What charges will flow after the shorting of the switch 
Sw in the circuit illustrated in Fig. 3.24 through sections 1 and 2 
in the directions indicated by the arrows? 

T .., 	Tcz  

i, 	'2 
6

T 
 

2
1  P Te2  

Fig. 3.24. 	 Fig. 3.25. 

3.123. In the circuit shown in Fig. 3.25 the emf of each battery 
is equal to g = 60 V, and the capacitor capacitances are equal 
to Cl  = 2.0 fi.F and C2 = 3.0 p,F. Find the charges which will 
flow after the shorting of the switch Sw through sections' 1, 2 and 3 
in the directions indicated by the arrows. 

3.124. Find the potential difference TA  — cpB  between points 
A and B of the circuit shown in Fig. 3.26. 

   

  

 

0 

 

  

  

  

Fig. 3.26. 	 Fig. 3.27. 

3.125. Determine the potential at point 1 of the circuit shown in 
Fig. 3.27, assuming the potential at the point 0 to be equal to zero. 



Using the symmetry of the formula obtained, write the expressions 
for the potentials. at points 2 and 3. 

3.126. Find the capacitance of the circuit shown in Fig. 3.28 
between points A and B. 

	il ez  
A 

-- Cj 

Cz 

Fig, 3.28. 

3.127. Determine the interaction energy of the point charges lo-
cated at the corners of a square with the side a in the circuits shown 
in Fig. 3.29. 

(c) 	 (b) 	 (c) 

Fig. 3.29. 

3.128. There is an infinite straight chain of alternating charges 
q and ---q. The distance between the neighbouring charges is equal 
to a. Find the interaction energy of each charge with all the 
others. 

Instruction. Make use of the expansion of In (1 + a) in a power 
series in a. 

3.129. A point charge q is located at a distance 1 from an infinite 
tonducting plane. Find the interaction energy of that charge with 
chose induced on the plane. 

3.130. Calculate the interaction energy of two balls whose charges 
qi  and q, are spherically symmetrical. The distance between the 
centres of the balls is equal to 1. 

Instruction. Start with finding the interaction energy of a ball and 
a thin spherical layer. 

3.131. A capacitor of capacitance C1  = 1.0 pF carrying initially 
a voltage V = 300 V is connected in parallel with an uncharged 
capacitor of capacitance C 2  = 2.0 p,F. Find the increment of the 
electric energy of this system by the moment equilibrium is reached. 
Explain the result obtained. 



Fig. 3.32. 

3.132. What amount of heat will be generated in the circuit shown 
in Fig. 3.30 after the switch Sw is shifted from position 1 to position 2? 

Sw 

1 2 

6 

Fig. 3.30. 	 Fig. 3.31. 

3.133. What amount of heat will be generated in the circuit shown.  
in Fig. 3.31 after the switch Sw is shifted from position 1 to posi-
tion 2? 

3.134. A system consists of two thin concentric metal shells of 
radii RI  and R2 with corresponding charges q1  and q 2. Find the self-
energy values W1  and W2 of each shell, the interaction energy of 
the shells W12, and the total electric energy of the system. 

3.135. A charge q is distributed uniformly over the volume of 
a ball of radius R. Assuming the permittivity to be equal to unity, 
find: 

(a) the electrostatic self-energy of the ball; 
(b) the ratio of the energy W1  stored in the ball to the energy 

W2 pervading the surrounding space. 
3.136. A point charge q = 3.0 RC is located at the centre of a spher-

ical layer of uniform isotropic dielectric with permittivity e = 3.0. 
The inside radius of the layer is equal to a = 250 mm, the outside 
radius is b = 500 mm. Find the electrostatic energy inside the 
dielectric layer. 

3.137. A spherical shell of radius R1  with uniform charge q is 
expanded to a radius R2. Find the work performed by the electric 
forces in this process. 

3.138. A spherical shell of radius Ri  with a uniform charge q has 
a point charge qo  at its centre. Find the work performed by the elec-
tric forces during the shell expansion from 
radius R1  to radius R2. 

3.139. A spherical shell is uniformly 
charged with the surface derisity a. Using the — 
energy conservation law, find the magnitude 
of the electric force acting on a unit area of 
the shell. 

3.140. A point charge q is located at the 
centre 0 of a spherical uncharged conducting 
layer provided with a small orifice (Fig. 3.32). The inside and outside 
radii of the layer are equal to a and b respectively. What amount of 
work has to be performed to slowly transfer the charge q from the 
point 0 through the orifice and into infinity? 

C Sw 

1  



3.141. Each plate of a parallel-plate air capacitor has an area S. 
What amount of work has to be performed to slowly increase the 
distance between the plates from x1  to x2  if 

(a) the capacitance of the capacitor, which is equal to q, or (b) the 
voltage across the capacitor, which is equal to V, is kept constant 
in the process? 

3.142. Inside a parallel-plate capacitor there is a plate parallel 
to the outer plates, whose thickness is equal to = 0.60 of the gap 
width. When the plate is absent the capacitor capacitance equals 
c = 20 nF. First, the capacitor was connected in parallel to a cons-
tant voltage source producing V = 200 V, then it was disconnected 
from it, after which the plate was slowly removed from the gap. 
Find the work performed during the removal, if the plate is 

(a) made of metal; (b) made of glass. 
3.143. A parallel-plate capacitor was lowered into water in a hor-

izontal position, with water filling up the gap between the plates 
d = 1.0 mm wide. Then a constant voltage V = 500 V was applied 
to the capacitor. Find the water pressure increment in the 
gap. 

3.144. A parallel-plate capacitor is located horizontally so that 
one of its plates is submerged into liquid while the other is over its 
surface (Fig. 3.33). The permittivity of the liquid is equal to a, 
its density is equal to p. To what height will the level of the liquid 
in the capacitor rise after its plates get a charge of surface density o-? 

Fig. 3.33 Fig. 3.34. 

3.145. A cylindrical layer of dielectric with permittivity a is 
inserted into a cylindrical capacitor to fill up all the space between 
the electrodes. The mean radius of the electrodes equals R, the gap 
between them is equal to d, with d << R. The constant voltage V 
is applied across the electrodes of the capacitor. Find the magnitude 
of the electric force pulling the dielectric into the capacitor. 

3.146. A capacitor consists of two stationary plates shaped as 
a semi-circle of radius R and a movable plate made of dielectric 
with permittivity a and capable of rotating about an axis 0 between 
the stationary plates (Fig. 3.34). The thickness of the movable plate 
is equal to d which is practically the separation between the station-
ary plates. A potential difference V is applied to the capacitor. 
Find the magnitude of the moment of forces relative to the axis 0 
acting on the movable plate in the position shown in the 
figure. 
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Fig. 3.35. 

3.4. ELECTRIC CURRENT 

• Ohm's law for an inhomogeneous segment of a circuit: 

V12 (P1—  P2+412 
	

(3.4a) 

where Via is the voltage drop across the segment. 
• Differential form of Ohm's law: 

j = a (E 	E*), 	 (3.4b) 

where E* is the strength of a field produced by extraneous forces. 
• Kirchhoff's laws (for an electric circuit): 

= 0, E/hRh 	 (3.4c) 

• Power P of current and thermal power Q: 

1)=.-VI=(m 	q2+12) I, Q=--RI2 . 	 (3.4d) 

• Specific power Psp of current and specific thermal power Qsp: 

(E E*), 	Qsp=- Pj2 
	

(3.4e) 

• Current density in a metal: 
j = enu, 	 (3.4f) 

where u is the average velocity of carriers. 
• Number of ions recombining per unit volume of gas per unit time: 

nr = rn2, 	 (3.4g) 
where r is the recombination coefficient. 

3.147. A long cylinder with uniformly charged surface and cross-
sectional radius a = 1.0 cm moves with a constant velocity v = 
= 10 m/s along its axis. An electric field strength at the surface 
of the cylinder is equal to E = 0.9 kV/cm. Find the resulting convec-
tion current, that is, the current caused by mechanical transfer of 
a charge. 

3.148. An air cylindrical capacitor with a dc voltage V = 200 V 
applied across it is being submerged vertically into a vessel filled 
with water at a velocity v = 5.0 mm/s. The electrodes of the capacitor 
are separated by a distance d = 2.0 mm, the mean curvature radius 
of the electrodes is equal to r = 50 mm. Find the current flowing 
in this case along lead wires, if d <r. 

3.149. At the temperature 0 °C the electric 
resistance of conductor 2 is yi times that of 
conductor 1. Their temperature coefficients of 
resistance are equal to a2  and al  respectively. 
Find the temperature coefficient of resistance 
of a circuit segment consisting of these two 
conductors when they are connected 

(a) in series; (b) in parallel. 
3.150. Find the resistance of a wire frame 

shaped as a cube (Fig. 3.35) when measured between points 
(a) 1-7; (b) 1-2; (c) 1-3. 
The resistance of each edge of the frame is R 



3.151. At what value of the resistance Rx  in the circuit shown 
in Fig. 3.36 will the total resistance between points A and B be 
independent of the number of cells? 

2R 	28 
	

2/7 
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Fig. 3.36. 

3.152. Fig. 3.37 shows an infinite circuit formed by the repetition 
of the same link, consisting of resistance R1 =-- 4.052 and R2 = 3.0 O. 
Find the resistance of this circuit between points A and B. 

A 

R2 	RZ 	R2 

B 	  

Fig. 3.37. 

3.153. There is an infinite wire grid with square cells (Fig. 3.38). 
The resistance of each wire between neighbouring joint connections 
is equal to R0. Find the resistance R of the = 2 -et R R®  AC 7 
whole grid between points A and B. 

Instruction. Make use of principles of 
symmetry and superposition. 

3.154. A homogeneous poorly conducting 
medium of resistivity p fills up the space 
between two thin coaxial ideally conduct-
ing cylinders. The radii of the cylinders 
are equal to a and b, with a <b, the length 
of each cylinder is 1. Neglecting the edge 
effects, find the resistance of the medium 
between the cylinders. 

3.155. A metal ball of radius a is surrounded by a thin concentric 
metal shell of radius b. The space between these electrodes is filled 
up with a poorly conducting homogeneous medium of resistivity p. 
Find the resistance of the interelectrode gap. Analyse the obtained 
solution at b 

3.156. The space between two conducting concentric spheres of 
radii a and b (a < b) is filled up with homogeneous poorly conducting 
medium. The capacitance of such a system equals C. Find the resistiv-
ity of the medium if the potential difference between the spheres, 
when they are disconnected from an external voltage, decreases 
it-fold during the time interval At. 

A • 

• 

Fig. 3.38. 
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3.157. Two metal balls of the same radius a are located in a homo-
geneous poorly conducting medium with resistivity p. Find the 
resistance of the medium between the balls provided that the separa-
tion between them is much greater than the radius of the ball. 

3.158. A metal ball of radius a is located at a distance 1 from an 
infinite ideally conducting plane. The space around the ball is filled 
with a homogeneous poorly conducting medium with resistivity p. 
In the case of a <1 find: 

(a) the current density at the conducting plane as a function of 
distance r from the ball if the potential difference between the ball 
and the plane is equal to V; 

(b) the electric resistance of the medium between the ball and 
the plane. 

3.159. Two long parallel wires are located in a poorly conducting 
medium with resistivity p. The distance between the axes of the 
wires is equal to 1, the cross-section radius of each wire equals a. 
In the case a <1 find: 

(a) the current density at the point equally removed from the axes 
of the wires by a distance r if the potential difference between the 
wires is equal to V; 

(b) the electric resistance of the medium per unit length of the 
wires. 

3.160. The gap between the plates of a parallel-plate capacitor 
is filled with glass of resistivity p = 100 GQ•m. The capacitance 
of the capacitor equals C = 4.0 nF. Find the leakage current of the 
capacitor when a voltage V = 2.0 kV is applied to it. 

3.161. Two conductors of arbitrary shape are embedded into an 
infinite homogeneous poorly conducting medium with resistivity 
p and permittivity e. Find the value of a product RG for this system, 
where R is the resistance of the medium between the conductors, 
and C is the mutual capacitance of the wires in the presence of the 
medium. 

3.162. A conductor with resistivity p bounds on a dielectric with 
permittivity a. At a certain point A at the conductor's surface the 
electric displacement equals D, the vector D being directed away 
from the conductor and forming an angle a with the normal of the 
surface. Find the surface density of charges on the conductor at the 
point A and the current density in the conductor in the vicinity of 
the same point. 

3.163. The gap between the plates of a parallel-plate capacitor 
is filled up with an inhomogeneous poorly conducting medium whose 
conductivity varies linearly in the direction perpendicular to the 
plates from o = 1.0 pS/m to o-, = 2.0 pS/m. Each plate has an 
area S = 230 cm2, and the separation between the plates is d = 
= 2.0 mm. Find the current flowing through the capacitor due to 
a voltage V = 300 V. 

3.164. Demonstrate that the law of refraction of direct current 
lines at the boundary between two conducting media has the form 



tan a2/tan al  = a,/cri, where al  and a2  are the conductivities of 
the media, a2  and al  are the angles between the current lines and the 
normal of the boundary surface. 

3.165. Two cylindrical conductors with equal cross-sections and 
different resistivities pi  and (32  are put end to end. Find the charge 
at the boundary of the conductors if a current I flows from conductor 
1 to conductor 2. 

3.166. The gap between the plates of a parallel-plate capacitor is 
filled up with two dielectric layers 1 and 2 with thicknesses d1  and 
d2, permittivities 8, and 82, and resistivities Pi  and p2. A de voltage 
V is applied to the capacitor, with electric field directed from layer 1 
to layer 2. Find a, the surface density of extraneous charges at the 
boundary between the dielectric layers, and the condition under 
which a = 0. 

3.167. An inhomogeneous poorly conducting medium fills up 
the space between plates 1 and 2 of a parallel-plate capacitor. Its 
permittivity and resistivity vary from values 8 1  , pi  at plate 1 to 
values 82, P2  at plate 2. A de voltage is applied to the capacitor 
through which a steady current I flows from plate 1 to plate 2. Find 
the total extraneous charge in the given medium. 

3.168. The space between the plates of a parallel-plate capacitor 
is filled up with inhomogeneous poorly conducting medium whose 
resistivity varies linearly in the direction perpendicular to the plates. 
The ratio of the maximum value of resistivity to the minimum 
one is equal to 11  The gap width equals d. Find the volume density 
of the charge in the gap if a voltage V is applied to the capacitor. 
E is assumed to be 1everywhere. 

3.169. A long round conductor of cross-sectional area S is made 
of material whose resistivity depends only on a distance r from the 
axis of the conductor as p = air', where a is a constant. Find: 

(a) the resistance per unit length of such a conductor; 
(b) the electric field strength in the conductor due to which a cur-

rent I flows through it. 
3.170. A capacitor with capacitance C = 400 pF is connected 

via a resistance R = 650 Q to a source of constant voltage Vo. 
How soon will the voltage developed across the capacitor reach a 
value V = 0.90 Vo? 

3.171. A capacitor filled with dielectric of permittivity e = 2.1 
loses half the charge acquired during a time interval i = 3.0 min. 
Assuming the charge to leak only through the dielectric filler, cal-
culate its resistivity. 

3.172. A circuit consists of a source of a constant emf e and a resist 
ante R and a capacitor with capacitance C connected in series. The 
internal resistance of the source is negligible. At a moment t = 0 
the capacitance of the capacitor is abruptly decreased 1-fold. Find 
the current flowing through the circuit as a function of time t. 

3.173. An ammeter and a voltmeter are connected in series to a bat-
tery with an emf F = 6.0 V. When a certain resistance is connected 



in parallel with the voltmeter, the readings of the latter decrease 
= 2.0 times, whereas the readings of the ammeter increase the 

same number of times. Find the voltmeter readings after the con-
nection of the resistance. 

3.174. Find a potential difference cp, — cp2  between points 1 and 2 
of the circuit shown in Fig. 3.39 if R 1= 10 52, R2 = 20 Q, = 
= 5.0 V, and F, = 2.0 V. The internal resist- 
ances of the current sources are negligible. 	R, 	S/ 

3.175. Two sources of current of equal emf 
are connected in series and have different 1 	 2 
internal resistances R1  and R2. (R2  > 111). 
Find the external resistance R at which the 	62 
potential difference across the terminals of one 
of the sources (which one in particular?) be- 	Fig. 3.39. 

comes equal to zero. 
3.176. N sources of current with different emf's are connected 

as shown in Fig. 3.40. The emf's of the sources are proportional to 
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Fig. 3.41. Fig. 3.40. 

their internal resistances, i.e. g = aR, where a is an assigned con-
stant. The lead wire resistance is negligible. Find: 

(a) the current in the circuit; 
(b) the potential difference between points A and B dividing 

the circuit in n and N — rt links. 
3.177. In the circuit shown in Fig. 3.41 the sources have emf's 

F1  = 1.0 V and F2  = 2.5 V and the resistances have the values 
Ri  = 10 5.2 and R 2  = 20 52. The internal resistances of the sources 
are negligible. Find a potential difference WA  — (p B  between the 
plates A and B of the capacitor C. 

3.178. In the circuit shown in Fig. 3.42 the emf of the source is 
equal to e = 5.0 V and the resistances are equal to RI  = 4.0 El 
and 11 2  = 6.0 52. The internal resistance of the source equals R = 
= 0.10 52. Find the currents flowing through the resistances R1  
and R2. 

3.179. Fig. 3.43 illustrates a potentiometric circuit by means of 
which we can vary a voltage V applied to a certain device possessing 
a resistance R. The potentiometer has a length 1 and a resistance 
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R 0 , and voltage Vo  is applied to its terminals. Find the voltage V 
fed to the device as a function of distance x. Analyse separately the 
case R >> R0. 
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Fig. 3.42. 	 Fig. 3.43. 

3.180. Find the emf and the internal resistance of a source which 
is equivalent to two batteries connected in parallel whose emf's 
are equal to ei  and 62  and internal resistances to R1  and R2. 

3.181. Find the magnitude and direction of the current flowing 
through the resistance R in the circuit shown in Fig. 3.44 if the 
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Fig.3.45. 

 

 

 

Fig. 3.44. 

 

emf's of the sources are equal to gi  = 1.5 V and t, = 3.7 V and 
the resistances are equal to R1  = 10 S2, R2 = 20 S2, R = 5.0 Q. 
The internal resistances of the sources are negligible. 

3.182. In the circuit shown in Fig. 3.45 the sources have emf's 
ti  = 1.5 V, g, = 2.0 V, g3  = 2.5 V, and the resistances are 
equal to R1  = 10 S2, R 2  = 20 S2, R, = 30 Q. The internal resistances 
of the sources are negligible. Find: 

(a) the current flowing through the 	 82  
resistance R1; 	i 	1 	 

(b) a potential difference TA  — cps  I  I  
between the points A and B. 

3.183. Find the current flowing through 6°1 	T  8  	T6  
the resistance R in the circuit shown in 
Fig. 3.46. The internal resistances of the 	Fig. 3.46.  
batteries are negligible. 

3.184. Find a potential difference CpA — cp B  between the plates 
of a capacitor C in the circuit shown in Fig. 3.47 if the sources have 
emf's F, = 4.0 V and E, = 1.0 V and the resistances are equal 
to R, = 10 Q, R2 = 20 Q, and R3 = 30 Q. The internal resistances 
of the sources are negligible. 
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Fig. 3.50. 

3.185. Find the current flowing through the resistance R1  of the 
circuit shown in Fig. 3.48 if the resistances are equal to R1  = 10 52, 
R2 = 20 52, and 113 = 30 Q, and the potentials of points 1, 2, and 3 
are equal to cp1  = 10 V, •:P2  = 6 V, and cp, = 5 V 
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Fig, 3.47. 
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3.186. A constant voltage V = 25 V is maintained between 
points A and B of the circuit (Fig. 3.49). Find the magnitude and 

direction of the current flowing through the segment CD if the resist-
ances are equal to R1  = 1.0 52, R2 = 2.0 0, R3 = 3.0 52, and R4 = 
= 4.0 Q. 

3.187. Find the resistance between points A and B of the circuit 
shown in Fig. 3.50. 

3.188. Find how the voltage across the capacitor C varies with 
time t (Fig. 3.51) after the shorting of the switch Sw at the moment 
t = 0. 

Fig. 3.51. 	 Fig. 3.52. 

3.189. What amount of heat will be generated in a coil of resist-
ance R due to a charge q passing through it if the current in the coil 

(a) decreases down to zero uniformly during a time interval At; 
(b) decreases down to zero halving its value every At seconds? 
3.190. A de source with internal resistance R0  is loaded with 

three identical resistances R interconnected as shown in Fig. 3.52. 
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Fig. 3.53. 

At what value of R will the thermal power generated in this circuit 
be the highest? 

3.191. Make sure that the current distribution over two resistances 
R1  and R2  connected in parallel corresponds to the minimum thermal 
power generated in this circuit. 

3.192. A storage battery with emf 6 = 2.6 V loaded with an 
external resistance produces a current I = 1.0 A. In this case the 
potential difference between the terminals of the storage battery 
equals V = 2.0 V. Find the thermal power generated in the battery 
and the power developed in it by electric forces. 

3.193. A voltage V is applied to a de electric motor. The armature 
winding resistance is equal to R. At what value of current flowing 
through the winding will the useful power of the motor be the highest? 
What is it equal to? What is the motor efficiency in this case? 

3.194. How much (in per cent) has a filament diameter decreased 
due to evaporation if the maintenance of the previous temperature 
required an increase of the voltage by ri = 1.0%? The amount of 
heat transferred from the filament into surrounding space is assumed 
to be proportional to the filament surface area. 

3.195. A conductor has a temperature-independent resistance R 
and a total heat capacity C. At the moment t = 0 it is connected 
to a de voltage V. Find the time dependence of a conductor's tempe-
rature T assuming the thermal power dissipated into surrounding 
space to vary as q = k (T — To), where k is a constant, To  is the 
environmental temperature (equal to the conductor's temperature 
at the initial moment). 

3.196. A circuit shown in Fig. 3.53 has resistances R1  = 2052 
and R2 = 30 Q. At what value of the resistance Rx  will the thermal 

1.62 

Fig. 3.54. 

power generated in it be practically independent of small variations 
of that resistance? The voltage between the points A and B is sup-
posed to be constant in this case. 

3.197. In a circuit shown in Fig. 3.54 resistances R1  and R2 
are known, as well as emf's ei  and g2. The internal resistances 
of the sources are negligible. At what value of the resistance R 
will the thermal power generated in it be the highest? What is it 
equal to? 

3.198. A series-parallel combination battery consisting of a large 
number N = 300 of identical cells, each with an internal resistance 
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Fig. 3.55. 

r = 0.3 52, is loaded with an external resistance R = 10 Q. Find 
the number n of parallel groups consisting of an equal number of 
cells connected in series, at which the external resistance generates 
the highest thermal power. 

3.199. A capacitor of capacitance C = 5.00 µF is connected to 
a source of constant emf 6 = 200 V (Fig. 3.55). Then the switch 
Sw was thrown over from contact 1 to contact 2. Find the amount 
of heat generated in a resistance R, = 500 52 if R, = 330 Q. 

3.200. Between the plates of a parallel-plate capacitor there is 
a metallic plate whose thickness takes up = 0.60 of the capacitor 

Fig. 3.56. 

gap. When that plate is absent the capacitor has a capacity C 
20 nF. The capacitor is connected to a de voltage source V =-- 

= 100 V. The metallic plate is slowly extracted from the gap. Find: 
(a) the energy increment of the capacitor; 
(b) the mechanical work performed in the process of plate extrac-

tion. 
3.201. A glass plate totally fills up the gap between the electrodes 

of a parallel-plate capacitor whose capacitance in the absence of 
that glass plate is equal to C = 20 nF. The capacitor is connected 
to a do voltage source V = 100 V. The plate is slowly, and without 
friction, extracted from the gap. Find the capacitor energy increment 
and the mechanical work performed in the process of plate extrac-
tion. 

3.202. A cylindrical capacitor connected to a de voltage source V 
touches the surface of water with its end (Fig. 3.56). The separation 
d between the capacitor electrodes is substantially less than their 
mean radius. Find a height h to which the water level in the gap 
will rise. The capillary effects are to be neglected. 

3.203. The radii of spherical capacitor electrodes are equal to 
a and b, with a < b. The interelectrode space is filled with homoge-
neous substance of permittivity s and resistivity p. Initially the 
capacitor is not charged. At the moment t = 0 the internal electrode 
gets a charge go. Find: 

(a) the time variation of the charge on the internal electrode; 
(b) the amount of heat generated during the spreading of the 

charge. 
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3.204. The electrodes of a capacitor of capacitance C = 2.00 tiF 
carry opposite charges q, = 1.00 mC. Then the electrodes are inter-
connected through a resistance R = 5.0 MQ. Find: 

(a) the charge flowing through that resistance during a time inter-
val i = 2.00 s; 

(b) the amount of heat generated in the resistance during the 
same interval. 

3.205. In a circuit shown in Fig. 3.57 the capacitance of each 
capacitor is equal to C and the resistance, to R. One of the capacitors 
was connected to a voltage Vo  and then at the 
moment t = 0 was shorted by means of the switch 
Sw. Find: 	

_F-4 (a) a current I in the circuit as a function of -r- 

Sw 

C 	C -r  
time t; 	 I  	I 

(b) the amount of generated heat provided a 
dependence I (t) is known. 

Fig. 3.57. 3.206. A coil of radius r = 25 cm wound of a thin 
copper wire of length 1 = 500 m rotates with an 
angular velocity co = 300 rad/s about its axis. The coil is connect-
ed to a ballistic galvanometer by means of sliding contacts. The 
total resistance of the circuit is equal to R = 21 Q. Find the specific 
charge of current carriers in copper if a sudden stoppage of the 
coil makes a charge q = 10 nC flow through the galvano-
meter. 

3.207. Find the total momentum of electrons in a straight wire 
of length 1 = 1000 m carrying a current I = 70 A. 

3.208. A copper wire carries a current of density j = 1.0 A/mm2. 
Assuming that one free electron corresponds to each copper atom, 
evaluate the distance which will be covered by an electron during 
its displacement 1 = 10 mm along the wire. 

3.209. A straight copper wire of length 1 = 1000 m and cross-
sectional area S = 1.0 mm2  carries a current I = 4.5 A. Assuming 
that one free electron corresponds to each copper atom, find: 

(a) the time it takes an electron to displace from one end of the 
wire to the other; 

(b) the sum of electric forces acting on all free electrons in the 
given wire. 

3.210. A homogeneous proton beam accelerated by a potential 
difference V = 600 kV has a round cross-section of radius r = 
= 5.0 mm. Find the electric field strength on the surface of the beam 
and the potential difference between the surface and the axis of 
the beam if the beam current is equal to I = 50 mA. 

3.211. Two large parallel plates are located in vacuum. One of 
them serves as a cathode, a source of electrons whose initial velocity 
is negligible. An electron flow directed toward the opposite plate prod-
uces a space charge causing the potential in the gap between the 
plates to vary as cp = ax4/3, where a is a positive constant, and x is 
the distance from the cathode. Find: 
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(a) the volume density of the space charge as a function 
of x; 

(b) the current density. 
3.212. The air between two parallel plates separated by a distance 

d = 20 mm is ionized by X-ray radiation. Each plate has an area 
S = 500 cm2. Find the concentration of positive ions if at a voltage 
V = 100 V a current I = 3.0 p,A flows between the plates, which 
is well below the saturation current. The air ion mobilities are u-ei-  = 

1.37 cm2/(V•s) and uo = 1.91 cm2/(V•s). 
3.213. A gas is ionized in the immediate vicinity of the surface 

of plane electrode 1 (Fig. 3.58) separated from electrode 2 by a dis-
tance 1. An alternating voltage varying with time t as V = Vo  sin cot 
is applied to the electrodes. On decreasing the 
frequency co it was observed that the galvano- 
meter G indicates a current only at to < con, 
where co, is a certain cut-off frequency. Find 
the mobility of ions reaching electrode 2 under 
these conditions. 

	

3.214. The air between two closely located 	V 
plates is uniformly ionized by ultraviolet radia- 

	

tion. The air volume between the plates is equal 	Fig. 3.58. 
to V = 500 cm3, the observed saturation current 
is equal to /sat  = 0.48 RA. Find: 

(a) the number of ion pairs produced in a unit volume per unit 
time; 

(b) the equilibrium concentration of ion pairs if the recombination 
coefficient for air ions is equal to r = 1.67.10-6  cm3/s. 

3.215. Having been operated long enough, the ionizer producing 

nt  = 3.5.109  cm-3•s-1  of ion pairs per unit volume of air per unit 
time was switched off. Assuming that the only process tending to 
reduce the number of ions in air is their recombination with coeffic-
ient r = 1.67-10-6  cm3/s, find how soon after the ionizer's switching 
off the ion concentration decreases ri = 2.0 times. 

3.216. A parallel-plate air capacitor whose plates are separated 
by a distance d = 5.0 mm is first -charged to a potential difference 
V = 90 V and then disconnected from a de voltage source. Find 
the time interval during which the voltage across the capacitor de-
creases by II = 1.0%, taking into account that the average number 
of ion pairs formed in air under standard conditions per unit volume 

per unit time is equal to ni  = 5.0 cm-3•s-1  and that the given volt-
age corresponds to the saturation current. 

3.217. The gap between two plane plates of a capacitor equal to 
d is filled with a gas. One of the plates emits vo  electrons per second 
which, moving in an electric field, ionize gas molecules; this way 
each electron produces a new electrons (and ions) along a unit length 
of its path. Find the electronic current at the opposite plate, neglect-
ing the ionization of gas molecules by formed ions. 
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3.218. The gas between the capacitor plates separated by a dist- 
ance d is uniformly ionized by ultraviolet radiation so that n i  elect-
rons per unit volume per second are formed. These electrons moving 
in the electric field of the capacitor ionize gas molecules, each electron 
producing cc new electrons (and ions) per unit length of its path. 
Neglecting the ionization by ions, find the electronic current den-
sity at the plate possessing a higher potential. 

3.5. CONSTANT MAGNETIC FIELD. 
MAGNETICS 

• Magnetic field of a point charge 	q 	moving with non-relativistic 
locity v: 

B 	
q [yr] 

ve-

(3.5a) 

(3.5b) 

(3.5c) 

(3.5d) 

(3.5e) 

— 	
r3  

• Biot-Savart law: 

I [dl , r] 
dB= 111° 	Uri  dV, 	dB=  

• 4:t 	r 3 	 431 	r3 

• Circulation of a vector B and Gauss's theorem for it: 

dr = µo/, 	§B dS = 0. 

• Lorentz force: 
F = qE 	q [vB]. 

• Ampere force: 
dF = [jB] dV, 	dF = I [dl, B]. 

• Force and moment of forces acting on a magnetic dipole pm  = I S n: 

	

F=pm  
OB

, N-- [pmB], 	 (3.5f) 

where OBIOn is the derivative of a vector B with respect to the dipole direction. 
• Circulation of magnetization J: 

(),J dr = I', 	 (3.5g) 

where I' is the total molecular current. 
• Vector H and its circulation: 

H=

• 

— J, 	H dr = /, 	 (3.5h) 

where I is the algebraic sum of macroscopic currents. 
• Relations at the boundary between two magnetics: 

	

B2n, H = H2i• 	 (3.5i) 

• For the case of magnetics in which J = xH: 

B = µp,011, µ = 1 	x. 	 (3.5j) 

3.219. A current I = 1.00 A circulates in a round thin-wire loop 
of radius R = 100 mm. Find the magnetic induction 

(a) at the centre of the loop; 



(b) at the point lying on the axis of the loop at a distance x = 
= 100 mm from its centre. 

3.220. A current I flows along a thin wire shaped as a regular 
polygon with n sides which can be inscribed into a circle of radius R. 
Find the magnetic induction at the centre of the polygon. Analyse 
the obtained expression at n oo. 

3.221. Find the magnetic induction at the centre of a rectangular 
wire frame whose diagonal is equal to d = 16 cm and the angle 
between the diagonals is equal to q) = 30°; the current flowing in 
the frame equals I = 5.0 A. 

3.222. A current /=5.0 A flows along a thin wire shaped as shown 
in Fig. 3.59. The radius of a curved part of the wire is equal to R = 
=- 120 mm, the angle 21:p = 90°. Find the magnetic induction of 
the field at the point 0. 

I 

3.223. Find the magnetic induction of the field at the point 0 
of a loop with current I, whose shape is illustrated 

(a) in Fig. 3.60a, the radii a and b, as well as the angle q) are 
known; 

(b) in Fig. 3.60b, the radius a and the side b are known. 
3.224. A current I flows along a lengthy thin-walled tube of radius 

R with longitudinal slit of width h. Find the induction of the mag-
netic field inside the tube under the condition h << R. 

3.225. A current I flows in a long straight wire with cross-section 
having the form of a thin half-ring of radius R (Fig. 3.61). Find 
the induction of the magnetic field at the point 0. 

	

(b) 	 (c) 
Fig. 3.61. 	 Fig. 3.62. 

3.226. Find the magnetic induction of the field at the point 0 
if a current-carrying wire has the shape shown in Fig. 3.62 a, b, c. 
The radius of the curved part of the wire is R, the linear parts are 
assumed to be very long. 

(a) 



3.227. A very long wire carrying a current I = 5.0 A is bent 
at right angles. Find the magnetic induction at a point lying on a per-
pendicular to the wire, drawn through the point of bending, at 
a distance 1 = 35 cm from it. 

3.228. Find the magnetic induction at the point 0 if the wire car-
rying a current I = 8.0 A has the shape shown in Fig. 3.63 a, b, c. 

Fig. 3.63. 

The radius of the curved part of the wire is R = 100 mm, the linear 
parts of the wire are very long. 

3.229. Find the magnitude and direction of the magnetic induction 
vector B 

(a) of an infinite plane carrying a current of linear density i; 
the vector i is the same at all points of the plane; 

(b) of two parallel infinite planes carrying currents of linear den-
sities i and —i; the vectors i and —i are constant at all points of 
the corresponding planes. 

3.230. A uniform current of density j flows inside an infinite 
plate of thickness 2d parallel to its surface. Find the magnetic induc-
tion induced by this current as a function of 
the distance x from the median plane of the 
plate. The magnetic permeability is assumed 
to be equal to unity both inside and outside 
the plate. 

3.231. A direct current I flows along a 
lengthy straight wire. From the point 0 
(Fig. 3.64) the current spreads radially all 	 0 
over an infinite conducting plane perpendicu- 
lar to the wire. Find the magnetic induction 	Fig. 3.64. 

 
at all points of space. 

3.232. A current I flows along a round loop. Find the integral 

B dr along the axis of the loop within the range from —00 to +00. 

Explain the result obtained. 
3.233. A direct current of density j flows along a round uniform 

straight wire with cross-section radius R. Find the magnetic induction 
vector of this current at the point whose position relative to the axis 
of the wire is defined by a radius vector r. The magnetic permeability 
is assumed to be equal to unity throughout all the space. 
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Fig. 3.65. 

3.234. Inside a long straight uniform wire of round cross-section 
there is a long round cylindrical cavity whose axis is parallel to 
the axis of the wire and displaced from the latter by a distance 1. 
A direct current of density j flows along the wire. Find the magnetic 
induction inside the cavity. Consider, in particular, the case I = 0. 

3.235. Find the current density as a function of distance r from 
the axis of a radially symmetrical parallel stream of electrons if the 
magnetic induction inside the stream varies as B = bra, where 
b and a are positive constants. 

3.236. A single-layer coil (solenoid) has length 1 and cross-section 
radius R, A number of turns per unit length is equal to n. Find the 
magnetic induction at the centre of the coil when a current I flows 
through it. 

3.237. A very long straight solenoid has a cross-section radius 
R and n turns per unit length. A direct current I flows through the 
solenoid. Suppose that x is the distance from the end of the solenoid, 
measured along its axis. Find: 

(a) the magnetic induction B on the axis as a function of x; draw 
an approximate plot of B vs the ratio x/R; 

(b) the distance xo  to the point on the axis at which the value of 
B differs by 11 = 1% from that in the middle section of the sole-
noid. 

3.238. A thin conducting strip of width h = 2.0 cm is tightly 
wound in the shape of a very long coil with cross-section radius R = 
= 2.5 cm to make a single-layer straight solenoid. A direct current 
I = 5.0 A flows through the strip. Find the magnetic induction 
inside and outside the solenoid as a function of the distance r from 
its axis. 

3.239. N = 2.5.103  wire turns are uniformly wound on a wooden 
toroidal core of very small cross-section. A current I flows through 
the wire. Find the ratio 1 of the magnetic induction inside the core 
to that at the centre of the toroid. 

3.240. A direct current I = 10 A flows in a long straight round 
conductor. Find the magnetic flux through a half of wire's cross-
section per one metre of its length. 

3.241. A very long straight solenoid carries a current I. The 
cross-sectional area of the solenoid is equal to S, the number of 
turns per unit length is equal to n. 
Find the flux of the vector B through 
the end plane of the solenoid. 

3.242. Fig. 3.65 shows a toroidal sol-
enoid whose cross-section is rectangular. 
Find the magnetic flux through this 
cross-section if the current through the 
winding equals I = 1.7 A, the total 
number of turns is N = 1000, the ratio 
of the outside diameter to the inside one is 71 = 1.6, and the 
height is equal to h = 5.0 cm. 
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3.243. Find the magnetic moment of a thin round loop with cur-
rent if the radius of the loop is equal to R = 100 mm and the mag-
netic induction at its centre is equal to B = 6.0 RT. 

3.244. Calculate the magnetic moment of a thin wire with a cur-
rent I = 0.8 A, wound tightly on half a tore (Fig. 3.66). The diameter 
of the cross-section of the tore is equal to d = 5.0 cm, the number 
of turns is N = 500. 

Fig. 3.66. Fig. 3.67. 

3.245. A thin insulated wire forms a plane spiral of N = 100 
tight turns carrying a current I = 8 mA. The radii of inside and 
outside turns (Fig. 3.67) are equal to a = 50 mm and b = 100 mm. 
Find: 

(a) the magnetic induction at the centre of the spiral; 
(b) the magnetic moment of the spiral with a given current. 
3.246. A non-conducting thin disc of radius R charged uniformly 

over one side with surface density a rotates about its axis with 
an angular velocity e). Find: 

(a) the magnetic induction at the centre of the disc; 
(b) the magnetic moment of the disc. 
3.247. A non-conducting sphere of radius R = 50 mm charged 

uniformly with surface density a = 10.0 µC/m2  rotates with an 
angular velocity co = 70 rad/s about the axis passing through its 
centre. Find the magnetic induction at the centre of the sphere. 

3.248. A charge q is uniformly distributed over the volume of 
a uniform ball of mass m and radius R which rotates with an angular 
velocity e.) about the axis passing through its centre. Find the respec-
tive magnetic moment and its ratio to the mechanical moment. 

3.249. A long dielectric cylinder of radius R is statically polarized 
so that at all its points the polarization is equal to P = ar, where 
a is a positive constant, and r is the distance from the axis. The 
cylinder is set into rotation about its axis with an angular velocity w. 
Find the magnetic induction B at the centre of the cylinder. 

3.250. Two protons move parallel to each other with an equal 
velocity v = 300 km/s. Find the ratio of forces of magnetic and 
electrical interaction of the protons. 



Fig. 3.69. 

(a) 
	

(b) 

Fig. 3.68. 

3.251. Find the magnitude and direction of a force vector acting 
on a unit length of a thin wire, carrying a current I = 8.0 A, at 
a point 0, if the wire is bent as shown in 

(a) Fig. 3.68a, with curvature radius R = 10 cm; 
(b) Fig. 3.68b, the distance between the long parallel segments 

of the wire being equal to 1 = 20 cm. 
3.252. A coil carrying a current I = 10 mA is placed in a uniform 

magnetic field so that its axis coincides with the field direction. 
The single-layer winding of the coil is made of copper wire with 

diameter d = 0.10 mm, radius of turns is equal to R = 30 mm. 
At what value of the induction of the external magnetic field can 
the coil winding be ruptured? 

3.253. A copper wire with cross-sectional area S = 2.5 mm2  
bent to make three sides of a square can turn about a horizontal 
axis 00' (Fig. 3.69). The wire is located in uniform vertical magnetic 
field. Find the magnetic induction if on passing a current I = 16 A 
through the wire the latter deflects by an angle 0 = 20°. 

3.254. A small coil C with N = 200 turns is mounted on one 
end of a balance beam and introduced between the poles of an electro-
magnet as shown in Fig. 3.70. The cross-sectional area of the coil 

Fig. 3.70, 

is S = 1.0 cm2, the length of the arm OA of the balance beam is 
1 = 30 cm. When there is no current in the coil the balance is hi 
equilibrium. On passing a current I = 22 mA through the coil the 
equilibrium is restored by putting the additional counterweight of 
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mass Am = 60 mg on the balance pan. Find the magnetic induction 
at the spot where the coil is located. 

3.255. A square frame carrying a current I = 0.90 A is located 
in the same plane as a long straight wire carrying a current / 0  
= 5.0 A. The frame side has a length a = 8.0 cm. The axis of the 
frame passing through the midpoints of opposite sides is parallel to 
the wire and is separated from it by the distance which is 1 = 1.5 
times greater than the side of the frame. Find: 

(a) Ampere force acting on the frame; 
(b) the mechanical work to be performed in order to turn the 

frame through 180° about its axis, with the currents maintained 
constant. 

3.256. Two long parallel wires of negligible resistance are con-
nected at one end to a resistance R and at the other end to a de volt-
age source. The distance between the axes of the wires is 1 = 20 times 
greater than the cross-sectional radius of each wire. At what value 
of resistance R does the resultant force of interaction between the 
wires turn into zero? 

3.257. A direct current I flows in a long straight conductor whose 
cross-section has the form of a thin half-ring of radius R. The same 
current flows in the opposite direction along a thin conductor located 
on the "axis" of the first conductor (point 0 in Fig. 3.61). Find the 
magnetic interaction force between the given con- 
ductors reduced to a unit of their length. 

3.258. Two long thin parallel conductors of the -(2--).—c-
shape shown in Fig. 3.71 carry direct currents Ii  
and /2. The separation between the conductors is a, 
the width of the right-hand conductor is equal to b. II I' 
With both conductors lying in one plane, find the 
magnetic interaction force between them reduced 
to a unit of their length. 

3.259. A system consists of two parallel planes 
carrying currents producing a uniform magnetic 	Fig. 3.71. 
field of induction B between the planes. Outside 
this space there is no magnetic field. Find the magnetic force acting 
per unit area of each plane. 

3.260. A conducting current-carrying plane is placed in an external 
uniform magnetic field. As a result, the magnetic induction becomes 

51 	82 	81 	82 	fif 

0 

(a) (c) 

Fig. 3.72. 
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equal to B1  on one side of the plane and to 132, on the other. Find 
the magnetic force acting per unit area of the plane in the cases 
illustrated in Fig. 3.72. Determine the direction of the current in 
the plane in each case. 

3.261. In an electromagnetic pump designed for transferring mol-
ten metals a pipe section with metal is located in a uniform magnetic 
field of induction B (Fig. 3.73). A current 
I is made to flow across this pipe section 	 11 
in the direction perpendicular both to the 
vector B and to the axis of the pipe. Find 
the gauge pressure produced by the pump 
if B = 0.10 T, I=100 A, and a= 2.0 cm. 

3.262. A current I flows in a long thin-
walled cylinder of radius R. What pressure 
do the walls of the cylinder experience? 

3.263. What pressure does the lateral 
surface of a long straight solenoid with n 
turns per unit length experience when a current I flows through it? 

3.264. A current I flows in a long single-layer solenoid with cross-
sectional radius R. The number of turns per unit length of the sole-
noid equals n. Find the limiting current at which the winding may 
rupture if the tensile strength of the wire is equal to Fiim. 

3.265. A parallel-plate capacitor with area of each plate equal to 
S and the separation between them to d is put into a stream of con-
ducting liquid with resistivity p. The liquid moves parallel to the 
plates with a constant velocity v. The whole system is located in 
a uniform magnetic field of induction B, vector B being parallel to 
the plates and perpendicular to the stream direction. The capacitor 
plates are interconnected by means of an external resistance R. 
What amount of power is generated in that resistance? At what 
value of R is the generated power the highest? What is this highest 
power equal to? 

3.266. A straight round copper conductor of radius R = 5.0 mm 
carries a current I = 50 A. Find the potential difference between 
the axis of the conductor and its surface. The concentration of the 
conduction electrons in copper is equal to n = 0.9.1023  cm-3. 

3.267. In Hall effect measurements in a sodium conductor the 
strength of a transverse field was found to be equal to E = 5.0 µV/cm 
with a current density j = 200 A/cm2  and magnetic induction B = 
= 1.00 T. Find the concentration of the conduction electrons and 
its ratio to the total number of atoms in the given conductor. 

3.268. Find the mobility of the conduction electrons in a copper 
conductor if in Hall effect measurements performed in the magnetic 
field of induction B = 100 mT the transverse electric field strength 
of the given conductor turned out to be 3.1.103  times less than 
that of the longitudinal electric field. 

3.269. A small current-carrying loop is located at a distance r 
from a long straight conductor with current I. The magnetic moment 

Fig. 3.73. 
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Fig. 3.74. 

of the loop is equal to pm. Find the magnitude and direction of the 
force vector applied to the loop if the vector pm  

(a) is parallel to the straight conductor; 
(b) is oriented along the radius vector r; 
(c) coincides in direction with the magnetic field produced by the 

current I at the point where the loop is located. 
3.270. A small current-carrying coil having a magnetic moment 

pm  is located at the axis of a round loop of radius R with current I 
flowing through it. Find the magnitude of the vector force applied 
to the coil if its distance from the centre of the loop is equal to x 
and the vector pm, coincides in direction with the axis of the loop. 

3.271. Find the interaction force of two coils with magnetic mo-
ments Thin  = 4.0 mA• m2  and p2,, = 6.0 mA• m2  and collinear axes if 
the separation between the coils is equal to 1 = 20 cm which exceeds 
considerably their linear dimensions. 

3.272. A permanent magnet has the shape of a sufficiently thin 
disc magnetized along its axis. The radius of the disc is R = 1.0 cm. 
Evaluate the magnitude of a molecular current I' flowing along the 
rim of the disc if the magnetic induction at the point on the axis of 
the disc, lying at a distance x = 10 cm from its centre, is equal to 
B = 30 RT. 

3.273. The magnetic induction in vacuum at a plane surface of 
a uniform isotropic magnetic is equal to B, the vector B forming an 
angle a with the normal of the surface. The permeability of the magnet-
ic is equal to Find the magnitude of the magnetic induction B' in 
the magnetic in the vicinity of its surface. 

3.274. The magnetic induction in vacuum at a plane surface of 
a magnetic is equal to B and the vector B forms an angle 0 with the 

normal n of the surface (Fig. 3.74). The permeability of the magnetic 
is equal to R. Find: 

(a) the flux of the vector H through the spherical surface S of 
radius R, whose centre lies on the surface of the magnetic; 

(b) the circulation of the vector B around the square path 1' with 
side 1 located as shown in the figure. 

3.275. A direct current I flows in a long round uniform cylindrical 
wire made of paramagnetic with susceptibility x. Find: 

(a) the surface molecular current is; 
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(b) the volume molecular current I t," . 
How are these currents directed toward each other? 

3.276. Half of an infinitely long straight current-carrying solenoid 
is filled with magnetic substance as shown in Fig. 3.75. Draw the 

Fig. 3.75. 

approximate plots of magnetic induction B, strength H, and magne-
tization I on the axis as functions of x. 

3.277. An infinitely long wire with a current I flowing in it is 
located in the boundary plane between two non-conducting media 
with permeabilities µl  and N. Find the modulus of the magnetic 
induction vector throughout the space as a function of the distance 
r from the wire. It should be borne in mind that the lines of the vec-
tor B are circles whose centres lie on the axis of the wire. 

3.278. A round current-carrying loop lies in the plane boundary 
between magnetic and vacuum. The permeability of the magnetic 
is equal to R. Find the magnetic induction B at an arbitrary point on 
the axis of the loop if in the absence of the magnetic the magnetic 
induction at the same point becomes equal to Bo. Generalize the 
obtained result to all points of the field. 

3.279. When a ball made of uniform magnetic is introduced into 
an external uniform magnetic field with induction Bo, it gets uniform-
ly magnetized. Find the magnetic induction B inside the ball with 
permeability R; recall that the magnetic field inside a uniformly mag 
netized ball is uniform and its strength is equal to H' = — J/3, 
where J is the magnetization. 

3.280. N = 300 turns of thin wire are uniformly wound on a per-
manent magnet shaped as a cylinder whose length is equal to 1 = 
= 15 cm. When a current I = 3.0 A was passed through the wiring 
the field outside the magnet disappeared. Find the coercive force 
He  of the material from which the magnet was manufactured. 

3.281. A permanent magnet is shaped as a ring with a narrow gap 
between the poles. The mean diameter of the ring equals d = 20 cm. 
The width of the gap is equal to b = 2.0 mm and the magnetic induc-
tion in the gap is equal to B. = 40 mT. Assuming that the scattering 
of the magnetic flux at the gap edges is negligible, find the modulus 
of the magnetic field strength vector inside the magnet. 

3.282. An iron core shaped as a tore with mean radius R = 250 mm 
supports a winding with the total number of turns N = 1000. The 
core has a cross-cut of width b = 1.00 mm. With a current I 
= 0.85 A flowing through the winding, the magnetic induction in 
the gap is equal to B = 0.75 T. Assuming the scattering of the magnet-
ic flux at the gap edges to be negligible, find the permeability of iron 
under these conditions. 
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Fig. 3.77. 

3.283. Fig. 3.76 illustrates a basic magnetization curve of iron 
(commercial purity grade). Using this plot, draw the permeability 
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Fig. 3.76. 

p. as a function of the magnetic field strength H. At what value of 
H is the permeability the greatest? What is tt ioaa, equal to? 

3.284. A thin iron ring with mean diameter d = 50 cm supports 
a winding consisting of N = 800 turns carrying current I = 3.0 A. 
The ring has a cross-cut of width b = 2.0 mm. Neglecting the scatter-
ing of the magnetic flux at the gap edges, and using the plot shown 
in Fig. 3.76, find the permeability of iron under these conditions. 

3.285. A long thin cylindrical rod made of paramagnetic with 
magnetic susceptibility x and having a cross-sectional area S is 
located along the axis of a current-carrying coil. 
One end of the rod is located at the coil centre where 
the magnetic induction is equal to B whereas the 
other end is located in the region where the mag-
netic field is practically absent. What is the force 
that the coil exerts on the rod? 

3.286. In the arrangement shown in Fig. 3.77 it 
is possible to measure (by means of a balance) the 
force with which a paramagnetic ball of volume 
V = 41 mm3  is attrabted to a pole of the electromag-
net M. The magnetic induction at the axis of the 
poleshoe depends on the height x as B = Bo  exp (—ax2), where 
Bo  = 1.50 T, a = 100 m-2 . Find: 

(a) at what height xn., the ball experiences the maximum attrac-
tion; 

4T 
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(b) the magnetic susceptibility of the paramagnetic if the maxim-
um attraction force equals F niox  = 160 [tN. 

3.287. A small ball of volume V made of paramagnetic with sus-
ceptibility x was slowly displaced along the axis of a current-carrying 
coil from the point where the magnetic induction equals B out to the 
region where the magnetic field is practically absent. What amount 
of work was performed during this process? 

3.6. ELECTROMAGNETIC INDUCTION. 
MAXWELL'S EQUATIONS 

• Faraday's law of electromagnetic induction: 
del3 

(3.6a) 

• In the case of a solenoid and doughnut coil: 
(1) = NO1, 	 (3.6b) 

where N is the number of turns, cl3.1  is the magnetic flux through each turn. 
• Inductance of a solenoid: 

L =-- iutto  71217. 	 (3.6c) 

• Intrinsic energy of a current and interaction energy of two currents: 
L/2  

W=—r. 7 W12==  L121112. 

• Volume density of magnetic field energy: 
B2  

= 2ulto 	2 
• Displacement current density: 

013 
jclis=  at 

• Maxwell's equations in differential form: 

as 
' 

v x 	 V • B=0, at  
aD 

V x H=1-4 - - ' 	
V•D=p, 

where V X 	rot (the rotor) and V. ---- div (the divergence). 

• Field transformation formulas for transition from a reference frame K 
to a reference frame K' moving with the velocity vo  relative to it. 

In the case 170  << c 
E' = E 	B' = B — [vo Elic2 	 (3.6h) 

In the general case 
E'11 =E  ll ' 	 B  

E14-[voll] B' = 	° B —Iv El/c2  

0. —(v0/02 ' 	 yi-0,0/02 

where the symbols II and I denote the field components, respectively parallel 
and perpendicular to the vector vo. 

(3.6d) 

(3.6e) 

(3.6f) 

(3.6g) 

(3.6i) 
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3.288. A wire bent as a parabola y = ax2  is located in a uniform 
magnetic field of induction B, the vector B being perpendicular to 
the plane x, y. At the moment t = 0 a connector starts sliding trans-
lationwise from the parabola apex with a constant acceleration iv 
(Fig. 3.78). Find the emf of electromagnetic induction in the loop 
thus formed as a function of y. 

y 

Fig. 3.78. 	 Fig. 3.79. 

3.289. A rectangular loop with a sliding connector of length 1 
is located in a uniform magnetic field perpendicular to the loop plane 
(Fig. 3.79). The magnetic induction is equal to B. The connector has 
an electric resistance R, the sides AB and CD have resistances R1  
and R2 respectively. Neglecting the self-inductance of the loop, 
find the current flowing in the connector during its motion with a 
constant velocity v. 

3.290. A metal disc of radius a = 25 cm rotates with a constant 
angular velocity co = 130 rad/s about its axis. Find the potential 
difference between the centre and the rim of the disc if 

(a) the external magnetic field is absent; 
(b) the external uniform magnetic field of induction B = 5.0 mT 

is directed perpendicular to the disc. 
3.291. A thin wire AC shaped as a semi-circle of diameter d 

= 20 cm rotates with a constant angular velocity co = 100 rad/s 
in a uniform magnetic field of induction B = 5.0 mT, with 
w HT B. The rotation axis passes through the end A of the wire and 
is perpendicular to the diameter AC. Find the value of a line integral 

E dr along the wire from point A to point C. Generalize the ob- 

tained result. 
3.292. A wire loop enclosing a semi-circle of radius a is located 

on the boundary of a uniform magnetic field of induction B 
(Fig. 3.80). At the moment t = 0 the loop is set into rotation with 
a constant angular acceleration p about an axis 0 coinciding with a 
line of vector B on the boundary. Find the emf induced in the loop 
as a function of time t. Draw the approximate plot of this function. 
The arrow in the figure shows the emf direction taken to be positive. 

3.293. A long straight wire carrying a current I and a H-shaped 
conductor with sliding connector are located in the same plane as 



Fig. 3.80. Fig. 3.81. 

shown in Fig. 3.81. The connector of length 1 and resistance R slides 
to the right with a constant velocity v. Find the current induced in 

the loop as a function of separation r between the connector and the 
straight wire. The resistance of the H-shaped conductor and the self-
inductance of the loop are assumed to be negligible. 

3.294. A square frame with side a and a long straight wire carrying 
a current I are located in the same plane as shown in Fig. 3.82. The 
frame translates to the right with a constant velocity v. Find the emf 
induced in the frame as a function of distance x. 

 

a 

  

  

  

  

  

Fig. 3.82. Fig. 3.83. 

3.295. A metal rod of mass m can rotate about a horizontal axis 
0, sliding along a circular conductor of radius a (Fig. 3.83). The 
arrangement is located in a uniform magnetic field of induction B 
directed perpendicular to the ring plane. The axis and the ring are 
connected to an emf source to form a circuit of resistance R. Neglect-
ing the friction, circuit inductance, and ring resistance, find the law 
according to which the source emf must vary to make the rod rotate 
with a constant angular velocity co. 

3.296. A copper connector of mass m slides down two smooth cop-
per bars, set at an angle a to the horizontal, due to gravity (Fig. 3.84). 
At the top the bars are interconnected through a resistance R. The 
separation between the bars is equal to 1. The system is located in 
a uniform magnetic field of induction B, perpendicular to the plane 
in which the connector slides. The resistances of the bars, the connect-
or and the sliding contacts, as well as the self-inductance of the loop, 
are assumed to be negligible. Find the steady-state velocity of the 
connector. 
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Fig. 3.86. 

3.297. The system differs from the one examined in the foregoing 
problem (Fig. 3.84) by a capacitor of capacitance C replacing the 
resistance R. Find the acceleration of the connector. 

Fig. 3.84. Fig. 3.85. 

3.298. A wire shaped as a semi-circle of radius a rotates about an 
axis 00' with an angular velocity co in a uniform magnetic field of 
induction B (Fig. 3.85). The rotation axis is perpendicular to the 
field direction. The total resistance of the circuit is equal to R. Neg-
lecting the magnetic field of the induced current, find the mean 
amount of thermal power being generated in the loop during a 
rotation period. 

3.299. A small coil is introduced between the poles of an electro-
magnet so that its axis coincides with the magnetic field direction. 
The cross-sectional area of the coil is equal to S = 3.0 mm2, the 
number of turns is N = 60. When the coil turns through 180° about 
its diameter, a ballistic galvanometer connected to the coil indicates 
a charge q = 4.5 [iC flowing through it. Find the magnetic induction 
magnitude between the poles provided the total resistance of the 
electric circuit equals R = 40 Q. 

3.300. A square wire frame with side a and a straight conductor 
carrying a constant current I are located in the same plane (Fig. 3.86). 

The inductance and the resistance of the frame are equal to L and R 
respectively. The frame was turned through 180° about the axis 00' 
separated from the current-carrying conductor by a distance b. 
Find the electric charge having flown through the frame. 

3.301. A long straight wire carries a current J. At distances a 
and b from it there are two other wires, parallel to the former one, 
which are interconnected by a resistance R (Fig. 3.87). A connector 



slides without friction along the wires with a constant velocity v. 
Assuming the resistances of the wires, the connector, the sliding 
contacts, and the self-inductance of the freme to be negligible, find: 

(a) the magnitude and the direction of the current induced in 
the connector; 

(b) the force required to maintain the connector's velocity con-
stant. 

3.302. A conducting rod AB of mass m slides without friction 
over two long conducting rails separated by a distance 1 (Fig. 3.88). 
At the left end the rails are interconnected by a resistance R. The 
system is located in a uniform magnetic field perpendicular to the 
plane of the loop. At the moment t = 0 the rod AB starts moving to 
the right with an initial velocity vo. Neglecting the resistances of the 
rails and the rod AB, as well as the self-inductance, find: 

(a) the distance covered by the rod until it comes to a standstill; 
(b) the amount of heat generated in the resistance R during this 

process. 

    

A 

     

R 

   

R 	> F 

     

   

Fig. 3.89. 

3.303. A connector AB can slide without friction along a H-
shaped conductor located in a horizontal plane (Fig. 3.89). The con-
nector has a length 1, mass m, and resistance R. The whole system is 
located in a uniform magnetic field of induction B directed vertically. 
At the moment t = 0 a constant horizontal force F starts acting on 
the connector shifting it translationwise to the right. Find how the 
velocity of the connector varies with time t. The inductance of the 
loop and the resistance of the H-shaped conductor are assumed to 
be negligible. 

3.304. Fig. 3.90 illustrates plane figures made of thin conductors 
which are located in a uniform magnetic field directed away from a 

© 00 
(a) 	(b) 	(c) 	(d) 

Fig. 3.90. 

reader beyond the plane of the drawing. The magnetic induction 
starts diminishing. Find how the currents induced in these loops are 
directed. 



3.305. A plane loop shown in Fig. 3.91 is shaped as two squares 
with sides a = 20 cm and b = 10 cm and is introduced into a uni-
form magnetic field at right angles to the loop's plane. The magnetic 
induction varies with time as B = Bo  sin cot, where Bo  = 10 mT 
and co = 100 s-1  . Find the amplitude of 
the current induced in the loop if its resis- 
tance per unit length is equal to p = 
50 mQ/m. The inductance of the loop is to 
be neglected. 

3.306. A plane spiral with a great num- 
ber N of turns wound tightly to one another 
is located in a uniform magnetic field per- 
pendicular to the spiral's plane. The outside 	Fig. 3.91. 

radius of the spiral's turns is equal to a. 
The magnetic induction varies with time as B = Bo  sin cot, where 
Bo  and co are constants. Find the amplitude of emf induced in 
the spiral. 

3.307. A H-shaped conductor is located in a uniform magnetic 
field perpendicular to the plane of the conductor and varying with 

time at the rate B = 0.10 T/s. A conducting connector starts mov-
ing with an acceleration w = 10 cm/s2  along the parallel bars of the 
conductor. The length of the connector is equal to 1 = 20 cm. Find 
the emf induced in the loop t = 2.0 s after the beginning of the 
motion, if at the moment t = 0 the loop area and the magnetic 
induction are equal to zero. The inductance of the loop is to be 
neglected. 

3.308. In a long straight solenoid with cross-sectional radius a 
and number of turns per unit length n a current varies with a con-

stant velocity / A/s. Find the magnitude of the eddy current field 
strength as a function of the distance r from the solenoid axis. Draw 
the approximate plot of this function. 

3.309. A long straight solenoid of cross-sectional diameter d = 
= 5 cm and with n = 20 turns per one cm of its length has a round 
turn of copper wire of cross-sectional area S = 1.0 mm2  tightly put 
on its winding. Find the current flowing in the turn if the current 

• in the solenoid winding is increased with a constant velocity I = 
= 100 A/s. The inductance of the turn is to be neglected. 

3.310. A long solenoid of cross-sectional radius a has a thin insu-
lated wire ring tightly put on its winding; one half of the ring has 
the resistance 11  times that of the other half. The magnetic induction 
produced by the solenoid varies with time as B = bt, where b is 
a constant. Find the magnitude of the electric field strength in the 
ring. 

3.311. A thin non-conducting ring of mass m carrying a charge q 
can freely rotate about its axis. At the initial moment the ring was 
at rest and no magnetic field was present. Then a practically uniform 
magnetic field was switched on, which was perpendicular to the plane 
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of the ring and increased with time according to a certain law B (t). 
Find the angular velocity co of the ring as a function of the induction 
B (t). 

3.312. A thin wire ring of radius a and resistance r is located in-
side a long solenoid so that their axes coincide. The length of the 
solenoid is equal to 1, its cross-sectional radius, to b. At a certain 
moment the solenoid was connected to a source of a constant voltage 
V. The total resistance of the circuit is equal to R. Assuming the 
inductance of the ring to be negligible, find the maximum value of 
the radial force acting per unit length of the ring. 

3.313. A magnetic flux through a stationary loop with a resistance 
R varies during the time interval i as (120 = at (r — t). Find the 
amount of heat generated in the loop during that time. The inductance 
of the loop is to be neglected. 

3.314. In the middle of a long solenoid there is a coaxial ring of 
square cross-section, made of conducting material with resistivity 
p. The thickness of the ring is equal to h, its inside and outside radii 
are equal to a and b respectively. Find the current induced in the 
ring if the magnetic induction produced by the solenoid varies with 
time as B = pt, where 3 is a constant. The inductance of the ring 
is to be neglected. 

3.315. How many metres of a thin wire are required to manufac-
ture a solenoid of length /0  = 100 cm and inductance L = 1.0 mH 
if the solenoid's cross-sectional diameter is considerably less than its 
length? 

3.316. Find the inductance of a solenoid of length 1 whose 
winding is made of copper wire of mass m. The winding resistance 
is equal to R. The solenoid diameter is considerably less than its 
length. 

3.317. A coil of inductance L = 300 mH and resistance R = 
= 140 m52 is connected to a constant voltage source. How soon will 
the coil current reach ri = 50% of the steady-state value? 

3.318. Calculate the time constant ti of a straight solenoid of length 
/ = 1.0 m having a single-layer winding of copper wire whose total 
mass is equal to m = 1.0 kg. The cross-sectional diameter of the 
solenoid is assumed to be considerably less than its length. 

Note. The time constant ti is the ratio LIR, where L is inductance 
and R is active resistance. 

3.319. Find the inductance of a unit length of a cable consisting 
of two thin-walled coaxial metallic cylinders if the radius of the out-
side cylinder is = 3.6 times that of the inside one. The perme-
ability of a medium between the cylinders is assumed to be equal to 
unity. 

3.320. Calculate the inductance of a doughnut solenoid whose 
inside radius is equal to b and cross-section has the form of a square 
with side a. The solenoid winding consists of N turns. The space in-
side the solenoid is filled up with uniform paramagnetic having per-
meability p. 
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Fig. 3.92. 

3.321. Calculate the inductance of a unit length of a double tape 
line (Fig. 3.92) if the tapes are separated by a distance h which is 
considerably less than their width b, 
namely, b/h = 50. 

3.322. Find the inductance of a 
unit length of a double line if the 
radius of each wire is II times less 
than the distance between the axes 
of the wires. The field inside the 
wires is to be neglected, the per-
meability is assumed to be equal 
to unity throughout, and fl >> 1. 

3.323. A superconducting round 
ring of radius a and inductance L 
was located in a uniform magnetic field of induction B. The ring plane 
was parallel to the vector B, and the current in the ring was equal to 
zero. Then the ring was turned through 90° so that its plane became 
perpendicular to the field. Find: 

(a) the current induced in the ring after the turn; 
(b) the work performed during the turn. 
3.324. A current /0  = 1.9 A flows in a long closed solenoid. 

The wire it is wound of is in a superconducting state. Find the 
current flowing in the solenoid when the length of the solenoid is 
increased by /I -=-- 5%. 

3.325. A ring of radius a = 50 mm made of thin wire of radius 
b = 1.0 mm was located in a uniform magnetic field with induction 
B = 0.50 mT so that the ring plane was perpendicular to the vector B. 
Then the ring was cooled down to a superconducting state, and the 
magnetic field was switched off. Find the ring current after that. Note 
that the inductance of a thin ring along which the surface current 

flows is equal to L = u0a In 7-,8a  - 2) . 

3.326. A closed circuit consists of a source of constant em1 g and 
a choke coil of inductance L connected in series. The active resistance 
of the whole circuit is equal to R. At the moment t = 0 the choke 
coil inductance was decreased abruptly times. Find the current in 
the circuit as a function of time t. 

Instruction. During a stepwise change of inductance the total 
magnetic flux (flux linkage) remains constant. 

3.327. Find the time dependence of the current flowing through 
the inductance L of the circuit shown in Fig. 3.93 after the switch 
Sw is shorted at the moment t = 0. 

3.328. In the circuit shown in Fig. 3.94 an emf V, a resistance R, 
and coil inductances L1  and L2  are known. The internal resistance of 
the source and the coil resistances are negligible. Find the steady-
state currents in the coils after the switch Sw was shorted. 

3.329. Calculate the mutual inductance of a long straight wire and 
a rectangular frame with sides a and b. The frame and the wire lie 



L2 

in the same plane, with the side b being closest to the wire, separated 
by a distance 1 from it and oriented parallel to it. 
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Fig. 3.93. 	 Fig. 3.94. 

3.330. Determine the mutual inductance of a doughnut coil and 
an infinite straight wire passing along its axis. The coil has a rectan-
gular cross-section, its inside radius is equal to a and the outside one, 
to b. The length of the doughnut's cross-sectional side parallel to the 
wire is equal to h. The coil has N turns. The system is located in a 
uniform magnetic with permeability IA. 

3.331. Two thin concentric wires shaped as circles with radii a 
and b lie in the same plane. Allowing for a < b, find: 

(a) their mutual inductance; 
(b) the magnetic flux through the surface enclosed by the outside 

wire, when the inside wire carries a current I. 
3.332. A small cylindrical magnet M (Fig. 3.95) is placed in the 

centre of a thin coil of radius a consisting of N turns. The coil is con-
nected to a ballistic galvanometer. The active resistance of the whole 
circuit is equal to R. Find the magnetic moment of the magnet if 
its removal from the coil results in a charge q flowing through the 
galvanometer. 

3.333. Find the approximate formula expressing the mutual in-
ductance of two thin coaxial loops of the same radius a if their cen-
tres are separated by a distance 1, with 1> a. 

L,R 

Fig. 3.95. 

3.334. There are two stationary loops with mutual inductance 
La. The current in one of the loops starts to be varied as /1  = at, 
where a is a constant, t is time. Find the time dependence /2  (t) of 
the current in the other loop whose inductance is L2 and resistance R. 

3.335. A coil of inductance L = 2.0 µH and resistance R = 1.0 S2 
is connected to a source of constant emf g = 3.0 V (Fig. 3.96). A 



resistance Ro  = 2.0 Q is connected in parallel with the coil. Find the 
amount of heat generated in the coil after the switch Sw is disconnect-
ed. The internal resistance of the source is negligible. 

3.336. An iron tore supports N = 500 turns. Find the magnetic 
field energy if a current I = 2.0 A produces a magnetic flux across 
the tore's cross-section equal to 1:1) = 1.0 mWb. 

3.337. An iron core shaped as a doughnut with round cross-sec-
tion of radius a = 3.0 cm carries a winding of N = 1000 turns through 
which a current I = 1.0 A flows. The mean radius of the doughnut 
is b = 32 cm. Using the plot in Fig. 3.76, find the magnetic energy 
stored up in the core. A field strength H is supposed to be the same 
throughout the cross-section and equal to its magnitude in the cen-
tre of the cross-section. 

3.338. A thin ring made of a magnetic has a mean diameter 
d = 30 cm and supports a winding of N = 800 turns. The cross-
sectional area of the ring is equal to S = 5.0 cm2. The ring has a 
cross-cut of width b = 2.0 mm. When the winding carries a certain 
current, the permeability of the magnetic equals [I = 1400. Neglect-
ing the dissipation of magnetic flux at the gap edges, find: 

(a) the ratio of magnetic energies in the gap and in the magnetic; 
(b) the inductance of the system; do it in two ways: using the flux 

and using the energy of the field. 
3.339. A long cylinder of radius a carrying a uniform surface charge 

rotates about its axis with an angular velocity co. Find the mag-
netic field energy per unit length of the cylinder if the linear charge 
density equals X, and p, = 1. 

3.340. At what magnitude of the electric field strength in vacuum 
the volume energy density of this field is the same as that of the mag-
netic field with induction B = 1.0 T (also in vacuum). 

3.341. A thin uniformly charged ring of radius a = 10 cm rotates 
about its axis with an angular velocity co = 100 rad/s. Find the ra-
tio of volume energy densities of magnetic and electric fields on the 
axis of the ring at a point removed from its centre by a distance 
/ = a. 

3.342. Using the expression for volume density of magnetic ener-
gy, demonstrate that the amount of work contributed to magneti-
zation of a unit volume of para- or diamagnetic, is equal to A = 

— JB/2. 
3.343. Two identical coils, each of inductance L, are interconnected 

(a) in series, (b) in parallel. Assuming the mutual inductance of the 
coils to be negligible, find the inductance of the system in both cases. 

3.344. Two solenoids of equal length and almost equal cross-
sectional area are fully inserted into one another. Find their mutual 
inductance if their inductances are equal to L1  and L2. 

3.345. Demonstrate that the magnetic energy of interaction of 
two current-carrying loops located in vacuum can be represented as 

Wia  = (141,0) B1B2  dV , where B1  and B2 are the magnetic inductions 



within a volume element dV, produced individually by the currents 
of the first and the second loop respectively. 

3.346. Find the interaction energy of two loops carrying currents 
/1  and /2  if both loops are shaped as circles of radii a and b, with 
a << b. The loops' centres are located at the same point and their 
planes form an angle 0 between them. 

3.347. The space between two concentric metallic spheres is filled 
up with a uniform poorly conducting medium of resistivity p and 
permittivity s. At the moment t = 0 the inside sphere obtains a 
certain charge. Find: 

(a) the relation between the vectors of displacement current den-
sity and conduction current density at an arbitrary point of the me-
dium at the same moment of time; 

(b) the displacement current across an arbitrary closed surface 
wholly located in the medium and enclosing the internal sphere, if 
at the given moment of time the charge of that sphere is equal to q. 

3.348. A parallel-plate capacitor is formed by two discs with a 
uniform poorly conducting medium between them. The capacitor 
was initially charged and then disconnected from a voltage source. 
Neglecting the edge effects, show that there is no magnetic field 
between capacitor plates. 

3.349. A parallel-plate air condenser whose each plate has an 
area S = 100 cm2  is connected in series to an ac circuit. Find the 
electric field strength amplitude in the capacitor if the sinusoidal 
current amplitude in lead wires is equal to /m. = 1.0 mA and the 
current frequency equals co = 1.6-107  s-1. 

3.350. The space between the electrodes of a parallel-plate capa-
citor is filled with a uniform poorly conducting medium of conducti-
vity a and permittivity a. The capacitor plates shaped as round discs 
are separated by a distance d. Neglecting the edge effects, find the 
magnetic field strength between the plates .at a distance r from their 
axis if an ac voltage V = Vw, cos cot is applied to the capacitor. 

3.351. A long straight solenoid has n turns per unit length. An 
alternating current I = In, sin cot flows through it. Find the displace-
ment current density as a function of the distance r from the solenoid 
axis. The cross-sectional radius of the solenoid equals R. 

3.352. A point charge q moves with a non-relativistic velocity 
v = const. Find the displacement current density j d at a point locat-
ed at a distance r from the charge on a straight line 

(a) coinciding with the charge path; 
(b) perpendicular to the path and passing through the charge. 
3.353. A thin wire ring of radius a carrying a charge q approaches 

the observation point P so that its centre moves rectilinearly with 
a constant velocity v. The plane of the ring remains perpendicular 
to the motion direction. At what distance xm, from the point P will 
the ring be located at the moment when the displacement current 
density at the point P becomes maximum? What is the magnitude of 
this maximum density? 



3.354. A point charge q moves with a non-relativistic velocity 
v = const. Applying the theorem for the circulation of the vector H 
around the dotted circle shown in Fig. 3.97, find H at the point A 
as a function of a radius vector r and velocity v of the charge. 

3.355. Using Maxwell's equations, show that 
(a) a time-dependent magnetic field cannot exist without an elec-

tric field; 
(b) a uniform electric field cannot exist in the presence of a time-

dependent magnetic field; 
(c) inside an empty cavity a uniform electric (or magnetic) field 

can be time-dependent. 
3.356. Demonstrate that the law of electric charge conservation, 

i.e. V = ap/Ot, follows from Maxwell's equations. 
3.357. Demonstrate that Maxwell's equations V X E = — oBlat 

and V •B = 0 are compatible, i.e. the first one does not contradict 
the second one. 

3.358. In a certain region of the inertial reference frame there is 
magnetic field with induction B rotating with angular velocity w. 
Find V x E in this region as a function of vectors to and B. 

3.359. In the inertial reference frame K there is a uniform magnetic 
field with induction B. Find the electric field strength in the frame 
K' which moves relative to the frame K with a non-relativistic ve-
locity v, with v±B. To solve this problem, consider the forces acting 
on an imaginary charge in both reference frames at the moment when 
the velocity of the charge in the frame K' is equal to zero. 
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Fig. 3.97. Fig. 3.98. 

3.360. A large plate of non-ferromagnetic material moves with a 
constant velocity v = 90 cm/s in a uniform magnetic field with in-
duction B = 50 mT as shown in Fig. 3.98. Find the surface density 
of electric charges appearing on the plate as a result of its motion. 

3.361. A long solid aluminum cylinder of radius a = 5.0 cm 
rotates about its axis in a uniform magnetic field with induction 
B = 10 mT. The angular velocity of rotation equals a) = 45 rad/s, 
with w ft  B. Neglecting the magnetic field of appearing charges, 
find their space and surface densities. 

3.362. A non-relativistic point charge q moves with a constant 
velocity v. Using the field transformation formulas, find the magnet-
ic induction B produced by this charge at the point whose position 
relative to the charge is determined by the radius vector r. 
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3.363. Using Eqs. (3.6h), demonstrate that if in the inertial ref-
erence frame K there is only electric or only magnetic field, in any 
other inertial frame K' both electric and magnetic fields will coexist 
simultaneously, with E' L B'. 

3.364. In an inertial reference frame K there is only magnetic 
field with induction B = b (yi — xj)/ (x2  y2), where b is a con-
stant, i and j are the unit vectors of the x and y axes. Find the elec-
tric field strength E' in the frame K' moving relative to the frame 
K with a constant non-relativistic velocity v = vk; k is the unit 
vector of the z axis. The z' axis is assumed to coincide with the z 
axis. What is the shape of the field E'? 

3.365. In an inertial reference frame K there is only electric field 
of strength E = a (xi + yj)/(x2  + y2), where a is a constant, i and 
j are the unit vectors of the x and y axes. Find the magnetic induction 
B' in the frame K' moving relative to the frame K with a constant 
non-relativistic velocity v = vk; k is the unit vector of the z axis. 
The z' axis is assumed to coincide with the z axis. What is the shape 
of the magnetic induction B'? 

3.366. Demonstrate that the transformation formulas (3.6h) 
follow from the formulas (3.6i) at vc, << c. 

3.367. In an inertial reference frame K there is only a uniform 
electric field E = 8 kV/m in strength. Find the modulus and direc-
tion 

(a) of the vector E', (b) of the vector B' in the inertial reference 
frame K' moving with a constant velocity v relative to the frame 
K at an angle a = 45° to the vector E. The velocity of the frame K' 
is equal to a 13 = 0.60 fraction of the velocity of light. 

3.368. Solve a problem differing from the foregoing one by a mag-
netic field with induction B = 0.8 T replacing the electric field. 

3.369. Electromagnetic field has two invariant quantities. Using 
the transformation formulas (3.6i), demonstrate that these quantities 
are 

(a) EB; (b) E2  — c2B2. 
3.370. In an inertial reference frame K there are two uniform mu-

tually perpendicular fields: an electric field of strength E = 40 kV/m 
and a magnetic field induction B = 0.20 mT. Find the electric 
strength E' (or the magnetic induction B') in the reference frame 
K' where only one field, electric or magnetic, is observed. 

Instruction. Make use of the field invariants cited in the foregoing 
problem. 

3.371. A point charge q moves uniformly and rectilinearly with 
a relativistic velocity equal to a R  fraction of the velocity of light 

= v/c). Find the electric field strength E produced by the charge 
at the point whose radius vector relative to the charge is equal to 
r and forms an angle 0 with its velocity vector. 
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3.7. MOTION OF CHARGED PARTICLES IN ELECTRIC 
AND MAGNETIC FIELDS 

• Lorentz force: 
F = qE 	q [vBJ. 	 (3.7a) 

• Motion equation of a relativistic particle: 
d 	may 
	—F. 	 (3.7b) 

dt 	I— (vIc)' 

• Period of revolution of a charged particle in a uniform magnetic field: 

	

2rcm
B 	

(3.7c) T = 

	

q 	' 

where m is the relativistic mass of the particle, m = mo/jil — (v/c)a. 
• Betatron condition, that is the condition for an electron to move along 

a circular orbit in a betatron: 

B, = 	(B), 	 (3.7d) 

where Bo  is the magnetic induction at an orbit's point, (B) is the mean value 
of the induction inside the orbit. 

3.372. At the moment t = 0 an electron leaves one plate of a par-
allel-plate capacitor with a negligible velocity. An accelerating 
voltage, varying as V = at, where a = 100 V/s, is applied between 
the plates. The separation between the plates is 1 = 5.0 cm. What 
is the velocity of the electron at the moment it reaches the opposite 
plate? 

3.373. A proton accelerated by a potential difference V gets into 
the uniform electric field of a parallel-plate capacitor whose plates 
extend over a length 1 in the motion direction. The field strength 
varies with time as E = at, where a is a constant. Assuming the pro-
ton to be non-relativistic, find the angle between the motion direc-
tions of the proton before and after its flight through the capacitor; 
the proton gets in the field at the moment t = 0. The edge effects are 
to be neglected. 

3.374. A particle with specific charge qlm moves rectilinearly due 
to an electric field E = E0  — ax, where a is a positive constant, x 
is the distance from the point where the particle was initially at 
rest. Find: 

(a) the distance covered by the particle till the moment it came 
to a standstill; 

(b) the acceleration of the particle at that moment. 
3.375. An electron starts moving in a uniform electric field of 

strength E = 10 kV/cm. How soon after the start will the kinetic 
energy of the electron become equal to its rest energy? 

3.376. Determine the acceleration of a relativistic electron moving 
along a uniform electric field of strength E at the moment when its 
kinetic energy becomes equal to T. 

3.377. At the moment t = 0 a relativistic proton flies with a ve-
locity v, into the region where there is a uniform transverse electric 
field of strength E, with v, ± E. Find the time dependence of 
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(a) the angle 0 between the proton's velocity vector v and the ini-
tial direction of its motion; 

(b) the projection vx  of the vector v on the initial direction of 
motion. 

3.378. A proton accelerated by a potential difference V = 500 kV 
flies through a uniform transverse magnetic field with induction 
B = 0.51 T. The field occupies a region 
of space d =10 cm in thickness (Fig. 3.99). 
Find the angle a through which the pro-
ton deviates from the initial direction of 
its motion. 

3.379. A charged particle moves along 
a circle of radius r = 100 mm in a 
uniform magnetic field with induction 
B = 10.0 mT. Find its velocity and pe-
riod of revolution if that particle is 

(a) a non-relativistic proton; 
(b) a relativistic electron. 
3.380. A relativistic particle with charge q and rest mass ma  

moves along a circle of radius r in a uniform magnetic field of induc-
tion B. Find: 

(a) the modulus of the particle's momentum vector; 
(b) the kinetic energy of the particle; 
(c) the acceleration of the particle. 
3.381. Up to what values of kinetic energy does the period of 

revolution of an electron and a proton in a uniform magnetic field 
exceed that at non-relativistic velocities by it = 1.0 % ? 

3.382. An electron accelerated by a potential difference V = 
= 1.0 kV moves in a uniform magnetic field at an angle a = 30° to 
the vector B whose modulus is B = 29 mT. Find the pitch of the 
helical trajectory of the electron. 

3.383. A slightly divergent beam of non-relativistic charged par-
ticles accelerated by a potential difference V propagates from a point 
A along the axis of a straight solenoid. The beam is brought into 
focus at a distance 1 from the point A at two successive values of 
magnetic induction B1  and B2. Find the specific charge qlm of the 
particles. 

3.384. A non-relativistic electron originates at a point A lying 
on the axis of a straight solenoid and moves with velocity v at an 
angle a to the axis. The magnetic induction of the field is equal to 
B. Find the distance r from the axis to the point on the screen into 
which the electron strikes. The screen is oriented at right angles to 
the axis and is located at a distance 1 from the point A. 

3.385. From the surface of a round wire of radius a carrying a 
direct current I an electron escapes with a velocity vo  perpendicular 
to the surface. Find what will be the maximum distance of the elec-
tron from the axis of the wire before it turns back due to the action 
of the magnetic field generated by the current. 
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3.386. A non-relativistic charged particle flies through the elec-
tric field of a cylindrical capacitor and gets into a uniform transverse 
magnetic field with induction B (Fig. 3.100). In the capacitor the 
particle moves along the arc of a circle, in the magnetic field, along 
a semi-circle of radius r. The potential difference applied to the capa-
citor is equal to V, the radii of the electrodes are equal to a and b, 
with a < b. Find the velocity of the particle and its specific charge 
qlm. 

   

  

0 

   

Fig. 3.100. Fig. 3.101. 

 

3.387. Uniform electric and magnetic fields with strength E and 
induction B respectively are directed along the y axis (Fig. 3.101). 
A particle with specific charge On leaves the origin 0 in the direction 
of the x axis with an initial non-relativistic velocity v0. Find: 

(a) the coordinate yr, of the particle when it crosses the y axis 
for the nth time; 

(b) the angle a between the particle's velocity vector and the y 
axis at that moment. 

3.388. A narrow beam of identical ions with specific charge qlm, 
possessing different velocities, enters the region of space, where there 
are uniform parallel electric and magnetic fields with strength E 
and induction B, at the point 0 (see Fig. 3.101). The beam direction 
coincides with the x axis at the point 0. A plane screen oriented at 
right angles to the x axis is located at a distance 1 from the point 0. 
Find the equation of the trace that the ions leave on the screen. 
Demonstrate that at z << 1 it is the equation of a parabola. 

3.389. A non-relativistic proton beam passes without deviation 
through the region of space where there are uniform transverse mu-
tually perpendicular electric and magnetic fields with E = 120 kV/m 
and B = 50 mT. Then the beam strikes a grounded target. Find 
the force with which the beam acts on the target if the beam current 
is equal to I = 0.80 mA. 

3.390. Non-relativistic protons move rectilinearly in the region of 
space where there are uniform mutually perpendicular electric and 
magnetic fields with E = 4.0 kV/m and B = 50 mT. The trajectory of 
the protons lies in the plane xz (Fig. 3.102) and forms an angle 

30° with the x axis. Find the pitch of the helical trajectory along 
which the protons will move after the electric field is switched off. 
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3.391. A beam of non-relativistic charged particles moves without 
deviation through the region of space A (Fig. 3.103) where there are 
transverse mutually perpendicular electric and magnetic fields with 

   

S 

   

 

 

 

Fig. 3.103. 

strength E and induction B. When the magnetic field is switched off, 
the trace of the beam on the screen S shifts by 6.x. Knowing the 
distances a and b, find the specific charge qlm of the particles. 

3.392. A particle with specific charge qim moves in the region of 
space where there are uniform mutually perpendicular electric and 
magnetic fields with strength E and induc- 
tion B (Fig. 3.104). At the moment t = 0 
the particle was located at the point 0 and 
had zero velocity. For the non-relativistic 
case find: 

(a) the law of motion x (t) and y (t) of the 
particle; the shape of the trajectory; 

(b) the length of the segment of the trajecto-
ry between two nearest points at which the 
velocity of the particle turns into zero; 

(c) the mean value of the particle's veloc-
ity vector projection on the x axis (the drift velocity). 

3.393. A system consists of a long cylindrical anode of radius a 
and a coaxial cylindrical cathode of radius b (b < a). A filament 
located along the axis of the system carries a heating current I pro-
ducing a magnetic field in the surrounding space. Find the least po-
tential difference between the cathode and anode at which the thermal 
electrons leaving the cathode without initial velocity start reach-
ing the anode. 

3.394. Magnetron is a device consisting of a filament of radius a 
and a coaxial cylindrical anode of radius b which are located in a 
uniform magnetic field parallel to the filament. An accelerating po-
tential difference V is applied between the filament and the anode. 
Find the value of magnetic induction at which the electrons leaving 
the filament with zero velocity reach the anode. 

3.395. A charged particle with specific charge qim starts moving 
in the region of space where there are uniform mutually perpendicu-
lar electric and magnetic fields. The magnetic field is constant and 

Fig. 3.104. 
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Fig. 3.105. 

has an induction B while the strength of the electric field varies with 
time as E = Em  cos cot, where co = qB1m. For the non-relativistic 
case find the law of motion x (t) and y (t) of the particle if at the mo-
ment t = 0 it was located at the point 0 (see Fig. 3.104). What is 
the approximate shape of the trajectory of the particle? 

3.396. The cyclotron's oscillator frequency is equal to v = 10 MHz. 
Find the effective accelerating voltage applied across the dees of that 
cyclotron if the distance between the neighbouring trajectories of 
protons is not less than Ar = 1.0 cm, with the trajectory radius 
being equal to r = 0.5 m. 

3.397. Protons are accelerated in a cyclotron so that the maximum 
curvature radius of their trajectory is equal to r = 50 cm. Find: 

(a) the kinetic energy of the protons when the acceleration is 
completed if the magnetic induction in the cyclotron is B = 1.0 T; 

(b) the minimum frequency of the cyclotron's oscillator at which 
the kinetic energy of the protons amounts to T = 20 MeV by the 
end of acceleration. 

3.398. Singly charged ions He are accelerated in a cyclotron so 
that their maximum orbital radius is r = 60 cm. The frequency of 
a cyclotron's oscillator is equal to v = 10.0 MHz, the effective ac-
celerating voltage across the dees is V = 50 kV. Neglecting the gap 
between the dees, find: 

(a) the total time of acceleration of the ion; 
(b) the approximate distance covered by the ion in the process of 

its acceleration. 
3.399. Since the period of revolution of electrons in a uniform mag-

netic field rapidly increases with the growth of energy, a cyclotron 
is unsuitable for their acceleration. This 
drawback is rectified in a microtron 
(Fig. 3.105) in which a change AT in the 
period of revolution of an electron is 
made multiple with the period of accele-
rating field To. How many times has an 
electron to cross the accelerating gap of 
a microtron to acquire an energy W 
= 4.6 MeV if AT = To, the magnetic 
induction is equal to B = 107 mT, and 
the frequency of accelerating field to 
v = 3000 MHz? 

3.400. The ill effects associated with the variation of the period 
of revolution of the particle in a cyclotron due to the increase of its 
energy are eliminated by slow monitoring (modulating) the frequency 
of accelerating field. According to what law w (t) should this frequen-
cy be monitored if the magnetic induction is equal to B and the 
particle acquires an energy A W per revolution? The charge of the 
particle is q and its mass is m. 

3.401. A particle with specific charge On is located inside a round 
solenoid at a distance r from its axis. With the current switched into 



the winding, the magnetic induction of the field generated by the 
solenoid amounts to B. Find the velocity of the particle and the cur-
vature radius of its trajectory, assuming that during the increase of 
current flowing in the solenoid the particle shifts by a negligible 
distance. 

3.402. In a betatron the magnetic flux across an equilibrium orbit 
of radius r = 25 cm grows during the acceleration time at practically 

constant rate 	= 5.0 Wb/s. In the process, the electrons acquire an 
energy W = 25 MeV. Find the number of revolutions made by the 
electron during the acceleration time and the corresponding distance 
covered by it. 

3.403. Demonstrate that electrons move in a betatron along a 
round orbit of constant radius provided the magnetic induction on 
the orbit is equal to half the mean value of that inside the orbit 
(the betatron condition). 

3.404. Using the betatron condition, find the radius of a round 
orbit of an electron if the magnetic induction is known as a function 
of distance r from the axis of the field. Examine this problem for the 
specific case B = Bo  — ar2, where Bo  and a are positive constants. 

3.405. Using the betatron condition, demonstrate that the strength 
of the eddy-current field has the extremum magnitude on an equilib-
rium orbit. 

3.406. In a betatron the magnetic induction on an equilibrium 
orbit with radius r = 20 cm varies during a time interval At = 
= 1.0 ms at practically constant rate from zero to B = 0.40 T. Find 
the energy acquired by the electron per revolution. 

3.407. The magnetic induction in a betatron on an equilibrium 
orbit of radius r varies during the acceleration time at practically 
constant rate from zero to B. Assuming the initial velocity of the 
electron to be equal to zero, find: 

(a) the energy acquired by the electron during the acceleration 
time; 

(b) the corresponding distance covered by the electron if the acce-
leration time is equal to At. 



PART FOUR 

OSCILLATIONS AND WAVES 

4.1. MECHANICAL OSCILLATIONS 

• Harmonic motion equation and its solution: 

	

Y-F coax =0, 	x= a cos (coot +a), 	 (4.1a) 

where coo  is the natural oscillation frequency. 
• Damped oscillation equation and its solution: 

	

.X+20;+u)Sx =-. 0, 	x = aoe- fit  cos (cot +cc), 	(4.1b) 

where f3 is the damping coefficient, o) is the frequency of damped oscillations: 

(o= 1/(o6-182  • 	 4.1c) 

• Logarithmic damping decrement ? and quality factor Q: 

X, = f3T , Q = 
where T = 2n/co. 

• Forced oscillation equation and its steady-state solution: 

+213x+ cogx f 0  cos cot, x = a cos (cot — cp), 
where 

to 

• Maximum shift amplitude occurs at 

(ores = 	2§2. 	 (4.1g) 

4.1. A point oscillates along the x axis according to the law x 
a cos (cot — n/4). Draw the approximate plots 

(a) of displacement x, velocity projection vx, and acceleration 
projection wx  as functions of time t; 

(b) velocity projection vx  and acceleration projection wx  as func-
tions of the coordinate x. 

4.2. A point moves along the x axis according to the law x 
= a sine (cot — n/4). Find: 

(a) the amplitude and period of oscillations; draw the plot x (t); 
(b) the velocity projection vx  as a function of the coordinate x; 

draw the plot vx  (x). 
4.3. A particle performs harmonic oscillations along the x axis 

about the equilibrium position x = 0. The oscillation frequency is 
= 4.00 	At a certain moment of time the particle has a coor- 

dinate xo  = 25.0 cm and its velocity is equal to vx0  = 100 cm/s. 

a— 
V (04 — (o2)2 4i32 0)2  

tan 2 (p- f3ca  
4-0)2  • 



Find the coordinate x and the velocity vs  of the particle t = 2.40 s 
after that moment. 

4.4. Find the angular frequency and the amplitude of harmonic 
oscillations of a particle if at distances x1  and x 2  from the equilib-
rium position its velocity equals v1  and v2  respectively. 

4.5. A point performs harmonic oscillations along a straight line 
with a period T = 0.60 s and an amplitude a = 10.0 cm. Find the 
mean velocity of the point averaged over the time interval during 
which it travels a distance a/2, starting from 

(a) the extreme position; 
(b) the equilibrium position. 
4.6. At the moment t = 0 a point starts oscillating along the x 

axis according to the law x = a sin wt. Find: 
(a) the mean value of its velocity vector projection (vs); 
(b) the modulus of the mean velocity vector 1(v)1 ; 
(c) the mean value of the velocity modulus (v) averaged over 3/8 

of the period after the start. 
4.7. A particle moves along the x axis according to the law x 

= a cos wt. Find the distance that the particle covers during the 
time interval from t = 0 to t. 

4.8. At the moment t = 0 a particle starts moving along the x 
axis so that its velocity projection varies as vs  = 35 cos at cm/s, 
where t is expressed in seconds. Find the distance that this particle 
covers during t = 2.80 s after the start. 

4.9. A particle performs harmonic oscillations along the x axis 
according to the law x = a cos wt. Assuming the probability P of 
the particle to fall within an interval from —a to +a to be equal to 
unity, find how the probability density dP/dx depends on x. Here 
dP denotes the probability of the particle falling within an interval 
from x to x dx. Plot dP/dx as a function of x. 

4.10. Using graphical means, find an amplitude a of oscillations 
resulting from the superposition of the following oscillations of the 
same direction: 

(a) x1  = 3.0 cos (wt -1- n/3), x 2  = 8.0sin (wt 	n/6); 
(b) x1  = 3.0 cos wt, x2  = 5.0 cos (wt + n/4), x 3  = 6.0 sin wt. 
4.11. A point participates simultaneously in two harmonic oscil-

lations of the same direction: x1  = a cos wt and x2  = a cos 2wt. 
Find the maximum velocity of the point. 

4.12. The superposition of two harmonic oscillations of the same 
direction results in the oscillation of a point according to the law 
x = a cos 2.1t cos 50.0t, where t is expressed in seconds. Find the 
angular frequencies of the constituent oscillations and the period 
with which they beat. 

4.13. A point A oscillates according to a certain harmonic law in 
the reference frame K' which in its turn performs harmonic oscilla-
tions relative to the reference frame K. Both oscillations occur along 
the same direction. When the K' frame oscillates at the frequency 
20 or 24 Hz, the beat frequency of the point A in the K frame turns 

167 



out to be equal to v. At what frequency of oscillation of the frame 
K' will the beat frequency of the point A become equal to 2v? 

4.14. A point moves in the plane xy according to the law x 
= a sin cot, y = b cos cot, where a, b, and co are positive constants. 
Find: 

(a) the trajectory equation y (x) of the point and the direction of 
its motion along this trajectory; 

(b) the acceleration w of the point as a function of its radius vector 
r relative to the origin of coordinates. 

4.15. Find the trajectory equation y (x) of a point if it moves ac-
cording to the following laws: 

(a) x = a sin cot, y = a sin 2cot; 
(b) x = a sin cot, y = a cos 2cot. 

Plot these trajectories. 
4.16. A particle of mass m is located in a unidimensional potential 

field where the potential energy of the particle depends on the coor-
dinate x as U (x) = U0  (1 — cos ax); U0  and a are constants. Find 
the period of small oscillations that the particle performs about the 
equilibrium position. 

4.17. Solve the foregoing problem if the potential energy has the 
form U (x) = alx2  — blx, where a and b are positive constants. 

4.18. Find the period of small oscillations in a vertical plane per-
formed by a ball of mass m = 40 g fixed at the middle of a horizon-
tally stretched string 1 = 1.0 m in length. The tension of the string 
is assumed to be constant and equal to F = 10 N. 

4.19. Determine the period of small oscillations of a mathematical 
pendulum, that is a ball suspended by a thread 1 = 20 cm in length, 
if it is located in a liquid whose density is = 3.0 times less than 
that of the ball. The resistance of the liquid is to be neglected. 

4.20. A ball is suspended by a thread of length l at the point 0 on 
the wall, forming a small angle a with the vertical (Fig. 4.1). Then 

Fig. 4.1, 	 Fig. 4.2. 

the thread with the ball was deviated through a small angle 13(l > a) 
and set free. Assuming the collision of the ball against the wall to 
be perfectly elastic, find the oscillation period of such a pendulum. 



4.21. A pendulum clock is mounted in an elevator car which starts 
going up with a constant acceleration w, with w < g. At a height h 
the acceleration of the car reverses, its magnitude remaining constant. 
How soon after the start of the motion will the clock show the right 
time again? 

4.22. Calculate the period of small oscillations of a hydrometer 
(Fig. 4.2) which was slightly pushed down in the vertical direction. 
The mass of the hydrometer is m = 50 g, the radius of its tube is 
r = 3.2 mm, the density of the liquid is p = 1.00 g/cm3. The resis-
tance of the liquid is assumed to be negligible. 

4.23. A non-deformed spring whose ends are fixed has a stiffness 
x = 13 N/m. A small body of mass m = 25 g is attached at the point 
removed from one of the ends by 11 = 1/3 of the spring's length. Neg-
lecting the mass of the spring, find the period of small longitudinal 
oscillations of the body. The force of gravity is assumed to be absent. 

s 2  
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Fig. 4.3. 

4.24. Determine the period of small longitudinal oscillations of 
a body with mass m in the system shown in Fig. 4.3. The stiffness 
values of the springs are xi  and x2. The friction and the masses of 
the springs are negligible. 

4.25. Find the period of small vertical oscillations of a body with 
mass m in the system illustrated in Fig. 4.4. The stiffness values of 
the springs are xi  and x2, their masses are negligible. 

4.26. A small body of mass in is fixed to the middle of a stretched 
string of length 2/. In the equilibrium position the string tension is 
equal to To. Find the angular frequency of small oscillations of the 
body in the transverse direction. The mass of the string is negligible, 
the gravitational field is absent. 

3e2 
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Fig. 4.4. 	 Fig. 4.5. 

4.27. Determine the period of oscillations of mercury of mass 
= 200 g poured into a bent tube (Fig. 4.5) whose right arm forms 

an angle 0 = 30° with the vertical. The cross-sectional area of the 
tube is S = 0.50 cm2. The viscosity of mercury is to be neglected. 



4.28. A uniform rod is placed on two spinning wheels as shown in 
Fig. 4.6. The axes of the wheels are separated by a distance 1= 20 cm, 
the coefficient of friction between the rod and the wheels is k = 0.18. 
Demonstrate that in this case the rod performs harmonic oscilla-
tions. Find the period of these oscillations. 

Fig. 4.6. 

4.29. Imagine a shaft going all the way through the Earth from 
pole to pole along its rotation axis. Assuming the Earth to be a ho-
mogeneous ball and neglecting the air drag, find: 

(a) the equation of motion of a body falling down into the shaft; 
(b) how long does it take the body to reach the other end of the 

shaft; 
(c) the velocity of the body at the Earth's centre. 
4.30. Find the period of small oscillations of a mathematical pen-

dulum of length 1 if its point of suspension 0 moves relative to the 
Earth's surface in an arbitrary direction with a constant acceleration 
w (Fig. 4.7). Calculate that period if 1 = 21 cm, w = g12, and the 
angle between the vectors w and g equals 13 = 120°. 

Fig. 4.7. Fig. 4.8. 

4.31. In the arrangement shown in Fig. 4.8 the sleeve M of mass 
0.20 kg is fixed between two identical springs whose combined 

stiffness is equal to x = 20 N/m. The sleeve can slide without fric-
tion over a horizontal bar AB. The arrangement rotates with a con-
stant angular velocity 6.) = 4.4 rad/s about a vertical axis passing 
through the middle of the bar. Find the period of small oscillations 
of the sleeve. At what values of o will there be no oscillations of the 
sleeve? 

4.32. A plank with a bar placed on it performs horizontal harmonic 
oscillations with amplitude a = 10 cm. Find the coefficient of fric-
tion between the bar and the plank if the former starts sliding along 



the plank when the amplitude of oscillation of the plank becomes 
less than T = 1.0 s. 

4.33. Find the time dependence of the angle of deviation of a 
mathematical pendulum 80 cm in length if at the initial moment the 
pendulum 

(a) was deviated through the angle 3.0° and then set free without 
push; 

(b) was in the equilibrium position and its lower end was imparted 
the horizontal velocity 0.22 m/s; 

(c) was deviated through the angle 3.0° and its lower end was im-
parted the velocity 0.22 m/s directed toward the equilibrium position. 

4.34. A body A of mass m1  = 1.00 kg and a body B of mass m2  = 
4.10 kg are interconnected by a spring as shown in Fig. 4.9. The 

body A performs free vertical harmonic oscilla-
tions with amplitude a = 1.6 cm and frequency 

= 25 s-1. Neglecting the mass of the spring, 
find the maximum and minimum values of force 
that this system exerts on the bearing surface. 

4.35. A plank with a body of mass m placed 
on it starts moving straight up according to 
the law y = a (1 — cos cot), where y is the 
displacement from the initial position, co = 	Fig. 4.9. 
= =- 11 s-1 . Find: 

(a) the time dependence of the force that the body exerts on the 
plank if a = 4.0 cm; plot this dependence; 

(b) the minimum amplitude of oscillation of the plank at which 
the body starts falling behind the plank; 

(c) the amplitude of oscillation of the plank at which the body 
springs up to a height h = 50 cm relative to the initial position (at 
the moment t = 0). 

4.36. A body of mass in was suspended by a non-stretched spring, 
and then set free without push. The stiffness of the spring is x. 
Neglecting the mass of the spring, find: 

(a) the law of motion y (t) , where y is the displacement of the body 
from the equilibrium position; 

(b) the maximum and minimum tensions of the spring in the pro-
cess of motion. 

4.37. A particle of mass in moves due to the force F = — amr, 
where a is a positive constant, r is the radius vector of the particle 
relative to the origin of coordinates. Find the trajectory of its motion 
if at the initial moment r = roi and the velocity v = voj, where i 
and j are the unit vectors of the x and y axes. 

4.38. A body of mass m is suspended from a spring fixed to the 
ceiling of an elevator car. The stiffness of the spring is x. At the mo-
ment t = 0 the car starts going up with an acceleration w. Neglecting 
the mass of the spring, find the law of motion y (t) of the body rela- 

tive to the elevator car if y (0) = 0 and y (0) = 0. Consider the fol-
lowing two cases: 



(a) w = const; 
(b) w = at, where a is a constant. 
4.39. A body of mass m = 0.50 kg is suspended from a rubber cord 

with elasticity coefficient k = 50 Is17m. Find the maximum distance 
over which the body can be pulled down for the body's oscillations 
to remain harmonic. What is the energy of oscillation in this case? 

4.40. A body of mass m fell from a height h onto the pan of a spring 
balance (Fig. 4.10). The masses of the pan and the spring are negligible, 
the stiffness of the latter is x. Having stuck to the pan, the body starts 
performing harmonic oscillations in the vertical direction. Find the 
amplitude and the energy of these oscillations. 

rn 	 

   

Fig. 4.10. Fig. 4.11. 

4.41. Solve the foregoing problem for the case of the pan having 
a mass M. Find the oscillation amplitude in this case. 

4.42. A particle of mass m moves in the plane xy due to the force 

varying with velocity as F = a (yi — xj), where a is a positive con-
stant, i and j are the unit vectors of the x and y axes. At the initial 
moment t = 0 the particle was located at the point x = y = 0 and 
possessed a velocity v0  directed along the unit vector j. Find the law 
of motion x (t) , y (t) of the particle, and also the equation of its tra-
jectory. 

4.43. A pendulum is constructed as a light thin-walled sphere of 
radius R filled up with water and suspended at the point 0 from a 
light rigid rod (Fig. 4.1.1). The distance between the point 0 and the 
centre of the sphere is equal to 1. How many times will the small 
oscillations of such a pendulum change after the water freezes? The 
viscosity of water and the change of its volume on freezing are to 
be neglected. 

4.44. Find the frequency of small oscillations of a thin uniform 
vertical rod of mass m and length 1 hinged at the point 0 (Fig. 4.12). 
The combined stiffness of the springs is equal to x. The mass of the 
springs is negligible. 

4.45. A uniform rod of mass m = 1.5 kg suspended by two iden-
tical threads 1 = 90 cm in length (Fig. 4.13) was turned through a 



small angle about the vertical axis passing through its middle point 
C. The threads deviated in the process through an angle a = 5.0°. 
Then the rod was released to start performing small oscillations. 
Find: 

(a) the oscillation period; 
(b) the rod's oscillation energy. 

Fig. 4.12. Fig. 4.14. 

4.46. An arrangement illustrated in Fig. 4.14 consists of a hori-
zontal uniform disc D of mass m and radius R and a thin rod AO 
whose torsional coefficient is equal to k. Find the amplitude and the 
energy of small torsional oscillations if at the initial moment the 
disc was deviated through an angle (p c, from the equilibrium position 

and then imparted an angular velocity yo. 
4.47. A uniform rod of mass m and length 1 performs ,  small oscil-

lations about the horizontal axis passing through its upper end. Find 
the mean kinetic energy of the rod averaged over one oscillation pe-
riod if at the initial moment it was deflected from the vertical by an 

angle 00  and then imparted an angular velocity 60. 
4.48. A physical pendulum is positioned so that its centre of grav-

ity is above the suspension point. From that position the pendulum 
started moving toward the stable equilibrium and passed it with an 
angular velocity co. Neglecting the friction find the period of small 
oscillations of the pendulum. 

4.49. A physical pendulum performs small oscillations about the 
horizontal axis with frequency co = 15.0 s-1 . When a small body 
of mass m = 50 g is fixed to the pendulum at a distance 1 = 20 cm 
below the axis, the oscillation frequency becomes equal to a)2  
= 10.0 s-1. Find the moment• of inertia of the pendulum relative 
to the oscillation axis. 

4.50. Two physical pendulums perform small oscillations about 
the same horiiontal axis with frequencies o and CO2. Their moments 
of inertia relative to the given axis are equal to Ii  and I2  respectively. 
In a state of stable equilibrium the pendulums were fastened rigidly 
together. What will be the frequency of small oscillations of the com-
pound pendulum? 

4.51. A uniform rod of length 1 performs small oscillations about 
the horizontal axis 00' perpendicular to the rod and passing through 



one of its points. Find the distance between the centre of inertia of 
the rod and the axis 00' at which the oscillation period is the short-
est. What is it equal to? 

4.52. A thin uniform plate shaped as an equilateral triangle 
with a height h performs small oscillations about the horizontal 
axis coinciding with one of its sides. Find the oscillation period and 
the reduced length of the given pendulum. 

4.53. A smooth horizontal disc rotates about the vertical axis 0 
(Fig. 4.15) with a constant angular velocity o. A thin uniform rod AB 
of length 1 performs small oscillations about the vertical axis A fixed 
to the disc at a distance a from the axis of the disc. Find the frequency 
coo  of these oscillations. 

Fig. 4.15. Fig. 4.16. 

4.54. Find the frequency of small oscillations of the arrangement 
illustrated in Fig. 4.16. The radius of the pulley is R, its moment of 
inertia relative to the rotation axis is I, the mass of the body is m, 
and the spring stiffness is x. The mass of the thread and the spring 
is negligible, the thread does not slide over the pulley, there is no 
friction in the axis of the pulley. 

4.55. A uniform cylindrical pulley of mass M and radius R can 
freely rotate about the horizontal axis 0 (Fig. 4.17). The free end of 

Fig. 4.18. 

a thread tightly wound on the pulley carries a deadweight A. At 
a certain angle a it counterbalances a point mass in fixed at the rim 



of the pulley. Find the frequency of small oscillations of the arrange-
ment. 

4.56. A solid uniform cylinder of radius r rolls without sliding 
along the inside surface of a cylinder of radius R, performing small 
oscillations. Find their period. 

4.57. A solid uniform cylinder of plass m performs small oscilla-
tions due to the action of two springs whose combined stiffness is 
equal to x (Fig. 4.18). Find the period of these oscillations in the 
absence of sliding. 

4.58. Two cubes with masses m1  and m2  were interconnected by a 
weightless spring of stiffness x and placed on a smooth horizontal 
surface. Then the cubes were drawn closer to each other and released 
simultaneously. Find the natural oscillation frequency of the 
system. 

4.59. Two balls with masses m1  = 1.0 kg and m2  = 2.0 kg are 
slipped on a thin smooth horizontal rod (Fig. 4.19). The balls are 
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Fig. 4.19. 

interconnected by a light spring of stiffness x = 24 N/m. The left-
hand ball is imparted the initial velocity v1  = 12 cm/s. Find: 

(a) the oscillation frequency of the system in the process of mo-
tion; 

(b) the energy and the amplitude of oscillations. 
4.60. Find the period of small torsional oscillations of a system 

consisting of two discs slipped on a thin rod with torsional coefficient 
k. The moments of inertia of the discs relative to the rod's axis are 
equal to Il  and /2. 

4.61. A mock-up of a CO2  molecule consists of three balls intercon-
nected by identical light springs and placed along a straight line in 
the state of equilibrium. Such a system can freely perform oscilla-
tions of two types, as shown by the arrows in Fig. 4.20. Knowing the 
masses of the atoms, find the ratio of frequencies of these oscilla-
tions. 

(1) ?DrrommEvaigroni0D  
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Fig. 4.20. 	 Fig. 4.21. 

4.62. In a cylinder filled up with ideal gas and closed from both 
ends there is a piston of mass m, and cross-sectional area S (Fig. 4.21). 
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In equilibrium the piston divides the cylinder into two equal parts, 
each with volume Vo. The gas pressure is Po. The piston was slighlty 
displaced from the equilibrium position and released. Find its oscil-
lation frequency, assuming the processes in the gas to be adiabatic 
and the friction negligible. 

4.63. A small ball of mass m = 21 g suspended by an insulating 
thread at a height h = 12 cm from a large horizontal conducting 
plane performs small oscillations (Fig. 4.22). After a charge q had been 
imparted to the ball, the oscillation period changed ri = 2.0 times. 
Find q. 
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Fig. 4.22. 	 Fig. 4.23. 

4.64. A small magnetic needle performs small oscillations about an 
axis perpendicular to the magnetic induction vector. On changing 
the magnetic induction the needle's oscillation period decreased 

= 5.0 times. How much and in what way was the magnetic induc-
tion changed? The oscillation damping is assumed to be negligible. 

4.65. A loop (Fig. 4.23) is formed by two parallel conductors con-
nected by a solenoid with inductance L and a conducting rod of mass 
m which can freely (without friction) slide over the conductors. The 
conductors are located in a horizontal plane in a uniform vertical 
magnetic field with induction B. The distance between the conductors 
is equal to 1. At the moment t = 0 the rod is imparted an initial ve-
locity vo  directed to the right. Find the law of its motion x (t) if 
the electric resistance of the loop is negligible. 

4.66. A coil of inductance L connects the upper ends of two vertic-
al copper bars separated by a distance 1. A horizontal conducting con-
nector of mass m starts falling with zero initial velocity along the 
bars without losing contact with them. The whole system is located 
in a uniform magnetic field with induction B perpendicular to the 
plane of the bars. Find the law of motion x (t) of the connector. 

4.67. A point performs damped oscillations according to the law 
x = aoe-Oi sin cot. Find: 

(a) the oscillation amplitude and the velocity of the point at the 
moment t = 0; 

(b) the moments of time at which the point reaches the extreme 
positions. 

4.68. A body performs torsional oscillations according to the law 
Toe-St  cos cot. Find: 



(a) the angular velocity cp and the angular acceleration cp of the 
body at the moment t = 0; 

(b) the moments of time at which the angular velocity becomes 
maximum. 

4.69. A point performs damped oscillations with frequency co 
and damping coefficient 13 according to the law (4.1b). Find the ini-
tial amplitude a, and the initial phase a if at the moment t = 0 the 
displacement of the point and its velocity projection are equal to 

(a) x (0) = 0 and vx  (0) = x0; 
(b) x (0) = x, and vx  (0) = 0. 
4.70. A point performs damped oscillations with frequency co = 

= 25 s-1. Find the damping coefficient l if at the initial moment the 
velocity of the point is equal to zero and its displacement from the 
equilibrium position is 1 = 1.020 times less than the amplitude at 
that moment. 

4.71. A point performs damped oscillations with frequency co 
and damping coefficient 13. Find the velocity amplitude of the point 
as a function of time t if at the moment t = 0 

(a) its displacement amplitude is equal to a0; 
(b) the displacement of the point x (0) = 0 and its velocity pro- 

jection vx  (0) = 
4.72. There are two damped oscillations with the following periods 

T and damping coefficients 13: T1  = 0.10 ms, 131  = 100 s-1  and 
T 2  = 10 ms, 132  = 10 s-1. Which of them decays faster? 

4.73. A mathematical pendulum oscillates in a medium for which 
the logarithmic damping decrement is equal to 20  = 1.50. What 
will be the logarithmic damping decrement if the resistance of the 
medium increases n = 2.00 times? How many times has the resis-
tance of the medium to be increased for the oscillations to become 
impossible? 

4.74. A deadweight suspended from a weightless spring extends it 
by Ax = 9.8 cm. What will be the oscillation period of the dead-
Weight when it is pushed slightly in the vertical direction? The loga-
rithmic damping decrement is equal to ? = 3.1. 

4.75. Find the quality factor of the oscillator whose displacement 
amplitude decreases n = 2.0 times every n = 110 oscillations. 

4.76. A particle was displaced from the equilibrium position by 
a distance 1 = 1.0 cm and then left alone. What is the distance that 
the particle covers in the process of oscillations till the complete 
stop, if the logarithmic damping decrement is equal to X = 0.020? 

4.77. Find the quality factor of a mathematical pendulum 1 = 
= 50 cm long if during the time interval v = 5.2 min its total me-
chanical energy decreases ri = 4.0.104  times. 

4.78. A uniform disc of radius R = 13 cm can rotate about a hori-
zontal axis perpendicular to its plane and passing through the edge 
of the disc. Find the period of small oscillations of that disc if the 
logarithmic damping decrement is equal to = 1.00. 
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4.79. A thin uniform disc of mass m and radius R suspended by 
an elastic thread in the horizontal plane performs torsional oscil-
lations in a liquid. The moment of elastic forces emerging in the 
thread is equal to N = cccp, where a is a constant and IT is the angle 
of rotation from the equilibrium position. The resistance force acting 
on a unit area of the disc is equal to F1  = iv, where is a constant 
and v is the velocity of the given element of the disc relative to the 
liquid. Find the frequency of small oscillation. 

4.80. A disc A of radius R suspended by an elastic thread between 
two stationary planes (Fig. 4.24) performs torsional oscillations 
about its axis 00'. The moment of inertia of the disc relative to 
that axis is equal to I, the clearance between the disc and each of 
the planes is equal to h, with h << R. Find the viscosity of the gas 
surrounding the disc A if the oscillation period of the disc equals T 
and the logarithmic damping decrement, X. 

0' 

////2227Y4 V72227/222', 

A  
/1/14444/.444/7.4444//44 

0 
Fig. 4.24. 	 Fig. 4.25. 

4.81. A conductor in the shape of a square frame with side a sus-
pended by an elastic thread is located in a uniform horizontal magne-
tic field with induction B. In equilibrium the plane of the frame 
is parallel to the vector B (Fig. 4.25). Having been displaced from 
the equilibrium position, the frame performs small oscillations about 
a vertical axis passing through its centre. The moment of inertia of 
the frame relative to that axis is equal to I, its electric resistance is R. 
Neglecting the inductance of the frame, find the time interval after 
which the amplitude of the frame's deviation angle decreases e-fold. 

4.82. A bar of mass m = 0.50 kg lying on a horizontal plane with 
a friction coefficient k = 0.10 is attached to the wall by means of 
a horizontal non-deformed spring. The stiffness of the spring is 
equal to x = 2.45 N/cm, its mass is negligible. The bar was displaced so 
that the spring was stretched by x0  = 3.0 cm, and then released. Find: 

(a) the period of oscillation of the bar; 
(b) the total number of oscillations that the bar performs until it 

stops completely. 
4.83. A ball of mass m can perform undamped harmonic oscilla-

tions about the point x = 0 with natural frequency coo. At the mo-
ment t = 0, when the ball was in equilibrium, a force F,, = F0  cos cot 
coinciding with the x axis was applied to it. Find the law of forced 
oscillation x (t) for that ball. 
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4.84. A particle of mass m can perform undamped harmonic oscil-
lations due to an electric force with coefficient k. When the particle 
was in equilibrium, a permanent force F was applied to it for T sec-
onds. Find the oscillation amplitude that the particle acquired 
after the action of the force ceased. Draw the approximate plot 
x (t) of oscillations. Investigate possible cases. 

4.85. A ball of mass nz, when suspended by a spring stretches the 
latter by Al. Due to external vertical force varying according to a 
harmonic law with amplitude F0  the ball performs forced oscilla-
tions. The logarithmic damping decrement is equal to X. Neglecting 
the mass of the spring, find the angular frequency of the external 
force at which the displacement amplitude of the ball is maximum. 
What is the magnitude of that amplitude? 

4.86. The forced harmonic oscillations have equal displacement 
amplitudes at frequencies col  = 400 s -1  and cot  = 600 s-1  . 
Find the resonance frequency at which the displacement amplitude 
is maximum. 

4.87. The velocity amplitude of a particle is equal to half the maxi-
mum value at the frequencies col  and cot  of external harmonic force. 
Find: 

(a) the frequency corresponding to the velocity resonance; 
(b) the damping coefficient 13 and the damped oscillation frequency 

co of the particle. 
4.88. A certain resonance curve describes a mechanical oscillat-

ing system with logarithmic damping decrement ? = 1.60. For 
this curve find the ratio of the maximum displacement amplitude 
to the displacement amplitude at a very low frequency. 

4.89. Due to the external vertical force F x  = F0  cos cot a body 
suspended by a spring performs forced steady-state oscillations accord-
ing to the law x = a cos (cot — (T). Find the work performed by 
the force F during one oscillation period. 

4.90. A ball of mass m . = 50 g is suspended by a weightless spring 
with stiffness x = 20.0 N/m. Due to external vertical harmonic 
force with frequency co = 25.0 s-1  the ball performs steady-state 
oscillations with amplitude a = 1.3 cm. In this case the displace- 

ment of the ball lags in phase behind the external force by cp = 273 3t. 

Find: 
(a) the quality factor of the given oscillator; 
(b) the work performed by the external force during one oscillation 

period. 
4.91. A ball of mass m suspended by a weightless spring can per-

form vertical oscillations with damping coefficient 13. The natural 
oscillation frequency is equal to co 0. Due to the external vertical 
force varying as F = F , cos cot the ball performs steady-state har-
monic oscillations. Find: 

(a) the mean power (P), developed by the force F, averaged over 
one oscillation period; 
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(b) the frequency co of the force F at which (P) is maximum; what 
is (P),,„„ equal to? 

4.92. An external harmonic force F whose frequency can be varied, 
with amplitude maintained constant, acts in a vertical direction on 
a ball suspended by a weightless spring. The damping coefficient is 
times less than the natural oscillation frequency coo  of the ball. 
How much, in per cent, does the mean power (P) developed by the 
force F at the frequency of displacement resonance differ from the 
maximum mean power (P)max?  Averaging is performed over one 
oscillation period. 

4.93. A uniform horizontal disc fixed at its centre to an elastic 
vertical rod performs forced torsional oscillations due to the moment 
of forces N, = N,„ cos wt. The oscillations obey the law cp = 

cpn, cos (cot — cc). Find: 
(a) the work performed by friction forces acting on the disc during 

one oscillation period; 
(b) the quality factor of the given oscillator if the moment of 

inertia of the disc relative to the axis is equal to I. 

4.2. ELECTRIC  0 SCILLATIONS 

• Damped oscillation in a circuit 

where 
	 qme-6,t  cos (cot-1-a), 

04 —  132  , 	
(4-  -VW 	13=  2L 

1 	
(4.2a) 

• Logarithmic damping decrement and quality factor Q of a circuit are 
defined by Eqs. (4.1d). When damping is low: 

X = nil 1 7 --L  -C  , Q= 77 V —C-  • 	
(4.2b) 

1 . . r 

• Steady-state forced oscillation in a circuit with a voltage V = Vm  cos cot 
connected in series: 

	

/ = /7)., cos (cot — (p), 	 (4.2c) 
where 

Vm  

1/R2  + (coL — 
COC \ 

2  

Im R 
tan cp- 

(4.2d) 

wL — 
1 	 0 

coC 
R 	 In7MC 

Axis 
of current 

Fig. 4.26. 

The corresponding vector diagram for voltages is shown in Fig. 4.26. 
• Power generated in an ac circuit: 

P = VI cos p, 	 (4.2e) 
where V and I are the effective values of voltage and current: 

V = V„/ VT, 1= in,117 -1. 	 (4.2f) 



4.94. Due to a certain cause the free electrons in a plane copper 
plate shifted over a small distance x at right angles to its surface. 
As a result, a surface charge and a corresponding restoring force 
emerged, giving rise to so-called plasma oscillations. Find the 
angular frequency of these oscillations if the free electron concent-
ration in copper is n, = 0.85.1029  m-1. 

4.95. An oscillating circuit consisting of a capacitor with capac-
itance C and a coil of inductance L maintains free undamped oscil-
lations with voltage amplitude across the capacitor equal to Vm. 
For an arbitrary moment of time find the relation between the cur-
rent I in the circuit and the voltage V across the capacitor. Solve 
this problem using Ohm's law and then the energy conservation law. 

4.96. An oscillating circuit consists of a capacitor with capaci-
tance C, a coil of inductance L with negligible resistance, and a 
switch. With the switch disconnected, the capacitor was charged to 
a voltage Vff, and then at the moment t = 0 the switch was closed. 
Find: 

(a) the current I (t) in the circuit as a function of time; 
(b) the emf of self-inductance in the coil at the moments when the 

electric energy of the capacitor is equal to that of the current in the 
coil. 

4.97. In an oscillating circuit consisting of a parallel-plate capa-
citor and an inductance coil with negligible active resistance the 
oscillations with energy W are sustained. The capacitor plates were 
slowly drawn apart to increase the oscillation frequency i-fold. 
What work was done in the process? 

4.98. In an oscillating circuit shown in Fig. 4.27 the coil inductance 
is equal to L = 2.5 mH and the capacitor have capacitances C1  

2.0 p,F and C2  = 3.0 11,F. The capacitors were charged to a voltage 
V = 180 V, and then the switch Sw was closed. Find: 

(a) the natural oscillation frequency; 
(b) the peak value of the current flowing through the coil. 

L 

C —  C — 
2 

Sw 

Fig. 4.27. 	 Fig. 4.28. 

4.99. An electric circuit shown in Fig. 4.28 has a negligibly small 
active resistance. The left-hand capacitor was charged to a voltage V0  
and then at the moment t = 0 the switch Sw was closed. Find the 
time dependence of the voltages in left and right capacitors. 

4.100. An oscillating circuit consists of an inductance coil L and 
a capacitor with capacitance C. The resistance of the coil and the lead 
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R 

Fig. 4.29. 

wires is negligible. The coil is placed in a permanent magnetic field 
so that the total flux passing through all the turns of the coil is equal 
to cD. At the moment t = 0 the magnetic field was switched off. 
Assuming the switching off time to be negligible compared to the 
natural oscillation period of the circuit, find the circuit current as 
a function of time t. 

4.101. The free damped oscillations are maintained in a circuit, 
such that the voltage across the capacitor varies as V = Vif,e-Ot  cos cot. 
Find the moments of time when the modulus of the voltage across 
the capacitor reaches 

(a) peak values; 
(b) maximum (extremum) values. 
4.102. A certain oscillating circuit consists of a capacitor with 

capacitance C, a coil with inductance L and active resistance R, 
and a switch. When the switch was disconnected, the capacitor was 
charged; then the switch was closed and oscillations set in. Find the 
ratio of the voltage across the capacitor to its peak value at the 
moment immediately after closing the switch. 

4.103. A circuit with capacitance C and inductance L generates 
free damped oscillations with current varying with time as I = 
= /me-0 sin wt. Find the voltage across the capacitor as a function 
of time, and in particular, at the moment t = 0. 

4.104. An oscillating circuit consists of a capacitor with capac-
itance C = 4.0 la and a coil with inductance L = 2.0 mH and 
active resistance R = 10 Q. Find the ratio of the energy of the coil's 
magnetic field to that of the capacitor's electric field at the moment 
when the current has the maximum value. 

4.105. An oscillating circuit consists of two coils connected in 
series whose inductances are L1  and L2, active resistances are R1  
and R2, and mutual inductance is negligible. These coils are to be 
replaced by one, keeping the frequency and the quality factor of 
the circuit constant. Find the inductance and the active resistance of 
such a coil. 

4.106. How soon does the current amplitude in an oscillating 
circuit with quality factor Q = 5000 decrease it = 2.0 times if the 
oscillation frequency is v = 2.2 MHz? 

4.107. An oscillating circuit consists of capacitance C = 10 tiF, 
inductance L = 25 mH, and active resistance R 1.0 Q. How many 
oscillation periods does it take for the current 
amplitude to decrease e-fold? 

4.108. How much (in per cent) does the free 
oscillation frequency co of a circuit with qua-
lity factor Q = 5.0 differ from the natural 
oscillation frequency coo  of that circuit? 

4.109. In a circuit shown in Fig. 4.29 the 
battery emf is equal to g = 2.0 V, its inter-
nal resistance is r = 9.0 Q, the capacitance of the capacitor is 
C = 10 [cF, the coil inductance is L = 100 mH, and the resistance 
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Fig. 4.31. 

is R = 1.0 Q. At a certain moment the switch Sw was disconnected. 
Find the energy of oscillations in the circuit 

(a) immediately after the switch was disconnected; 
(b) t = 0.30 s after the switch was disconnected. 
4.110. Damped oscillations are induced in a circuit whose quality 

factor is Q = 50 and natural oscillation frequency is vo  = 5.5 kHz. 
How soon will the energy stored in the circuit decrease ri = 2.0 
times? 

4.111. An oscillating circuit incorporates a leaking capacitor. 
Its capacitance is equal to C and active resistance to R. The coil 
inductance is L. The resistance of the coil and the wires is negligible. 
Find: 

(a) the damped oscillation frequency of such a circuit; 
(b) its quality factor. 
4.112. Find the quality factor of a circuit with capacitance C = 

= 2.0 p,F and inductance L = 5.0 mH if the maintenance of undamp-
ed oscillations in the circuit with the voltage amplitude across the 
capacitor being equal to Vm  = 1.0 V requires a power (P) 

0.10 mW. The damping of oscillations is sufficiently low. 
4.113. What mean power should be fed to an oscillating circuit 

with active resistance R = 0.45 52 to maintain undamped harmonic 
oscillations with current amplitude /, = 30 mA? 

4.114. An oscillating circuit consists of a capacitor with capac-
itance C = 1.2 nF and a coil with inductance L = 6.0 iLtli and 
active resistance R = 0.50 SI. What mean power should be fed to 
the circuit to maintain undamped harmonic oscillations with vol-
tage amplitude across the capacitor being equal to Vm  = 10 V? 

4.115. Find the damped oscillation frequency of the circuit shown 
in Fig. 4.30. The capacitance C, inductance L, and active resistance R 
are supposed to be known. Find how must C, L, and R be interrelat-
ed to make oscillations possible. 

~
tRC  

Fig. 4.30. 

4.116. There are two oscillating circuits (Fig. 4.31) with capaci-
tors of equal capacitances. How must inductances and active resis-
tances of the coils be interrelated for the frequencies and damping 
of free oscillations in both circuits to be equal? The mutual induc-
tance of coils in the left circuit is negligible. 

4.117. A circuit consists of a capacitor with capacitance C and 
a coil of inductance L connected in series, as well as a switch and a 
resistance equal to the critical value for this circuit. With the switch 
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disconnected, the capacitor was charged to a voltage Vo, and at the 
moment t = 0 the switch was closed. Find the current I in the circuit 
as a function of time t. What is /max  equal to? 

4.118. A coil with active resistance R and inductance L was con-
nected at the moment t = 0 to a source of voltage V = Vm  cos cot. 
Find the current in the coil as a function of time t. 

4.119. A circuit consisting of a capacitor with capacitance C and 
a resistance R connected in series was connected at the moment 
t = 0 to a source of ac voltage V = V„,, cos cot. Find the current in 
the circuit as a function of time t. 

4.120. A long one-layer solenoid tightly wound of wire with re-
sistivity p has n turns per unit length. The thickness of the wire 
insulation is negligible. The cross-sectional radius of the solenoid 
is equal to a. Find the phase difference between current and alternat-
ing voltage fed to the solenoid with frequency v. 

4.121. A circuit consisting of a capacitor and an active resistance 
R = 110 Q connected in series is fed an alternating voltage with 
amplitude Vn, = 110 V. In this case the amplitude of steady-state 
current is equal to /7„ = 0.50 A. Find the phase difference between 
the current and the voltage fed. 

4.122. Fig. 4.32 illustrates the simplest ripple filter. A voltage 
V = V 0  (1. + cos cot) is fed to the left input. Find: 

(a) the output voltage V' (t); 
(b) the magnitude of the product RC at which the output amplitude 

of alternating voltage component is i = 7.0 times less than the 
direct voltage component, if co = 314 s-1. 

V 	cT  0 	 0 	 (a) 	 (b) 
Fig. 4.32. 	 Fig. 4.33. 

4.123. Draw the approximate voltage vector diagrams in the 
electric circuits shown in Fig. 4.33 a, b. The external voltage V 
is assumed to be alternating harmonically with frequency co. 

4.124. A series circuit consisting of a capacitor with capacitance 
C = 22 p, F and a coil with active resistance R = 20 Q and induc-
tance L = 0.35 H is connected to a source of alternating voltage 
with amplitude V,T, = 180 V and frequency co = 314 s-1. Find: 

(a) the current amplitude in the circuit; 
(b) the phase difference between the current and the external vol-

tage; 
(c) the amplitudes of voltage across the capacitor and the coil. 
4.125. A series circuit consisting of a capacitor with capacitance C, 

a resistance R, and a coil with inductance L and negligible active 

L,R 
	

L, R 

li)<Wo 
Vac 	 Vac 
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resistance is connected to an oscillator whose frequency can be vari-
ed without changing the voltage amplitude. Find the frequency 
at which the voltage amplitude is maximum 

(a) across the capacitor; 
(b) across the coil. 
4.126. An alternating voltage with frequency co = 314 s-1  

and amplitude V„, = 180 V is fed to a series circuit consisting of 
a capacitor and a coil with active resistance R = 40 Q and induc-
tance L = 0.36 H. At what value of the capacitor's capacitance will 
the voltage amplitude across the coil be maximum? What is this 
amplitude equal to? What is the corresponding voltage amplitude 
across the condenser? 

4.127. A capacitor with capacitance C whose interelectrode space 
is filled up with poorly conducting medium with active resistance R 
is connected to a source of alternating voltage V = Vm  cos cot. 
Find the time dependence of the steady-state current flowing in lead 
wires. The resistance of the wires is to be neglected. 

4.128. An oscillating circuit consists of a capacitor of capacitance C 
and a solenoid with inductance L1. The solenoid is inductively con-
nected with a short-circuited coil having an inductance L2  and a negli-
gible active resistance. Their mutual inductance coefficient is equal 
to L12. Find the natural frequency of the given oscillating cir-
cuit. 

4.129. Find the quality factor of an oscillating circuit connected 
in series to a source of alternating emf if at resonance the voltage across 
the capacitor is n times that of the source. 

4.130. An oscillating circuit consisting of a coil and a capacitor 
connected in series is fed an alternating emf, with coil inductance 
being chosen to provide the maximum current in the circuit. Find the 
quality factor of the system, provided an n-fold increase of induc-
tance results in an ii-fold decrease of the current in the circuit. 

4.131. A series circuit consisting of a capacitor and a coil with 
active resistance is connected to a source of harmonic voltage whose 
frequency can be varied, keeping the voltage amplitude constant. 
At frequencies col  and co2  the current amplitudes are n times less 
than the resonance amplitude. Find: 

(a) the resonance frequency; 
(b) the quality factor of the circuit. 
4.132. Demonstrate that at low damping the quality factor Q 

of a circuit maintaining forced oscillations is approximately equal 
to coo/A co, where Coo  is the natural oscillation frequency, Aco is the 
width of the resonance curve I (co) at the "height" which is 1/ 2 times 
less than the resonance current amplitude. 

4.133. A circuit consisting of a capacitor and a coil connected in 
series is fed two alternating voltages of equal amplitudes but diffe-
rent frequencies. The frequency of one voltage is equal to the natural 
oscillation frequency (con) of the circuit, the frequency of the other 
voltage is ri times higher. Find the ratio of the current amplitudes 
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(/ 0//) generated by the two voltages if the quality factor of the system 
is equal to Q. Calculate this ratio for Q = 10 and 100, if 71 = 1.10. 

4.134. It takes to  hours for a direct current /0  to charge a storage 
battery. How long will it take to charge such a battery from the 
mains using a half-wave rectifier, if the effective current value is 
also equal to /0? 

4.135. Find the effective value of current if its mean value is /0  
and its time dependence is 

(a) shown in Fig. 4.34; 
(b) I — I sin cot I. 

   

   

  

t 

Fig. 4.34. 

4.136. A solenoid with inductance L = 7 mH and active resistance 
R = 44 Q is first connected to a source of direct voltage Vo  and then 
to a source of sinusoidal voltage with effective value V = V0. At 
what frequency of the oscillator will the power consumed by the 
solenoid be Ti = 5.0 times less than in the former case? 

4.137. A coil with inductive resistance XL  = 30 52 and impedance 
Z = 50 Q is connected to the mains with effective voltage value 
V = 100 V. Find the phase difference between the current and the 
voltage, as well as the heat power generated in the coil. 

4.138. A coil with inductance L =- 0.70 H and active resistance 
r = 20 Q is connected in series with an inductance-free resistance R. 
An alternating voltage with effective value V = 220 V and frequency 
w = 314 s-1  is applied across the terminals of this circuit. At what 
value of the resistance R will the maximum heat power be generated 
in the circuit? What is it equal to? 

4.139. A circuit consisting of a capacitor and a coil in series is 
connected to the mains. Varying the capacitance of the capacitor, 
the heat power generated in the coil was increased n = 1.7 times. 
How much (in per cent) was the value of cos 11) changed in the process? 

4.140. A source of sinusoidal emf with constant voltage is con-
nected in series with an oscillating circuit with quality factor Q 
= 100. At a certain frequency of the external voltage the heat power 
generated in the circuit reaches the maximum value. How much 
(in per cent) should this frequency be shifted to decrease the power 
generated n = 2.0 times? 

4.141. A series circuit consisting of an inductance-free resistance 
R = 0.16 k52 and a coil with active resistance is connected to the 
mains with effective voltage V = 220 V, Find the heat power gene-
rated in the coil if the effective voltage values across the resistance R 
and the coil are equal to V1  = 80 V and V2  = 180 V respectively. 
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4.142. A coil and an inductance-free resistance R = 25 Q are 
connected in parallel to the ac mains. Find the heat power generated 
in the coil provided a current I = 0.90 A is drawn from the mains. 
The coil and the resistance R carry currents I, = 0.50 A and /2  = 
= 0.60 A respectively. 

4.143. An alternating current of frequency co = 314 s- 1  is fed 
to a circuit consisting of a capacitor of capacitance C = 73 p,F and 
an active resistance R = 100 Q connected in parallel. Find the impe-
dance of the circuit. 

4.144. Draw the approximate vector diagrams of currents in the 
circuits shown in Fig. 4.35. The voltage applied across the points A 
and B is assumed to be sinusoidal; the parameters of each circuit are 
so chosen that the total current /0  lags in phase behind the external 
voltage by an angle cp. 

(a) 
	

(6) 	 (0) 
Fig. 4.35. 

4.145. A capacitor with capacitance C = 1.0 p,F and a coil with 
active resistance R = 0.10 Q and inductance L = 1.0 mH are con-
nected in parallel to a source of sinusoidal voltage V = 31 V. Find: 

(a) the frequency co at which the resonance sets in; 
(b) the effective value of the fed current in resonance, as well as 

the corresponding currents flowing through the coil and through the 
capacitor. 

4.146. A capacitor with capacitance C and a coil with active resis-
tance R and inductance L are connected in parallel to a source of 
sinusoidal voltage of frequency co. Find the phase difference between 
the current fed to the circuit and the source voltage. 

4.147. A circuit consists of a capacitor with capacitance C and 
a coil with active resistance R and inductance L connected in paral-
lel. Find the impedance of the circuit at frequency co of alternating 
voltage. 

4.148. A ring of thin wire with active resistance R and inductance L 
rotates with constant angular velocity co in the external uniform 
magnetic field perpendicular to the rotation axis. In the process, the 
flux of magnetic induction of external field across the ring varies with 
time as 413 = 00  cos cot. Demonstrate that 

(a) the inductive current in the ring varies with time as I = 
= In, sin (cot — cp), where Im  = col:13011CM --F- co2L2  with tan cp = 

coL/R; 
(b) the mean mechanical power developed by external forces to 

maintain rotation is defined by the formula P = i120)2cD2Ri (R2 + 
co2L2).  
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4.149. A wooden core (Fig. 4.36) supports two coils: coil 1 with 
inductance L1  and short-circuited coil 2 with active resistance R 
and inductance L2. The mutual inductance of the coils depends on 

the distance x between them according to the law L12 (x). Find the 
mean (averaged over time) value of the interaction force between 
the coils when coil 1 carries an alternating current I, = /0  cos wt. 

4.3. ELASTIC WAVES. ACOUSTICS 

• Equations of plane and spherical waves: 

ao =a cos (o)t— kx), 	t=-- —r cos (cot—kr). (4.3a) 

In the case of a homogeneous absorbing medium the factors e-yx and e-vr res-
pectively appear in the formulas, where y is the wave damping coefficient. 

• Wave equation: 
,32 

±—+—=--- 	 (4.3b (1) ,2 	ay 2 	az2 	v2 at2 • 

• Phase velocity of longitudinal waves in an elastic medium (v11 ) and trans-
verse waves in a string (v1): 

	

ull = -"VP' v1 = 	T/P1' 	 (4.3c) 

where E is Young's modulus, p is the density of the medium, T is the tension of 
the string, Pi  is its linear density. 

• Volume density of energy of an elastic wave: 

	

w = peep sine (0t — kx), (w) = 1/2pa2(02. 	 (4.3d) 

• Energy flow density, or the Umov vector for a travelling wave: 

j = wv, (j)= ii2pa2(02v.  

• Standing wave equation: 

= a cos kx•cos cot. 	 (4.3f) 

• Acoustical Doppler effect: 

v+ 
vo 	 • 

(4.3g) 
v —v

vob  
s  

• Loudness level (in bels): 

L = log (///o). 	 (4.3h) 

• Relation between the intensity I of a sound wave and the pressure oscil-
lation amplitude (4p)m: 

(4.3e) 

I = (4p)m/2pv. 	 (4.3i) 



4.150. How long will it take sound waves to travel the distance 1 
between the points A and B if the air temperature between them 
varies linearly from Ti  to T2? The velocity of sound propagation in 
air is equal to v = a T, where a is a constant. 

4.151. A plane harmonic wave with frequency o propagates at a 
velocity v in a direction forming angles a, with the x, y, z axes. 
Find the phase difference between the oscillations at the points of 
medium with coordinates x1, yi, z1  and x2, y2, z2. 

4.152. A plane wave of frequency o propagates so that a certain 
phase of oscillation moves along the x, y, z axes with velocities v1, 
v2, v3  respectively. Find the wave vector k, assuming the unit vectors 
ex, ey, e2  of the coordinate axes to be assigned. 

4.153. A plane elastic wave 	= a cos (cot — kx) propagates in 
a medium K. Find the equation of this wave in a reference frame K' 
moving in the positive direction of the x axis with a constant ve-
locity V relative to the medium K. Investigate the expression ob-
tained. 

4.154. Demonstrate that any differentiable function f (t 	ax), 
where a is a constant, provides a solution of wave equation. What is 
the physical meaning of the constant a? 

4.155. The equation of a travelling plane sound wave has the form 
= 60 cos (1800t — 5.3x), where t is expressed in micrometres, t 

in seconds, and x in metres. Find: 
(a) the ratio of the displacement amplitude, with which the par-

ticles of medium oscillate, to the wavelength; 
(b) the velocity oscillation amplitude of particles of the medium 

and its ratio to the wave propagation velocity; 
(c) the oscillation amplitude of relative deformation of the medium 

and its relation to the velocity oscillation amplitude of particles of 
the medium. 

4.156. A plane wave = a cos (cot — kx) propagates in a homo-
geneous elastic medium. For the moment t = 0 draw 

(a) the plots of 	avat, and OVOx vs x; 
(b) the velocity direction of the particles of the medium at the 

points where = 0, for the cases of longitudinal and transverse waves; 
(c) the approximate plot of density distribution p (x) of the medium 

for the case of longitudinal waves. 
4.157. A plane elastic wave = ae -Yx cos (cot — kx), where a, 7, 
and k are constants, propagates in a homogeneous medium. Find 

the phase difference between the oscillations at the points where the 
particles' displacement amplitudes differ by 11 = 1.0%, if Y  =- 
= 0.42 m -1  and the wavelength is X, = 50 cm. 

4.158. Find the radius vector defining the position of a point source 
of spherical waves if that source is known to be located on the straight 
line between the points with radius vectors r1  and r2  at which the 
oscillation amplitudes of particles of the medium are equal to al  
and a2. The damping of the wave is negligible, the medium is homo-
geneous. 
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4.159. A point isotropic source generates sound oscillations with 
frequency v = 1.45 kHz. At a distance r, = 5.0 m from the source 
the displacement amplitude of particles of the medium is equal to 
a, = 50 pm, and at the point A located at a distance r = 10.0 m 
from the source the displacement amplitude is = 3.0 times less 
than a0. Find: 

(a) the damping coefficient Y  of the wave; 
(b) the velocity oscillation amplitude of particles of the medium 

at the point A. 
4.160. Two plane waves propagate in a homogeneous elastic me-

dium, one along the x axis and the other along the y axis: 1  = 
= a cos (cot — kx), 2 = a cos (wt ky). Find the wave motion 
pattern of particles in the plane xy if both waves 

(a) are transverse and their oscillation directions coincide; 
(b) are longitudinal. 
4.161. A plane undamped harmonic wave propagates in a medium. 

Find the mean space density of the total oscillation energy (w), 
if at any point of the medium the space density of energy becomes 
equal to w, one-sixth of an oscillation period after passing the dis-
placement maximum. 

4.162. A point isotropic sound source is located on the perpendicu-
lar to the plane of a ring drawn through the centre 0 of the ring. 
The distance between the point 0 and the source is 1 = 1.00 m, the 
radius of the ring is R = 0.50 m. Find the mean energy flow across 
the area enclosed by the ring if at the point 0 the intensity of sound 
is equal to / 0  = 30 µW/m2. The damping of the waves is negligible. 

4.163. A point isotropic source with sonic power P = 0.10 W is 
located at the centre of a round hollow cylinder with radius R = 
= 1.0 m and height h = 2.0 m. Assuming the sound to be completely 
absorbed by the walls of the cylinder, find the mean energy flow 
reaching the lateral surface of the cylinder. 

4.164. The equation of a plane standing wave in a homogeneous 
elastic medium has the form = a cos kx• cos wt. Plot: 

(a) and OVax as functions of x at the moments t = 0 and t = T/2, 
where T is the oscillation period; 

(b) the distribution of density p (x) of the medium at the moments 
t = 0 and t = T/2 in the case of longitudinal oscillations; 

(c) the velocity distribution of particles of the medium at the mo-
ment t = T/4; indicate the directions of velocities at the antinodes, 
both for longitudinal and transverse oscillations. 

4.165. A longitudinal standing wave = a cos kx- cos wt is main-
tained in a homogeneous medium of density p. Find the expressions 
for the space density of 

(a) potential energy wp  (x, t); 
(b) kinetic energy wk  (x, t). 

Plot the space density distribution of the total energy w in the space 
between the displacement nodes at the moments t = 0 and t = T14, 
where T is the oscillation period. 
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4.166. A string 120 cm in length sustains a standing wave, with 
the points of the string at which the displacement amplitude is equal 
to 3.5 mm being separated by 15.0 cm. Find the maximum displace-
ment amplitude. To which overtone do these oscillations correspond? 

4.167. Find the ratio of the fundamental tone frequencies of two 
identical strings after one of them was stretched by i = 2.0% and 
the other, by 12  = 4.0%. The tension is assumed to 'be proportional 
to the elongation. 

4.168. Determine in what way and how many times will the fun-
damental tone frequency of a stretched wire change if its length is 
shortened by 35% and the tension increased by 70%. 

4.169. To determine the sound propagation velocity in air by 
acoustic resonance technique one can use a pipe with a piston and 
a sonic membrane closing one of its ends. Find the velocity of sound 
if the distance between the adjacent positions of the piston at which 
resonance is observed at a frequency v = 2000 Hz is equal to 1 = 
= 8.5 cm. 

4.170. Find the number of possible natural oscillations of air col-
umn in a pipe whose frequencies lie below v, = 1250 Hz. The length 
of the pipe is 1 = 85 cm. The velocity of sound is v = 340 m/s. 
Consider the two cases: 

(a) the pipe is closed from one end; 
(b) the pipe is opened from both ends. 

The open ends of the pipe are assumed to be the antinodes of dis-
placement. 

4.171. A copper rod of length 1 = 50 cm is clamped at its midpoint. 
Find the number of natural longitudinal oscillations of the rod in 
the frequency range from 20 to 50 kHz. What are those frequencies 
equal to? 

4.172. A string of mass rn, is fixed at both ends. The fundamental 
tone oscillations are excited with circular frequency co and maximum 
displacement amplitude amax. Find: 

(a) the maximum kinetic energy of the string; 
(b) the mean kinetic energy of the string averaged over one oscil-

lation period. 
4.173. A standing wave = a sin kx•cos cot is maintained in a 

homogeneous rod with cross-sectional area S and density p. Find the 
total mechanical energy confined between the sections corresponding 
to the adjacent displacement nodes. 

4.174. A source of sonic oscillations with frequency vo  = 1000 Hz 
moves at right angles to the wall with a velocity u = 0.17 m/s. 
Two stationary receivers R1  and R 2  are located on a straight line, 
coinciding with the trajectory of the source, in the following succes-
sion: R1-source-R 2-wall. Which receiver registers the beatings and 
what is the beat frequency? The velocity of sound is equal to v 
= 340 m/s. 

4.175. A stationary observer receives sonic oscillations from two 
tuning forks one of which approaches, and the other recedes with 
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the same velocity. As this takes place, the observer hears the beatings 
with frequency v = 2.0 Hz. Find the velocity of each tuning fork 
if -their oscillation frequency is vo  = 680 Hz and the velocity of sound 
in air is v = 340 m/s. 

4.176. A receiver and a source of sonic oscillations of frequency 
vo  = 2000 Hz are located on the x axis. The source swings harmo-
nically along that axis with a circular frequency e.) and an amplitude 
a = 50 cm. At what value of co will the frequency bandwidth regis-
tered by the stationary receiver be equal to Av = 200 Hz? The velo-
city of sound is equal to v = 340 m/s. 

4.177. A source of sonic oscillations with frequency vo  = 1700 Hz 
and a receiver are located at the same point. At the moment t = 0 
the source starts receding from the receiver with constant accelera-
tion w = 10.0 m/s2. Assuming the velocity of sound to be equal to 
v = 340 m/s, find the oscillation frequency registered by the station-
ary receiver t = 10.0 s after the start of motion. 

4.178. A source of sound with natural frequency vo  = 1.8 kHz 
moves uniformly along a straight line separated from a stationary 
observer by a distance 1 = 250 m. The velocity of the source is equal 
to 11 = 0.80 fraction of the velocity of sound. Find: 

(a) the frequency of sound received by the observer at the moment 
when the source gets closest to him; 

(b) the distance between the source and the observer at the moment 
when the observer receives a frequency v = vo. 

4.179. A stationary source sends forth monochromatic sound. 
A wall approaches it with velocity u =---- 33 cm/s. The propagation 
velocity of sound in the medium is v = 330 m/s. In what way and 
how much, in per cent, does the wavelength of sound change on re-
flection from the wall? 

4.180. A source of sonic oscillations with frequency vo  = 1700 Hz 
and a receiver are located on the same normal to a wall. Both the 
source and the receiver are stationary, and the wall recedes from the 
source with velocity u = 6.0 cm/s. Find the beat frequency registered 
by the receiver. The velocity of sound is equal to'. v = 340 m/s. 

4.181. Find the damping coefficient y of a sound wave if at dis-
tances r1  = 10 m and r2  = 20 m from a point isotropic source of sound 
the sound wave intensity values differ by a factor 11 = 4.5. 

4.182. A plane sound wave propagates along the x axis. The damp-
ing coefficient of the wave is y = 0.0230 m-1. At the point x = 0 
the loudness level is L =-- 60 dB. Find: 

(a) the loudness level at a point with coordinate x = 50 m; 
( b) the coordinate x of the point at which the sound is not heard 

any more. 
4.183. At a distance ro  = 20.0 m from a point isotropic source 

of sound the loudness level Lo  = 30.0 dB. Neglecting the damping 
of the sound wave, find: 

(a) the loudness level at a distance r = 10.0 m from the source; 
(b) the distance from the source at which the sound is not heard. 
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4.184. An observer A located at a distance rA —5,0 m from a 
ringing tuning fork notes the sound to fade away T = 19 s later 
than an observer B who is located at a distance r = 50 m from 
the tuning fork. Find the damping coefficient 13 of `Oscillations of 
the tuning fork. The sound velocity v = 340 m/s. 

4.185. A plane longitudinal harmonic wave propagates in a me-
dium with density p. The velocity of the wave propagation is v. 
Assuming that the density variations of the medium, induced by the 
propagating wave, Ap < p, demonstrate that 

(a) the pressure increment in the medium Ap = —pv2  (n/ax), 
where aVax is the relative deformation; 

(b) the wave intensity is defined by Eq. (4.3i). 
4.186. A ball of radius R = 50 cm is located in the way of pro-

pagation of a plane sound wave. The sonic wavelength is = 20 cm, 
the frequency is v = 1700 Hz, the pressure oscillation amplitude 
in air is (Ap)„, = 3.5 Pa. Find the mean energy flow, averaged over 
an oscillation period, reaching the surface of the ball. 

4.187. A point A is located at a distance r = 1.5 m from a point 
isotropic source of sound of frequency v = 600 Hz. The sonic power 
of the source is P = 0.80 W. Neglecting the damping of the waves 
and assuming the velocity of sound in air to be equal to v = 340 m/s, 
find at the point A: 

(a) the pressure oscillation amplitude (Ap),„, and its ratio to the 
air pressure; 

(b) the oscillation amplitude of particles of the medium; compare 
it with the wavelength of sound. 

4.188. At a distance r = 100 m from a point isotropic source of 
sound of frequency 200 Hz the loudness level is equal to L = 50 dB. 
The audibility threshold at this frequency corresponds to the sound 
intensity / 0  = 0.10 nW/m2. The damping coefficient of the sound 
wave is Y = 5.0.10-4  m-1. Find the sonic power of the source. 

4.4. ELECTROMAGNETIC WAVES, RADIATION 

• Phase velocity of an electromagnetic wave: 

v = c/1/eµ, where c =  147-801-Lo. 	 (4.4a) 

• In a travelling electromagnetic wave: 

theeo  = 	 (4.4b) 
• Space density of the energy of an electromagnetic field: 

w=  + 
ED BH 

(4.4c) 
2 2 • 

• Flow density of electromagnetic energy, the Poynting vector: 

S = [EH]. 	 (4.4d) 

• Energy flow density of electric dipole radiation in a far field zone: 

r S •-•-• - sin
2  
- 
, 
v, 	 (4.4e) 

1 
2  
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where r is the distance from the dipole, 0 is the angle between the radius vector 
r and the axis of the dipole. 

• Radiation power of an electric dipole with moment p (t) and of a charge 
q, moving with acceleration w: 

1 	21 2 	1 	2q2w2  P = 4neo 3c3  ' P = 4ns0 3c3  ' 	 (4.4f) 

4.189. An electromagnetic wave of frequency v = 3.0 MHz passes 
from vacuum into a non-magnetic medium with permittivity a 
= 4.0. Find the increment of its wavelength. 

4.190. A plane electromagnetic wave falls at right angles to the 
surface of a plane-parallel plate of thickness 1. The plate is made 
of non-magnetic substance whose permittivity decreases exponen-
tially from a value al  at the front surface down to a value a, at the 
rear one. How long does it take a given wave phase to travel across 
this plate? 

4.191. A plane electromagnetic wave of frequency v = 10 MHz 
propagates in a poorly conducting medium with conductivity a = 
= 10 mS/m and permittivity a = 9. Find the ratio of amplitudes 
of conduction and displacement current densities. 

4.192. A plane electromagnetic wave E = Em  cos (cot — kr) 
propagates in vacuum. Assuming the vectors Em  and k to be known, 
find the vector H as a function of time t at the point with radius 
vector r = 0. 

4.193. A plane electromagnetic wave E = Em  cos (cot — kr), 
where Em, = Eme y, k = kex, ex, e u  are the unit vectors of the x, 
y axes, propagates in vacuum. Find the vector H at the point with 
radius vector r = xex  at the moment (a) t = 0, (b) t = to. Consider 
the case when Em  = 160 V/m, k = 0.51 m --1, x = 7.7 m, and to  = 
= 33 ns. 

4.194. A plane electromagnetic wave E = En, cos (cot — kx) 
propagating in vacuum induces the emf gin, in a square frame with 
side 1. The orientation of the frame is shown in Fig. 4.37. Find 
the amplitude va ue f ind , if Ern = 0.50 mV/m, the frequency v =5.0 MHz 
and 1 = 50 cm. 

g 

z 
E 

Fig. 4.37. 

E 

4.195. Proceeding from Maxwell's equations show that in the 
case of a plane electromagnetic wave (Fig. 4.38) propagating in 



vacuum the following relations hold: 
aE 	OB OB 	aE2 
at 	ax 	at 	ar 

4.196. Find the mean Poynting vector (8) of a plane electromag-
netic wave E = Em  cos (cot — kr) if the wave propagates in va-
cuum. 

4.197.. A plane harmonic electromagnetic wave with plane polari-
zation propagates in vacuum. The electric component of the wave 
has a strength amplitude En, = 50 mV/m, the frequency is v 

100 MHz. Find: 
(a) the efficient value of the displacement current density; 
(b) the mean energy flow density averaged over an oscillation 

period. 
4.198. A ball of radius /I = 50 cm is located in a non-magnetic 

medium with permittivity a = 4.0. In that medium a plane electro-
magnetic wave propagates,the strength amplitude of whose electric 
component is equal to Eni, = 200 Vim. What amount of energy 
reaches the ball during a time interval t = 1.0 min? 

4.199. A standing electromagnetic wave with electric component 
E = Em  cos kx•cos cot is sustained along the x axis in vacuum. Find 
the magnetic component of the wave B (x, t). Draw the approximate 
distribution pattern of the wave's electric and magnetic components 
(E and B) at the moments t = 0 and t = T/4, where T is the oscilla-
tion period. 

4.200. A standing electromagnetic wave E = Em  cos kx• cos cot 
is sustained along the x axis in vacuum. Find the projection of the 
Poynting vector on the x axis (x, t) and the mean value of that 
projection averaged over an oscillation period. 

4.201. A parallel-plate air capacitor whose electrodes are shaped 
as discs of radius R = 6.0 cm is connected to a source of an alternat-
ing sinusoidal voltage with frequency co = 1000 s-1. Find the 
ratio of peak values of magnetic and electric energies within the 
capacitor. 

4.202. An alternating sinusoidal current of frequency co 
1000 s-1  flows in the winding of a straight solenoid whose cross-

sectional radius is equal to R = 6.0 cm. Find the ratio of peak 
values of electric and magnetic energies within the solenoid. 

4.203. A parallel-plate capacity whose electrodes are shaped as 
round discs is charged slowly. Demonstrate that the flux of the 
Poynting vector across the capacitor's lateral surface is equal to the 
increment of the capacitor's energy per unit time. The dissipation 
of field at the edge is to be neglected in calculations. 

4.204. A current I flows along a straight conductor with round 
cross-section. Find the flux of the Poynting vector across the lateral 
surface of the conductor's segment with resistance R. 

4.205. Non-relativistic protons accelerated by a potential diffe-
rence U form a round beam with current I. Find the magnitude and 
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direction of the Poynting vector outside the beam at a distance r 
from its axis. 

4.206. A current flowing in the winding of a long straight solenoid 
is increased at a sufficiently slow rate. Demonstrate that the rate 
at which the energy of the magnetic field in the solenoid increases 
is equal to the flux of the Poynting vector across the lateral surface 
of the solenoid. 

4.207. Fig. 4.39 illustrates a segment of a double line carrying 
direct current whose direction is indicated by the arrows. Taking 
into account that the potential cp2  > (pl., and making use of the 
Poynting vector, establish on which side (left or right) the source 
of the current is located. 

  

tPt 

1P2 

  

  

Fig. 4.39. 

4.208. The energy is transferred from a source of constant voltage 
V to a consumer by means of a long straight coaxial cable with 
negligible active resistance. The consumed current is I. Find the 
energy flux across the cross-section of the cable. The conductive 
sheath is supposed to be thin. 

4.209. A source of ac voltage V = V o  cos cot delivers energy to 
a consumer by means of a long straight coaxial cable with negligible 
active resistance. The current in the circuit varies as I 

Io  cos cat — p). Find the time-averaged energy flux through the 
cross-section of the cable. The sheath is thin. 

4.210. Demonstrate that at the boundary between two media the 
normal components of the Poynting vector are continuous, i.e. 

=..- S 27, • 

514.211. Demonstrate that a closed system of charged non-relati-
vistic particles with identical specific charges emits no dipole ra-
diation. 

4.212. Find the mean radiation power of an electron performing 
harmonic oscillations with amplitude a = 0.10 nm and frequen cy 

= 6.5.1014 
4.213. Find the radiation power developed by a non-relativistic 

particle with charge e and mass m, moving along a circular orbit 
of radius R in the field of a stationary point charge q. 

4.214. A particle with charge e and mass m. flies with non-relati-
vistic velocity v at a distance b past a stationary particle with 
charge q. Neglecting the bending of the trajectory of the moving 
particle, find the energy lost by this particle due to radiation during 
the total flight time. 

4.215. A non-relativistic proton enters a half-space along the 
normal to the transverse uniform magnetic field whose induction 
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Fig. 4.40. 

equals B = 1.0 T. Find the ratio of the energy lost by the proton 
due to radiation during its motion in the field to its initial kinetic 
energy. 

4.216. A non-relativistic charged particle moves in a transverse 
uniform magnetic field with induction B. Find the time dependence 
of the particle's kinetic energy diminishing due to radiation. How 
soon will its kinetic energy decrease e-fold? Calculate this time 
interval for the case (a) of an electron, (b) of a proton. 

4.217. A charged particle moves along the y axis according to the 
law y = a cos cot, and the point of observation P is located on the 
axis at a distance 1 from the particle (1> a). Find the ratio of electro-
magnetic radiation flow densities S1/S 2  at the point P at the moments 
when the coordinate of the particle yl  = 0 and y2  = a.. Calculate 
that ratio if co = 3.3.106  s--1  and 1 = 190 m. 

4.218. A charged particle moves uniformly with velocity v along 
a circle of radius R in the plane xy (Fig. 4.40). An observer is located 

on the x axis at a point P which is removed from the centre of the 
circle by a distance much exceeding R. Find: 

(a) the relationship between the observed values of the y projec-
tion of the particle's acceleration and the y coordinate of the particle; 

(b) the ratio of electromagnetic radiation flow densities S1tS2  
at the point P at the moments of time when the particle moves, from 
the standpoint of the observer P, toward him and away from him, 
as shown in the figure. 

4.219. An electromagnetic wave emitted by an elementary dipole 
propagates in vacuum so that in the far field zone the mean value 
of the energy flow density is equal to So  at the point removed from 
the dipole by a distance r along the perpendicular drawn to the 
dipole's axis. Find the mean radiation power of the dipole. 

4.220. The mean power radiated by an elementary dipole is equal 
to Po. Find the mean space density of energy of the electromagnetic 
field in vacuum in the far field zone at the point removed from the 
dipole by a distance r along the perpendicular drawn to the dipole's 
axis. 

4.221. An electric dipole whose modulus is constant and whose 
moment is equal to p rotates with constant angular velocity w 
about the axis drawn at right angles to the axis of the dipole and 
passing through its midpoint. Find the power radiated by such 
a dipole. 



4.222. A free electron is located in the field of a plane electromagne-
tic wave. Neglecting the magnetic component of the wave disturbing 
its motion, find the ratio of the mean energy radiated by the oscil-
lating electron per unit time to the mean value of the energy flow 
density of the incident wave. 

4.223. A plane electromagnetic wave with frequency co falls upon 
an elastically bonded electron whose natural frequency equals O. 
Neglecting the damping of oscillations, find the ratio of the mean 
energy dissipated by the electron per unit time to the mean value 
of the energy flow density of the incident wave. 

4.224. Assuming a particle to have the form of a ball and to ab-
sorb all incident light, find the radius of a particle for which its 
gravitational attraction to the Sun is counterbalanced by the force 
that light exerts on it. The power of light radiated by the Sun equals 
P = 4.1026  W, and the density of the particle is p = 1.0 g/cms. 
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5.1. PHOTOMETRY AND GEOMETRICAL OPTICS 

• Spectral response of an eye V 00 is shown in Fig. 5.1. 
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Fig. 5.1. 
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PART FIVE 

OPTICS 

• Luminous intensity I and illuminance E: 

dcto. 71C  

dC2 ' 	dS • 

• Illuminance produced by a point isotropic source: 

I cos a 
E — 

r2  

where a is the angle between the normal to the surface and the direction to the 
source. 

• Luminosity M and luminance L: 

del) 	emit 	clil = 	L— 
 dt1 AS cose • 	

(5.1c) M 
dS ,  

• For a Lambert source L = const and luminosity 

M = aL. 	 (5.1d) 

(5.1a) 

(5.1b) 



• Relation between refractive angle 0 of a prism and least deviation 
angle a: 

sin a+0 	0 2 — n sin 2 ' 

where n is the refractive index of the prism. 
• Equation of spherical mirror: 

-t--— s 	s = R ' 

where R is the curvature radius of the mirror. 
• Equations for aligned optical system (Fig. 5.2): 

n' 	n f' xe= fr. S, 
s 	s 	s 

Fig. 5.2. 

• Relations between focal lengths and optical power: 

n' 	 f' 	re f ' = 	f 	 71— 
(1) ' 	W ' 	f 	• 

• Optical power of a spherical refractive surface: 

n'
R 
 n 

• 
(5.1i) 

• Optical power of a thin lens in a medium with refractive index no: 

	

(n— no) ( -14-37 	, 	 (5.1j) 

where n is the refractive index of the lens. 
• Optical power of a thick lens: 

0=01+02 — n 0102, 
	 (5.1k) 

(5.1e) 

(5.1f) 

(5.1g) 

(5.1h) 

where d is the thickness of the lens. This equation is also valid for a system of 
two thin lenses separated by a medium with refractive index n. 



• Principal planes H and H' are removed from the crest points 0 and 0' 
of surfaces of a thick lens (Fig. 5.3) by the following distances: 

d (1) d 
X 	 X' --- 

n 	 n (131 
(5.11) 

 

Fig. 5.3. 

  

• Lagrange-Helmholtz invariant: 

nyu = const. 

• Magnifying power of an optical device: 

tan l' 

(5.1m) 

(5.1n) 
tan 'p 

 

where V and ip are the angles subtended at the eye by an image formed by the 
optical device and by the corresponding object at a distance for convenient view-
ing (in the case of a microscope or magnifying glass that distance is equal to 
to  = 25 cm). 

5.1. Making use of the spectral response curve for an eye (see 
Fig. 5.1), find: 

(a) the energy flux corresponding to the luminous flux of 1.0 lm 
at the wavelengths 0.51 and 0.64 pm; 

(b) the luminous flux corresponding to the wavelength interval 
from 0.58 to 0.63 tim if the respective energy flux, equal to 01), 

4.5 mW, is uniformly distributed over all wavelengths of the 
interval. The function V (X) is assumed to be linear in the given 
spectral interval. 

5.2. A point isotropic source emits a luminous flux (13= 10 lm 
with wavelength X, = 0.59 ttm. Find the peak strength values of 
electric and magnetic fields in the luminous flux at a distance r = 
= 1.0 m from the source. Make use of the curve illustrated in 
Fig. 5.1. 

5.3. Find the mean illuminance of the irradiated part of an opaque 
sphere receiving 

(a) a parallel luminous flux resulting in illuminance E0  at the 
point of normal incidence; 

(b) light from a point isotropic source located at a distance 1 = 
= 100 cm from the centre of the sphere; the radius of the sphere is 
R = 60 cm and the luminous intensity is I = 36 cd. 



5.4. Determine the luminosity of a surface whose luminance 
depends on direction as L = Lo  cos 0, where 0 is the angle between 
the radiation direction and the normal to the surface. 

5.5. A certain luminous surface obeys Lambert's law. Its lumi-
nance is equal to L. Find: 

(a) the luminous flux emitted by an element AS of this surface 
into a cone whose axis is normal to the given element and whose 
aperture angle is equal to 0; 

(b) the luminosity of such a source. 
5.6. An illuminant shaped as a plane horizontal disc S = 100 cm2  

in area is suspended over the centre of a round table of radius R 
= 1.0 m. Its luminance does not depend on direction and is equal 
to L = 1.6.104  cd/m2. At what height over the table should the 
illuminant be suspended to provide maximum illuminance at the 
circumference of the table? How great will that illuminance be? 
The illuminant is assumed to be a point source. 

5.7. A point source is suspended at a height h = 1.0 m over the 
centre of a round table of radius R = 1.0 m. The luminous intensity I 
of the source depends on direction so that illuminance at all points 
of the table is the same. Find the function I (0), where 0 is the angle 
between the radiation direction and the vertical, as well as the lu-
minous flux reaching the table if I (0) = I, = 100 cd. 

5.8. A vertical shaft of light from a projector forms a light spot 
S = 100 cm2  in area on the ceiling of a round room of radius R = 
= 2.0 m. The illuminance of the spot is equal to E = 1000 lx. 
The reflection coefficient of the ceiling is equal to p = 0.80. Find 
the maximum illuminance of the wall produced by the light reflected 
from the ceiling. The reflection is assumed to obey Lambert's 
law. 

5.9. A luminous dome shaped as a hemisphere rests on a horizon-
tal plane. Its luminosity is uniform. Determine the illuminance at 
the centre of that plane if its luminance equals L and is independent 
of direction. 

5.10. A Lambert source has the form of an infinite plane. Its 
luminance is equal to L. Find the illuminance of an area element 
oriented parallel to the given source. 

5.11. An illuminant shaped as a plane horizontal disc of radius 
R = 25 cm is suspended over a table at a height h = 75 cm. The 
illuminance of the table below the centre of the illuminant is equal 
to E0  = 70 lx. Assuming the source to obey Lambert's law, find 
its luminosity. 

5.12. A small lamp having the form of a uniformly luminous sphere 
of radius R = 6.0 cm is suspended at a height h = 3.0 m above the 
floor. The luminance of the lamp is equal to L = 2.0.104  cd/m2  
and is independent of direction. Find the illuminance of the floor 
directly below the lamp. 

5.13. Write the law of reflection of a light beam from a mirror 
in vector form, using the directing unit vectors e and e' of the inci- 
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dent and reflected beams and the unit vector n of the outside normal 
to the mirror surface. 

5.14. Demonstrate that a light beam reflected from three mutually 
perpendicular plane mirrors in succession reverses its direc-
tion. 

5.15. At what value of the angle of incident 01  is a shaft of light 
reflected from the surface of water perpendicular to the refracted 
shaft? 

5.16. Two optical media have a plane boundary between them. 
Suppose Oi„ is the critical angle of incidence of a beam and 01  is 
the angle of incidence at which the refracted beam is perpendicular 
to the reflected one (the beam is assumed to come from an optically 
denser medium). Find the relative refractive index of these media 
if sin Oler/sin 01  = 1 = 1.28. 

5.17. A light beam falls upon a plane-parallel glass plate d=6.0 cm 
in thickness. The angle of incidence is 0 = 60°. Find the value of 
deflection of the beam which passed through that plate. 

5.18. A man standing on the edge of a swimming pool looks at 
a stone lying on the bottom. The depth of the swimming pool is 
equal to h. At what distance from the surface of water is the image 
of the stone formed if the line of vision makes an angle 0 with the 
normal to the surface? 

5.19. Demonstrate that in a prism with small refracting angle 0 
the shaft of light deviates through the angle a (n — 1) 0 regard-
less of the angle of incidence, provided that the latter is also small. 

5.20. A shaft of light passes through a prism with refracting angle 0 
and refractive index n. Let a be the diffraction angle of the shaft. 
Demonstrate that if the shaft of light passes through the prism 
symmetrically, 

(a) the angle a is the least; 
(b) the relationship between the angles a and 0 is defined by 

Eq. (5.1e). 
5.21. The least deflection angle of a certain glass prism is equal 

to its refracting angle. Find the latter. 
5.22. Find the minimum and maximum deflection angles for 

a light ray passing through a glass prism with refracting angle 
0 = 60°. 

5.23. A trihedral prism with refracting angle 60° provides the 
least deflection angle 37° in air. Find the least deflection angle of 
that prism in water. 

5.24. A light ray composed of two monochromatic components 
passes through a trihedral prism with refracting angle 0 = 60°. 
Find the angle Da between the components of the ray after its pass-
age through the prism if their respective indices of refraction are 
equal to 1.515 and 1.520. The prism is oriented to provide the least 
deflection angle. 

5.25. Using Fermat's principle derive the laws of deflection and 
refraction of light on the plane interface between two media. 
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Fig. 5.6. 

5.26. By means of plotting find: 
(a) the path of a light ray after reflection from a concave and 

convex spherical mirrors (see Fig. 5.4, where F is the focal point, 
00' is the optical axis); 

(a) 	 (6) 

Fig. 5.4. 

(b) the positions of the mirror and its focal point in the cases 
illustrated in Fig. 5.5, where P and P' are the conjugate points. 

•pr 	•p 

0 	 O f 	0 
.p 

(a) 	 (b) 

Fig. 5.5. 

5.27. Determine the focal length of a concave mirror if: 
(a) with the distance between an object and its image being equal 

to 1 = 15 cm, the transverse magnification 6 = —2.0; 
(b) in a certain position of the object the transverse magnification 

is Ni = —0.50 and in another position displaced with respect to the 
former by a distance 1 = 5.0 cm the transverse magnification 62  = 
= —0.25. 

5.28. A point source with luminous intensity / 0  = 100 cd is 
positioned at a distance s = 20.0 cm from the crest of a concave 
mirror with focal length f = 25.0 cm. Find 
the luminous intensity of the reflected ray 
if the reflection coefficient of the mirror is 
p = 0.80. 

5.29. Proceeding from Fermat's principle 
derive the refraction formula for paraxial 
rays on a spherical boundary surface of ra-
dius R between media with refractive in-
dices n and n'. 

5.30. A parallel beam of light falls from 
vacuum on a surface enclosing a medium 
with refractive index n (Fig. 5.6). Find the shape of that surface, 
x (r), if the beam is brought into focus at the point F at a distance f 
from the crest 0. What is the maximum radius of a beam that can 
still be focussed? 

P'. 
0' 



5.31. A point source is located at a distance of 20 cm from the 
front surface of a symmetrical glass biconvex lens. The lens is 5.0 cm 
thick and the curvature radius of its surfaces is 5.0 cm. How far 
beyond the rear surface of this lens is the image of the source formed? 

5.32. An object is placed in front of convex surface of a glass 
piano-convex lens of thickness d = 9.0 cm. The image of that object 
is formed on the plane surface of the lens serving as'a screen. Find: 

(a) the transverse magnification if the curvature radius of the 
lens's convex surface is R = 2.5 cm; 

(b) the image illuminance if the luminance of the object is L 
7700 cdim2  and the entrance aperture diameter of the lens is 

D = 5.0 mm; losses of light are negligible. 
5.33. Find the optical power and the focal lengths 
(a) of a thin glass lens in liquid with refractive index no  = 1.7 

if its optical power in air is ED, = —5.0 D; 
(b) of a thin symmetrical biconvex glass lens, with air on one side 

and water on the other side, if the optical power of that lens in air 
is 00  = +10 D. 

5.34. By means of plotting find: 
(a) the path of a ray of light beyond thin converging and diverging 

lenses (Fig. 5.7, where 00' is the optical axis, F and F' are the front 
and rear focal points); 

(a) 	 (6) 
Fig. 5.7. 

(b) the position of a thin lens and its focal points if the position 
of the optical axis 00' and the positions of the cojugate points 
P, P' (see Fig. 5.5) are known; the media on both sides of the lenses 
are identical; 

(c) the path of ray 2 beyond the converging and diverging lenses 
(Fig. 5.8) if the path of ray I and the positions of the lens and of its 

A 

0 

 

0' 

 

(a) 
Fig. 5.8. 

optical axis 00' are all known; the media on both sides of the lenses 
are identical. 

5.35. A thin converging lens with focal length f = 25 cm projects 
the image of an object on a screen removed from the lens by a dis- 



tance 1=5.0 m. Then the screen was drawn closer to the lens by a dis-
tance Al = 18 cm. By what distance should the object be shifted 
for its image to become sharp again? 

5.36. A source of light is located at a distance 1 = 90 cm from 
a screen. A thin converging lens provides the sharp image of the 
source when placed between the source of light and the screen at two 
positions. Determine the focal length of the lens if 

(a) the distance between the two positions of the lens is Al = 
= 30 cm; 

(b) the transverse dimensions of the image at one position of the 
lens are ri = 4.0 greater than those at the other position. 

5.37. A thin converging lens is placed between an object and 
a screen whose positions are fixed. There are two positions of the 
lens at which the sharp image of the object is formed on the screen. 
Find the transverse dimension of the object if at one position of the 
lens the image dimension equals h' = 2.0 mm and at the other, 
h" = 4.5 mm. 

5.38. A thin converging lens with aperture ratio D : f = 1: 3.5 
(D is the lens diameter, f is its focal length) provides the image of 
a sufficiently distant object on a photographic plate. The object 
luminance is L = 260 cd/m2. The losses of light in the lens amount 
to a = 0.10. Find the illuminance of the image. 

5.39. How does the luminance of a real image depend on dia-
meter D of a thin converging lens if that image is observed 

(a) directly; 
(b) on a white screen backscattering according to Lambert's law? 
5.40. There are two thin symmetrical lenses: one is converging, 

with refractive index n1  = 1.70, and the other is diverging with 
refractive index n 2  = 1.51. Both lenses have the same curvature 
radius of their surfaces equal to R = 10 cm. The lenses were put 
close together and submerged into water. What is the focal length 
of this system in water? 

5.41. Determine the focal length of a concave spherical mirror 
which is manufactured in the form of a thin symmetric biconvex 
glass lens one of whose surfaces is silvered. The curvature radius 
of the lens surface is R = 40 cm. 

5.42. Figure 5.9 illustrates an aligned system consisting of three 
thin lenses. The system is located in air. Determine: 

+10.0D 
	

+SOD 

Fig, 5.9. 
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(a) the position of the point of convergence of a parallel ray 
incoming from the left after passing through the system; 

(b) the distance between the first lens and a point lying on the 
axis to the left of the system, at which that point and its image are 
located symmetrically with respect to the lens system. 

5.43. A Galilean telescope of 10-fold magnification has the length 
of 45 cm when adjusted to infinity. Determine: 

(a) the focal lengths of the telescope's objective and ocular; 
(b) by what distance the ocular should be displaced to adjust the 

telescope to the distance of 50 m. 
5.44. Find the magnification of a Keplerian telescope adjusted to 

infinity if the mounting of the objective has a diameter D and the 
image of that mounting formed by the telescope's ocular has a dia-
meter d. 

5.45. On passing through a telescope a flux of light increases its 
intensity 11 = 4.0.104  times. Find the angular dimension of a distant 
object if its image formed by that telescope has an angular dimen-
sion V' = 2.0°. 

5.46. A Keplerian telescope with magnification P = 15 was sub-
merged into water which filled up the inside of the telescope. To make 
the system work as a telescope again within the former dimensions, 
the objective was replaced.What has the magnification of the telescope 
become equal to? The refractive index of the glass of which the 
ocular is made is equal to n == 1.50. 

5.47. At what magnification F of a telescope with a diameter of 
the objective D = 6.0 cm is the illuminance of the image of an 
object on the retina not less than without the telescope? The pupil 
diameter is assumed to be equal to d, = 3.0 mm. The losses of light 
in the telescope are negligible. 

5.48. The optical powers of the objective and the ocular of a micro-
scope are equal to 100 and 20 D respectively. The microscope magni-
fication is equal to 50. What will the magnification of the microscope 
be when the distance between the objective and the ocular is increased 
by 2.0 cm? 

5.49. A microscope has a numerical aperture sin a = 0.12, where a 
is the aperture angle subtended by the entrance pupil of the micro-
scope. Assuming the diameter of an eye's pupil to be equal to d, = 
= 4.0 mm, determine the microscope magnification at which 

(a) the diameter of the beam of light coming from the microscope 
is equal to the diameter of the eye's pupil; 

(b) the illuminance of the image on the retina is independent of 
magnification (consider the case when the beam of light passing 
through the system "microscope-eye" is bounded by the mounting 
of the objective). 

5.50. Find the positions of the principal planes, the focal and 
nodal points of a thin biconvex symmetric glass lens with curvature 
radius of its surfaces equal to R = 7.50 cm. There is air on one 
side of the lens and water on the other. 
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5.51. By means of plotting find the positions of focal points and 
principal planes of aligned optical systems illustrated in Fig. 5.10: 

(a) a telephoto lens, that is a combination of a converging and 
a diverging thin lenses (h.  = 1.5 a, f2  = —1.5 a); 

0 it  0' o 	 0' 0 	 0' 

6 	f 	f2 

(a) 	 (6) 
Fig. 5.10 .  

(b) a system of two thin converging lenses 	1.5 a, f 2  = 0.5 a); 
(c) a thick convex-concave lens (d = 4 cm, n = 1.5, €131.  = +50 D, 

41) 2  = —50 D). 
5.52. An optical system is located in air. Let 00' be its optical 

axis, F and F' are the front and rear focal points, H and H' are the 
front and rear principal planes, P and P' are the conjugate points. 
By means of plotting find: 

(a) the positions F' and H' (Fig. 5.11a); 
(b) the position of the point S' conjugate to the point S 

(Fig. 5.11b); 

(a) 	 (6) 
	

(C ) 

Fig. 5.11. 

(c) the positions F, F', and H' (Fig. 5.11c, where the path of the 
ray of light is shown before and after passing through the system). 

5.53. Suppose F and F' are the front and rear focal points of an 
optical system, and H and H' are its front and rear principal points. 
By means of plotting find the position of the image S' of the point S 
for the following relative positions of the points S, F, F', H, 
and H': 

(a) FSHH'F'; (b) HSF'FH'; (c) H'SF'FH; (d) F'H'SHF. 
5.54. A telephoto lens consists of two thin lenses, the front converg-

ing lens and the rear diverging lens with optical powers cbi.  = 
= +10 D and €13 2 = —10 D. Find: 

(a) the focal length and the positions of principal axes of that 
system if the lenses are separated by a distance d = 4.0 cm; 

(b) the distance d between the lenses at which the ratio of a focal 
length f of the system to a distance 1 between the converging lens and 
the rear principal focal point is the highest. What is this ratio equal 
to? 



5.55. Calculate the positions of the principal planes and focal 
points of a thick convex-concave glass lens if the curvature radius 
of the_ convex surface is equal to Ri  = 10.0 cm and of the concave 
surface to R2 = 5.0 cm and the lens thickness is d = 3.0 cm. 

5.56. An aligned optical system consists of two thin lenses with 
focal lengths fl  and 12, the distance between the lenses being equal 
to d. The given system has to be replaced by one thin lens which, 
at any position of an object, would provide the same transverse 
magnification as the system. What must the focal length of this lens 
be equal to and in what position must it be placed with respect 
to the two-lens system? 

5.57. A system consists of a thin symmetrical converging glass 
lens with the curvature radius of its surfaces R = 38 cm and a plane 
mirror oriented at right angles to the optical axis of the lens. The 
distance between the lens and the mirror is 1 = 12 cm. What is 
the optical power of this system when the space between the lens 
and the mirror is filled up with water? 

5.58. At what thickness will a thick convex-concave glass lens 
in air 

(a) serve as a telescope provided the curvature radius of its convex 
surface is AR = 1.5 cm greater than that of its concave surface? 

(b) have the optical power equal to —1.0 D if the curvature 
radii of its convex and concave surfaces are equal to 10.0 and 7.5 cm 
respectively? 

5.59. Find the positions of the principal planes, the focal length 
and the sign of the optical power of a thick convex-concave glass 
lens 

(a) whose thickness is equal to d and curvature radii of the surfaces 
are the same and equal to R; 

(b) whose refractive surfaces are concentric and have the curva-
ture radii R1  and R, (R,> Ri). 

5.60. A telescope system consists of two glass balls with radii 
Ri  = 5.0 cm and R2  = 1.0 cm. What are the distance between the 
centres of the balls and the magnification of the system if the bigger 
ball serves as an objective? 

5.61. Two identical thick symmetrical biconvex lenses are put 
close together. The thickness of each lens equals the curvature 
radius of its surfaces, i.e. d = R = 3.0 cm. Find the optical power 
of this system in air. 

5.62. A ray of light propagating in an isotropic medium with 
refractive index n varying gradually from point to point has a cur-
vature radius p determined by the formula 

1 	a „ 
P 	ON 

kin nj 

where the derivative is taken with respect to the principal normal 
to the ray. Derive this formula, assuming that in such a medium 
the law of refraction n sin 0 = const holds. Here 0 is the angle be-
tween the ray and the direction of the vector Vn at a given point. 
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5.63. Find the curvature radius of a ray of light propagating 
in a horizontal direction close to the Earth's surface where the 
gradient of the refractive index in air is equal to approximately 
3.10-8  m-1. At what value of that gradient would the ray of light 
propagate all the way round the Earth? 

5.2. INTERFERENCE OF LIGHT 

• Width of a fringe: 

	

Ax = —d— 	 (5.2a) 

where 1 is the distance from the sources to the screen, d is the distance between 
the 'sources. 

• Temporal and spatial coherences. Coherence length and coherence radius: 

X2 
Icon = 	 , Pcoh =7--  , 	 (5.2b) 

where is the angular dimension of the source. 
• Condition for interference maxima in the case of light reflected from a 

thin plate of thickness 6: 

	

26 jl r12 — sin?' 01  --= (k 	1/21 X., 	 (5.2c) 

where k is an integer. 
• Newton's rings produced on reflection of light from the surfaces of an 

air interlayer formed between a lens of radius R and a glass plate with which 
the convex surface of the lens is in contact. The radii of the rings: 

	

r = 1(X.Rk/2, 	 (5.2d) 

with the rings being bright if k = 1, 3, 5, . . ., and dark if k = 2, 4, 6, . . . 
The value k = 0 corresponds to the middle of the central dark spot. 

5.64. Demonstrate that when two harmonic oscillations are added, 
the time-averaged energy of the resultant oscillation is equal to 
the sum of the energies of the constituent oscillations, if both of 
them 

(a) have the same direction and are incoherent, and all the values 
of the phase difference between the oscillations are equally probable; 

(b) are mutually perpendicular, have the same frequency and 
an arbitrary phase difference. 

5.65. By means of plotting find the amplitude of the oscillation 
resulting from the addition of the following three oscillations of the 
same direction: 

gi  = a cos cot, 	Z = 2a sin cot, 	s = 1.5a cos (cot 	n/3). 

5.66. A certain oscillation results from the addition of coherent 
oscillations of the same direction k = a cos [cot 	(k — 1) T], 
where k is the number of the oscillation (k = 1, 2, . . 	N), cp is 
the phase difference between the kth and (k — 1)th oscillations. 
Find the amplitude of the resultant oscillation. 
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5.67. A system illustrated in Fig. 5.12 consists of two coherent 
point sources 1 and 2 located in a certain plane so that their dipole 
moments are oriented at right angles to that plane. The sources are 
separated by a distance d, the radiation wavelength 
is equal to X. Taking into account that the oscilla-
tions of source 2 lag in phase behind the oscillations 
of source 1 by y (cp < a), find: 

(a) the angles 0 at which the radiation intensity 
is maximum; 

(b) the conditions under which the radiation inten-
sity in the direction 0 = a is maximum and in the 2 
opposite direction, minimum. 

Fig. 5.12. 5.68. A stationary radiating system consists of a 
linear chain of parallel oscillators separated by a dis- 
tance d, with the oscillation , phase varying linearly along the 
chain. Find the time dependence of the phase difference AT between 
the neighbouring oscillators at which the principal radiation maxi-
mum of the system will be "scanning" the surroundings with the 
constant angular velocity co. 

5.69. In Lloyd's mirror experiment (Fig. 5.13) a light wave emitted 
directly by the source S (narrow slit) interferes with the wave reflect-
ed from a mirror M. As a result, an interference fringe pattern is 

Sc 

M 

Fig. 5.13. 

formed on the screen Sc. The source and the mirror are separated by 
a distance 1 = 100 cm. At a certain position of the source the fringe 
width on the screen was equal to Ax= 0.25 mm, and after the source 
was moved away from the mirror plane by Ah = 0.60 mm, the 
fringe width decreased 11 = 1.5 times. Find the wavelength of light. 

5.70. Two coherent plane light waves propagating with a diver-
gence angle 1) < 1 fall almost normally on a screen. The amplitudes 
of the waves are equal. Demonstrate that the distance between the 
neighbouring maxima on the screen is equal to Ax = X/11), where X 
is the wavelength. 

5.71. Figure 5.14 illustrates the interference experiment with 
Fresnel mirrors. The angle between the mirrors is a = 12', the 
distances from the mirrors' intersection line to the narrow slit S 
and the screen Sc are equal to r = 10.0 cm and b = 130 cm respec-
tively. The wavelength of light is X = 0.55 p.m. Find: 

(a) the width of a fringe on the screen and the number of possible 
maxima; 

14• 
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(b) the shift of the interference pattern on the screen when the 
slit is displaced by 6/ = 1.0 mm along the arc of radius r with 
centre at the point 0; 

(c) at what maximum width 6,,„„ of the slit the interference fringes 
on the screen are still observed sufficiently sharp. 

S 

SC • 

S . 

Fig. 5.14. 

5.72. A plane light wave falls on Fresnel mirrors with an angle 
a = 2.0' between them. Determine the wavelength of light if the 
width of the fringe on the screen A = 0.55 mm. 

5.73. A lens of diameter 5.0 cm and focal length f = 25.0 cm 
was cut along the diameter into two identical halves. In the process, 
the layer of the lens a = 1.00 mm in thickness was lost. Then the 
halves were put together to form a composite lens. In this focal 
plane a narrow slit was placed, emitting monochromatic light with 
wavelength 2 = 0.60 um. Behind the lens a screen was located at 
a distance b = 50 cm from it. Find: 

(a) the width of a fringe on the screen and the number of possible 
maxima; 

(b) the maximum width of the slit 6,,,,ax  at which the fringes on the 
screen will be still observed sufficiently sharp. 

5.74. The distances from a Fresnel biprism to a narrow slit and 
a screen are equal to a = 25 cm and b = 100 cm respectively. 
The refracting angle of the glass biprism 
is equal to 0 = 20'. Find the wavelength _77=x 	Sc 
of light if the width of the fringe on 
the screen is Ax = 0.55 mm. 	 /// 

5.75. A plane light wave with wa- 	 - 
velength 2 = 0.70 um falls normally 
on the base of a biprism made of glass 
(n = 1.520) with refracting angle 0 = 
= 5.0°. Behind the biprism (Fig. 5.15) 
there is a plane-parallel plate, with the 
space between them filled up with benzene (n' = 1.500). Find the 
width of a fringe on the screen Sc placed behind this system. 

5.76. A plane monochromatic light wave falls normally on a 
diaphragm with two narrow slits separated by a distance d = 2.5 mm. 

Fig. 5.15. 
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A fringe pattern is formed on a screen placed at a distance / = 
= 100 cm behind the diaphragm. By what distance and in which 
direction will these fringes be displaced when one of the slits is 
covered by a glass plate of thickness h = 10 um? 

5.77. Figure 5.16 illustrates an interferometer used in measure-
ments of refractive indices of transparent substances. Here S is 

 

	I'D 

Sc 

 

  

  

  

   

   

Fig. 5.16. 

a narrow slit illuminated by monochromatic light with wavelength 
589 um, 1 and 2 are identical tubes with air of length 

10.0 cm each, D is a diaphragm with two slits. After the air 
in tube 1 was replaced with ammonia gas, the interference pattern 
on the screen Sc was displaced upward by N = 17 fringes. The re-
fractive index of air is equal to n = 1.000277. Determine the refrac-
tive index of ammonia gas. 

5.78. An electromagnetic wave falls normally on the boundary 
between two isotropic dielectrics with refractive indices n1  and n2. 

Making use of the continuity condition for the tangential com-
ponents, E and H across the boundary, demonstrate that at the interface 
the electric field vector E 

(a) of the transmitted wave experiences no phase jump; 
(b) of the reflected wave is subjected to the phase jump equal to Ir 

if it is reflected from a medium of higher optical density. 
5.79. A parallel beam of white light falls on a thin film whose 

refractive index is equal to n = 1.33. The angle of indices is 01  = 
= 52°. What must the film thickness be equal to for the reflected 
light to be coloured yellow (2■, = 0.60 um) most intensively? 

5.80. Find the minimum thickness of a film with refractive index 
1.33 at which light with wavelength 0.64 um experiences maximum 
reflection while light with wavelength 0.40 um is not reflected at 
all. The incidence angle of light is equal to 30°. 

5.81. To decrease light losses due to reflection from the glass 
surface the latter is coated with a thin layer of substance whose 
refractive index n' = -17n where n is the refractive index of the 
glass. In this case the amplitudes of electromagnetic oscillations 
reflected from both coated surfaces are equal. At what thickness of 
that coating is the glass reflectivity in the direction of the normal 
equal to zero for light with wavelength X? 

5.82. Diffused monochromatic light with wavelength 	0.60 um 
falls on a thin film with refractive index n = 1.5. Determine the 
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film thickness if the angular separation of neighbouring maxima 
observed in reflected light at the angles close to 0 = 45° to the 
normal is equal to 80 = 3.00. 

5.83. Monochromatic light passes through an orifice in a screen Sc 
(Fig. 5.17) and being reflected from a thin transparent plate P 
produces fringes of equal inclination 
on the screen. The thickness of the 
plate is equal to d, the distance be-
tween the plate and the screen is 1, 
the radii of the ith and kth dark rings 
are r i  and rk. Find the wavelength of 
light taking into account that ri.k < 1. 

5.84. A plane monochromatic light 
wave with wavelength A, falls on the 	 Fig. 5.17. 
surface of a glass wedge whose faces 
form an angle a . 1. The plane of incidence is perpendicular to 
the edge, the angle of incidence is 01. Find the distance between 
the neighbouring fringe maxima on the screen placed at right 
angles to reflected light. 

5.85. Light with wavelength A. = 0.55 pm from a distant point 
source falls normally on the surface of a glass wedge. A fringe pattern 
whose neighbouring maxima on the surface of the wedge are separat-
ed by a distance Ax = 0.21 mm is observed in reflected light. Find: 

(a) the angle between the wedge faces; 
(b) the degree of light monochromatism (A?J) if the fringes 

disappear at a distance 1 ti  1.5 cm from the wedge's edge. 
5.86. The convex surface of a piano-convex glass lens comes into 

contact with a glass plate. The curvature radius of the lens's convex 
surface is R, the wavelength of light is equal to k. Find the width 
Ar of a Newton ring as a function of its radius r in the region where 
Ar < r. 

5.87. The convex surface of a plano-convex glass lens with curva-
ture radius R = 40 cm comes into contact with a glass plate. 
A certain ring observed in reflected light has a radius r = 2.5 mm. 
Watching the given ring, the lens was gradually removed from the 
plate by a distance Ah = 5.0 p,m. What has the radius of that ring 
become equal to? 

5.88. At the crest of a spherical surface of a piano-convex lens 
there is a ground-off plane spot of radius rc, = 3.0 mm through 
which the lens comes into contact with a glass plate. The curvature 
radius of the lens's convex surface is equal to R = 150 cm. Find 
the radius of the sixth bright ring when observed in reflected light 
with wavelength X = 655 nm. 

5.89. A piano-convex glass lens with curvature radius of spherical 
surface R = 12.5 cm is pressed against a glass plate. The diameters 
of the tenth and fifteenth dark Newton's rings in reflected light are 
equal to d1  = 1.00 mm and d2  = 1.50 mm. Find the wavelength 
of light. 
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5.90. Two piano-convex thin glass lenses are brought into contact 
with their spherical surfaces. Find the optical power of such a system 
if in reflected light with wavelength ? = 0.60 pm the diameter of 
the fifth bright ring is d = 1.50 mm. 

5.91. Two thin symmetric glass lenses, one biconvex and the 
other biconcave, are brought into contact to make a system with 
optical power cto = 0.50 D. Newton's rings are observed in reflected 
light with wavelength ? = 0.61 pm. Determine: 

(a) the radius of the tenth dark ring; 
(b) how the radius of that ring will change when the space between 

the lenses is filled up with water. 
5.92. The spherical surface of a piano-convex lens comes into 

contact with a glass plate. The space between the lens and the plate 
is filled up with carbon dioxide. The refractive indices of the lens, 
carbon dioxide, and the plate are equal to n1  = 1.50, n2  = 1.63, 
and n3  = 1.70 respectively. The curvature radius of the spherical 
surface of the lens is equal to R = 100 cm. Determine the radius 
of the fifth dark Newton's ring in reflected light with wavelength 
X = 0.50 pm. 

5.93. In a two-beam interferometer the orange mercury line 
composed of two wavelengths X, = 576.97 nm and X, = 579.03 nm 
is employed. What is the least order of interference at which the 
sharpness of the fringe pattern is the worst? 

5.94. In Michelson's interferometer the yellow sodium line com-
posed of two wavelengths X1  = 589.0 nm and 21,2  = 589.6 nm was 
used. In the process of translational displacement of one of the 
mirrors the interference pattern vanished periodically (why?). Find 
the displacement of the mirror between two successive appearances 
of the sharpest pattern. 

5.95. When a Fabry-Perot &talon is illuminated by monochromatic 
light with wavelength X an interference pattern, the system of con- 

Fig. 5.18. 

centric rings, appears in the focal plane of a lens (Fig. 5.18). The 
thickness of the &talon is equal to d. Determine how 
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(a) the position of rings; 
(b) the angular width of fringes 

depends on the order of interference. 
5.96. For the Fabry-Perot etalon of thickness d = 2.5 cm find: 
(a) the highest order of interference of light with wavelength 
= 0.50 p,m; 
(b) the dispersion region \X, i.e. the spectral interval of wave-

lengths, within which there is still no overlap with other orders of 
interference if the observation is carried out approximately at 
wavelength X = 0.50 pm. 

5.3. DIFFRACTION OF LIGHT 

• Radius of the periphery of the kth Fresnel zone: 

rk=17 	
ab 

 
a+b '

k-1
' 

2
'  3' • • 

• Cornu's spiral (Fig. 5.19). The numbers along that spiral correspond to 
the values of parameter v. In the case of a plane wave v = xii2lbk, where x 

Fig. 5.19. 

and b are the distances defining the position of the element dS of a wavefront 
relative to the observation. point P as shown in the upper left corner of the 
figure. 

(5.3a) 
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• Fraunhofer diffraction produced by light falling normally from a slit. 
Condition of intensity minima: 

b sin 0 = 	k = 1, 2, 3, . . 	 (5.3b) 

where b is the width of the slit, 0 is the diffraction angle. 
• Diffraction grating, with light falling normally. The main Fraunhofer 

maxima appear under the condition 

d sin 0 = ±k?, k = 0, 1, 2, 	 (5.3c) 

the condition of additional minima: 

d sin 0= ±2■. , 

where k' = 1, 2, . . ., except for 0, N, 2N , . . . . 
• Angular dispersion of a diffraction grating: 

60 
D = 	 d cos° ' 

• Resolving power of a diffraction grating: 

R = T.2:=kN , 

(5.3d) 

(5.3e) 

(5.3f) 

where N is the number of lines of the grating. 
• Resolving power of an objective 

1 
R — 

6 	1. 22 	
(5.3g) 

11) 	' 

where 611) is the least angular separation resolved by the objective, D is the 
diameter of the objective. 

• Bragg's equation. The condition of diffraction maxima: 

2d sin a = +/A, 	 (5.3h) 

where d is the interplanar distance, a is the glancing angle, k = 1, 2, 3, . . . . 

5.97. A plane light wave falls normally on a diaphragm with 
round aperture opening the first N Fresnel zones for a point P on 
a screen located at a distance b from the diaphragm. The wave-
length of light is equal to 2■,. Find the intensity of light /0  in front 
of the diaphragm if the distribution of intensity of light I (r) on the 
screen is known. Here r is the distance from the point P. 

5.98. A point source of light with wavelength X = 0.50 p,m is 
located at a distance a = 100 cm in front of a diaphragm with 
round aperture of radius r = 1.0 mm. Find the distance b between 
the diaphragm and the observation point for which the number of 
Fresnel zones in the aperture equals k = 3. 

5.99. A diaphragm with round aperture, whose radius r can be 
varied during the experiment, is placed between a point source of 
light and a screen. The distances from the diaphragm to the source 
and the screen are equal to a = 100 cm and b = 125 cm. Determine 
the wavelength of light if the intensity maximum at the centre of 
the diffraction pattern of the screen is observed at r, = 1.00 mm 
and the next maximum at r2  = 1.29 mm. 
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Fig. 5.21. 

5.100. A plane monochromatic light wave with intensity /0  falls 
normally on an opaque screen with a round aperture. What is the inten-
sity of light I behind the screen at the point for which the aperture 

(a) is equal to the first Fresnel zone; to the internal half of the 
first zone; 

(b) was made equal to the first Fresnel zone and then half of it 
was closed (along the diameter)? 

5.101. A plane monochromatic light wave with intensity Io  
falls normally on an opaque disc closing the first Fresnel zone for 
the observation point P. What did the intensity of light I at the 
point P become equal to after 

(a) half of the disc (along the diameter) was removed; 
(b) half of the external half of the first Fresnel zone was removed 

(along the diameter)? 
5.102. A plane monochromatic light wave with intensity /0  

falls normally on the surfaces of the opaque screens shown in 
Fig. 5.20. Find the intensity of light I at a point P 

1 	 Z 	 3 	 4 

 

7 

 

F 

Fig. 5.20. 

(a) located behind the corner points of screens 1-3 and behind 
the edge of half-plane 4; 

(b) for which the rounded-off edge of screens 5-8 coincides with 
the boundary of the first Fresnel zone. 

Derive the general formula describing 
the results obtained for screens 1-4; the 
same, for screens 5-8. 

5.103. A plane light wave with wave-
length X. = 0.60 1.t.m falls normally on a 
sufficiently large glass plate having a round 
recess on the opposite side (Fig. 5.21). For 
the observation point P that recess corres-
ponds to the first one and a half Fresnel 
zones. Find the depth h of the recess at 
which the intensity of light at the point P is 

(a) maximum; 
(b) minimum; 
(c) equal to the intensity of incident light. 
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5.104. A plane light wave with wavelength 	and intensity Io  
falls normally on a large glass plate whose opposite side serves as 
an opaque screen with a round aperture equal to the first Fresnel 
zone for the observation point P. In the middle of the aperture 
there is a round recess equal to half the Fresnel zone. What must 
the depth h of that recess be for the intensity of light at the point 
P to be the highest? What is this intensity equal to? 

5.105. A plane light wave with wavelength = 0.57 um falls 
normally on a surface of a glass (n = 1.60) disc which shuts one 
and a half Fresnel zones for the observation point P. What must 
the minimum thickness of that disc be for the intensity of light 
at the point P to be the highest? Take into account the interference 
of light on its passing through the disc. 

5.106. A plane light wave with wavelength = 0.54 um goes 
through a thin converging lens with focal length f = 50 cm and 
an aperture stop fixed immediately after the lens, and reaches 
a screen placed at a distance b = 75 cm from the aperture stop. 
At what aperture radii has the centre of the diffraction pattern 
on the screen the maximum illuminance? 

5.107. A plane monochromatic light wave falls normally on 
a round aperture. At a distance b = 9.0 m from it there is a screen 
showing a certain diffraction pattern. The aperture diameter was 
decreased ii = 3.0 times. Find the new distance b' at which the 
screen should be positioned to obtain the diffraction pattern similar 
to the previous one but diminished ri times. 

5.108. An opaque ball of diameter D = 40 mm is placed between 
a source of light with wavelength ? = 0.55 um and a photographic 
plate. The distance between the source and the ball is equal to 
a = 12 m and that between the ball and the photographic plate 
is equal to b = 18 m. Find: 

(a) the image dimension y' on the plate if the transverse dimension 
of the source is y = 6.0 mm; 

(b) the minimum height of irregularities, covering the surface 
of the ball at random, at which the ball obstructs light. 

Note. As calculations and experience show, that happens when 
the height of irregularities is comparable 

	

with the width of the Fresnel zone along 	 iAi 

	

which the edge of an opaque screen passes. 	  
5.109. A point source of monochromatic 0 	0 	o 

light is positioned in front of a zone plate 0 00 0  
1/1  

	

at a distance a = 1.5 m from it. The image 	 
of the source is formed at a distance 
b = 1.0 m from the plate. Find the focal 
length of the zone plate. 

	

5.110. A plane light wave with wave- 	Fig. 5.22. 
length ? = 0.60 um and intensity I, falls 
normally on a large glass plate whose side view is shown in 



4A4 

11 	2  
% /A /)5// 

Fig. 5.22. At what height h of the ledge will the intensity of light 
at points located directly below be 

(a) minimum; 
(b) twice as low as /0  (the losses due to reflection are to be neglect-

ed). 
5.111. A plane monochromatic light wave falls normally on an 

opaque half-plane. A screen is located at a distance b = 100 cm 
behind the half-plane. Making use of the Cornu spiral (Fig. 5.19), find: 

(a) the ratio of intensities of the first maximum and the neighbour-
ing minimum; 

(b) the wavelength of light if the first two maxima are separated 
by a distance Ax = 0.63 mm. 

5.112. A plane light wave with wavelength 0.60 pm falls normally 
on a long opaque strip 0.70 mm wide. Behind it a screen is placed 
at a distance 100 cm. Using Fig. 5.19, find the ratio of intensities 
of light in the middle of the diffraction pattern and at the edge of 
the geometrical shadow. 

5.113. A plane monochromatic light wave falls normally on a long 
rectangular slit behind which a screen is positioned at a distance 
b = 60 cm. First the width of the slit was adjusted so that in the 
middle of the diffraction pattern the lowest minimum was observed. 
After widening the slit by Ah = 0.70 mm, the next minimum was 
obtained in the centre of the pattern. Find the wavelength of light. 

5.114. A plane light wave with wavelength X = 0.65 p.m falls 
normally on a large glass plate whose opposite side has a long rectan-
gular recess 0.60 mm wide. Using Fig. 5.19, 
find the depth h of the recess at which the 
diffraction pattern on the screen 77 cm 
away from the plate has the maximum 
illuminance at its centre. 

5.115. A plane light wave with wave-
length X = 0.65 p.m falls normally on a 
large glass plate whose opposite side has 
a ledge and an opaque strip of width 
a = 0.30 mm (Fig. 5.23). A screen is placed 
at a distance b = 110 cm from the 
plate. The height h of the ledge is such 
that the intensity of light at point 2 of the 	Fig. 5.23. 
screen is the highest possible. Making use 
of Fig. 5.19, find the ratio of intensities at points 1 and 2. 

5.116. A plane monochromatic light wave of intensity Io  falls 
normally on an opaque screen with a long slit having a semicircular 

p o 

/////////////////// 

02 	J / 
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Fig. 5.24. 	 Fig. 5.25. 
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cut on one side (Fig. 5.24). The edge of the cut coincides with the 
boundary line of the first Fresnel zone for the observation point P. 
The width of the slit measures 0.90 of the radius of the cut. Using 
Fig. 5.19, find the intensity of light at the point P. 

5.117. A plane monochromatic light wave falls normally on an 
opaque screen with a long slit whose shape is shown in Fig. 5.25. 
Making use of Fig. 5.19, find the ratio of intensities of light at 
points 1, 2, and 3 located behind the screen at equal distances from 
it. For point 3 the rounded-off edge of the slit coincides with the 
boundary line of the first Fresnel zone. 

5.118. A plane monochromatic light wave falls normally on an 
opaque screen shaped as a long strip with a round hole in the middle. 
For the observation point P the hole corresponds to half the Fresnel 
zone, with the hole diameter being ri = 1.07 times less than the 
width of the strip. Using Fig. 5.19, find the intensity of light at the 
point P provided that the intensity of the incident light is equal 
to 

5.119. Light with wavelength X falls normally on a long rectangu-
lar slit of width b. Find the angular distribution of the intensity 
of light in the case of Fraunhofer diffraction, as well as the angular 
position of minima. 

5.120. Making use of the result obtained in the foregoing problem, 
find the conditions defining the angular position of maxima of the 
first, the second, and the third order. 

5.121. Light with wavelength X. = 0.50 [tm falls on a slit of 
width b = 10 um at an angle 00  = 30° to its normal. Find the 
angular position of the first minima located on both sides of the 
central Fraunhofer maximum. 

5.122. A plane light wave with wavelength X = 0.60 ti,m falls 
normally on the face of a glass wedge with refracting angle e = 15°. 
The opposite face of the wedge is opaque and has a slit of width 
b = 10 ttni parallel to the edge. Find: 

(a) the angle AO between the direction to the Fraunhofer maximum 
of zeroth order and that of incident light; 

(b) the angular width of the Fraunhofer maximum of the zeroth 
order. 

5.123. A monochromatic beam falls on a reflection grating with 
period d = 1.0 mm at a glancing angle a, = 1.0°. When it is dif-
fracted at a glancing angle a = 3.0° a Fraunhofer maximum of 
second order occurs. Find the wavelength of light. 

5.124. Draw the approximate diffraction pattern originating in 
the case of the Fraunhofer diffraction from a grating consisting 
of three identical slits if the ratio of the grating period to the slit 
width is equal to 

(a) two; 
(b) three. 
5.125. With light falling normally on a diffraction grating, the 

angle of diffraction of second order is equal to 45° for a wavelength 



= 0.65 pm. Find the angle of diffraction of third order for a wave 
length X2  = 0.50 1.1.m. 

5.126. Light with wavelength 535 nm falls normally on a diffrac-
tion grating. Find its period if the diffraction angle 35°corresponds 
to one of the Fraunhofer maxima and the highest order of spectrum 
is equal to five. 

5.127. Find the wavelength of monochromatic light falling nor-
mally on a diffraction grating with period d = 2.2 pm if the angle 
between the directions to the Fraunhofer maxima of the first and 
the second order is equal to AO = 15°. 

5.128. Light with wavelength 530 nm falls on a transparent 
diffraction grating with period 1.50 lila. Find the angle, relative 
to the grating normal, at which the Fraunhofer maximum of highest 
order is observed provided the light falls on the grating 

(a) at right angles; 
(b) at the angle 60° to the normal. 
5.129. Light with wavelength X = 0.60 tim falls normally on 

a diffraction grating inscribed on a plane surface of a plano-convex 
cylindrical glass lens with curvature radius R = 20 cm. The period 
of the grating is equal to d = 6.0 [cm. Find the distance between 
the principal maxima of first order located symmetrically in the 
focal plane of that lens. 

5.130. A plane light wave with wavelength X = 0.50 µm falls 
normally on the face of a glass wedge with an angle 0 30°. On the 
opposite face of the wedge a transparent diffraction grating with 
period d = 2.00 pm is inscribed, whose lines are parallel to the 
wedge's edge. Find the angles that the direction of incident light 
forms with the directions to the principal Fraunhofer maxima of 
the zero and the first order. What is the highest order of the spect 
rum? At what angle to the direction of incident light is it observed? 

5.131. A plane light wave with wavelength 1 falls normally on 
a phase diffraction grating whose side view is shown in Fig. 5.26. 
The grating is cut on a glass plate with refractive index n. Find 
the depth h of the lines at which the intensity of the central Fraun-
hofer maximum is equal to zero. What is in this case the diffraction 
angle corresponding to the first maximum? 

T 0 

a 
Fig. 5.26. 	 Fig. 5.27. 

5.132. Figure 5.27 illustrates an arrangement employed in obser-
vations of diffraction of light by ultrasound. A plane light wave 
with wavelength ? = 0.55 pm passes through the water-filled tank T 

# 	0 
0 



in which a standing ultrasonic wave is sustained at a frequency 
v = 4.7 MHz. As a result of diffraction of light by the optically 
inhomogeneous periodic structure a diffraction spectrum can be 
observed in the focal plane of the objective 0 with focal length 
f = 35 cm. The separation between neighbouring maxima is Ax 
= 0.60 mm. Find the propagation velocity of ultrasonic oscillations 
in water. 

5.133. To measure the angular distance* between the components 
of a double star by Michelson's method, in front of a telescope's 
lens a diaphragm was placed, which had two narrow parallel slits 
separated by an adjustable distance d. While diminishing d, the 
first smearing of the pattern was observed in the focal plane of the 
objective at d = 95 cm. Find *, assuming the wavelength of light 
to be equal to X, = 0.55 pm. 

5.134. A transparent diffraction grating has a period d = 1.50 pm. 
Find the angular dispersion D (in angular minutes per nanometres) 
corresponding to the maximum of highest order for a spectral line 
of wavelength X = 530 nm of light falling on the grating 

(a) at right angles; 
(b) at the angle 00  = 45° to the normal. 
5.135. Light with wavelength X falls on a diffraction grating at 

right angles. Find the angular dispersion of the grating as a function 
of diffraction angle 0. 

5.136. Light with wavelength X = 589.0 nm falls normally on 
a diffraction grating with period d = 2.5 pm, comprising N = 
= 10 000 lines. Find the angular width of the diffraction maximum 
of second order. 

5.137. Demonstrate that when light falls on a diffraction grating 
at right angles, the maximum resolving power of the grating cannot 
exceed the value //X, where 1 is the width of the grating and X is 
the wavelength of light. 

5.138. Using a diffraction grating as an example, demonstrate 
that the frequency difference of two maxima resolved according to 
Rayleigh's criterion is equal to the reciprocal of the difference of 
propagation times of the extreme interfering oscillations, i.e. 1:5v = 
= 1/St. 

5.139. Light composed of two spectral lines with wavelengths 
600.000 and 600.050 nm falls normally on a diffraction grating 
10.0 mm wide. At a certain diffraction angle 0 these lines are close 
to being resolved (according to Rayleigh's criterion). Find 0. 

5.140. Light falls normally on a transparent diffraction grating 
of width 1 = 6.5 cm with 200 lines per millimetre. The spectrum 
under investigation includes a spectral line with = 670.8 nm 
consisting of two components differing by 62‘, = 0.015 nm. Find: 

(a) in what order of the spectrum these components will be resolv-
ed; 

(b) the least difference of wavelengths that can be resolved by 
this grating in a wavelength region X 	670 nm. 
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Fig. 5.28. 

5.141. With light falling normally on a transparent diffraction 
grating 10 mm wide, it was found that the components of the yellow 
line of sodium (589.0 and 589.6 nm) are resolved beginning with 
the fifth order of the spectrum. Evaluate: 

(a) the period of this grating; 
(b) what must be the width of the grating with the same period 

for a doublet k = 460.0 nm whose components differ by 0.13 nm 
to be resolved in the third order of the spectrum. 

5.142. A transparent diffraction grating of a quartz spectrograph 
is 25 mm wide and has 250 lines per millimetre. The focal length 
of an objective in whose focal plane a photographic plate is located 
is equal to 80 cm. Light falls on the grating at right angles. The 
spectrum under investigation includes a doublet with components 
of wavelengths 310.154 and 310.184 nm. Determine: 

(a) the distances on the photographic plate between the components 
of this doublet in the spectra of the first and the second order; 

(b) whether these components will be resolved in these orders 
of the spectrum. 

5.143. The ultimate resolving power VSX of the spectrograph's 
trihedral prism is determined by diffraction of light at the prism 
edges (as in the case of a slit). When the prism is oriented to the 
least deviation angle in accordance with Rayleigh's criterion, 

A,/SA, = b I dnIcA, I, 

where b is the width of the prism's base (Fig. 5.28), and dnIdk is the 
dispersion of its material. Derive this formula. 

5.144. A spectrograph's trihedral prism is manufactured from 
glass whose refractive index varies with wavelength as n = A + 
where A and B are constants, with B being equal to 0.010 1.tra2. 
Making use of the formula from the foregoing problem, find: 

(a) how the resolving power of the prism depends on k; calculate 
the value of kin in the vicinity of ki  = 434 nm and 21,2 = 656 nm 
if the width of the prism's base is b = 5.0 cm; 

(b) the width of the prism's base capable of resolving the yellow 
doublet of sodium (589.0 and 589.6 nm). 

5.145. How wide is the base of a trihedral prism which has the 
same resolving power as a diffraction grating with 10 000 lines 
in the second order of the spectrum if I dn/c/Al = 0.10 pm--1 ? 
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5.146. There is a telescope whose objective has a diameter D 
= 5.0 cm. Find the resolving power of the objective and the mini-
mum separation between two points at a distance 1 = 3.0 km from 
the telescope, which it can resolve (assume X = 0.55 pm). 

5.147. Calculate the minimum separation between two points 
on the Moon which can be resolved by a reflecting telescope with 
mirror diameter 5 m. The wavelength of light is assumed to be equal 
to X = 0.55 pm. 

5.148. Determine the minimum multiplication of a telescope 
with diameter of objective D = 5.0 cm with which the resolving 
power of the objective is totally employed if the diameter of the 
eye's pupil is do  = 4.0 mm. 

5.149. There is a microscope whose objective's numerical aperture 
is sin a = 0.24, where a is the half-angle subtended by the objec-
tive's rim. Find the minimum separation resolved by this microscope 
when an object is illuminated by light with wavelength X = 0.55 p,m. 

5.150. Find the minimum magnification of a microscope, whose 
objective's numerical aperture is sin a = 0.24, at which the resolv-
ing power of the objective is totally employed if the diameter of the 
eye's pupil is do  = 4.0 mm. 

5.151. A beam of X-rays with wavelength 2,, falls at a glancing 
angle 60.0° on a linear chain of scattering centres with period a. 
Find the angles of incidence corres- 
ponding to all diffraction maxima 	 YA 

if X = 2a/5. • • 
5.152. A beam of X-rays with • • 	• 	• 

wavelength X, = 40 pm falls nor- 	. ..... 
mally on a plane rectangular array 
of scattering centres and produces 
a system of diffraction maxima 	 • 	• 

(Fig. 5.29) on a plane screen re- 
moved from the array by a distance 
1 = 10 cm. Find the array periods a 
and b along the x and y axes if the 	 Fig. 5.29. 

distances between symmetrically 
located maxima of second order are equal to Ax = 60 mm (along 
the x axis) and Ay = 40 mm (along the y axis). 

5.153. A beam of X-rays impinges on a three-dimensional rectan-
gular array whose periods are a, b, and c. The direction of the inci-
dent beam coincides with the direction along which the array period 
is equal to a. Find the directions to the diffraction maxima and the 
wavelengths at which these maxima will be observed. 

5.154. A narrow beam of X-rays impinges on the natural facet 
of a NaC1 single crystal, whose density is p = 2.16 g/cm3  at a glanc-
ing angle a = 60.0°. The mirror reflection from this facet produces 
a maximum of second order. Find the wavelength of radiation. 

5.155. A beam of X-rays with wavelength X = 174 pm falls on 
the surface of a single crystal rotating about its axis which is paral- 
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lel to its surface and perpendicular to the direction of the incident 
beam. In this case the directions to the maxima of second and third 
order from the system of planes parallel to the surface of the single 
crystal form an angle a = 60° between them. Find the corresponding 
interplanar distance. 

5.156. On transmitting a beam of X-rays with wavelength X 
17.8 pm through a polycrystalline specimen a system of diffrac-

tion rings is produced on a screen located at a distance 1= 15 cm 
from the specimen. Determine the radius of the bright ring corres-
ponding to second order of reflection from the system of planes with 
interplanar distance d = 155 pm. 

5.4. POLARIZATION OF LIGHT 

• Degree of polarization of light: 

P = I 
max — I min  

Imax+ I min • 

I = I0 cost cp. 
• Brewster's law: 

tan 013  = no/ni. 	 (5.4c) 

• Fresnel equations for intensity of light reflected at the boundary be-
tween two dielectrics: 

sin2  (01-00 	 tan2  (01  —02)  
I1 
	 (5.4d) 

sine (01+ 02) ' 	" tan2  (01+ 02) ' 

where I and I II are the intensities of incident light whose electric vector oscil- 
lations are respectively perpendicular and parallel to the plane of incidence. 

• A crystalline plate between two polarizers P and P'. If the angle between 
the plane of polarizer P and the optical axis 00' of the plate is equal to 45°, 
the intensity I' of light which passes through the polarizer P' turns out to be 
either maximum or minimum under the following conditions: 

Polarizers 
P and P' 2nk = (2k + 1) n 

parallel I ' = max I' =min 3 
(5 .4e) 

crossed / ' =-- min I' = max 

Here 6 = 2n (no  — ne)da is the phase difference between the ordinary and 
extraordinary rays, k = 0, 1, 2, . . . 

• Natural and magnetic rotation of the plane of polarization: 

Tnat =a1, Tmagn=17111, 	 (5.4f) 

where a is the rotation constant, V is Verdet's constant. 

5.157. A plane monochromatic wave of natural light with inten-
sity Io  falls normally on a screen composed of two touching Polaroid 
half-planes. The principal direction of one Polaroid is parallel, 

• Malus's law: 

(5.4a) 

(5.4b) 
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and of the other perpendicular, to the boundary between them. 
What kind of diffraction pattern is formed behind the screen? What 
is the intensity of light behind the screen at the points of the plane 
perpendicular to the screen and passing through the boundary 
between the Polaroids? 

5.158. A plane monochromatic wave of natural light with inten-
sity I, falls normally on an opaque screen with round hole corres-
ponding to the first Fresnel zone for the observation point P. Find 
the intensity of light at the point P after the hole was covered with 
two identical Polaroids whose principal directions are mutually 
perpendicular and the boundary between them passes 

(a) along the diameter of the hole; 
(b) along the circumference of the circle limiting the first half 

of the Fresnel zone. 
5.159. A beam of plane-polarized light falls on a polarizer which 

rotates about the axis of the ray with angular velocity a) = 21 rad/s. 
Find the energy of light passing through the polarizer per one revo-
lution if the flux of energy of the, incident ray is equal to D0  = 
= 4.0 mW. 

5.160. A beam of natural light falls on a system of N = 6 Nicol 
prisms whose transmission planes are turned each through an angle 
cp = 30° with respect to that of the foregoing prism. What fraction 
of luminous flux passes through this system? 

5.161. Natural light falls on a system of three identical in-line 
Polaroids, the principal direction of the middle Polaroid forming 
an angle p = 60° with those of two other Polaroids. The maximum 
transmission coefficient of each Polaroid is equal to v = 0.81 when 
plane-polarized light falls on them. How many times will the 
intensity of the light decrease after its passing through the 
system? 

5.162. The degree of polarization of partially polarized light is 
P = 0.25. Find the ratio of intensities of the polarized component 
of this light and the natural component. 

5.163. A Nicol prism is placed in the way of partially polarized 
beam of light. When the prism is turned from the position of maxi-
mum transmission through an angle cp = 60°, the intensity of trans-
mitted light decreased by a factor of ri = 3.0. Find the degree of 
polarization of incident light. 

5.164. Two identical imperfect polarizers are placed in the way 
of a natural beam of light. When the polarizers' planes are parallel, 
the system transmits rt = 10.0 times more light than in the 
case of crossed planes. Find the degree of polarization of light 
produced 

(a) by each polarizer separately; 
(b) by the whole system when the planes of the polarizers are 

parallel. 
5.165. Two parallel plane-polarized beams of light of equal inten-

sity whose oscillation planes NI  and N2 form a small angle cp between 
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them (Fig. 5.30) fall on a Nicol prism. To equalize the intensities 
of the beams emerging behind the prism, its principal direction N 
must be aligned along the bisecting line A or B. Find the value of 
the angle y at which the rotation of the Nicol prism through a small 
angle 6y << q from the position A results in the fractional change 
of intensities of the beams AIII by the value r' = 100 times exceeding 
that resulting due to rotation through the same angle from the 
position B. 

5.166. Resorting to the Fresnel equations, demonstrate that 
light reflected from the surface of dielectric will be totally polarized 
if the angle of incidence 0, satisfies the condition tan 0, = n, where n 
is the refractive index of the dielectric. What is in this case the 
angle between the reflected and refracted rays? 

Fig. 5.30. Fig. 5.31. 

5.167. Natural light falls at the Brewster angle on the surface 
of glass. Using the Fresnel equations, find 

(a) the reflection coefficient; 
(b) the degree of polarization of refracted light. 
5.168. A plane beam of natural light with intensity / 0  falls on 

the surface of water at the Brewster angle. A fraction p = 0.039 
of luminous flux is reflected. Find the intensity of the refracted 
beam. 

5.169. A beam of plane-polarized light falls on the surface of water 
at the Brewster angle. The polarization plane of the electric vector 
of the electromagnetic wave makes an angle y = 45° with the inci-
dence plane. Find the reflection coefficient. 

5.170. A narrow beam of natural light falls on the surface of 
a thick transparent plane-parallel plate at the Brewster angle. 
As a result, a fraction p = 0.080 of luminous flux is reflected from 
its top surface. Find the degree of polarization of beams 1-4 (Fig. 5.31) 

5.171. A narrow beam of light of intensity / 0  falls on a plane-
parallel glass plate (Fig. 5.31) at the Brewster angle. Using the 
Fresnel equations, find: 

(a) the intensity of the transmitted beam 1:4 if the oscillation 
plane of the incident plane-polarized light is perpendicular to the 
incidence plane; 
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Fig. 5.32. 

(b) the degree of polarization of the transmitted light if the 
light falling on the plate is natural. 

5.172. A narrow beam of natural light falls on a set of N thick 
plane-parallel glass plates at the Brewster angle. Find: 

(a) the degree P of polarization of the transmitted beam; 
(b) what P is equal to when N = 1, 2, 5, and 10. 
5.173. Using the Fresnel equations, find: 
(a) the reflection coefficient of natural light falling normally 

on the surface of glass; 
(b) the relative loss of luminous flux due to reflections of a paraxial 

ray of natural light passing through an aligned optical system compris-
ing five glass lenses (secondary reflections of light are to be neglected). 

5.174. A light wave falls normally on the surface of glass coated 
with a layer of transparent substance. Neglecting secondary reflec-
tions, demonstrate that the amplitudes of light waves reflected 
from the two surfaces of such a laver will be equal under the condi- 
tion n' = irn—, where n' and n are the refractive indices of the layer 
and the glass respectively. 

5.175. A beam of natural light falls on the surface of glass at an 
angle of 45°. Using the Fresnel equations, find the degree of polari-
zation of 

(a) reflected light; 
(b) refracted light. 
5.176. Using Huygens's principle, construct the wavefronts and 

the propagation directions of the ordinary and extraordinary rays 
in a positive uniaxial crystal whose 
optical axis 

(a) is perpendicular to the inci-
dence plane and parallel to the 
surface of the crystal; 

(b) lies in the incidence plane 
and is parallel to the surface of 
the crystal; 

(c) lies in the incidence plane at 
an angle of 45° to the surface of 
the crystal, and light falls at right 
angles to the optical axis. 

5.177. A narrow beam of na-
tural light with wavelength X = 

589 nm falls normally on the surface of a Wollaston polarizing 
prism made of Iceland spar as shown in Fig. 5.32. The optical axes 
of the two parts of the prism are mutually perpendicular. Find the 
angle 8 between the directions of the beams behind the prism if the 
angle 0 is equal to 30°. 

5.178. What kind of polarization has a plane electromagnetic 
wave if the projections of the vector E on the x and y axes are per-
pendicular to the propagation direction and are defined by the 
following equations: 



(a) ED, = E cos (cot — kz), E N  = E sin (cat 	kz); 
(b) E x  = E cos (cot — kz), Ey  = E cos (cot — kz 	n/4); 
(c) Ex  = E cos (cot — kz), E y  = E cos (cot — kz n)? 
5.179. One has to manufacture a quartz plate cut parallel to its 

optical axis and not exceeding 0.50 mm in thickness. Find the maxi-
mum thickness of the plate allowing plane-polarized light with 
wavelength X = 589 nm 

(a) to experience only rotation of polarization plane; 
(b) to acquire circular polarization 

after passing through that plate. 
5.180. A quartz plate cut parallel to the optical axis is placed 

between two crossed Nicol prisms. The angle between the principal 
directions of the Nicol prisms and the plate is equal to 45°. The thick-
ness of the plate is d = 0.50 mm. At what wavelengths in the inter-
val from 0.50 to 0.60 p.m is the intensity of light which passed 
through that system independent of rotation of the rear prism? 
The difference of refractive indices for ordinary and extraordinary 
rays in that wavelength interval is assumed to be An = 0.0090. 

5.181. White natural light falls on a system of two crossed Nicol 
prisms having between them a quartz plate 1.50 mm thick, cut 
parallel to the optical axis. The axis of the plate forms an angle of 
45° with the principal directions of the Nicol prisms. The light 
transmitted through that system was split into the spectrum. How 
many dark fringes will be observed in the wavelength interval 
from 0.55 to 0.66 p,m? The difference of refractive indices for ordinary 
and extraordinary rays in that wavelength interval is assumed 
to be equal to 0.0090. 

5.182. A crystalline plate cut parallel to its optical axis is 0.25 mm 
thick and serves as a quarter-wave plate for a wavelength ? = 

530 nm. At what other wavelengths of visible spectrum will 
it also serve as a quarter-wave plate? The difference of refractive 
indices for extraordinary and ordinary rays is assumed to be constant 
and equal to ne  — no  = 0.0090 at all wavelengths of the visible 
spectrum. 

5.183. A quartz plate cut parallel to its optical axis is placed 
between two crossed Nicol prisms so that their principle directions 
form an angle of 45° with the optical axis of the plate. What is the 
minimum thickness of that plate transmitting light of wavelength 

= 643 nm with maximum intensity while greatly reducing the 
intensity of transmitting light of wavelength X2  = 564 nm? The 
difference of refractive indices for extraordinary and ordinary rays 
is assumed to be equal to n8  — no  = 0.0090 for both wavelengths. 

5.184. A quartz wedge with refracting angle e= 3.5° is inserted 
between two crossed Polaroids. The optical axis of the wedge is 
parallel to its edge and forms an angle of 45° with the principal 
directions of the Polaroids. On transmission of light with wavelength 

= 550 nm through this system, an interference fringe pattern is 
formed. The width of each fringe is Ax = 1.0 mm. Find the dif- 



ference of refractive indices of quartz for ordinary and extraordinary 
rays at the wavelength indicated above. 

5.185. Natural monochromatic light of intensity •/ 0  falls on a sys-
tem of two Polaroids between which a crystalline plate is inserted, 
cut parallel to its optical axis. The plate introduces a phase dif-
ference 6 between the ordinary and extraordinary rays. Demonstrate 
that the intensity of light transmitted through that system is equal to 

I -T.1  - 	I° [cos2  (q) — cp') — sin 2cp• sin 2p' sin2  (6/2)1, 

where cp and cp' are the angles between the optical axis of the crystal 
and the principal directions of the Polaroids. In particular, consider 
the cases of crossed and parallel Polaroids. 

5.186. Monochromatic light with circular polarization falls norm-
ally on a crystalline plate cut parallel to the optical axis. Behind 
the plate there is a Nicol prism whose principal direction forms an 
angle cp with the optical axis of the plate. Demonstrate that the 
intensity of light transmitted through that system is equal to 

/ = /0  (1 -I- sin 2T•sin 8), 

where S is the phase difference between the ordinary and extraordi-
nary rays which is introduced by the plate. 

5.187. Explain how, using a Polaroid and a quarter-wave plate 
made of positive uniaxial crystal (ne  > no), to distinguish 

(a) light with left-hand circular polarization from that with 
right-hand polarization; 

(b) natural light from light with circular polarization and from 
the composition of natural light and that with circular polarization. 

5.188. Light with wavelength falls on a system of crossed pola-
rizer P and analyzer A between which a Babinet compensator C 
is inserted (Fig. 5.33). The compensa- 
tor consists of two quartz wedges with 
the optical axis of one of them being 
parallel to the edge, and of the other, 
perpendicular to it. The principal direc- 
tions of the polarizer and the analyser 
form an angle of 45° with the optical axes 
of the compensator. The refracting angle 
of the wedges is equal to O (e< 1) and 	L _J 

the difference of refractive indices of P 	S 	C 	A 

quartz is n. — no. The insertion of 	Fig. 5.33. 
investigated birefringent sample S, with 
the optical axis oriented as shown in the figure, results in dis-
placement of the fringes upward by 6x mm. Find: 

(a) the width of the fringe Ax; 
(b) the magnitude and the sign of the optical path difference 

of ordinary and extraordinary rays, which appears due to the 
sample S. 



5.189. Using the tables of the Appendix, calculate the difference 
of refractive indices of quartz for light of wavelength X = 589.5 nm 
with right-hand and left-hand circular polarizations. 

5.190. Plane-polarized light of wavelength 0.59 tun falls on 
a trihedral quartz prism P (Fig. 5.34) with refracting angle e = 
= 30°. Inside the prism light propagates along the optical axis 
whose direction is shown by hatching. Behind 
the Polaroid Pol an interference pattern of 
bright and dark fringes of width A x = 
= 15.0 mm is observed. Find the specific rota-
tion constant of quartz and the distribution 
of intensity of light behind the Polaroid. 

5.191. Natural monochromatic light falls 
on a system of two crossed Nicol prisms 
between which a quartz plate cut at right 
angles to its optical axis is inserted. Find 

Pal 
the minimum thickness of the plate at which 
this system will transmit i = 0.30 of luminous 
flux if the specific rotation constant of 
quartz is equal to a = 17 ang.deg/mm. 

5.192. Light passes through a system of two crossed Nicol prisms 
between which a quartz plate cut at right angles to its optical axis 
is placed. Determine the minimum thickness of the plate which 
allows light of wavelength 436 nm to be completely cut off by the 
system and transmits half the light of wavelength 497 nm. The spe-
cific rotation constant of quartz for these wavelengths is equal 
to 41.5 and 31.1 angular degrees per mm respectively. 

5.193. Plane-polarized light of wavelength 589 nm propagates 
along the axis of a cylindrical glass vessel filled with slightly turbid 
sugar solution of concentration 500 g/l. Viewing from the side, one 
can see a system of helical fringes, with 50 cm between neighbouring 
dark fringes along the axis. Explain the emergence of the fringes and 
determine the specific rotation constant of the solution. 

5.194. A Kerr cell is positioned between two crossed Nicol prisms 
so that the direction of electric field E in the capacitor forms an 
angle of 45° with the principal directions of the prisms. The capacitor 
has the length 1 = 10 cm and is filled up with nitrobenzene. Light 
of wavelength ? = 0.50 [tm passes through the system. Taking 
into account that in this case the Kerr constant is equal to B 
= 2.2.10-10  cm/V2, find: 

(a) the minimum strength of electric field E in the capacitor at 
which the intensity of light that passes through this system is inde-
pendent of rotation of the rear prism; 

(b) how many times per second light will be interrupted when 
a sinusoidal voltage of frequency v = 10 MHz and strength ampli-
tude Em  = 50 kV/cm is applied to the capacitor. 

Note. The Kerr constant is the coefficient B in the equation ne  
= BXE2. 

Fig. 5.34. 
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5.195. Monochromatic plane-polarized light with angular frequen-
cy co passes through a certain substance along a uniform magnetic 
field H. Find the difference of refractive indices for right-hand and 
left-hand components of light beam with circular polarization if 
the Verdet constant is equal to V. 

5.196. A certain substance is placed in a longitudinal magnetic 
field of a solenoid located between two Polaroids. The length of 
the tube with substance is equal to 1 = 30 cm. Find the Verdet 
constant if at a field strength H = 56.5 kA/m the angle of rotation 
of polarization plane is equal to cpi  = +5°10' for one direction of 
the field and to cp2  = —3°20', for the opposite direction. 

5.197. A narrow beam of plane-polarized light passes through 
dextrorotatory positive compound placed into a longitudinal magne-
tic field as shown in Fig. 5.35. Find the angle through which the 

If 

Fig. 5.35. 

polarization plane of the transmitted beam will turn if the length 
of the tube with the compound is equal to 1, the specific rotation 
constant of the compound is equal to a, the Verdet constant is V, 
and the magnetic field strength is H. 

5.198. A tube of length 1 = 26 cm is filled with benzene and placed 
in a longitudinal magnetic field of a solenoid positioned between two 
Polaroids. The angle between the principle directions of the Pola-
roids is equal to 45°. Find the minimum strength of the magnetic 
field at which light of the wavelength 589 nm propagates through 
that system only in one direction (optical valve). What happens if 
the direction of the given magnetic field is changed to the opposite 
one? 

5.199. Experience shows that a body irradiated with light with 
circular polarization acquires a torque. This happens because such 
a light possesses an angular momentum whose flow density in va-
cuum is equal to M = //co, where I is the intensity of light, co is 
the angular oscillation frequency. Suppose light with circular 
polarization and wavelength 2 = 0.70 lam falls normally on a uni-
form black disc of mass m = 10 mg which can freely rotate about 
its axis. How soon will its angular velocity become equal to coo  = 
= 1.0 rad/s provided I = 10 W/cm2? 
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nhe2 /meo  

wok —w2 ' 
(5.5a) 

5.5. DISPERSION AND ABSORPTION OF LIGHT 

• Permittivity of substance according to elementary theory of dispersion: 

8=1+ 

where nh  is the concentration of electrons of natural frequency cook . 
• Relation between refractive index and permittivity of substance: 

n= 

• Phase velocity v and group velocity u: 

v = oilk, u = doVdk. 

• Rayleigh's formula: 
dv 

u v— A 
dX,  • 

• Attenuation of a narrow beam of electromagnetic radiation: 

(5.5b) 

(5.5c) 

(5.5d) 

(5.5e) 

where p, = x 	x', ft, x, x' are the coefficients of linear attenuation, absorption, 
and scattering. 

5.200. A free electron is located in the field of a monochromatic 
light wave. The intensity of light is I = 150 W/m2, its frequency 
is co = 3.4.1015  s-1. Find: 

(a) the electron's oscillation amplitude and its velocity ampli-
tude; 

(b) the ratio F,i1Fe, where Fp, and Fe  are the amplitudes of forces 
with which the magnetic and electric components of the light wave 
field act on the electron; demonstrate that that ratio is equal to 
1 
—

2 

 v/c, where v is the electron's velocity amplitude and c is the 

velocity of light. 
Instruction. The action of the magnetic field component can be 

disregarded in the equation of motion of the electron since the calcu-
lations show it to be negligible. 

5.201. An electromagnetic wave of frequency co propagates in 
dilute plasma. The free electron concentration in plasma is equal 
to no. Neglecting the interaction of the wave and plasma ions, find: 

(a) the frequency dependence of plasma permittivity; 
(b) how the phase velocity of the electromagnetic wave depends 

on its wavelength X in plasma. 
5.202. Find the free electron concentration in ionosphere if its 

refractive index is equal to n = 0.90 for radiowaves of frequency 
v = 100 MHz. 

5.203. Assuming electrons of substance to be free when subjected 
to hard X-rays, determine by what magnitude the refractive index 
of graphite differs from unity in the case of X-rays whose wavelength 
in vacuum is equal to X = 50 pm. 
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Fig. 5.36. 

5.204. An electron experiences a quasi-elastic force kx and a "fric- 

tion force" Tx in the field of electromagnetic radiation. The E-com-
ponent of the field varies as E = E, cos wt. Neglecting the action 
of the magnetic component of the field, find: 

(a) the motion equation of the electron; 
(b) the mean power absorbed by the electron; the frequency at 

which that power is maximum and the expression for the maxi-
mum mean power. 

5.205. In some cases permittivity of substance turns out to be a 
complex or a negative quantity, and refractive index, respectively, 
a complex (n' = n + ix) or an imaginary (n' = ix) quantity. Write the 
equation of a plane wave for both of 
these cases and find out the physical 
meaning of such refractive indices. 

5.206. A sounding of dilute plasma 
by radiowaves of various frequencies 
reveals that radiowaves with wave-
lengths exceeding ko  = 0.75 m expe-
rience total internal reflection. Find 
the free electron concentration in 
that plasma. 

5.207. Using the definition of the 
group velocity u, derive Rayleigh's 
formula (5.5d). Demonstrate that in the vicinity of ? = k' the 
velocity u is equal to the segment v' cut by the tangent of the 
curve v (X) at the point k' (Fig. 5.36). 

5.208. Find the relation between the group velocity u and phase 
velocity v for the following dispersion laws: 

(a) v 1/ 
(b) v k; 
(c) v 1/(1)2. 

Here X, k, and o) are the wavelength, wave number, and angular 
frequency. 

5.209. In a certain medium the relationship between the group 
and phase velocities of an electromagnetic wave has the form uv 
= c2, where c is the velocity of light in vacuum. Find the dependence 
of permittivity of that medium on wave frequency, e (co). 

5.210. The refractive index of carbon dioxide at the wavelengths 
509, 534, and 589 nm is equal to 1.647,1.640, and 1.630 respective-
ly. Calculate the phase and group velocities of light in the vicinity 
of k = 534 nm. 

5.211. A train of plane light waves propagates in the medium 
where the phase velocity v is a linear function of wavelength: v 
= a b?., where a and b are some positive constants. Demonstrate 
that in such a medium the shape of an arbitrary train of light waves 
is restored after the time interval i = 1/b. 

5.212. A beam of natural light of intensity /0  falls on a system 
of two crossed Nicol prisms between which a tube filled with certain 



solution is placed in a longitudinal magnetic field of strength H. 
The length of the tube is 1, the coefficient of linear absorption of 
solution is x, and the Verdet constant is V. Find the intensity of 
light transmitted through that system. 

5.213. A plane monochromatic light wave of intensity l0  falls 
normally on a plane-parallel plate both of whose surfaces have 
a reflection coefficient p. Taking into account multiple reflections, 
find the intensity of the transmitted light if 

(a) the plate is perfectly transparent, i.e. the absorption is 
absent; 

(b) the coefficient of linear absorption is equal to x, and the plate 
thickness is d. 

5.214. Two plates, one of thickness d1  = 3.8 mm and the other 
of thickness d2  = 9.0 mm, are manufactured from a certain sub-
stance. When placed alternately in the way of monochromatic 
light, the first transmits Ti  = 0.84 fraction of luminous flux and 
the second, r2  = 0.70. Find the coefficient of linear absorption of 
that substance. Light falls at right angles to the plates. The second-
ary reflections are to be neglected. 

5.215. A beam of monochromatic light passes through a pile of 
N = 5 identical plane-parallel glass plates each of thickness 1= 
= 0.50 cm. The coefficient of reflection at each surface of the plates 
is p = 0.050. The ratio of the intensity of light transmitted through 
the pile of plates to the intensity of incident light is r = 0.55. 
Neglecting the secondary reflections of light, find the absorption 
coefficient of the given glass. 

5.216. A beam of monochromatic light falls normally on the 
surface of a plane-parallel plate of thickness 1. The absorption coeffi-
cient of the substance the plate is made of varies linearly along 
the normal to its surface from x1  to x2. The coefficient of reflection 
at each surface of the plate is equal to p. Neglecting the secondary 
reflections, find the transmission coefficient of such a plate. 

5.217. A beam of light of intensity /0  falls normally on a trans-
parent plane-parallel plate of thickness 1. The beam contains all the 
wavelengths in the interval from X1  to X2  of equal spectral intensity. 
Find the intensity of the transmitted beam if in this wavelength 
interval the absorption coefficient is a linear function of X, with 
extreme values xi  and x2. The coefficient of reflection at each surface 
is equal to p. The secondary reflections are to be neglected. 

5.218. A light filter is a plate of thickness d whose absorption 
coefficient depends on wavelength X as 

x (X) = a (1 — X/X0)2  cm-1, 

where a and X0  are constants. Find the passband A) of this light 
filter, that is the band at whose edges the attenuation of light is 
times that at the wavelength X0. The coefficient of reflection from 
the surfaces of the light filter is assumed to be the same at all wave-
lengths. 
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5.219. A point source of monochromatic light emitting a luminous 
flux 1:1) is positioned at the centre of a spherical layer of substance. 
The inside radius of the layer is a, the outside one is b. The coeffi-
cient of linear absorption of the substance is equal to x, the reflection 
coefficient of the surfaces is equal to p. Neglecting the secondary 
reflections, find the intensity of light that passes through that layer. 

5.220. How many times will the intensity of a narrow X-ray 
beam of wavelength 20 pm decrease after passing through a lead 
plate of thickness d = 1.0 mm if the mass absorption coefficient 
for the given radiation wavelength is equal to Rip = 3.6 cm2/g? 

5.221. A. narrow beam of X-ray radiation of wavelength 62 pm 
penetrates an aluminium screen 2.6 cm thick. How thick must 
a lead screen be to attenuate the beam just as much? The mass 
absorption coefficients of aluminium and lead for this radiation are 
equal to 3.48 and 72.0 cm2/g respectively. 

5.222. Find the thickness of aluminium layer which reduces by 
half the intensity of a narrow monochromatic X-ray beam if the 
corresponding mass absorption coefficient is p,/p = 0.32 cm2/g. 

5.223. How many 50%-absorption layers are there in the plate 
reducing the intensity of a narrow X-ray beam ri = 50 times? 

5.6. OPTICS OF MOVING SOURCES 

• Doppler effect for < c: 

Ace 	v 
=— cos e 

where e is the velocity of a source, 0 is the angle between the source's motion 
direction and the observation line. 

• Doppler effect in the general case: 

—132  
0)0  1— cos 0' 

where 5= v/c. 

• If 0 = 0, the Doppler effect is called radial, and if 0 = n/2, transverse. 
• Vavilov-Cherenkov effect-. 

cos 0 —c  
nu (5.6c) 

where 0 is the angle between the radiation propagation direction and the velo-
city vector v of a particle. 

5.224. In the Fizeau experiment on measurement of the velocity 
of light the distance between the gear wheel and the mirror is 1 
= 7.0 km, the number of teeth is z = 720. Two successive disappear-
ances of light are observed at the following rotation velocities of 
the wheel: n1  = 283 rps and n2  = 313 rps. Find the velocity of 
light. 

(5.6a) 

(5.6b) 



5.225. A source of light moves with velocity v relative to a receiver. 
Demonstrate that for v . c the fractional variation of frequency 
of light is defined by Eq. (5.6a). 

5.226. One of the spectral lines emitted by excited He ions has 
a wavelength X = 410 nm. Find the Doppler shift AX of that line 
when observed at an angle 0 = 30° to the beam of moving ions 
possessing kinetic energy 1' = 10 MeV. 

5.227. When a spectral line of wavelength X = 0.59 [tm is ob-
served in the directions to the opposite edges of the solar disc along 
its equator, there is a difference in wavelengths equal to off, = 8.0 pm. 
Find the period of the Sun's revolution about its own axis. 

5.228. The Doppler effect has made it possible to discover the 
double stars which are so distant that their resolution by means of 
a telescope is impossible. The spectral lines of such stars periodically 
become doublets indicating that the radiation does come from two 
stars revolving about their centre of mass. Assuming the masses 
of the two stars to be equal, find the distance between them and 
their masses if the maximum splitting of the spectral lines is equal 
to (AXIX)m  = 1.2.10-4  and occurs every i = 30 days. 

5.229. A plane electromagnetic wave of frequency coo  falls normally 
on the surface of a mirror approaching with a relativistic velocity V. 
Making use of the Doppler formula, find the frequency of the reflect-
ed wave. Simplify the obtained expression for the case V << c. 

5.230. A radar operates at a wavelength X = 50.0 cm. Find the 
velocity of an approaching aircraft if the beat frequency between 
the transmitted signal and the signal reflected from the aircraft is 
equal to Av = 1.00 kHz at the radar location. 

5.231. Taking into account that the wave phase cot — kx is an 
invariant, i.e. it retains its value on transition from one inertial 
frame to another, determine how the frequency w and the wave 
number k entering the expression for the wave phase are transformed. 
Examine the unidimensional case. 

5.232. How fast does a certain nebula recede if the hydrogen line 
X = 434 nm in its spectrum is displaced by 130 nm toward longer 
wavelengths? 

5.233. How fast should a car move for the driver to perceive a red 
traffic light (X 0.70 iLtm) as a green one (X' 0.55 p.m)? 

5.234. An observer moves with velocity v1  = 2c along a straight 

line. In front of him a source of monochromatic light moves with 

velocity v2  = 4 c in the same direction and along the same straight 

line. The proper frequency of light is equal to coo. Find the frequency 
of light registered by the observer. 

5.235. One of the spectral lines of atomic hydrogen has the wave-
length X =656.3 nm. Find the Doppler shift AX of that line when 
observed at right angles to the beam of hydrogen atoms with kinetic 
energy 7' = 1.0 MeV (the transverse Doppler effect). 
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5.236. A source emitting electromagnetic signals with proper 
frequency (00 	3.0.1010  s-1  moves at a constant velocity v 
= 0.80 c along a straight line separated from a stationary observer P 
by a distance 1 (Fig. 5.37). Find the frequency of the signals perceived 
by the observer at the moment when 

(a) the source is at the point 0; 
(b) the observer sees it at the point 0. 

0 

1 

op 

Fig. 5.37. 	 Fig. 5.38. 

5.237. A narrow beam of electrons passes immediately over the 
surface of a metallic mirror with a diffraction grating with period 
d = 2.0 tim inscribed on it. The electrons move with velocity v, 
comparable to c, at right angles to the lines of the grating. The 
trajectory of the electrons can be seen in the form of a strip, whose 
colouring depends on the observation angle 0 (Fig. 5.38). Interpret 
this phenomenon. Find the wavelength of the radiation observed 
at an angle 0 = 45°. 

5.238. A gas consists of atoms of mass m being in thermodynamic 
equilibrium at temperature T. Suppose coo  is the natural frequency 
of light emitted by the atoms. 

(a) Demonstrate that the spectral distribution of the emitted 
light is defined by the formula 

I.= Ioe-a(1--(0100)2, 

(I, is the spectral intensity corresponding to the frequency coo, 
a = mc2/2kT). 

(b) Find the relative width Ow/w0  of a given spectral line, i.e. 
the width of the line between the frequencies at which I. = / 0/2. 

5.239. A plane electromagnetic wave propagates in a medium 
moving with constant velocity V < c relative to an inertial frame K. 
Find the velocity of that wave in the frame K if the refractive index 
of the medium is equal to n and the propagation direction of the 
wave coincides with that of the medium. 

5.240. Aberration of light is the apparent displacement of stars 
attributable to the effect of the orbital motion of the Earth. The 
direction to a star in the ecliptic plane varies periodically, and the 
star performs apparent oscillations within an angle 60 = 41". Find 
the orbital velocity of the Earth. 

V 
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(5.7d) 
hco3 	1 u ,11e3 efie)/kT 	• 

5.241. Demonstrate that the angle 0 between the propagation 
direction of light and the x axis transforms on transition from the 
reference frame K to K' according to the formula 

cos 0' =  cos 0— p  1-13 cos 0 ' 

where p = V/c and V is the velocity of the frame K' with respect 
to the frame K. The x and x' axes of the reference frames coincide. 

5.242. Find the aperture angle of a cone in which all the stars 
located in the semi-sphere for an observer on the Earth will be visible 
if one moves relative to the Earth with relativistic velocity V 
differing by 1.0% from the velocity of light. Make use of the formula 
of the foregoing problem. 

5.243. Find the conditions under which a charged particle moving 
uniformly through a medium with refractive index n emits light 
(the Vavilov-Cherenkov effect). Find also the direction of that 
radiation. 

Instruction. Consider the interference of oscillations induced by 
the particle at various moments of time. 

5.244. Find the lowest values of the kinetic energy of an electron 
and a proton causing the emergence of Cherenkov's radiation in 
a medium with refractive index n = 1.60. For what particles is 
this minimum value of kinetic energy equal to Tmin  = 29.6 MeV? 

5.245. Find the kinetic energy of electrons emitting light in 
a medium with refractive index n = 1.50 at an angle 0 = 30° to 
their propagation direction. 

5.7. THERMAL RADIATION. 
QUANTUM NATURE OF LIGHT 

• Radiosity 

Me= + u, 	 (5.7a) 

where u is the space density of thermal radiation energy. 
• Wien's formula and Wien's displacement law: 

u. = ca3F (co/T), T? m  = b, 	 (5.7b) 

where Xm  is the wavelength corresponding to the maximum of the function uk. 
• Stefan-Boltzmann law: 

Me  = crT4, 	 (5.7c) 
where a is the Stefan-Boltzmann constant. 

• Planck's formula: 

• Einstein's photoelectric equation: 

mu2  
40=  A+  rx .  

(5.7e) 



• Compton effect: 
= anke  (1 — cos 0), 	 (5.7f) 

where R = hl me is Compton's wavelength. 

5.246. Using Wien's formula, demonstrate that 
(a) the most probable radiation frequency cop ,. 	T; 
(b) the maximum spectral density of thermal radiation (11,)max  CoD 

T3; 

(c) the radiosity Me 	T 4. 
5.247. The temperature of one of the two heated black bodies is 

Tl  = 2500 K. Find the temperature of the other body if the wave-
length corresponding to its maximum emissive capacity exceeds 
by A) = 0.50 gm the wavelength corresponding to the maximum 
emissive capacity of the first black body. 

5.248. The radiosity of a black body is Me  = 3.0 W/cm2. Find 
the wavelength corresponding to the maximum emissive capacity 
of that body. 

5.249. The spectral composition of solar radiation is much the 
same as that of a black body whose maximum emission corresponds 
to the wavelength 0.48 gm. Find the mass lost by the Sun every 
second due to radiation. Evaluate the time interval during which 
the mass of the Sun diminishes by 1 per cent. 

5.250. Find the temperature of totally ionized hydrogen plasma 
of density p = 0.10 g/cm3  at which the thermal radiation pressure 
is equal to the gas kinetic pressure of the particles of plasma. Take 
into account that the thermal radiation pressure p = u/3, where u 
is the space density of radiation energy, and at high temperatures all 
substances obey the equation of state of an ideal gas. 

5.251. A copper ball of diameter d =- 1.2 cm was placed in an 
evacuated vessel whose walls are kept at the absolute zero tempera-
ture. The initial temperature of the ball is To  = 300 K. Assuming 
the surface of the ball to be absolutely black, find how soon its 
temperature decreases ii = 2.0 times. 

5.252. There are two cavities (Fig. 5.39) with small holes of equal 
diameters d = 1.0 cm and perfectly reflecting outer surfaces. The 

 

I 2 

  

Fig. 5.39. 

distance between the holes is 1 = 10 cm. A constant temperature 
Tl  = 1700 K is maintained in cavity 1. Calculate the steady-state 
temperature inside cavity 2. 

Instruction. Take into account that a black body radiation obeys 
the cosine emission law. 
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5.253. A cavity of volume V = 1.0 1 is filled with thermal radia-
tion at a temperature T = 1000 K. Find: 

(a) the heat capacity Cv; (b) the entropy S of that radiation. 
5.254. Assuming the spectral distribution of thermal radiation 

energy to obey Wien's formula u (o), T) = A w3  exp (—acolT), where 
a = 7.64 ps•K , find for a temperature T = 2000 K the most 
probable 

(a) radiation frequency; (b) radiation wavelength. 
5.255. Using Planck's formula, derive the approximate expressions 

for the space spectral density uo, of radiation 
(a) in the range where ho) < kT (Rayleigh-Jeans formula); 
(b) in the range where No >> kT (Wien's formula). 
5.256. Transform Planck's formula for space spectral density u. 

of radiation from the variable a) to the variables v (linear frequency) 
and X (wavelength). 

5.257. Using Planck's formula, find the power radiated by a unit 
area of a black body within a narrow wavelength interval AX = 
= 1.0 nm close to the maximum of spectral radiation density at 
a temperature T = 3000 K of the body. 

5.258. Fig. 5.40 shows the plot of the function y (x) representing 
a fraction of the total power of thermal radiation falling within 

0 42 04 45 08 7,0 12 1.4 75 1.8 20 22 

Fig. 5.40. 

the spectral interval from 0 to x. Here x = X/X„, (X,„ is the wavelength 
corresponding to the maximum of spectral radiation density). 

Using this plot, find: 
(a) the wavelength which divides the radiation spectrum into 

two equal (in terms of energy) parts at the temperature 3700 K; 
(b) the fraction of the total radiation power falling within the 

visible range of the spectrum (0.40-0.76 Rm) at the temperature 
5000 K; 

(c) how many times the power radiated at wavelengths exceeding 
0.76 Jim will increase if the temperature rises from 3000 to 5000 K. 
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5.259. Making use of Planck's formula, derive the expressions 
determining the number of photons per 1 cm3  of a cavity at a tempe-
rature T in the spectral intervals (0), do) and (X, a,± d2,). 

5.260. An isotropic point source emits light with wavelength 
= 589 nm. The radiation power of the source is P = 10 W. Find: 
(a) the mean density of the flow of photons at a distance r 
2.0 m from the source; 

(b) the distance between the source and the point at which the 
mean concentration of photons is equal to n = 100 cm -3. 

5.261. From the standpoint of the corpuscular theory demonstrate 
that the momentum transferred by a beam of parallel light rays 
per unit time does not depend on its spectral composition but de-
pends only on the energy flux (De. 

5.262. A laser emits a light pulse of duration ti = 0.13 ms and 
energy E = 10 J. Find the mean pressure exerted by such a light 
pulse when it is focussed into a spot of diameter d = 10 pm on 
a surface perpendicular to the beam and possessing a reflection 
coefficient p = 0.50. 

5.263. A short light pulse of energy E = 7.5 J falls in the form 
of a narrow and almost parallel beam on a mirror plate whose reflec-
tion coefficient is p = 0.60. The angle of incidence is 30°. In terms 
of the corpuscular theory find the momentum transferred to the 
plate. 

5.264. A plane light wave of intensity I = 0.20 W/cm2  falls on 
a plane mirror surface with reflection coefficient p = 0.8. The angle 
of incidence is 45°. In terms of the corpuscular theory find the magni-
tude of the normal pressure exerted by light on that surface. 

5.265. A plane light wave of intensity I = 0.70 W/cm2  illumi-
nates a sphere with ideal mirror surface. The radius of the sphere is 
R = 5.0 cm. From the standpoint of the corpuscular theory find 
the force that light exerts on the sphere. 

5.266. An isotropic point source of radiation power P is located 
on the axis of an ideal mirror plate. The distance between the source 
and the plate exceeds the radius of the plate n-fold. In terms of the 
corpuscular theory find the force that light exerts on the plate. 

5.267. In a reference frame K a photon of frequency o falls norm-
ally on a mirror approaching it with relativistic velocity V. Find 
the momentum imparted to the mirror during the reflection of the 
photon 

(a) in the reference frame fixed to the mirror; 
(b) in the frame K. 
5.268. A small ideal mirror of mass m = 10 mg is suspended by 

a weightless thread of length 1 = 10 cm. Find the angle through 
which the thread will be deflected when a short laser pulse with 
energy E = 13 J is shot in the horizontal direction at right angles 
to the mirror. Where does the mirror get its kinetic energy? 

5.269. A photon of frequency coo  is emitted from the surface of 
a star whose mass is M and radius R. Find the gravitational shift 
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of frequency Acs/co o  of the photon at a very great distance from the 
star. 

5.270. A voltage applied to an X-ray tube being increased ri = 
= 1.5 times, the short-wave limit of an X-ray continuous spectrum 
shifts by Ak = 26 pm. Find the initial voltage applied to the 
tube. 

5.271. A narrow X-ray beam falls on a NaC1 single crystal. The 
least angle of incidence at which the mirror reflection from the 
system of crystallographic planes is still observed is equal to a = 
= 4.1°. The interplanar distance is d = 0.28 nm. How high is the 
voltage applied to the X-ray tube? 

5.272. Find the wavelength of the short-wave limit of an X-ray 
continuous spectrum if electrons approach the anticathode of the 
tube with velocity v = 0.85 c, where c is the velocity of light. 

5.273. Find the photoelectric threshold for zinc and the maximum 
velocity of photoelectrons liberated from its surface by electromag-
netic radiation with wavelength 250 nm. 

5.274. Illuminating the surface of a certain metal alternately 
with light of wavelengths X1 = 0.35 tim and XI  = 0.54 lam, it was 
found that the corresponding maximum velocities of photoelectrons 
differ by a factor 2.0. Find the work function of that metal. 

5.275. Up to what maximum potential will a copper ball, remote 
from all other bodies, be charged when irradiated by electromagnetic 
radiation of wavelength k = 140 nm? 

5.276. Find the maximum kinetic energy of photoelectrons liberat-
ed from the surface of lithium by electromagnetic radiation whose 
electric component varies with time as E = a (1 + cos cot) cos coot, 
where a is a constant, co = 6.0.1014  s-1  and coo  = 3.60.1015  s-1  . 

5.277. Electromagnetic radiation of wavelength ? = 0.30 Rm 
falls on a photocell operating in the saturation mode. The correspond-
ing spectral sensitivity of the photocell is J = 4.8 mA/W. Find the 
yield of photoelectrons, i.e. the number of photoelectrons produced 
by each incident photon. 

5.278. There is a vacuum photocell whose one electrode is made 
of cesium and the other of copper. Find the maximum velocity of 
photoelectrons approaching the copper electrode when the cesium 
electrode is subjected to electromagnetic radiation of wavelength 
0.22 p.m and the electrodes are shorted outside the cell. 

5.279. A photoelectric current emerging in the circuit of a va-
cuum photocell when its zinc electrode is subjected to electromagnetic 
radiation of wavelength 262 nm is cancelled if an external decelerat-
ing voltage 1.5 V is applied. Find the magnitude and polarity of 
the outer contact potential difference of the given photocell. 

5.280. Compose the expression for a quantity whose dimension 
is length, using velocity of light c, mass of a particle m, and Planck's 
constant /1. What is that quantity? 

5.281. Using the conservation laws, demonstrate that a free 
electron cannot absorb a photon completely. 
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5.282. Explain the following features of Compton scattering of 
light by matter: 

(a) the increase in wavelength AA, is independent of the nature of 
the scattering substance; 

(b) the intensity of the displaced component of scattered light 
grows with the increasing angle of scattering and with the diminish-
ing atomic number of the substance; 

(c) the presence of a non-displaced component in the scattered 
radiation. 

5.283. A narrow monochromatic X-ray beam falls on a scattering 
substance. The wavelengths of radiation scattered at angles 01  = 60° 
and 02  = 120° differ by a factor ri = 2.0. Assuming the free electrons 
to be responsible for the scattering, find the incident radiation wave-
length. 

5.284. A photon with energy ho) = 1.00 MeV is scattered by a 
stationary free electron. Find the kinetic energy of a Compton 
electron if the photon's wavelength changed by 11 = 25% due to 
scattering. 

5.285. A photon of wavelength X = 6.0 pm is scattered at right 
angles by a stationary free electron. Find: 

(a) the frequency of the scattered photon; 
(b) the kinetic energy of the Compton electron. 
5.286. A photon with energy how = 250 keV is scattered at an 

angle 0 = 120° by a stationary free electron. Find the energy of the 
scattered photon. 

5.287. A photon with momentum p = 1.02 MeV/c, where c is 
the velocity of light, is scattered by a stationary free electron, 
changing in the process its momentum to the value p' = 0.255 MeV/c. 
At what angle is the photon scattered? 

5.288. A photon is scattered at an angle 0 = 120° by a stationary 
free electron. As a result, the electron acquires a kinetic energy 
T = 0.45 MeV. Find the energy that the photon had prior to scat-
tering. 

5.289. Find the wavelength of X-ray radiation if the maximum 
kinetic energy of Compton electrons is T,,,„„ = 0.19 MeV. 

5.290. A photon with energy hco = 0.15 MeV is scattered by 
a stationary free electron changing its wavelength by AX = 3.0 pm. 
Find the angle at which the Compton electron moves. 

5.291. A photon with energy exceeding ri = 2.0 times the rest 
energy of an electron experienced a head-on collision with a sta-
tionary free electron. Find the curvature radius of the trajectory of 
the Compton electron in a magnetic field B = 0.12 T. The Compton 
electron is assumed to move at right angles to the direction of the 
field. 

5.292. Having collided with a relativistic electron, a photon is 
deflected through an angle 0 = 60° while the electron stops. Find 
the Compton displacement of the wavelength of the scattered photon. 



PART SIX 

ATOMIC AND NUCLEAR PHYSICS 

6.1. SCATTERING OF PARTICLES. 
RUTHERFORD-BOHR ATOM 

• Angle 0 at which a charged particle is deflected by the Coulomb field 
of a stationary atomic nucleus is defined by the formula: 

14 q2 tan 0  --= 	 (6.1a) 
2 	2bT ' 

where ql  and q2  are the charges of the particle and the nucleus, b is the aiming 
parameter, T is the kinetic energy of a strik- 
ing particle. 

• Rutherford formula. The relative num-
ber of particles scattered into an elementary 
solid angle dS2 at an angle 0 to their initial pro-
pagation direction: 

Balmer series 

J 

2 

Paschen series 

dN91q2 l 2 	dt2  
Ti '  = 1 4T / sin* (0/2) ' 

(6
'
1b) 

where n is the number of nuclei of the foil per 
unit area of its surface, dQ = sin 0 de dc. 

• Generalized Balmer formula (Fig. 6.1): 

me
3
4  RZ21 __I. 

' 
R=-

2/1
, (6.1c) ni  

1 
Lyman series 

Fig. 6.1. 

where o is the transition frequency (in 	) between energy levels with quan- 
tum numbers n1  and n2, R is the Rydberg constant, Z is the serial number of a 
hydrogen-like ion. 

6.1. Employing Thomson's model, calculate the radius of a hydro-
gen atom and the wavelength of emitted light if the ionization energy 
of the atom is known to be equal to E = 13.6 eV. 

6.2. An alpha particle with kinetic energy 0.27 MeV is deflected 
through an angle of 60° by a golden foil. Find the corresponding 
value of the aiming parameter. 

6.3. To what minimum distance will an alpha particle with 
kinetic energy T = 0.40 MeV approach in the case of a head-on 
collision to 

(a) a stationary Pb nucleus; 
(b) a stationary free Liz nucleus? 
6.4. An alpha particle with kinetic energy 7' = 0.50 MeV is 

deflected through an angle of 0 = 90° by the Coulomb field of a 
stationary Hg nucleus. Find: 

* All the formulas in this Part are given in the Gaussian system of units. 

241 



(a) the least curvature radius of its trajectory; 
(b) the minimum approach distance between the particle and the 

nucleus. 
6.5. A proton with kinetic energy T and aiming parameter b was 

deflected by the Coulomb field of a stationary Au nucleus. Find the 
momentum imparted to the given nucleus as a result of scattering. 

6.6. A proton with kinetic energy T = 10 MeV flies past a sta-
tionary free electron at a distance b = 10 pm. Find the energy 
acquired by the electron, assuming the proton's trajectory to be 
rectilinear and the electron to be practically motionless as the proton 
flies by. 

6.7. A particle with kinetic energy T is deflected by a spherical 
potential well of radius R and depth Uo, i.e. by the field in which 
the potential energy of the particle takes the form 

0 for r > R, 
—U0  for r < R, 

where r is the distance from the centre of the well. Find the relation-
ship between the aiming parameter b of the particle and the angle 0 
through which it deflects from the initial motion direction. 

6.8. A stationary ball of radius R is irradiated by a parallel 
stream of particles whose radius is r. Assuming the collision of 
a particle and the ball to be elastic, find: 

(a) the deflection angle 0 of a particle as a function of its aiming 
parameter b; 

(b) the fraction of particles which after a collision with the ball 
are scattered into the angular interval between 0 and 0 + d0; 

(c) the probability of a particle to be deflected, after a collision 

with the ball, into the front hemisphere (0 < 

6.9. A narrow beam of alpha particles with kinetic energy 1.0 MeV 
falls normally on a platinum foil 1.0 µm thick. The scattered par-
ticles are observed at an angle of 60° to the incident beam direction 
by means of a counter with a circular inlet area 1.0 cm2  located at 
the distance 10 cm from the scattering section of the foil. What 
fraction of scattered alpha particles reaches the counter inlet? 

6.10. A narrow beam of alpha particles with kinetic energy T = 
= 0.50 MeV and intensity I = 5.0.105  particles per second falls 
normally on a golden foil. Find the thickness of the foil if at a distance 
r = 15 cm from a scattering section of that foil the flux density 
of scattered particles at the angle 0 = 60° to the incident beam is 
equal to J = 40 particles/(cm2 •s). 

6.11. A narrow beam of alpha particles falls normally on a silver 
foil behind which a counter is set to register the scattered particles. 
On substitution of platinum foil of the same mass thickness for the 
silver foil, the number of alpha particles registered per unit time 
increased = 1.52 times. Find the atomic number of platinum, 
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assuming the atomic number of silver and the atomic masses of both 
platinum and silver to be known. 

6.12. A narrow beam of alpha particles with kinetic energy T = 
= 0.50 MeV falls normally on a golden foil whose mass thickness 
is pd = 1.5 mg/cm2. The beam intensity is / 0  = 5.0.105  particles 
per second. Find the number of alpha particles scattered by the foil 
during a time interval -r = 30 min into the angular interval: 

(a) 59-61°; (b) over 00  = 60°. 
6.13. A narrow beam of protons with velocity v = 6.106  m/s 

falls normally on a silver foil of thickness d = 1.0 p,m. Find the 
probability of the protons to be scattered into the rear hemisphere 
(0 > 90°). 

6.14. A narrow beam of alpha particles with kinetic energy T = 
= 600 keV falls normally on a golden foil incorporating n 
= 1.1.1019  nuclei/cm2. Find the fraction of alpha particles scattered 
through the angles 0 < 00  = 20°. 

6.15. A narrow beam of protons with kinetic energy T = 1.4 MeV 
falls normally on a brass foil whose mass thickness pd = 1.5 mg/cm2. 
The weight ratio of copper and zinc in the foil is equal to 7 : 3 re-
spectively. Find the fraction of the protons scattered through the 
angles exceeding 00  = 30°. 

6.16. Find the effective cross section of a uranium nucleus cor-
responding to the scattering of alpha particles with kinetic energy 
T = 1.5 MeV through the angles exceeding 00  = 60°. 

6.17. The effective cross section of a gold nucleus corresponding 
to the scattering of monoenergetic alpha particles within the angular 
interval from 90° to 180° is equal to Au = 0.50 kb. Find: 

(a) the energy of alpha particles; 
(b) the differential cross section of scattering doldS2 (kb/sr) cor-

responding to the angle 0 = 60°. 
6.18. In accordance with classical electrodynamics an electron 

moving with acceleration w loses its energy due to radiation as 

dE 	2e 2  2  

dt - 3c3 W  ' 

where e is the electron charge, c is the velocity of light. Estimate the 
time during which the energy of an electron performing almost 
harmonic oscillations with frequency co = 5.1015  s-1  will decrease 

= 10 times. 
6.19. Making use of the formula of the foregoing problem, estimate 

the time during which an electron moving in a hydrogen atom along 
a circular orbit of radius r = 50 pm would have fallen onto the 
nucleus. For the sake of simplicity assume the vector w to be perma-
nently directed toward the centre of the atom. 

6.20. Demonstrate that the frequency co of a photon emerging 
when an electron jumps between neighbouring circular orbits of 
a hydrogen-like ion satisfies the inequality con  > co > con +1, where 
con  and con +1  are the frequencies of revolution of that electron around 
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the nucleus along the circular orbits. Make sure that as n 	oo the 
frequency of the photon co 	(on. 

6.21. A particle of mass m moves along a circular orbit in a centro-
symmetrical potential field U (r) = kr212. Using the Bohr quantiza-
tion condition, find the permissible orbital radii and energy levels 
of that particle. 

6.22. Calculate for a hydrogen atom and a He + ion: 
(a) the radius of the first Bohr orbit and the velocity of an electron 

moving along it; 
(b) the kinetic energy and the binding energy of an electron in 

the ground state; 
(c) the ionization potential, the first excitation potential and 

the wavelength of the resonance line (n' = 2 	n = 1). 
6.23. Calculate the angular frequency of an electron occupying 

the second Bohr orbit of He + ion. 
6.24. For hydrogen-like systems find the magnetic moment ttn  

corresponding to the motion of an electron along the n-th orbit 
and the ratio of the magnetic and mechanical moments µn /Mn. 
Calculate the magnetic moment of an electron occupying the first 
Bohr orbit. 

6.25. Calculate the magnetic field induction at the centre of 
a hydrogen atom caused by an electron moving along the first Bohr 
orbit. 

6.26. Calculate and draw on the wavelength scale the spectral 
intervals in which the Lyman, Balmer, and Paschen series for atomic 
hydrogen are confined. Show the visible portion of the spec-
trum. 

6.27. To what series does the spectral line of atomic hydrogen 
belong if its wave number is equal to the difference between the wave 
numbers of the following two lines of the Balmer series: 486.1 and 
410.2 nm? What is the wavelength of that line? 

6.28. For the case of atomic hydrogen find: 
(a) the wavelengths of the first three lines of the Balmer series; 
(b) the minimum resolving power 7‘,/82■, of a spectral instrument 

capable of resolving the first 20 lines of the Balmer series. 
6.29. Radiation of atomic hydrogen falls normally on a diffraction 

grating of width 1 = 6.6 mm. The 50th line of the Balmer series 
in the observed spectrum is close to resolution at a diffraction angle 0 
(in accordance with Rayleigh's criterion). Find that angle. 

6.30. What element has a hydrogen-like spectrum whose lines 
have wavelengths four times shorter than those of atomic hydrogen? 

6.31. How many spectral lines are emitted by atomic hydrogen 
excited to the n-th energy level? 

6.32. What lines of atomic hydrogen absorption spectrum fall 
within the wavelength range from 94.5 to 130.0 nm? 

6.33. Find the quantum number n corresponding to the excited 
state of He ion if on transition to the ground state that ion emits 
two photons in succession with wavelengths 108.5 and 30.4 nm. 
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6.34. Calculate the Rydberg constant R if He ions are known 
to have the wavelength difference between the first (of the longest 
wavelength) lines of the Balmer and Lyman series equal to AA. = 
= 133.7 nm. 

6.35. What hydrogen-like ion has the wavelength difference be-
tween the first lines of the Balmer and Lyman series equal to 59.3 nm? 

6.36. Find the wavelength of the first line of the He ion spectral 
series whose interval between the extreme lines is A co = 
= 5.18.1015  s— 1, 

6.37. Find the binding energy of an electron in the ground state 
of hydrogen-like ions in whose spectrum the third line of the Balmer 
series is equal to 108.5 nm. 

6.38. The binding energy of an electron in the ground state of He 
atom is equal to E0  = 24.6 eV. Find the energy required to remove 
both electrons from the atom. 

6.39. Find the velocity of photoelectrons liberated by electromag-
netic radiation of wavelength ? = 18.0 nm from stationary He 
ions in the ground state. 

6.40. At what minimum kinetic energy must a hydrogen atom 
move for its inelastic head-on collision with another, stationary, 
hydrogen atom to make one of them capable of emitting a photon? 
Both atoms are supposed to be in the ground state prior to the colli-
sion. 

6.41. A stationary hydrogen atom emits a photon corresponding 
to the first line of the Lyman series. What velocity does the atom 
acquire? 

6.42. From the conditions of the foregoing problem find how much 
(in per cent) the energy of the emitted photon differs from the energy 
of the corresponding transition in a hydrogen atom. 

6.43. A stationary He ion emitted a photon corresponding to the 
first line of the Lyman series. That photon liberated a photoelectron 
from a stationary hydrogen atom in the ground state. Find the 
velocity of the photoelectron. 

6.44. Find the velocity of the excited hydrogen atoms if the first 
line of the Lyman series is displaced by A? = 0.20 nm when their 
radiation is observed at an angle 0 = 45° to their motion direction. 

6.45. According to the Bohr-Sommerfeld postulate the periodic 
motion of a particle in a potential field must satisfy the following 
quantization rule: 

p dq= 

where q and p are generalized coordinate and momentum of the 
particle , n are integers. Making use of this rule, find the permitted 
values of energy for a particle of mass m moving 

(a) in a unidimensional rectangular potential well of width 1 
with infinitely high walls; 

(b) along a circle of radius r; 
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(c) in a unidimensional potential field U = ax2/2, where a is 
a positive constant; 

(d) along a round orbit in a central field, where the potential 
energy of the particle is equal to U = — alr (a is a positive con-
stant). 

6.46. Taking into account the motion of the nucleus of a hydrogen 
atom, find the expressions for the electron's binding energy in the 
ground state and for the Rydberg constant. How much (in per cent) 
do the binding energy and the Rydberg constant, obtained without 
taking into account the motion of the nucleus, differ from the more 
accurate corresponding values of these quantities? 

6.47. For atoms of light and heavy hydrogen (H and D) find the 
difference 

(a) between the binding energies of their electrons in the ground 
state; 

(b) between the wavelengths of first lines of the Lyman series. 
6.48. Calculate the separation between the particles of a system 

in the ground state, the corresponding binding energy, and the 
wavelength of the first line of the Lyman series, if such a system is 

(a) a mesonic hydrogen atom whose nucleus is a proton (in a meso-
nic atom an electron is replaced by a meson whose charge is the 
same and mass is 207 that of an electron); 

(b) a positronium consisting of an electron and a positron revolving 
around their common centre of masses. 

6.2. WAVE PROPERTIES  0 F PARTICLES. 
SCHRISHINGER EQUATION 

• The de Broglie wavelength of a particle with momentum p: 

2rch 
= 

• Uncertainty principle: 

Ax • Ap, ih. 

• Schrodinger time-dependent and time-independent equations: 

2 

ih 	 hV2tif+UW' 

2m 

	

V 21i) 	(E — U) 	CI, 

where 	is the total wave function, II) is its coordinate part, V2  is the Laplace 
operator, E and U are the total and potential energies of the particle. In spheric-
al coordinates: 
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• Coefficient of transparency of a potential barrier V (x): 
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where x1  and x 2  are the coordinates of the points between which V > E. 

6.49. Calculate the de Broglie wavelengths of an electron, proton, 
and uranium atom, all having the same kinetic energy 100 eV. 

6.50. What amount of energy should be added to an electron to 
reduce its de Broglie wavelength from 100 to 50 pm? 

6.51. A neutron with kinetic energy 7' = 25 eV strikes a sta-
tionary deuteron (heavy hydrogen nucleus). Find the de Broglie 
wavelengths of both particles in the frame of their centre of inertia. 

6.52. Two identical non-relativistic particles move at right 
angles to each other, possessing de Broglie wavelengths k7  and X,. 
Find the de Broglie wavelength of each particle in the frame of 
their centre of inertia. 

6.53. Find the de Broglie wavelength of hydrogen molecules, 
which corresponds to their most probable velocity at room tempera-
ture. 

6.54. Calculate the most probable de Broglie wavelength of 
hydrogen molecules being in thermodynamic equilibrium at room 
temperature. 

6.55. Derive the expression for a de Broglie wavelength X of a rela-
tivistic particle moving with kinetic energy 7'. At what values of T 
does the error in determining X using the non-relativistic formula 
not exceed 1% for an electron and a proton? 

6.56. At what value of kinetic energy is the de Broglie wavelength 
of an electron equal to its Compton wavelength? 

6.57. Find the de Broglie wavelength of relativistic electrons 
reaching the anticathode of an X-ray tube if the short wavelength 
limit of the continuous X-ray spectrum is equal to 21,3h = 10.0 pm? 

6.58. A parallel stream of monoenergetic electrons falls normally 
on a diaphragm with narrow square slit of width b = 1.0 lam. 
Find the velocity of the electrons if the width of the central diffrac-
tion maximum formed on a screen located at a distance 1 = 50 cm 
from the slit is equal to Ax = 0.36 mm. 

6.59. A parallel stream of electrons accelerated by a potential 
difference V — 25 V falls normally on a diaphragm with two narrow 
slits separated by a distance d = 50 Calculate the distance 
between neighbouring maxima of the diffraction pattern on a screen 
located at a distance 1 = 100 cm from the slits. 

6.60. A narrow stream of monoenergetic electrons falls at an 
angle of incidence 0 = 30° on the natural facet of an aluminium 
single crystal. The distance between the neighbouring crystal planes 
parallel to that facet is equal to d = 0.20 nm. The maximum mirror 
reflection is observed at a certain accelerating voltage V 0. Find V, 

(6.2e) 
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if the next maximum mirror reflection is known to be observed when 
the accelerating voltage is increased ri = 2.25 times. 

6.61. A narrow beam of monoenergetic electrons falls normally 
on the surface of a Ni single crystal. The reflection maximum of 
fourth order is observed in the direction forming an angle 0 = 55° 
with the normal to the surface at the energy of the electrons equal 
to T = 180 eV. Calculate the corresponding value of the interplanar 
distance. 

6.62. A narrow stream of electrons with kinetic energy T 
= 10 keV passes through a polycrystalline aluminium foil, forming 
a system of diffraction fringes on a screen. Calculate the interplanar 
distance corresponding to the reflection of third order from a certain 
system of crystal planes if it is responsible for a diffraction ring of 
diameter D = 3.20 cm. The distance between the foil and the screen 
is 1 = 10.0 cm. 

6.63. A stream of electrons accelerated by a potential difference V 
falls on the surface of a metal whose inner potential is V 1  = 15 V. 
Find: 

(a) the refractive index of the metal for the electrons accelerated 
by a potential difference V = 150 V; 

(b) the values of the ratio 1//1/ i  at which the refractive index differs 
from unity by not more than rl  -- 1.0%. 

6.64. A particle of mass m is located in a unidimensional square 
potential well with infinitely high walls. The width of the well is 
equal to 7. Find the permitted values of energy of the particle taking 
into account that only those states of the particle's motion are 
realized for which the whole number of de Broglie half-waves are 
fitted within the given well. 

6.65. Describe the Bohr quantum conditions in terms of the wave 
theory: demonstrate that an electron in a hydrogen atom can move 
only along those round orbits which accommodate a whole number 
of de Broglie waves. 

6.66. Estimate the minimum errors in determining the velocity 
of an electron, a proton, and a ball of mass of 1 mg if the coordinates 
of the particles and of the centre of the ball are known with uncer-
tainly 1 

6.67. Employing the uncertainty principle, evaluate the indeter-
minancy of the velocity of an electron in a hydrogen atom if the 
size of the atom is assumed to be 1 = 0.10 nm. Compare the obtained 
magnitude with the velocity of an electron in the first Bohr orbit 
of the given atom. 

6.68. Show that for the particle whose coordinate uncertainty is 
=X/2n, where X is its de Broglie wavelength, the velocity uncertain-

ty is of the same order of magnitude as the particle's velocity itself. 
6.69. A free electron was initially confined within a region with 

linear dimensions 1 = 0.10 nm. Using the uncertainty principle, 
evaluate the time over which the width of the corresponding train 
of waves becomes = 10 times as large. 
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6.70. Employing the uncertainty principle, estimate the mini-
mum kinetic energy of an electron confined within a region whose 
size is 1 = 0.20 nm. 

6.71. An electron with kinetic energy T 	4 eV is confined 
within a region whose linear dimension is 1 = 1 µm. Using the 
uncertainty principle, evaluate the relative uncertainty of its velo-
city. 

6.72. An electron is located in a unidimensional square potential 
well with infinitely high walls. The width of the well is 1. From 
the uncertainty principle estimate the force with which the electron 
possessing the minimum permitted energy acts on the walls of the well. 

6.73. A particle of mass m moves in a unidimensional potential 
field U = kx2I2 (harmonic oscillator). Using the uncertainty prin-
ciple, evaluate the minimum permitted energy of the particle in 
that field. 

6.74. Making use of the uncertainty principle, evaluate the mini-
mum permitted energy of an electron in a hydrogen atom and its 
corresponding apparent distance from the nucleus. 

6.75. A parallel stream of hydrogen atoms with velocity v 
600 m/s falls normally on a diaphragm with a narrow slit behind 

which a screen is placed at a distance 1 = 1.0 m. Using the uncer-
tainty principle, evaluate the width of the slit S at which the width 
of its image on the screen is minimum. 

6.76. Find a particular solution of the time-dependent Schrodinger 
equation for a freely moving particle of mass m. 

6.77. A particle in the ground state is located in a unidimensional 
square potential well of length 1 with absolutely impenetrable walls 
(0 < x < 1). Find the probability of the particle staying within 

1 	 2 a region -3- 1 < x < -3-1. 

6.78. A particle is located in a unidimensional square potential 
well with infinitely high walls. The width of the well is 1. Find the 
normalized wave functions of the stationary states of the particle, 
taking the midpoint of the well for the origin of the x coordinate. 

6.79. Demonstrate that the wave functions of the stationary states 
of a particle confined in a unidimensional potential well with infi-
nitely high walls are orthogonal, i.e. they satisfy the condition 

1)7,11)„,• dx = 0 if n' n. Here 1 is the width of the well, n are 

integers. 
6.80. An electron is located in a unidimensional square potential 

well with infinitely high walls. The width of the well equal to 1 is 
such that the energy levels are very dense. Find the density of energy 
levels dN/dE, i.e. their number per unit energy interval, as a func-
tion of E. Calculate dNIdE for E = 1.0 eV if 1 = 1.0 cm. 

6.81. A particle of mass m is located in a two-dimensional square 
potential well with absolutely impenetrable walls. Find: 
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(a) the particle's permitted energy values if the sides of the well 
are 1, and 12; 

(b) the energy values of the particle at the first four levels if the 
well has the shape of a square with side 1. 

6.82. A particle is located in a two-dimensional square potential 
well with absolutely impenetrable walls (0 < x < a, 0 < y < b). 
Find the probability of the particle with the lowest energy to be 
located within a region 0 < x < a/3. 

6.83. A particle of mass m is located in a three-dimensional cubic 
potential well with absolutely impenetrable walls. The side of the 
cube is equal to a. Find: 

(a) the proper values of energy of the particle; 
(b) the energy difference between the third and fourth levels; 
(c) the energy of the sixth level and the number of states (the 

degree of degeneracy) corresponding to that level. 
6.84. Using the Schrodinger equation, demonstrate that at the 

point where the potential energy U (x) of a particle has a finite 
discontinuity, the wave function remains smooth, i.e. its first deriva-
tive with respect to the coordinate is continuous. 

6.85. A particle of mass m is located in a unidimensional potential 
field U (x) whose shape is shown in Fig. 6.2, where U (0) = 00. 
Find: 

Fig. 6.2. 

(a) the equation defining the possible values of energy of the 
particle in the region E < U0; reduce that equation to the form 

sin kl = ±k1 Vh2/2ml2 Uo, 

where k =1/-2mElh. Solving this equation by graphical means, 
demonstrate that the possible values of energy of the particle form 
a discontinuous spectrum; 

(b) the minimum value of the quantity 12U0  at which the first 
energy level appears in the region E < U0. At what minimum value 
of /2 U, does the nth level appear? 
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6.86. Making use of the solution of the foregoing problem, deter-
mine the probability of the particle with energy E = U012 to be 

h2  
located in the region x > 1, if 12U0 	T 

)

. 

6.87. Find the possible values of energy of a particle of mass m 
located in a spherically symmetrical potential well U (r) = 0 for 
r < 7.0  and U (r) = oo for r = r0, in the case when the motion of 
the particle is described by a wave function* (r) depending only on r. 

Instruction. When solving the Schrodinger equation, make the 
substitution 11) (r) = x (r)Ir. 

6.88. From the conditions of the foregoing problem find: 
(a) normalized eigenfunctions of the particle in the states for 

which (r) depends only on r; 
(b) the most probable value r

pr 
 for the ground state of the particle 

and the probability of the particle to be in the region r < rpr. 
6.89. A particle of mass m is located in a spherically symmetrical 

potential well U (r) = 0 for r < r0  and U (r) = U 0  for r > 
(a) By means of the substitution (r) = x (r)Ir find the equation 

defining the proper values of energy E of the particle for E < U0, 
when its motion is described by a wave function (r) depending 
only on r. Reduce that equation to the form 

sin kro =+kro Vh212mrsUo, where k.li2mElh. 

(b) Calculate the value of the quantity r°U0  at which the first 
level appears. 

6.90. The wave function of a particle of mass in in a unidimension-
al potential field U (x) = kx212 has in the ground state the form 

(x) = A e-coc2 , where A is a normalization factor and a is a positive 
constant. Making use of the Schrodinger equation, find the constant a 
and the energy E of the particle in this state. 

6.91. Find the energy of an electron of a hydrogen atom in a sta-
tionary state for which the wave function takes the form p  (r) 
= A (1 + ar) e-ar, where A, a, and a are constants. 

6.92. The wave function of an electron of a hydrogen atom in the 
ground state takes the form (r) = A e-r/ri, where A is a certain 
constant, r1  is the first Bohr radius. Find: 

(a) the most probable distance between the electron and the 
nucleus; 

(b) the mean value of modulus of the Coulomb force acting on the 
electron; 

(c) the mean value of the potential energy of the electron in the 
field of the nucleus. 

6.93. Find the mean electrostatic potential produced by an 
electron in the centre of a hydrogen atom if the electron is in the 
ground state for which the wave function is (r) = A e-r/ri, where A 
is a certain constant, r1  is the first Bohr radius. 
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6.94. Particles of mass m and energy E move from the left to the 
potential barrier shown in Fig. 6.3. Find: 

(a) the reflection coefficient R of the barrier for E > U0; 
(b) the effective penetration depth of the particles into the region 

x > 0 for E < Uo, i.e. the distance from the barrier boundary to 
the point at which the probability of finding a particle decreases 
e-fold. 

t 
up 

0 

Fig. 6.3. 

6.95. Employing Eq. (6.2e), find the probability D of an electron 
with energy E tunnelling through a potential barrier of width 1 
and height U0  provided the barrier is shaped as shown: 

(a) in Fig. 6.4; 
(b) in Fig. 6.5. 

       

     

U0  

      

      

      

-1 

Fig. 6.4. 	 Fig. 6.5. 	 Fig. 6.6. 

6.96. Using Eq. (6.2e), find the probability D of a particle of 
mass m and energy E tunnelling through the potential barrier 
shown in Fig. 6.6, where U (x) = U0  (1 — x2112). 

6.3. PROPERTIES OF ATOMS. SPECTRA 

• Spectral labelling of terms: x(L)j, where x = 2S + 1 is the multipli-
city, L, S, T are quantum numbers, 

L = 0, 1, 2, 3, 4, 5, 6, . . . 

(L): S, P, D, F, G, H, I, ... 

17-9451 



.17 
=== 

4 

3 
Diffuse 
series 

2 
Principal series 

3 
Sharp 
series 

H 

K-series 

Fig. 6.8. 

N 

• Terms of alkali metal atoms: 

T — 	 (6.3a) (n± CO2  

where R is the Rydberg constant, a is the Rydberg correction. 
Fig. 6.7 illustrates the diagram of a lithium atom terms. 
• Angular momenta of an atom: 

ML  = hjlL (L 	1), 	 (6.3b) 

with similar expressions for Ms  and M1. 
• Hund rules: 
(1) For a certain electronic configuration, the terms of the largest S value 

are the lowest in energy, and among the terms of Smax  that of the largest L 
usually lies lowest; 

Li 

Fig. 6.7. 

(2) for the basic (normal) term J = IL — SI if the subshell is less than 
half-filled, and J = L 	S in the remaining cases. 

• Boltzmann's formula: 
Ns = g2 

	

 e —(E,--E1)111T 	 (6.3c) 
N I  gi  

where g1  and g2  are the statistical weights (degeneracies) of the corresponding 
levels. 

• Probabilities of atomic transitions per unit time between level 1 and a 
higher level 2 for the cases of spontaneous radiation, induced radiation, and 
absorption: 

PsP  - 	 = pind p , pabs 
21 	 21 	 12 	BAUM,  

where A 21, B 21, B12 are Einstein coefficients, uo, is the spectral density of radia-
tion corresponding to frequency co of transition between the given levels. 

• Relation between Einstein coefficients: 
n2c3  

g1B12=g2,821, B21 	kw3A21. 

• Diagram showing formation of X-ray spectra (Fig. 6.8). 
• Moseley's law for K, lines: 

s  
K  = 3 LI (Z— o)2, 

a 4 

(6.3d) 

(6.3e) 
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where a is the correction constant which is equal to unity for light elements. 
• Magnetic moment of an atom and Lande g factor: 

g J (J + 1) g —1+
J (1-1-1)+S (S+1)—L(L+1)  (6.3g) 

2J (J -{-1) 

• Zeeman splitting of spectral lines in a weak magnetic field: 
MI) = (rnigi  — m 2g2) tI BBM. 	 (6.3h) 

• With radiation directed along the magnetic field, the Zeeman compo-
nents caused by the transition m1  = m2  are absent. 

6.97. The binding energy of a valence electron in a Li atom in the 
states 2S and 2P is equal to 5.39 and 3.54 eV respectively. Find 
the Rydberg corrections for S and P terms of the atom. 

6.98. Find the Rydberg correction for the 3P term of a Na atom 
whose first excitation potential is 2.10 V and whose valence electron 
in the normal 3S state has the binding energy 5.14 eV. 

6.99. Find the binding energy of a valence electron in the ground 
state of a Li atom if the wavelength of the first line of the sharp 
series is known to be equal to X = 813 nm and the short-wave 
cutoff wavelength of that series to X2  = 350 nm. 

6.100. Determine the wavelengths of spectral lines appearing 
on transition of excited Li atoms from the state 3S down to the 
ground state 2S. The Rydberg corrections for the S and P terms 
are —0.41 and —0.04. 

6.101. The wavelengths of the yellow doublet components of the 
resonance Na line caused by the transition 3P 3S are equal to 
589.00 and 589.56 nm. Find the splitting of the 3P term in eV units. 

6.102. The first line of the sharp series of atomic cesium is a doub-
let with wavelengths 1358.8 and 1469.5 nm. Find the frequency 
intervals (in rad/s units) between the components of the sequent 
lines of that series. 

6.103. Write the spectral designations of the terms of the hydrogen 
atom whose electron is in the state with principal quantum number 
n = 3. 

6.104. How many and which values of the quantum number J 
can an atom possess in the state with quantum numbers S and L 
equal respectively to 

(a) 2 and 3; (b) 3 and 3; (c) 5/2 and 2? 
6.105. Find the possible values of total angular momenta of 

atoms in the states 4P and 6D. 
6.106. Find the greatest possible total angular momentum and 

the corresponding spectral designation of the term 
(a) of a Na atom whose valence electron possesses the principal 

quantum number n = 4; 
(b) of an atom with electronic configuration 1s22p3d. 
6.107. It is known that in F and D states the number of possible 

values of the quantum number J is the same and equal to five. Find 
the spin angular momentum in these states. 
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6.108. An atom is in the state whose multiplicity is three and the 
total angular momentum is hi/ 20. What can the corresponding 
quantum number L be equal to? 

6.109. Find the possible multiplicities x of the terms of the 
types 

(a) "D2; (b) HP3/2; (c) 'F1. 
6.110. A certain atom has three electrons (s, p, and d), in addition 

to filled shells, and is in a state with the greatest possible total 
mechanical moment for a given configuration. In the corresponding 
vector model of the atom find the angle between the spin momentum 
and the total angular momentum of the given atom. 

6.111. An atom possessing the total angular momentum I Y6 
is in the state with spin quantum number S = 1. In the correspond-
ing vector model the angle between the spin momentum and the total 
angular momentum is 0 = 73.2°. Write the spectral symbol for 
the term of that state. 

6.112. Write the spectral symbols for the terms of a two-electron 
system consisting of one p electron and one d electron. 

6.113. A system comprises an atom in 2P3/2  state and a d electron. 
Find the possible spectral terms of that system. 

6.114. Find out which of the following transitions are forbidden 
by the selection rules: 2D312 	2P112, 3P1 	2S172, 3F

3 	3p2,  
4F71  2 	4D 512.  

6.115. Determine the overall degeneracy of a 3D state of a Li 
atom. What is the physical meaning of that value? 

6.116. Find the degeneracy of the states 2P, 3D, and 4F possessing 
the greatest possible values of the total angular momentum. 

6.117. Write the spectral designation of the term whose degeneracy 
is equal to seven and the quantum numbers L and S are interrelated 
as L = 3S. 

6.118. What element has the atom whose K, L, and M shells 
and 4s subshell are filled completely and 4p subshell is half-filled? 

6.119. Using the Hund rules, find the basic term of the atom whose 
partially filled subshell contains 

(a) three p electrons; (b) four p electrons. 
6.120. Using the Hund rules, find the total angular momentum 

of the atom in the ground state whose partially filled subshell 
contains 

(a) three d electrons; (b) seven d electrons. 
6.121. Making use of the Hund rules, find the number of electrons 

in the only partially filled subshell of the atom whose basic term is 
(a) 3F2; (b) 2P312; (c) 685/2. 
6.122. Using the Hund rules, write the spectral symbol of the 

basic term of the atom whose only partially filled subshell 
(a) is filled by 1/3, and S = 1; 
(b) is filled by 70%, and S = 3/2. 
6.123. The only partially filled subshell of a certain atom contains 

three electrons, the basic term of the atom having L = 3. Using 
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the Hund rules, write the spectral symbol of the ground state of 
the given atom. 

6.124. Using the Hund rules, find the magnetic moment of the 
ground state of the atom whose open subshell is half-filled with five 
electrons. 

6.125. What fraction of hydrogen atoms .is in the state with the 
principal quantum number n = 2 at a temperature T = 3000 K? 

6.126. Find the ratio of the number of atoms of gaseous sodium 
in the state 3P to that in the ground state 3S at a temperature T 

2400 K. The spectral line corresponding to the transition 3P 
3S is known to have the wavelength ? = 589 nm. 

6.127. Calculate the mean lifetime of excited atoms if it is known 
that the intensity of the spectral line appearing due to transition 
to the ground state diminishes by a factor = 25 over a distance 
1= 2.5 mm along the stream of atoms whose velocity is v = 
= 600 m/s. 

6.128. Rarefied Hg gas whose atoms are practically all in the 
ground state was lighted by a mercury lamp emitting a resonance 
line of wavelength A, = 253.65 nm. As a result, the radiation power 
of Hg gas at that wavelength turned out to be P = 35 mW. Find 
the number of atoms in the state of resonance excitation whose 
mean lifetime is T = 0.15 ps. 

6.129. Atomic lithium of concentration n = 3.6.1016  cm-3  is at 
a temperature T = 1500 K. In this case the power emitted at the 
resonant line's wavelength k = 671 nm (2P 2S) per unit volume 
of gas is equal to P = 0.30 Wicm3. Find the mean lifetime of Li 
atoms in the resonance excitation state. 

6.130. Atomic hydrogen is in thermodynamic equilibrium with 
its radiation. Find: 

(a) the ratio of probabilities of induced and spontaneous radia-
tions of the atoms from the level 2P at a temperature T = 3000 K; 

(b) the temperature at which these probabilities become equal. 
6.131. A beam of light of frequency co, equal to the resonant 

frequency of transition of atoms of gas, passes through that gas 
heated to temperature T. In this case hco >> kT. Taking into account 
induced radiation, demonstrate that the absorption coefficient of 
the gas x varies as x = xo  (1. — e--4eviiT), where xo  is the absorption 
coefficient for T 0. 

6.132. The wavelength of a resonant mercury line is X, = 
= 253.65 nm. The mean lifetime of mercury atoms in the state of 
resonance excitation is T = 0.15 Rs. Evaluate the ratio of the 
Doppler line broadening to the natural linewidth at a gas tempera-
ture T = 300 K. 

6.133. Find the wavelength of the K a  line in copper (Z = 29) if 
the wavelength of the K a  line in iron (Z = 26) is known to be equal 
to 193 pm. 

6.134. Proceeding from Moseley's law find: 
(a) the wavelength of the K a  line in aluminium and cobalt: 
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(b) the difference in binding energies of K and L electrons in 
vanadium. 

6.135. How many elements are there in a row between those 
whose wavelengths of Ka  lines are equal to 250 and 179 pm? 

6.136. Find the voltage applied to an X-ray tube with nickel 
anticathode if the wavelength difference between the K c, line and 
the short-wave cut-off of the continuous X-ray spectrum is equal 
to 84 pm. 

6.137. At a certain voltage applied to an X-ray tube with alumi-
nium anticathode the short-wave cut-off wavelength of the contin-
uous X-ray spectrum is equal to 0.50 nm. Will the K series of the 
characteristic spectrum whose excitation potential is equal to 
1.56 kV be also observed in this case? 

6.138. When the voltage applied to an X-ray tube increased from 
V1  = 10 kV to V , = 20 kV, the wavelength interval between 
the Ka  line and the short-wave cut-off of the continuous X-ray 
spectrum increases by a factor n = 3.0. Find the atomic number of 
the element of which the tube's anticathode is made. 

6.139. What metal has in its absorption spectrum the difference 
between the frequencies of X-ray K and L absorption edges equal 
to Au) = 6.85.1018  s-1  ? 

6.140. Calculate the binding energy of a K electron in vanadium 
whose L absorption edge has the wavelength X, = 2.4 nm. 

6.141. Find the binding energy of an L electron in titanium if 
the wavelength difference between the first line of the K series and 
its short-wave cut-off is A? = 26 pm. 

6.142. Find the kinetic energy and the velocity of the photoelect-
rons liberated by Kc, radiation of zinc from the K shell of iron whose 
K band absorption edge wavelength is ?K = 174 pm. 

6.143. Calculate the Lande g factor for atoms 
(a) in S states; (b) in singlet states. 
6.144. Calculate the Lande g factor for the following terms: 
(a) 6F1/2; (b) 4D112; (c) 5F2; (d) 5P1; (e) 3Po. 
6.145. Calculate the magnetic moment of an atom (in Bohr 

magnetons) 
(a) in 1F state; 
(b) in 2D312  state; 
(c) in the state in which S = 1, L = 2, and Lande factor g = 4/3. 
6.146. Determine the spin angular momentum of an atom in 

the state D2 if the maximum value of the magnetic moment pro-
jection in that state is equal to four Bohr magnetons. 

6.147. An atom in the state with quantum numbers L = 2, 
S = 1. is located in a weak magnetic field. Find its magnetic moment 
if the least possible angle between the angular momentum and 
the field direction is known to be equal to 30°. 

6.148. A valence electron in a sodium atom is in the state with 
principal quantum number n = 3, with the total angular momentum 
being the greatest possible. What is its magnetic moment in that state? 
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6.149. An excited atom has the electronic configuration 1s22s22p3d 
being in the state with the greatest possible total angular momentum. 
Find the magnetic moment of the atom in that state. 

6.150. Find the total angular momentum of an atom in the state 
with S = 3/2 and L = 2 if its magnetic moment is known to be 
equal to zero. 

6.151. A certain atom is in the state in which S = 2, the total 
angular momentum M = V 2h, and the magnetic moment is equal 
to zero. Write the spectral symbol of the corresponding 
term. 

6.152. An atom in the state 2P312  is located in the external magne-
tic field of induction B = 1.0 kG. In terms of the vector model find 
the angular precession velocity of the total angular momentum of 
that atom. 

6.153. An atom in the state 2P,12  is located on the axis of a loop 
of radius r = 5 cm carrying a current I = 10 A. The distance be-
tween the atom and the centre of the loop is equal to the radius of 
the latter. How great may be the maximum force that the magnetic 
field of that current exerts on the atom? 

6.154. A hydrogen atom in the normal state is located at a distance 
r = 2 . 5 cm from a long straight conductor carrying a current 
I = 10 A. Find the force acting on the atom. 

6.155. A narrow stream of vanadium atoms in the ground state 
4F312  is passed through a transverse strongly inhomogeneous magnet-
ic field of length 1, = 5.0 cm as in the Stern-Gerlach experiment. 
The beam splitting is observed on a screen located at a distance 
/ 2  = 15 cm from the magnet. The kinetic energy of the atoms is 
T = 22 MeV. At what value of the gradient of the magnetic field 
induction B is the distance between the extreme components of 
the split beam on the screen equal to 6 = 2.0 mm? 

6.156. Into what number of sublevels are the following terms 
split in a weak magnetic field: 

(a) 3P0; (b) 2F512; (c) 4P1/2? 
6.157. An atom is located in a magnetic field of induction B 

= 2.50 kG. Find the value of the total splitting of the following 
terms (expressed in eV units): 

(a) 1D; (b) 3F4. 
6.158. What kind of Zeeman effect, normal or anomalous, is 

observed in a weak magnetic field in the case of spectral lines caused 
by the following transitions: 

(a) 113 	 (b) 2D512 -* 2P312; (c)  3D1 -* 3P0; (d) 5/5 	5H4? 
6.159. Determine the spectral symbol of an atomic singlet term 

if the total splitting of that term in a weak magnetic field of induc-
tion B = 3.0 kG amounts to AE = 104 ['RV. 

6.160. It is known that a spectral line = 612 nm of an atom 
is caused by a transition between singlet terms. Calculate the inter-
val AX, between the extreme components of that line in the magnetic 
field with induction B = 10.0 kG. 
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6.161. Find the minimum magnitude of the magnetic field induc-
tion B at which a spectral instrument with resolving power ?LIU = 
= 1.0.105  is capable of resolving the components of the spectral 
line 2,, = 536 nm caused by a transition between singlet terms. The 
observation line is at right angles to the magnetic field direction. 

6.162. A spectral line caused by the transition 3D1  3P, expe-
riences the Zeeman splitting in a weak magnetic field. When observed 
at right angles to the magnetic field direction, the interval between 
the neighbouring components of the split line is Aco = 1.32.101° s-1  
Find the magnetic field induction B at the point where the source 
is located. 

6.163. The wavelengths of the Na yellow doublet (2P 	2S) are 
equal to 589.59 and 589.00 nm. Find: 

(a) the ratio of the intervals between neighbouring sublevels of 
the Zeeman splitting of the terms 2P312  and 2P112  in a weak magnetic 
field; 

(b) the magnetic field induction B at which the interval between 
neighbouring sublevels of the Zeeman splitting of the term 2/3312  
is 11 = 50 times smaller than the natural 
splitting of the term 2P. 

6.164. Draw a diagram of permitted 	W/1P//  
transitions between the terms 2P312  and 25112 a  e 	)fri 
in a weak magnetic field. Find the displace- 	 M  
ments (in rad/s units) of Zeeman components 	/ 
of that line in a magnetic field B = 4.5 kG. 

6.165. The same spectral line undergoing 	Fig. 6.9.  
anomalous Zeeman splitting is observed in 
direction 1 and, after reflection from the mirror M (Fig. 6.9), in 
direction 2. How many Zeeman components are observed in both 
directions if the spectral line is caused by the transition 

(a) 2P312 	2,9112;  (b) 3P 2 	3,51? 
6.166. Calculate the total splitting Ae) of the spectral line 3D3  —0- 

—4.- 3P2  in a weak magnetic field with induction B = 3.4 kG. 

6.4. MOLECULES AND CRYSTALS 

• Rotational energy of a diatomic molecule: 

h2 

E J —  TT (J+1.)' 

where I is the molecule's moment of inertia. 
• Vibrational energy of a diatomic molecule: 

	

, 	1 
(v-{ 1)

2 ' 

where co is the natural frequency of oscillations of the molecule. 

(6.4a) 

(6.4b) 



• Mean energy of a quantum harmonic oscillator at a temperature T: 

40)ha) 
(E)— 	_,_ 	

(6.4c) 2 	et.olkT 	a ' 
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• Debye formula for molar vibrational energy of a crystal: 

OIT 
3dx 
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where 0 is the Debye temperature, 

0= hcontaxik. 

• Molar vibrational heat capacity of a crystal for T 	0: 

T = _12 
5 

n4R ( 
0

)3 
• 

• Distribution of free electrons in metal in the vicinity of the absolute 
zero: 

-1/-  m3/2 
dn 	nah3 	E dE, 	 (6.4g) 

where do is the concentration of electrons whose energy falls within the inter- 
val E, E 	dE. The energy E is counted off the bottom of the conduction band. 

• Fermi level at T = 0: 
hz 

EF =-2m  (33t2n)2/3 7 	 (6.4h)  

where n is the concentration of free electrons in metal .  

6.167. Determine the angular rotation velocity of an S2 molecule 
promoted to the first excited rotational level if the distance between 
its nuclei is d = 189 pm. 

6.168. For an HCl molecule find the rotational quantum numbers 
of two neighbouring levels whose energies differ by 7.86 meV. The 
nuclei of the molecule are separated by the distance of 127.5 pm. 

6.169. Find the angular momentum of an oxygen molecule whose 
rotational energy is E = 2.16 meV and the distance between the 
nuclei is d = 121 pm. 

6.170. Show that the frequency intervals between the neighbour-
ing spectral lines of a true rotational spectrum of a diatomic molecule 
are equal. Find the moment of inertia and the distance between the 
nuclei of a CH molecule if the intervals between the neighbouring 
lines of the true rotational spectrum of these molecules are equal to 
Aw = 5.47.1012  s-1. 

6.171. For an HF molecule find the number of rotational levels 
located between the zeroth and first excited vibrational levels assum-
ing rotational states to be independent of vibrational ones. The 
natural vibration frequency of this molecule is equal to 
7.79.1014  rad/s, and the distance between the nuclei is 91.7 pm. 

(6.4d) 

(6.4e) 

(6.4f) 



6.172. Evaluate how many lines there are in a true rotational 
spectrum of CO molecules whose natural vibration frequency is 
o.) = 4.09.1014  s-1  and moment of inertia I = 1.44 -10-" g•cm2. 

6.173. Find the number of rotational levels per unit energy inter-
val, dN/dE, for a diatomic molecule as a function of rotational 
energy E. Calculate that magnitude for an iodine molecule in the 
state with rotational quantum number J = 10. The distance between 
the nuclei of that molecule is equal to 267 pm. 

6.174. Find the ratio of energies required to excite a diatomic 
molecule to the first vibrational and to the first rotational level. 
Calculate that ratio for the following molecules: 

Molecule a), 1014 s-1  d, pm 

(a) H2  8.3 74 
(b) HI 4.35 160 .  

(c) 12  0 40 267 

Here 6.) is the natural vibration frequency of a molecule, d is the 
distance between nuclei. 

6.175. The natural vibration frequency of a hydrogen molecule 
is equal to 8.25.1014  s-1  , the distance between the nuclei is 74 pm, 
Find the ratio of the number of these molecules at the first excited 
vibrational level (v = 1) to the number of molecules at the first 
excited rotational level (J = 1) at a temperature T = 875 K. It 
should be remembered that the degeneracy of rotational levels is 
equal to 2J + 1. 

6.176. Derive Eq. (6.4c), making use of the Boltzmann , distribu-
tion. From Eq. (6.4c) obtain the expression for molar vibration 
heat capacity Cv v ib of diatomic gas. Calculate Cy v ib for C12  gas 
at the temperature 300 K. The natural vibration frequency of these 
molecules is equal to 1.064 • 1014  s- 1  

6.177. In the middle of the rotation- -vibration band of emission 
spectrum of HC1 molecule, where the "zeroth" line is forbidden by 
the selection rules, the interval between neighbouring lines is Aco = 
= =--- 0.79.1013  s-1. Calculate the distance between the nuclei of an 
HC1 molecule. 

6.178. Calculate the wavelengths of the red and violet satellites, 
closest to the fixed line, in the vibration spectrum of Raman scatter-
ing by F2 molecules if the incident light wavelength is equal to 

404.7 nm and the natural vibration frequency of the molecule 
is co = 2.15.10'4  s-1. 

6A79. Find the natural vibration frequency and the quasielastic 
force coefficient of an S2  molecule if the wavelengths of the red and 
violet satellites, closest to the fixed line, in the vibration spectrum 

•of Raman scattering are equal to 346.6 and 330.0 nm. 
6.180. Find the ratio of intensities of the violet and red satellites, 

closest to the fixed line, in the vibration spectrum of Raman scatter-
ing by Cl, molecules at a temperature T = 300 K if the natural 
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vibration frequency of these molecules is a) = 1.06.1014  s -1  . 
By what factor will this ratio change if the temperature is doubled? 

6.181. Consider the possible vibration modes in the following 
linear molecules: 

(a) CO, (0 —C-0); (b) C,H, (H—C —C—H). 
6.182. Find the number of natural transverse vibrations of a string 

of length 1 in the frequency interval from co to (t) do) if the propa-
gation velocity of vibrations is equal to v. All vibrations are supposed 
to occur in one plane. 

6.183. There is a square membrane of area S. Find the number of 
natural vibrations perpendicular to its plane in the frequency interval 
from (.1.) to a) -I- da) if the propagation velocity of vibrations is equal 
to v. 

6.184. Find the number of natural transverse vibrations of a right-
angled parallelepiped of volume V in the frequency interval from 
a) to a) da) if the propagation velocity of vibrations is equal to v. 

6.185. Assuming the propagation velocities of longitudinal and 
transverse vibrations to be the same and equal to v, find the Debye 
temperature 

(a) for a unidimensional crystal, i.e. a chain of identical atoms, 
incorporating no  atoms per unit length; 

(b) for a two-dimensional crystal, i.e. a plane square grid consist-
ing of identical atoms, containing no  atoms per unit area; 

(c) for a simple cubic lattice consisting of identical atoms, con-
taining no  atoms per unit volume. 

6.186. Calculate the Debye temperature for iron in which the 
propagation velocities of longitudinal and transverse vibrations are 
equal to 5.85 and 3.23 km/s respectively. 

6.187. Evaluate the propagation velocity of acoustic vibrations 
in aluminium whose Debye temperature is 8 = 396 K. 

6.188. Derive the formula expressing molar heat capacity of 
a unidimensional crystal, a chain of identical atoms, as a function 
of temperature T if the Debye temperature of the chain is equal to O. 
Simplify the obtained expression for the case T >> 8. 

6.189. In a chain of identical atoms the vibration frequency a) 
depends on wave number k as a) = comax  sin (ka/2), where comax 
is the maximum vibration frequency, lc = 2n4, is the wave number 
corresponding to frequency a), a is the distance between neighbour-
ing atoms. Making use of this dispersion relation, find the dependence 
of the number of longitudinal vibrations per unit frequency interval 
on co, i.e. dN/da), if the length of the chain is 1. Having obtained 
dNIcico, find the total number N of possible longitudinal vibrations 
of the chain. 

6.190. Calculate the zero-point energy per one gram of copper 
whose Debye temperature is 8 = 330 K. 

6.191. Fig. 6.10 shows heat capacity of a crystal vs temperature 
in terms of the Debye theory. Here C,1  is classical heat capacity, 
0 is the Debye temperature. Using this plot, find: 
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(a) the Debye temperature for silver if at a temperature T -= 65 K 
its molar heat capacity is equal to 15 J/(mol•K); 

(b) the molar heat capacity of aluminium at T = 80 K if at 
T = 250 K it is equal to 22.4 J/(mol•K); 

(c) the maximum vibration frequency for copper whose heat 
capacity at T = 125 K differs from the classical value by 25%. 

c/cci 
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Fig. 6.10. 

6.192. Demonstrate that molar heat capacity of a crystal at 
a temperature T << 0, where 0 is the Debye temperature, is defined 
by Eq. (6.4f). 

6.193. Can one consider the temperatures 20 and 30 K as low for 
a crystal whose heat capacities at these temperatures are equal 
to 0.226 and 0.760 J/(mol- K)? 

6.194. Calculate the mean zero-point energy per one oscillator 
of a crystal in terms of the Debye theory if the Debye temperature 
of the crystal is equal to 0. 

6.195. Draw the vibration energy of a crystal as a function of 
frequency (neglecting the zero-point vibrations). Consider two cases: 
T = 0/2 and T = 0/4, where 0 is the Debye temperature. 

6.196. Evaluate the maximum values of energy and momentum 
of a phonon (acoustie quantum) in copper whose Debye temperature 
is equal to 330 K. 

6.197. Employing Eq. (6.4g), find at T = 0: 
(a) the maximum kinetic energy of free electrons in a metal if 

their concentration is equal to n; 
(b) the mean kinetic energy of free electrons if their maximum 

kinetic energy Tmax  is known. 
6.198. What fraction (in per cent) of free electrons in a metal at 

T = 0 has a kinetic energy exceeding half the maximum energy? 
6.199. Find the number of free electrons per one sodium atom 

at T = 0 if the Fermi level is equal to EF = 3.07 eV and the density 
of sodium is 0.97 g/cm3. 

0.8 

as 

0.4 
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6.200. Up to what temperature has one to heat classical electronic 
gas to make the mean energy of its electrons equal to that of free 
electrons in copper at T = 0? Only one free electron is supposed to 
correspond to each copper atom. 

6.201. Calculate the interval (in eV units) between neighbouring 
levels of free electrons in a metal at T = 0 near the Fermi level, 
if the concentration of free electrons is n = 2.0.1022  cm-3  and the 
volume of the metal is V = 1.0 cm3. 

6.202. Making use of Eq. (6.4g), find at 7' = 0: 
(a) the velocity distribution of free electrons; 
(b) the ratio of the mean velocity of free electrons to their maxi-

mum velocity. 
6.203. On the basis of Eq. (6.4g) find the number of free electrons 

in a metal at 7' = 0 as a function of de Broglie wavelengths. 
6.204. Calculate the electronic gas pressure in metallic sodium, 

at T = 0, in which the concentration of free electrons is n = 
= 2.5.1022  cm-3. Use the equation for the pressure of ideal gas. 

6.205. The increase in temperature of a cathode in electronic tube 
by OT = 1.0 K from the value 7' '= 2000 K results in the increase 
of saturation current by ----- 1.4%. Find the work function of 
electron for the material of the cathode. 

6.206. Find the refractive index of metallic sodium for electrons 
with kinetic energy T = 135 eV. Only one free electron is assumed 
to correspond to each sodium atom. 

6.207. Find the minimum energy of electron-hole pair formation 
in an impurity-free semiconductor whose electric conductance 
increases = 5.0 times when the temperature increases from T1  = 
= 300 K to T2 = 400 K. 

6.208. At very low temperatures the photoelectric threshold short 
wavelength in an impurity-free germanium is equal to 1th = 1.7 p,m. 
Find the temperature coefficient of resistance of this germanium 
sample at room temperature. 

6.209. Fig. 6.11 illustrates logarithmic electric conductance as 
a function of reciprocal 
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n-type semiconductor. Using this plot, find the width of the forbid-
den band of the semiconductor and the activation energy of donor 
levels. 

6.210. The resistivity of an impurity-free semiconductor at room 
temperature is p = 50 Q • cm. It becomes equal to pi  = 40 Q• cm 
when the semiconductor is illuminated with light, and t = 8 ms 
after switching off the light source the resistivity becomes equal to 
p, = 45 I2-cm. Find the mean lifetime of conduction electrons and 
holes. 

6.211. In Hall effect measurements a plate of width h = 10 mm 
and length 1 = 50 mm made of p-type semiconductor was placed 
in a magnetic field with induction B = 5.0 kG. A potential differ-
ence V = 10 V was applied across the edges of the plate. In this 
case the Hall field is VH = 50 mV and resistivity p = 2.5 52•cm. 
Find the concentration of holes and hole mobility. 

6.212. In Hall effect measurements in a magnetic field with 
induction B = 5.0 kG the transverse electric field strength in an 
impurity-free germanium turned out to be rl = 10 times less than 
the longitudinal electric field strength. Find the difference in the 
mobilities of conduction electrons and holes in the given semicon-
ductor. 

6.213. The Hall effect turned out to be not observable in a semi-
conductor whose conduction electron mobility was 7.1 = 2.0 times 
that of the hole mobility. Find the ratio of hole and conduction 
electron concentrations in that semiconductor. 

6.5. RADIOACTIVITY 

• Fundamental law of radioactive decay: 

	

N=Noe —xt. 	 (6.5a) 

• Relation between the decay constant X., the mean lifetime T, and the 
half-life T: 

1 	ln 2 
T • 

• Specific activity is the activity of a unit mass df a radioisotope. 

6.214. Knowing the decay constant X of a nucleus, find: 
(a) the probability of decay of the nucleus during the time from 0 

to t; 
(b) the mean lifetime ti of the nucleus. 
6.215. What fraction of the radioactive cobalt nuclei whose half-

life is 71.3 days decays during a month? 
6.216. How many beta-particles are emitted during one hour by 

1.0 p,g of Na24  radionuclide whose half-life is 15 hours? 
6.217. To investigate the beta-decay of Mg23  radionuclide, a coun-

ter was activated at the moment t = 0. It registered Ni  beta-parti-
cles by a moment t, = 2.0 s, and by a moment t2  = 3t1  the number 

(6.5b) 
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of registered beta-particles was 2.66 times greater. Find the mean 
lifetime of the given nuclei. 

6.218. The activity of a certain preparation decreases 2.5 times 
after 7.0 days. Find its half-life. 

6.219. At the initial moment the activity of a certain radionuclide 
totalled 650 particles per minute. What will be the activity of the 
preparation after half its half-life period? 

6.220. Find the decay constant and the mean lifetime of Co" 
radionuclide if its activity is known to decrease 4.0% per hour. 
The decay product is nonradioactive. 

6.221. A U238  preparation of mass 1.0 g emits 1.24.104  alpha-
particles per second. Find the half-life of this nuclide and the activity 
of the preparation. 

6.222. Determine the age of ancient wooden items if it is known 
that the specific activity of C" nuclide in them amounts to 3/5 of 
that in lately felled trees. The half-life of C" nuclei is 5570 years. 

6.223. In a uranium ore the ratio of U238  nuclei to P132°8  nuclei 
is = 2.8. Evaluate the age of the ore, assuming all the lead Pb2°8  
to be a final decay product of the uranium series. The half-life of 
U238  nuclei is 4.5.109  years. 

6.224. Calculate the specific activities of Na24  and U235  nuclides 
whose half-lifes are 15 hours and 7.1.108  years respectively. 

6.225. A small amount of solution containing Na24  radionuclide 
with activity A = 2.0.103  disintegrations per second was injected 
in the bloodstream of a man. The activity of 1 cm3  of blood sample 
taken t = 5.0 hours later turned out to be A' = 16 disintegrations 
per minute per cm3. The half-life of the radionuclide is T = 15 hours. 
Find the volume of the man's blood. 

6.226. The specific activity of a preparation consisting of radio-
active Co58  and nonradioactive Co" is equal to 2.2.1012  dis/(s•g). 
The half-life of Co58  is 71.3 days. Find the ratio of the mass of radio-
active cobalt in that preparation to the total mass of the preparation 
(in per cent). 

6.227. A certain preparation includes two beta-active components 
with different half-lifes. The measurements resulted in the following 
dependence of the natural logarithm of preparation activity on 
time t expressed in hours: 

t 0 1 2 3 5 7 10 14 20 
In A 4.10 3.60 3.10 2.60 2.06 1.82 1.60 1.32 0.90 

Find the half-lifes of both components and the ratio of radioactive 
nuclei of these components at the moment t = 0. 

6.228. A P32  radionuclide with half-life 7' = 14.3 days is produced 
in a reactor at a constant rate q = 2.7.10' nuclei per second. How 
soon after the beginning of production of that radionuclide will its 
activity be equal to A = 1.0.109  dis/s? 

6.229. A radionuclide A, with decay constant ki  transforms into 
a radionuclide A 2 with decay constant A,2. Assuming that at the 
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initial moment the preparation contained only the radionuclide A1, 
find: 

(a) the equation describing accumulation of the radionuclide A 2 
With time; 

(b) the time interval after which the activity of radionuclide A 2 
reaches the maximum value. 

6.230. Solve the foregoing problem if Xi  = X2 = X. 
6.231. A radionuclide Al  goes through the transformation chain 

Al  -.-A2  —.A3  (stable) with respective decay constants Xi  and X2. 
Assuming that at the initial moment the preparation contained 
only the radionuclide A1  equal in quantity to N10  nuclei, find the 
equation describing accumulation of the stable isotope A3. 

6.232. A Bi21° radionuclide decays via the chain 

Bpi° .-). P0210 	Pbao6  (stable), a., 

where the decay constants are X, = 1.60.10-8  s-1, X2 = 
= 5.80.10-8  8-1. Calculate alpha- and beta-activities of the Bi21° 
preparation of mass 1.00 mg a month after its manufacture. 

6.233. (a) What isotope is produced from the alpha-radioactive 
Ra228  as a result of five alpha-disintegrations and four (3'-disintegra-
tions? 

(b) How many alpha- and P--decays does U238  experience before 
turning finally into the stable Pb206  isotope? 

6.234. A stationary Pb2" nucleus emits an alpha-particle with 
kinetic energy 7'„ = 5.77 MeV. Find the recoil velocity of a daught-
er nucleus. What fraction of the total energy liberated in this decay 
is accounted for by the recoil energy of the daughter nucleus? 

6.235. Find the amount of heat generated by 1.00 mg of a Po21° 
preparation during the mean lifetime period of these nuclei if the 
emitted alpha-particles are known to possess the kinetic energy 
5.3 MeV and practically all daughter nuclei are formed directly in 
the ground state. 

6.236. The alpha-decay of Po21° nuclei (in the ground state) is 
accompanied by emission of two groups of alpha-particles with 
kinetic energies 5.30 and 4.50 MeV. Following the emission of these 
particles the daughter nuclei are found in the ground and excited 
states. Find the energy of gamma-quanta emitted by the excited 
nuclei. 

6.237. The mean path length of alpha-particles in air under 
standard conditions is defined by the formula R = 0.98.10-27  v3o  cm, 
where v0  (cm/s) is the initial velocity of an alpha-particle. Using 
this formula, find for an alpha-particle with initial kinetic energy 
7.0 MeV: 

(a) its mean path length; 
(b) the average number of ion pairs formed by the given alpha-

particle over the whole path R as well as over its first half, assuming 
the ion pair formation energy to be equal to 34 eV. 
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6.238. Find the energy Q liberated in (3-- and 13+-decays and in 
K-capture if the masses of the parent atom MP, the daughter atom 
M d and an electron m are known. 

6.239. Taking the values of atomic masses from the tables, find 
the maximum kinetic energy of beta-particles emitted by Be" 
nuclei and the corresponding kinetic energy of recoiling daughter 
nuclei formed directly in the ground state. 

6.240. Evaluate the amount of heat produced during a day by 
a P--active Na24  preparation of mass m = 1.0 mg. The beta-particles 
are assumed to possess an average kinetic energy equal to 1/3 of the 
highest possible energy of the given decay. The half-life of Na24  is 
T = 15 hours. 

6.241. Taking the values of atomic masses from the tables, calcu-
late the kinetic energies of a positron and a neutrino emitted by Cu 
nucleus for the case when the daughter nucleus does not 
recoil. 

6.242. Find the kinetic energy of the recoil nucleus in the positron-
ic decay of a Nn nucleus for the case when the energy of positrons 
is maximum. 

6.243. From the tables of atomic masses determine the velocity 
of a nucleus appearing as a result of K-capture in a Bel atom provided 
the daughter nucleus turns out to be in the ground state. 

6.244. Passing down to the ground state, excited Agin nuclei 
emit either gamma quanta with energy 87 keV or K conversion 
electrons whose binding energy is 26 keV. Find the velocity of these 
electrons. 

6.245. A free stationary Irm nucleus with excitation energy 
E = 129 keV passes to the ground state, emitting a gamma quan-
tum. Calculate the fractional change of gamma quanta energy due 
to recoil of the nucleus. 

6.246. What must be the relative velocity of a source and an 
absorber consisting of free Iris' nuclei to observe the maximum absorp-
tion of gamma quanta with energy g = 129 keV? 

6.247. A source of gamma quanta is placed at a height h = 20 m 
above an absorber. With what velocity should the source be displaced 
upward to counterbalance completely the gravitational variation 
of gamma quanta energy due to the Earth's gravity at the point 
where the absorber is located? 

6.248. What is the minimum height to which a gamma quanta 
source containing excited Zn°7  nuclei has to be raised for the gravi-
tational displacement of the Mossbauer line to exceed the line width 
itself, when registered on the Earth's surface? The registered gamma 
quanta are known to have an energy c = 93 keV and appear on 
transition of Zn67  nuclei to the ground state, and the mean lifetime 
of the excited state is i = 14 fiS. 

18-9451 
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6.6. NUCLEAR REACTIONS 

• Binding energy of a nucleus: 
Eb = ZmH ± (A Z) mn  — M, 	 (6.6a) 

where Z is the charge of the nucleus (in units of e), A is the mass number, mil, 
mn, and M are the masses of a hydrogen atom, a neutron, and an atom corres-
ponding to the given nucleus. 

In calculations the following formula is more convenient to use: 
Eb = ZAH -F (A — Z)A, — A, 	 (6.6b) 

where AH, An, and A are the mass surpluses of a hydrogen atom, a neutron, 
and an atom corresponding to the given nucleus. 

• Energy diagram of a nuclear reaction 

m M M* m' M' Q 	 (6.6c) 

is illustrated in Fig. 6.12, where m--+M and m'+M' are the sums of rest masses 
of particles before and after the reaction, -f• and f- are the total kinetic ener-
gies of particles before and after the reaction 
(in the frame of the centre of inertia), E* is 
the excitation energy of the transitional 	  
nucleus, Q is the energy of the reaction, E 	 A  2  
and E' are the binding energies of the par- 
ticles m and m' in the transitional nucleus, 

	T 

1, 2, 3 are the energy levels of the transi- 
tional nucleus. 	 filtM 

• Threshold (minimum) kinetic energy 
of an incoming particle at which an endoer-
gic nuclear reaction 	 /77W11  

Tth — 	
m+M 

 IQI 	(6.6d) 

becomes possible; here m and M are the 
masses of the incoming particle and the 
target nucleus. 

6.249. An alpha-particle with kinetic energy Ta  = 7.0 MeV is 
scattered elastically by an initially stationary Li6  nucleus. Find 
the kinetic energy of the recoil nucleus if the angle of divergence 
of the two particles is 0 = 60°. 

6.250. A neutron collides elastically with an initially stationary 
deuteron. Find the fraction of the kinetic energy lost by the neutron 

(a) in a head-on collision; 
(b) in scattering at right angles. 
6.251. Find the greatest possible angle through which a deuteron 

is scattered as a result of elastic collision with an initially stationary 
proton. 

6.252. Assuming the radius of a nucleus to be equal to R = 
= 0.13 VA pm, where A is its mass number, evaluate the density 
of nuclei and the number of nucleons per unit volume of the nucleus. 

6.253. Write missing symbols, denoted by x, in the following 
nuclear reactions: 

(a) 131° (x, a) Be; 

Fig. 6.12. 



(b) 017  (d, n) x; 
(c) Na23  (p, x) Ne20; 
(d) x (p, n) Ar37. 
6.254. Demonstrate that the binding energy of a nucleus with 

mass number A and charge Z can be found from Eq. (6.6b). 
6.255. Find the binding energy of a nucleus consisting of equal 

numbers of protons and neutrons and having the radius one and a half 
times smaller than that of A127  nucleus. 

6.256. Making use of the tables of atomic masses, find: 
(a) the mean binding energy per one nucleon in 016  nucleus; 
(b) the binding energy of a neutron and an alpha-particle in 

a B11  nucleus; 
(c) the energy required for separation of an 016  nucleus into four 

identical particles. 
6.257. Find the difference in binding energies of a neutron and 

a proton in a B"  nucleus. Explain why there is the difference. 
6.258. Find the energy required for separation of a Ne20  nucleus 

into two alpha-particles and a C12  nucleus if it is known that the 
binding energies per one nucleon in Ne20, He4, and C12  nuclei are 
equal to 8.03, 7.07, and 7.68 MeV respectively. 

6.259. Calculate in atomic mass units the mass of 
(a) a Lib atom whose nucleus has the binding energy 41.3 MeV; 
(b) a C1° nucleus whose binding energy per nucleon is equal to 

6.04 MeV. 
6.260. The nuclei involved in the nuclear reaction A l  + A -* 

—*A3  + A4 have the binding energies El , E,, E3, and E4. Find the 
energy of this reaction. 

6.261. Assuming that the splitting of a U236  nucleus liberates the 
energy of 200 MeV, find: 

(a) the energy liberated in the fission of one kilogram of U236  
isotope, and the mass of coal with calorific value of 30 kJ/g which 
is equivalent to that for one kg of U235; 

(b) the mass of U235  isotope split during the explosion of the atomic 
bomb with 30 kt trotyl equivalent if the calorific value of trotyl 
is 4.1 kJ/g. 

6.262. What amount of heat is liberated during the formation of 
one gram of He4  from deuterium H2? What mass of coal with calo-
rific value of 30 kJ/g is thermally equivalent to the magnitude 
obtained? 

6.263. Taking the values of atomic masses from the tables, calcu-
late the energy per nucleon which is liberated in the nuclear reaction 
Lib -I- H2  —4- 2He4. Compare the obtained magnitude with the energy 
per nucleon liberated in the fission of U235  nucleus. 

6.264. Find the energy of the reaction Li7 	p -÷2He4  if the 
binding energies per nucleon in Li7  and He4  nuclei are known to be 
equal to 5.60 and 7.06 MeV respectively. 

6.265. Find the energy of the reaction 1\114  (a, p) On if the kinetic 
energy of the incoming alpha-particle is T = 4.0 MeV and the 
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proton outgoing at an angle 0 = 60° to the motion direction of the 
alpha-particle has a kinetic energy Tp = 2.09 MeV. 

6.266. Making use of the tables of atomic masses, determine the 
energies of the following reactions: 

(a) Li7  (p, n) Be7; 
(b) Be9  (n, 	Be"; 
(c) Li7  (a, n) B"'); 
(d) 016  (d, a) 1\114. 
6.267. Making use of the tables of atomic masses, find the velocity 

with which the products of the reaction B1° (n, a) Li7  come apart; 
the reaction proceeds via interaction of very slow neutrons with 
stationary boron nuclei. 

6.268. Protons striking a stationary lithium target activate 
a reaction Li7  (p, n) Be7. At what value of the proton's kinetic 
energy can the resulting neutron be stationary? 

6.269. An alpha particle with kinetic energy T = 5.3 MeV 
initiates a nuclear reaction Be9  (a, n) C12  with energy yield Q 

+5.7 MeV. Find the kinetic energy of the neutron outgoing at 
right angles to the motion direction of the alpha-particle. 

6.270. Protons with kinetic energy T =1.0 MeV striking a lith-
ium target induce a nuclear reaction p Li7  2He4. Find the 
kinetic energy of each alpha-particle and the angle of their divergence 
provided their motion directions are symmetrical with respect to 
that of incoming protons. 

6.271. A particle of mass m strikes a stationary nucleus of mass M 
and activates an endoergic reaction. Demonstrate that the threshold 
(minimal) kinetic energy required to initiate this reaction is defined 
by Eq. (6.6d). 

6.272. What kinetic energy must a proton possess to split a deuter-
on H2  whose binding energy is Eb = 2.2 MeV? 

6.273. The irradiation of lithium and beryllium targets by a 
monoergic stream of protons reveals that the reaction Li7(p, n)Be7  -
- 1.65 MeV is initiated whereas the reaction Be9(p, n)B9  — 1.85 MeV 
does not take place. Find the possible values of kinetic energy of 
the protons. 

6.274. To activate the reaction (n, a) with stationary B11  nuclei, 
neutrons must have the threshold kinetic energy Tth = 4.0 MeV. 
Find the energy of this reaction. 

6.275. Calculate the threshold kinetic energies of protons required 
to activate the reactions (p, n) and (p, d) with Li7  nuclei. 

6.276. Using the tabular values of atomic masses, find the thresh-
old kinetic energy of an alpha particle required to activate the 
nuclear reaction Li7  (a, n) BN. What is the velocity of the B1° 
nucleus in this case? 

6.277. A neutron with kinetic energy T = 10 MeV activates 
a nuclear reaction C'2  (n, a) Be9  whose threshold is Tth = 6.17 MeV. 
Find the kinetic energy of the alpha-particles outgoing at right 
angles to the incoming neutrons' direction. 



6.278. How much, in per cent, does the threshold energy of gam-
ma quantum exceed the binding energy of a deuteron (Eb  = 2.2 MeV) 
in the reaction Y  + H2  n p? 

6.279. A proton with kinetic energy T = 1.5 MeV is captured 
by a deuteron H2. Find the excitation energy of the formed nucleus. 

6.280. The yield of the nuclear reaction C'3(d, n)N" has maximum 
magnitudes at the following values of kinetic energy T, of bombard-
ing deuterons: 0.60, 0.90, 1.55, and 1.80 MeV. Making use of the 
table of atomic masses, find the corresponding energy levels of the 
transitional nucleus through which this reaction proceeds. 

6.281. A narrow beam of thermal neutrons is attenuated 
= 360 times after passing through a cadmium plate of thickness 
d = 0.50 mm. Determine the effective cross-section of interaction 
of these neutrons with cadmium nuclei. 

6.282. Determine how many times the intensity of a narrow beam 
of thermal neutrons will decrease after passing through the heavy 
water layer of thickness d = 5.0 cm. The effective cross-sections of 
interaction of deuterium and oxygen nuclei with thermal neutrons 
are equal to al  = 7.0 b and a2  --- 4.2 b respectively. 

6.283. A narrow beam of thermal neutrons passes through a plate 
of iron whose absorption and scattering effective cross-sections are 
equal to o- c, = 2.5 b and a8  = 11 b respectively. Find the fraction 
of neutrons quitting the beam due to scattering if the thickness of 
the plate is d = 0.50 cm. 

6.284. The yield of a nuclear reaction producing radionuclides 
may be described in two ways: either by the ratio w of the number 
of nuclear reactions to the number of bombarding particles, or by 
the quantity k, the ratio of the activity of the formed radionuclide 
to the number of bombarding particles, Find: 

(a) the half-life of the formed radionuclide, assuming w and k 
to be known; 

(b) the yield w of the reaction Li7(p, n)Be7  if after irradiation of 
a lithium target by a beam of protons (over t = 2.0 hours and with 
beam current I = 10 p,A) the activity of Bel became equal to A = 
= 1.35.108  dis/s and its half-life to T = 53 days. 

6.285. Thermal neutrons fall normally on the surface of a thin 
gold foil consisting of stable Au197  nuclide. The neutron flux density 
is J = 1.0.1010  part./(s- cm2). The mass of the foil is in = 10 mg. 
The neutron capture produces beta-active Au188  nuclei with half-life 
T = 2.7 days. The effective capture cross-section is a = 98 b. 
Find: 

(a) the irradiation time after which the number of Au187  nuclei 
decreases by = 1.0%; 

(b) the maximum number of Aul" nuclei that can be formed dur-
ing protracted irradiation. 

6.286. A thin foil of certain stable isotope is irradiated by thermal 
neutrons falling normally on its surface. Due to the capture of 
neutrons a radionuclide with decay constant k appears. Find the law 



describing accumulation of that radionuclide N (t) per unit area 
of the foil's surface. The neutron flux density is J, the number of 
nuclei per unit area of the foil's surface is n, and the effective cross-
section of formation of active nuclei is a. 

6.287. A gold foil of mass m = 0.20 g was irradiated during 
= 6.0 hours by a thermal neutron flux falling normally on its 

surface. Following i = 12 hours after the completion of irradiation 
the activity of the foil became equal to A = 1.9.107  dis/s. Find 
the neutron flux density if the effective cross-section of formation 
of a radioactive nucleus is a --= 96 b, and the half-life is equal 
to T = 2.7 days. 

6.288. How many neutrons are there in the hundredth generation 
if the fission process starts with No  = 1000 neutrons and takes 
place in a medium with multiplication constant k = 1.05? 

6.289. Find the number of neutrons generated per unit time in 
a uranium reactor whose thermal power is P = 100 MW if the 
average number of neutrons liberated in each nuclear splitting is 
v = 2.5. Each splitting is assumed to release an energy E = 
= 200 MeV. 

6.290. In a thermal reactor the mean lifetime of one generation 
of thermal neutrons is ti = 0.10 s. Assuming the multiplication 
constant to be equal to k = 1.010, find: 

(a) how many times the number of neutrons in the reactor, and 
consequently its power, will increase over t = 1.0 min; 

(b) the period T of the reactor, i.e. the time period over which 
its power increases e-fold. 

6.7. ELEMENTARY PARTICLES 

• Total energy and momentum of a relativistic particle: 

E = moc2 	T,  pc =ITT (T 	2rnoc2), 	 (6.7a) 

where T is the kinetic energy of the particle. 
• When examining collisions of particles it pays to use the invariant: 

E2 —p2c2 =m8c4, 	 (6.7b) 

where E and p are the total energy and the total momentum of the system prior 
to collision, mo  is the rest mass of the formed particle. 

• Threshold (minimal) kinetic energy of a particle m striking a stationary 

	

particle M and activating the endoergic reaction in 	M 	m1  + m2  + ... : 

(rni+m2+ • • •)2— (m+M)2  Tth= 	 c2, 	 (6.7c) 
2M 

where in, M, m1, m 2, . . . are the rest masses of the respective particles. 
• Quantum numbers classifying elementary particles: 
Q, electric charge, 
L, lepton charge, 
B, baryon charge, 
T, isotopic spin, T2, its projection, 
S, strangeness, S = 2(Q) — B, 
Y, hypercharge, Y = B + S. 



• Relation between quantum numbers of strongly interacting particles: 

Q.--Tz-1- 2 =Tz+ B 2
±S 
	 (6.7d) 

• Interactions of particles obey the laws of conservation of the Q, L and 
B charges. In strong interactions the laws of conservation of S (or Y), T, and 
its projection 7', are also valid. 

6.291. Calculate the kinetic energies of protons whose momenta 
are 0.10, 1.0, and 10 GeVic, where c is the velocity of light. 

6.292. Find the mean path travelled by pions whose kinetic 
energy exceeds their rest energy 11 = 1.2 times. The mean lifetime 
of very slow pions is To  = 25.5 ns. 

6.293. Negative pions with kinetic energy T = 100 MeV travel 
an average distance 1= 11 m from their origin to decay. Find the 
proper lifetime of these pions. 

6.294. There is a narrow beam of negative pions with kinetic 
energy T equal to the rest energy of these particles. Find the ratio 
of fluxes at the sections of the beam separated by a distance 1 = 
= 20 m. The proper mean lifetime of these pions is vci = 25.5 ns. 

6.295. A stationary positive pion disintegrated into a muon and 
a neutrino. Find the kinetic energy of the muon and the energy of 
the neutrino. 

6.296. Find the kinetic energy of a neutron emerging as a result 
of the decay of a stationary E - hyperon (E n -). 

6.297. A stationary positive muon disintegrated into a positron 
and two neutrinos. Find the greatest possible kinetic energy of the 
positron. 

6.298. A stationary neutral particle disintegrated into a proton 
with kinetic energy T = 5.3 MeV and a negative pion. Find the 
mass of that particle. What is its name? 

6.299. A negative pion with kinetic energy T = 50 MeV disinteg-
rated during its flight into a muon and a neutrino. Find the energy 
of the neutrino outgoing at right angles to the pion's motion direc-
tion. 

6.300. A E 4-  hyperon with kinetic energy Tz  = 320 MeV disinteg-
rated during its flight into a neutral particle and a positive pion 
outgoing with kinetic energy T,, = 42 MeV at right angles to the 
hyperon's motion direction. Find the rest mass of the neutral particle 
(in MeV units). 

6.301. A neutral pion disintegrated during its flight into two 
gamma quanta with equal energies. The angle of divergence of 
gamma quanta is 8 = 60°. Find the kinetic energy of the pion and of 
each gamma quantum. 

6.302. A relativistic particle with rest mass m collides with 
a stationary particle of mass M and activates a reaction leading to 
formation of new particles: m M ± m2  . .., where the 
rest masses of newly formed particles are written on the right-hand 
side. Making use of the invariance of the quantity E2  — p2c2, dem- 
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onstrate that the threshold kinetic energy of the particle m required 
for this reaction is defined by Eq. (6.7c). 

6.303. A positron with kinetic energy T = 750 keV strikes a sta-
tionary free electron. As a result of annihilation, two gamma quanta 
with equal energies appear. Find the angle of divergence between 
them. 

6.304. Find the threshold energy of gamma quantum required 
to form 

(a) an electron-positron pair in the field of a stationary electron; 
(b) a pair of pions of opposite signs in the field of a stationary 

proton. 
6.305. Protons with kinetic energy T strike a stationary hydrogen 

target. Find the threshold values of T for the following reactions: 

(a) I)  + -4- 13 	 P; (b) P 	 P 	n°• 
6.306. A hydrogen target is bombarded by pions. Calculate the 

threshold values of kinetic energies of these pions making possible 
the following reactions: 

(a) 2-c -  + p 	+ E -; (b) a° + p —)-K+ + A°. 
6.307. Find the strangeness S and the hypercharge Y of a neutral 

elementary particle whose isotopic spin projection is T, = +1/2 
and baryon charge B = +1. What particle is this? 

6.308. Which of the following processes are forbidden by the law 
of conservation of lepton charge: 

(1) n 	+ + v; 	(4) p + e- 	+ v; 
(2) a+ -*la+ + e-  + e+; 	(5) p,+ -3-e+ + v + v; 
(3) 21- 	+ v; 	(6) K- 	+ 

6.309. Which of the following processes are forbidden by the law 
of conservation of strangeness: 

(1) 21--  + p E 	+ K+; (4) n + p A° + E +; 
(2) n-  + p E + + K-; (5) a-  + n E-  + K+ + K-; 
(3) a-  + p K+ + K-  + n; (6) K-  + p + K+ + K°? 

6.310. Indicate the reasons why the following processes are for-
bidden: 

(1) E -  —0- A° + a-; (4) n + p E + + A°; 
(2) n-  + p 	+ K-; (5) n-  + e+ + e-; 
(3) K-  + n -÷52-  + K+ + K°; (6) 	it-  + vE  + 
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ANSWERS AND SOLUTIONS 

1A. v = 112-c = 3.0 km per hour. 
1.2. (v) = 2v0  (v1  + v2)/(2vo  + v1  + v2). 
1.3. At= -1/ 1 — 4 (v)/urt 15 s. 
1.4. (a) 10 cm/s; (b) 25 cm/s; (c) to  = 16 s. 
1.5. (r1  — r2)/1 r1 	r21 == (v2  -- vi)/1 v2 -- vl 
1.6. v' = V 4 + v2 + 2vov cos q) 	40 km per hour, cp' = 19°. 

1.7. u— (1—va/v'2
vo
)-  1 /2- 

1 =3.0 km per hour. 

1.8. TA/TB =1/1/ 112—  1 -- 1.8. 
1.9. A=aresin  (1/n) + a/2 -- 120°. 
1.10. / = vot y 2 (1— sin 0) = 22 m. 
1.11. 1 = (vi + v2)-liviv21g = 2.5 m. 
1.12. t = 2a/3v. 
1.13. It is seen from Fig. 1a that the points A and B converge 

with velocity v — u cos a, where the angle a varies with time. The 

points merge provided the following two conditions are met: 

S (V U cos cc) dt=1, 	vcosa at = UT, 

0 	 0 
where .t is the sought time. It follows from these two equations that. 

T =vl/(v2 - 

1.14. x1  — x2  = 1— /VT (t + T12) = 0.24 km. Toward the train 
with velocity V = 4.0 m/s. 

1.15. (a) 0.7 s; (b) 0.7 and 1.3 m respectively. 



1.16. tm = vil'±  v212  vf 	' 

1.17. C D = I ji — 1.  
1.18. See Fig. lb. 
1.19.' (a) (v) 	aR/T = 50 cm/s; (b) 1(v)1 = 2R/r = 32 cm/s; 

(c) j(w)1 = 2nR/T2  = 10 cm/s2. 
1.20. (a) v = a(1 — 2at), w = —2aa = const; (b) At = 1/a, 

s = a/2a. 
1.21. (a) x = vot (1 —t/2t), x =0.24, 0 and — 4.0 m; 

(1 — t/a) vot for t -<__T, 

24 	
[1 4- (1 — 2] vot/2 for 

4 and 34 cm respectively. 
(b) 1.1, 9 and 11 s; 	(0) s = 	 0-0  

1.22. (a) v = a2t/2, w = a2/2; (b) (v).= a V-s-/2. 
1.23. (a) s = (2/3a) vo/2; (b) t = 2V 1'01 a. 
1.24. (a) y = —x 2b1a2; 	(b) v = ai — 2btj, w = --2bj, v 

1 1 a2  46,20 	= 2b; (c) tan a = al2bt; (d) (v) = ai —btj, 1(0 = 
= Va2 + b2t2. 

1.25. (a) y = x — x2a/a; (b) v = a -V 1 + (1 — 2at)2, w = 2aa 
= const; (c) to  = 1/a. 

1.26. (a) s= aorr;  (b)  
1.27. vo  = (1+ a2) w/2b. 
1.28. (a) r = v

° 
 t gt2/2; (b) (v )t  = gcos a 

= vo 	gt/2, (v) = vo  — g (vog)/g2• ysin 
1.29. (a) i = 2 (vo/g) sin a; 

 

(b) h= (vV2g) sin2  a, / = (v2o /g) sin 2a, 
= 76'; 	 r/2 	z t 

(c) y = x tan a — (g/24 cost a) x2; 	-11 sin a 
(d) R-, = g cos a, R2  = (vV g) cost a. 

1.30. See Fig. 2. 
1.31. / = 8h sin a. 
1.32. 0.41 or 0.71 min later, depending on the initial angle. 

2vo 	sin (01 — 	02)  1.33. At = 	 =11 s. g cos 01  + cos 02 
1.34. (a) x = (a/2V0)  y2; 	(b) iv = avo, w-r = a2Y 	(aY/vo)2' 

wn = avo/V I + (ay/vo)2- 
1.35. (a) 	y = (b12a) x2; 	(b) 	R = v2/w7, = v2141 w2  

= (alb) [1 + (xbla)9 3/2 . 

1.36. v = y 2ax. 
1.37. w= a V 1+ (43trt)2 = 0.8 m/s2. 
1.38. (a) v = vo/(1 	vot/R) = v fie -81R; (b) w= v 2 41Re2s/n=-- 

=- y2v2/R. 
1.39. tan a = 2s1 R. 
1.40. (a) wo  = a26)2  I R = 2.6 m/s2, wa  = aa)2  = 3.2 m/s2; (b) Wm in 

ao)2  V 1 — (R/2a)2 = 2.5 m/s2, lm  = ± a V 1 — R2/2a2 = ± 0.37 m. 

lmrn — 

1
1
v2-12vi  

l v? + 

Fig. 2. 
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Fig. 3. 

1.41. R = a312bs, w = all1+ (4bs21a3) 2. 
1.42. (a) w = 2av2, R = I/2a; (b) w = bv2/a2, R = a2/b. 
1.43. v = 2Rco = 0.40 m/s, w = 4Ro.i2  = 0.32 m/s2. 
1.44. w= (v/t) 1/1 4a2t4 = 0.7 m/s2. 
1.45. co = 231nvil = 2.0.103  rad/s. 
1.46. (a) (cD). 2a/3 = 4 rad/s, (A) = j/-  3ab = 6 rad/s2; (b) 

= 21/3ab =12 rad/s2. 

1.47. t= ir(4/a) tan a = 7 s. 
1.48. (o.)) = o.)0/3. 
1.49. (a) cp = (1  - e') coda; (b) 6.) 
1.50. coz  = f li2130  sin cp, see Fig. 3. 
1.51. (a) y = v2/(32; (hyperbola); (b) y = 1/2wx/o.) 
1.52. (a) W A  = v2/R = 2.0 m/s2, the 

vector WA  is permanently directed to the 
centre of the wheel; (b) s = 8./1 = 4.0 m. 

1.53. (a) vA  -=---2wt =10.0 cm/s, 
wt = 7.1 cm/s, vo  = 0; (b) 

=2w 1/1 	(wt2/2R)2 =5.6  cm/s2, 
= will+ (1-wt2/R)2 ---- 2.5 cm/s2, 
= w2t 2/R = 2.5 cm/s2. 

1.54. RA= 4r, Rg= 2 1/2-r. 
1.55. co= Vo4-1-,  co: =5 rad/s, j3= 0)0)2 = 12 
1.56. (a) w = at 1/1 	(btla)2=8 rad/s, 

=1.3 rad/s2; (b) 17°. 
1.57. (a) (.6-= vIR cos a = 2.3 rad/s, 

=2.3 rad/s2. 
1.58. o.)= coo  yi + cootiwor 0.6 rad/s, 	(3= [30111 Oot2 = 

= 0.2 rad/s2. 
1.59. t1m = 2mwl(g 	w). 
1.60. ar = 	(nit+,  m2)  g, T -  (1, ±k)  m° m2g. 

nto-rmi-rm2 
'1.61. (a) 	(k1- k2)  mi,m2g 

 Cosa  . (b) tan a 	= kinii+  k2m2  
m1 ms 	 min 	mi  +77, 2  • 

1.62. k = [(12  - 1)1(12  + 1)1 tan a = 0.16. 
1.63. (a) m2/m1> sin a k cos a; (b) m2/m1  < sin a - k cos a; 

(c) sin a - k cos a <m2/mi  < sin a k cos a. 
1.64. w2  = g (ri - sin a - k cos a)/(i + 1) = 0.05 g. 
1.65. When t G to, the accelerations w1  = w2  = at/(m1  + m2); 

when t > to  w1  = kgm2/m1, w2  = (at - km2g)Im2. Here to 
= kgm2  (m1  + m2)1am. See Fig. 4. 

1.66. tan 2a = -1/k, a = 49°; tmin  = 1.0 s. 
1.67. tan3= k; T 	= mg (sin a k cos cc)11/ 1+k2. 

= woe  -at.  

(parabola). 

Vg=- 

WA =  

rad/s2. 
p = all1+ (2bt/a)2  

60°; (b) 1= (v/R)2  tan a = 

2 3 c 
1.68. (a) v=  

mg2  cos  a  (b) 
s= 

 m g os a 
2a sin 2 a ' 	 6az sina a • 

1.69. v =11(2g/3a) sin a. 



1.70. '1 V-21/(3W+ kg). 
1.71. (a) w1 — ("11 —  "12) g-1-2m2wo 

± m2 
(b) F = rn4:1+17:  (g— w0). 

1.72. w= 2g (2i — sina)/(41 + 1). 
1.73. 	= 4mini2 -1-mo  (m1— ins)  

1  4m1m2+ mo 	+ m2) 5.  
1.74. Fir  = 21mMI(M — m) t2. 
1.75. t =1/2/ (4 ± Ti)/3g (2— r() 1.4 s. 
1.76. H = 	/(1-1 + 4) = 0.6 m. 

= 
 ml 
	7

17m2 
2  (g w0): 

Fig. 4. Fig. 5. 

1.77. W A  = gl(1 	cote a), w B  = g/(tan a + cot a). 
1.78. w= g V D(2+ k+ 
1.79. wmia  = g (1 — k)/(1 	k). 
1.80. wmax  = g (1 	k cot a)/(cot a — k). 
1.81. w = g sin a cos a/(sin2a 	ml/m2). 

1.82. w — 	
mg sin a 

M 2m (1— cos a) ' 

1.83. (a) l(F)1= 2 -1/ 2 mv2htR; (b) l(F)1= mac. 
1.84. 2.1, 0.7 and 1.5 kN. 
1.85. (a) w 	V1+ 3 cos2  0, T =3mg cos 0; 

	

(b) T= mg j/3; (c) cos 0=1/V "g, 	= 54.7°. 
1.86. 	53°. 
1.87. 0 = arccos (2/3) ^ 48°, v = V 2gR/3. 
1.88. a = 1/(x/nuo2  — 1). Is independent of the rotation di-

rection. 
1.89. r =R/2, vmax = 1/2 kgR. 
1.90. s = 1/2R V (kg/w.02  —1 = 60 m. 
1.91. v C a V kg/a. 
1.92. T = (cot 0 + co 2RIg) mg/2n. 
1.93. (a) Let us examine a small element of the thread in contact 

with the pulley (Fig. 5). Since the element is weightless, dT = 
dF j,. = k dF„ and dF„ = T da. Hence, dTIT = k da. Integrat- 



ing this equation, we obtain k (ln no)/n; (b) w= g — lovoi +TO. 
1.94. F = (mv„21R) cost a. 
1.95. F = —mco2r, where r is the radius vector of the particle 

relative to the origin of coordinates; 
F - m (1)2  V x2+ y2. 

1.96. (a) Ap = mgt; (b) I Ap I = 
—2m(vog)Ig. 
1.97. 	(a) p = at3/6; (b) s = 

=--a-r4/12m. 
1.98. 	s = (cot — sin cot) Fo/ma)2, 

see Fig. 6. 
1.99. 	t = n/o); 	s = 2F 01m(03; 

vmax = Foinuo. 
1.100. (a) v=voe-trlm, 00; 	(b) v=vo —srlm, 

' 

1.101. t = 	
h (vo — v) 

 vov In (vo/u) ' 

1.102. s = 2 — tan a, vmax  = 171- sin a tan a 
a 	 a 

Instruction. To reduce the equation to the form which is convenient 
to integrate, the acceleration must be represented as dv1dt and then 
a change of variables made according to the formula dt = dxlv. 

1.103. s 	a (t — to) 31m, where to  = kmgla is the moment 
of time at which the motion starts. At t < to  the distance is s = 0. 

1.104. v' = vo / 	kvVmg. 
1.105. (a) v = (2F/mw) I sin (o)t/2)I; (b) As = 8Firnco2, (v) 

= 4F/nnuo. 
1.106. v = vo/(1 + cos cp). Instruction. Here w, 	—wx, and 

therefore v = —vx 	const. From the initial condition it follows 
that const = vo. Besides, vx  = v cos q. 

1.107. w = [1 — cos (11R)] Rgll. 

1.108. (a) v = -1/2gfl /3; (b) cos % = 2+11 	
± 9112 

' where 1= 
3 (1+ 2)  

= wo/g, 00 	17°. 
1.109. For n <1, including negative values. 
1.110. When c02R > g, there are two steady equilibrium posi-

tions: 01  = 0 and 02  = arccos (g1(02R). When OR <g, there is 
only one equilibrium position: 01  = 0. As long as there is only one 
lower equilibrium position, it is steady. Whenever the second equi-
librium position appears (which is permanently steady) the lower 
one becomes unsteady. 

1.111. h z ((os21v) sin cp = 7 cm, where 0) is the angular veloc-
ity of the Earth's rotation. 

1.112. F = m g2  w4r 2  ± (211(0)2  = 8 N. 

1.113. Feor = 2m0)2r 1/1 	(vohor)2  ----- 2.8 N. 

Off 	fit ad 

Fig. 6. 
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1.114. (a) w' = co2R: (b) Fin= mco2r (2R/r)2  — 1. 
1.115. F cf= in(02R V 5/9=8 N, 	 V 5+8g/3co2R..,  

=17 N. 
1.116. (a) F = 2mvco sin p = 3.8 kN, on the right rail; (b) 

along the parallel from the east to the west with the velocity v = 

= 2  oR cos cp 7e 420 km per hour. Here co is the angular rotation 

velocity of the Earth about its axis, R is its radius. 
1.117. Will deviate to the east by the distance x 
2 	-. 

v —coh 2h/g-=24 cm. Here co is the angular velocity of the 3 
Earth's rotation about its axis. 

1.118. A = F (r2  — r1) =-- —17 J. 
1.119. A = ma4t218. 
1.120. F = 2as1/ 1 4- (sIR)2. 
1.121. A = mg (It + kl). 
1.122. A = —kmgl/(1 — k cot a) --= —0.05 J.  
1.123. Frain = (m1  + m2/2) kg. 
1.124. A = —(1 — 11) limg//2 = —1.3 3. 
1.125. (P) = 0, P = mg (gt — v

0 
 sin a). 

1.126. P = mRat, (P) = mRatI2. 
1.127. (a) (P) = —kmgvo12 = —2 W; (b) 
1.128. A = 11zmco2  (r: — r:) = 

=0.20 J. 	 ‘
‘ F, (r) 1.129. A men 

where k = kik21(lc1 	k2). 
1.130. A = 3mg/4a, AU = 	U(r)\ 

= mg/2a. 
1.131. (a) r0  = 2a/b, steady; 

(b) Finax = b3/27a2, see Fig. 7. 	 t 
1.132. (a) No; (b) ellipses 

whose ratio of semiaxes is a/b = 
yfl/cc;  also ellipses, but with 

alb =13/a. 
1.133. The latter field is potential. 
1.134. s = vV2g (sin a + k cos a), A = —mvpk/2(k -I- tan a). 
1.135. h = H/2; Smax  --= H. 
1.136. v = 2/3  
1.137. vyril„=V5g1; T .3mg. 
1.138. t=/V2v0R. 
1.139. Al = (1 + V1 + 2klImg)mglk. 
1.140. v. y 19g10/32 =1.7 m/s. 
1.141. A= km81° 	1—  cos 0  

2 	(sin 0+ k cos 0) cos 0 = 
0.09 I. 

1.142. A = x12011(1 .4- 02(1 — 21)2, where it = mco2/x. 
1.143. we  = g (m1  — m2)2/(mi + m2)2. 
1.145. r = (g10) tan 0 = 0.8 cm, T = mg/cos 0 = 5 N. 

= -1/2/na 

Fig. 7. 



1.146. (al Fir =  mg [sin a + (w211 g) ccs al= 6 N. 	(b) co< 
<V g (k— tan a)// (1 	k tan cz) = 2 rad/s. 

1.147. (a) V = (mivi 	m2v2)/(m1  + m2); (b) T = µ (v1 —  

— v2)212, where p, = m1m2  (ml  -h m2). 
1.148. E 	E 	mV2/2. 
1.149. E = 	-I- v22)/2, where p. = mi.m2/(m1 	m2). 
1.150. p = Po  mgt, where pc, = mvi  m2v2, m = 	m2; 

re  = vot 	gt2/2, where v0  = (m1v1 	m2v2)/(ml 	m2)• 
1.151. ve  = xV xm2/(mi. ± m2). 
1.152. (a) /max  = /0 	Flx, 	can  = lo; 	(b) /max  = to + 
2m1F/x (m1 + m2), /min = 4,• 
1.153. (a) Al > 3mg/x; (b) h = (1 + xAl/mg)2  mg/8x = 8mg/x. 
1.154. v1  = —mv/(M — m), v2  = Mv/(M — 

,  mM  
1.155. vrear vo — 	u; vform = vo -t- 	+no, U. 

2m  1.156. (1) vi— — m+2m u;
m 2M + 3m) (2) v2 — (m+(m)(m+ 2m)  u, 

V2k, = 1 -1- m/2 (M -1- m) > 1. 
1.158. Ap = m y 2gh 	1)/(71— 1) = 0.2 kg -m/s. 

1.159. (a) I— 	
m 

jw+m  I'; (b) F— 	mM  dv' 
M m dt • 

1.160. 1 = m1'12M. 
1.161. -c= (p cos a— M 17-2g1 sin a)/Mg sin a. 
1.162. (a) v = (2M/m) Vir sin (0/2); (b) 	1— m/M. 
1.163. h = Mv2/2g (M m). 
1.164. (1) A = —Rgh, where p, = mM/(m M); (2) Yes. 
1.166. v = 1.0i + 2.0j — 4.0k, v 	4.6 m/s. 
1.167. AT = --p (v1  — v2)212, where p, = m1m2/(m1 	m2). 
1.168. (a) 11 = 2m11

(m1 
-I-  m2); (b) = 4m1m2/(m1  + m2)2- 

1.169. (a) m1/m2  = 1/3; (b) m1/m2  = 1 + 2 cos e = 2.0. 
1.170. 11 = 1/2cos2  a = 0.25. 

1.171. max  = v (1 + -I/2 (1-1)) =1.0 km per second. 
1.172. Will continue moving in the same direction, although 

this time with the velocity v' = (1— V1 — 2i) v/2. For 11< 1 the 
velocity v' Tiv/2 = 5 cm/s. 

1.173. AT IT = (1  ml M) tang 0 m/M — 1 = —40%. 
1.174. (a) p = IAA / 14. v:; 	(b) T '/211(v -Fv:). 	Here p.= 

= mim2/(mi+ m2)- 
1.175. Sin 0max  
1.176. v' = —v (2 — r12)/(6 — r12). Respectively at smaller 11, 

equal, or greater than V T. 
1.178. Suppose that at a certain moment t the rocket has the 

mass m and the velocity v relative to the reference frame employed. 
Consider the inertial reference frame moving with the same velocity 
as the rocket has at a given moment. In this reference frame the 
momentum increment that the system "rocket-ejected portion of gas" 



acquires during the time dt is equal to dp = m dv 	dt•u = F dt. 
What follows is evident. 

1.179. v = —u In (mo/m). 
1.180. m = moe-w t /u. 
1.181. a = (u/vo) In (mo/m). 
1.182. v = —

F 
 In  m0 

 
w 	 

Rt • 11 	me
t 1.183. v = Ft/m0(1 	p,t/m0), w

nzo— 
= F/m0(1 	Rtimor- 

1.184. v 	2gh ln (11h). 
1.185. N=2b V alb. 
1.186. M = i/2mgvot2  cos a; M = (mv:/2g) sine a cos a = 

= 37 kg • m2/s. 
1.187. (a) Relative to all points of the straight line drawn at 

right angles to the wall through the point 0; 
(b) I AM I = 2 mv/ cos a. 

1.188. Relative to the centre of the circle. 
I AM I = 2 V1 — (g/&21)2  mgl/w.  

1.189. I AM I = hmV. 
1.190. M = maivgt2. 
1.191. m = 2kr1/v22. 

1.192. vo  =1/-2g//cos O. 
1.193. F = mcogr:Ir3. 
1.194. M Z  = Rmgt. 
1.195. M = Rmgt sin a. Will not change. 
1.196. M' = M — [rot)]. In the case when p = 0, i.e. in the 

frame of the centre of inertia. 
1.198. M = 1/3  imvo. 
1.199. Erna. 	mil/x102. The problem is easier to solve in the 

frame of the centre of inertia. 
1.200. T = 23-iyM/v3  = 225 days. 
1.201. (a) 5.2 times; (b) 13 km/s, 2.2.10-4  m/s2. 

1.202. T = 	(r 	R)3/2yM. It is sufficient to consider the 
motion along the circle whose radius is equal to the major semi-axis 
of the given ellipse, i.e. (r R)12, since in accordance with Kepler's 
laws the period of revolution is the same. 

1.203. Falling of the body on the Sun can be considered as the 
motion along a very elongated (in the limit, degenerated) ellipse 
whose major semi-axis is practically equal to the radius R of the 
Earth's orbit. Then from Kepler's laws, (2T/T)2  = [(R12)1R13, 
where i is the falling time (the time needed to complete half a revo-
lution along the elongated ellipse), T is the period of the Earth's 
revolution around the Sun. Hence, T = T/4112 = 65 days. 

1.204. Will not change. 

1.205. 1= f y M (T/231)2. 
1.206. (a) U = — ym1m2/r; 	(b) U = —y (mM11) In + 11a); 

F yrnM I a (a +1). 
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1.207. M= m V2ymsrir2/(ri±r2), where ms  is the mass of 
the Sun. 

1.208. E = T U = —ymms12a, where ms  is the mass of 
the Sun. 

1.209. rm  = 	[1. ±111 — (2 — T1) 11 Sill2 cd, 	where 2— 	
= 

rov20/7ms, ms being the mass of the Sun. 
1.210. rmin = (Trasiv0) [111 (//,02/yrns)2  —11, where ms  is the 

mass of the Sun. 
1.211. (a) First let us consider a thin spherical layer of radius p 

and mass SM. The energy of interaction of the particle with an ele-
mentary belt SS of that layer is equal to (Fig. 8) 

dU = —y (m8M/2/) sin 0 dO. 

According to the cosine theorem in the triangle OAP 12  = p2  
r2  — 2pr cos 0. Having determined the differential of this expres-

sion, we can reduce Eq. (*) to the form that is convenient for integ-
ration. After integrating over the whole layer we obtain SU = 
= —ym 61111r. And finally, integrating over all layers of the sphere, 
we obtain U = —ymM/r; (b) Fr  = —0U/Or = —ymM/r2. 

dm2  -fag 

Fig. 8. Fig. 9. 

1.212. First let us consider a thin spherical layer of substance 
(Fig. 9). Construct a cone with a small angle of taper and the vertex 
at the point A. The ratio of the areas cut out by the cone in the layer 
is dSi  : dS2  =71 : 71. The masses of the cut volumes are proportion-
al to their areas. Therefore these volumes will attract the particle A 
with forces equal in magnitude and opposite in direction. What 
follows is obvious. 

1.213. A = —3/2ymM/R. 
—(yMIR3)r for r<R, 

01)= — 	1r 	 for r> R. See Fig. 10. 
1.215. G = —4/33-typ1. The field inside the cavity is uniform. 
1.216. p  = 318  (1 — r2/R2)?mainR4. About 1.8.108  atmospheres. 

(*) 

1.214. G= 
— (yM/r3) r for r >R; 
— 312 (1— r213112)TMIR for r<R, 

19-9451 



1.217. (a) Let us subdivide the spherical layer into small ele-
ments, each of mass Sm. In this case the energy of interaction of 
each element with all others is SU = —vm SmIR. Summing over all 

Fig. 10. 

elements and taking into account that each pair of interacting ele-
ments appears twice in the result, we obtain U = —vm2/2R; 
(b) U = —3ym2/5R. 

r3/2 	f 4.5 days (6 = 0), 
1.218. At ^...; 2x  

3Ar/2r -1-8 1 0.84 hour (6= 2). 
1.219. w1  : w2  : w3  = 1 : 0.0034 : 0.0006. 
1.220. 32 km; 2650 km. 
1.221. h = RI(2gRiv: — 1). 
1.222. h = R  (gR/v2  — 1). 
1.223. r = ryM (77231)2  = 4.2.104  km, where M and T are the 

mass of the Earth and its period of revolution about its own 
axis respectively; 3.1 km/s, 0.22 m/s2. 

1.224. M = (4n2R3/?T2) (1 	T/'02  = 6.1024  kg, where T is 
the period of revolution of the Earth about its own axis. 

1.225. v' = 2nT
R 	TM V = 7.0 km/s, 	R2 ( 1+..x R  

X V 	= 4.9 m/s2. Here M is the mass of the Earth, T is its 

period of revolution about its own axis. 
1.226. 1.27 times. 
1.227. The decrease in the total energy E of the satellite over the 

time interval dt is equal to —dE = Fy dt. Representing E and v as 
functions of the distance r between the satellite and the centre of the 
Moon, we can reduce this equation_  to the form convenient for integ-
ration. Finally, we get 't WI — 1) mlal gR 

1.228. v1  = 1.67 km/s, v2  = 2.37 km/s. 
1.229. Au= liyM/R (1 —1/- ) = — 0.70 km/s, where M and R 

are the mass and the radius of the Moon. 
1.230. Av = 	(1/-  —1) = 3.27 km/s, where g is the stan- 

dard free-fall acceleration, R is the radius of the Earth. 
1.231. r = nR/(1 Vri). 3.8.104  km. 



1.232. A 	ym (M1/R1  M2/R2) = 1.3.108  kJ, where M and 
R are the mass and the radius of the Earth and the Moon. 

1.233. v3  V 2v: + 	- 1)2 V;, x 17 km/s. 	Here i4 
TME  IR, ME  and R are the mass and the radius of the Earth; 

Vi = yMslr, Ms  is the mass of the Sun, r is the radius of the 
Earth's orbit. 

1.234. 1 = 2aF2/mw = 1.0 m. 
1.235. N = (aB—bA)k,  where k is the unit vector of the z 

axis; l= I aB — bA 	+ B2. 

1.236. 1= I aA—bB 	A2+ B2. 
1.237. F„ = 2F. This force is parallel to the diagonal AC and 

is applied at the midpoint of the side BC. 
1.238. (a) I = 1/3m12; (b) I = 'ism (a2 	b2). 
1.239. (a) I = iJ2  rtpbR4  = 2.8 g•m2; (b) I = 8/10  mR2. 
1.240. I = il4mR2. 
1.241. I = (37/72) mR2  = 0.15 kg•m2. 
1.242. I = 213  mR2. 
1.243. (a) co = gt1R (1 + M/2m); (b) T = mg2t2/2(1 	M12m). 
1.244. T = 112mg, Ivo  = gmr21I. 
1.245. co =176F sin (/ml. 
1.246. R  	1,712 — rni lg 	Ti 

— 
(m+4m2)  

(mi - I- m2 	m/2) R ' 	T2 	MI (M+41711) 
(7712—  kini) kntig2t 2  

1.247. A- 

rad/s2; 

m+2(mi-Fm2) • 
1.248. n = (1 + k2) co:R/8ak (k 	1) g. 
1.249. t = 314coRlkg. 
1.250. (w) = 1/3ceo• 
1.251. 13 = 2mgx1R1(M + 2m). 
1.252. (a) k > 2/7 tan a; (b) T = 5114  mg2t2  sins a. 
1.253. (a) T = 116  mg = 13 N, t3 = 2/3 g/R = 5.102  

(b) P = 213  mg2t. 
1.254. w' = 2/3  (g — w0), F = 1/3  m (g — wo). 
1.255. w= g sin a/(1 	I/mr2) = 1.6 m/s2. 
1.256. Finax  = 3kmg1(2 — 3k); wmax  = 2kg1(2 — 3k). 

F (cos  cc — r  I R) 	 F2t2  (cos a, — r/R)2  
1.257. (a) wx — 	m (1+7) 	(b) A — 

2m (1+7) 
1.258. T = 1110  mg. 
1.259. w = 3g (M + 3m)1(M + 9m ± I1R2). 

1.260. (a) w = F (3m1-1-2m2)F2t2  (3m2-1-2m2) 
m1 	

(b) 
(m1M2) 	 2m1(m1+ ms) 

1.261. w
1 
	F/(m1 	217m2); w2 	2/7 

1.262. (a) t = 	co 0R1kg;  (b)  A = —1/ontw:R2. 
1.263. a) =1710g  (R+r)/17r2. 
1.264. vo  = V 113gR (7 cos a — 4) =1.0 m/s. 
1.265. v

° 
 =1/ 8gR. 

1.266. T = mv2. 
1.267. T = 7110  mv2  (1 + 217r21R2). 

19• 



Fig. 11. 

1.269. N = 1/24m012  sin 20. 
1.270. cos 0 = 3/2 gl 01. 
1.271. Ax = 1/2  ka. 
1.272. v' = 0)01/V1 + 3m/M. 
1.273. F =a1232Im1= 9 N. 

3m —  4M My  1.274. (a) v — 3m  +  4M  V; (b) F —  1(1±431/3m), 

1.275. (a) v = (M/m) -112/3g/ sin (a/2); 
(b) Ap = MYthig/ sin (a/2); (c) x 2/31. 

1.276. (a) co = (1 -I- 2m/M) 0)0; (b) A = 1 2mco:R2  (1 + 2m1 M). 
1.277. (a) cp — 	2m12+m1m2  q)'; (b) Nz= 2mmlimi!Rin2  ddv; 

1.278. (a) w — h1 ; (b) A- 2(/111+12/2) 	W2)2" 
1.279. v' = v (4 — 11)/(4 -I- II), 	= 12v// (4 + TO. For it = 4 

and 11>  4. 
1.280. (a) Age = '/2/:(0:/(I 	/07 A180. = 2/:co://; (b) N = 

= 	+ /0). 
1.281. co = V 	6.0 rad/s; F =mg1011= 25 N. 
1.282. (a) M = I/12 mw/2  sin 0, M, = M sin 0. (b) AM I 
1112m0)12  sin 20; (c) N = 1l24me)212 X 

X sin 20. 
1.283. (a) w' = mg11.1w = 0.7 rad/s; 

(b) F = mo.)121 sin 0 = 10 mN. See Fig. 11. 
1.284. w = (g w) IlanR2  = 3 x 

x 102  rad/s. 
1.285. 	co' = ml Vg2  w2/ 	= 

= 0.8 rad/s. The vector w' forms the 
angle 0 = arctan (w/ g) = 6° with the ver-
tical. 

1.286. F' = 215  mR20)co'// = 0.30 kN. 
1.287. Fmax  = nmr2q)m0)//T=0.09 kN. 
1.288. N = 2nnIvIR = 6 kN•m. 
1.289. Fodd = 2nnIvl RI = 1.4 kN. The force exerted on the 

outside rail increases by this value while that exerted on the inside 
one decreases by the same value. 

1.290. p = aE AT = 2.2.102  atm, where a is the thermal expan-
sion coefficient. 

1.291. (a) p am  Ar/r = 20 atm; (b) p 2am  Ar/r = 40 atm. 
Here am  is the glass strength. 

1.292. rt=j12amlpInl= 0.8.102  rps, where am  is the tensile 
strength, and p is the density of copper. 

1.293. n = Vam/p/2nR = 23 rps, where am  is the tensile 
strength, and p is the density of lead. 

1.294. x l Vmg/23-c (PE= 2.5 cm 
1.295. s = 2/2F0/ES. 



1.296. T = 11277-14o21 (1 -.- r2/12), Al = 1/3  p.o2l3IE, where p is 
the density of copper. 

1.297. AV'--= (1 — 2µl FlIE = 1.6 mm3, where p. is Poisson's 
ratio for copper. 

is the density, and p, is Poisson's ratio for copper. 
1.298. (a) Al = 1/2  pg/2/E; (b) AVIV = (1 — 2p,) 6.111, where p 

1.299. (a) ATI/V = —3 (1 — 20 pIE; (b) 13 = 3 (1 — 20/E. 
1.300. R = 116  Eh2/pgl2  =-- 0.12 km, where p is the density of 

steel. 
1.301. (a) Here N is independent of x and equal to No. Integrat-

ing twice the initial equation with regard to the boundary condi-
tions dyldx (0) = 0 and y (0) = 0, we obtain y 012E1) x2. This 
is the equation of a parabola. The bending deflection is X = 
=N0/2/2E/, where I = a4/12. 

(b) In this case N (x) = F (1 — x) and y = (F12EI) (1 — x13) x2; 
= F1313EI, where I is of the same magnitude as in (a). 

1.302. 1. = F13148EI. 
1.303. (a) X = 3/2  pg141Eh2; (b) = 5/2  pg141Eh2. Here p is the 

density of steel. 
1.304. X, = 2/513p15/Eh2, where p is the density of steel. 
1.305. (a) q  =- (l/2nr3  ArG)- N; (b) 	(211 a-v.4G) • N. 
1.306. N = n (d: — (4) G(p/32/ = 0.5 kN•m. 
1.307. P = i/2  ar4G(pco = 17 kW. 
1.308. N = 1/2 pm (r: - r4)I(r22  — 
1.309. U = 1/2mE82/p = 0.04 kJ, where p is the density of steel. 
1.310. (a) U = 1/onr2 /3o2g2/E; (b) U = 2/3 nr2lE (A111)2. Here p 

is the density of steel. 
1.311. A 	116  n211(5 3E11 = 0.08 kJ. 
1.312. U = 1/4  ar4Gy2// = 7 J. 
1.313. u = 1/2  GT2r2//2.  
1.314. u = 1/213 (pgh)2  = 23.5 kJ/m3, where 13 is the compressi-

bility. 
1.315. pi  > p2, v1  < v2. The density of streamlines grows on 

transition from point 1 to point 2. 

1.316. Q = S1S2 1/  20111 (S22 — Si). 
1.317. Q = Si/ 2gAhp0Ip. 

3 m/s, where pi  and p2  are the 1.318. v= 2g (hi  + hzPziPi) = 
water and kerosene. densities of 
= 25 cm; lmax  = 50 cm. 1.319. h 

1/2  v2/g — ho  = 20 cm. 1.320. h 
= Po pgh (1. — R:/r2), where R1  <r <R2, Po  is the 1.321. p 

atmospheric pressure. 
= 1/2073/s2t2, where p is the density of water. 1.322. A 

1.323. r = V2h/g S/s. 
1.324. v = colt 17211h-1. 
1.326. F = 2pgS c1 h = 0.50 N. 
1.327. F= pgbl (2h — 1) = 5 N. 



1.328. N = plQ2/nr2  = 0.7 N•m. 
1.329. F = pgh (S — s)2/ = 6 N 
1.330. (a) The paraboloid of revolution: z = (6)2/2g) r2, where z 

is the height measured from the surface of the liquid along the axis 
of the vessel, r is the distance from the rotation axis; (b) p = Po + 

ii2P(02/4• 
1.331. P = nrico2R4/h = 9 W. 
1.332. v— v0 ilancrdo  
1.333. (a) 0)=032R/rill Rti  

1.334. (a) Q 	1/2  stvoR2; 	(b) T 	116  saR2p4; (c) Ffr 
= 4nil/v0; (d) Ap =- 411/v0/R2. 

1.335. The additional head Ah = 5 cm at the left-hand end of 
the tube imparts kinetic energy to the liquid flowing into the tube. 
From the condition pv2/2 = pgAh we get v = If 2g Ah = 1.0 m/s. 

1.336. eCC Ax = 5. 
1.337. r1p1112 µm/s. 

	

1.338. d  V  18 Re Ti2 	5 mm, 
 Po) Pog 

sities of glycerin and lead. 
1.339. t = —Pd2  In — n 0.20 S. 181 	— 

where p0  and p are the den- 

 

1.340. v = c yin  (2 — = 0.1c, where c is the velocity of 
light. 

1.341. (a) P=a  (1 +y4-3132); (b) P=a  0/-1— [32 +114— [32). 
Here  i = V/c. 

1.342. 10  = 1 ji(1 —132 sin2  0)1(1-132)=1.08 m, where [3= v/c. 
1.343. (a) tan 0' = 	Hence 0' = 590; 	(b) S = 

—132cos20= 3.3 m2. Here [3= v/c. 

1.344. v=c17(2— .-1-f-)4t-. =0.6.108  m/s. 

1.345. lo  = cAt' 1/ 1 — (At/At')2  = 4.5 m. 
1.346. s= cAt 1/ 1 — (Ato/At)2  = 5 m. 
1.347. (a)  At0 =(//v)  171—(v/c)2 .1.4 its; 

(b) /' = / 	—(v/c)2 = 0.42 km. 
1.348. /0 = 	— (v/c)2 =17 m. 
1.349. /0 = liAxiAx2 =6.0 m, v = c y1— Axil Ax2=2.2.108 m/s. 

1.350. v 	2t°/At  
1+(t0/cet)8  • 

1.351. The forward particle decayed At = /13/c (1 — 32) = 20 Its 
later, where (3 = v/c. 

1.352. (a) 10 —  SA-
2g —Z, 	tB)  ; 

'V 1— (V/C)2 

; (b) N = 43rivo2 RR2fRit?  



(b) to  — tB  = (1 — y1— (v/c)2) /0/v or tB —tA= (1+V 1— (v/c)2) 10/v. 
1.353. (a) t (B)=101v, t (B') = (10/v) -111 —(v/c)2; 	(b) t (A) = 

(10Iv)1 y1— (vIc) 2, t (A') = 10/v. 
1.354. See Fig. 12 showing the positions of hands "in terms of K 

clocks". 

Af 

A 

H  

Fig. 12. 

1.355. x = (1— y1 — [32) c/I3, where p = V/c. 
1.356. It should be shown first that if At = t2  — tl  > 0, then 

At' =-- to — t; > 0. 
1.357. (a) 13 ns; (b) 4.0 m. Instruction. Employ the invariance 

of the interval. 
ii(v,— V)1+1(1 — V21c2) 

1.358. v' = 	1 — v,V/c2 	• 
1.359. (a) v = vi  + v2  = 1.25c; (b) v = (v1 + v2)/(1 	viv2/c2). 

= 0.91c. 
1.360. 1 = 10  (1 — 2)/(1 	p2),  where p = v/c. 
1.361. v = 	v2,—(v1v2/c2). 

1.362. s = Ato 	(1 
2 

_ 02) _v , where 0. V/c. 

1.363. tan 0' 
	

cos 0 
—02 sin 0  , where 3 = — vic 

1.364. tan 0 = vie y1— (V/c)2. 
1.365. (a) w' = w (1 — 132)3/2/(1 — 13v/c)3; (b) w' = w (1 — 32). 

Here 13 = V/c. 
1.366. Let us make use of the relation hetween the acceleration 

w' and the acceleration w in the reference frame fixed to the Earth: 

= (1 — v2Ic2)- 
3/2 dv 

dt • 

This formula is given in the solution of the foregoing problem 
(item (a)) where it is necessary to assume V = v. Integrating the 
given equation (for w' = const), we obtain v = w't/V1 (w't/c)2. 
The sought distance is 1 = (y1 + (w't/c)2  — 1) c2I w' = 0.91 light-
year; (c — v)/c = 1/2 (c/w't)2  = 0.47%. 



1.367. Taking into account that v = 	(w't/c)2, we get 

To  — yi+d(tw,002 	In [ 1̀.` ± 	+ 	)2] = 3.5 months. 
0 

1.368. m/mo  1/V2 (1. --p) 	70, where 13=  v/c. 
1.369. v 	(2 	ri)/(1 	= 0.6c, where c is the velocity 

of light. The definition of density as the ratio of the rest mass of a 
body to its volume is employed here. 

1.370. (c — v)Ic = 1 — [1 + (m0c/p)2] -1/2  = 0.44%. 
1.371. v = (chi) 	1 = 1/,c 
1.372. A = 0.42 m0c2  instead of 0.14 m0c2. 
1.373. v = 1/2cV 3 = 2.6.108  m/s. 
1.374. For a < 1 the ratio is T/m0c2  < 4/3 	0.013. 

1.375. p =V T (T +2m0c2)1c =1.09 GeV/c, where c is the velo-
city of light. 

1.376. F = (I 1 ec) V T (T +2moc2), P = T I le. 
1.377. p= 2nmv2/(1 — v2/c2). 
1.378. v= Fct/Vm2oc2 + F2t2, 1=i1  (moc2IF) 2  + c2t2  — M0C2/ F 
1.379. F = m0c21a. 
1.380. (a) In two cases: F v and F v; (b) Fl  = mow V-1 —132, 

mow/(1 —p2)3/2,  where 13= v/c• 
1.382. 8' e 17(1 —13)/(1 +13), where f3 = V/c, V =3/oc. 
1.383. E2  — p2c2  = m,;c4, where m0  is the rest mass of the par-

ticle. 
1.384. (a) T = 2m0c2 (111 +7 72moc2 — 1) =  777 MeV, 

=---111/2/noT = 940 MeV/c; (b) V = ci/ T/(T 2m,c2) =2.12 .108  m/s. 
1.385. M0  -=-112mo 	2m0c2)/c, V =c1/ T 1(T +2m0c2). 
1.386. T' = 2T (T +2m0c2)1moc2  =1.43.103  GeV. 

1.387. Ei max = 
ma -Fm?— (m2+ m3)2  c2. The particle mi  has the 27no  

highest energy when the energy of the system of the remaining 
two particles m2  and m3  is the lowest, i.e. when they move as 
a single whole. 

N2uc 
1.388. v/c = 	

oninio 
'0  , Use the momentum conservation law 1+  (nondau/c 

(as in solving Problem 1.178) and the relativistic formula for 
velocity transformation. 

2.1. m = pV Ap/p0  = 30 g, where p0  is the standard atmospher-
ic pressure. 

2.2. p = 112  (piT 2ITi  — Ap) = 0.10 atm. 
2.3. ml/m2  = (1 — alM2)1(alMi  — 1) = 0.50, where a = 
mRT/pV. 
2.4. 0 	

Po (nil-Fr%) 	—1.5  g/1 RT (ml/Ml-1-m2/M2)) 	• 



2.5. (a) p = (v1  + v2  + v3) RT/V = 2.0 atm; (b) M = 
v2M2 	v31113)/(vi ± v2 	v3) = 36.7 g/mol. 

2.6. T 	olli  012  — 1)/i (112 — 1) 	0.42 kK. 

2.7. n— 	In  
In (1+ AIT/17) • 

2.8. p = 
2.9. t = (V/C) In 11 = 1.0 min. 
2.10. AT = (mg Po  AS) l/R ---- 0.9 K. 
2.11. (a) Tmax = 3(PoIR)17Pd 3a; (b) Tmax=Po/ePR. 
2.12. Pmin = 2/117aTo. 
2.13. dT/dh = —MgIR = —33 mK/m. 
2.14. dT/dh = —Mg (n — 1)/nR. 
2.15. 0.5 and 2 atm. 
2.16. (a) h = RT IMg = 8.0 km; (b) h 1RTIMg = 0.08 km. 
2.17. m = (1 — e -MghIRT) poSIg. 

OP 	 00 

2.18. he = .c hp dh I p dh = RTI Mg. 

2.19. (a) p = Po (1 — ah.)n , h < 11a; (b) p = p 01 (1 + ah)n. Here 
n = MglaRT o. 

2.20. p 	p0elt1(02r2/2RT 

2.21. pid =pRTIM =80 atm; p = pRTI(M — pb) — ap2/M2= 
= 80 atm. 

2.22. (a) T = a (V — b) (1 + 1))/RV (QV 	b) = 133 K; (b) 
p = RTI(V — b) — alV2  = 9.9 atm. 

2.23. a = V2  (T1p2 — T 2pi)I(T2 — T1) = 185 atm•12/mo12, b 
= V — R (T2  — T1)I(p2  — pi) = 0.042 1/mol. 

2.24. x = VZ (V — b)-2/1R7T3 — 2a (V — b)2]. 
2.25. T > a/bR. 
2.26. U = pVl•y — 1) = 10 ML 
2.27. AT = 1/2/Vv2  (' — 1)/R. 
2.28. T = T1T2 	+ P2 V2)/(PiViT2 	p2V2T1); P 
(PiVi 	P2V2)/(Vi + V2). 
2.29. AU = —poVATIT0  (7 — 1) = —0.25 kJ, Q' —AU. 
2.30. Q = A?/(? — 1) = 7 J. 
2.31. A = RAT = 0.60 kJ, AU = Q — RAT = 1.00 kJ, 

.17 = Ql(Q — RAT) = 1.6. 
2.32. Q = vRT 0  (1 — 1/n) = 2.5 kJ. 
2.33. 	vai (v1-1)  ___ .33.  

vl (72 —1) ± V2 (71-1) 
2.34. cy = 0.42 J/(g•K), cp  = 0.65 J/(g•K). 
2.35. A 	RT (n — 1. — ln n). 
2.36. A' = PoVo In  [(n + 1)2/44 
2.37. y = 1 + (n — 1)1(Q1vRT, — ln n) = 1.4. 
2.38. See Fig. 13 where V is an isochore, p is an isobaric line, T 

is an isothermal line, and S is an adiabatic line. 
2.39. (a) T = T 	- niv = 0.56 kK; (b) A' = RT 	ivy 

— 1)/(y — 1) = 5.6 kJ 



2.40. The work in the adiabatic process is n = (iv -
-1)/(y — 1) In n  = 1.4 times greater. 

2.41. T = To 	[(71 + 1)2/401-1)/2. 
2.42. v = 112yRT1(y — 1) M = 3.3 km/s. 
2.43. Q = RAT (2 — y)/(y — 1). 
2.45. Cr, = R (n — 7)/(n — 	— 1); Cn < 0 for 1 < n < T. 
2.46. C = R (n y)1 (n — 1) (y — 1) = —4.2 J/(K•mol), where 

n= In 13/In a. 
2.47. (a) Q = R (n — y) AT 1(n — 1) (y — 1) = 0.11 kJ; (b) 

A = —RAT1(n — 1) = 0.43 kJ. 

 

(a) 

 

(6) 	I  

Fig. 13. 

2.48. (a) AU = aV,;(112  — 1)/(y — 1); (b) A = 112aq (112  — 1); 
(c) C = 1/2R (y + 1)/(y — 1). 

2.49. (a) C = —R/(y — 1); (b) TV(Y-1-)/2  = const; (c) A = 
= 2RT0  (1 — -Y)12)/(7 - 1). 

2.50. (a) A = (1 — a) RAT; (b) C = R/(y — 1) + R (1 — a); 
C < 0 for a > y/(y — 1). 

2.51. (a) A = AU (y — 1)/a; Q = AU El 	(y — 1)/al; (b) C 
= R1(y — 1) + R/a. 

2.52. (a) C = Cv  + R/aV; (b) C = Cv  + R/(1 + aV). 
2.53. (a) C = TR/(y — 1) + aR/P017; 	(b) AU = Po (V2 - 

- Vi)/(y — 1); A = Po (V2 — V1) -1- a In (v 21v1); Q = w (V2 
— 1) + a In (V2/V1). 

2.54. (a) C = Cp  + RTolaV; 	(b) Q = aEp  (V2  — V1) + 
RT 0  In (V2/V1). 
2.55. (a) Ve -217R = const; (b) TeR/fw = const; (c) V — aT 

= const. 
2.56. (a) A = a In II  —RT0  (1— 1)/(y —1); (b) p-VY ea (v-i)/pv,. 

= const. 
V2 

 —b

b 	— 1 2.57. A=RT In Fi —+ a (

V2 VI 
-----) where a and b are Van 

der Waals constants. 
2.58. (a) AU= alV alV 2= 0.11 kJ; (b) Q=RT in V2  - b  = 

=3.8 kJ. 



2.59. (a) T (V — b)Ricv = const; 

(b) Cp —CV  — 	  I-2a (V — RTV3  • 

2.60. AT= 	vaV  2  (y-1)  3.0 K. Rv, (V„-{-v,) 
2.61. Q = Oa (V2  — V1)1VIV2  = 0.33 kJ. 
2.62. n = p/kT = 1.105  cm-3; (1) = 0.2 mm. 
2.63. p = (1 	mRTI MV = 1.9 atm, where M is the mass 

of an N2  mole. 
2.64. n = (p/kT — p/m2)/(1 — ml/m2) = 1.6.1019  cm-3, where 

ml  and m2  are the masses of helium and nitrogen molecules. 
2.65. p = 2nmv2  cost 0 = 1.0 atm, where m is the mass of a 

nitrogen molecule. 
2.66. i = 2/(pv2/p — 1) = 5. 
2.67. v/vn 	+ 2)/3i; (a) 0.75; (b) 0.68. 

(3N — 3) kT for volume molecules. 
2.68. (8)= (3N — 5/2) kT for linear molecules. 

1/2(N-1) and 1/(2N-5/3) respectively. 
2.69. (a) CV  = 7/2R, y = 9/7; (b) CV  = (3N — 5/2) R, y 

= (6N — 3)/(6N — 5); (c) Cr = 3 (N — 1) R, y = 
= (N — 213)/(N — 1). 

1/(3N — 2) for volume molecules, 
2.70. A/Q= 1/(3N — 3/2) for linear molecules. 

For monoatomic molecules A/Q = 2/5. 
2.71. M = RI(cp  — cv.) = 32 g/mol. i = 2/(cp/cv — 1) = 5. 
2.72. (a) i = 2 (CpIR — 1) = 5; (b) i = 2 [C/R 	1/(n — 1)] = 

= 3, where n = 1/2 is the polytropic index. 
2.73. y = (5v1 	7v2)/(3v1 	5v2). 
2.74. Increases by Aplp = Mv2IiRT = 2.2%, where i = 5. 
2.75. (a) vn=  -113RTIM= 0.47 km/s, (8)= 3/2kT = 6.0-10-21  J; 
(b) 	3 1/2kTlapd3= 0.15 m/s. 
2.76. 11  = 7.6 times. 
2.77. Q = 112 	 — 1) imRTIM = 10 kJ. 
2.78. Wsq  = 172 kTa = 6.3 • 1012  rad/sec. 
2.79. (€),..,t  = kToi2/i = 0.7.10-2° J. 
2.80. Decreases 11(11-1)/1  times, where i = 5. 
2.81. Decreases 11(i-10-2) = 2.5 times. 
2.82. C = 1/2R (i 	1) = 3R. 
2.83. vp, = 112p/p = 0.45 km/s, (v) = 0.51 km/s, 

= 0.55 km/s. 
2.84. (a) 6NIN = (8/1/n) e-161 = 1.66%; 

(b) ON IN = 12 1/-3/2n e-3/28i = 1.85%. 
) 

2 )2 	
MV2 

2.85. (a) T = 
k 

m (Av

-v- 
—380 K; (b) T = 2k  =340 K. 

2.86. (a) T — 	—330 K; (b) v= 
3kTo 	•ri 

4k ln (v2/vi
i)  

	

) 	 V m 1-1 • 



2.87. T — 2k (i 	mAvN)  m 0)2  — 0.37 kK. 

2.88. v =
3kT 1n (m2/m1)  =1.61 km/s. 

M2  — 1 

2.89. T = 113mv21k. 

2.90. dN/N = (-72' ) 3/2 e-mv212hT 2nvl  dvl  dvx. 2akT 
2.91. (vx)= 0, (I vx ) =1/.2kT I nm•  
2.92. (v1) = kT/m. 
2.93. v =1/4r1 (v), where (v) = li8kT/am. 

Co 

2.94. p = 2mvx  • vx  dn (vx) = nkT , 	where 	dn (vx) = 

(m12nkT) 1/2n • e-m4/2hT dvx. 

2.95. (1/v) =1/2mInkT = 4n (v). 
2.96. dN/N= 21s (nkT)-3/2e-ena 	dc; ep, =1/2kT; no. 
2.97. SNIN = 3 6n e-3126i= 0.9%. 

CO 

2.90 — = 	
231 Q AN 

(nkT)312  J 
The principal contribution to the value of the integral is provided 
by the smallest values of a, namely a x ao. The slowly varying factor 
lii-can be taken from under the radical sign if ascribed the constant 
value 1/-  so. Then 

AN 1 N = 2 V eolnkT e-sona 

2.99. (a) vp,. = 1/3kT/m; (b) apr  = kT. 
00 

2.100. dv = 	dn (42143-t)v cos 0 = n (2kT/am)I/2  sin 0 cos 0 de. 
v=-0 

n/2 

2.101. dv = 	dn (d52/4n) v cos 0 = n (m/2akT)3/2  e-mv2 /211Tv3  dv. 
e=o 

2.102. F = (kT I Ah) ln = 0.9.10-0  N. 
2.103. NA = (6RT Ind3Apgh) ln 	6.4.1023  mo1-1. 
2.104. 11/10 = ec.m2-m1vninT = 1.39.  

2.105. h — 
 kT In (n21%)  

(m2— mi) g • 
2.106. Will not change. 
2.107. (U) = kT. Does not depend. 
2.108. w 	riliT I M1 N 70 g. 

2.109. M — 	2RTp In 1  
(P— Po) (r2— r?) 0)2  • 

2.110. co = V (2RT M12) ln rl = 280 rad/s. 
2.111. (a) dN = no  e-ar2/hT4ar2  dr; (b) 	kT/a; (c) dN = 

= (a/akT)3/2 e-ar2/14T4TEr2 dr; (d) Will increase 13/2-fold. 

1/8  e-e/kT de.  



2.112. (a) dN= (2nno/a3/2) e-UMT  V U dU; (b) Up, =1/2kT. 
2.113. In the latter case. 
2.114. (a) II= 1 — ni--? = 0.25; (b) = 1 — ni /Y-1  = 0.18. 
2.115. 8 = (1 — 11)/1 = 9. 
2.116. -11 = 1 — 2T3/(T1  + T2). 
2.117. n  = — 	= 60%. 
2.118. 11 = 1 — n-(1-1/1)• 
2.119. 71 = 1 — (n + 7)41 + yn) 
2.120. In both cases 11  =1 

2.121. In both cases Ti =1 n
- 1 

2.122. =1  : 1-"I  nn • 
n- 1 

2.123. (a) 11=1— 7 --‘, 	, (b) = 1 	 
ni — 1 	 y (n-1) 0-1  

(n—i)  
2.124. (a) 11= 1 n-1-1-(y — 1) n Inn ' 

(b) it =1 n-1+(y-1)Inn  
y (n-1) 

2.125. — 	
(T-1) In v  

ti In v 	—1)/(y —1) ' 

2.126. rl = 	
(t— 1) In n  

ti In n 	(T-1) y/(y —1) • 

2.127. 11-1 2  7+1/T  
(1-1-v) (1-1-177) 

2.128. The inequality .Q1  — 8Q; <0 becomes even stronger 
T2 

when Ti  is replaced by T,,,„„ and T2  by Trnin  Then Qiirmax 
Q;amin< O. Hence 
Qi —Q; Tnta:m—aTurin  < 	or 1<llcarnot• 	pdp 	41 (61  

2.129. According to the Carnot theorem 	P 
WW1  = dTIT. Let us find the expressions 
for 811 and 8Q1. For an infinitesimal Carnot 
cycle (e.g. parallelogram 1234 shown in 
Fig. 14) 

SA = dp-dV = (OpIOT)vdT • dV, 

= 	p dV = [(away), + p] dV. 	Fig. 14. 

It remains to substitute the two latter expressions into the former one. 
2.130. (a) AS = 

Ryln1.19 JAK • mol); 	(b) AS — yR In 
1 
 n = 

y — 

= 25 J/(K • mol). 
2.131. n = eAs/". = 2.0. 
2.132. AS = vR ln n = 20 PK. 
2.133. AS =

M y-1 
 In n = —10 37K. 

2.134. AS = In a — in 6) vR/(? — 1) = —11 J/K. 

lkfc/V 



2.135. 152-S1=-• vR (In a yin  =1.0 J/K. 
'  

2.136. AS = 
 (n 
(n-1) ( 

OR  
v —1) In T. 

v  2.137. AS —v(+1).R  ln a 46 J/K. 
71 

2.138. V7n  Vo/a (1 +1'). 
2.139. T = To+ (R/a) In (V/Vo)• 
2.140. AS = R In [(V2  — b)/(Vi  — b)]. 
2.141. AS = Cv In (T2/T1) + R In [(V2  — b)/(Vi  — b)]. 
2.142. S = aT3/3. 
2.143. AS = m [a In (T2/T1) + b (T 2  — T 
Ti)] = 2.0 kJ/K. 
2.144. C = Sin; C <0 for n <0. 
2.145. T = Toes-sox. See Fig. 15. 
2.146. (a) C= —air; (b) Q.- a In (T1/T2); 

(c) A = a In (Ti/T2) + Cv 	T2)• 	 C<0 2.147. (a) 	= (n — 1)/2n; (b) 	= (n — 
—1)/(n + 1). 

2.148. AS = vR In n = 20 J/K. 	 so 
2.149. AU = (2Y-1  — 1) RT0/(y —1), AS 	Fig. 15. 

= R In 2. 
2.150. The pressure will be higher after the fast expansion. 
2.151. AS = v1R In (1 + n) + v2R In (1 + 1/n) = 5.1 J/K. 
2.152. AS = m1cl  In (T/Ti) + m2c2  In (T/T 2) = 4.4 J/K, where 

7' = 	+ m2c2T2)/(m1c1 + m2c2), c1  and c2  are the specific 
heat capacities of copper and water. 

2.153. AS = Cv  In (T 4T
+ Ts)2  >0. 

irg  
2.154. (a) P .112N; (b) N — hrog(t2IT)  80, where 	10-2  s is 

the mean time which takes a helium atom to cover distances of 
the order of the vessel's dimensions. 

2.155. Op,. = Ar1/1(N/2)!P = 252. Pnia = 52p7.12N = 24.6%. 

2.156. Po,— 	N! 

' 
• 1/32, 5/32, 10/32, 10/32, 5/32, 1/32 

n! (N—n)! 2N  
respectively. 

2.157. Pn=  n1  ovNI 
	 where p.V /V°. 

2.158. d= )376/Icn0re= 0.4 fun, where no  is Loschmidt's num-
ber; (n) 	= 1.0 .106. 

2.159. Will increase S2/00  = (1 + AT/To)iNA/2  = 101.31.10" 
times. 

2.160. (a) Ap = 4a/d = 13 atm; (b) Ap = 8a/d = 1.2.10-3  atm. 
2.161. h = 4alpgd = 21 cm. 
2.162. a = 1/8pod (1. — re/n)/(112  — 1). 
2.163. p = po  + p gh 4a/d 2.2 atm. 
2.164. h= [Po  (n3  — 1) + 4a (n2  — 1)/d1/pg = 5 m. 
2.165. Ah = 4a I cos 0 I (d2  — dOldid2pg = 11 mm. 

C>0 



2.166. R = 2a/pgh = 0.6 mm. 
2.167. x = //(1 	pod/4a) = 1.4 cm. 
2.168. a = [pgh 	poll(1 — h)] d/4 cos 0. 
2.169. h = 4a/pg (d2  — d1) = 6 cm. 
2.170. h = 2a cos 0/pgx&p. 

2.171. V1  = 1/4ld2 	20- 4«. 
n4 

(n 
 1 

— 1)/pd 0.9 ems/s. 

2.172. R2 	R1 %.t'.• 1/8pgh2/ct = 0.20 mm. 
2.173. m 	2nR2ccl cos 0 l(n2  — 1)Igh = 0.7 kg. 
2.174. F 	2am/ph2  = 1.0 N. 
2.175. F = 2nR2alh = 0.6 kN. 
2.176. F = 2a21/pgd2  = 13 N. 
2.177. t = 21T1R4/ar4. 
2.178. Q = 2na2lpg. 
2.179. (a) F = nad2  = 3µJ; (b) F = 2nad2  = 10 P. 
2.180. AF = 2nad2  (2-h/3  — 1) = —1.5 la. 
2.181. A' = F pV In (plp,), where F = 8nR2a, p = 
4aIR, V = 413nR3. 
2.182. C — Cp  = 1/2R/(1 	2/2por/a). 
2.184. (a) AS = —2 (da/dT) Au; (b) A U = 2 (a — T daldT) X 

X Aa. 
2.185. A = AmRTIM = 1.2 J. 
2.186. m, = (V — inVi)/(V; — VD = 20 g, V, = 1.0 1. Here 

17; is the specific volume of water. 
2.187. m1  z Mpo  (V, — V)IRT = 2.0 g, where Po  is the stan- 

dard atmospheric pressure. 
2.188. 	(n — 1)I(N — 1); = 1/(N 	1). 
2.189. AS = mq/T = 6.0 kJ/K; AU = m(q — RT/M) = 2.1 MJ, 

where T = 373 K. 
2.190. h x  (Q —mcAT)  = 20 cm, where c is the specific 

poS(1+ qM RT) 
heat capacity of water, AT = 100 K, q is the specific heat of vapo-
rization of water, T is its boiling temperature. 

2.191. A = me (T — T o) RTIqM = 25 1, where c is the specific 
heat capacity of water, T is the initial vapour temperature equal to 
the water boiling temperature, as is seen from the hypothesis, q is 
the specific heat of vapour condensation. 

2.192. d 4aMITOT = 0.2 am, where p is the density of 
water. 

2.193. a = 71poYM/25TRT = 0.35 g/(s•cm2), where pc, is the 
standard atmospheric pressure. 

2.194. p = pr2nRTIM = 0.9 nPa. 
2.195. Ap = a/V2M = 1.7.104  atm. 
2.196. pi 	pq. About 2.104  atm. 
2.198. a = 27 /64R2T2r/Per = 3.6 atm•12/mo12, b=118RT„Ip„. 

= 0.043 1/mol. 
2.199. T7;,. = 3181:1TcrIMper = 4.7 cm3/g. 
2.200. (n 	3/v2) (3v — 1) = 8T, T = 1.5. 



2.201. (a) Vmax =--3bmIM =5.0 1; (b) Pmax= a/27b2 = 230 atm. 
2.202. T„ = 8/27  a/bR = 0.30 kK, Pcr = i/3 MTh = 0.34 g/cm3. 
2.203. i1  ----- 8/3  MperIpRT, = 0.25, where p is the density of 

ether at room temperature. 
2.204. Let us apply Eq. (2.4e) to the reversible isothermic cycle 

1-2-3-4-5-3-1: 
T §dS =§dU-1-§pdV. 

Since the first two integrals are equal to zero, p dV = 0 as well. 

The latter equality is possible only when areas I and II are equal. 
Note that this reasoning is inapplicable to the cycle 1-2-3-1, for 

example. It is irreversible since it involves the irreversible transi-
tion at point 3 from a single-phase to a diphase state. 

2.205. ri =c1tIlq=0.25, where q is the specific heat of melt-
ing of ice; at t = —80°C. 

2.206. AT = —(T AV' lq) Ap = —7.5 mK, where q is the spec-
ific heat of melting of ice. 

2.207. V;„ 	qAT/TAp = 1.7 ms/kg, where q is the specific heat 
of vaporization, T = 373 K. 

2.208. pso  Po  (1 	qMATIRT2) = 1.04 atm where q is the 
specific heat of vaporization, pa  is the standard atmospheric pressure, 
AT = 1.1 K. 

2.209. Am/m = (qMIRT — 1) ATIT = 5%. 

2.210. p = Po  exp [e.(..i,!o _l_)]. These assumptions are admis- 

sible in the case of a vapour narrow temperature interval, far below 
the critical temperature. 

2.211. ii 	cpTAV'lq2  = 0.03, where c is the specific heat ca- 
pacity of ice, T c:-.1 273 K, q is the specific heat of melting. 

2.212. (a) 216 K, 5.1 atm; (b) 0.78, 0.57, and 0.21 kJ/g. 
2.213. AS 	m [c In (T2/T1) 	q/T2] = 7.2 kJ/K. 
2.214. As z gm/Ti 	c In (T2/T1) 	q0/T 2  = 8.6 J/(g•K). 
2.215. AS = me In (T/T1) = —10 J/K, where c is the specific 

heat capacity of copper, T = 273 K (under these conditions only a 
part of the ice will melt). 

2.216. (a) When m2c2t2  < /nig, not all the ice will melt and 

AS = m2c2 	—1 —ln-774) =9.2 J/K; 

(b) When rn2c2t2 > miq, the ice will melt completely and 

AS= 2- + c
2 

(m ln-L—m in 7 ) =18 J/K, 
Ti 	T 

where T =  m1ri-f-m2r2 — miqlc2   

2.217. OS= mq ( Tl —Ta )  mc 	—1 — ln 	-- 0.48 3/K. 

2.218. C = Cp  — qMIT = —74 J/(K•mol), where Cp  = 
= RTley — 1). 



2.219. AS = q1111T 2  -i-- CI, in (T2 /T1). 
2.220. (a) 	0.37; (b) i1 	0.23. 
2.221. X, = A//ln 1. 
2.222. (a) P = e-at; (b) (t) = 1/a. 
2.223. (a) X. = 0.06 p,m, ti = 0.13 ns; (b) X = 6 Mm, i = 3.8 

hours. 
2.224. 18 times. 
2.225. X = (221./VA /3b)2/3  (kTolVITP0) = 84 nm. 

2.226. v = 3td2poNAY 2T/MRT 0  = 5.5 GHz. 
2.227. (a) 0.7 Pa; (b) 2.1014  cm-3, 0.2 p.m. 

2.228. (a) v =1/-2-xt den (v) = 0.74 • 10'° 

(b) v = 1/2 1/-2n  d2n2  (v) 1.0 X 1029  s-1  • cm-3, where n = po/kTo, 
8RTITEM. 

2.229. (a) = const, v oc 117'; (b) X oc T, v c 1/j/T. 
2.230. (a) X, = const, v increases .1777, times; (b) X, decreases n 

times, v increases n times. 
2.231. (a) X oc V, v oc V-615; (b) X oc p-5/Y, v oc p°17; (c) 	oc 

oc T-5/2, v cc T3. 
2.232. (a) ) cc V, v oc V-(n+1112; (b) X cc p-1/n, v cc  p(n+1)/2n;  

(c) k cc T1/(1--n), v oc  T(ni-1)/2(n-1).  

2.233. (a) C = 1/ 4R (1 + 2i) = 23 J/(K•mol); (b) C 
112R (i + 2) = 29 J/(K •mol). 
2.234. n = noe-t/t, where T.= 4V /S (v), (v)=-1/ 8RTIaM. 

2.235. Increases (1 -I- '0/(1 H-1/j) times. 
2.236. Increases a3/f3 = 2 times. 
2.237. (a) D increases n times, 	= const; (b) D increases 

n3/2  times, rl increases V n times. 
2.238. D decreases n4/5 	6.3 times, 11  increases ni/5 	1.6 times. 
2.239. (a) n -- 3; (b) n = 1; (c) n = 1. 
2.240. 0.18 nm. 
2.241. dAr/dHe  = 1.7. 
2.242. N1  2wriaiR3/AR; p = 	kTInclznAR = 0.7 Pa. 
2.243. rl = (1/R2, — 1/4 N1/4no). 
2.244. N = 1/2wrio)a4/h. 

2.245. N ='13(oa4p aMI2RT. 

2.246. aa4M  i PI —Pi  Ix =  
HIRT 	/ 

2.247. T 	 x2T2112)1(x1ll1 	x282). 
2.248. x = (11 	/2)/(i1ix1 4- 12/x2). 
2.249. T (x) = T1  (T 21T 1)4; q = (all) in (T2/T1)- 
2.250. AT = (AT)0e-c", where a = (1/C1  + 1/C2) Sx//. 
2.251. T = T1  {1 	(x/l) [(T 217'1)312  — 11)2/3, where x is the dis- 

tance from the plate maintained at the temperature Ti. 

20-9451 



2iR 3/2  (Tr —T1/2) 
2.252. q —  o,„_ =40 W/m2, where i = 3, d is the 

9n"'"lclaNA JIM 
effective diameter of helium atom. 

2.253. X = 23 mm > 1, consequently, the gas is ultra-thin; 
q = p (v) (t 2  — t1)I6T (7 —1) = 22 W/m2, where (v) 

= 118RTInM, T = 1/2 (T1  ± T2). 
2.254. T = 7'1+ 1nT(2.11-2/TR10  In Rri  

2.255. T =T1+ 1IRT21—T111R 2 ( R1  r) 

2.256. T = T o 	(R2  — r2) iv/4x. 
2.257. T = To  + (R2  — r2) w/6x. 

3.1. The ratio Fei/Fgr  is equal to 4.1042  and 1.1036  respectively; 
q/m = 0.86.10-10  C/kg. 

3.2. About 2.1016  N. 

3.3. dq/dt = 3/2a 2neomg//. 
 T3.4.

-1/

qlq2

(F 	 17
V  

(1TH-12)2 ' 	r3— 	/714F2  • 
3.5. AT—  lq°  

8naeor2  • 

3.6. E = 2.7i — 3.6j, E = 4.5 kV/m. 
ql 

'1(Izeo (12±,2)3/2 

3.8. E= 2312 60  q 	R2 — 0.10 kV/m. 
l 	 q 3.9. E— 

43180 	
For 	r the strength E 4neos  

(0+12

q

)3/2  

in the case of a point charge. Eniax = 	q 	for 1=r1-11I. 
6 j/ 180r2 

	

R2  0 	 X  3.12. (a) 	48X:R  ; (b) E— 	 For xR the 
460 (x2 + R93/2  • 

strength E—  
4n eo  

P
x3' 

where p= nR2X0. 

3.13. (a) E= 	
n V 
	 ; (b) E= 	 In both cases 

4Eor 	a2 d-r2 	 go (r2 — a2) • 

E—  
4 ne

q 
 or2 

for r >> a.  

3.14. 	
• ns 

E=  X 1r5  The vector E is directed at the angle 45° to 
4 oy  

the thread. 

3.15. (a)
4 

n17
eoR

72-  • (b) E O. 

3.7. E- 

as 

3 q R2 
3.10. E- 

47Esox4• 

3.11. F — 	 43-EsoR • 



pot 
38o 

and E 

3.16. E = — 1/3ar/e0. 
3.17. E = —1/3ka0/80, where k is the unit vector of the z axis 

with respect to which the angle 0 is read off. Clearly, the field inside 
the given sphere is uniform. 

3.18. E = —1/6aR2/e0. 
3.19. I (1) I = 1/2kR/e0. The sign of (I) depends on how the direc-

tion of the normal to the circle is chosen. 

3.20. I (D I
eo 	171+ (R//)2  / 

1 • The sign of 413 depends on 
how the direction of the normal to the circle is chosen. 

3.21. I (I)I = 1/33tpro  (R2  — 4)/80. 
3.22. Emax  = Xhted. 
3.23. E = 1/2  a0/80, with the direction of the vector E corres-

ponding to the angle cp = 
3.24. (1) = 421.//a. 

(b) Emax  1/9  poR/e0  for r,„= 213 R. 
3.26. q= 22tR2a, E = 1/2a/80. 
3.27. E=--132r2  (1—e-ar3). Accordingly, E --1 °r2 

Po  
Uoar2  • 
3.28. E =1/3  ap/so-
3.29. E = 1/2ap/g0, 

axis of the cavity. 
1

) 

ateon 	
, 
 1+ (a/R)2 

3.30. Acp 	r, 1  

3.31. cpl  — cp2 = —288o  In = 5 kV. 
3.32. (p. = 1/2  aR/ec,, E=114c1/Eo. 
3.33. co e°  al  Cjil + (R/02-1),a /,, ± R.  

l—,- 0, then (p= 	, E= 2a80 ; when / ), R, then cp 

E z 4aq8012  ' where q=-- aaR2. 
3.34. IT = GR/neo. 
3.35. E = —a, i.e. the field is uniform. 
3.36. (a) E 	—2a (xi — yj); (b) E = —a (yi — xj). Here i, j 

are the unit vectors of the x and y axes. See Fig. 16 illustrating the 
case a >0. 

3.37. E = —2 (axi ayj 	bzk), E = 217a2 (x2 	+ y2) + b2z2.  

(a) An ellipsoid of revolution with semiaxes licp/a and 1/4/b. (b) 
In the case of (ID >0, a single-cavity hyperboloid of revolution; 
when = 0, a right round cone; when cp < 0, a two-cavity hyper-
boloid of revolution. 

3q  3.38. (a) (po meoR  ; (b) 	cpc, 	— 312) , r<R. 

3.25. (a) E-----12-338:(1-1T-13r  for r<R, E-- 
 8, 12 

P°R371  for r>.- R;  

where the vector a is directed toward the 

When 

q  

43180/ 
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3.39. E -----17E;. + E,23 — 43,8Pors  yi+ 3 cost 0 , where E,. is the 
radial component of the vector E, and Ee  is its component per- 
pendicular to Er. 

p 	3 cos2  0-1 	, 	p 3 sin 0  cos 0 3.40. E z —  43 so 	.3  ' .1-' 1 -  7 	 4neo 	
6

g 
cos 

 ±p at the points located on the lateral surface of a cone whose axis 
is directed along the z axis and whose semi-vertex angle 0 is found 

(a) 
	

(b) 

Fig. 16. 

from the relation cos 0 = 111/ 3 (01  = 54.7°, 02 = 123.5°). At these 
T points E = E1  — PV 4ngor3  . 

v- 
3.41. R = 	

4neoEo. 
kl 	 ;a 3.42. cp c.--.', 	cos 0 E ;---..,-• n  

qt 	x
' 	L leor_2 ' 2nsor 

3.43. cp ,--- 	
4nqleo  R2 —2x2 

4nso  (R2+,2)3/2 ' x — Where 
(R24-x2)5/2  ' 

  

  

  

Fig. 17. Fig. 18. 

Ex  is the projection of the vector E on the x axis. The func- 

tions tions are plotted in Fig. 17. If I x I 	 • 	4n8
q

0  R, then  	and —  
Ex  ;z--:  2n80x3  . 

ai 	 01R2  3.44. cp =   Ex= 	
a 
	  See Fig. 18. 

ao  X2+ R2 	 o  (x2  H-R2)3/2 



3.45. cp ;--.:.: -I- --:.--r/  - (1 	x  ) , E,•,=:-.1 	aiR2  ,, If xR, 
2e0 	1 1 s 2-1- 112 	2e0  (x2 + R2)3," ' 

then cp ,-...z.-, ± 40:x2  and 	E ,--:-.', 2318P  oxs , where p= nR2al. In the 

formulas for the potential cp the plus sign corresponds to the 
space adjoining the positively charged plate and the minus sign 
to the space adjoining the negatively charged plate. 

3.46. (a) F = 0; (b) F = 	n _XP 2  ; (c) F -= ..,  4  
4ngor 	 Itsr2  

3p2 

4 3.47. F = 2neot = 2.1.10-16  N. 

3.48. cp = —axy const. 

3.49. cp = ay (3 — x2 ) + const. 

3.50. cp = —y (ax 	bz) 	const. 
3.51. p = 6e0ax. 
3.52. p = 2e0 AT/c/2; E = pdieo. 
3.53. p = —6e0a. 

3.54. q= 41 17 neokx. 
2 

3.55. A=  q  16aso/ 

3.56. (a) F = (2 i8!:3112)  q2  ; (b) E=2 (1 

3.57. F = (2 	q2  323t8012  

3.58. F =  3132  
327[8,0 ' 

3.59. a -= 	ql 

27t (12 	r2)- 3/2 t qind = 	q• +  
3.60. (a) F1=  47t)'820/   ; (b) a = 	 (4x2). 

3.61. (a) a = 	(b)a (r) 2n 1712+r2  

3.62. (a) 	
(/2 + R2)3/ 2  

— 	   (b) E= , 0 	  lq 

42L8  412 	+1/4 (R/1)93/2  
1  

`= 471E0 R\1 1/1+4 (i/R)2  

3.63. (p = 	 4neol • 
3.64. cp= 	

1 	1 _L  1 
4aeo 	Ri  -1-  Rg 

11r-114 if a < r < b, 

3'65' q2 a q1; 	 (1—bla) r if r > b. 

3.66. (a) E23 = Acp/d, E12  = E34 = 112 E23; (b) al = 
= 1/2804M, az = I as I = 3/2804/d. 

3.67. q1  = —q (1 — x)I1, q2  = —qx/l. Instruction. If the charge 
q is imagined to be uniformly spread over the plane passing through 

q  
5 lig 1 neo12 



that charge and parallel to the plates, the charges ql  and q 2  remain, 
obviously, unchanged. What changes is only their distribution, and 
the electric field becomes easy to 
calculate. 	 fx 

3.68. dFldS = 1/262/80. 

3.69. F =  q 	0.5 kN. 
32xce 

2 
 oR2 — 	 0 

3.70. F = 1/4nR2aV80. 

3.71. N — 	nel) 	 — 3.103, 	 Fig. 19. 
(e- 1) 4E 

where no  is the concentration of molecules. 

3.72. F=  3131)2  4:1260 /7  
1.1R (attraction) 

3.73. (a) x = R/17- ; (b) x = { 0.29R (repulsion). See Fig. 19. 

3.74. P —  ee l 1 	 r, q

, 

 = 	 e e l 	 q. i  
3.76. qinn = — q (8-1)1e, q;,,,t =q (e —1)/8. 

 

(a) 
r 

Fig. 20. 

3.77. See Fig. 20. 

3.78. E 	cos2  ao  + 82  sin2  ao  = 5.2 V/m; 

tan a = 8 tan ao, hence, a = 740; al = go  (8_1) 

e 	E0  cos ao  = 64 pC/m2. 

3.79. (a) () E dS =-- 8— e  1  nR2E0 cos 0; (b) § D dr=--so  (6-1) X 

X 1E0  sin 0. 
1 pd  p/1 lcee00  for 1<d, 	f — p/2/2880  for 1<d, 

3.80. (a) E= 
for / > d, (1)=-  1 — (d/2e + 1— d) pd/e0  

for 1_>-d. 
The plots Ex  (x) and p  (x) are shown in Fig. 21. (b) a' = pd (e — 1)/8, 
p' = —p (a — 1)/8. 

1 pr/3808 for r < R, 
3.81. (a) E = 

pR3/380r2  for r > R; 
(b) p' = —p (8 — 1)/8, a' = pR (8 — 1)/3e. See Fig. 22. 

3.82. E = —dP/480R. 
3.83. E = —Po  (1 — x21d2)180, U = 4dP0/3co. 



Fig. 21. Fig. 22. 

1 

3.84. (a) E1  = 2sE0/(e + 1), E 2  = 2E0/(e + 1), D1  = D2 = 
2860E0/(e + 1); (b) E1  = Eo, E2 = EVE, D1  = D2 = a0E0. 
3.85. (a) 	= E2  = Eo, D1= 80E0, D2 = 8D1; (b) 	E2 

= 2E0/(e + 1), D1  = 2e0E0/(e + 1), D2 = 8131. 
3.86. E = q/2ne, (e + 1) r2. 
3.87. p = poe/(e — 1) = 1.6 g/cm3, where a and po  are the per-

mittivity and density of kerosene. 

3.88. cr;flax  = (e — 1) NE = 3.5 nC/m2, 	nR2  (e — 1) 80E= 
= 10 pC. 

3.89. (a) Since the normal component of the vector D is contin-
uous at the dielectric interface, we obtain 

= —ql (e — 1)/2nr3  (e + 1), for 1 	0 and a' -4- 0; 
(b) q' = —q (8 — 1)/(e + 1). 

3.90. F = q2  (a — 1)/161te012  (e + 1). 
q/2n (1 + e) r2  in vacuum, 

3.91. D = 
eq/2n (1 + e) r2  in dielectric; 

E = q/2neo  (1 + e) r2  

	

cp = q/2neo  (1 + e) r 	
both in vacuum and in dielectric. 

3.92. a' = ql (8 — 1)/2nr3e (e -I- 1); for 1 	0 and a' 	0. 
3.93. a' = ql (a — 1)/2nr3e. 
3.94. E1  = Ph/eod (between the plates), E2. = —(1 — h/d)P/co, 
= D2 = Phld. 
3.95. p' = —2a, i.e. is independent of r. 
3.96. (a) E = 
3.97. E0  = E — P/360. 
3.98. E = 3E0/(e + 2), P = 3e0E0  (e — 1)/(a + 2). 
3.99. E 	—P/280. 
3.100. E = 2E0/(e + 1); P = 280E0  (e 	1)/(e + 1). 

3.101. C — 	4neoaR1 

1-1-(8-1) R1/R2  ' 
3.102. The strength decreased 	1/2  (e + 1) 	times; q = 

=112C6 (8 — 1)/(e 	1). 

	

S 	 81-82  3.103. (a) C = d1/e180±d2/e2  ; (b) a' = eoT7  8,42+ 82di  . 

3.104. (a) C= co  (e2 — el) Sid In (e2/e1); (b) p' = — q(e2 — ei)/dSe2. 



3.105. C = 4asoa/In (R2/R1). 
3.106. When siRiElm = 82R2E2m.• 
3.107. V = 	[ln (R2/R1) 	(81/ 82) In  (R3/R2)1 
3.108. C 	2T80  In (b/ a). 
3.109. C 	2Itso/ln (2b1a). 
3.110. C z 2neosa. Instruction. When b >> a, the charges can 

be assumed to be distributed practically uniformly over the sur-
faces of the balls. 

3.111. C 	4asoa. 
3.112. (a) Ctotal 	Cl 	C2 + C3; (b) Ctotai = C. 
3.113. (a) C = 2s0S/3d; (b) C = 380S/2d. 
3.114. V 	V1  (1 	Ci/C 2) = 9 kV. 
3.115. U = 61(1 + 3rd + 12) = 10 V. 
3.116. C x  = C (11/5 — 1)/2 = 0.62C. Since the chain is infinite, 

all the links beginning with the second can be replaced by the ca-
pacitance Cx  equal to the sought one. 

3.117. V1  = q/C1  = 10 V, 	V2 = q/C2 = 5  
cpB + 6) C1C2I(C1 + C2). 
V 1  = (62— 60/(1 + C11C2), V2 =(6., — 62)41 + c2/c1). 
q = 61 — 621 c1c2/(c1 + C2). 

c2cs—cic4  
TA — TB= (C1 C2) (C3+c4) 

In the ease when C1/C2= 

V  3.121. q- 0.06 mC. — 1/C1  1/C2  1/C3_ 
3.122. q1 = gC2, q2= — gUtC2/(Ci -FC2)• 
3.123. q1 -= 6C1  (C1 — C2)/(C1 	= — 24 .tC, 

42= gC2 (C1 —  C2)/(C1 + C2) — 36 I.LC, q3 = 6 (C2— C1) = +6011C. 
3.124. WA— TB (C2g2—Cigi)/(C1 1- C2+ CO- 

3.125. (pi  =  W2C2 + W1C3+W1 (C2+ CS)  
ci d-c,-Fc3  

W3c3— W2 (C1+ C3) 	 W1 C1W2C2-43 (C1+ C2)  
(4)2 = 	C1+C2±C3 	, 

W3 	 Ci+C2±C3 

3.126. Ctotal = 
2C1C2 +C3 (C1 +C2)  

ci+C2+2c3 

q2143180a. 
21n 2  q2  
4:180  a • 

—q2/85t80 /. 
41q2/4aso /. 

= — 1/2172C1C2/(C1 + C2) = 
e2cco/(2c + 
1/2ce22. It is remarkable 
61. 

W2 + 

V, where q = 
= (WA — 

3.118. 
3.119. 

3.120. 

C3/C4. 

3.127. (a) W = (4/- -P 4) q2/4neoa; 	(b) W=(1/2-4)  = 	2 	q2/43teoa; 

(c) W= —172  

3.128. W — 

3.129. W = 
3.130. W = 
3.131. AW 
3.132. Q = 
3.133. Q = 

independent of 

3.134. W = 
1 	q? 

4n60 \ 2R1  

	

4_ q2 	q1q2 

	

2R2 	R2 	• 

that the result obtained is 

—0.03 mJ. 
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3.135. (a) W = 3q2/20ne0R; (b) W1/W2  = 1/5, 
3.136. W = (q2/8ne0e) (1/a — 1/b) = 27 mJ. 
3.137. A = (0182180) (11R1  — 11R2). 
3.138. A—q(4o+q12) 	1 

\ 47E80 	
1

R1 	R2 ) 
3.139. F1  = a2/2e0. 
3.140. A = (q2/8ne0) (1/a — 1/b). 
3.141. (a) A = q2  (x2  — x1)/2e0S; 

(b) A -----80SV2  (x2  — xl)/2x1x2. 
3.142. (a) A = '12CV211(1 — 1)2 = 1.5 mJ; 

(b) A = 112CV 2ria (a — WEE — 1 (a — 1)12  = 0.8 mJ. 
3.143. Ap = 808 (a — 1) V2/2d2  = 7 kPa = 0.07 atm. 
3.144. h = (a — 1)62/2a0epg 
3.145. F = nRe0  (a — 1) V2/d. 
3.146. N = (8 — 1) e0R2V 2/4d. 
3.147. I = 2na0aEv = 0.5 RA. 
3.148. I 27(60  (a — 1) rvV Id = 0.11 p,A. 
3.149. (a) a = (al 	la2)/(1 	i); (b) a 	(a2 	rlai)/(1 -1-  1). 
3.150. (a) 516R; (b) 7/12R; (c) 3/ 4R. 
3.151. Ric  = 	(ij-  — 1). 
3.152. R = (1 -1-1/ 1 + 4R21R1) R112=6 Q. Instruction. Since 

the chain is infinite, all the links beginning with the second can be 
replaced by the resistance equal to the sought resistance R. 

3.153. Imagine the voltage V to be applied across the points A 
and B. Then V = IR = I 0R0, where I is the current carried by the 
lead wires, 10  is the current carried by the conductor AB. 

The current / 0  can be represented as a superposition of two cur-
rents. If the current I flowed into point A and spread over the 
infinite wire grid, the conductor AB would carry (because of symmet-
ry) the current 1/4. Similarly, if the current I flowed into the grid 
from infinity and left the grid through point B, the conductor AB 
would also carry the current I/4. Superposing both of these solutions, 
we obtain /0  = 1/2. Therefore, R = R0/2. RAc= iRo 

3.154. R = (p/2a/) In (b/a). 
3.155. R = p (b — a)/4aab. In the case of b 	oo R = p/4.1-Ea. 
3.156. p = 4nAtabl(b — a) C In 
3.157. R = p/2na. 
3.158. (a) j = 2a1V1pr3; (b) R = p/4na. 
3.159. (a) j = Z VI2pr2  In (11a); (b) RI  = (p/n) In (11a). 
3.160. I = VC/paa0  = 1.5 [LA. 
3.161. RC = pea,. 
3.162. a = D, = D cos a; j = D sin cr:/8801)• 
3.163. I = VS (a2  — al)/d In (62/a1) = 5 nA. 
3.165. q= so  (p2 — pi) 
3.166. a = c0V (821)2 — eiPi)/(Pidi 	p 2d2), a = 0 if gip,. = 
E2P2• 
3.167. q = 801 (8 21)2 — 

3.168. p = 2e0V (rt — 1)/d2  (7) + 1). 



3.169. (a) 111  = 23-ca/S2; (b) E 	231a//S2. 
3.170. t = -RC In (I - VIVO = 0.6 tis. 
3.171. p = %leo In 2 = 1.4.1013  5-2•m. 
3.172. I = [(11 - 1) g 1 I1] e-rit/RC. 

3.173. V = 	+ 1) = 2.0 V. 
3.174. (pi  - 	 = (el - 	 + R2) - e, = -4 V. 
3.175. R = R2 - R1, Acp = 0 in the source of current with in-

ternal resistance R2. 
3.176. (a) I = a; (b) CPA - tP B = 0. 

3.177. PA - B = (el - 	R1/(R1 + R2) = -0.5 V. 
3.178. /1 = eR2/(RR1  RiR 2  R2R) = 1.2 A, 12 = 11R1/R2=  

= 0.8 A. 
3.179. V = V oRx1ER1 R (1 - x) x111; for R > Ro  V 
V ox11. 
3.180. t = (g 1R 2 	g2R1)/(Ri + R2), Ri = R1R 2/(R1  + R2). 
3.181. I = (R16 2  - R261)1(RR1 R1R2+ R2R) = 0.02 A, the 

current is directed from the left to the right (see Fig. 3.44). 
3.182. (a) 	= [R3 (et - + 	Rol + gov(R,R, + R2R3 + 

+ R3R1) = 0.06 A; (b) (pA - cpB = gi 101 = 0.9 V. 
3.183. I = [6 (R2  + R3) + 0R 3]1[11 (R2  + R3) + R2R3]. 
3.184. TA .- (I) B = [e2R3 (R1 + R2) - g1R1 (R2 +R3)11(14112+ 

▪ R 2R3 R3R1)  =- -1.0 V. 
3.185. /1  = [R3 ((Pi - (1)2) -4-  R2 (Cl 	(P3)11(R1R2 	R2R3 

▪ R3R1) = 0.2 A. 
Ri+R2  3.186. I=  

R2 ( R1 [I ± R2R4 (R1+ R3) /RIR 3 (112 R4)] 
1) = 1.0 A. 

The current flows from point C to point D. 
3.187. R AB = r (r 	3R)1(R 	3r). 
3.188. V = 1/2e (1 	e-2tniC).  

3.189. (a) Q = 4/3 q2R1 At; (b) Q = 1/2 In 2.q2R/At. 
3.190. R = 3R0. 
3.192. Q I (g - v) = 0.6 W, P = -IV = -2.0 W. 
3.193. I = V12R; Pmax = V2/4R; 11 = 1/2. 
3.194. By 2i = 2%. 
3.195. T - To  = (1 - e-htic) V2/kR. 
3.196. Rx  = 	+ R2) = 12 52. 
3.197. R = R1R2I(R1 + R2); 

Qyna. = (e1R2 +  F2111)214R1R2  (R1 + R2). 
3.198. n 	111■TrIR = 3. 
3.199. Q = 112C6 21111(R1 + R2) = 60 mJ. 
3.200. (a) AW = -1/2CV2i/(1 	1) = -0.15 mJ; (b) A 

= 112CV2111(1  - 11) = 0.15 mJ. 
3.201. AW = -1/2  (a - 1) CV2  = -0.5 mJ, 	A rnech 

= 1/2 (a - 1) Cr 0.5 mJ. 
3.202. h 	1/2 a0  (a - 1) V2/pgd2, where p is the density of water. 
3.203. (a) q = qoe-1/806P; (b) Q = (1/a - 1/b) Oneo e. 
3.204. (a) 	q = qo  (1 - e-t/RC) = 0.18 mC; 	(b) Q 

= (1 - e -  Inic)q/2C = 82 mJ. 



3.205. (a) I = (V 0IR) e-2tIRC-

' 

 (b) Q = 1/4 
3.206. elm = lcor/qR = 1.8.1011  C/kg. 
3.207. p = lImle = 0.40 RN • s. 
3.208. s = enl (v)11,  107  m, where n is the concentration of 

free electrons, (v) is the mean velocity of thermal motion of an 
electron. 

3.209. (a) t = en1SII = 3 Ms; (b) F = enlpl = 1.0 MN, 
where p is the resistivity of copper. 

3.210. E (I12:-ce0r) ym/2eV=32 V/m, 6,9=(//4neo) V m/2eV = 
= 0.80 V. 

3.211. (a) p (x)= — 419E0ex-213; (b) j = 4/9E,a3/ 2  V 2e/m. 
3.212. n = Idle (u: 	ii-(;) VS = 2.3.108  cm-3. 
3.213. uo  = (1)0/2/2Vo. 

3.214. (a) ni  = I sat IeV = 6.109  cm--3 .s -1; (b) n = V nilr 
6.107  cm-3. 

3.215. t= 	1)/ V rni  = 13 ms. 

3.216. t = EAU/enid2  = 4.6 days. 
3.217. I = ev aead. 

3.218. j = (ecui — 1) enila. 
3.219. (a) B = µ,I/2R = 6.3 p.T; (b) B = 1A0 R2I12(112 	x2) 312= 

= 2.3 RT. 
3.220. B = ntio/ tan (n/n)/2nR, for n 	oo B = I.10//2R 
3.221. B = 414l/ltd sin 9 = 0.10 mT. 
3.222. B = (n — 9 tan 9) Ro//2nR = 28ta. 

3.223. (a) B = P4' 91.  (  2n:(1)  + b) ) ; (b) B = 43.t1  (4: + .17b 2  . 

3.224. B 	Roh//1-t2Rr, where r is the distance from the cut. 
3.225. B = RoIln2R. 
3.226. (a) B = (p,0/4n) (nER); (b) B = (p,0/41t) (1 + 3n/2) PR; 

(c) B = (p,0/411) (2 	n) IIR. 
3.227. B= (110 /4n)1y 2/i = 2.01LT. 
3.228. (a) B  = (110 /4n) V4 -I- n2  I1R = 0.30 RT; (b) B = (p.0 /4n) X 

x 1/2 +2n + n2  PR= 0.34p,T; (c) B = (p.0/4n) V 2 1/R= P.11 ELT. 
3.229. (a) B = Ni/2; (b) B = Rot between the planes and 

B = 0 outside the planes. 

3.230. B= 
ttoix inside the plate, 

Roid outside the plate. 
3.231. In the half-space with the straight wire, B = p,o//2nr, 

r is the distance from the wire. In the other half-space B = 0. 
3.232. The given integral is equal to Rol. 

3.233. B 	
1/ 2u0 [Jr]  for r-<„,11, 

1/2p,o  [jr] R2/rz for 
3.234. B = 1/2p.0  UM i.e. field inside the cavity is uniform. 
3.235. j (r) = (b I p, 0) (1 	a) 



3.236. B = Ron//1/1 (2R//)2. 
3.237. (a) B 1/2 p,0n1 (1 — x/V x2  + R2), where x> 0 outside 

the solenoid and x < 0 inside the solenoid; see Fig. 23; (b) xo = 

R (1— 21)12V 1(1— 	5R. 

3.238. B = .{(1-411h)11 (1— (h12311)2= 0.3 mT, r<R, 
(110 /431) 21/r, r > R. 

3.239. r1  x N/Jt = 8.102. 

= 1.0 pWb/m. 
	 (110/47t) = 	 70 B/6a 3.240. 

3.241. 	(121 = (120 0/2 = kn/S/2, • 8  

	

where (Do  is the flux of the vec- 	0. 

	

for B through the cross-section of 	0# 
the solenoid far from its ends. 

3.242. (I) = (110/4n) 2INh In 1= 	0.2 
= 8 [Mb. 

3.243. 	pm  = 23-cR3BI110  = 
= 30 mA • m2. 

3.244. 	pm  = 	d2  = 
=0.5 A • m2. 

3.245. a B LOIN (b/a)  7 N;  ()  2 (b— a) 
(b) Pm = 113nIN (a2  ab b2) = 15 mA • m2. 

3.246. (a) B = 1 /2p.060)R; (b) pm = 1/4260)R4. 
3.247. B = 2/3p.060)R = 29 pT. 
3.248. pm  = 1/5qR2co;  pml M = q/2m. 
3.249. B = 0. 
3.250. FmlFe = 110 80722  = (v/c)2  = 1.00.10-6. 
3.251. (a) F1  = 110.12/4R = 0.20 mN/m; 	(b) F1 = 120/21211 = 

= 0.13 mN/m. 
3.252. B = ad2aml4RI = 8 kT, where am  is the strength of 

copper. 
3.253. B = (2pgS I I) tan 0 = 10 mT, where p is the density 

of copper. 
3.254. B 	 = 0.4 T. 
3.255. (a) F = 4.0.1101n (412  — 1) = 0.40 p.N; 	(b) 	A = 

= (11oall0/n) In )(21 	1)/(2ri — 1)] = 0.10 J. 

3.256. R Yµ0/s0  (ln i)/n = 0.36 kS2. 
3.257. F1 = p,01.2/3-1, 2R. 
3.258. F1= 4 

2111 2  In (1 + b/a). 

3.259. F1  = /31/21..t 0. 
3.260. In all three cases F1  = (B: — B:)/2110. The force is direct-

ed to the right. The current in the conducting plane is directed 
beyond the drawing. 

3.261. Ap = IBla = 0.5 kPa. 
3.262. p = p.0/2/8n2R2. 
3.263. p = 1/2p.0n212• 

0 

Fig. 23. 

,Z'/? 



0 2-  

3.264. him = V 2F11in/RonR. 
3.265. P = v2B2d2RI(R 	pd/S)2; when R = pd/S, the power 

is P = P max = 114v2B2dS1p. 
3.266. U = 1/4110/2/n2R2ne = 2pV. 
3.267. n = jBleE = 2.5.1028  m--1; almost 1 : 1. 
3.268. u0  = 1/1B = 3.2.10-3  m2/(V•s). 
3.269. (a) F = 0; (b) F = (110/4n) 2/pm/r2, F1-1. B; (c) F 

= (p,0/4n) 2Ip,,Ir2, F r. 
3.270. F = (R0l4n) 6nR2Ipmxl(R2  + x2)512. 
3.271. F = 312R0PimP2,1n14 = 9 nN. 
3.272. 	2Bx3/R9R2  = 0.5 kA. 

3.273. B' =B R2  sine 	cos2  a. 

3.274. (a) %, H dS = nR2B cos 9 	1)/N-10; 

(b) ic;IB dr = (1— [) B1 sin O. 

3.275. (a) Isu,. = 	(b) 1;ot = xI; in opposite directions. 
3.276. See Fig. 24. 
3.277. B —  R0111R2  I 

111+14 nr • 
3.278. B = 2B0[11(1 
3.279. B = 3B9[t/(2 
3.280. H, = NIll = 6 kA/m. 
3.281. 	H 	bBliuond = 

=0.10 kA/m. 
3.282. When b << R, the per-

meability is 12 	2aRBI(p,0NI 
bB) = 3.7-103. 
3.283. H = 0.06 kA/m, Rmax  z 1.0.104. 
3.284. From the theorem on circulation of the vector H we 

obtain 
B 	tio N I 

11°3-cd H = 1.51 — 0.987H (kA/m). b 

Besides, B and H are interrelated as shown in Fig. 3.76. The requir-
ed values of H and B must simultaneously satisfy both relations. 
Solving this system of equations by means of plotting, we obtain 
H z 0.26 kA/m, B z 1.25 T, and p, = B/R0H z 4.103. 

3.285. F z 112xSB21110• 
3.286. (a) xn, = 1/ V 47i; (b) X = RoFmax V e/a/VB 	3.6.10-4. 
3.287. A 	1 /2xVB2/R 0• 
3.288. e 1= By178wIa. 
3.289. I = Byll(R 	111,,), where Rp, = M2/(RI. + B2). 
3.290. (a) Acp = 112(o2a2mle = 3.0 nV; (b) 	1/2o1Ba2  = 

= 20 mV. 
c 

3.291..c E dr = — 1/2c0Bd2 = —10 mV. 

Fig. 24. 

A 



Fig. 25. 

3.292. gi  = 1/2(-1)- Bafit, where n = 1, 2, . . . is the num-
ber of the half-revolution that the loop performs at the given mo-

ment t. The plot gi  (t) is shown in Fig. 25 where t„, = V2nn/13. 
3.293. /ind  = a/r, where a = 

3.294. gi_ µu  .2( Is±a2v  a) . 4n 
3.295. ei  1/2  (wa3/33 + 2mg sin tot)laB. 

3.296. v mgR sin a 
B2/2 	• 

3.297. w 	g sin a. 
1+12B2cim  • 

3.298. (P) = 1/2  (no.ia2B)2/R. 
3.299. B = '12qRINS = 0.5 T. 

3.300. q=-- 1.;orta in bb+ aa i.e. is indepen- 

dent of L. 

3.301. (a) / =  1j2°511:;,i'v  In 12;  ; (b) F=i-(11: ln -bw  )2 . 

3.302. (a) s = vom11112B2, (b) Q = 1.12mv:. 
3.303. v= am — (1— e-at), where ar =B2/2/mR. 
3.304. (a) In the round conductor the current flows clockwise, 

there is no current in the connector; (b) in the outside conductor, 
clockwise; (c) in both round conductors, clockwise; no current in 
the connector, (d) in the left-hand side of the figure eight, clockwise. 

3.305. I = ,o)B f, (a — b)/p = 0.5 A. 
3.306. cm. = 1 /3na2/1Ta)Bo. 

3.307. gi  = 3/2W/ Bt2  = 12 mV. 

3.308. E=
{ 1/2p,onir 	for r <a, 

1/2I-Lonia2/r for r> a. 
3.309. I = 1/41.t onSdi/p = 2 mA, where p is the resistivity 

of copper. 
3.310. E = 1/tab (ri — 	+ 1). 

3.311. co= — -26+-n  B (t). 

3.312. Ft max  fZaRTb:  . 
3.313. Q = i/3a2t3/R. 
3.314. I =114(b2 	a2)  nh/p. 

3.315. /=1/-4n/oL/R0  = 0.10 km. 

3.316. L =2-2- 	where p and po  are the resistivity and the 
4n Ippo  

density of copper. 

3.317. t= --R  in (1 	= 1.5 s. 



3.318. 	
m  /i'Dpo  

= 0.7 ms, where p is the resistivity, po  is the 
density of copper. 

3.319. Li —  1/21:: In = 0.26 p,H/m. 

3.320. L 	p,N2a In (1 +1) . 

3.321. L1  = tioldb = 25 nH/m. 

3.322. Li Pi'. In 1. 

3.323. (a) I = na2B/L; (b) A = 1/2n2a4B2/L. 
3.324. I = I (1 + = 2 A. 

3.325. / = 	jia8B 	— 50 A. 
[to  ln 	— 2 ) 

3.326. I= 	+ (1— 1) e-tliR/L]. 

3.327. I =1- (1— e —t-R/29. 

" R (.1,1L+2  1., 
	

L2) 
3.328.  

3.329. Lie= 1'214 In (1 -1-÷) . 

3.330. Li2  p,02N  in  b 

3.331. (a) L1
2 	

1/211, 03-ta2/b; (b) 021 = 1121-Lona2//b. 
3.332. pm  = 2aRqlp,oN. 
3.333. L12  ^---% 112 p,ona4113. 

3.334. /2 =  aLR12 (1 e-tR/L2). 

/42  3.335. Q 2R2  (1+ Rol R) —3 
J. 

3.336. W 	= 0.5 J. 
3.337. W = BlIa2a2b = 2.0 J, where H = 1/2 NI/nb. 

3.338. (a) Wgap/Wm  pb/nd = 3.0; (b) L aNdi2  — 0.15 H. 

3.339. Wi  = Rdt,26)2a2/831. 

3.340. E = 	solo = 3.108  V/m. 
3.341. wm/ive  = go110002a 4/ 2 	1.1.10-15. 
3.343. (a) Ltotat = 2L; (b) Ltotat = L/2. 

3.344. L12=1/- L1L2. 

3.346. W12= P2b2 /1/2  cos 0. 

3.347. (a) ja = --i; (b) Id = qieogP• 
3.348. The displacement current should be taken into account 

in addition to the conduction current. 
3.349. Em  = InzleocoS = 7 V/cm. 

3.350. H = Hm  cos (cot ±a,), where 

and a is determined from the formula tan a = com/a. 

R' (Li+ L2) 

117n -72; V 62 + (8°"))2 
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3.351. fd-={ 
1/2:Eir 	for r < R, 

112BR2Ir for r > R. 

Here h = p,on/mo)2  sin cot. 

3.352. (a) jd  = 42itqrv3  ; (b) jd  

3.353. xn,=-. 0, id max — 4,,qva3 • 

3.354. H—  q  Evri  

4nr3  • 

3.355. (a) If B (t), then V X E 	—OBI& 	0. The spatial 
derivatives of the field E, however, may not be equal to zero 
(V x E 	0) only in the presence of an electric field. 

(b) If B (t), then V X E = 	0. But in the uniform 
field V x E = 0. 

(c) It is assumed that E = of (t), where a is a vector which is 
independent of the coordinates, f (t) is an arbitrary function of time. 
Then —awat = V X E = 0, that is the field B does not vary with 
time. Generally speaking, this contradicts the equation V x H = 
= apiat for in this case its left-hand side does not depend on time 
whereas its right-hand side does. The only exception is the case 
when f (t) is a linear function. In this case the uniform field E can 
be time-dependent. 

3.356. Let us find the divergence of the two sides of the equation 
V X H = j 	°plat. Since the divergence of a rotor is always equal 

to zero, we get 0 = V•j + 4F  (V •D). It remains to take into 

account that V•D = p. 
3.357. Let us consider the divergence of the two sides of the 

first equation. Since the divergence of a rotor is always equal to 

zero, V • (mat) = 0 or --a-Fa  (V•B) = 0. Hence, V•B = const which 

does not contradict the second equation. 
3.358. V X E 
3.359. E' = 
3.360. a = eovB = 0.40 pC/m2. 
3.361. p = —2eo)B= —0.08 nC/m3, a = eoczo)B= 2 pC/m2. 

3.362. B= [r]  [yr]  

r3 	• 

3.364. E' = br/r2, where r is the distance from the z' axis. 

3.365. B' = 
c2r2 

a [rv] 
' 

where r is the distance from the z' axis. 

3.367. (a) E' = E V 	132 c°82 a  = 9 kV/m; tan a' 
VO2  

whence a 51'; (b) B' —  PE sin a
-14 IA. 

c171-132 

qv 
4nr3  

tan a 

V 1 —,P2 
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3.368. (a) E' =  13B 	— 1.4 nV/m; 
cv'1— R2  

(b) B' =B 	
1-132 co

t32
s2 a 0.9 T, 	51°. 

3.370. B' B 1 — (E I cB)2  ^.e., 0.15 mT. 
3.371. Suppose the charge q moves in the positive direction of 

the x axis of the reference frame K. Let us pass into the frame K' 
at whose origin of coordinates this charge is at rest (the x and x' 
axes of the two frames coincide and the y and y' axes are parallel). 
In the frame K' the field of the charge has the simplest form: E' 

= 4n 
1 

so  q3 
r', with the following components in the plane x, y 

q 	, 	1 	q 

	

4neo  r's x 	4neo  is Y • 

Now let us make the reverse transition to the initial frame K. At the 
moment when the charge q passes through the origin of coordinates 
of the frame K, the x and y projections of the vector r are related 
to the x and y' projections of the vector r' as 

x = r cos 0 = x1 1/ 1 — (v/c)2, y = r sin 0 = y', 
Besides, in accordance with the formulas that are reciprocal to 
Eqs. (3.6i), 

Ex = Ex,  Ey = E;11/-  1-- (vIc) 2. 
Solving simultaneously all these equations, we obtain 

1 	qr 	1—  f32  E. Exi E yi — 452s0  r3 (1— 02 sine 0)2/2  

Note that in this case (v = const) the vector E is collinear with 
the vector r. 

	

3 	 

3.372. v = V 9 I2alelm= 16 km/s. 
2 

3.373. tan a = a4 V 2eV 3  
3.374. (a) x = 2Eola; (b)  w 
3.375. t 1l T (T+2m0C2)  3.0 ns. 

ceE 

	

3.376. w — 	
eE 

 m, (1+ Thnoc2)3  ' 

3.377. (a) tan 0 = 
eEt

V1 — (vo/c)2, where e and mo  are the charge 
movo 

and the mass of a proton; (b) vx  = vo/V1 + (1— vVc2)(eEtImoc2) 2. 

3.378. a = arcsin (dB V -,v ) = 30°. 

3.379. (a) v= reBlm= 100 km/s, T = 2=1 eB = 6.5 Rs; (b) v 

ci I/ 1 + (moc/reB12  = 0.51 c, T — 	,271m9  	— 4.1 ns.  
V eB 1— (v/c2) 

21-9451 
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3.380. (a) p=qrB; T =m0c2 (1/-  1+ (qrBlmoc) 2  —1); (c) w = 
C2 

(1) 	mv
leB  
cos a 3.384. r 2p I sin (cp/2) I , where p —m eBy  sin a,  

3.385. rmax ---- aevo/b, where b= )1°— m  I. 2n  
V 	 V  3.386. v — qlm 

= rB (b I a) ' 	r2B2  In (b la) 

3.387. (a) yn =  913, 	; (b) tan a = 2nEn • 
voB En2  2n2m 

3.388. z = 1 tan V 2q1- 7B—T;- y; for z <1 this equation reduces to 

y = (2mElq12B2) z2. 
3.389. F = mEl I qB = 20 [IN. 

3.390. Al —  2 nmE  tan cp 6 cm. 
eB2  
a (a+2b) B2 

3.391. 	2EAx 	• 
3.392. (a) x = a (cot — sin cot); y = a (1 — cos cot), where a = 

= mElqB2, co 	qB/m. The trajectory is a cycloid (Fig. 26). The 

y 
2u 

,z• 
Fig. 26. 

motion of the particle is the motion of a point located at the rim 
of a circle of radius a rolling without slipping along the x axis so 
that its centre travels with the velocity v = E/B; (b) s = 8mE/gB2; 
(c) (v x) = EIB. 

3.393. V = 2 21-'1-) 2  ln -a- nt 4n 	b 

3.394. B<  b'2ba2  VIL11  V. 

3.395. y = 	t sin cot, x= 2(÷0, (sin cot— cot cos cot), 	where 

a = qEmlm. The trajectory has the form of unwinding spiral. 
3.396. V > 2n2v2mrAr/e = 0.10 MV. 

r [1+ (moclqrB)2]• 

3.381. T = imoc2, 5 keV and 9 MeV respectively. 

3.382. Al = lac 2mv I eB2  cos a= 2.0 cm. 
8n2v 

3.383. 	t2 (B2 —B1)2  • 



3.397. (a) T = 
(e 

7E2Vm  

2r B)2 =--- 12 MeV; (b) 	 T v 	MHz. 
r2  

3.398. (a) t=  meV 
=17  17 ps; 	(b) s 	4a9v2mr2 

	
0.74 km. 

3eV 
N 

Instruction. Here s ti E vn 	-1/n, where vn  is the velocity of 

the particle after the nth passage across the accelerating gap. 

Since N is large, 	lin z 
J 
 V n dn. 

3.399. n = 2avW/eBc2  = 9. 
3.400. w = wo/l/ I + at, where coo  = qB1m, a = qBAWInm2c2. 
3.401. v = 112rqB1m, p = r/2. 

3.402. N = W led) = 5.106  revolutions, s = 2ItrN = 8.103  km. 
3.403. On the one hand, 

dp 	 e eE= 
dt 	2ar dt ' 

where p is the momentum of the electron, r is the radius of the orbit, 
41) is the magnetic flux acting inside the orbit. 

On the other hand, dp/dt can be found after differentiating the 
relation p = erB for r = const. It follows from the comparison of 
the expressions obtained that dBoldt = 1/2 d (B) / dt. In particular, 
this condition will be satisfied if Bo  = 1/2  (B). 

3.404. 7.0 =1/-213o/3a. 

3.405. dEldr = B (r0) — 112  (B) = 0. 
3.406. OW = 2ar2eB/At = 0.10 keV. 

3.407. (a) W= Oil (reBlmoc)2  —1) moc2; (b) s= WAtIreB. 
4.1. (a) See Fig. 27; (b) (vx/a(o)2 	(xla)2  = 1 and wx  = —w2x. 

Fig. 27. 

4.2. (a) The amplitude is equal to a/2, and the period is T 
= at/w, see Fig. 28a; (b) vx = 4w2x (a — x), see Fig. 28b. 

4.3. x = a cos (wt a) — 29 cm, vx  = — 81 cm/s, where 
a = Vx: + (Vx0/6))2? a = arctan (— vx0/0)xo)• 

21• 



4.4. co= li(/4— v:)/(x22 — 4), a 	(/4.  — v22  x2i.  )/(vf —74). 
4.5. (a) (v) = 3a1 T = 0.50 m/s; (b) (v) = 6a1 T = 1.0 m/s. 

g 

(a) 
	

(b) 

Fig. 28. 

. 
4.6. (a) (vx) 	2 	 (b) i(v)i— 2 	ao), 

331 
2 (4-1/2)  act). 3n 

la [n + 1—cos (cot— na/2)], n is even, 
4.7. s= 

a In + sin (0)t— na/2)1, n is odd. 
Here n is a whole number of the ratio 20)t/n. 

(a) 
	

(b) 

Fig. 29. 

4.8. s = 0.6 m. 
4.9. dP Idx = 	az — x2  
4.10. In both cases a = 7. 
4.11. vm„,, = 2.73a0). 
4.12. 47.9 and 52.1 s-1, 1.5 g. 
4.13. 18 or 26 Hz. 
4.14. (a) x2/a2 	921b2  = 1, clockwise; (b) w = —0)2r. 
4.15. (a) y2  = 4x2  (1 — x2/a2); (b) 	y = a (1 — 2x2/a2). 	See 

Fig. 29. 
4.16. T = 2 at -  V mla2Uo. 
4.17. T = 4aa 1/ ma/b2. 

(c) 
(v) 
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4.18. T =n1/ mlIF  = 0.2 s. 
4.19. T =2:t y 	(1-1)=1.1 s. 
4.20. T = 2 1/ llg[3112+arcsin(a/13)]. 

17 2 	 —  where = 4.21. t 
u'

h  

	1— 1/-1 — 
4.22. T = 4rcm/pgr2 = 2.5 s. 
4.23. T =2n1/ ri (1  — 11) mix 0.13 s. 
4.24. T = 2n V  m/(xi  ± x2). 
4.25. T = 2aV mix, where x = x1x2/(t1 x2)- 
4.26. co = 1/ 2To/m/. 

4.27. T = 2n V m/Spg  (1 + cos 0) = 0.8 s. 
4.28. T =n1/ 211kg = 1.5 s. 

4.29. (a) x 	(gIR) x = 0, where x is the displacement of the 
body relative to the centre of the Earth, R is its radius, g is the 
standard free-fall acceleration; (b) i = IG VRIg = 42 min, 
(c) v = 1/ gR = 7.9 km/s. 

4.30. T = 25tV 111 g — w = 0.8 s, 	where 	jg— wl = 
=1/ g2  ± W 2  - 2gtv cos [3. 

4.31. T —27t/V xlm — (02  = 0.7 s, co> xim 10 rad/s. 
4.32. k = 4n2a/gT2  = 0.4. 
4.33. (a) 0 = 3.0° cos 3.5t; fring 

(b) 0 = 4.5° sin 3.5t; (c) 0 = 	15 
= 5.4° cos (3.5t + 1.0). Here t 
is expressed in seconds. 	W - 

4.34. 	F = (m1  ± m2) g 
miaco2  = 60 and 40 N. 	0.5 - 
4.35. 	(a) F =mg (1+ 	 )  

w cioi2 	 a 	 22"4 	t ±- g— cos cot), see Fig. 30; 

(b) a
m  in 

 = g/w2  = 8 cm; (c) a = 	 Fig. 30. 
co = l/2h/g— 1) g/co2 = 20 cm. 
4.36. (a) y = (1 — cos tot) mglx, where co = Vx/m; (b) Tmax  --= 

= 2mg, Tmin = O. 
4.37. (xlro)2  + a (y/v0)2  = 1. 
4.38. (a) y = (1 — cos cot) who2; (b) y = (cot — sin (et) We. 

Here co 
4.39. Ahmo. = mglk  = 10 cm, E = m2g2/2k = 4.8 mJ. 
4.40. a = (mg/x) V 1 +2hxlmg,  E = mgh + m2g2/2x. 
4.41. a= (mglx)1/1 +2hx1(m+ M)g. 
4.42. Let us write the motion equation in projections on the 

x and y axes: 

x = coy, y = —cox, where co = alm. 
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Integrating these equations, with the initial conditions taken into 
account, we get x =--- (volco) (1 — cos cot), y = (vo/o)) sin cot. Hence 

vo/ (.0)2 + y2 	(v0/(10.  ) This is the equation of a circle of radius 
vo/co with the centre at the point xo  = vo/o), yo  = 0. 

4.43. Will increase V 1 + 2/5  (R//)2  times. It is taken into 
account here that the water (when in liquid phase) moves translation-
wise, and the system behaves as a mathematical pendulum. 

4.44. co = 	
2/ (1+ —mg ) • 

2x/ 

4.45. (a) T == 2n y 113g =1.1 s; (b) E = il2mg/a2 = 0.05 J. 

4.46. (pm  = cpo l/ 1 + mR2cp/2kcp:, E= 1/2ken. 
4.47. (T) = 118mg10: 	V12702620. 
4.48. 7' = 4n/a). 
4.49. I = m12  (co:— g11)1(0, — 04) 	0.8 g m2.  

4.50. co = I/(Iico; + /2o)22)/(/1 + /2).• 

4.51. x= 112V, Tmin = 2n 1/11gVS. 

4.52. T = n V 2h/g, 1„d = 
4.53. coo  = / 3(1102/2/. 

4.54. coo  = -1/ x/(m //R2). 
2mg cos a 

4.55. coo = 	MR +2mR (1+ sin a) ' 

4.56. T 2n1/  3 (R—r)12g. 
4.57. T = ni/ 3m/2x. 
4.58. co, = V x/R, where IA = m1m2/(m1  ± m2). 

4.59. (a) = 1/ x/p, = 6 s-i ; (b) E= 112 p.v2i = 5 mJ, a=vileo--= 
2 cm. Here p, = m1m2/(m1  + m2). 

4.60. T = 2n y rk, where I' =11121(11+ /2). 

4.61. co2/co1  V1 2mo/mc  1.9, where mo  and me  are the 
masses of oxygen and carbon atoms. 

4.62. co = 81/21,,po /mVo, where Y  is the adiabatic exponent. 

4.63. q= 4h1/ acomg (i2 — 1) = 2.0 p,C. 
4.64. The induction of the field increased 112  = 25 times. 

4.65. x = (vo/co) sin cot, where w = 1B/V mL. 
4.66. x —(1—cos wt) g/w2, where w = /B/VmL. 

4.67. (a) cto  and now; (b) to  = w (arctan 
(3 
 + nn) , where 

n=0, 1, 2, ... 
4.68. (a) 	ip  (0) = — 13cpo , 	cp (0) = (32  — (1)2)% (b) 	t r, = 

0,2_ R2 
= o.)  (arctan 	 

2p(o
r -Frin), where n = 0, 1, 2, 

h/2. 



x°  4.69. (a) ao — 	 , 
a  = — n/2, when xo  > 

(b) ao = 
TE/2, when xo  <0; 

= I xo 	±(13/co)2, a = arctan (-13/4 with —3-[/2 <a < 0, if 
xo  > 0 and n/2 < a< a, if xo  <O. 

4.70. 13= co -Viz— 1 --- 5 s-1. 

4.71. (a) v (t) = ao /cat  P2  e-Ot; (b) v (t) = I xo  IV" 1 ± ((3/co)2  e-Pt. 
4.72. The answer depends on what is meant by the given ques-

tion. The first oscillation attenuates faster in time. But if one takes 
the natural time scale, the period T, for each oscillation, the second 
oscillation attenuates faster during that period. 

4.73. 'A = nX0/]I1 + (1— nz) (X0/2n)2  = 3.3, n' ---1/1 (2n/ke)2 = 
= 4.3 times. 

4.74. T = 1/-(4a2 + X2) AxIg = 0.70 s. 
4.75. Q= an/ln = 5 .102. 
4.76. s 1(1 +e-242)/(1 —e-k/2) = 2 m. 

4g 2  
4.77. 	1/2 V 	

T 	1 — L 3 102. 

4.78. T = V 3/2 (4n2 H-X2)  filg  = 0.9 s. 

4.79. co—A/ 7T, 2c1;2 	( 1111:2  ) 2  

4.80. 11 = AhllaR4T. 
4.81. T = 2R11a4B2. 
4.82. (a) T = 2n -11m/x = 0.28 s; (b) n = (xo  — 6)/4,a, ---- 3.5 oscilla-

tions, here = kmg/x. 
F  4.83. x 	(cos coot — cos cot). ,,,2 ol coo  

4.84. The motion equations and their solutions: 

t < x 	o4x 	Flm, x = (1 — cos coot) Flk, 
. . 

t 	v, X ± CO:x = 0, 	x = a cos [coo  (t — T) 
where co(2, = klm, a and a are arbitrary constants. From the conti- 

nuity of x and x at the moment t = x we find the sought amplitude: 

a = (2F1k) I sin (coot/2)1 . 

a 	4amg 
/1 —(k/23- )2  g 4.85. cores= V 14-01,/2n)2  A/ ' res 	

A,F0A/  

4.86. (Ores= (04 ± COD 12 = 5.1 .10z s-1. 

(1+ 4n2  
262 

4.87. (a) 	coo = licolo.)2; 	(b) 	=- 0)2 -(011 /2V-5, 	Co = 

="iwz— (0)2 — (0i)2/12. 
4.88. ri = (1 + 2,.,2/4312) n/A. = 2.1. 
4.89. A = naFo  sin cp. 
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4.90. (a) Q 1/2  17(040782)a  Stan2 	1 — 2.2; (b) A = nma2  (4- 

- (02) tan q  ------ 6 mJ. Here coo  = V x/m. 

4.91. (a) (1)) ---- 	F8136)21'n 
	

• (b) co= (00, (P)max= FO/4Pm• (cos— 0)2+4020 

4.92. (P)max—(1)).  100 
 s.  

(P)max 	12  - 1 

4.43. (a) A = — apmN,, sin a; (b) Q — 1/(cos a  ±  2o)2/q),./N.)2 — 1 
2 sin a 

4.94. co —17ne2/som = 1.65 .1016  s -1. 
4.95. V2  + /2L/C = V. 
4.96. (a) I = In, sin coot, where /7„ = V,,VC/L, coo  = 1/1/ LC; 

(b) gs= Vm/Ya 
4.97. A = (12  - 1) W. 

4.98. (a) T = 231 V  L (C C2) =- 0.7 ms; 

(b) in, ---- 	+ COIL = 8 A. 
4.99. V = 112  (1 ± cos cot) Vo, where the plus sign refers to 

the left-hand capacitor, and the minus sign to the right-hand one; 

4.100. I =-1-1. cos (07 LC). 

4.101. (a) 4, = 	 ; (b) to  = 4-)  [arctan ( — (57  )± gm] . Here 

n = 0, 1, 2, ... 

4.102. Vo/Vn, -17 1— 	R42L 

4.103. Vc  = .1.7n V L/C e-fit sin (cat + a) with tan a = co/f3; Vc  (0) = 
L  

= /,„ V C (1+ PAO) • 
4.104. WL/ We  = L/CR2  =-- 5. 
4.105. L= L1  -h L2, R=  R1 ± R2- 
4.106. t= 	 ln 1 = 0.5 s. 

4.107. n = 2131  174 1 ---- 16. 

4.108. 0)0 	— 1 0)0 	17 + /(202 8Q2 = 0.5%. 

4.109. (a) Wo  = 1/262  (L 	CR2)I(r R)2  = 2.0 mJ; (b) W = 
= Woe-tR/L = 0.10 mJ. 

4.110. tx 	 In =1.0 ms. 

4.111. (a) al ---- 17-A- 4R2c2  ; (b) Q = V 4- 	1. 

When solving the problem, it should be taken into account that 
dq/dt = I — I', where q is the charge of the capacitor, I is the cur- 
rent in the coil winding, I' is the leakage current (I' = V I R). 



4.112. Q= (17)  17 -16= = 1 .0 102. 

4.113. (P) =R (I2) 112RA = 20 mW. 
4.114. (P) = 1i2RCV,%/L = 5 mW. 

4.115. w= /- V LC 4R2C2  ' R <- /- .  
4.116.-A-- — and — — = R — L, 	L2 	L 	 R2 	• 

4.117. I= V°  te-t/V7-7c. I—Imax  1. e 	—17 c-  at the moment 
'  

t,n  =1/17. 

4.118. I— 	Vrn 	 [cos (cot — cp)—cos cp • e-tR/L], tan cp = coL/R. 
iiR2H-co2L2  

4.119. I= 	vm  

	

[cos (wt 	cos cp • e-t/RC], 	tan cp = 
1R2+1/((0C)2  

- coRC 
4.120. The current lags behind 	 1 

UcR 

	

the voltage by phase angle cp, defined 	Axis 	I  Axis —L _ _ 
by the equation tan cp =  1A°4nnp2'va  SRO 

of current 	 I of current 

4.121. The current is ahead of 	
(a) 	r  

	

the voltage by the phase angle 	 (b) 
= 60°, defined by the equation Fig. 31. 

tan cp = (17,„/R/ni)2  —1. 
4.122. (a) V' =Vo -i-V,,cos(cot— a), where Vm =170/V-1 (coRC)2 t 

= arctan (WIC); (b) RC =V 12 -1/co= 22 ms. 
4.123. See Fig. 31. 
4.124. (a) 	= 17,n/YR2 + (coL —1/coC)2 = 4.5 A; (b) tan cp 

	 ,cp = — 60° (the current is ahead of the voltage); 

(c) Vc  --= /,,,/coC= 0.65 kV, V L  = 4,11R2 + co2L2  0.50 kV. 
4.125. (a) co = ci4 — 2f32; (b) w -= coVV co2,, — 2P2, where co: = 

= 1/LC, 13 = RI2L. 
4.126. For C = 	= 28 iiF; V L  = Vin 	(coL/R)2  = 0.54 kV; 

Vc  = VnicoLIR= 0.51 kV. 
vrn  

4.127. I =In, cos (cot + cp), where 	R 	(coRC)2  and 

tan cp = coRC. 
L2 4.128. coo  = 	c  (L1L2_ 14.2)  

4.129. Q=V12 2  — 1/4. 
rig-1 	1 4.130. Q= 17  (n— 1)2 	4 • 

4.131. (a) coo  = V 6)0)2; (b) Q=1/ 

  

	

0)1(02 (n2  — 	1 

	

((02 —04)2 	4 • 
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4.133. /0// = -V1 (Q2 + 1/4) (12 — 1)2 /12, 2.2 and 19 respectively. 
4.134. t = i/zato. 
4.135. (a) I = —Io  z 1.154; (b) I = Y8 Io  1.1110- 

R 4.136. 2/tL, 	1= 2 kHz.  
4.137. The current lags behind the voltage by the phase angle 

(IDarccos 	 P= -1;1/ Z2  - Xi = 0.16 kW. 
172 

4.138. For R= 0.20 k52; 	P „ „ = --= 0.11 kW. 20)L 
4.139. Increased by 30%. 
4.140. For 	Q >> 1 the 	ratio 	is 	A0)/(60 1/21/ — 1/Q = 0.5%. 

IR Axis of 

Ic 

Axis of 
	

IR Axis of 
es g lt voltages 	voltages 	 voltages 

\ 	 10 
\ 	 I 	 -- IO 

IL 	Iv 	 I Lx 	IL 
(a) 	(6) 	(c) 

Fig. 32. 

4.141. P2  = 112  (V2  — 1/ — VDIR = 30 W. 
4.142. P1  = 1 /2  (12  — — R 2.5 W. 
4.143. Z = R/1/1 (o)CR)2 = 40 O. 
4.144. See Fig. 32. 

4.145. (a) w,es 
= 	

LC 3 .104  rad/s; (b) / = VRC/L =-. 

=3 mA, /L  = V VCIL = 1.0 A, /c  = V 17TC: — 	
) 2 = 

1.0 A. 

4.146. tan cp — 
(t)C (R2+ co2L2)— " 

• 

4.147. Z= 	R2  ± cu2L2  
(0)cR)2+ (1— w2CL)2 • 
oi2L2Li2/3 8L12  

4.149. (Fx)= 2 (R2 + OLD ox • 
2/  

4.150. t =
a (VT+ liT2) 

4.151. Acp =1 I (x1 — x2) cos a + 	Y2) cos 0+(z1-z2) cos 

4.152. k=w 
v1 	V2 	V3 

4.153. t = a cos [(1 — V/v) cot — kx1 ], where v = (o/k. 
4.155. (a) a/X, = 5.1 .10-5; 	(b) v,„ = 11 cm/s, 3.2.10 -4; 

(c) (at/ax),,, = 3.2.10 -4, (avat),,,---1, (alai),,,, where v = 0.34 km/s 
is the velocity of the wave. 
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4.156. See Fig. 33. 

4.157. AT = — 	In (1 — r1) 	=0.3 rad. 

4.158. r = (a ir, 	a2r2)/(a i 	az). 

4.159. (a) 17 = 1117r:/r)  - 0.08 rn-i; (b) 	n  — 2va° =15 cm/s. 

4.160. (a) See Fig. 34a. The particles of the medium at the points 
lying on the solid straight lines (y = x ± nk, n = 0, 1, 2, . . .) 

0 

Fig. 33. 

oscillate with maximum amplitude, those on the dotted lines do 
not oscillate at all. 

(b) See Fig. 34b. The particles of the medium at the points lying 
on the straight lines y = x ± nX, y = x ± (n ± 1/2) ? and y = 
= x ± (n ± 1/4) ? oscillate respectively along those lines, at 

/ 
2,1  

7  

/ / 	/ / // 

/ 

2 	22 x 
(a) 

Fig. 34. 

right angles to them, or move along the circles (here n = 0, 1, 2, . . .). 
At all other points the particles move along the ellipses. 

4.161. (w) = 2/3w0. 

4.162. (0) = 2n/2/0  (1 	 — 20 laW. 
-171±(fig)2  

4.163. (01))= P/V 1+ (2R/h)2 — 0.07 W. 



4.164. Fee Fig. 35, for (a) and (b); see Fig. 36 for (c). 
4.165. (a) ivp  = 1/2pa2w2  sin2  kx•cos2  wt; 	(b) wk  = 1/2pa2w2  X 

X cost  kx• sin2  wt. See Fig. 37. 

0(/27,z.  

t=T/2 
4(r) 

Fig. 35. 

4.166. amus  = 5 mm; to the third overtone. 

4.167.— 1712 (1 +111)  = 1.4. 
vi 	r 711 (1+112) 

4.168. Will increase 2 times. 
11= 1711-1-1-f/IT  

   

at 

  

   

    

Fig. 36. 	 Fig. 37. 

4.169. v = 21v = 0.34 km/s. 

4.170. (a) vn = ir  (2n +1), six oscillations; (b) 

also six oscillations. Here n=0, 1, 2, ... 
2n-1-1  VT 4.171. v7,— 	— -- 3.8 (2n+1) kHz; four oscillations with 

2/ 	p 
frequencies 26.6, 34.2, 41.8, and 49.4 kHz. 

4.172. (a) Tmax----- 1/47nw24nax; (b) (T)= 1/8m(024nax• 
4.173. W = 1/jcSpw2a2/k. 
4.174. v = 2v ovu/ (v2  — u2) 	2vou/v = 1.0 Hz. 



4.175. u=_- vvo (V1 + (v/v0)2  —1) 	vv = 0.5 m/s. 2vo  
4.176. 0.) = aAv (1/1 + (Av/v0)2 — 1) = 34 s-1. 

4.177. v= vo/V1 + 2wt I v =1.35 kHz. 
4.178. (a) 'v = vo/(1 —12) = 5 kHz; (b) r =11x1 + ii2 = 0.32 km. 
4.179. Decreases by 2u/(v + u) = 2.0%. 
4.180. v = 2v ou/(v + u) = 0.60 Hz. 

4.181. 	1n(rlir'irl))   = 6 .10-3  m- 1. 2  (   

4.182. (a) L' = L — 20Tx log e = 50 dB; (b) x = 0.30 km. 
4.183. (a) L = Lo  + 20 log (ro/r) = 36 dB; (b) r > 0.63 km. 
4.184. [i = ln(rB  /rA ) (rB — rA)w1 = 0.12 s- 1. 
4.185. (a) Let us consider the motion of a plane element of the 

medium of thickness dx and unit area of cross-section. In accordance 

with Newton's second law p dx = —dp, where dp is the pressure 

increment over the length dx. Recalling the wave equation = 
= v2  (a2V0x2), we can write the foregoing equation as 

pv2  -adx = — dp. 

Integrating this equation, we get 

Ap = — pv2 4, + const. 

In the absence of a deformation (a wave) the 'surplus pressure is 
Op = 0. Hence, coast = 0. 

4.186. (D) = 31112  (Ap);„/2pvk = 11 mW. 
4.187. (a) (Ap),,., = VpvP/27tr2  = 5 Pa, 	(Ap)„,1 p = 5.10-5; 

(b) a = (Ap),,/22tvpv = 311,m, alt = 5.10 -6. 
4.188. P = 43tr2e2Yrio  • 10L = 1.4 W, where L is expressed 

in bels. 
4.189. AX = (1/1/Z —1) c/v —50 in. 
4.190. t = 2 (1/ — lre;) //c In (ei/ez)• 
4.191. j/jdis  = a/2nveco  = 2.. 

4.192. H = Ve0 /110  [kErn] cos (ckt), where c is the velocity of 

the wave in vacuum. 
4.193. (a) H = ezEm eo/R0 cos kx = — 0.30ez; 

(b) H = ezEm  lico/tto cos (ckto  — kx) = 0.18ez. Here ez  is the unit vector 
of the z axis, H is expressed in A/m. 

4.194. 8, = 2irv12E,,/c = 13 mV. 

4.196. (S) = 1/,keoc2EPe). 
4.197. (a) jai, = 1/ 2sovEm  = 0.20 	mA/m2; 	(b) (8) = 
11260cE;ri  = 3.3 pW/m2. 
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4.198. Since t> 7', where 7' is the period of oscillations, W 

= 1/21/ Ego/RE2maR2t = 5 kJ. 
4.199. B = Bm  sin kx• sin wt, where Bm  Em, with BD, = Ernie. 
4.200. Sx = 1 / 4 cocEl sin 2kx• sin 2wt, (Sx ) = 0. 
4.201. Wm/We  = 1/8calow2R2  = 5.0.10-1b 
4.202. We/Wm  = 1/8 6,110(02R2  = 5.0.10-15  
4.204. 4:Ds  = I2R. 
4.205. S = I2 1/ mi2eU/4a2eor2. 
4.207. To the left. 
4.208. (ID = V I. 
4.209. (0) = 1/217 0/ 0  cos cp. 
4.211. The electric dipole moment of the system is p = /eri  =- 

= (elm) Mrc, where M is the mass of the system, rc  is the radius 

vector of its centre of inertia. Since the radiation power P oc p 2  oc 
cc r t, and in our case rc  = 0, P = 0 too. 

4nEo 
0 6)  4.212. (P)=- 	=5 .10-15  W. 

4.213. P = 	1 	2 4 qe2  \ 2 

(4neo)3  3c3  mR2 / 

4.214. AW 7=4-- 	 ile4q2 
(4neo)3  3c3m2vb3  • 

4.215. AW/T = 1/3e3B/e0c3m2 = 2.10-18. 

4.216. T = Toe--a't, where a = 1/3e4B2/a80c3m3. After 

r 2.5 s 	 for the electron, 

1 1.6.101° s = 0.5.103  years for the proton. 
4.217. S1/S2  = tan2  (o)//c) = 3. 
4.218. (a) Suppose that t is the moment of time when the particle 

is at a definite point x, y of the circle, and t' is the moment when 
the information about that reaches the point P. Denoting the observed 
values of the y coordinate at the point P by y' (see Fig. 4.40), we 
shall write 

The sought acceleration is found by means of 
tiation of y' with respect to t': 

dy' = dy 	dy dt 	d2y 	d 	dy' 
dt' 	dt' = dt dt" 	dt'2  = dt' dt dt' 

the double differen- 

=- v
2  vIc—yIR  _ 

R (1—vy/cR)3 ' 

where the following relations are taken into account: x = R sin wt, 
y = R cos wt, and w = v/R. 

(b) Energy flow density of electromagnetic radiation S is pro-
portional to the square of the y projection of the observed accelera-
tion of the particle. Consequently, S1/S2  = (1 v/c)4/(1 — v/c)4. 

4.219. (P) = 8/3ar2S0. 
4.220. (w) = 3/8Po/ar2c. 
4.221. P = 1 /6p2 6)4/neoc2. 

to  —= 
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4.222. (P)I (S) = (e21m)2416a. 

4.223. (P)/(S) = (e ((:)/ m)20; 4  )2.  

4.224. R = 3P/163-tcypMc  x 0.6 p.m. 
5.1. (a) 3 and 9 mW; (b) cp = 1/2 (V1 + V2) clue 	= 1.6 lm, 

where A = 1.6 mW/lm, V1  and V2 are the values of relative spectral 
response of an eye for the given wavelengths. 

5.2. a = V l-LoicoAcD/23-cr2Vx, hence Em  = 1.1 V/m, Hm  
= 3.0 mA/m. Here A = 1.6 mW/lm, Vx  is the relative spectral 
response of an eye for the given wavelength. 

0.—(R/02 I 
5.3. (a) (E)= 1/2E0; (b) (E):= 	1—R11 	R2  — 50 lx. 

5.4. M = 2 /3o-cLo. 
5.5. (a) cD = nLAS sin2  0; (b) M = 
5.6. h R, E = LS/4R2  = 40 lx. 
5.7. I = /0/cos3  0, 	= nI 0R21h2  = 3.102  lm. 

5.8. Erna, = (9/161C) pES/R,2  = 0.21 lx, at the distance 
R/V-3 from the ceiling. 

5.9. E = 
5.10. E 
5.11. M = E, (1 + h2/R2, ) = 7.102  lm/m2. 
5.12. E0  = aLR2 /h,2  = 25 lx. 
5.13. e' = e — 2 (en) n. 
5.14. Suppose n1, n2, n3  are the unit vectors of the normals to 

the planes of the given mirrors, and e0, e1, e2, e3  are the unit vectors 
of the incident ray and the rays reflected from the first, second, 
and the third mirror. Then (see the answer to the foregoing problem): 
el  = e, — 2 (eons)  n1, e2  =et  — 2 (e1n2) n2, e3  = e2  — 2 (e2n3) ns. 

Summing termwise the left-hand and right-hand sides of these 
expressions, it can be readily shown that e3  = 

5.15. 01  = arctan n = 53°. 

5.16. n1/n2 = 1/1/-112 — 1 =1.25. 

5.17. x= [1 --V (1— sin2 0)/(n2 — sin2  0)] d sin 0 = 3.1 cm. 
5.18. h' = (hn2  cos3  0)/(n2  — sin2  0)3/2. 
5.21. 0 = 83°. 
5.22. From 37 to 58°. 
5.23. a = 8.7°. 

2 sin (8/2) 	 5.24. Aa — 	  An = 0.44°. 
-171— n2  sin2(0/2) 

5.27. (a) f = 11341 — p2) = 10 cm; (b) f = 111132132 - 	= 
= 2.5 cm. 

5.28. I' = P1012  (f — sr = 2.0.103  cd. 
5.29. Suppose S is a point source of light and S' its image 

(Fig. 38). According to Fermat's principle the optical paths of all 
rays originating at S and converging at S' are equal. Let us draw 
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circles with the centres at S and S' and radii SO and S'M. Conse-
quently, the optical paths (DM) and (OB) must be equal: 

n•DM = n'• OB. 	 (*) 
However, in the case of paraxial rays DM x AO + OC, where 
AO z h2/(-2s) and OC h'2/2R. Besides, OB = OC — BC 
74.1 

 
h' 2/2R — h' 2/2s'. Substituting these expressions into (*) and 

taking into account that h' 	h, we obtain n' Is' — n/s = (n'—n)/R. 

Fig. 38. 

5.30. x n+i(1 	
(n + 1)  r2 

(n _i) /2) 	rmax f 	— 1)/(n+ 1)• 

5.31. 6.3 cm. 
5.32. (a) 13 = 1 — d (n-1)1nR = —0.20; (b) E = an2D2L/4d2= 

= 42 lx. 
5.33. (a) cI) = (1:00  (n — no)/(n — 1) = 2.0 D, f' = —f = nolcb = 

= 85 cm; (b) i/200  (2n — no  — 1)/(n — 1.) = 6.7 D, f = 
= 114) 7.e. 15 cm. f' = no/0 20 cm. Here n and no  are the refrac-
tive indices of glass and water. 

5.35. Ax 	A1f 2/(/ — f)2  = 0.5 mm. 
5.36. (a) f = [12  — (A1)9141 = 20 cm; 

(b) f = 1 Vi,/(1 	1/1)2  = 20 cm. 
5.37. h = jih'h" = 3.0 mm. 
5.38. E = (1 — a) 3-ELD214f 2  = 15 lx. 
5.39. (a) Is independent of D; (b) is proportional to D2. 
5.40. f = noR/2(ni  — n2) = 35 cm, where no  is refractive index 

of water. 
5.41. f = R/2(2n — 1) = 10 cm. 
5.42. (a) To the right of the last lens at the distance 3.3 cm from 

it; (b) 1 = 17 cm. 
5.43. (a) 50 and 5 cm; (b) by a distance of 0.5 cm. 
5.44. r = Did. 
5.45. ip =11)'/I/Ti = 0.6'. 

5.46. r (r + 1) 
n  

no  (  nn—'1)  1= 3.1, where no  is the refractive 

index of water. 



5.47. F < D/do  = 20. 
5.48. F= 60. 
5.49. (a) F = 2a/o/do  = 15, where /0  is the distance of the best 

vision (25 cm); (b) r < 2a/o/do. 
5.50. The principal planes coincide with the centre of the lens. 

The focal lengths in air and water: f = —110 = —11 cm, f' 
= noleo = +15 cm. Here cl) = (2n — no  — 1)1 R, where n and no  
are the refractive indices of glass and water. The nodal points coincide 
and are located in water at the distance x = f' 	f = 3.7 cm from 
the lens. 

5.51. See Fig. 39. 
5.54. (a) The optical power of the system is cb =cD2 -

- d(1)02  = + 4 D, the focal length is 25 cm. Both principal planes 

 

H H' 

(a) 

    

H' 	H 

F 

     

     

      

      

      

     

Fig. 39. 

(c) 

are located in front of the converging lens: the front one at a distance 
of 10 cm from the converging lens, and the rear one at a distance of 
10 cm from the diverging lens (x = d(1)2/0 and x' = — dcloin); 
(b) d = 5 cm; about 4/3. 

5.55. The optical power of the given lens is cD = clpi  + cD2  -
- (dln) c1302, x = d021 = 5.0 cm, x' —4011 nal = 2.5 cm, 
i.e. both principal planes are located outside the lens from the side 
of its convex surface. 

5.56. f = 	tltz 	. The lens should be positioned in the front 
fly- 	d 

principal plane of the system, i.e. at a distance of x = 
= 	-1- f 2  — d) from the first lens. 

5.57. 4:13 = 2c13' — 20'2//no  = 3.0 D, where cD' = (2n —no  —1)/R, 
n and no  are the refractive indices of glass and water. 

5.58. (a) d = nARI (n — 1) = 4.5 cm; (b) d = 3.0 cm. 
5.59. (a) cD = d (n-1)21nR2  > 0, the principal planes are locat-

ed on the side of the convex surface at a distance of d from each 
other, with the front principal plane being removed from the convex 
surface of the lens by a distance of RI (n — 1); (b) cb = (1/R2-1/R1) X 
X (n — 1)/n < 0; both principal planes pass through the common 
curvature centre of the surfaces of the lens. 

5.60. d = 1 /2 n (R1 	R2)I (n — 1) = 9.0 cm, F = R1/R2  = 5.0. 
5.61. (1) = 2(n2  — 1)/n2R = 37 D. 
5.63. p = 3.107  m; Oni= 1.6-10 m-1. 
5.65. 1.9a. 
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5.66. Let us represent the kth oscillation in the complex form 
Eh  = aei(4)t+(k-1)(pi = ateixot,  

where a: = aei(4-1)9 is the complex amplitude. Then the complex 
amplitude of the resulting oscillation is 

N 

A* . E 	IA) = a [1 + + 029 	ei(N-1)cpi 
k=1 

= a (eiTN —1)1(elq) —1). 
Multiplying A* by the complex conjugate value and extracting 

the square root, we obtain the real amplitude 

al
71—cos Arcp

a 
 sin (Ny/2) —  1— cos 	sin (T/2) • 

5.67. (a) cos 0 = (k — cp1231) XI d, 	k = 0, ±1, ±2, . . .; 
(b) cp = It/2, d/X, = k 	1/4, k = 0, 1, 2, . . . 

5.68. AT = 231 [k — (d/k) sin (cot + a)], where k = 0, ±1, 
±2, . . . 

5.69. X = 2AxAh/l — 1) = 0.6 Rm. 
5.71. (a) Ax = X (b 	r)I2ar = 1.1 mm, 9 maxima; (b) the 

shift is ox = (blr) 61 = 13 mm; (c) the fringe pattern is still sharp 
when Ox < Ax/2, hence 6„,,„x  = (1 + r/b)X14a = 43 p.m. 

5.72. X. = 2ccAx = 0.64 fan. 
5.73. (a) Ax = kfla = 0.15 mm, 13 maxima; (b) the fringes 

are still sufficiently sharp when Ox < Ax/2, where Ox is the shift 
of the fringes from the extreme elements of the slit, hence, 6„,ax  = 
= ?f2/2ab = 37 Rm. 

5.74. X = 2a e(n — 1) Axl (a 	b) = 0.6 p.m. 
5.75. Ax X/28 (n — n') = 0.20 mm. 
5.76. The fringes are displaced toward the covered slit over the 

distance Ax = hl (n — 1)/d = 2.0 mm. 
5.77. n' = n 	Nkl 1 = 1.000377. 
5.78. (a) Let E, E', and E" be the electric field vectors in the incident, 

reflected and transmitted waves. Select the x-, y-axes at the interface so that 
they coincide in direction with E and H in the incident wave. 

i The continuity of the tangential components across the interface 
yields 

E + E' = E". 

The minus sign before H' appears because H' It H. 
Rewrite the second equation taking into account that HocnE.Solving 

the obtained and the first equation find: 

E" = 2En1/(n1  + n2). 



Hence, we see that E" and E are collinear, that is. cophasal. 

(b) E' = E(n, — n 2)/(n 1  + n7), 

that is at n2  > n 1  and E' 11 E the phase abruptly changes by Ir at the inter-
face. If n2  < n 1  the phase jump does not occur. 

5.79. d = 114X (1+2k) 	sin2 01  = 0.14 (1 -I-- 2k) [ma, where 
k= 0, 1, 

5.80. dmin — 0.65 1.1m. 
5.81. d= 114 X (1+ 2k) /j/ n, where k= 0, 1, 2, ... 

5.82. d— .1( 712 — sin2  0 	15 pin.  
sin 20.80 

d (71— r1) 

5.85. (a) 0 = 1/2X/nAx = 3'; (b) Aka 	Ax/1 = 0.014. 
5.86. Ar 	1/4XR/r. 

5.87. r' =- y r2  — 2RAh = 1.5 mm. 
5.88. r =1/ r:+ (k —112) XR = 3.8 mm, where k = 6. 
5.89. 2t. = 1/4  (d: — dDIR (k2  — k1) = 0.50 Rm, where k1  and 

k2  are the numbers of the dark rings. 
5.90. €1) = 2(n — 1)(2k — 1)?./d2  = 2.4 D, where k is the 

number of the bright ring. 

5.91. (a) r 1/ 210, (n — 1)/0= 3.5 mm, where k =10; (b) r' = 
= VW; = 3.0 mm, where no  is the refractive index of water. 

5.92. r = 	(1 + 2k) XR/n2 =-- 1.3 mm, where k = 5. 
5.93. kmin  = 112211(X2 — 21) = 140. 
5.94. The transition from one sharp pattern to another occurs 

if the following condition is met: 

(k 	1) 	= kX2, 

where k is a certain integer. The corresponding displacement Ah 
of the mirror is determined from the equation 2Ah = kk2. From these 
two equations we get 

2 
Ah = 2 (%2 — 	26.26 

oi 2 	 .3 mm.  

5.95. (a) The condition for maxima: 2d cos 0 = kX; hence, the 
order of interference k diminishes as the angle 0, i.e. the radius of 
the rings, increases (see Fig. 5.18). (b) Differenting both sides of 
the foregoing equation and taking into account that on transition 
from one maximum to another the value of k changes by unity, we 
obtain 60 = 112kld sin 0; this shows that the angular width of the 
fringes decreases with an increase of the angle 0, i.e. with a decrease 
in the order of interference. 

5.83. X 4n12  (i— k) ' 

5.84. Ax — 	

?. cos 01  
2cx, 1/ n2 — sin20, 

22* 



5.96.(a) kmax  = 2d/? = 1.0.105, (b) AX, = X/k = X2/2d = 5 pm. 
00 

5.97. 	$ 
I(r)r dr. 

o 
 

5.98. b = ar2/(k?.a — r2) . 2.0 m. 
5.99. X, = (r: — rD (a + b)I2ab = 0.60 gm. 
5.100. (a) I 	44, I 	2/0; (b) I 7■7% IO• 
5.101. (a) I 	0; (b) I 	I o12. 
5.102. (a)Il ̂ 946 /0, I2 = 114 10, 13  = 1/1610, /4 = /2, I ;:,-; 
(1 — 0231)2/ 0; (b) /5 	25/18'0, -18 'X' 9/4 '07 1.7 ';.̀1 4946 .107 I8 = 

= /6, / 	(1 + cp/II)2  /0. Here p  is the angle covered by the 
screen. 

5.103. (a) h 	(k 	3/8)/(n — 1) 
= 1.2 (k + 7/8) 1AM, (c) h = 1.2k or 
= 0, 1, 2, . . . 

5.104. h = (k + 3/4)/(n — 1), 
(b) /max  x 8/0. 

5.105. Izm ir, 	X, (k + 5/8)/(n — 1) 

5.106. r= likXfbl(b — f) = 0.90 -VT 
5.107. b' = b/T12  = 1.0 m. 
5.108. (a) y' = yb/a = 9 mm; 

= 0.1.0 mm. 
5.109. f = abl(a 	b) = 0.6 m. This value corresponds to the 

principal focal point, apart from which there are other points as 
well. 

5.110. (a) h = 0.60 (2k + 1) pm; (b) h = 0.30 (2k 	1) 1.1,m. 
Here k = 0, 1, 2, . . . 

5.111. (a) /fliagrnin 	1.7, 	(b) 	a = 2 (Ax)2/b(v2  — v1)2  = 
= 0.711m, where v1  and v2  are the corresponding values of the para-
meter along Cornu's spiral. 

5.112. Icentr.11 edge. ^ 2.6. 
5.113. X ----- (Ah)2 /2b (v2  — v1)2  = 0.55 pm, where vl  and v2  are 

the corresponding values of the parameter along Cornu's spiral. 
5.114. h 	(k + 3/4)/(n — 1), where k = 0, 1, 2, . . . 
5.115. / 2//1 	1.9. 
5.116. I 	2.84. 
5.117. /1  : 	: 	,--:.-, 1 : 4 : 7. 
5.118. I 	I,. 
5.119. Ie C'D (sine a)/a2, where a —(3tblX) sin 0; b sin 0 = kX, 

k = 1, 2, 3, . . . 
5.120. The condition for a maximum leads to the transcendental 

equation tan a = a, where a = (Tcb/X) sin 0. The solution of this 
equation (by means of plotting or selection) provides the following 
root values: a1  = 1.433t, a2  = 2.46 t, a3  = 3.47n. Hence b sin Al  = 
= 1.43A,, b sin 02  = 2.46X, b sin 03  = 3.47k. 

5.121. b (sin 0 — sin 00) = k?.; for k = + 1 and k = —1 the 
angles 0 are equal to 33° and 27° respectively. 

1.2 (k + 3/8) gm; (b) h = 
1.2 (k + 3/4) gm. Here k = 

where k = 0, 1, 2, . . 

= 2.5 gm, where k = 2. 

mm, where k= 1, 3, 5, ... 

(b) hmin 	abXID (a 	b) 



Fig. 41. 

5.122. (a) AO = arcsin (n sin 0) — 0 = 7.90; (b) from the con-
dition b (sin 01  — n sin 0) = ±X we obtain AO = 0+1  — 0_1  

7.3°. 
5.123. X (co — 	dl2k = 0.6 um. 
5.125. 55°. 
5.126. d = 2.8 pm. 
5.127. X = (d sin A0)/1/ 5 — 4 cos AO = 0.54 um. 
5.128. (a) 45°; (b)-64°. 
5.129. x = 2R/(n —1) y ((Ja)2 -1= 8 cm. 
5.130. From the condition d En sin 0 — sin (0 + Oh)] = kX we 

obtain 00  = —18.5°, 0+1  = 0°; kmax = +6, 0+6 = +78.5°. See 
Fig. 40. 

5.131. hh  = X (k — 1/2)/(n — 1), 	where 	k = 1, 2, . . .; 
a sin 01  = X/2. 

5.132. v = Xvf/Ax = 1.5 km/s. 
5.133. Each star produces its own diffraction pattern in the 

objective's focal plane, with their zeroth maxima being separated 

Fig. 40. 

by an angle * (Fig. 41). As the distance d decreases the angle 0 be-
tween the neighbouring maxima in each diffraction pattern increases, 
and when 0 becomes equal to 2*, the first deterioration of visi-
bility occurs: the maxima of one system of fringes coincide with the 
minima of the other system. Thus, from the condition 0 = 2p and 
the formula sin 0 = Xld we obtain , = X/2d ge, 0.06". 

5.134. (a) D=IcIdli 1— (kX1d)2=  6.5 ang. min/nm, where k= 2; 
(b) D = kld V  1 —(kX1d— sin 002= 13 ang. min/nm, where k= 4. 

5.135. dOldX = (tan 0)/1. 
5.136. AO-- 2X/Nd 1/1 — (kk/d)2  =11". 
5.139. 0 = 46°. 
5.140. (a) In the fourth order; (b) 6X„,in 	X2Il = 7 pm. 
5.141. (a) d = 0.05 mm; (b) 1 = 6 cm. 
5.142. (a) 6 and 12 um: (b) not in the first order, yes in the se-

cond order. 



5.143. According to Rayleigh's criterion the maximum of the 
line of wavelength k must coincide with the first minimum of the 
line of wavelength X, + 8k. Let us write both conditions for the least 
deviation angle in terms of the optical path differences for the 
extreme rays (see Fig. 5.28): 

bn — (DC CE) = 0, b (n 8n) — (DC CE) = 2 + 
Hence, bon 	k. What follows is obvious. 

5.144. (a) X/8% = 2bB/2 3; 1.2.104  and 0.35.104  (b) 1.0 cm. 
5.145. About 20 cm. 
5.146. R = 7.104, 4,„„1„, '.. 4 cm. 
5.147. About 50 m. 
5.148. Suppose 6,1) and AV are the minimum angular separations 

resolved by the telescope's objective and the eye respectively 
1.22k/D, 	= 1.22k/d0). Then the sought magnification 

of the telescope is 1.'„iin  = AV/Alp = Did, = 13. 
5.149. dmin  = 0.61X,/sin a = 1.4 pm. 
5.150. Suppose dmin  is the minimum separation resolved by the 

microscope's objective, Alp is the angle subtended by the eye at 
the object over the distance of the best visibility to  (25 cm), and 
AV is the minimum angular separation resolved by the eye (Alr = 
= 1.22X/d0). Then the sought magnification of the microscope is 
rmin = AcAlp = 2 (1014) sin a = 30. 

5.151. 26, 60, 84, 107 and 134°. 
5.152. a = 0.28 nm, b = 0.41 nm. 
5.153. Suppose a, 3, and y are the angles between the direction 

to the diffraction maximum and the directions of the array along the 
periods a, b, and c respectively. Then the values of these angles can 
be found from the following conditions: a (1 — cos a) = 
b cos 13 = k 2A., and c cos y = k,%. Recalling that'costa 	cos2[3 

cos2y = 1, we obtain 
2k1/a  — (kila)2  ±(k2lb)2  ±(k31c)2  

V 2 	m 5.154. X= 7,- 	—2p sin a = 244 pm, where 1c= 2, m is the mass 

of a NaC1 molecule. 

5.155. d=
2 si (a/2) V 	 2  k 2  ±k2  - 21c, k

2 
cos (a/2) = 0.28 pm, where 

ki  and k2  are the orders of reflection. 
5.156. r = 1 tan 2a = 3.5 cm, where a is the glancing angle 

found from the condition 2d sin a = k2■,. 
5.157. / 0/4. 
5.158. (a) / 0; (b) 2/0. 
5.159. E = (1),/o) = 0.6 mJ. 
5.160. T1 = i/2  (cos 

5.161. 10//— Ts cos, 
5.162. I pot [Inca  = PI(1 — P) = 0.3. 

(P)2(N-1)  = 0.12. 



5.163. P = (1 — 1)1(1 — cos 2p) = 0.8. 
5.164. (a) Let us represent the natural light as a sum of two mutual-

ly perpendicular components with intensities I. Suppose that each 
polarizer transmits in its plane the fraction a, of the light with 
oscillation plane parallel to the polarizer's plane, and the fraction 
cc, with oscillation plane perpendicular to the polarizer's plane. 
The intensity of light transmitted through the system of two pola-
rizers is then equal to 

II 	C4.10 	CC221 

when their planes are parallel, and to 
./1  = cticctio  -4- a2chio, 

when their planes are perpendicular; according to the condition, 
/n // = rt. 

On the other hand, the degree of polarization produced separately 
by each polarizer is 

Po = (a1 — %)/(ai a2). 
Eliminating al  and a2  from these'equations, we get 

Po = V(11—  1)/ (11+ 1) = 0.905. 

(b) P=171-11112= 0.995. 
5.165. The relative intensity variations of both beams in the 

cases A and B are 
(A///),, = 4 cot (q)/2)• Sy, (AEI) B = 4 tan (q)/2)• Sy. 

Hence 
= (A///),1/(A///) B  = cote (y/2), 	= 11.5°. 

5.166. 90°. 
5.167. (a) p = 1/2  (n2 	1)21(n2 + 1)2 0.074; 

(b) P = p/(1 — p) 	(al+
d-nn2))2+-44nn: = 0.080. Here n is the refractive 

index of glass. 
5.168. I = 1.0 (1 — p)In = 0.721/ 0, where n is the refractive 

index of water. 
5.169. p = [(n2  — 1)/(n2  -1- 1)] sin2q) = 0.038, where n is the 

refractive index of water. 
(1  5.170. Pi  133 = 1, P2= T-12-p. --- 0.087, 

4  - 1
2p 
 2p (1

p) 
 p) 

0 17  
5.171. (a) In this case the coefficient of reflection from each 

± A ‘2,  surface of the plate is equal to p = (n2 	1)21(n2 	1)2, and therefore 
/4  = /0  (1 — p)2  = 1610n41(1 	n2)2  = 0.725/0; 

P — I 	—p')2  (1+ n2)4-16714
4  0.16, where p' is the coeffic- 

(b) (1-{-n' ) +16n 
ient of reflection for the component of light whose electric vector 
oscillates at right angles to the incidence plane. 

5.172. (a) P = (1 
— 

cc4N)1(1 	a4 '), where a = 2n1(1. -1- n2), 
n is the refractive index of glass; (b) 0.16, 0.31, 0.67, and 0.92 re-
spectively. 



Fig. 42. 

e o 

5.173. (a) p = (n — 1)2/(n + 1)2  = 0.040; (b) AcI)/(1) = 1 -
- (1 — p)2N = 0.34, where N is the number of lenses. 

5.175. (a) 0.83; (b) 0.044. 

5.176. See Fig. 42, where o and e are the ordinary and extraor-
dinary rays. 

5.177. S 	11°. 
5.178. For the right-handed system of coordinates: 
(1) circular anticlockwise polarization, when observed toward 

the incoming wave; 
(2) elliptical clockwise polarization, when observed toward the 

incoming wave; the major axis of the ellipse coincides with the 
straight line y = x; 

(3) plane polarization, along the straight line y = —x. 
5.179. (a) 0.490 mm; (b) 0.475 mm. 
5.180. X = 4dAn/(2k 	1); 0.58, 0.55 and 0.51 pm respectively 

at k = 15, 16 and 17. 
5.181. Four. 
5.182. 0.69 and 0.43 pm. 
5.183. d = (k — 1/2) Xl/An = 0.25 mm, where k = 4. 
5.184. An = 2J€ Ax = 0.009. 
5.185. Let us denote the intensity of transmitted light by I .  

in the case of the crossed Polaroids, and by Iii  in the case of the 
parallel Polaroids. Then 

Il  = 11210 sin2  2y•sin2  (8/2), 

= 11210 [1 — sin2  2cp•sin2  (6/2)1. 

The conditions for the maximum and the minimum: 

Polaroids 	 'max 	 I min 

II 
A= (k + 1/2) X, cp=31/4 
A= k7,, for any cp 

o =1cX, for any tp 
A = (k + 1/2) X, cp= n/4 

Here A is the optical path difference for the ordinary and extraor-
dinary rays, k = 0, 1, 2, . . . 



0' , 
la) 

Fig. 43. 

(b) 

5.187. (a) The light with right-hand circular polarization (from 
the observer's viewpoint) becomes plane polarized on passing through 
a quarter-wave plate. In this case the direction of oscillations of 
the electric vector of the electromagnetic wave forms an angle of 
+45° with the axis 00' of the crystal (Fig. 43a); in the case of left-
hand polarization this angle will be equal to —45° (Fig. 43b). 

(b) If for any position of the plate the rotation of the Polaroid 
(located behind the plate) does not bring about any variation in 
the intensity of the transmitted light, the initial light is natural; 

if the intensity of the transmitted light varies and drops to zero, 
the initial light is circularly polarized; if it varies but does not 
drop to zero, then the initial light is composed of natural and cir-
cularly polarized light. 

5.188. (a) Ax = 1/2k (n, — no) (), 	(b) d (74 — n'e) 
= —2 (71, — no) 06x < 0. 

5.189. An = aX/n = 0.71.10-4, where a is the rotational con-
stant. 

5.190. a = n/Ax tan 0 = 21 ang. deg./mm, /(x) cost (nx/Ax), 
where x is the distance from the maximum. 

5.191. dmin  = (1/a) arcsin 	= 3.0 mm. 
5.192. 8.7 mm. 
5.193. [a] = 72 ang. deg./(dm•g/cm3). 
5.194. (a) Emir, = 111/ 4B1 = 10.6 kV/cm; (b) 2.2.108  inter-

ruptions per second. 
5.195. An = 2cHV/0), where c is the velocity of light in vacuum. 
5.196. V = 1/2 (9)1 — (P2)/1H = 0.015 ang. min/A. 
5.197. If one looks toward the transmitted beam and counts the 

positive direction clockwise, then q = (a — VNH) 1, where N is 
the number of times the beam passes through the substance (in 
Fig. 5.35 the number is N = 5). 

5.198. Hmin  = 1tl4V1 = 4.0 kA/m, where V is the Verdet con-
stant. The direction along which the , light is transmitted changes 
to the opposite. 

5.199. t = mcwolkI = 12 hours. Although the effect is very small, 
it was observed both for visible light and for SHF radiation. 



5.200. (a) a = eEolinw2  =5.10-'6  cm, where E0 = V-2//sac, v = 
= aw =_.- 1.7 cm/s; (b) Fm1Fe = 2.9.10-11. 

5.201. (a) e = 1 —n0e2/e0mo)2, v = cli1 -4- (noe2/421280mc2) X2. 

5.202. no  = (4n2v2meoie2)(1 ____ n2) ) = 2.4.107  cm-3. 
5.203. n — 1 = _noe2x2/8n280mc2 = —5.4.10-7, where no  is 

the concentration of electrons in carbon. 
5.204. (a) x = a cos (wt + (p), where a and q) are defined by 

the formulas 

a= eEolm tan cp —  213w 0,2_4 • — (092+41 2(02  

Here 13=Ti2m, wo = klm, m is the mass of an electron. (b) (P). 
rni3 	(eE0/m12  co2 	(P)max =__ 4t; eEno  

for 0.)---wo. 

5.205. Let us write the wave equation in the form A = A oewot-hx),  
where k = 2n/X. If n' = n + ix, then k = (27c/ko)re and 

A = Azonxxixoemot-2nnxia.o), 

or in the real form 
A = Aoei" cos (wt 	x), 

i.e. the light propagates as a plane wave whose amplitude depends 
on x. When x < 0, the amplitude diminishes (the attenuation of 
the wave due to absorption). When n' = ix, then 

A= AO" cos wt. 

This is a standing wave whose amplitude decreases exponentially 
(if x < 0). In this case the light experiences total internal reflection 
in the medium (without absorption). 

5.206. no  = 45.c2comc2/e2X;* = 2.0.109  cm-3. 
5.208. (a) u = 3/2 v; (b) u 	2v; (c) = 1/3  v. 
5.209. s= 1+ A/o)2, where A is a constant. 
5.210. v = c/n = 1.83.108  m/s, u = El. 	(X/n) (dnIc11)1 c/n 

= 1.70.108  m/s. 
5.211. It is sufficient to discuss three harmonic components of 

the train of waves (most easily with the help of a plot). 
5.212. I = 1/2/ 0e-4  sin2  cp, where cp = V1H. 
5.213. (a) I = / 0  (1 — p)2  (1 + p2 	p4 	. . .) = 

	

= Jo — 0241  — p2); (b) I = io (1  — 026o. 	0.2p2 +0.40+...,  ) 
= 1 0a (1 — 02/(1 	0.2 2x , p ) where a = exp (—xd). 

d2 —d1 

1 	(1 —p)2N  0.034 cm-1. 5.215. x IN in  
5.216. 'r =(1— p)2  exp [---1/3 (x1 + x2) 11. 

(w2— (02)2+ oho , 

in (xi/TO  5.214. x= 	=0.35 cm-1. 
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5.217. / = /0 (1 p) 	e (x2   
5.218. AX 

5.219. I= -4:+2 	e-x(b-a). 

5.220. Will decrease exp (Rd) = 0.6.102  times., 
5.221. d = 0.3 mm. 
5.222. d = (In 2)/p, = 8 mm. 
5.223. N = (In 71)/In 2 = 5.6. 
5.224. c = 2/z (n2  — n1) = 3.0.108  m/s. 
5.225. First of all note that when v < c, the time rate is practic-

ally identical in the reference frames fixed to the source and to the 
receiver. Suppose that the source emits short pulses with the inter-
vals To. Then in the reference frame fixed to the receiver the distance 
between two successive pulses is equal to X = — v,-To, when 
measured along the observation line. Here vr  is the projection of the 
source velocity on the observation line (v,. = v cos 0). The frequency 
of received pulses v = clk = v01(1 — vile), where vo  = 1/To. Hence 
(v — vo)/vo  = (v/c) cos 0. 

5.226. AX —X V2T/mc2  cos 0 = —26 nm. 
5.227. T = 4nRX c6X. = 25 days, where R is the radius of the 

Sun. 
5.228. d = (AX.IX),,ctIn = 3.107  km, m = (AX/X4c1/4/27cy 

= 2.9.1029  kg, where -v is the gravitational constant. 
5.229. co =- coo  (1 ± ()1(1 — (3), 	where 	13 = V/c; 

-7-- co o  (1 + 2V /c). 
5.230. v = 1/2kAv 	900 km per hour. 
5.231. Substituting the expressions for t' and x' (from the Lorentz 

transformation) into the equation cot — kx = co' t' — k' x' , we 
obtain 

= 	(1 -1-13)11/ 1 —132, k = k' (1 + ()/V 1 —132, 

where 13 = V/c. Here it is taken into account that co' = ck'.  
5.232. From the formula co' = w V(1 —13)/(1 +13) we get 

= v/c = 0.26. 
5.233. v= c  "12-1  = 7' 1.104  km/s. OAT-HI  
5.234. co = coo  
5.235. AX = kT/moc2  = 0.70 nm, where mo  is the mass of the 

atom. 
5.236. (a) co coo/111-132 =5.0 .1010  s-1 ; (b) Co = coo li1 — 

=1.8.10i0 s-1 . Here 6 = v/c. 
5.237. The charge of an electron and the positive charge induced 

in the metal form a dipole. In the reference frame fixed to the elec-
tron the electric dipole moment varies with a period T' = d'/v, 
where d' = d yi - (v/c)2. The corresponding "natural" frequency 
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Fig. 44. 

is v' = vld' . Due to the Doppler effect the observed frequency is 

, 111—(v/02 	yid  

The corresponding wavelength is X, = c/v = d (c/v — cos 0). When 
0 = 45° and v c the wavelength is 	0.6 p,m. 

5.238. (a) Let vs  be the projection of the velocity vector of the 
radiating atom on the observation direction. The number of atoms 
with projections falling within the interval vs, vs  + dvx  is 

n (vx) dvx  exp (—mv:12kT)•dvx. 

The frequency of light emitted by the atoms moving with velocity 
vs  is o) = (.1)0  (1 -I- vx/c). From the expression the frequency distri-
bution of atoms can be found: n (e) do) = n (vx) dvx. And finally 
it should be taken into account that the spectral radiation intensity 

n (co). (b) 6.o)/6)0  = 2 V(2 In 2) kr/mc2. 

5.239. u—  cin  +17  If V c, then 1+ V lcn' 

5.240. v = 1/2c60 = 30 km/s. 
5.242. 0' = 8°. 
5.243. The field induced by a charged particle moving with 

velocity V excites the atoms of the medium turning them into sources 
of light waves. Let us consider two 
arbitrary points A and B along the 
path of the particle. The light waves 
emitted from these points when the 
particle passes them reach the point 
P (Fig. 44) simultaneously and amplify 
each other provided the time taken 
by the light wave to propagate from 
the point A to the point C is equal 
to that taken by the particle to fly 
over the distance AB. Hence, we 
obtain cos 0 = v/V, where v = c/n is the phase velocity of light. 
It is evident that the radiation is possible only if V > v, i.e. when 
the velocity of the particle exceeds the phase velocity of light in 
the medium. 

5.244. Tmin = (nl V n2  — 1 — 1)mc2; 0.14 MeV and 0.26 GeV 
respectively. For muons. 

5.245. T — 	n cos0  1) mcz = 0.23 MeV. 
I/ n2  cos2  

5.247. T2 = bT il(b-FT jAX)= 1.75 kK. 
5.248. Am  = 3.4 Rm. 
5.249. 5.109  kg/s, about 1011  years. 
5.250. T =V 3cRpluM =2.107  K, where R is the universal 

gas constant, M is the molar mass of hydrogen. 

V — (v/c) cos 0 — —WO cos 0 

u 	v 	) 



5.251. t = (i3  — 1) cpd/18crT: = 3 hours, where c is the spe-
cific heat capacity of copper, p is its density. 

5 252. T2 == T1 d121= 0.4 kK. 
5.253. (a) Cv  = (OU/OT)v  =16 aT3VIc=3 nJ/K, where U= 

.4aTIVIc; (b) S = 16crT3V/3c = 1.0 nJ/K. 
5.254. (a) cop,. = 3Tla = 7.85.10" s-1  ; (b). X•pr  = 2nca/5T = 

= 1.44 ti,m. 
5.255. (a) u. = (kT 17E20)(02; (b) u. = (h/n2c3) (03  e-5(047'. 

5.256. 	— 
ieuclh 	vs 	— 2 /kTi,i

167C2Cnk-3 
• c3 	e22-thvillT —1 	 afic  

5.257. AP = 4n2c2hT50%/b6 (e2nitc/kb• 1) = 0.31 W/cm2, where 
b is the constant in Wien's displacement law. 

5.258. (a) 1.1 [tm; (b) 0.37; (c) P2/P1  =--- (T 2/T1)4  (1 — Y2)/(1—Y1) = 
= 4.9. 

5.259. rc. dm  — 	
co2  dw  dX 	

8a-4  

	

T
1
oo elm' hr 	• - 	e2nhoira, 

5.260. (a) (j)  = Pk181c2chr2  = 6.1013  cm-2s-1; 
(b) r = VP2t./2An/2ric = 9 m. 

5.261. dpIdt = (De/c. 
5.262. (p) = 4 (1 -I- p) Elnd2c-r 	50 atm. 

5.263. p = (Etc) p2  -I- 2p cos 20 = 35 nN • s. 
5.264. p = (17c) (1 + p) cost 0 = 0.6 nN/cm2. 
5.265. F = nR2Ilc = 0.18 IAN. 
5.266. F = P/2c (1 + 12). 

5.267.( 	 p 	
(b) 

-

a) Ap 2hw • I 1 —02 	A
P= 

 2hw Here R=  1-0 • 
= V/c. It is evident that in the reference frame fixed to the 
mirror the latter obtains the smaller momentum. 

5.268. sin (8/2) Elmc F, 0 = 0.5°. 
5.269. Doi/coo  = — (1 — e-vm/Rc2) < 0, i.e. the frequency of 

the photon decreases. 
5.270. V = 23-thc (1 — 1/11)/eAk = 16 kV. 
5.271. V = nhcled sin cc = 31 kV. 
5.272. ?min = 2Tih/mc (y —1) = 2.8 pm, where v =1 /17.1 — (v/c)2. 
5.273. 332 nm, 6.6.105  m/s. 

5.274. A— 2Ttch (1,12-2'21)'1)  =1.9 eV.  

5.275. Tmax 	4.4 \ 7(  1 	I  ) 
5.276. Tmax  = h ((Do + (0) — Af = 0.38 eV. 
5.277. w = 2nchTleA, = 0.020. 
5.278. v„.4„x  = 6.4.105  m/s. 
5.279. 0.5 V; the polarity of the contact potential difference 

is opposite to that of external voltage. 
5.280. hlmc, the Compton wavelength for the given particle. 
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5.281. Let us write the energy and momentum conservation laws 
in the reference frame fixed to the electron for the moment preceding 
the collision with the photon: hco moc2  &plc = my, where 

m = mo  1/ 1 — (v/c)2. From this it follows that v = 0 or v = c. 
The results have no physical meaning. 

5.282. (a) Light is scattered by the free electrons; (b) the increase 
of the number of electrons that turn free (the free electrons have the 
binding energy much lower than the energy transferred to them by 
the photons); (c) the presence of a non-displaced component is due 
to scattering by the strongly bound electrons and the nuclei. 

5.283. a = 42dc  [sin (02/2) — t1 sin (01/2)1/(1 — 1) = 1.2 pm. 
5.284. T = hcoril(1 	i) = 0.20 MeV. 
5.285. (a) e.)' = 2nc/(k 2nh/mc) = 2.2.1020  rad/s; 

2nch/X  
(b) T — 1+ Xmc 12rch 60 keV. 

hco  
5.286. ho)' = 1+2 (h(o/mc2) sin (0/2) 

0.144 MeV. 

5.287. sin (0/2) =1/  mc (p — p')I2pp' . Hence 0=120°. 
5.288. hu) = [1 +V 1 + 2mc2IT sin2  (0/2)] T/2 = 0.68 MeV. 
5.289. = (2mh/mc) (1/1 + 2mez/T,,,ox — 1) = 3.7 pm. 

5.290. tan 
1/4h/mcA—  1 

cp 	
n 	A. 

	

1+hoon,2  , 	31°. 

5.291. p = 21 (1+ ri)  
(1 ± 211) 03 

=. 
 

3.4 cm. 

5.292. A?. ---- (4hImc) sin2  (0/2) = 1.2 pm. 
6.1. r = 3e2/2E = 0.16 nm, 2 = (2acle) y mr3  = 0.24 
6.2. b = 0.73 pm. 
6.3. (a) rmin  = 0.59 pm; (b) rm in = (2Ze2I T) (1 -1- mc,ImLi) 
0.034 pm. 
6.4. (a) pmin  = (Ze2/T) cot2  (0/2) = 0.23 pm; 	(b) 	rmin  =-_ 
[1 	cosec (0/2)1 Ze2IT = 0.56 pm. 

6.5. p;---e, 2 1/2mT/[1+(2bT/Ze2)21. 
6.6. T e =mpe4Imeb2T = 4 eV. 

n sin 	(0/2)  6.7. b — 	  where n =1/1 +Uo/T. 
-1/ 1+ n2 — 2n cos (0/2) 

6.8. (a) cos (0/2) = b/(R 	r); (b) dP = 1/2  sin 0 d0; (c) P 
= 1/2. 

6.9. 3.3-10-5. 
6.10. d = (4Jr2T2/nIZ2e4) sin4  (0/2) = 1.5 p,m, where n is the 

concentration of nuclei. 

6.11. Zpt  = ZAg  T1APt/AAg = 78. 
6.12. (a) 1.6.106; (b) N = and (Ze2I T)2  cot2  (0012) IOv = 2.0.107, 

where n is the concentration of nuclei. 
6.13. P = and (Ze2/mv2)2  = 0.006, where n is the concentration 

of nuclei. 
6.14. ANIN = 1 — nnZ2e4/T2  tan2  (00 /2) = 0.6. 



6.15. AN/N = 71e4  (0.7 - + 0.3 t) pdNA cot22  = 1.4.10-3, 4T2 	Af i 	Ai2 	 2 
where Z1  and Z2 are the atomic numbers of copper and zinc, 
M1  and M2 are their molar masses, NA is Avogadro's number. 

6.16. Aa = n (Ze2/T)2  cot2  (0012) = 0.73 kb. 
6.17. (a) 0.9 MeV; (b) dold52 = Aa/4n sin4  (0/2) = 0.64 kb/sp. 
6.18. t = (3mc2/2e2co2) In ri = 15 ns. 
6.19. t 	m2c3r3I4e4 	13 ps. 
6.21. rn  = linh/mo), En  = nho), where n = 1, 2, . . 	= 

=-- 11/7/Tn. 
6.22. 

ri, pm v, 106  m/s T, eV Eb, eV Ti, V, (pi, V R, nm 

H 52.9 2.18 13.6 13.6 13.6 10.2 121.5 

He 26.5 4.36 54.5 54.5 54.5 40.8 30.4 

6.23. co = me4Z2/h3n8  = 2.07.1016  s--1 . 
6.24. pm, = neh/2mc, µn /Mn  = el2mc, t1 = 14- 
6.25. B = m2e7lch5  = 125 kG. 
6.27. The Brackett series, X6-.4 = 2.63 Rm. 
6.28. (a) 657, 487 and 434 nm; (b) 2■16X, 	1.5 -102. 
6.29. For n >> 1 sin 0 x n3acl1R, whence 0 	60°. 
6.30. Het 
6.31. N = 1/2n (n - 1). 
6.32. 97.3, 102.6 and 121.6 nm. 
6.33. n = 5. 

6.34' R -  176nc
15Z20k  --= 2.07.1016  s-1. 

6.35. Z----V- (176/15)ncIRAA, = 3, Li". 
6.36. X-- (2nc/Aco) (Z1/ R/A - 1 )1(2Z V RIAo)-1)------ 0.47 Rm. 
6.37. Eb = 54.4 eV (He+). 
6.38. E = E, 4hR = 79 eV. 
6.39. v = V 2 (hco - 4hR)/m = 2.3.106  m/s, where co = 2acA. 
6.40. Tmin = 3i2hR = 20.5 eV. 
6.41. v = 3hR/4mc = 3.25 m/s, where m is the mass of the 

atom. 
6.42. (e - e')/e 	3hRI8mc2  = 0.55-10-6%, where m is the 

mass of the atom. 
6.43. v = 2 y hRlm = 3.1-106  m/s, where 7n is the mass of 

the electron. 
6.44. v = 3RAX/8n cos 0 = 0.7.106  m/s. 
6.45. (a) En  = n2n2h2/2m12; (b) En  = 

= nh 17.  alm; (d) En  = -ma2/23t2n2. 
n2h2/2mr2; 	(c) En  = 
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6.46. Eb = Re4/2h2, R = µe4/2h3, where It is the reduced mass 
of the system. If the motion of the nucleus is not taken into account, 
these values (in the case of a hydrogen atom) are greater by m/M 

0.055%, where m and M are the masses of an electron and a pro-
ton. 

6.47. ED — EH = 3.7 meV, 	— A.D  = 33 pm. 
6.48. (a) 0.285 pm, 2.53 keV, 0.65 nm; (b) 106 pm, 6.8 eV, 

0.243 pm. 
6.49. 123, 2.86 and 0.186 pm. 
6.50. 0.45 keV. 
6.51. For both particles X, = 27th (1 + mn/md)/r2ninT = 8.6 pm. 

6.52. I= a1A,2/Y.24 + A.:. 
6.53. X= 27th/ V 2mkT =128 pm. 
6.54. First, let us find the distribution of molecules over de 

Broglie wavelengths. From the relation f (v) dv = (A.) where 
f (v) is Maxwell's distribution of velocities, we obtain 

q 	= Ak-4e-a/12, a = 2n2h2/ n.kT. 

The condition 41(14=  0 provides 47.= Tarr mkT = 0.09 nm. 
6.55. X, = 2nh/V2m7' (1 -I- T/2mc2), T < 4mc2A?j1 = 20.4 keV (for 

an electron) and 37.5 MeV (for a proton). 
6.56. T = (j/2  1) mc2  = 0.21 MeV. 
6.57. 	Xonnil mcX.hlah= 3.3 pm. 
6.58. v -=4rth//mbAx=-- 2.0-106  m/s. 
6.59. Ax = 23-thlIdli2meT/ = 4.9 [tm. 
6.60. Vo  = n2h2/2rne (j/TI-1)2  d2  sin2  0 = 0.15 keV. 
6.61. c/ = z-ak117 2mT cos (0/2) = 0.21 nm, where k= 4. 
6.62. d= Takli 2mT sin 0 = 0.23 ± 0.04 nm, where k = 3 and the 

angle 0 is determined by the formula tan 20 =D121. 
6.63. (a) n= 111 +1/1/V= 1.05; (b) V/V i _.>-1/1 (2 -I-1) = 50. 
6.64. En  = n22-c2h2/2m12, where n = 1, 2, . . . 
6.66. 1.104, 1.10 and 1.10-2° cm/s. 
6.67. Au 

- 

hlml = 1.106  m/s; vi  = 2.2.106  m/s. 
6.69. At 

▪  

im/2/h 	10-16  s. 
6.70. Tmin  h2/2m12  = 1 eV. Here we assumed that p 	Ap 

and Ax = 1. 
6.71. Av/v ti h//1/2mT = 1.10". 
6.72. F 
6.73. Taking into account that p Ap 	Ax ,h1x, we get 

E = T U h2/2mx2  kx2/2. From the condition dEl dx = 0 
we find x, and then Emin 	klm = he), where co is the oscillat- 
or's angular frequency. The rigorous calculations furnish the value 
ho /2. 

6.74. Taking into account that p Ap 	Ar and Ar r, 
we get E = p2/2m — e2/r h2/2mr2  — e2/r. From the condition 



dEldr = 0 we find reff  h2Ime2  = 53 pm, Enii,, 	—me4/2h2  = 
-= —13.6 eV. 

6.75. The width of the image is A 	6 + A' 	6 -I- hl/p6, 
where A' is an additional widening associated with the uncertainty 
of the momentum Apy  (when the hydrogen atoms pass through the 
slit), p is the momentum of the incident hydrogen atoms. The func-
tion A(6) has the minimum when 6 lih//mv = 0.01 mm. 

6.76. The solution of the Schrodinger equation should be sought 
in the form = (x)..1 (t). The substitution of this function into 
the initial equation with subsequent separation of the variables x 
and t results in two equations. Their solutions are * (x) eikx, 
where k =112mE1h, E is the energy of the particle, and I (t) 

e-iot where co = Ern,. Finally, IF = aemix-6)0, where a is a cer-
tain constant. 

6.77. P =1/3+ 	= 0.61. 
Acos(anx11), if n =1, 3, 5, 

6.78. I) =  
A sin (anx11), if n = 2, 4, 6, 

Here A— V211. 
6.80. dNIdE=(113-th)lim/2E; if E =1 eV, then dNIdE= 

=0.8.107  levels per eV. 
6.81. (a) In this case the SchrOdinger equation takes the form 

ayoxra  +7;_y;....kk2t=._ 0 , 
k2=2mElh2. 

Let us take the origin of coordinates at one of the corners of the 
well. On the sides of the well the function * (x, y) must turn into 
zero (according to the condition), and therefore it is convenient to 
seek this function inside the well in the form 1) (x, y) = a sin kix X 
x sin key, since on the two sides (x = 0 and y = 0) = 0 automa-
tically. The possible values of k1  and k2  are found from the condi-
tion of 1  turning into zero on the opposite sides of the well: 

* (4, y) = 0, k1  = ± (n/h) nl,  nl  = 1, 2, 3, 	. 	. 

(x, 12) = 0, k 2  = f (7t112) n2, n2  = 1, 2, 3, 	. 

The substitution of the wave function into the Schrodinger equa-
tion leads to the relation lc; + k2 = k2, whence 

Eno, = (n:11: + n21122) n2h2/2m. 

(b) 9.87, 24.7, 39.5, and 49.4 units of h2/m12. 
6.82. P = 1/3 — 17- 14J-c = 19.5%. 
6.83. (a) E = (n2i  + n22 	o-c2h2/2ma2, where n1, n2, n3  are 

integers not equal to zero: (b) AE = n2h2Ima2; (c) for the 6-th level 
74.  + n22  n22  = 14 and E = 72-c2h2/ma2; the number of states is equal 
o six (it is equal to the number of permutations of a triad 1, 2, 3.) 
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6.84. Let us integrate the Schrodinger equation over a small 
interval of the coordinate x within which there is a discontinuity 
in U (x), for example at the point x = 0: 

+6 
84) 	p 	r 

—07 + 6)— ai (— 6)  = ) 
2m 

(E — U) dx. 

Since the discontinuity U is finite the integral tends to zero as 
6 —* 0. What follows is obvious. 

6.85. (a) Let us write the Schrodinger equation for two regions 

0 < x < 1, 	+ k211)1  = 0, k2  = 2mE/h2, 

x > /, 1); 	x2,T2  ___ 0,  x2 	2m (U0  — E)1h2. 

Their common solutions 

(x) = a sin (kx 	a), '11) 2 (x) = be-xx 	cemx 

must satisfy the standard and boundary conditions. From the condi- 
tion Y 1 (0) = 0 and the requirement for the finiteness of the wave 

Fig. 45. 

function it follows that a = 0 and c = O. And finally, from the 
continuity of 1) (x) and its derivative at the point x = 1 we obtain 
tan kl = —k/x, whence 

sin kl = t kl h2/2m/zUo. 

Plotting the left-hand and right-hand sides of the last equation 
(Fig. 45), we can find the points at which the straight line crosses 
the sine curve. The roots of the equation corresponding to the eigen-
values of energy E are found from those intersection points (kl)i  
for which tan (kl)i  < 0, i.e. the roots of that equation are located 
in the even quadrants (these segments of the abscissa axis are shown 
heavy in the figure). It is seen from the plot that the roots of the 
equation, i.e. the bound states of the particle, do not always exist. 
The dotted line indicates the ultimate position of the straight line. 
(b) 1 (12 U - 0,1 min = 7t2h218M, (12 U0)n min = (2n — 1) n2h2/8m. 



6.86. Suppose that Pa  and Pi  are the probabilities of the particle 
being outside and inside the well. Then 

co 
2xx dx  

	

Pa 	I 	2 

	

Pi 	1 	 2+33t' 
a2  sin2  kx dx 

0 

where the ratio b/a can be found from the condition Vi  (1) = 1)2 (1). 
Now it remains to take into account that Pa  +P i = 1; then Pa = 
= 2/(4 + 3n) = 14.9%. 

The penetration of the particle into the region where its energy 
E < U is a purely quantum phenomenon. It occurs owing to the 
wave properties of the particle ruling out the simultaneous precise 
magnitudes of the coordinate and the momentum, and consequently 
the precise division of the total energy of the particle into the poten-
tial and the kinetic energy. The latter could be done only within 
the limits set by the uncertainty principle. 

6.87. Utilizing the substitution indicated, we get 

x" k2x = 0, where k2  = 2mE/h2. 

We shall seek the solution of this equation in the form x = 
= a sin (kr + a). From the finiteness of the wave function , at 
the point r= 0 it follows that a = 0. Thus, = (alr) sin kr. From 
the boundary condition * (r0) = 0 we obtain kr, = nn, where 
n = 1, 2, . . . Hence, Ea  = n23-E 2h212m,r:. 

6.88. (a) * (r). 	I 	sin (nn  rlro) n =1, 2, ...; 	(b) rp,. 
2nro  

= r0/2; 50%. 
6.89. (a) The solutions of the SchrOdinger equation for the func-

tion x (r): 

r <r„, xi = A sin (kr cc), where k = V 2mElh, 

r > ro, x2---=Bexr+ Ce-)a, where x = -1(2m (U0 —E)1h. 

Since the function AI) (r) is finite throughout the space, a = 0 and 
B = 0. Thus, 

A sin kr 	 e r 

	

— 	r 2 =C r  . 

From the continuity of the function 	and its derivative at 
the point r = r, we get tan kro  = —klx, or 

sin kro  = f V h212mr:U okr 0. 

As it was demonstrated in the solution of Problem 6.85, this equa-
tion determines the discontinuous spectrum of energy eigenvalues. 
(b) rWo  = 7t21i2/8m. 
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6.90. a = mw/2h, E = hco/2, where co = 1/kInt. 
6.91. E = —me418h2, i.e. the level with principal quantum 

number n = 2. 
6.92. (a) The probability of the electron being at the interval 

r, r + dr from the nucleus is dP = 2  (r)42-cr2dr. From the condi-
tion for the maximum of the function dP/dr we get rp,. = 
(b) (F) = 2e2/ri2; (c) (U) = 

6.93. (p0  = (p/r) 4nr2  dr =-elri, where p =-42  is the space 
charge density, ip is the normalized wave function. 

6.94. (a) Let us write the solutions of the Schrodinger equation 
to the left and to the right of the barrier in the following form: 

x < 0, 14)i (x)=aieihiH- bie-ikix, where k1 = V- 2mElh, 

x> 0, 2  (x) = a2eih2x b2e-ih2s, where k2  = -1(2m (E —U0)1h. 

Let us assume that the incident wave has an amplitude a1  and the 
reflected wave an amplitude b2. Since in the region x >0 there is 
only a travelling wave, b2  = 0. The reflection coefficient R is the 
ratio of the reflected stream of particles to the incident stream, or, 
in other words, the ratio of the squares of amplitudes of correspond-
ing waves. Due to the continuity of* and its derivative at the point 

= 0 we have a1 	b1  = a2  and al  — bi  = (k21k1) a2, whence 

R =(b1/a1)2 =  (ki—  k2)2/(k1  + k2)2. 

(b) In the case of E < U0  the solution of the SchrOdinger equa-
tion to the right of the barrier takes the form 

11,2  (x) = a2e" b2e--", where x =2m (U0  — E)1h. 

From the finiteness of (x) it follows that a2  = 0. The probability 
of finding the particle under the barrier has the density P2 (x) = 

114 (x)— e-2". Hence, xefi  = 1/2x. 

6.95. (a) D exp [— 	(Uo — E)]; 

 Ii2m (b) D exp[-813uo  (Uo  —E)312 ]. 

6.96. D exp [ — 21h1-1/- 2(-4-7 -' (U0  —E)]. 

6.97. —0.41 for an S term°and —0.04 for a P term. 
6.98. cc = jihR/(E0 —eq)i)— 3= —0.88. 

6.99. Eb=h111(11  Rki X,2122tc6,X— 1)2 = 5.3 eV. 
6.100. 0.82 µm (3S —)-2P) and 0.68 p,m (2P 	2S). 
6.101. AE = 21chcA2s,/k2  = 2.0 meV. 
6.102. Au) = 1.05.10" rad/s. 
6.103. 3S112, 3P112,  3P312, 3D312, 3D512. 
6.104. (a) 1, 2, 3, 4, 5; (b) 0, 1, 2, 3, 4, 5, 6; (c) 1/2, 3/2, 5/2, 

7/2, 9/2. 



6.105. For the state 4P: h;a2, h 15/2, and h V 32/2; for 
the state 5D: 0, h1/ 2;  h 	h 	h V 20. 

6.106. (a) 2F7/2 , - M max — 
hi/ 63/2, (b) 3F4, M  771aX = 2h V 6. 

6.107. In the F state M8  = h ;-; for the D state it can be 
only found that M,„>.-h .1/ -6-. 

6.108. 3, 4, 5. 
6.109. (a) 1, 3, 5, 7, 9; (b) 2, 4, 6; (c) 5, 7, 9. 
6.110. 31°. 
6.111. 3D 2. 
6.112. 'PI , ip2, 11'3, 3P0,1,22 3D1,2,3, 3F2,3.4. 
6.113. The same as in the foregoing problem. 
6.114. The second and the third term. 
6.115. g = 4 ± 6 = 10. 
6.116. 4, 7 and 10. 
6.117. 3F3. 
6.118. As. 
6.119. (a) 4S312; (b) 3P2. 
6.120. (a) 4F312,  W172; (b) 4F912, h3 1112. 
6.121. (a) Two d electrons; (b) five p electrons; (c) five d elec-

trons. 
6.122. (a) 3P 0, (b) 4F912. 
6.123. 4F312. 
6.124. p. = to  B Y35  (65512)• 
6.125. 1 = n2e-0 /hT = 3.10-17, where o = R (1 — 1/n2). 
6.126. NIN, = (g/g0) e-TiwIkT = 1.14.10-4, where g and go  

are the statistical weights (degeneracy ratios) of the levels 3P and 
3S respectively (g = 6, go  = 2). 

6.127. ti = 1111 In i = 1.3 1.ts. 
6.128. N = XTP/2nch = 7.103. 
6.129. r = (nhalP) (g/ go) e —hWAT  = 65 ns, where g and go  

are the degeneracy ratios of the resonant and the basic level. 
6.130. (a) Pind/Po p = 1/(e")/hT — 1) 	10-34, 	where a) = 

=-- 3/4R; (b) T = 1.7.105  K. 
6.131. Suppose that I is the intensity of the passing ray. The 

decrease in this value on passing through the layer of the substance 
of thickness dx is equal to 

—dI = xI dx = (N1B12 — 
N2B21) (Iic) ho) dx, 

where N1  and N2 are the concentrations of atoms on the lower and 
upper levels, B12 and B21 are the Einstein coefficients. Hence 

x a  (hco/c) N1R12 (1 — g1N2ig2N1)• 

Next, the Boltzmann distribution should be taken into considera-
tion, as well as the fact that ho) >> kT (in this case N1  is approxim-
ately equal to No, the total concentration of the atoms). 

6.132. AkDo p/Aknot 	43T-rvp,./X, 	103, where vp,. = 172RTIM. 
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6.133. X = 154 pm. 
6.134. (a) 843 pm for Al, 180 pm for Co; (b) 	5 keV. 
6.135. Three. 
6.136. V = 15 kV. 
6.137. Yes. 
6.138. Z =1+2 ji(n —1) eV 113hR (n— 1/1/V2)=29. 

6.139. Z = 1 + 1/4A(.6/3R = 22, titanium. 
6.140. Eb = 3/ 	(Z 	1)2  + 2nch/XL = 5.5 keV. 
6.141. EL  = hw (2nchoAX — 1) pi., 0.5 keV, 	where 	w = 

= 3/4R (Z 	1)2. 
6.142. T = 214AR (Z — 1)2  — 2nchAK  = 1.45 keV, 	v 

=2.26.107  m/s. 
6.143. (a) g = 2, with the exception of the singlet state, where 

g = 0/0; (b) g = 1. 
6.144. (a) —2/3; (b) 0; (c) 1; (d) 5/2; (e) 0/0. 
6.145. (a) 1/12µB; (b) 2 V3/5µs; (c) (8/if -g) [LB. 
6.146. Ms  = 2 
6.147. µ = (8/1/3) 
6.148. p, = 31/7/5/5µB. 
6.149. o.—(5 1/5/2) Rs. 
6.150. M= h on. 
6.151. 5F1. 
6.152. e 	p,BI gB lh = 1.2-101° rad/s, where g is the Lando 

factor. 
6.153. F max 	max' laBiaZI = (3/1/8) Itiap,B/Cr2  

= 4.10-27  N. 
6.154. F = 21- IL BIcr2  = 3.10-26  N. 
6.155. aB/az = 2T6I gJp.Bli  (11  + 212) = 15 kG/cm. 
6.156. (a) It does not split; (b) splits into 6 sublevels; (c) does 

not split (g = 0). 
6.157. (a) 58 ReV; (b) AE = 2g4BB = 145 lieV. 
6.158. (a) Normal; (b) anomalous; (c) normal; (d) normal (both 

terms have identical Land6 factors). 
6.159. L = AE121ABB = 3; 1F3. 
6.160. AX = X2eB/2nmc2  = 35 pm. 
6.161. B min  = 4.0 kG. 
6.162. B = hAoilgti,B  = 3 kG. 
6.163. (a) 2 .1 (the ratio of the corresponding Uncle factors); 

(b) B = 2nchAX/gRAX2  = 5.5 kG. 
6.164. Act) = (±1.3, ±4.0, ±6.6)•1010  s-1  , six components. 
6.165. (a) Six (1) and four (2); (b) nine (1) and six (2). 
6.166. Ace 	 maxeBlmc 	1.0.10" s-1  . (migi — ntsgs) ma 
6.167. ce = 4 If 241mci2  = 1.57.10" s-1  , where m is the mass 

of the molecule. 
6.168. 2 and 3. 



6.169. M = limd2E/2 = 3.5h, where m is the mass of the mole-
cule. 

6.170. I = hIAw = 1.93.10-4° g•cm2, d = 112 pm. 
6.171. 13 levels. 

6.172. N 	1121w1h  = 33   lines. 
6.173. dN IdE V I 12h2E, where I is the moment of inertia 

of the molecule. In the case of J = 10 dN IdE =1.0-104  levels 
per eV. 

6.174. E vib/Erot  = cottd2/h, where p, is the reduced mass of 
the molecule; (a) 36; (b) 1.7.102-

' 
 (c) 2.9.103. 

6.17'5. N vib/N rot = 1/3e-7,0)-2M/11T = 3.1.10-4 	where 	B 
h121, I is the moment of inertia of the molecule. 
6.176. According to the definition 

E E, exp (— EAT) E  Ea exp (— aE0)  
(E) — 	  

exp (— E v IkT) 	exp (—cao)  

where E a  = hco (v + 1/2), a = 1IkT . The summation is carried out 
over v taking the values from 0 to oo as follows: 

a 	 a 	exp (—aho)/2)  (E) 	In 	exp (— ccEo) = aa 	 1—exp (—ahco) —  
hco 	he)  
2 + exp (hw/kT)-1 ; 

8 (E) 	R (hwlkT)2  e")IhT  
C voib 

—A,

OT 	otaolla 1)2 	— 0.56R, 

where R is the universal gas constant. 

6.177. d=-- V2h/R0co = 0.13 nm, where µ is the reduced mass 
of the molecule. 

6.178. X, = Xo/(1 	o)ko/2J-cc) = 423 and 387 nm. 
6.179. w = rcc 	— X v)/X,1, = 1.37.1014  rad/s, x = 4.96 N/cm. 
6.180. /,//,.=exp (—hco/kT)=. 0.067. Will increase 3.9 times. 
6.181. (a) See Fig. 46a in which the arrows indicate the motion 

directions of the nuclei in the molecule at the same moment. The 
oscillation frequencies are col, co2, co,, with co, being' the frequency 
of two independent oscillations in mutually perpendicular planes. 
Thus, there are four different oscillations. (b) See Fig. 46b; there 
are seven different oscillations: three longitudinal ones (a)„ 6)2, (03) 
and four transversal ones (coo  0)5), two oscillations for each 
frequency. 

6.182. aro  = (113-w) do). 
6.183. dAT = (S/2nv2) co do). 
6.184. dN = (V In2v3) co2  do). 
6.185. (a)  0 =  (h,/k) avno; (b) 8 = (hlk) v r47tno; (c) O = 

= (h/k) v V6a2no. 



6.186. 0 = (h/k) 13/183-t2no/(0-13  + 2v-2) = 470 K, where no  is the 
concentration of the atoms. 

0 
.4 	0 

c 	0 
0 w 

H 	C 	C 	H 

 

  

wz 
(0,1 

EM  01--off-lb (02 

  

(a) 
wk 

cos  

(b) 
Fig. 46. 

6.187. v kWh r6n2no  = 3.4 km/s, where no  is the concent-
ration of the atoms. The tabulated values are: vii  = 6.3 km/s, 
v1=3.1 km/s. 

6.188. The oscillation energy of a mole of a "crystal" is 
8/T 

T 12 	x dx  
k0 

	

	
3 
 ex-1P 
0 

where x---hcolkT. Hence the molar heat capacity is 
9/T 

	

x  dx 	81T  
C R ( 2T  

	

8 J  ex —1 	ee/T ___ 1 • 
0 

When T >> 0, the heat capacity C  R. 
6.189. (a) dN/do 	21Ina 1 1 	— co 2 ; 	 (b) N = 11 a, i.e. 

is equal to the number of the atoms in 
dll 	 the chain. 
dm _ 	6.190. U, = 9R0/8µ = 48.6 J/g, 

8/2 	
whereµ is the molar mass of copper. 

10- 	 6.191. 	(a) 0 	220 K; (b) C 
10 J/(mol•K); 	(c) comax  = 4.1 x 
X 1013  rad/s. 

6.193. Yes, because the heat capac- 
5 - ity is proportional to T3  at these tern-

epi 	peratures. 
6.194. (E) = 3/8 k0. 
6.195. See Fig. 47. 

0.5 	10 	 6.196. komax  = 28 meV, hkmax^' 
g-cm/s. 

Fig. 47. 	 6.197. 	(a) T max = (3/i2n)2/3h2/2m; 
(b) (7') = 3/5Tmax-

6.198. ri = 1 — 2-3P X 65%. 
6.199. 0.93. 
6.200. z 3.104  K. 
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6.201. AE = 2:12h2/mV (3n2n)1/3  = 2.10-22  eV. 
6.202. (a) dn, 	(m31a2h3) v2  dv; (b) (v)/vmax  = 3/4. 
6.203. dnk  = 8nk-4  d?. 
6.204. p = 2/3n (T) = 	rai-th2/5m) n5/3 	5.104  atm. 
6.205. A = kT (iT/A T — 2) = 4.5 eV. 

6.206. n 1/1 Uo/T = 1.02, where U0  = T max + A, T max --= 
(3a2n)2/3  h2/2m. A is the work function. 

6.207. Emzn= 
r2kT1r2  In 11=  0.33 eV. 

op 	ach  6.208. cx = 1
aT 	kT x, — 	= —0.05 K-1, 

AE0  is the forbidden band width. 
In   6.209. AE — 2k  (T-1) = 1.2 and 0.06 eV. 

6.210. T = t/ln (9—P1) P2  -= 0.01 S. 
(3—  P2) Pi 

6.211. n = hB V I elp V H = 5.1015  cm-3, u0  = 1 V H/hB = 
= 0.05 m2/(V • s). 

6.212. I uo — u:1 = 1/1B = 0.20 m2/(V•s). 
6.213. n:/n-  = 	= 4.0. 
6.214. (a) P = 1 — exp (—kt); (b) T = 1/k. 
6.215. About 1/4. 
6.216. 1.2 1015. 
6.217. r X16 s. 
6.218. 1' = 5.3 days. 
6.219. 4.6.102  part./min. 
6.220. k = —(1/t) In (1 — ri) 	ri/t = 1.1.10-5  s-1, T = 1/A = 

= 1.0 years. 
6.221. T = 4.5-109  years, A = 1.2-104  dis./s. 
6.222. 4.1 • 103  years. 
6.223. About 2.0-109  years. 
6.224. 3.2.1017  and 0.8-105  dis/(s • g) respectively. 
6.225. V = (A/A') exp (—t In 2/T) = 6 1. 
6.226. 0.19%. 
6.227. T1  -= 1.6 hours, T2 = 9.8 hours; N 2/N1  = (T2/T1) x 

X exp (ln A 2 — In A1) = 10. 
6.228. t = —(T/In 2) In (1 — AI q) = 9.5 days. 

6.229. (a) N2 (t) = No x2ki 	e-k2t); 

(b) trn  = inxi(k±/xX22)  

6.230. (a) N2 (t) = XATiot exp (—kt); (b) tm  = 1/k. 
x_e-A1t 

6.231. N3 (t) = 	( 1 + 	, 
2 —"1 	) • 

6.232. "VD = N0?1 exp (—kit) = 0.72.1011 	part./s, Na  
No 	— e-2v21) ?1? /(?12  — 	= 1.46.1011  part./s. 	Here No 

is the initial number of Bin° nuclei. 
6.233. (a) Pb2"; (b) eight alpha decays and six beta decays. 

where p eAE0/2hTt 



6.234. v= V2mc,Tadm = 3.4-105  m/s; 0.020. 
6.235. 1.6 MJ. 
6.236. 0.82 MeV. 
6.237. (a) 6.1 cm; (b) 2.1.105  and 0.77.105  respectively. 

(Mp-M*2 for 13-  decay and K-capture, 
6.238. Q= 

(Mp M d 2M) C2  for 13+ decay. 
6.239. 0.56 MeV and 47.5 eV. 
6.240. 5 MJ. 
6.241. 0.32 and 0.65 MeV. 
6.242. T 	(Q 2mc2)IMNc2  = 0.11 keV, where Q 
(MN - Mc - 2m) c2, m is the mass of an electron. 
6.243. 40 km/s. 
6.244. 0.45 c, where c is the velocity of light. 
6.245. A8/8 = E/2mc2  = 3.6-10-7, where m is the mass of the 

nucleus. 
6.246. v z 8/mc = 0.22 km/s, where m is the mass of the nuc-

leus. 
6.247. v = ghlc = 65 Innis. 
6.248. hymn  = hc2I get = 4.6 m. 
6.249. 7' = Ta/[1 (M - m)2/4mM cost 0] = 6.0 MeV, where 

m and M are the masses of an alpha particle and a lithium nucleus. 
6.250. (a) ri = 4mM/(m M)2  = 0.89; (b) 11 = 2m/(m M) = 
2/3. Here m and M are the masses of a neutron and a deuteron. 
6.251. °max  = arcsin (m1/m2) = 30°, where m1  and m2  are the 

masses of a proton and a deuteron. 
6.252. 2.1011  kg/cm3, 1.1038  nucl./cm3. 
6.253. (a) d; (b) F"; (c) a; (d) C137. 
6.255. Be, Eb = 56.5 MeV. 
6.256. (a) 8.0 MeV; (b) 11.5 and 8.7 MeV; (c) 14.5 MeV. 
6.257. En  - Ep  = 0.22 MeV. 
6.258. E = 20eNe  - 2.48„ - 128G  = 11.9 MeV, where 8 is 

the binding energy per nucleon in the corresponding nucleus. 
6.259. (a) 8.0225 a.m.u.; (b) 10.0135 a.m.u. 
6.260. Q = (E 3  E 4) - (E1 E 
6.261. (a) 8.2.1010  kJ, 2.7.106  kg; (b) 1.5 kg. 
6.262. 5.74.107  kJ, 2.104  kg. 
6.263. 2.79 MeV; 0.85 MeV. 
6.264. Q = 88a  - 7CLI = 17.3 MeV. 
6.265. Q = (1 + 	T p - (1- Ti c,) T a - 2 Vilpric, T p  Ta  X 

X cos 0 = -1.2 MeV, where rip  = m/mo, 11« = ma/mo. 
6.266. (a) -1.65 MeV; 	(b) 6.82 MeV; 	(c) -2.79 MeV; 

(d) 3.11 MeV. 
6.267. vc, = 0.92.107  m/s, vu = 0.53.107  m/s. 
6.268. 1.9 MeV. 

Q±(1-MaIntc)T 
6.269. T = 	

i +mnimc 	
=8.5 MeV. 

6.270. 9.1 MeV, 170.5°. 



6.272. T > Eb (MP nic1)1Md = 3.3 MeV. 
6.273. Between 1.89 and 2.06 MeV. 
6.274. Q = — 1142  Tot  = —3.7 MeV. 
6.275. 1.88 and 5.75 MeV respectively. 
6.276. 4.4 MeV; 5.3 . 106  m/s. 

6.277. T.= ..±4 [(m4 — mt)T mmi+2m7n4 	a T,h ]=2.2 
mi, m2, m3, my are the masses of neutron, a Ciz 
alpha particle, and a Be nucleus. 

6.278. By Eb/2mc2  = 0.06%, where in is the mass of 
6.279. E = Q 2/3T = 6.5 MeV. 

6.280. E1 = Eb+ md7mc  T, 16.7, 16.9, 17.5 and 

where Eb is the binding energy of a deuteron in the 
nucleus. 

6.281. a = (M/Np d) in 1 = 2.5 kb, where M is the molar mass 
of cadmium, N is the Avogadro number, p is the density of cadmium. 

6.282. T oll.  = exp [(2a1  ± a2) nd] = 20, where n is the concen- 
tration of heavy water molecules. 

6.283. w = (1 — exp [ — (as  + aa) nd]) asl(as-F-cra)=  0.35, 
where n is the concentration of Fe nuclei. 

6.284. (a) T = (w1k) In 2; (b) w = ATe/It In 2 = 
6.285. (a) t = 	= 3.106  years; (b) Nmax  = JalloT/ln 2 = 

= 1.0.1013, where No  is the number of Atli" nuclei in the foil. 
6.286. N = (1 — e-lt) Jna/X. 
6.287. J = AemIaN 0  (1 — e-lt) = 6.106  part./(cm2 .$), where X 

is the decay constant, No  is the number of Au nuclei in the foil. 
6.288. N = Noki-1  = 1.3.106, where i is the number of genera- 

tions. 
6.289. N = vP/E = 0.8.1016  s-1. 
6.290. (a) N/No  = 4.102; (b) T = ti/(k — 1) = 10 s. 
6.291. 0.05, 0.4, and 9 GeV respectively. 

6.292. (/)=c-ro 	(II+ 2)=15 m. 

6.293. To  = lmcIV T (T 	2mc2) = 26 ns, where in is the rest 
mass of a pion. 

6.294. J/J0 =exp — /mc/To  V T (T -1-2mc2)1= 0.22, where m is 
the rest mass of a negative pion. 

6.295*. Tp. = (ma — mµ)2/2m. = 4.1 MeV, Ev  = 29.8 MeV. 
6.296*. T = [(mZ — m„)2  — mMI2mE= 19.5 MeV. 
6.297*. Tmax = (Mu me)2/2mi, = 52.5 MeV. 

6.298*. m= mp+ T 	T (T 2mp)=1115 MeV, a A 
particle. 

6.299*. 	= 112  (ml — 714)1(mn T) = 22 MeV. 

MeV, where 

nucleus, an 

a deuteron. 

17.7 MeV, 

transitional 

* In the answers to Problems 6.295- 6.299 marked ',by an asterisk the 
quantity mc2  is abbreviated as m. 



6.300*. m 	4 m;„ -- 2 (mx  Tz)(m„+ T,t)-= 0.94 GeV, 
neutron. 

6.301*. Tn = my, [cosec (0/2) — 1], E., = m,,/2 sin (0/2). For 
0 = 60° the energy T„ = Ev  = m,t. 

6.303*. cos (0/2) = 1/1/1 + 2m/T, whence 0 = 99°. 
6.304*. (a) eth  = 4m, = 2.04 MeV; (b) cth = 2/71n (1+mg/mp) = 
320 MeV. 
6.305*. (a) T t h = 6mp  = 5.6 GeV; (b) Tth=m,, (4mp +m,,)/2mp= 

= 0.28 GeV. 
6.306. (a) 0.90 GeV; (b) 0.77 GeV. 
6.307. S = —2, Y = —1, 4-7° particle. 
6.308. Processes 1, 2, and 3 are forbidden. 
6.309. Processes 2, 4, and 5 are forbidden. 
6.310. Process 1 is forbidden in terms of energy; in other pro-

cesses the following laws of conservation are broken: of baryon 
charge (2), of electric charge (3), of strangeness (4), of lepton charge 
(5), and of electron and muon charge (6). 

* In the answers to Problems 6.300-6.305 marked by an asterisk the quan-
tity mc2  is abbreviated as m. 



APPENDICES 

1. Basic Trigonometrical formulas 

sine a + cosa a =1 
sect a— tans a =1 

cosecs a— cots a =1 
sin a •cosec a =1 

cos a •sec a= 1 
tan a • cot a =1 

sin (a ± 13) = sin a cos p ± cos a sin p 
cos (a ± fl)---- cos a cos 13 	sin a sin 13 

tan a ± tan 13 
tan (a ± ) = 13 	1 	tan a• tan 0 

— 	
cot a cot 13 	1 cot (c, ± 13) 	cot 13 ± cot a 

1 sin a—  at R 	a— p 
sin a+ sin 13=2 sin 	cos 

y l+cota a 

cos a— 	1 , 

2 	2 

sin a 	sin 13=2 cos a  + 13  sin a  + 13  
Y 1+tan2 a 

sin 2 a= 2 sin a cos a 

cos. 2a= cos2  a— sin2  a 

2 tan a 
tan 2a— 

2 	2  
a 	a  

	

2 	+13 	 —  p 

	

cos a + cos 13 = 	cos 	cos 2 	2 
— 13  [3= 	2 sin a+P  sin 

a 2 cos a—cos 	— 
2 

sin (a ± 13) 
tan p tan a ± 	= 1— tang a 

cote a-1 cot 2a— 

cos a cos p 
sin (a ± p) 

2 cot a cot a ± cot 13= ± sin a sin 13 

2 sin a sin p= cos (a— 0) — cos (a + 13) 
2 cos a cos 13= cos (a— p)H- cos (cc+ p) 
2 sin a cos 13= sin (a— p)+ sin (a +13) 

,_ cc 	V  1—cos a sin — = 
2 	 2 
a = V 1+cos a cos 
2 	 2 

 -a ea—  0 sinh a= 
a 	-a 

0 — e 
tanh a = 

2 

ec̀ ±e—a  

ex+ 0' 
ea  +13' 

cosh a= cosh a-
2 
 

CO 	— CL e —e 



2. Sine Function Values 

(1). 0' 20' 40' w° 0' 20' 40' 

0 0.0000 0.0058 0.0116 45 0.7071 0.7112 0.7153 
1 0.0175 0.0233 0.0291 46 0.7193 0.7234 0.7274 
2 0.0349 0.0407 0.0465 47 0.7314 0.7353 0.7393 
3 0.0523 0.0581 0.0640 48 0.7431 0.7470 0.7504 
4 0.0698 0.0756 0.0814 49 0.7547 0.7585 0.7622 

5 0.0872 0.0929 0.0987 50 0.7660 0.7698 0.7735 
6 0.1045 0.1103 0.1161 51 0.7771 0.7808 0.7844 
7 0.1219 0.1276 0.1334 52 0.7880 0.7916 0.7951 
8 0.1392 0.1449 0.1507 53 0.7986 0.8021 0.8056 
9 0.1564 0.1622 0.1679 54 0.8090 0.8124 0.8158 

10 0.1736 0.1794 0.1851 55 0.8192 0.8225 0.8258 
11 0.1908 0.1965 0.2022 56 0.8290 0.8323 0.8355 
12 0.2079 0.2136 0.2196 57 0.8387 0.8418 0.8450 
13 0.2250 0.2306 0.2363 58 0.8480 0.8511 0.8542 
14 0.2419 0.2476 0.2532 59 0.8572 0.8601 0.8631 

15 0.2588 0.2644 0.2700 60 0.8660 0.8689 0.8718 
16 0.2756 0.2812 0.2868 61 0.8746 0.8774 0.8802 
17 0.2924 0.2979 0.3035 62 0.8829 0.8857 0.8884 
18 0.3090 0.3145 0.3201 63 0.8910 0.8936 0.8962 
19 0.3256 0.3311 0.3365 64 0.8988 0.9013 0.9038 

20 0.3420 0.3475 0.3529 65 0.9063 0.9088 0.9112 
21 0.3584 0.3638 0.3692 66 0.9135 0.9159 0.9182 
22 0.3746 0.3800 0.3854 67 0.9205 0.9228 0.9250 
23 0.3907 0.3961 0.4014 68 0.9272 0.9293 0.9315 
24 0.4067 0.4120 0.4173 69 0.9336 0.9356 0.9377 

25 0.4226 0.4279 0.4331 70 0.9397 0.9417 0.9436 
26 0.4384 0.4436 0.4488 71 0.9455 0.9474 0.9492 
27 0.4540 0.4592 0.4643 72 0.9511 0.9528 0.9546 
28 0.4695 0.4746 0.4797 73 0.9563 0.9580 0.9596 
29 0.4848 0.4899 0.4950 74 0.9613 0.9628 0.9644 

30 0.5000 0.5050 0.5100 75 0.9659 0.9674 0.9689 
31 0.5150 0.5200 0.5250 76 0.9703 0.9717 0.9730 
32 0.5299 0.5348 0.5398 77 0.9744 0.9757 0.9769 
33 0.5446 0.5495 0.5544 78 0.9781 0.9793 0.9805 
34 0.5592 0.5640 0.5688 79 0.9816 0.9827 0.9838 

35 0.5736 0.5783 0.5831 80 0.9848 0.9858 0.9868 
36 0.5878 0.5925 0.5972 81 0.9877 0.9886 0.9894 
37 0.6018 0.6065 0.6111 82 0.9903 0.9911 0.9918 
38 0.6157 0.6202 0.6248 83 0.9925 0.9932 0.9939 
39 0.6293 0.6338 0.6383 84 0.9945 0.9951 0.9957 

40 0.6428 0.6472 0.6517 85 0.9962 0.9967 0.9971 
41 0.6561 0.6604 0.6648 86 0.9976 0.9980 0.9983 
42 0.6691 0.6734 0.6777 87 0.9986 0.9989 0.9992 
43 0.6820 0.6862 0.6905 88 0.9994 0.9996 0.9997 
44 0.6947 0.6988 0.7030 89 0.9998 0.9999 1.0000 
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3. Tangent Function Values 

T° 0' 20' 40' T° 0' 20' 40' 

0 0.0000 0.0058 0.0116 45 1.0000 • 1.012 1.024 
1 0.0175 0.0233 0.0291 46 1.036 1.048 1.060 
2 0.0349 0.0407 0.0466 47 1.072 1.085 1.098 
3 0.0524 0.0582 0.0641 48 1.111 1.124 1.137 
4 0.0699 0.0758 0.0816 49 1.150 1.164 1.178 

5 0.0875 0.0934 0.0992 50 1.192 1.206 1.220 
6 0.1051 0.1110 0.1169 51 1.235 1.250 1.265 
7 0.1228 0.1287 0.1346 52 1.280 1.295 1.311 
8 0.1405 0.1465 0.1524 53 1.327 1.343 1.360 
9 0.1584 0.1644 0.1703 54 1.376 1.393 1.411 

10 0.1763 0.1823 0.1883 55 1.428 1.446 1.464 
11 0.1944 0.2004 0.2065 56 1.483 1.501 1.520 
12 0.2126 0.2186 0.2247 57 1.540 1.560 1.580 
13 0.2309 0.2370 0.2432 58 1.600 1.621 1.643 
14 0.2493 0.2555 0.2617 59 1.664 1.686 1.709 

15 0.2679 0.2742 0.2805 60 1.732 1.756 1.780 
16 0.2867 0.2931 0.2994 61 1.804 1.829 1.855 
17 0.3057 0.3121 0.3185 62 1.881 1.907 1.935 
18 0.3249 0.3314 0.3378 63 1.963 1.991 2.020 
19 0.3443 0.3508 0.3574 64 2.050 2.081 2.112 

20 0.3640 0.3706 0.3772 65 2.145 2.177 2.211 
21 0.3839 0.3906 0.3973 66 2.246 2.282 2.318 
22 0.4040 0.4108 0.4176 67 2.356 2.394 2.434 
23 0.4245 0.4314 0.4383 68 2.475 2.517 2.560 
24 0.4452 0.4522 0.4592 69 2.605 2.651 2.699 

25 0.4663 0.4734 0.4806 70 2.747 2.798 2.850 
26 0.4877 0.4950 0.5022 71 2.904 2.960 3.018 
27 0.5095 0.5169 0.5243 72 3.078 3.140 3.204 
28 0.5317 0.5392 0.5467 73 3.271 3.340 3.412 
29 0.5543 0.5619 0.5696 74 3.487 3.566 3.647 

30 0.5774 0.5851 0.5930 75 3.732 3.821 3.914 
31 0.6009 0.6088 0.6168 76 4.011 4.113 4.219 
32 0.6249 0.6330 0.6412 77 4.331 4.449 4.574 
33 0.6494 0.6577 0.6661 78 4.705 4.843 4.989 
34 0.6745 0.6830 0.6916 79 5.145 5.309 5.485 

35 0.7002 0.7089 0.7177 80 5.671 5.871 6.084 
36 0.7265 0.7355 0.7445 81 6.314 6.561 6.827 
37 0.7536 0.7627 0.7720 82 7.115 7.429 7.770 
38 0.7813 0.7907 0.8002 83 8.144 8.556 9.010 
39 0.8098 0.8195 0.8292 84 9.514 10.08 10.71 

40 0.8391 0.8491 0.8591 85 11.43 12.25 13.20 
41 0.8693 0.8796 0.8899 86 14.30 15.60 17.17 
42 0.9004 0.9110 0.9217 87 19.08 21.47 24.54 
43 0.9325 0.9435 0.9545 88 28.64 34.37 42.96 
44 0.9657 0.9770 0.9884 89 57.29 85.94 171.9 



4. Common Logarithms 

N 0 1 2 3 4 5 6 7 8 9 

10 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374 
11 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755 
12 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106 
13 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430 
14 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732 

15 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014 
16 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279 
17 2304 2330 2355 2380 2405 2430 2455 2488 2504 2529 
18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765 
19 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989 

20 3010 3032 3054 3075 3096 3118 3139 3160 3181 3201 
21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404 
22 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598 
23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784 
24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962 

25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133 
26 4150 4166 4183 4200 4216 4232 4249 4265 4381 4298 
27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456 
28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609 
29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757 

30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900 
31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038 
32 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172 
33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302 
34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428 

35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 
36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670 
37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 
38 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899 
39 5911 5922 5933 5944 5953 5966 5977 5988 5999 6010 

40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 
41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 
42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 
43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 
44 6435 6144  	6454 6464 6474 6484 6493 6503 6513 6522 

45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618 
46 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712 
47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 
48 6812 6821 6830 6839 6848 6857 6866 6875 6885 6893 
49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981 

50 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067 
51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152 
52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235 
53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316 
54 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396 



(Continued) 

N 0 1 2 	I 3 4 5 6 7 8 9 

55 7404 7412 7419 7427 7435 7443 7451 7449 7466 7475 
56 7482 7490 7497 7505 7513 7520 7528 7536 7543 7551 
57 7559 7566 7574 7582 7589 7597 7604 7612 7619 7627 
58 7634 7642 7649 7657 7664 7672 7679 7686 7694 7701 
59 7709 7716 7723 7731 7738 7745 7752 7760 7767 7774 

60 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846 
61 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917 
62 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987 
63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055 
64 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122 

65 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189 
66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254 
67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319 
68 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382 
69 8388 8395 8401 8407 8414 ' 8420 8426 8432 8439 8445 

70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506 
71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567 
72 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627 
73 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686 
74 8692 8698 8704 8710 8716 8722 8727 8733 8739 8745 

75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802 
76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859 
77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915 
78 8921 8927 8632 8938 8943 8949 8954 8960 8965 8971 
79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025 

80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079 
81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133 
82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186 
83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238 
84 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289 

85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340 
86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 
87 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 
88 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489 
89 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538 

90 9542 9547 9552 9557 9562 9566 9571 95i6 9581 9586 
91 9590 9595 9600 9605 9609 9614 9619 9624 9628 9633 
92 9638 9643 9647 9652 9657 9661 9666 9671 9675 9680 
93 9685 9689 9694 9699 9703 9708 9713 9717 8722 9727 
94 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773 

95 9777 9782 9786 9791 9795 9800 9805 9809 9814 9818 
96 9823 9827 9832 9836 9841 9845 9850 9854 9859 9863 
97 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908 
98 9912 9917 9921 9926 9930 9934 9939 9943 9948 9952 
99 9956 9961 9965 9969 9974 9978 9983 9987 9991 9996 
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5. Exponential Functions 

x ex e-x x ex e-x 

0.00 1.0000 1.0000 2.00 7.3891 0.1353 
0.05 1.0513 0.9512 2.05 7.7679 0.1287 
0.10 1.1052 0.9048 2.10 8.1662 0.1225 
0.15 1.1618 0.8607 2.15 8.5849 0.1165 
0.20 1.2214 0.8187 2.20 9.0250 0.1108 
0.25 1.2840 0.7788 2.25 9.4877 0.1054 
0.30 1.3499 0.7408 2.30 9.9742 0.1003 
0.35 1.4191 0.7047 2.35 10.486 0.09537 
0.40 1.4918 0.6703 2.40 11.023 0.09072 
0.45 1.5683 0.6376 2.45 11.588 0.08629 
0.50 1.6487 0.6065 2.50 12.182 0.08208 
0.55 1.7333 0.5770 2.55 12.807 0.07808 
0.60 1.8221 0.5488 2.60 13.464 0.07427 
0.65 1.9155 0.5221 2.65 14.154 0.07065 
0.70 2.0138 0.4966 2.70 14.880 0.06721 
0.75 2.1170 0.4724 2.75 15.643 0.06393 
0.80 2.2255 0.4493 2.80 16.445 0.06081 
0.85 2.3396 0.4274 2.85 17.288 0.05784 
0.90 2.4596 0.4066 2.90 18.174 0.05502 
0.95 2.5857 0.3867 2.95 19.106 0.05234 
1.00 2.7183 0.3679 3.00 20.086 0.04979 
1.05 2.8577 0.3499 3.05 21.115 0.04736 
1.10 3.0042 0.3329 3.10 22.198 0.04505 
1.15 3.1582 0.3166 3.15 23.336 0.04285 
1.20 3.3201 0.3012 3.20 24.533 0.04076 
1.25 3.4903 0.2865 3.25 25.790 0.03877 
1.30 3.6693 0.2725 3.30 27.113 0.03688 
1.35 3.8574 0.2592 3.35 28.503 0.03508 
1.40 4.0552 0.2466 3.40 29.964 0.03337 
1.45 4.2631 0.2346 3.45 31.500 0.03175 
1.50 4.4817 0.2231 3.50 33.115 0.03020 
1.55 4.7115 0.2123 3.55 34.813 0.02872 
1.60 4.9530 0.2019 3.60 36.598 0.02732 
1.65 5.2070 0.1921 3.65 38.475 0.02599 
1.70 5.4739 0.1827 3.70 40.447 0.02472 
1.75 5.7546 0.1738 3.75 42.521 0.02352 
1.80 6.0496 0.1653 3.80 44.701 0.02237 
1.85 6.3598 0.1572 3.85 46.993 0.02128 
1.90 6.6859 0.1496 3.90 49.402 0.02024 
1.95 7.0287 0.1423 3.95 51.935 0.01925 



(Continued) 

x ex e-x x ex ex 

4.00 54.598 0.01832 6.0 403.43 0.00248 
4.05 57.397 0.01742 6.1 445.86 0.00224 
4.10 60.340 0.01657 6.2 492.75 0.00203 
4.15 63.434 0.01576 6.3 544.57 0.00184 
4.20 66.686 0.01500 6.4 601.85 0.00166 
4.25 70.105 0.01426 6.5 665.14 0.001503 
4.30 73.700 0.01357 6.6 735.10 0.001360 
4.35 77.478 0.01991 6.7 812.41 0.001231 
4.40 81.451 0.01228 6.8 897.85 0.001114 
4.45 85.627 0.01168 6.9 992.27 0.001008 
4.50 90.017 0.01111 7.0 1096.6 0.000912 
4.55 94.632 0.01057 7.1 1212.2 0.000825 
4.60 99.484 0.01005 7.2 1339.4 0.000747 
4.65 104.58 0.00956 7.3 1480.5 0.000676 
4.70 109.95 0.00910 7.4 1636.0 0.000611 
4.75 115.58 0.00865 7.5 1808.0 0.000553 
4.80 121.51 0.00823 7.6 1998.2 0.000500 
4.85 127.74 0.00783 7.7 2208.3 0.000453 
4.90 134.29 0.00745 7.8 2440.6 0.000410 
4.95 141.17 0.00708 7.9 2697.3 0.000371 
5.00 148.41 0.00674 8.0 2981.0 0.000335 
5.05 156.02 0.00641 8.1 3294.5 0.000304 
5.10 164.02 0.00610 8.2 3641.0 0.000275 
5.15 172.43 0.00580 8.3 4023.9 0.000249 
5.20 181.27 0.00552 8.4 4447.1 0.000225 
5.25 190.57 0.00525 8.5 4914.8 0.000203 
5.30 200.34 0.00499 8.6 5431.7 0.000184 
5.35 210.61 0.00475 8.7 6002.9 0.000167 
5.40 221.41 0.00452 8.8 6634.2 0.000151 
5.45 232.76 0.00430 8.9 7332.0 0.000136 
5.50 244.69 0.00409 9.0 8103.1 0.000123 
5.55 257.24 0.00389 9.1 8955.3 0.000112 
5.60 270.43 0.00370 9.2 9897.1 0.000101 
5.65 284.29 0.00352 9.3 10938 0.000091 
5.70 298.87 0.00335 9.4 12088 0.000083 
5.75 314.19 0.00318 9.5 13360 0.000075 
5.80 330.30 0.00303 9.6 14765 0.000068 
5.85 347.23 0.00288 9.7 16318 0.000061 
5.90 365.04 0.00274 9.8 18034 0.000055 
5.95 383.75 0.00261 9.9 19930 0.000050 

10.0 22026 0.000045 
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6. Greek Alphabet 

A, a—alpha I, 	t—iota P, p—rho 
B, n—beta K, x—kappa I, a—sigma 
I', y—gamma A, 2,.—lambda T, r—tau 

A, 6—delta M, p,—mu 1", v—upsilon 
E, e—epsilon N, v—nu al, 11)— phi 
Z, 	c— zeta E, 	—xi X, x—chi 
H, s—eta 0, o—omicron IV, 1p — psi 
0, 0— theta H, it—pi 52, co—omega 

7. Numerical Constants and Approximations 

Numerical constants Approximate formulas (for cc << 1) 

21=3.1416 (1 ± cOn .,-.-. 1 ± n a 

n2 =9.8696 er-:-...,1-1-a 

lin=1.7725 In (1+a) 7:-.-.. a 
e= 2.7183 sin a --:.-... a 

log e = 0.4343 cos a ...-. 1— a2/2 
In 10=2.3026 tan a ,-----, a 

8. Some Data on Vectors 

a(b+e)=ab-l-ac 	 [a, b±c]--=[abl+[ac] 
ab=aibx-Fayby +azbz 	[a [bell =b (ac)— c (ab) 

i j k 
ax  ay  at  =(aybz —azby)i+(azbx —a xbz)i+ (axby — aybx) k 
b x  by  bz  

dt (a+b) 
da db

=  
d 	d a 	da 

a)= -it-a±ce  dt 

d 	is‘ 	da 	db 
dt 	dt "ma  dt 

d r r da  i, 
1- 

1 r db 

La"1=  L dt 1 L a  dt j 

  

[ab] = 



xn+1 
xn dx= — n+1  (n —1) 

dx = x  
x 

S sin x dx= — cos x 

cos x dx= sin x 

tan x dx= — in cos x 

S cot x dx = In sin x 

.c  dx  — tan x cos x 
C dx 

— cot x 
j sin' x 

ex dx= ex 

dx  
J 1+0  =arctanx 

arcsin x 

In (x+ 17  Z2  - 
V x2-1 

Integration by parts: 	u du = uv— v du 

9. Derivatives and Integrals 

Function Derivative Function Derivative Function Derivative 

xn 
1 
x 
1 
xn 

1 7x 

ex 
enx 
ax 

In x 

nxn-1  
1 

--T x  
n _ 

sin x 
cos x 

tan x 

cot x 

cos x 
—sin x 

arcsin x

arccos x 

aretan x 

1 
 

V 1— x2  
1 

cos
1 
 2  x 

1 
1 / 1— x2  

1 xn+i 

1 sing x 1-{-x' 

- . f 2 v x 
ex 

nenx 
ax Ina 

1 — 
x 

Vu 

In u 

u _ 
v 

u' arccot x 

sinh x 
cosh x 

tank x 

cosh x 

2 Va + 

u' 
—  a 

vu'v'u 

1 	x2 
cosh x 
sinh x 

1 
cosha x 

1 
v2  

sinh2  x 

Some Definite Integrals 

1 
	1, 	n=0 

et e-x dx= tili ll ii-, n=1/2 
1, n=1 

o 
2, n=2 

00 	 I 	1/2.1iTT,  u= 0 

5 x n tr* xa dx = i 	"2' -: 	n  = 1  
 1/417 a., n=2 o 

1/2, 	n=3 

0° c zn dx 
— 

2.31, 	n=1/2 
n2/6, 	n=1 
2.405, n-= 2 
n4/15, n= 3 
24.9, 	n=4 

c& r 	x3dx 

0.225, a= 1 

	

1.18, 	a= 2 

	

2.56, 	cc= 3 

	

4.91, 	a= 5 

	

6.43, 	cc= 10 

j ex— 1 
o 

 ex 	1  
o 



10. Astronomical Data 

Body 
Mean radius, 

m Mass, kg 
Mean density, 

103  kg/m3  
Period of rotation 
about axis, days 

Sun 6.95.102  1.97.1020  1.41 25.4 
Earth 6.37.106  5.96.1024  5.52 1.00 
Moon 1.74.106  7.30.1022  3.30 27.3 

Planets of solar system 
die Mean Sunstanc

, 106  km 
from the Siderial period, years 

Mercury 57.87 0.241 
Venus 108.14 0.615 
Earth 149.50 1.000 
Mars 227.79 1.881 
Jupiter 777.8 11.862 
Saturn 1426.1 29.458 
Uranus 2867.7 84.013 
Neptune 4494 164.79 

11. Density of Substances 

Solids p, g/cm2  Liquids 	 I P. g/cm3  

Diamond 3.5 Benzene 0.88 
Aluminium 2.7 Water 1.00 
Tungsten 19.1 Glycerin 1.26 
Graphite 1.6 Castor oil 0.90 
Iron (steel) 7.8 Kerosene 0.80 
Gold 19.3 Mercury 13.6 
Cadmium 8.65 Alcohol 0.79 
Cobalt 8.9 Heavy water 1.1 
Ice 0.916 Ether 0.72 
Copper 8.9 Gases (under standard condi- p, kg/ra3  
Molibdenum 10.2 tions) 
Sodium 0.97 Nitrogen 1.25 
Nickel 8.9 Ammonia 0.77 
Tin 7.4 Hydrogen 0.09 
Platinum 21.5 Air 1.293 
Cork 0.20 Oxygen 1.43 
Lead 11.3 Methane 0.72 
Silver 10.5 Carbon dioxide 1.98 
Titanium 4.5 Chlorine 3.21 
Uranium 19.0 
Porcelain 2.3 
Zinc 7.0 
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12. Thermal Expansion Coefficients 
(at room temperatures) 

Solids 
Linear expansion 

coefficient; a, 
10-6  K-1  

Liquids 
Bulk expansion 
coefficient; 13, 

10-4 

Aluminium 22.9 Water 2.1 

Brass 18.9 Glycerin 5.0 
Copper 16.7 Kerosene 10.0 
Steel (iron) 11 Mercury 1.8 

Common glass 8.5 Ethyl alcohol 11.0 

- 	=- 81'a 
Note. a= 

at 
OT ' 	V OT 

13. Elastic Constants. Tensile Strength 

Material 
Young's 

modulus E. 
GPa 

Shear 
modulus 
G, GPa 

Poisson's 
ratio (I 

Tensile 
strength um, 

&Pa 
ity 
omprssibil-

13, 
e 
 GPa-1 

Aluminium 70 26 0.34 0.10 0.014 
Copper 130 40 0.34 0.30 0.007 

Lead 16 5.6 0.44 0.015 0.022 

Steel (iron) 200 81 0.29 0.60 0.006 

Glass 60 30 0.25 0.05 0.025 

Water 0.49 

av 
Note. Compressibility 13=-7- op  

14. Saturated Vapour Pressure 

°C 
Pressure, 

kPa °C 
Pressure, 

kPa °C 
Pressure, 

kPa 

0 0.61 25 3.15 60 19.9 

5 0.87 30 4.23 70 31.0 

10 1.22 35 5.60 80 47.3 
15 1.70 40 7.35 90 70.0 

20 2.33 50 12.3 100 101.3 



15. Gas Constants 
(under standard conditions) 

Gas 
Relative 

molecular 
mass 

Cp  

V 

Heat con-
ductivity 

mW 
Viscosity 
11, ftPa•8 

Molecular 
dia-

meter 
d, nm 

Van der Weals 
constants 

atm• 12  a, b, 
mol 

m•K 
molt 

He 4 1.67 141.5 18.9 0.20 -- -- 
Ar 40 1.67 16.2 22.1 0.35 1.30 0.032 
H2 2 1.41 188.4 8.4 0.27 0.24 0.027 
Na  28 1.40 24.3 16.7 0.37 1.35 0.039 
02  32 1.40 24.4 19.2 0.35 1.35 0.032 
CO2  44 1.30 23.2 14.0 0.40 3.62 0.043 
H2O 18 1.32 15.8 9.0 0.30 5.47 0.030 
Air 29 1.40 24.1 17.2 0.35 -- -- 

No e. This table quotes the mean values of molecular diameters. 
When performing more accurate calculations, it should be remembered 
that the values of d obtained from the coefficients of viscos ty, heat 
conductivity, and diffusion, as well as the Van der Waals constant b, 
differ perceptibly from one another. 

16. Some Parameters of Liquids and Solids 

Substance 

Specific heat 
capacity * 
c, 

Specific heat of 
vaporization ** 

q, J/g 

Specific heat of 
melting 
q, J/g 

Surface 
tension * 

mN/m 
g•K 

Water 4.18 2250 73 

Glycerin 2.42 66 

Mercury 0.14 284 490 

Alcohol 2.42 853 22 

Aluminum 0.90 321 
Iron 0.46 270 
Ice 2.09 333 
Copper 0.39 175 
Silver 0.23 88 
Lead 0.13 25 

* Under standard conditions. 
** Under standard atmospheric pressure. 

■. ■ 



17. Permittivities 
(relative values) 

Dielectric a Dielectric a 

Water 81 Mica 7.5 
Air 1.00058 Alcohol 26 
Kerosene 2.0 Glass 6.0 
Paraffin 2.0 Porcelain 6.0 
Plexiglas 3.5 Ebonite 2.7 
Polyethylene 2.3 

18. Resistivities of Conductors 

Conductor 
Resistivity (at 20 °C) 

p, nid•m 
Temperature coefficient 

a, kK-1  

Aluminium 25 4.5 
Tungsten 50 4.8 
Iron 90 6.5 
Gold 20 4.0 
Copper 16 4.3 
Lead 190 4.2 
Silver 15 4.1 

19. Magnetic Susceptibilities of Para- and Diamagnetics 

Paramagnetic sub- 
stance u.-1, 	10-6  

Diamagnetic sub- 
stance p.-1, 	10-6  

Nitrogen 0.013 Hydrogen —0.063 
Air 0.38 Benzene —7.5 
Oxygen 1.9 Water —9.0 
Ebonite 14 Copper —10.3 
Aluminium 23 Glass —12.6 
Tungsten 176 Rock-salt —12.6 
Platinum 360 Quartz —15.1 
Liquid oxygen 3400 Bismuth —176 
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Substance n Substance n 

Air 
Water 

1.00029 
1.33 

Glass 
Diamond 

1.50 
2.42 

Note. Since the refractive indices are known to depend on the nature 
of the substance and the wavelength of light, the values of n listed here 
should be regarded as conditional. 

20. Refractive Indices 

Wavelength X, nm Colour 

Iceland spar Quartz 

ne  no  ne 	no  

687 red 1.484 1.653 1.550 1.541 
656 orange 1.485 1.655 1.551 1.542 
589 yellow 1.486 1.658 1.553 1.544 
527 green 1.489 1.664 1.556 1.547 
486 blue 1.491 1.668 1.559 1.550 
431 indigo 1.495 1.676 1.564 1.554 
400 violet 1.498 1.683 1.568 1.558 

21. Rotation of the Plane of Polarization 
Natural rotation in quartz (the thickness of the plate is 1 mm) 

X, nm 4), deg X, nm (P. deg X, nm q, deg 

199.0 295.65 344.1 70.59 589.5 21.72 
217.4 226.91 372.6 58.89 656.3 17.32 
219.4 220.7 404.7 48.93 670.8 16.54 
257.1 143.3 435.9 41.54 1040 6.69 
274.7 121.1 491.6 31.98 1450 3.41 
328.6 78.58 508.6 29.72 1770 2.28 

Magnetic Rotation (X=589 nm). The Verdet Constant V: 

Liquid V, ang. uanA Liquid V, ang. inin/A 

Benzene 
Water 

2.59 
0.016 

Carbon disulphide 
Ethyl alcohol 

0.053 
1.072 
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22. Work Function of Various Metals 

Metal A, eV Metal A, eV Metal A, eV 

Aluminium 3.74 Gold 4.58 Potassium 2.15 

Barium 2.29 Iron 4.36 Silver 4.28 

Bismuth 4.62 Lithium 2.39 Sodium 2.27 
Cesium 1.89 Molybdenum 4.27 Titanium 3.92 

Cobalt 4.25 Nickel 4.84 Tungsten 4.50 

Copper 4.47 Platinum 5.29 Zinc 3.74 

23. H Band Absorption Edge 

Z Element %IC' pm Z Element %K,  pm 

23 V 226.8 47 Ag 48.60 

26 Fe 174.1 50 Sn 42.39 

27 Co 160.4 74 W 17.85 

28 Ni 148.6 78 Pt 15.85 
29 Cu 138.0 79 Au 15.35 
30 Zn 128.4 82 Pb 14.05 

42 Mo 61.9 92 U 10.75 

24. Mass Absorption Coefficients 
(X-ray radiation, narrow beam) 

X, Pm 

Mass absorption coefficient g/p, cm2/g 

Air Water Aluminium Copper Lead 

10 0.16 0.16 0.36 3.8 
20 0.18 0.28 1.5 4.9 

30 0.29 0.47 4.3 14 
40 0.44 1.1 9.8 31 

50 0.48 0.66 2.0 19 54 

60 0.75 1.0 3.4 32 90 
70 1.3 1.5 5.1 48 139 
80 1.6 2.1 7.4 70 
90 2.1 2.8 11 98 

100 2.6 3.8 15 131 
150 8.7 12 46 49 
200 21 28 102 108 
250 39 51 194 198 
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Isotope 
Excess of mass 

of atom 
Ar  - A, a.m.u. 

Isotope 
Excess of mass 

of atom 
Ar  - A, a.m.u. 

0 n 0.00867 6 0.01143 
1 HI 0.00783 C12  0 

H2  0.01410 C12  0.00335 
H3  0.01605 7 N[13 0.00574 

2 He3  0.01603 INP4  0.00307 
He' 0.00260 1\115  0.00011 

3 Lie 0.01513 8 015 0.00307 
Liz 0.01601 012  -0.00509 

4 Bel 0.01693 017  -0.00087 
Be' 0.00531 9 FI9  -0.00160 
Beg 0.01219 10 Ne20  -0.00756 
Be" 0.01354 11 Na23  -0.01023 

5 Blo 0.01294 Na24  -0.00903 
0.00930 12 Mg24 -0.01496 

Note. Here Ar  is the relative atomic mass (in a.m.u.), A is the 
mass number. 

25. Ionization Potentials of Atoms 

Z Atom Ionization potential 
cp, V Z Atom Ionization potential 

cp, V 

1 H 13.59 7 N 14.54 
2 He 24.58 8 0 13.62 
3 Li 5.39 9 F 17.42 
4 Be 9.32 10 Ne 21.56 
5 B 8.30 11 Na 5.14 
6 C 11.27 80 Hg 10.44 

26. Mass of Light Atoms 

27. Half-Life Values of Radionuclides 

Z Isotope Kind of decay Half - life 

27 Cobalt Con 13 5.2 years 
38 Strontium Sr20  13  28 years 
84 Polonium Po210  a 138 days 
86 Radon Rn222  a 3.8 days 
88 Radium lia226  a 1620 years 
92 Uranium U238  a 4.5.109  years 



28. Units of Physical Quantities 
Names and symbols of certain quantities 

A, ampere H, henry Oe, oersted 
a.m.u., atomic h, hour Q, ohm 

mass unit Hz, hertz P, poise 
B, bel 7, joule Pa. pascal 
b, barn K, kelvin rad, radian 
C, coulomb 1, 	litre S, siemens 
cd, candela lm, lumen s, second 
D, diopter lx, lux sr, steradian 
dyn, dyne m, metre St, stokes 
eV, electron-volt min, minute T, tesla 
F, farad mol, mole V, volt 
G, gauss Mx, maxwell W, watt 
g, gram N, newton Wb, weber 

Decimal Prefixes 

Factor Name of prefix Symbol Factor Name of prefix Symbol 

1012  tera- T 10-2  centi- c 
109  giga- G 10-3  milli- m 
106  mega- M 10-6 micro- 11  
103  kilo- k 10-9  nano- n 
102  hecto- h 10-12  pico- p 
10 deca- da 10-15  femto- f 
10-1  deci- d 10-18  atto- a 

SI and CGS Units 

Physical quantity 
Name of unit Conversion factor 

1 SI unit/1 CGS unit 
SI CGS 

Length m cm 100 
Time s s 1 
Velocity m/s cm/s 100 
Acceleration m/s2  cm/s2  100 
Oscillation frequency Hz Hz 1 
Angular velocity rad/s rad/s 1 
Angular frequency s -1  s-1 1 
Mass kg g 103 
Density kg/m3  g/cm3  10-3  
Force N dyn 105  
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(Continued 

Physical quantity 
Name of unit 

Conversion factor 
1 SI unit/1 CGS unit 

SI 	 CGS 

Pressure, stress Pa dyn/cm2  10 
Momentum kg•m/s g•cm/s 105  
Moment of force N-m dyn•cm 107  
Energy, work J erg 107  
Power W erg/s 107  
Energy flux density who erg/(s•cm2) 103  
Angular momentum kg•m2/s g•cm2/s 107  
Moment of inertia kg•ma g•cm2  107  
Dynamic viscosity Pa•s P 10 
Temperature K K 1 
Heat capacity, entropy J/K erg/K 107  
Electric charge C CGSE unit 3.109  
Potential V CGSE unit 1/300 
Electric field strength V/m CGSE unit 1/(3.104) 
Electric induction C.m2  CGSE unit 12n•105  
Electric dipole moment CAI CGSE unit 3.1011  
Electric polarization C/m2  CGSE unit 3.105  
Capacity F cm 9.1011  
Current A CGSE unit 3.109  
Current density A/m2  CGSE unit 3.105  
Resistance 52 CGSE unit 1/(9.1041) 
Resistivity 52•m CGSE unit 1/(9.109) 
Conductance S CGSE unit 9.1011 

Magnetic induction . T G 104  
Magnetic flux Wb Mx 109  
Magnetic field strength A/m Oe 4a•10-3  
Magnetic moment A•m2  CGSM unit 103  
Magnetization A/m CGSM unit 10-3  
Inductance H cm 109  
Luminous intensity cd cd 1 

Luminous flux 
Illumination 
Luminosity 
Brightness 

1m 
lx 

lm/m2  
cd/m2  

lm I 

Note. The CGS electric and magnetic 	units 	are given here in the 
Gaussian system. 

Some Extrasystem Units 

1 year 	=3.11.107  s 

1 atm 	
f 101.3 kPa 
1 760 mm Hg 

1 bar 	=-100 kPa (precisely) 
1 mm Hg = 133.3 Pa 
1 l•atm =101.3 J 
1 cal 	=4.18 

IA 
	

=10-8  cm 
1b 
	 10-941 cm2 

1 eV 	
= f 1.6.10-19  J 

1 1.6.10-12  erg 

= 
 {

1.66.10-24  g 
931.4 MeV 

1 Ci (curie)=3.70•1049  dis./S  

1 a.m.u. 



29. The. Basic Formulas of Electrodynamics in the SI 
and Gaussian Systems 

Name SI Gaussian system 

Strength 	of 	the 
field 	of a point 
charge 

Strength 	of 	the 
field 	of a plane 

Potential 	of 	the 
field 	of a point 

Relation 	between 
E and y 

Electric 	dipole p 
in field E 

Relation 	between 

Relation 	between 
a', P, and E 

Definition 	of 	the 
vector D 

Relation between 
a and x 

Relation 	between 

Gauss theorem for 
the vector D 

Capacitance of a 
capacitor 

Capacitance 	of 	a 
plane 	capacitor 

Energy of a sys- 
tem of 	charges 

Energy of a ca- 
pacitor 

Energy density of
electric field 

Ohm's law 
Joule's law 

Magnetic moment 
of a current car- 
rying loop 

Magnetic 	dipole 
pm  in the field B 

E— 	
1 	q 

— (P2= 

iv= _pE 

gy 

2 qi(Pi 

CV2 /2 

1 

aE2  

W = — 

j=crE 

4xrcr 
E =- 

43-re, 	r2  

0 E = -- 

capacitor 
 808  

1 	q 

a 

q  
r 

2 

.S'  Eici/  
1 

P= xE 

Q' = 13 7i  = xEn  

D=E+43TP 

e=1+4ax 

D=8E 

(1 DnelS=4aq 

eS 

charge 
 

P and E 
 

D and E 
 

IT= 	— 
43-teo 	r 

E=  — Vc1), 	( P i 

N=[pE], 

P= xe0E 

O f  = Pn =xeoEn 

D=e0E-FP 

8=1+x 

D =808E 

§ DndS=q 

C --- 

C— EoaS  
d 

W=1/2 

W ---- 

ED 
w= 

,C- 
4ad 

w— 
= —8

D  
2 

w= 

pm  = /S 

N= [pm13], 

-371, 

1 
 IS Pm=7 

pmB 



(Continued) 

Name SI Gaussian system 

Blot and Savart's 
law 

Induction 	of 	the 
field produced 

(a) by 	direct 
current 

(b) in the centre 
of a loop 

(c) in a solenoid 

Definition 	of 	the 
vector H 

Circulation of the 
vector H in a 
constant field 

Relation 	between 
J and H 

Relation 	between 
II and x 

Relation 	between 
B and H 

Lorentz force 

Ampere's law 

Force 	of 	inter- 
action of paral- 
lel currents 

Erni of induction 

Inductance 

Inductance 	of 	a 
solenoid 

Energy 	of 	the 
magnetic field 
produced by cur-
rent 

Energy density of 
magnetic field 

dB— 4 	
I [dl, r] 1 	I [dI, r] 

dB= 4n 	7 .3 

B 
	p,o 	2/ 

o — 	— 

c 	1.3  

B 
	2/ 

.L.,  =— --- 
c 	r 

D, 	1 	2a7 
vp = 

4a 	r 

B= [to  2 
4n 	r 

B = ponI 

H =B41.0 —J 

1//d/=/ 

J-= 

p,=1+x 

B= p,opH 

F= q [vB] 

dF = I [dl, B] 

F____ 	p,0 	21112  

C  

c 	r 

B= —
43t nI 
c 

H= B-4nJ 

.// /d/--=—Lt4 	/ 

XH 

p.= 1+ 4nx 

B = p,H 

F= — [vB] 
c 

dF = —
I 

[dl, B]  
c 

1 	21112  
F — 

4n 	d 

dCb 

c2 	d 

1 	c/(1) 
Wi= --it- 

L=c1)1I 

L = gop,n2  V 

L/2 
W = 

5'i=  — c 	dt 

L= ca 1 1 I 

L = 4ntin2 V 

w = 
1 	L/2  

2 

BH 
2 

rr  c2 	2 

BH 
w  -----  w= 8n 



(Concluded) 

Name SI Gaussian system 

Maxwell's equa-
tions in inte-
gral form 

Maxwell's equa-
tions in differen-
tial form 

Velocity of an 
electromagnetic 
wave in a me-
dium 

Relation between 
E and H in an 
electromagnetic 
wave 

Poynting vector 

(;1 DndS = J pdV 

E 	— nndS 

13ndS = 0 

idl = (j n+ nn) dS 

V•D= p 

V X E= —13 

V•B=0 

V x H=j+D 

v=1/1/ 801.1.041, 

E 	= I I 1/1-'1;11  

S =-- [EH] 

DniiS = 471 pdV 

	

Eidl =-- 	1371dS 

§ BndS = 0 

	

41t 	bn dS 

V•D=43-tp 

V x E= 

V•B= 0 

V X H---c-471  j+ 

v = c/V EEt 

El/e=H V IT 

S= 47 



30. Fundamental Constants 

c = 2.998.108  m/s 
{6.67.10-11  m3/(kg•s2) 

	

'V= 	6.67.10-8  cm3/(g • s2) 
g=9.807 m/s2  

NA= 6 .023 .1023  M01-1  

Vo = 22.4 1/mol 
_ 2.69.1029  III-3  

n°—  1 2.69.1019  cm-3  

R= 

 {

8.314 J/(K•mol) 
8.314.107  erg/mol 
0.082 1.atm/ mol 

k= f 1.380.10-23  J/K 
1 1.380.10-16  erg/K 

F = 10.965.106  C/kg•equiv. 
1. 2.90.1014  CGSE/g•equiv. 

{ 1.602.10-19  C e= 
4.803.10-19  CGSE 

0.911.10-39  kg 
size — 	0.911.10-27  g { 

0.511 MeV 

	

e 	{ 1.76.1011  C/kg 
me 

= 
5.27-1017  CGSE/g 

f 1.672.10-27  kg 
mPr=  1 1.672.10-24  g 

e =__ f 0.959.108  C/kg 

	

mp 	1 2.87.1014  CGSE/g 
0=5.67.10-8  W/(m2 •K4) 

b=0.29 cm .K 
1.054.10-34, J • s 

	

h= 	1.054.10-" erg•s / 
0.659.10-14  eV •s 
e4  m 

R=--§ =2.07 .10" s-1  

R' = RI2nc =-- 1.097 .105  cm-1  
ri=h2Ime2= 0.529.10-8  cm 

E =me 512h2  --= 13.56 eV 

=h/mc=3.86-10-11  cm 
re =e2/mc2 =2.82.10-13  cm 

eh 
LB= 2rnec= 

0.927.10-20 erg/G 

eh 
µn = 5.05.10-24  erg/G 

2mpc 

Velocity of light in vacuum 

Gravitational constant 

Free fall acceleration 
(standard value) 

Avogadro constant 
Molar volume of ideal gas at stp 

Loschmidt's number 

Universal gas constant 

Boltzmann constant 

Faraday constant 

Elementary charge 

Electron rest mass 

Specific charge of electron 

Proton rest mass 

Specific charge of proton 

Stefan-Boltzmann constant 
Constant in Wien's displacement law 

Planck constant 

Rydberg constant 

First Bohr radius 
Binding energy of electron in a 

hydrogen atom 
Compton wavelength of an electron 
Classical electron radius 

Bohr magneton 

Nuclear magneton 



(Concluded) 

Proton magnetic moment 
Neutron magnetic moment 

Atomic mass unit 

Permittivity of vacuum 

Permeability of vacuum 

= 2.7928 RN 
µ n =-1.913 [EN 

{1.660.10-24  g 
1 a.m.u.= 

931.4 MeV 
e0 =0.885.10-il F/m 
1/4:180 =9.102  m/F 

140=- 1.257.10-6  H/m 
110/4n=10-1  H/m 
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ELEMENTARY 

PARTICLE SYMBOL* 

MASS 

MEAN LIFE, 
s MeV me 

Photon Y 0 0 co 

Neutrino v ; 0 0 co 

PT
C

 

Electron e- e+ 0,511 1 co 

Muon lc IL+ 105,66 206, 77 2,2.10-6  

n+ n- 139,6 273,2 2,55.10-8  
Pions 

{ 

To 135,0 264,2 2.1016  

Kaons { 	K +  IC 493,8 966,3 1,23.10-8  

ES
C

 

K° ko 498,0 974,5 10-10_10-8 

Eta meson 71 548, 8 1074 2,4.10-1°  

B
A

R
Y

O
N

S
 

Proton p i5  938,26 1836,1 co 

Neutron n R 939,55 1838,6 1.10-3  

Lambda hyperon A° A° 1115,4 2182,8 2,6.10-10  

r i-  1189,4 2328 0,8.104°  

Sigma hyperons /- i+ 1197 2342 1,6.104°  

2 0 io 1192 2333 <10-14  

1321 2585 1,7.104°  
Xi hyperons 

{ EF:o :: 1314 2572 3.10"10  

Omega hyperon 12-  ir 1675 3278 
_leo 

* Symbols on the right-hand side denote antiparticles 



PARTICLES 

SPIN 
h 

CHARGES 
ISOTOPIC 

SPIN 

S
T

R
A

N
G

E
 

N
E

S
S

 
S
 

PRINCIPAL 
DECAY 
MODE Q L B T 7', 

1 0 0 0 

1/2 0 +1 0 

1/2  -1 +1 0 

1/2 -1 +1 0 1.1.---.e-4-v,+:4e  

0 +1 0 0 1 +1 o ni—R++,9, 
o 0 0 0 1 0 0 no_.2.t. 

o +1 0 0 1/2  +1/2 +1 KL. p.4+ v , 

0 0 0 0 14 -1/2 +1 K --. 0 2n, n ev 

0 0 0 0 0 0 0 1-.2y, 3n 

1/2 +1 0 +1 1/2 +1/2 0 

1/2 0 0 +1 1/2 -1/2 0 n -..p + e=1-5e 

1/2 0 0 +1 0 0 -1 
A  O it -../3 +n- 

1/2  +1 0 +1 1 +1 -1 it-N + n 

1/2 -1 0 +1 1 -1 -1 i.--wn + n- 

1/2 0 0 +1 1 0 —1 ILA0 +),  

1/2 —I 0 +1 1/2 _1/2 -2 ti=./1°+n- 

1/2 0 0 +1 1/2 +1/2 -2.  el,.A0+ no 

3/2 -1 0 +1 0 0 -3 51-.2+n, AN ff - 

Note. Particles and corresponding antiparticles have the identical values of mass, mean life, 
spin, and isotopic spin T, while their electric Q, lepton L, and baryon B charges, projections 
of isotopic spin Tz , and strangeness S, have the values that are opposite in sign. 
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