from sklearn.datasets import load_boston import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt # Loading dataset boston = load_boston() boston_df = pd.DataFrame(boston.data, columns = boston.feature_names) boston_df['price'] = boston.target boston_df X = boston.data y = boston.target # Evaluating the model x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # Training reg = LinearRegression() reg.fit(x_train, y_train) y_pred = reg.predict(x_test) # Ploting plt.scatter(y_test, y_pred) plt.xlabel('Prices') plt.ylabel('Predicted Prices') plt.show() #Mean square error (MSE) : to evaluating the model from sklearn.metrics import mean_squared_error mse = mean_squared_error(y_test, y_pred) print('\n\n mse: ', mse) print(reg.score(x_test, y_test)) print(reg.score(x_test, y_test)) print(reg.score(x_test, y_test)) print(reg.score(x_test, y_test)) print(reg.score(x_test, y_test)) print(reg.score(x_test, y_test))